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Abstract 

Salmonella enterica infection affects a wide range of animals including 

humans.  The avian specific serotype S. Pullorum infection produces systemic 

disease followed by a persistent carrier state in convalescence birds. 

Vaccination and other control strategies require an improved understanding 

of the immunity in response to S. Pullorum infection. This study compared the 

different immune dynamics following infection with (persistent) S. Pullorum 

and related (non-persistent) serovars S. Enteritidis and S. Gallinarum using co-

culture of Salmonella-infected macrophages and CD4+ T lymphocytes in vitro 

and 2-day-old chickens in vivo. In comparison with S. Enteritidis, macrophages 

infected with S. Pullorum had a reduced gene expression of pro-inflammatory 

cytokines CXCLi2, IL-6, iNOS, IFN-γ, IL-12α and IL-18 and lower level of nitrite 

production. S. Pullorum-infected macrophages were found to be less effective 

than S. Enteritidis in stimulating the CD4+ lymphocytes to proliferate in vitro. 

CD4+ lymphocytes in co-culture with Salmonella-infected macrophages also 

produced lower levels of IFN-γ and IL-17F mRNA in response to S. Pullorum 

compared with S. Enteritidis. S. Pullorum infection in 2-day-old chickens 

stimulated proliferation of Th2-like lymphocytes with reduced IFN-γ and IL-

17F but increased IL-4, IL-13 and IL-10 in the caecal tonsils and spleens when 

compared to S. Enteritidis. However, the modulation by S. Pullorum is not 

likely to be related to its large virulence plasmid, although the virulence 

plasmid of S. Gallinarum was shown to reduce nitrite production and gene 

expression of IL-1β and iNOS in infected HD11 cells. Our data showed no 
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evidence of clonal anergy or immune suppression induced by S. Pullorum in 

vitro.   

The experimental work thus shows that the response to S. Pullorum infection 

was characterised by a modulation on host immunity from a dominant IFN-γ-

producing Th17 response towards a Th2-like response which may promote 

persistent infection in chickens. 

This study provides insights into mechanisms by which S. Pullorum evades 

host immunity and produces the persistent carrier state. This opens the 

possibility for therapeutic application of cytokines to restore the host 

protective immune response to eliminate infection. 
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Chapter 1   Introduction 

1. 1 General introduction 

1. 1. 1    Classification 

Salmonella are Gram-negative bacteria which are members of the family 

Enterobacteriaceae comprised of a large number of evolutionary-related and 

biochemically similar pathogenic or potentially pathogenic taxa including the 

genera Salmonella, Shigella, Escherichia, Klebsiella, Citrobacter, and Proteus. 

Salmonella enterica (type strain LT2) is the only species of the genus 

Salmonella with new subspecies: Salmonella enterica subsp. arizonae, 

Salmonella enterica subsp. bongori, Salmonella enterica subsp. enterica, 

Salmonella enterica subsp. diarizonae, Salmonella enterica subsp. houtenae, 

Salmonella enterica subsp. indica and Salmonella enterica subsp. salamae. (Le 

Minor and Popoff, 1987). This has been superseded by a classification 

involving three species, namely Salmonella enterica, Salmonella bongori 

(Brenner and McWhorter-Murlin, 1998) and Salmonella subterraneae 

(Shelobolina et al., 2004). S. enterica contains most pathogens that affect 

human and animal health and is further divided into six subspecies including 

enterica, salamae, arizonae, diarizonae, houtenae, and indica (Brenner et al., 

2000). Thus, for example, the former Salmonella Pullorum is now designated 

Salmonella enterica subspecies enterica serovar Pullorum, which may be 

shortened to Salmonella Pullorum or S. Pullorum (Brenner et al., 2000). 

Biotype and phage type may also be applied to subdivide Salmonella serovars 
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further. Biotypes within a serovar are differentiated by biochemical variation 

while the differential susceptibilities to lytic bacteriophages can classify 

microorganisms within the same serovar into the same or different phage 

type (Ward et al., 1987).  

1. 1. 2    Salmonella serovars 

More than 2600 serovars of Salmonella have been described with most of 

these belonging to the species S. enterica (Bugarel et al., 2012). The 

Kauffmann-White scheme groups Salmonella serovars serologically by 

antigenic variability of the lipopolysaccharides (O antigens) which is the main 

constituent of outer membrane of Gram-negative bacteria, flagellar proteins 

(H antigens), and capsular polysaccharides (Vi antigens) (Grimont and Weill, 

2007). Alternative methods involving probing the DNA of causative strains at 

a taxonomic level are now beginning to show an advantage over the 

traditional serotyping (Wattiau et al., 2011).  

From the point of view of infection biology S. enterica can be subdivided into 

two categories (Barrow, 2007). The first group comprises a small number of 

serovars which are adapted to a narrow range of host species and generally 

produce severe, typhoid-like disease sometimes with high mortality. These 

serovars include S. Gallinarum and S. Pullorum in poultry, S. Dublin in cattle 

and S. Typhi in humans. The second group includes the remaining serovars 

which colonise the intestine of a wide range of unrelated host species 

resulting in entry into the food chain and causing a self-limiting gastroenteritis 
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in humans. S. Typhimurium and S. Enteritidis belong to this group with 

infection either remaining restricted to the gastrointestinal tract or in some 

circumstances became systemic. However, S. Typhimurium and S. Enteritidis 

can produce typhoid-like infections in mice. 

1. 1. 3    Salmonella infections in poultry 

Salmonellosis is a frequent disease of poultry which affects the poultry 

industry throughout the world and is a significant source of zoonotic 

infections through the consumption of contaminated eggs and meat. 

1. 1. 3. 1 Paratyphoid infections 

Numerous motile Salmonella serovars are capable of producing paratyphoid 

(PT) infections in a wide range of hosts including domestic fowl/chickens. S. 

Typhimurium and S. Enteritidis are among the more common serovars 

isolated which are associated with PT infection in fowl. PT infections are 

largely confined to the lower gastrointestinal tract with faecal excretion (Gast, 

1997). Systemic infection with these serovars is usually more transient and 

resolved through cellular immunity within 2-3 weeks (Barrow et al., 2004, 

Beal et al., 2004a) but serious systemic infections can occur in highly 

susceptible young chickens or when subjected to stressful conditions (Barrow, 

2000). For example, infection with S. Typhimurium in one-day-old chickens 

can lead to enteric infection and systemic disease with a high mortality rate 

whereas infection of older birds generally results in asymptomatic caecal 

colonisation, with persistent shedding of the organisms in faeces (Barrow et 
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al., 1987a). Newly hatched chickens infected with S. Enteritidis can also 

produce persistent infection with faecal shedding until onset of lay (Berchieri 

et al., 2001b, Van Immerseel et al., 2004).  

Both S. Enteritidis and S. Typhimurium infections produce an intense 

pathological consequence that is likely to provoke a strong and rapid immune 

response to clear the infection. S. Enteritidis is able to colonise the 

reproductive tract of infected chickens more effectively than S. Typhimurium 

(De Buck et al., 2004). S. Enteritidis colonises the reproductive tissues of 

laying hens leading to the production of eggs with contaminated contents 

and/or shells, depending on strain variation and the route of infection 

(Barrow and Lovell, 1991, Humphrey et al., 1991). S. Enteritidis has replaced S. 

Typhimurium and currently dominates poultry and egg-borne salmonellosis, 

resulting in an epidemic of human food poisoning outbreaks in the UK but 

which is now largely under control (Wales and Davies, 2011). 

1. 1. 3. 2 Typhoid infections (Fowl typhoid and Pullorum disease) 

Fowl typhoid (FT) and Pullorum disease (PD) are two distinct septicaemic 

diseases of avian species caused by host-adapted serovars S. Gallinarum and S. 

Pullorum respectively, which are non-motile serovars of S. enterica and have 

adapted to induce disease exclusively in chickens. Both S. Pullorum and S. 

Gallinarum possess the lipopolysaccharide (LPS) O antigens 1, 9 and 12. Both 

are serologically identical but are thought to have evolved separately from a 

descendent of S. Enteritidis mainly by gene deletion events (Thomson et al., 
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2008). The three serovars Pullorum, Gallinarum and Enteritidis are 

phylogenetically closely related (Li et al., 1993). 

Both FT and PD cause substantial economic losses to the poultry industry 

throughout many parts of the world. FT usually affects adult birds, although 

birds of all ages and breeds may be susceptible. Experimental infection of 

three weeks old chicken with S. Gallinarum resulted in severe fowl typhoid 

and a mortality of 60% (Jones et al., 2001). PD is an acute systemic disease 

causing high mortality rates among young birds (Shivaprasad and Barrow, 

2008) with those convalescent birds becoming carriers of the disease (Wigley 

et al., 2001).  

PD and FT are reported to be eradicated from commercial poultry in many 

developed countries, but may not be diagnosed properly such that the 

incidence of disease is possibly underestimated given the many wild avian 

species which can be infected by these serovars. Several European countries 

have witnessed outbreaks of both PD and FT in chickens, either in commercial 

layer or backyard flocks, up until 2008 (Barrow and Freitas Neto, 2011). The 

last case of FT in the United States (U.S.) was reported in 1981 but PD was 

detected in commercial flocks up until 2009 

(http://www.aphis.usda.gov/vs/nahss/disease_status.htm#avian). PD remains 

important in areas of the world where intensive poultry industry is developing 

and may also become a more important issue due to the ever-increasing 

popularity of free-range farming. 

http://www.aphis.usda.gov/vs/nahss/disease_status.htm#avian
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Antimicrobials remain in use to reduce mortality associated with PD and FT in 

many countries, but are not be able to eliminate infection. Uncontrolled or 

excessive use of antibiotics leads to antimicrobial resistance (AMR) which can 

then spread into the humans via the food chain (Tollefson and Miller, 2000).  

For example, 258 Korean isolates of S. Gallinarum in 2001 showed resistance 

to enrofloxacin (6.5%), ofloxacin (82.6%), ampicillin (13.0%), gentamicin 

(43.4%) and kanamycin (69.6%), compared to a much greater level of 

susceptibility of all isolates from 1995 (Lee et al., 2003). Multi-resistant strains 

to three or more antimicrobials accounted for 63.8% out of 105 isolates of S. 

Gallinarum in Korea between 2002 and 2007 (Kang et al., 2010). There was 

also a high level of resistance to ampicillin, carbenicillin, streptomycin, 

tetracycline, trimethoprim and sulfafurazole found among 450 isolates of S. 

Pullorum from diseased chicken in China from 1962 to 2007 with 56.2% of 

them displaying resistance to 4 or more antimicrobials (Pan et al., 2009). In 

another study, the multi-resistant strains of S. Pullorum reached 96.6% of 

isolates between 1990 and 2010 in eastern China (Gong et al., 2013). 

Antimicrobial resistance in S. Pullorum was most commonly detected to 

Tetracycline (Lynne et al., 2009).  

S. Pullorum typically produces typhoid-like infections in chickens which also 

generally develops into a disease-free persistent carrier state in convalescent 

chickens (Wigley et al., 2001). This is a feature shared with some of the other 

host-specific Salmonella enterica serovars including S. Typhi in humans, S. 

Dublin in cattle and S. Abortusovis in sheep (Wray and Sojka, 1977, House et 
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al., 2001, Uzzau, 2013). Unlike PT infections with S. Typhimurium, S. Pullorum 

colonises the gut poorly with bacterial numbers falling during the first 4 days 

post- challenge due to migration from the intestine to more deeper tissues 

(Henderson et al., 1999). S. Pullorum can be recovered from liver, spleen, 

caeca, lungs, heart, pancreas, yolk sac, synovial fluid, and reproductive organs 

of infected chickens (Shivaprasad and Barrow, 2008). In convalescent chickens, 

a small number of viable S. Pullorum persist in the spleen despite the 

presence of a high titre, specific IgY response and T lymphocyte proliferation 

(Berchieri et al., 2001a, Wigley et al., 2001, Wigley et al., 2005b), suggesting 

an intracellular niche. This was demonstrated to be mainly within 

macrophages of the spleen, which may protect S. Pullorum from the antibody 

response (Wigley et al., 2001). When females come into lay, the increased 

concentration of female sex hormones reduces T cell responsiveness, 

resulting in recrudescence of systemic infection and spread of Salmonella to 

the reproductive tissue. This leads to vertical transmission through the 

developing eggs, from which infected progeny hatch spreading infection 

horizontally (Wigley et al., 2001). In contrast, the bacteria remain at a low 

level in male birds during the course of infection and are eventually 

eliminated after several months (Berchieri et al., 2001a, Wigley et al., 2001, 

Wigley et al., 2005b). The infected progeny, which carry S. Pullorum in the 

hatchery and intensive poultry units, transmit the infection horizontally (Lister 

and Barrow, 2008).  
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In contrast, S. Gallinarum reveals a markedly different pathology and infection 

biology, producing severe systemic disease in mature birds. This results in 

either high mortality, in susceptible birds, or with bacterial clearance in 

resistant birds within three to four weeks of the initial infection, although 

persistent infection in resistant lines can occur occasionally (Berchieri et al., 

2001a, Wigley et al., 2002a, Wigley, 2004). S. Gallinarum can be found in the 

gastrointestinal tract either in the early phase after oral infection or in the 

final stage before the birds die, when the bacteria are shed into the lumen 

from clusters of lymphoid tissues in the wall of the intestine (Barrow et al., 

1994, Wigley et al., 2002a). Moreover, although S. Gallinarum has been 

described as being vertically transmitted in some older reports (Shivaprasad 

and Barrow, 2008), infection of the oviduct and transmission to eggs rarely 

occurs with this serovar (Berchieri et al., 2001a). Berchieri et al. (2001a) 

suggested a role for the host genetic background in the inbred lines where 

this characteristic was expressed. 

In humans, typhoid fever is a systemic disease caused primarily by the strictly 

human-adapted serovar S. Typhi. Chronically infected individuals are the 

reservoirs for the spread of infection with bacterial shedding for periods of 

time that range from a year to a lifetime (Vogelsang and Boe, 1948). In 2000, 

there were an estimated 21.7 million cases and 217,000 deaths globally 

(Crump et al., 2004). In 2010, there were still an estimated total number of 

13.5 million typhoid fever episodes worldwide (Buckle et al., 2012). S. Dublin, 

which is closely related to S. Gallinarum, S. Pullorum and S. Enteritidis, is a 
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major cause of enteritis and systemic diseases in cattle, particularly dairy 

cattle in which pathology may be exacerbated by parasites such as Liver Fluke 

(La Ragione et al., 2013). Chronic infection of cattle by S. Dublin can lead to 

persistence in the spleen or gall bladder, while udder infections can lead to 

infected milk. In sheep, S. Abortusovis produces systemic infections with 

abortion in sheep (Uzzau, 2013). The exact nature of the pathogenesis of 

these three serovars and how they may result in persistent infection is 

unclear. 

1. 2 Epidemiology and zoonotic infections 

Non-typhoid salmonellosis, which causes gastroenteritis, is associated with a 

massive public health and economic burden globally, resulting in an estimated 

93.8 million cases worldwide and 155,000 death each year (Majowicz et al., 

2010). In Europe, over 6.2 million cases of non-typhoid Salmonella infections 

in humans are reported each year (Havelaar et al., 2013). Salmonella is 

estimated to cause more than 1.2 million illnesses each year in the U.S., with 

around 23,000 hospitalizations and 450 deaths (Scallan et al., 2011). It has 

also been reported that Salmonella accounted for the second greatest 

number (16.73%) of 1082 foodborne disease outbreaks in China between 

1994 and 2005, following Vibrio parahaemolyticus with 19.50% (Wang et al., 

2007).  

Most human salmonellosis is typically acquired from contaminated 

food/water or by contact with a carrier. Consumption of contaminated egg 
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and egg-products accounted for 44.9% of salmonellosis outbreaks in Europe 

in 2013 (EFSA, 2015). Besides poultry and eggs, a variety of meats, including 

pork and beef, can become cross-contaminated with Salmonella during 

slaughter, processing, or distribution (Crum-Cianflone, 2008). Companion 

animals are also a source of infection with iguanas, turtles and snakes 

accounting for 3-5% of all Salmonella infections in the U.S. (Ackman et al., 

1995). Food items not directly derived from animals can also be contaminated 

with Salmonella, such as contaminated peanut butter which caused S. 

Tennessee infection in over 600 patients in Georgia in 2007 (Anonymous, 

2007). The risks from manufactured food (Hennessy et al., 1996) and 

international trade increase the possibility of outbreaks worldwide. In 

developing regions, non-typhoid Salmonella infection is an important cause of 

neonatal and childhood diarrhoea. Travellers to developing countries can also 

acquire salmonellosis, which is a cause of ‘so-called’ traveller’s diarrhoea 

(Boyle et al., 2007).  

S. Enteritidis and S. Typhimurium are the most commonly isolated serovars 

from non-typhoid salmonellosis associated with the consumption of 

contaminated food. These two serovars are responsible for 39.5 % and 20.2 % 

respectively of all reported serovars in confirmed human cases in the 

European Union (EU) in 2013 (EFSA, 2015). The prevalence of different 

Salmonella serovars and phage types varies according to country or region. In 

China, S. Enteritidis caused the most outbreaks of foodborne salmonellosis, 
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which resulted in 28.73% of cases between 1994 and 2005 (Wang et al., 2007) 

and made up 57.2% of isolates in 2008  (Lu et al., 2011).  

In the United Kingdom (U.K.), S. Enteritidis was the most commonly reported 

serovar from human salmonellosis from 2004 to 2013 and S. Typhimurium 

was the second most commonly reported serovar 

(https://www.gov.uk/government/publications/Salmonella-surveillance-

summary-2013), but there are also increasing reports of human outbreaks 

caused by monophasic variants of S. Typhimurium (Martelli et al., 2014).  A 

new S. Typhimurium phage type with many distinctive phenotypic and 

genotypic features, designated DT191a, emerged in England and Wales in 

2008 (Harker et al., 2011). S. Typhimurium definitive type 104 (DT104), a 

distinct multidrug-resistant strain, has become widespread since the 1990s 

(Glynn et al., 1998). In Australia and New Zealand, many other serovars are 

isolated but S. Typhimurium remains predominant. In general, countries with 

a well-developed intensive poultry industry tend to witness large outbreaks of 

single strains in contrast to more sporadic cases and various isolated types in 

countries where the poultry industry is less intensively developed (Barrow, 

1993).   

1. 3 Pathogenesis of Salmonella infection 

Salmonella utilise a range of virulence determinants to colonise the intestinal 

tract after oral infection, invade the intestinal epithelium and persist and 

multiply within macrophages and other immune cells (Wallis and Galyov, 

https://www.gov.uk/government/publications/salmonella-surveillance-summary-2013
https://www.gov.uk/government/publications/salmonella-surveillance-summary-2013
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2000). The outcome of host-pathogen interactions depends on both host 

susceptibility/resistance and the virulence profiles of the respective serovars 

of S. enterica. The types of infection produced include (i) an invasive typhoid 

with bacterial multiplication in macrophages in the liver and spleen, (ii) an 

invasive gastroenteritis and (iii) disease-free intestinal colonisation. S. 

Typhimurium infection in mice usually produces systemic typhoid disease and 

therefore is only really relevant as a model of typhoid disease. 

1. 3. 1     Virulence factors associated with intestinal 

colonisation 

After oral ingestion, efficient adhesion and colonisation to the host cells is 

required prior to invasion of the mucosal epithelial barrier by Salmonella.  

Fimbriae, found on the bacterial surface, mediate initial attachment and 

colonisation of the epithelial layer and in murine dendritic cells (DCs) the 

type-1 fimbrial adhesion FimH protein has been shown to mediate the uptake 

of S. Typhimurium (Humphries et al., 2001, Guo et al., 2007). Mutation in the 

lipopolysaccharide biosynthesis genes rfaK, rfaY, rfbK, and rfbB and the genes 

dksA, clpB, hupA, and sipC is associated with reduced intestinal colonisation 

of S. Typhimurium in three-week-old chickens, indicating additional 

involvement of regulatory and invasion genes (Turner et al., 1998). A wider 

selection of virulence and metabolic genes have also been associated with 

colonisation of the intestinal mucosa of chickens and calves (Morgan et al., 

2004). Limited studies have been carried out with S. Pullorum and S. 

Gallinarum but studies with S. Enteritidis indicate that out of the 13 fimbrial 
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loci, most of which are shared with other serovars, only the pegA operon 

played a significant role in the colonisation of the avian intestine (Clayton et 

al., 2008). However, S. Pullorum and S. Gallinarum are not effective colonisers 

of the avian gut but produce systemic disease and so the roles of fimbrial 

operons may differ in these two serovars when compared to S. Enteritidis or S. 

Typhimurium.  

1. 3. 2    Virulence factors associated with gastroenteritis 

Large clusters of horizontally acquired virulence-associated genes located 

within distinct genetic regions, known as Salmonella pathogenicity islands 

(SPIs), have been identified in different serovars (Groisman and Ochman, 

1997). Salmonella Pathogenicity Island 1 (SPI-1) and Salmonella Pathogenicity 

Island 2 (SPI-2), which encode Type Three Secretion Systems 1 (TTSS-1) and 2 

(TTSS-2), are important in both the establishment and persistence of 

Salmonella infections. The TTSSs form needle-like complexes as a delivery 

system to secrete bacterial effector proteins into host cells. These proteins 

mediate invasion and associated enteropathogenic response (SPI-1) and 

intracellular survival (SPI-2), which are required for gastroenteritis and 

systemic disease respectively.  

Invasion is mediated through Salmonella directed cytoskeletal 

rearrangements with TTSS-1 effector proteins. SopE and SopB stimulate the 

GTPases cdc42 and Rac leading to actin cytoskeleton rearrangement (Wood et 

al., 1996, Norris et al., 1998). SipA enhances the efficiency of SipC to bind 
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actin filaments (Hayward and Koronakis, 1999, McGhie et al., 2001). These 

SPI-1 effector proteins delivered into the host cell work cooperatively to 

induce rearrangement of the actin cytoskeleton and enable rapid 

internalization of bacteria into epithelial cells (McGhie et al., 2009). Invasion 

leads to enteropathogenic responses and neutrophil infiltration (McCormick 

et al., 1995). However, removal of S. Dublin TTSS-1 effector proteins SopA, 

SopB or SopD resulted in significantly less enteropathogenesis and 

polymorphonuclear leukocytes (PMN) influx in bovine ligated ileal loops when 

compared to its wild type (Galyov et al., 1997, Jones et al., 1998, Wood et al., 

2000). This indicates the potential for changes in TTSS-1 function to affect 

inflammatory outcomes. However, there is currently no detailed information 

on avian-specific serovars.  

Flagella is a second factor which is related to the invasiveness of Salmonella. 

Flagellin, the structural component of bacterial flagella, is a virulence factor 

that is recognized by the Toll-like receptor (TLR) 5 and thus activates pro-

inflammatory gene expression (Gewirtz et al., 2001). In non-motile strains the 

structural genes fliC and fliB that encode flagellin, are not pseudogenes but 

the serovars are not able to build up a functional flagellum (Paiva et al., 2009, 

Kwon et al., 2000). S. Pullorum and S. Gallinarum have been reported to 

possess gene fliC (Paiva et al., 2009, Kwon et al., 2000, Kilger and Grimont, 

1993, Thomson et al., 2008). Non-motility in S. Gallinarum has been partially 

attributed to mutations in gene fliC (Kilger and Grimont, 1993), which would 

normally express the phase 1 g,m antigens characteristics of S. Enteritidis. 
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Non-flagellated S. Pullorum and S. Gallinarum typically cause more severe 

systemic infections in the chicken, compared with flagellated S. Typhimurium 

and S. Enteritidis. In a study by Iqbal et al. (2005), a non-flagellated filM S. 

Typhimurium mutant, inducing less IL-6 and IL-1β mRNA in the chicken gut 

and less heterophil infiltration than did the parent strain, showed increased 

invasiveness of systemic sites after oral inoculation. These together suggest 

that the increased invasiveness of non-flagellated serovars may result from a 

reduced inflammatory response due to the redundancy of TLR 5.  

Following invasion, the gastroenteritis-inducing serovars induce and utilize 

host intestinal inflammation which favours pathogenesis. In an inflamed 

intestine, the presence of the iroBCED operon-encoding salmochelin in S. 

Typhimurium, confers resistance to lipocalin-2, an antimicrobial released from 

epithelial cells, to prevent bacterial iron acquisition (Hantke et al., 2003, 

Raffatellu et al., 2009), which contributes to its intestinal colonisation. 

Furthermore, the ttrRSBCA locus was shown to enable S. Typhimurium to 

respire with tetrathionate, S4O6
2-, an electron acceptor that is oxidized from 

thiosulphate, S2O3
2- by reactive oxygen species (ROS) generated to produce 

energy during inflammation (Hensel et al., 1999, Winter et al., 2010a). This 

promotes bacterial outgrowth in the inflamed intestine. 

In poultry, invasion of S. Typhimurium and S. Enteritidis induce strong 

inflammatory responses by increasing the production of cytokines IL-1 and IL-

6 in the intestine and epithelial cells, which is thought to limit the infection to 
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the gut in contrast to an absence of inflammation seen with infection of S. 

Pullorum and S. Gallinarum, which may facilitate systemic spread (Henderson 

et al., 1999, Kaiser et al., 2000). Bacterial LPS has multiple effects in 

modulating immune responses. LPS is a potent inducer of nitric oxide (NO) 

secretion (Olah, 2008) and expression of splenic IL-6, IL-8, IL-18 and IFN-γ 

mRNA in chickens early after infection (Sijben et al., 2003). However, 

stimulation of both chicken macrophage-like HD11 cells and monocyte-

derived macrophages by LPS resulted in a release of the anti-inflammatory 

cytokine IL-10 (Rothwell et al., 2004, Setta et al., 2012a). Production of anti-

inflammatory cytokines in the latter study probably represents inflammation 

accompanied with a later anti-inflammation event during the later stage of 

infection. However, expression of inflammatory cytokines in the earlier 

observations in vivo may largely result from stimulated epithelial cells. 

1. 3. 3    Virulence factors associated with systemic disease 

Macrophages were found to be the preferable intracellular niche for the 

survival and persistence of S. enterica (Dunlap et al., 1992, Wigley et al., 2001, 

Monack et al., 2004). S. Pullorum can persist in vivo in chicken splenic 

macrophages for over 40 weeks following experimental infection (Wigley et 

al., 2001), which is central to the development of the disease-free carrier 

state in chicken. Several different mechanisms associated with TTSS-2 have 

been recognised to aid intra-macrophage survival of S. enterica.  
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After internalization by a phagocyte, S. enterica occupies a modified 

phagosome known as the Salmonella-containing vacuole (SCV). Several 

sequential bactericidal cell activities are directed at the SCV. These include 

the ROS generated through the respiratory burst and reactive nitrogen 

intermediates (RNI) synthesized by inducible nitric oxide synthase (iNOS) 

(Vazquez-Torres and Fang, 2001). TTSS-2 enables S. Typhimurium to exclude 

the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 

membrane component flavocytochrome b558 from the membrane of the 

phagosome in murine macrophages. This prevents the assembly of the 

NADPH oxidase complex, thereby protecting S. Typhimurium from oxidative 

damage in the SCV (Vazquez-Torres et al., 2000b, Gallois et al., 2001). SPI-2 

has also been suggested to abrogate the assembly of the NADPH oxide 

complex by interfering with the trafficking of oxidase-containing vesicles to 

the phagosome (Vazquez-Torres et al., 2000b). Efficient localisation of iNOS 

was observed in murine macrophages infected with S. Typhimurium mutants 

deficient in SPI-2-encoded TTSS, while iNOS was only rarely present in the SCV 

of macrophages infected with virulent bacteria (Chakravortty et al., 2002). 

This was later found to be associated with the Salmonella phoP regulon which 

regulates genes located on SPI-2. Hulme et al. (2012) reported that the 

reduced iNOS expression associated with S. Typhimurium infection was 

correlated with inhibition of binding of nuclear factor κB (NF-κB) and activator 

protein 1 (AP-1) to murine J774 macrophage DNA via the phoP regulon. The 

SPI-2-encoded SpiC protein was also found to interfere with intracellular 
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trafficking and inhibits fusion of Salmonella-containing phagosomes with 

lysosomes and endosomes (Uchiya et al., 1999).  

TTSS-2-mediated survival and proliferation within the macrophages has been 

found to be important for the establishment of systemic infection and 

gastrointestinal colonisation by S. enterica in chickens. S. Gallinarum requires 

TTSS-2 for full virulence, mainly through promoting intra-macrophage survival 

(Jones et al., 2001). However, S. Gallinarum TTSS-1 mutant was still able to 

effectively infect and persist in avian macrophages, indicating that TTSS-1 had 

little effect on its virulence (Jones et al., 2001). Similarly, S. Pullorum TTSS-2 

mutant was fully attenuated and more rapidly cleared from the spleens and 

livers of infected chickens than the parent strain, whereas TTSS-1 is not 

essential for its virulence (Wigley et al., 2002b). TTSS-2 was also required for S. 

Typhimurium systemic infection but TTSS-1 is not absolutely required in 

either systemic infection or gastrointestinal colonisation (Jones et al., 2007). 

However, the functionality of TTSS-2 used by S. Pullorum to produce 

persistent infection in vivo might be different and requires further study. 

During the transition of S. Typhi through the intestinal epithelium, TviA, a viaB 

locus-encoding regulatory protein that represses expression of flagellin, was 

induced due to the change in osmolarity, which enabled S. Typhi to evade the 

sentinel functions of TLR5 and weaken flagellin-specific CD4+ cell responses, 

thus contributing to its ability to disseminate from the intestine to deeper 

tissues (Winter et al., 2010b, Atif et al., 2014). This is a similar situation to that 
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observed in chickens where the non-flagellated S. Typhimurium mutants had 

increased invasiveness to systemic sites in chickens (Iqbal et al., 2005). The Vi 

capsular antigen is another virulence factor used by S. Typhi when it transits 

from the intestinal lumen into the ileal mucosa. tviB, a gene necessary for the 

expression of the virulence (Vi) capsule antigen in S. Typhi, was significantly 

upregulated during invasion of intestinal tissue (Tran et al., 2010). Decreased 

complement 3 (C3) fixation of Vi-capsulated S. Typhi reduced bacterial 

binding to complement receptor 3 (CR3), resulting in inhibition of CR3-

mediated phagocytosis in the livers and spleens of infected mice (Wilson et al., 

2011). Another consequence of impairing C3 fixation by the Vi capsule was to 

reduce the inflammatory response induced by TLR4. For example, CR3-

blockade has been shown to attenuate the TLR4-dependent inflammatory 

response in human neutrophils (van Bruggen et al., 2007) and murine bone-

marrow derived macrophages (Wilson et al., 2008) infected with S. 

Typhimurium.  

A large virulence-associated plasmid, present in a few serovars, is also 

required for Salmonella virulence during systemic disease caused by S. 

Gallinarum, S. Pullorum and S. Enteritidis in chickens (Barrow et al., 1987b, 

Barrow and Lovell, 1988, Halavatkar and Barrow, 1993).  The plasmids are 50-

90 kb in size with the 7.8 kb spv (Salmonella plasmid virulence) region 

essential for virulence (Rotger and Casadesus, 1999). A study by Matsui et al. 

(2001) has suggested that two genes, spvB and spvC, encode the principle 

effector factors for plasmid-mediated virulence of S. Typhimurium in a mouse 



Chapter 1 

20 

 

model of systemic infection. T3SS-2 is required for translocation of both SpvB 

and SpvC proteins into the cytosol of Salmonella-infected macrophages 

(Browne et al., 2008, Mazurkiewicz et al., 2008). Genes homologous to spv 

have not been found in S. Typhi but a recently identified large and conjugative 

antibiotic resistance plasmid (pRST98) in S. Typhi (Huang et al., 2005) has been 

found to modulate the immune response of DCs by inhibiting the expression 

of co-stimulatory molecules (CD40, CD80, and CD86) (Wei et al., 2012). This 

plasmid also directed the immune response away from a protective T helper 

(Th) type 1 (Th1) like response (Wei et al., 2012). This suggested that S. Typhi 

pRST98  may be key in preventing the activation of a protective T-cell mediated 

immune response to this pathogen. No equivalent study has been performed 

to investigate the impact of immune response with plasmids of avian-specific 

serovars Pullorum and Gallinarum. 

1. 4 Avian Immunobiology 

Among the avian species, the immune system of domestic chicken, Gallus 

gallus domesticus, is the most extensively studied as a result of the availability 

of inbred lines and their importance in both economy and food security. The 

immune system of the chicken functions similarly to that of mammals, but 

there are significant structural and functional differences. 

1. 4. 1    The avian immune system  

In chicken, the bursa of Fabricius and the thymus are the central (primary) 

lymphoid organs required for the development of B and T lymphocytes 
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respectively. The bursa of Fabricius is the primary site for the development of 

chicken B cells and the antibody repertoire since neonatal surgical removal of 

the bursa of Fabricius prevents the development of antibodies in response to 

immunization with S. Typhimurium type O antigen (containing LPS) (Glick et 

al., 1956) while T cells develop from the precursors in the thymus (Olah et al., 

2013). The immunologically mature B and T cells then enter the circulation 

and colonise the peripheral (secondary) lymphoid organs, which comprise the 

spleen, which directly connects to the blood circulation, and mucosa-

associated lymphoid tissues (MALT) (Olah et al., 2013). Many cell types are 

present in the red pulp of the spleen, including T cells, plasma cells and 

macrophages. Avian splenic macrophages have been demonstrated to 

express major histocompatibility complex (MHC) class II, which suggests a role 

in antigen presentation (Olah et al., 2013). The chicken MHC is an example 

illustrating a more compact but functionally different immune system in 

chicken. Chicken MHC is about one-third the size of their mammalian 

homologues (Kaufman et al., 1999) and strongly associates with resistance 

and susceptibility to certain infectious pathogens (Kaufman and Wallny, 1996). 

The gut-associated lymphoid tissues (GALT) that comprises the caecal tonsils 

and the Peyer’s patches is part of the MALT (Olah et al., 2013). Chicken IgM, 

IgA and IgY have been identified as homologues of their mammalian 

counterparts whereas IgE is absent in chickens with some of the functions 

ascribed to IgE in all probability being  performed by chicken IgY (Ratcliffe, 

2006).  
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Large numbers of heterophils and monocytes present in the blood at hatch 

(Wells et al., 1998). There are further increases in PMN cells in all parts of the 

intestine during the first two weeks after hatch (Bar-Shira and Friedman, 

2005). Antibodies received from the breeder hens (passive immunity) protect 

the newly hatched chicks from disease for the first few days. The chicken 

antibody repertoire is generated during the late embryonic stage and for a 

short period after hatching and a mature repertoire is achieved around 5-7 

weeks, when the bursa is fully mature (Davision, 2013). T cells functionally 

mature in chicks between days 2-4 and by 1 week of age their ability to 

proliferate and produce cytokines following immune stimulation is equivalent 

to that of adult chickens (Lowenthal et al., 1994).  

1. 4. 2    Innate immune response and recognition in the 

chicken 

Heterophils are primary avian PMNs equivalent to neutrophils in mammals, 

which can release toxic oxygen species, proteolytic enzymes and various 

antimicrobial peptides to aid microbial killing (Kogut et al., 2001). Recruitment 

of heterophils into the intestine was observed in chickens infected with S. 

Enteritidis or S. Typhimurium (Withanage et al., 2004, Withanage et al., 2005b, 

Berndt et al., 2007, Cheeseman et al., 2008). Heterophils from S. Enteritidis-

resistant chicken had higher levels of pro-inflammatory cytokine mRNA and 

reduced expression of anti-inflammatory cytokine mRNA when compared to 

those in susceptible chickens, suggesting that heterophil function contributes 

to resistance to Salmonella infection (Swaggerty et al., 2004). Higher numbers 
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of circulating heterophils were also seen in chicken lines resistant to intestinal 

colonisation by S. Typhimurium (Barrow et al., 2004). In mammals the 

equivalent cell type, the neutrophil, also responds to enteric Salmonella 

infection. Massive infiltration of neutrophils into the intestine confers 

resistance to invasion by subsequently infecting strains (Foster et al., 2003b). 

The Toll-like receptors (TLRs) expressed on host cell surfaces are the best 

characterized membrane-bound pattern recognition receptors (PRRs) which 

recognise pathogen-associated molecular patterns (PAMPs) conserved on a 

broad range of invading pathogens (Aderem and Ulevitch, 2000). The chicken 

TLR repertoire has a pattern of gene duplication/loss and is considered 

generally less polymorphic when compared with those in mammals (Kaiser, 

2010). About ten chicken TLRs have been confirmed with TLR3, 4, 5, 7 having 

orthologues in mammals whilst duplicated TLR2 gene, termed TLR2A and 

TLR2B, are both orthologues of a single TLR2 in mammals (Temperley et al., 

2008). A broad range of avian tissues and cells types constitutively express 

TLR4, but a particularly high level of TLR4 is expressed in macrophages and 

heterophils (Leveque et al., 2003, Kogut et al., 2005a). TLR5 orthologues have 

been reported in the chicken, which shares 50% amino acid identity with that 

in humans and induced an up-regulation of IL-6 and IL-1β when exposed to 

bacterial flagellin (Iqbal et al., 2005). Genomic disruption, generating a 

pseudogene of avian TLR8 has been identified (Philbin et al., 2005). TLR9 is 

absent in chickens (Temperley et al., 2008) but is replaced functionally by 

TLR21 (Keestra et al., 2010). TLR1La, 1Lb and 15 appear to be unique to avian 
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species (Temperley et al., 2008, Nerren et al., 2009). A recent study indicated 

that, compared with heterophils isolated from chickens susceptible to S. 

Enteritidis infections, heterophils from resistant chickens had significantly 

higher levels and stronger up-regulation of TLR15 mRNA expression prior to 

and after S. Enteritidis stimulation respectively (Nerren et al., 2009). The 

ligand for TLR15 was on a broad-range of bacterial pathogens causing disease 

in chickens (Nerren et al., 2010), suggesting a potential involvement in the 

immune responses to bacterial infection in poultry. Another study has shown 

a significant up-regulation of chicken TLR2, TLR4 and TLR21 expression in 

gastrointestinal tissues upon infection with S. Pullorum in the early stage of 

infection (Ramasamy et al., 2014) though the involvement of these receptors 

in avian systemic salmonellosis requires further studies. 

1. 4. 3    Adaptive immune response in the chicken 

Like mammalian antigen presenting cells (APCs), avian macrophages and DCs 

capture antigens encountered during scavenging and express the peptides 

from these antigens through the MHC. MHC class I molecules (MHC I) are 

expressed on most cells of the body. MHC I-bearing peptides, derived from 

cytosolic proteins are recognised by CD8+ T cells (cytotoxic T cells) which are 

specialized to kill infected cells, while MHC class II molecules (MHC II) bind 

antigenic peptides mainly from endocytosed proteins. MHC II are expressed 

predominantly by antigen-presenting cells and are recognised by CD4+ T cells 

(T helper cells, Th) which are specialized to activate other cells (Germain, 

1994). Upon recognition and activation, the classical T helper (Th) type 1 (Th1) 
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and type2 (Th2) (Th1/Th2) paradigm (Mosmann and Coffman, 1989) classifies 

CD4+ T cell clones into distinct populations on the basis of their patterns of 

cytokine production. Th1 cells produce IFN-γ to promote cell-mediated 

immunity against intracellular pathogens whereas Th2 cells produce IL-4 to 

support humoral immune responses to clear extracellular pathogens. Two 

functionally different types of macrophages, designated M1 and M2, have 

been isolated in mammals (Mills et al., 2000). M1- or M2-dominant 

macrophage responses can influence the occurrence of Th1 or Th2 responses 

respectively (Mills et al., 2000). It is not yet known whether M1/M2 

phenotypes are conserved in avian macrophages but Th1/Th2-polarized 

immunity has been demonstrated in the chicken (Kaiser, 2010). The 

conservation of Th1-like pro-inflammatory responses in the chicken was first 

characterized by IL-18-induced IFN-γ secretion (Gobel et al., 2003). IFN-γ is 

involved in the activation of macrophages for NO production and promoting 

intracellular killing of Salmonella (Mastroeni and Menager, 2003, Okamura et 

al., 2005, Babu et al., 2006). Thus it is accepted that the IFN-γ-producing Th1 

response plays a vital role in protection against Salmonella (Beal et al., 2005, 

Withanage et al., 2005b, Chappell et al., 2009).  

Besides the Th1/Th2 paradigm, Th17 cells were identified as a separate 

lineage of Th cells in mammals and important regulators of tissue 

inflammation (Harrington et al., 2006). Th17 cells produce a range of 

cytokines including IL-17, IL-17F, IFN-γ. They recruit neutrophils and 

macrophages to infected tissues through production of IL-17 and IL-17F 
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(Miyamoto et al., 2003, Barin et al., 2012). Upon IL-23 stimulation, induction 

of both IL-17 and IFN-γ expression was found in CD4+ T cells (Oppmann et al., 

2000). Th17 cells also displayed considerable plasticity and acquired the 

capacity to produce IFN-γ in vitro (Lee et al., 2009) and in vivo (Hirota et al., 

2011). There has been little focus on the role of Th17 cells in avian 

salmonellosis, but IL-17 expression was up-regulated in the caeca of chickens 

infected with S. Enteritidis (Crhanova et al., 2011). It was also found that 

recombinant chicken IL-17 induced IL-6 production in chicken embryonic 

fibroblasts (Min and Lillehoj, 2002). These suggest a function of Th17 cells as 

inflammatory mediators. 

Th9 cells were identified by the potent production of IL-9 and appear to be 

capable of promoting allergic inflammation (Kaplan, 2013). A Th22 subset was 

recently characterized in epidermal immunity with the cytokine profile of IL-

22 and TNF-α (Eyerich et al., 2009). However, the existence and functional 

significance of any of these CD4+ T cell subsets remains to be determined in 

chickens (Kaiser and Staheli, 2013).   

Natural regulatory T (nTreg) cells are specialized in immune suppression to 

maintain peripheral tolerance and protect the host from autoimmune disease 

(Vignali et al., 2008). Forkhead box P3 (FoxP3) was defined as a key 

transcription factor of CD4+ CD25+ nTregs (Fontenot et al., 2003). A FoxP3 

orthologue has yet to be identified in chickens but CD4+ CD25+ cells have been 

described with regulatory T cell properties similar to that of mammalian Treg 
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(Shanmugasundaram and Selvaraj, 2011). Chicken suppressor CD4+ CD25+ cells 

suppress naïve T cell proliferation in vitro and express higher amounts of IL-10 

and TGF-β4 mRNA, compared to naïve CD4+ CD25- cells (Shanmugasundaram 

and Selvaraj, 2011).  

T cell receptor (TCR) signalling triggered by the antigen-specific recognition of 

peptide-MHC molecules is not sufficient to initiate an adaptive immune 

response, which also requires co-signalling molecules to acquire effector 

function. Cognate antigen recognition by T cells, in the absence of co-

stimulation, leads to apoptosis of the T cell clonal population (known as clonal 

anergy) (Harris and Ronchese, 1999). The interaction between the B7 protein 

family (CD80 and CD86) found on APCs and their receptors CD28 or CTLA-4 

(Cytotoxic T-Lymphocyte Antigen 4, also known as CD152) expressed on T 

cells, deliver opposing signals for T-cell stimulation. When CD80 or CD86, on 

the APC surface, binds to CD28 on the surface of T cells it promotes T-cell 

proliferation, but if CTLA-4 is overexpressed, CD80 and CD86 will 

preferentially bind to this receptor which prevents proliferation and also 

induces T cell apoptosis (tolerance) (Perez et al., 1997). In chickens, CD28 and 

CTLA-4 are both clustered on chromosome 7 (Bernard et al., 2007) and all αβ 

T cells and a small subset of γδ T cells from peripheral blood have been 

identified as CD28 positive (Young et al., 1994, Koskela et al., 1998). Besides 

CTLA-4, inhibitory receptor programmed death-1 (PD1) is also conserved in 

the chicken (Bernard et al., 2007).  
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1. 4. 4    Avian cytokines 

Cytokines are regulatory proteins or peptides that are produced by various 

types of cell involved in inflammatory and immune responses while  

chemokines are a group of cytokines characterized by their chemotactic 

activity towards various cells (Baggiolini, 1998). Both are key signalling 

molecules of the host innate and adaptive immune.  

Our knowledge of the immunobiology of various avian cytokines has 

benefited greatly from the availability of chicken genome data (Kaiser et al., 

2005). Although there are increasing numbers of monoclonal antibodies 

commercially available for chicken cytokines and polyclonal antisera have also 

been raised to several avian cytokines, real-time quantitative RT-PCR assays 

have been widely applied to measure avian cytokine expression at the mRNA 

level. 

IL-1β belonging to IL-1 superfamily has been characterized in chickens 

(Weining et al., 1998) and was previously described to induce K60, a chicken 

IL-8-like pro-inflammatory chemokine now known as CXCLi1, during 

inflammatory reactions (Weining et al., 1998, Sick et al., 2000). IL-1β appears 

to play an important role in defining the early stages of enteric versus 

systemic Salmonella infection (Kaiser et al., 2000, Withanage et al., 2004). 

CXCLi1 and CXCLi2, previously known as K60 and IL-8, respectively share 48% 

and 50% homology with human CXCL8 (IL-8). These two pro-inflammatory 

chemokines are different in terms of preferential recruitment of heterophils 
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(CXCLi1) and monocytes (CXCLi2), respectively (Sick et al., 2000, Kaiser et al., 

2005). Enhanced recruitment of granulocytes and macrophages to the site of 

S. enterica invasion in young chickens was accompanied by up-regulated 

mRNA expression of CXCLi1 and CXCLi2 in the heterophils (Cheeseman et al., 

2008). IL-17 (produced by Th17 cells) is a potent pro-inflammatory cytokine in 

mammals whose function remains to be fully elucidated. Chicken IL-17 is 

currently best characterized during infection with Eimeria maxima and 

Eimeria tenella where IL-17 may play a role in both protection and pathology 

in infection with Eimeria tenella (Kim et al., 2012, Zhang et al., 2013). The 

potential involvement of chicken IL-17 as a pro-inflammatory mediator in 

Salmonella infection is discussed above.  

IFN-γ is produced by many cell types and is an important hallmark of cell-

mediated immunity. Upon stimulation by S. Enteritidis, up-regulated mRNA 

expression of IL-18 and IFN-γ was observed in heterophils primed by rChIFN-γ, 

in comparison with that from heterophils without rChIFN-γ-priming (Kogut et 

al., 2005b). Recombinant chicken IFN-γ increases the production of NO and 

the expression of MHC II on macrophages (Weining et al., 1996), and acts 

synergistically with chicken type I IFN (IFN-α and IFN-β) during anti-viral 

immune responses (Sekellick et al., 1998). Chicken IL-12 possesses two 

components, IL-12α and IL-12β, and was shown to induce IFN-γ production 

and promote the proliferation of chicken splenocytes, which was similar to its 

activity in driving inflammatory Th1 responses in mammals (Degen et al., 

2004). Chicken IL-18 was characterized as a major growth factor of CD4+ T 
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cells and conserved the function to induce IFN-γ secretion from splenocytes 

(Gobel et al., 2003). IFN-γ induction by IL-18 is IL-12-dependent in mammals 

whereas IL-12 is not required in mediating the expression of chicken IL-18 

receptor (Ahn et al., 1997, Schneider et al., 2000). 

IL-6 is a multifunctional cytokine within the IL-6 family. In chicken kidney cells 

(CKC), infection with S. Enteritidis and S. Typhimurium up-regulated the 

expression of IL-6 mRNA by eight to ten fold and induced higher levels of IL-6-

like activity compared to uninfected cells but this was not evident during S. 

Gallinarum infection (Kaiser et al., 2000). In another study, however, in vitro 

infection of chicken peripheral blood mononuclear cells (PBMCs) with S. 

Enteritidis down-regulated IL-6 mRNA expression (Kaiser et al., 2006). The 

down-regulation of IL-6 in the later study may be due in vitro invasion of naive 

PBMCs by S. Enteritidis. 

Chicken IL-10 has 45% and 42% amino acid identity with human and murine 

IL-10, respectively. The biological function of IL-10 as an anti-inflammatory 

cytokine, which inhibits the synthesis of IFN-γ, is conserved in chicken 

(Rothwell et al., 2004). Expression of IL-10 was seen in S. Enteritidis-infected 

chickens at 4 days after infection, which probably suppressed the 

inflammatory response to allow Salmonella to persist within the gut for a 

number of weeks (Setta et al., 2012b), although the initial inflammatory 

response functions to control invasion and clear gastrointestinal infection.  

Chicken TGF-β4 possesses similar anti-inflammatory properties that suppress 
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protective inflammatory responses to infection. Heterophils from chickens 

susceptible to S. Enteritidis had a higher levels of TGF-β4 mRNA than that of 

resistant chickens (Swaggerty et al., 2004). 

Mammalian IL-3, IL-4, IL-5, IL-13, and granulocyte macrophage colony 

stimulating factor (GM-CSF) represent the Th2-associated cytokines in 

mammals. Production of chicken IL-3, IL-4, IL-13, and GM-CSF was determined 

by the expression of mRNA and can be expressed as recombinant protein 

while IL-5 appears to be a pseudogene in chickens (Avery et al., 2004, Kaiser 

et al., 2005).  

The cytokines described in this section are listed in Table 1-1, which is 

adapted from recent reviews (Kaiser, 2010, Kaiser and Staheli, 2013) 
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Table 1-1. Chicken cytokine repertoire 

Cytokine Chicken orthologues Reference 

Interferons   

Type I IFN-α*, IFN-β*, IFN-λ*, IFN-κ, IFN-ω 
(Sekellick et al., 1998, 
Kaiser et al., 2005) 

Type II IFN-γ* 
(Digby and Lowenthal, 
1995) 

Interleukins   

IL-1 family IL-1β*, IL-1RN*, IL-36RN*, IL-18* 
(Weining et al., 1998, 
Schneider et al., 2000) 

IL-10 family IL-10*, IL-26*, IL-19*, IL-22* (Rothwell et al., 2004) 

IL-12 family IL-12α*, IL-12β*, IL-23 
(Degen et al., 2004, 
Kaiser et al., 2005) 

IL-17 family IL-17* (A, B, C, D, F) (Min and Lillehoj, 2002) 

Th2 family IL-3, IL-4*, IL-5*, IL-13*, GM-CSF*, KK34* (Avery et al., 2004) 

T-cell proliferative IL-2*, IL-15*, IL-21* (Lillehoj et al., 2001) 

Others  IL-6*, IL-7*, IL-9*, IL-16*, IL-34*, IL-11 (Kaiser et al., 2005) 

Chemokines    

XCL XCL1* (Rossi et al., 1999) 

CCL 

CCL1*, CCL2*, CCL3*, CCL4*, CCL5, CCL7, 

CCL8, CCL11, CCL13, CCL15, CCL16, CCL17*, 

CCL18, CCL19*, CCL20*, CCL21*, CCL23 

(Sick et al., 2000, Kaiser 
et al., 2005, Hughes et 
al., 2007) 

CXCL 

CXCL1*, CXCL2*, CXCL3, CXCL4, CXCL5, 

CXCL6, CXCL7, CXCL8, CXCL12, CXCL13, 

CXCL14 

(Sick et al., 2000, Kaiser 
et al., 2005) 

CX3CL CX3CL1* (Kaiser et al., 2005) 

Transforming 
growth factors 

TGF-β2*, TGF-β3*, TGF-β4* 
(Pan and Halper, 2003, 
Kaiser et al., 2005) 

Colony-stimulating 
factors 

GM-CSF*, G-CSF*, M-CSF* 
(Avery et al., 2004, 
Kaiser et al., 2005) 

Tumour necrosis 
factors 

TNF-α, OX40L, AITRL, FAST, 4-1BBL, VEGI, 

CD30L*, CD40L, TRAIL*, RANKL, BAFF* 

(Schneider et al., 2004, 
Kaiser et al., 2005) 

* Avian cytokines that have been cloned and characterized in avian species (Kaiser, 2010, 

Kaiser and Staheli, 2013) 
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1. 5 Immunobiology to S. enterica infection 

The nature of host immune response to S. enterica are important to consider 

when investigating its ability to cause disease by overcoming, evading and/or 

modulating immunity. The avian immune system possesses different 

properties from that of mammals in various aspects as stated in 1. 4. 1. In 

addition, much of our understanding of the avian immune response to 

systemic pathogenesis of S. enterica infection has been extrapolated from the 

typhoid-like infection produced in murine model with S. Typhimurium 

infections. From the point of view of pathogenesis, it more closely resembles 

S. Gallinarum infection in the chickens whilst S. Typhimurium usually produces 

gastrointestinal infection in chickens. It is therefore essential to compare the 

important aspects in the immunobiology of avian salmonellosis with that 

observed in mammals. 

1. 5. 1    Initial recognition and innate immunity to S. enterica 

infection 

Salmonella infection usually occurs via the faecal-oral route than via vertical 

transmission as a result of infection of infection of the ovary and oviduct. 

Bacteria enter the small intestine where infection can become established 

and may disseminate systemically. The epithelial cells lining the intestine are 

not only a physical barrier against the invading pathogens but also the 

initiator of the local inflammatory response which can prevent the entry of 

Salmonella into deeper tissues from the gut.  
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Intestinal epithelial cells express a number of TLRs. While effector proteins 

secreted via TTSS-1 system can induce cellular changes and inflammation 

(Hapfelmeier et al., 2004), recognition of flagellin through TLR5 plays a key 

role in the initial recognition of invading pathogens. These lead to the 

expression of chemokines such as IL-8 and MCP-1 (monocyte chemotactic 

protein 1) which attract immune effector cells to the sites of infection and 

cytokines such as  GM-CSF, TNF-α and IL-6 which enhance the effectiveness of 

local host defence by mediating pro-inflammatory functions of phagocytes 

(Eckmann and Kagnoff, 2001, Raupach and Kaufmann, 2001, Gewirtz et al., 

2001).  

Salmonella infection in the chicken intestine results in expression of CXCLi1 

and CXCLi2 (Withanage et al., 2004, Withanage et al., 2005b, Setta et al., 

2012b), which in turn leads to an influx of heterophils and phagocytes to the 

gut, resulting in inflammation. The massive inflammatory response in chicken 

infected with S. Typhimurium or S. Enteritidis is associated with infiltration of 

heterophils, macrophages, B cells and CD4+ and CD8+ lymphocytes 

subpopulations into the sites of infection (Berndt and Methner, 2001, Berndt 

and Methner, 2004, Berndt et al., 2006). This is accompanied by an up-

regulated expression of various pro-inflammatory cytokines as well as Th1-

associated immune mediators (Withanage et al., 2004, Withanage et al., 

2005b, Berndt et al., 2007, Fasina et al., 2008, Cheeseman et al., 2008, Setta 

et al., 2012b, Matulova et al., 2013). Increased resistance to S. Enteritidis in 

neonatal poultry was shown to be related to higher levels of the mRNA 
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expression of pro-inflammatory (IL-6 and CXCLi2) and Th1-associated (IL-18) 

cytokine or chemokine and decreased mRNA expression of anti-inflammatory 

cytokine (TGF-β4) in heterophils (Swaggerty et al., 2006).  

In contrast, avian systemic salmonellosis caused by the host-adapted serovars 

S. Pullorum and S. Gallinarum is characterized by invasion from the intestine 

with multiplication in the spleen, liver and other organs. There is little 

intestinal involvement in the early stage of infection of these two non-

flagellated serovars but in the later stage of disease they re-enter the gut, as 

occurs in S. Typhi infection in humans. Infection with S. Pullorum and S. 

Gallinarum resulted in little inflammation in vivo or in vitro. S. Pullorum 

infection induced significantly lower levels of CXC chemokine expression in 

the ileum than those detected in S. Enteritidis-infected chickens (Hughes et al., 

2007, Chappell et al., 2009), suggesting a reduced recruitment of heterophils 

in response to S. Pullorum infection. In fact, in an early study, when compared 

to infections with S. Typhimurium, S. Pullorum infection resulted in reduced 

influx of heterophils in the intestine of infected chickens (Henderson et al., 

1999). The transcription of IL-6, CXCLi1 and CXCLi2 was also found to be 

down-regulated in CKC following S. Gallinarum infection (Kaiser et al., 2000, 

Setta et al., 2012a) whereas a motile mutant in S. Gallinarum increased its 

invasive ability for CKC and up-regulated the mRNA expression of CXCLi2, IL-6 

and iNOS (Freitas Neto et al., 2013). A reduced inflammatory response was 

also seen with the non-flagellated S. Typhimurium fliM mutant (see 1. 3. 2). 



Chapter 1 

36 

 

Invasion without initiating a strong inflammatory response may reflect the 

evolutionary adaption of these serovars to the avian host.  

Following translocation across the intestinal epithelial barrier, S. Typhimurium 

colonises the lamina propria and Peyer’s patches where they are 

phagocytosed by cells such as macrophages (Vazquez-Torres et al., 1999) and 

DCs (Rescigno et al., 2001). DCs transport internalised bacteria to the 

basolateral side of the epithelium (Rescigno et al., 2001). If transported by DC 

across the gut epithelium, serovar Typhimurium quickly exits DC by inducing 

cell death to enter macrophages, which is its preferred cell type (van der 

Velden et al., 2003). Infected macrophages are major producer of anti-

microbial factors, such as ROS and reactive nitrogen species (RNS) (Vazquez-

Torres et al., 2000a, Vazquez-Torres and Fang, 2001) to kill intracellular 

bacterial. The reduction of intracellular bacterial numbers correlated with the 

production of NO and ROS in HD11 or MQ-NCSU cells infected with various 

serovars of S. enterica (Withanage et al., 2005a, Babu et al., 2006, Setta et al., 

2012a). Compared with wild-type mice, iNOS-/- mice which is unable to 

produce NO in vivo displayed an increased susceptibility to infection with S. 

Typhimurium (Mastroeni et al., 2000b).  Macrophages are also major effector 

cells eliciting innate immunity. Infected macrophages produce IL-12 and TNF-

α during the early acute period of infection in mice (Mastroeni, 2002). IL-12 

and IL-18 synergistically promote the differentiation of IFN-γ-producing Th1 

cells, which in turn further activates macrophages for induction of NO. It is 
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likely that DC are also involved in this activity in chickens but to what extent is 

not known.  

Salmonella infection induces apoptosis of mouse macrophages, which is 

triggered by the activation of caspase-1, resulting in a pro-inflammatory 

cascade (Monack et al., 2001). During infection, caspase-1 within the resident 

macrophages is activated by the SipB protein encoded by SPI-1 (Hersh et al., 

1999). Activated caspase-1 cleaves and processes the inactive precursors of 

IL-1β and IL-18 into their biologically active forms that initiate inflammation 

(Fantuzzi and Dinarello, 1999). In caspase-1-induced pyroptotic macrophages, 

bacteria released into the extracellular environment were killed by ROS in 

neutrophils (Miao et al., 2010). The inactive precursors of chicken IL-1β does 

not contain a caspase-1 cleavage site (Bird et al., 2002) although chickens do 

express caspase-1 (Johnson et al., 1998). Chicken IL-1β may thus be processed 

at an alternative cleavage site. 

The host genetic background plays a pivotal role in determining the outcome 

of Salmonella infections. NRAMP1 (natural resistance-associated macrophage 

proteins, now SLC11A1: solute carrier family 11 member 1) codes for an ion 

transporter and is originally identified in host innate resistance to intracellular 

pathogens, including infections with Salmonella which is reviewed by 

Blackwell et al. (2001). Murine NRAMP1 expression is restricted to cells of the 

monocyte/macrophage lineage and NRAMPs required for iron metabolism in 

macrophages plays an important role in macrophage activation and is 
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therefore involved in controlling clearance of Salmonella infection in mice 

(Caron et al., 2002).  

Macrophage activity also plays an important role in genetic resistance to 

systemic salmonellosis in the chicken. NRAMP1 is also known to be a major 

contributor to the high levels of resistance to systemic disease of S. 

Gallinarum infection in chicken (Bumstead and Barrow, 1993, Hu et al., 1997). 

In addition, a genetic locus on chromosome 5, designated SAL1, has been 

identified and leads to increased macrophage activity and resistance of 

chickens to salmonellosis (Wigley et al., 2002a, Wigley, 2004). Macrophages 

from salmonellosis-resistant birds express pro-inflammatory cytokines and 

chemokines more effectively and rapidly and have a greater ability to induce 

Th1 immune responses (Wigley et al., 2006). Macrophages from adult 

resistant-line birds cleared S. Gallinarum from infected macrophages, 

accompanied by a strong and reproducible respiratory burst response, at least 

24 h ahead of that occurs within macrophages from susceptible lines (Wigley 

et al., 2006). This suggested that increased macrophage antimicrobial activity 

plays an important role in resistance although heterophils also clearly 

contribute greatly to host resistance. However, inherently resistant genetic 

lines of animals may predispose towards a more prolonged/persistent form of 

infection, as may occur with S. Gallinarum in chickens (Berchieri et al., 2001a). 

This was also suggested by persistent S. Typhimurium infection in the 

mesenteric lymph nodes of Nramp1+/+ mice despite the presence of high titre 

circulating specific antibody (Monack et al., 2004). 
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1. 5. 2    Adaptive immune response to S. enterica infection 

The adaptive immune response is stimulated by the innate immune system 

through antigen presentation to lymphocytes. Studies with murine models 

have shown the critical role of CD4+ Th1 lymphocytes in controlling 

salmonellosis. Reduction of systemic bacterial colonisation and increase of 

mouse survival rates were observed in infected mice treated with IL-12 

whereas depletion of IFN-γ and IL-12 by neutralizing antibodies in vaccinated 

mice resulted in their inability to clear infection from spleen and liver 

(Mastroeni et al., 1998) and increased levels of bacterial replication and faecal 

shedding with chronic infection of S. Typhimurium (Monack et al., 2004).  

Following infection with host non-specific S. enterica serovars, such as S. 

Typhimurium and S. Enteritidis, in chickens, adaptive immunity is also able to 

clear infection within 2-3 weeks following infection by a Th1 dominated 

response involving  increased expression of IFN-γ mRNA in the gut and deeper 

tissues (Beal et al., 2004a, Beal et al., 2004b, Withanage et al., 2005b, Wigley 

et al., 2005a, Berndt et al., 2007). Increased expression of IFN-γ in turn 

activates macrophages to produce NO and kill intracellular Salmonella 

(Mastroeni and Menager, 2003, Okamura et al., 2005, Babu et al., 2006), 

which was correlated with clearance of S. Typhimurium from the intestine 

tract of infected chicken  (Beal et al., 2004a). Besides IFN-γ-producing CD4+ T 

cells, a CD8αα+ γδ T-cell subset appeared to be another source of IFN-γ in 

young chickens infected with S. Typhimurium or S. Enteritidis (Berndt et al., 

2006, Pieper et al., 2011), suggesting a potential importance of this T-cell 
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subset in the development of a protective immune response against 

Salmonella infection.  

Macrophages are not only immune effector cells but CD18+ phagocytes also 

transport Salmonella to deeper tissues (Vazquez-Torres et al., 1999) and 

provide an intracellular niche for persistent Salmonella infection (Wigley et al., 

2001, Monack et al., 2004). Persistent carriage occurs in those birds which 

recover from infection with S. Pullorum. S. Pullorum persists in low numbers 

mainly within macrophages in the spleen for the lifetime of the convalescent 

hens (Wigley et al., 2001). At the onset of laying the number of bacteria in the 

spleen increase dramatically, and the infection spreads from the spleen to the 

reproductive tract (Wigley et al., 2005b), suggesting that some suppression of 

the chicken immune system may occur at sexual maturity. It is unclear why 

immune clearance does not occur. Some initial comparative studies using S. 

Pullorum and its closely related serovar S. Enteritidis has shown that spleen 

homogenates from S. Pullorum-infected birds expressed significantly lower 

levels of inflammatory cytokines IL-18 and IFN-γ whereas the expression of IL-

4 was increased in the spleen, suggesting that S. Pullorum tended to induce 

an immune response that more closely resembled the Th2 response in 

mammals and would allow S. Pullorum to establish an intracellular carriage 

evading Th1-mediated clearance (Chappell et al., 2009). In a recent study, 

Chausse et al. (2014) used microarrays to compare the enterocyte gene 

expression profile during established gastrointestinal tract infections in 

chickens which are considered either resistant or susceptible to Salmonella 
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colonisation (Barrow et al., 2004).  Gene expression linked to a Th1 response 

was down-regulated in both lines whereas increased expression of genes 

related to Th2 cytokines, including IL-4, IL-5 and IL-13, were observed in the 

susceptible line only. This indicated that the Th1 response is essential for 

immune clearance of avian salmonellosis while Th2 immunity is associated 

with susceptibility to the carrier-state, at least in the gastrointestinal tract.  

Apart from the effective immunity of Th1 cells, there has been recent interest 

in the role of Tregs and Th17 cells in controlling Salmonella infection. In a 

murine model of persistent S. Typhimurium infection, increased potency of 

Tregs increased bacterial burden in the spleen and liver during the early phase 

of infection by reducing the effectiveness of Th1 responses (Johanns et al., 

2010). Th17 cells are important regulators of tissue inflammation and are 

potentially involved in intestinal immunity in response to Salmonella infection. 

The absence of IL-17R signalling resulted in an increased systemic 

dissemination of S. Typhimurium probably due to reduced recruitment of 

neutrophils to the ileal mucosa (Raffatellu et al., 2007). Reduced clearance of 

S. Enteritidis was also found in IL-17-deficient mice which developed 

increased bacterial loads in spleen and liver along with significantly 

compromised recruitment of neutrophils when compared with wild type mice 

(Schulz et al., 2008). In chickens infected with S. Enteritidis, an early 

expression of IL-17 and prolonged high level expression of IFN-γ were 

detected in the caeca (Crhanova et al., 2011, Matulova et al., 2013). However, 
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the functional role of Th17 cell and IL-17 in avian salmonellosis is not yet fully 

defined.  

Antigen-specific antibody production (IgA, IgM, IgY) can be detected in 

primary infection in chicken (Barrow et al., 2004, Beal et al., 2004a, Beal et al., 

2004b, Withanage et al., 2005b, Beal et al., 2006). However, neither 

antibodies nor B cells were demonstrated to be essential to gut clearance of 

infection (Babu et al., 2004, Beal et al., 2006). Depletion of B cells by surgical 

bursectomy in ovo did not make a difference to intestinal shedding of S. 

Typhimurium when compared to non-bursectomized chickens (Brownell et al., 

1970). Similarly in mice infected with S. Typhimurium, B cells were revealed to 

be not required for the clearance of primary infection, although they were 

involved in immunity to secondary infection and this involved a typhoid-type 

infection rather than colonisation of the gastrointestinal tract (Mastroeni et 

al., 2000a).  
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Table 1-2. Summary of pathogenesis effectors, immune responses and disease outcome of infection with representative serovars of S. enterica.  

Serovars 
Pathogenesis and virulence determi-

nants 
Immune response Outcome of disease 

C
o

m
m

o
n

 f
ea

tu
re

s 

 TTSS is important for all serovars. SPI-1 
and SPI-2 encode TTSS-1 and TTSS-2 are 
required for invasion and intracellular sur-
vival respectively. SPI-3, 4 and 5 are im-
portant for colonization, adhesion and en-
teritis. They may differ in different 
serovars and has not yet been fully worked 
out 

 Mostly strong Th1 response mediates immune clearance of 
infection 

 S. Typhimurium and S. Enteritidis infection in 
poultry and man are usually cleared by Th-1-
dominant immune response.   

 The typhoid group of serovars including Typhi, 
Gallinarum and Pullorum modulate the host 
response to enable persistant infection 

 Uncontrolled replication in macrophages of 
susceptible individual leading to death 

S.
 P

u
llo

ru
m

 

 Absence of flagella in avian adapted 
serovars avoiding TLR5-mediated inflam-
matory response 

 TTSS-2 mediate survival and proliferation 
within the macrophages  

 Host adapted serovars that invade causing little or no acti-
vation of innate inflammation response 

 Translocation to spleen and liver and establishment of in-
tracellular infection in macrophages  

 Initiation of cellular response: key role in IFN-γ-producing T 
cells 

 Immunomodulation though up-regulation of Th2 response 
by S. Pullorum  

 Development of IgM and IgY antibody 

 Shedding into gut through clusters of lymphoid tissues 

 Immunological reaction leading to myocarditis 

 Intracellular persistence within macrophages 

 Recrudescence of infection in hens at sexual 
maturity 

S.
 G

al
lin

ar
u

m
 

 Animal death or immune clearance 

 Persistent infection for in resistant birds 

    

Continued 
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S.
 T

yp
h

i  Vi-capsule reduces C3 fixation and TLR4-
dependent inflammatory response 

 viaB locus represses flagellin expression 

 Inflammatory response in gut reduced through down regu-
lation of flagella production 

 Shedding from gut with infrequent gut perforation 

 Systemic clearance in immune competent in-
dividual 

 Persistent carrier in gallbladder, liver and 
spleen 

S.
 E

n
te

ri
ti

d
is

  Fimbrial adhesion mediate the initial epi-
thelial  attachment and invasion 

 TTSS-1 is required for invasion and gastro-
enteritis  

 Respiration using different carbon sources 
and with S4O6

2- as electron acceptor lead-
ing to outgrowth in the inflamed intestine  

 TLR5-dependent inflammatory response 

 Activation of innate immune response through action of 
bacterial effector proteins and host recognition (e.g. TLR4, 
5) 

 Pro-inflammatory CXC chemokines responses leads to in-
flux of heterophils 

 Secretory IgA response 

 Salmonella persistence within lower intestinal tract 

 Mucins and gallinacins limit infection  

 Initial inflammatory response regulated by regulatory T 
cells 

 Role of Th17 response in maintaining gut integrity is not 
fully known 

 Enteritis in chicken and human 

 Systemic infection in mice 

 Intestinal clearance 3-12 weeks p.i dependent 
on Th1 response 

S.
 T

yp
h

im
u

ri
u

m
 

Adapted from (Wigley, 2014) 
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1. 6 Prevention and control 

Control of Salmonella infection of poultry is important for both economic and 

public health reasons. 

Preventing contamination of poultry products with Salmonella remains a 

major challenge for poultry industry and public health in terms of safety of 

food supply. Salmonella also remains a major cause of morbidity and 

mortality in poultry worldwide. Control measures include hygiene and 

management, the use of antibiotics, competitive exclusion cultures and 

vaccines.  

The most successful measures in controlling Salmonella infection include 

good bio-secure farming and hygienic practice. The WHO has produced 

effective guidelines on cleaning and disinfection of poultry houses and the 

surrounding environment to control Salmonella-infected poultry flocks (Lister 

and Barrow, 2008)  .  

Antibiotics are still used in many parts of the world but their effectiveness is 

limited and their over use leads to the development of resistance which of 

increasing global concern (see 1. 1. 3. 2 for more details). 

Oral administration of newly hatched chickens with a mixed culture of 

intestinal bacteria from adult chickens can induce a rapid protection from 

infection and colonisation by  Salmonella by conferring on the chick the full 

mature inhibitory flora normally possessed by the adult (Nurmi and Rantala, 

1973). This concept is known as competitive exclusion (CE) and many CE 
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products are now available for use against S. enterica in poultry (Schneitz, 

2005). However, most CE products comprise undefined or partially defined 

cultures and are thereby not accepted in some countries (EFSA, 2004). 

Probiotics are live microorganisms which are frequently used as feed 

supplements and which are claimed to confer a health benefit on the host 

(Fuller, 1992).  

Since the development of the first effective live, attenuated vaccine, S. 

Gallinarum 9R (Smith, 1956), vaccination against both avian host-restricted S. 

Pullorum and S. Gallinarum has been successful. This vaccine has also been 

shown to be effective against the serological related S. Enteritidis (Barrow et 

al., 1991). Live attenuated vaccines are considered to be more protective than 

killed vaccines in eliminating Salmonella infection because (i) they stimulate 

both cellular and humoral immune response (Babu et al., 2004, Van 

Immerseel et al., 2005) and (ii) the response generated is Th1-like rather than 

Th2-like, which is normally associated with killed vaccines (see above). 

Nevertheless, an increased production of IFN-γ and IL-2 by antigen-stimulated 

splenocytes was observed in chicken vaccinated with a commercial killed S. 

Enteritidis vaccine (Okamura et al., 2004). Killed vaccines may have side 

effects as a result of their endotoxin (LPS) content (Barrow, 1993).  

The development of vaccines against broad host range Salmonella strains, 

especially for vaccines to be effective against food poisoning serovars such as 

including S. Typhimurium and S. Enteritidis is a major goal for vaccinologists.  
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In addition to their effectiveness, through stimulation of the adaptive immune 

response, live vaccines administrated orally to young chickens can colonise 

the alimentary tract and themselves induce a more specific form of 

competitive exclusion. Significant protection against the colonisation of wild 

strains of S. Typhimurium has been achieved in newly-hatched chickens 

inoculated with a live attenuated S. Typhimurium vaccine (Methner et al., 

1997), with improved protection derived from combined administration of 

both S. Typhimurium vaccine strain and competitive gut exclusion culture 

(Methner et al., 1999, Barrow, 2007).  

The selection of genetically resistant chickens may in the future be considered 

as an alternative approach to disease control in the context that the use of 

vaccine and antibiotics is not sufficient to eradicate salmonellosis, especially 

the symptom-free carriers of S. enterica in poultry. To understand resistance 

to systemic disease which will have implications for the carrier state, several 

candidate genes and quantitative trail loci (QTL) have been identified (Kaiser 

and Stevens, 2013). Developing a breeding regimen to maximise these effects 

combined with ensuring maximum inheritance of productivity traits remains a 

major obstacle.  

1. 7 Aims and objectives of this project 

Pullorum disease remains an important disease of the poultry industry 

(Barrow and Freitas Neto, 2011). The ever-increasing emergence of antibiotic-

resistance, much of which is transferable, requires an alternative approach to 
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control the problem. Vaccination and other control strategies require an 

understanding of the immunity in response to Salmonella infection.  

The aim of this project is to explore the immunobiology of persistent infection 

and the carrier state of Salmonella enterica serovar Pullorum in chickens, and 

to evaluate the different immune activities of macrophages and T cells in 

response to the related serovars S. Enteritidis and S. Gallinarum. 

To achieve this aim, the following objectives were proposed: 

1. To determine and compare the immune response of PBMC-derived 

macrophages induced by these three Salmonella serovars. 

2. To establish co-culture of Salmonella-infected macrophages with T 

cells. 

3. To assess the effect of the three serovars on the immune response in 

the Salmonella-infected macrophage/T cell model.  

4. To evaluate the role of the virulence-plasmid in modulating the 

immune response of macrophages in response to different Salmonella 

serovars. 
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Chapter 2   Materials and Methods 

2. 1 Bacterial strains and culture 

All the bacterial strains (Table 2-1, Table 2-2 and Table 2-3) used in this 

study were stored in nutrient broth containing 30% (v/v) glycerol (Fisher 

Scientific, Leicestershire, UK) at -70°C in the School of Veterinary Medicine 

and Science (SVMS). Before routine culture on nutrient agar (Oxoid, UK) at 

37°C, these strains were checked for purity on MacConkey agar (Oxoid, UK) 

and resistance to marker antibiotics confirmed. Slide agglutination with 

anti-serum was used where it was appropriate (see Appendix.1). For 

experimental infection, these strains were cultured for 18 h in nutrient 

broth (Oxoid, UK) in an orbital shaking incubator (Forma orbital shaker-

Thermo, UK) at 150 rpm and 37°C.   

Table 2-1. Strains of S. enterica used in this study. 

Strain Description  Reference 

SP 449/87 
Wt, Nalr; Poultry-specific strain 

Produces persistent infection 

(Wigley et al., 
2001, Wigley et 
al., 2002b) 

SE P125109 

Wt, Nalr; Host non-specific strain, phage type 
(PT) 4 

Virulent in newly hatched chickens, invasive 
and causing egg contamination in laying hens  

(Barrow, 1991, 
Barrow et al., 
1991). 

SG 9 
Wt, Nalr; Poultry-specific strain 

Produce fowl typhoid disease  

(Smith, 1955, 
Barrow et al., 
1987b) 

 

SP, S. Pullorum; SE, S. Enteritidis; SG, S. Gallinarum; Wt: wild type strain; Nalr: nalidixic acid 
resistant
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Table 2-2. Extensively selected strains of S. enterica used in this study.   

 
SP, S. Pullorum; SE, S. Enteritidis; SG, S. Gallinarum; Ampr, ampicillin resistant; 

Strain Relevant description 

SP 449/87 Detailed in Table 2-1. 

SP 3 Detailed in Table 2-3. 

SP 5188/86 Isolated in Wilishire Weybridge, UK.  

SP 31 Isolated in Copenhagen, Denmark. Poor growth on MacConkey plates. 

SP 1002 Isolated from diseased chicken in Yangzhou, China. 

SP 380/99 Isolated by Prof. A. Berchieri (University of Sao Paulo) from diseased chickens in Brazil. 

SEP125109  PT4, detailed in Table 2-1. 

SE PT6 Ampr. Isolated from chicken. 

SE PT8 Isolated from chicken. 

SG 9 Detailed in Table 2-1. 

SG 238 Isolated in Greece. 

SG 115/80 Antibiotics resistance; isolated in Kenya. 

SG 287/91 Isolated by Prof. A. Berchieri from diseased egg-laying hens in Brazil (Jones et al., 2001, Thomson et al., 2008). 
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Table 2-3. Plasmid-cured and restored strains of S. enterica used in this study.  

 

SP, S. Pullorum; SE, S. Enteritidis; SG, S. Gallinarum; Wt: wild type strain; Amps, ampicillin sensitive; Nals, nalidixic acid sensitive; Ampr, ampicillin resistant; Nalr, nalidixic 
acid resistant. 

 

Strain 
Plasmid 

content 
Description Reference 

SP 3 parent pBL001 Parent strain; Wt, Amps Nals (Barrow and Lovell, 1988) 

SP 3 plasmid-cured None Virulence plasmid-cured from S. Pullorum 3, Amps Nals 
(Barrow and Lovell, 1988, Barrow 
and Lovell, 1989) 

SP 3 plasmid restored pBL001::Tn3 Tn3-tagged plasmid reintroduced into S. Pullorum 3, Ampr Nalr 
(Barrow and Lovell, 1988, Barrow 
and Lovell, 1989) 

SE P125109 parent pHH001 Parent strain; Wt, Amps Nals 
(Barrow, 1991, Barrow and Lovell, 
1991, Thomson et al., 2008) 

SE P125109 plasmid-cured None Virulence plasmid-cured from S. Enteritidis P125109, Amps, Nalr (Halavatkar and Barrow, 1993) 

SE P125109 plasmid restored pHH001::Tn3 
Tn3-tagged plasmid reintroduced into S. Enteritidis P125109, Ampr 
Nalr 

(Halavatkar and Barrow, 1993) 

SG 9 parent pSG090 Field strain; Wt,  Amps, Nalr (Barrow et al., 1987b) 

SG 9 plasmid-cured None Virulence plasmid-cured from  S. Gallinarum 9, Amps Nals (Barrow and Lovell, 1989) 

SG 9 plasmid restored pSG090::Tn3 Tn3-tagged plasmid reintroduced into S. Gallinarum 9, Ampr Nalr. (Barrow and Lovell, 1989) 
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2. 2 Tissue culture 

2. 2. 1    Determination of cell numbers 

A haemocytometer was used to determine cell numbers in all cases. Briefly, 

30 µl of cell suspension was mixed with 30 µl of 0.4% Trypan Blue (Sigma-

Aldrich, UK) (a restriction dye which can only cross the membrane of dead 

cells). A 10 µl aliquot of the mixture pipetted onto the edge of the cover slip 

was allowed to run onto the chamber under the cover slip by capillary 

action. The haemocytometer was then placed under the microscope (Leica 

Microsystems, UK) for cell counting. 

2. 2. 2    Determination of cell viability 

Propidium iodide (PI) (Life Technologies, UK) is a fluorescent restriction dye 

that interacts with double-stranded nucleic acids. It is excluded by viable 

cells but can penetrate cell membranes of dying or dead cells. Cell viability 

was assessed by PI uptake via flow cytometric analysis (see methods in 

section 2. 4. 2). Briefly, 10 µl of PI staining solution (20 µg/ml) was added 

and gently mixed with approximately 1 x 106 cells in 100 µl of cell staining 

buffer (Southern Biotech, Birmingham, AL), which was incubated for 15 min 

in the dark before being applied for data acquisition using the flow 

cytometer. Histograms of fluorescence-signal versus counts were then 

drawn and gated against unlabelled cells to calculate the percentage of 

dead cells. 
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2. 2. 3    Chicken peripheral blood monocyte-derived 

macrophages (chMDM) 

2. 2. 3. 1 Chicken peripheral blood collection 

Chicken peripheral blood used for the isolation of peripheral blood 

mononuclear cells (PBMCs) was obtained from two sources. In early 

experiments blood was purchased from the Harlan Laboratories U.K. Ltd 

(Leicestershire, UK) (for studies described in Chapter 3 and Chapter 4 

except 4. 2. 5). The layers more than 1 year of age were Lohmann Lite and 

came from the Millennium Hatchery (Studley, Warwickshire, UK). These 

layers had been vaccinated with live Salmonella Vac E+ Vac T Combo Special 

2K at ages of 0.4, 6 and 14.4 weeks. There is no reports of protection by a 

live Salmonella vaccine lasting more than 6-9 months. A second source was 

from unvaccinated breeder blood collected from a spent layer breeder farm 

containing Lohmann layers (for studies described in section 4. 2. 5). 

Chicken whole blood was collected fresh from healthy, adventitious virus-

free Harlan barrier-reared layer chickens. Each lithium heparin (200 U/ml 

Lithium Heparin at 1 in 10 dilution with whole blood)-anti-coagulated blood 

product was stored in an ice-box during transportation and received within 

4 h of bleeding. 

2. 2. 3. 2 Preparation of chicken PBMCs 

The isolation of chicken PBMCs by Histopaque 1083 (Sigma-Aldrich, UK) 

density gradient centrifugation has been described previously (Wigley et al., 

2002a). The flow diagram (Figure 2-1) below shows the flow of work for this 
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procedure. In detail, 25 ml of pre-warmed (37 °C) Histopaque 1083 was 

pipetted into a sterile 50 ml centrifuge tubes. 12.5 ml of lithium heparin 

anti-coagulated chicken whole blood was mixed with an equal volume of 

pre-warmed PBS in another sterile 50 ml centrifuge tube and 25 ml of the 

blood suspension was then slowly overlaid onto the Histopaque 1083 layer. 

A clear separation between the blood layer and Histopaque 1083 medium 

was maintained before centrifugation at 400×g for 30 min at 20°C with no 

brake applied. After the gradient centrifugation, the blood separated into a 

top layer of plasma and a bottom layer of centrifuged red blood cells. 

Between the interface of the Histopaque and the plasma, an opaque 

interface of PBMCs was collected by using a sterile Pasteur pipette (Greiner 

Bio-one, Gloucestershire, UK) with some red blood cell contamination. The 

nucleated red blood cells in birds are not lysed by lysing buffer (ammonium 

chloride (8290.0 mg/L), potassium bicarbonate (1000.0 mg/L) and EDTA 

(37.0 mg/L), which is used for the lysis of non-nucleated red blood cells in 

mammals. Thus, the density gradient centrifugation (400×g for 20 min at 

20°C) was repeated to eliminate red blood cell contamination from the 

chicken PBMCs. PBMCs were then collected and washed 3 times in pre-

warmed PBS by centrifugation at 300×g for 10min at 20°C to remove excess 

Histopaque. 
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Figure 2-1. The flow of work for the isolation of PBMCs from chicken peripheral blood by density gradient centrifugation 
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2. 2. 3. 3 Preparation of chMDM 

For further culture of chMDM, the cell pellet was resuspended in chMDM 

culture medium (see Appendix.2) required to make a density of 5×106 cells/ 

ml after performing cell counting. Aliquots of 1 ml of cell preparation were 

plated into each well of a 24-well plate (Thermo Fisher Scientific, UK). The 

cells were then incubated at 41°C in a humid 5% CO2 for 48 h. The medium 

was changed after 24 h to remove non-adherent thrombocytes and 

lymphocytes and incubated for a further 24 h at 41°C, 5% CO2 to allow 

conversion into macrophages.  

2. 2. 4    Chicken CD4+ lymphocytes 

Chicken PBMCs were isolated by density gradient centrifugation using 

Histopaque 1077 (Sigma-Aldrich, UK) by following the technique described in 

the section 2. 2. 3. 2. Chicken CD4+ lymphocytes (CD4+ T cells) were then 

selected from PBMCs using magnetic-activated cell sorting (MACS) separation 

technology (Miltenyi Biotec Ltd., Surrey, UK), which was described previously 

(Annamalai and Selvaraj, 2010). Based on MACS Microbeads (super-

paramagnetic particles conjugated to specific antibody or protein), MACS 

technology separation was done with a MACS column placed in a MACS 

separator (a strong magnet with a gradient magnetic field induced on the 

column matrix). Ice-cold MACS buffer (see Appendix.2) was used throughout 

the isolation procedure. Briefly, PBMCs collected after density gradient 

centrifugation were washed in MACS buffer followed by centrifugation at 

200×g for 10 min to remove platelets. The cell pellet was resuspended and 
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labelled with mouse anti-chicken CD4 monoclonal antibody (Table 2-4, #2, 1 

µg per 106 total cells) in MACS buffer for 30 min at 4°C on a roller. Staining 

antibody (Table 2-4, #3, 5 µg per 106 total cells) was added when necessary to 

label CD4+ T cells followed by flow cytometric analysis. Unbound antibody was 

removed by washing cells in 1-2 ml of MACS buffer per 107 cells and 

centrifuging at 300×g for 10 min. The cell pellet was resuspended in 80 µl of 

MACS buffer per 107 cells and incubated with 20 µl of anti-mouse IgG1 

Microbeads (Miltenyi Biotec Ltd., Surrey, UK) per 107 total cells for 15 min at 

4°C on a roller. Unbound Microbeads were removed by washing cells in 1-2 ml 

of MACS buffer per 107 cells and centrifuging at 300×g for 10 min. Up to 108 

cells were resuspended in 500 µl of MACS buffer before processing by 

magnetic separation. A LS column (Miltenyi Biotec Ltd., Surrey, UK) was 

placed in the magnetic field of a MidiMACS™ Separator (Miltenyi Biotec Ltd., 

Surrey, UK) and prepared by rinsing with 3 ml of MACS buffer. The cell 

suspension was applied onto the column and the magnetically labelled CD4+ T 

cells were retained on the column while the unlabelled cell fraction passed 

through and was separated from cells labelled with primary mouse anti-

chicken CD4 antibodies. The column was washed 3 times in 3 ml of MACS 

buffer before removal from the separator. An appropriate amount of MACS 

buffer was pipetted onto the column and the fraction of magnetically labelled 

cells was flushed out by firmly applying the plunger. The number and viability 

of isolated chicken CD4+ T cells were determined according to the techniques 

described in the section 2. 2. 1 and 2. 2. 2, respectively. 
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2. 2. 5    Chicken macrophages-like HD11 cell culture 

Chicken macrophage-like cells (HD11) (Leutz et al., 1984) were cultured in 75 

cm filtered tissue culture flasks (Thermo Fisher Scientific, UK) in HD11 cell 

culture medium (see Appendix.2). Before harvesting the cells, old medium 

was removed and the non-adherent cells were washed 3 times with PBS. 5 ml 

trypsin/EDTA (Sigma-Aldrich, UK) was then added to the flasks and the cells 

were incubated at 37°C, 5% CO2 up to 5 min to release the cells from the 

flasks. An equal volume of culture medium was added and the contents were 

transferred to a Falcon tube before being centrifuged at 300×g for 5 min. For 

the invasion assay, the cells were re-suspended in HD11 cell culture medium 

and made up to 5×105 cells/ml. Aliquots of 1 ml of cell preparation were 

seeded into 24-well plates and incubated at 37°C, 5% CO2.   

2. 2. 6    Preparation of splenocytes  

Spleen from newly-hatched Lohmann Lite layers chickens were removed 

aseptically and immediately placed in 2 ml PBS containing 20 µg/ml of 

gentamicin sulphate (Sigma-Aldrich, UK). Spleens were then placed onto a 

strainer (BD Biosciences, UK) attached to a 50 ml centrifuge tube and pushed 

through the strainer using the plunger end of a syringe. The strainer was 

washed with sterile PBS to collect splenic cells. Fresh antibiotic-free chMDM 

culture medium (see Appendix.2) was added to keep the splenocytes for 

further use. 
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2. 3 Salmonella infection of avian cells (in vitro)  

2. 3. 1    Cell invasion 

The supernatants of tissue culture were replaced with fresh antibiotic-free 

medium at least 2 h prior to infection. A 100 µl aliquot of overnight bacterial 

culture was inoculated into 10 ml nutrient broth and cultured in a shaking 

incubator (150 rpm/min) at 37°C for 2-6 h to reach their exponential growth 

phase. Bacteria were pelleted by centrifuge at 1000×g for 10 min and re-

suspended in an appropriate volume of PBS calculated by measuring the 

OD600 of bacteria cultures and comparing the values with log counts (see 

Appendix.3) to produce a suitable density for the correct multiplicity of 

infection (MOI). The invasion was performed using a MOI of 10:1 (10 bacteria 

to 1 cell) (Kaiser et al., 2000, Setta et al., 2012a). S. Enteritidis LPS (Sigma-

Aldrich, UK) (50 µg/ml) was used as a positive control for cytokine production 

and PBS only was used as a negative controls. 

After 1 h of incubation with different strains of S. enterica at 37°C, 5% CO2, 

the medium of infected cell cultures was changed with fresh culture medium 

supplemented with 100 µg/ml of gentamicin sulphate and then incubated at 

37°C and 5% CO2 for 1 h to kill the extracellular S. enterica. Cell preparations 

were washed 3 times with sterile PBS and then kept in fresh culture-medium 

containing 20 µg/ml of gentamicin sulphate thereafter for downstream 

studies (Kaiser et al., 2000, Jones et al., 2001, Setta et al., 2012a). The 

invasion assays were performed in triplicate for each strain tested and 

controls. 
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Salmonella-infected cells were washed 3 times with pre-warmed sterile PBS 

and lysed by adding Triton X-100 (1% v/v) (Thermo Fisher Scientific, UK) to 

release the intracellular bacteria. The lysate was decimal-diluted to 10-6 in 

triplicate for each strain and 100 µl of each dilution were plated on nutrient 

agar plates to count the number of colonies which were displayed as CFU/ml. 

2. 3. 2    Griess assay 

NO levels were assessed by measurement of nitrite production using the 

Griess assay system (Promega, Madison, USA). This assay is based on the 

chemical reaction between 0.1% sulfanilamide and 1% N-1-

napthylethylenediamine dihydrochloride (NED) in 5% phosphoric acid. In this 

study, at 2, 6, 24, 48 h post-infection (pi), the level of nitrite in the 

supernatant of infected cell cultures, LPS-stimulated cell culture (positive 

control) and PBS-treated cell culture (uninfected negative control) were 

measured. Briefly, 50 µl of the supernatant collected from each tissue 

cultures were transferred into 96-well flat-bottom plates (Thermo Fisher 

Scientific, UK) before dispensing 50 µl of the sulfanilamide solution and 50 µl 

of the NED solution to all wells and incubating at room temperature for 10 

min protected from light successively and respectively. The concentration of 

nitrite was determined by measuring the absorbance at 490 nm using a Micro 

plate reader LT-4000 (Microplate absorbance reader, Labtech, Sussex, UK). A 

7-point double-fold serial dilution (100, 50, 25, 12.5, 6.25, 3.13 and 1.56 µM) 

of nitrite was performed in triplicate as a standard reference curve of nitrite 

in each assay.  
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2. 4 Phenotypic analyses 

2. 4. 1    Immunofluorescence labelling 

Immunofluorescence labelling of surface antigens on the cells was used to 

determine the phenotypical characteristics of cells. Cells collected for 

phenotypic analysis were fixed in 4% paraformaldehyde for 10 min followed 

by 3 washes in fluorescent-associated cell sorting (FACS) buffer (see 

Appendix.2). The cell pellet was suspended in staining buffer and the cell 

number was adjusted to a concentration of 1×106 cells/ml.  

For direct immunofluorescence staining, cells were incubated with 

fluorochrome-directly-linked primary antibody for 30 min at 4°C in the dark 

on a roller followed by 3 washes in FACS buffer to remove unbound 

antibodies. The cell pellet in each tube was resuspended in FACS buffer and 

kept on ice, protecting from light prior to flow cytometric analyses (see 

section 2. 4. 2). An isotype-matched control of each labelled primary antibody 

was included as negative control and incubated under the same conditions 

stated above. Isotype controls help to measure the level of non-specific 

background signal, which is caused by primary antibodies binding non-

specifically to Fc (Fragment crystallisable) receptors present on the cell 

surface.  

For indirect immunofluorescence staining, sample preparation and incubation 

with unlabelled primary antibodies were done under the same conditions as 

stated above. The cells were washed 3 times in FACS buffer to remove the 
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unbound primary antibodies. The cell pellet was then re-suspended in 

staining buffer and incubated with appropriate fluorescein-conjugated 

secondary antibodies for 25 min at 4°C in the dark on a roller. Cells were 

washed 3 times in FACS buffer to remove the unbound secondary antibodies 

and re-suspended FACS buffer and stored on ice, protecting from light prior to 

flow cytometric analyses (see section 2. 4. 2). Staining with secondary 

antibody alone using the same conditions described above was included as 

negative control to eliminate the non-specific binding of each secondary 

antibody.   

2. 4. 2    Flow cytometric analysis 

Phenotypic analyses were performed on a FACSCanto II instrument (BD 

Biosciences, USA) equipped with FACSDivaTM software (BD Biosciences, USA) 

as standard. The final analyses and graphical output were performed with 

Flowing software (version 2.5.1, Turku Centre for Biotechnology, University of 

Turku, Finland).  

Non-staining control cells were used to define populations for all samples 

based on the parameter of forward scatter (FSC) versus side scatter (SSC) in 

dot-plots. Dot-plots of double fluorescent signals or histograms of fluorescent 

signals versus cell counts were drawn by gating against the non-staining cells. 

The percentage of each cell population positive for corresponding fluorescent 

signals was calculated by the software based on the appropriate gating. 
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Table 2-4. Monoclonal antibodies used in this study.  

†working concentration (µg/ml) 

*suppliers were referred to by: (A), AbD Serotec (Oxford, UK); (E), eBioscience (Hertfordshire, UK); (SC), Santa Cruz Biotechnology (Texas, US); (S), Southern Biotech (Bir-
mingham, AL). APC, allophycocyanin; FITC, fluorescein; PE, phycoerythrin. mAb, monoclonal antibody. 

No# Antibody: Fluorescein conjugation Clone Isotype Application † * 

1 Monocytes/macrophages marker Ab (KUL01): PE KUL01 IgG1κ Staining mAb,  detecting chicken monocytes/macrophages 1 SC 

2 Mouse anti-chicken CD4 CT-4 IgG1κ Labelling mAb, isolating CD4+ cells by MACS  1 S 

3 Mouse anti-chicken CD4: FITC 2-35 IgG2b Staining mAb, detecting CD4 expression on CD4+ T cells 5 A 

4 Mouse anti-chicken CD3 CT-3 IgG1 Primary mAb, detecting CD3 expression on CD4+ T cells 2.5 A 

5 Mouse-anti-chicken MHC II: FITC 2G11 IgG1 Staining mAb, detecting MHC II expression on chMDM 1 S 

6 Mouse-anti-chicken CD40 AV79 IgG2α Primary mAb, detecting CD40 expression on chMDM 2.5 A 

7 Mouse-anti-chicken CD80 IAH: F864:DC7 IgG2α Primary mAb, detecting CD80 expression on chMDM 2.5 A 

8 Mouse-anti-chicken CD86 IAH: F853:AG2 IgG1 Primary mAb, detecting CD86 expression on chMDM 2.5 A 

9 Mouse anti-chicken CD28  2-4 IgG2α Primary mAb, detecting CD28 expression on CD4+ T cells 5 A 

11 Anti-mouse IgG2α: APC m2a-15F8  Secondary mAb binding to #6 and #7 2.5 E 

12 Anti-mouse IgG1: FITC M1-14D12  Secondary mAb binding to #4 and #8 2.5 E 

13 Mouse IgG1: PE  Isotype control for #1 1 A 

14 Mouse IgG1: FITC  Isotype control for #5 1 A 

15 Mouse IgG2α: FITC  Isotype control for #9 5 E 

16 Mouse IgG2b: FITC  Isotype control for #3 5 E 
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2. 5 Avian macrophage/ CD4+ T cell model in vitro 

2. 5. 1    Co-culture infection method 

The chicken peripheral blood monocyte-derived macrophages (chMDM) were 

infected with different serovars of S. enterica and co-cultured with peripheral 

blood CD4+ T cells isolated from peripheral blood to establish an in vitro cell 

model to study the immune modulation of S. enterica in adaptive immune 

response. Three groups of controls were set up: (i) co-culture of uninfected 

(PBS-treated) chMDM with CD4+ T cells was the control for an allogeneic 

response resulting from macrophages and lymphocytes isolated from 

different individual birds; (ii) CD4+ T cells cultured with Concanavalin A (Con A) 

(10 µg/ml) (Sigma-Aldrich, UK) was the positive control for the proliferation of 

CD4+ T cells. Con A is a lectin known for its ability to induce mitogenic activity 

of T-lymphocytes in vitro; (iii) culture of CD4+ T cells alone was control for the 

viability and numbers of CD4+ T cells over a period of 5 days of culture in vitro. 

The viability and number of chMDM were first determined by following the 

methods described in the section 2. 2. 2 and 2. 2. 1 at 2 h following infection. 

Infected or uninfected chMDM were then co-cultured with CD4+ T cells in 1 ml 

of chMDM culture medium supplemented with 20 µg/ml of gentamicin 

sulphate in 24-well tissue culture plates at 37°C and 5% CO2 for 5 days. The 

ratio of co-culture was kept as 1:10 (chMDM: CD4+ T cells) in each well. At 3 

days (d) pi, 500 µl of fresh culture medium (chMDM culture medium 

supplemented with 20 µg/ml of gentamicin sulphate) was added into each 
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well. All cultures were repeated in three independent experiments with 

triplicates on each occasion.  

2. 5. 2    Proliferation assay on CD4+ T cells from co-culture 

After 5 days of co-culture at 37°C, 5% CO2, CD4+ T cells from different groups 

were pipetted off from the tissue culture plates and harvested respectively to 

measure the proliferation of lymphocytes using the CellTiter® 96 AQueous 

One Solution Cell Proliferation Assay (Promega, Madison, USA). This 

convenient ‘One Solution’ assay is a colorimetric method designed to 

determine the number of viable cells in proliferation assays. The CellTiter 96® 

AQueous One Solution Reagent contains a tetrazolium compound [3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium, inner salt; MTS] combined with an electron coupling reagent 

(phenazine ethosulfate; PES)  of enhanced chemical stability to form a stable 

solution. The MTS tetrazolium compound is bio-reduced into a coloured 

formazan product by dehydrogenase enzymes in metabolically active cells. 

The amount of soluble formazan product in tissue culture medium is directly 

proportional to the number of living cells in the culture.  

All the samples were treated in triplicate as follows: 20 µl of CellTiter® 96 

AQueous One Solution Reagent was added into each well of 96-well plates 

containing 100 µl of cell suspension and the mixture was incubated at 37°C 

and 5% CO2 for 4 h in a humidified atmosphere. The absorbance at 490 nm 

was then recorded on a Micro plate reader and the results are shown as the 
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number of cells according to the linear regression between the absorbance 

(490 nm) and the serial dilution of unstimulated CD4+ T cells.  

2. 5. 3    Phenotypical analysis of CD4+ T cells from co-cultures  

The occurrence of positive (CD28) and negative (CTLA-4) regulation on CD4+ T 

cells in co-culture with chMDM was determined by following the techniques 

described in the section 2. 4 and 2. 7.  

2. 6 Salmonella infection of poultry 

2. 6. 1    Experimental animals, infection and sampling 

A total of 60 newly-hatched Lohmann Lite chickens were obtained from the 

Millennium Hatchery (Birmingham, UK). Paper liners were taken randomly 

from different chick boxes to detect the presence of Salmonella prior to 

infection by incubating in Selenite broth (Sigma-Aldrich, UK) at 37°C for 24 h 

and then culturing on Brilliant Green agar (BGA) (Oxoid Ltd, UK) plates at 37°C 

for 24 h. Suspect colonies were examined with Salmonella-specific polyclonal 

antibodies by slide agglutination (see Appendix.1). The day old chickens were 

divided into four groups with 15 birds each in separate pens and given access 

to antibiotic-free feed and water throughout the experiment. When 2-days 

old, three groups were infected with S. Pullorum, S. Enteritidis or S. 

Gallinarum. Each bird was inoculated orally with 108 CFU of the corresponding 

serovar in 0.1 ml. The uninfected control group was inoculated orally with 0.1 

ml of sterile PBS. This work was carried out under Home Office project license 

PPL 40/3412 and had local ethical approval. 



Chapter 2 

67 

 

At 1, 2, 4, and 5 d pi, three birds from each group were euthanized to collect 

tissue samples from each bird for further examination. Post-mortem, (i) 

spleen and caecal tonsil were collected and stored in RNAlater (Sigma-Aldrich, 

UK) at -80 °C before RNA extraction, (ii) caecal content and liver were 

collected aseptically to determine bacterial loads of S. enterica after infection. 

2. 6. 2    Bacterial distribution 

Tissues from post-mortem, liver and caecal content, were added to a volume 

of PBS buffer to provide a decimal dilution of tissue. Liver and caecal contents 

were homogenized by using Griffiths tubes. Further decimal dilutions of the 

homogenised samples were performed in PBS and 100ul of each dilution were 

cultured on BGA plates containing sodium nalidixate (20 µg/ml, Sigma-Aldrich, 

UK) and novobiocin (1 µg/ml, Sigma-Aldrich, UK) at 37°C for 18-24 h.  Bacterial 

colonies at each dilution were enumerated and the tissue count of bacteria 

was expressed as Log10CFU/g. 

2. 6. 3    Preparation of tissue samples for RNA extraction 

Tissue samples collected from birds were stored in cryovials containing 500 µl 

RNAlater to protect RNA with immediate RNase inactivation, which were 

stored overnight at 4°C before being transferred to -80°C for storage until 

processing. Prior to extracting the RNA, the RNAlater-stabilized tissue (less 

than 30mg) was transferred into a sterile Eppendorf containing 600 µl RLT 

buffer and a sterile 3mm stainless steel bead. The sample was then disrupted 

and homogenised in a Retsch MM300 bead mill (Retsch UK Ltd, UK) for 2 min. 
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The lysate was then centrifuged for 3 min at 16,000×g and the supernatant 

was carefully removed and transferred to a new tube. RNA extraction from 

homogenised lysate was carried out by following the methods described in 

the section 2. 7. 1.  

2. 7 Quantification of mRNA gene transcripts 

Because cytokine and chemokine production is known to be a descriptive 

marker of immune clearance or dysfunction in Salmonella infection in the 

chickens (reviewed in the section 1. 4), gene expression of selective 

chemokines and cytokines and reference gene (28S) in vitro or in vivo were 

quantified in the present study using quantitative real-time PCR (qRT-PCR). 

The primer and probe sequences used in this study are shown in Table 2-5.  

2. 7. 1    RNA extraction 

RNA extraction was performed using the RNeasy Plus Mini Kit (Qiagen, 

Crawley, UK). Briefly, cells (typically <5×106) were pelleted and lysed using 

350 μl of RLT buffer (provided by the kit, containing 10 μl of β-

mercaptoethanol (β-ME) per ml RLT buffer). Disruption and homogenization 

of tissue samples is described in 2. 6. 3. 

The homogenized lysate was transferred to a gDNA Eliminator spin column 

(provide by the kit) and then centrifuged for 30 s at 8,000×g, which was 

followed by adding 350 µl (600 µl for tissue samples) of 70% ethanol to the 

flow-through. The mixture was loaded to an RNeasy spin column placed in a 2 

ml collection tube (provide by the kit) and centrifuge for 15 s at 8,000×g. This 
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was followed by the addition of 700 µl Buffer RW1 to the RNeasy Mini spin 

column and centrifuge for 15 s at 8,000×g to wash the spin column 

membrane. After discarding the flow-through, 500 µl of Buffer RPE was added 

to the RNeasy spin column and the tube was centrifuge for 15 s at 8,000×g. 

The flow through was discarded before adding another 500 µl of Buffer RPE to 

the column, which was then centrifuged for 2 min at 8,000×g to wash and dry 

the spin column membrane. The RNeasy spin column was then placed in a 

new 2 ml collection tube and centrifuged at 8,000×g for 1 min to eliminate 

any possible carryover of Buffer RPE. This was followed by placing the RNeasy 

spin column in a new 1.5 ml collection tube, adding 40 µl RNase-free water 

directly to the spin column membrane and centrifuge for 1 min at 8,000×g to 

elute the RNA. Purity and quantity were assessed using spectral analysis by 

NanoDrop spectrophotometer ND-1000 (Labtech International Ltd, UK) and 

then kept at -80°C until cDNA synthesis. 

2. 7. 2    cDNA synthesis 

cDNA synthesis was performed with the Transcriptor First Strand cDNA 

Synthesis Kit (Roche Applied Science, UK) using 1 µg RNA per sample in each 

reaction following the manufacturer’s guidelines. Briefly, PCR grade H2O was 

added to 1 µg RNA of each sample to make up the volume of 11 µl for each 20 

µl transcript reaction in the sterile, nuclease-free, thin-walled PCR tube. The 2 

µl kit-included random hexamer primer (600 pmol/µl) was added to each 

reaction and the template-primer mixture was heated at 65°C for 10 min in a 

Techne TC-512 thermal cycler (Bibby Scientific Ltd, UK) for denaturation of 
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RNA secondary structures. The tubes were immediately cooled on ice, 

followed by addition of these components in order: 4 µl of reverse 

transcriptase reaction buffer (5× concentration), 0.5 µl of protector RNase 

inhibitor (40 U/µl), 2 µl of deoxynucleotide mix (10 mM) and 0.5 µl of reverse 

transcriptase (20 U/µl). cDNA synthesis was conducted with following 

procedure: 10 min at 25°C for primer annealing, 30 min at 55°C for reverse 

transcription step and 5 min at 85°C for inactivation of Transcriptor Reverse 

Transcriptase, then cooled on ice. The cDNA volume amounted to 20 µl of 

each sample and was tested randomly for quality and quantity on the 

NanaDrop spectrophotometer ND-1000. The cDNAs were stored at -20°C until 

used for the qRT-PCR.  

2. 7. 3    qRT-PCR 

The Light Cycler 480 System (Roche Applied Science, UK) was used for qRT-

PCR to measure the gene expression of selected cytokines and chemokines. 

Primer and probe sequences used in this study have been described 

previously (Kaiser et al., 2000, Swaggerty et al., 2004, Crhanova et al., 2011, 

Kim et al., 2012, Setta et al., 2012a) and are listed in Table 2-6. Probes were 

labelled with the fluorescent reporter dye 5-carboxyfluorescein (FAM) at the 

5' end and the quencher N,N,N,N'-tetramethyl-6-carboxyrhodamine (TAMRA) 

at the 3' end. Primers used to amplify CD28 and CTLA-4 by SYBR green based 

qRT-PCR are listed in Table 2-7.  
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Primer concentrations (nM) were optimized by testing various combinations 

of different concentrations of forward (F) and reverse primer (R) in qRT-PCR. 

Primer concentrations of 100, 300 and 900 nM, specifically 100F/300R, 

100F/900R, 300F/100R, 300F/300R, 300F/900R, 900F/100R, 900F/300R and 

900F/900R, were chosen to set up the optimisation. The optimal primer 

concentration is the lowest concentration that results in the lowest crossing 

threshold (Ct) and an adequate fluorescence for a given target concentration. 

Different concentrations of probe (100 nM and 200 nM) were tested to 

determine the optimal probe concentration using the optimized primer 

concentrations.  

The qPCR mixture for each sample tested consisted of 10 µl Light Cycler probe 

master mix (2× concentration), the appropriate volume of forward primer, 

reverse primer and probe at optimized concentrations, 2 µl of template 

(cDNA) and this was made up to 20 µl with RNase-free water. qPCR was 

performed following the thermal profile as: one cycle at 95°C for 10 min, 45 

cycles at 95°C for 10 s, 60°C for 30 s and 72°C for 1 s and one cycle at 40°C for 

30 s. Each qPCR assay contained samples, positive and negative controls and 

non-template control (NTC) in duplicates. cDNA from LPS-stimulated cells was 

used for the  generation of standard curves for reference gene and target 

genes, which were performed with 5 point 5-fold serial dilutions in triplicate 

with replicates on different days. Standard curves were performed for each 

independent experiment. 
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Table 2-5. A list of the immune mediators tested in this study and their function. 

Immune 
mediator 

Function Reference 

P
ro

-i
n

fl
am

m
at

o
ry

 m
ed

ia
to

rs
 

iNOS 
NO production and inflammation 
Bacterial clearance 

(Berndt et al., 
2007, Setta et al., 
2012a) 

IL-1β Pro-inflammatory responses 
(Weining et al., 
1998) 

IL-6 Pro-inflammatory and acute phase responses 

(Kaiser et al., 2000, 
Setta et al., 2012a, 
Kaiser and Staheli, 
2013) 

CXCLi1 
Chemo-attraction of particularly heterophils 
Inflammation  

(Setta et al., 
2012a, Kaiser and 
Staheli, 2013) 

CXCLi2 
Chemo-attraction of particularly monocytes 
Inflammation 

(Setta et al., 
2012a, Kaiser and 
Staheli, 2013) 

P
ro

-i
n

fl
am

m
at

o
ry

 (
Th

1
-r

e
la

te
d

) 

cy
to

ki
n

es
 

IFN-γ 
Signature cytokine of Th1-controlled responses 
Macrophage activating factor  

(Kaiser and Staheli, 
2013) 

IL-12α Induce IFN-γ production 
(Degen et al., 
2004, Kaiser and 
Staheli, 2013) 

IL-18 Induce IFN-γ production 
(Wigley and Kaiser, 
2003) 

A
n

ti
-i

n
fl

am
m

at
o

ry
 

(T
h

2
-r
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at

ed
) 

cy
to

-
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n

es
 

IL-4 Stimulate antibody production 

(Degen et al., 
2005, Chappell et 
al., 2009, Kaiser 
and Staheli, 2013) 

IL-13 Stimulate antibody production 
(Degen et al., 
2005, Kaiser and 
Staheli, 2013) 

Im
m

u
n

e
 

re
gu

la
to

r 
cy

to
ki

n
es

 

TGF-β4 
Immuno-regulation 
Anti-inflammatory 

(Kaiser and Staheli, 
2013, Kogut et al., 
2003) 

IL-10 
Immuno-regulation  
Anti-inflammatory 

(Rothwell et al., 
2004) 

P
ro

-i
n

fl
am

m
at

o
ry

 

(T
h

1
7

-r
el
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ed

) 
cy

to
-
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n
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IL-17A Inflammatory response 
(Min and Lillehoj, 
2002, Min et al., 
2013) 

IL-17F Inflammatory response 
(Kim et al., 2012, 
Min et al., 2013) 
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Table 2-6. Sequences of primers and probes used for quantifying gene expression 

of immune mediators by qRT-PCR. 

Target 
RNA 

Probe/ Primers sequence (5’ -3’ )* 
Accession 
number 

 28S 

P: (FAM)-AGGACCGCTACGGACCTCCACCA-(TAMRA) 

F: GGCGAAGCCAGAGGAAACT 

R: GACGACCGATTTGCACGTC 

X59733 

iNOS 

P: (FAM)-TCCACAGACATACAGATGCCCTTCCTCTTT-(TAMRA) 

F: TTGGAAACCAAAGTGTGTAATATCTTG 

R: CCCTGGCCATGCGTACAT 

U46504 

IL-1β 

P: (FAM)-CCACACTGCAGCTGGAGGAAGCC-(TAMRA) 

F: GCTCTACATGTCGTGTGTGATGAG 

R: TGTCGATGTCCCGCATGA 

AJ245728 

IL-6 

P: (FAM)-AGGAGAAATGCCTGACGAAGCTCTCCA-(TAMRA) 

F: GCTCGCCGGCTTCGA 

R: GGTAGGTCTGAAAGGCGAACAG 

AJ250838 

CXCLi1 

P: (FAM)-CCACATTCTTGCAGTGAGGTCCGCT-(TAMRA) 

F: CCAGTGCATAGAGACTCATTCCAAA 

R: TGCCATCTTTCAGAGTAGCTATGACT 

AF277660 

CXCLi2 

P: (FAM)-TCTTTACCAGCGTCCTACCTTGCGACA-(TAMRA) 

F: GCCCTCCTCCTGGTTTCAG 

R: TGGCACCGCAGCTCATT 

AJ009800 

IFN-γ 

P: (FAM)-TGGCCAAGCTCCCGATGAACGA-(TAMRA) 

F: GTGAAGAAGGTGAAAGATATCATGGA 

R: GCTTTGCGCTGGATTCTCA 

Y07922 

IL-12α 

P: (FAM)-CCAGCGTCCTCTGCTTCTGCACCTT-(TAMRA) 

F: TGGCCGCTGCAAACG 

R: ACCTCTTCAAGGGTGCACTCA 

AY262751 

IL-18 

P: (FAM)-GGAAGGAG-(TAMRA) 

F: AGAGCATGGGAAAATGGTTG 

R: CCAGGAATGTCTTTGGGAAC 

AJ276026 

IL-4 

P: (FAM)-AGCAGCACCTCCCTCAAGGCACC-(TAMRA) 

F: AACATGCGTCAGCTCCTGAAT 

R: TCTGCTAGGAACTTCTCCATTGAA 

AJ621735 

IL-13 

P: (FAM)-CATTGCAAGGGACCTGCACTCCTCTG-(TAMRA) 

F: CACCCAGGGCATCCAGAA 

R: TCCGATCCTTGAAAGCCACTT 

AJ621735 

TGF-β4 

P: (FAM)-ACCCAAAGGTTATATGGCCAACTTCTGCAT-(TAMRA) 

F: AGGATCTGCAGTGGAAGTGGAT 

R: CCCCGGGTTGTGTGTTGGT 

M31160 

IL-10 

P: (FAM)-CGACGATGCGGCGCTGTCA-(TAMRA) 

F: CATGCTGCTGGGCCTGAA 

R: CGTCTCCTTGATCTGCTTGATG 

AJ621614 

IL-17A 

P: (FAM)-ATCGATGAGGACCACAACCGCTTC-(TAMRA) 

F: TATCAGCAAACGCTCACTGG 

R: AGTTCACGCACCTGGAATG 

NM_204460.1 

IL-17F 

P: (FAM)-GTTGACATTCGCATTGGCAGCTCT-(TAMRA) 

F: TGAAGACTGCCTGAACCA 

R: AGAGACCGATTCCTGATGT 

JQ776598.1 

*P, probe; F, forward primer; R, reverse primer  
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Table 2-7. Sequences of primers tested for quantifying gene expression of CTLA-4 

and CD28 in CD4+ T cells by qRT-PCR. 

Target RNA Primers sequence (5’ -3’ )* Accession number 

CTLA-4 
F: CAAGGGAAATGGGACGCAAC 

R: GTCTTCTCTGAATCGCTTTGCC 
AM236874.1 

CD28 
F: GCCAGCCAAACTGACATCTAC 

R: CTGTAGAAACCAAGAAGTCCCG 
NM_205311.1 

*F, forward primer; R, reverse primer  
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2. 8 Statistical analysis 

2. 8. 1    General methods for statistical analysis 

Statistical analysis was performed using Graphpad Prism 6 software for 

analysis of variance (ANOVA). Statistical significance was determined at the 

5% and 1% confidence limits P<0.05 and P<0.01. 

2. 8. 2    qRT-PCR data analysis method 

To account for the variation of cDNA levels among samples within an 

experiment, the Ct values for the target gene product for each sample were 

normalized with the Ct value of reference gene product for the same sample, 

following the methods previously described (Kaiser et al., 2000, Hughes et al., 

2007). 28S was used as reference gene to normalize the expression of target 

genes in this study (Kaiser et al., 2000, Setta et al., 2012a). 

The qPCR efficiency of reference gene and each target gene were included 

into the normalisation of the qPCR data by using linear regression of standard 

curves with six replicates for each dilution to obtain slopes (regression lines of 

Ct values against log10 concentration of five point five-fold serial dilution) of 

either reference gene (S’) or each target gene (S).  

The experimental mean Ct value for reference gene (Nt) was calculated over 

all samples in that experiment. The variations between samples in reference 

gene Ct value (Ct’) about the experimental mean were calculated (Nt-Ct’), 

which was then multiplied by the ratio between the slopes of target gene  (S) 

and reference gene (S’), as follows: 
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Corrected Ct value = Ct + (Nt-Ct’) × S / S’ 

Where Ct is the mean sample Ct value of target gene, is the mean 

experimental Ct value of reference gene, Ct’ is the mean sample Ct value of 

reference gene, S is the slope of target gene and S’ is the slope of reference 

gene. 

The variation in input total RNA was represented by the different Ct value of 

reference gene in each sample. Using the slopes of respective target gene and 

reference gene, the difference with regard to input total RNA was used to 

correct the corresponding Ct values of target genes. The results were finally 

expressed as ‘40-Ct’ to allow comparison of gene expression to uninfected 

controls (Kaiser et al., 2000, Swaggerty et al., 2004). 40-Ct represents 40 

cycles of amplification minus the threshold value (Ct). The higher the 40-Ct 

value the greater the level of gene expression. The fold changes between 

treatments were calculated as: F=2(T-C), T=corrected 40-Ct for test sample and 

C= corrected 40-Ct for control sample. 

Standard curves were performed on each plate to ensure good consistency of 

PCR efficiency for each set of primers and probe. The qPCR efficiencies (E) of 

reference gene and each target gene were determined as:  

E=(10(-1/Slope)-1) ×100% 
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Chapter 3   Immune dynamics of avian 

macrophages in response to S. Pullorum 

infection and related serovars 

3. 1 Introduction 

3. 1. 1    General introduction 

S. Pullorum is closely related to serovars Gallinarum and Enteritidis at the 

genomic level (Thomson et al., 2008, Batista et al., 2015). However, they are 

markedly different in the infection biology. S. Enteritidis is generally 

responsible for a self-limiting enteritis in man or typhoid in mice and intestinal 

colonisation and vertical transmission to eggs while S. Gallinarum usually 

causes severe systemic infection in chickens with a distinctively different 

pathology from S. Pullorum (Berchieri et al., 2001a).  

Following oral infection, phagocytic cells constitute the first line of host 

defence in response to Salmonella infection, of which the important role of 

macrophages was demonstrated both in chicken (Wigley et al., 2002a, 

Withanage et al., 2003) and mice (Mastroeni and Sheppard, 2004). Splenic 

macrophages are the main site of persistent carriage of S. Pullorum infection 

in chicken (Wigley et al., 2001). S. Gallinarum may also use macrophage-like 

cells in the translocation process from gut to deeper tissues of chicken (Jones 

et al., 2001). It has been found that S. Pullorum infection induced much lower 

levels of splenic IFN-γ with greater levels of IL-4 than occurs during infection 

by the related serovar S. Enteritidis (Chappell et al., 2009). However, the 
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involvement of S. Pullorum-infected avian macrophages in manipulating these 

changes in cytokine expression and its further causal link to modulation of 

adaptive immune responses are not clear. 

3. 1. 2    Chapter aims and objectives 

The ability of S. Pullorum to produce persistent infection and avoid immune 

clearance in chickens might result from an immune response which is clearly 

different to that induced by the host to related serovars Enteritidis and 

Gallinarum. We hypothesised that in contrast to serovars such as S. Enteritidis, 

which stimulates a strong Th1 type response, S. Pullorum might modulate the 

host response towards a Th2 immunity by altering macrophage activities 

(from pro-inflammatory to anti-inflammatory responses) during the innate 

immune response. The aim of the work described in this chapter was 

therefore to investigate the innate immune responses of avian macrophages 

in response to the infection with S. Pullorum and related serovars.  
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3. 2 Results 

3. 2. 1    Preparation of chicken peripheral blood monocyte-

derived macrophages (chMDM) 

Figure 3-1 showed the separation of PBMCs from chicken whole blood by 

repeated gradient centrifugation as discribed in 2. 2. 3. Chicken monocytes 

were gated in population (P)-1 (Figure 3-1, f) based on side scatter/forward 

scatter (SSC/FSC) parameters. The yields of chicken PBMCs from 25 ml of 

chicken whole blood ranged from 2×108 to 5×108 cells. 

 

Figure 3-1. Isolation of peripheral blood PBMCs from chicken whole blood by 

gradient centrifugation. Cells collected at each step of PBMC isolation were analysed 

using flow cytometer: (a) chicken whole blood (1:1 diluted); (b) buffy coat collected from 

gradient centrifugation; (c) buffy coat collected from repeated gradient centrifugation; 

(d-f) PBMCs collected after three washes in PBS followed by centrifugation. The dot-plots 

represent independent experiments of isolating PBMCs from chicken whole blood. 
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At 24 h and 48 h after incubation, the isolated chicken PBMCs were washed 

with PBS to remove the non-adherent cells, which are mainly lymphocytes. 

The proportion of CD3+ cells within adherent and non-adherent populations 

was determined by flow cytometric analysis, where less than 2 % of adherent 

cells were found to be CD3-positive at 48 h after incubation, which indicated 

an effective removal of contaminating lymphocytes by washing off non-

adherent cells from the culture plates. During incubation, the morphology of 

the adherent cells became flatter and more characteristically macrophage-like 

after 24-48 h of incubation (Figure 3-2) and their viability was found to be in 

excess of 95 %. 

 

Figure 3-2. Microscopy of chicken peripheral blood monocyte-derived macrophages 

(chMDM). Adhesive cells become more characteristically macrophage-like after 24-48 h 

of incubation. PBMCs isolated from chicken whole blood cultured for (A) 24 h and (B) 48 

h. The pictures are representative of at least five independent experiments of preparing 

chMDM from individual batches of chicken whole blood. Scale bar= 50 µm. 
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The morphological features of adherent cells observed by microscopy 

coincide with increased granularity and cells size (SSC/FSC) of the adherent 

cells (Figure 3-3, P2) being assessed in flow cytometric analysis when 

compared to PBMCs isolated from chicken whole blood (Figure 3-3, P1). 

Chicken PBMCs and adherent cells after 48 h of incubation were stained 

selectively with the anti-chicken monocyte/macrophage mAb (clone KUL01, 

PE), which specifically recognises mononuclear phagocytes in chickens. 

Approximately 10% of PBMCs isolated from chicken whole blood were KUL01+ 

cells (Figure 3-3, H1), while the percentage of KUL01+ cells in adherent cells 

was found in excess of 95% at 48 h after incubation (Figure 3-3, H2), which 

was phenotypically characterized as chicken peripheral blood monocyte-

derived macrophages (chMDM). Prior to the downstream invasion assay and 

co-culture in vitro, the final yield of cells per millilitre was determined by 

trypan blue exclusion (see section 2. 2. 1). 
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Figure 3-3. Flow cytometric analysis of chicken PBMCs and chMDM. Chicken 

monocytes and macrophages were specifically recognised by mAb KUL01: PE (a) PBMCs 

isolated from chicken whole blood are gated within population (P) 1 (P1) in dot-plots. H-1 

in histogram represented KUL01+ cells within P1 by IgG1:PE isotype control (black line). (b) 

PBMCs were cultured for 48 h and non-adherent cells were removed by washing at 24 h 

and 48 h after incubation. Adherent cells in the culture were analysed and gated within 

P2 in dot-plots. H-2 in histogram represented KUL01+ cells within P2 by IgG1:PE isotype 

control (black line). (c) Proportion of KUL01+ cells in in vitro culture at different times 

post-isolation and the data are shown as mean (KUL01+ cells%) ± SEM from three 

independent experiments. 
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In addition, the surface expression of Major Histocompatibility Complex (MHC) 

class II molecules was determined to further characterize chicken PBMCs and 

chMDM (Figure 3-4). Chicken peripheral blood monocytes were gated in P1 

based on their FSC/SSC properties. The cells from within this population were 

then gated according to the fluorescent signals in the unlabelled control and 

the percentage of stained cells was indicated by the proportion appearing 

outside the gate in appropriate treatments. Approximately half of the chicken 

monocytes were shown to be KUL01+/MHCII+ (Figure 3-4, panel a). After 48 h 

of incubation, over 95% of adherent cells were found to be KUL01+/MHCII+ 

cells (Figure 3-4, panel b). 

 

Figure 3-4. Expression of KUL01 and MHCII on chicken PBMCs and chMDM. Chicken 

PBMCs and chMDM were stained with mAb KUL01 (PE) and mouse-anti-chicken MHC II 

(FITC). KUL01+/MHCII+ cells are shown in quadrant Q2 accordingly by appropriate isotype 

control and compensation. (a) PBMCs isolated from chicken whole blood. P1 was gated 

as monocytes. (b) PBMC-derived macrophages obtained from adherent cells after 48 h of 

incubation.P2 was gated as macrophages with bigger cell size and more granularity. The 

dot-plots represent independent experiments of preparing PBMC-derived macrophages 

from individual batches of chicken whole blood. 



Chapter 3 

84 

 

3. 2. 2    Invasion and intracellular survival of Salmonella in 

chMDM 

The results of invasion by S. Pullorum and intracellular survival in chMDM 

were compared with that of S. Enteritidis and S. Gallinarum (Figure 3-5). S. 

Enteritidis invaded and/or were taken up by chMDM in greater numbers than 

S. Pullorum and S. Gallinarum at all time points post-infection (pi) (P<0.05). 

Bacterial counts in chMDM declined from 6 h pi with bacterial counts of each 

serovar at 48 h pi being significantly lower than that at 2 h pi (P<0.01).  
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Figure 3-5. Survival dynamics of Salmonella serovars in infected chMDM. At 2, 6, 24 

and 48 h pi, chMDM infected with different serovars of Salmonella were lysed to 

quantify the intracellular bacterial counts. Viable colony counts were shown as Log10 

CFU/ml. Results shown are expressed as mean (Log10CFU/ml) ± SEM of independent 

experiments (n=5). Two-way ANOVA and Tukey's multiple comparisons were performed 

to determine significant difference between serovars at each time point post infection. (*) 

shows significant differences between serovars. * P<0.05, **P<0.01. 
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The percentage of viable chMDM cells was measured at 2-48 h after infection 

with different Salmonella strains. Following infection, approximately 85% of 

chMDM cells (84.38%, 83.36% and 82.02% for S. Pullorum, S. Enteritidis and S. 

Gallinarum, respectively) remained alive until 6 h pi but the percentage of 

viable cells significantly reduced at 24 h (58.16%, 59.82% and 61.42%) and 48 

h (35.1%, 33.12% and 33.87%) pi (P<0.01). However, no significance was 

found between the viability percentages measured from infection with the 

three serovars (P> 0.05). 
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Figure 3-6. Viability of chMDM following infection with different serovars of 

Salmonella. At 2, 6, 24 and 48 h pi, the percentage of viable chMDM infected with S. 

Pullorum, S. Enteritidis and S. Gallinarum respectively were determined using PI. Data 

shown are means (viable chMDM %) ± SEM from three independent experiments.  
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3. 2. 3    NO production 

Salmonella infection caused a significant increase in NO production in chMDM 

at 24 and 48 h pi. At 24 h pi, compared to the uninfected control, increased 

NO production was only observed from S. Enteritidis-infected and LPS-

stimulated chMDM (P<0.01). The maximal production of NO in chMDM in 

response to infection with all these serovars was observed at 48 h pi 

(P<0.001), with the level of NO production from S. Pullorum-infected chMDM 

being significantly lower than that produced from S. Enteritidis-infected cells 

(P<0.05) (Figure 3-7). 
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Figure 3-7. NO production by chMDM following infection with different serovars of 

S. enterica.  At 2, 6, 24 and 48 h pi, supernatant was collected from chMDM in different 

infection or treatment groups to determine the nitrite concentration using Griess assay. 

The results shown are expressed as means (nitrite concentration, µM) ± SEM of 

independent experiments (n=3). Statistical analysis was performed using Two-way 

ANOVA followed by Tukey’s multiple comparisons test to detect difference between the 

groups within each time point. (+) Indicates statistically significant difference from 

negative control (+P<0.05, ++P<0.01, +++P<0.001). (*) indicates statistical differences 

between different treatment (*P<0.05, **P<0.01, ***P<0.001).  
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3. 2. 4    Quantification of gene expression from chMDM in 

response to S. Pullorum and related serovars 

Figure 3-8 showed gene expression of iNOS, the pro-inflammatory 

chemokines CXCLi1 and CXCLi2 and cytokines IL-6 and IL-1β in avian 

macrophages in response to infection with different S. enterica serovars at 6 h 

pi. Salmonella infection resulted in increased gene expression of these 

immune mediators in chMDM when compared with the uninfected controls 

(P<0.05 or P<0.01). Moreover, the expression levels of CXCLi2, IL-6 and iNOS 

mRNA from S. Enteritidis-infected chMDM were significantly higher than that 

of S. Pullorum- and S. Gallinarum-infected cells (P<0.05 or P<0.01).  
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Figure 3-8. CXCLi1, CXCLi2, IL-1β, iNOS and IL-6 mRNA expression from chMDM at 6 

h post-infection with different serovars of Salmonella. (A) The corrected crossing 

threshold (Ct) values deducted from 40 (the negative end point) after normalization with 

reference gene (28S) for input RNA. Data shown as averages (40-Ct) ± SEM (n=3). (B) The 

corrected Ct values shown as fold change in the mRNA level of cytokines in comparison 

to those from uninfected controls (shown as 1). (+) indicates differences between levels 

of cytokines induced by each serovar compared to PBS-treated uninfected control, +: 

P<0.05, ++: P<0.01; (*) indicates differences between levels of cytokines induced by 

different serovars, *: P<0.05, **: P<0.01. 
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IFN-γ, IL-12α and IL-18 are pro-inflammatory cytokines related to Th1 immune 

responses. Infection of chMDM with S. Pullorum or S. Gallinarum did not up-

regulate gene expression of IFN-γ and IL-12α whereas significantly increased 

expression of IFN-γ, IL-12α and IL-18 was found in S. Enteritidis-infected 

chMDM (P<0.01) when compared to uninfected controls. In addition, mRNA 

levels of IFN-γ, IL-12α and IL-18 from S. Enteritidis-infected chMDM were 

significantly higher than those of S. Pullorum-infected cells (P<0.05). 

Moreover, expression of IFN-γ (P<0.01), IL-12α (P<0.01) and IL-18 (P<0.05) 

were also up-regulated in LPS-stimulated chMDM (Figure 3-9). 

S .  P
u llo

ru m

S .  E
n te

r it i
d is

S .  G
a lli

n a ru m
L P S

P B S

0

5

1 0

1 5

2 0

IF N -

4
0

-C
t

+ + + +

*
*

S .  P
u llo

ru m

S .  E
n te

r it i
d is

S .  G
a lli

n a ru m
L P S

P B S

0

5

1 0

1 5

2 0

IL -1 8

4
0

-C
t

+ +
+ +

+ +
+

*

S .  P
u llo

ru m

S .  E
n te

r it i
d is

S .  G
a lli

n a ru m
L P S

P B S

0

5

1 0

1 5

2 0

IL -1 2

4
0

-C
t

+ + +

*

(A )

 



Chapter 3 

91 

 

S .  P
u llo

ru m

S .  E
n te

r it i
d is

S .  G
a lli

n a ru m
L P S

P B S

0

5

1 0

1 5

2 0

2 5

IF N -

F
o

ld
 c

h
a

n
g

e

+ +

+ +

* *

S .  P
u llo

ru m

S .  E
n te

r it i
d is

S .  G
a lli

n a ru m
L P S

P B S

0

5

1 0

1 5

2 0

2 5

IL -1 8

F
o

ld
 c

h
a

n
g

e

+ +

+ +

+ +

+

*

S .  P
u llo

ru m

S .  E
n te

r it i
d is

S .  G
a lli

n a ru m
L P S

P B S

0

5

1 0

1 5

2 0

2 5

IL -1 2

F
o

ld
 c

h
a

n
g

e

+ +

+

*

(B )

 

Figure 3-9. IFN-γ, IL-12α and IL-18 mRNA expression from chMDM at 6 h post-

infection with different serovars of Salmonella. (A) The corrected crossing threshold 

(Ct) values deducted from 40 (the negative end point) after normalization with reference 

gene (28S) for input RNA. Data shown as averages (40-Ct) ± SEM (n=3). (B) The corrected 

Ct values shown as fold change in the mRNA level of cytokines in comparison to those 

from uninfected controls (shown as 1). (+) indicates differences between levels of 

cytokines induced by each serovar compared to PBS-treated uninfected control, +: 

P<0.05, ++: P<0.01; (*) indicates differences between levels of cytokines induced by 

different serovars, *: P<0.05, **: P<0.01. 
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In contrast to the differential expression of IFN-γ, IL-12α and IL-18 mRNA seen 

above, the overall mRNA expression levels of IL-4 and IL-13, were much lower, 

without significant differences being observed between experimental groups 

(P>0.05) (Figure 3-10).  
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Figure 3-10. IL-4 and IL-13 mRNA expression from chMDM at 6 h post-infection 

with different serovars of Salmonella. (A) The corrected crossing threshold (Ct) values 

deducted from 40 (the negative end point) after normalization with reference gene (28S) 

for input RNA. Data shown as averages (40-Ct) ± SEM (n=3). (B) The corrected Ct values 

shown as fold change in the mRNA level of cytokines in comparison to those from 

uninfected controls (shown as 1). (+) indicates differences between levels of cytokines 

induced by each serovar compared to PBS-treated uninfected control, +: P<0.05, ++: 

P<0.01; (*) indicates differences between levels of cytokines induced by different 

serovars, *: P<0.05, **: P<0.01. 
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Significant levels of IL-10 mRNA was detected in chMDM following infection 

with S. Pullorum (P<0.05) or S. Enteritidis (P<0.01). However, there was no 

statistical difference between infection groups (P>0.05). The mRNA 

expression of TGF-β4 was not significantly different in Salmonella-infected 

chMDM in comparison with uninfected control cells (Figure 3-11).  
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Figure 3-11. IL-10 and TGF-β mRNA expression from chMDM at 6 h post-infection 

with different serovars of Salmonella. (A) The corrected crossing threshold (Ct) values 

deducted from 40 (the negative end point) after normalization with reference gene (28S) 

for input RNA. Data shown as averages (40-Ct) ± SEM (n=3). (B) The corrected Ct values 

shown as fold change in the mRNA level of cytokines in comparison to those from 

uninfected controls (shown as 1). (+) indicates differences between levels of cytokines 

induced by each serovar compared to PBS-treated uninfected control, +: P<0.05, ++: 

P<0.01; (*) indicates differences between levels of cytokines induced by different 

serovars, *: P<0.05, **: P<0.01. 
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3. 2. 5    Quantification of gene expression from splenocytes in 

response to S. Pullorum and related serovars 

At 6 h pi, infection of chicken splenocytes with S. Pullorum did not induce  

gene expression of IFN-γ, IL-18 and IL-12α while S. Enteritidis was again 

shown to be a robust stimulator of these cytokines, although all the statistical 

differences between S. Pullorum and S. Enteritidis seen in infected chMDM 

were not observed in chicken splenocytes. In addition, the results showed 

significant up-regulation of IL-17F mRNA following infection with S. Enteritidis 

and S. Gallinarum (P<0.01). Expression of IL-4 mRNA from Salmonella-infected 

splenocytes was at low levels without significant differences between 

experimental infection groups (Figure 3-12).  
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Figure 3-12. IFN-γ, IL-18, IL-12α, IL-4 and IL-17F mRNA expression from chicken 

splenocytes at 6 h post-infection with different serovars of Salmonella. (A) The 

corrected crossing threshold (Ct) values deducted from 40 (the negative end point) after 

normalization with reference gene (28S) for input RNA. Data shown as averages (40-Ct) ± 

SEM (n=5). (B) The corrected Ct values shown as fold change in the mRNA level of 

cytokines in comparison to those from uninfected controls (shown as 1). (+) indicates 

differences between levels of cytokines induced by each serovar compared to PBS-

treated uninfected control, +: P<0.05, ++: P<0.01; (*) indicates differences between 

levels of cytokines induced by different serovars, *: P<0.05, **: P<0.01. 
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3. 2. 6    The expression of MHCII and co-stimulatory molecules 

on S. enterica infected macrophages 

The expression levels of MHC II and co-stimulatory molecules (CD40, CD80 

and CD86) on chMDM in response to S. enterica infection was assessed using 

immunofluorescence labelling followed by flow cytometric analysis as 

described in section 2. 4. Salmonella-infected and uninfected chMDM were 

gated (P1 in panel A-a, B-a and C-a respectively in Figure 3-13) to exclude cell 

debris according to cell size and granularity (FSC/SSC parameters). Expression 

levels of cell surface molecules was then determined by single-colour flow 

cytometric analysis at 2, 6 and 24 h pi, with results expressed as percentage of 

the positive population among chMDM collected from each treatment (Figure 

3-13, panel D).  

Phenotypical analyses indicated that compared with uninfected cells, a 

significantly increased percentage of CD40+ cells  was observed in chMDM 

infected with S. Pullorum or S. Enteritidis (P<0.05) whereas the proportion of 

CD80+ and CD86+ cells did not increase in chMDM infected with different 

serovars of S. enterica (P>0.05) at 2 h pi. At 6 h after infection, infection with S. 

enterica resulted in a significant increase in the CD40+ population (SP and SE, 

P<0.01; SG, P<0.05) while a higher percentage of CD80+ cells was seen with S. 

Enteritidis-infection (P<0.01) when compared with uninfected chMDM, 

However, infection with S. enterica did not stimulate the expression of CD86 

on chMDM until 6 h pi. In comparison with uninfected chMDM, a significantly 

increased population of CD40+ (SP and SE, P<0.01; SG, P<0.05), CD80+ (SP and 
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SE, P<0.01; SG, P<0.05) or CD86+ (SP and SG, P<0.05; SE, P<0.01) cells was 

found in response to infection with the three serovars of S. enterica used at 

24 h pi.  
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(A) Expression of KUL01, MHCII, CD40, CD80 and CD86 on chMDM infected with 

different serovars of Salmonella at 2 h pi 
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(B) Expression of KUL01, MHCII, CD40, CD80 and CD86 on chMDM infected with 

different serovars of Salmonella at 6 h pi 
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(C) Expression of KUL01, MHCII, CD40, CD80 and CD86 on chMDM infected with 

different serovars of Salmonella at 24 h pi 
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(D) 

Figure 3-13. Comparative flow cytometric analysis of surface antigens expression 

on chMDM in response to S. enterica infection. The chMDM infected with different 

strains of S. enterica were analysed to determine the positive population in expressing 

KUL01, MHCII, CD40, CD80 and CD86 respectively at (A) 2, (B) 6 and (C) 24 h pi. KUL01, 

MHCII, CD40, CD80 and CD86 were recognised by appropriate mAb. At each time point, 

(a) cells were gated based on side scatter/forward scatter (SSC/FSC) parameters. (b) The 

histograms shown are representative of three independent experiments. Black lines, 

secondary binding or isotype control mAbs; red lines, anti-chicken cell surface marker 

mAbs. (D) The proportion of positive cells from three independent experiments, data 

shown as mean ± SEM (n=3). Statistical analysis was performed using Two-way ANOVA 

followed by Tukey’s multiple comparisons test to detect difference between 

experimental groups at each time point. (*) indicates statistically significant differences 

from uninfected control. *P<0.05, **P<0.01. 
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3. 2. 7    Immune responses to infection of chMDM by a wider 

selection of strains from the three S. enterica serovars: 

NO production and different host gene expression 

S. Pullorum 449/87, S. Enteritidis P125109 and S. Gallinarum 9 are 

representative strains each of Salmonella serovars Pullorum, Enteritidis and 

Gallinarum, it is essential to demonstrate how representative these strains 

might be of other strains of the same serovars in terms of their effects in 

modulating in vitro macrophage activities.  

3. 2. 7. 1 NO production 

NO production from experimental infection of chMDM with these 13 strains 

of the three different serovars of S. enterica maintained the same pattern as 

shown in Figure 3-7 where infection of chMDM with these strains resulted in 

significantly higher production of NO at 24 and 48 h pi with the maximal 

production observed at 48 h pi when compared to the uninfected controls 

(Figure 3-14, a). Furthermore, there was a trend that NO produced from S. 

Pullorum (6 different strains)-infected cells were significantly lower than that 

produced from S. Enteritidis (3 different strains)-infected chMDM at 24 

(P<0.01) and 48 h pi (P<0.05) (Figure 3-14, b and c). 
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Figure 3-14. NO production by chMDM following infection with different strains of 

S. Pullorum, S. Enteritidis and S. Gallinarum. (a) NO production from Salmonella-

infected chMDM at 2, 6, 24 and 48 h pi. Nitrite concentration was analysed by two-way 

ANOVA followed by Tukey's multiple comparisons test to detect difference between 

groups at each time point. Each treatment was performed in triplicate and data are 

shown as mean (nitrite concentration, µM) ± SEM (n=3). (*) indicates statistically 

significant different from uninfected control. *P<0.05, **P<0.01. Panel (b and c) showed 

mean of NO production from chMDM infected with Salmonella strains grouped within 

serovars Pullorum, Enteritidis or Gallinarum at (b) 24 and (c) 48 h pi and analysed by 

Kruskal-Wallis test followed by Dunn’s multiple comparisons test. SP, S. Pullorum; SE, S. 

Enteritidis; SG, S. Gallinarum; c+ve, LPS-stimulated positive control; c-ve, PBS-treated 

uninfected negative control.  
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3. 2. 7. 2 Quantification of gene expression of cytokines and 
chemokines in chMDM infected with 13 different strains 
of Salmonella 

Gene expression of pro-inflammatory chemokines and cytokines were 

determined in avian macrophages infected with 13 different strains of S. 

enterica at 6 h pi. Compared to the uninfected controls, these 13 strains of 

Salmonella up-regulated the mRNA expression of CXCLi1 (except for S. 

Pullorum 31), CXCLi2 (except S. Pullorum 1002), IL-1β and IL-6 from infected 

chMDM to different levels. In addition, expression of CXCLi1 mRNA was 

significantly higher in chMDM infected with S. Enteritidis P125109 than that 

of two strains of S. Pullorum (3 and 31, P<0.05). Expression of iNOS mRNA 

was significantly up-regulated only in chMDM infected with S. Enteritidis 

strains and S. Pullorum 31 (Figure 3-15).  
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Figure 3-15. CXCLi1, CXCLi2, IL-1β, iNOS and IL-6 mRNA expression from chMDM 

infected with 13 different strains of S. enterica at 6 h post-infection. (A) The 

corrected crossing threshold (Ct) values deducted from 40 (the negative end point) after 

normalization with reference gene (28S) for input RNA. Data shown as averages (40-Ct) ± 

SEM (n=3). (B) The corrected Ct values shown as fold change in the mRNA level of 

cytokines in comparison to those from uninfected controls (shown as 1). SP, S. Pullorum; 

SE, S. Enteritidis; SG, S. Gallinarum. (*) indicates statistical difference compared to PBS-

treated uninfected control or between groups, *: P<0.05, **: P<0.01.  
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Consistent with the results of representative strains, S. Pullorum and S. 

Gallinarum strains did not up-regulate gene expression of IFN-γ, IL-12α and IL-

18 in chMDM whereas increased expression of these cytokines was observed 

in chMDM infected with S. Enteritidis strains (P<0.05 or 0.01 in different 

strains) or in response to LPS-stimulation (P<0.05), when compared with that 

of uninfected cells (Figure 3-16).  
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Figure 3-16. IFN-γ, IL-12α and IL-18 mRNA expression from chMDM infected with 

13 different strains of S. enterica at 6 h post-infection. (A) The corrected crossing 

threshold (Ct) values deducted from 40 (the negative end point) after normalization with 

reference gene (28S) for input RNA. Data shown as averages (40-Ct) ± SEM (n=3). (B) The 

corrected Ct values shown as fold change in the mRNA level of cytokines in comparison 

to those from uninfected controls (shown as 1). SP, S. Pullorum; SE, S. Enteritidis; SG, S. 

Gallinarum. (*) indicates statistical difference compared to PBS-treated uninfected 

control or between groups, *: P<0.05, **: P<0.01.   
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There was a trend showing slightly higher expression of IL-4 mRNA in chMDM 

infected with different strains of S. Pullorum while S. Enteritidis strains 

appeared to reduce IL-4 expression when compared with that of uninfected 

cells. However, the overall expression of IL-4 and IL-13 mRNA from infected 

chMDM was very low without any difference detected between these 13 

strains (P>0.05) (Figure 3-17). 
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Figure 3-17. IL-4 and IL-13 mRNA expression from chMDM infected with 13 

different strains of S. enterica at 6 h post-infection. (A) The corrected crossing 

threshold (Ct) values deducted from 40 (the negative end point) after normalization with 

reference gene (28S) for input RNA. Data shown as averages (40-Ct) ± SEM (n=3). (B) The 

corrected Ct values shown as fold change in the mRNA level of cytokines in comparison 

to those from uninfected controls (shown as 1). SP, S. Pullorum; SE, S. Enteritidis; SG, S. 

Gallinarum. (*) indicates statistical difference compared to PBS-treated uninfected 

control or between groups, *: P<0.05, **: P<0.01. 
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Increased expression of IL-10 mRNA was observed in chMDM infected with 

several strains of S. enterica (P<0.05), but there was no significant difference 

observed between strains of different serovars. TGF-β4 expression in chMDM 

infected with S. Enteritidis PT8 was found to be higher than that of uninfected 

cells or of cells infected with strain 238 of S. Gallinarum (P<0.05).  
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Figure 3-18. IL-10 and TGF-β4 mRNA expression from chMDM infected with 13 

different strains of S. enterica at 6 h post-infection.  (A) The corrected crossing 

threshold (Ct) values deducted from 40 (the negative end point) after normalization with 

reference gene (28S) for input RNA. Data shown as averages (40-Ct) ± SEM (n=3). (B) The 

corrected Ct values shown as fold change in the mRNA level of cytokines in comparison 

to those from uninfected controls (shown as 1). SP, S. Pullorum; SE, S. Enteritidis; SG, S. 

Gallinarum. (*) indicates statistical difference compared to PBS-treated uninfected 

control or between groups, *: P<0.05, **: P<0.01. 
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3. 3 Chapter discussion 

S. Pullorum strain 449/87, S. Gallinarum strain 9 and S. Enteritis strain 

P125109 were used in this study. It has been previously shown that S. 

Pullorum strain 449/87 and S. Gallinarum strain 9 behaved typically of field 

strains in terms of their virulence and how the disease appears in the field 

(Berchieri et al., 2001a, Wigley et al., 2001). Infection with the S. Enteritis 

strain P125109 processed typical disease (Barrow, 1991) in broilers and layers 

(Barrow and Lovell, 1991). This study demonstrated that primary avian 

macrophages responded differently to infection with these strains in terms of 

intracellular survival and induction of immune mediators.  

Salmonella can use TTSS-1 to actively invade the cells (reviewed in the section 

1. 3. 2) or have been phagocytized by the macrophages (Vazquez-Torres et al., 

1999, Braukmann et al., 2015). In this study S. Pullorum and S. Gallinarum 

were taken up by or invaded chMDM more slowly than S. Enteritidis, which 

was in line with the observations in previous studies (Kaiser et al., 2000, 

Wigley et al., 2002b, Setta et al., 2012a). This has been attributed to their lack 

of flagella and motility. Our data also showed that chMDM were able to limit 

the intracellular replication of Salmonella from 6 h pi, which is in agreement 

with previous studies using chicken macrophages cell line (HD11 cells or MQ-

NCSU cells) (Withanage et al., 2005a, Setta et al., 2012a) or PBMC-derived 

macrophages (Okamura et al., 2005). The reduction of intra-macrophage 

bacteria can be partly explained by NO-mediated killing mechanism as iNOS 

expression and NO production are essential for effective host resistance 
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against Salmonella infection, at least in mice (Mastroeni et al., 2000b, 

Vazquez-Torres et al., 2000a). In this study, the reduction of Salmonella within 

infected chMDM correlated with the up-regulation of iNOS mRNA at 6 h pi 

and secretion of high amounts of NO at 24 and 48 h pi. In previous studies, 

significant concentrations of nitrite were detected in MQ-NCSU cells infected 

with S. Typhimurium, S. Enteritidis and S. Gallinarum (Withanage et al., 

2005a). Infection of HD11 cells with S. Enteritidis also resulted in significant 

increase in NO production and iNOS expression (Babu et al., 2006, Setta et al., 

2012a). However, infection of chMDM with avian-specific serovars Pullorum 

and Gallinarum triggered NO production and iNOS expression at lower levels 

than those produced by S. Enteritidis-infected cells in the current study, which 

may result in a more hospitable environment to improve intracellular survival 

for S. Pullorum and S. Gallinarum and further benefit their systemic 

dissemination. These findings are in line with the data reported by Setta et al. 

(2012a) that S. Pullorum and S. Gallinarum stimulated iNOS expression in 

HD11 cells to a lesser extent than other broad-host serovars. Hulme et al. 

(2012) reported that the reduced iNOS expression associated with S. 

Typhimurium infection was correlated with inhibition of binding of NF-κB and 

activator protein 1 (AP-1) to murine J774 macrophage DNA via the phoP 

regulon and suggested that suppression of iNOS is typically associated with 

typhoid serovars.  

Although S. Pullorum and S. Gallinarum were at lower levels of invasiveness 

than S. Enteritidis, the host gene expression in response to difference 
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serovars was not likely related to the number of intracellular bacteria. 

Infection of avian epithelial cells with S. Enteritidis or S. Typhimurium resulted 

in greater levels of inflammatory mediators than that produced in S. Hadar- or 

S. Infantis-infected cells, though they express comparable levels of 

invasiveness (Setta et al., 2012a). 

A number of publications exist describing expression of pro-inflammatory 

mediators which play a pivotal role in response to Salmonella infection in 

vitro (Swaggerty et al., 2004, Kaiser et al., 2006) and in vivo (Beal et al., 2004b, 

Wigley et al., 2005a, Berndt et al., 2007, Fasina et al., 2008, Chappell et al., 

2009, Setta et al., 2012b). In this study, infection of chMDM by all serovars 

increased gene expression of IL-1β, IL-6, CXCLi1 and CXCLi2, but infection with 

S. Pullorum or S. Gallinarum resulted in significantly lower levels of IL-6 and 

CXCLi2 when compared to S. Enteritidis. These findings extend the data on 

HD11 infected with these serovars (Setta et al., 2012a), which suggested a 

strong inflammatory response to in vitro infection with S. Enteritidis. IL-6 

produced early after infection plays an important role in both innate 

immunity and the development of an adaptive immune response (activation 

of lymphocytes) (Kaiser and Staheli, 2013). Our data was consistent with 

previous reports of reduced IL-6 production by S. Pullorum-infected HD11 

when compared to S. Enteritidis infection (Setta et al., 2012a). Thus, S. 

Pullorum and S. Gallinarum can trigger the expression of pro-inflammatory 

cytokines in infected avian macrophages, though to a lesser extent than that 

of S. Enteritidis indicating that this is not directly related to the establishment 
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of the carrier state. In fact, the down-regulated expression or reduced 

production of key pro-inflammatory immune mediators, including CXCLi1, 

CXCLi2, IL-6, IL-1β and iNOS, by infection with systemic serovars Pullorum or 

Gallinarum is evident in epithelial cells (CKC) (Kaiser et al., 2000, Setta et al., 

2012a) and in the ileum of infected chickens (Chappell et al., 2009). In 

comparison with S. Typhimurium, S. Enteritidis, S. Hadar and S. Infantis, which 

are good colonisers of the gut and effective stimulators of pro-inflammatory 

mediators (Withanage et al., 2004, Cheeseman et al., 2008, Chappell et al., 

2009, Setta et al., 2012b), S. Pullorum and S. Gallinarum produce typhoid-like 

infections and invade leading to systemic infection without causing 

inflammatory responses in the intestinal epithelium. The observed  

differential effects could be influenced by the presence or absence of flagella-

specific effectors. Mutations in the flagellin gene (fliM) of S. Typhimurium 

lead to an enhanced ability to establish systemic infection in chickens with 

decreased expression of IL-6 and IL-1β mRNA and PMN cell infiltration (Iqbal 

et al., 2005).  

The clearance of Salmonella infection in chicken has been attributed to the 

cytokines related to Th1 response (Beal et al., 2004a, Beal et al., 2004b, 

Wigley et al., 2005a, Withanage et al., 2005b, Berndt et al., 2007). Although 

rchIFN-γ did not affect phagocytic ability of chicken macrophages, it activated 

macrophages to enhance NO production and reduced bacterial replication 

within the infected macrophages (Okamura et al., 2005, Babu et al., 2006). 

However, our data showed that infection of chMDM and splenocytes with S. 
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Pullorum and S. Gallinarum did not induce gene expression of IFN-γ and IL-

12α whereas up-regulation of IFN-γ, IL-18 and IL-12α were all detected in 

chMDM infected with S. Enteritidis. It was found that chicken IL-18 stimulated 

IFN-γ release from chicken CD4+ T cells  (Gobel et al., 2003). However, 

mammalian IL-18 can also stimulate Th2 cytokine production in the absence 

of IL-12 (Nakanishi et al., 2001), which is not yet evident in the chicken. The 

differential expression of IL-12α and IFN-γ supported our main hypothesis 

that S. Pullorum cannot initiate an effective IFN-γ-dependent inflammatory 

response to clear infection. We expected to observe evidences indicating 

manipulation of host immunity towards a Th2 response by S. Pullorum. 

However, the expression of IL-4 or IL-13 mRNA was not significantly changed 

in S. Pullorum-infected chMDM when compared to the infected controls in 

this study as well as in infected HD11 cells (Setta et al., 2012a). There is so far 

no information describing the expression of IL-13 in response to Salmonella 

infection in chicken. 

IL-10 is a multifunctional cytokine that inhibits further development of the 

Th1 response and down-regulates the effects of IFN-γ to limit the 

inflammatory response (Rothwell et al., 2004). A small up-regulation of IL-10 

was detected in HD11 cells infected with S. enterica serovars Typhimurium, 

Enteritidis, Pullorum and Gallinarum, suggesting a negative regulation by IL-10 

to suppress pro-inflammatory responses (Setta et al., 2012b). In this study, 

infection of chMDM with S. Gallinarum generally did not induce IL-10 

expression, although one strain S. Gallinarum 115/80 did induce higher levels 
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of IL-10 mRNA when compared to the uninfected controls. This indicated the 

potential of less control of inflammatory responses in S. Gallinarum-infected 

avian macrophages which may result in more tissue damage such as 

hepatosplenomegaly or cardiomyopathy or may be involved in the final stages 

of intestinal pathology associated with faecal shedding. Th3 cells play a role in 

suppressing or controlling immune responses in the mucosa. TGF-β enhanced 

in vitro differentiation of Th3 cells from murine Th precursors (Weiner, 2001). 

Increased TGF-β4 expression at 7 d pi observed in chickens infected with S. 

Typhimurium was shown to correspond to decreased production of pro-

inflammatory mediators (Withanage et al., 2005b), but we observed no 

expression of TGF-β4 from chMDM following infection with Salmonella in this 

in vitro study. 

Finally, co-stimulation of T cells is required to develop an effective immune 

response. S. Typhimurium was previously reported to up-regulate expression 

of co-stimulatory molecules (CD40, CD80 and CD86) on murine macrophages 

and DCs, which would activate cognate T cells (Kalupahana et al., 2005). In 

this study S. Pullorum did not suppress the expression of co-stimulatory 

molecules on chMDM. Thus, persistent infection of S. Pullorum in chicken 

may not be related to immune evasion by inhibiting the delivery of second 

signals from infected macrophages.   
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Chapter 4   Immune modulation of lymphocytes 

by Salmonella-infected avian macrophages 

4. 1 Introduction 

4. 1. 1    General introduction 

In addition to its role as a non-specific barrier to infection the innate immune 

response makes a crucial contribution in stimulating adaptive antimicrobial 

immune responses appropriate to combating infection. Macrophages that 

have phagocytosed bacteria and become activated are capable of activating T 

lymphocytes. Given the modulation in cytokines observed during infection 

with different Salmonella serovars discussed in Chapter 3 we investigated the 

potential impact on T-cell activation to determine if there was an impact on 

the adaptive immune system. 

It has been shown that the Th1 response is crucial for protective immunity 

against primary infection with S. Typhimurium in mice, which points to the 

importance of the IFN-γ-producing CD4+ T cells (Eckmann and Kagnoff, 2001, 

Raupach and Kaufmann, 2001). Strong Th1 responses are also associated with 

immunity against a number of other intracellular bacterial pathogens, such as 

Mycobacterium Ieprae (Garcia et al., 2001) and Yersinia pestis (Nakajima and 

Brubaker, 1993). In poultry, clearance of S. Typhimurium from the intestine of 

infected chickens correlated with IFN-γ levels, which implies a vital role for a 

strong T-cell response after primary Salmonella infection (Beal et al., 2004a, 

Beal et al., 2005). Splenocytes from S. Enteritidis-vaccinated chicken produced 
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higher levels of IFN-γ and IL-2 in response to antigen stimulation (Okamura et 

al., 2004). In another study (Chappell et al., 2009), infections with S. Pullorum 

resulted in reduced IFN-γ and elevated IL-4 expression in the spleens when 

compared with S. Enteritidis which induced a strong Th1 type immune 

response. It was suggested that the carrier-state could be the result of a Th2 

bias in the immune responses. A more detailed exploration of the T 

lymphocyte responses would therefore be helpful to elucidate the interaction 

of S. Pullorum with host immunity.  

4. 1. 2    Chapter aims and objectives 

A co-culture system, using either macrophages or DCs with T lymphocytes, 

has been used to explore the host immune responses to S. Typhimurium 

infection in vitro (Niedergang et al., 2000, Kalupahana et al., 2005, Bueno et 

al., 2008). Here we have used Salmonella-infected avian macrophages and 

blood-derived CD4+ T lymphocytes in co-culture in vitro as a model to study 

the immunomodulation of acquired immunity in response to S. Pullorum 

infection.  

The ability of S. Pullorum to produce persistent infection and avoid immune 

clearance in chickens might result from an immune response which is clearly 

different to that induced by the host to related serovars Enteritidis and 

Gallinarum. Following the observation in Chapter 3, we hypothesised that, in 

contrast to serovar S. Enteritidis, which stimulates a strong expression of Th1-

related cytokines driving the differentiation of Th1 cells, S. Pullorum might 
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modulate the host response towards a Th2 immunity by inducing IL-4-

expression Th2 cells. The aim of work described in this chapter was therefore 

to study the immunomodulation of acquired immunity in response to S. 

Pullorum infection by using Salmonella-infected avian macrophages and 

blood-derived CD4+ T lymphocytes in co-culture in vitro as a model.  



Chapter 4 

122 

 

4. 2 Results 

4. 2. 1    Isolation of chicken CD4+ T cells by MACS 

Chicken CD4+ T cells were isolated from PBMCs by MACS separation as 

described in 2. 2. 4. The magnetically labelled cells were retained within the 

column and separated from the unlabelled cells which run through (negative 

separation). The fraction of magnetically labelled cells (positive separation) 

was then flushed out using plunger. Both the positive and negative separation 

were then stained for CD4 expression prior to flow cytometric analysis, which 

indicated good isolation of CD4+ T cells by MACS: the positive separation had 

over 98% (Figure 4-1, panel a, H1) of cells being positive in CD4 expression 

whereas only less than 5 % (Figure 4-1, panel b, H2) of CD4+ T cells present in 

the negative separation. Anti-mouse IgG1 microbeads did not show non-

specific binding to chicken PBMC as only less than 100 out of 2×107 cells were 

directly magnetically labelled with the microbeads and collected from MACS 

separation (Figure 4-1, panel c).  

4. 2. 2    Viability of CD4+ T cells 

Ensuring the viability of isolated CD4+ T cells is an essential component of in 

vitro co-culture. The viability of CD4+ T cells was assessed by PI uptake (20 

µg/ml) using flow cytometric analysis. There was a > 65 % viability in the first 

5 days of culture, followed by an ever-decreasing percentage of viable CD4+ T 

cell from 6 days afterwards (Figure 4-2, a and b). Therefore the co-culture of 

avian macrophages and CD4+ T cells were maintained in vitro for 5 days 

before being processed for further analysis.  
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Figure 4-1. Flow cytometric analysis of purity of isolated CD4+ T cells. Chicken CD4+ 

cells were isolated from PBMCs by MACS (mouse-anti-chicken CD4 mAb and anti-mouse 

IgG1 microbeads). The (a) positive and (b) negative separation collected after MACS 

separation were analysed using flow cytometer. The percentage of CD4+ T cells were 

shown in H1 and H2 by gating against isotype controls respectively (black lines). (c) PBMC 

stained with microbeads only. The dot-plots and histograms represent independent 

preparation of CD4+ T cells from individual batches of chicken whole blood. Black lines, 

isotype control mAbs (Mouse IgG2b: FITC); red lines, stain with mouse anti-chicken CD4 

mAb (clone 2-35: FITC).  
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Figure 4-2. Viability of CD4+ T cells cultured in vitro.  CD4+ T cells were stained with PI 

(20 µg/Ml) and analysed during 9 d of culture. The PI+ cells were determined as dead 

cells. (a) Representative overlay histograms on PI+ cells determined by flow cytometric 

analysis at 9 different days (d) post isolation. Black lines, non-staining negative control; 

red lines, PI staining. (b) Percentage of viable cells within whole population of CD4+ T 

cells at each day post isolation and the results were shown as mean± SEM of two 

independent experiments with duplicates in each experiment.  
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4. 2. 3    Microscopic pictures of CD4+ T cells and Salmonella-

infected avian chMDM in co-culture 

Salmonella-infected avian macrophages in co-culture with CD4+ T cells were 

observed by light microscopy (Figure 4-3). The images in the panel a-1 display 

chMDM infected with different serovars of S. enterica at 1 day pi. The images 

in the panel a-2 display CD4+ T cells in co-culture with Salmonella-infected 

chMDM at 1 day pi. The infected macrophages contained a relatively high 

number of vacuoles, with more vacuoles being observed in S. Enteritidis-

infected macrophages, when compared to those in the macrophages infected 

with S. Pullorum and S. Gallinarum and the uninfected controls. Lymphocytes 

are non-adherent mononuclear cells loosely attached to the macrophages at 

the bottom of the culture plates after one day of co-culture. The images in the 

panel b-1 display chMDM infected with different strains of S. enterica at 5 d pi 

while CD4+ T cells co-cultured with Salmonella-infected chMDM after 5 days 

of co-culture are shown in images in panel b-2. The vacuoles in S. Enteritidis-

infected macrophages were even bigger and more visible at 5 days pi when 

compared to that in the macrophages infected with S. Pullorum and S. 

Gallinarum and uninfected controls. The majority of CD4+ T cells became 

detached from macrophages and floating in the culture.  
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Figure 4-3. Microscopic images of CD4+ T cells in co-culture with Salmonella-infected avian macrophages. chMDM were infected with different serovars of 

Salmonella. At 2 h pi, the Salmonella-infected and uninfected chMDM were co-cultured with CD4+ T cells (CD4+T cells: chMDM=10:1). The chMDM infected with 

Salmonella (a-1 and b-1) and in co-culture with CD4+ (a-2 and b-2) were observed under the microscope after 1 (a-1 and a-2) 5 (b-1 and b-2) d pi. CD4+, CD4+ T cells 

cultured alone; UI/CD4+, CD4+ T cells co-cultured with uninfected chMDM as control for allogeneic response; SP/CD4+, CD4+ T cells co-cultured with S. Pullorum-

infected chMDM; SE/CD4+, CD4+ T cells co-cultured with S. Enteritidis-infected chMDM; SG/CD4+, CD4+ T cells co-cultured with S. Gallinarum-infected chMDM. Scale 

bar=50 µm. 
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4. 2. 4    Proliferation of CD4+ T cells in response to Salmonella 

infection 

CD4+ lymphocytes were cultured for 5 days either in the presence of Con A 

(10μg/ml, positive control for T cell proliferation), alone (unstimulated CD4+ T 

cells), with uninfected macrophages (control for allogeneic response) or 

Salmonella-infected macrophages. T cell proliferation was determined using 

the Promega CellTiter 96® Aqueous One Solution Cell Proliferation Assay at 5 

days post co-culture and data are shown as the number of cells according to 

the linear regression between the absorbance (492 nm) and the serial dilution 

of unstimulated fresh CD4+ lymphocytes.  

There was only a slightly higher number of viable CD4+ T cells co-cultured with 

uninfected macrophages than CD4+ T cells cultured alone (P>0.05), which 

indicated a moderate allogeneic response occurred due to chMDM and CD4+ 

T cells obtained from different individual birds. CD4+ T cell proliferation 

induced by macrophages infected with different serovars of Salmonella was 

determined by comparison with an uninfected control for the allogeneic 

response. Our results showed that the avian macrophages infected with each 

of these three serovars were able to stimulate CD4+ T cell proliferation when 

compared to that of the uninfected controls, but there were no significant 

differences observed between the different serovars. S. Enteritidis-infected 

macrophages induced a higher level of proliferation of CD4+ T cells than that 

in co-culture with macrophages infected with S. Pullorum, but which, 

however, was of marginal significance (P=0.0644) (Figure 4-4). 
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Figure 4-4. CD4+ lymphocyte proliferation induced by Salmonella-infected avian 

macrophages. chMDM were infected with different serovars of Salmonella. At 2 h pi, 

infected chMDM were co-cultured with CD4+ T cells. After 5 days of co-culture, CD4+ T 

cells were separated to determine the number of viable proliferating CD4+ T cells in each 

group of co-culture.  Results are expressed as mean (cell numbers) ± SEM (n=3). CD4+/UI, 

CD4+ T cells co-cultured with uninfected chMDM (control for allogeneic response); CD4+, 

CD4+ T cells cultured alone; CD4+/ConA, CD4+ T cells stimulated with ConA (positive 

control for lymphocyte proliferation); CD4+/SP, CD4+ T cells co-cultured with S. Pullorum-

infected chMDM; CD4+/SE, CD4+ T cells co-cultured with S. Enteritidis-infected chMDM; 

CD4+/SG, CD4+ T cells co-cultured with S. Gallinarum-infected chMDM;. (*) indicates 

statistical difference from control of allogeneic response (CD4+/UI), *P<0.05, **P<0.01, 

***P<0.001; (+) indicates statistical difference from unstimulated control (CD4+), +P<0.05, 

++P<0.01, +++P<0.001. 
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4. 2. 5    Unvaccinated control experiment 

Chicken whole blood collected from unvaccinated parent breeders (source of 

blood described in 2. 2. 3. 1) was used to set up the experiment. CD4+ T cells 

and macrophages were isolated (described in sections 2. 2. 3 and 2. 2. 4) and 

co-cultured in vitro for 5 days (described in section 2. 5. 1). After 5 days T cell 

proliferation was examined as described in section 2. 5. 2.  

Figure 4-5 showed the number of CD4+ T cells after 5 days of co-culture with 

Salmonella-infected and uninfected macrophages. Generally, a similar pattern 

of results was observed as that shown in Figure 4-4 (using commercial blood 

obtained from vaccinated birds). Three different serovars of S. enterica were 

all able to stimulate T cell proliferation. In comparison with CD4+ T cells co-

cultured with S. Enteritidis-infected macrophages, there were lower numbers 

of proliferating CD4+ T cells in the co-culture with chMDM infected with S. 

Pullorum or S. Gallinarum. However, when compared with results shown in 

Figure 4-4, (i) there were fewer viable CD4+ T cells in each co-culture 

accordingly, which might result from there being fewer memory T cells in 

unvaccinated layers; (ii) significantly fewer proliferating CD4+ T cells were 

observed in co-culture with S. Pullorum (P<0.01) or S. Gallinarum (P<0.05) 

infected-macrophages when compared with S. Enteritidis group. 
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Figure 4-5. Proliferation of CD4+ lymphocytes isolated from unvaccinated chickens 

induced by Salmonella-infected macrophages. chMDM and CD4+ T cells were isolated 

from unvaccinated chickens. ChMDM infected with different serovars of Salmonella. At 2 

h pi, infected chMDM were co-cultured with CD4+ T cells. After 5 days of co-culture, CD4+ 

T cells were separated to determine the number of viable proliferating CD4+ T cells in 

each group of co-culture.  Results are expressed as mean (cell numbers) ± SEM (n=3). 

CD4+/UI, CD4+ T cells co-cultured with uninfected chMDM (control for allogeneic 

response); CD4+, CD4+ T cells cultured alone; CD4+/ConA, CD4+ T cells stimulated with 

ConA (positive control for lymphocyte proliferation); CD4+/SP, CD4+ T cells co-cultured 

with S. Pullorum-infected chMDM; CD4+/SE, CD4+ T cells co-cultured with S. Enteritidis-

infected chMDM; CD4+/SG, CD4+ T cells co-cultured with S. Gallinarum-infected chMDM;. 

(*) indicates statistical difference from control of allogeneic response (CD4+/UI), *P<0.05, 

**P<0.01, ***P<0.001; (+) indicates statistical difference from unstimulated control 

(CD4+), +P<0.05, ++P<0.01, +++P<0.001. 
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4. 2. 6    Quantification of gene expression from CD4+ T cells co-

cultured with S. enterica-infected macrophages  

The mRNA expression of selected immune mediators in CD4+ T cells collected 

from co-cultures was differentially expressed in response to infection with 

different S. enterica serovars as measured by qRT-PCR. Gene expression from 

CD4+ T cells in response to Salmonella infection was compared to that from 

CD4+ T cells in co-culture with uninfected macrophages as negative control 

(for allogeneic response). 

In this co-culture system, the level of IFN-γ mRNA of CD4+ T cells in co-culture 

with S. Pullorum-infected chMDM was close to that of the uninfected control 

(P>0.05). Increased expression of IFN-γ mRNA was found only in CD4+ T cells 

co-cultured with S. Enteritidis-infected chMDM (P<0.01), which was also 

significantly higher than that in response to S. Pullorum infection (P<0.01).  

Although CD4+ T cells co-cultured with S. Pullorum-infected macrophages 

appeared to induce higher levels of IL-4 mRNA than that from S. Enteritidis 

(P=0.1547) and S. Gallinarum (P=0.1065) group, the expression of IL-4 mRNA 

was at low levels in each group with no significant changes being observed 

from CD4+ T cells in response to Salmonella infection when compared to the 

uninfected control (Figure 4-6). 

Interestingly, S. Pullorum-infected chMDM induced a significantly lower level 

of IL-17F mRNA in co-cultured CD4+ T cells than that detected in CD4+ T cells 

in co-culture with S. Enteritidis-infected (P<0.01) or uninfected (P<0.05) 



Chapter 4 

133 

 

chMDM. The gene expression of IL-17A was found not to be significantly 

different between groups in this co-culture experiment, although S. Pullorum 

appeared to reduce the expression of IL-17A from co-cultured CD4+ T cells 

when compared to S. Enteritidis infection (P= 0.0843) (Figure 4-7). 

The levels of IL-10 and TGF-β4 mRNA from CD4+ T cells in co-culture with 

Salmonella-infected macrophages were found to be close to that of 

uninfected control (P>0.05) (Figure 4-8). 



Chapter 4 

134 

 

C
D

4
+ /S

P

C
D

4
+ /S

E

C
D

4
+ /S

G

C
D

4
+

C
D

4
+ /U

I

0

5

1 0

1 5

2 0

2 5

IF N -

4
0

-C
t

+ +

* * * *

C
D

4
+ /S

P

C
D

4
+ /S

E

C
D

4
+ /S

G

C
D

4
+

C
D

4
+ /U

I

0

5

1 0

1 5

2 0

2 5

IL -4

4
0

-C
t

(A )

 

C
D

4
+ /S

P

C
D

4
+ /S

E

C
D

4
+ /S

G

C
D

4
+

C
D

4
+ /U

I

0

2 0

4 0

6 0

IF N -

F
o

ld
 c

h
a

n
g

e

+ +

* * * *

C
D

4
+ /S

P

C
D

4
+ /S

E

C
D

4
+ /S

G

C
D

4
+

C
D

4
+ /U

I

0

1

2

3

4

5

6 0

IL -4

F
o

ld
 c

h
a

n
g

e

(B )

 

Figure 4-6. Quantification of gene expression of Th1 and Th2 cytokines from CD4+ T 

cells co-cultured with Salmonella-infected chMDM. CD4+ T cells were co-cultured 

with Salmonella-infected or uninfected chMDM for 5 days. (A) The corrected crossing 

threshold (Ct) values deducted from 40 (the negative end point) after normalization with 

reference gene (28S) for input RNA. Data shown as averages (40-Ct) ± SEM (n=3). (B) The 

corrected Ct values shown as fold change in the mRNA level of cytokines in comparison 

to those from uninfected controls (shown as 1). CD4+/SP, CD4+ T cells co-cultured with S. 

Pullorum-infected chMDM; CD4+/SE, CD4+ T cells co-cultured with S. Enteritidis-infected 

chMDM; CD4+/SG, CD4+ T cells co-cultured with S. Gallinarum-infected chMDM; CD4+, 

CD4+ T cells cultured alone; CD4+/UI, CD4+ T cells co-cultured with uninfected chMDM 

(control for allogeneic response). (+) indicates differences between levels of cytokines 

induced by each serovar compared to uninfected control (CD4+/UI), +: P<0.05, ++: P<0.01; 

(*) indicates differences between levels of cytokines induced by different serovars, *: 

P<0.05, **: P<0.01. 
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Figure 4-7. Quantification of gene expression of Th17 cytokines from CD4+ T cells 

co-cultured with Salmonella-infected chMDM. CD4+ T cells were co-cultured with 

Salmonella-infected or uninfected chMDM for 5 days. (A) The corrected crossing 

threshold (Ct) values deducted from 40 (the negative end point) after normalization with 

reference gene (28S) for input RNA. Data shown as averages (40-Ct) ± SEM (n=3). (B) The 

corrected Ct values shown as fold change in the mRNA level of cytokines in comparison 

to those from uninfected controls (shown as 1). CD4+/SP, CD4+ T cells co-cultured with S. 

Pullorum-infected chMDM; CD4+/SE, CD4+ T cells co-cultured with S. Enteritidis-infected 

chMDM; CD4+/SG, CD4+ T cells co-cultured with S. Gallinarum-infected chMDM; CD4+, 

CD4+ T cells cultured alone; CD4+/UI, CD4+ T cells co-cultured with uninfected chMDM 

(control for allogeneic response). (+) indicates differences between levels of cytokines 

induced by each serovar compared to uninfected control (CD4+/UI), +: P<0.05, ++: P<0.01; 

(*) indicates differences between levels of cytokines induced by different serovars, *: 

P<0.05, **: P<0.01. 
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Figure 4-8. Quantification of gene expression of regulatory mediators from CD4+ T 

cells co-cultured with Salmonella-infected chMDM. CD4+ T cells were co-cultured 

with Salmonella-infected or uninfected chMDM for 5 days. (A) The corrected crossing 

threshold (Ct) values deducted from 40 (the negative end point) after normalization with 

reference gene (28S) for input RNA. Data shown as averages (40-Ct) ± SEM (n=3). (B) The 

corrected Ct values shown as fold change in the mRNA level of cytokines in comparison 

to those from uninfected controls (shown as 1). CD4+/SP, CD4+ T cells co-cultured with S. 

Pullorum-infected chMDM; CD4+/SE, CD4+ T cells co-cultured with S. Enteritidis-infected 

chMDM; CD4+/SG, CD4+ T cells co-cultured with S. Gallinarum-infected chMDM; CD4+, 

CD4+ T cells cultured alone; CD4+/UI, CD4+ T cells co-cultured with uninfected chMDM 

(control for allogeneic response). (+) indicates differences between levels of cytokines 

induced by each serovar compared to uninfected control (CD4+/UI), +: P<0.05, ++: P<0.01; 

(*) indicates differences between levels of cytokines induced by different serovars, *: 

P<0.05, **: P<0.01. 
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4. 2. 7    Expression of CD28/CTLA-4 on CD4+ T cells co-cultured 

with S. enterica infected macrophages 

Surface expression of CD28 on CD4+ T cells in the co-culture system was 

determined by flow cytometric analysis. At 1 day following co-culture, a 

greater proportion of the CD4+ T cells co-cultured with S. Gallinarum-infected 

chMDM were CD4+CD28+ T cells than that of the uninfected control cells 

(CD4+/UI) (P<0.05). However, the proportion of CD4+ T cells in co-culture with 

S. Pullorum- or S. Enteritidis-infected chMDM that were CD4+CD28+ did not 

increase when compared to the control for an allogeneic response (CD4+/UI) 

(P>0.05). A lower number of CD4+CD28+ T cells in co-culture with S. Pullorum-

infected chMDM at 5 days of co-culture when compared to that in response 

to infection with S. Enteritidis. However, this apparent difference was not 

statistically significant (P= 0.13).  
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Figure 4-9. Number of CD28+ cells within the CD4+ T cells co-cultured with S. 

enterica infected chMDM. chMDM were infected with different serovars of Salmonella. 

At 2 h pi, infected chMDM were co-cultured with CD4+ T cells. After at 1 (B), 3 (C) and 5 

(D) days post co-culture, CD4+ T cells were separated to determine the differential 

percentage of CD28+/CD4+ T cells within the population of CD4+ T cells. (A) The 

histograms shown are representative of three independent experiments. Black lines, 

staining with anti-mouse IgG2α:APC; red lines, staining with mouse-anti-chicken CD28 

plus anti-mouse IgG2α:APC. CD4+/SP, CD4+ T cells co-cultured with S. Pullorum-infected 

chMDM; CD4+/SE, CD4+ T cells co-cultured with S. Enteritidis-infected chMDM; CD4+/SG, 

CD4+ T cells co-cultured with S. Gallinarum-infected chMDM; CD4+, CD4+ T cells cultured 

alone; CD4+/UI, CD4+ T cells co-cultured with uninfected chMDM which were controls for 

allogeneic response. (+) indicates statistical difference from CD4+ T cells (CD4+), +: P<0.05, 

++: P<0.01; (*) indicates statistical difference from uninfected control (CD4+/UI), *: 

P<0.05, **: P<0.01. 
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Anti-avian CTLA-4 mAb is not commercially available; therefore, qRT-PCR was 

used to provide an indication of CTLA-4 expression on CD4+ T cells in the co-

culture system, according to the methods described in section 2. 7. 3. The 

single peak displayed of the melting curves for each primer pairs indicated 

that amplification of these genes by SYBR green qRT-PCR were specific (see 

Appendix.4). Based on the results from the melting curve and amplifying 

efficiency, the qRT-PCR amplification was considered to be reliable.  

At 1 day after co-culture, the levels of CD28 mRNA were up-regulated in CD4+ 

T cells co-cultured with chMDM infected with any of the Salmonella serovars 

tested in this study when compared with that in CD4+ T cells co-cultured with 

uninfected chMDM (control for allogeneic response). There was a subsequent 

reduction of CD28 expression during the following days of co-culture but this 

was not significantly different from the uninfected control (P>0.05). No 

changes in the gene expression of CTLA-4 was observed in CD4+ T cells in co-

culture with either of the three serovars, indicating that Salmonella infection 

did not induce expression of this inhibitory T cell molecule (Figure 4-10).  
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Figure 4-10. Gene expression of CD28 and CTLA-4 from CD4+ T cells co-cultured with 

S. enterica infected macrophages. (A) averages (40-Ct) ± SEM and (B) fold changes 

indicate the changes in mRNA levels of CD28 and CTLA-4 at 1, 3 and 5 days after co-

culture (n=3). CD4+/SP, CD4+ T cells co-cultured with S. Pullorum-infected chMDM; 

CD4+/SE, CD4+ T cells co-cultured with S. Enteritidis-infected chMDM; CD4+/SG, CD4+ T 

cells co-cultured with S. Gallinarum-infected chMDM; CD4+, CD4+ T cells cultured alone; 

CD4+/UI, CD4+ T cells co-cultured with uninfected chMDM (control for allogeneic 

response). (#) indicates statistical difference from CD4+ T cells (CD4+), +: P<0.05, ++: 

P<0.01; (*) indicates statistical difference from uninfected control (CD4+/UI), *: P<0.05, 

**: P<0.01 (no differences were observed). 



Chapter 4 

142 

 

4. 3 Chapter discussion 

A Th1-dominant cellular immune response is essential in controlling and 

eliminating Salmonella infection. However, S. Pullorum did not induce the 

expression of Th1-associated inflammatory cytokines in avian macrophages, 

as discussed in chapter 3, indicating its inability in initiating a protective Th1 

response. Therefore, we used a co-culture system of Salmonella-infected 

macrophages and CD4+ T cells to investigate immunomodulation of the 

adaptive immunity by S. Pullorum in more detail. In the current in vitro study, 

the immune parameters determined in co-cultured CD4+ T cells could be 

associated with interaction with Salmonella-infected avian macrophages, 

although it has not been definitively proven that cell-cell contact occurs 

between them. In addition, the frequency of Salmonella-specific CD4+ T cells 

is very low in the endogenous T cell repertoire (McSorley et al., 2002) and 

also in the current co-culture system. The immune parameters determined in 

co-cultured CD4+ T cells may largely be a result of non-specific driven by 

macrophages (e.g. cytokine expression from infected macrophages) as this co-

culture system may only represent limited capacity to mount full antigenic 

signal.  

Lymphocyte proliferation is a prerequisite for effective differentiation of T 

cells into different subsets. Proliferation of CD4+ T cells was observed in co-

culture with chMDM infected with each serovar of Salmonella tested in this 

study. S. Pullorum stimulated CD4+ T cell proliferation but to a lesser extent 

than S. Enteritidis infection. Infection with S. Pullorum did not inhibit the 
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expression of co-stimulatory molecules (CD40, CD80 and CD86) on chMDM 

when compared to those on S. Enteritidis-infected cells (Figure 3-13).  This 

suggested that the differential stimulation for CD4+ T cell proliferation was not 

a result of the absence of a second signal and therefore clonal anergy. CD28 

expressed on T cells is an important molecule that recognizes CD80/CD86, 

providing co-stimulatory signals required for T cell activation and survival. 

CD28-/- mice are highly impaired in IFN-γ production and are not able to 

control infection with S. Typhimurium aroA mutant (Mittrucker et al., 1999). 

However, neither reduced CD28 nor enhanced CTLA-4 expression was 

observed with in CD4+ T cells when cultured with S. Pullorum-infected 

chMDM. This would also suggest that the reduced CD4+ proliferation 

associated with S. Pullorum-infected macrophages was not due to clonal 

anergy. IL-15 derived from S. Choleraesuis-infected murine macrophages was 

suggested to induce γδT cells for proliferation through the β- and γ- chain of 

IL-2R for signal transduction (Nishimura et al., 1996). Chicken IL-15 was also 

indicated to be a T-cell growth factor (Lillehoj et al., 2001). It is possible that 

infection of avian macrophages with S. Pullorum induces IL-15 expression at a 

lower level than that produced from S. Enteritidis-infected cells and thus is 

less effective than S. Enteritidis in stimulating CD4+ T cells for proliferation, 

although this was not measured in this study.  

It has been reported that even in the absence of DC, S. Typhimurium reduced 

T cells proliferation and cytokine production (van der Velden et al., 2005). 

Further study revealed that the inhibitory effect was the result of down-
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regulation of TCR β-chain expression that inhibited T cell priming but excluded 

the involvement of either IL-10 or TGF-β4 in interfering with the expression of 

the TCR β-chain (van der Velden et al., 2008). It is possible that S. Pullorum 

directly interacts with T cells and utilises a similar strategy to inhibit T cells for 

proliferation at the onset of laying when bacteria multiply within spleen 

macrophages and spread to the reproductive tract. It was shown that spread 

of S. Dublin from ligated intestinal loops in calves involved free bacteria that 

were not present within macrophages (Pullinger et al., 2007), although 

Salmonella resides largely as an intracellular pathogen. We hypothesise that a 

direct inhibitory effect of S. Pullorum on T cell proliferation could impact on 

the initial stimulation of the adaptive response further avoiding clearance by 

the adaptive immune system in future studies. 

Although antibody production is known to play a role in the immune response 

against Salmonella infection (Mittrücker et al., 2000), IFN-γ production, 

initiated by IL-12 and IL-18, by Th1 lymphocytes is required for host resolution 

of Salmonella infection in mice (Mastroeni and Menager, 2003) and chicken 

(Beal et al., 2004a, Beal et al., 2004b, Withanage et al., 2005b, Wigley et al., 

2006, Chappell et al., 2009). The results presented in this chapter showed that 

IFN-γ was not up-regulated in CD4+ T cells which had been co-cultured with S. 

Pullorum-infected avian macrophages when compared to the uninfected 

controls. It suggests that unlike S. Enteritidis, S. Pullorum inhibits proliferation 

of Th1 cells. In autologous co-culture of human macrophage and T-cells, IFN-

γ- or LPS-activated macrophages preferentially drive Th polarisation towards a 
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Th1 phenotype whereas IL-4 activated macrophages did not induce T cells to 

produce IFN-γ or IL-17A (Arnold et al., 2015). This suggests that in our study, S. 

Enteritidis-infected chMDM in co-culture with IFN-γ-producing CD4+ T cells 

may further drive the development of Th1 cells, although IL-12 has greater 

importance than IFN-γ in driving Th1 differentiation and IFN-γ produced from 

Th1 cells functions mainly to mediate macrophage killing. However, there is 

no evidence to suggest that S. Pullorum increased proliferation of Th2 cells, as 

shown by no difference in IL-4 expression. IL-10 functions to inhibit further 

development of the Th1 response and down-regulates the effects of IFN-γ 

(Rothwell et al., 2004). Avian CD4+CD25+ suppressor T cells have been 

alternatively characterized as nTregs and were shown to produce high 

amounts of IL-10, TGF-β4 and CTLA-4 and suppress T cell proliferation in vitro 

(Shanmugasundaram and Selvaraj, 2011). Infection of chMDM with both S. 

Pullorum and S. Enteritidis induced expression of IL-10 mRNA (Figure 3-11). 

However, CD4+ T cells in co-culture with S. Pullorum-infected chMDM did not 

produce higher mRNA expression of IL-10 or TGF-β4 when compared to 

uninfected control (allogeneic responses). This may suggest that S. Pullorum 

does not induce IL-10 or TGF-β4-producing tolerogenic T cells in vitro.  

In addition, in contrast to S. Enteritidis, S. Pullorum was shown to suppress 

Th17 immune responses in this in vitro study. In Salmonella infected mice, 

increased bacterial loads were found in spleen and liver of IL-17-deficient 

individuals (Schulz et al., 2008), indicating the potential of Th17 cytokines 

being involved in intestinal defence against infection. Increased expression of 
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IFN-γ and IL-17 was also found in the caeca of chicken infected with S. 

Enteritidis (Crhanova et al., 2011, Matulova et al., 2013). Th17 cytokines were 

elicited rapidly after S. Typhimurium infection of bovine ligated ileal loops, 

probably through a non-specific activation of intestinal Th17 cells in response 

to IL-1 or other inflammatory cytokines while recognition of flagellin via the 

TLR5 pathway, probably driving Salmonella-specific Th17 cell development, 

may also contribute to intestinal mucosal defence against infection (Raffatellu 

et al., 2007). Our study showed that S. Pullorum induced expression of pro-

inflammatory cytokines IL-1β, IL-6 and iNOS in infected chMDM. The reduced 

expression of IL-17F in CD4+ T cells co-cultured with S. Pullorum-infected 

chMDM may thus not the result of down-regulated non-specific activation of 

Th17 cells in response to inflammatory cytokines. However, suppression of a 

Th17 response by non-flagellate S. Pullorum infection probably resulted from 

the absence of flagellin in TLR5 stimulation. This may also be the case for the 

non-flagellated serovar S. Gallinarum. In addition, early studies that linked 

human IL-23 to induction of IL-17 expression by memory CD4+ T cells also 

demonstrated stimulation of IFN-γ production (Oppmann et al., 2000). Th17 

cells also displayed considerable plasticity and acquired the capacity to 

produce IFN-γ in vitro (Lee et al., 2009) and in vivo (Hirota et al., 2011) where 

IFN-γ production is a recognized feature of Th17 cells. Although these have 

not been studied in chickens, in the current study, S. Pullorum-infected 

chMDM were unable to induce gene expression of IFN-γ and IL-17F from co-

cultured CD4+ T cells, indicating a host immunological bias away from IFN-γ-
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producing Th17 immunity in response to S. Pullorum infection, which might 

be associated with the establishment of carriage.  
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Chapter 5    Immune response of the chickens to 

S. Pullorum and related serovars 

5. 1 Introduction 

5. 1. 1    General introduction 

S. Pullorum is unable to elicit a protective Th1/Th17 immune response, which 

was indicated in the in vitro infection of avian macrophages alone (chapter 3) 

and CD4+ T cells in co-culture (chapter 4). In contrast, infection with S. 

Enteritidis induced a strong protective Th1/Th17 response in vitro, which, 

however, was not observed in its likely evolutionary descendent, S. 

Gallinarum. In the present study, avian macrophages represent the antigen 

presenting cells interacting with CD4+ T cells, but DCs and CD8+ T cells are also 

involved in response to Salmonella infection (Berndt et al., 2006). Thus it is 

still essential to determine the host immune response during early infection, 

which, in comparison with the in vitro observations addressed above, would 

inform us whether the immunomodulation of S. Pullorum in chicken is mainly 

due to interaction with macrophages and down-stream presentation to CD4+ 

T cells 

5. 1. 2    Chapter aims and objectives 

The aim of work described in this chapter was therefore to compare over 5 

days the effect of infection by S. Pullorum, S. Gallinarum and S. Enteritidis in 

2-day-old chickens, with regard to colonisation of the chicken caeca and liver 
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and the production of host immune responses during the first week post-

hatch. 



Chapter 5 

150 

 

5. 2 Results 

5. 2. 1    Distribution of S. enterica in the tissue of chickens 

following oral infection 

Infection of 2 day-old chickens with approximately 108 CFU of S. Pullorum or S. 

Enteritidis did not induce any clinical signs of disease over the 5 days of 

infection. However, chickens infected with S. Gallinarum began to 

demonstrate signs of systemic disease from 4 d pi, including ruffled feathers, 

yellow diarrhoea and reluctance to move or drink. At post-mortem 

examination at 4 and 5 d pi, the S. Gallinarum-infected chickens displayed 

hepatosplenomegaly, with necrotic liver and spleen lesions and 

haemorrhaging in the ileum, which are indicative of acute systemic infection 

of fowl typhoid.  

Following infection, viable bacteria of serovar Pullorum, Enteritidis or 

Gallinarum were detected in the caecal contents of infected chickens in each 

group at 1 d pi. S. Enteritidis had higher levels of bacterial loads in the caecal 

contents at all time points examined in this study when compared to S. 

Pullorum and S. Gallinarum which were poor colonisers of the gut (P<0.001). 

In addition, the mean Log CFU/g of S. Pullorum recovered from the caecal 

contents of infected chickens was higher than that of S. Gallinarum at 2 and 5 

d pi (P<0.01). At 4 d pi, the number of viable S. Pullorum and S. Gallinarum in 

the caecal contents of infected chickens dropped to less than 3 of Log CFU/g, 

which may be a consequence of invasion into deeper tissues from the gut at 
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this time. The following return to the intestine at 5 d pi may be the later result 

of systemic dissemination (Figure 5-1).  

None of the three serovars was found in the liver of infected chickens at 1 day 

pi. There were over 105 CFU/g of S. Gallinarum isolated from the liver at 4 d pi, 

which was significantly higher than that of S. Enteritidis (P<0.01). At 5 d pi, the 

mean Log CFU/g of S. Pullorum and S. Gallinarum recovered from the liver of 

infected chickens increased to 5.29 and 7.37, respectively, which were 

significantly higher than that of S. Enteritidis (P<0.001). Moreover, the 

average number of viable bacteria recovered from infected chickens at 5 d pi 

also indicted that S. Gallinarum was more effective than S. Pullorum in 

colonising the livers of infected chickens (P<0.01) (Figure 5-2).  



Chapter 5 

152 

 

1 2 4 5

3

4

5

6

7

8

9

1 0

D a y s  a fte r  in fe c tio n

L
o

g
 C

F
U

/g
 o

f 
b

a
c

te
r
ia

l 
c

o
u

n
ts

S .  P u llo ru m

S .  E n te ritid is

S . G a llin a rum

U n in fe c te d  co n tro l

* *

+

* *

+ +

+

* *
* *

+ +

* *
* *

+ +

+ +

* *

+ +

* *
* *

+ +

* *

 

Figure 5-1. The numbers of viable Salmonella in the caecal contents following 

infection with 108 CFU in 2-day-old chickens. Viable counts are values from positive 

animals in each group at each time point in one independent experiment. When no 

viable colonies were found at 10-1 dilution after selective enrichment, it suggested a 

viable count of <3 of Log CFU/g and Log CFU/g=3 is used to represent the bacterial loads 

in negative animal for statistical analysis. Statistical analysis was performed using Two-

way ANOVA followed by Tukey’s multiple comparisons test to detect difference between 

experimental groups within each time point. (+) Indicates statistically significant 

difference from uninfected control (+P<0.05, ++P<0.01). (*) indicates statistical 

differences between different serovars (*P<0.05, **P<0.01).  



Chapter 5 

153 

 

1 2 4 5

3

4

5

6

7

8

9

1 0

D a y s  a fte r  in fe c tio n

L
o

g
 C

F
U

/g
 o

f 
b

a
c

te
r
ia

l 
c

o
u

n
ts

S .  P u llo ru m

S .  E n te ritid is

S . G a llin a rum

U n in fe c te d  co n tro l

* *

+ +

* *
* *

+ +

* *

+ +

 

Figure 5-2. The numbers of viable Salmonella in the liver following infection with 

108 CFU in 2-day-old chickens. Viable counts are values from positive animals in each 

group at each time point in one independent experiment. When no viable colonies were 

found at 10-1 dilution after selective enrichment, it suggested a viable count of <3 of Log 

CFU/g and Log CFU/g=3 is used to represent the bacterial loads in negative animal for 

statistical analysis. Statistical analysis was performed using Two-way ANOVA followed by 

Tukey’s multiple comparisons test to detect difference between experimental groups 

within each time point. (+) Indicates statistically significant difference from uninfected 

control (+P<0.05, ++P<0.01). (*) indicates statistical differences between different 

serovars (*P<0.05, **P<0.01). 
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5. 2. 2    Gene expression profile in the caecal tonsil and spleen 

of Salmonella-infected chickens 

In order to characterize the difference in the early host immune response to 

infection with S. Pullorum and related serovars, the gene expression of 

selected immune mediators in the caecal tonsils and spleens of infected birds 

was measured by qRT-PCR. 

5. 2. 2. 1 Gene expression profile in the caecal tonsils of infected 
chickens 

The mRNA expression of pro-inflammatory cytokines and chemokines in the 

caecal tonsils of chickens infected with different Salmonella serovars are 

displayed in Figure 5-3. Chickens infected with S. Enteritidis expressed higher 

levels of CXCLi1 (P<0.05 at 1 and 4 d pi) and CXCLi2 (P<0.05 at 2 d pi), 

compared to uninfected controls. The levels of CXCLi1 and CXCLi2 expressed 

in response to S. Enteritidis infection were greater than expression in either S. 

Pullorum or S. Gallinarum-infected chickens (P<0.05 at different time points). 

Infection with S. Pullorum and S. Gallinarum did not up-regulate the mRNA 

expression of any of these immune mediators when compared to that of 

uninfected controls. Furthermore, S. Enteritidis infection induced the highest 

levels of iNOS mRNA expression from the caecal tonsils of infected chickens 

among all experimental groups at 2 and 4 d pi (P<0.05) while the same 

scenario was observed with IL-1β expression at 1 d pi (P<0.05) and IL-6 at 2 d 

pi (P<0.05). 
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Figure 5-3. Quantification of gene expression of CXCLi1, CXCLi2, IL-1β, iNOS and IL-6  

in the caecal tonsils of chickens in response to Salmonella infection. Caecal tonsils 

were sampled from Salmonella-infected or uninfected chickens at 1, 2, 4 and 5 d pi. (A) 

The corrected crossing threshold (Ct) values deducted from 40 (the negative end point) 

after normalization with reference gene (28S) for input RNA. Data shown as averages 

(40-Ct) ± SEM (n=3, three samples each from three chickens in one independent 

experiment). (B) The corrected Ct values shown as fold change in the mRNA level of 

cytokines in comparison to those from uninfected controls (shown as 1). Statistical 

analysis was performed using Two-way ANOVA followed by Tukey’s multiple 

comparisons test to detect difference between experimental groups within each time 

point. (+) indicates differences between levels of cytokines induced by each serovar 

compared to uninfected control, +: P<0.05, ++: P<0.01; (*) indicates differences between 

levels of cytokines induced by different serovars, *: P<0.05, **: P<0.01. 
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In comparison with infection with S. Enteritidis, S. Pullorum infection was 

associated with decreased IFN-γ expression in the caecal tonsils at all the time 

points examined (P<0.01 at 1 d pi, P<0.05 at 2, 4 and 5 d pi). Lower levels of 

IL-12α mRNA were found in the caecal tonsils of S. Pullorum-infected chickens 

in the first 2 days after infection when compared to that in birds infected with 

S. Enteritidis (P<0.05 at 1 d pi, P<0.01 at 2 d pi). Moreover, the significant 

difference between the infections with S. Pullorum and S. Enteritidis could 

also be seen with the gene expression of IL-18 at 2 d pi (P<0.05) (Figure 5-4). 

The expression pattern of IL-4 and IL-13 following infection with S. Pullorum 

or S. Enteritidis was opposite to the trend shown with Th1 cytokines 

described above. At 2 d pi, significantly increased expression of IL-4 mRNA 

was found in the caecal tonsils of S. Pullorum-infected chickens when 

compared to that of S. Enteritidis-infected (P<0.01) and uninfected chickens 

(P<0.05). Chickens infected with S. Pullorum also expressed higher levels of IL-

13 mRNA when compared with other experimental groups at different time 

points pi (Figure 5-4).  
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Figure 5-4. Quantification of gene expression of IFN-γ, IL-12α, IL-18, IL-4 and IL-13 

in the caecal tonsils of chickens in response to Salmonella infection. Caecal tonsils 

were sampled from Salmonella-infected or uninfected chickens at 1, 2, 4 and 5 d pi. (A) 

The corrected crossing threshold (Ct) values deducted from 40 (the negative end point) 

after normalization with reference gene (28S) for input RNA. Data shown as averages 

(40-Ct) ± SEM (n=3, three samples each from three chickens in one independent 

experiment). (B) The corrected Ct values shown as fold change in the mRNA level of 

cytokines in comparison to those from uninfected controls (shown as 1). Statistical 

analysis was performed using Two-way ANOVA followed by Tukey’s multiple 

comparisons test to detect difference between experimental groups within each time 

point. (+) indicates differences between levels of cytokines induced by each serovar 

compared to uninfected control, +: P<0.05, ++: P<0.01; (*) indicates differences between 

levels of cytokines induced by different serovars, *: P<0.05, **: P<0.01. 
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Compared to uninfected control, increased expression of IL-17F mRNA was 

only found in the caecal tonsil of chickens infected with S. Enteritidis at 4 and 

5 d pi (P<0.05). S. Pullorum-infected chickens resulted in significantly lower 

levels of IL-17F mRNA expression in caecal tonsils when compared to S. 

Enteritidis- (P<0.01 at 1 d pi, P<0.05 at 5 d pi) and S. Gallinarum- (P<0.05 at 1 

d pi) infected chickens (Figure 5-5).  

Gene expression of anti-inflammatory cytokines are shown in Figure 5-6. TGF-

β4 mRNA expression was not significantly changed in the caecal tonsils of 

Salmonella-infected chickens when compared with the non-infected controls 

(P>0.05) throughout all the sampling time points. In comparison with chicken 

infected with S. Enteritidis, higher levels of IL-10 mRNA were observed in the 

caecal tonsils of S. Pullorum-infected chickens at 5 d pi (P<0.01).  
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Figure 5-5. Quantification of gene expression of IL-17F in the caecal tonsils of 

chickens in response to Salmonella infection. Caecal tonsils were sampled from 

Salmonella-infected or uninfected chickens at 1, 2, 4 and 5 d pi. (A) The corrected 

crossing threshold (Ct) values deducted from 40 (the negative end point) after 

normalization with reference gene (28S) for input RNA. Data shown as averages (40-Ct) ± 

SEM (n=3, three samples each from three chickens in one independent experiment). (B) 

The corrected Ct values shown as fold change in the mRNA level of cytokines in 

comparison to those from uninfected controls (shown as 1). Statistical analysis was 

performed using Two-way ANOVA followed by Tukey’s multiple comparisons test to 

detect difference between experimental groups within each time point. (+) indicates 

differences between levels of cytokines induced by each serovar compared to uninfected 

control, +: P<0.05, ++: P<0.01; (*) indicates differences between levels of cytokines 

induced by different serovars, *: P<0.05, **: P<0.01. 
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Figure 5-6. Quantification of gene expression of IL-10 and TGF-β4 in the caecal 

tonsils of chickens in response to Salmonella infection. Caecal tonsils were sampled 

from Salmonella-infected or uninfected chickens at 1, 2, 4 and 5 d pi. (A) The corrected 

crossing threshold (Ct) values deducted from 40 (the negative end point) after 

normalization with reference gene (28S) for input RNA. Data shown as averages (40-Ct) ± 

SEM (n=3, three samples each from three chickens in one independent experiment). (B) 

The corrected Ct values shown as fold change in the mRNA level of cytokines in 

comparison to those from uninfected controls (shown as 1). Statistical analysis was 

performed using Two-way ANOVA followed by Tukey’s multiple comparisons test to 

detect difference between experimental groups within each time point. (+) indicates 

differences between levels of cytokines induced by each serovar compared to uninfected 

control, +: P<0.05, ++: P<0.01; (*) indicates differences between levels of cytokines 

induced by different serovars, *: P<0.05, **: P<0.01. 
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5. 2. 2. 2 Gene expression profile in the spleen of infected 
chickens 

The mRNA levels of CXCLi1, CXCLi2 and IL-6 measured in the spleens were not 

different between infected and uninfected birds at any time points examined 

in this study. Increased expression of iNOS mRNA was found in response to 

the infection with S. Enteritidis when compared to that in the S. Pullorum 

(P<0.01) and S. Gallinarum (P<0.05)-infected chickens and uninfected controls 

(P<0.01) at 4 d pi. S. Pullorum also induced lower levels of IL-1β mRNA in the 

spleen at 4 d pi compared with S. Enteritidis-infected chickens (P<0.01). 

(Figure 5-7). 
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Figure 5-7. Quantification of gene expression of CXCLi1, CXCLi2, IL-1β, iNOS and IL-6 

in the spleen of chickens in response to Salmonella infection. Spleens were sampled 

from Salmonella-infected or uninfected chickens at 1, 2, 4 and 5 d pi. (A) The corrected 

crossing threshold (Ct) values deducted from 40 (the negative end point) after 

normalization with reference gene (28S) for input RNA. Data shown as averages (40-Ct) ± 

SEM (n=3, three samples each from three chickens in one independent experiment). (B) 

The corrected Ct values shown as fold change in the mRNA level of cytokines in 

comparison to those from uninfected controls (shown as 1). Statistical analysis was 

performed using Two-way ANOVA followed by Tukey’s multiple comparisons test to 

detect difference between experimental groups within each time point. (+) indicates 

differences between levels of cytokines induced by each serovar compared to uninfected 

control, +: P<0.05, ++: P<0.01; (*) indicates differences between levels of cytokines 

induced by different serovars, *: P<0.05, **: P<0.01. 
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In the spleen, S. Pullorum did not stimulate gene expression of Th1-associated 

cytokines compared to uninfected controls (P>0.05). However, S. Enteritidis 

infection was associated with a significant up-regulation in the mRNA 

expression of IFN-γ (P<0.05 at 1 and 5 d pi), IL-12α (P<0.01 at 5 d pi) and IL-18 

(P<0.05 at 1 and 4 d pi) when compared to uninfected controls. Statistically 

significant differences were also observed between the levels of expression of 

IFN-γ and IL-12α in chickens infected with S. Pullorum and S. Enteritidis at 1 

and/or 5 d pi (Figure 5-8).  

Infection with S. Pullorum induced up-regulation of IL-4 mRNA in the spleen 

of infected birds, which was higher than that in uninfected controls and S. 

Gallinarum-infected chickens at 2 d pi (P<0.05) or S. Enteritidis-infected 

chickens at 4 and 5 d pi (P<0.05 ). S. Pullorum infection induced higher levels 

of IL-13 mRNA in the spleen of infected chickens with significantly increased 

expression being determined at 4 and 5 d pi (P<0.05) when compared with 

that of uninfected controls. At 5 d pi, the level of IL-13 mRNA determined in 

the spleens of S. Pullorum-infected chickens was also found to be higher than 

that of chickens infected with S. Enteritidis (P<0.05) or S. Gallinarum (P<0.01) 

(Figure 5-8).  
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Figure 5-8. Quantification of gene expression of IFN-γ, IL-12α, IL-18, IL-4 and IL-13 

in the spleen of chickens in response to Salmonella infection. Spleens were sampled 

from Salmonella-infected or uninfected chickens at 1, 2, 4 and 5 d pi. (A) The corrected 

crossing threshold (Ct) values deducted from 40 (the negative end point) after 

normalization with reference gene (28S) for input RNA. Data shown as averages (40-Ct) ± 

SEM (n=3, three samples each from three chickens in one independent experiment). (B) 

The corrected Ct values shown as fold change in the mRNA level of cytokines in 

comparison to those from uninfected controls (shown as 1). Statistical analysis was 

performed using Two-way ANOVA followed by Tukey’s multiple comparisons test to 

detect difference between experimental groups within each time point. (+) indicates 

differences between levels of cytokines induced by each serovar compared to uninfected 

control, +: P<0.05, ++: P<0.01; (*) indicates differences between levels of cytokines 

induced by different serovars, *: P<0.05, **: P<0.01. 
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In this in vivo study, a significant down-regulation of IL-17F mRNA was 

observed in the spleens of chickens infected with S. Pullorum at 2 or 5 d pi 

when compared to that of S. Enteritidis or S. Gallinarum-infected birds 

(P<0.05) (Figure 5-9). 

 

Figure 5-9. Quantification of gene expression of IL-17F cytokine in the spleen of 

chickens in response to Salmonella infection. Spleens were sampled from Salmonella-

infected or uninfected chickens at 1, 2, 4 and 5 d pi. (A) The corrected crossing threshold 

(Ct) values deducted from 40 (the negative end point) after normalization with reference 

gene (28S) for input RNA. Data shown as averages (40-Ct) ± SEM (n=3, three samples 

each from three chickens in one independent experiment). (B) The corrected Ct values 

shown as fold change in the mRNA level of cytokines in comparison to those from 

uninfected controls (shown as 1). Statistical analysis was performed using Two-way 

ANOVA followed by Tukey’s multiple comparisons test to detect difference between 

experimental groups within each time point. (+) indicates differences between levels of 

cytokines induced by each serovar compared to uninfected control, +: P<0.05, ++: P<0.01; 

(*) indicates differences between levels of cytokines induced by different serovars, *: 

P<0.05, **: P<0.01. 
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In comparison with uninfected controls, significantly increased expression of 

IL-10 mRNA in the spleens was observed in chickens infected with S. Pullorum 

(P<0.05) or S. Gallinarum (P<0.01) at 5 d pi. In contrast, IL-10 mRNA 

expression in the spleen of S. Enteritidis-infected chicken remained at levels 

close to that of uninfected controls, which was found to be significantly lower 

than that in chickens infected with S. Pullorum or S. Gallinarum at 4 and 5 d pi. 

Expression of TGF-β4 in chicken splenic tissues was not affected by infection 

with different serovars of Salmonella at any time point measured in this study  

(P>0.05) (Figure 5-10). 
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Figure 5-10. Quantification of gene expression of IL-10 and TGF-β4 in the spleen of 

chickens in response to Salmonella infection. Spleens were sampled from Salmonella-

infected or uninfected chickens at 1, 2, 4 and 5 d pi. (A) The corrected crossing threshold 

(Ct) values deducted from 40 (the negative end point) after normalization with reference 

gene (28S) for input RNA. Data shown as averages (40-Ct) ± SEM (n=3, three samples 

each from three chickens in one independent experiment). (B) The corrected Ct values 

shown as fold change in the mRNA level of cytokines in comparison to those from 

uninfected controls (shown as 1). Statistical analysis was performed using Two-way 

ANOVA followed by Tukey’s multiple comparisons test to detect difference between 

experimental groups within each time point. (+) indicates differences between levels of 

cytokines induced by each serovar compared to uninfected control, +: P<0.05, ++: P<0.01; 

(*) indicates differences between levels of cytokines induced by different serovars, *: 

P<0.05, **: P<0.01. 
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5. 2. 3    Splenic lymphocyte proliferation in response to 

Salmonella infection in vivo 

At 5 days after infection, spleens were taken from S. Enteritidis- and S. 

Pullorum-infected and uninfected chickens. CD3+ (mouse anti-chicken CD3, 

clone CT-3 and anti-mouse IgG1: FITC) or CD4+ T (mouse anti-chicken CD4: 

FITC, clone 2-35) cells were recognised by appropriate mAb. The CD3+ and 

CD4+ T cell population in homogenised splenocytes were determined by flow 

cytometric analysis. Infection with S. Enteritidis resulted in significant increase 

in the number of CD4+ T cells when compared with S. Pullorum-infection 

(P<0.05) and uninfected controls (P<0.01) at 5 d pi (Figure 5-11).  
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Figure 5-11. Percentage of splenic CD3+ and CD4+ T cells in chickens infected with 

different serovars of Salmonella. Spleens were taken from S. Enteritidis- and S. 

Pullorum-infected and uninfected chickens at 5 d pi. Mouse anti-chicken CD3 mAb (Table 

2-4, #4) and anti-mouse IgG1-FITC mAb (Table 2-4, #12) recognised CD3+ T cells in the 

homogenised splenocytes. Mouse-anti-chicken CD4-FITC mAb (Table 2-4, #3) recognised 

CD4+ T cells in the homogenised splenocytes. (A): H-1 and H-2 define the proportion of 

CD3+ and CD4+ T cells in the spleen, respectively. Red lines: CD3+ or CD4+ population. 

Black lines: secondary binding (anti-mouse IgG1-FITC mAb for CD3) or isotype (mouse 

IgG2b: FITC, Table 2-4, #16) control.  Panel (B) The data shown are the average of CD3+ 

and CD4+ T cells in each experimental group (n=3, three samples each from three 

chickens in one independent experiment). Statistical analysis was performed using Two-

way ANOVA followed by Tukey’s multiple comparisons test to detect difference between 

percentage of CD3+ or CD4+ T cells of experimental groups within each time point. (*) 

indicates differences between each group, *: P<0.05, **: P<0.01. 
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5. 3 Chapter discussion 

In this study, it was found that systemic serovars Pullorum and Gallinarum 

were poor colonisers of the gut. In contrast S. Enteritidis infection had higher 

counts in the intestine and rapid extra-intestinal spread to liver and spleen. 

These results are comparable with previous findings on the distribution of 

these serovars in day-old chickens (Beal et al., 2004a, Withanage et al., 2004, 

Setta et al., 2012b, Matulova et al., 2013). The presence of bacteria in the 

caeca was correlated with the profiles of pro-inflammatory cytokines produce 

by these organisms. S. Pullorum and S. Gallinarum did not induce the 

expression of inflammatory mediators in the caecal tonsils whereas S. 

Enteritidis infection was associated with a strong inflammatory response. S. 

Enteritidis displayed a strong capacity in stimulating the production of CXCLi1 

and CXCLi2 from the caecal tonsils of infected chickens whereas expression of 

these chemokines in the caecal tonsils or spleens of S. Pullorum- and S. 

Gallinarum-infected chickens was equivalent to that observed in uninfected 

controls. In previous studies, enhanced expression of CXCLi1, CXCLi2 and IL-1β 

was also found in the gut of chickens infected with S. Typhimurium  or S. 

Enteritidis (Withanage et al., 2004, Cheeseman et al., 2008, Setta et al., 2012b, 

Matulova et al., 2013) whereas S. Pullorum infection was found to down-

regulate the expression of CXCLi1 and/or CXCLi2 in the ileum or caecal tonsils 

of day-old chicken when compared to those from S. Enteritidis (Chappell et al., 

2009, Setta et al., 2012b). These together may suggest a reduced infiltration 

of heterophils in response to infection with S. Pullorum and S. Gallinarum. The 
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rapid expression of CXCLi1 and CXCLi2 in the intestine following infection with 

S. Enteritidis is indicative of subsequent inflammation and pathology as 

previously described for S. Typhimurium infection which resulted in an influx 

of immune cells to the intestine in chicken (heterophils) (Henderson et al., 

1999, Withanage et al., 2004, Withanage et al., 2005b) and mammalian 

(polymorphonuclear cells) (Zhang et al., 2003) models. In this study, S. 

Enteritidis infection also up-regulated the gene expression of IL-1β, IL-6 and 

iNOS in the caecal tonsils at different days post-infection. This is in agreement 

with earlier studies which observed up-regulation of IL-1β or iNOS in the 

caeca of day-old chickens infected with S. Enteritidis (Berndt et al., 2007, 

Matulova et al., 2013). Increased levels of IL-1β mRNA were also found in the 

ilea and caecal tonsils of day-old chickens infected with S. Typhimurium 

(Withanage et al., 2004). IL-6 production is indicative of eliciting an acute-

phase responses, activation of T and B cells and development of macrophages 

(Kaiser and Staheli, 2013). However, IL-6 expression was found at low levels at 

the first two days following infection of day-old chickens with S. Typhimurium 

or S. Enteritidis (Withanage et al., 2004, Cheeseman et al., 2008). This is 

rather unexpected but these authors suggested that low levels might be 

possible in very young chickens in the early time points and that higher levels 

might be expected in older birds. In the current study, increased expression of 

IL-6 in the caecal tonsils in response to S. Enteritidis infection at 2 d pi may be 

a consequence of infection at the age of 2-days old bearing more mature 

immune system. 
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There was only a small number of S. Enteritidis found in the liver of individual 

birds, indicating a limited systemic invasion. However, significantly up-

regulated gene expression of IL-1β and iNOS was detected in the spleen of S. 

Enteritidis-infected chickens at 4 d pi when compared to that of S. Pullorum-

infected chickens or uninfected controls. In contrast to S. Enteritidis, the 

greater numbers of S. Pullorum and S. Gallinarum found in the liver at 5 d pi, 

indicating that systemic invasion into deeper tissue, did not elicit increased 

expression of pro-inflammatory mediators in the spleen, suggesting an 

inhibition of induction of pro-inflammatory cytokines by these serovars. 

In line with the in vitro data the in vivo analysis has revealed that S. Enteritidis 

induces both Th1 and Th17-associated cytokines in the spleens and/or caecal 

tonsils. The increased mRNA expression of IL-12α and IL-18 at 2 d pi followed 

by IFN-γ mRNA detected in the caecal tonsils at 4 and 5 d pi coincided with a 

slight decrease of S. Enteritidis in the caecal contents at 5 d pi. Clearance of S. 

Enteritidis infection in the chicken is usually expected in 3-6 weeks following 

infection and appears to involve increased expression of IFN-γ mRNA in the 

gut and deeper tissues i.e. spleen and liver (Beal et al., 2004b, Beal et al., 

2004a, Wigley et al., 2005a, Withanage et al., 2005b, Berndt et al., 2007). IFN-

γ is involved in the activation of macrophages priming cells for induction of 

NO and promoting intracellular killing of Salmonella (Mastroeni and Menager, 

2003, Okamura et al., 2005, Babu et al., 2006).  

In contrast to S. Enteritidis, S. Pullorum infection in day-old chickens did not 

stimulate detectable expression of IFN-γ mRNA either in the caecal tonsils or 
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spleens. In contrast, up-regulation of type-2 cytokines (IL-4 and IL-13) were 

found in both organs at different time points examined in the present study. 

These results are in accordance with a previous study by Chappell et al. (2009), 

which proposed that, unlike S. Enteritidis, S. Pullorum can modulate host 

immune response away from Th1 response towards Th2-like immunity. 

Quantitative analysis of cytokine mRNA expression in this study did not show 

evidence of induction of Th1 or Th2-like response in chickens infected with S. 

Gallinarum. This may reflect that the very young bird is not an appropriate 

infection model for a pathogen which normally affects adult birds. Due to its 

higher virulence resulting in birds being humanely killed, there were 

insufficient in vivo data to characterize the early immune response to S. 

Gallinarum infection. However, infection with the live attenuated S. 

Gallinarum 9R vaccine strain resulted in mild systemic salmonellosis in three-

week-old chickens, in which proliferation of splenic T cells along with an 

increased IFN-γ expression correlated to bacterial clearance from spleen and 

liver (Wigley et al., 2005a). Thus, S. Gallinarum results in systemic infection, 

which is similar to its closely related avian-specific serovar Pullorum, but does 

not produce persistent carriage in the same way or to the same extent as S. 

Pullorum does, which may be result of the increased IFN-γ that controls and 

eliminates the infection, as occurs with S. Enteritidis.   

The low levels of IFN-γ mRNA detected in the caecal tonsils, and especially the 

spleens, of S. Pullorum and S. Gallinarum-infected chicken may be related to 

an IL-10-associated anti-inflammatory response. Infection with S. Pullorum 
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and S. Gallinarum resulted in a higher level of IL-10 mRNA in these tissues 

when compared with the levels detected in S. Enteritidis-infected or 

uninfected chickens. IL-10 is an anti-inflammatory cytokine which suppresses 

IFN-γ production and decreases host damage (Kaiser and Staheli, 2013). It is 

possible that the effects are different in the different infections; with S. 

Pullorum it may conceivably contribute to establishment of the carrier state 

whereas in S. Gallinarum infection it may result in a relatively severe 

uncontrolled inflammatory response. Expression of IL-10 were described in 

infection with S. Enteritidis (Setta et al., 2012b) and S. Typhimurium (Uchiya 

et al., 2004) and was shown to inhibit hyper-production of inflammatory 

mediators such as IFN-γ (Kaiser et al., 2006). Infection of 1 week old chickens 

with S. Typhimurium infection has been shown to increase expression of TGF-

β4 in the intestine early post infection. This may have inhibited upregulation 

of inflammatory responses and high levels of pathology observed in very 

young birds (Withanage et al., 2004, Withanage et al., 2005b). In contrast, 

reduced expression of IL-10 was found in the gut of newly-hatched chickens 

infected with S. Typhimurium (Fasina et al., 2008). In a recent study, infection 

of day-old broilers with S. Enteritidis induced significantly increased 

expression of TGF-β4 in the caeca from 4 d pi, which was suggested to 

contribute to the persistent colonization of the gut by S. Enteritidis (Kogut and 

Arsenault, 2015). In this study, infection of 2-day-old layer chickens with S. 

Enteritidis did not change IL-10 or TGF-β4 mRNA expression and the absence 

of anti-inflammatory response probably contributed to the early acute 
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inflammation. Possible reasons for these contradictory observations could be 

due to differences in genetic background and/or the age of birds. 

In this study, along with the increased expression of IFN-γ mRNA in the spleen, 

there was a greater increased percentage of splenic CD4+ T cells in response 

to infection with S. Enteritidis when compared to that of S. Pullorum-infected 

chicken at 5 d pi. This result is in accordance with previous studies that have 

shown that infection with S. Enteritidis or S. Typhimurium resulted in 

increased lymphocytes found in the liver or spleen while macrophage 

inflammatory proteins (MIP) family chemokines and IL-6 were suggested to 

play a role in recruiting these cells to the gut (Babu et al., 2004, Beal et al., 

2004a, Withanage et al., 2005b). Salmonella flagella have been shown to 

stimulate proliferation of splenocytes in young chickens (Okamura et al., 

2004). Thus the absence of flagella may be the reason for the smaller number 

of CD4+ T cells detected in vitro (Figure 4-4 and Figure 4-5) and less 

percentage of splenic CD4+ T cells in vivo (Figure 5-11) in response to the 

avian-specific serovar Pullorum. The observed increases of CD4+ T cells could 

be an indication of a helper function for these cells immune defence against 

Salmonella infection. It has been found that the peak of CD4+CD8- cell count 

in blood was followed by a remarkably elevated population of CD8+ cells of 

cytotoxic defence mechanisms (Berndt and Methner, 2001). Therefore, 

proliferation of IFN-γ-producing CD4+ T cells indicated an important role of 

Th1 adaptive immunity on clearing gut infection and limiting systemic 
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distribution of Salmonella, as shown during S. Typhimurium infection in mice 

(Mastroeni and Menager, 2003).  

Time-dependent gene expression in the caeca of S. Enteritidis-infected 

chickens has also identified early expression of IL-17 as well as prolonged high 

level expression of IFN-γ (Crhanova et al., 2011, Matulova et al., 2013), 

suggesting that IL-17 and IFN-γ may function at different stage of 

inflammatory response. Although inhibited expression of IL-17 or IFN-γ by S. 

Pullorum did not show this clearly in the current study, it would be interesting 

to investigate the expression of IL-17 or IFN-γ during a long period of infection. 

The functional role of IL-17 in avian salmonellosis is undefined. In 17A−/− mice 

infected with S. Enteritidis, recruitment of neutrophils was significantly 

compromised which correlated with a reduced clearance of S. Enteritidis 

(Schulz et al., 2008). Although the CXCLi1/CXCLi2 data discussed above 

suggested a difference between S. Pullorum and S. Enteritidis in heterophil 

recruitment, avian IL-17 may also function in a similar manner to promote 

inflammatory responses. 
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Chapter 6    Immunological function of the 

virulence plasmids of S. enterica 

6. 1 Introduction 

6. 1. 1    General introduction 

Among the more than 2500 serovars of S. enterica, only a few, including S. 

Enteritidis, S. Typhimurium and S. Gallinarum/S. Pullorum, are known to 

harbour large plasmids involved in the virulence of the host serovars. An 8kb 

region designated the spv (Salmonella plasmid virulence, encoding the 

spvRABCD genes) locus, common to the virulence plasmids of different 

serovars, is essential in enabling systemic infection in animal models (Gulig 

and Doyle, 1993). The systemic phase of infection with these Salmonella 

serovars is characterized by survival and proliferation of the bacteria inside 

macrophages. Induction of cytopathology and actin depolymerisation during 

Salmonella infection in human monocyte-derived macrophages were found to 

be spvB-dependent (Libby et al., 2000, Browne et al., 2002). NADPH oxidase 

interacts with actin filaments and Salmonella appear to inhibit NADPH oxidase 

recruitment to the phagosome involving SPI-2 function (Vazquez-Torres et al., 

2000b). Thus, SpvB translocated by TTSS-2 (Browne et al., 2002, Browne et al., 

2008, Mazurkiewicz et al., 2008) may interfere with the phagolysosome killing 

of Salmonella by mediating actin depolymerisation, which is probably the 

reason that the virulence plasmids were suggested to increase the intra-

macrophage growth rate of Salmonella during systemic infection of mice 

(Gulig and Doyle, 1993). 
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The virulence plasmids may also affect the interaction of Salmonella with the 

host immune system. The spvC gene reduced the production of pro-

inflammatory cytokines TNF-α and IL-8 from S. Typhimurium-infected J774 

macrophages and Hela cells, respectively (Mazurkiewicz et al., 2008). A S. 

Typhi plasmid, designated as pRST98,  present in over 80% of Typhi isolates and 

is involved in multi-drug resistance. SpvR and spvB on pRST98 was shown to 

carry genes which are 99.8% homologous to spvR and spvB on the virulence 

plasmid in S. Typhimurium (Huang et al., 2005). Compared to a pRST98 mutant, 

the parent S. Typhi, containing pRST98,  was later demonstrated to suppress IL-

12 and IFN-γ production while up-regulating the secretion of IL-10 in infected 

DCs (Wei et al., 2012).  

There is in vivo and in vitro evidence from chapters 3, 4 and 5, which supports 

our hypothesis that the host immune response to S. Pullorum infection was 

skewed away from a protective Th1 immunity. S. Typhi and S. Pullorum are 

both host-adapted serovars inducing persistent infection in humans and 

chickens, respectively. We therefore considered that the S. Pullorum 

virulence plasmid might contribute to the manipulation of host immune 

response in a similar manner. 

6. 1. 2    Chapter aims and objectives 

In order to characterize the function of the S. Pullorum virulence plasmid in 

modulating the immune response compared with that in non-persistent 

serovars Enteritidis and Gallinarum, parent strains, plasmid-cured strains and 
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plasmid-restored strains of these three serovars listed in Table 2-3. Were used 

in infection studies using the avian macrophage-like cell line (HD11) and avian 

peripheral blood monocyte-derived macrophages (chMDM). This was 

followed by determination of intracellular survival, NO production and gene 

expression of cytokines and chemokines in infected macrophages. 
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6. 2 Results 

6. 2. 1    Invasion of HD11 by Salmonella serovars in response to 

the presence of the virulence plasmid 

The parent, plasmid cured and plasmid-restored strains of each Salmonella 

serotype showed similar abilities in terms of invasion and subsequent 

intracellular survival (Figure 6-1). For all the strains, the intracellular bacterial 

counts were stable and then fell after 6 h pi. Plasmid curing in S. Pullorum did 

not change its intracellular survival within HD11 cells at any time points pi 

(P>0.05). Intracellular bacterial counts of plasmid-cured strains of S. 

Enteritidis were found to be lower than those of the parent strain at 48 h pi 

(P<0.05). Reduced intracellular counts of S. Gallinarum plasmid-cured strains 

in infected HD11 cells was only observed at 2 h pi when compared to its 

parent and plasmid-restored strains (P<0.05). 
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Figure 6-1. Effect of large virulence plasmids of different Salmonella serovars on 

intracellular survival within HD11 cells at different time points post infection.  At 2, 

6, 24 and 48 h pi, HD11 cells infected with different strains of Salmonella were lysed to 

quantify the intracellular bacterial counts (n=5). Viable colony counts were shown as 

Log10 CFU/ml. Data were analysed by two-way ANOVA followed by Tukey’s multiple 

comparisons test to compare the bacterial counts between different strains at each time 

points. (*) indicates statistical differences between different serovars (*P<0.05, 

**P<0.01). 
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6. 2. 2    NO production by Salmonella serovars in response to 

the presence of the virulence plasmid 

NO production from HD11 cell in response to infection with all the Salmonella 

strains used was significantly greater than that in the uninfected control 

groups at 24 and 48 h pi (P<0.001), with maximum production observed at 48 

h pi (Figure 6-2). Infection with the plasmid-cured strain of S. Enteritidis did 

not elicit higher levels of NO production compared with its parent and the 

plasmid-restored strain at any of the time points examined (Figure 6-2, b). 

However, a significantly higher level of NO production was detected in HD11 

cells infected with the plasmid-cured strains of S. Gallinarum at 24 h pi when 

compared to its parent (P<0.01) and plasmid-restored (P<0.05) strain. S. 

Pullorum infection induced a similar pattern of NO production as S. 

Gallinarum did, but there was no significant difference observed between the 

S. Pullorum strains (Figure 6-2, a and c). 
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Figure 6-2. Effect of large virulence plasmids of different Salmonella serovars on 

NO production by HD11 cells. At 2, 6, 24 and 48 h pi, supernatant was collected from 

HD11 cells in different infection or treatment groups to determine the nitrite 

concentration using Griess assay. The results shown are expressed as means (nitrite 

concentration, µM) ± SEM of independent experiments (n=5). Statistical analysis was 

performed using Two-way ANOVA followed by Tukey’s multiple comparisons test to 

detect difference between the treated groups for each serovar. (+) shows significance 

from the negative controls (+++, P<0.001), (*) indicates significant difference of plasmid-

cured strains compared with either parent or plasmid-restored strain of each serovar (*, 

P<0.05; **; P<0.01). 
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6. 2. 3    Effect of Salmonella virulence plasmids on HD11 

macrophage viability 

The percentage of viable HD11 cells was measured at 2-48 h after infection 

with different Salmonella serovars used in this study (Figure 6-3). Following 

infection, approximately 90% of HD11 cells remained to be alive until 6 h pi 

but there was a significant reduction in the percentage of viable cells when 

compared with that of uninfected HD11 cells at 24 h (about 75%) and 48 h 

(about 50%) pi (P<0.01). However, infection with the plasmid-cured strain of 

each serovar did not significantly affect the percentages of viable cells 

(P>0.05). 
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Figure 6-3. Viability of HD11 cells in response to the presence of virulence plasmids 

in different Salmonella serovars. At 2, 6, 24 and 48 h pi, the percentage of viable HD11 

cells infected with S. Pullorum, S. Enteritidis and S. Gallinarum respectively were 

determined using PI. Data shown are means (viable HD11 cells %) ± SEM from three 

independent experiments. Statistical analysis was performed using Two-way ANOVA 

followed by Tukey’s multiple comparisons test to detect difference between the treated 

groups for each serovar. (*) indicates significant difference from the uninfected negative 

controls.(*, P<0.05; **; P<0.01). 
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6. 2. 4    Quantification of gene expression in HD11 cells by 

Salmonella serovars in response to the presence of the 

virulence plasmid 

The in vitro immune response to the presence and absence of Salmonella 

virulence plasmids was studied by quantifying the gene expression of pro-

inflammatory chemokines CXCLi1 and CXCLi2 and cytokines IL-1β, IL6 and 

iNOS from Salmonella-infected HD11 cells at 6 h pi. Compared with the 

uninfected control, all the Salmonella strains induced higher mRNA 

expression of these pro-inflammatory mediators in HD11 cells at 6 h pi 

(P<0.05 or P<0.01). Moreover, in comparison with the plasmid-positive S. 

Gallinarum strain infection with the plasmid-cured mutant resulted in higher 

levels of IL-1β (P<0.05) and iNOS (P<0.01) mRNA (Figure 6-4).  

Removing the virulence plasmids from the host of any of the serovars did not 

affect the gene expression of IFN-γ, IL-18, IL-12α, IL-4, IL-10 and TGF-β4 in 

infected HD11 cells (Figure 6-5). Increased gene expression of IFN-γ, IL-12α 

and IL-18 were only observed in HD11 cells stimulated with LPS at 6 h pi 

(P<0.01). The expression of IL-4 mRNA was very low while no expression of IL-

13 mRNA was detected in HD11 cells infected with any Salmonella strain 

tested in this study. In terms of IL-10 and TGF-β4, Salmonella infection was 

unable to induce gene expression of TGF-β4 in HD11 cells at 6 h pi (P>0.05) 

whereas upregulation of IL-10 mRNA was found in HD11 cells infected with 

different serovars with or without the plasmid (P<0.01). 
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Figure 6-4. Effect of Salmonella infection on gene expression of pro-inflammatory 

mediators in HD11 cells at 6 h post-infection. (A) The corrected crossing threshold (Ct) 

values deducted from 40 (the negative end point) after normalization with reference 

gene (28S) for input RNA. Data shown as averages (40-Ct) ± SEM (n=3). (B) The corrected 

Ct values shown as fold change in the mRNA level of cytokines in comparison to those 

from PBS-treated uninfected controls (shown as 1). (+) indicates differences between 

levels of cytokines induced by each serovar compared to uninfected control, +: P<0.05, 

++: P<0.01; (*) indicates differences between levels of cytokines induced by different 

strains within each serovar group, *: P<0.05, **: P<0.01. 
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Figure 6-5. Effect of Salmonella infection on gene expression of IFN-γ, IL-18, IL-12α, 

IL-4, IL-10 and TGF-β4 in HD11 cells at 6 h post-infection. (A) The corrected crossing 

threshold (Ct) values deducted from 40 (the negative end point) after normalization with 

reference gene (28S) for input RNA. Data shown as averages (40-Ct) ± SEM (n=3). B) The 

corrected Ct values shown as fold change in the mRNA level of cytokines in comparison 

to those from PBS-treated uninfected controls (shown as 1). (+) indicates differences 

between levels of cytokines induced by each serovar compared to uninfected control, +: 

P<0.05, ++: P<0.01; (*) indicates differences between levels of cytokines induced by 

different strains within each serovar group, *: P<0.05, **: P<0.01. 
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6. 2. 5    Quantification of gene expression in chMDM by 

Salmonella serovars in response to the presence of the 

virulence plasmid 

To confirm that the data we observed was not affected by the use of the 

HD11 cell line we used primary chMDM to reassess repossess for S. Pullorum 

and S. Enteritidis with and without plasmids. We generally observed similar 

profiles of pro-inflammatory mediators as those of HD11 cells in response to 

the presence of virulence plasmids of S. Pullorum and S. Enteritidis. Increased 

gene expression of the pro-inflammatory mediators, CXCLi1, CXCLi2, IL-1β, IL-

6 and iNOS, were observed in chMDM infected with each strain of Salmonella 

at 6 h pi when compared to uninfected controls (P<0.01). A higher level of IL-6 

mRNA was detected in chMDM infected with the plasmid-cured mutant of S. 

Pullorum than that in response to its parent strain (P<0.05) (Figure 6-6).  

The presence of virulence plasmids in S. Pullorum and S. Enteritidis did not 

change the gene expression of IFN-γ, IL-18, IL-12α, IL-4, IL-10 and TGF-β4 in 

chMDM at 6 h pi (Figure 6-7) when compared with those observed in 

Salmonella-infected HD11 cells. In comparison with S. Enteritidis, which 

increased expression of IL-12α, IL-18 and IFN-γ, S. Pullorum infection 

increased the expression only of IL-18, but not IL-12α or IFN-γ mRNA in 

infected chMDM. Gene expression of IL-4 in all groups was very low. 

Moreover, compared with uninfected controls, all the strains were found to 

increase mRNA expression of IL-10 whereas gene expression of TGF-β4 was 

not up-regulated in any of the infected chMDM (Figure 6-7).  
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Figure 6-6. Effect of Salmonella infection on gene expression of pro-inflammatory 

mediators in chMDM at 6 h post-infection. (A) The corrected crossing threshold (Ct) 

values deducted from 40 (the negative end point) after normalization with reference 

gene (28S) for input RNA. Data shown as averages (40-Ct) ± SEM (n=3). (B) The corrected 

Ct values shown as fold change in the mRNA level of cytokines in comparison to those 

from PBS-treated uninfected controls (shown as 1). (+) indicates differences between 

levels of cytokines induced by each serovar compared to uninfected control, +: P<0.05, 

++: P<0.01; (*) indicates differences between levels of cytokines induced by different 

strains within each serovar group, *: P<0.05, **: P<0.01. 
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Figure 6-7. Effect of Salmonella infection on gene expression of IFN-γ, IL-18, IL-12α, 

IL-4, IL-10 and TGF-β4 in chMDM at 6 h post-infection. (A) The corrected crossing 

threshold (Ct) values deducted from 40 (the negative end point) after normalization with 

reference gene (28S) for input RNA. Data shown as averages (40-Ct) ± SEM (n=3). (B) The 

corrected Ct values shown as fold change in the mRNA level of cytokines in comparison 

to those from PBS-treated uninfected controls (shown as 1). (+) indicates differences 

between levels of cytokines induced by each serovar compared to uninfected control, +: 

P<0.05, ++: P<0.01; (*) indicates differences between levels of cytokines induced by 

different strains within each serovar group, *: P<0.05, **: P<0.01. 
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6. 3 Chapter discussion 

Salmonella requires the action of several virulence factors during infection. 

Large plasmids have been found to be essential for several serovars of 

Salmonella that routinely produce systemic diseases (Jones et al., 1982, 

Terakado et al., 1983, Barrow et al., 1987b, Barrow and Lovell, 1988, 

Halavatkar and Barrow, 1993).  

In the present study, a role for the plasmid-associated virulence in growth in 

phagocytes was suggested by the significantly reduced survival of the S. 

Gallinarum plasmid (pSG090)-cured mutant in HD11 cells, although small 

reductions were also seen with S. Pullorum and S. Enteritidis. The plasmid-

encoded spv locus has previously been shown to be crucial for intracellular 

proliferation of S. Typhimurium and S. Dublin (Gulig and Doyle, 1993, Libby et 

al., 2000). A corresponding increased NO production at 24 and 48 h pi and 

iNOS expression at 6 h pi from HD11 cells infected with this plasmid-cured S. 

Gallinarum strain was observed when compared to its parent strain. A smaller 

effect on NO production from the presence of the plasmid was also seen with 

S. Pullorum, although this was not statistically significant. The NO 

concentration determined in HD11 cells in response to each strain was very 

low until 6 h pi which is a typical NO response to Salmonella infection 

(Mastroeni et al., 2000b) and perhaps correlates with the host-specific nature 

of S. Gallinarum and S. Pullorum infection. The lower bacterial counts of the S. 

Gallinarum plasmid-cured strain found in HD11 cells at 2 h pi might be related 

to the reduced efficiency of initial invasion with the increased levels of NO 
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production in response to this plasmid-minus strain which may contribute to 

the host clearance of the bacteria from infected HD11 cells. The contribution 

of S. Gallinarum virulence plasmid pSG090 towards virulence of fowl typhoid 

in chickens has been demonstrated previously (Barrow et al., 1987b). In that 

study, the plasmid-cured strain of S. Gallinarum was eliminated from the 

alimentary tract of 3-week-old chickens 24 h after oral inoculation and failed 

to penetrate to the liver and spleen. In the current study, infection with 

parent, plasmid-cured and plasmid-restored strains of S. Pullorum produced a 

similar pattern of intracellular survival and NO production to those detected 

with S. Gallinarum strains, but it is not statistically confirmed to be related to 

its large plasmid pBL001. However, the plasmid pHH001 in S. Enteritidis was 

not shown to be involved in manipulating the NO production in vitro, again 

perhaps reflecting that it is not a pathogen which typically produces typhoid 

in birds but does so in mice. 

The differences between these virulence plasmids in contributing towards the 

virulence of their respective host strains has also been demonstrated before 

in vivo. The association between the large virulence plasmid and the virulence 

of the host strain is more obvious in chickens infected with S. Gallinarum than 

the other serovars. This may be because S. Gallinarum produces typhoid in 

adult chickens and is more virulent than the other two serovars which only 

produce systemic disease in very young chickens. For the relevant typhoid 

serovars in the host to which they are adapted (Typhimurium in mice and 

Gallinarum in chickens) the virulence plasmid makes a major contribution to 
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the overall virulence of the strains. In contrast, where the bacterial pathogen 

is less virulent (Pullorum, Typhimurium or Enteritidis in chickens) the plasmid 

plays a less significant role in virulence (Barrow and Lovell, 1989, Barrow et al., 

1994). However, it seems clear that the main contribution to virulence from 

the virulence plasmid is in terms of long term survival in the macrophages. 

TTSS-2 is essential for plasmid-mediated virulence of Salmonella while SpvB, 

encoded by the virulence plasmid, is crucial for intracellular proliferation of S. 

Typhimurium and S. Dublin in human monocyte-derived macrophages (Libby 

et al., 2000). During infection, SpvB-induced actin depolymerisation in host 

cells requires a functional TTSS-2. SpvB and SpvC are translocated from 

Salmonella in the SCV into the host cell by TTSS-2 (Browne et al., 2002, 

Browne et al., 2008, Mazurkiewicz et al., 2008). TTSS-2 and the Spv proteins 

are both essential for caspase-dependent apoptosis of Salmonella-infected 

human macrophages (Browne et al., 2002). TTSS-2 (SPI-2) also contribute to 

the virulence of S. Gallinarum (Jones et al., 2001) and to more persistent 

infection in S. Pullorum (Wigley et al., 2002b) but how these interact with the 

spv genes on the virulence plasmid in each serovar remains to be discovered. 

There was no evidence derived from this study to demonstrate the 

association between the possession of large virulence plasmids in S. 

Gallinarum, S. Enteritidis or particularly, S. Pullorum, with the potential to 

manipulate host immunity away from Th1 immunity, as occurred with related 

genes in S. Typhi (Wei et al., 2012). The evidence was that the gene 

expression of cytokines IL-12α, IL-18, IFN-γ (Th1-related), IL-4 (Th2-related) or 
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IL-10 in HD11 cells and chMDM were not affected by the elimination of the 

plasmid in these serovars. However, the induction of mRNA expression of IL-

1β and iNOS in HD11 cells was different between the parent and plasmid-

cured strains of S. Gallinarum. The non-flagellate serovars Pullorum and 

Gallinarum are not recognized by TLR5, which is believed to play a key role in 

the avoidance of stimulating an inflammatory response during their initial 

invasion. S. Gallinarum did not induce the gene expression of CXCLi1, CXCLi2 

or IL-6 in the caecal tonsils of infected chickens (Setta et al., 2012b). S. 

Pullorum infection led to down-regulation of CXCLi1 and CXCLi2 in the ileum 

(Chappell et al., 2009). These suggested a reduction in heterophil infiltration 

in response to initial infection with S. Pullorum and S. Gallinarum. S. 

Gallinarum usually affects adult birds and produce fowl typhoid. In murine 

J774 macrophages, typhoid serovars including Typhimurium and Enteritidis 

were also found to inhibit iNOS production (Hulme et al., 2012).  Thus, the 

suppression of pro-inflammatory cytokine production associated with the 

possession of the virulence plasmid might be an important virulence 

mechanism of S. Gallinarum to produce systemic infection in adult chickens 

without initiating strong inflammatory response. It is probably relevant that 

Barrow et al. (1987b) and Rychlik et al. (1998) showed that the S. Gallinarum 

virulence plasmid did contribute to the brief early intestinal phase during 

infection. 

In contrast, this strategy does not seem to be essential for S. Pullorum 

because it interacts with the immature immune system in young chickens 
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although infection with the S. Pullorum plasmid-cured strain increased the 

expression of IL-6 in avian macrophages highlighting the difference between 

very young and mature chickens and the epithelial versus macrophage phase 

during infection. Compared to S. Enteritidis and S. Typhimurium, reduced 

expression of pro-inflammatory cytokines by S. Pullorum or S. Gallinarum was 

observed in both epithelial cells and HD11 macrophages (Kaiser et al., 2000, 

Setta et al., 2012a, Freitas Neto et al., 2013). However, it seemed that the 

absence of flagella from these avian-adaptive serovars was only related to the 

differences observed in epithelial cells (CKC) (Freitas Neto et al., 2013), which 

illustrated the evasion of flagella-induced inflammatory responses in assisting 

initial systemic invasion of S. Pullorum and S. Gallinarum from the gut 

epithelium. Reduced expression of pro-inflammatory cytokines in 

macrophages may involve the virulence plasmids which probably carry anti-

inflammatory properties.  
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Chapter 7   General discussion and future work 

7. 1 Introduction 

Salmonellosis remains a major disease in animal and humans worldwide. The 

majority of Salmonella serovars generally cause gastrointestinal disease of 

varying severity in a range of hosts. In contrast, a small number of host-

adapted typhoid serovars, including S. Typhi, S. Dublin, S. Pullorum, S. 

Gallinarum and S. Abortusovis, cause systemic typhoid-like infections in a 

restricted range of hosts. The disease can produce a high mortality and 

extensive use of antibiotics with these infections has led to an increasing 

problem with antibiotic resistance. One of the features of the infection 

produced by these typhoid serovars is disease-free persistent infections, 

primarily within macrophages in lymphoid tissues, in a proportion of 

convalescents. This results in localization in the gall bladder and spleen 

leading to faecal shedding by carriers for many years (S. Typhi in man and S. 

Dublin in cattle) (Sojka et al., 1974, Wray and Sojka, 1977, House et al., 2001) 

or localization in the reproductive tract leading to abortion (S. Dublin) or 

vertical transmission through hatching eggs to progeny (S. Pullorum). These 

persistently infected individuals serve as a significant reservoir for disease 

transmission and pose significant economic and public health problems. The 

immunological basis of the carrier state in S. Pullorum as representative of 

this typhoid group is the subject of this thesis.  
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In this model, S. Pullorum was observed to persist within splenic macrophages 

in vivo for several months in the presence of high titres of circulating anti-

Salmonella IgG (Wigley et al., 2001, Wigley et al., 2005b) and it has been 

found to induce much lower levels of splenic IFN-γ than occurs during 

infection by the related serovar S. Enteritidis (Chappell et al., 2009). However, 

the full nature of the serovar-specific interaction with macrophages, the 

associated immune modulation and its impact on outcome of infection is 

unclear.  

We evaluated the in vitro immune response to Salmonella in either 

macrophages alone and also in T cells cultured with infected macrophages. 

We also studied the immune response to Salmonella in vivo in newly-hatched 

chickens infected with S. Pullorum and related non-persistent serovars (S. 

Enteritidis and S. Gallinarum). The comparison between S. Pullorum and the 

related non-persistent serotypes (S. Enteritidis and S. Gallinarum) in terms of 

the various biological and immunological parameters investigated in this 

study are summarized in Appendix. 5. 

7. 2 Discussion 

7. 2. 1    Immune modulation in the present study 

The results derived from in vitro experiments, using primary avian 

macrophages and CD4+ T cells in co-culture, are largely consistent with the 

observations in infection of 2-day-old chickens in vivo. In contrast to the 

strong Th1/Th17 responses associated with S. Enteritidis infection ex vivo and 
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in vivo, S. Pullorum infection did not enhance Th1 and/or Th17 related 

cytokine expression in vitro in avian macrophages splenocytes, co-cultured 

CD4+ T cells. This was also the case in vivo in the caeca and spleen of infected 

chickens. Although modulation of adaptive immunity by S. Pullorum towards 

a non-protective Th2-like response was only evident in vivo, these results 

support our hypothesis that the mechanisms that underline persistent 

infection with S. Pullorum involve a manipulation of adaptive immune 

responses away from a protective IFN-γ-producing Th17 response. This may 

enable S. Pullorum to evade immune clearance resulting in persistent carriage. 

In addition, regulatory effector cells and suppressed lymphocyte proliferation, 

rather than induction of clonal anergy or involvement of the virulence plasmid, 

may have contributed to its persistence to some extent, indicating that the 

interaction with the host is complex. The fact that S. Enteritidis also caused 

considerable cellular toxicity in vitro is an additional factor in the difference of 

the effect of the pathogen on the host which may have had a direct effect on 

the nature of the immune response induced.  

The good correlation between the in vivo data with the results derived from 

co-cultured avian macrophages and CD4+ T cells in vitro on the gene 

expression of Th1/Th17 cytokines indicates that this is an approach which will 

contribute considerably to reduced animal use. The in vivo data showing 

cytokine expression and splenic lymphocyte populations were derived from 

total mRNA or splenocytes derived from the caecal tonsils and spleens. 

However, the caecal tonsils and spleens of young chickens of less than one-
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week old were too small to isolate sufficient macrophages and CD4+ T cells. 

Therefore, we were unable to work with specific individual cell populations 

from these samples. Some of the discrepancies between the in vitro and in 

vivo results may thus have resulted from the tissue samples containing cells 

other than pure macrophage and CD4+ T cell populations. In addition, 

Enzyme-linked immunospot assay (ELISPOT) is a potential method to define 

cellular source of cytokines and chemokines by measuring secreted cytokine 

molecules from single cells (Stenken and Poschenrieder, 2015). In studies 

reported in this thesis we have used avian macrophages as a model because 

previous studies reported that S. Pullorum and S. Typhimurium persist within 

macrophages to produce chronic infection in chickens and mice respectively 

(Wigley et al., 2001, Monack et al., 2004, Wigley et al., 2005b). However, DCs 

have long been known as important professional APCs, effectively activating T 

cells once mature (Liu and MacPherson, 1993, Kaiser, 2010, Kaspers and 

Kaiser, 2013). In fact, DCs are able to present antigen orders of magnitude 

higher than macrophages.  Therefore, there could be functional differences 

between DCs and macrophages which determine the nature of the initial 

response to S. Pullorum. A difference has been observed in bovine DCs and 

macrophages in response to S. Typhimurium infection. Bovine peripheral 

blood-derived DCs infected with S. Typhimurium up-regulated  expression of 

MHCI, MHCII and co-stimulatory molecules whereas infected macrophages 

showed only a slight increase in CD40 (Norimatsu et al., 2003). In this study 

enhanced TNF-α, IL-1β, IL-6 and iNOS mRNA expression was observed in both 
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DCs and macrophages following infection with S. Typhimurium but DCs also 

up-regulated expression of GM-CSF and IL-12β mRNA while expression of IL-

10 mRNA was only increased in macrophages (Norimatsu et al., 2003). Thus, 

although we recognize that for very early stage infection DCs might have been 

useful macrophage are the cells in which Salmonella are generally found in 

systemic disease (Dunlap et al., 1992, Wigley et al., 2001) and are thus a 

relevant model system. 

7. 2. 2    Altered activities of immune cells in persistent 

infection 

Salmonella are able to maintain infection within macrophages, and in the case 

of serovars such as S. Pullorum and S. Dublin this gives rise to persistent 

infection. Macrophages are a sentinel for innate defence against infection and 

are also mediators that direct the adaptive immune response (Hoebe et al., 

2004). Two functionally different types of macrophages, designated M1 and 

M2, have been isolated in mammals. M1 macrophages are inflammatory and 

have microbicidal activity while M2 macrophages are immunomodulatory 

(Mills et al., 2000). In a murine model of persistent infection, S. Typhimurium 

infection preferentially associated with M2 macrophages activated by Th2 

cytokines (Eisele et al., 2013). Quantitative analysis of in vivo cytokine 

expression in the present study revealed a type 1 to type 2 cytokine switch by 

S. Pullorum, which was in line with reduced expression of inflammatory 

cytokines in S. Pullorum-infected avian macrophages. Although it is not yet 

clear whether M1/M2 macrophage polarization promoting Th1/Th2 
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responses occurs in avian, involvement of macrophages resembling the M2 

polarization seems to occur during persistent carriage of S. Pullorum infection.   

Although we did not observe an induction of the type 2 anti-inflammatory 

cytokines, IL-4 or IL-13, in S. Pullorum-infected macrophages, related 

observations have been made with the intracellular bacterial pathogens 

Yersinia enterocolitica and Yersinia pestis. It has been well established that 

the two alternative pathways of arginine metabolism involving the enzymes 

iNOS (M1 macrophages) or arginase (M2 macrophages) utilized by 

macrophages can alter the outcome of infection in opposite ways (Munder et 

al., 1999, Mills et al., 2000). Susceptible BALB/c mice infected with Yersinia 

enterocolitica result in arginase activation within macrophages, leading to the 

modulation of M2 macrophages, and increased production of TGF-β1 and IL-4 

whereas lower levels of NO and reduced IFN-γ production in the peritoneal 

macrophages or splenic lymphocytes occurred in the early phase of infection 

(Tumitan et al., 2007). This M2 polarization was reversed in murine 

macrophages infected with bacteria defective for the type III secretion system 

(Mills et al., 2000, Hoffmann et al., 2004). We showed S. Pullorum is a less 

robust stimulus for iNOS mRNA expression in chMDM in comparison with S. 

Enteritidis, where arginine may be partially metabolised by the arginase 

pathway. LcrV is a protein found in Yersinia pestis, which stimulates M2 

polarization probably by up-regulating IL-10 (Brubaker, 2003). The 

involvement of IL-10-related regulation will be discussed below. 
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The importance of Th1 responses, particularly the involvement of IFN-γ, in 

clearance of Salmonella infection in chicken has been widely reported (Beal et 

al., 2004a, Beal et al., 2004b, Wigley et al., 2005a, Withanage et al., 2005b, 

Berndt et al., 2007). S. Pullorum may inhibit directly the protective role of 

macrophages by interfering with the IFN-γ/IL-12 pathway to produce 

persistent infection. IL-12 that stimulates Th1 differentiation has been found 

to be critical in controlling the early exponential growth of S. Typhimurium in 

the spleen and liver of the mice (Mastroeni et al., 1998) while the later 

control of persistent infection required IFN-γ (Monack et al., 2004). Similarly 

in this study, in comparison with S. Enteritidis, failure of S. Pullorum to 

increase IL-12α expression in the spleen at 1d pi was followed by significantly 

lower levels of IFN-γ mRNA observed at 5 d pi, which may possibly give rise to 

the persistent infection in the spleen of infected chickens. Salmonella-induced 

reduction of IL-12 secretion was also observed in murine macrophages 

infected with S. Dublin. Despite being a potent stimulus for secretion of the 

IL-12 subunit p40 from infected murine macrophages, S. Dublin showed a 

limited ability to induce secretion of the bioactive p70 heterodimer (Bost and 

Clements, 1997). The outer membrane protein Omp25 of another 

intracellular bacterial pathogen, Brucella suis, was shown to inhibit the 

production of TNF-α in human macrophages, leading to reduced production 

of IL-12 (Dornand et al., 2002). Avian TNF-α has not yet been identified but 

LITAF (LPS-induced TNF-α factor) was not significantly changed in HD11 cells 

infected with Salmonella, including serovars Pullorum, Gallinarum and 
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Enteritidis (Setta et al., 2012a) suggesting the suppression of IL-12 expression 

by S. Pullorum may be independent of LITAF expression in infected 

macrophages.  

Salmonella can actively invade cells and Salmonella virulence factors which 

contribute to  pathogenesis have been studied extensively (McGhie et al., 

2009). However, it is unclear which of these or other factors could interfere 

with M1-(like) polarization, resulting in persistent infection. The SPI-2 type III 

secretion system maintains replication and survival of Salmonella within 

macrophages and is essential for inducing systemic infection in chickens 

(Jones et al., 2001, Jones et al., 2007). SPI-2 was shown to inhibit trafficking of 

NADPH oxidase to the phagosome, thus interfering with the oxidative 

microbicidal activity of macrophages (Vazquez-Torres et al., 2000b). It has 

been reported that intact PhoP is required to reduce iNOS expression in 

murine J774 macrophages and is associated with reduced nuclear 

translocation of NF-Κb and AP-1 (Hulme et al., 2012). Similarly, 

Mycobacterium bovis also demonstrated its ability to prevent iNOS 

recruitment to the phagosome, inhibiting NO release (Miller et al., 2004). A 

study by Bispham et al. (2001) reported that enteric infection of calves by S. 

Dublin required the SPI-2 effector (SseD) while another study reported that 

the wild type S. Gallinarum SPI-2 effector protein (SsaU) was required to 

induce typhoid in chicken (Jones et al., 2001) and to enable persistent 

infection of chickens by S. Pullorum (Wigley et al., 2002b). These studies 

highlight the difficulty in separating the factors required to produce systemic 
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infection compared to persistent infection. Studies on persistent S. 

Typhimurium infection has found that a SPI-2-dependent effector SseI 

blocked migration of macrophages and DC in part by associating with the host 

factor IQ motif containing GTPase activating protein 1 (IQGAP1), an important 

regulator of the cytoskeleton and cell migration (McLaughlin et al., 2009). This 

interfered with the ability of the adaptive immune system to interact with 

these cells and correlated with lower numbers of DCs and CD4+ T cells in the 

spleen, when comparison with an sseI mutant (McLaughlin et al., 2009).  

The current understanding of SPI-1 is that its main role is in TTSS-1-mediated 

cell invasion. However, a microarray-based negative selection screen revealed 

that SPI-1-encoded invasion and translocation effectors SipB, SipC, and SipD 

were necessary to sustain long-term systemic infection of S. Typhimurium in 

mice (Lawley et al., 2006). The SPI-1-secreted effector protein SipB induces 

caspase-1–dependent apoptosis during the initial interaction with 

macrophages (Hersh et al., 1999), resulting in extracellular bacteria that 

potentially infect a second cell, which may aid in the establishment of 

systemic disease. S. Typhimurium could also induce epithelial extrusion 

accompanied with inflammatory cell death characterized by caspase-1 

activation and thus escapes from its intracellular niche (Knodler et al., 2010). 

It is likely that the ability of S. Typhimurium to continuously re-invade 

epithelial tissues is necessary to sustain a persistent intestinal colonisation. 

However, sipB (SPI-1) and ssaV (SPI-2) mutants of S. Typhimurium still persist 

systemically in mice although at lower levels, suggesting a contribution but 
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not absolute requirement of SPI-1 and SPI-2 for persistent infection (Lawley et 

al., 2008).  

Further work to identify the bacterial determinants of persistent infection in S. 

Pullorum will likely require an investigation of all the genes associated with 

intracellular survival and growth including SPI-2 genes and a number of 

metabolic function (O'Callaghan et al., 1988). This might be done by mutation 

studies in either S. Pullorum if this is a positive attribute or in S. Enteritidis, to 

try to produce a S. Enteritidis strain which shows persistent infection, if this is 

a negative attribute.  

Regulatory T cells play a role in maintaining the balance between immune 

activation and suppression (Vignali et al., 2008), but their role in modulating 

immune activation during persistent infection is undefined. A recent study 

examined the development of Th1 cells and Tregs after Salmonella infection 

of resistant mice. It found that alterations in the potency of Tregs during 

infection reduced the effectiveness of Th1 responses, increased bacterial 

growth and controlled the tempo of persistent S. Typhimurium infection in 

mice (Johanns et al., 2010). It is unclear whether similar alterations in Treg 

activities can affect the Th1 responses in susceptible mouse or in chickens.   

Results reported in this thesis show that expression of CTLA-4 was not 

increased in CD4+ T cells cultured with S. Pullorum-infected chMDM. The 

suppressive properties of avian Treg cells (CD4+CD25+) was suggested to be IL-

10-dependent (Selvaraj, 2013). In this study, S. Pullorum infection lead to 

invasion of liver and increased IL-10 expression in the spleen at 4-5 d pi. It 



Chapter 7 

215 

 

suggested a possible regulatory effect of IL-10 on inhibiting cytokine 

production and macrophage activity during systemic dissemination and 

possibly persist infection. In our study, taken together with the reduced type1 

and increased type 2 cytokine expression, the enhanced expression of IL-10 

mRNA, especially in the spleen, towards the end of the first week following 

infection with S. Pullorum, may be involved in driving host immunity further 

towards a Th2-like response. The early expression of IL-10 may function 

mainly as an immune regulator (discussed above) while up-regulation of IL-10 

expression in response to S. Enteritidis infection may occur later following the 

acute phase of inflammatory response. This latter effect may be to reduce the 

inflammatory response thus preventing acute chronic inflammation (Uchiya 

et al., 2004, Li et al., 2009, Setta et al., 2012b). We detected in vitro induction 

of IL-10 mRNA in chMDM infected with S. Enteritidis. The absence of strong 

expression of IL-10 mRNA in vivo may have resulted from the post-mortem 

examination being done early in infection during the acute phase of infection, 

when IL-10 would be expected to be up-regulated to suppress the 

overwhelmed expression of IFN-γ and would be observed at higher levels 

when the inflammatory response to S. Enteritidis infection has passed. 

The differential proliferation of peripheral blood CD4+ T cells in response to 

infection with S. Pullorum or S. Enteritidis in vitro is in accordance with the 

different percentage of splenic CD4+ T cells detected in vivo. One study has 

shown that increased numbers of splenic T cells coincided with clearance of S. 

Enteritidis and S. Typhimurium from infected chickens (Beal et al., 2004a). 
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However, definitive increased number of splenic T cells has not been shown in 

this study. It is unclear whether the relatively lower efficiency of S. Pullorum 

up-regulating percentage of splenic CD4+ T cells is causally linked to persistent 

infection of S. Pullorum. Furthermore it is not known if the increased splenic 

CD4+ T cells shown in this study following S. Pullorum infection has a Th1, 

Th17 or Th2 phenotype. 

Both S. Pullorum and S. Gallinarum are avian-specific serovars, but S. 

Gallinarum generally  more closely resembles S. Typhimurium infection in 

mice, in which infection results in a typhoid-like disease normally  without 

persistent infection (Mastroeni and Menager, 2003). The innate immune 

system controls the bacterial numbers in the early stage of infection (Wigley 

et al., 2002a, Mastroeni and Menager, 2003) and promotes adaptive 

immunity. In mice, T lymphocytes produce IFN-γ in response to IL-12 and IL-

18 secreted from Salmonella-infected macrophages, which in turn leads to 

increased activation of macrophages, leading to clearance of S. Typhimurium 

from the tissues. The host immune response to systemic infection with the 

vaccine strain S. Gallinarum 9R in chickens mirrors this, with an increase in 

IFN-γ expression and increased T cell proliferation correlating to bacterial 

clearance from the liver and spleen of infection chickens (Wigley et al., 2005a). 

However, the host genetic background is important and persistent infection 

has been observed in S. Gallinarum infection in a resistant inbred chicken line, 

with the organism persisting for more than 14 weeks with infection mainly 

limited to the liver and spleen (Berchieri et al., 2001a). Persistent infection 
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involving fully virulent S. Typhimurium has also been shown in Nramp1+/+ 

mice, where bacteria are able to reside within macrophages in the mesenteric 

lymph nodes (MLN) for up to one year (Monack et al., 2004). 

One feature of the ‘typhoid’ serovars that are associated with systemic 

infection and persistent infection is auxotrophy (Uzzau et al., 2000). 

Connected with that it is interesting to note that certain attenuated 

auxotrophic mutants of S. Typhimurium are able to show prolonged infection 

even in susceptible BALB/c mice (O'Callaghan et al., 1988). This was not true 

of all auxotrophic attenuated mutant since although some persisted for more 

than 70 (purA) more than 70 (aroApurA) and more than 119 (purE) days 

respectively an aroA mutant was eliminated by 35 days. This suggests that it 

might be possible to produce systemically persistent S. Enteritidis infection in 

chicken using similar auxotrophic mutants. Certainly it would be interesting to 

examine the cytokine response of the infected macrophages using this in vitro 

model with these mutants to try to determine the relationship between 

auxotrophy and persistence.  

CD4+ Th cells play a central role in controlling Salmonella infection in mice. A 

strong Th1 response is effective in controlling Salmonella growth during the 

early acute phase in the mouse (Mastroeni, 2002). Exposure to inorganic lead 

(Pb) rendered mice susceptible to infection with S. Typhimurium and 

increased bacteria burdens, largely resulting from a shift in immune response 

towards a Th2-type reaction (Fernandez-Cabezudo et al., 2007). In resistant 

mice persistently infected with virulent S. Typhimurium, high levels of 
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circulating antibody correlated with a Th2-dominant immune response. 

Neutralisation of IFN-γ reactivated acute infection, probably by interfering 

with macrophage activation (Monack et al., 2004). This suggests that 

functional IFN-γ is still required to suppress bacterial growth during persistent 

infection. It also implies an increase in both Th1 and Th2 cytokines in 

response to infection. However, it is rational to consider that the ratio of 

these cytokines levels will govern the overall direction of the immune 

response to be mainly Th1 or Th2. In addition to Th1 and Th2 responses, Th17 

cells are key contributors to inflammation. Griffin and McSorley (2011) 

reviewed recent research that  highlighted the role of Th17 cells in the control 

of Salmonella infection. But there has been little focus on their role in avian 

salmonellosis. Increased expression of IL-17 was also found in the caeca of 

chickens infected with S. Enteritidis (Crhanova et al., 2011) although a 

functional role for avian IL-17 in the mucosal inflammatory response to 

Salmonella has not yet been described. Further studies are also required to 

elucidate its potential role in chronic Salmonella infection. Recent studies 

have reported that chicken IL-17 might play a role in protection against 

Eimeria maxima and Eimeria tenella infection but appears to mediate Eimeria 

tenella-induced immunopathology during infection (Kim et al., 2012, Zhang et 

al., 2013).  

The current study on S. Pullorum carriage and the studies on persistent S. 

Typhimurium infection in mice in favouring Th2-dominant response also 

mirrors the Th1/Th2 modulation for chronic infection induced by other 
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pathogens, such as leprosy caused by Mycobacterium leprae. Leprosy 

presents a spectrum of clinical manifestations with distinct immunologic 

forms, varying from slow bacterial growth with little tissue damage and a 

strong Th1-mediated cellular immunity at one pole (tuberculoid leprosy) to 

the other extreme with extensive bacillary load, considerable tissue damage 

with a predominantly Th2 response (lepromatous leprosy) (Sieling and Modlin, 

1994, Garcia et al., 2001). The spectrum of severity observed in this disease 

also shows the importance of host genetics in determining the outcome of 

infection and whether or not persistent infection/carriage takes place. 

7. 2. 3    Cytokine therapy for persistent infection 

Cytokine production, which may be manipulated by Salmonella and several 

other pathogens, including helminths, not only has a crucial effect on the 

outcome of infection but might itself theoretically be manipulated to control 

the course of the infection.  

Immune-regulation between Th1 and Th2 type responses has been reported 

in a number of helminth infections the further manipulation of which may 

indicate a route for the control of the persistent carrier state in S. Pullorum 

infection in chickens.   

In Trichuris muris infection in mice a Th1 or Th2 response results in 

susceptibility and resistance respectively. In vivo neutralization of IFN-γ 

results in expulsion of the parasite while depletion of IL-4 in resistant BALB/K 

mice prevents the generation of a protective Th2 response resulting in 
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chronic infection with Trichuris muris (Else et al., 1994). In murine infection 

with the nematode, Nippostrongylus brasiliensis, exacerbation or protection 

are related to Th1 and Th2-associated response, respectively. Administration 

of IL-12 increased expression of IFN-γ and IL-10, inhibited the IgE response 

and mRNA transcription for Th2-associated cytokines and enhanced adult 

worm survival and egg production in mice during early primary infections 

(Finkelman et al., 1994). Both IFN-α and IFN-γ can increase fecundity of 

Nippostrongylus brasiliensis and delay expulsion of adult parasite, resulting in 

inhibited host protection against nematode infection probably by the 

antagonistic effects of IFN on an IL-4-mediated Th2 response (Urban et al., 

1993). In another study, IL-4 administration inhibited murine gastrointestinal 

infection with the nematode parasite Heligmosomoides polygyrus and 

Nippostrongylus brasiliensis (Urban et al., 1995).  

Similar effects can be observed in bacterial infections. In vivo administration 

of supernatants from S. Enteritidis-immune T cells increased host resistance 

of day-old and 18-day-old chickens to invasion of organs by S. Enteritidis 

(Tellez et al., 1993). This was thought to be mediated by increased infiltration 

and enhanced bactericidal activities of heterophils (Ziprin et al., 1996). This 

indicates that the suppression of a Th2 type response by Th1-associated 

cytokines can have a profound effect on susceptibility to infection and 

inflammation. The regulatory function of chicken Th1 and Th2 cytokines on 

macrophage activities has been investigated in vitro, where chicken IFN-γ was 

found to prime HD11 macrophages to produce significantly higher levels of 
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ROS and NO while IL-4 inhibited NO production by macrophages when 

exposed to bacteria or microbial agonists in vitro (He et al., 2011).  In 

accordance with these studies, Foster et al. (2003a) reported that IFN-γ-was 

required to induce lethal ROS in S. Typhimurium-infected murine J774 

macrophages. Other work by this group showed that vasoactive intestinal 

peptide (VIP) (mostly produced by Th2 cells) inhibited IFN-γ-induced ROS and 

killing of (a normally avirulent) phoP mutant of S. Typhimurium in J774 cells 

(Foster et al., 2005). This indicates that the enhanced antimicrobial activity of 

IFN-γ-stimulated macrophages in vivo may reduce/eliminate S. Pullorum 

within/from splenic macrophages of infected chickens, although S. 

Typhimurium and S. Enteritidis were shown to be able to survive in IFN-γ 

activated murine or chicken macrophages (Brodsky et al., 2005, He et al., 

2011). One further line of our enquiry would therefore be to explore the use 

of parenteral administration of Th1-related cytokines (IFN-γ and IL-12) to 

reduce persistent infection of the chicken spleen by S. Pullorum. 

Such experiments might be extended further. There would seem to be less 

practical value in parenteral administration of recombinant chicken Th1 

cytokines to large numbers of S. Pullorum infected chickens in the field but 

the use of such an approach might be useful for related Salmonella serovars 

which enter the carrier state such as a S. Typhi  in man and S. Dublin in cattle. 

Chronic infection with S. Typhi is known to be associated with shedding via 

the gall bladder although the spleen, and, by extension, probably also the 

liver, are known to be infected (Vogelsang and Boe, 1948, Young et al., 2002, 
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Nath et al., 2010). In S. Dublin infection in cattle, persistent shedding can 

occur from the gut, possibly involving the gall bladder, and also from the 

udder but the spleen is also affected (Sojka et al., 1974, Hinton and Williams, 

1977, Wallis et al., 1995) while S. Pullorum is known to persist mainly within 

splenic macrophages in vivo (Wigley et al., 2001, Wigley et al., 2005b). It may 

be that systemic colonisation of Salmonella of the mammalian spleen and 

MLN is accompanied by infection of the liver which itself may be responsible 

for localisation in the gall bladder resulting in shedding into the intestine from 

the bile. Thus persistent infection within the splenic macrophages may also be 

the key infection site of other typhoid serovars producing chronic infections. 

If a cytokine therapy approach to controlling persistent S. Pullorum infection 

could be effective there would be huge value in extending such studies to S. 

Typhi and S. Dublin in humans and cattle respectively. 

7. 3 Future work 

Future work will first focus on the utilization of avian IFN-γ and IL-12 as 

immune therapeutics to modulate a non-protective Th2 type response back 

towards a protective Th1 response in vivo and to reduce or eliminate S. 

Pullorum within the splenic macrophages of infected chickens. There are also 

advantages of comparing behaviour in the chicken with persistent infection in 

the mouse model.   

We will also use macrophages and CD4+ T cells in co-culture in vitro as a 

model to extend our understanding of persistent infection of other typhoid 

serovars such as S. Dublin and S. Abortusovis.  
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It is clear now that S. Pullorum modulates the cytokine production from 

infected macrophages and encountered T cells, but further studies are also 

required to find out the bacterial determinants of this characteristics. 
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Appendix 

Appendix. 1 

Slide agglutinating test for selected Salmonella strains 

Serovars ‘O’ antigens† Phase 1 ‘H’ antigen† Phase 2 ‘H’ antigen† 

S. Enteritidis 1, 9, 12 g,m - 

S. Pullorum (1), 9, 12 - - 

S. Gallinarum 1, 9, 12 - - 

S. Typhimurium 1, 4, 5, 12 i 1, 2 

S. Dublin 1, 9, 12 g, p - 

 

†Remel™ Agglutinating Sera (Thermo Fisher Scientific, UK) 
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Appendix. 2  

Phosphate-Buffered Saline (PBS) 

 1 × PBS tablet added to 500 ml of Dh2O 

MACS buffer  

0.5 % BSA and 2 Mm EDTA in PBS, PH 7.2 

FACS buffer  

1 % BSA in PBS 

HD11 cell culture medium 

RPMI 1640 (Gibco, Paisley, UK), containing: 

5% foetal bovine serum (FBS; Gibco; v/v) 

5% chicken serum (v/v) 

10% tryptose phosphate broth (TPB; v/v) 

1% of L-glutamine (2Mm; Gibco, UK; v/v) 

PBMC-derived macrophage (chMDM) culture medium 

RPMI 1640, containing: 

10% FCS (v/v) 

20Mm Hepes (Sigma-Aldrich, UK) 

50μg/ml gentamicin sulphate (Sigma-Aldrich, UK) 

10 units/ml streptomycin/penicillin (Gibco, Paisley, UK) 

1.25 μg/ml fungizone (Gibco) 

2Mm L-glutamine (Gibco) 

*Antibiotics-free culture medium 

RPMI 1640, containing: 

10% FCS (v/v) 

20Mm Hepes (Sigma-Aldrich, UK) 

2Mm L-glutamine (Gibco) 
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Appendix. 3 

 
 

Calibration graphs between the bacterial counts and the optical density of different 

Salmonella serovars. SP, S. Pullorum, SE. S Enteritidis, SG, S. Gallinarum 
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Appendix. 4 

 

The Melting curve of primers of CD28 and CTLA-4 used for qRT-PCR. 
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Appendix. 5 

In vitro immune responses of avian cells to infection with different serovars of S. enterica 

Bacterial 

stimulus 

Immune responses 

chMDM CD4+ T cells Splenocytes 

S. Pullorum 

CXCLi1 and IL-1β ↑, CXCLi2, iNOS and IL-6 ↑ ↓ 

IFN-γ and IL-12α → ↓, IL-18 ↑↓ 

IL-4 and IL-13 ↑↑ 

IL-10 ↑, TGF-β4 → 

IFN-γ →↓ 

IL-17A →; IL-17F ↓ ↓ 

IL-4 → 

IL-10 and TGF-β4 → 

IFN-γ and IL-12α → , IL-18 → ↓ 

IL-4 → 

IL-17F → 

CD40, CD80 and CD86 ↑ ◊; CD28↑ CTLA4→ 

S. Gallinarum 

CXCLi1 and IL-1β ↑, CXCLi2, iNOS and IL-6 ↑ ↓ 

IFN-γ → ↓, IL-12α → and IL-18 ↑ 

IL-4 and IL-13 → 

IL-10 and TGF-β4 → 

IFN-γ → 

IL-17A →; IL-17F → ↓ 

IL-4 → 

IL-10 and TGF-β4 → 

IFN-γ and IL-12α ↑, IL-18 → 

IL-4 → 

IL-17F ↑ 

CD40, CD80 and CD86 ↑ ◊; CD28↑ CTLA4→ 

S. Enteritidis 

CXCLi1, CXCLi2, IL-1β, iNOS and IL-6 ↑ 

IFN-γ, IL-12α and IL-18 ↑ 

IL-4 and IL-13 → 

IL-10 ↑, TGF-β4 → 

IFN-γ ↑ 

IL-17A →; IL-17F ↑ 

IL-4 → 

IL-10 and TGF-β4 → 

IFN-γ, IL-12α and  IL-18 ↑ 

IL-4 → 

IL-17F ↑ 

CD40, CD80 and CD86 ↑ ◊◊; CD28↑ CTLA4→ 

◊◊, high proliferating; ◊ proliferating 

Compared to uninfected control: ↑, increase; ↓, decrease; →, no change 

Compared to S. Enteritidis-infection: ↑, increase; ↓, decrease 
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Early immune dynamics of chicken in response to infection with persistence and non-persistence serovars of S. enterica 

Bacterial 

stimulus 

Immune mediators 

Caecal tonsil Spleen 

S. Pullorum 

CXCLi1, CXCLi2, IL-1β, iNOS and IL-6 → ↓ 

IFN-γ ↓ ↓, IL-12α and IL-18 → ↓ 

IL-17F → ↓ 

IL-4 and IL-13 ↑ ↑ 

IL-10 ↑ ↑, TGF-β4 → 

CXCLi1, CXCLi2 and IL-6 →, IL-1β and iNOS → ↓ 

IFN-γ and IL-12α → ↓, IL-18 → 

IL-17F → ↓ 

IL-4 and IL-13 ↑ ↑ 

IL-10 ↑ ↑, TGF-β4 → 

S. Gallinarum 

CXCLi1, CXCLi2, IL-1β, iNOS and IL-6 → ↓ 

IFN-γ, IL-12α and IL-18 → 

IL-17F →  

IL-4 and IL-13 → 

IL-10 and TGF-β4 → 

CXCLi1, CXCLi2, IL-1β, iNOS and IL-6 → 

IFN-γ, IL-12α and IL-18 → 

IL-17F → 

IL-4 and IL-13 → 

IL-10 and TGF-β4 → 

S. Enteritidis 

CXCLi1, CXCLi2, IL-1β, iNOS and IL-6 ↑ 

IFN-γ, IL-12α and IL-18 ↑ 

IL-17F ↑ 

IL-4 and IL-13 → 

IL-10 and TGF-β4 → 

CXCLi1, CXCLi2, and IL-6 →; IL-1β and iNOS ↑ 

IFN-γ, IL-12α and IL-18 ↑ 

IL-17F → 

IL-4 and IL-13 → 

IL-10 and TGF-β4 → 

Compared to uninfected control: ↑, increase; ↓, decrease; →, no change 

Compared to S. Enteritidis-infection: ↑, increase; ↓, decrease 
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