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13.1 INTRODUCTION
The biological immune system is a robust, complex, adaptive system

that defends the body from foreign pathogens. It is able to categorize all
cells (or molecules) within the body as self-cells or nonself cells. It does
this with the help of a distributed task force that has the intelligence to
take action from a local and also a global perspective using its network of
chemical messengers for communication. There are two major branches
of the immune system. The innate immune system is an unchanging
mechanism that detects and destroys certain invading organisms, whilst
the adaptive immune system responds to previously unknown foreign
cells and builds a response to them that can remain in the body over a
long period of time. This remarkable information processing biological
system has caught the attention of computer science in recent years.

A novel computational intelligence technique, inspired by immunol-
ogy, has emerged, known as Artificial Immune Systems. Several concepts
from immunology have been extracted and applied for the solution of
real-world science and engineering problems. In this tutorial, we briefly
describe the immune system metaphors that are relevant to existing
Artificial Immune System methods. We then introduce illustrative real-
world problems and give a step-by-step algorithm walkthrough for one
such problem. A comparison of Artificial Immune Systems to other
well-known algorithms, areas for future work, tips and tricks and a list
of resources round the tutorial off. It should be noted that as Artificial
Immune Systems is still a young and evolving field, there is not yet a
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fixed algorithm template and hence actual implementations may differ
somewhat from time to time and from those examples given here.

13.2 OVERVIEW OF THE BIOLOGICAL
IMMUNE SYSTEM

The biological immune system is an elaborate defense system which
has evolved over millions of years. While many details of the immune
mechanisms (innate and adaptive) and processes (humoral and cellular)
are yet unknown (even to immunologists), it is, however, well known that
the immune system uses multilevel (and overlapping) defense both in
parallel and sequential fashion. Depending on the type of the pathogen,
and the way it gets into the body, the immune system uses different
response mechanisms (differential pathways) either to neutralize the
pathogenic effect or to destroy the infected cells. A detailed overview
of the immune system can be found in many textbooks, such as Kubi
(2002). The immune features that are particularly relevant to our tuto-
rial are matching, diversity and distributed control. Matching refers to
the binding between antibodies and antigens. Diversity refers to the fact
that, in order to achieve optimal antigen space coverage, antibody diver-
sity must be encouraged (see Hightower et al., 1995). Distributed control
means that there is no central controller; rather, the immune system is
governed by local interactions between immune cells and antigens.

Two of the most important cells in this process are white blood cells,
called T-cells and B-cells. Both of these originate in the bone marrow,
but T-cells pass on to the thymus to mature, before circulating in the
blood and lymphatic vessels.

The T-cells are of three types: helper T-cells which are essential to
the activation of B-cells, killer T-cells which bind to foreign invaders
and inject poisonous chemicals into them causing their destruction, and
suppressor T-cells which inhibit the action of other immune cells thus
preventing allergic reactions and autoimmune diseases.

B-cells are responsible for the production and secretion of antibodies,
which are specific proteins that bind to the antigen. Each B-cell can only
produce one particular antibody. The antigen is found on the surface of
the invading organism and the binding of an antibody to the antigen is
a signal to destroy the invading cell as shown in Fig. 13.1.

As mentioned above, the human body is protected against foreign
invaders by a multi-layered system. The immune system is composed
of physical barriers such as the skin and respiratory system; physio-
logical barriers such as destructive enzymes and stomach acids; and
the immune system, which can be broadly viewed as of two types: in-
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Figure 13.1. Pictorial representation of the essence of the acquired immune system
mechanism (taken from de Castro and van Zuben (1999): the invade enters the body
and activates T-cells, which then in IV activate the B-cells; V is the antigen matching,
VI the antibody production and VII the antigen’s destruction.

nate (non-specific) immunity and adaptive (specific) immunity, which
are inter-linked and influence each other. Adaptive immunity can again
be subdivided into two types: humoral immunity and cell-mediated im-
munity.

Innate immunity is present at birth. Physiological conditions such
as pH, temperature and chemical mediators provide inappropriate liv-
ing conditions for foreign organisms. Also, micro-organisms are coated
with antibodies and/or complementary products (opsonization) so that
they are easily recognized. Extracellular material is then ingested by
macrophages by a process called phagocytosis. Also, TDH-cells influence
the phagocytosis of macrophages by secreting certain chemical messen-
gers called lymphokines. The low levels of sialic acid on foreign antigenic
surfaces make C3b bind to these surfaces for a long time and thus acti-
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vate alternative pathways. Thus MAC is formed, which punctures the
cell surfaces and kills the foreign invader.

Adaptive immunity is the main focus of interest here as learning,
adaptability, and memory are important characteristics of adaptive im-
munity. It is subdivided under two heads: humoral immunity and cell-
mediated immunity:

1 Humoral immunity is mediated by antibodies contained in body
fluids (known as humors). The humoral branch of the immune
system involves interaction of B-cells with antigen and their sub-
sequent proliferation and differentiation into antibody-secreting
plasma cells. Antibody functions as the effectors of the humoral re-
sponse by binding to antigen and facilitating its elimination. When
an antigen is coated with antibody, it can be eliminated in several
ways. For example, antibody can cross-link the antigen, forming
clusters that are more readily ingested by phagocytic cells. Bind-
ing of antibody to antigen on a micro-organism also can activate
the complement system, resulting in lysis of the foreign organism.

2 Cellular immunity is cell-mediated; effector T-cells generated in
response to antigen are responsible for cell-mediated immunity.
Cytotoxic T-lymphocytes (CTLs) participate in cell-mediated im-
mune reactions by killing altered self-cells; they play an important
role in the killing of virus-infected and tumor cells. Cytokines se-
creted by TDH can mediate the cellular immunity, and activate
various phagocytic cells, enabling them to phagocytose and kill
micro-organisms more effectively. This type of cell-mediated im-
mune response is especially important in host defense against in-
tracellular bacteria and protozoa.

Whilst there is more than one mechanism at work (for more details see
Farmer et al., 1986; Kubi, 2002; Jerne, 1973), the essential process is the
matching of antigen and antibody, which leads to increased concentra-
tions (proliferation) of more closely matched antibodies. In particular,
idiotypic network theory, negative selection mechanism, and the “clonal
selection” and “somatic hypermutation” theories are primarily used in
Artificial Immune System models.

13.2.1 Immune Network Theory
The immune network theory was proposed by Jerne (1973). The hy-

pothesis was that the immune system maintains an idiotypic network of
interconnected B-cells for antigen recognition. These cells both stimu-
late and suppress each other in certain ways that lead to the stabilization
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of the network. Two B-cells are connected if the affinities they share ex-
ceed a certain threshold, and the strength of the connection is directly
proportional to the affinity they share.

13.2.2 Negative Selection Mechanism
The purpose of negative selection is to provide tolerance for self-cells.

It deals with the immune system’s ability to detect unknown antigens
while not reacting to the self-cells. During the generation of T-cells, re-
ceptors are made through a pseudo-random genetic rearrangement pro-
cess. Then, they undergo a censoring process in the thymus, called the
negative selection. There, T-cells that react against self-proteins are de-
stroyed; thus, only those that do not bind to self-proteins are allowed to
leave the thymus. These matured T-cells then circulate throughout the
body to perform immunological functions and protect the body against
foreign antigens.

13.2.3 Clonal Selection Principle
The clonal selection principle describes the basic features of an im-

mune response to an antigenic stimulus. It establishes the idea that only
those cells that recognize the antigen proliferate, thus being selected
against those that do not. The main features of the clonal selection
theory are that

1 the new cells are copies of their parents (clone) subjected to a
mutation mechanism with high rates (somatic hypermutation);

2 elimination of newly differentiated lymphocytes carrying self-react-
ive receptors;

3 proliferation and differentiation on contact of mature cells with
antigens.

When an antibody strongly matches an antigen the corresponding
B-cell is stimulated to produce clones of itself that then produce more
antibodies. This (hyper) mutation, is quite rapid, often as much as
“one mutation per cell division” (de Castro and Von Zuben, 1999). This
allows a very quick response to the antigens. It should be noted here that
in the Artificial Immune System literature, often no distinction is made
between B-cells and the antibodies they produce. Both are subsumed
under the word ‘antibody’ and statements such as mutation of antibodies
(rather than mutation of B-cells) are common.

There are many more features of the immune system, including adap-
tation, immunological memory and protection against auto-immune at-
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tacks, not discussed here. In the following sections, we will revisit some
important aspects of these concepts and show how they can be modeled
in “artificial” immune systems and then used to solve real-world prob-
lems. First, let us give an overview of typical problems that we believe
are amenable to being solved by artificial immune systems.

13.3 ILLUSTRATIVE PROBLEMS

13.3.1 Intrusion Detection Systems
Anyone keeping up-to-date with current affairs in computing can con-

firm numerous cases of attacks made on computer servers of well-known
companies. These attacks range from denial-of-service attacks to ex-
tracting credit-card details and sometimes we find ourselves thinking
“haven’t they installed a firewall”? The fact is they often have a fire-
wall. A firewall is useful, indeed often essential, but current firewall
technology is insufficient to detect and block all kinds of attacks.

On ports that need to be open to the internet, a firewall can do little
to prevent attacks. Moreover, even if a port is blocked from internet
access, this does not stop an attack from inside the organization. This
is where intrusion detection systems come in. As the name suggests,
intrusion detection systems are installed to identify (potential) attacks
and to react by usually generating an alert or blocking the unscrupulous
data.

The main goal of intrusion detection systems is to detect unauthorized
use, misuse and abuse of computer systems by both system insiders and
external intruders. Most current intrusion detection systems define sus-
picious signatures based on known intrusions and probes. The obvious
limit of this type of intrusion detection systems is its failure in detecting
previously unknown intrusions. In contrast, the human immune sys-
tem adaptively generates new immune cells so that it is able to detect
previously unknown and rapidly evolving harmful antigens (Forrest et
al., 1994). Thus the challenge is to emulate the success of the natural
systems.

13.3.2 Data Mining—Collaborative Filtering
and Clustering

Collaborative filtering is the term for a broad range of algorithms that
use similarity measures to obtain recommendations. The best-known ex-
ample is probably the “people who bought this also bought” feature of
the internet company Amazon (2004). However, any problem domain
where users are required to rate items is amenable to collaborative filter-
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ing techniques. Commercial applications are usually called recommender
systems (Resnick and Varian, 1997). A canonical example is movie rec-
ommendation.

In traditional collaborative filtering, the items to be recommended
are treated as “black boxes”. That is, your recommendations are based
purely on the votes of other users, and not on the content of the item.
The preferences of a user, usually a set of votes on an item, comprise a
user profile, and these profiles are compared in order to build a neigh-
borhood. The key decision is what similarity measure is used. The most
common method to compare two users is a correlation-based measure
like Pearson or Spearman, which gives two neighbors a matching score
between −1 and 1. The canonical example is the k-nearest-neighbor al-
gorithm, which uses a matching method to select k reviewers with high
similarity measures. The votes from these reviewers, suitably weighted,
are used to make predictions and recommendations.

The evaluation of a collaborative filtering algorithm usually centers
on its accuracy. There is a difference between prediction (given a movie,
predict a given user’s rating of that movie) and recommendation (given a
user, suggest movies that are likely to attract a high rating). Prediction
is easier to assess quantitatively but recommendation is a more natural
fit to the movie domain. A related problem to collaborative filtering
is that of clustering data or users in a database. This is particularly
useful in very large databases, which have become too large to handle.
Clustering works by dividing the entries of the database into groups,
which contain people with similar preferences or in general data of similar
type.

13.4 ARTIFICIAL IMMUNE SYSTEMS
BASIC CONCEPTS

13.4.1 Initialization/Encoding
To implement a basic artificial immune system, four decisions have to

be made: encoding, similarity measure, selection and mutation. Once
an encoding has been fixed and a suitable similarity measure is chosen,
the algorithm will then perform selection and mutation, both based on
the similarity measure, until stopping criteria are met. In this section,
we will describe each of these components in turn.

Along with other heuristics, choosing a suitable encoding is very im-
portant for the algorithm’s success. Similar to genetic algorithms, there
is close inter-play between the encoding and the fitness function (the
latter is in artificial immune systems referred to as the “matching” or
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“affinity” function). Hence both ought to be thought about at the same
time. For the current discussion, let us start with the encoding.

First, let us define what we mean by antigen and antibody in the
context of an application domain. Typically, an antigen is the target or
solution, e.g. the data item we need to check to see if it is an intrusion,
or the user that we need to cluster or make a recommendation for. The
antibodies are the remainder of the data, e.g. other users in the data base,
a set of network traffic that has already been identified, etc. Sometimes
there can be more than one antigen at a time and there are usually a
large number of antibodies present simultaneously.

Antigens and antibodies are represented or encoded in the same way.
For most problems the most obvious representation is a string of numbers
or features, where the length is the number of variables, the position is
the variable identifier and the value is the value (could be binary or
real) of the variable. For instance, in a five-variable binary problem, an
encoding could look like this: (10010).

We have previously mentioned data mining and intrusion detection
applications. What would an encoding look like in these cases? For
data mining, let us consider the problem of recommending movies. Here
the encoding has to represent a user’s profile with regards to the movies
he has seen and how much he has (dis)liked them. A possible encoding
for this could be a list of numbers, where each number represents the
“vote” for an item. Votes could be binary, e.g. Did you visit this web
page? (Morrison and Aickelin, 2002), but can also be integers in a range
(say [0, 5]: i.e. 0, did not like the movie at all; 5, liked it very much).

Hence for the movie recommendation, a possible encoding is

U ser = {{id1, score1} , {id2, score2} . . . {idn, scoren}}

Where id corresponds to the unique identifier of the movie being rated
and score to this user’s score for that movie. This captures the essential
features of the data available (Cayzer and Aickelin, 2002a).

For intrusion detection, the encoding may be to encapsulate the essence
of each data packet transferred, e.g. [<protocol><source ip><source
port><destination ip><destination port>]

example: [<tcp> <113.112.255.254><any><108.200.111.12><25>]

which represents an incoming data packet sent to port 25. In these
scenarios, wildcards like “any port” are also often used.
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13.4.2 Similarity or Affinity Measure
As mentioned above, the similarity measure or matching rule is one

of the most important design choices in developing an artificial immune
system algorithm, and is closely coupled to the encoding scheme.

Two of the simplest matching algorithms are best explained using
binary encoding. Consider the strings (00000) and (00011). If one does
a bit-by-bit comparison, the first three bits are identical and hence we
could give this pair a matching score of 3. In other words, we compute
the opposite of the Hamming distance (which is defined as the number of
bits that have to be changed in order to make the two strings identical).

Now consider the pair (00000) and (01010). Again, simple bit match-
ing gives us a similarity score of 3. However, the matching is quite
different as the three matching bits are not connected. Depending on
the problem and encoding, this might be better or worse. Thus, another
simple matching algorithm is to count the number of continuous bits
that match and return the length of the longest matching as the simi-
larity measure. For the first example above this would still be 3; for the
second example it would be 1.

If the encoding is non-binary, e.g. real variables, there are even more
possibilities to compute the “distance” between the two strings, for in-
stance we could compute the geometrical (Euclidian) distance.

For data mining problems, similarity often means “correlation”. Take
the movie recommendation problem as an example and assume that we
are trying to find users in a database that are similar to the key user
who’s profile were are trying to match in order to make recommenda-
tions. In this case, what we are trying to measure is how similar are the
two users’ tastes. One of the easiest ways of doing this is to compute the
Pearson correlation coefficient between the two users, i.e. if the Pearson
measure is used to compare two user’s u and v:

r =

n∑
i=1

(ui − ū)(vi − v̄)√
n∑

i=1
(ui − ū)2

∑n
i=1(vi − v̄)2

(4.1)

where u and v are users, n is the number of overlapping votes (i.e. movies
for which both u and v have voted), ui is the vote of user u for movie i
and ū is the average vote of user u over all films (not just the overlapping
votes). The measure is amended to default to a value of 0 if the two users
have no films in common. During our research reported in Cayzer and
Aickelin (2002a, 2002b) we also found it useful to introduce a penalty
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parameter (as in penalties in genetic algorithms) for users who only have
very few films in common, which in essence reduces their correlation.

The outcome of this measure is a value between −1 and 1, where
values close to 1 mean strong agreement, values near to −1 mean strong
disagreement and values around 0 mean no correlation. From a data
mining point of view, those users who score either 1 or −1 are the most
useful and hence will be selected for further treatment by the algorithm.

For other applications, “matching” might not actually be beneficial
and hence those items that match might be eliminated. This approach
is known as “negative selection” and mirrors what is believed to happen
during the maturation of B-cells who have to learn not to “match” our
own tissues as otherwise we would be subject to auto-immune diseases.

Under what circumstance would a negative selection algorithm be
suitable for an artificial immune system implementation? Consider the
case of intrusion detection as solved by Hofmeyr and Forrest (2000).
One way of solving this problem is by defining a set of “self”, i.e. a
trusted network, our company’s computers, known partners, etc. During
the initialization of the algorithm, we would then randomly create a
large number of “detectors”, i.e. strings that look similar to the sample
intrusion detection system encoding given above. We would then subject
these detectors to a matching algorithm that compares them to our
“self”. Any matching detector would be eliminated and hence we select
those that do not match (negative selection). All non-matching detectors
will then form our final detector set. This detector set is then used in
the second phase of the algorithm to continuously monitor all network
traffic. Should a match be found now the algorithm would report this
as a possible alert or “nonself”. There are a number of problems with
this approach, which we discuss further in Section 7.

13.4.3 Negative, Clonal or Neighborhood
Selection

The meaning of this step differs depending on the exact problem the
Artificial Immune Systems is applied to. We have already described
the concept of negative selection. For the film recommender, choosing a
suitable neighborhood means choosing good correlation scores and hence
we will perform “positive” selection. How would the algorithm use this?

Consider the artificial immune system to be empty at the beginning.
The target user is encoded as the antigen, and all other users in the
database are possible antibodies. We add the antigen to the artificial
immune system and then we add one candidate antibody at a time.
Antibodies will start with a certain concentration value. This value
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decreases over time (death rate), similar to the evaporation in ant sys-
tems. Antibodies with a sufficiently low concentration are removed from
the system, whereas antibodies with a high concentration may saturate.
However, an antibody can increase its concentration by matching the
antigen: the better the match the higher the increase (a process called
stimulation). The process of stimulation or increasing concentration can
also be regarded as “cloning” if one thinks in a discrete setting. Once
enough antibodies have been added to the system, it starts to iterate a
loop of reducing concentration and stimulation until at least one anti-
body drops out. A new antibody is added and the process is repeated
until the artificial immune system is stabilized, i.e. there are no more
drop-outs for a certain period of time.

Mathematically, at each step (iteration) an antibody’s concentration
is increased by an amount dependent on its matching to each antigen.
In the absence of matching, an antibody’s concentration will slowly de-
crease over time. Hence an artificial immune system iteration is governed
by the following equation, based on Farmer et al. (1986):

dxi

dt
=

[(
antigens
recognized

)
−

(
death
rate

)]

=

⎡
⎣ k2

⎛
⎝ N∑

j=1

mjixiyj

⎞
⎠ − k3xi

⎤
⎦

where N is the number of antigens, xi is the concentration of antibody
i, yj is the concentration of antigen j, k2 is the stimulation effect and k3

is the death rate, and mji is the matching function between antibody i
and antibody (or antigen) j.

The following pseudo-code summarizes the artificial immune system
of the movie recommender:

Initialize Artificial Immune Systems
Encode user for whom to make predictions as antigen Ag
WHILE (Artificial Immune Systems not Full) & (More Antibodies) DO

Add next user as an antibody Ab
Calculate matching scores between Ab and Ag
WHILE (Artificial Immune Systems at full size) & (Artificial Immune
Systems not Stabilized) DO

Reduce Concentration of all Abs by a fixed amount
Match each Ab against Ag and stimulate as necessary

OD
OD
Use final set of Antibodies to produce recommendation.
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For example, the artificial immune system is considered stable after
iterating for ten iterations without changing in size. Stabilization thus
means that a sufficient number of “good” neighbors have been identified
and therefore a prediction can be made. “Poor” neighbors would be ex-
pected to drop out of the artificial immune system after a few iterations.
Once the artificial immune system has stabilized using the above algo-
rithm, we use the antibody concentration to weigh the neighbors and
then perform a weighted average type recommendation.

13.4.4 Somatic Hypermutation
The mutation most commonly used in artificial immune systems is

very similar to that found in genetic algorithms, e.g. for binary strings
bits are flipped, for real value strings one value is changed at random, or
for others the order of elements is swapped. In addition, the mechanism
is often enhanced by the somatic idea, i.e. the closer the match (or the
less close the match, depending on what we are trying to achieve), the
more (or less) disruptive the mutation.

However, mutating the data might not make sense for all problems
considered. For instance, it would not be suitable for the movie recom-
mender. Certainly, mutation could be used to make users more similar
to the target; however, the validity of recommendations based on these
artificial users is questionable and if over-done, we would end up with
the target user itself. Hence for some problems, somatic hypermutation
is not used, since it is not immediately obvious how to mutate the data
sensibly such that these artificial entities still represent plausible data.

Nevertheless, for other problem domains, mutation might be very use-
ful. For instance, taking the negative selection approach to intrusion de-
tection, rather than throwing away matching detectors in the first phase
of the algorithm, these could be mutated to save time and effort. Also,
depending on the degree of matching, the mutation could be more or
less strong. This was in fact one extension implemented by Hofmeyr
and Forrest (2000).

For data mining problems, mutation might also be useful, if for in-
stance the aim is to cluster users. Then the center of each cluster (the
antibodies) could be an artificial pseudo-user that can be mutated at will
until the desired degree of matching between the center and antigens in
its cluster is reached. This is an approach implemented by de Castro
and von Zuben (2002).
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13.5 COMPARISON WITH GENETIC
ALGORITHMS AND NEURAL
NETWORKS

So far in this tutorial, both genetic algorithms and neural networks
have been mentioned a number of times. In fact, they both have a num-
ber of ideas in common with artificial immune systems and Table 13.1
highlights their similarities and differences (Dasgupta, 1999). Evolu-
tionary computation shares many elements, concepts like population,
genotype phenotype mapping, and proliferation of the most fitted are
present in different artificial immune system methods.

Artificial immune system models based on immune networks resem-
ble the structures and interactions of connectionist models. Some works
have pointed to the similarities and the differences between artificial im-
mune systems and artificial neural networks (Dasgupta, 1999; de Castro
and Von Zuben, 2002); de Castro has also used artificial immune systems
to initialize the centers of radial basis function neural networks and to
produce a good initial set of weights for feed-forward neural networks.

Some of the items in Table 13.1 are gross simplifications, both to ben-
efit the design of the table and so as not to overwhelm the reader, and
some of the points are debatable; however, we believe that the compar-
ison is nevertheless valuable, to show exactly where artificial immune
systems fit into the wider picture. The comparisons are based on a ge-
netic algorithm (GA) used for optimization and a neural network (NN)
used for classification.

13.6 EXTENSIONS OF ARTIFICIAL
IMMUNE SYSTEMS

13.6.1 Idiotypic Networks—Network
Interactions (Suppression)

The idiotypic effect builds on the premise that antibodies can match
other antibodies as well as antigens. It was first proposed by Jerne
(1973) and formalized into a model by Farmer et al. (1986). The the-
ory is currently debated by immunologists, with no clear consensus yet
on its effects in the humoral immune system (Kuby, 2002). The idio-
typic network hypothesis builds on the recognition that antibodies can
match other antibodies as well as antigens. Hence, an antibody may
be matched by other antibodies, which in turn may be matched by yet
other antibodies. This activation can continue to spread through the
population and potentially has much explanatory power. It could, for
example, help explain how the memory of past infections is maintained.
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Figure 13.2. Illustration of the idiotypic effect.

Furthermore, it could result in the suppression of similar antibodies,
thus encouraging diversity in the antibody pool. The idiotypic network
has been formalized by a number of theoretical immunologists (Perelson
and Weisbuch, 1997):

dxi

dt
= c

[(
antibodies
recognized

)
−

(
I am
recognized

)
+

(
antigens
recognized

)]

−
(

death
rate

)

= c

⎡
⎣ N∑

j=1

mjixixj − k1

N∑
j−1

mijxixj +
n∑

j=1

mjixiyj

⎤
⎦ − k2xi

where N is the number of antibodies and n is the number of antigens, xi

(or xj) is the concentration of antibody i (or j), yj is the concentration
of antigen j, c is a rate constant, k1 is a suppressive effect and k2 is the
death rate, and mji is the matching function between antibody i and
antibody (or antigen) j.

As can be seen from the above equation, the nature of an idiotypic
interaction can be either positive or negative. Moreover, if the matching
function is symmetric, then the balance between “I am recognized” and
“antibodies recognized” (parameters c and k1 in the equation) wholly
determines whether the idiotypic effect is positive or negative, and we
can simplify the equation. We can further simplify Eq. (1) if we only
allow one antigen in the artificial immune system. In Eq. (2), the first
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term is simplified as we only have one antigen, and the suppression term
is normalized to allow a “like for like” comparison between the different
rate constants:

dxi

dt
= k1mixiy − k2

n

n∑
j=1

mijxixj − k3xi (6.1)

where k1 is stimulation, k2 suppression, k3 death rate, mi is the cor-
relation between antibody i and the (sole) antigen, xi (or xj) is the
concentration of antibody i (or j), y is the concentration of the (sole)
antigen, mij is the correlation between antibodies i and j, and n is the
number of antibodies.

Why would we want to use the idotypic effect? Because it might pro-
vide us with a way of achieving “diversity”, similar to “crowding” or
“fitness sharing” in a genetic algorithm. For instance, in the movie rec-
ommender, we want to ensure that the final neighborhood population
is diverse, so that we get more interesting recommendations. Hence,
to use the idiotypic effect in the movie recommender system mentioned
previously, the pseudo-code would be amended by adding the italicized
lines as follows:

Initialize Artificial Immune Systems
Encode user for whom to make predictions as antigen Ag
WHILE (Artificial Immune Systems not Full) & (More Antibodies) DO

Add next user as an antibody Ab
Calculate matching scores between Ab and Ag and Ab and other Abs
WHILE (Artificial Immune Systems at full size) & (Artificial Immune
Systems not Stabilized) DO

Reduce Concentration of all Abs by a fixed amount
Match each Ab against Ag and stimulate as necessary
Match each Ab against each other Ab and execute idiotypic effect

OD
OD
Use final set of Antibodies to produce recommendation.

Figure 11-2 shows the idiotypic effect using dotted arrows and the
standard stimulation using solid arrows. In the diagram antibodies Ab1
and Ab3 are very similar and they would have their concentrations re-
duced in the “iterate artificial immune systems” stage of the algorithm
above.

At each iteration of the film recommendation artificial immune system
the concentration of the antibodies is changed according to the formula
outlined below. This will increase the concentration of antibodies that
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are similar to the antigen and can allow either the stimulation, suppres-
sion, or both, of antibody–antibody interactions to have an effect on
the antibody concentration. More detailed discussion of these effects
on recommendation problems are contained within Cayzer and Aickelin
(2002a, b).

13.6.2 Danger Theory
Over the last decade, a new theory, called the Danger Theory, has

become popular amongst immunologists. Its chief advocate is Matzinger
(1994, 2001, 2003). A number of advantages are claimed for this theory;
not least that it provides a method of “grounding” the immune response.
The theory is not complete, and there are some doubts about how much
it actually changes behaviour and/or structure. Nevertheless, the theory
contains enough potentially interesting ideas to make it worth assessing
its relevance to artificial immune systems.

To function properly, it is not simply a question of matching in the hu-
moral immune system. It is fundamental that only the “correct” cells are
matched as otherwise this could lead to a self-destructive autoimmune
reaction. Classical immunology (Kuby, 2002) stipulates that an immune
response is triggered when the body encounters something nonself or
foreign. It is not yet fully understood how this self–nonself discrimi-
nation is achieved, but many immunologists believe that the difference
between them is learnt early in life. In particular, it is thought that
the maturation process plays an important role to achieve self-tolerance
by eliminating those T- and B-cells that react to self. In addition, a
“confirmation” signal is required: that is, for either B-cell or T- (killer)
cell activation, a T- (helper) lymphocyte must also be activated. This
dual activation is further protection against the chance of accidentally
reacting to self.

Danger Theory debates this point of view (for a good introduction, see
Matzinger, 2003). Technical overviews can be found in Matzinger (1994,
2001). She points out that there must be discrimination happening that
goes beyond the self–nonself distinction described above. For instance:

1 There is no immune reaction to foreign bacteria in the gut or to
the food we eat although both are foreign entities.

2 Conversely, some auto-reactive processes are useful, for example
against self molecules expressed by stressed cells.

3 The definition of self is problematic—realistically, self is confined
to the subset actually seen by the lymphocytes during maturation.
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4 The human body changes over its lifetime and thus self changes
as well. Therefore, the question arises whether defences against
nonself learned early in life might be autoreactive later.

Other aspects that seem to be at odds with the traditional viewpoint
are autoimmune diseases and certain types of tumors that are fought by
the immune system (both attacks against self) and successful transplants
(no attack against nonself).

Matzinger concludes that the immune system actually discriminates
“some self from some nonself”. She asserts that the Danger Theory
introduces not just new labels, but a way of escaping the semantic diffi-
culties with self and nonself, and thus provides grounding for the immune
response. If we accept the Danger Theory as valid we can take care of
“nonself but harmless” and of “self but harmful” invaders into our sys-
tem. To see how this is possible, we will have to examine the theory in
more detail.

The central idea in the Danger Theory is that the immune system
does not respond to nonself but to danger. Thus, just like the self–
nonself theories, it fundamentally supports the need for discrimination.
However, it differs in the answer to what should be responded to. Instead
of responding to foreignness, the immune system reacts to danger. This
theory is borne out of the observation that there is no need to attack
everything that is foreign, something that seems to be supported by the
counter-examples above. In this theory, danger is measured by damage
to cells indicated by distress signals that are sent out when cells die an
unnatural death (cell stress or lytic cell death, as opposed to programmed
cell death, or apoptosis).

Figure 13.3 depicts how we might picture an immune response accord-
ing to the Danger Theory (Aickelin and Cayzer, 2002c). A cell that is
in distress sends out an alarm signal, whereupon antigens in the neigh-
borhood are captured by antigen-presenting cells such as macrophages,
which then travel to the local lymph node and present the antigens to
lymphocytes. Essentially, the danger signal establishes a danger zone
around itself. Thus B-cells producing antibodies that match antigens
within the danger zone get stimulated and undergo the clonal expan-
sion process. Those that do not match or are too far away do not get
stimulated.

Matzinger admits that the exact nature of the danger signal is unclear.
It may be a “positive” signal (for example heat shock protein release) or
a “negative” signal (for example lack of synaptic contact with a dendritic
antigen-presenting cell). This is where the Danger Theory shares some
of the problems associated with traditional self–nonself discrimination
(i.e. how to discriminate danger from non-danger). However, in this case,
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Figure 13.3. Danger theory illustration.

the signal is grounded rather than being some abstract representation
of danger.

How could we use the Danger Theory in artificial immune systems?
The Danger Theory is not about the way artificial immune systems rep-
resent data (Aickelin and Cayzer, 2002c). Instead, it provides ideas
about which data the artificial immune systems should represent and
deal with. They should focus on dangerous, i.e. interesting, data. It
could be argued that the shift from nonself to danger is merely a sym-
bolic label change that achieves nothing. We do not believe this to be the
case, since danger is a grounded signal, and nonself is (typically) a set of
feature vectors with no further information about whether all or some
of these features are required over time. The danger signal helps us to
identify which subset of feature vectors is of interest. A suitably defined
danger signal thus overcomes many of the limitations of self–nonself se-
lection. It restricts the domain of nonself to a manageable size, removes
the need to screen against all self, and deals adaptively with scenarios
where self (or nonself) changes over time.

The challenge is clearly to define a suitable danger signal, a choice
that might prove as critical as the choice of fitness function for an evo-
lutionary algorithm. In addition, the physical distance in the biological
system should be translated into a suitable proxy measure for similarity
or causality in artificial immune systems. This process is not likely to
be trivial. Nevertheless, if these challenges are met, then future artifi-
cial immune system applications might derive considerable benefit, and
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new insights, from the Danger Theory: in particular, intrusion detection
systems (Aickelin et al., 2003).

13.7 SOME PROMISING AREAS FOR
FUTURE APPLICATION

It seems intuitively obvious that artificial immune systems should be
most suitable for computer security problems. If the human immune
system keeps our body alive and well, why can we not do the same for
computers using artificial immune systems? (Aickelin et al., 2004)

We have outlined the traditional approach to do this. However, in
order to provide viable intrusion detection systems, artificial immune
systems must build a set of detectors that accurately match antigens.
In current artificial-immune-system-based intrusion detection systems
(Dasgupta and Gonzalez, 2002; Esponda et al., 2004; Hofmeyr and For-
rest, 2000), both network connections and detectors are modeled as
strings. Detectors are randomly created and then undergo a matura-
tion phase where they are presented with good, i.e. self, connections.
If the detectors match any of these they are eliminated, otherwise they
become mature. These mature detectors start to monitor new connec-
tions during their lifetime. If these mature detectors match anything
else, exceeding a certain threshold value, they become activated. This is
then reported to a human operator who decides whether there is a true
anomaly. If so, the detectors are promoted to memory detectors with an
indefinite life span and minimum activation threshold (immunization)
(Kim and Bentley, 2002).

An approach such as the above is known as negative selection as only
those detectors (antibodies) that do not match live on (Forrest et al.,
1994). Earlier versions of negative selection algorithm used a binary rep-
resentation scheme; however, this scheme shows scaling problems when
it is applied to real network traffic (Kim and Bentley, 2001). As the
systems to be protected grow larger and larger so does self and nonself.
Hence, it becomes more and more problematic to find a set of detectors
that provides adequate coverage, whilst being computationally efficient.
It is inefficient to map the entire self or nonself universe, particularly as
they will be changing over time and only a minority of nonself is harmful,
whilst some self might cause damage (e.g. internal attack). This situa-
tion is further aggravated by the fact that the labels self and nonself are
often ambiguous and even with expert knowledge they are not always
applied correctly (Kim and Bentley, 2002).

How can this problem be overcome? One approach might be to bor-
row ideas from the Danger Theory to provide a way of grounding the



ARTIFICIAL IMMUNE SYSTEMS xxi

response and hence removing the necessity to map self or nonself. In our
system, the correlation of low-level alerts (danger signals) will trigger a
reaction (Aickelin et al, 2003). An important and recent research issue
for intrusion detection systems is how to find true intrusion alerts from
many thousands of false alerts generated (Hofmeyr and Forrest, 2000).
Existing intrusion detection systems employ various types of sensors that
monitor low-level system events. Those sensors report anomalies of net-
work traffic patterns, unusual terminations of UNIX processes, memory
usages, the attempts to access unauthorized files, etc. (Kim and Bentley,
2001). Although these reports are useful signals of real intrusions, they
are often mixed with false alerts and their unmanageable volume forces
a security officer to ignore most alerts (Hoagland and Staniford, 2002).
Moreover, the low level of alerts makes it very hard for a security officer
to identify advancing intrusions that usually consist of different stages
of attack sequences. For instance, it is well known that computer hack-
ers use a number of preparatory stages before actual hacking. Hence,
the correlations between intrusion alerts from different attack stages
provide more convincing attack scenarios than detecting an intrusion
scenario based on low-level alerts from individual stages. Furthermore,
such scenarios allow the intrusion detection system to detect intrusions
early before damage becomes serious.

To correlate intrusion detection system alerts for detection of an in-
trusion scenario, recent studies have employed two different approaches:
a probabilistic approach (Valdes and Skinner, 2001) and an expert sys-
tem approach (Ning et al., 2002). The probabilistic approach repre-
sents known intrusion scenarios as Bayesian networks. The nodes of
Bayesian networks are intrusion detection system alerts and the pos-
terior likelihood between nodes is updated as new alerts are collected.
The updated likelihood can lead to conclusions about a specific intrusion
scenario occurring or not. The expert system approach initially builds
possible intrusion scenarios by identifying low-level alerts. These alerts
consist of prerequisites and consequences, and they are represented as
hypergraphs. Known intrusion scenarios are detected by observing the
low-level alerts at each stage, but these approaches have the following
problems (Cuppens et al., 2002):

1 handling unobserved low-level alerts that comprise an intrusion
scenario,

2 handling optional prerequisite actions,

3 handling intrusion scenario variations.
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The common trait of these problems is that the intrusion detection
system can fail to detect an intrusion when an incomplete set of alerts
comprising an intrusion scenario is reported. In handling this problem,
the probabilistic approach is more advantageous than the expert system
approach because in theory it allows the intrusion detection system to
correlate missing or mutated alerts. The current probabilistic approach
builds Bayesian networks based on the similarities between selected alert
features. However, these similarities alone can fail to identify a causal
relationship between prerequisite actions and actual attacks if pairs of
prerequisite actions and actual attacks do not appear frequently enough
to be reported. Attackers often do not repeat the same actions in order
to disguise their attempts. Thus, the current probabilistic approach fails
to detect intrusions that do not show strong similarities between alert
features but have causal relationships leading to final attacks. This limit
means that such intrusion detection systems fail to detect sophisticated
intrusion scenarios.

We propose artificial immune systems based on Danger Theory ideas
that can handle the above intrusion detection system alert correlation
problems (Aickelin et al., 2003). The Danger Theory explains the im-
mune response of the human body by the interaction between antigen-
presenting cells and various signals. The immune response of each
antigen-presenting cell is determined by the generation of danger sig-
nals through cellular stress or cell death. In particular, the balance and
correlation between different danger signals depending on different cell
death causes would appear to be critical to the immunological outcome.
In the human immune system, antigen-presenting cells activate accord-
ing to the balance of apoptotic and necrotic cells and this activation
leads to protective immune responses. Similarly, the sensors in intrusion
detection systems report various low-level alerts and the correlation of
these alerts will lead to the construction of an intrusion scenario.

13.8 TRICKS OF THE TRADE
Are artificial immune systems suitable for pure optimization? De-

pending on what is meant by optimization, the answer is probably no,
in the same sense as “pure” genetic algorithms are not “function opti-
mizers”. One has to keep in mind that although the immune system
is about matching and survival, it is really a team effort where multi-
ple solutions are produced all the time that together provide the answer.
Hence, in our opinion artificial immune systems are probably more suited
as an optimizer where multiple solutions are of benefit, either directly,
e.g. because the problem has multiple objectives or indirectly, e.g. when
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a neighborhood of solutions is produced that is then used to generate
the desired outcome. However, artificial immune systems can be made
into more focused optimizers by adding hill-climbing or other functions
that exploit local or problem-specific knowledge, similar to the idea of
augmenting genetic algorithm to memetic algorithms.

What problems are artificial immune systems most suitable for? As
mentioned above, we believe that although using artificial immune sys-
tems for pure optimization, e.g. the traveling salesman problem or job
shop scheduling, can be made to work, this is probably missing the point.
Artificial immune systems are powerful when a population of solution is
essential either during the search or as an outcome. Furthermore, the
problem has to have some concept of “matching”. Finally, because at
their heart artificial immune systems are evolutionary algorithms, they
are more suitable for problems that change over time and need to be
solved again and again, rather than one-off optimizations. Hence, the
evidence seems to point to data mining in its wider meaning as the best
area for artificial immune systems.

How do I set the parameters? Unfortunately, there is no short answer
to this question. As with the majority of other heuristics that require
parameters to operate, their setting is individual to the problem solved
and universal values are not available. However, it is fair to say that
along with other evolutionary algorithms artificial immune systems are
robust with respect to parameter values as long as they are chosen from
a sensible range.

Why not use a genetic algorithm instead? Because you may miss out
on the benefits of the idiotypic network effects.

Why not use a neural network instead? Because you may miss out on
the benefits of a population of solutions and the evolutionary selection
pressure and mutation.

Are artificial immune systems Learning Classifier Systems under a
different name? No, not quite. However, to our knowledge learning
classifier systems are probably the most similar of the better known
meta-heuristics, as they also combine some features of evolutionary al-
gorithms and neural networks. However, these features are different.
Someone who is interested in implementing artificial immune systems or
learning classifier systems is likely to be well advised to read about both
approaches to see which one is most suited for the problem at hand.

13.9 CONCLUSIONS
The immune system is highly distributed, highly adaptive, self-

organizing in nature, maintains a memory of past encounters, and has
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the ability to continually learn about new encounters. The artificial im-
mune system is an example of a system developed around the current
understanding of the immune system. It illustrates how an artificial im-
mune system can capture the basic elements of the immune system and
exhibit some of its chief characteristics.

Artificial immune systems can incorporate many properties of natu-
ral immune systems, including diversity, distributed computation, error
tolerance, dynamic learning and adaptation and self-monitoring. The
human immune system has motivated scientists and engineers for find-
ing powerful information processing algorithms that has solved complex
engineering tasks. The artificial immune system is a general framework
for a distributed adaptive system and could, in principle, be applied to
many domains. The artificial immune system can be applied to clas-
sification problems, optimization tasks and other domains. Like many
biologically inspired systems it is adaptive, distributed and autonomous.
The primary advantages of the artificial immune system are that it only
requires positive examples, and the patterns it has learnt can be ex-
plicitly examined. In addition, because it is self-organizing, it does not
require effort to optimize any system parameters.

To us, the attraction of the immune system is that if an adaptive pool
of antibodies can produce “intelligent” behavior, can we harness the
power of this computation to tackle the problem of preference match-
ing, recommendation and intrusion detection? Our conjecture is that if
the concentrations of those antibodies that provide a better match are
allowed to increase over time, we should end up with a subset of good
matches. However, we are not interested in optimizing, i.e. in finding
the one best match. Instead, we require a set of antibodies that are a
close match but which are at the same time distinct from each other
for successful recommendation. This is where we propose to harness the
idiotypic effects of binding antibodies to similar antibodies to encourage
diversity.

SOURCES OF ADDITIONAL INFORMATION
The following websites, books and proceedings should be an excellent

starting point for those readers wishing to learn more about artificial
immune systems.

1 Artificial Immune Systems and Their Applications by D. Dasgupta
(ed.), Springer, Berlin, 1999.

2 Artificial Immune Systems: A New Computational Intelligence
Approach by L. de Castro and J. Timmis, Springer, Berlin, 2002.
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3 Immunocomputing: Principles and Applications by A. Tarakanov
et al., Springer, Berlin, 2003.

4 Proceedings of the International Conference on Artificial Immune
Systems (ICARIS), Springer, Berlin, 2003.

5 Artificial Immune Systems Forum Webpage: http://www.artificial-
immune-systems.org/artist.htm

6 Artificial Immune Systems Bibliography:
http://issrl.cs.memphis.edu/ Artificial Immune Systems/Artificial
Immune Systems bibliography.pdf
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