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Abstract

This thesis develops measures that enable comparisons of subjective informa-

tion that is represented through fuzzy sets. Many applications rely on infor-

mation that is subjective and imprecise due to varying contexts and so fuzzy

sets were developed as a method of modelling uncertain data. However, mak-

ing relative comparisons between data-driven fuzzy sets can be challenging.

For example, when data sets are ambiguous or contradictory, then the fuzzy

set models often become non-normal or non-convex, making them difficult to

compare.

This thesis presents methods of comparing data that may be represented

by such (complex) non-normal or non-convex fuzzy sets. The developed ap-

proaches for calculating relative comparisons also enable fusing methods of

measuring similarity and distance between fuzzy sets. By using multiple meth-

ods, more meaningful comparisons of fuzzy sets are possible. Whereas if only

a single type of measure is used, ambiguous results are more likely to occur.

This thesis provides a series of advances around the measuring of similarity

and distance. Based on them, novel applications are possible, such as person-

alised and crowd-driven product recommendations. To demonstrate the value

of the proposed methods, a recommendation system is developed that enables

a person to describe their desired product in relation to one or more other

known products. Relative comparisons are then used to find and recommend

something that matches a person’s subjective preferences. Demonstrations

illustrate that the proposed method is useful for comparing complex, non-

normal and non-convex fuzzy sets. In addition, the recommendation system is

effective at using this approach to find products that match a given query.
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A a type-1 fuzzy set 2.2.1
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ÃαU an alpha-cut (α-cut) of the upper membership 2.2.3

function of an interval type-2 fuzzy set Ã
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function of an interval type-2 fuzzy set Ã

Ā a continuous real-valued interval 2.2.1

¯̄A a discontinuous real-valued interval containing 2.2.1

continuous intervals Ā

L (W ) the set formed by the union of the zLevels of W 4.3

where W ⊆ GT2(X)

τ(X) difference between the lower and upper 5.3

boundary of X where X is finite

Table 1: Descriptions of notations used throughout this paper and the sections

in which they are first introduced.
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d a distance measure 2.4.2

f ordered weighted average operator 2.5
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dT1:c
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Table 2: Descriptions of functions used throughout this paper and the sections

in which they are first introduced.
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Chapter 1

Introduction

Human decision making involves resolving issues that are often described by

uncertain and subjective information that cannot be captured through tra-

ditional two-valued logic. While some classes of objects have very clear and

certain definitions (e.g., all integers greater than 10), others have inherently

ambiguous definitions (e.g., all integers around 10). The concept of a fuzzy set

was developed to enable one to create mathematical models that capture the

vagueness of languages [1]. Fuzzy set theory provides a framework with which

imprecise problems can be approached in a natural way, instead of forcing one

to redefine unclear terms as precise concepts. By having such models, it is pos-

sible to develop methods for mathematically handling uncertain information

in a manner that is similar to natural human reasoning.

This thesis develops methods of comparing fuzzy sets by measuring their

similarities and their relative, directional distances, in particular for non-

normal and non-convex fuzzy sets used to model subjective information. A

single measure is proposed which captures both of these concepts and is able

to compare any fuzzy set model from type-1 (i.e., two-dimensional), normal,

convex fuzzy sets to general type-2 (i.e., three-dimensional), non-normal, non-

convex fuzzy sets.

1



1.1 Background and Motivation

A common problem with fuzzy sets is the task of how to compare them. Two

useful measures often used in the literature involve comparing the similarities

and distances between fuzzy sets. Similarity measures are commonly used

in classification and clustering [2–7] to determine how similar a variable is

to different categories, and then classify it into the category with which it is

most similar. Distance is a common measure used within ranking and decision

making [8–13]. A distance measure is often used to rank the impact and

importance of different variables and attributes, where importance may be a

subjective term. This often involves determining the relative positions (i.e.,

is one fuzzy set to the left or right of another) as well as the magnitude of

the distance. Many different methods have been developed to compare the

similarity or distance between fuzzy sets.

One under-explored area is the ranking of fuzzy sets that are non-normal

or non-convex. Though some attention has been put forward to compare non-

normal fuzzy sets [11, 14, 15], ranking non-convex information is a problem

which has fallen behind. Though some methods in the literature can be applied

to non-convex fuzzy sets (e.g., comparing the centres of fuzzy sets), these

methods do not always produce expected results. An example of a non-convex

fuzzy set is one that models preferences of food. Whist some people may rate

a given food highly, others may give it a low rating, resulting in two distinct

descriptions.

A single measure on fuzzy sets often focuses on only one aspect of the

model. For example, similarity focuses on comparing degrees of membership

whereas distance focuses more on the values within the fuzzy sets and less so on

their membership. On their own, these measures provide useful information,

but together they are even more informative. Thus, it can be beneficial to

consider an evaluation based on both measures instead of just one.
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1.2 Aims and Objectives

This thesis focuses on developing methods of measuring the similarities and

directional distances between fuzzy sets that model subjective information,

and may therefore be non-normal or non-convex. To illustrate the utility of

these methods, a recommendation system is developed, which relies on relative

comparisons of subjective information. Given this, the key research aims of

this thesis are

• How can relative comparisons of subjective information be achieved,

where the information is modelled by fuzzy sets that may be non-normal

or non-convex?

• How can these comparisons be utilised within recommendation systems

which rely on only subjective information?

The remainder of this section discusses the objectives that must be achieved

to attain these goals.

Different types of fuzzy sets have been developed in the literature and each

type is capable of modelling uncertainty to different levels of detail (discussed

further in Section 2.2). Type-1 fuzzy sets offer a two-dimensional representa-

tion of uncertainty, whereas type-2 fuzzy sets provide additional information

through three-dimensional models. It is important that there are measures of

comparing type-1 and type-2 models so that a given application or measure is

not restricted to only one type of fuzzy set.

These measures must have the same properties to compare each type of

fuzzy set, i.e., the same characteristics of similarity and distance must always

be observed, regardless of the type of fuzzy set. This ensures that results of

the measures can easily be compared because the fuzzy set type does not affect

the nature of the measure or its interpretation.
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Additionally, although a single measure between fuzzy sets is useful, deci-

sion making often involves observing the outcomes of several different compar-

isons. To achieve this process using fuzzy sets, a new measure will be developed

which fuses the concepts of similarity and distance, enabling the comparison

of multiple features of fuzzy sets. The results of this measure should provide

information that must typically be captured by both a similarity and a di-

rectional distance measure. Its main advantage is the representation of this

information without one having to analyse and interpret the results of two

separate measures.

These proposed measures can be useful in complex decision making. One

such example is the application of recommendation systems. Using a database

of fuzzy sets, products can be compared against a person’s subjective and

uncertain desires and the best fitting product is recommended.

Given the above, the objectives of this thesis are as follows:

1. Elucidate the relationship and differences between similarity and dis-

tance.

2. Develop a directional distance measure on fuzzy sets which can be applied

to ranking.

3. Extend the distance measure to be able to compare non-normal and

non-convex fuzzy sets.

4. Expand these measures to enable the same method comparison for type-1

and type-2 fuzzy sets.

5. Develop a measure which incorporates the concepts of similarity and

distance together, providing the information of two measures within a

single result.

6. Develop experiments that illustrate the advantages of these measures

compared with the current literature.
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7. Provide demonstrations of the proposed measures applied to decision

making on recommendations.

1.3 Organisation of the thesis

The remainder of this thesis is organised as follows. Chapter 2 presents a

background on fuzzy sets of type-1 and type-2, discusses the variety of type-2

models and covers methods of generating fuzzy sets that capture subjective

information. Following this, a review of similarity and distances measure on

fuzzy sets is given. The contrasting approaches taken to measure each con-

cept are examined, and some gaps within the field are highlighted. A brief

overview of aggregation operators is also given, which is used to fuse similarity

and distance into a single measure. After this, a review of knowledge-based

recommendation systems within the literature is given. The ideas and meth-

ods used within this field give an example of the application of similarity and

distance in an area where fuzzy sets will be of benefit but are yet unexplored.

Chapter 3 examines gaps within distance measures in the literature. A

new directional distance measure is developed which can be used to determine

not only the difference between two fuzzy concepts but also understand which

contains higher or lower values. The measure is developed for fuzzy sets that

may be non-normal or non-convex.

Chapter 4 expands the work of Chapter 3 onto type-2 fuzzy sets. A distance

measure for interval type-2 fuzzy sets is proposed, followed by a general method

of extending interval type-2 measures to compare general type-2 fuzzy sets.

This is applied to measure both similarity and distance. Both type-2 distance

measures utilise the theory from the previous chapter and can thus measure

the directional distance between non-normal and non-convex fuzzy sets; i.e.,

the same approach (from Chapter 3) may be applied to each type of fuzzy set.

Chapter 5 proposes a novel measure which fuses the comparisons of similar-
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ity and distance. The disadvantages of the individual measures - as a result of

missing information - are counterbalanced by the advantages of the other mea-

sure. This results in a single comparison on fuzzy sets that is more informative

than similarity or distance alone.

Chapter 6 illustrates the utility of the proposed measures when used in

applications. A demonstration is applied to a recommendation system in which

the knowledge base consists of highly subjective information that is replete

with ambiguity and contradictions. A person gives a relative description of

their desired product (e.g., something similar to this but with more/less of

these attributes) and relative comparisons - using a fusion of similarity and

distance - are used to find the product which best matches the individual’s

desires.

Chapter 7 demonstrates the proposed recommendation system using data-

driven type-1 and type-2 fuzzy sets that have complex, non-normal and non-

convex membership functions. These demonstrations discuss how the results

of the combined similarity and distance measure affect how well a product is

recommended for a given query.

The final chapter discusses the conclusions, contributions and limitations

of the research accomplished in this thesis. The scope for future work is also

reviewed, addressing the need for methods with which the uncertainty and

contradictions in the results of the measures can be better understood.

Note that, for simplicity, initial demonstrations of the new measures pro-

posed in this thesis are given using synthetic fuzzy sets. This is because the

properties of the measures are clearer if the fuzzy sets are simple. In later

chapters, demonstrations are given on data-driven fuzzy sets, where data has

been collected through surveys.
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1.4 Contributions to Knowledge

The research in this thesis expands upon similarity and distance measures

in the literature and develops new methods of measuring these concepts on

complex fuzzy sets. These complexities stem from fuzzy set models that have

non-normal or non-convex shapes or are three-dimensional (known as type-2

fuzzy sets), each of which introduces unique challenges. New measures are

developed to determine the directional distance between fuzzy sets and to

incorporate the concept of similarity and how this affects the perception of

distance. New application areas are explored, where fuzzy sets are not typically

used but provide a more natural representation of the data.

The contributions resulting from this thesis are as follows:

• A directional distance is proposed to compare fuzzy sets that may be

non-normal or non-convex.

• Distance measures (directional and non-directional) are proposed for in-

terval type-2 fuzzy sets.

• A general method of extending interval type-2 measures to general type-

2 fuzzy sets is developed. This introduces a new distance measure and a

new similarity measure on general type-2 fuzzy sets.

• A new measure based on the combined evaluation of similarity and dis-

tance is introduced.

• A recommendation system based on the relative comparisons of fuzzy

information is developed and demonstrated.

• A new distance measure is developed that represents the distance be-

tween fuzzy sets as a fuzzy set.

This research has contributed to five peer-reviewed conference papers and one

journal paper that is under review. These publications are listed below.
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Chapter 2

Background

2.1 Introduction

This chapter provides a background of the literature on which this thesis is

based. First, Section 2.2 gives a theoretical study of fuzzy sets, after which

Section 2.3 presents a review of techniques used to construct fuzzy sets from

data. Section 2.4 gives a survey of relative comparisons on fuzzy sets, detailing

different techniques that have been developed to calculate the similarities and

distances between fuzzy sets. After this, Section 2.5 provides a brief overview

of aggregation operators. Additionally, as the theoretical work developed in

this thesis is demonstrated and applied to a knowledge-based recommendation

system, a survey of such systems is presented in Section 2.6. Finally, Section

2.7 presents some conclusions to the literature survey.

As a variety of mathematical notations and functions are used through-

out this thesis, Pages xvii and xviii provide look-up tables for quick reference.

Additionally, Appendix A provides definitions for different properties of math-

ematical functions and indicates which properties are typically found in which

measures.
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2.2 Fuzzy Sets

Fuzzy sets are a simple yet powerful model of representing uncertainty. A

fuzzy set is best described in comparison to a standard set, often referred to

as a crisp set. In crisp set theory an element or object x completely belongs

or does not belong to a set A. The membership of x within A is written as

µA(x) =

1 iff x ∈ A

0 iff x /∈ A
(2.1)

where iff is a shorthand for if and only if ; thus, µA(x) ∈ {0, 1}. Fuzzy sets [1]

extend upon this idea by representing the membership µA(x) within the inter-

val [0, 1] (i.e., µA(x) ∈ [0, 1]), where the values 0 and 1 have the same meaning

as in a crisp set. However, it is now possible to represent the uncertainty that

x belongs to A by any value between 0 and 1. A membership value close to 1

indicates that x has a high degree of membership within A and a value close

to 0 indicates that x has a low degree of membership.

Fuzzy sets are particularly useful for modelling human perceptions as they

are able to capture uncertainty from different points of view. Firstly, people

naturally think in terms of fuzzy concepts rather than crisp values. For exam-

ple, if someone is asked to describe the temperature of a room they are more

likely to use a word such as warm than state the precise temperature.

However, what is warm is unclear as many temperatures may fit this de-

scription. More importantly, it is difficult to describe the boundaries of warm,

i.e., at what temperature does a room cease to be warm and become cool or

hot. Secondly, different people often have different perceptions of the same

thing. For example, whilst someone from a cold climate may describe 18◦C as

warm, someone from a tropical climate may describe it as cool.

To model these two types of uncertainty one may use type-1 or type-2

fuzzy sets. Type-1 fuzzy sets are useful for defining an uncertain term from a

single point of view (e.g., modelling one person’s definition of warm). Type-2
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fuzzy sets build upon this by representing additional degrees of uncertainty

that cannot be captured in a type-1 model (e.g., modelling multiple people’s

conflicting opinions on the definition of warm).

The remainder of this section presents the theoretical background on type-1

and type-2 fuzzy sets and how these can be used to model people’s perceptions.

2.2.1 Type-1 Fuzzy Sets

Fuzzy Set Notations

A fuzzy set is a concept developed by Zadeh [1] that can model the uncertainty

of information. As stated earlier, the membership of an element x in a set A

is a value that may lie anywhere in the interval [0, 1].

Definition 1. Let T1(X) denote the set of all fuzzy sets in the universe of

discourse X. The fuzzy set A ∈ T1(X) may be defined by a set of pairs as

A = {(x, µA(x)) | ∀x ∈ X} , (2.2)

where x is an element in X and µA(x) ∈ [0, 1] denotes the membership value

of x in A. Where X is a continuous universe of discourse, this is often also

expressed as

A =

∫
x∈X

µA(x)/x, (2.3)

where
∫

does not denote integration, but instead denotes the union of all admis-

sible x within X with associated membership value µA(x). When X is discrete,

this is often written as

A =
N∑
i=1

µA(xi)/xi, (2.4)

where
∑

also denotes the union of all admissible x in X and N is the total

number of discretisations in X.

Unless stated otherwise, throughout this thesis when X is discretised in

the interval [0, 10] the value N is fixed as 101, and where X ∈ [1, 5] the value

N is fixed at 41.
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Figure 2.1: A type-1 fuzzy set representing comfortably warm.

Referring to the earlier example, the concept comfortably warm can be

described as a fuzzy set for which the continuous universe of discourse X

consists of temperatures and the membership value of each temperature rep-

resents the certainty that the temperature may be described as comfortably

warm. An example of such a fuzzy set is shown in Figure 2.1. In this exam-

ple, µwarm(5) = 0.0 indicates that 5◦C is not warm, µwarm(15) = 0.5 suggests

that 15◦C is by equal amounts both possibly and possibly not warm, and

µwarm(20) = 1.0 shows that 20◦C is definitely warm.

Referring back to the mathematical representations, we will refer to equa-

tions (2.3) and (2.4) as vertical slices, because one effectively draws a vertical

line at a given value x to find out the membership associated with x. Note

that these representations are more commonly referred to as vertical slices in

type-2 fuzzy sets [16] but, for consistency, will be given the same name for

type-1 fuzzy sets.

Another common representation of fuzzy sets is the alpha-cut (α-cut) rep-

resentation, which is a horizontal sliced approach. This, in contrast, involves

drawing a horizontal line at a given membership value (denoted α) and finding

which values of x have a membership of α or greater.
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Definition 2. An α-cut of A ∈ T1(X) is written as [17]

Aα = {x | µA(x) ≥ α, α ∈ [0, 1]} . (2.5)

Definition 3. The fuzzy set A can be represented by its alpha-cuts (α-cuts)

as [17]

A =

∫ 1

0

αAα,

where
∫ 1

0
is the union of all Aα within the continuous interval from 0 to 1, and

αAα is not multiplication but shows the mapping of pairs α and Aα. Using a

discrete range of α-cuts, this may be rewritten as

A =
M∑
m=1

αmAαm ,

where M is the total number of discretisations on the membership axis; i.e.,

the total number of α-cuts. Unless stated otherwise, throughout this thesis

when α-cuts are discrete M is fixed as 10 such that the coordinates α ∈

{0.05, 0.1, 0.15, ..., 1.0} are used.

Definition 4. The α-cut of a fuzzy set can be represented as a continuous

interval. Thus, an α-cut may be rewritten as

Aα = [AαL, AαR]

AαL = min {x | µA(x) ≥ α, α ∈ [0, 1]}

AαR = max {x | µA(x) ≥ α, α ∈ [0, 1]}

However, this representation changes when fuzzy sets are non-normal or

non-convex, as discussed next.

Non-Normal and Non-Convex Type-1 Fuzzy Sets

A fuzzy set may be normal or non-normal.

Definition 5. The height HA of a fuzzy set A is its maximum membership

value, defined as supx∈X µA(x) [1].
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Figure 2.2: A non-normal fuzzy set.

Definition 6. A type-1 fuzzy set A ∈ T1(X) is normal if there is at least one

value of x that has certain membership within A; i.e., ∃x ∈ X, µA(x) = 1.0

or HA = 1.0. If no such element exists then the fuzzy set is non-normal.

Figure 2.2 shows an example of a non-normal fuzzy set with a height of

0.8.

Whether a fuzzy set is normal depends on a multitude of factors which are

essentially a choice by the designer. In some applications it may be necessary

for all fuzzy sets to be normal, and in other applications this may not be

sensible or possible [18]. Non-normal fuzzy sets can introduce complications

if the α-cut representation of fuzzy sets is required. When a fuzzy set is

normal and convex (see Definition 7), any given α-cut can be represented as

a continuous interval. However, if the fuzzy set is non-normal then any α-cut

exceeding its height will be the empty set. For example, in Figure 2.2, Aα = ∅

where α > 0.8.

Another design choice when constructing fuzzy sets is that of convexity.

Typically, a convex membership function is chosen, but complex data may

require a more complex model that is non-convex [18].

Definition 7. A fuzzy set A is convex if and only if all of its α-cuts are

14



Figure 2.3: A non-convex fuzzy set.

continuous. This is defined as [1]

∀x1 ∈ X, ∀x2 ∈ X, ∀λ ∈ [0, 1],

µA(λx1 + (1− λ)x2) ≥ min{µA(x1), µA(x2)}. (2.6)

Thus, a fuzzy set that does not satisfy (2.6) is non-convex.

The α-cut representation of non-convex fuzzy sets cannot be represented

by a continuous interval (as is possible with convex fuzzy sets). For example,

Figure 2.3 shows an example of a non-convex fuzzy set. Any α-cut at α > 0.6

can only be represented by a discontinuous interval, for example at α = 0.5,

Aα = [3.49, 6.51], however at α = 0.7, Aα = {[3.69, 4.75], [5.25, 6.31]}, which

contains two intervals that do not intersect. Such intervals will be referred to

as discontinuous intervals.

Definition 8. Let a discontinuous interval H be [19]

H =
I⋃
i=1

[H]i (2.7)

where [H]i represents the ith continuous interval within H and I is the total

number of intervals within H.
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Set-Theoretic Operations on Type-1 Fuzzy Sets

Set-theoretic operations are commonly used, for example, to join two fuzzy

sets together. These operations are used in many applications, such as fuzzy

logic systems [20] or when calculating the similarity between fuzzy sets (see

Section 2.4.1). The most common set-theoretic operations are union, intersec-

tion and complement. To calculate the intersection and union of fuzzy sets,

any given membership value is the t-norm or t-conorm of the given fuzzy sets’

membership values, respectively.

Definition 9. The intersection of two fuzzy sets A,B ∈ T1(X) is

A ∩B = {(x, t({µA(x), µB(x)})) | ∀x ∈ X}

where t is any t-norm. For any given value x, this may be written as

µA∩B(x) = t({µA(x), µB(x)}).

Definition 10. Formally, the union of two fuzzy sets A,B ∈ T1(X) is

A ∪B = {(x, t′({µA(x), µB(x)})) | ∀x ∈ X}

where t′ is any t-conorm. For any given value x, this is often written as

µA∪B(x) = t′({µA(x), µB(x)}).

Typically, t and t′ are the minimum and maximum t-norm and t-conorms.

However, there are many others available in the literature.

Definition 11. The complement of a fuzzy set is represented by the comple-

ment of its membership value for each x ∈ X. The complement of A, denoted

A′ is

A′ = {(x, 1− µA(x)) | ∀x ∈ X} .
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Another common calculation on fuzzy sets is known as defuzzification. This

involves reducing a fuzzy set to a single value by essentially using the average

value (often the mean or median) of the fuzzy set. Defuzzification is commonly

used to provide an easy to understand output in expert systems [20].

Definition 12. To reduce a fuzzy set to a single crisp value, the centroid of a

fuzzy set A ∈ T1(X) is [20]

Ac =

∑N
i=1 xiµA(xi)∑N
i=1 µA(xi)

, (2.8)

where N is the total number of discretisations used on the x-axis.

In this thesis, (2.8) is used to achieve defuzzification. However, the reader

should be aware that there are several other methods within the literature [20].

2.2.2 General Type-2 Fuzzy Sets

Ten years after the establishment of fuzzy sets (often referred to as type-1

fuzzy sets), Zadeh [17] introduced the concept of a type-2 fuzzy set as a model

of a linguistic variable. The difference between type-1 and type-2 fuzzy sets

lies in the representation of a value’s membership. In a type-1 fuzzy set, the

membership of x in A is represented by a single value within [0, 1]. However,

the membership of x in a type-2 fuzzy set Ã is represented by a type-1 fuzzy

set with the universe of discourse in [0, 1].

Definition 13. Let GT2(X) represent the set of all general type-2 fuzzy sets

within X, then the fuzzy set Ã ∈ GT2(X) is formally written in terms of a set

of pairs as [16]

Ã = {((x, u), µÃ(x, u)) | ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} , (2.9)

where x is the primary variable in X, u is the secondary variable which has the

domain Jx ∈ [0, 1], and the amplitude of µA(x, u) is known as the secondary
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grade. If X is a discrete universe of discourse then Ã is often rewritten as [16]

Ã =
∑
x∈X

∑
u∈Jx

µÃ(x, u)/(x, u) Jx ⊆ [0, 1], (2.10)

where
∑∑

denotes the union over all admissible x and u. In a continuous

universe of discourse,
∑∑

is replaced with
∫ ∫

.

These are referred to as vertical slice representations [16].

Note that the terms for the universe of discourse, primary membership

and secondary membership are often labelled x, u, and µ, respectively, within

general type-2 literature. However, when describing type-1 fuzzy sets x and

µ are used to describe the universe of discourse and the primary membership,

respectively.

Additionally, throughout this thesis, when discussing the non-normality or

non-convexity of type-2 fuzzy sets, it is only the primary membership (the

(x, u) pairs) in which this is explored. Non-normal and non-convex member-

ships may also be modelled within the secondary membership functions (in

µ(x, u)). However, this is outside the scope of this thesis.

The introduction of secondary membership functions is useful as it enables

one to more correctly define membership values that are noisy or uncertain by

using a less precise representation. This additional uncertainty can be a result

of collecting data from noisy devices (e.g., from sensors) or from individuals

who have differing opinions (e.g., from a survey).

As stated earlier, a type-2 fuzzy set represents uncertainty that cannot be

modelled by a type-1 fuzzy set. Using the earlier example in which the concept

warm is defined, a type-2 fuzzy set can depict multiple people’s opinions on the

definition of warm. Figure 2.4 shows a general type-2 fuzzy set representing the

concept warm using a three-dimensional model. Taking a vertical slice at x =

21 produces the type-1 secondary membership function shown in Figure 2.4c.

This shows that 21◦C is possibly warm with a membership of approximately
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0.9. From this, we can see that the majority of people agree that 21◦C is

warm, but there is no complete consensus.

As a result of their three-dimensional nature, the computational complex-

ity of modelling and performing calculations on general type-2 fuzzy sets is

significantly higher than that of type-1 fuzzy sets. To handle this increased

complexity there have been many different representations of general type-2

fuzzy sets over the years. As well as describing the fuzzy sets as a collection

of vertical slices (2.9), the most well known representations include using em-

bedded membership functions and wavy-slices [16], which involve representing

a type-2 fuzzy set as a collection of its embedded type-1 fuzzy sets. These

methods are well established and have been use in numerous publications in

the literature.

Another approach is the geometric representation [21], which uses com-

putational geometry to enable one to model secondary membership functions

without the need for discretisation. Other methods include the alpha-plane

model [22] and the zSlices approach [23], which use strict discretisations in the

secondary membership values. Although these two methods go by different

names, the theory is the same [24].

Throughout this thesis, the zSlices approach has been chosen to simplify

the representation of general type-2 fuzzy sets and thus the zSlices notations

will be used. However, if one wishes, it is also possible to represent all of the

given general type-2 theory using the alpha-plane notations [25]. A zSlices

type-2 fuzzy set is best represented as a collection of interval type-2 fuzzy

sets, thus the next section will introduce interval type-2 fuzzy sets, followed

by details of the zSlices representation in the succeeding section.
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(a) View of the front

(b) View from below

(c) View of the secondary membership

function at x = 21.

Figure 2.4: A general type-2 fuzzy set representing comfortably warm. x is the

universe of discourse, u is the primary membership and µ(x, u) is the secondary

membership at x and u.
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2.2.3 Interval Type-2 Fuzzy Sets

Type-2 fuzzy have often been less popular than type-1 fuzzy sets due to the

increased complexities that come with modelling them. Firstly, they are more

difficult to draw or conceptualise because they can only be fully depicted by a

three-dimensional image; unlike type-1 fuzzy sets which are two-dimensional.

Additionally, formulae such as union and intersection are less straightforward

than for type-1 fuzzy sets and are more computationally complex [16]. To

reduce these issues, interval type-2 fuzzy sets have frequently been used in the

literature as an alternative to the general type-2 form. This representation

involves a drastic simplification of the secondary membership functions.

In an interval type-2 fuzzy set, the membership of a value x is not repre-

sented by a type-1 fuzzy set, but instead by an interval. The values contained

in this interval secondary membership function are the same as contained in

the type-1 secondary membership function of a general type-2 fuzzy set, but

now all of the membership values that were greater than 0 (in the general

type-2 case) are changed to 1.

Definition 14. Let IT2(X) represent the set of all interval type-2 fuzzy sets

within X. The fuzzy set Ã ∈ IT2(X) is formally written as [26]

Ã = {((x, u), µÃ(x, u) = 1) | ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (2.11)

Note, this is a vertical slice representation, where Jx denotes each vertical slice.

Figure 2.5 shows an interval type-2 model of the general type-2 fuzzy set

previously shown in Figure 2.4. From this figure, the reader should be able

to see that interval type-2 fuzzy sets are a simplification of general type-2

fuzzy sets. The vertical slice at x = 21 in Figure 2.5c shows the possibility

that 21◦C is considered to be warm. In this case, there is agreement that

there is at least a 0.8 possibility that 21◦C is warm. Note that this is a more

simplified interpretation of the secondary membership function of the general

type-2 fuzzy set in Figure 2.4c.
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(a) View of the front

(b) View from below

(c) View of the secondary membership

function at x = 21.

Figure 2.5: An interval type-2 fuzzy set representing comfortably warm. x

is the universe of discourse, u is the primary membership and µ(x, u) is the

secondary membership at x and u
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The interval boundaries of an interval type-2 fuzzy set are often referred

to as lower and upper membership functions. For example, in Figure 2.5,

the lower membership function is the trapezoid bounded within 15 ≤ x ≤ 30

and its membership values are denoted µ
Ã

(x),∀x ∈ X. Likewise, the upper

membership function is the trapezoid bounded within 10 ≤ x ≤ 35 with its

membership values denoted µÃ(x), ∀x ∈ X. This is described formally, next.

Definition 15. The vertical slice Jx of Ã ∈ IT2(X) is written as [26]

Jx = [µ
Ã

(x), µÃ(x)],∀x ∈ X,

where µ
Ã

(x) and µÃ(x) refer to the lower and upper membership functions,

respectively. The union of bounded regions Jx is commonly referred to as the

footprint of uncertainty; this is the region where µ(x, u) = 1.

Definition 16. The α-cut of an interval type-2 fuzzy set may be represented

by the α-cuts of the upper and lower membership functions; throughout this

thesis this is denoted Ãα =
{
ÃαW , ÃαU

}
for Ã ∈ IT2(X) where ÃαW and ÃαU

are the α-cuts of the lower and upper membership functions of Ã, respectively.

Note that the letters W and U have been used to distinguish between the

α-cuts of the lower and upper membership functions, whilst the letters L and

R distinguish between the left and right boundaries of the continuous intervals

within ÃαW and ÃαU .

One should bear in mind that it is common for the lower membership

function of a type-2 fuzzy set to be non-normal (as is the case in Figure 2.5),

thus any α-cuts above the height of the lower membership function will be

empty (e.g., where α = 0.9 in Figure 2.5).

Defuzzification of an interval type-2 fuzzy set is typically referred to as

type reduction as it reduces the type-2 fuzzy set to a type-1 fuzzy set. This is

achieved by calculating the centroid of each embedded type-1 fuzzy set within

the type-2 fuzzy set. The Karnik-Mendel algorithms are the most well known
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methods of achieving this [27]. The type-reduced centre of an interval type-2

fuzzy set is an interval-bounded type-1 fuzzy set. For Ã ∈ IT2(X), the type

reduced set of Ã will be denoted C(Ã) = [CL(Ã), CR(Ã)].

Note that the union, intersection and centroid of interval type-2 fuzzy sets

have been well studied, but are not used within this thesis. One may refer to

[26] for such operations.

2.2.4 zSlices-Based General Type-2 Fuzzy Sets

As stated in Section 2.2.2, the zSlices [23] and alpha-plane [22] approaches

are identical methods of simplifying the representation of general type-2 fuzzy

sets. Throughout this thesis, the zSlices notations will be used.

A zSlices type-2 fuzzy set can be composed by slicing a general type-2

fuzzy set along the z-axis (or the µ(x, u) axis), effectively breaking the fuzzy

set down into many interval type-2 fuzzy sets called zSlices. However, unlike

regular interval type-2 fuzzy sets that have a secondary membership grade of

1, each zSlice has a height of zi, referred to as the zLevel.

Definition 17. The zSlice Zi, whose secondary membership grade is zi, is

written as [23]

Z̃i =
{

((x, u), µZ̃i(x, u) = zi) | ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]
}
. (2.12)

This is the vertical slice representation of an individual zSlice.

Definition 18. The fuzzy set Ã is represented as a collection of zSlices [23]

as

Ã =
I∑
i=1

Z̃i, (2.13)

where
∑

also denotes the union of all admissible zi and I is the total number

of zSlices.
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Note that µÃzi
(x) is used to denote the primary membership of the ith

zSlice of Ã and, as in interval type-2 fuzzy sets, µÃzi
(x) and µ

Ãzi
(x) represent

the upper and lower membership values, respectively, of the zSlice Ãzi at x.

The zSlice Z0 is disregarded because its secondary grade is 0 and thus it

does not contribute to the fuzzy set [23]. As more zSlices are used to represent

a general type-2 fuzzy set, the zSlices-based representation of the original set

becomes more accurate. Additionally, if only one zSlice is used then the zSlices

representation reduces to an interval type-2 fuzzy set.

In addition to simplifying general type-2 fuzzy sets, “Pure” zSlices-based

fuzzy sets (i.e., sets that do not simplify general type-2 fuzzy sets but are

intended to be only zSlices-based) have also been used in the literature to

model agreement shared between individuals [28, 29].

Referring to the earlier example in which warm is represented by a fuzzy

set, Figure 2.6 depicts the general type-2 example (in Figure 2.4) as a zSlices

fuzzy set using four zSlices. One can see in this figure that a zSlices fuzzy

set is represented by many interval type-2 fuzzy sets of differing heights. As

the height of a zSlice increases, the area of its footprint of uncertainty (where

µZ̃i(x, u) > 0) decreases; thus each zSlice represents a higher degree of mem-

bership than the previous slice. Although only four zSlices are used in this

figure, if this number is increased the model will more closely represent the

general type-2 fuzzy set in Figure 2.4. Note also that the vertical slice in Figure

2.6c is a discretised version of the general type-2 case shown in Figure 2.4c.

To calculate operations such as union, intersection and centroid, one can

apply the interval type-2 methods to each zSlice and aggregate the results,

thereby achieving the operation on a general type-2 fuzzy set [23]. This tech-

nique will be used later in the thesis to apply methods of comparing interval

type-2 fuzzy sets to enable the same comparison on general type-2 fuzzy sets.

Also using this approach, the α-cuts of a zSlices fuzzy set can be represented

by the α-cuts of each zSlice.
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(a) View of the front.

(b) View from below.

(c) View of the secondary member-

ship function at x = 21.

Figure 2.6: A zSlices general type-2 fuzzy set representing comfortably warm.

x is the universe of discourse, u is the primary membership and µ(x, u) is the

secondary membership at x and u.
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Definition 19. The α-cut of an interval type-2 fuzzy set Ã is Ãα =
{
ÃαW , ÃαU

}
(described in Definition 16), therefore the α-cut of each zSlice of a zSlices gen-

eral type-2 fuzzy set Ã may be represented as Ãziα =
{
ÃziαW

, ÃziαU

}
. Follow-

ing from this, the α-cuts of all zSlices may be represented as a set of pairs as

Ãα =
{

(zi, Ãziα ),∀zi ∈ Z
}

.

Note that the union, intersection and centroid of zSlices general type-2

fuzzy sets have been well studied, but are not used within this thesis. One

may refer to [23] for such operations.

This section has presented a theoretical background on the mathematical

representations of different types of fuzzy sets and their properties. The next

section gives an overview of how the membership functions of these fuzzy sets

can be constructed from data.

2.3 Constructing Membership Functions

Many techniques have been developed in the literature to generate membership

functions of fuzzy sets from data and several surveys of methods have been

written [30–32]. Constructing type-1 memberships functions have been most

commonly researched. However, several methods of constructing type-2 fuzzy

sets have also been developed in recent years. This section gives an overview

of different approaches within the literature.

2.3.1 Type-1 Fuzzy Sets

This section describes four unique methods that have often been used to gen-

erate the membership function of a type-1 fuzzy set from data.

The polling technique [33] involves asking a group of n subjects if “x

belongs to A” is a true or false statement for some x ∈ X; for example “is 18◦C

warm?” Given a set of subjects {s1, s2, ..., sn}, let si(x) denote the answer from
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Figure 2.7: A fuzzy set representing the data (2.15) using the polling technique

(2.14).

the subject si for the value x, where si(x) = 1 if the statement is true and is

0 otherwise. The membership value of x in the fuzzy set A is then given as

µA(x) =

∑n
i=1 si(x)

n
. (2.14)

where n is the total number of subjects.

For example, suppose three subjects are asked to state which temperatures

from {17, 18, 19, 20} describe room temperature, the results being

s1(17) = 0, s1(18) = 1, s1(19) = 1, s1(20) = 0

s2(17) = 1, s2(18) = 1, s2(19) = 1, s2(20) = 0

s3(17) = 0, s3(18) = 1, s3(19) = 1, s3(20) = 1 (2.15)

Using (2.14), these form the fuzzy set

{(17, 0.33), (18, 1.0), (19, 1.0), (20, 0.33)} .

Figure 2.7 represents this fuzzy set, using linear interpolation between integers.

Note, one can also weight si(x) based on the expertise of si; i.e., subjects

with more knowledge of A are given a higher impact/weight in µA(x) [34].

Reverse rating [35] involves asking subjects what value x has a given

membership value µ in the fuzzy set A. To help decide the value of x, surveys
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Figure 2.8: A fuzzy set representing the data (2.16) using the reverse rating

technique (2.14).

often present a restricted set of x values from which the subject can choose

[35]. For example, “given a list of houses, which best represent a pleasing house

with a membership of 0.8?” The fuzzy set is constructed in the same manner

shown in (2.14) where si(x) ∈ [0, 1].

For example, consider if subjects are asked to state from the set of tem-

peratures {17, 18, 19, 20} which temperature best describes room temperature

with certainties 0.5 and 1.0. The results from three subjects are

s1(17) = 0.5, s1(18) = 1.0, s1(19) = 1.0

s2(17) = 1.0, s2(18) = 1.0, s2(19) = 1.0, s2(20) = 0.5

s3(17) = 0.5, s3(18) = 1.0, s3(19) = 1.0, s3(20) = 1.0 (2.16)

Using (2.14), these form the fuzzy set

{(17, 0.67), (18, 1.0), (19, 1.0), (20, 0.5)} .

Figure 2.8 represents this fuzzy set, using linear interpolation between integers.

Note that the polling and reverse rating methods result in highly discre-

tised membership functions. However, it is often necessary to have a continu-

ous function, for example to enable the extraction of α-cuts, as necessary for

a number of operations. There are several techniques in the literature that
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achieve this. For example, one may use linear interpolation [35], Lagrange

interpolation [34], or least-square curve fitting [34]. As this thesis focuses on

comparisons between fuzzy sets rather than their construction, linear interpo-

lation is adequate and will be used throughout.

Another method of avoiding discretised data is to assign membership values

to interval values rather than singletons. Two interval-based techniques have

been developed to construct type-1 membership functions.

The interval estimation-1 approach [36] is a technique that is similar

to reverse rating. Subjects give a range of values [xl, xr] that have a given

membership value µ in the fuzzy set A. For example, “what range of heights

best represents a tall person with a membership of 0.8?” Multiple subjects

answers are joined together in the same manner as the reverse rating method.

For example, consider if subjects are asked to state from a range of tem-

peratures within [17, 20] which intervals best describe room temperature with

certainties 0.5 and 1.0. Consider three subjects who gave the results

s1([17, 18)) = 0.5, s1([18, 19]) = 1.0

s2([17, 19]) = 1.0, s2([19, 20]) = 0.5

s3([17, 18)) = 0.5, s3([18, 20]) = 1.0 (2.17)

Using (2.14), these form the fuzzy set

{([17, 20], 0.5), ([17, 19], 0.67), ([18, 19], 0.83), (19, 1.0)} .

Note that if a value appears in multiple intervals, its highest assigned mem-

bership is used. Figure 2.9 represents this fuzzy set.

Interval estimation-2 [32] is another method in which subjects give a

range of values. However, this range is not associated with a specific member-

ship value; i.e., from the subject’s point of view, everything within the interval

has a membership value of 1, and everything outside has zero membership. For

example, “what range of heights best represents a tall person?” The results

are then aggregated to create a type-1 fuzzy set.
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Figure 2.9: A fuzzy set representing the data (2.17) using the interval

estimation-1 technique (2.14).

For example, Wagner et al. [37] introduced the Interval Agreement Ap-

proach (a method of interval estimation-2), which uses interval-valued data

to construct type-1 and general type-2 fuzzy sets for the goal of capturing

inter- and intra-source uncertainty. A set of intervals Ā =
{
Ā1, Ā2, ..., Ān

}
is

constructed into a type-1 fuzzy set as

A = y1/
⋃
i1=1

Āi1

+ y2/
( n−1⋃
i1=1

n−1⋃
i2=i1+1

(Āi1 ∩ Āi2)
)

+ y3/
( n−2⋃
i1=1

n−1⋃
i2=i1+1

n⋃
i3=i2+1

(Āi1 ∩ Āi2 ∩ Āi3)
)

+ ...

+ yn/
( 1⋃
i1=1

...

n⋃
in=n

(Āi1 ∩ ... ∩ Āin)
)
. (2.18)

Using the same example as (2.15), subjects may choose intervals of tem-

peratures that represent room temperature as

s1([18, 19]) = 1

s2([17, 19]) = 1

s3([18, 20]) = 1 (2.19)
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Figure 2.10: A fuzzy set representing the data (2.19) using the interval

estimation-2 technique (2.18).

Using (2.18) this is constructed into the fuzzy set shown in Figure 2.10.

This thesis focuses on constructing membership functions using the polling

technique and interval estimation-2. These are chosen because they do not

require subjects to have an understanding of membership values. This sim-

plifies the data collection process as it distances subjects from needing an

understanding of the mathematics behind fuzzy set theory.

2.3.2 Interval Type-2 Fuzzy Sets

Mendel [38] proposed two methods of constructing interval type-2 fuzzy sets

from data, referred to as the person-MF approach and interval endpoints ap-

proach.

In the person-MF approach, subjects define interval type-2 fuzzy sets

to represent their uncertainty in the definition of a given linguistic term. Mul-

tiple fuzzy sets are collected and aggregated into a single interval type-2 fuzzy

set which gives an overall representation of each subject’s uncertainty. This

method, however, has the disadvantage that it is not developed to capture the

agreement between the fuzzy set given by each subject (a general type-2 model

is required to capture this).

In the interval endpoints approach, subjects provide an interval of
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values to represent a given term. The means and standard deviations of the

end points are then used to generate an interval type-2 fuzzy set that models

the collection of intervals. However, reducing the data to its mean and standard

deviation simplifies the model and does not fully capture disagreement between

individuals.

In addition to the above, Liu and Mendel [39] proposed the Interval Ap-

proach, which was later expanded into the Enhanced Interval Approach.

The Interval Approach maps interval-valued data to an interval type-2

fuzzy set with the goal of modelling linguistic variables. Subjects provide an

interval of values that they believe represents a given linguistic term. Each

interval is converted into a type-1 membership function and these are treated

as embedded type-1 membership functions of an interval type-2 fuzzy set. Any

type-1 membership functions that fall outside of a given range are removed and

the upper and lower membership functions of the interval type-2 fuzzy set are

defined by the union and intersection of the remaining embedded type-1 fuzzy

sets, respectively.

The Enhanced Interval Approach [40] has also been developed which

aims to overcome limitations of the interval approach. Limitations in the

original method include wide footprints of uncertainty and small heights in

the lower membership function.

2.3.3 zSlices General Type-2 Fuzzy Sets

The Interval Agreement Approach [37], as introduced in Section 2.3.1,

uses interval-valued data to construct type-1 and general type-2 fuzzy sets.

The method of generating type-1 membership functions is described in (2.18).

This is expanded to general type-2 fuzzy sets to capture additional information.

In this method, a collection of type-1 fuzzy sets are aggregated into general

type-2 fuzzy sets to capture their agreement. Given a series of type-1 fuzzy
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sets An where n ∈ {1, ..., N} and N is the total number of type-1 fuzzy sets,

these are aggregated as [37]

µ(Ã) = z1

/ N⋃
i1=1

Ai1

+ z2

/(N−1⋃
i1=1

N⋃
i2=i1+1

(Ai1 ∩ Ai2)
)

+ z3

/(N−2⋃
i1=1

N−1⋃
i2=i1+1

N⋃
i+3=i2+1

(Ai1 ∩ Ai2 ∩ Ai3)
)

+ ...

+ zN

/( 1⋃
i1=1

...
N⋃

iN=N

(Ai1 ∩ ... ∩ AiN )
)
, (2.20)

where zi = i
N

.

In a similar example, Wagner and Hagras [28] constructed zSlices fuzzy sets

as a collection of interval type-2 fuzzy sets. Multiple interval type-2 fuzzy sets

are generated to model a sensor over several days. These fuzzy sets are then

aggregated to produce a zSlices general type-2 fuzzy set. Higher secondary

membership values (zLevels) occur where there is more agreement between

the interval type-2 fuzzy sets.

2.3.4 Considering Non-Normal and Non-Convex

Type-1 Membership Functions

Much of the literature focuses on using fuzzy sets that are restricted to normal

and convex membership functions. In fact, in many cases, the shape of the

membership function is limited to common forms, including triangular, left-

shoulder, right-shoulder, trapezoidal and Gaussian distributions. However,

these shapes are often a poor representation of linguistic terms because they

cannot show irregularities in data [18].

Although non-convex membership functions have gained little attention in
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the literature, non-normal fuzzy sets have been utilised many times [11, 14, 15,

41]. One should note that when using the polling and direct rating techniques

(described in Section 2.3.1), it is highly possible that no value x will result with

a membership value of 1 within a fuzzy set A; this will only occur if everybody

surveyed agrees that a given x belongs to A. Thus, a non-normal membership

function conveys a lack of prefect agreement between people.

Non-convex fuzzy sets are less common in the literature but may be more

suitable to represent data than a convex membership function. For example,

Garibaldi and John [18] present three cases in which non-convex fuzzy sets may

occur. The first is in non-time-related contexts, for example representing how

desirable a glass of milk is at varying temperatures. Subjects tend to give high

ratings for cold and hot temperatures, but a low rating for warm temperatures,

resulting in a non-convex membership function. The second example is in time-

related contexts, for example the possibility of eating a meal given the time of

day is non-convex, with higher membership values occurring around popular

meal times. The final example is of the consequent fuzzy set that results from

a fuzzy logic system.

Considering this, it is important to consider that membership functions

should not always be restricted to simple, normal, convex shapes. As stated

earlier, throughout this thesis the polling and Interval estimation-2 approaches

will be used. Using these approaches, it is highly likely that the resulting fuzzy

sets will be non-normal or non-convex as no restrictions or pre-processing is

applied to simplify the data to stop such membership functions from occurring.

Such pre-processing is avoided because simplifying the fuzzy sets results in a

model that represents different data to the original data.

Having explored the different types of fuzzy sets and methods of construct-

ing their membership functions, the next section focuses on how relative com-

parisons can be used to calculate the similarities and distances between fuzzy

sets.
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2.4 Measures on Fuzzy Sets

This thesis focuses on developing measures of similarity and distance on fuzzy

sets. Given this, it is important to make the distinction between these two

types of measures clear.

Similarity is a frequently used concept that stems from human thought pro-

cesses. It involves recognising patterns and making associations which enable

one to classify objects and concepts. Similarity involves the highly context-

dependent comparison of features that are often qualitative in nature [42]. As

a result, it is often difficult to compare objects or concepts because the fea-

tures of importance may differ from different people’s perspectives. Similarity

is most commonly applied to solve problems in the domains of categorisa-

tion, classification and clustering. In these examples, a new object is classified

into a given category if it is more similar to the objects within that category

compared to those in other categories.

Distance is also a widely used concept to measure the space or length be-

tween two points, sets or objects. Methods of calculating distance, as one

would expect, are dependent on the given context. For example, the distance

between geometric, numerical data will be calculated using a different ap-

proach to measuring the distance between non-numerical sets. Additionally,

the properties of the data affect the properties of the measure. For example,

in a directional graph, the shortest route from A to B may be different to the

shortest route from B to A. In this case, a distance measure should not be

symmetrical, even though symmetry is an important property of distance in

many other contexts.

The most common measures of distance are metrics. A metric is a function

that defines the distance between two points in metric space. A metric space is

a set in which the distances between points are clearly defined (by the metric).

One of the most common metrics is the Euclidean distance, which measures
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the distance between points in Euclidean space. Note that the properties of a

metric are important as they strictly correspond to the metric space in which

they are used.

The remainder of this section provides a survey of similarity and distance

measures on fuzzy sets. Note that Appendix A provides an overview of the

properties of each type of measure for quick reference.

2.4.1 Similarity Measures

Within the context of fuzzy sets, the concept of similarity was first introduced

by Zadeh in 1971 [43]. After this, due to the complex and context-dependent

nature of defining what is similarity, many different methods have been de-

veloped. To provide some organisation to these approaches, there have been

several comparative studies which shed light on the variety of similarity mea-

sures in the literature. Some focus on applications, such as image retrieval

[44] and data mining [45], whilst others provide a more general analysis of the

literature [46–49].

Measures of comparing similarity on fuzzy sets have been applied to a wide

breadth of applications, including linguistic reasoning [50, 51], approximate in-

ference [52, 53], pattern recognition [54] and clustering [2–7]. In recent years,

similarity has also become prevalent in computing with words [55, 56]. For a

more detailed insight into the use of similarity and compatibility in fuzzy infer-

ence and approximate reasoning see [49], and a review of similarity measures

used in real-world fuzzy data mining applications is given in [45].

Turning to its mathematical definition, a similarity measure is a function

s : A × B → [0, 1], where A and B are both fuzzy sets of type-1, interval

type-2, or general type-2. This function evaluates how closely two fuzzy sets

share the same membership values across the universe of discourse. A trivial

example of similarity is to find out to what degree the fuzzy sets describing
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Figure 2.11: A vertical slice approach used to measure similarity.

warm and hot share the same meaning.

Measuring the similarity between fuzzy sets involves the comparison of

vertical slices, focusing on the membership values of the fuzzy sets. Using the

vertical slices approach, as shown in Figure 2.11, any vertical slice intersects a

type-1 fuzzy set at only one point. Thus, a similarity measure on type-1 fuzzy

sets involves the comparison of two singletons (or two type-1 fuzzy sets for

interval and general type-2 fuzzy sets). Thus, the measure of similarity may

be the same regardless of the normality or convexity of the fuzzy sets.

Typically, the similarity of two sets is 1 if they are identical, and is 0 if

they have nothing in common, i.e., they do not contain any of the same values.

In the context of fuzzy sets, they are identical if they both contain the same

values with the same degree of membership, and they have nothing in common

if their intersection is the empty set. These two properties are referred to as

reflexivity and overlapping, respectively. These and two other properties that

commonly form the features of a similarity measure are

Reflexivity: s(A,B) = 1⇐⇒ A = B

Symmetry: s(A,B) = s(B,A)

Overlapping: If A ∩B 6= ∅, then s(A,B) > 0; otherwise, s(A,B) = 0

Transitivity: If A ⊆ B ⊆ C, then s(A,B) ≥ s(A,C)
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Note that for transitivity, subsethood is defined as follows: for A,B ∈ T1(X),

A ⊆ B if µA(x) ≤ µB(x), ∀x ∈ X [1].

It is important to note that the term similarity is loosely defined, and thus

it is not necessary for a similarity measure to have all of these properties. The

properties that are desired are dependent on the context in which the measure

will be used. In fact, it has been discussed that there are situations in which

symmetry does not need to be satisfied [42], and it has been argued whether

transitivity is necessary or even useful in some contexts [57, 58].

Methods of measuring similarity of fuzzy sets can be classified into four

categories [49]: 1) proximity-based measures; 2) set-theoretic measures; 3)

logic-based measures and 4) fuzzy valued measures. Of these four, the first

two are the most common approaches and are discussed next. For a quick

overview of some similarity measures in the literature see Table 2.1 on page 58.

Note that as the type-1 literature contains many measures on similarity this

table has restricted type-1 references to comparative articles which provide an

overview of the literature.

Proximity-Based Approaches

One common approach of measuring the similarity between two fuzzy sets

is to measure the distance between the membership values for each point in

the universe of discourse. This is achieved by using the vertical slices repre-

sentation. The difference between values is often calculated using some form

of the Minkowski distance. The Minkowski distance between two fuzzy sets

A,B ∈ T1(X) is [46]

dr(A,B) =
(∫ +∞

−∞
|µA(xi)− µB(xi)|rdx

)1/r

(2.21)

If r = 1 this is reduced to

d1(A,B) =

∫ +∞

−∞
|µA(xi)− µB(xi)| (2.22)
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and when r approaches ∞ this becomes [46],

d∞(A,B) = max
i
|µA(xi)− µB(xi)| (2.23)

As the Minkowski r-metric is a measure of distance (such that d(A,A) = 0),

its complement must be used for it to serve as a measure of similarity. Using

d∞ (2.23), Pappis and Karacapilidis [65] proposed

s(A,B) = 1−max
i
|µA(xi)− µB(xi)|, (2.24)

which follows reflexivity, symmetry and transitivity. Overlapping is only sup-

ported if at least one of the fuzzy sets A or B is normal. Another method

using d1 (2.22) is [48, 49]

s(A,B) = 1− 1

N

∑
i=1

(|µA(xi)− µB(xi)|), (2.25)

where N is the total number of discretisations taken along the universe of

discourse and is used to take the average distance among all values of x. This

follows the properties of reflexivity and symmetry, but not of overlapping or

transitivity.

To compare interval type-2 fuzzy sets, Zeng and Li [59] developed a

measure of similarity based on the concept of entropy (in the context of fuzzy

sets, entropy is a measure of how much a fuzzy set is fuzzy [66]). Their method

calculates the Minkowski metric, where r = 1, on both the upper and lower

membership functions, taking the average of the two results as

s(Ã, B̃) = 1− 1

2N

N∑
i=1

(|µ
Ã

(xi)− µB̃(xi)|+ |µÃ(xi)− µB̃(xi)|). (2.26)

This is an extension of the type-1 measure (2.25). This method has the prop-

erties of reflexivity and symmetry. However, like its type-1 form, it does not

reflect overlapping or transitivity. Instead, as two disjoint sets are placed fur-

ther away in the universe of discourse, thus creating a gap between the fuzzy

sets, the value of (2.26) becomes larger because the fuzzy sets become more

40



similar in the sense that they both have the membership value zero in the

space between them. A demonstration of this is shown in [51, 64]. This is also

true in the type-1 case (2.25).

To compare general type-2 fuzzy sets, Hung and Yang [2] used the

proximity based Hausdorff metric to measure the similarity between secondary

membership functions as

s(Ã, B̃) = 1− dN(Ã, B̃) (2.27a)

dN(Ã, B̃) =

∑N
i=1 Hf (Ã(xi), B̃(xi))

n
(2.27b)

Hf (A,B) =

∑M
i=1 αiH(Aαi , Bαi)∑n

i=1 αi
(2.27c)

H(Aαi , Bαi) = max{L(Aαi , Bαi), L(Bαi , Aαi)} (2.27d)

L(Aαi , Bαi) = inf
{
λ ∈ [0,∞]|Aαi

λ ⊃ Bαi

}
, (2.27e)

where Aαi is the ith α-cut of the vertical slice A, thus αi is a secondary mem-

bership value. This measure calculates the distance between the secondary

membership functions of Ã and B̃ (within function dN). This is achieved by

calculating the Hausdorff distance between the type-1 fuzzy sets µÃ(x) and

µB̃(x) (in functions H and L). The Hausdorff metric is a common method

of calculating the distance (rather than similarity) between fuzzy sets, and is

explored in more detail in Section 2.4.2.

Note that although this measure uses α-cuts, it is still a measure of sim-

ilarity rather than distance. This is because the α-cut comparison is made

between the vertical slices of the fuzzy sets. Thus, the measure focuses on

comparing the membership values of the fuzzy sets at a given x-coordinate;

whereas distance compares x-values at a given membership.

This follows all four properties of a similarity measure.
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Set-Theoretic Approaches

The most common set-theoretic approach to measuring the similarity between

fuzzy sets is the Jaccard index [67]. Let P(R) be the set of all crisp sets in R,

then for two groups U, V ∈P(R) the Jaccard index is

s(U, V ) =
|U ∩ V |
|U ∪ V |

. (2.28)

Using the fuzzy set operations of union and intersection introduced in Section

2.2.1, the Jaccard similarity between two fuzzy sets A,B ∈ T1(X) is given as

sT1
j (A,B) =

∑N
i=1 min(µA(xi), µB(xi))∑N
i=1 max(µA(xi), µB(xi))

. (2.29)

This measure follows all of the four common properties of a similarity mea-

sure. Based on Jaccard’s ratio, Tversky [42] proposed the non-fuzzy similarity

measure for A,B ∈P(R)

sαβ(A,B) =
f(A ∩B)

f(A ∩B) + αf(A−B) + βf(B − A)
(2.30)

to be applied in feature matching, where f is typically a cardinality function.

Many set-theoretic similarity measures are some form of Tversky’s ratio [68–

70]. Note that when α = β = 1 (2.30) reduces to the Jaccard measure (2.29).

For interval type-2 fuzzy sets, Wu and Mendel [51], and Nguyen and

Kreinovich [60] expanded the Jaccard approach. For Ã, B̃ ∈ IT2(X) this is

sIT2
j (Ã, B̃) =

∑N
i=1 min(µÃ(xi), µB̃(xi)) +

∑N
i=1 min(µ

Ã
(xi), µB̃(xi))∑N

i=1 max(µÃ(xi), µB̃(xi)) +
∑N

i=1 max(µ
Ã

(xi), µB̃(xi))
(2.31)

As with the type-1 approach (2.29), this method has all four properties of a

similarity measure. Zheng et al. [61] also proposed a measure related to the

Jaccard approach, and Gorza lczany [52] and Bustince [53] developed methods

which represent similarity as an interval.

To compare general type-2 fuzzy sets, in recent years, several methods

of comparing the similarity between type-2 fuzzy sets based on the alpha-

plane/zSlices approach were published [62–64, 71]. Hamwari and Coupland

42



[71] developed a general method of applying any interval type-2 similarity

measure to zSlices general type-2 fuzzy sets. As part of this thesis, [64] explores

extending a collection of interval type-2 similarity measures to zSlices general

type-2 fuzzy sets; this is explored in Section 4.3. Zhao et al. [62] proposed two

new measures of similarity on type-2 fuzzy sets. One represents similarity as

a fuzzy set (detailed within [62]) and the other represents similarity as a crisp

value as

s(A,B) =

1
∆+1

∑
z=0, 1

∆
, 2
∆
...,∆−1

∆
,1

∫
x∈X min(µ

Ãz
(x),µ

B̃z
(x)dx+

∫
x∈X min(µÃz (x),µB̃z (x)dx∫

x∈X max(µ
Ãz

(x),µ
B̃z

(x)dx+
∫
x∈X max(µÃz (x),µB̃z (x)dx

(2.32)

where ∆ + 1 denotes the total number of zSlices (alpha-planes) used. Note

that, for consistency, the notations within (2.32) have been altered to match

the zSlices notations. This approach follows all four properties of similarity.

In an alike approach, Hao and Mendel [63] also developed a measure using

α-planes to represent similarity as a type-1 fuzzy set. Their result may be

reduced to a crisp value by computing the centroid of the resulting fuzzy set.

This also follows all four properties of similarity.

Other Approaches

Many other methods have also been developed to measure the similarity be-

tween fuzzy sets. For example, Bonissone [50] developed an approach based

on the complement of the Bhattacharya distance to compare type-1 fuzzy sets.

Wu and Mendel developed a vector similarity measure which uses a combina-

tion of both set-theoretic and proximity approaches to measure the similarity

between type-1 [72] and interval type-2 [51] fuzzy sets. To compare general

type-2 fuzzy sets, Mitchell [54] proposed measuring similarity by comparing

the embedded membership functions of the fuzzy sets with any type-1 simi-

larity measure. In addition, Hwang et al. [6] and Li et al. [7] also developed

methods based on the Sugeno and Lebesgue integrals, respectively.
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2.4.2 Distance Measures

As discussed earlier, distance measures on fuzzy sets often involve comparing

α-cuts. Various methods of calculating the distance between α-cuts have been

developed, many of which utilise the Hausdorff metric [14, 73] or the Minkowski

distance [10, 74, 75]. Just like similarity, the properties of the data affect

the properties of a distance measure. For example, in a direction-dependent

application, the distance from A to B may be perceived differently to the

distance from B to A.

In the context of fuzzy sets, distance has primarily been used in ranking.

Typically this is done by measuring the distance between each fuzzy set and a

crisp point [8, 12, 76, 77]. However, many methods of ranking use a measure of

distance developed to compare two fuzzy sets [10, 11, 74, 76, 78]. Distance has

also been developed for many other applications, including decision making

[8, 9, 74, 79, 80], linear programming [79], statistical analysis [81] and digital

image analysis [82]. As a wide range of applications applying the concept of

distance exist within the literature, a great variety of methods to calculate

distance have been developed.

A distance measure is a function d : A × B → R+, where A and B are

both fuzzy sets of type-1, interval type-2, or general type-2. The result of

this function represents how much difference there is in the values contained

within the fuzzy sets. The distance between two fuzzy sets is 0 if they are

identical, and increases in value as they become more distant. A trivial use of

distance could be to find out how much difference exists between two fuzzy sets

describing warm and hot (e.g., how much hotter is hot compared to warm).

As distance focuses on the ordering within the x-axis, it is often measured

by comparing the α-cuts of the fuzzy sets [46]. Figure 2.12 uses dashed lines

along three different fuzzy sets to help visualise this approach. For a given

α-cut, the distance tells us how much difference there is between the values
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Figure 2.12: A horizontal slice approach used to measure distance.

contained in the fuzzy sets at a given degree of membership. When comparing

the whole fuzzy sets (i.e., all α-cuts) it tells us how far their values are from

representing the same description.

Figure 2.12 highlights some difficulties that can arise whilst measuring dis-

tance. When using α-cuts to measure distance, an α-cut can contain an interval

(e.g., every α-cut of A), an empty set (e.g., α-cuts above 0.8 in B) or multi-

ple intervals (e.g., α-cuts above 0.6 in C). When fuzzy sets are automatically

generated from data, their normality or convexity may not be known, thus we

cannot know in advance what any α-cut will contain. Considering this, it is

clear that measuring distance is not as straightforward to calculate as simi-

larity. This has led to gaps in the research which will be highlighted in this

section.

Some common properties of distance measures include

Self-Identity: d(A,B) = 0⇐⇒ A = B

Symmetry: d(A,B) = d(B,A)

Separability (AKA positivity; non-negativity) : d(A,B) ≥ 0

Triangle inequality : d(A,C) ≤ d(A,B) + d(B,C)

Transitivity: If A ≤ B ≤ C, then d(A,B) ≤ d(A,C)
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Just as discussed regarding the properties of similarity measures, it is not

necessary for a distance measure to have all of the above properties. The

context in which it is applied defines the properties that are required for a

measure of distance. It is important to note, however, that the properties of

a metric are important as they strictly define the distance between any points

in the given metric space. A distance function d is a metric if and only if it

satisfies self-identity, separability, symmetry and triangle inequality (note that

triangle inequality is a form of transitivity). Any distance measure that does

not satisfy all of these properties is not a metric. Thus, although a metric is a

function of distance, a distance measure is not necessarily a metric.

To account for the ordering in the x-axis, distance is most often calculated

by comparing the α-cuts of the fuzzy sets. Usually, multiple comparisons

are made at different levels of α and, to reduce these to a single value, the

results are aggregated. As discussed in Section 2.2.1, the α-cut of a normal,

convex fuzzy set can be represented by a continuous interval. Given this, the

distance between each α-cut is often measured using the Pompeiu-Hausdorff

metric (also commonly known as the Hausdorff metric [86]) or the Minkowski

distance.

This section discusses some of the methods used to measure the distance

between different types of fuzzy sets. In addition, Table 2.2 on page 59 provides

an overview of some of the literature, displaying gaps where distance measures

have not been well explored. Within the table, section numbers highlight where

new measures are developed within the thesis.

Pompeiu-Hausdorff Based Approaches

The Pompeiu-Hausdorff (or Hausdorff) distance is a common approach for

measuring the distance between the α-cuts of fuzzy sets. Based upon Pom-

peiu’s asymmetric distance measure, the Hausdorff distance between two crisp
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sets A,B ∈P(R) is calculated as [46]

h(A,B) = max

{
sup
b∈B

inf
a∈A

d2(a, b), sup
a∈A

inf
b∈B

d2(a, b)

}
, (2.33)

where d2 is the Euclidean metric. When A and B are intervals, as is the

case for the α-cut of a normal, convex membership function, then the distance

between Aα and Bα (2.33) is reduced to [46]

h(Aα, Bα) = max
{
|AαL −BαL|, |AαR −BαR|

}
(2.34)

where [AαL, AαR] represents the continuous interval of an α-cut of A ∈ T1(X).

Based on the Pompeiu-Hausdorff distance, Ralescu and Ralescu [73] pro-

posed two different methods of calculating the distance between two fuzzy sets.

For A,B ∈ T1(X), these measures are

d(A,B) =

∫ 1

α=0

h(Aα, Bα)dα (2.35)

and

d(A,B) = sup
α>0

h(Aα, Bα) (2.36)

Chaudhuri and Rosenfeld also proposed a new distance based on the Haus-

dorff metric given as [14]

dcr(A,B) =

∑M
α=1 yα h(Aα, Bα)∑M

α=1 yα
, (2.37)

where the y-axis (µ-axis) is discretised into M points (y1, y2, ..., yM), Aα is the

α-cut set of the fuzzy set A at the y-coordinate yα, and h is the Hausdorff

metric in (2.34).

Note that (2.35), (2.36) and (2.37) all have the properties of a metric.

Although (2.37) assumes that the fuzzy sets being measured are normal,

Chaudhuri & Rosenfeld [14] also proposed a method of measuring the distance

between non-normal fuzzy sets. This method includes two steps. The first step

involves normalising the fuzzy sets and applying the distance measure (2.37)
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to the resulting fuzzy sets; the normalised forms of A and B are referred to

as A′ and B′, respectively. After this, the following equation is applied to the

original, non-modified fuzzy sets [14]

e(A,B) = ε

∑N
i=1 |µA(xi)− µB(xi)|∑N

i=1 xi
, (2.38)

where N is the total number of discretisations in X, and ε is a small posi-

tive constant, and its value is determined by the importance of the equation

(demonstrations later in this thesis set ε = 1.0). Finally, the results of (2.37)

and (2.38) are combined as [14]

dcr(A,B) =

∑M
α=1 yα h(A′α, B

′
α)∑M

α=1 yα
+ ε

∑N
i=1 |µA(xi)− µB(xi)|∑N

i=1 xi
. (2.39)

To compare interval type-2 fuzzy sets, Figueroa-Garćıa et al. [79] pro-

pose measuring the distance between two interval type-2 fuzzy sets Ã and B̃

by the calculating Pompeiu-Hausdorff distance between the type reduced sets

of Ã and B̃. Using the Karnik-Mendel type-reduction algorithm, the centre

of an interval type-2 fuzzy set Ã ∈ IT2(X) is represented as an interval-

bounded type-1 fuzzy set C(Ã) = [CL(Ã), CR(Ã)]. The distance between

Ã, B̃ ∈ IT2(X) after type reduction is then calculated using the Hausdorff

distance as [79]

dh(C(Ã), C(B̃)) = max
{
|CL(Ã)− CL(B̃)|, |CR(Ã)− CR(B̃)|

}
. (2.40)

In addition to this, Figueroa-Garćıa et al. [79] also propose measuring the sum

of the distances between each boundary as

ds(C(Ã), C(B̃)) = |CL(Ã)− CL(B̃)|+ |CR(Ã)− CR(B̃)|. (2.41)

Minkowski Distance Approaches

In contrast to the Hausdorff distance, another common method of comparing

α-cuts is by the Minkowski distance (2.21), which for two α-cuts Aα and Bα
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where A,B ∈ T1(X) is

d̄r(Aα, Bα) =
r

√
1/2((AαL −BαL)r + (AαR −BαR)r). (2.42)

Using (2.42), Grzegorzewski [74] established two methods of measuring the

distance between two fuzzy numbers as

dpq(A,B) =
p

√
(1− q)

∫ 1

0
|BαL −AαL|p dα+ q

∫ 1

0
|BαR −AαR|p dα if 1 ≤ p <∞

(1− q) sup0<α≤1(|BαL − AαL|) + q sup0<α≤1(|BαR − AαR|) if p =∞
(2.43)

and

dp(A,B) =
max

{
p

√∫ 1

0
|BαL −AαL|p dα, p

√∫ 1

0
|BαR −AαR|p dα

}
if 1 ≤ p <∞

max

{
sup0<α≤1(|BαL − AαL|), sup0<α≤1(|BαR − AαR|)

}
if p =∞

(2.44)

where the properties of the above two measures depend on the value of p

[74]. The parameter q of (2.43) may be used to weight the sides of the α-cuts

(putting more emphasis on the lowest or highest values). However, if there is

no reason to weight one side more than the other then q may be set as 1/2

or (2.44) may be used instead [74]. Based on (2.43), Ban [75] also proposed a

similar approach.

Using the Minkowski distance where r = 1, the distance between α-cuts is

d̄(Aα, Bα) = 1/2(|AαL −BαL|+ |AαR −BαR|). (2.45)

Using (2.45), Wang et al. [15] proposed a measure to compare non-normal

fuzzy sets that weights the distance between α-cuts, and weights and compares

the angles and heights of the increasing and decreasing functions of trapezoidal

membership functions. More details on this are given later in Section 3.3.2.
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Yao and Wu [10], and Berkachy and Donzé [87] described a directional

distance between fuzzy sets as

dyw(A,B) =
1

2

∫ 1

0

[AαL + AαR −BαL −BαR] dα. (2.46)

A directional distance measure is one that does not follow separability1 and

uses a signed measure to indicate direction; thus changing the distance function

to d : A× B → R instead of in R+ . Using (2.46), d(A,B) ≥ 0 if A ≥ B and

d(A,B) < 0 if A < B. Additionally, d(A,B) = −d(B,A). Chapter 3 explores

directional distance measures in more detail and develops a new measure based

on (2.46).

Yao et al. [80] developed a signed distance measure which calculates the

distance between a normal, convex, type-1 fuzzy set and the singleton x = 0.

The result of the distance measure reduces to the fuzzy set’s average value

over all α-cuts, essentially providing a centroid of the fuzzy set.

To compare interval type-2 fuzzy sets, Figueroa-Garćıa et al. [79] de-

veloped a distance measure using the Minkowski distance (r = 1) to compare

α-cuts of the upper and lower membership functions. Note that the notations

within [79] have been changed to match the notations used within this thesis.

The distance between two interval type-2 fuzzy sets Ã, B̃ ∈ IT2(X) is given

as [79]

d(Ã, B̃) = 1/Λ
∑M

i=1 αi

[∣∣ÃαiU L − B̃αiU L

∣∣+
∣∣ÃαiW L

− B̃αiW L

∣∣+∣∣ÃαiW R
− B̃αiW R

∣∣+
∣∣ÃαiU R − B̃αiU R

∣∣], (2.47)

where Λ =
∑M

i=1 αi and M is the total number of α-cuts measured. Note that

both the upper and lower membership functions of Ã and B̃ must be normal

as (2.47) does not account for non-normality.

1Separability: d(A,B) ≥ 0.
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Other Approaches

Taking a different approach, Allahviranloo et al. [76] compare the centres and

widths of the fuzzy sets. Where I(A) is the centre of A and D(A) is the width

of A, the distance between A,B ∈ T1(X) is

da(A,B) =
√

[I(A)− I(B)]2 + [D(A)−D(B)]2 (2.48a)

I(A) =

∫ 1

0

(cAαL + (1− c)AαR) dα (2.48b)

D(A) =

∫ 1

0

(AαR − AαL)f(α) dα (2.48c)

where 0 ≤ c ≤ 1 denotes optimism/pessimism in the operation (in demonstra-

tions in this thesis, c = 0.5), and f(α) is a function which satisfies f(0) = 0,

f(1) = 1 and
∫ 1

0
f(α)dα = 1/2. In most cases, and in demonstrations in this

thesis, f(α) = α.

This section has highlighted a concise set of measures on normal and non-

normal, type-1 fuzzy sets. However, to the author’s knowledge, there have been

no α-cut-based distance measures developed to compare non-convex, type-1

fuzzy sets. Although one could compare the centroids of non-convex fuzzy

sets, the results are not always what one would expect; this is demonstrated

later in Section 3.4. Additionally, some recent research has explored distance

on interval type-2 fuzzy sets, but these methods do not account for any non-

normality (non-normality is common in the lower membership function) or

non-convexity. Additionally, there have been no α-cut-based distance measures

developed for general type-2 fuzzy sets.

So far, this chapter has given a review of fuzzy set theory and measures to

compare fuzzy sets. The remainder of this chapter moves away from fuzzy set

theory and discusses aggregation operators and knowledge based recommen-

dation systems.
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2.5 Aggregation

Many aggregation operators exist within the literature, including arithmetic

mean and ordered weighted average (OWA) operators. The latter is used in

this thesis and will be the focus of this section. The OWA operator [88] was

developed as a method of breaking away from classic and and or aggregation,

which both strictly treat all values with equal importance. An OWA operator

offers a method of aggregation that lies between the and and or extremes [88].

An OWA operator assigns weights to objects according to their ordinal

position when sorted by magnitude. An ordered set of weights is denoted

w = 〈w1, ..., wn〉, where wi ∈ [0, 1] and
∑n

i=1wi = 1. The objects which are to

be aggregated are sorted into descending order, and each object is multiplied

by the corresponding weight. Thus, for a given set of objects {a1, ..., an} and

ordered list of weights 〈w1, ..., wn〉, the OWA operator is [88]

f({a1, ..., an} , 〈w1, ..., wn〉) = w1b1 + w2b2 + ....+ wnbn, (2.49)

where bi is the ith largest element in the collection {a1, ..., an}.

Using this method, many different types of aggregation can be realised. For

example, the weights w = 〈0, ..., 0, 1〉 and w = 〈1, 0, ..., 0〉 are the and and or

operators, respectively. Also, if all weights are the same then the result is the

equivalent of the arithmetic mean operation. It is clear that the infinite range

of possible weights between these examples can lead to the OWA operator’s

utilisation in a wide range of applications.

Since its introduction, the theory of the OWA operator has been expanded

to induced OWAs [89] (used to aggregate tuples) and generalised OWAs [90, 91]

(used when the priorities of the inputs are not known). OWAs have been

applied to a multitude of applications, the most common of which is multi-

criteria decision making.

For example, Canós [92] uses an OWA in decision making applied to the per-

sonnel selection problem. Sadiq et al. [93] use an OWA operator to aggregate
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different performance indicators to assess the performance of small drinking

water utilities, and to aid in the selection of financial products. Other com-

mon applications include data mining, image processing and expert systems

[94–96]. The OWA operator will be used later in this thesis as a method of

aggregating the results of similarity and distance measures on fuzzy sets.

Having given a theoretical background to the literature on which this thesis

is based, the next section moves onto applications and gives a brief history and

overview of knowledge-based recommendation systems.

2.6 Knowledge-Based Recommendations

To illustrate the measures developed within this thesis, a knowledge-based

recommendation system is developed. Recommendation systems have become

useful in recent decades as the amount of information on a given topic often

exceeds what one can study. Several different approaches have been devel-

oped, the most common of which are content-based, collaborative-filtering and

knowledge-based systems.

Content-based systems learn what a user likes through the products they

have rated or purchased and recommends items that are similar. Collaborative-

filtering also includes learning user preferences, but uses this information to

find multiple users with common interests. Recommendations are then made

based on inter-user comparisons [97]. Many recommendation systems are a

hybrid of these [97–101].

For example, Amazon.com R© use a mixture of content-based and collabora-

tive filtering methods [101]. For a given product a user has bought, the system

finds other users that have bought this product and looks through their list

of other purchases (collaborative filtering). If an item from this list is similar

to the original item then it is recommended (content-based filtering). This

process enables Amazon.com R© to give recommendations in the format “users
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who bought this product also bought these similar products.”

However, knowledge-based systems, which will be the focus of this section,

do not attempt to learn user preferences. Instead, a user explicitly states their

needs and, based on knowledge known about the given topic, the recommender

finds items that match the user’s desires. This process often begins by display-

ing a selection of items to a user and enabling them to describe how a given

choice doesn’t match what they want [102–104].

This approach to recommendations is chosen because it is easier for people

to express their preferences in relation to an available choice [105]. Describing

an ideal product in relation to another is easier on a person because it requires

less input than giving a detailed description. It is also easier to design such a

recommendation system because the user’s ideal product is represented by a

compact description that is formed from the knowledge-base [102].

Burke et al. [103] refer to this method as the FindMe approach and de-

veloped several systems that use assisted browsing to combine browsing and

knowledge-based recommendations. For example, Entree is a system that helps

people choose a restaurant in Chicago. An initial restaurant is shown and users

can choose from seven different attributes to adjust the restaurants they are

shown. These attributes include less expensive, quieter and a change in cuisine.

RentMe is a similar system used to find apartments from a list of classified ad-

verts. It enables a person to browse through adverts and describe changes they

would like to see, e.g., a bigger apartment or a more convenient neighbourhood.

Another example is the Automated Travel Assistant [104] that helps users

find an optimal trip by presenting options based on what the user wants. The

user can critique the attributes of the plan, e.g., on price and arrival time,

and a new suggestion is presented based on these changes. A more recent

example is the tag genome project [102] used by MovieLens [106], in which

the knowledge of films is represented by user-contributed tags, such as action,

romance, scary, etc. Based on this knowledge, a user can browse movies and
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request tweaks such as a film like Star Trek but with more action.

One possible method of approaching the above examples is to split each goal

into two parts. These are finding a similar item (e.g., a restaurant/ apartment/

movie like this) and finding differences (e.g., but quieter/ cheaper/ with more

action). This thesis develops a method of splitting these goals into separate

functions. Similarity and distance measures can then be used ascertain how

similar or different a given item is compared to what the user desires. Given

this, the measures developed within this thesis are driven by their ability to

compare fuzzy information according to both their similarities and differences.

When calculating the distance between items, it is important to measure

the direction of that distance as well as the magnitude. For example, if a user

wants to find a restaurant at least £10 cheaper then the direction of the change

in price is as important as the magnitude. However, a different approach to

direction can sometimes be more beneficial. For example, if a user states they

are willing to spend a specific amount of money then anything considerably

more expensive should not be recommended, but additionally anything cheaper

may also not be preferred. This is because the user has stated that they are

willing to spend a certain amount [107].

After evaluating both objectives, the results are joined to find an item

that matches all of the user’s criteria. For example, the tag genome project

calculates the product similarity and distance to assign a score to each film,

and Entree [103] aggregates the results of how well a restaurant matches each

goal of a given search.

The above recommendation systems use a knowledge base which contains

facts about products, yet there are many applications in which information

is subjective. For example, the tag genome project builds information about

films based on user-descriptions. However, these descriptions are often sub-

jective; a film that one person finds scary may be considered tame by another

person. One method of handling this is to introduce personal profiles so that
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the relevance of a tag to a film is only from the perspective of the user, but

this idea is not used by the Tag Genome project because it requires a more

complex system [102].

This thesis uses fuzzy sets to model the subjective and uncertain nature

of information. By taking this approach, it is only the methods of measuring

similarity and distance that must be changed and the underlying model of a

knowledge-based recommendation system remains the same.

2.7 Summary of the Literature

This chapter has presented an overview of fuzzy set theory, including a survey

of the different types of fuzzy sets that have been developed, how they are

mathematically modelled and some of their properties. For each type of fuzzy

set used in this thesis, both their vertical slice and α-cut (horizontal slice)

representations have been presented. Using these two representations, it is

possible to compare the similarities and distances between fuzzy sets.

A survey is given of how, based on these representations, relative com-

parisons can be calculated between type-1, interval type-2 and zSlices general

type-2 fuzzy sets. This survey shows that, while similarity measures have

been well explored, distance measures have gained little attention for type-1

non-convex membership functions and type-2 fuzzy sets.

This chapter has also given an overview of the OWA operator, and a survey

of knowledge-based recommendation systems, on which the theoretical work

of this thesis is applied. In addition, this chapter has presented methods of

constructing membership functions from data sets. Later, this will be used to

create fuzzy sets that model subjective product information. With this, rel-

ative comparisons using an aggregation (via the OWA operator) of similarity

and distance are used to automatically generate knowledge-based recommen-

dations.
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The next chapter develops a directional distance measure that can compare

type-1 fuzzy sets that may be normal or non-normal and convex or non-convex.
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Type-1 Interval Type-2 General Type-2

Zwick et al.* [46] Zeng & Li [59] Lin & Yang [3]

Wang et al.* [47] Wu & Mendel* [51, 55] Yang & Lin [4]

Chen et al.* [48] Gorza lczany [52] Mitchell [54]

Cross and Sudkamp* [49] Bustince [53] Hung & Yang [2]

Bouchon-Meunier et al.* [45] Nguyen & Kreinovich [60] Hwang et al. [6]

Jain et al.* [44] Zheng et al. [61] Zhao et al. [62]

Hao and Mendel [63]

Section 4.3 [64]

Table 2.1: An overview of existing similarity measures on fuzzy sets where pro-

posed measures in this thesis are highlighted with the corresponding section.

An * indicates a comparative paper containing many references.
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Type-1 Interval Type-2 General Type-2

Normal, convex

Chaudhuri & Rosenfeld [14] Figueroa-Garćıa et al. [79] Section 4.3

Fan [83] Section 4.2

Allahviranloo et al. [76]

Yao & Wu [10]

Bloch [84]

Ralescu & Ralescu [73]

Williams & Steele [9]

Grzegorzewski [74]

Ban [75]

Tran and Duckstein [78]

Cheng [11]

Bertoluzza et al. [85]

Non-normal

Chaudhuri & Rosenfeld [14] Section 4.2 & 3.3 Section 4.3 & 3.3

Fan [83]

Cheng [11]

Wang et al. [15]

Section 3.3

Non-convex

Section 3.4 Section 4.2 & 3.4 Section 4.3 & 3.4

Directional

Yao & Wu [10] Section 3.2 Section 3.2

Yao et al. [80]

Section 3.2

Table 2.2: An overview of existing distance measures on fuzzy sets where pro-

posed measures in this thesis are highlighted with the corresponding section.
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Chapter 3

Measuring Distance Between

Type-1 Fuzzy Sets

3.1 Introduction

This chapter presents a directional distance measure that may be applied to

type-1 fuzzy sets that are normal or non-normal and convex or non-convex. As

large-scale applications that rely on subjective human perceptions and prefer-

ences become popular, measures of comparing the similarities and differences

between these perceptions become necessary. Models of such data, including

fuzzy set based models, are often non-normal (due to some lack of agreement

between people) or may be non-convex (due to contradictory opinions). To

accommodate for such models, it is important that any measures comparing

them can handle these complexities.

Firstly, this chapter develops a directional distance measure. This measure

can account for the change in direction between fuzzy sets as well as the

magnitude of distance. Thus, it is possible to determine if one fuzzy set is to the

left or right of (lower or higher than) another in the given universe of discourse.

This is particularly useful when comparing ratings in a recommendation system
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because it enables the system to know whether one fuzzy set (or product) has

been rated higher or lower than another.

After this, the proposed directional distance measure is extended to en-

able the comparison of non-normal and non-convex fuzzy sets. As discussed

in Section 2.4, similarity measures on fuzzy sets are typically calculated using

vertical slices and, as a result, do not require special techniques to compare

non-normal or non-convex membership functions. Distance measures, how-

ever, commonly use α-cuts and a given α-cut can result in an empty set or a

discontinuous interval for non-normal and non-convex membership functions,

respectively (see Section 2.2.1). As a result, it is less clear how to measure the

distance between such membership functions.

This chapter addresses these issues and proposes methods of measuring the

directional distance between non-normal and non-convex type-1 fuzzy sets.

To aid in making the chosen methods and their results clear, the proposed

measures are compared against some existing measures in the literature.

3.2 Directional Distance

Expanding on the current literature of distance measures on fuzzy sets, this

section introduces a new directional distance measure, discusses its properties,

and compares it to some existing measures.

3.2.1 Motivation

Most distance measures within the literature are non-directional, i.e., they give

a value of distance within R+. However, direction can be important in some

contexts. For example, consider fuzzy sets that have been constructed from

a survey in which people have been asked to rate, on a scale of 1 to 10, the

quality of food of multiple restaurants. Using this data, a distance measure

could determine the difference in ratings between two restaurants. However, if
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the measure is not directional then the information of distance alone may not

be useful.

For example, consider if the distance between the quality of food of two

restaurants is calculated as 4. Though this indicates that one of the restaurants

was rated 4 points different than the other, it does not show which is the better

restaurant. With a non-directional distance measure, the only way to discern

which is rated higher is by looking at the fuzzy sets. This is not ideal as it

becomes a time-consuming and tedious process if many comparisons have to

be made.

This section introduces a directional distance measure that indicates the

direction of the results by a signed value. Using the earlier example, for two

restaurants denoted A and B, the distance between them (d(A,B)) will be 4

if B is rated 4 points higher than A, and it will be −4 if B is rated 4 points

lower than A. Essentially, the sign of d(A,B) will indicate which direction is

travelled when moving from A to B. By introducing signed values to a distance

measure it is now possible, in this example, to see which restaurant is rated

better than, rather than just different to, the other.

3.2.2 Directional Distance Between Alpha-Cuts

As shown in Section 2.4.2, the distance between two fuzzy sets is commonly

calculated by measuring the distance between the α-cuts of the fuzzy sets.

Note that by constructing a distance measure that uses signed-values to

indicate direction, the properties of the measure are altered. It is immediately

clear that separability and symmetry 1 no longer hold. As a result, such a

distance measure is not a metric because a metric must have the properties of

separability and symmetry (as well as self-identity and triangle inequality; see

Appendix A).

1Separability: d(A,B) ≥ 0

Symmetry: d(A,B) = d(B,A)
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It is clear that separability is not desired in a directional measure because it

prevents the information of direction from being conveyed. Thus, one could ar-

gue that the loss of this property has a positive impact on a directional distance

measure. The property of symmetry, however, is not entirely lost. Instead,

an alternative notion of symmetry is adopted. Referring to the restaurant

example given earlier, if restaurant B is rated 4 points higher than A then

d(A,B) = 4 and d(B,A) = −4. Although these results do not strictly follow

symmetry (i.e., symmetry: d(A,B) = d(B,A)), they do follow a looser form

of symmetry defined as follows:

Definition 20 (Partial Symmetry). Let partial symmetry describe the property

of a distance measure d : A×B → R for two points or objects A and B as

d(A,B) = −d(B,A).

In addition to this, a directional distance measure has a new form of sepa-

rability defined as follows:

Definition 21 (Directional Separability). The sign of the distance indicates

the relative positions between the variables.

d(A,B) ≥ 0 if B ≥ A

d(A,B) < 0 if B < A,

As in a non-directional measure, the proposed distance will also follow self-

identity and transitivity, however the property of triangle-inequality becomes

more strict; this is discussed in detail within this section on Page 67. First, it

is necessary to introduce the proposed directional distance before its properties

can be further explored.

One common approach of calculating the distance between α-cuts is to use

the Minkowski distance (2.21) [15, 74, 79]. Using r = 1 - commonly referred to

as Manhattan distance - will be sufficient to compare two parallel α-cuts. Let
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P(R) denote the set of all crisp sets within R. For two continuous intervals

Ā, B̄ ∈P(R), the Manhattan distance is

d̄(Ā, B̄) = 1/2(|ĀL − B̄L|+ |ĀR − B̄R|), (3.1)

where Ā = [ĀL, ĀR] and B̄ = [B̄L, B̄R].

Definition 22 (Directional Distance between α-cuts.). To attain a directional

distance measure that has the property of partial symmetry, the Manhattan

distance may be altered such that it does not take the absolute distance between

intervals as follows

d̄p(Ā, B̄) =
1

2
(B̄L − ĀL + B̄R − ĀR) (3.2)

Note that, as adopted in d̄p (3.2), all distance measures proposed as part

of this thesis will be denoted with p to differentiate them from other distance

measures in the literature.

Also, note that (3.2) is equivalent to the directional distance between α-

cuts used by Yao and Wu (2.46) [10], which focuses on the context of ranking.

This chapter explores some of the properties of this measure further and uses

a different method of fusing distances calculated at multiple α-cuts.

One can see that d̄p has the property of partial symmetry given in Definition

20. This directional distance takes the average distance of the left-most and

right-most values of the intervals Ā and B̄. This may also be written as

d̄p(Ā, B̄) =
B̄L + B̄R

2
− ĀL + ĀR

2
,

given that (3.2) essentially calculates the distance between the centres of the

intervals.

To give an example of the directional distance d̄p (3.2), consider the in-

tervals Ā and B̄ in Figure 3.1. The distance d̄p(Ā, B̄) according to (3.2) is 6,

and the distance d̄p(B̄, Ā) is −6. This demonstrates that d̄p can be used to

both calculate the distance between two intervals and discern which interval
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contains values larger or smaller than the other. This also demonstrates the

property directional separability (i.e., d̄p(Ā, B̄) ≥ 0 if B ≥ A and d̄p(Ā, B̄) < 0

if B̄ < Ā). Essentially, the sign of the result represents the direction taken in

the universe of discourse to travel from Ā to B̄. Additionally, if Ā and B̄ are

identical then d̄p(Ā, B̄) = 0.

Figure 3.1: Two interval sets, Ā and B̄.

The directional distance d̄p (3.2) also has an additional property that

emerges if one interval is a subset of the other and the distances |B̄L − ĀL|

and |B̄R − ĀR| are equal. This property is defined next as reflectivity.

Definition 23 (Reflectivity). The distance between two intervals is 0 if the

distances between their respective end points are equal to each other and in

opposite directions.

d̄p(A,B) = 0 if (B̄L − ĀL) = −(B̄R − ĀR), where Ā = [ĀL, ĀR] and B̄ =

[B̄L, B̄R]

In other words, the distance between two intervals is 0 if one interval con-

tains values lower than another interval by a given amount, and also contains

values higher than the other by the same amount. For example, considering

the intervals Ā and B̄ in Figure 3.2, B̄L − ĀL = 2 and B̄R − ĀR = −2, thus

B̄ can be described as being both to the right and to the left of Ā by equal

amounts. Given this, it may not make sense to describe the distance between

Ā and B̄ as a signed value.

One possible method of representing this information is by introducing a

sign that represents the distance as being both positive and negative, e.g.,

d̄(Ā, B̄) = ±2. However, such a result may not be practical for many appli-

cations because it may lead to an overcomplicated system. Considering this,
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the value given by the directional distance d̄p (3.2) in such cases is 0. This

is a reasonable result as the centres of the intervals are the same and their

boundaries are both equal distance from the centre in opposing directions.

Note that if it is necessary to distinguish the degree to which sets overlap,

such as the intervals in Figure 3.2, then a similarity measure may be more

appropriate than distance.

Figure 3.2: Two overlapping interval sets, Ā and B̄.

Theorem 1. The directional distance measure d̄p (3.2) follows the properties

partial symmetry: d̄(Ā, B̄) = −d̄(B̄, Ā)

reflectivity: d̄(Ā, B̄) = 0, where Ā = [ĀL, ĀR] and B̄ = [B̄L, B̄R],

if (B̄L − ĀL) = −(B̄R − ĀR).

self-identity: d̄(Ā, Ā) = 0

transitivity: If Ā ≤ B̄ ≤ C̄, then d̄(Ā, B̄) ≤ d̄(Ā, C̄)

Proof. Partial Symmetry:

d̄p(Ā, B̄) = −d̄p(B̄, Ā)

B̄L − ĀL + B̄R − ĀR = −(ĀL − B̄L + ĀR − B̄R)

= −ĀL + B̄L − ĀR + B̄R

Reflectivity:

Let β = B̄L − ĀL = −(B̄R − ĀR)

d̄p(Ā, B̄) = B̄L − ĀL + B̄R − ĀR

= β + (−β)

= 0
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Self-identity:

If Ā = B̄ then B̄L − ĀL = B̄R − ĀR = 0 therefore d̄p(Ā, B̄) = 0

Transitivity:

d̄p(Ā, B̄) ≤ d̄p(Ā, C̄)

B̄L − ĀL + B̄R − ĀR ≤ C̄L − ĀL + C̄R − ĀR

B̄L + B̄R ≤ C̄L + C̄R

Give that B̄ ≤ C̄ it correctly follows that d̄p(Ā, B̄) ≤ d̄p(Ā, C̄).

Note that d̄p does not have the standard property of triangle inequality.

Due to using signed results, the rule of triangle inequality is stricter. In a

non-directional distance measure, because d̄(Ā, B̄) = d̄(B̄, Ā), the ordering of

the given intervals which are measured has no effect on the rule of triangle

inequality, e.g., both

d̄(Ā, C̄) ≤ d̄(Ā, B̄) + d̄(B̄, C̄)

and

d̄(Ā, C̄) ≤ d̄(B̄, Ā) + d̄(B̄, C̄)

are true. The proposed directional distance measure d̄p does not follow this

rule of triangle inequality because it gives a signed result. However, a more

strict form of triangle inequality can be used if the sign of the result is taken

into consideration. For example, one can conclude that

d̄p(Ā, C̄) ≤ d̄p(Ā, B̄) + d̄p(B̄, C̄)

and

d̄p(Ā, C̄) ≤ −d̄p(B̄, Ā) + d̄p(B̄, C̄)
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are true. These are proven as follows:

d̄p(A, C̄) ≤ d̄p(A, B̄) + d̄p(B̄, C̄)

1

2
(C̄L − ĀL + C̄R − ĀR) ≤ 1

2
(B̄L − ĀL + B̄R − ĀR) +

1

2
(C̄L − B̄L + C̄R − B̄R)

C̄L − ĀL + C̄R − ĀR ≤ B̄L − ĀL + B̄R − ĀR + C̄L − B̄L + C̄R − B̄R

C̄L − ĀL + C̄R − ĀR = B̄L − ĀL + B̄R − ĀR + C̄L − B̄L + C̄R − B̄R

and

d̄p(Ā, C̄) ≤ −d̄p(B̄, Ā) + d̄p(B̄, C̄)

1

2
(C̄L − ĀL + C̄R − ĀR) ≤ −1

2
(ĀL − B̄L + ĀR − B̄R) +

1

2
(C̄L − B̄L + C̄R − B̄R)

C̄L − ĀL + C̄R − ĀR ≤ −ĀL + B̄L − ĀR + B̄R + C̄L − B̄L + C̄R − B̄R

C̄L − ĀL + C̄R − ĀR = −ĀL + B̄L − ĀR + B̄R + C̄L − B̄L + C̄R − B̄R

Note that the sign ≤ (typically given in triangle inequality) is changed to = to

show that both sides of the equation are equal. From this it can been seen that

the distance d̄p(A,C) can be calculated by the sum of the distances between A

and B and between B and C if the directions of these pairs are known. Thus,

one can infer d̄p(A,C) if d̄p(A,B) and d̄p(B,C) are already known.

This form of triangle inequality may also be written using the absolute

values, without concern for direction, e.g., as

|d̄p(Ā, C̄)| ≤ |d̄p(Ā, B̄)|+ |d̄p(B̄, C̄)|. (3.3)

However, by taking this approach, the direction of each distance is no longer

known. As a result, one could not infer distances; e.g., if d(A,B) and d(B,C)

are known, one cannot infer d(A,C) if the absolute results are used as in (3.3).

However, if the sign of direction is maintained, it is possible to infer the exact

magnitude and direction of d(A,C).

This constraint on triangle inequality restricts the ordering of the param-

eters when measuring distance. This can be explained with the aid of Table

3.1. The first input of part 1 must appear as the first input where it occurs
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in part 2, if not then the negative of the result is used instead. Likewise, the

second input of part 1 must appear as the second input where it occurs in

part 2, if not then the negative of the result is used instead. Note that the

restricted triangle inequality is not affected by the ordering of the fuzzy sets,

i.e., d̄p(Ā, C̄) ≤ d̄p(Ā, B̄) + d̄p(B̄, C̄) is true if Ā ≤ B̄ ≤ C̄, or if B̄ ≤ Ā ≤ C̄,

or any other ordering on Ā, B̄ and C̄.

Part 1 Part 2

d̄p(Ā, C̄) ≤ d̄p(Ā, B̄) + d̄p(B̄, C̄)

d̄p(Ā, C̄) ≤ −d̄p(B̄, Ā) + d̄p(B̄, C̄)

d̄p(Ā, C̄) ≤ d̄p(Ā, B̄)− d̄p(C̄, B̄)

d̄p(Ā, C̄) ≤ −d̄p(B̄, Ā)− d̄p(C̄, B̄)

Table 3.1: An example of the restricted property of triangle inequality on the

directional distance measure d̄p (3.2).

3.2.3 Directional Distance Between Fuzzy Sets

The proposed directional distance d̄p (3.2) is so far only developed to compare

α-cuts, however it may easily be used to compare fuzzy sets. By modifying an

existing distance measure on fuzzy sets, the distance used to compare α-cuts in

the respective measure (e.g., the Hausdorff metric or Minkowski distance) may

be replaced with the proposed directional distance. For example, the α-cuts of

two fuzzy sets could be compared using Ralescu & Ralescu’s distance (2.35),

replacing h with d̄p. This, in fact, results in the directional distance proposed

by Yao & Wu (2.46) [10].

However, the proposed measure uses a distance between fuzzy sets based

on the method by Chaudhuri and Rosenfeld (2.37). This measure is preferable

because it weights the distance between α-cuts according to the location of
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the α-cuts. Intuitively, the more certainty there is in the membership value of

a given point, the more certainty there must also be in the distance between

these points. Given this, it makes sense to weight the distance between α-cuts

to reflect how certain we are of that distance.

Based on the weighted approach by Chaudhuri and Rosenfeld (2.37) and

using the proposed directional distance between α-cuts (3.2) the following def-

inition introduces a new directional distance measure.

Definition 24 (Distance between non-normal fuzzy sets). The directional dis-

tance between two normal, convex fuzzy sets A,B ∈ T1(X) is

dT1:nc
p (A,B) =

∑M
α=1 yα

1
2
(BαL − AαL +BαR − AαR)∑M

α=1 yα
, (3.4)

where yα is the membership value of the given α-cut, M is the total num-

ber of α-cuts, Aα is the continuous interval [AαL, AαR] and, likewise, Bα =

[BαL, BαR]

Note that the function name dT1:nc
p indicates that the distance measure is

for type-1 fuzzy sets that are normal and convex. Also note that dT1:nc
p could

in theory be used for non-normal fuzzy sets with equal heights. However, such

cases are not explored here but are covered in detail in Section 3.3.

It is clear to see that dT1:nc
p (3.4) follows all of the properties shown for the

directional distance between α-cuts d̄p alone (3.2).

Note that the property of reflectivity (Definition 23) states that for two

intervals [ĀL, ĀR] and [B̄L, B̄R], if (B̄L− ĀL) = −(B̄R− ĀR), then the distance

d̄(Ā, B̄) is 0. If this is true at every α-cut of A and B, then their distance

using dT1:nc
p (3.4) will be 0. In other words, this property states that when

one interval is a subset of the other, the distance between the left end points

cancels out the distance between the right end points. If these two distances

are equal then the result of dT1:nc
p (A,B) is 0. If this is true for every α-cut

then the distance between the fuzzy sets is 0.
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If the difference betweenAαL andBαL is greater than the difference between

AαR and BαR then the resulting distance will be a negative value, and if the

opposite is true then the result is positive. Demonstrations of these effects

that result from the property of reflectivity are shown in the next section.

Having established a directional distance between fuzzy sets, the next sec-

tion demonstrates this measure and compares it against others in the literature.

3.2.4 Comparison with the Current Literature

This section compares the proposed directional distance dT1:nc
p (3.4) with some

other directional and non-directional distance measures in the literature. Com-

parisons are given against:

dyw Yao and Wu’s [10] directional distance measure (2.46).

dcr Chaudhuri and Rosenfeld’s [14] Hausdorff-based distance (2.37).

dg Grzegorzewski’s [74] Minkowski-based distance (2.43), where p = 2 and

q = 0.5.

da Allahviranloo et al.’s [76] distance based on the widths and heights of the

fuzzy sets (2.48).

dcc The directional distance between the centroids of the fuzzy sets; given in

(3.5).

Section 2.4.2 provides details of dyw, dcr, dg and da. Using the centroids (dcc),

the directional distance between two fuzzy sets A and B is given as

dcc(A,B) = Bc − Ac (3.5)

where Ac and Bc are the centroids of A and B, respectively (given in (2.8)).

Figure 3.3 shows an example of five fuzzy sets with triangular membership

functions. The fuzzy sets A, B, C and D have the same membership function

71



d(A,A) d(A,B) d(A,C) d(B,A) d(A,D) d(A,E)

dT1:nc
p (3.4) 0.0 1.0 2.0 -1.0 6.0 6.0

dyw (2.46) 0.0 -1.0 -2.0 1.0 -6.0 -6.0

dcr (2.37) 0.0 1.0 2.0 1.0 6.0 6.33

dg (2.43) 0.0 1.0 2.0 1.0 6.0 6.028

da (2.48) 0.0 1.0 2.0 1.0 6.0 6.009

dcc (3.5) 0.0 1.0 2.0 -1.0 6.0 6.0

Figure 3.3: Five fuzzy sets and their comparison according to the proposed

directional distance measure dT1:nc
p and five other distance measures (dyw, dcr,

dg, da and dcc).

shapes and only the position is changed. This example shows that the results

of dT1:nc
p are intuitive and do not differ from existing methods when the fuzzy

sets are constructed using simple membership functions. Further examples

within this chapter, however, show that the results of the proposed method

differ when fuzzy sets become more complex.

Within Figure 3.3, as expected, for all of the measures the distance between

a fuzzy set and itself is 0. Note that the direction of the distance measure

by Yao and Wu measures distance in the opposite direction to the proposed

method, i.e., dyw(A,B) = dT1:nc
p (B,A).
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d(A,A) d(A,B) d(A,C) d(B,C)

dT1:nc
p (3.4) 0 0 0 0

dyw (2.46) 0 0 0 0

dcr (2.37) 0.0 0.317 0.633 0.317

dg (2.43) 0.0 0.577 1.155 0.577

da (2.48) 0.0 0.333 0.667 0.333

dcc (3.5) 0 0 0 0

Figure 3.4: Three fuzzy sets and their comparison according to the proposed

directional distance measure dT1:nc
p and five other distance measures (dyw, dcr,

dg, da and dcc).

The distance between A and D and between A and E show that the pro-

posed measure dT1:nc
p is not affected by the width of a symmetrical fuzzy set.

This is because while the right side of E is further from A than D, the left

side is closer than D; thus the distance remains the same. The function dcr,

however, focuses on the largest distance between α-cuts, and thus gives a no-

ticeably larger result for d(A,E). Additionally, although dg and da give a

larger result for (A,E) compared to (A,D), the change in value is small and

may have little effect on one’s perception of that distance.

Figure 3.4 demonstrates how the property of reflectivity affects the results

of the directional distance measure. In this example, A, B and C share the
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same mean value (centroid) and are all symmetrical. The only difference be-

tween the membership functions is a change in width. Therefore, each fuzzy

set’s membership function can be described as being both to the left and to

the right of another fuzzy set by an equal amount. As a result, the directional

measures dT1:nc
p and dwy result in a distance of 0 for each comparison. Addi-

tionally, as a result of each fuzzy set sharing the same centroid, the distance

between the centroids dcc is also always 0. The other non-directional measures,

however, convey a different perspective of distance in the fuzzy sets. Though

their results vary, they are all non-zero values.

This highlights an important difference between a directional and a non-

directional distance measure. Although a non-directional measure will show

the overall distance regardless of direction, a directional distance, such as dT1:nc
p

(3.4) or dyw (2.46), will subtract the distance in the left direction from the

distance in the right direction. In this case, this has caused the distance to

reduce to 0; this is the property of reflectivity.

To further highlight this effect, Figure 3.5 shows asymmetric fuzzy sets B

and C, where B has the greatest distance to the right of A, and C has the

greatest distance to the left of A. The sign of the measures dT1:nc
p (3.4) and

dyw (2.46) reflect where the greatest distance between the fuzzy sets lies. Note

that this example highlights the difference between the two directional distance

measures dT1:nc
p and dyw and the centroid based distance dcc.

The proposed measure dT1:nc
p calculates a smaller value of distance than Yao

and Wu’s directional measure dyw because the proposed approach weights the

distance of each α-cut by its degree of membership. Therefore, the closer an α-

cut approaches the value 1 the more possibility there is in the values belonging

to the set and thus the more confidence there is regarding the distance at these

α-cuts.

The distance between A and B, and between A and C, decreases at higher

α-cuts which results in an absolute distance of 0.165. Yao and Wu’s method,
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d(A,B) d(A,C)

dT1:nc
p (3.4) -0.159 0.159

dyw (2.46) 0.25 -0.25

dcr (2.37) 0.633 0.633

dg (2.43) 0.913 0.913

da (2.48) 0.559 0.559

dcc (3.5) -0.333 0.333

Figure 3.5: Three fuzzy sets and their comparison according to the proposed

directional distance measure dT1:nc
p and five other distance measures (dyw, dcr,

dg, da and dcc).

however, does not weight the distance of each α-cut and instead takes the

average of all α-cuts. Therefore, the α-cuts near α = 0 are given the same

importance as α-cuts near α = 1. As a result, in this example the overall value

of distance from dyw is larger than dT1:nc
p . In addition to this, the centroid-

based distance dcc gives an even larger result than dT1:nc
p and dyw. This is

because dcc also does not take into account that the fuzzy sets are closer where

α is near 1 than where α is near 0.

Note, also, that the distance in Figure 3.5, resulting from either direc-

tional distance measure, is considerably smaller than when using any of the

non-directional distance measures (i.e., dcr, dg and da). This is because, as
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discussed on Page 70, due to the fuzzy sets overlapping, the directional mea-

sures essentially subtract the distance to the left of the membership function

from the distance to the right. As a result, the distance decreases if fuzzy sets

overlap such that one of the membership functions contains values both to the

left and right of the other. However, the non-directional distance measures do

not share this property.

This section has introduced a directional distance measure for normal, con-

vex, type-1 fuzzy sets. The next two sections expand on this to measure the

distance between fuzzy sets that may be non-normal or non-convex.

3.3 Non-Normal Fuzzy Sets

Non-normal fuzzy sets occur when there is no absolute certainty for any value,

i.e., µA(x) < 1, ∀x ∈ X A ∈ T1(X) (discussed in Section 2.2.1; Page 13). This

may arise, for example, when modelling data taken from a survey in which no

one is in agreement with each other, from the output of a fuzzy logic system

or from the lower membership function of an interval type-2 fuzzy set.

In practice, it may be difficult to calculate the distance between non-normal

fuzzy sets. This is because the α-cut of a non-normal fuzzy set cannot be

measured where α exceeds the height of the fuzzy set. This introduces the

problem how can we measure the distance between fuzzy sets with different

heights? For example, consider the two non-normal fuzzy sets A,B ∈ T1(X)

in Figure 3.6. The height of A is 0.5 and the height of B is 0.8. As a result,

Aα = ∅ where α > 0.5 and Bα = ∅ where α > 0.8. To measure the distance

between A and B, two problems must be addressed.

1. Firstly, how can the distance be measured at α-cuts where for one fuzzy

set the α-cut is the empty set. In this example, this is where 0.5 < α ≤

0.8.
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Figure 3.6: Two non-normal fuzzy sets A and B.

2. Secondly, how can the distance be measured where for both fuzzy sets

the α-cut is the empty set; in this case where α > 0.8.

Regarding these problems, there is no clear definition of how the distance

between non-normal fuzzy sets should be measured. Several techniques have

been developed in the literature, however these methods may not be ideal; as

demonstrated in Section 3.3.2.

For example, Chaudhuri and Rosenfeld [14] use an approach that nor-

malises the membership functions of the fuzzy sets so that there is no α-cut

which is represented by the empty set. However, this produces inconsistent

results compared to their approach for normal fuzzy sets. Wang et al. [15]

compare the distance between the heights of the fuzzy sets, however this re-

sults in unexpectedly high values of distance. Cheng [11] compares the mean

x and y (µ(x)) values of the fuzzy sets, however this does not give expected

results for fuzzy sets with identically shaped membership functions. These are

each demonstrated in Section 3.3.2.

Another method is to compare every α-cut of one fuzzy set with every α-cut

of the other, making no comparison where an α-cut is empty; an example of

this approach is given in Appendix B. However, the computational complexity
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of this approach grows exponentially as more α-cuts are used (this is especially

noticeable when comparing general type-2 fuzzy sets), and the results of com-

paring all permutations are consistent with the simpler process developed in

this section (this is demonstrated in Appendix B). Given that the proposed

method in this section produces similar results and is computationally quicker,

it is the more favoured method.

3.3.1 Distance Between Non-Normal Fuzzy Sets

This section introduces a method of obtaining the distance between the α-cuts

of fuzzy sets where an α-cut may be the empty set. One simple method of

achieving this goal is to compare the closest non-empty α-cuts.

Definition 25 (Distance Between Empty α-cuts). For two α-cuts Aα and Bα,

if Aα 6= ∅∧Bα = ∅ or Aα = ∅∧Bα 6= ∅ (where ∧ is the logical ‘and’ operation),

then the proposed distance is

`̄dp(Aα, Bα) =

d̄(Aαk, Bα) if Aα = ∅ ∧Bα 6= ∅

d̄(Aα, Bαk) if Aα 6= ∅ ∧Bα = ∅,
(3.6)

where Aαk = max
{
Aα | Aα 6= ∅, ∀α ∈ [0, 1]

}
and d̄ may be any distance func-

tion between two α-cuts.

Thus, where an α-cut exceeds the height of a given fuzzy set, the α-cut

at the height of the fuzzy set is used as a substitute. Note that this is one of

several possible methods, for example the average distance from all non-empty

α-cuts could be used instead. This method has been chosen because it provides

the closest possible comparison between respective α-cuts in different sets.

Where an α-cut is the empty set in both fuzzy sets then the distance does

not need to be considered. This is because it does not make sense to measure

the distance between two empty sets.
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Expanding upon the directional distance measure dT1:nc
p (3.4), the proposed

distance between fuzzy sets is as follows.

Definition 26 (Distance between non-normal fuzzy sets).

dT1:c
p (A,B) =

∑
α∈[0,λ] yα

`̄dp(Aα, Bα)∑
α∈[0,λ] yα

, (3.7)

where λ = max
{
α | Aα 6= ∅ ∨Bα 6= ∅, α ∈ [0, 1]

}
and `̄dp is

`̄dp(Aα, Bα) =


d̄p(Aα, Bα) Aα 6= ∅ ∧Bα 6= ∅

d̄p(Aαk, Bα) Aα = ∅ ∧Bα 6= ∅

d̄p(Aα, Bαk) Aα 6= ∅ ∧Bα = ∅

(3.8)

where Aαk = max
{
Aα | Aα 6= ∅, ∀α ∈ [0, 1]

}
. This uses the directional dis-

tance d̄p (3.2). However, to attain a non-directional distance measure d̄ (3.1)

may be used instead of d̄p.

Note that the function name dT1:c
p in (3.7) indicates that the fuzzy sets

must be type-1 and convex, but may be non-normal.

3.3.2 Comparison with the Current Literature

This section demonstrates the results of the proposed measure dT1:c
p (3.7) when

comparing type-1 fuzzy sets that may be non-normal. As well as demonstrating

the proposed approach, a comparison is also given against

dcr Chaudhuri and Rosenfeld’s [14] non-normal distance measure (2.39); de-

tailed in Section 2.4.2.

dw Wang et al.’s (dw) non-normal distance measure for only trapezoidal fuzzy

sets [15]; given in (3.9).

dc Cheng’s [11] non-normal distance measure; given in (3.11).

dcc The directional distance between the centroids of the fuzzy sets (3.5).

The equations dw and dc are given next.
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Details of the measures demonstrated within this section

Wang et al.’s [15] (dw) non-normal distance measure for two trapezoidal

fuzzy sets A,B ∈ T1(X) is

dw(A,B) = (1− σ)dw1(A,B) + σdw2(A,B) (3.9a)

dw1(A,B) =
1

4
(|a1 − b1| − |a4 − b4|) +

3

4
(|a2 − b2|+ |a3 − b3|) (3.9b)

dw2(A,B) =
3

4
|ωA − ωB|+

1

4
(|LkA − LkB|+ |RkA −RkB|) (3.9c)

where σ ∈ [0, 1] and is set as 0.25 [15], A is represented by a trapezoidal

membership function (a1, a2, a3, a4;ω), a1 < a2 < a3 < a4 and ω is the height

of the fuzzy set as

µA(x) =



ω(x−a1)
a2−a1

, a1 ≤ x ≤ a2

ω, a2 ≤ x ≤ a3

ω(a4−x)
a4−a3

, a3 ≤ x ≤ a4

0, otherwise.

(3.10)

Also in dw (3.9), LkA = a2−a1

ω
and RkA = a3−a4

ω
.

Cheng’s [11] (dc) distance for non-normal fuzzy sets gives each fuzzy set

a rank position defined by the centroid along the x-axis (2.8) and the centroid

along the y-axis (µ-axis), denoted x0 and y0, respectively. The rank value of

A ∈ T1(X) is R(A) =
√
x2

0 + y2
0. This rank value essentially reduces a fuzzy

set to a single centroid (R) based on its centroids along both axes. This can

then be used to determine the relative positions between multiple fuzzy sets.

In these demonstrations, the distance between A,B ∈ T1(X) will be given as

d(A,B) = |R(A)−R(B)| (3.11)

Demonstrations of the measures

This section demonstrates that non-normality itself does not necessarily change

the results of dT1:nc
p and it is rather the symmetry, or asymmetry, of the fuzzy
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sets that affects the results.

For example, Figure 3.7 shows pairs of fuzzy sets that are symmetrical and

have different heights. The results of the proposed method and the centroid-

approach are the same if the fuzzy sets are symmetrical regardless of whether

the fuzzy sets are normal or non-normal.

The measures dcr, dw and dc, however, always result in a different value

when the fuzzy sets are non-normal. Note that in Figure 3.7 (and Figure 3.8)

dw is unexpectedly high, giving values around 6 when one would expect values

around 4. Additionally, dc and dcr give unexpected results for Figure 3.7a as

one would expect the result to be 4.

The functions dcr, dw and dc each give different results where the height

of a fuzzy set differs. In Figure 3.7, the distance decreases or increases when

the height of B is less than 1.0 . However, this makes it impossible to discern

between non-normal fuzzy sets that are close, and normal fuzzy sets that are

distant. For example, using dw the distance between A and B in Figure 3.7d

would be the same as if B were a normal, symmetrical fuzzy set with the centre

at x = 8.3.

To give another example, Figure 3.8 shows that the results of the proposed

method dT1:c
p change if the height of an asymmetric fuzzy set changes. This is

because changing the height affects the gradient of each side of the triangular

membership function, which in turn changes the coordinates of the α-cuts. As

a result, although the left-most, centre and right-most coordinates of B are

the same (at x = 5, 6, 8), the x values within each α-cut, and therefore the

centre of each α-cut, are different as the height of the fuzzy set is different.

This, however, does not occur with the centroid-based approach dcc.

The distance measures dcr, dw and dc state that the distance according to

the non-normal fuzzy sets changes in Figures 3.7 and 3.8. dcr and dc give a

decreasing distance as the height of B decreases, whereas the distance accord-

ing to dw increases. Regarding dcr, this is because it measures the distance

81



(a) (b)

(c) (d)

Figure dT1:c
p dcr dw dc dcc

(3.7) (2.39) (3.9) (3.11) (3.5)

a 4.0 4.3143 6.0 3.9592 4.0

b 4.0 4.2829 6.0687 3.9517 4.0

c 4.0 4.2514 6.1583 3.9447 4.0

d 4.0 4.22 6.3 3.9417 4.0

Figure 3.7: Four pairs of symmetrical fuzzy sets with differing heights, and the

distances according to the proposed measure dT1:c
p and four other approaches

(dcr, dw, dc and dcc).
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(a) (b)

(c) (d)

Figure dT1:c
p dcr dw dc dcc

(3.7) (2.39) (3.9) (3.11) (3.5)

a 4.1583 4.656 6.25 4.2908 4.3333

b 4.1012 4.6153 6.3344 4.2839 4.3333

c 4.0569 4.5746 6.45 4.2775 4.3333

d 4.0251 4.5338 6.6437 4.2748 4.3333

Figure 3.8: Four pairs of symmetrical and asymmetric fuzzy sets with differing

heights, and the distances according to the proposed measure dT1:c
p and four

other approaches (dcr, dw, dc and dcc).
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between the vertical slices of the fuzzy sets. As B’s height decreases, the dif-

ference also decreases between its membership values (at x ∈ [5, 7]) and A’s

membership values of the same elements (µA(x) = 0, ∀x ∈ [5, 7]).

The dc approach uses the average µ value to compare distance, and as the

height of a fuzzy set decreases the average µ also decreases in value, result-

ing in a smaller distance than for normal fuzzy sets. The dw method directly

compares the heights of the fuzzy sets, and so the resulting distance is al-

ways affected by the heights of the fuzzy sets regardless of the shape of the

membership functions.

Additionally, there is inconsistency between the results from Chaudhuri and

Rosenfeld’s approaches for normal (2.37) and non-normal (2.39) fuzzy sets. If

the non-normal approach is applied to normal fuzzy sets, then the distance is

given as a larger value than the normal approach. For example, referring to

Table 3.2, in Figure 3.7a, using dcr for normal fuzzy sets (2.37) the result is

4.0, however the non-normal approach (2.39) calculates the distance as 4.3143.

Additionally, in Figure 3.8a, using the normal fuzzy set approach the distance

is 4.3167. However, using the non-normal approach the distance is 4.656.

In contrast, one of the advantages of the proposed approach is that it

does not give inconsistent results between normal and non-normal fuzzy sets.

Whether using the standard comparison dT1:nc
p (3.4) or the extension for non-

normal fuzzy sets dT1:c
p (3.7), the results are always the same when measuring

normal fuzzy sets.

Having introduced a method of measuring the distance between non-normal

fuzzy sets, the next section proceeds to extend this measure to compare fuzzy

sets that are non-convex.
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dcr method Figure 3.7a Figure 3.8a

Normal (2.37) 4.0 4.3167

Non-Normal (2.39) 4.3143 4.656

Table 3.2: Distances between two pairs of normal fuzzy sets using the normal

and non-normal approaches of dcr.

3.4 Non-Convex Fuzzy Sets

In most cases, fuzzy sets are convex (detailed in Section 2.2.1; Page 14), but it

can be useful to instead represent data by a non-convex membership function

[18] (as discussed in Section 2.3.4). Any α-cut of a normal, convex fuzzy set

can be represented as a continuous interval, but a non-convex α-cut is instead

represented by a discontinuous interval (see Definition 8).

For example, consider the non-convex and convex fuzzy sets A and B in

Figure 3.9. Any α-cut of B is represented by a continuous interval, however

any α-cut of A at α > 0.6 consists of two separate intervals. For example, at

α = 0.8 Aα = {[1.8, 2.5], [3.5, 4.2]}. This introduces the problem how can the

distance between discontinuous α-cuts be measured?

Figure 3.9: A non-convex fuzzy set A and a convex fuzzy set B.
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3.4.1 Distance Between Non-Convex Fuzzy Sets

In Section 3.2.2, the distance between α-cuts is represented by the average

distance between the boundaries of the α-cuts. Taking the same approach,

this section proposes a method of calculating the distance between non-convex

fuzzy sets by taking the average distance between the α-cut’s continuous re-

gions. This ensures that the distance measure has the same properties for both

convex and non-convex fuzzy sets. The proposed measure is as follows:

Definition 27 (Distance between discontinuous intervals). The directional

distance between α-cuts that may be discontinuous is calculated as

¯̄dp(Aα, Bα) =
1

||Aα||||Bα||

||Aα||∑
i=1

||Bα||∑
j=1

d̄p(Aαi , Bαj) (3.12)

where Aαi represents the ith continuous interval within Aα where Aα may be

discontinuous, and ||Aα|| and ||Bα|| are the total number of continuous inter-

vals within Aα and Bα, respectively. This uses the directional distance between

continuous α-cuts d̄p (3.2). However, to attain a non-directional distance mea-

sure d̄ (3.1) may be used instead of d̄p.

To demonstrate ¯̄dp, Figure 3.9 shows a non-convex and a convex fuzzy set.

At α = 0.8, Aα = {[1.8, 2.5], [3.5, 4.2]} and Bα = [6.8, 9.2], and so the distance

between A and B must be calculated using ¯̄dp (3.12). Aα is split into two

intervals, Aα1 and Aα2 and the distance is calculated between Aα1 and Bα

and between Aα2 and Bα; using d̄p (3.2) these are d̄p(Aα1 , Bα) = 5.85 and

d̄p(Aα2 , Bα) = 4.15. Finally, the average of these is 5.0 and is used as the

result of ¯̄dp(Aα, Bα) at α = 0.8.

Expanding on the proposed measure for non-normal fuzzy sets dT1:c
p (3.7),

the following definition proposes a distance measure for non-convex fuzzy sets.

Definition 28 (Distance between non-convex fuzzy sets). The directional dis-

tance for two fuzzy sets A,B ∈ T1(X) that may be normal or non-normal and

86



convex or non-convex is

dT1
p (A,B) =

∑
α∈[0,λ]] yα

`̄dp(Aα, Bα)∑
α∈[0,λ] yα

, (3.13)

where λ = max
{
α | Aα 6= ∅ ∨Bα 6= ∅, α ∈ [0, 1]

}
and d̄p is

`̄dp(Aα, Bα) =


¯̄dp(Aα, Bα) Aα 6= ∅ ∧Bα 6= ∅

¯̄dp(Aαk, Bα) Aα = ∅ ∧Bα 6= ∅

¯̄dp(Aα, Bαk) Aα 6= ∅ ∧Bα = ∅

(3.14)

where ¯̄dp(Aα, Bα) is given in (3.12)

and Aαk = max
{
Aα | Aα 6= ∅,∀α ∈ [0, 1]

}
.

This may be directional or non-directional according to the chosen function

within ¯̄dp. Note that the α-cuts are denoted Aα and Bα to show that they are

possibly, but not necessarily, discontinuous. Also, note that the function name

dT1
p in (3.13) indicates that the measure compares type-1 fuzzy sets with no

restrictions on normality or convexity.

3.4.2 Demonstrations

This section demonstrates the results of the centroid-based dcc (3.5) and direc-

tional α-cut-based dT1
p (3.13) distance measures on non-convex fuzzy sets. Note

that, to the author’s knowledge, there are no α-cut-based distance measures

for non-convex fuzzy sets within the literature.

As demonstrated in previous examples, if fuzzy sets are symmetrical and

disjoint the measurement of distance is the same as the distance between the

fuzzy sets’ centroids.2 This is shown for non-convex fuzzy sets in Figure 3.11

where dashed lines indicates the average point of each α-cut. This shows that

the distance against the fuzzy set B is always measured at x = 8.

2However, this is not true for overlapping fuzzy sets as demonstrated in Figure 3.5 and

later in Figure 3.14.
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Next, Figures 3.12 and 3.13 show how skewed (i.e., asymmetric), non-

convex regions affect the results of the distance measures. Figures 3.12 and

3.13 show concave regions that are skewed to the left and right, respectively.

Note that, in these examples, the fuzzy sets have been given unusual and

exaggerated shapes to demonstrate the properties of the measures. This is

because the properties of the distance measures are clearer to see if the causes

of these properties are exaggerated.

Comparing Figures 3.12 and 3.13, the results of the centroid-based dcc

and α-cut-based dT1
p distance measures directly contradict each other. In Fig-

ure 3.12, which contains left-skewed concave regions, the distance using the

centroid-based method dcc increases as the concave region becomes deeper,

whereas the α-cut-based distance dT1
p decreases. Likewise, in Figure 3.13, in

which the fuzzy sets contain right-skewed concave regions, the distance ac-

cording to the centroid-based method dcc decreases, whereas the α-cut-based

distance dT1
p increases. The rest of this section discusses these results, firstly

of dcc followed by a discussion of dT1
p .

The results of the centroid-based method dcc change according to where

there is more membership in the fuzzy set. For example, in Figure 3.12, there

is a dip in membership (the concave region) to the left and so, comparatively,

there is more membership to the right. As a result, the centroid becomes more

skewed to the right from Figure 3.12a to (d), and so the distance between

A and B increases. The same effect occurs in Figure 3.13, resulting in the

centroid becoming skewed to the left and the distance becoming smaller from

Figure 3.13a to (d).

The α-cut-based measure dT1
p uses a different approach to determine the

distance between fuzzy sets and thus produces different results. As this method

uses α-cuts to compare fuzzy sets, for simplification this next demonstration

compares the distance between discontinuous α-cuts rather than fuzzy sets as

a whole. Figure 3.10 shows three pairs of α-cuts derived from Figures 3.11d,
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(a) Centred uncertainty,

¯̄dp = 4.5

(b) Left-skewed uncertainty,

¯̄dp = 4.4

(c) Right-skewed uncertainty,

¯̄dp = 4.6

Figure 3.10: Centred, left-skewed and right-skewed discontinuous intervals de-

rived from Figures 3.11d, 3.12d, 3.13d, respectively, at α = 0.85 and their

distances according to the measure ¯̄dp in (3.12).

3.12d and 3.13d, respectively, at α = 0.85 showing that ¯̄B is a discontinuous

interval with a gap centred, skewed to the left, and skewed to the right. Looking

at these examples, one can see how the locations of the end points of ¯̄B affect

the resulting distance.

For each example in Figure 3.10, Ā = [2.05, 3.95], the centre of which is 3.

In Figure 3.10a (containing a centred break in ¯̄B), ¯̄B = ([6.3469, 7.0], [8.0, 8.6531]).

The centres of these two continuous intervals are (6.67345, 8.32655), the aver-

age of which is 7.5; this is used as the average value of ¯̄B. Thus the distance

¯̄d(Ā, ¯̄B) in Figure 3.10a is 4.5.

In Figure 3.12, B has a concave region to the left of its centroid, thus the

α-cut at α = 0.85 (shown in Figure 3.10b) is a discontinuous pair of intervals

where the gap is skewed to the left. Specifically, ¯̄B = ([6.3469, 6.8], [7.8, 8.6531]).

The centres of these continuous intervals are (6.57345, 8.22655) and their av-

erage is 7.4. Thus the distance ¯̄d(Ā, ¯̄B) in Figure 3.10b is 4.4. This is smaller

than in Figure 3.10a where the gap in ¯̄B is centred. This is because the end

of the first interval of ¯̄B and the beginning of the second interval are each a

smaller values in Figure 3.10b than in Figure 3.10a (i.e. 6.8 < 7 and 7.8 < 8).
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Thus, ¯̄B is closer to A in Figure 3.10b, resulting in a smaller value of distance.

The reverse can also be seen when comparing Figures 3.10a and 3.10c.

The proposed method ¯̄d provides a suitable comparison between discon-

tinuous α-cuts, though one may explore other methods such as weighting the

continuous intervals according to their length. For example, one could place a

higher weight on the widest interval, deeming the widest interval as the most

significant. Such alternative methods are left for future work.

To determine which of dT1
p and dcc give the most appropriate results for non-

convex fuzzy sets, the next demonstration (after the figures) uses data-driven

fuzzy sets to further compare and discuss these methods.
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(a) (b)

(c) (d)

Figure dT1
p dcc

a 5.0 5.0

b 5.0 5.0

c 5.0 5.0

d 5.0 5.0

Figure 3.11: Four pairs of fuzzy sets with convex and non-convex membership

functions, and the distances according to the proposed measure dT1
p (3.13) and

a centroid based approach dcc (3.5).
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(a) (b)

(c) (d)

Figure dT1
p dcc

a 5.0 5.0

b 4.9796 5.0103

c 4.9431 5.0213

d 4.9161 5.0331

Figure 3.12: Four pairs of fuzzy sets with convex and non-convex membership

functions, and the distances according to the proposed measure dT1
p (3.13) and

a centroid based approach dcc (3.5).
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(a) (b)

(c) (d)

Figure dT1
p dcc

a 5.0 5.0

b 5.0205 4.9897

c 5.057 4.9787

d 5.084 4.9669

Figure 3.13: Comparing distance between an asymmetric, right-skewed, non-

convex fuzzy set and a convex fuzzy set proposed measure dT1
p (3.13) and a

centroid based approach dcc (3.5).
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Different results often occur when using the α-cut-based dT1
p or centroid

based dcc distance measures to compare non-convex fuzzy sets. In such cases,

dT1
p often produces results closer to what one might expect.

To demonstrate this, Figure 3.14 shows four different pairs of highly non-

convex, spiky fuzzy sets constructed from a survey in which participants rated

attributes of different cakes; more details on this data set are given in Section

7.3. The distances according to dT1
p and dcc are given under each figure and

are listed in Table 3.3. Within dT1
p , 40 α-cuts were measured to improve the

accuracy of the results.

In these examples, the proposed α-cut based distance dT1
p is always larger

than dcc. In Figures 3.14a, b and c the peaks (x value with highest membership)

of the two fuzzy sets are at x = 2 and x = 6. The function dT1
p reflects this

degree of distance by giving values between 3.4 and 3.6. Note, the membership

values at all other points are nearly equal. The function dcc, however, gives a

much lower value for each pair and so does not reflect the difference between

the peaks of the fuzzy sets as clearly as dT1
p .

It is because dT1
p uses α-cuts that it picks up on changes in the peaks of the

fuzzy sets more effectively than dcc, which looks at the overall shape. When

dT1
p measures an α-cut around α = 0.2 it calculates the distance between the

peaks of the fuzzy sets (at x = 2 and x = 6) and accounts for this in the overall

value result. The centroid based approach does not use α-cuts, however, and

as a result it does not pick up this difference between the sets leading to a less

accurate result. Thus, the final result of dcc is smaller than dT1
p .

These demonstrations show that the proposed α-cut method is better suited

to non-convex fuzzy sets as it produces results closer to what one would expect.

The next section provides a summary of the distance measures proposed within

this chapter.
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(a) dT1
p = 3.4212; dcc = 1.0848 (b) dT1

p = −3.4588; dcc = −1.0909

(c) dT1
p = −3.5978; dcc = −1.2747 (d) dT1

p = −1.1978; dcc = 0.2008

Figure 3.14: Data-driven fuzzy sets representing the distributions of ratings

for how crumbly two different cakes have been rated. The α-cut-based dT1
p and

centroid-based dT1
p distances are shown.

Figure 3.14 dT1
p (A,B) dcc(A,B)

a 3.4212 1.0848

b -3.4588 -1.0909

c -3.5978 -1.2747

d -1.1978 0.2008

Table 3.3: Distances between the fuzzy sets in Figure 3.14 using the α-cut

based dT1
p and centroid-based dcc distance measures.
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3.5 Summary

This chapter has developed and introduced

• a directional distance measure to compare type-1 fuzzy sets (3.4),

• a distance measure (directional and non-directional) that can compare

non-normal fuzzy sets (3.7),

• a distance measure (directional and non-directional) that can compare

non-convex fuzzy sets (3.13), and

• a method of joining the above three points to attain a directional or non-

directional distance measure between fuzzy sets that may be normal or

non-normal and convex or non-convex.

The directional distance measure produces a signed value, where the

sign indicates the relative positions of the fuzzy sets in the universe of discourse.

More specifically, it enables one to know which fuzzy set is to the left or right

(i.e., contains lower or higher values) than the other. The absolute value

resulting from this measure indicates the magnitude of the distance between

the fuzzy sets.

The distance measure on non-normal fuzzy sets uses the α-cut at

the height of the fuzzy set as a substitute where α-cuts are empty. Another

approach that avoids empty α-cuts is to instead compare every non-empty

α-cut of one fuzzy set with every non-empty α-cut of the other, ignoring any

empty α-cuts. An example of this is given in Appendix B. However, comparing

all α-cuts is more computationally complex and the results show no noticeable

benefits when using this method. Instead, the proposed method will be suitable

for most applications.

The distance measure on non-convex fuzzy sets calculates the average

distance between each continuous interval of a discontinuous α-cutand it was
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demonstrated that the results better match the expected value compared to a

centroid-based measure.

Having developed a directional distance measure for non-normal and non-

convex type-1 fuzzy sets, the next chapter expands this measure to interval

and general type-2 fuzzy sets.
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Chapter 4

Measuring Distance and

Similarity Between Type-2

Fuzzy Sets

4.1 Introduction

This chapter presents methods of calculating the similarity and distance be-

tween type-2 fuzzy sets. First, based on the techniques developed in the previ-

ous chapter, the type-2 distance measure dT1
p is extended to compare interval

type-2 fuzzy sets. To compare general type-2 fuzzy sets, a method of extending

any interval type-2 measure to general type-2 fuzzy sets is proposed, and it is

shown that any properties of an interval type-2 approach (distance, similarity

or otherwise) are also present when extended to general type-2 fuzzy sets.

It is commonly stated that “when all uncertainties disappear a type-2 mem-

bership function must reduce to a type-1 membership function” [16]. With this

in mind, when all uncertainties disappear in a type-2 membership function, the

measure comparing type-2 fuzzy sets should reduce to the equivalent measure

on type-1 fuzzy sets. Thus, measures on type-2 fuzzy sets should ideally have
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the same properties as their type-1 forms, i.e., the same characteristics of sim-

ilarity and distance should always be observed, regardless of the type of fuzzy

set. This ensures that the results of the measures can be easily compared

because the fuzzy set type does not affect the measure or its interpretation.

Section 4.2 presents a directional and non-directional distance measure for

interval type-2 fuzzy sets that may have non-normal or non-convex membership

functions. After this, Section 4.3 presents a method of extending interval type-

2 measures onto general type-2 fuzzy sets.

4.2 Distance on Interval Type-2 Fuzzy Sets

This section extends the directional distance measure on type-1 non-normal

and non-convex fuzzy sets dT1
p (3.14) to interval type-2 fuzzy sets, demonstrates

the new measure, and shows that its results are consistent with those of the

type-1 measure dT1
p .

4.2.1 Distance Measure

As stated in Section 2.2.3, the α-cut of an interval type-2 fuzzy set is rep-

resented by the α-cuts of the lower and upper membership functions; this is

denoted Ãα =
{
ÃαW , ÃαU

}
for Ã ∈ IT2(X) where ÃαW and ÃαU are the

α-cuts of the lower and upper membership functions of Ã, respectively.

Based on this α-cut representation and the distance measures developed in

Chapter 3, the following definition introduces the proposed directional distance

measure for interval type-2 fuzzy sets:

Definition 29 (Interval Type-2 Distance Measure). The directional distance

between two fuzzy sets Ã, B̃ ∈ IT2(X) may be measured by comparing the

upper and lower membership functions as

dIT2
p (Ã, B̃) =

∑
α∈[0,γU ] yα

`̄dp(ÃαU , B̃αU ) +
∑

α∈[0,γW ] yα
`̄dp(ÃαW , B̃αW )∑

α∈[0,γU ] yα
∑

α∈[0,γW ] yα
, (4.1)
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where yα is the y-coordinate (or u value) for the given α-cut, `̄dp is described

in (3.14), γU = max
{
α | ÃαU 6= ∅ ∨ B̃αU 6= ∅, α ∈ [0, 1]

}
, and γW is the same

for the lower membership functions of Ã and B̃.

By using γU and γW , dIT2
p compares the upper and lower membership func-

tions of Ã and B̃ up to the maximum height of the respective membership

functions.

Using the distance between α-cuts `̄dp (3.14) within dIT2
p (4.1) enables one

to compare non-normal fuzzy sets and non-convex fuzzy sets. Additionally,

dIT2
p may be either directional or non-directional. Within dIT2

p , the function

`̄dp is used to calculate the distance between α-cuts that may be non-normal

(i.e., non-existent) or non-convex. This may be directional or non-directional

by using d̄p (3.2) or d̄ (3.1), respectively, to compare continuous, non-empty

α-cuts.

Theorem 2. The interval type-2 distance measure dIT2
p (4.1) has the same

properties as the directional distance measure dT1
p (3.4) with d̄p (3.2) for type-

1 fuzzy sets. These are self-identity, partial-symmetry, transitivity, triangle-

inequality, directional separability and reflective distance.

Proof. These properties were proven for type-1 membership functions in Chap-

ter 3, so it follows that these properties are also present when comparing the

upper and lower membership functions of an interval type-2 fuzzy set. It is

then trivial to see that dIT2
p (4.1) therefore has all of these properties.

Theorem 3. The interval type-2 distance measure dIT2
p (4.1) is a metric when

using the metric distance measure dT1
p (3.4) with d̄ (3.1) for type-1 fuzzy sets.

Therefore, it has the properties self-identity, separability, symmetry and trian-

gle inequality.

Proof. As proven in Theorem 2, as these properties are present when compar-

ing type-1 membership functions, it follows that they are also present when

comparing interval type-2 fuzzy sets using dIT2
p (4.1).
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4.2.2 Demonstrations

The remainder of this section demonstrates the proposed directional distance

measure dIT2
p compared against three different measures proposed by Figueroa-

Garćıa et al. [79]. These are

dα The directional distance between α-cuts (2.47).

dh The Hausdorff distance between the centroids of the fuzzy sets (2.40).

ds The sum of the centroids of the fuzzy sets (2.41).

These equations are detailed in Section 2.4.2.

This demonstration compares the fuzzy sets shown in Figure 4.1, in which

the membership functions have been created based on the type-1 examples

shown from Figures 3.3 to 3.13. The distances d(Ã, B̃) for each pair of fuzzy

sets are shown in Table 4.1 for the four given methods. Note that the dα (2.47)

can only compare normal, convex fuzzy sets, and so no results can be given

where fuzzy sets contain non-normal or non-convex membership functions us-

ing this method.

From these results, one can see that the proposed distance produces similar

results to the type-1 distance measure demonstrations in Figures 3.3 to 3.13.

For example, in Figure 4.1a, the distance is as expected. The α-cut based dα

and sum of centroids ds measures by Figueroa-Garćıa et al., however, produce

double what one would expect. This is because, unlike the proposed approach,

they do not take the average distance between the two membership functions

and instead sum the results.

Additionally, the proposed distance dIT2
p in Figure 4.1b is 0.0 due to the

property of reflectivity; this also occurred in the type-1 results in Figure 3.7.

Note that the two centroid based approaches also give values close to 0.0.

However due to the differences in the gradients of the fuzzy set membership

functions, the values are slightly greater than 0 (note that the differences in
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.1: A collection of interval type-2 fuzzy set pairs which are a mixture

of normal, non-normal, convex and non-convex, used to demonstrate dIT2
p .

Dashed lines highlight the boundaries of the type-reduced sets.
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Figure 4.1 dIT2
p (4.1) dα (2.47) dh (2.40) ds (2.41)

a 5.0 10.0 5.0 10.0

b 0.0 1.267 0.002 0.004

c 4.0 - 4.035 8.0

d 4.159 8.317 4.335 8.671

e 4.067 - 4.391 8.675

f 4.5 - 4.518 9.0

g 4.489 - 4.568 9.103

h 4.511 - 4.557 9.086

Table 4.1: The distance between the interval type-2 fuzzy set pairs shown in

Figure 4.1 using the proposed measure dIT2
p and three other measures (dα, dh

and ds) in the literature.

their type-reduced sets are too small to see within Figure 4.1b). The measure

dα, however, gives a noticeably higher value of distance.

Figures 4.1c, (d) and (e) demonstrate the effects of non-normality on dis-

tance. As shown with type-1 fuzzy sets (in Figure 3.7), the distance between

symmetrical, disjoint fuzzy sets is the same regardless of normality using the

proposed method dIT2
p as well as the sum of centroids approach ds (2.41); as

indicated by Figure 4.1c. However, a non-symmetrical fuzzy set has a more

noticeable change in membership value if its height is changed. Using the pro-

posed approach, the distance decreases from Figure 4.1d to (e) as the height

of B̃ decreases; note that this effect was also demonstrated for type-1 fuzzy

sets in Figure 3.8. The centroid based approaches, however, have the opposite

effect.

The comparison of non-convex fuzzy sets also produces similar results to

the type-1 demonstrations (shown in Figures 3.11, 3.12 and 3.13). For the
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proposed method dIT2
p , the distance between symmetrical, disjoint fuzzy sets

is the same, regardless of convexity.

Additionally, the distance changes if the concave region of a non-convex

fuzzy set is skewed. In Figure 4.1g, the proposed distance decreases whilst the

centroid distance increases, and in Figure 4.1h the opposite effect is observed.

Both of these effects were also shown in the type-1 results in Figures 3.12 and

3.13, where a detailed discussion of these results is given in Section 3.4.

4.2.3 Comparing Interval Type-2 and Type-1

Distance Measures

It is important that the interval type-2 directional distance measure dIT2
p (4.1)

gives consistent results with the type-1 measure dT1
p (3.13) so that the results

can be evaluated in the same way regardless of the type of fuzzy set. In this

section, a brief demonstration is given to show that dIT2
p and dT1

p both produce

the same results for type-1 fuzzy sets.

Figure 4.2 shows pairs of type-1 fuzzy sets based on the interval type-2 pairs

in Figure 4.1. When using the interval type-2 measure dIT2
p , the type-1 fuzzy

sets are treated as interval type-2 fuzzy sets with identical upper and lower

membership functions. The results of both the type-1 dT1
p (3.13) and interval

type-2 dIT2
p (4.1) directional distance measures are shown in Table 4.2. It is

clear from these identical results and the demonstration in Table 4.1 that the

interval type-2 distance measure produces consistent results compared to the

type-1 distance measure.

Also note that Table 4.1 and Table 4.2 have the same results for Figures

4.1a to (f) and Figures 4.2a to (f), respectively because the centres of each

α-cut in these figures are the same. This is not the case for Figures 4.2g and

(h) and Figures 4.1g to (h), however, because the interval type-2 fuzzy sets

have different shaped lower and upper membership functions.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.2: A collection of type-1 fuzzy set pairs based on the interval type-2

fuzzy sets in Figure 4.1.
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Figure 4.2 Type-1: dT1
p Interval Type-2: dIT2

p

a 5.0 5.0

b 0.0 0.0

c 4.0 4.0

d 4.159 4.159

e 4.067 4.067

f 4.5 4.5

g 4.491 4.491

h 4.509 4.509

Table 4.2: The distance between the type-1 fuzzy set pairs shown in Figure 4.2

using the proposed type-1 dT1
p (3.13) and interval type-2 dIT2

p (4.1) directional

distance measures.

This section has presented a method of measuring the distance between

interval type-2 fuzzy sets that may be normal or non-normal and convex or

non-convex. The next section focuses on extending this to general type-2 fuzzy

sets, by proposing a method that is not restricted to only distance measures,

but may be used to apply any interval type-2 measure on general type-2 fuzzy

sets.
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4.3 Extending Interval Type-2 Measures

to General Type-2 Fuzzy Sets

Section 2.2.4 gave a background on the zSlices representation of fuzzy sets

which simplifies general type-2 fuzzy sets by representing them as a collection

of zSlices. These zSlices are equivalent to interval type-2 fuzzy sets but with

a secondary membership value of a given value z instead of 1. The zSlices

approach to general type-2 fuzzy sets is valuable because it has made it possible

to extend any theoretical work of interval type-2 fuzzy sets to general type-2

fuzzy sets. Using the zSlices approach, this section develops a general method

of taking any measure on interval type-2 fuzzy sets and utilising it on general

type-2 fuzzy sets. This method was first introduced in [64].

4.3.1 A General Function to Extend Measures

As an individual zSlice is akin to an interval type-2 fuzzy set, the following

proposes a method of extending interval type-2 measures onto general type-2

fuzzy sets. First, consider the zLevels used by a given fuzzy set.

Definition 30. Let ÃZ denote the set of all zLevels of the zSlices in Ã. This

is defined as

ÃZ = {zi | ∀i ∈ {1, 2, ..., I}} , (4.2)

where I is the total number of zLevels in Ã.

Now, zSlices general type-2 fuzzy sets may be compared by measuring the

zSlices at the given zLevels used by each fuzzy set.

Definition 31. An interval type-2 measure can be used on each individual

zSlice of a general type-2 fuzzy set and weighted as [64]

mλ(
{
Ã1, ..., ÃN

}
) =

∑
i∈L ({Ã1,...,ÃN}) zi λ(

{
Ã1, ..., ÃN

}
)∑

i∈L ({Ã1,...,ÃN}) zi
, (4.3)
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Figure 4.3: Two zSlices based fuzzy sets Ã and B̃ represented by three zSlices,

where x, u and µ are the universe of discourse, and the primary and secondary

membership values, respectively.

where {A1, ..., AN} ⊆ GT2(X) is the set of zSlices fuzzy sets that are being

measured, λ is any measure for interval type-2 fuzzy sets, and L ({A1, ..., AN})

is the set of zLevels used to represent the fuzzy sets in {A1, ..., AN} as

L (
{
Ã1, ..., ÃN

}
) =

N⋃
n=1

ÃnZ (4.4)

where N is the total number of fuzzy sets and ÃnZ (as defined in (4.2)) is the

set of zLevels of all zSlices within the general type-2 fuzzy set Ãn.

For example, consider the two zSlices-based general type-2 fuzzy sets Ã

and B̃ shown in Figure 4.3. To compare Ã and B̃, the interval type-2 measure

λ will be used three times, once for each zSlice; i.e., λ(Ãz1 , B̃z1), λ(Ãz2 , B̃z2)

and λ(Ãz3 , B̃z3).

As stated in Section 2.2.4 and [23], when using the zSlices representation to

simplify general type-2 fuzzy sets, as more zSlices are used the representation

of the original set becomes more accurate. Likewise, as the representation

becomes more accurate, the result of the extended measure λ also becomes

more accurate.

Using L ensures that all the zSlices of the given fuzzy sets are compared,

even if the fuzzy sets have a different number of zSlices and/or their zSlices

are at different z-coordinates. Generally, it is most likely that when creating
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zSlices-based fuzzy sets one will prefer all fuzzy sets to have the same number

of zLevels. However, it is possible that fuzzy sets may be constructed using

different numbers of zLevels, requiring that the union of their zLevels be used

to compare them, as given by L in (4.4).

Consider, for example, the general type-2 fuzzy set Ã in Figure 4.4a. Fig-

ures 4.4b and 4.4c represent Ã with four and three zSlices, respectively and are

referred to as B̃ and C̃. The zLevels belonging to B̃ are {0.25, 0.5, 0.75, 1.0}

and the zLevels of C̃ are {0.33, 0.67, 1.0}. The zLevels can be seen more clearly

by B̃ and C̃’s vertical slices at x = 3, which are shown in Figure 4.4d. To com-

pare B̃ and C̃ using mλ (4.3), the union of the zLevels is compared which is

L ({Ã, B̃}) = {0.25, 0.33, 0.5, 0.66, 0.75, 1.0}. Figure 4.4e shows, using dashed

lines, where the comparisons would be made for all of the zLevels of B̃ and C̃.

Using this approach, mλ may be used to compare not only general type-2

fuzzy sets with different zLevels, but also different types of fuzzy sets. For ex-

ample, one may compare general and interval type-2 fuzzy sets, or general and

type-1 fuzzy sets. In the latter case, the type-1 fuzzy set is treated as a zSlices

type-2 fuzzy set with one zSlice and identical upper and lower membership

functions.

In this thesis, the zSlices extension (4.3) will only be used as part of simi-

larity and distance measures, which involve the comparison of two fuzzy sets.

Given this, mλ (4.3) may be simplified as follows

Definition 32. Two general type-2 fuzzy sets Ã, B̃ ∈ GT2(X) may be mea-

sured as

mλ(Ã, B̃) =

∑
i∈L (A,B) zi λ(Ãzi , B̃zi)∑

i∈L (A,B) zi
, (4.5)

where λ is any measure on two interval type-2 fuzzy sets and

L (Ã, B̃) = ÃZ ∪ B̃Z (4.6)

where ÃZ is the set of zLevels in the zSlices general type-2 fuzzy set Ã as defined

in (4.2).
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(a) A general T2 fuzzy set Ã

(b) A zSlices-based model of Ã with

four zLevels (referred to as B̃).

(c) A zSlices-based model of Ã with

three zLevels (referred to as C̃).

(d) Vertical slices of B̃ (left) and C̃ (right) at x = 3.

(e) Vertical slices of B̃ (left) and C̃ (right) at x = 3

with dashed lines marking their shared zLevels.

Figure 4.4: Comparing general type-2 fuzzy sets with different numbers of

zSlices, where x is the universe of discourse, and u and µ are the primary and

secondary membership values, respectively.
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Within this thesis, mλ is only used for similarity and distance measures on

two fuzzy sets and so, for clarity, equations (4.5) and (4.6) will be referred to

throughout, instead of (4.3) and (4.4).

Note that this is similar to the approach by Hamwari and Coupland [71],

which uses the zSlices representation to extend interval type-2 methods of mea-

suring containment, cardinality, similarity and subsethood to general type-2

fuzzy sets. The distinction between mλ and their method is that mλ weights

the calculation at each zSlice by the given zLevel. Intuitively, the more cer-

tainty there is in the secondary membership value of two given zSlices, the more

certainty there must also be in their comparison. Given this, it makes sense

to weight their comparison to reflect how certain we are of their membership.

Thus, mλ weights each comparison of zSlices by their zLevel.

Theorem 4. A similarity, distance metric or directional distance measure,

denoted λ, that is extended by mλ (4.5) has the same properties as the original

measure λ; a list of each measure’s properties are given in Appendix A.

Proof. The extension mλ does not change the ordering of the fuzzy sets mea-

sured by λ, thus the properties transitivity, triangle inequality, separability

and symmetry are all maintained through the extension.

The extension does not alter the sign of the results, thus the proofs of the

signed based properties of the directional distance (directional separability,

partial symmetry and reflectivity) are trivial.

If the fuzzy sets are identical then every zSlice will be identical, thus reflexiv-

ity and self-identity will be kept through the extension. If two fuzzy sets are

disjoint then every zSlice is disjoint, thus overlapping is also kept through the

extension.
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4.3.2 Using the zSlices-based Extension Over Other

Approaches

There are several approaches that may be taken when developing a measure to

compare general type-2 fuzzy sets. These include using vertical slices to com-

pare the secondary membership functions, comparing embedded membership

functions, and using a zSlices approach.

Comparing embedded membership functions has been used to evaluate the

similarity between general type-2 fuzzy sets [54]. However, this is computa-

tionally complex because there are an infinite number of embedded fuzzy sets,

thus it is difficult to ensure an accurate comparison between fuzzy sets. Addi-

tionally, for any general type-2 fuzzy set, many of its embedded fuzzy sets will

be so irregularly shaped that one may argue they don’t adequately represent

the type-2 fuzzy set.

Another approach to measuring general type-2 fuzzy sets is by comparing

their vertical slices. In many cases, this is an effective method. For example,

Yang and Lin [4] measure similarity by using a Jaccard based approach on

the vertical slices of fuzzy sets. However, taking a vertical slice approach to

compare fuzzy sets is not ideal for calculating distance. This is because distance

focuses on the difference between values (by α-cuts) instead of between their

membership (by vertical slices). Thus, a different approach should be taken to

enable a measure of distance between general type-2 fuzzy sets.

The zSlices approach is ideal as it facilitates the extension of any interval

type-2 measure on general type-2 fuzzy sets. Thus, it is not necessary to

develop a new function for each variety needed (e.g., similarity, distance, etc.)

to attain measures on general type-2 fuzzy sets. By taking the zSlices approach,

the fundamental method of the original measure is maintained.

For example, if the directional distance on interval type-2 fuzzy sets dIT2
p

(4.1) is extended with mλ (4.5), the result still uses an α-cut approach to
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compare fuzzy sets as in the original approach. It is also clear that by using mλ

(4.5) with any interval type-2 measure, its properties are maintained through

the extension. In addition, the demonstrations within the next section show

that the results of the extended measures are consistent with those of their

original form.

4.3.3 Demonstrations

As stated earlier, this chapter builds upon methods of measuring distance and

similarity, thus the zSlices extension to measure interval type-2 fuzzy sets will

be demonstrated for distance and similarity only. In both demonstrations, a

comparison is made against the original interval type-2 measures and their

extension to general type-2 fuzzy sets, first for distance then for similarity.

Additional demonstrations also show that the extended measures produce the

same results as interval type-2 and type-1 measures when comparing interval

type-2 and type-1 fuzzy sets, respectively.

Distance

Using the zSlices extension (4.5) and the interval type-2 distance measure

dIT2
p (4.1) the following definition presents the proposed directional distance

measure on general type-2 fuzzy sets.

Definition 33 (General Type-2 Distance Measure). The directional or non-

directional distance between two fuzzy sets Ã, B̃ ∈ GT2(X) may be calculated

as

dGT2
p (Ã, B̃) =

1∑
i∈L (Ã,B̃) zi∑

i∈L (Ã,B̃)

zi

∑
α∈[0,γziU

] yα
`̄dp(ÃziαU

, B̃ziαU
) +

∑
α∈[0,γziW

] yα
`̄dp(ÃziαW

, B̃ziαW
)∑

α∈[0,γziU
] yα
∑

α∈[0,γziW
] yα

,

(4.7)

113



where L (Ã, B̃) is given in (4.6), `̄dp is described in (3.14),

γziU = max
{
α | ÃziαU 6= ∅ ∨ B̃ziαU

6= ∅, α ∈ [0, 1]
}

(i.e., the maximum α-cut

where at least one of the upper membership functions of the zSlices Ãzi or B̃zi

is non-empty), and γziW is the same for the lower membership functions of Ãzi

and B̃zi.

Note that within `̄dp (3.14), one may choose the directional distance d̄p

(3.2) or non-directional distance d̄ (3.1) functions to compare continuous α-

cuts. In this demonstration, the directional distance d̄p is used so that dGT2
p is

a directional distance measure.

This demonstration also compares dGT2
p against the distance between the

centroids of the fuzzy sets. The centroids are derived by calculating the centres

of each zSlice and averaging the results as

Ãc =

∑I
z=1 ziÃzic∑I
z=1 zi

, (4.8)

where zi is the ith zSlice, I is the total number of zSlices, and Ãzic is the centre

of the Karnik-Mendel type-reduction [108] on Azi . Using this, the centroid

based distance between Ã, B̃ ∈ GT2(X) is

dcc(Ã, B̃) = B̃c − Ãc (4.9)

Note that, to the author’s knowledge, there are no other general type-2

distance measures in the literature that compare fuzzy sets horizontally along

the x-axis.

Figure 4.5 shows general type-2 fuzzy sets that have been constructed us-

ing the same footprint of uncertainty (FOU) as the interval type-2 fuzzy sets

demonstrated in Figure 4.1. In the general type-2 case, a secondary member-

ship value of 1 is at the centre of the FOU, and the membership value decreases

linearly towards the edge of the FOU; this is shown by the shading within Fig-

ure 4.5, where darker shades indicate a higher secondary grade. Figure 4.6

depicts this with a three-dimensional model of Figure 4.5a.
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Table 4.3 shows the distances between the pairs of fuzzy sets in Figure

4.5. These are calculated using dGT2
p (4.7) and dcc (4.9). From these results,

one can see that the distances between the general type-2 fuzzy sets are the

same as the interval type-2 results in Table 4.1 from Figure 4.5a to (f). This

is because the secondary membership functions are symmetrical at the centre

of the FOU, which results in any given α-cuts having the same mean value at

every zLevel.

Note, however, that due to the complexity of modelling general type-2

fuzzy sets, this is not the case for the non-convex examples. This is because

generating non-convex general type-2 membership functions where the α-cuts

at different zLevels have the same mean values is a computationally challenging

task, and so a more general model has been created instead. As a result Figures

4.5g and (h) do not have the same centre value for a given α-cut at each zLevel,

and so the distances in the general type-2 case are different, but close, to those

in the interval type-2 case.

These results show that the proposed extension of the interval type-2 dis-

tance dIT2
p (4.1) to general type-2 fuzzy sets (dGT2

p ) gives consistent results

compared to the proposed distance for type-1 and interval type-2 fuzzy sets.

Additionally, dGT2
p gives the same results when measuring the interval type-2

fuzzy sets as the distance measure on interval type-2 fuzzy sets dIT2
p . As well

as this, dGT2
p produces the same results on type-1 fuzzy sets as the distance

measure for type-1 fuzzy sets dT1
p (3.13).

Next, a demonstration of the zSlices extension on similarity measures is

given; this will be applied to recommendation systems in Chapter 6.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.5: A collection of general type-2 fuzzy set pairs which are a mixture

of normal, non-normal, convex and non-convex used to demonstrate dGT2
p . x

is the universe of discourse and u is the primary membership.
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Figure 4.5 dGT2
p (4.7) dcc (4.9)

a 5.0 5.0

b 0.0 0.0

c 4.0 4.0

d 4.159 4.334

e 4.067 4.334

f 4.5 4.5

g 4.484 4.505

h 4.516 4.496

Table 4.3: The distance between the general type-2 fuzzy set pairs shown in

Figure 4.5.

Figure 4.6: A three-dimensional model of Figure 4.5a. x is the universe of dis-

course, u is the primary membership and µ(x, u) is the secondary membership

at x and u.
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Similarity

Throughout this thesis the Jaccard measure will be used to compare the sim-

ilarity between two fuzzy sets. This method is chosen because it satisfies all

four properties of a similarity measure and the interval type-2 approach sIT2
j

(2.31) provides results that are consistent with the type-1 method sT1
j (2.29).

More specifically, consider two type-1 (A and B) and interval type-2 (C̃ and

D̃) fuzzy sets, where C̃ and D̃ have the same lower and upper membership

functions as A and B, respectively. Comparing A and B with the Jaccard

measure for type-1 fuzzy sets sT1
j (2.29) will produce the same results as using

the Jaccard measure for interval type-2 fuzzy sets sIT2
j (2.31) to compare C̃

and D̃. This will be demonstrated within this section.

This section also shows that, in the same manner, the interval type-2 ap-

proach extended to zSlices type-2 fuzzy sets produces consistent results com-

pared to the original interval type-2 and the type-1 measures. Note, this

extension of similarity to general type-2 fuzzy sets was first introduced in [64].

Definition 34 (General Type-2 Similarity Measure). The Jaccard interval

type-2 similarity measure sIT2
j (2.31) extended to zSlices type-2 fuzzy sets is

sGT2
j (Ã, B̃) =

1∑
i∈L (Ã,B̃) zi∑

i∈L (Ã,B̃)

zi

∑N
j=1 min(µÃzi

(xj), µB̃zi
(xj)) +

∑N
j=1 min(µ

Ãzi
(xj), µB̃zi

(xj))∑N
j=1 max(µÃzi

(xj), µB̃zi
(xj)) +

∑N
j=1 max(µ

Ãzi
(xj), µB̃zi

(xj))

(4.10)

where Ã, B̃ ∈ GT2(X) and L (Ã, B̃) (4.6) is the union of the zLevels used by

Ã and B̃.

Figure 4.7 shows seven zSlices type-2 fuzzy sets in Figures (a) and (b).

Their interval type-2 counterparts are shown in Figures (c) and (d), and type-

1 counterparts are shown in (e) and (f). Table 4.4 shows the results of the

similarity measures on these figures using the zSlices general type-2 (GT2)
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(4.10), interval type-2 (IT2) (2.31) and type-1 (T1) (2.29) Jaccard similarity

measures. When using the interval and zSlices measures, the type-1 fuzzy

sets are treated as interval type-2 fuzzy sets with identical upper and lower

membership functions.

Firstly, from the results in Table 4.4, one can see that the zSlices measure

produces similar results for the zSlices fuzzy sets as it does for the interval type-

2 fuzzy sets. Differences in the results are due to the membership functions

varying at different zLevels.

For example, Figure 4.8 and Table 4.5 demonstrate this for fuzzy sets Ã

and C̃. Within the figure, the fuzzy sets are shown at each of their zLevels.

Due to having different membership values, the similarity between the fuzzy

sets changes at each zLevel. Table 4.5 shows the vertical slices at x = 5.5 for

Ã and C̃ at each zLevel, and their similarity according to the Jaccard measure

at these given points. From these results, one can see that the change in

membership functions at each zSlice results in a different value of similarity

at each slice. Thus, overall, the zSlices fuzzy set pairs have different similarity

results compared to their interval type-2 equivalents.

Note, also, that the results change between the type-1 and interval type-2

demonstrations because their membership functions are different.

It is clear that the outcomes of the zSlices and interval type-2 results are

very close. Additionally, the results show that the zSlices method produces the

same results for interval type-2 fuzzy sets as the original interval type-2 mea-

sure. Likewise, all three approaches (zSlices type-2, interval type-2 and type-1)

give the same results when comparing type-1 fuzzy sets. This demonstrates

that the methodology behind each approach is consistent.

Note, the extension mλ has also been demonstrated on extending other

interval type-2 similarity measures in the literature within [64].

Having introduced and demonstrated distance and similarity measures on

type-1, interval type-2 and general type-2 fuzzy sets, the next section presents
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a summary of this chapter.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: General and interval type-2 fuzzy sets used to demonstrate sGT2
j .
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(a) (b)

(c) (d)

Figure 4.8: Fuzzy sets Ã and C̃ from Figure 4.7a at different zLevels
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zlevel µÃz(5.5) µC̃z(5.5) su sl
su
sl

0.25 [0.0, 0.5] [0.425, 1.0] 0.5 1.425 0.3509

0.5 [0.0, 0.325] [0.5834, 0.975] 0.325 1.5584 0.2085

0.75 [0.0, 0.1584] [0.75, 0.95] 0.1584 1.7 0.0932

1.0 [0.0, 0.0] [0.925, 0.925] 0.0 1.85 0.0

Table 4.5: The similarity between the vertical slice x = 5.5 of fuzzy sets Ã

and C̃ at different zLevels as shown in Figure 4.8. su is the upper of the frac-

tion of the Jaccard similarity as min
{
µÃz(x), µC̃z(x)

}
+min

{
µ
Ãz

(x), µ
C̃z

(x)
}

,

and sl is, likewise, the lower of the fraction max
{
µÃz(x), µC̃z(x)

}
+

max
{
µ
Ãz

(x), µ
C̃z

(x)
}

.

4.4 Summary

This chapter has focused on developing methods to compare the distance and

similarity between two interval or general type-2 fuzzy sets. First, a distance

measure was established to compare interval type-2 fuzzy sets. This measure

uses the distance between α-cuts developed in Chapter 3, and can compare

fuzzy sets that are non-normal or non-convex. One may use either the direc-

tional or non-directional distance between α-cuts (as discussed in Chapter 3)

to attain a directional or non-directional distance measure between interval

type-2 fuzzy sets.

Demonstrations have shown that the distance between interval type-2 fuzzy

sets dIT2
p produces consistent results compared to the distance measure be-

tween type-1 fuzzy sets dT1
p developed in Chapter 3. Additionally, it has been

demonstrated that the interval type-2 distance measure dIT2
p produces the same

results on type-1 fuzzy sets as the type-1 distance measure dT1
p developed in

Chapter 3.

This chapter has also introduced a method of extending any measure for
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interval type-2 fuzzy sets onto general type-2 fuzzy sets. This method en-

sures that the properties of the interval type-2 measure are still present when

extended.

This extension has been demonstrated to measure distance and similarity.

In both examples, the comparison between zSlices type-2 fuzzy sets has pro-

duced consistent results compared to the original interval type-2 measure. It

has also been demonstrated that when comparing interval type-2 fuzzy sets,

the extended measure gives the same results as the original interval type-2

measure. In addition, the extended distance dGT2
p and similarity sGT2

j mea-

sures give the same results for type-1 fuzzy sets as the type-1 measures dT1
p

and sT1
j , respectively.

The next chapter develops a measure of fusing similarity and distance to-

gether to enable one to gain information from both measures through a single

value.
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Chapter 5

An Incompatibility Measure for

Fuzzy Sets

5.1 Introduction

This chapter presents a new incompatibility measure on fuzzy sets that ag-

gregates similarity and distance to determine how distinct fuzzy sets are from

each other. This is referred to as an incompatibility measure because compat-

ibility has been described as a broad concept that typically encompasses both

similarity and proximity [49]. It is referred to as incompatibility instead of

compatibility as this description best fits its mathematical properties (which

are discussed in Section 5.3).

Although a single measure between fuzzy sets is useful, decision making

often involves observing the outcomes of several different comparisons. Thus,

one comprehensive measure that fuses the concepts of similarity and distance

can be more useful than a single measure alone. It also eliminates the necessity

for one to decide whether similarity or distance would be most appropriate for

a given application, as this fusion of both measures may be used instead.

This chapter introduces a new measure that weights and combines the Jac-
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card similarity measure (sT1
j (2.29), sIT2

j (2.31), sGT2
j (4.10)) and the proposed

directional distance measure (dT1
p (3.13), dIT2

p (4.1), dGT2
p (4.7)) to produce a

single measure that benefits from the properties of both of these approaches.

Also note that it was demonstrated in Chapter 4 that the Jaccard similar-

ity and proposed directional distance measures give consistent results between

type-1, interval type-2 and general type-2 fuzzy sets. Therefore, for conciseness

and simplicity, this chapter primarily focuses on type-1 fuzzy sets. However,

a brief demonstration on type-2 fuzzy sets is given in Section 5.5.2.

5.2 Motivation

This section demonstrates the motivation for using a combination of similarity

and distance within a single measure. First, the limitations of using only a sin-

gle measure are discussed, then the advantages of jointly using both measures

are highlighted.

5.2.1 Limitations of a Single Measure

On its own, a similarity or distance measure provides a useful relative compar-

ison of fuzzy sets. Similarity shows how much two fuzzy sets share the same

values, but it does not indicate what values they do not share. For example,

in Figure 5.1, B and C share the same degree of similarity with A; using the

Jaccard measure (2.29) sT1
j (A,B) = 0.142 and sT1

j (A,C) = 0.142. Given that

the similarities of both pairs are identical, it cannot be determined from the

measure alone that B and C are distinct from A in different ways.

A distance measure shows how much space there is between two fuzzy sets

in their universe of discourse. This is helpful for understanding how much

fuzzy sets are distinct from each other. However, a distance measure does not

always give a full picture of the fuzzy sets. For example, using the directional

distance (3.13) in Figure 5.2, pairs (a) (A and B) and (b) (C and D) give the
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Figure 5.1: A demonstration of identical similarities between different pairs of

fuzzy sets.

(a) (b)

Figure 5.2: A demonstration of identical distances between different pairs of

fuzzy sets.

same values of distance (dT1
p (A,B) = 0.5; dT1

p (C,D) = 0.5), yet C and D could

be considered more distinct from each other than A and B because they do

not contain any of the same values.

It is important to be clear that similarity cannot be effectively used as a

substitute for distance and vice versa. Focusing on the application of recom-

mendation systems as introduced in Section 2.6, consider the query a film like

Star Trek but with more action. One would assume from this query that a

similarity measure would be better suited to find a film like Star Trek than

a distance measure, because the term like is generally understood as similar
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to. However, one would assume that a directional distance measure would be

better suited to find a film with more action than Star Trek than a similarity

measure.

Figures 5.3 and 5.41 demonstrate why it is important to use both simi-

larity and distance to resolve this query instead of using a single measure to

accomplish both tasks.

Though a distance measure provides an indication of proximity between

fuzzy sets, it is not always suitable when differentiating between overlapping

fuzzy sets. For example, Figure 5.3 shows three fuzzy sets A, B and C. The

similarity and distance between pairs (A,B) and (A,C) are shown in Table

5.1. The distances between both pairs are identical, yet their similarities differ.

These results show that one can’t always use the shortest distance to determine

which fuzzy sets are the most similar.

Additionally, Figure 5.4 also shows three fuzzy sets labelled A, B and C,

the similarities and distances of which are shown in Table 5.2. It is clear from

these results that similarity is not a substitute for a distance measure because

one cannot tell by vertical slices how much space there is between fuzzy sets.

Though similarity shows that the fuzzy sets are disjoint and therefore some-

what distant, it does not indicate the magnitude of this distance. Additionally,

it is necessary to use some measure of distance to find out the direction be-

tween fuzzy sets; the similarity measure does not indicate if B contains values

higher or lower than A.

These demonstrations show that similarity and distance measures each have

unique strengths and limitations. Though this chapter focuses on type-1 fuzzy

sets, Section 5.5.2 also shows examples of Figures 5.3 and 5.4 using interval

and general type-2 fuzzy sets.

1To measure similarity, in Figure 5.3 X is discretised into 81 equidistant x points, and

in Figure 5.4 X is discretised into 91 equidistant points.
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Figure 5.3: Three overlapping

fuzzy sets A, B and C

Measure (A,B) (A,C)

sT1
j (2.29) 0.389 0.178

dT1
p (3.13) 0.5 0.5

Table 5.1: Results of similarity

sT1
j (2.29) and distance dT1

p (3.13)

measures on the fuzzy sets in Fig-

ure 5.3.

Figure 5.4: Three disjoint fuzzy sets

A, B and C

Measure (A,B) (A,C)

sT1
j (2.29) 0.0 0.0

dT1
p (3.13) 3.0 6.0

Table 5.2: Results of similarity

sT1
j (2.29) and distance dT1

p (3.13)

measures on the fuzzy sets in Fig-

ure 5.4.
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5.2.2 Benefits of Independently Using Multiple Mea-

sures

This section demonstrates that similarity and distance measures can be used

together to gain a much better understanding of the fuzzy sets without having

to visually observe them. In this demonstration, fuzzy sets are constructed

from the Movie Lens data set [109], which contains 100,000 ratings from 943

users on 1682 movies. Each user rates how much they enjoyed a film using

a value in {1, 2, 3, 4, 5} where 1 is a poor rating and 5 is good. This data is

modelled by fuzzy sets using the polling technique (2.14) (detailed in Section

2.3) and linear interpolation is used to find degrees of membership between

the given integers.

Figure 5.5 shows six pairs of fuzzy sets that have been constructed from

the MovieLens data set. Black vertical and horizontal lines indicate the degree

of similarity and distance, respectively, between the fuzzy sets. The larger the

given line, the greater the similarity or distance.

In this example, a similarity measure can show the amount of agreement

between user ratings and a directional distance will indicate the difference

between ratings. Table 5.3 shows the results of the Jaccard similarity sT1
j and

the directional distance dT1
p measures on the pairs of fuzzy sets in Figure 5.5.

For each pair, the fuzzy set A is given as the first parameter of the measure, and

B is given as the second parameter. The following discusses the similarities and

distances between each pair of fuzzy sets, highlighting where both measures

contribute useful information.

Figures 5.5 a & b The low value of similarity indicates that both pairs of

fuzzy sets are distinct and almost disjoint. There is some small overlap

in the fuzzy sets, but from the similarity alone it is impossible to discern

where this overlap lies. The distances, however, show that in (a) B is to

the right of A and in (b) B is to the left of A.
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(a) sT1
j = 0.1025; dT1

p = 1.8307 (b) sT1
j = 0.1801; dT1

p = 1.6019

(c) sT1
j = 0.0; dT1

p = 2.0946 (d) sT1
j = 0.0; dT1

p = 3.2982

(e) sT1
j = 0.0486; dT1

p = −3.5418 (f) sT1
j = 0.9008; dT1

p = 0.074

Figure 5.5: Fuzzy sets representing the distributions of ratings for different

films in the MovieLens data set. Vertical and horizontal lines represent the

degree of similarity (sT1
j ) and distance (dT1

p ), respectively. Movie IDs titles

corresponding to each fuzzy set are listed in Appendix D.
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Figure 5.5 - part: a b c d e f

sT1
j (A,B) (2.29) 0.1025 0.1801 0.0 0.0 0.0486 0.9008

dT1
p (A,B) (3.13) 1.8307 -1.6019 2.0946 3.2982 -3.5418 0.074

Table 5.3: Results of similarity sT1
j (2.29) and distance dT1

p (3.13) measures on

the fuzzy sets in Figure 5.5

Figures 5.5 c & d The similarity shows that both pair of fuzzy sets are dis-

joint. The distance shows that in (d) B is further from A than in (c).

This is because in (c) the greatest membership in B is in the fuzzy set’s

closest region to A. In (d), however, the highest membership of B is in

its furthest region from A.

Figure 5.5 e Like (b), the similarity indicates the fuzzy sets are almost dis-

joint but there is some small overlap. However, it is not clear where this

overlap lies. From the distance measure it is clear that B is to the left

of A.

Figure 5.5 f Both measures indicate that the fuzzy sets are almost identical.

These results show that measuring both similarity and distance is more in-

formative than either measure alone. However, interpreting the results of two

distinct outputs can be challenging and time consuming when many fuzzy sets

are to be compared. A function that provides information of both similarity

and distance would simplify this process.

The next section introduces a combined measure of similarity and distance

that evaluates the incompatibility of fuzzy sets.
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5.3 Fusing Similarity and Distance

To fuse similarity and distance into a single measure, their unique properties

must be addressed. Two problems arise from the nature of these measures.

Firstly, similarity indicates how similarly or closely two fuzzy sets model

the same data, whereas distance indicates how much difference exists between

these sets. As a result, similarity gives a high value for identical fuzzy sets,

whilst distance gives a high value for different fuzzy sets. Thus, to fuse these

two measures, one must be altered so that both measures represent closeness in

the same manner; i.e., both measures show similarity/closeness or both show

dissimilarity/distance.

The second issue is in regard to the range of values calculated by the

measures. Similarity gives a result in the interval [0, 1], whereas the directional

distance measure gives a value in U , the universe R ∈ U . To combine these

two into a single result, the values of similarity and distance must be altered

so they are easily comparable and can thus be fused.

To resolve the first problem, the complement of the similarity measure is

used to represent dissimilarity/difference. By doing this, both the dissimilarity

and distance measures give the value 0 for identical fuzzy sets. This approach

has been chosen because it enables the measure to represent direction. Specif-

ically, negative and positive values will occur for lower and higher relative

positions, respectively, and the value 0 indicates identical sets.

If the complement of the directional distance is used instead then only the

direction of the signed value would change and the value 0 would still have a

different meaning for both measures. The complement of similarity 1 − s is

often used as dissimilarity in the literature [46, 110] and will be referred to as

dissimilarity throughout the remainder of this chapter.

To resolve the second issue, one of the measures must be changed so that

both give the same range of values (in [−1, 1] or R). Which values are used may
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be left to personal choice as different applications may benefit from different

values. If it is necessary to easily differentiate between small and large distances

then a value in R may be best. However, results in [−1, 1] may be more easily

interpreted because similarity and dissimilarity are not typically expressed in

R and therefore may be less well understood in this way.

Normalising the distance in [−1, 1] also enables one to treat results in the

same manner regardless of the original data. For example, in different recom-

mendation systems, products may be rated on different scales; for example,

1 to 5, or 1 to 10. In the former example, a difference of 1 point is more

significant than in the latter case. Thus, if a measure’s results are in R then

there must be an understanding of the universe of discourse in order to realise

the significance of any given distance.

However, if the results are normalised in [−1, 1] then a given value of dis-

tance is equally significant regardless of the original non-normalised distances

because it is in relation to the greatest possible distance. Thus, any underlying

application can be the same regardless of the range of values used by the data.

Given these two points, the dissimilarity measure will be joined with the

normalised directional distance to produce a combined measure that results in

a value within [−1, 1]. A value of 0 indicates identical fuzzy sets and −1 or 1

indicates the maximum possible distance between the sets.

To normalise the distance, its result is divided by the largest possible

distance. In a finite2 universe of discourse X = [XL, XR], let τ(X) denote

XR −XL, then the distance d(A,B) is normalised as d(A,B)
τ(X)

.

Given this, the following definition introduces the proposed incompatibility

measure for two fuzzy sets A and B where A and B may be type-1, interval

type-2 or general type-2 fuzzy sets.

Definition 35 (Incompatibility Measure). The dissimilarity and distance be-

2A different approach would be required for an infinite universe of discourse. However,

this is left for future work.
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tween fuzzy sets A and B may be joined into a single value as

c′p(A,B) =

f
({

(1−s(A,B)),
(d(A,B)
τ(X)

)}
, 〈w0, w1〉

)
, d(A,B) ≥ 0

f
({
−(1−s(A,B)),

(d(A,B)
τ(X)

)}
, 〈w0, w1〉

)
, otherwise

(5.1)

where f is the ordered weighted average (OWA) operator (2.49), s is a simi-

larity measure in [0, 1], d is a distance measure in R, τ(X) is XR −XL for a

universe of discourse X = [XL, XR], and 〈w0, w1〉 are the weights used by the

OWA f .

Note that the function within (5.1) is given as c′p to be consistent with

other function notations. Throughout this thesis, similarity is referred as s

and in the next section dissimilarity (the complement of s) is given as s′. To

maintain this style, the incompatibility measure (5.1) is labelled as c′p as one

would expect cp to denote compatibility.

The choice of weights for the OWA operator depends on the application

and the nature of the fuzzy sets (e.g., highly overlapping or mostly disjoint).

A discussion of the effects of different weights in c′p (5.1) is given in the next

section, in which the weights used within this thesis are chosen. Note that

the absolute values of the measures are used when assigning the weights. For

example, if the dissimilarity is 0.3 and the distance is -0.45, then the distance

will be given the first weight because it has the largest magnitude.

Theorem 5. Where s and d have the properties of a similarity and directional

distance measure, respectively (see Appendix A), the incompatibility measure

c′p ( (5.1)) has the properties

i) Self-Identity: c′p(A,A) = 0

ii) Partial Symmetry: c′p(A,B) = −c′p(B,A)

iii) Directional Separability: c′p(A,B) ≥ 0 if B ≥ A and c′p(A,B) < 0 if B < A

iv) Transitivity: c′p(A,B) ≤ c′p(A,C) if A ≤ B ≤ C

v) Triangle-Inequality: c′p(A,C) ≤ c′p(A,B) + c′p(B,C)
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Proof.

i) For any weights, 1− s and d are 0, thus c′p(A,A) = 0.

ii) and iii) If d(A,B) < 0 then the negative dissimilarity −1− s(A,B) is used

to ensure partial symmetry and directional separability.

iv) Both dissimilarity and distance follow transitivity, thus the proof is trivial.

v) Both dissimilarity and distance follow triangle inequality where s is the

Jaccard measure [110], thus the incompatibility measure also follows triangle

inequality.

One can use c′p to join similarity with a distance metric instead of a di-

rectional distance measure to attain a non-directional incompatibility metric.

Note, however, that only the directional distance measure d∗p will be used

throughout this thesis, where ∗ denotes the type of fuzzy sets compared.

Theorem 6. If the similarity s and (non-directional) distance d measures

are both metrics then the incompatibility measure c′p is also a metric with the

properties

i) self-identity: c′p(A,A) = 0

ii) separability: c′p(A,B) > 0

iii) symmetry: c′p(A,B) = c′p(B,A)

iv) triangle inequality: c′p(A,C) ≤ c′p(A,B) + c′p(B,C)

Proof. i), ii) and iii) The proofs are trivial.

iv) Both dissimilarity and a distance metric follow triangle inequality where

s is the Jaccard measure [110], thus the incompatibility measure also follows

triangle inequality.

Table 5.4 gives a summary of the properties of the new directional incom-

patibility measure compared to the properties of similarity, distance metrics

and directional distance measures. Appendix A provides details of these prop-

erties.
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Symmetry and partial symmetry are contradictory properties where the

former is a property of a metric and the latter is only in a signed directional

distance. Thus, no measure can have both of these properties. The same is also

true for separability and directional separability. Reflexivity and self-identity

are also directly contradictory properties and a measure cannot follow both.

Additionally, overlapping (or disjointness) is a property of similarity (or

dissimilarity) alone and will always be lost for any weights other than 〈1.0, 0.0〉

as distance effects the results such that this property is removed.

Reflectivity is a property of only the directional distance, giving zero dis-

tance for symmetrical fuzzy sets that share the same centroid. However, by

adding dissimilarity, the incompatibility measure results in a non-zero value

for such fuzzy sets. Thus, for any weights other than 〈0.0, 1.0〉 this property is

not followed. Additionally, as a result of the directional distance, the stricter

directional form of triangle inequality applies, as described in Section 3.2.2.

Note that the name incompatibility measure stems from these properties

as the result of the measure indicates the degree to which two fuzzy sets are

incompatible. If the comparison of fuzzy sets is 0, then they have no incom-

patibility, i.e., they are completely compatible. If their comparison is 1, then

they are entirely incompatible.

Also note that since the incompatibility measure c′p (5.1) fuses the results

of the similarity and distance measures, it may be used on any type of fuzzy

set (type-1, interval type-2 and general type-2) where s and d are similarity

and distance measures for the given type of fuzzy sets.

Note that throughout this thesis, according to the magnitude and direction

of the results, the incompatibility between fuzzy sets will be described as high

negative, low negative, low positive, or high positive, as shown in Figure 5.6.

This is to enable an easier discussion of the results.

Having introduced the proposed combined measure of (dis)similarity and

distance, the next section discusses the effects that different weights have on
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Properties of Both Similarity and Distance Metrics

Symmetry 7

Transitivity 3

Properties of Similarity

Reflexivity 7

Overlapping 7

Properties of Metric Distance

Self-identity 3

Separability 7

Triangle-inequality 3

Properties of Directional Distance

Partial Symmetry 3

Directional Separability 3

Reflectivity 7

Table 5.4: A summary of the properties of the proposed incompatibility mea-

sure compared with those of similarity, distance metrics and directional dis-

tance measures.
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this measure, and chooses an ideal pair of weights based on experiments.

5.4 Choosing Weights

This section discusses how the weights of the OWA operator are chosen by

using an empirical strategy for identifying both a generally applicable set of

weights as well as set specific considerations. This discussion is driven by

examples of comparing fuzzy sets and selecting the weights that best fit the

expected results. Note that the choice of the most ideal weights is subjective

as there is no choice that can be universally described as the best. To provide

a succinct discussion, only the weight w0 will be specified throughout, as w1

can be inferred from w0; i.e., w0 + w1 = 1.0.

Using different weights, demonstrations of the proposed incompatibility

measure are shown using six figures. Each figure contains three fuzzy sets

A,B,C ∈ T1(X) with which the values of incompatibility of c′p(A,B) and

c′p(A,C) are measured. For simplification, the first four figures use synthetic

fuzzy sets that highlight some of the main properties of the measure. The

last two examples show the effects of the measure based on data-driven fuzzy

sets. In each demonstration, the results of the dissimilarity (s′j) and normalised

distance (dn) between fuzzy sets are highlighted. Additionally, each figure uses

a graph to visualise the changes in the results of c′p(A,B) and c′p(A,C) when

Figure 5.6: Descriptions used in this thesis to describe the values of incompat-

ibility according to magnitude and direction.
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using different weights.

Figure 5.7 demonstrates that as long as the weights are not 〈1.0, 0.0〉 it

is always possible to distinguish between different pairs of disjoint fuzzy sets

where the fuzzy set centroids differ. As the dissimilarity between disjoint fuzzy

sets is always 1.0, it will always be assigned the first weight for such fuzzy sets.

As w0 increases the difference between c′p(A,B) and c′p(A,C) becomes smaller,

so it is advisable if w0 is not too large so that the distance measure still has a

noticeable impact on the results. In this case, w0 ≤ 0.8 is appropriate.

Figure 5.8 demonstrates the incompatibility measure on convex and non-

convex symmetrical fuzzy sets. With a distance measure alone, the results of

c′p(A,B) and c′p(A,C) are both 0. However, the dissimilarity shows that these

fuzzy sets are, in fact, not the same. As w0 increases this difference becomes

more apparent. However, as the result of c′p becomes larger one may assume

the fuzzy sets are further apart rather than actually subsets. In this case,

0.2 ≤ w0 ≤ 0.8 appears reasonable because these weights show there is a small

difference in the fuzzy set pairs.

When fuzzy sets overlap, the choice of weights becomes more subjective

and potentially restricted. The next four examples show cases in which the

dissimilarity and distance measures give contradicting results for pairs of fuzzy

sets. In each of these figures, dn(A,B) < dn(A,C) but s′(A,B) > s′(A,C).

In Figure 5.9, where w0 < 0.3, c′p(A,B) < c′p(A,C), but where w0 ≥ 0.3,

c′p(A,B) > c′p(A,C). As C overlaps A and B does not, it can be argued that

C should have a closer compatibility than B (i.e., lower incompatibility) so

the most ideal weights are where w0 ≥ 0.3.

Figure 5.10 shows a similar example where B now overlaps A. However,

the degree to which B overlaps A is much smaller than the overlap from C,

so C could still be described as closer to A than B. This is true in the results

where w0 ≥ 0.6; note that this is the greatest restriction given on the weights

thus far.
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The final two examples use fuzzy sets from real data. In a survey, par-

ticipants were asked to rate different attributes of cakes, such as sweetness

and fruitiness. Answers were given in intervals and the results are modelled

by fuzzy sets using the Interval Agreement Approach (a form of the interval

estimation-2 approach; see Section 2.3). Much of the data from this data set is

heavily overlapping and the choice of weights must take this into consideration.

In Figure 5.11, A and C have similarly shaped distributions, whereas B

diverges from this distribution between 6 ≤ x ≤ 7 where there is a large peak

in membership. Considering this, the results should ideally be c′p(A,C) <

c′p(A,B) and this occurs where w0 ≥ 0.3.

Figure 5.12 shows another example of highly overlapping fuzzy sets. As in

the previous case, A and C have similar distributions, whereas B is noticeably

different. Given this, the results should show c′p(A,C) < c′p(A,B); this is true

where w0 ≥ 0.6.

Table 5.5 summarises the demonstrations in Figures 5.7 to 5.12, showing

which values of w0 give expected results for each figure. Note that the weights

〈0.0, 1.0〉 and 〈1.0, 0.0〉 are not suggested because this results in using a single

measure, negating the advantages of a combined measure. Given these demon-

strations, the most ideal weights are where 0.6 ≤ w0 ≤ 0.8, and so the middle

ground 〈w0 = 0.7, w1 = 0.3〉 will be used throughout this thesis.

Ideally, if the fuzzy sets are known beforehand, one could tune the weights

as different weights may be more appropriate if fuzzy sets are highly overlap-

ping or mostly disjoint. They may be tuned so that the greatest diversity of

results occurs for the given data set. This would even further alleviate issues

where significantly different pairs of fuzzy sets result in the same value (such

as the examples shown in Figures 5.3 and 5.4).

The average weights 〈0.5, 0.5〉 can be used as a general case for compar-

ing fuzzy sets. However, if there is a lot of overlap between fuzzy sets then

increasing the first weight can yield more useful results. This is because the

142



Figure Ideal Weights

5.7 0.2 ≤ w0 ≤ 0.8

5.8 0.2 ≤ w0 ≤ 0.8

5.9 0.3 ≤ w0 ≤ 0.8

5.10 0.6 ≤ w0 ≤ 0.8

5.11 0.3 ≤ w0 ≤ 0.8

5.12 0.6 ≤ w0 ≤ 0.8

Table 5.5: Ideal weights selected for the incompatibility measure considering

different examples shown in the listed figures.

value of similarity is assigned the first weight and similarity is best for differ-

entiating between highly overlapping fuzzy sets because it compares fuzzy sets

by measuring vertical slices. Distance, however, is not so effective at making a

distinction between highly overlapping sets. Examples of this are shown in Fig-

ures 5.11 and 5.12, in which the dissimilarity result is what one would expect

(stating that the pair (A,C) is closer than (A,B)), whereas the normalised dis-

tance does not give the expected results. For such heavily overlapping fuzzy

sets, the weights 〈0.7, 0.3〉 are preferred. As many of the data sets used within

this thesis feature such overlapping fuzzy sets, the weights 〈0.7, 0.3〉 are used

throughout in the remaining chapters.

Note that by choosing the weights 〈0.7, 0.3〉, the incompatibility measure

always gives a value in (0.7, 1.0] if two fuzzy sets are disjoint. This is because

the dissimilarity between two disjoint sets is 1.0 and is given the weight 0.7.

Note that disjoint sets will never have a value of 0.7 as this would require them

to be both disjoint (according to s′) and identical (according to dn). Therefore,

a value of 0.7 or lower shows that there is some degree of overlap between the

fuzzy sets and a value greater than 0.7 signifies a small or zero overlap between
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fuzzy sets.

Note, also, that although disjoint fuzzy sets always result in a value higher

than 0.7, such a value does not mean that the fuzzy sets are necessarily disjoint.

It does, however, indicate that the overlap is very low; an example of this is

shown in Figure 5.10.

This section has demonstrated the effects of different weights on the pro-

posed combined (dis)similarity and distance measures. Based on these exper-

iments, the weights 〈w0 = 0.7, w1 = 0.3〉 have been chosen. The next section

provides examples of this measure, demonstrating its advantages over using

similarity or distance alone.
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(a) Three fuzzy sets A, B and C.

(b) The incompatibilities c′p(A,B) and

c′p(A,C) for different values of w0.

Figure 5.7: Three fuzzy sets A, B and

C and the incompatibility between

the disjoint pairs (A,B) and (A,C)

using different weights.

w0 w1 c′p(A,B) c′p(A,C)

0.0 1.0 0.427 (dn) 0.582 (dn)

0.1 0.9 0.484 0.624

0.2 0.8 0.541 0.666

0.3 0.7 0.599 0.707

0.4 0.6 0.656 0.749

0.5 0.5 0.713 0.791

0.6 0.4 0.771 0.833

0.7 0.3 0.828 0.875

0.8 0.2 0.885 0.916

0.9 0.1 0.943 0.958

1.0 0.0 1.0 (s′) 1.0 (s′)

(a)

Table 5.6: The incompatibility be-

tween two pairs of disjoint fuzzy sets

from Figure 5.7. The normalised dis-

tance dn and dissimilarity s′j results

have been highlighted.
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(a) Three fuzzy sets A, B and C.

(b) The incompatibilities c′p(A,B) and

c′p(A,C) for different values of w0.

Figure 5.8: Three convex and non-

convex fuzzy sets A, B and C and

the incompatibility between the pairs

(A,B) and (A,C) using different

weights.

w0 w1 c′p(A,B) c′p(A,C)

0.0 1.0 0.0 (dn) 0.0 (dn)

0.1 0.9 0.007 0.026

0.2 0.8 0.015 0.051

0.3 0.7 0.022 0.077

0.4 0.6 0.029 0.102

0.5 0.5 0.037 0.128

0.6 0.4 0.044 0.153

0.7 0.3 0.051 0.179

0.8 0.2 0.059 0.205

0.9 0.1 0.066 0.23

1.0 0.0 0.073 (s′) 0.256 (s′)

(a)

Table 5.7: The incompatibility be-

tween two pairs of disjoint fuzzy sets

from Figure 5.8. The normalised dis-

tance dn and dissimilarity s′j results

have been highlighted.
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(a) Three fuzzy sets A, B and C.

(b) The incompatibilities c′p(A,B) and

c′p(A,C) for different values of w0.

Figure 5.9: Three overlapping fuzzy

sets A, B and C and the incompat-

ibility between the pairs (A,B) and

(A,C) using different weights.

w0 w1 c′p(A,B) c′p(A,C)

0.0 1.0 0.222 (dn) 0.251 (dn)

0.1 0.9 0.3 0.317

0.2 0.8 0.378 0.382

0.3 0.7 0.456 0.448

0.4 0.6 0.533 0.513

0.5 0.5 0.611 0.579

0.6 0.4 0.689 0.644

0.7 0.3 0.767 0.709

0.8 0.2 0.844 0.775

0.9 0.1 0.922 0.84

1.0 0.0 1.0 (s′) 0.906 (s′)

(a)

Table 5.8: The incompatibility be-

tween two pairs of disjoint fuzzy sets

from Figure 5.9. The normalised dis-

tance dn and dissimilarity s′j results

have been highlighted.
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(a) Three fuzzy sets A, B and C.

(b) The incompatibilities c′p(A,B) and

c′p(A,C) for different values of w0.

Figure 5.10: Three overlapping fuzzy

sets A, B and C and the incompat-

ibility between the pairs (A,B) and

(A,C) using different weights.

w0 w1 c′p(A,B) c′p(A,C)

0.0 1.0 0.167 (dn) 0.251 (dn)

0.1 0.9 0.247 0.317

0.2 0.8 0.327 0.382

0.3 0.7 0.407 0.448

0.4 0.6 0.488 0.513

0.5 0.5 0.568 0.579

0.6 0.4 0.648 0.644

0.7 0.3 0.728 0.709

0.8 0.2 0.809 0.775

0.9 0.1 0.889 0.84

1.0 0.0 0.969 (s′) 0.906 (s′)

(a)

Table 5.9: The incompatibility be-

tween two pairs of disjoint fuzzy sets

from Figure 5.10. The normalised dis-

tance dn and dissimilarity s′j results

have been highlighted.
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(a) Three fuzzy sets A, B and C.

(b) The incompatibilities c′p(A,B) and

c′p(A,C) for different values of w0.

Figure 5.11: Three fuzzy sets A, B

and C describing the sweetness of dif-

ferent cakes and the incompatibility

between the pairs (A,B) and (A,C)

using different weights.

w0 w1 c′p(A,B) c′p(A,C)

0.0 1.0 -0.028 (dn) 0.068 (dn)

0.1 0.9 -0.059 0.081

0.2 0.8 -0.089 0.095

0.3 0.7 -0.12 0.108

0.4 0.6 -0.15 0.121

0.5 0.5 -0.181 0.135

0.6 0.4 -0.211 0.148

0.7 0.3 -0.242 0.162

0.8 0.2 -0.273 0.175

0.9 0.1 -0.303 0.189

1.0 0.0 -0.334 (s′) 0.202 (s′)

(a)

Table 5.10: The incompatibility be-

tween fuzzy sets from Figure 5.11

describing the sweetness of different

cakes. The normalised distance dn

and dissimilarity s′j results have been

highlighted.
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(a) Three fuzzy sets A, B and C.

(b) The incompatibilities c′p(A,B) and

c′p(A,C) for different values of w0.

Figure 5.12: Three fuzzy sets A, B

and C describing the fruitiness of dif-

ferent cakes and the incompatibility

between the pairs (A,B) and (A,C)

using different weights.

w0 w1 c′p(A,B) c′p(A,C)

0.0 1.0 -0.04 (dn) 0.309 (dn)

0.1 0.9 -0.099 0.32

0.2 0.8 -0.158 0.331

0.3 0.7 -0.217 0.342

0.4 0.6 -0.276 0.352

0.5 0.5 -0.335 0.363

0.6 0.4 -0.394 0.374

0.7 0.3 -0.453 0.385

0.8 0.2 -0.512 0.396

0.9 0.1 -0.571 0.407

1.0 0.0 -0.63 (s′) 0.418 (s′)

(a)

Table 5.11: The incompatibility be-

tween fuzzy sets from Figure 5.12

describing the fruitiness of different

cakes. The normalised distance dn

and dissimilarity s′j results have been

highlighted.
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5.5 Demonstrations

This section demonstrates the incompatibility measure c′p (5.1) based on the

examples given in Section 5.2 that demonstrate the utility of observing both

similarity and distance. Note that, as stated in Section 5.3 the incompatibility

measure c′p (5.1) may be used on any type of fuzzy set (type-1, interval type-2

and general type-2) where s and d are similarity and distance measures for the

given type of fuzzy sets.

5.5.1 Type-1 Fuzzy Sets

Section 5.2 gave examples of the advantages of viewing both similarity and

distance to gain a full comparison of fuzzy sets. This was demonstrated with

the MovieLens data set in Figure 5.13 (formally in Figure 5.5) and Table

5.3. To demonstrate the advantages of the combined incompatibility measure,

Table 5.12 shows the results of the Jaccard similarity sT1
j , directional distance

dT1
p and combined incompatibility c′p measures on the fuzzy sets in Figure

5.13. Note that, once again, in Figure 5.13 black solid vertical and horizontal

lines represent the degree of similarity and distance between the fuzzy sets,

respectively. In addition, a dashed vertical line is given to indicate the degree

of incompatibility.

For each pair of fuzzy sets, the information from both the similarity and

distance measures can be discerned from the single value given by the incom-

patibility measure. A discussion of these results is next.

Sets a & b The high values from the incompatibility measure show that (a)

and (b) have little overlap/similarity and there is less similarity in (a)

then in (b). The sign of the measure also shows that in (a) A < B and

in (b) B < A.

Sets c & d Both values are greater than 0.7 by a considerable amount and
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(a) sT1
j = 0.1025; dT1

p = 1.8307; c′p =

0.7656

(b) sT1
j = 0.1801; dT1

p = 1.6019; c′p =

−0.6941

(c) sT1
j = 0.0; dT1

p = 2.0946; c′p = 0.8571 (d) sT1
j = 0.0; dT1

p = 3.2982; c′p = 0.9474

(e) sT1
j = 0.0486; dT1

p = −3.5418; c′p =

−0.9316

(f) sT1
j = 0.9008; dT1

p = 0.074; c′p = 0.075

Figure 5.13: Fuzzy sets representing the distributions of ratings for different

films in the MovieLens data set. Solid vertical and horizontal lines represent

the degree of similarity (sT1
j ) and distance (dT1

p ), respectively, and the dashed

line represents incompatibility (c′p).
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are therefore practically disjoint (i.e., if there is any overlap it will only

be to a small degree). Additionally, the difference in (d) is greater than

the difference in (c). This can also be seen in the figures. In (c) the

greatest membership in B is in the fuzzy set’s closest region to A. In

(d), however, the highest membership of B is in the furthest region from

A. As a result, the incompatibility of the pair in (d) is greater than that

of the pair in (c).

Set e The combined measure shows that A and B are practically disjoint (i.e.,

if there is any overlap it is only to a small degree). The figure shows that

the overlap between the fuzzy sets is very small and there is a large

distance between the fuzzy sets at high membership values.

Also note that according to the distance measure alone, the pair (e) is

more distance than the pair (d). However, because of the small overlap in

(e), the incompatibility measure shows that (d) is in fact a more distinct

pair than (e). This is a reasonable result given that in (d) the fuzzy sets

are disjoint, whereas in (e) they are not.

Set f As the similarity and distance measures are both equally informative

for nearly identical fuzzy sets, nothing is gained by the incompatibility

in this case.

In Section 5.2, it was discussed that neither similarity nor distance can

be used as a substitute for each other, thus for a given application a choice

must be made as to which measure to use. However, by using a combined

measure of similarity and distance, one may not have to make this choice.

This helps enable the automatic evaluation/reasoning with fuzzy sets without

one having to decide which single measure is best. Continuing from the earlier

demonstration (in Figures 5.3 and 5.4), Figures 5.14 and 5.15 present the

results of the incompatibility measure, showing how the results can be used to

ascertain the similarity and distance between pairs of fuzzy sets.
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Figure 5.13 - part: a b c d e f

sT1
j (2.29) 0.1025 0.1801 0.0 0.0 0.0486 0.9008

dT1
p (3.13) 1.8307 -1.6019 2.0946 3.2982 -3.5418 0.074

c′p (5.1) 0.7656 -0.6941 0.8571 0.9474 -0.9316 0.075

Table 5.12: Results of similarity sT1
j (2.29), distance dT1

p (3.13) and incompat-

ibility c′p (5.1) measures on the fuzzy sets in Figure 5.13.

In Figure 5.14, the distance between A and B and A and C are the same,

however the similarity measure shows that A and B share more similarity than

A and C. This is also clear from the incompatibility measure, which shows

that A and C are more distinct/less compatible than A and B.

Additionally, in Figure 5.15, both pairs of fuzzy sets are disjoint but have

different distances. It is clear, however, from c′p that the distance in each pair

is different. According to c′p, it is also likely, though not definite, that both

pairs of fuzzy sets are disjoint.

From Figures 5.14 and 5.15, one can see that if it is not clear whether a given

problem is best solved using similarity or distance then the incompatibility

measure can be used to gain the perspective of both measures. Figures 5.14

and 5.15 demonstrate how two different pairs of fuzzy sets can result in the

same value from a given measure, when ideally a distinction between these

pairs is preferred. The incompatibility measure provides a richer comparison

of the fuzzy sets and, in both examples, one can distinguish between c′p(A,B)

and c′p(A,C) where this was not possible with only similarity or only distance.
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Figure 5.14: Three overlapping

fuzzy sets A, B and C

Measure (A,B) (A,C)

sT1
j (2.29) 0.389 0.178

dT1
p (3.13) 0.5 0.5

c′p (5.1) 0.465 0.613

Table 5.13: Results of similar-

ity sT1
j (2.29), distance dT1

p (3.13)

and incompatibility c′p (5.1) mea-

sures on the fuzzy sets in Figure

5.14.

Figure 5.15: Three disjoint fuzzy sets

A, B and C

Measure (A,B) (A,C)

sT1
j (2.29) 0.0 0.0

dT1
p (3.13) 3.0 6.0

c′p (5.1) 0.8 0.9

Table 5.14: Results of similar-

ity sT1
j (2.29), distance dT1

p (3.13)

and incompatibility c′p (5.1) mea-

sures on the fuzzy sets in Figure

5.15.
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5.5.2 Type-2 Fuzzy Sets

The examples shown thus far indicate that neither similarity nor distance can

be used as a substitute for each other, however the incompatibility measure

can be used to capture both. Though this chapter has focused on only type-1

fuzzy sets, Figures 5.16 and 5.17 demonstrate this with interval type-2 fuzzy

sets, and Figures 5.18 and 5.19 show this for general type-2 fuzzy sets.

Figures 5.16 and 5.17 show the uses of similarity and distance in interval

type-2 fuzzy sets. Figure 5.16 shows that similarity can distinguish between

overlapping fuzzy sets where distance is not always so effective. Figure 5.17

shows how distance is a better measure to analyse the differences between

disjoint pairs of fuzzy sets. The incompatibility measure fuses these results

and is advantageous because it can distinguish between the different pairs of

fuzzy sets in both examples.

The same is also demonstrated for general type-2 fuzzy sets in Figures 5.18

and 5.19. In these examples, the FOUs of the zSlices based general type-2

fuzzy sets are the same as the interval type-2 examples, and four zSlices have

been used to represent the secondary membership functions. The centre of

the FOU has the highest secondary membership values, and the membership

decreases linearly towards the edge of the FOU. Shading is used to highlight

this, where darker shades indicate higher secondary memberships.

Note that the same results can be seen in this general type-2 example as

seen in the type-1 examples (Figures 5.14 and 5.15) and the interval type-2

examples (Figures 5.16 and 5.17).

More examples of the incompatibility measure being used to capture both

similarity and distance are demonstrated on the recommender system proposed

in the next chapter. Before this, the next section provides a summary of this

chapter.

156



Figure 5.16: Three overlapping

fuzzy sets Ã, B̃ and C̃

Measure (Ã, B̃) (Ã, C̃)

sIT2
j (2.29) 0.293 0.122

dIT2
p (3.13) 0.5 0.5

c′p (5.1) 0.532 0.652

Table 5.15: Results of the sim-

ilarity sIT2
j (2.29), distance dIT2

p

(3.13) and incompatibility c′p (5.1)

measures on the fuzzy sets in Fig-

ure 5.16.

Figure 5.17: Three disjoint fuzzy sets

Ã, B̃ and C̃

Measure (Ã, B̃) (Ã, C̃)

sIT2
j (2.29) 0.0 0.0

dIT2
p (3.13) 3.0 6.0

c′p (5.1) 0.8 0.9

Table 5.16: Results of the sim-

ilarity sIT2
j (2.29), distance dIT2

p

(3.13) and incompatibility c′p (5.1)

measures on the fuzzy sets in Fig-

ure 5.17.
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Figure 5.18: Three overlapping

fuzzy sets Ã, B̃ and C̃

Measure (Ã, B̃) (Ã, C̃)

sGT2
j (2.29) 0.286 0.121

dGT2
p (3.13) 0.5 0.5

c′p (5.1) 0.537 0.653

Table 5.17: Results of similarity

sGT2
j (2.29), distance dGT2

p (3.13)

and incompatibility c′p (5.1) mea-

sures on the fuzzy sets in Figure

5.18.

Figure 5.19: Three disjoint fuzzy sets

Ã, B̃ and C̃

Measure (Ã, B̃) (Ã, C̃)

sGT2
j (2.29) 0.0 0.0

dGT2
p (3.13) 3.0 6.0

c′p (5.1) 0.8 0.9

Table 5.18: Results of similarity

sGT2
j (2.29), distance dGT2

p (3.13)

and incompatibility c′p (5.1) mea-

sures on the fuzzy sets in Figure

5.19.
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5.6 Summary

This chapter has introduced an incompatibility measure that is a combination

of a similarity and a directional distance measure on fuzzy sets. Using this, one

does not have to choose if similarity or distance is best for a given application,

and may instead use both to gain the advantages of both. As this measure

fuses the results of similarity and distance measures, it can be used to compare

type-1, interval type-2 or general type-2 fuzzy sets, where the original similarity

and distance measures are for the corresponding type of fuzzy set.

In addition, using multiple measures helps alleviate ambiguity in comparing

fuzzy sets. It is common for a measure to give identical results for different

pairs of fuzzy sets, where different results may be preferred (see Section 5.2).

Joining together the outputs of multiple measures helps to ensure that unique

and useful results are calculated in such cases (demonstrated in Section 5.5).

Although the incompatibility measure can also potentially produce identical

values for different pairs of fuzzy sets, the likelihood is much lower than if only

a single measure is used.

An ordered weighted average (OWA) operator is used to join similarity and

distance together. An OWA is used instead of the standard average operator

because using the same weights for both measures may produce unexpected

results for heavily overlapping fuzzy sets; this was demonstrated in Section

5.4. Additionally, by using an OWA operator, one can tune the weights to

best fit the given fuzzy sets. Whilst the selection of ideal weights is often

narrow when comparing overlapping fuzzy sets, there is a wider selection of

appropriate weights that may be used to compare disjoint, or nearly disjoint,

fuzzy sets. This was also demonstrated in Section 5.4.

By joining similarity and distance, the proposed measure can be suitable to

applications that would typically use only similarity or only distance. By tun-

ing or learning ideal weights, it can be utilised for many different applications
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and data sets.

Note, however, that the incompatibility measure is not suitable for all ap-

plications that would use similarity or distance. For example, overlapping is

a common property of similarity that is useful in clustering and classification.

The incompatibility measure, however, does not have this property and thus

may not be suitable for such applications. Also, though demonstrations have

focused on the application of a directional incompatibility measure, one can

use a standard distance metric to gain an incompatibility metric that is not

directional.

The concept of measuring compatibility between fuzzy sets has appeared

many times in the literature [49, 52, 53] and incompatibility has been used to

compare intuisionistic fuzzy sets [111]. However, the current literature does

not measure incompatibility as a concept of fusing unique similarity and dis-

tance measures. This is a key contribution of this thesis, providing a unique

comparison of fuzzy sets where a single measure of comparison may not be suf-

ficient. In addition, this method of fusing different measures may be utilised

outside of the field of fuzzy sets as distance and similarity are used within a

multitude of non-fuzzy contexts.

The next chapter presents the use of the incompatibility measure applied

to find knowledge based recommendations.
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Chapter 6

Finding Recommendations for

Subjective Information

6.1 Introduction

This chapter develops a fuzzy knowledge based recommendation system that

uses the proposed incompatibility measure c′p (5.1) to find recommendations

for products based on subjective information.

Consider a person who is looking for a particular type of cake. They know

a number of cakes a shop sells but would like something different that they

have not tried. For example, the person may ask for a cake sweet and nutty

like this one but more fruity and crumbly. This description is detailed (many

attributes are described) and subjective (e.g., different people may have differ-

ent perceptions on how well a cake can be described as crumbly). Generally,

some human interaction would be required to find a product that matches this

detailed description. This type of recommendation is known as a knowledge

based recommendation, as it requires detailed knowledge about the products.

This chapter introduces a method of automating such recommendations.

A knowledge based recommendation system (described in Section 2.6) is a
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type of system that attempts to find products based on the parameters set by

the user. For example, a person may search for a film like Star Trek but with

more action. A list of recommended films can then be generated by comparing

films to Star Trek, and selecting ones that have been described in a similar

way for all attributes except action and have been described as being an action

film with more certainty than Star Trek [102].

Such descriptions of products are often uncertain in nature, for example,

one person may find a film very funny whilst another person may think it is not

at all funny. Such subjectivity can be captured using fuzzy sets. Based on this

idea, this chapter develops a fuzzy knowledge based recommendation system

that represents product attributes (e.g., how much a film is funny or how

much a cake is fruity) using fuzzy sets. Users describe what they want based

on a relative comparison with another known product, and the incompatibility

measure c′p is used to compare products and then rank them according to how

well they fit the user’s description.

The remainder of this section first introduces the structure of the proposed

recommendation system followed by methods of finding products that match

what a user wants. After this, demonstrations of the proposed system are

given using synthetic data with ground truth.

6.2 The Structure of the Proposed System

This section discusses the structure of the proposed knowledge based recom-

mendation system where the knowledge of products is represented by a set of

attributes. The descriptions of each product’s attributes are modelled using

fuzzy sets which may be any type (type-1 or type-2) and may be non-normal

and/or non-convex. Using examples, this section shows how queries can be

broken down into sub-queries, and discusses how the context of the data af-

fects the interpretations of the queries.
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A ranked list of recommended products is given as the result of a consumer’s

query. Each item is not only represented by a rank position (e.g., first, second,

etc.), but also has a real value that indicates its score within the range [−1, 1].

A positive value in [0, 1] is given when a product is a good recommendation

where 1 is the highest score and a negative value occurs when a product should

not be recommended.

Using a real value in [−1, 1] provides more information than only giving

rank positions. For example, consider the ranked products A, B, C, D and E

in Figure 6.1. Product A is scored 0.9, B is scored 0.85 and C is scored 0.2,

thus it is clear that A and B are almost equally good recommendations, and

there is much less confidence in recommending product C. If, however, only

a rank order of recommendations is used, i.e., first:A, second:B and third:C,

then this information is lost.

Additionally, D is ranked −0.1 and E is ranked −0.7 which shows that

not only are D and E both poor recommendations, E is much worse than

D. With this information, if one wishes, product D may be recommended if

there are few positive recommendations given that it is only slightly worse,

however, E is unlikely to be recommended because it has such a low score.

Note that utilising negative rank values is not covered in this chapter but may

be considered for future work.

Figure 6.1: Example of products given rank values on the scale [−1, 1].

When designing a recommendation system, it is important to take into

account the context of what is being recommended. For example, consider

two different recommendation systems, one enables people to find their ideal
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hotel, and the other is used to find a person’s preferred cake.

When searching for an ideal hotel, the preferred ratings may be implicitly

known. The best hotel is the one in which the rooms, value, service, etc. are

rated the highest. Also, people generally prefer to find the cheapest hotel that

matches their needs. Thus, in this example, the preferred direction of a given

attribute when comparing products can be implied without the user having

to explicitly state that, for example, higher rated rooms are always preferred.

Note that this is a simple example in which more subjective attributes, such

as hotel style, have been excluded. This type of recommendation system will

be referred to as an implicit preference recommender.

However, the direction of preferred ratings cannot be implied when com-

paring cakes. For example, one person may ask for a cake like this but more

fruity and another person may ask for a cake like this but less fruity. It is

clear from this example that the preferred direction when comparing attribute

ratings cannot be implied and must be stated explicitly. Therefore, this type

of recommendation system will be referred to as an explicit preference recom-

mender.

Following on from these examples, the method of choosing which products

to recommend should be tailored according to the type of product. First,

consider the explicit preference recommender with the example query find a

cake as soft and sweet as this one but more fruity and less salty. This can be

split into two sub-queries. The first sub-query details what the consumer likes

about a given product and the second details what they want to be changed.

Sub-query 1: A cake as soft and sweet as this: A product with

considerably higher or lower ratings in these attributes does not fit the sub-

query and is not desired; i.e., a cake that is rated more/less soft or more/less

sweet would deviate from the consumer’s preferences. For example, consider a

cake where the attribute sweet is rated 3 out of 5. Figure 6.2 shows an example

of selecting approximately this sweet (i.e., approximately 3) as a crisp range
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of values, and a cross indicates the most preferred value (at 3). The further a

product’s rating is from this value, the less it is preferred as a recommendation.

Figure 6.2: Pictorial description of roughly 3.

Sub-query 2: A cake more fruity and less salty than this: In this

case, only higher ratings for fruitiness and lower ratings for saltiness fit what

the user wants. For example, consider if each attribute is rated 3 out of 5.

Figures 6.3 and 6.4 show the crisp range of ratings desired when looking for

an attribute that is rated higher/lower, respectively. In both figures, a cross

indicates where the most preferred value is (at 5 and 1, respectively). The

closer a product’s rating is to this preferred value, the more it is preferred as

a recommendation.

Figure 6.3: Pictorial description of higher than 3.

Figure 6.4: Pictorial description of lower than 3.

Next, turning to the implicit preference recommender, consider the query I

want a hotel as cheap as this place with rooms about this good, and in a better

location. In this case the user will always desire the attributes of a product to

be rated the lowest (e.g., cheapest price) or highest (e.g., best quality) possible.

This may also be split into two sub-queries.
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Sub-query 1: A hotel as cheap as this place with rooms about

this good: In this case, the user likes the rooms of a given hotel and would

like to view another that has rooms just as good. Additionally, because higher

rated rooms are implicitly preferred, the user would also be happy with a hotel

that has better rooms. This sub-query can also be interpreted as a hotel with

rooms about this good or better and about this price or cheaper.

Consider a hotel where the rooms and price (e.g., how expensive it is con-

sidered) are both rated 3 out of 5. Figures 6.5 and 6.6 show the range of ratings

desired when looking for an attribute rated about 3 or higher and about 3 or

lower, respectively. In both figures, a cross indicates where the most preferred

value is (at 5 and 1, respectively) and the closer a product’s rating is to this

preferred value, the more preferred it is as a recommendation.

Figure 6.5: Pictorial description of approximately 3 or higher.

Figure 6.6: Pictorial description of approximately 3 or lower.

A threshold will be used to indicate how much a user is OK with having

a product rated slightly worse. For example, consider if an attribute where

higher ratings are best is rated 3 out of 5 and a threshold of 0.5 is chosen. This

threshold indicates that the user is willing to accept a product rated within

the range [2.5, 5.0] for the given attribute.

Note, however, that when a user asks for approximately this (as shown in

Figure 6.2), a threshold is not required because the interpretation of the sub-

query and the position of the most desired value (marked by the cross) affects
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how the comparison between products is evaluated. More details on how the

interpretation affects the calculation is covered in the next section.

Sub-query 2: A hotel with a better location than this: In this case,

the consumer wants location to be rated higher. Lower and similar ratings do

not match this. Another example of this type of sub-query is a hotel cheaper

than this, in which similar and higher ratings for price are not desired and only

lower ratings should be recommended. This is the same as sub-query 2 in the

explicit preference recommender. Figures 6.3 and 6.4 show the crisp range of

ratings desired when looking for an attribute that is rated higher and one that

is rated lower, respectively.

In the next section, individual sub-queries are evaluated and the results of

the sub-queries are fused, giving each product a score of how well it matches

the consumer’s query. To calculate how well a product matches these queries,

the incompatibility measure c′p (5.1) can be used to compare products and

determine if ratings are close or distant to another (i.e., to find products that

are rated similarly or differently), and to determine if a product is rated higher

or lower than another.

6.3 Evaluating Queries

This section proposes methods of evaluating the sub-queries in the previous

section and then fuses these results to evaluate a query as a whole.

6.3.1 Evaluating Sub-Queries

For each sub-query, the method of comparing products may be approached

using the incompatibility measure c′p. The key difference in each sub-query is

how the results of c′p are interpreted. This section first introduces a general

method of comparing products given a list of attributes. After this, this ap-

proach is further developed to evaluate the more specific sub-queries. As a
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variety of notations and functions are used to describe the proposed system,

Table 6.1 provides summary descriptions for quick reference.

A General Method of Comparing Products

Consider a consumer who has found a product, denoted j, which is described

by a list of attributes Q, and the consumer wishes to find alternative products

by comparing them against j. A measure of how well a product i matches j

according to Q can be given as

g(j, i, Q) =

∑
q∈Qwqc

′
p(jq, iq)∑

q∈Qwq
, (6.1)

where i is the new product being evaluated, iq is the fuzzy set describing

attribute q of product i, and c′p is the incompatibility measure (5.1). The value

wq is the weight given to the attribute q to indicate the relative importance of

that attribute where wq ≥ 0 ∀q ∈ Q. If all attributes are equally important

then wq is the same value for each attribute. Note that the result of g (6.1) is

always in [−1, 1].

Using weights enables the consumer to describe more specific preferences.

For example, if a consumer wants to find a hotel with better rooms and ser-

vice than another, they may specify that better rooms is more important by

assigning it a higher weight.

Using g (6.1), a result near −1 indicates that i is rated lower than j (where

−1 is the worst rating), a value near 0 indicates that i is similar to j, and

a value near 1 illustrates that i is rated higher than j (where 1 is the best

rating). Given this, the result of g determines how much product i is rated on

average similar, higher or lower than product j when comparing the attributes

Q.

The function g can be adjusted to provide results according to more specific

sub-queries. The remainder of this section addresses how the sub-queries from

the previous section can be evaluated. For each equation, negative or positive

168



Notation Description

j the product being compared against

i the product being ranked and recommended

Q the set of attributes for sub-query 1

P the set of attributes for sub-query 2

V directions for sub-queries giorbetter and giediff

wp weight assigned to the attribute p

Function Comparison between products

∗e a function used by the explicit preference recommender

∗i a function used by the implicit preference recommender

g (6.1) general comparison

giorbetter (6.2) about this good or better

geapprox (6.3) similar to this

giediff (6.4) different to this

re (6.6) explicit preference recommendation

ri (6.5) implicit preference recommendation

Table 6.1: Descriptions of functions and notations used in the proposed rec-

ommendation system.

169



results indicate that a product respectively slightly fails or slightly meets the

given sub-query.

A Product Approximately This Good or Better

Consider an implicit preference recommender in which a consumer is happy

with the attributes of a product, but higher or lower ratings are always pre-

ferred. For example, a user may ask for a hotel with rooms and price about

this good or better.

In this case, another hotel with equal ratings for rooms and price can be

recommended. Additionally, because the user asks for a hotel about this good

or approximately this good, ratings that slightly deviate may still be recom-

mended. For example, if a hotel’s rooms have been given a rating of 3 then

another hotel with rooms rated 2.9 may still be recommended because, al-

though it is lower, it is around the same value. A threshold t ∈ [0, 1] will

be used to denote the degree to which slightly worse ratings are acceptable.

The value 0 indicates that worse ratings are not wanted and the higher the

threshold the more worse ratings are allowed.

Additionally, higher or lower ratings are always implicitly preferred, and

so hotels with higher rated rooms and a lower rated price would be even more

preferred to hotels rated approximately the same.

Let V ∈P be the set of values V =
{
V1, ..., V||Q||

}
where ||Q|| is the total

number of attributes in Q and each value Vq denotes the assumed direction

in which a consumer will want an attribute to change (i.e., higher or lower).

Vq is −1 if the consumer will want the attribute q to be rated lower and Vq

is 1 if the attribute is to be rated higher. The degree to which a product i is

preferred over a product j, where the consumer wants the attributes Q to be

about the same or higher, or about the same or lower as indicated by V can
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be evaluated as

giorbetter(j, i, Q, V, t) =

g
i
orbetternn

(j, i, Q, V, t) if giorbetternn
(j, i, Q, V, t) ≥ 0

giorbetternn
(j,i,Q,V,t)

1−t otherwise

(6.2a)

giorbetternn(j, i, Q, V, t) =

∑
q∈Qwq min

{
Vq(c

′
p(jq, iq) + t), 1

}∑
q∈Qwq

. (6.2b)

Note that giorbetternn
(6.2b) gives a non-normal result in [−1 + t, 1] and (6.2a)

normalises this so that one does not have to know the value t to be able to

interpret the results.

Within (6.2b), the value Vq is multiplied by the result of c′p so that c′p is

a positive result if it is in the correct direction (as defined by Vq) and is a

negative result otherwise.

A Product Similar to This

Consider an explicit preference recommender in which a consumer has asked

for a product similar to this ; e.g., a cake as fruity as this one. In this case, it

is desired that the result of g (6.1) be as close to 0 as possible. Although the

incompatibility function c′p, and by extension g, indicates if an item is rated

higher or lower than another item, this information is not necessary for this

sub-query. Items that are greatly different, whether higher or lower, do not fit

the sub-query. Given this, it is ideal to change g to use the absolute result of

c′p, as this makes it easier to interpret the results.

Thus, to determine if item i is similar to item j according to the attributes

Q, they may be compared as

geapprox(j, i, Q) =

∑
q∈Qwq(−|c′p(jq, iq)|)∑

q∈Qwq
. (6.3)

The result is in [−1, 0] where 0 indicates perfect similarity, and −1 indicates no

similarity. The value is given within [−1, 0] instead of [0, 1] so that the result
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of the sub-query is consistent with all other sub-query results; i.e., a negative

value always indicates that a product does not match the sub-query.

A Product Different to This

Here, the sub-query a product different to this is addressed. The previous two

sections evaluated the first sub-query (in which a person likes something about

a product) for implicit and explicit preference recommenders, respectively.

This section focuses on the second sub-query (in which a person doesn’t like

something about a product) for both types of recommendation systems.

To distinguish the attributes of sub-query 1 from those of sub-query 2, let

P denote the list of attributes the consumer wishes to be different. Also, let

V ∈P be the set of values V =
{
V1, ..., V||P ||

}
where ||P || is the total number

of attributes in P and each value Vp denotes the direction in which a consumer

wishes an attribute p to change (i.e., higher or lower). Vp is −1 if the consumer

wants the attribute q to be rated lower and Vp is 1 if the attribute is to be

rated higher.

The degree to which a product i is preferred over a product j, where the

consumer wants the attributes P to be higher or lower according to V can be

evaluated as

giediff(j, i, P, V ) =

∑
p∈P Vpwpc

′
p(jp, ip)∑

p∈P wp
(6.4)

This results in a value within [−1, 1]. A result close to −1 indicates that the

attributes of j are not different to i according the consumer’s desires. For

example, if a consumer wants a cake less salty than j, then a negative value

from giediff (6.4) indicates that i is more salty. A result close to 1, however,

indicates that i matches the consumer’s sub-query and is, in this case, less

salty. A result near 0 indicates that the products i and j are similar in terms

of the attributes P .

Note that if Vp = 1 ∀p ∈ P then giediff (6.4) is the same as the basic com-
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Query Eq.

I want a hotel

with rooms approximately
giorbetter (6.2)

as good as this or better

and in a better location giediff (6.4)

I want a cake

as soft and sweet as this geapprox (6.3)

and more fruity and less salty giediff (6.4)

Table 6.2: Examples of sub-queries for different categories of recommendation

systems and the equations that can be used to evaluate them.

parison g (6.1).

6.3.2 Joining Sub-Queries

Using the equations given in the previous section, it is possible to assign a score

of each product according to each of the given sub-queries. Using the examples

given in Section 6.2, Table 6.2 shows which equation is used for each sub-query.

This section discusses how these can be used together to solve whole queries.

As earlier, both implicit preference and explicit preference recommenders are

considered.

Implicit Preference Recommendations

The functions giorbetter and giediff each give a value in [−1, 1] that describes how

much a product matches two given sub-queries. Negative and positive values

represent poor and good recommendations, respectively. Using these two sub-
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queries, the average recommendation score may be given as

ri(j, i, P,Q, V, t) =
1

2
(giorbetter(j, i, Q) + giediff(j, i, P, V, t)). (6.5)

This gives a value within [−1, 1] and indicates how well a product fits both of

the consumer’s sub-queries. A positive value indicates a good recommendation,

where the value 1 is the best rating and a negative value occurs when a product

does not match one or both sub-queries.

By using this method to recommend products, a product may result in a

positive value even if one of the sub-queries (from giorbetter (6.2) or giediff (6.4))

results in a negative value. This is treated as an acceptable compromise in

which a product only has a negative result if its undesired change in ratings

from one of the sub-queries outweighs the desired changes from the other.

Additionally, using ri (6.5), the result is generally, though not necessarily,

higher if both giorbetter and giediff give positive results.

If one wishes to change the results such that negative values have a higher

impact then weights could be applied to ri to achieve this effect. For example,

an ordered weighted average operator may be used to apply higher weights

to lower results, causing negative results to have a higher impact on the final

score than positive results.

Explicit Preference Recommendations

In an explicit preference recommender, different people have different preferred

ratings, and as such the results of the sub-queries (geapprox (6.3) and giediff (6.4))

must be joined differently than for an implicit preference recommender. geapprox

(6.3) shows how well a product meets the first sub-query in [−1, 0] and giediff

results in the interval [−1, 1]. To evaluate a recommendation score, the value

of sub-query 1 is added to sub-query 2 as

re(j, i, P,Q, V ) = max
{
−1, geapprox(j, i, Q) + giediff(j, i, P, V )

}
. (6.6)
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Calculating the final result in this way ensures that a positive recommenda-

tion only occurs when the desired improvements of a product (according to

giediff) outweigh any undesired differences in the attributes which the consumer

wishes to be similar (according to geapprox). This ensures that a product is only

recommended if the greatest change in attributes between products is where

the consumer desires change.

The result from re (6.6) is within [−1, 1] where a positive value indicates a

good recommendation and a negative value indicates a poor recommendation.

Although geapprox + giediff would be within [−2, 1], information about rank values

in [−2,−1) are not necessarily useful because negative values are simply used to

determine what is not worth recommending and it may be sufficient to simplify

the results by normalising them. For this reason, re restricts geapprox + giediff to

the interval [−1, 1].

One could also argue that any negative result is not worth recommending

and that restricting the values to [0, 1] and disregarding all others may be

sufficient. However, negative values are shown in the proposed system so that

they may be used for decision making in future recommendations.

Having developed the proposed recommendation systems, the next section

presents demonstrations using a synthetic data set that has ground truth.

First an example of the explicit preference recommender is given, followed by

an example of the implicit preference recommender.
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6.4 Synthetic, Ground Truth Demonstrations

This section provides simple demonstrations of the proposed system where

the knowledge base contains normal, convex, type-1 fuzzy sets that describe

polygons. By using a simple example such as this, there is ground truth to the

examples because there is no subjectivity. Thus, the recommendation process

is easier to follow and one can judge what should be the expected results. Note

that Chapter 7, however, demonstrates the proposed system using subjective

data collected from surveys.

As well as demonstrating the recommendation process, this section shows

why it is important to use the incompatibility measure by demonstrating that

similarity or distance alone cannot provide useful recommendations.

6.4.1 Explicit Preference Ground Truth Examples

Using The Proposed System with the Incompatibility Measure

Figure 6.7 shows six polygons with three to eight sides, all of which have a

perimeter of 10cm. It is well known that given the same perimeter, as the

number of sides of a polygon increases, its area increases. Table 6.3 shows the

areas of each polygon in Figure 6.7.

In order to demonstrate the proposed recommendation system on fuzzy

sets, Figure 6.8 shows fuzzy sets that approximate the number of sides and

areas of the polygons. Note that whilst the number of sides and the size of

the areas are of course precise, fuzzy values have been used to demonstrate

that the results are as expected in such a straightforward example. Each fuzzy

set has a Gaussian membership function. In Figure 6.8a, the mean value is

at the number of sides and the standard deviation is 1. In Figure 6.8b, the

mean value is at the area of the polygon, and the standard deviation is 0.1.
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Figure 6.7: Regular polygons from 3 to 8 sides with a perimeter length of

10cm.

shape area cm2

triangle 4.8113

square 6.25

pentagon 6.8819

hexagon 7.2169

heptagon 7.4161

octagon 7.5444

Table 6.3: Area of regular polygons with a perimeter of length 10cm.

These standard deviations have been chosen because they provide some small

overlap between the fuzzy sets whilst ensuring they are still distinguishable.

The remainder of this section demonstrates the process of finding

a polygon with a similar number of sides to a hexagon

but with a smaller area.

First, the incompatibility of each shape’s attribute is compared with the

hexagon using c′p (5.1) with weights 〈w0 = 0.7, w1 = 0.3〉; Table 6.4 shows these

results. Note that when comparing the number of sides and area, 121 and 1001
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(a) The number of sides of each shape rep-

resented as an approximation.

(b) The area of each shape represented as

an approximation.

Figure 6.8: The number of sides and area of shapes represented as an approx-

imation using fuzzy sets. In each sub-figure, the left-most fuzzy set represents

a triangle, and the total number of sides of the polygons increases towards the

right, where the right-most fuzzy set represents an octagon.

discretisations, respectively, were used in the x-axis to calculate dissimilarity.

A negative result from c′p denotes that a shape has fewer sides or a smaller

area than the hexagon.

To find which shape best matches a polygon with a similar number of sides

to a hexagon, and with a smaller area, the task is split into two queries

Sub-query 1 A polygon with a similar number of sides to a hexagon.

Sub-query 2 A polygon with a smaller area than a hexagon.

The first sub-query is calculated using geapprox (6.3) which gives a result in

[−1, 0]. The value 0 is the best result and the value −1 is the worst result.

The second query is evaluated using giediff (6.4) where Vq = −1 (q represents the

attribute area) because the query specifies a shape with a smaller area and

thus negative results from c′p are desired. This gives a result in [−1, 1] where

1 is the best result and −1 is the worst result.

Table 6.5 shows these results. Note that as only one attribute is used within
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shape sides area

triangle -0.725 -0.772

square -0.618 -0.729

pentagon -0.413 -0.676

hexagon 0.0 0.0

heptagon 0.413 0.573

octagon 0.618 0.672

Table 6.4: The incompatibility between the number of sides and area of dif-

ferent polygons against a hexagon using c′p.

each sub-query, the absolute results are the same as those in Table 6.4.

In the case of sub-query 1, all results are negative, representing the degree

to which the shape does not have a similar number of sides to a hexagon. Note

that in the second sub-query, because Vq = −1, the results from c′p (in Table

6.4) are reversed. Values that had a positive result from c′p because they are

higher valued are now negative because higher values are not desired.

Table 6.5 also shows the final results joining the sub-queries together using

re (6.6). Positive valued results indicate ‘good’ recommendations and negative

results are ‘bad’ recommendations. This table shows that the pentagon is the

best result. Intuitively, this is expected because it has the most similar number

of sides to a hexagon, whilst also having a smaller area.

The square and triangle are, respectively, the next best recommendations.

Although they fit the second sub-query better than a pentagon (i.e., have a

smaller area) they are a worse fit for the first sub-query (i.e., they have fewer

sides). As a result, they are not as well recommended. The heptagon and

octagon do not fit the second sub-query at all, and therefore should not be

recommended.
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shape sub-query 1 geapprox sub-query 2 giediff result re rank

triangle -0.725 0.772 0.047 3

square -0.618 0.729 0.111 2

pentagon -0.413 0.676 0.263 1

hexagon 0.0 0.0 0.0 -

heptagon -0.413 -0.573 -0.986 4

octagon -0.618 -0.672 -1.0 5

Table 6.5: Ranking polygons against a hexagon for less area and similar num-

ber of sides using the incompatibility measure c′p.

This synthetic example has shown that the results of the proposed recom-

mendation system using the incompatibility measure c′p produces values that

match what is intuitively expected.

Using Separate Similarity and Distance Measures

This next demonstration shows the importance of using the same measure to

evaluate both sub-queries. Judging by the nature of each sub-query, one may

assume that a similarity and distance measure could be used instead, i.e.,

Similarity A polygon with a similar number of sides to a hexagon.

Distance A polygon with a smaller area than a hexagon.

However, the following demonstrates that the results cannot be fused if the sub-

queries are calculated using different techniques. Table 6.6 shows the results of

the recommendation process where c′p is replaced with the dissimilarity (1−sT1
j )

and the normalised directional distance (dp(A,B)

τ(X)
) measures.

One can clearly see from these results that the ranked recommendations

are not useful. Each shape has a negative result, indicating that there are no
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shape sub-query 1 geapprox sub-query 2 giediff result re rank

triangle -0.928 0.2406 -0.6874 3

square -0.811 0.0967 -0.7143 4

pentagon -0.554 0.0335 -0.5205 1

hexagon 0.0 0.0 0 -

heptagon -0.554 -0.0199 -0.5739 2

octagon -0.811 -0.0327 -0.8437 5

Table 6.6: Ranking polygons against a hexagon for less area and a similar

number of sides using the dissimilarity s′ and normalised distance dn measures

in sub-queries 1 and 2, respectively.

good recommendations. Additionally, although the pentagon is still the highest

valued result, the heptagon is now the second highest. This is undesired as it

does not fit the second sub-query (i.e., its area is higher than a hexagon).

This demonstration shows that to ensure meaningful, intuitive results, it

is important to use the same approach to evaluate each sub-query. Chapter 5

shows that the incompatibility measure c′p can effectively assess both similarity

and distance between fuzzy sets. Thus, c′p will be used to calculate all sub-

queries in the recommendation system.

Using Only Distance or Similarity

As discussed in Chapter 5, distance is not a useful substitute for similarity, nor

is similarity a useful substitute for distance. This section provides a clearer

example of this by demonstrating using only the directional distance measure

dT1
p (3.13) to evaluate recommendations. Using the same query as the previous

two sections, Table 6.7 shows the results when only the normalised distance is

measured. Note that, just as in previous examples, the results from sub-query

181



shape sub-query 1 geapprox sub-query 2 giediff result re rank

triangle -0.25 0.2406 -0.0094 1

square -0.1667 0.0967 -0.07 3

pentagon -0.0833 0.0335 -0.0498 2

hexagon 0.0 0.0 0 -

heptagon -0.0833 -0.0199 -0.1032 4

octagon -0.1667 -0.0327 -0.1994 5

Table 6.7: Ranking polygons against a hexagon for less area and a similar

number of sides using the normalised distance dn measure.

1 ignore direction and are all negative values.

Just as the example in the previous section (in Table 6.6) each shape has a

negative result and it is thus impossible to discern between good and bad rec-

ommendations. The rank orders are also not what one would expect. Although

the top three ranks contain the same polygons as when using the incompatibil-

ity measure (in Table 6.5), the ordering is different and counterintuitive. The

triangle fits the first sub-query the least well (i.e., a similar number of sides to

a hexagon), yet it is the mostly highly recommended shape.

This demonstration shows that distance cannot be used as a substitute for

similarity. Note, also, that similarity is not a substitute for distance because

it is non-directional and thus cannot determine the relative positions between

pairs of fuzzy sets. It also cannot determine the magnitude of distance between

disjoint fuzzy sets.
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6.4.2 Implicit Preference Ground Truth

Examples

Using the same fuzzy sets as the previous section, this section presents an

example of the proposed implicit preference recommendation system ri. In this

example, the task is to resolve the query a polygon with an area approximately

as large or larger than a hexagon and with a greater number of sides. This is

split into two sub-queries:

Sub-query 1 A polygon with an area approximately as large or larger than

a hexagon.

Sub-query 2 A polygon with a greater number of sides than a hexagon.

Table 6.8 shows the results of this query using the incompatibility measure c′p.

Note, the threshold t = 0.1 is used for the first sub-query. It is clear that the

results are what one would expect. The shapes with larger areas and a greater

number of sides than a hexagon have positive values, whereas shapes that fail

both of these criteria have negative results. The rank order is also what one

would expect.

Table 6.9 also shows the results if the normalised directional distance mea-

sure dT1
p is used instead of c′p. This table shows that while the values of the

results have changed, the signs (positive/negative) are the same and the rank

order is also the same.

This demonstrates that in implicit preference recommender systems, us-

ing only a directional distance measure is sufficient and one may not need to

use the incompatibility measure. Note, however, the previous section demon-

strated that in explicit preference recommender systems, it is necessary to use

the incompatibility measure as directional distance alone cannot provide the

correct results.
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shape sub-query 1 giorbetter sub-query 2 giediff result ri rank

triangle -0.7467 -0.725 -0.7359 5

square -0.6989 -0.618 -0.6584 4

pentagon -0.64 -0.412 -0.526 3

hexagon 0.1 0.0 0.05 -

heptagon 0.673 0.412 0.5425 2

octagon 0.772 0.618 0.695 1

Table 6.8: Ranking polygons against a hexagon for more area and more sides

using the incompatibility measure c′p.

Having presented the proposed recommender using synthetic, ground-truth

examples, the next section provides a summary of this chapter.

6.5 Summary

This chapter has demonstrated a fuzzy knowledge based recommendation sys-

tem with which a person may describe their ideal product in relation to another

product. Two different types of data/recommenders were explored. These have

been referred to as implicit preference and explicit preference recommenders.

The former describes data in which the preferred ratings for a product are

commonly implicitly known for all attributes. In this case, the subjectivity

of a product stems from peoples’ perceptions/ratings of that product. In the

latter case however, the preferred ratings cannot be assumed. In this case,

there is not only subjectivity in the attribute rating of products, but also with

regards to what ratings are desired.

This chapter has introduced a clear distinction between implicit preferences

(what we can assume the consumer likes) and explicit preferences (what we
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shape sub-query 1 giorbetter sub-query 2 giediff result ri rank

triangle -0.1562 -0.25 -0.2031 5

square -0.0033 -0.1667 -0.0817 4

pentagon -0.066 -0.0833 -0.0084 3

hexagon 0.0 0.0 0.05 -

heptagon 0.1199 0.0833 0.1016 2

octagon 0.1327 0.1667 0.1497 1

Table 6.9: Ranking polygons against a hexagon for more area and more sides

using the directional distance measure dT1
p .

cannot assume). Explicit preferences have also been explored elsewhere in

the literature. Typically, explicit knowledge is acquired by querying the user

through questionnaires, for example rating products on a Likert scale [112,

113]. The concept of implicit preferences, however, is less well-defined. In

some cases, experiments using word associations are used to determine if a user

associates a product in a positive or negative manner [112]. Another technique

is to monitor user activities to gain implicit preferences. For example, if a user

visits a website or listens to a song frequently then it is assumed that the user

likes the given website or song [113].

However, this chapter has introduced a different idea of implicit preferences,

where no information is collected from users, and instead it is assumed that

all consumers will have the same preferences. Care must of course be made in

such generalisations, and so this idea of implicit preferences is best used where

the given preference is obvious; for example, it’s likely that everyone will prefer

the restaurant rated as having the most delicious food.

Examples of the recommendation system were given using simple synthetic

fuzzy sets with ground truth. The synthetic examples demonstrated that the
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recommendation system gives intuitive results when using the proposed in-

compatibility measure developed in Chapter 5. The next chapter demonstrates

the implicit and explicit preference recommenders using real-world based data-

driven fuzzy sets that are type-1, interval type-2 and general type-2.
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Chapter 7

Demonstrating

Recommendations on Subjective

Data-Driven Fuzzy Sets

7.1 Introduction

This section demonstrates the proposed fuzzy knowledge based recommenda-

tion system (described in Chapter 6) using real-world data-driven type-1 and

type-2 fuzzy sets. First, Section 7.2 gives examples of the implicit preference

recommender using survey data. The goal is to make recommendations based

on multiple ratings in a similar domain. Specifically, the section focuses on

the example of hotel recommendations as are vital in online booking sites. In

this example, the fuzzy sets, constructed from customer ratings, represent the

quality of multiple attributes of multiple hotels. Using this recommender, one

might, for example, wish to find recommendations based on a hotel with rooms

about as good as this one but with a better location.

After this, Section 7.3 demonstrates the explicit preference recommender

in which a person can state how similar a given item is to their preferred
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item. Demonstrations are based on collected survey data in which people have

described different attributes of cakes by, for example, rating how sweet or

fruity a cake is on a scale from 0 to 10. Recommendations are then based on

the descriptions of the cakes, for example, find a cake sweet and nutty like this

one but more fruity.

7.2 Data Driven Implicit Preference

Demonstrations

This section demonstrates the implicit preference recommender using a data

set in which participants rate various attributes of different hotels. Recall that

in an implicit preference recommender, the preferred ratings of a product are

implicitly known and do not have to be stated by the consumer. For example,

if a person is trying to find a hotel, one can assume they would prefer the

lowest priced hotel with the best rated rooms, and will never want the highest

priced place with low rated rooms. Therefore, the direction of change preferred

for each attribute does not need to be stated by the consumer.

7.2.1 Data Set

To demonstrate the proposed implicit preference recommendation approach,

a TripAdvisor R©data set [114, 115] is used, which contains reviews of many

hotels across the world. Within the TripAdvisor R©data set, users may rate

hotels according to the attributes service, cleanliness, business service (e.g.,

Internet access), check in / front desk, value, sleep quality, rooms, location,

and overall.

When a user reviews a hotel they are able to rate it according to how well

they felt it performed in each of the given attributes. Each rating is given

as a value in {1, 2, ...5}. For the purpose of this thesis, fuzzy sets describing
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the attributes of the hotels are all constructed using the same technique as

when data is collected using the polling technique with linear interpolation

(described in Section 2.3.1). As a result, all of the fuzzy sets are non-normal

(as there is no complete agreement for any hotel attribute) and many of the

fuzzy sets are non-convex.

Note that it is not necessary for users to rate each attribute; if they wish

they may give only an overall rating. As a result, there are many hotels for

which there is no data for some attributes. However, every hotel within the

data set has received at least one overall rating. Given this, when comparing

hotels, if there is no information about a given attribute for a hotel, the overall

ratings are compared instead as a substitute.

When searching for a hotel, the user typically knows the location they

wish to stay and a price range which they are willing to pay. Given this, the

demonstrations within this section assume the user is searching for a hotel

located within New York City with a price-range of $100 - $200 per night.

Note that even this subset of hotels is too large to adequately discuss, so only

a smaller subset of the data is used within these demonstrations.

Recall that, when assigning scores for each hotel, both sub-queries give a

value in [−1, 1] representing how differently an attribute has been rated and

whether the change in that attribute is in the desired direction (positive and

negative values indicate desired and undesired directions, respectively). The

first sub-query also uses a threshold t which represents how much the person is

willing to accept slightly worse ratings. Within these demonstrations t = 0.1.

Note that because of the threshold, any result between 0.0 and 0.05 is only

a positive recommendation because this threshold has increased the hotel’s

score.

Within these demonstrations, due to the very subnormal nature of the

fuzzy sets, the sample size of α-cuts is increased to 40 α-cuts in order to

gain an adequate amount of comparisons. If, however, only 10 α-cuts are
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measured then the results may be inaccurate because using fewer α-cuts may

not accurately capture the shapes of the fuzzy sets.

7.2.2 Type-1 Fuzzy Sets

Consider if we search for a hotel with cleanliness about as good as Park Savoy

and with better service. Table 7.1 shows the results in rank order, breaking

this down into its two sub-queries. These are

Sub-query 1 A hotel with cleanliness about as good as Park Savoy

Sub-query 2 A hotel with better service than Park Savoy

For ease of presentation, this section focuses on the results of four high-

lighted hotels; these are Park 79 Hotel, The Amsterdam Inn, Riverside Tower

and Hotel Carter. Figure 7.1 shows the fuzzy sets describing each of these four

hotels’ service compared against Park Savoy. This will be used as a basis for

comparison in the next examples.

Referring to Figure 7.1, Park 79 Hotel and Riverside Tower both have

similar positive incompatibilities with Park Savoy because they have higher

membership at higher ratings (where x ≥ 4). Amsterdam Inn has a lower

incompatibility because the membership of ratings decreases from x = 4 to

x = 5. Hotel Carter has a large negative incompatibility because its greatest

membership is where x = 1.

Next, Table 7.2 shows the rank ordered results of searching for a hotel with

cleanliness about as good as Park Savoy and with better service and rooms.

Figure 7.2 shows the fuzzy sets describing each hotels’ rooms and their incom-

patibility.

Referring to this figure, Park 79 Hotel and Amsterdam Inn have similarly

shaped membership functions to Park Savoy and both have low negative in-

compatibility. Riverside Tower has a greater membership for x = 1 and so
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has a higher negative incompatibility. The value x = 1 has an even higher

membership for Hotel Carter, which, as a result, has an even higher negative

incompatibility.

As a result of the negative incompatibility for each hotel, when measuring

both their service and rooms against those of Park Savoy, they are all rated

worse than in the previous demonstration in Table 7.1 (in which only service

was considered). Whilst Hotel Carter remains the worst recommendation, all

other highlighted hotels have changed rank.

As each hotel has a negative incompatibility when comparing rooms, each

hotel has a smaller result in sub-query 2 in Table 7.2. As a result, Park 79 Hotel

is now ranked 5th when it was 2nd in Table 7.1. The result of The Amsterdam

Inn is now close to 0 and is only a positive recommendation because of the

threshold t (where t = 0.1 indicates that a negative compatibility of up to

−0.1 in sub-query 1 is acceptable). Additionally, Riverside Tower is no longer

recommended because the combined difference in its rooms and service no

longer outweighs its decreased ratings in cleanliness.

The results from Table 7.1 to Table 7.2 noticeably decreased for most hotels

because their rooms are rated lower than the rooms of Park Savoy. However,

if the rooms are given a lower weight then they will have a smaller effect on

the results. Table 7.3 shows the rank ordered results of weighting service twice

as highly as rooms.

Park 79 Hotel is now in 4th rank position instead of 5th (in Table 7.2),

regaining a better recommendation than Chelsea Inn (as it had in Table 7.1).

However, Park 79 Hotel is still rated worse than Americana Inn, whereas it

is rated better if its rooms aren’t compared. Amsterdam Inn has slightly

improved from Table 7.2 and it is now a positive recommendation even if the

threshold t is set as 0.

However, the rooms of Riverside Tower are considerably low compared to

its service and, as a result, it is still a poor recommendation, though only by
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Hotel Sub-Query 1 Sub-Query 2 Result Rank

Broadway at Times Sq. Hotel 0.431 0.547 0.489 1

Chelsea Lodge 0.471 0.414 0.4425 2

Park 79 Hotel 0.219 0.385 0.302 3

Americana Inn 0.275 0.321 0.298 4

Chelsea Inn - 17th Street 0.201 0.235 0.218 5

Chelsea Star Hotel 0.019 0.387 0.203 6

The Amsterdam Inn -0.0011 0.285 0.1419 7

Riverside Tower -0.2667 0.367 0.0502 8

Latham Hotel -0.13 -0.176 -0.153 9

Morningside Inn -0.1489 -0.206 -0.1774 10

Hotel Riverside Studios -0.59 -0.428 -0.509 11

Hotel Carter -0.6867 -0.532 -0.6094 12

Table 7.1: Query results for finding a hotel with cleanliness about as good as

Park Savoy and with better service listed in rank order.
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Hotel Sub-Query 1 Sub-Query 2 Result Rank

Broadway at Times Sq. Hotel 0.431 0.4645 0.4477 1

Chelsea Lodge 0.471 0.3995 0.4353 2

Americana Inn 0.275 0.2285 0.2518 3

Chelsea Inn - 17th Street 0.201 0.1855 0.1933 4

Park 79 Hotel 0.219 0.1385 0.1788 5

Chelsea Star Hotel 0.019 0.283 0.151 6

The Amsterdam Inn -0.0011 0.0715 0.0352 7

Riverside Tower -0.2667 0.078 -0.0943 8

Latham Hotel -0.13 -0.1825 -0.1563 9

Morningside Inn -0.1489 -0.2135 -0.1812 10

Hotel Riverside Studios -0.59 -0.451 -0.5205 11

Hotel Carter -0.6867 -0.541 -0.6139 12

Table 7.2: Query results for finding a hotel with cleanliness about as good as

Park Savoy but with better service and rooms listed in rank order.
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(a) Park 79 c′p = 0.385 (b) The Amsterdam Inn c′p = 0.285

(c) Riverside Tower c′p = 0.367 (d) Hotel Carter c′p = −0.532

Figure 7.1: Pairs of fuzzy sets representing Park Savoy and other hotels (la-

belled) and their incompatibility (c′p) for the attribute service.
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(a) Park 79 c′p = −0.108 (b) The Amsterdam Inn c′p = −0.142

(c) Riverside Tower c′p = −0.211 (d) Hotel Carter c′p = −0.55

Figure 7.2: Pairs of fuzzy sets representing Park Savoy and other hotels (la-

belled) and their incompatibility (c′p) for the attribute rooms.
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Hotel Sub-Query 1 Sub-Query 2 Result Rank

Broadway at Times Sq. Hotel 0.431 0.4926 0.4618 1

Chelsea Lodge 0.471 0.4044 0.4377 2

Americana Inn 0.275 0.26 0.2675 3

Park 79 Hotel 0.219 0.2223 0.2207 4

Chelsea Inn - 17th Street 0.201 0.2023 0.2016 5

Chelsea Star Hotel 0.019 0.3184 0.1687 6

The Amsterdam Inn -0.0011 0.1441 0.0715 7

Riverside Tower -0.2667 0.1763 -0.0452 8

Latham Hotel -0.13 -0.1803 -0.1552 9

Morningside Inn -0.1489 -0.211 -0.1799 10

Hotel Riverside Studios -0.59 -0.4432 -0.5166 11

Hotel Carter -0.6867 -0.5379 -0.6123 12

Table 7.3: Weighted query results for finding a hotel with at least as good

cleanliness as Park Savoy but with better service (wp = 2.0) and rooms (wp =

1.0) listed in rank order.

a small amount. Increasing the threshold from 0.1 to 0.14 would result in

Riverside Tower becoming a good, albeit low, recommendation. As expected,

Hotel Carter remains the lowest result.
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7.2.3 Type-2 Fuzzy Sets

This section provides a brief demonstration of finding hotel recommendations

using interval and general type-2 fuzzy sets. One known method of creating

type-2 fuzzy sets from type-1 fuzzy sets is to blur (by shifting) the member-

ship function [16, 26]. In these demonstrations, the primary memberships are

shifted along the membership axis (vertically) so that each vertical slice is

changed from a singleton to a bounded interval centred around the original

singleton. For each vertical slice, the interval between the lower and upper

membership functions is of the same width. Using this method ensures that

the lower and upper membership functions are the same shape as the original

type-1 fuzzy sets.

The interval type-2 fuzzy sets have a secondary membership value of 1

throughout this interval. The general type-2 fuzzy sets are given a triangular

secondary membership function where the centre of the footprint of uncertainty

(where the original type-1 membership function is located) has a secondary

membership of 1. Figure 7.3 shows the fuzzy sets representing the service of

Park Savoy and Park 79 Hotel together as type-1, interval type-2 and general

type-2 fuzzy sets.

The general type-2 fuzzy set has been split into four zSlices and dark shaded

regions within the image represent higher secondary degrees of membership.

Four zSlices have been chosen because, as the results show in Table 7.4, the

secondary memberships that result from blurring the membership have little

effect on the results, and this will be true for any number of zSlices. Increasing

the number of zSlices used will not produce significantly different results. This

demonstrates that the process of blurring membership functions results in little

change within the system that the fuzzy sets are used.

The next demonstrations show the results if one searches for a hotel with

at least as good cleanliness as Park Savoy but with better service. The rank
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(a) Park Savoy and Park 79; T1;

c′p = 0.385

(b) Park Savoy and Park 79; IT2;

c′p = 0.384

(c) Park Savoy and Park 79; GT2;

c′p = 0.382

Figure 7.3: Pairs of type-1 (T1), interval type-2 (IT2) and general type-2

(GT2) fuzzy sets representing Park Savoy and Park 79 Hotel and their incom-

patibility (c′p) for the attribute service.

ordered results are shown for type-1, interval type-2 and general type-2 fuzzy

sets in Table 7.4; note that the hotel names have been shortened for space

considerations. Each hotel is listed in rank order and so it is clear that each

type of fuzzy set produces the same rank order of results. One can also see

that the values resulting from each type of fuzzy set are very close. Small

changes are due to differing membership values at the chosen discrete points

of measurement. An example of this effect was also shown in Chapter 4, Table
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4.5, Page 124.

Thus, as one would expect, increasing the uncertainty of the membership

values when no new information about the agreement between individuals is

known (to create type-2 fuzzy sets) produces similar results to the original type-

1 fuzzy sets. The next section, however, demonstrates with a different data set

that different membership values can occur between type-1 and type-2 fuzzy

sets when the secondary membership functions are constructed differently.

199



H
ot

el
T

y
p

e-
1

In
te

rv
al

T
y
p

e-
2

G
en

er
al

T
y
p

e-
2

R
an

k

S
Q

1
S
Q

2
R

es
u
lt

S
Q

1
S
Q

2
R

es
u
lt

S
Q

1
S
Q

2
R

es
u
lt

B
ro

ad
w

ay
at

T
S
Q

0.
43

1
0.

54
7

0.
48

9
0.

41
9

0.
53

8
0.

47
85

0.
42

9
0.

54
4

0.
48

65
1

C
h
el

se
a

L
.

0.
47

1
0.

41
4

0.
44

25
0.

46
2

0.
40

9
0.

43
55

0.
47

0.
41

1
0.

44
05

2

P
ar

k
79

H
.

0.
21

9
0.

38
5

0.
30

2
0.

21
6

0.
38

4
0.

3
0.

21
6

0.
38

2
0.

29
9

3

A
m

er
ic

an
a

I.
0.

27
5

0.
32

1
0.

29
8

0.
27

4
0.

32
0.

29
7

0.
27

6
0.

31
9

0.
29

75
4

C
h
el

se
a

I.
0.

20
1

0.
23

5
0.

21
8

0.
19

3
0.

23
1

0.
21

2
0.

2
0.

23
5

0.
21

75
5

C
h
el

se
a

S
.

H
.

0.
01

9
0.

38
7

0.
20

3
0.

02
8

0.
38

4
0.

20
6

0.
02

1
0.

38
1

0.
20

1
6

A
m

st
er

d
am

I.
-0

.0
01

1
0.

28
5

0.
14

19
0.

00
7

0.
28

4
0.

14
55

0.
00

1
0.

28
2

0.
14

15
7

R
iv

er
si

d
e

T
ow

er
-0

.2
66

7
0.

36
7

0.
05

02
-0

.2
57

8
0.

36
4

0.
05

31
-0

.2
62

2
0.

36
0.

04
89

8

L
at

h
am

-0
.1

3
-0

.1
76

-0
.1

53
-0

.1
2

-0
.1

76
-0

.1
48

-0
.1

3
-0

.1
78

-0
.1

54
9

M
or

n
in

gs
id

e
I.

-0
.1

48
9

-0
.2

06
-0

.1
77

4
-0

.1
38

9
-0

.2
05

-0
.1

71
9

-0
.1

45
6

-0
.2

1
-0

.1
77

8
10

H
.

R
iv

er
si

d
e

S
.

-0
.5

9
-0

.4
28

-0
.5

09
-0

.5
76

7
-0

.4
27

-0
.5

01
9

-0
.5

9
-0

.4
29

-0
.5

09
5

11

H
.

C
ar

te
r

-0
.6

86
7

-0
.5

32
-0

.6
09

4
-0

.6
71

1
-0

.5
31

-0
.6

01
1

-0
.6

83
3

-0
.5

31
-0

.6
07

2
12

T
ab

le
7.

4:
Q

u
er

y
re

su
lt

s
fo

r
fi
n
d
in

g
a

h
ot

el
w

it
h

cl
ea

n
li

n
es

s
ab

ou
t

as
go

o
d

as
P

ar
k

S
av

oy
b
u
t

w
it

h
b

et
te

r
se

rv
ic

e
u
si

n
g

ty
p

e-
1,

in
te

rv
al

ty
p

e-
2

an
d

ge
n
er

al
ty

p
e-

2
fu

zz
y

se
ts

.
R

es
u
lt

s
ar

e
li
st

ed
in

ra
n
k

or
d
er

.

200



7.3 Data-Driven Explicit Preference

Demonstrations

This section demonstrates the explicit preference recommender using a data

set in which participants rate various attributes of different cakes. Recall that

in an explicit preference recommender the consumer’s preferences cannot be

assumed and must be explicitly stated. For example, if a person is trying to

find a cake they like, it cannot be assumed how sweet or fruity they would

like that cake to taste. Therefore, the direction of change preferred for each

attribute must be explicitly stated by the consumer.

7.3.1 Data Set

In a survey conducted within and ethically approved by the University of

Nottingham, six different types of cake were surveyed by participants who

were asked to eat a piece of cake whilst answering questions such as “how

sweet is this cake” and “how tasty is this cake”. Their answers were given

in intervals within the range [0, 10]. The aim of this survey was to see how

different people perceive the same things differently and how this information

can be modelled and utilised. This data has been constructed into type-1 and

type-2 fuzzy sets using the interval agreement approach (IAA) (described in

Section 2.3). Each cake is referred to by a letter in {A,B,C,D,E, F}.

To create type-1 fuzzy sets from the data, the type-1 IAA ((2.18) on

Page 31) is applied to all of the data. To construct type-2 fuzzy sets, the

data is split into four different classes that capture how often the survey par-

ticipants consume cake; these are

1. On special occasions

2. About once or twice a month
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3. About once a week

4. Several times a week

Note that the data set also contains two other categories (never and every

day), but there is so little data in these groups such that only singletons (crisp

values) can be built.

Using these four subsets, four type-1 fuzzy sets are built using the IAA

(2.18). To generate an interval type-2 fuzzy set, the intersection and union

of the four type-1 fuzzy sets are used as the lower and upper membership

functions, respectively. This method is chosen so that the footprint of uncer-

tainty represents the range of certainties within the type-1 fuzzy sets. General

(zSlices-based) type-2 fuzzy sets are constructed using the general type-2 IAA

(2.20), as detailed in Section 2.3.3, Page 34.

Figure 7.4 shows the attribute tasty of cake A represented by type-1, in-

terval type-2 and general type-2 fuzzy sets using these methods. Note that in

Figure 7.4 some of the upper membership values increase in the type-2 fuzzy

sets compared to the type-1 fuzzy set. This is because splitting the data into

four categories changes the certainties of the type-1 fuzzy sets compared to if

the data is all used as one category. Additionally, the lower membership values

of the interval and general type-2 fuzzy sets are often 0 throughout the entire

universe of discourse as a result of disagreement between survey participants.

As a result of the variety of answers given in the survey, each fuzzy set is

non-normal and non-convex. In fact, as shown in Figure 7.4, the fuzzy sets

often have spikes at the discrete points 0, 1, ...., 10. This is because although

participants gave answers in continuous intervals, they each treated the ends

of the intervals in these discrete terms. As a result, where two intervals share

the same end point (e.g., [5, 6] and [6, 7]) the value that they share (in this

case 6) has a much greater membership than other values within the intervals.

Note that, as with the previous section, to increase the accuracy of the
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(a) Type-1 (b) Interval type-2

(c) General type-2

Figure 7.4: Different types of fuzzy sets representing how tasty cake A was

rated.
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results, 40 α-cuts are used when measuring distance within the incompatibility

measure.

The next three sections give examples of the explicit preference recom-

mender applied to this data set using type-1, interval type-2 and general type-2

fuzzy sets, respectively. Recall that, for the first sub-query, this recommender

gives values in the range [−1, 0] because it is designed to capture that the con-

sumer wants a similar cake and thus any changes in an attribute should have

a negative impact on the results. The second sub-query gives a range within

[−1, 1] representing how differently an attribute has been rated and whether

the change in that attribute is in the desired direction. Table 7.5 (on Page 209)

shows the results of a query split into the following sub-queries

Sub-query 1 (SQ1) a cake similarly crunchy to E

Sub-query 2 (SQ2) a cake less crumbly than E

Results are shown for each type of fuzzy set. To help visualise the changes in

values between different types of fuzzy sets, Figure 7.5 shows the values from

Table 7.5 represented as bar charts.

Within Appendix E, Figures E.1 to E.6 show the different types of fuzzy sets

describing the attribute crunchy for cake E and all other cakes in comparison

to E. Figures E.7 to E.12 provide the same figures for the attribute crumbly.

In each figure, the incompatibility c′p between the fuzzy sets is given.

7.3.2 Type-1 Fuzzy Sets

In Table 7.5, the type-1 results show that cakes D, F and B are worth rec-

ommending but cakes C and A are not. Cake C has a negative result because

its dissimilarity in crunchy outweighs the difference in how much it is less

crumbly. Cake A is not recommended because it does not match the second

sub-query (i.e., it is more crumbly).

Referring to the type-1 fuzzy sets, sub-figure (a) in Figures E.1 to E.6
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show that E has been given a low rating for crunchy and all other cakes are

rated higher. Note, also, that direction does not matter as this attribute is

used in SQ1 (to find similar cakes). Cake D (in Figure E.5) has the closest

incompatibility to 0 (c′p = 0.246) as it does not include values higher than x = 5

(unlike the other four sets) and its membership function is similarly shaped to

E’s. All other cakes have higher incompatibility values due to including higher

values in the fuzzy set (where x > 5).

Figures E.7 to E.12 show the fuzzy sets that represent how crumbly cakes

are compared to E. These fuzzy sets are much wider, suggesting that partici-

pants were more uncertain of this attribute. Although cake A (in Figure E.8)

has a positive value of incompatibility (c′p = 0.199), there is little difference

between these fuzzy sets. As a result, the value of incompatibility is low. Cake

C (in Figure E.10) likewise has a similarly shaped membership function and

its incompatibility (c′p = −0.315) shows it is rated somewhat lower.

Cakes B, D and F have a greater change in results (c′p < −0.4) and this

can be seen in the fuzzy sets in Figures E.9, E.11 and E.12. Each cake has

noticeably higher membership for values x ∈ {1, 2} compared to E and, as

such, their incompatibility is a larger negative value compared to cakes A and

C.

Given that B, D and F have a large negative incompatibility for crumbly

(as desired and used in SQ2) and have a comparatively lower incompatibility

in the attribute crunchy (used in SQ1), as expected, they are positive recom-

mendations in Table 7.5. Additionally, it was discussed that cake D has the

lowest incompatibility with E in SQ1 (for the attribute crunchy ; c′p = 0.246)

and so this has become the best recommendation in Table 7.5.
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7.3.3 Interval Type-2 Fuzzy Sets

The same query is now demonstrated using interval type-2 fuzzy sets, which

are constructed as given on Page 201, the results of which are also in Table

7.5. As a result of how these fuzzy sets are constructed, many fuzzy sets have

higher upper membership values in the interval type-2 set than in the type-1

set, and so the recommender results between these types differ.

Referring to the interval type-2 results in Table 7.5, in SQ1, the results of

C and D have a higher incompatibility than the type-1 results because their

membership functions have changed. Figures E.4 and E.5 shows the fuzzy sets

representing how crunchy C and D are, respectively, in comparison to E. C

and D have noticeably higher membership values at higher x values and, as

an effect, their incompatibility with E has increased. Note that F (in Figure

E.6) also has higher membership for higher x values but its incompatibility has

remained approximately the same because it also now has higher memberships

at low x values (where x ≤ 1).

For SQ2, Figures E.7 to E.12 show how crumbly each cake has been rated

against E. This sub-query demonstrates a stark change in results in the in-

terval type-2 case compared to the type-1 and general type-2 examples; this is

noticeable in the results depicted in Figure 7.5. This is because simplifying the

general type-2 case results in different distributions of membership. Referring

to Figure E.8, the type-1 fuzzy set A has low membership for values x < 2

and has a similarly shaped membership function compared to cake E. Also,

the highest value within E is x = 8, whereas the highest in A is x = 10. As a

result, the incompatibility c(A,E) is a small positive value.

In the interval type-2 fuzzy sets, within the same figure, due to splitting the

data into different sub-groups, the primary membership functions are different

to the type-1 case. Whilst increasing the membership of x = 10 in A, the

membership of values x < 3 have also noticeably increased. In E, however,
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only the values 3 ≤ x ≤ 8 have a noticeable increase in membership. As a

result, the incompatibility c(A,E) becomes negative as A is now mostly to the

left of E than to the right. The absolute value of incompatibility (0.302) is

also higher than the type-1 case (0.199) due to these changes.

In the general type-2 case, the incompatibility has reversed; it is now a

positive value (0.346) whereas in the interval type-2 case it is negative (−0.302).

This is because the values x < 2 in A now have low secondary membership

(µ = 0.25) and so have little effect on the incompatibility result. Additionally,

the value at x = 10 has a higher secondary membership (µ = 0.5) and so

has a greater impact on the resulting incompatibility. This results in A being

perceived as to the right of E, rather than the left.

This example shows that care must be taken when choosing to use interval

type-2 fuzzy sets as a simplification of general type-2 fuzzy sets as it may result

in a drastic and undesirable change in the results.

Comparing the type-1 and interval type-2 results in Table 7.5 for the same

query, cakes D and F , and cakes A and C have swapped rank positions. As

just discussed, D has a higher negative result in SQ1 and F has a higher

positive result in SQ2, which has resulted in F fitting the query better than

D. Likewise, in SQ1 C has a higher negative value and in SQ2 A now has a

positive value, resulting in A fitting the query better than C.

7.3.4 General Type-2 Fuzzy Sets

The same query is now demonstrated using general type-2 fuzzy sets, the

results of which are also in Table 7.5. Details of how these fuzzy sets are

constructed are given on Page 201.

The greatest changes in results from the general type-2 fuzzy sets compared

with the type-1 and interval type-2 results are in cakes F and A. Note that the

changes regarding cake A were discussed in detail in the previous section. Cake
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F has a lower incompatibility with E for the attribute crunchy (used in SQ1)

when the fuzzy sets are general type-2 (shown in Figure E.6). This is because

its biggest difference with E is in the interval x ∈ [5, 7], however this region has

the lowest secondary membership values (all of which are at µA(x, u) = 0.25).

As a result of the low secondary membership, the difference between the fuzzy

sets does not have a large effect on the incompatibility. Cake F also has a

higher negative incompatibility in crumbly (in Figure E.12) because it has

higher secondary membership values for lower ratings; in particular where

x ∈ {1, 2}.

These demonstrations have shown that the proposed fuzzy knowledge based

recommendation system with the incompatibility measure c′p is effective at

finding recommendations when the knowledge of products is represented by

type-1 or type-2 fuzzy sets that have complex membership function shapes.

Having demonstrated the proposed recommendation system on data-driven

fuzzy sets, the next section (after the figures) provides a summary of this

chapter.
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FS Type Cake Sub-Query 1 Sub-Query 2 Result Rank

D -0.246 0.427 0.181 1

F -0.364 0.409 0.045 2

T1 B -0.401 0.438 0.037 3

C -0.461 0.315 -0.146 4

A -0.34 -0.199 -0.539 5

F -0.36 0.583 0.223 1

D -0.338 0.491 0.153 2

IT2 B -0.411 0.563 0.152 3

A -0.353 0.302 -0.051 4

C -0.554 0.364 -0.19 5

F -0.177 0.623 0.446 1

D -0.29 0.584 0.294 2

GT2 B -0.48 0.499 0.019 3

C -0.561 0.385 -0.176 4

A -0.454 -0.346 -0.8 5

Table 7.5: Query results listed in rank order when finding a cake similarly

crunchy to E (sub-query 1) and less crumbly (sub-query 2) using type-1 (T1),

interval type-2 (IT2) and general type-2 (GT2) fuzzy sets (FSs).
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(a) Sub-query 1 (b) Sub-query 2

(c) Results

Figure 7.5: Results from Table 7.5 represented through bar charts.
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7.4 Summary

This chapter has demonstrated the proposed fuzzy knowledge based recom-

mendation system (introduced in Chapter 6) using data-driven fuzzy sets.

Both the implicit and explicit preference recommenders have been demon-

strated using type-1, interval type-2 and general type-2 fuzzy sets. In an

implicit preference recommender, the preferred ratings of a product are natu-

rally known and do not have to be stated by the consumer. For example, if a

person is trying to find a hotel, one can assume they would prefer the lowest

priced hotel with the best rated rooms. In an explicit preference recommender,

however, the consumer’s preferences cannot be assumed and must be explicitly

stated. For example, if a person is trying to find a cake they like, it cannot be

assumed how sweet or fruity they would like that cake to taste.

Within the recommendation system, each product is described from surveys

in which participants rate its attributes on a numerical scale by providing

either single valued or interval valued answers. The results were then modelled

by fuzzy sets using the polling and interval agreement approaches. Due to

disagreement between survey participants, all of the fuzzy sets were non-normal

and many were non-convex. To find recommendations based on these models,

the incompatibility between pairs of fuzzy sets was calculated.

Following this, the incompatibility values and resulting recommendations

were demonstrated and discussed using data-driven type-1, interval type-2 and

general type-2 fuzzy sets. These demonstrations showed that the fuzzy recom-

mendation system using the proposed incompatibility measure can effectively

find products based on relative comparisons between known products and a

person’s desires.

Note that these results have not been compared with pre-existing methods

of generating recommendations, and their comparison and validation is left for

future work.
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This chapter concludes the contributions of this PhD thesis. The next

chapter presents conclusions and limitations that have resulted from this thesis

and presents directions for future work.
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Chapter 8

Conclusions

8.1 Thesis Summary

The core aim of this thesis has been to provide a method of making useful

relative comparisons between data-driven fuzzy sets that model subjective in-

formation. This is achieved by comparing the similarities and distances of

fuzzy sets, accounting for any non-normality or non-convexity in the models.

There are many applications in which such relative comparisons are useful

or even necessary, including classification, linguistic reasoning, decision making

and ranking. The focus of applications within this thesis has been in knowl-

edge based recommendation systems (KBRS). This has been chosen because

the knowledge of products can often be uncertain/fuzzy in nature and rec-

ommendation systems generally rely on relative comparisons. To be able to

develop a fuzzy KBRS, it is necessary to have i) a method of comprehensively

capturing and modelling the uncertain and subjective data; and ii) a method

of comparing the complex resulting models. The latter is the main aim of this

thesis.

Similarity and distance measures are among the most useful and commonly

applied measures to compare fuzzy sets. Chapter 2 gave an overview of the
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techniques that have been used in the literature to achieve these comparisons.

Many measures of similarity exist and the Jaccard similarity was chosen as the

favoured approach because it follows all of the properties of an ‘ideal’ similar-

ity measure and it is not impeded by non-normal or non-convex membership

functions.

A variety of distance measures were also explored. However, due to the na-

ture of how distance is measured, common distance measures are hindered by

non-normal and non-convex membership functions. Additionally, most mea-

sures do not account for the change of direction between fuzzy sets. With

this in mind, Chapter 3 developed a directional distance measure for type-1

fuzzy sets where the membership functions may be non-normal or non-convex.

Comparisons of the proposed method were given against existing approaches

in the literature.

One cannot directly apply a measure for type-1 fuzzy sets to type-2 fuzzy

sets and so Chapter 4 then extended the distance measure to compare interval

and general type-2 fuzzy sets. Additionally, although the Jaccard similarity

between interval type-2 fuzzy sets exists, before this thesis no such method

existed for general type-2 fuzzy sets. With this in mind, Chapter 4 also de-

veloped a method of measuring the Jaccard similarity between general type-2

fuzzy sets.

Though similarity and distance measures are very useful, they can often

produce ambiguous results such that different pairs of fuzzy sets result in the

same value when one might have expected different values. If similarity and

distance are both observed together, then a more detailed and much less am-

biguous interpretation of the results is possible. However, interpreting the

results of two unique measures for every comparison can be challenging. To

make this process easier and thus more useful, Chapter 5 developed an in-

compatibility measure, which fuses the results of comparing the similarity and

directional distance between fuzzy sets.
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This incompatibility measure can then be used in a fuzzy KBRS to make

relative comparisons between fuzzy sets in order to find a product that matches

a person’s complex and uncertain preferences. Chapter 6 developed a fuzzy

KBRS and demonstrated that the proposed incompatibility measure is effec-

tive for finding products that match an uncertain/fuzzy query. Chapter 7 then

demonstrated the recommendation system on data-driven fuzzy sets and dis-

cussed how the results of the incompatibility measure affect the rank values of

products.

8.2 Contributions

This section summarises the key contributions of this thesis.

A directional distance measure between fuzzy sets

There is no perfect method of calculating the distance between two fuzzy sets

and, as a result, several methods have been developed in the literature. Most

of these apply the Hausdorff or Minkowski distance between the α-cuts of the

fuzzy sets, though other methods also exist. Directional distance measures

have received little attention in the literature. Often, direction is inferred

by measuring the distance of each fuzzy set from a singleton (crisp value)

[8, 12, 76, 77].

This technique, however, is not suitable for making relative comparisons

in a recommendation system. This thesis proposed a measure that represents

the relative direction between fuzzy sets through a signed value. The absolute

value indicates the magnitude of the distance and the sign indicates which

fuzzy set is to the left or right of the other.
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A distance measure between type-1 fuzzy sets that may be non-

normal or non-convex

The proposed directional distance measure has been expanded to compare

fuzzy sets that may be non-normal or non-convex. Several methods of calcu-

lating the distance between non-normal fuzzy sets exist within the literature

[11, 14, 15]. However, these often produce unexpected results as demonstrated

in Section 3.3.2. The proposed method gives consistent and intuitive results

when comparing normal or non-normal fuzzy sets.

Additionally, the proposed measure has been developed to compare non-

convex fuzzy sets. To the author’s knowledge, there are no other existing α-cut

approaches to calculate the distance between such fuzzy sets to date. Though

one could compare the centroids of the fuzzy sets, the proposed method pro-

duces more intuitive results for non-convex fuzzy sets, as demonstrated in

Section 3.4.2.

A distance measure on type-2 fuzzy sets

There have been few distance measures on interval type-2 fuzzy sets developed

within the literature. Figueroa-Garćıa et al. [79] developed one α-cut-based

and two centroid-based approaches. However, the α-cut method cannot com-

pare non-normal and non-convex membership functions and the centroid-based

approaches give inconsistent results for non-convex fuzzy sets compared with

the proposed directional distance on type-1 fuzzy sets. Additionally, to the

author’s knowledge, no α-cut-based distance measure on general type-2 fuzzy

sets exist within the literature.

This thesis introduced a new α-cut-based distance measure on interval and

general type-2 fuzzy sets. Using the theoretical developments of the previ-

ous contributions, this measure may be directional or non-directional and can

compare non-normal and non-convex membership functions. In addition, it

was demonstrated that when comparing type-1 fuzzy sets, this method gives
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the same results as the proposed type-1 distance measure, and gives intuitive

results for both interval and general type-2 fuzzy sets.

An incompatibility measure on type-1 and type-2 fuzzy sets

Chapter 5 introduced a new incompatibility measure on fuzzy sets of any type.

This measure fuses similarity and distance, providing a comparison based on

both vertical and horizontal slices of the fuzzy sets. Chapter 5 demonstrated

that similarity and distance measures applied individually can produce am-

biguous results where more information is desired. However, the results of one

measure can alleviate the ambiguity of the other. It was shown that similarity

and distance complement each other well and a measure that combines these

concepts can be useful.

In order to address this, the results of these measures are fused using an

ordered weighted average (OWA) operator. By using an OWA operator, one

can tune the weights to best analyse the given fuzzy sets. Chapter 5 provided

some examples of the effects different weights have on different pairs of fuzzy

sets and chose the weights that give the most expected results.

Demonstrations showed that the proposed incompatibility measure effec-

tively analyses fuzzy sets such that one can determine both the similarity and

distance between them. The results show the relative positions of the fuzzy

sets (if one is to the left or right of the other) and indicate if there is a small

or large overlap/distance between them.

As this measure fuses the results of similarity and distance measures, it can

be used to compare type-1, interval type-2 or general type-2 fuzzy sets where

the similarity and distance measures are for type-1, interval type-2 or general

type-2 fuzzy sets, respectively.

The concept of measuring compatibility between fuzzy sets has appeared

many times in the literature [49, 52, 53, 111]. However, measuring incompati-
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bility as a concept of fusing unique similarity and distance measures is a new

contribution of this thesis. This provides a unique comparison of fuzzy sets

where a single measure of comparison may not be sufficient. In addition, this

method of fusing different measures together may be utilised in other non-

fuzzy fields where both similarity and distance provide useful information.

A fuzzy knowledge based recommendation system

Chapter 6 explored real world application scenarios and developed a fuzzy

knowledge based recommendation system with which a person can describe

their ideal product in relation to another product. For example, a person may

ask for a cake as sweet as this but less fruity. By representing the subjective

attributes of products (e.g., how sweet and fruity cakes are perceived) using

fuzzy sets, such comparisons on subjective and uncertain information can be

made. These comparisons are achieved using the proposed incompatibility

measure, and thus the fuzzy sets may be of any type (type-1 or type-2) and

may be non-normal or non-convex.

Demonstrations of the proposed system were given using ground truth ex-

amples based on simple synthetic fuzzy sets (in Chapter 6), and data-driven

examples based on fuzzy sets with complex membership functions (in Chap-

ter 7). The results of the incompatibility measure on these fuzzy sets were

discussed, as well as how these results affect the recommendations.

The suitability of each product for a given description is represented by

a value within the interval [−1, 1] (to indicate negative and positive recom-

mendations), as well as a rank position, so that the relative preferences of

recommendations can be understood. For example, given three products la-

belled A, B and C, if, for a given recommendation, A is scored 0.9, B is scored

0.8 and C is scored 0.1 then it is clear from these values that A and B are

almost equally good recommendations and are much better than C. If only

the rank positions (i.e., 1st : A, 2nd : B, 3rd : C) were used, as is more common

218



in many recommendation systems, then this information would be lost.

Elucidating the Differences between Implicit and Explicit Prefer-

ences

Chapter 6 explored the concept of implicit and explicit user preferences. While

the concept of explicit preferences is generally well understood, acquiring im-

plicit preferences is less clear. Explicit preferences typically involve querying

a user to learn if they like a given product. This is often achieved through

written reviews or asking users to review products and product attributes on

Likert scales [112, 113].

Implicit preferences are often also acquired by collecting information from

users, either directly (for example, through experiments [112]) or indirectly

(for example, by monitoring their activities [113]). This thesis, however, has

introduced the idea of defining implicit preferences without collecting any in-

formation from users. Instead, it is assumed that all consumers will have the

same given preference; for example, it’s likely that everyone will prefer the

restaurant with the tastiest food. This idea could be applied in many recom-

mendation systems where the preferences for a selection of attributes can be

safely assumed.

8.3 Limitations

This section presents some of the limitations within the work presented in this

thesis.

Using the zSlices extension on fuzzy sets with non-normal secondary

membership functions

Chapter 4 presented a method of extending interval type-2 measures for general

type-2 fuzzy sets. However, this extension does not account for non-normality
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in the secondary membership functions of the general type-2 fuzzy sets. For

example, given two fuzzy sets Ã, B̃ ∈ GT2(X), if the maximum zLevels of Ã

and B̃ are 1.0 and 0.8, respectively, then it is not possible to compare the fuzzy

sets using the union of the zLevels as applied in Chapter 4; this is because B̃zi

is the empty set where zi = 1.0.

Properties of the incompatibility measure

The incompatibility measure does not have the property of relectivity 1 as is

in the proposed directional distance measure d∗p (where ∗ indicates the fuzzy

set type). Instead, a positive-valued result is given. As a result, it is not pos-

sible to determine if two symmetrical fuzzy sets share the same mean but have

different widths. In a recommender system, it may be useful to know about

such cases because one may perceive such fuzzy sets as being rated the same

(which would be clear from d∗p) rather than one being rated higher than the

other (as indicated by c′p).

Validation of the recommendation system

The proposed recommendation system based on incompatibility shows promis-

ing preliminary results. However, this thesis has not explored the validation

of these results and how they compare to existing recommendation methods

within the literature. Further work is necessary to assess the validity of the

results.

1The direction between two intervals [ĀL, ĀR] and [B̄L, B̄R] is 0 if (B̄L− ĀL) = −(B̄R−

ĀR)
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8.4 Future Work

This section presents some potential new directions and future work based on

this thesis.

Representing and utilising non-normality and non-convexity in com-

parisons between fuzzy sets

Chapter 3 developed methods of calculating the distance between non-normal

and non-convex membership functions. However, these both involve a simplifi-

cation of the results by representing the distance between fuzzy sets as a crisp

value. Instead, one could argue that the distance between two fuzzy concepts

should itself be fuzzy. Some preliminary work has been made as part of this

PhD in representing the distance between fuzzy sets as a fuzzy set. Initial

results are demonstrated in Appendix C and this idea will be explored further

in future work.

This idea then may employed with the developed recommendation system.

For example, if the sub-query results are represented as fuzzy sets and are ag-

gregated using fuzzy set theory then the results may fit the original data better

because they have not been simplified by using real values. Thus, there may

be potential benefits in using fuzzy sets as the output values and developing a

method of making these results easy to interpret.

One possible approach is to use fuzzy sets to model linguistic rank posi-

tions (e.g., “very high”, “high”, “low”, etc.) and then each fuzzy result from

the recommender is assigned the linguistic term with which it best fits. This

can be determined by measuring the incompatibility between the recommender

results and the linguistic terms and choosing the term with the lowest incom-

patibility (i.e., the result closest to 0).
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Comparing all permutations of zLevels in the zSlices extension

As discussed in the previous section, the zSlices extension is limited by the

dependency that all general type-2 fuzzy sets must have normal secondary

membership functions. If one fuzzy set has a higher maximum secondary

membership value than the other then a comparison cannot be made between

them.

An alternative method of comparing fuzzy sets with different zLevels is to

compare all permutations, such that every zSlice of one fuzzy set is compared

with every zSlice of the other. With this method, it is not required that fuzzy

sets have normal secondary membership functions.

Adapting fuzzy set models depending on the data and application

In Section 7.3, the fuzzy sets describing different types of cakes gave different

results depending on what type of fuzzy set (type-1 or type-2) was used to

model the data. This demonstration shows that the method of constructing

fuzzy sets is important as it has an impact on the results. With this in mind, it

will be beneficial to compare and contrast different techniques to understand

which, if any, is the most appropriate method of modelling subjective infor-

mation for the application of recommendations.

Using a threshold on the desired change of an attribute in the rec-

ommender

There is much room for future developments within the proposed recommen-

dation system. For example, when a person searches for a product rated higher

or lower in a given attribute, the system gives the highest score to the item that

is rated the highest or lowest, respectively, in that attribute. However, this

may not be what the person wants. For example, if someone asks for a cake

more sweet than this they will likely not want the sweetest cake. Given this,

the proposed system may be improved so that it limits such changes by a given
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threshold. One possible method of achieving this is through fuzzy hedges. For

example, when finding a cake more sweet than this, the fuzzy set representing

how sweet this is may be amended through a hedge, then the incompatibility

may then be measured between new cakes and the amended fuzzy set.

Applying fuzzy set weights to the recommender

Additionally, the method of weighting in the proposed recommender system

may also be improved by considering other approaches. For example, people

do not generally think of weights for attributes as real values, but instead con-

sider them through words such as “high” or “low”. If these words are modelled

by fuzzy sets then fuzzy weights can be applied to the recommendations. Ex-

periments will be required to determine if there are advantages to this method

when finding recommendations. However, it is likely that using fuzzy words

for weights will be easier from the consumer’s point of view.
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Appendices

224



A Properties of Measures on Fuzzy Sets

Measures of similarity and distance each have varying properties. Below lists

the properties of the measures used throughout this thesis, grouped by the

measures in which they are found. In addition to this, Table A.1 highlights

which properties are within which measures used in this thesis. The properties

of a function f (where f may be a similarity or a distance measure) referred

to within this thesis are as follows; note that the variables given to f may be

of any type (e.g., crisp sets, fuzzy sets, etc.).

Used by Similarity and Distance Measures

Symmetry: A function is symmetrical if it returns the same value for any

permutation of its variables.

f(A,B) = f(B,A)

Transitivity: In terms of similarity, transitivity states that as one fuzzy set

approaches another in membership values the value of the function increases.

If A ≤ B ≤ C, then f(A,B) ≥ f(A,C)

In terms of measuring distance, as one fuzzy set approaches another the value

of the function decreases.

If A ≤ B ≤ C, then f(A,B) ≤ f(A,C)

Used by Similarity Measures

Reflexivity: Each fuzzy set is related to itself under the function.

f(A,A) = 1

Overlapping: Where two fuzzy sets overlap (i.e., their intersection is not the

empty set) the value of the function is greater than zero. Otherwise, if the sets

are disjoint, the result of the function is zero.

If A ∩B 6= ∅, then f(A,B) > 0; otherwise, f(A,B) = 0
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Used by Distance Measures

Self-identity: The function between a variable and itself is always zero.

f(A,A) = 0

Separability (also known as Positivity): The function between two vari-

ables always results in a value of zero or greater.

f(A,B) ≥ 0

Triangle inequality: Given three variables on the same universe of discourse,

which can be broken into three different pairs, the value of the function for

one pair of variables is at most as large as the sum of the function applied to

the remaining two pairs.

f(A,C) ≤ f(A,B) + f(B,C)

Used by the Proposed Directional Distance Measure

Partial Symmetry: Partial symmetry is defined within this thesis as a func-

tion that is asymmetric, however the absolute values of the function are sym-

metric.

f(A,B) = −f(B,A)

Directional Separability: The sign of the function indicates the relative

positions between the variables.

f(A,B) ≥ 0 if B ≥ A, and f(A,B) < 0 if B < A.

Reflectivity: The function between two intervals is 0 if the distances between

their respective end points are equal to each other and in opposite directions.

f(Ā, B̄) = 0, where Ā = [ĀL, ĀR] and B̄ = [B̄L, B̄R], if (B̄L − ĀL) = −(B̄R −

ĀR).
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B Distance by Comparing All α-cuts

Section 3.3 proposes a method of measuring the distance between non-normal

fuzzy sets. Parallel α-cuts of the fuzzy sets are measured and their distances

are weighted and joined together as shown in (3.7). Where one α-cut is empty,

the fuzzy set’s closest non-empty α-cut is substituted, and where both α-cuts

are empty the distance is not measured.

One other method of measuring the distance between two non-normal fuzzy

sets A,B ∈ T1(X) is to compare all of the α-cuts of A with all of the α-cuts

belonging to B. For example, the distance between A and B may be weighted

and joined as

dT1−c
p2 (A,B) =

∑
αA∈[0,Aγ ]

∑
αB∈[0,Bγ ] αAαBd̄p(AαA , BαB)∑

αA∈[0,Aγ ]

∑
αB∈[0,Bγ ] αAαB

(B.1)

where d̄p is the directional distance between intervals described in (3.2).

This next demonstration compares dT1−c
p2 (B.1) against the proposed method

of comparing parallel α-cuts dT1−c
p in Section 3.3. Figure B.1 shows three pairs

of fuzzy sets A,B ∈ T1(X) with different heights of B, and shows a table of

their distances given by measuring parallel α-cuts (3.7) and by comparing all

α-cuts (B.1). The methods produce different values, but they are both within

the expected range; i.e., by visually observing the fuzzy sets in Figure B.1, one

would guess the distance between each (A,B) pair is between 4 and 5.

Additionally, in both methods the value of distance increases slightly as the

height of B lowers. Both measures produce similar results such that no method

gives results that are clearly preferred over the other. Given that comparing all

α-cuts is more computationally expensive than comparing only parallel α-cuts,

the latter method is preferred. Additionally, these results show that using the

highest available α-cut as a substitute when one fuzzy set’s α-cut is empty is

a suitable substitute over comparing all α-cuts as in (B.1).
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(a) (b)

(c)

a b c

Compare Parallel α-cuts dT1−c
p (A,B) (3.7) 4.684 4.740 4.785

Compare All α-cuts dT1−c
p2 (A,B) (B.1) 4.683 4.685 4.689

Figure B.1: Fuzzy sets and results demonstrating the distance d(A,B) be-

tween non-normal fuzzy sets by comparing only parallel α-cuts or comparing

all permutations of α-cuts.
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C Representing the Uncertainty of Distance

It could be reasonably contended that the distance between the fuzzy sets in

Figure C.1 should be 4 even though B is non-normal. As A is around 2 and

B is around 6, the distance should be around 4. Ideally, the normality of the

fuzzy sets should affect the certainty of the distance. For example, if both

A and B are normal then the distance is definitely around 4, whereas if one

of the fuzzy sets has a height less than 1 then the distance becomes possibly

around 4. This is because there is less certainty in the fuzzy set and therefore

less certainty in the distance.

Such interpretations are possible by representing distance as a fuzzy value

or a fuzzy set [116–118], where [118] was published as part of this PhD and is

discussed within this section.

By representing the distance between fuzzy sets as a fuzzy set, the distance

between non-normal fuzzy sets is represented by a non-normal fuzzy set, and

the distance between non-convex fuzzy sets may also be non-convex. This

method is based on using the mass assignment representation of fuzzy sets. The

remainder of this section details the mass assignment representation, followed

by the method of calculating distance and some examples.

Figure C.1: A normal fuzzy set and a non-normal fuzzy set.
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C.1 Mass Assignments of Fuzzy Sets

Calculating mass assignments is a method of breaking down the distribution of

memberships within fuzzy sets. The approach is akin to taking alpha-cuts of

fuzzy sets, with one distinct difference. Using alpha-cuts to represent a fuzzy

set, the membership of a value is defined by the maximum alpha-cut to which

it belongs, whereas taking a mass-based approach, the membership of a value

is defined by the sum of its masses.

Based on α-cuts, the masses of a fuzzy set A ∈ T1(X) are

mA = {Aαi : αi − αi−1 | αi ∈ {α1, ....., αn} , α0 = 0} , (C.1)

where Aαi is the α-cut of the fuzzy set A at the coordinate αi, n is the total

number α-cuts used, and αi is the coordinate (membership value) of the ith

α-cut.

For example, Figure C.2 shows two fuzzy sets A and B. The α-cuts of A

and B given in the format A = {([AαL , AαR ], α) | ∀α ∈ [0.5, 1.0]} are

A = {([1, 4], 0.5), ([2, 3], 1.0)}

B = {([6, 9], 0.5), ([7, 8], 1.0)}

the masses assigned to A and B are mA {Ai : ai} and mB {Bj : bj} as follows:

mA = {[1, 4] : 0.5, [2, 3] : 0.5}

mB = {[6, 9] : 0.5, [7, 8] : 0.5}

To convert mass assignments to the original fuzzy set, the membership of each

value can be obtained by summing the masses which have been assigned to

that value. For example, for the fuzzy set A, the value 3 has been assigned

the mass 0.5 twice, giving the resulting membership value 1.0.

231



Figure C.2: Two fuzzy sets A and B.

C.2 Fuzzy Distance Between Fuzzy Sets

Once two fuzzy sets have been broken down into their mass assignments, their

distance can be calculated by subtracting each mass of one fuzzy set from

each mass of the other fuzzy set using interval arithmetic [118]. Each resulting

distance is assigned a new mass based on the product of the masses that were

compared. Formally this is written as

dm(A,B) =
{
d̄m(Ai, Bj) : (mA(Ai)mB(Bj)), ∀Ai ∈ mA, ∀Bj ∈ mB

}
, (C.2)

where mA(Ai) is the mass assigned to the ith interval in mA, and d̄m(Ai, Bj) is

d̄m(Ai, Bj) =

Bj − Ai if Ai 6= ∅ ∧Bj 6= ∅

∅ otherwise

(C.3)

Using interval arithmetic, Bj − Ai is calculated as

[BjL , BjR ]− [AiL , AiR ] = [BjL − AiR , BjR − AiL ]

where Ai = [AiL , AiR ] and Bj = [BjL , BjR ].

For example, given the fuzzy sets A and B in Figure C.2, Table C.1 shows

how the distance between A and B is calculated using (C.2). Within the

centre of the table, each distance between intervals and the mass assigned to

that distance is highlighted. Using the results in Table C.1, the membership

values of the final fuzzy set are calculated by summing the masses assigned to
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each value. This gives the resulting fuzzy set

du(A,B) = {([2, 8], 0.25), ([3, 7], 0.75), ([4, 6], 1.0)}

which is shown in Figure C.3.
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B

dm(A,B) [6.0,9.0]: [7.0,8.0]:

0.5 0.5

[1.0, 4.0]: [2.0,8.0] : [3.0,7.0] :

A 0.5 0.25 0.25

[2.0, 3.0]: [3.0,7.0] : [4.0,6.0] :

0.5 0.25 0.25

Table C.1: Calculations of the distance between A and B from Figure C.3.

Each distance and its mass is highlighted in bold.

(a) (b)

Figure C.3: (a) Normal, convex fuzzy sets A and B; (b) dm(A,B) using the

mass-based distance measure.
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C.3 Distance between Non-Normal Fuzzy Sets

Using (C.3), calculating the distance between empty α-cuts results in assigning

mass to the empty set. This produces a non-normal fuzzy set.

Figure C.4a shows non-normal and normal fuzzy sets A and B, respectively.

Their α-cuts, given in the format A = {([AαL , AαR ], α) | ∀α ∈ [0.5, 1.0]}, are

A = {([1, 8], 0.25), ([2, 7], 0.5)}

B = {([9, 12], 0.5), ([10, 11], 1.0)}

Thus, their masses are

Am = {[1, 8] : 0.25, [2, 7] : 0.25, ∅ : 0.5}

Bm = {[9, 12] : 0.5, [10, 11] : 0.5}

The calculations for determining the distance between A and B using dm (C.2)

are shown in Table C.2. The resulting masses of the fuzzy set dm(A,B) are

dm(A,B) = {[1, 11] : 0.125, [2, 10] : 0.25, [3, 9] : 0.25, ∅ : 0.5}

which results in the fuzzy set

dm(A,B) = {([1, 11], 0.125), ([2, 10], 0.375), ([3, 9], 0.5)}

Figure C.4b shows the resulting fuzzy set dm(A,B). Thus, one can see when

comparing a pair of fuzzy sets of which at least one is non-normal, the resulting

distance is a non-normal fuzzy set.
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B

dm(A,B) [9.0, 12.0] : [9.0, 12.0] : [10.0, 11.0] :

0.25 0.25 0.5

[1.0, 8.0] : [1.0,11.0] : [1.0,11.0] : [2.0,10.0] :

0.25 0.0625 0.0625 0.125

A [2.0, 7.0] [2.0,10.0] : [2.0,10.0] : [3.0,9.0] :

0.25 0.0625 0.0625 0.125

∅ : ∅ : ∅ : ∅ :

0.5 0.125 0.125 0.25

Table C.2: Calculations of the distance between A and B from Figure C.4b.

Each distance and its mass is highlighted in bold.

(a) (b)

Figure C.4: (a) Non-normal A and normal B fuzzy sets; (b) dm(A,B) using

the mass-based distance measure.
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C.4 Distance between Non-Convex Fuzzy Sets

In this section, the difference between a non-convex, asymmetric fuzzy set A

is compared with a convex, symmetrical fuzzy set B. The fuzzy sets, shown

in Figure C.5a, are distributed as follows

A = {([1, 5], 0.5), (([1, 2], [4, 5]), 0.75), ([1, 2], 1.0)}

B = {([6, 9], 0.5), ([7, 8], 1.0)}

Thus, their masses are

Am = {[1, 5] : 0.5, ([1, 2], [4, 5]) : 0.25, [1, 2] : 0.25}

Bm = {[6, 9] : 0.5, [7, 8] : 0.5}

The calculations for determining the distance between A and B using dm

(C.2) are shown in Table C.3. Note that where an α-cut of a non-convex fuzzy

set results in a discontinuous region with multiple intervals, the subtraction

is calculated for each interval. For example, the difference Bα − Aα where

α = 0.75 is

[7, 8]− ([1, 2], [4, 5])

= ([7, 8]− [1, 2], [7, 8]− [4, 5])

= ([5, 7], [2, 4])

Thus, obtaining the difference between this continuous and discontinuous re-

gion results in a discontinuous region. Note, however, that the difference be-

tween discontinuous intervals does not necessarily result in a discontinuous

interval. As shown in Table C.3 the difference [6.0, 9.0]− ([1.0.2.0], [4.0, 5.0]) =

([1.0, 5.0], [4.0, 8.0]) The intervals within this result are reduced to the contin-

uous interval [1.0, 8.0].

Referring to the calculations within Table C.3, the masses of the fuzzy set
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dm(A,B) are

{[1, 8] : 0.375, [2.0, 7.0] : 0.25, [5.0, 7.0] : 0.125,

[4.0, 8.0] : 0.0125, ([2.0, 4.0], [5.0, 7.0]) : 0.125}

Adding up the masses, the resulting distance between A and B using (C.2) is

dm(A,B) = {([1, 8], 0.375), ([2, 8], 0.5), ([2, 7], 0.75),

(([4, 4], [5, 7]), 0.875), ([5, 7], 1.0)}

Figure C.5b shows the resulting fuzzy set dm(A,B).

More details of this fuzzy distance measure are provided in [118].

B

dm(A,B) [6.0, 9.0] : [7.0, 8.0] : [7.0, 8.0] :

0.5 0.25 0.25

[1.0, 5.0] : [1.0,8.0] : [2.0,7.0] : [2.0,7.0] :

0.5 0.25 0.125 0.125

([1.0, 2.0], [4.0,8.0], [5.0,7.0], [5.0,7.0],

[4.0, 5.0]) [1.0,5.0] : [2.0,4.0] : [2.0,4.0] :

0.25 0.125 0.0625 0.0625

A [1.0, 2.0] : [4.0,8.0] : [5.0,7.0] : [5.0,7.0] :

0.25 0.125 0.0625 0.0625

Table C.3: Calculations of the distance between A and B from Figure C.5b.

Each distance and its mass is highlighted in bold.
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(a) (b)

Figure C.5: (a) Non-convex A and convex B fuzzy sets; (b) dm(A,B) using

the mass-based distance measure.
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D MovieLens

Table D.1 gives the names of the films used within the demonstrations in

Chapter 5 in Figures 5.5 and 5.13 on pages 132 and 152, respectively. The ID

numbers of the films within the data set [109] are also given.

Figure A B

(a) 777: Castle Freak (1995) 294: Liar Liar (1997)

(b) 1449: Pather Panchali (1955) 294: Liar Liar (1997)

(c) 777: Castle Freak (1995) 1428: SubUrbia (1997)

(d) 777: Castle Freak (1995) 1191: Letter From Death Row,

A (1998)

(e) 603: Rear Window (1954) 424: Children of the Corn:

The Gathering (1996)

(f) 1: Toy Story (1995) 181: Return of the Jedi (1983)

Table D.1: ID numbers and names of the films represented by fuzzy sets in

Figures 5.5 and 5.13.
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E Fuzzy Sets Depicting Cake Attributes

This section presents figures of the fuzzy sets used within the demonstrations

in Section 7.3.

(a) Type-1

(b) Interval Type-2 (c) General Type-2

Figure E.1: Fuzzy sets of cake E for the attribute crunchy.
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(a) Type-1; c′p = 0.34

(b) Interval Type-2; c′p = 0.353 (c) General Type-2; c′p = 0.454

Figure E.2: Fuzzy sets of cakes A and E for the attribute crunchy and their

incompatibility (c′p).
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(a) Type-1; c′p = 0.401

(b) Interval Type-2; c′p = 0.411 (c) General Type-2; c′p = 0.48

Figure E.3: Fuzzy sets of cakes B and E for the attribute crunchy and their

incompatibility (c′p).
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(a) Type-1; c′p = 0.461

(b) Interval Type-2; c′p = 0.554 (c) General Type-2; c′p = 0.561

Figure E.4: Fuzzy sets of cakes C and E for the attribute crunchy and their

incompatibility (c′p).
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(a) Type-1 c′p = 0.246

(b) Interval Type-2 c′p = 0.338 (c) General Type-2 c′p = 0.29

Figure E.5: Fuzzy sets of cakes D and E for the attribute crunchy and their

incompatibility (c′p).
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(a) Type-1 c′p = 0.364

(b) Interval Type-2 c′p = 0.36 (c) General Type-2 c′p = 0.177

Figure E.6: Fuzzy sets of cakes F and E for the attribute crunchy and their

incompatibility (c′p).
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(a) Type-1

(b) Interval Type-2 (c) General Type-2

Figure E.7: Fuzzy sets of cake E for the attribute crumbly. and and and and

and and
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(a) Type-1; c′p = 0.199

(b) Interval Type-2; c′p = −0.302 (c) General Type-2; c′p = 0.346

Figure E.8: Fuzzy sets of cakes A and E for the attribute crumbly and their

incompatibility (c′p).
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(a) Type-1; c′p = −0.438

(b) Interval Type-2; c′p = −0.563 (c) General Type-2; c′p = −0.499

Figure E.9: Fuzzy sets of cakes B and E for the attribute crumbly and their

incompatibility (c′p).
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(a) Type-1; c′p = −0.315

(b) Interval Type-2; c′p = −0.364 (c) General Type-2; c′p = −0.385

Figure E.10: Fuzzy sets of cakes C and E for the attribute crumbly and their

incompatibility (c′p).
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(a) Type-1 c′p = −0.427

(b) Interval Type-2 c′p = −0.491 (c) General Type-2 c′p = −0.584

Figure E.11: Fuzzy sets of cakes D and E for the attribute crumbly and their

incompatibility (c′p).
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(a) Type-1 c′p = −0.409

(b) Interval Type-2 c′p = −0.583 (c) General Type-2 c′p = −0.623

Figure E.12: Fuzzy sets of cakes F and E for the attribute crumbly and their

incompatibility (c′p).
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