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Abstract 

Textile composites offer an excellent alternative to metallic alloys in the aerospace 

engineering due to their high specific stiffness and strength, superb fatigue strength, 

excellent corrosion resistance and dimensional stability. In order to successfully 

apply these materials to engineering problems, a methodology to characterise and 

predict the constitutive response of these materials is essential. The lack of the 

modelling tools for modern textile composites that would facilitate systematic 

analysis and characterisation of these materials hinders the wide adoption of such 

material systems in engineering applications.  This defines the focus of the project as 

represented in this thesis. 

A multi-scale modelling methodology has been established for the material 

characterisation and representing the constitutive response of the material at a 

macroscale. For material characterisation at micro- and mesoscales, an automated 

material characterisation toolbox, UnitCells©, has been employed and substantially 

developed in both the scope and complexity through this project. When applying this 

toolbox, the user selects the required type of a textile or unidirectional 

reinforcements and provides a parametric input, based on which a finite element 

model of a unit cell for the composites is generated automatically. The effective 

properties that can be predicted using this toolbox include stiffness, thermal 

expansion coefficient, thermal and electric conductivities, static strength and 

dynamic strength (associated with deformation localisation as the limit of the 

applicability of unit cells but a conservative estimate of the material strength). There 

are seven types of microscale models and eleven types of mesoscale models 

available in the toolbox at present. 

To represent a constitutive relationship for textile composites at a macroscale, the 

artificial neural network (ANN) algorithm has been adapted and developed into a 

useful modelling tool, referred to as the ANN system. A criterion defining an 

ultimate failure of the material has been proposed.  The outcome has made it possible 

for a user defined material subroutine to be established which can be employed in the 

analysis of structures made of such textile composites by providing the effective 

constitutive behaviour of them in a most efficient manner.  As a validation, ANN 

system was used to predict the critical velocities of three types of layer-to-layer 
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interlock 3D woven composite panel subject to ballistic loading. The predicted 

results matched well with the testing results. Furthermore, as an illustration of 

potential capability, the ANN system has been used to simulate impact of a textile 

composite fan blade containment casing in an idealised fan blade off scenario. 

Through the project, the capability of predicting the impact behaviour of textile 

composites has been established.  This involves unit cell modelling at micro-

/mesoscales for material characterisation, strength prediction with due consideration 

of strain rate sensitivity of the constituent materials, and ANN system to deliver the 

characterised constitutive relationship in terms of a user defined material subroutine 

for practical applications at macroscale, such as structural impact analysis. 
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Chapter 1  Introduction 

1.1 Background and Motivation 

The trend in the use of composites in aircraft engines is on the increase. As the 

bypass ratio of commercial aircraft engines increases to achieve higher fuel 

efficiency, the fan section of the engine becomes larger and heavier. The Federal 

Aviation Administration (FAA) aircraft engine certification requires that engines 

should be capable of containing failed fan blades at their full operation speed [1]. 

This is to prevent the fragments of failed fan blades getting into the other parts of the 

aircraft, causing further damage and hazards. 

A detached fan blade is required to be contained by the engine component called fan 

blade containment casing. It is a ring around the fan as shown in the sketch of an 

engine in Figure 1.1 [2]. During normal operation, the containment casing provides 

the outer flow path for air passing through the fan and also serves as a structure for 

attachment of the inlet and other components. Its most important function, however, 

is to contain a detached fan blade in a fan blade-out or fan blade off (FBO) event [3]. 

The fragments of the released fan blade, if allowed to penetrate the wall of the 

containment casing, would damage fluid lines, control cables, oil tanks and airframes, 

which may seriously compromise the safety of the airplane and passengers on board. 

Therefore, FAA in the United States and European Aviation Safety Agency (EASA) 

in Europe require that fan blade containment casings of all commercial aero engines 

should have the capability to contain the released high energy fragments in an FBO 

event [1, 4]. Since the fan blade containment casing is the heaviest component of the 

engine, yet not subjected to temperatures, it has been a key area of development 

among all major commercial aircraft engine manufacturers to employ composites to 

reduce the weight of the casing without compromising the safety requirements [5]. 
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Traditionally, fan blade containment casings were designed to ensure that the 

metallic casing wall is sufficiently thick to resist penetration of the blade. This 

✗✘✘✙✚✗✛✜ ✢✣ ✛✗✤✤✥✦ ✗ ✧✜✗✙✦ ★✗✤✤✩ ✦✥✣✢✪✫ ✬5].  Some possibilities such as fatigue 

fracture, bird ingestion or other foreign object damage, may lead to the blade release 

in rare events [6, 7]. Since the fan blade may release with a velocity higher than 

400m/s [8], the impact resistance of containment casing is required to be very high. 

The containment casings are usually made of metals, such as titanium alloy [9]. 

Carney et al. [8] suggested axially convex curved geometry containment. This casing 

was made of titanium and stainless steel (Ti-6Al-4V and SS-304L). The design idea 

about this is to use the plastic deformation in the casing to dissipate some kinetic 

energy before the full weight collision of blade. 

However, during normal engine operation, most of the material required for blade 

containment casing is a parasitic weight that reduces the engine thrust/weight ratio 

and increases fuel consumption. Therefore, when designing a containment casing of 

the modern engine, the material, geometry and wall thickness have to be carefully 

selected to reduce the weight of the ring while offering sufficient perforation 

resistance. 

An alternative approach, ✗ ✧✣✚✭✮ ★✗✤✤✩ ✦✥✣✢✪✫✯ that used a fabric wrap on the outside 

of a metallic liner to provide blade containment, was investigated in the late 1970s 
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and early 1980s [10]. This design of the casing involves applying a fabric wrap as an 

outer layer of the casing and this can be a lower weight option for some engines. For 

� ✁✂✄☎✆ ✝�✞✞✟ ✠✡✂☛☞✌✍ ☎✎�☞✏✡✌✆✂ ✄☎ ☎�☛✞✡✠ ✑✞�✠✡✂ ✒✡✌✡✆✎�✆✡ ✂✄✏✡ ✠✡✂☛☞✌�✆✡✠ ✂✄☎✆ ✞�✓✡✎✂, 

while the kinetic energy is absorbed before finally being arrested by the outer layers 

of the casing. The major disadvantage of this design was the requirement that a 

sufficient space had to be allocated to allow for the deformation of the casing to 

absorb energy. This led to an increase of the overall cross-sectional area of the 

engine, which could in turn undermine the performance of the engine. 

✔✕✡ ✂✡✞✡✖✆☛✄✌ ✄☎ � ✁✕�✎✠ ✝�✞✞✟ ✄✎ ✁✂✄☎✆ ✝�✞✞✟ ✠✡✂☛☞✌ ☎✄✎ � ✂✒✡✖☛☎☛✖ ✡✌☞☛✌✡ ✠✡✒✡✌✠✂ ✄✌

the relative weight of the two approaches in addition to other system-level design 

issues and overall costs. 

Composite materials offer an excellent alternative to the conventional alloys 

employed for making containment casings, due to their outstanding physical, 

mechanical and thermal properties, which include high specific stiffness and strength, 

good fatigue strength, excellent corrosion resistance and dimensional stability [5]. 

Because of the nature of composite materials, integrated containment casings can 

make full use of the advantages of composite. However, the mechanical performance 

of the composites is strongly related to the type of the fibrous reinforcements and 

their placement architecture in the composite.  

Furthermore, because of the anisotropic properties and complex failure mechanisms, 

the material characterisation of the composites is challenging, which in turn makes 

design of the composite containment casings more complicated than that of the 

metallic ones. On the other hand, because of the complex structure of composite 

material, the layout, architecture and volume fraction of reinforcement can be altered 

to optimize material performance under the required stress states.  

The most commonly used type of composites is the composite laminates and two-

dimensional (2D) weave laminates. However, laminated composites have very low 

impact resistance in the through-thickness direction because of the low strength of 

the interface between the layers [11]. This restricts the use of laminated composites 

for constructing fan blade containment casings, since the most significant loading of 

a fan blade containment casing is transverse impact in an FBO event. 
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Because of the weak impact resistance of interfaces, laminated UD and layered 

woven composites are not ideal candidates for fan blade containment casings. The 

delamination issue can be avoided by using 3D textile composites, which have three 

dimensional reinforcements, including the through-thickness direction [12]. Unlike 

conventional laminated composites, which are usually only reinforced in the plane of 

the laminate, 3D textile composites do not have planar interfaces. From the published 

literature, there are many types of 3D textile composites, such as 2D tri-axial braided, 

3D woven [13] and 3D braided patterns [14, 15, 16, 17, 18].  

With complicated yarn architectures, material characterisation of 3D textile 

composites becomes a lot more challenging than that of laminates. A number of 

methods for predicting the effective stiffnesses of 3D textile composites have been 

proposed in the literature [15, 16, 17, 18]. However, these methods either do not 

deliver a good accuracy of predictions, or are too complicated to achieve high level 

of automation. Furthermore, no modelling methodology is available to date for 

predicting the strengths of 3D textile composites. Lack of a systematic methodology 

for 3D textile composite material design, analysis and optimisation prevents its 

effective implementation in engineering design. 

1.2 Aim and Objectives 

The aim of this research is to develop a systematic methodology for analysis of 

composites based on various types of 2D and 3D textile reinforcements, so that the 

performances of them can be designed and optimised. The outcome will serve as a 

set of effective design tools, which can be readily applied for design of textile 

composite components in aerospace engineering, in particular, in the development of 

composite fan blade containment casings for civil aeroengines. 

The following objectives are set to ensure that the aim is achieved. 

(1) To develop a comprehensive toolbox for micro- and mesoscale unit cell (UC) 

modelling, with the mesoscopic unit cells addressing textile composites specifically. 

(2) To develop a methodology to predict the effective strength of textile composites, 

taking account of strain rate effect on stiffness and strength. 
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(3) To develop a methodology to represent the constitutive behaviour of a 3D textile 

composite as a homogenized material which can be employed in macro scale 

modelling, e.g. the impact to the fan casing in an FBO event, with the failure of the 

homogenised material predicted under the general stress states. 

(4) To characterise textile composites using the unit cell (UC) models under static, 

dynamic and thermal stress states, with systematic verifications to facilitate each of 

the multiscale homogenisation techniques developed. 

(5) To demonstrate the capability of the developed models in material selection and 

geometric parameters optimisation. 

(6) To implement various models including the damage model, developed in a 

separate project parallel to the present one through appropriate interfaces to 

commercial FEM codes, Abaqus and LS-DYNA, in terms of user defined material 

subroutines with comprehensive verifications before experimental validation. 

(7) To apply the predicted material properties of textile composites to impact 

simulation and validate the predictions by comparing them with the experimental 

results. 

1.3 Methodology 

The main work of this thesis is to develop systematic theoretical and computational 

models useful for the design and analysis of polymer textile composite fan blade 

containment casing. To ensure the models are predictive, accurate and robust, the 

investigations were carried out at three scales: micro-, meso- and macroscales. 

Theoretical models were developed at each level for practical stress states, including 

static, dynamic and thermal loading. A comprehensive verification programme was 

carried out for each model. Appropriate experimental validation techniques were 

established to support the theoretical developments. 

1.3.1 Microscale modelling 

The assembly of fibre and matrix forms a basic building block for a fibre reinforced 

composites. It can represent a lamina in a conventional laminate, or a yarn in a textile 

composite, as a unidirectional (UD) composite. Unit cell models developed at a 
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microscale level has been applied to determine the effective properties of UD 

composites. Material responses under static, dynamic and thermal stress states were 

considered and elastic properties �✁✂✄☎✆✝✞ ✟✂✝✠✠✂✡☛✠ ☞✌✍✝✂✠✞ ✎✍✏✑✒✞ ✄✓✡✌✁✝✏ ✔☞✂✔✎☞✍✝✎✠

(rate sensitivity constants, etc.), thermal expansion, thermal conductivity and 

strengths were determined so that the UD composite materials could be fully 

characterised. Periodic boundary conditions were employed to derive the suitable 

boundary conditions for various types of unit cell models. The effective material 

properties determined through the microscale material characterisation serve as the 

input for mesoscale UC modelling. 

1.3.2 Mesoscale modelling 

For applications to 3D textile composites, after the fibre-matrix assembly has been 

homogenised using the microscale models, there is still a high level of heterogeneity 

due to the structural arrangement of fibres or yarns in the composites. This is one of 

the main advantages of the textile composites, as the yarns can be placed in a way 

that ensures an optimal performance of the material under prescribed stress states. 

Unit cell modelling was applied again at a mesoscale to determine the effective 

properties of the 3D textile composite material under static, dynamic and thermal 

stress states. 

The main challenge in mesoscale modelling is to appropriately represent the 

complicated architecture of the yarns. This is particularly important for accurate 

predictions of the effective properties. Since the process of generating UC models is 

time-consuming, parametric studies would require a substantial modelling effort, 

when a set of models with the same textile architecture but different geometric 

parameters need to be generated. To facilitate such analysis, an automatic material 

characterisation toolbox UnitCells© has been employed and substantially developed 

in both the scope and complexity through this project. The predicted results of 3D 

textile composites as the outcomes from the mesoscale models offered an effective 

way of constructing a material mode for macroscale structural simulations. 

Within this length scale modelling, in order to systematically cover a sufficiently 

wide range of parameter variations, a piece of software was developed which could 

also be used for material selection as a key part of design procedure. The models 
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developed should be able to predict the performances of the composites from limited 

parameters, such as the textile architecture and the material properties of the 

constituents. Success of this development would minimise the need of material 

testing, hence reduce the associated costs, and substantially reduce the design cycle 

period. 

1.3.3 Macroscale modelling 

With UnitCells© toolbox, effective stiffness and strengths of the homogenised textile 

composites can be calculated properly. However, for the impact simulation of a 

composite component, a suitable failure criterion for homogenised textile composites 

under multi directional stress state is needed. 

Available failure criteria are all meant to be applicable to UD composites only.  It 

has been demonstrated in the present project how misleading it would be if any of 

them was blindly applied to a non-UD composite.  In absence of phenomenological 

failure criterion directly applicable to homogenised textile composites, an advanced 

interpolation algorithm, artificial neural network (ANN), was adapted and developed 

into a useful modelling tool, referred to as the ANN system. An ANN system 

includes training case, ANN structure, outcome database and user material 

subroutine.  An ANN system was used to represent the material behaviour of the 

textile composites at macroscale, which was considered to be a monolithic material. 

As a part of the ANN system, an element deletion criterion was proposed to predict 

the final failure of this fictitious monolithic material. UnitCells© was used to 

generate the training case for the ANN system. 

1.3.4 Verification and validation 

Each of the models developed in this project underwent verifications and validations.  

Some verification cases could be simple numerical tests to ensure that the model 

works properly. For such simple cases, the correctness of the solutions could be 

judged based on common sense.  They �✁✁✂✄ ☎✆✝✞✟✠✡ ☛☞✂☛✌✆✍ �✞ ✠☞✂ ✎�✏✂✑ ✒✂✁�✄✂ ✟✠ ✟✆

applied for any more meaningful cases as applications. Such simple test cases were 

introduced and carried out as comprehensively as possible. After passing systematic 

sanity checks, the predictions were compared with the published experimental data 

and/or published numerical predictions. 
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The research presented focused primarily on theoretical development and 

implementation of textile composite multiscale modelling methodology. Being a part 

of a larger project on the simulation methodology for impact damage in composite 

components of aero-engines, it had natural overlaps with the work done by different 

researchers in the same team.  Specifically, in terms of validation, experimental data 

from coupon tests and impact tests on textile composites were employed to validate 

the predicted results in the present project came from the other parts of the larger 

project. Throughout the thesis, every such instance is clearly specified in the text by 

an appropriate description and referencing. 

1.3.5 Parametric studies 

The theoretical models, once developed and validated, were employed in systematic 

parametric studies. A parametric study was carried out mainly in two areas, textile 

architecture selection and geometric parameters optimization for specified textile 

architecture. 

For the textile architecture selection, several types of 3D woven and 3D braided 

composites were studied and their effective properties were estimated. 

The layer-to-layer interlock 3D woven composite material was selected as an 

example to illustrate the process of geometric parameters optimization. A parametric 

study was carried out based on three well-defined parameters and an optimal 

combination was obtained. The textile composite with the optimal parameters is 

expected to provide favourable mechanical properties for containment casing, 

especially for impact resistance. 

1.4 Thesis Layout 

This thesis is comprised of nine chapters. Following this introduction the chapter by 

chapter thesis layout is as follows. 

Chapter 2 is devoted to a literature review which has been split into three main areas. 

A brief review on relevant experimental work and the methods for modelling of fan 

blade containment casing are presented. Then, the methods of micro- and mesoscale 

material properties characterization are summarised. Finally, strain rate sensitivity 

study methods are reviewed. Overviews of specific technologies are presented in the 
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related chapters. For instance, the formulation of periodic boundary conditions is 

introduced in Chapter 3. The review of failure criteria is presented in Chapter 4. An 

overview of artificial neural network (ANN) is given as a part of Chapter 6. 

The details of the automatic composites characterization toolbox UnitCells© are 

described in Chapter 3. The background theory employed when developing the 

UnitCells© is presented. This covers method of generating the fabric architecture, 

imposition of the periodic boundary conditions, periodic mesh generating method 

and effective stiffness extraction. Some examples of UnitCells© application for 

predicting the effective properties of textile composites are demonstrated. 

The method of predicting the effective strengths of the composite is systematically 

formulated in Chapter 4. The adopted failure criteria and damage evolution law were 

introduced and coded into a user material subroutine for implementation with 

Abaqus. Using UnitCells©, effective strengths of several types of 3D woven and 3D 

braided composites were predicted.  

In Chapter 5, the methodology of characterising strain rate sensitivity of 3D textile 

composites from microscale to mesoscale is described. A T300 carbon fibre layer-to-

layer interlock 3D woven composite was used to illustrate the process of strain rate 

sensitivity characterisation. 

The theory and application of ANN system at multiple length scales are presented in 

Chapter 6. On microscale, ANN for UD composites was introduced. On mesoscale, 

ANN for 3D braided composite was employed as an example of application. On 

macro scale, ANN for laminate was studied as an illustration of the capability of 

ANN in representing failure and damage of complicated composite materials. 

The unit cell modelling and ANN system are validated in Chapter 7. The unit cell 

modelling method and UnitCells© toolbox was validated by comparing the 

predictions with the published results and testing data. To assess the accuracy of 

ANN system, critical velocities of three types of textile composites were predicted 

using ANN and compared with the experimental results. To illustrate the capability 

of ANN system, impact of IM7 carbon fibre reinforced layer-to-layer interlock 3D 

woven composite containment ring was simulated by using a homogenised finite 

element (FE) model. 
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A parametric study is presented in Chapter 8. As an illustration, an optimal geometric 

parameters combination for layer-to-layer interlock 3D woven composites was 

determined to obtain the best impact resistance. 

Finally, the outcomes of the research conducted in this project are summarised as 

concluded in Chapter 9. Potential research directions for the future work based on the 

findings of this project are also proposed in that chapter. 
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Chapter 2  Literature Review 

2.1 Introduction  

This chapter presents and reviews the up-to-date developments in the field of textile 

composite research which are relevant to the subject investigated here. 

The aim of this research is to offer and develop systematic methodology for design, 

analysis and optimisation of composites. These methodologies are intended for 

applications in engineering, such as the design of aerospace components, in 

particular, the fan blade containment casing for civil aero-engines. Therefore, an 

overview of fan blade containment casing is presented which focuses on the 

experimental testing and finite element (FE) modelling methods. 

The challenge of FE modelling of composite components is the material behaviour 

representation. The techniques for multiscale modelling from micro- to meso- and 

macroscale material properties characterization are reviewed in detail. Effective 

stiffness prediction is relatively easy, as there are reasonably established methods. As 

for strength prediction of textile composites, there is genuine lack of an efficient 

method. 

Finally, in order to take into account the strain rate effects on material properties 

under high velocity impact, the study of strain rate sensitivity was reviewed. 

2.2 Test and Numerical Simulation of Fan Blade Containment Casings 

3D textile composites have superior impact resistance to conventional laminated 

composites due to the absence of uninterrupted planar interlaminar interfaces which 

are prone to rapid delamination propagation undermining the impact strengths. 

However, evaluation of the performance of 3D textile composites is much more 

difficult due to the complicated yarns architecture. The main challenge of the design 

of a composite fan blade containment casing is to estimate the impact resistance of 

the containment casing at macro scale both experimentally and numerically. The first 

task is to determine the impact velocity and impact direction of released blade of the 

fan in a fan blade off (FBO) event before the impact velocity and impact direction 

can be reproduced in laboratory. 
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As reported in the open literature, the fan blade containment casing tests, such as 

energy absorption tests, ballistic tests and penetration tests, are regarded as an 

essential assessment of aero-engine safety [5]. Such tests are costly, as they require 

special testing facilities and instrumentation. Only limited data can be found in open 

publications. 

Xuan and Wu [19] presented the results of a series of fan blade containment casing 

tests. A double edged notched blade was released at a certain rotating speed and 

subsequently impacted the inner wall of the containment ring. These tests were 

conducted over a range of blade lengths (113�123 mm) and releasing speeds (6800�

15 000 rpm) using the high-speed rotor spin testing facility. The containment ring 

and blade in this paper are both made of steel, the test results were not expected to be 

directly useful for composite containment casing test. However, some useful ideas 

can be extracted from this test. The main innovation was calculation of the releasing 

speed and the initial kinetic energy of the blade, which are two key parameters that 

need to be considered when designing the testing blade. The root of the blade had a 

notched cross-section. The tensile stress was produced by the centrifugal force. The 

stress over the cross-section increased with the rotating speed. When the stress 

exceeded the ultimate tensile strength of the material, the failure occurred, and the 

blade was released with a certain kinetic energy. The blade release speed and the 

initial kinetic energy were calculated by relating those properties to the ultimate 

tensile strength of the notched blade. 

Naik et al. [20] proposed another typical methodology for fan blade out containment 

test. The details of the experiments to characterize the behaviour of Kevlar, Zylon 

500D and Zylon 1500D fabrics were presented. The special experiment was the 

ballistic impact tests for comparison between the energy absorbing characteristics of 

the three kinds of fabric specimens. Two different projectiles were fired from the gas 

gun on to a Kevlar fabric that was wrapped around a large 12 inch wide steel ring. In 

each test the positions of two or more points on the projectile were recorded as 

functions of time by using high speed digital video cameras. The impact velocity and 

residual velocity were determined by fitting a straight line to the position and time 

points. Then the energy absorbed can be calculated using these velocities. 
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Since the mechanical tests at the component level are costly and time-consuming, at 

the preliminary design stage of the engine, the ballistic impact tests on flat panel are 

sometimes used. Zhang et al. [9] introduced a set of ballistic impact tests using an air 

gun shooting at flat panel. The shooting velocity of air gun ranged from 50 m/s to 

500 m/s, usually classified as moderate velocity. However, the target specimens are 

made of titanium alloy TC4, which may be very different from the test of textile 

composite materials. Nevertheless, these tests can offer some valuable information 

about the details of ballistic impact tests. 

Smith [21] presented a study on a 2D tri-axial braided composite material. In this 

paper, the results of impact testing of composite panels indicated that composite 

materials made with a tri-axial braided architecture could have improved impact 

resistance as compared with conventional laminated composites, and improved crack 

propagation resistance as compared to aluminium. The 2D tri-axial braided textile 

was wound to construct the containment casing. This design can reduce the weight 

effectively, but it also has its disadvantages. Since the 2D tri-axial braided composite 

has quasi-isotropic properties, this design did not make full use of the advantages of 

composite material. The main shortcoming of this design is that the structure as a 

rolled up 2D braided composite still has interface between layers, and these 

interfaces would be prone to delamination. 

Roberts et al. [22] from NASA have carried out a set of flat panel ballistic impact 

tests. They used a 2D tri-axial braided composite panel impacted by hard projectiles 

and soft projectiles, respectively. They found that using a hard projectile would be 

helpful for measuring the resistance of the material to local penetration at the contact 

points, such as that between the blade and case. On the other hand, a soft projectile 

impact to composite panels was employed in order to induce a high strain energy 

density into the composite material before penetration of the panel. This can be 

useful for investigating the rate sensitivity properties of composites at a high strain 

rates. 

In addition to the experimental testing, based on the experimental data, some of the 

researchers proposed empirical equations to estimate the impact properties of the 

material. Among these empirical equations, the best known is �☛✁ equation, which is 

an empirical equation used to estimate ballistic impacts on aircraft structure and 



14 

skins from engine debris for the first time. �☛✁ is defined as the velocity at which 

there is a 50% possibility of penetration. The equation is based on numerous tests, 

considering the debris mass, geometry, impact orientation and other influencing 

factors [23]. This equation can be used to determine a range of critical variations 

when devising ballistic impact experiments. This can somewhat reduce the demand 

on the trial and error process. 

As mentioned above, tests of fan blade containment casing are very costly and time-

consuming.  On the other hand, with increasing computational power and improving 

dynamic nonlinear finite element methods, a number of 3D simulations on the blade 

containment design have been conducted. 

For numerical simulation, the velocity and orientation of released blade can be 

simulated in software in a straightforward manner, by kinematic analysis. The 

definition of the constitutive behaviour of the composites is however an issue, 

especially for the textile composites, for which there are no readily available models 

in the commercial software packages. Furthermore, developing such a model is a 

great challenge, because of the complicated yarn architecture and complicated 

mechanism of failure between and within the yarns. 

The yarn architecture within the textile composites cannot be explicitly modelled in 

the containment casing model, since the model will be too complicated to generate 

mesh and conduct analysis. Instead, a homogenized macroscale model can be used. 

Constitutive behaviour of the homogenized model has to be presented under the 

general stress states. 

Xuan and Wu [19] carried out numerical modelling to simulate the blade impact on 

the containment ring. The simulation was conducted by using nonlinear dynamical 

analysis software, MSC.Dytran. The Cowper✂Symonds relationship was used for the 

consideration of strain-rate effects for both the blade and the containment ring. The 

most important conclusion of this paper is that large plastic deformation area and/or 

penetration and perforation failure may appear in the second impacted region on the 

containment ring when the releasing speed of the blade is high. Following the first 

impact to the containment ring, the blade bends ✄☎✆✝ ✞ ✟✠✡ ☞✌✞✍✎✏ ✑✝✒✎✓✎✔✕ ✆✌✎
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simulations [19] were carried out for a steel containment casing, hence for composite 

containment casing the material behaviour will be different. 

Stahleckera et al. [24] developed a constitutive model of a 2D woven dry fabric, 

implemented it as a user-defined subroutine in LS-DYNA and validated the model. It 

was used to simulate the ballistic impact to the fabric representing the FBO event. 

The model incorporated the rate sensitivity of the material constitutive relationship. 

There was an increase in the peak stress and failure strain with an increased strain 

rate. There is a lack of rational considerations in that model, as the stress�strain 

relationships were assumed to be decoupled, and every stress component was a 

function of only one strain component. Although the coupling components of the 

stiffness matrix were very small, they still should not be ignored without justification. 

Based on the literature overview conducted, no reasonable constitutive model could 

be identified that could be applied directly to represent the material behaviour of 3D 

textile composites at macroscale, which hinders the development of numerical 

simulation of 3D textile composite containment casing. Therefore, methodology for 

material characterization of 3D textile composites has to be established to bridge this 

gap. 

2.3 Material Characterization  

In order to simulate and evaluate the impact resistance of composites, the effective 

properties of the material need to be determined first. The effective properties of the 

composites are related to the properties of it constituents, the matrix and the 

reinforcement, and the internal micro/meso- structure of the composite. 

Generally, three major approaches are commonly applied to obtain the effective 

properties of composites: (a) experimental testing (b) analytical methods and (c) 

finite element methods [25, 26]. 

In experimental investigations, the composite specimens are tested under different 

types of loading, such as tensile loading, compressive loading and shear loading [20, 

27 , 28 ]. The effective elastic properties and strength are obtained from the 

experimental stress-strain curves. These properties provide the basis for development 

of the constitutive model. 
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Due to the variability as a characteristic of composites, it is necessary to test several 

specimens experimentally before an average or a meaningful median is taken as the 

representative measure. Therefore, this method is relatively costly and time-

consuming. Furthermore, for textile composites, experimental methods may not 

always be an available choice at the first stage of textile architecture design, because 

there are infinite numbers of combinations of geometry parameters for textile 

�✁✂✄✁☎✆✝✞☎✟ ✠✝✡☎ ☛✁✝ ✞☞☞✆�✆✞☛✝ ✌☛✍ ✞�✁☛✁✂✆� ✝✁ ✁✄✝✆✂✆☎✞ ✝✎✞ ✄✞✏☞✁✏✂✌☛�✞ ✝✎✏✁✑✒✎

experiments. 

Analytically, the effective properties of UD composites can be evaluated using the 

rule of mixtures [29, 30]. Within the rule of mixtures, the longitudinal stiffness is 

predicted based on the assumption of uniform strain, while the transverse stiffness is 

predicted based on the uniform stress assumption, which means rule of mixtures give 

upper bound for longitudinal stiffness and lower bound for transverse stiffness [31]. 

More sophisticated estimates of effective elastic properties are also available, for 

example, Hashin and Rosen's concentric cylinders model [ 32 ], and similar 

micromechanics based approaches [33, 34, 35, 36, 37]. However, their extension to 

3D textile composites may still be a significant challenge. Textile composites, such 

as 3D braided composites [15], have complicated microstructures depending greatly 

on the manufacturing processes, such as pitch length, braiding angle and volume 

fraction. These make analytical predictions of the effective properties of 3D textile 

composites a challenge. 

For example, Pan [38] developed a theoretical approach to predict the properties of 

woven fabric, which was based on a number of assumptions, for example, the 

interactions between yarns were ignored and the variations of the structural and 

geometrical parameters were assumed as negligible. With these assumptions, the 

material represented by this model would be significantly different from the original 

material, thus it is not expected to produce accurate predicted results. Furthermore, 

this approach would not predict the strength without the experimental results. 

Sun and Qiao [ 39 ] developed a fibre-inclination model to predict the elastic 

properties and strength of five-axial 3D braided composite materials. The 4-step (or 

4-axial) braided composite model was regarded as an analogy to a laminate. The 
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yarns of the unit cell in the same direction were treated as a lamina with the matrix 

around the yarn. Each lamina was assumed to be transversely isotropic under the 

local coordinate system, and their effective properties can be obtained by using the 

rule of mixtures. The generalized stiffness matrix of each lamina was calculated and 

transformed to global coordinate system. The average stiffness matrix was calculated 

and inverted to obtain the average compliance matrix. The engineering elastic 

constants were calculated from the average compliance matrix. 

Shokrieh and Mazloomi [40] proposed a new analytical model to predict the stiffness 

of 3D four-axial braided composites. They used a so-called Multi-Unit Cell Model of 

3D four-axial braided composites, which is comprised of three kinds of unit cells, 

namely interior, surface and corner. Each of the unit cells had unique mechanical 

properties and was considered as a unidirectional composite. Mechanical properties 

of the UD composites were obtained from rule of mixtures. With the properties of 

UD composites, the stiffness matrix of UD composites was defined, and the total 

stiffness matrix of the 3D braided composites was finally obtained using a volume-

averaging method. 

The two methods introduced above used the results from rule of mixtures as the input.  
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the fibre direction.  These methods were based on some kind of average of stiffness 

matrix which usually had a certain assumption regarding the strain distribution and 

hence tends to produce an upper bound of the effective properties. 

Aboudi [31] introduced a micromechanical analysis method for two phase composite 

materials called the method of cells. It based on the periodic structure of the 

reinforcement. The analysis was conducted on the representative element, which was 

defined as a repetitive block. Displacement and traction continuity conditions at the 

interface and equilibrium conditions were applied to the representative element to 

calculate the average stress and strain. The representative element was divided into 

several subcells, each of the subcells occupied by a single constituent material. For 

example, the representative element of UD composites was divided into four subcells, 

one of them is a square region of fibre, and the others are square region of matrix. 

This method was extended to a composite material with a more complicated structure 

of reinforcement, such as 3D multi-phase composites [41, 42]. This method can 
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produce more accurate predictions than the rule of mixtures, and can be used to 

predict the effective properties of UD composites, laminate composites and particle 

reinforced composites. However, this method was not extended to predict the 

effective properties of 3D textile composites. 

From the literature, it can be seen that the analytical methods of predicting the 

material properties of the 3D composites are commonly based on various 

assumptions, typically a uniform distribution of strain or stress field, but often 

avoiding stating so explicitly, and generally disregard the geometric structures in the 

3D composites. Therefore, stiffness predictions using these methods have low 

accuracy. Besides, the analyses seemed too complicated to carry out automatically. 

Furthermore, no theoretical method has been successfully applied to the prediction of 

the strength of textile composites accurately. 

On the other hand, the finite element method (FEM) has been known for its 

versatility and widely used for predicting the effective properties of composite 

materials, in particular, modern textile composites [43, 44]. The architecture of yarns 

and fibres can be modelled explicitly and represented properly by applying 

appropriate software, e.g. TexGen [45]. Analyses are often based on micromechanics 

of composites, where properties of the constituents and the architecture of the 

composite are assumed to be known. Thus, a representative volume element (RVE) 

or a unit cell (UC) model can be constructed depending on the geometry and stress 

state of the composite. The properties of the composite are then obtained through an 

analysis of the RVE or unit cells (UC) model by numerical methods. The overall 

properties of composites can be predicted quite accurately by a finite element (FE) 

model, as long as the properties of the constituents (reinforcement and matrix) are 

properly represented in the model. Moreover, if the models have been parameterised 

properly, it is convenient to carry out parametric studies afterwards using the FE 

model. 

For the purpose of homogenisation, terminologies of representative volume elements 

(RVE) and unit cells (UC) are often adopted by users, sometimes in an 

interchangeable manner but occasionally there could be a little signs of confusion.  

An RVE can be defined as the smallest volume of the material which remains 

representative of the bulk/effective properties of the material [26, 46, 47].  What is 
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volume of the material, the effective properties evaluated through the RVE employed 

will remain constant but any further reduction will result in noticeable fluctuations in 

the evaluated effective properties as a result of false boundary conditions employed, 

indicating that the volume is no longer representative.  When RVEs are used in this 

way, there is clearly an issue of convergence for which the user has to satisfy 

him/herself before a specific size is adopted, which may require a significant effort.  

For that reason, RVEs should be resorted to only if there is a lack of regularity in the 
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used to describe a basic unit out of a regular microstructure, which repeats itself 

according to certain symmetry transformations to reproduce the entire microstructure.  

Apparently, a unit cell is always an RVE but not vice versa, because a unit cell is 

required to be periodic while a RVE does not have to be periodic, provided that it 

remains representative.  Unlike RVEs for irregular microstructures where boundary 

conditions cannot be prescribed precisely, boundary conditions can be obtained 

precisely for unit cells, provided that the boundary conditions are formulated and 

imposed correctly according to the geometric symmetries present in the 

microstructure.  A larger sized model consisting of a number of unit cells should 

produce identical results to those from a single unit cell, i.e. there is not the same 

issue of convergence as in RVEs as described above. 

The properties of the composites are then obtained through an analysis of the RVE or 

UC model by numerical methods. The overall properties of composites can be 

predicted quite accurately by an FE model, as long as the properties of the 

constituents (reinforcement and matrix) are properly represented in the model. 

Moreover, if the models have been parameterised properly, it is convenient to carry 

out parametric studies employing FE modelling. 

For instance, a unit cell model of 3D braided composite is shown in Figure 2.1 (b). 

With properties of the constituents (fibre and matrix) appropriately defined, the 

overall properties of composites can be predicted with reasonable accuracy by a FE 

model. 
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Bigaud and Hamelin [51] introduced a simplified model.  In their model, the unit cell 

was discretized into a number of cubic elements, and material properties were 

determined at each integration point. These kinds of models are easy to create, but 

they are unable to capture the local stresses at the interfaces between yarns and 

matrix. Thus, the accuracy and applicability of this kind of model was limited, for 

example it cannot be used to predict strength. 

Chen et al. [15] proposed a microstructure for a 3D braided preform. In their model, 

the preform was divided into three different ranges: interior, surface and corner. 

Yarns in the interior range were regarded as of a constant cylindrical cross section 

with straight path. This type of straight yarn model reflects better details than the 

discretized model described above, which may obtain more accurate effective 

properties. However, for real composite materials, the cross sections of yarns are not 

constant due to the interaction between adjacent yarns [49] and yarn are not straight. 

Fang et al. [16] proposed a simplified idealisation for 4-axial braided composites that 

the yarns within all representative volume cells take an octagonal cross section and 

they all have surface contact to the neighbouring yarns. The octagonal cross sections 

were then divided into seven ranges and each range was assigned with a local 

coordinate system. 

Jiang et al. [52] suggested a more detailed model for 3D braided composite by 

defining the paths of yarns as curves governed by mathematical functions. This 

model might be able to produce more accurate results, but creating curved yarns is 

not always straightforward. 

The approximate models above are applicable to the analysis to obtain effective 

properties to some extent. However, none of the above models is able to represent 

the varying yarn cross sections, which is a very important feature of textile 

composites. 

With the realistic geometry, appropriate boundary conditions have to be applied to 

unit cell model to obtain reasonable effective properties. Since the idealised textile 

architecture has periodic geometry, the so called periodic boundary conditions can be 

adopted [ 53 ]. Generally, boundary conditions include displacement boundary 

conditions and traction boundary conditions, but for FE analyses, traction boundary 
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conditions should not be imposed [ 54]. Therefore, only periodic displacement 

boundary conditions were imposed to unit cells. 

A key step in the application of unit cells is to impose periodic boundary conditions 

to the unit cells concerned. Successful imposition of such boundary conditions 

requires the coordinates of nodes as well as the tessellations on any pair of opposite 

faces to be precisely related. Due to the complicated yarn architectures of textile 

composites, it is often difficult to ensure identical tessellations on corresponding 

faces of the unit cell before periodic boundary conditions can be imposed [48, 54, 

43]. 

From the discussion above, it is easy to conclude that representing the yarn 

architecture properly and generating periodic mesh are the main challenges for 

creating unit cell model of textile composites. Therefore, systematic methods need to 

be developed to create realistic geometry and generate periodic mesh for textile 

composites with complicated yarn architectures. 

2.4 Strain Rate Sensitivity Study 

In order to investigate the dynamic properties of composite materials under high 

velocity impact, strain rate effects must be taken into account. The rate dependent 

behaviour of composites, which are generally strain rate sensitive materials, has been 

investigated in a number of studies. However, despite there being numerous 

publications, there is still a lack of clarity as to how the rate dependent composite 

behaviour should be represented, as different studies report different results. 

Roberts et al. [55] have given some details about the experiments for testing the 

properties of tri-axial braided composite material, especially for the impact properties. 

In order to obtain a high strain energy density in composites before failure, a soft 

projectile was used. With this kind of test, the impact resistant of composites can be 

evaluated properly without local failure. 

Nia and Sadeghi [56] conducted an experimental study on compressive mechanical 

behaviour of bare and foam-filled honeycomb structures in the through-thickness 

direction at low strain rate tests using Instron 8503. Results showed that the mean 

crushing strength of these structures was highly dependent on the strain rate, as the 
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strain rate increased from 5.25 s-1 to 10.5 s-1, an increase in the mean crushing 

strength of up to 40% was observed in some specimens. Strain rate has less effect on 

mean crushing strength of foam-filled honeycomb structures than that of bare 

honeycomb structures. The test results also indicated that the strain rate does not 

change the densification strain, but could affect the deformation and increase the 

number of folds of honeycomb wall, and consequently dissipated more energy. 

The Split Hopkinson pressure bar (SHPB) [57] is a well-known characterization tool 

for the mechanical response of materials loaded at high strain rates. A general set up 

of a SHPB system is schematically shown in Figure 2.2. Generally, this SHPB 

system was used to characterise the compressive properties of materials. In addition 

to this compression version, there are other versions with loading mechanisms for 

tension, torsion and their combinations [57, 58]. 
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Foroutan et al. [59] presented the test results of rate-dependent in-plane damage 

behaviour of woven CF composites using a tensile version of Hopkinson bar setup, 

and compared the results with static test results. Fabric composites with three 

different fibre architectures (plain weave, 2x2 twill weaves and 8-harness satin 

weaves) and two different materials (carbon/epoxy and carbon/BMI) were tested. 

They confirmed that the shear behaviour of woven composites is more rate-

dependent than their tensile counterpart. 
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Mahmood and Majid [60] studied the in-plane shear behaviour of unidirectional glass 

fibre-reinforced polymeric composite under quasi-static and intermediate strain rate 

stress states. Their experimental results showed that the shear properties were 

sensitive to strain rate. Under dynamic loading, with increasing strain rate, the shear 

failure strength increased while the shear modulus decreased. They concluded that 

strain rate effects on these properties could be approximated adequately by an 

exponential growth function of the strain rate. 

Hou et al. [61], studied the high strain rate tension properties of 3-D angle-interlock 

woven carbon fabric (3DAWF) both experimentally and numerically (using finite 

elements). It was found that the tensile behaviour of the 3DAWF was rate sensitive, 

namely, both the failure stress and failure strain increased with the strain rate. 

Through the FE analysis, a geometrical model was established for microstructure to 

describe the failure mechanisms of the 3DAWF under high strain rate tension. 

López-Puente and Li [62] presented a numerical analysis of the influence of strain 

rate on the response of carbon/epoxy woven composites. Unit cell models at two 

different length scales have been developed in order to simulate the behaviour of 

such composites. An anisotropic plasticity with different hardening rules under 

different stress states was proposed for the carbon fibre yarns. Results show 

reasonable variations of the composite strengths under dynamic loads.  An important 

aspect of the paper was their observation of effective strain rate sensitivity due to the 

undulations in the woven reinforcement, as neither the reinforcement phase nor the 

matrix had been assigned any rate dependent properties. 

Hufenbach et al. [63, 64], presented a rheological model to identify the strain rate 

deformation and failure behaviour of textile reinforced polypropylene. According to 

the rheological model, polypropylene matrix can be modelled using a Burgers model 

[65] and glass fibre can be modelled using a Zenerk model [63]. A Burgers model is 

a viscoelastic material model which consists of a Maxwell model [66] and a Kelvin�

Voigt model [67] in series. A Zenerk model is a model combining a purely elastic 

spring and a Kelvin�Voigt model in series. The Maxwell model is a purely viscous 

damper and a purely elastic spring connected in series, while the Kelvin�Voigt 

model is a purely viscous damper and a purely elastic spring combined in parallel. 
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Furthermore, two rheological models for polypropylene matrix and glass fibre were 

combined in series or parallel in order to represent UD plies. Based on the 

rheological models, a strain rate function was implemented to account for strain rate 

dependent elastic and strength properties. 

Mohotti et al. [68] proposed a strain rate dependent constitutive material model to 

predict the high strain rate behaviour of polyurea. Their model was based on the 

well-known nine parameter Mooney�Rivlin material model. A rate dependent term 

was introduced into the original Mooney�Rivlin model and was validated using high 

strain material data for polyurea. 

Daniel et al. [ 69 , 70 ] proposed a strain rate dependent failure criteria for 

unidirectional carbon/epoxy material under multi-axial loading. From the tests, they 

found both modulus and strength were strain rate sensitive. They proposed a failure 

mode based criteria which can be used to predict the failure of composite material at 

static, intermediate strain rate and high strain rate. 

Cowper and Symonds [71] proposed an empirical model (known as the Cowper-

Symonds model) to describe the strain rate hardening of metals. This model has been 

widely used, in particular, it has been implemented in LS-DYNA. However, this 

model was originally proposed for metal and cannot be extended to composites in a 

straightforward manner. 

Yen [72] proposed a two parameters scaled model. In their model, the stiffness and 

strength are scaled by a ratio which is related to current strain rate. A reference strain 

rate has to be defined in this model, strain rates smaller than this value were treated 

as static. Therefore, the strain rate of static test was selected as reference strain rate. 

From the above review, it is easy to see that strain rate sensitivity of composites is a 

complicated matter and it is therefore difficult to say which model is the best. For a 

specific material, experiments are required to determine the suitability of the model 

employed. The accuracies of different models can be judged by comparing the 

simulation results and the experimental results. 
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2.5 Summary 

Some important aspects of the present research, namely, the test and simulation of 

fan blade containment casings, material characterization and strain rate sensitivity 

study, have been reviewed in this chapter. 

The overviews of other specific technologies employed in this research are presented 

in the appropriate chapters. In particular, the formulation of periodic boundary 

conditions is introduced within Chapter 3. The review of failure criteria will be 

presented in Chapter 4. The theoretical background and details of implementation of 

ANN will be given as a part of Chapter 6. 
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Chapter 3  Unit Cell Modelling for Textile Composites 

3.1 Introduction  

With their complex mesoscopic architectures, textile composites have reinforcement 

along three directions, including the through-thickness direction. Unlike in 

conventional laminated composites, there are no planar interfaces, hence no 

delamination failure mode in textile composites, and this substantially improves the 

impact resistance of textile composites in comparison with that of the laminated 

composites. However, because of the complicated reinforcement architecture, the 

material characterisation of textile composites can be extremely challenging, and 

there are no readily available software/modelling tools that can be utilised for this 

purpose. 

According to the literature survey in Chapter 2 on material characterization, the most 

promising approach for characterising the textile composites is based on the unit cell 

modelling, when the material represented by its basic repeating cell. Accurate 

material representation requires accurate mesostructured geometry representation and 

imposition of the appropriate boundary conditions. The analysis of this kind has been 

previously developed by Li and Wongsto [43, 47], and it was applied to 

characterisation of the composites of the unidirectional fibrous reinforcement and 

particulate reinforcement. The imposition of periodic boundary conditions proves to 

be demanding if dealt with individually but it is a process which can be automated. 

To achieve this, a Python script code UnitCells© [73] was developed prior to the 

project, which allowed for automatic generation of finite element models of the unit 

cells, with correct the imposition of the boundary conditions and assignment of the 

material properties, carrying out the analysis and extracting the effective properties. 

As part of the present research, UnitCells© was substantially extended.  It was 

previously a characterization tool for the effective thermoelastic properties of UD 

composites with regular fibre distribution and particle reinforced composites and 

there was only a limited capability for 2D woven composites.  Through the extension 

carried out in the present project, the following areas have been covered. For the 

characterization of UD composites, it is capable to dealing with random fibre 

distribution over the cross section perpendicular to the fibres.  Although the 
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methodology was developed in [47], the implementation of the methodology for 

automated application is not a trivial exercise.  In terms of the type of composites, it 

has included a large number of typical 2D and 3D textile composites. In terms of the 

types of analysis it has been extended from thermoselastic to thermal conductivity, 

electricity conductivity and effective strength.  The most significant aspects are the 

developments into 3D textile composites and strength prediction. For the 3D textile 

composite models with complex architectures it can be extremely challenging to 

obtain a suitable geometry and mesh within a single piece of the conventional 

software.  UnitCells© has been extended in this respect to take advantage of a 

number of other established codes to fulfil the task efficiently and effectively. To 

make this toolbox easy to use, a graphic user interface was created for users to input 

a small number of essential parameters in order to define to define the architecture of 

the textile preforms as well as the density of the meshes. 

This chapter describes the stages of development of UnitCells©, and provides 

examples of it being applied for characterisation of various types of textile 

composites, after a review on the specific topic of the unit cells based on periodic 

boundary conditions in Section 3.2 followed by an overview of the implementation 

of the unit cells available in UnitCells© where pre-existing contents in UnitCells© 

before the present project and those developed as a part of the present project will be 

clearly identified without affecting the integrity of the presentation of the capability 

of UnitCells©. 

3.2 Review of the Formulation for Unit Cells Based on Periodic 

Boundary Conditions 

Idealisations are often necessary to represent realistic geometry micro/mesoscale 

architectures, which usually involves neglecting minor irregularities such that the 

micro/meso-architectures can be considered to be of regular patterns.  Once a unit 

cell is identified, appropriate boundary conditions have to be applied to it so that it 

will represent the material of the micro/meso-structure where the unit cell is from.  

Only by doing this, the obtained effective material properties will be representative 

for the material concerned. Since the unit cell model has periodic geometry, the 

representative boundary conditions are called periodic boundary conditions [53]. 
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Periodic boundary conditions result from the geometric periodicity of the 

microstructure [48, 54], while the periodic boundary conditions themselves may not 

necessarily show any periodicity in any way. In particular, in terms of displacement 

boundary conditions, the displacement field within in any unit cell is not periodic, 

while the obtained stress and strain fields are periodic.  For FE analyses, periodic 

traction boundary conditions should not be imposed [54] and users can simply ignore 

their presence. 

Periodic displacement boundary conditions are derived from geometric symmetries 

as present in the microstructure [43, 47, 48]. Symmetry is an important geometric 

characteristic and widely observed in crystals and composites. Theoretically, there 

are three typical symmetries: translational, reflectional and rotational ones. All these 

three symmetries have been widely used in the micromechanical analysis of 

composites. The reflectional symmetry is the most familiar one among the three. 

However, a reflectional symmetry can be validly applied only once to a particular 

direction and applying the same reflectional symmetry twice in the same direction in 

order to reduce the dimension to a finite extent in the direction concerned is a 

fundamentally flawed argument [74].  The correct way to extent the dimension in a 

direction is to use a translational symmetry [74, 75]. This does exclude the use of 

reflectional symmetries.  In fact, within a period as defined by the translational 

symmetry, reflectional and rotational symmetries are often present and one can take 

advantage of them to reduce the size in this dimension [74, 75].  One is reminded 

that if a unit cell is established by using either the reflectional or rotational 

symmetries, it may not be applicable under the stress states which involve an 

arbitrary combination of the macroscopic stresses. This restriction could be removed 

by avoiding any reflectional or rotational symmetry transformations when 

establishing the unit cell [53]. In the present work, use has been made of the 

translational symmetries alone and the boundary conditions for the unit cells 

obtained are straightforward periodic boundary conditions. The relevant formulations 

were developed fully by Li et al. [75, 48, 54, 76]. As an illustration of the process of 

deriving the periodic boundary conditions,  parallelepiped (specifically, a right prism 

with parallelogram base) packing is assumed, from which the unit cell is obtained 

which can represent a fibre-matrix assembly for a UD composite, a 2D or 3D woven 
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or braided composites, etc. [16, 77]. The boundary conditions for this type of unit 

cell were obtained following the methodology proposed by Li [75]. 

3.2.1 Displacement field for unit cell model 

Because of the periodic geometry, the stresses and strains distributions within the 

composites are periodic and identical from one unit cell to another as can be 

described in terms of translational symmetries. Moreover, the relative displacements 

are also periodic in the same manner, as is schematically depicted in Figure 3.1 

where a rigid body rotation in the plane has been eliminated by constraining the rigid 

body rotation of the horizontal axis. 

 

�✁✂✄☎✆ ✝✞✟ ✠✡☛✆☞✌✍✁✡ ✎☎✌✏✁✑✂ ✒☛✓✏✁✑✂ ✍☛✆ ✎✆✔✓☎☞✌✍✁✓✑ ✓✔ ✄✑✁✍ ✡✆✕✕✒ 

 

In Figure 3.1, ✖ is an arbitrary point in one unit cell and ✖✗  is the image of ✖ in 

another unit cell. According to the principle of symmetry [ 78 ], the relative 

displacement field in each unit cell, e.g. to the bottom left corner ✘ or ✘✗ of the unit 

cell remains periodic after deformation. Therefore, the relation between macroscopic 

strains and displacements at point ✖ and ✖✗ can be described as follows. 
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(3-1) 

where ✧, ★ and ✩ are the coordinates of point ✖, ✪, ✫ and ✬ are the displacements at 

this point. Similarly, ✧✭, ★✭ and ✩✭ are the coordinates of point ✖✗, ✪✭, ✫✭ and ✬✭ are the 
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displacements at this point, and 0
x� , 0

y✁ , 0
z✂ , 0

yz✄ , 0
xz☎  and 0

xy✄  are the macroscopic 

strains. 

In obtaining the strain field as represented in Equation (3-1), rigid body degrees of 

freedom should be constrained. Firstly, the three translational degrees of freedom are 

constrained at an arbitrary point by prescribing the following at that point: 

✞ ✌ ✆ ✌ ✝ ✌ ✟ (3-2) 

The rigid body rotational degrees of freedom should also be constrained in the model, 

this could be achieved by constraining the rigid body rotations of the x axis about the 

y and z axes and the y axis about the x axis at ✠ ✌ ✡ ✌ ☛ ✌ ✟, i.e. 

☞✝

☞✠
✌

☞✍

☞✠
✌

☞✝

☞✡
✌ ✟ (3-3) 

However, this is not the only way to constrain the rigid body degrees of freedom, 

hence, the Equation (3-1) will vary according to the constraining method. It is worth 

noting that different expressions so obtained different from Equation (3-1) may result 

in different presentations for periodic boundary conditions, but they should lead to 

identical strain field, hence obtain the same effective material properties. 

Equation (3-1) will be used throughout this illustration. Obviously Equation (3-3) 

could be automatic met as they have been absorbed in Equation (3-1) already and 

thus no constrain for the rigid body rotational degrees of freedom will need to be 

applied to the unit cell model. 

3.2.2 Translational symmetries in a parallelepiped packing 

A sectional view of a parallelepiped packing is shown in Figure 3.2, from which 

translational symmetry could be observed. Take one of the shaded parts as a unit cell. 

By using translational symmetry transformations only, this unit cell could cover the 

whole structure perfectly [76]. 

A schematic drawing of the unit cell for the parallelepiped packing system is shown 

in Figure 3.3. In this model, edge lengths ✎✏ ✑ ✎✒ ✑ ✎✓, and for simplicity, the edges 

of length ✎✓ are assumed to be perpendicular to those edges with length ✎✏ and ✎✒, 
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respectively, while the edges with length ✞☛ are not necessarily perpendicular to those 

with length ✞�✁ The six faces of this unit cell could be grouped into three pairs✂A✆B, 

C✆D and E✆F. In each pair, the two faces are parallel and opposite to each other. 

For a tidy sketch, this figure only shows the three visible faces A, C and F, while 

their counterparts B, D and E have been hidden. 

In order to minimize the variable parameters of periodic boundary conditions, the 

origin of the coordinate system was placed at the geometric centre of the unit cell, 

and the z-axis was placed perpendicular to faces E and F, while faces are not 

necessarily perpendicular to the x-axis and y-axis (see Figure 3.3). Moreover, the 

angle between y-axis and face B is exactly half of the angle between faces D and B 

(see Figure 3.2). By setting the coordinate system like this, only four variables ✞☛, ✞�, 

✞✄ and ☎✝ need to be introduced into the model, for representing the coordinate of the 

unit cell (see Figure 3.2). 

According to translational symmetry, each unit cell in the model can be obtained by 

applying translational symmetry transformations to a single origin. For an arbitrary 

point ✟✒✠✡ ☞✡ ✌✍ in the origin, the corresponding point ✟✎✒✠✎✡ ☞✎✡ ✌✎✍ in another unit cell 

can be obtained by applying translational symmetry transformations to point ✟ (see 

Figure 3.2). In the ✏ ✑ ✓ plane, the mapping from origin ✟ to its corresponding point 

✔✕ could be characterized by two independent translations in the (✖✡ ✗) coordinate 

system. Within this (✖✡ ✗) coordinate system, the ✖-axis and ✗-axis are parallel to the 

edges of the unit cell (see Figure 3.2). In ✏ ✑ ✘ and ✓ ✑ ✘ plane, the mapping from ✟ 

to ✟✙ could be characterized by translation along the ✌-axis. Define ✚, ✛ and ✜ as the 

spaces from ✟  to ✟✙ , along the ✖ -axis, ✗ -axis and the ✌ -axis respectively. If the 

direction of translation is opposite, a negative value should be used. In the case of 

Figure 3.2, ✚ ✢ ✣✡ ✛ ✢ ✤ and ✜ ✢ ✥. 
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�✁✂✄☎✆ ✝✞✟ ✠☎✡☛☞✌✡✍✁✎☛✡✌ ☞✏✑✑✆✍☎✏ ✍☎✡☛☞✒✎☎✑✡✍✁✎☛ ✒☎✎✑ ✡ ✄☛✁✍ ✓✆✌✌ ✓✎☛✍✡✁☛✁☛✂ ✡

☎✆✔☎✆☞✆☛✍✡✍✁✕✆ ✔✎✁☛✍ ✖ ✍✎ ✡☛✎✍✗✆☎ ✁☛ ✡ ✔✡☎✡✌✌✆✌✆✔✁✔✆✘ ✔✡✓✙✆✘ ✑✁✓☎✎✚✑✆☞✎-
☞✍☎✄✓✍✄☎✆ 

 

 

�✁✂✄☎✆ ✝✞✝ ✛✌✌✄☞✍☎✡✍✁✎☛ ✎✒ ✡ ✄☛✁✍ ✓✆✌✌ ✎✒ ✔✡☎✡✌✌✆✌✆✔✁✔✆✘ ✔✡✓✙✁☛✂ 
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The coordinates of point ✞✒�✁ ✂✁ ✄☎ and ✞✆✒�✆✁ ✂✆✁ ✄✆☎ are related as follows. 

✝
�✑ ✌ � ✟ ✠☛ ✡ ☞ ✡ ✍☞✎✏ ✓ ✠✔ ✡ ✕ ✡ ✍☞✎✏
✂✑ ✌ ✂ ✟ ✠☛ ✡ ☞ ✡ ✖✗✍✏ ✟ ✠✔ ✡ ✕ ✡ ✖✗✍✏
✄✑ ✌ ✄ ✟ ✠✘ ✡ ✙

 (3-4) 

Equation (3-4) shows clearly how translational symmetry transformation is expressed 

in terms of the coordinates of corresponding point ✞✆: a translation along the ✚ -axis 

by ☞ spaces, a translation along the ✛- direction by j spaces and a translation along the 

✜- direction by k spaces. Equation (3-4) can be rewritten as: 

✝
�✑ ✓ � ✌ ✠☛ ✡ ☞ ✡ ✍☞✎✏ ✓ ✠✔ ✡ ✕ ✡ ✍☞✎✏
✂✑ ✓ ✂ ✌ ✠☛ ✡ ☞ ✡ ✖✗✍✏ ✟ ✠✔ ✡ ✕ ✡ ✖✗✍✏
✄✑ ✓ ✄ ✌ ✠✘ ✡ ✙

 (3-5) 

3.2.3 Expressions for periodic boundary conditions of parallelepiped packing 

unit cell 

The equations for relative displacements between point ✞ and its corresponding 

point ✢✣ are obtained by substituting Equation (3-5) into Equation (3-1). In fact, 

these three equations are the displacements boundary conditions for these two 

points. Such boundary conditions must be applied to all the surface points of the 

unit cell before any micromechanical analysis can be carried out. 

In the unit cell model considered, there are three pairs of faces, A✤B, C✤D and 

E✤F. Each face in the unit cell is shared by the neighbouring cell because of the 

continuity. Moreover, this face could also be obtained by applying following 

translational symmetry transformations on its counterpart face in the same pair: 

✝
✥✦✖✧★ ✤ ✩✪ ✒☞ ✌ ✫✁ ✕ ✌ ✬✁ ✙ ✌ ✬☎
✥✦✖✧✭ ✤ ✮✪ ✒☞ ✌ ✬✁ ✕ ✌ ✫✁ ✙ ✌ ✬☎
✥✦✖✧✯ ✤ ✥✪ ✒☞ ✌ ✬✁ ✕ ✌ ✬✁ ✙ ✌ ✫☎

 (3-6) 

The boundary conditions for the unit cell model are obtained as follows. Appropriate 

values of ☞, ✕ and ✙, as specified in Equation (3-6), are substituted into Equation (3-5), 

which are next substituted into Equation (3-1) yields the equations of the boundary 

conditions as follows. 
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Face A✆B (✞ = 1, � = 0, ✁ = 0): 

✌
✂☛ ✄ ✂☎ ✝ ✟✠ ✡ ☞✞✍✎✏☛ ✄ ✏☎ ✝ ✟✠ ✡ ✑✒☞✎✓☛ ✄ ✓☎ ✝ ✔

 (3-7.1) 

✕
✖☛ ✄ ✖☎ ✝ ✟✠ ✡ ☞✞✍✎ ✡ ✗✘✙ ✚ ✟✠ ✡ ✑✒☞✎ ✡ ✛✘✜✙
✢☛ ✄ ✢☎ ✝ ✟✠ ✡ ✑✒☞✎ ✡ ✗✜✙
✣☛ ✄ ✣☎ ✝ ✔

 (3-7.2) 

Abbreviated as ✤☛ ✄ ✤☎ ✝ ✥☎☛, where ✤☛ is the displacement of the points on face B, 

it can be expressed as ✦✖☛✧ ✢☛✧ ✣☛★✩, ✤☎ is the displacement of the points on face A, 

it can be expressed as ✦✖☎✧ ✢☎✧ ✣☎★✩, ✥☎☛ is the relation between ✤☛ and ✤☎, in this 

case it can be expressed as ✦✟✠ ✡ ☞✞✍✎ ✡ ✗✘✙ ✚ ✟✠ ✡ ✑✒☞✎ ✡ ✛✘✜✙ ✧ ✟✠ ✡ ✑✒☞✎ ✡ ✗✜✙✧ ✔★✩. 

Face C✆D (✞ = 0, � = 1, ✁ = 0): 

✌
✂✪ ✄ ✂✫ ✝ ✄✟✬ ✡ ☞✞✍✎✏✪ ✄ ✏✫ ✝ ✟✬ ✡ ✑✒☞✎✓✪ ✄ ✓✫ ✝ ✔

 (3-8.1) 

✕
✖✪ ✄ ✖✫ ✝ ✄✟✬ ✡ ☞✞✍✎ ✡ ✗✘✙ ✚ ✟✬ ✡ ✑✒☞✎ ✡ ✛✘✜✙
✢✪ ✄ ✢✫ ✝ ✟✬ ✡ ✑✒☞✎ ✡ ✗✜✙
✣✪ ✄ ✣✫ ✝ ✔

 (3-8.2) 

Abbreviated as ✤✪ ✄ ✤✫ ✝ ✥✫✪ 

Face E✆F (✞ = 0, � = 0, ✁ = 1): 

✌
✂✭ ✄ ✂✮ ✝ ✔
✏✭ ✄ ✏✮ ✝ ✔
✓✭ ✄ ✓✮ ✝ ✟✯

 (3-9.1) 

✕
✖✭ ✄ ✖✮ ✝ ✟✯ ✡ ✛✘✰✙
✢✭ ✄ ✢✮ ✝ ✟✯ ✡ ✛✜✰✙
✣✭ ✄ ✣✮ ✝ ✟✯ ✡ ✗✰✙

 (3-9.2) 

Abbreviated as ✤✭ ✄ ✤✮ ✝ ✥✮✭ 

Equation (3-7.1) gives the coordinate changes between all corresponding points on 

face A and B while through translational symmetry transformations. The notation ✂☎ 

and ✂☛ indicate the ✂ coordinates of all corresponding points (excluding the points 
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on the edges and vertexes, these points will be treated separately later) on faces A 

and B. 

Equation (3-7.2) is the displacement boundary conditions for the face pair A✆B. 

The notations ✞☛  and ✞�  are relative displacements of all corresponding 

points (excluding the points on the edges and vertices) on faces A and B. These 

notations will be used throughout this work. Similarly, the boundary conditions for 

other face pairs are defined as in the above Equation (3-8) and (3-9). 

In order to derive the boundary conditions for the edges of unit cell, the twelve edges 

of unit cell were grouped into different sets. The grouping rule is: each edge of one 

set is independent of the edges in the rest of the sets. In other words, any edge in one 

set could be obtained by performing translational symmetry transformations on other 

edges in the same set, but cannot be obtained by translate of the edges in other sets. 

According to the grouping rule, three sets were identified from the twelve edges 

(Figure 3.4). Set 1 includes edges ✁, ✁✁, ✁✁✁ and ✁✂. Set 2 includes edges ✂, ✂✁, ✂✁✁ 

and ✂✁✁✁. Set 3 includes edges ✁✄☎ ✄☎ ✄✁ and ✄✁✁. 

 

✝✟✠✡☞✌ ✍✎✏ ✑✒✠✌✓ ✔✕✒ ✖✌☞✗✟✘✌✓ ✙✚ ✗✛✌ ✡✕✟✗ ✘✌✜✜ 
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For Set 1, edges ✞✞, ✞✞✞  and ✞�  could be obtained by performing translational 

symmetry transformations on the edge ✞. The transformation could be defined as 

follows. 

✒
✁✂✄☎✆ ✝ ✆✆✟ ✠✡ ✌ ☛☞ ✍ ✌ ☛☞ ✎ ✌ ✏✑
✁✂✄☎✆ ✝ ✆✆✆✟ ✠✡ ✌ ☛☞ ✍ ✌ ✏☞ ✎ ✌ ✏✑
✁✂✄☎✆ ✝ ✆✓✟ ✠✡ ✌ ☛☞ ✍ ✌ ✏☞ ✎ ✌ ☛✑

 (3-10) 

One group of ✡ , ✍  and ✎  value is selected from the above Equation (3-10), and 

substituted into Equation (3-5). The boundary conditions for edges in Set 1 could 

then be obtained by substituting the assigned Equation (3-5) into Equation (3-1). The 

results are giving as follows. 

✔
✕✖✖ ✗ ✕✖ ✌ ✘✙✚✕✖✖✖ ✗ ✕✖ ✌ ✘✛✜ ✢ ✘✙✚✕✖✣ ✗ ✕✖ ✌ ✘✛✜

 (3-11) 

It is worth noting that Equation (3-11) actually defines three sets of conditions which 

constrain the displacements between different edges. Taking ✕✖✖ ✗ ✕✖ ✌ ✘✙✚  for 

example, the ✕✖✖ ✗ ✕✖ notation indicates the displacements boundary conditions 

for edge ✞ and✞✞. This could be fully expanded as follows. 

✒
✤✖✖ ✗ ✤✖ ✌ ✥✦ ✧ ★✩✪✫
✬✖✖ ✗ ✬✖ ✌ ✥✦ ✧ ★✭✪✫
✮✖✖ ✗ ✮✖ ✌ ✥✦ ✧ ✯✪✫

 (3-12) 

The rest two sets of equation in Equation (3-11) could also be expanded in the same 

way, the details will not be given here. These notations will be used throughout this 

work. 

Similarly, boundary conditions for Set 2 and 3 could be obtained. The results are 

giving as follows. 

✔
✕✣✖ ✗ ✕✣ ✌ ✘✙✚✕✣✖✖ ✗ ✕✣ ✌ ✘✰✱ ✢ ✘✙✚✕✣✖✖✖ ✗ ✕✣ ✌ ✘✰✱

 (3-13) 

✔
✕✲ ✗ ✕✖✲ ✌ ✘✰✱✕✲✖ ✗ ✕✖✲ ✌ ✘✰✱ ✢ ✘✛✜✕✲✖✖ ✗ ✕✖✲ ✌ ✘✛✜

 (3-14) 
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Similarly, the displacement boundary conditions for unit cell vertices should also be 

established separately and independently. It could be found in Figure 3.4 that each 

vertex of the unit cell could be obtained by vertex 1 through translational symmetry 

transformations. For example, the transformation from vertex 1 to vertex 2 could be 

defined as: Vertex 1-2: (✞ = 0, � = 0, ✁ = 1). Thus boundary conditions for the eight 

vertexes could be established, by using the similar method as used to obtain the 

Equation (3-11), Equation (3-13) and Equation (3-14). The results are as follows. 

✝
✂✂
✄
✂✂
☎✆☛ ✌ ✆✟ ✠ ✡☞✍✆✎ ✌ ✆✟ ✠ ✡✏✑ ✒ ✡☞✍✆✓ ✌ ✆✟ ✠ ✡✏✑✆✔ ✌ ✆✟ ✠ ✡✕✖✆✗ ✌ ✆✟ ✠ ✡✕✖ ✒ ✡☞✍✆✘ ✌ ✆✟ ✠ ✡✏✑ ✒ ✡✕✖ ✒ ✡☞✍✆✙ ✌ ✆✟ ✠ ✡✏✑ ✒ ✡✕✖

 (3-15) 

The unit cell for distorted 3D braided composites with parallelepiped packing 

has been established. Periodic displacements boundary conditions for the faces, 

edges and vertexes of this unit cell have also been obtained. They are defined in 

Equation (3-7)-(3-9), Equation (3-11) and Equation (3-13)-(3-15). 

The periodic displacement boundary conditions for other types of unit cells such as 

cubic and hexagonal can be derived by using the same method. 

3.2.4 Extraction of the effective properties 

Macroscopic strains 0
x✚ , 0

y✛ , 0
z✜ , 0

yz✢ , 0
xz✣  and 0

xy✢ as appearing in the boundary 

conditions are physical entities, which can be assigned independent node numbers 

✤✥✦ ✧★✩✤✧✩✦ ✤✪ ✫★✦✬✥✤★✭ ✥✫✦✩✪ ✫★ ✦✩✮★✩✩✪ ✫✯ ✯★✩✩✦✫✰✱ ✲✳✩ ✥✫✦✤✴ ✵✦✬✪✶✴✤✷✩✰✩✥✧✪✸
(dimensionless) at these special degrees of freedom give the corresponding 

macroscopic strains directly, eliminating the need to obtaining them by averaging 

✪✧★✤✬✥✪ ✯★✫✰ ✤✴✴ ✩✴✩✰✩✥✧✪✱ ✹✫✥✷✩✥✧★✤✧✩✦ ✵✯✫★✷✩✪✸✺ ✡✻ ,✡✼ ,✡✽ ,✡✼✽ ,✡✽✻  and ✡✻✼  of a 

dimension of force✾ length can be prescri✿✩✦ ✧✫ ✧✳✩✰ ✤✪ ✧✳✩ ✵✴✫✤✦✪✸✺ ❀✳✬✷✳ ✤★✩
related to the average macroscopic stresses ❁✻❂,❁✼❂, ❁✽❂, ❃✼✽❂ , ❃✽✻❂  and ❃✻✼❂  as follows. 
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(3-16) 

where✞ is the volume of the unit cell. Again, this eliminates the need to obtain 

macroscopic stresses by averaging stresses from all elements. The method for 

extracting average stress and strain offer extremely useful means to simplify the 

post-processing of the FE analysis of unit cells, bearing in mind the post-process of 

averaging stresses and strains is not usually available directly from commercial FE 

codes.  The approach and relationships apply to all unit cells universally provided 

that the unit cell has been appropriately formulated based on rational considerations 

of symmetries. Details can be found in [43, 48, 75]. These special degrees of 

freedom 0
x☎ , 0

y✆ , 0
z✝ , 0

yz✟ , 0
xz✠  and 0

xy✡ are called key degrees of freedom (key dofs) 

and they apparently extremely useful.  Similar key dofs are introduced in the analysis 

for thermal and electric conductivities.  These key dofs are not a part of the unit cell 

as far as the geometry of the unit cell is concerned and therefore their locations can 

be arbitrary.  Their coordinates can all collapse at the origin, if one chooses.  In the 

term☛☞✌✍✌✎✏ ✌✑ ✒✓✔✕✖✗ ✘✒✙✚ ✛✜✢✗✢ ✣✢✏ ✤✌✑✗ ✜✔✥✢ ✓✢✢☞ ☛☞✛✦✌✤✖✧✢✤ ✔✗ ★✦✢✑✢✦✢☞✧✢

✩✌☛☞✛✗✪✫ ✬✜✢ ✣✢✏ ✤✌✑✗ ✦✢✩✦✢✗✢☞✛☛☞✎ ✛✜✢ ✭✔✧✦✌✗✧✌✩☛✧ ✗✛✦✔☛☞✗ ✔✗ ✤✢✗✧✦☛✓✢✤ ✔✓✌✥✢

appear in the equation constraints through which they become physical entities as a 

part of the unit cell. 

✮☛✛✜ ✛✜✢ ✭✔✧✦✌✗✧✌✩☛✧ ✗✛✦✢✗✗✢✗ ✓✢☛☞✎ ✢✯✩✦✢✗✗✢✤ ☛☞ ✛✢✦✭✗ ✌✑ ★✑✌✦✧✢✗✪ ✔✩✩✍☛✢✤ ✛✌ ✖☞☛✛

cells, it is straightforward to obtain all effective properties of the materials 

represented by the unit cells in terms of the key degrees of freedom, 0
x✰ , 0

y✱ , 0
z✲ , 0

yz✳ ,

0
xz✴  and 0

xy✵ , and the applied loads, ✶✷ ,✶✸ ,✶✹ ,✶✸✹ , ✶✹✷ ,✶✷✸  and ✺✻, where ✺✻ is the 

temperature difference imposed to obtain the effective thermal expansion coefficients 

for the materials. The effective properties can be obtained as follows from the 

analysis of the unit cells, where only elastic constants are shown as an illustration 

while thermal and electric conductivities can be expressed in a similar fashion.  

✒✧✧✌✦✤☛☞✎ ✛✌ ✼☛✪✗ ✦✢✗✢✔✦✧✜ ✽79], most of the composite model characterised are 

orthotropic material but, if the macroscopic orthotropy was not present, it would be 

straightforward to evaluate other coupling coefficients in a similar manner. 
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0 0 0 0/ /x x x x xE F V� ✁ ✁✂ ✂ ,   when ✞☛ ✌ ✞✄ ✌ ✞☛✄ ✌ ✞✄☎ ✌ ✞☎☛ ✌ ✆✝ ✌ ✟ 

0 0 0/xy y x✠ ✡ ✡☞ ✍ ,   when ✞☛ ✌ ✞✄ ✌ ✞☛✄ ✌ ✞✄☎ ✌ ✞☎☛ ✌ ✆✝ ✌ ✟ 

0 0 0/xz z x✎ ✏ ✏✑ ✒ ,   when ✞☛ ✌ ✞✄ ✌ ✞☛✄ ✌ ✞✄☎ ✌ ✞☎☛ ✌ ✆✝ ✌ ✟ 

0 0 0 0/ /y y y y yE F V✓ ✔ ✔✕ ✕ ,   when ✞☎ ✌ ✞✄ ✌ ✞☛✄ ✌ ✞✄☎ ✌ ✞☎☛ ✌ ✆✝ ✌ ✟ 

0 0 0/yz z y✖ ✗ ✗✘ ✙ ,   when ✞☎ ✌ ✞✄ ✌ ✞☛✄ ✌ ✞✄☎ ✌ ✞☎☛ ✌ ✆✝ ✌ ✟ 

0 0 0 0/ /z z z z zE F V✚ ✛ ✛✜ ✜ ,   when ✞☎ ✌ ✞☛ ✌ ✞☛✄ ✌ ✞✄☎ ✌ ✞☎☛ ✌ ✆✝ ✌ ✟ 

0 0 0 0/ /yz yz yz yz yzG F V✢ ✣ ✣✤ ✤ ,   when ✞☎ ✌ ✞☛ ✌ ✞✄ ✌ ✞✄☎ ✌ ✞☎☛ ✌ ✆✝ ✌ ✟ 

0 0 0 0/ /xz xz xz xz xzG F V✥ ✦ ✦✧ ✧ ,   when ✞☎ ✌ ✞☛ ✌ ✞✄ ✌ ✞☛✄ ✌ ✞☎☛ ✌ ✆✝ ✌ ✟ 

0 0 0 0/ /xy xy xy xy xyG F V✢ ✣ ✣✤ ✤ ,   when ✞☎ ✌ ✞☛ ✌ ✞✄ ✌ ✞☛✄ ✌ ✞✄☎ ✌ ✆✝ ✌ ✟ 

0 0 /x x T★ ✩✪ ✫ ,   when ✞☎ ✌ ✞☛ ✌ ✞✄ ✌ ✞☛✄ ✌ ✞✄☎ ✌ ✞☎☛ ✌ ✟ 

0 0 /y y T✬ ✭✮ ✯ ,   when ✞☎ ✌ ✞☛ ✌ ✞✄ ✌ ✞☛✄ ✌ ✞✄☎ ✌ ✞☎☛ ✌ ✟ 

0 0 /z z T✰ ✱✲ ✳ ,   when ✞☎ ✌ ✞☛ ✌ ✞✄ ✌ ✞☛✄ ✌ ✞✄☎ ✌ ✞☎☛ ✌ ✟ 

(3-17) 

In obtaining each of the above properties, it is essential that the corresponding stress 

state is obtained.  Although for a given material, represented by a unit cell, many of 

the properties in Equation (3-17) are related, calculating them individually from the 

unit cell analysis and finding out whether the relationships among them are obtained 

properly can serve as valuable checks on the unit cell, in particular, the correct 

application of all the boundary conditions before the unit cell is employed in a more 

sophisticated level of application. 

3.3 Microscale Unit Cell for UD Composites 

On a microscale level, a lamina of a laminated composite, or a yarn within the fibre-

reinforced textile composite, can be regarded as UD composites. The effective 

material properties of UD composites can be predicted based on UD unit cell or RVE 

modelling, where the former one is applicable for UD composites with regular fibre 

distribution, while the latter one represents the UD composites with random fibre 

distribution. 
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3.3.1 UD composite model with a regular fibre distribution 

Typical idealised packing scheme of UD composites are hexagonal and square 

arrangement [48] as shown in Figure 3.5. Both of these have relatively simple 

geometries, and can be readily meshed using a Python Script executable in Abaqus. 

For this type of analysis in UnitCells©, users only need to input the fibre volume 

fraction and material properties of fibre and matrix, while all the following analysis 

process is executed automatically.  It is the �✁✂✄☎✁ ✆✝✞✟✆✂ ✠✝✟✆✝ ✞✡ ☛✝✂ ☛✠✞

arrangements should be used. Internally, half-sized unit cells are used inside 

UnitCells© to reduce the computational effort. The boundary condition imposed for 

this is based on a central reflectional symmetry condition [80]. 

     

☞✌✍ ✎✂✏✌✑✞✒✌✓ ✌✄✄✌✒✑✂✔✂✒☛ ☞✕✍ ✖✗�✌✄✂ ✌✄✄✌✒✑✂✔✂✒☛ 

✘✙✚✛✜✢ ✣✤✥ ✦✢✚✛✧★✜ ✛✩✙✪ ✫✢✧✧✬ ✭✮✜ ✯✰ ✫✮✱✲✮✬✙✪✢✬ 

 

The accuracy of these two types of unit cells can be verified by comparing the 

UnitCell© calculations with the analytical predictions. 

According to the rule of mixtures, the equivalent elastic properties, namely, 

longitudinal (✳✴) transverse (✳✵) and shear (✶✴✵) moduli, as well as and thermal 

expansion coefficients, ✷✴ and ✷✵, of UD composites can be calculated as follows 

[81]. Since the rule of mixtures provides an upper bound estimate for the longitudinal 

stiffness and lower bound estimate for the transverse stiffness [31], it is only used 
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here as some kind of references. More accurate methods [32, 33, 34, 35, 36, 37] are 

available that give more accurate predictions at varying levels of complexity. 

✞☛ ✌ ✞�✁� ✂ ✞✄✁✄ 

✞☎ ✌
✞✄✞�

✁�✞✄ ✂ ✁✄✞�
 

✆☛☎ ✌
✆✄✆�

✁�✆✄ ✂ ✁✄✆�
 

✝☛ ✌
✝✄✞✄✁✄ ✂ ✝�✞�✁�

✞✄✁✄ ✂ ✞�✁�
 

✝☎ ✌ ✁✄✟✠ ✂ ✡✄☞✝✄ ✂ ✁�✒✠ ✂ ✡�✍✝� ✎ ✒✡✄✁✄ ✂ ✡�✁�✍✝☛ 

(3-18) 

where ✁� and ✁✄ are the volume fractions, ✞� and ✞✄  ✏✑✓ ✔✕✓ ✖✗✘✙✚✛✜ ✢✗✣✘✤✥ ✦ ✆� 

and ✆✄  are the shear moduli, ✡� and ✡✄  ✏✑✓ ✔✕✓ ✧✗✥✜✜✗✙✛✜ ✑✏✔✥✗✜✦ ✝� and ✝✄  are the 

★✗✓✩✩✥★✥✓✙✔✜ ✗✩ ✔✕✓✑✢✏✤ ✓✪✫✏✙✜✥✗✙✬ ✭✘✮✜★✑✥✫✔✜ ✯✰✱ ✏✙✣ ✯✲✱ ✣✓✙✗✔✓ ✢✏✔✑✥✪ ✏✙✣ ✩✥bre 

constituents, respectively. 

Alternatively, these properties can be obtained using the square and hexagonal unit 

cells representing the UD composites. Material parameter values for the matrix and 

the fibre in this case are listed in Table 3.1. 

✳✴✵✶✷ ✸✹✺ ✻✴✼✷✽✾✴✶ ✿✽❀✿✷✽✼❁ ❀❂ ❂✾✵✽✷ ✴❃❄ ❅✴✼✽✾❆ ❂❀✽ ❇❈ ❉❀❅✿❀❊✾✼✷❊ 

 Fibre Matrix 

E (GPa) 76 3.5 

❋ 0.2 0.35 

✝ (✠●❍■❏❑❍☛) 5 60 

 

The elastic and thermal properties of the UD composite were obtained over a range 

of fibre volume fractions through the unit cell modelling. These predictions are 

presented in Figure 3.6 alongside with those calculated using analytical expressions 

(3-18). 
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(a) E1                          (b) E2 

 

(c) G12                           (d) ✞☛ 

 

(e) ✞� 

✁✂✄☎✆✝ ✟✠✡ ☞✌✍✎✏✆✂✑✌✒ ✌✓ ✔✕✝ ✝✖☎✂✗✏✘✝✒✔ ✎✆✌✎✝✆✔✂✝✑ ✙✏✘✙☎✘✏✔✝✚ ✛✂✔✕ ✜✒✂✔☞✝✘✘✑✢

✛✂✔✕ ✔✕✌✑✝ ✙✏✘✙☎✘✏✔✝✚ ☎✑✂✒✄ ✆☎✘✝ ✌✓ ✍✂✣✔☎✆✝✑ 
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The comparison shows that the Unit Cells tool calculations and analytical predictions 

agree reasonably well. Some discrepancy between the two sets of predictions is 

presented. However, considering that the rule of mixtures provides just an estimate 

for either the upper or the lower bound, some discrepancies between the predicted 

and analytical results are reasonable and can be expected.  

To illustrate the difference between hexagonal and square unit cell predictions, a set 

of hexagonal and square unit cell models have been analysed. Fibre and matrix were 

defined as isotropic materials, with their properties (elastic constants and thermal 

expansion coefficients) listed in Table 3.1. 

All the unit cells were set to have the same fibre volume fraction (60%). Their 

effective properties obtained by UnitCells© are summarised in Table 3.2.  

�✁✂✄☎ ✆✝✞ ✟✠✠☎✡☛☞✌☎ ✍✎✏✍☎✎☛☞☎✑ ✏✠ ✒✓☞✔☞✎☎✡☛☞✏✓✁✄ ✡✏✕✍✏✑☞☛☎✑ ✖✗✘ ✙✚✛✜✢ 

 Square Hex 

✣✤ (GPa) 46.905 46.969 

✣✥ (GPa) 15.534 12.304 

✣✦ (GPa) 15.534 12.304 

✧✤✥ 0.25 0.252 

✧✥✦ 0.262 0.4 

★✤✥ (GPa) 4.755 4.519 

★✥✦ (GPa) 3.386 4.394 

✣✥

✩✪✫ ✬ ✧✥✦✭
 6.156 4.394 

✮✤ (✫✯✰✱✲✳✰✤) 6.955 6.895 

✮✥ (✫✯
✰✱

✲✳
✰✤) 29.246 30.084 

 

As can be seen, the parameter values obtained with the hexagonal and square unit 

cell are different to some extent, especially those in the transverse direction. The 
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�✁✂✂✄☎✄✆✝✄ ✞✁✟✟ ✠✄ ✡☛☎✄ ☞☎☛✆☛✌✆✝✄� ✁✂ ✍✎✄ ✏☛✌✆✑✒✓ ✡☛�✌✟✌✓ ✁✆ the 45✔ direction to 

the principal axis in the transverse plane to the fibre is evaluated [48]. 

Since the UD composites, in which fibres are distributed at random over their cross 

sections, usually exhibit transversely isotropic characteristics in a statistical sense, 

hexagonal packing captures this feature better than square packing. This was 

reflected by comparing the values of ✕✖ and ✕✗ and those of ✘✖✗ and 
✙✚

✖✛✜✢✣✚✤✥
. For a 

transversely isotropic material, each of the two pairs should share an identical value. 

In order to assess the sensitivity of the mesh size on the predictions, a hexagonal UC 

model of UD composite was created, where the fibre volume fraction was fixed at 

60%, and the material properties of the fibre and matrix were as specified in Table 

3.1. Several cases were generated, where the model was meshed with elements of 

different sizes, so that all the models had different number of elements. The effective 

longitudinal and transverse stiffnesses calculated with those models are shown in 

Figure 3.7 (a) and (b), respectively. 

 

(a) Effective longitudinal stiffness    (b) Effective transverse stiffness 

✦✧★✩✪✫ ✬✭✮ ✯✰✰✫✱✲✧✳✫ ✴✲✧✰✰✵✫✴✴ ✱✶✷✱✩✷✶✲✫✸ ✰✪✹✺ ✻✼ ✽✧✲✾ ✸✧✰✰✫✪✫✵✲ ✺✫✴✾ ✴✧✿✫ 

 

It can be seen that the mesh size does affect the effective stiffness predictions, 

however, convergence of the stiffness predictions was obtained when the mesh was 

sufficiently fine. 
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3.3.2 UD composite model with a random fibre distribution 

In real UD composites, the fibre distribution over the cross section perpendicular to 

the fibres is random, as can be seen from the microscopy image of the UD 

composites shown in Figure 3.8 [47].  The methodology of formulating appropriate 

representative volume elements (RVEs) for micromechanical finite element analysis 

has been established in [47].  As a part of the present project, the analysis has been 

incorporated in UnitCells© such that the analysis and the extraction of the effective 

properties can be made in an automated manner with minimal intervention from the 

user. 

 

�✁✂✄☎✆ ✝✞✟ ✠✁✡☎☛☞✡☛✌✍ ✁✎✏✂✆ ☞✑☛✒✁✓✂ ☎✏✓✔☛✎ ✕✁✖☎✆ ✔✁☞✗☎✁✖✄✗✁☛✓ ✁✓ ✘✙

✡☛✎✌☛☞✁✗✆ ✚✛✜✢ 

 

In order to create a RVE for the UD composites with random fibre distribution, two 

different methods were attempted. 

The first method is referred to as ✣✤✥✦✧★✩ ✪✤✫★✧✬ ✭✧✩✮✯✰✱ ✲✥✰ ✤✩ involves random 

insertion of fibres to blank area. This method is easy to implement, however its 

limitation is that the maximum fibre volume fraction that can be achieved with 

method is relatively low. This is due to the presence of large gaps between fibres, 

which are, however, not large enough to accommodate a new fibre. In particular, in a 

typical example shown in Figure 3.9 it was about 40%, which was much lower than 

that in a conventional UD composite material. 
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�✁✂✄☎✆ ✝✞✟✟ ✠✡☛☞✌✍ ✎✁✏☎✆ ☞✁✑✒☎✁✏✄✒✁✌☛ ✂✆☛✆☎✡✒✆☞ ✄✑✁☛✂ ✓✍✌✔✆ ✎✁✏☎✆✕✍✆✒✖✌☞ 

 

To verify this functionality, the results obtained with the regular and random fibre 

distribution models were compared.  A set of regular unit cells and random RVEs 

were created and the equivalent properties of UD composites for these models were 

calculated. The materials properties of fibre and matrix are summarized in Table 3.3. 

The fibre volume fractions for all types of models were kept constant at 60%. 

✗✡✏✘✆ ✝✞✝ ✙✡✒✆☎✁✡✘ ✚☎✌✚✆☎✒✁✆✑ ✌✎ ✛✁✘✆☛✜✡ ✢-✂✘✡✑✑ ✟✣✤✤ ✒✆✥ ✡☛☞ ✆✚✌✥✦ ☎✆✑✁☛ ✧82★ 

 Matrix Fibre 

E (GPa) 3.35 74 

✩ 0.35 0.2 

 

The RVE model input interface for random UD composites is shown in Figure 3.12 

(a). Both the fibre and the matrix are defined as isotropic materials. If necessary, they 

can be chosen as transversely isotropic or orthotropic as desired. The constituent 

material properties input interface is shown in Figure 3.12 (b). 
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(a) Model parameters 

 

�✁✂ ✄☎✆✝✞✟☎✠ ✡✞☛✡✝✞✆✟✝☞ ☛✌ ✆✍✝ ✎☛✏☞✆✟✆✑✝✏✆☞ 

✒✓✔✕✖✗ ✘✙✚✛ ✜✢✗✖ ✓✣✤✕✥ ✦✧✖ ✥★✗ ✥★✗✖✩✧-✩✗✪★✫✣✓✪✫✬ ✫✣✫✬✭✢✓✢ ✤✗✖✦✧✖✩✗✮ ✯✓✥★ ✜✰

✱✲✳ ✩✧✮✗✬ ✯✓✥★ ✖✫✣✮✧✩ ✦✓✴✖✗ ✮✓✢✥✖✓✴✕✥✓✧✣ 

 

After the model parameters and material properties of matrix and fibre are defined, a 

random RVE shown in Figure 3.11 is generated automatically. Material properties 

for fibre and matrix are assigned automatically as well.  Next, a uniaxial loading is 

applied to the RVE, and the stresses and strains for every element are calculated. 

The results are post-processed automatically as follows. Properties are calculated 

based on the elements within the area marked by the pink frame (Figure 3.11) to 
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avoid boundary effects. The fibre volume fraction within this area is the same as that 

of the whole RVE, which is equal to the predefined fibre volume fraction. Therefore, 

the calculated effective properties should be representative of the properties of the 

UD composite with the same fibre volume fraction. The extraction of the effective 

properties of UD composites is based on strains and stresses obtained for volume 

weighted average to be correct. 

Here, three models with random fibre distribution were considered, which were 

generated based on the same set of parameters (see Figure 3.12(a)). The images of 

the finite element models with random fibre distribution are shown in Figure 3.13. 

     

(a) Random 1                  (b) Random 2                  (c) Random 3 

�✁✂✄☎✆ ✝✞✟✝ �✁✠✁✡✆ ✆☛✆☞✆✠✡ ☞✌✍✆☛✎ ✏☎✌☞ ✑✒✁✓✒ ✔✕✖✎ ✑✁✡✒ ☎✗✠✍✌☞ ✏✁✘☎✆

✍✁✎✡☎✁✘✄✡✁✌✠ ✗☎✆ ✌✘✡✗✁✠✆✍ 

 

The effective properties predicted with these models are summarised in Table 3.4, 

along with the predictions of the UC models with regular fibre distribution, and the 

experimental results from [82]. 

  



51 

�✁✂✄☎ ✆✝✞ ✟✠✠☎✡☛☞✌☎ ✍✎✏✍☎✎☛☞☎✑ ✏✠ ✒✓ ✡✏✔✍✏✑☞☛☎✑ ✕✖✗ ✘✙✚✛✜ 

 ✢✣ 
(GPa) 

✢✤ 
(GPa) 

✢✥ 
(GPa) 

✦✣✤ ✦✤✥ ✧✣✤ 
(GPa) 

✧✤✥ 
(GPa) 

✢✤

★✩✪ ✫ ✦✤✥✬
 

Experimental 
[82] 

45.6 16.2  0.278 0.4 5.83 5.786 5.785 

Square 45.6 14.9 14.9 0.250 0.261 4.56 3.245 5.916 

Hexagonal 45.7 11.8 11.8 0.252 0.401 4.33 4.215 4.215 

Random 1 45.6 12.4 12.8 0.265 0.377 4.61 4.580 4.513 

Random 2 45.1 12.9 12.3 0.251 0.368 4.68 4.453 4.703 

Random 3 45.6 12.5 13.4 0.251 0.387 4.71 4.646 4.517 

 

Comparing the values of the effective properties in Table 3.4, it is easy to see that the 

effective material properties from the RVE models give reasonable representation of 

the transverse isotropy.  Hexagonal packing produces perfect transverse isotropy, 

while the square packing leads to the most severe transverse anisotropy.  The higher 

value of E2 as obtained for the square unit cell is closer to the experimental value, but 

it is at the cost of transverse anisotropy and a much lower transverse ✭✮✯✰✱✲✳

modulus in the 45✴ direction, along the diagonal of the square packing [48]. This can 

be confirmed by comparing the values of ✧✤✥ and 
✵✶

✤✷✣✸✹✶✺✻
. 

Except those from the square unit cell, which tend to present a false image as 

discussed above, the rest of properties obtained from random packing show 

improvement to the regular packing. 

It should be pointed out that due to the randomness in fibre distribution and the finite 

size of the RVE, different cases generated do not produce identical results. This 

discrepancy can be reduced by using RVEs of larger sizes that contain more fibres. 
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3.4 Building the Geometric Model for the Mesoscale UC with Texgen 

for Textile Composites. 

In contrast to the UD composites, for which the microscale unit cell model has a 

relatively simple geometry, textile composites have complicated yarn architecture. It 

is not straightforward to create the geometry model for textile composites within 

FEM software which was Abaqus in the present development. A systematic method 

was needed to be developed to represent the realistic yarns properly. A micro-CT 

image of glass fibre reinforced 3D woven composites is shown in Figure 3.14 [83].  

This development constituted a significant part of the efforts made in the present 

project as it was previously unavailable in UnitCells©. 

 

(a) Top view 

 

(b) Weft direction view 

 

(c) Warp direction view 

�✁✂✄☎✆ ✝✞✟✠ ✡☛☞✌✍-✎✏ ☛✑✒✓✔ ✍✕ ✖✗ ✘✍✙✔✚ ✕✒✛✌☛☞ 
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It is easy to see that the cross sections of yarns are variable and the paths of weft 

yarns are curved. The open source software TexGen was applied to generate variable 

cross section and curved path yarn easily. The Python script interface and internal 

functions of TexGen make it compatible with other software, such as Abaqus and 

Hypermesh. An example the yarn generated using a Python script in TexGen is 

shown in Figure 3.15. 

 

�✁✂✄☎✆ ✝✞✟✠ ✡☛☞✆✌ ☛✍ ✎✏✆ ✑✒☎✓ ✔✁✎✏ ✕✄☎✖✆☞ ✗✒✎✏ ✒✓☞ ✖✒☎✁✒✘✌✆ ✕☎☛✙✙-✙✆✕✎✁☛✓  

 

This yarn was generated by sweeping several predefined cross sections, and the path 

of yarn was defined by the centre points of each cross section. The cross section was 

defined by a power ellipse function, which is available in Texgen. It employs several 

parameters allowing for more realistic representation of the cross section. The 

explicit expression of the power ellipse function is as follows [84]. 

✚✛✜✢ ✣ ✤✥
✦
✧ ★✩ ✪✫ ✬✭✮✛✧✯✜✢ ★✩ ✪✰ ✱✲ ✳✴✧✵ ✶ ✜ ✶ ✳✴✷✵

✥✦✧ ✸✩ ✪✫ ✬✭✮✛✧✯✜✢ ★✩ ✪✰ ✱✲ ✜ ✹ ✳✴✧✵ ✺✻ ✜ ✼ ✳✴✷✵  

✽✛✜✢ ✣ ✤
✾
✧ ✛✮✱✿✛✧✯✜✢✢❀✰ ✱✲ ✳ ✶ ✜ ✶ ✳✴✵

✸✾
✧ ✛✸ ✮✱✿✛✧✯✜✢✢❀✰ ✱✲ ✳✴✵ ✶ ✜ ✶ ❁

 

(3-19) 

where ✦ and ✾ are the width and height of the cross section, ❂ is a power which can 

be used to adjust the shape, namely, the cross section becomes elliptic when ❂=1 and 

it becomes rectangular when ❂ ✣0.  The parameter ✩ ✪ defines the offset of the cross 

section along horizontal direction. X(t) and Y(t) are the coordinates of the points on 

the power ellipse. The parameter ✜ varies between zero at zero angle and unity at 
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angle ✄✞. Three typical shape of cross section defined by power ellipse function are 

shown in Figure 3.16. 

 

(a) Case 1 

 

(b) Case 2 

 

(c) Case 3 

�✁✂☎✆✝ ✟✠✡☛ ☞✝✌✁✍✁✎✁✏✍ ✏✌ ✑✒✆✍ ✓✆✏✔✔-✔✝✓✎✁✏✍✔ ✒✔ ✕✏✖✝✆ ✝✗✗✁✕✔✝✔ ✒✎ ✘✁✌✌✝✆✝✍✎
✕✒✆✒✙✝✎✝✆✔ 

 

With the Python script interface and internal functions of TexGen, parametric 

modelling of mesoscale unit cells can be achieved. By modifying the values of the 

parameters and copying, moving and rotating the yarns, numerous types of textile 
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architectures can be created, where yarns can have variable cross sections and curved 

paths. This makes the unit cell models more realistic and allows to achieve 

reasonable yarn volume fractions. As an illustration, some unit cell models generated 

in TexGen using Python scripts are shown in Figure 3.17. 

 

(a) Straight interlock weave (Yarn volume fraction: 78.5%) 

 

(b) Two layers warp yarn orthogonal weave (Yarn volume fraction: 60.9%) 

 

(c) Three layers warp yarn orthogonal weave (Yarn volume fraction: 60.68%) 

�✁✂✄☎✆ ✝✞✟✠ ✡✆☛☞✆ ✂✆✌✍✆✎☎✁✆✏ ✑✌☎ ✎✒☎✆✆ ✎✓✔✆✏ ✌✑ ✄✕✁✎ ✖✆✗✗✏ ✂✆✕✆☎☛✎✆✘ ✙✓ ✚✓✎✒✌✕

✏✖☎✁✔✎✏ 
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The unit cell models in Figure 3.17 have curved warp yarn paths, variable cross 

sections of the yarns and realistic yarn volume fraction, which suggests this method 

be applicable to representing the geometry of 3D textile composites efficiently. 

3.5 Periodic Mesh for Mesoscale Model 

Since the geometric models of 3D textile composites are complex and irregular, the 

greatest challenge in generating the unit cells for these materials is the meshing. 

Because of the complex yarn structures, it is not straightforward to ensure the 

correspondence of the nodes in a pair of opposite faces, which is the basic 

requirement for applying the periodic boundary condition. 

Three different mesh methods were integrated in UnitCells© toolbox. The methods 

satisfy different precision requirements, for example, voxel mesh is suitable for 

stiffness predictions, but not suitable for predicting the stress field. A specific 

meshing method can be selected by the user and prior to analysis. 

3.5.1 Voxel mesh generation in TexGen 

An approximate voxel mesh (Figure 3.18) can be exported from TexGen directly. 

Since the yarn paths in 3D textile composite model are curved, and the material 

behaviour within the yarns is transversely isotropic, it is necessary to define the local 

coordinate system for the yarns at every point. In TexGen, the local coordinate 

system within the yarns is defined automatically once the geometry was created. The 

local coordinate system for every element is recorded to a file when the voxel mesh 

is exported to an Abaqus input file. 

 

�✁✂✄☎✆ ✝✞✟✠ ✡☛☞✆✌ ✍✆✎✏ ✑☛☎ ✒✌✓✁✔ ✕✆✓✖✆ ✍☛✗✆✌ 
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A Unit cell model with voxel mesh makes it possible to calculate the effective elastic 

properties with reasonable accuracy. However, it becomes inapplicable when 

analysis is extended to effective strength calculations, as described in Chapter 4. The 

stress distribution at the yarn/matrix interface is unrealistic, because the surfaces are 

not smooth. Therefore, the unit cell model with voxel mesh cannot predict the 

realistic stress concentration at the interface, which leads to an underestimation of the 

effective strengths.  An example of non-smooth stress distribution within the unit cell 

model of a plain weave composite under uniaxial tensile loading along the x-

direction is shown in Figure 3.19. 

 

�✁✂✄☎✆ ✝✞✟✠ ✡☛☎✆☞☞ ✌✁☞☛☎✁✍✄☛✁✎✏ ✑✁☛✒✁✏ ✓ ✔✎✕✆✖ ✗✆☞✒✆✌ ✄✏✁☛ ✘✆✖✖ ✗✎✌✆✖ ✄✏✌✆☎

✄✏✁✓✕✁✓✖ ☛✆✏☞✁✖✆ ✖✎✓✌✁✏✂ ✁✏ ☛✒✆ ✙-✌✁☎✆✘☛✁✎✏ 

 

3.5.2 Tetrahedral mesh generation with Hypermesh 

A method of generating periodic mesh has been developed employing the advanced 

meshing capability of Hypermesh in order to achieve a smooth yarn/matrix interface 

within a unit cell. The geometric model as generated in TexGen was imported and 

meshed using command file of Hypermesh following the steps as outlined below.  

First, a periodic 2D mesh was created on the surfaces of the unit cell. In order to 

create identical meshing on the opposite surfaces of the unit cell, the mesh generated 

on one face was projected on the opposite face. The identical 2D mesh generated on 

one pair of faces is shown in Figure 3.20. 
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Comparing the contour plots of von Mises stress shown in Figure 3.22 and Figure 

3.19, it is easy to see that the stress values are close, which suggests that effective 

stiffnesses predicted with the models with tetrahedral mesh and voxel mesh are 

similar.  

Since the elements for the periodic tetrahedral mesh model are created in Hypermesh, 

the local coordinate system for the mesh cannot be defined directly, because of the 

complicated yarn architecture of textile composites. This issue was tackled by 

developing a method of incorporating an appropriate functionality of TexGen, which 

can return local coordinate system for a material point according to its coordinates. 

After the tetrahedral mesh was generated in Hypermesh, the coordinates of the 

centroid of every element were calculated and recorded into a file. Next, a Python 

script was run in TexGen to define the local coordinate system for every element and 

output to an orientation file. This was linked to the Abaqus input file before it was 

submitted to analysis. All the mesh generation process as described above is 

executed automatically in UnitCells© toolbox. 

3.5.3 Smooth hexahedral mesh 

The method of periodic mesh generation, as introduced in the previous section, 

allows defining smooth matrix/yarn interface. However, within Hypermesh, only 

tetrahedral element meshing can be applied together with the 2D mesh projection 
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method. These elements have a lower accuracy than the hexahedral elements. 

Therefore, a method of applying hexahedral element meshing to the mesoscale unit 

cells has been developed. 

For that, a mesh smoothing algorithm was applied to transfer a voxel mesh into a 

smooth hexahedral mesh. Specifically, an automatic mesh smoothing method 

proposed by Boyd and Müller [ 85 ] was adapted and extended. It is based on 

computationally efficient fairing technique developed for smoothing the polygonal 

surfaces [86, 87], and it was extended here to the finite element meshes. 

The process can be divided into two steps, signal processing and smoothing 

processing. 

1) Signal processing 

In the signal processing, all the neighbourhoods (connected nodes) of each node will 

be identified. According to the number of neighbourhoods and the material type of 

neighbourhoods, all nodes in the 3D mesh are labelled in a hierarchical order. The 

nodes can be classified as four main groups (Figure 3.23): (1) fixed nodes at the 

corners of the unit cell, (2) interior nodes of the unit cell, (3) nodes at the matrix/ 

yarn interface and (4) surface nodes on the sides of the unit cell. 

 

�✁✂✄☎✆ ✝✞✟✝ ✠✡✡✄☛☞☎✌☞✁✍✎ ✍✏ ✎✍✑✆☛ ✒✆✡✍✎✂✁✎✂ ☞✍ ✑✁✏✏✆☎✆✎☞ ✎✍✑✆ ✂☎✍✄✓☛ 

 

Some of the nodes belong to both surface and interface, these nodes have to be 

classified as a new group. Finally, all the nodes can be divided into ten sub groups 

based on the four main groups as follows. 
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1---fixed nodes 

2---interior nodes 

3---interface nodes 

4---surface nodes 

5---interface and ✞surfaces nodes 

6---interface and � surfaces nodes 

7---interface and ✁ surfaces nodes 

8---interface and ✞- direction edges nodes 

9---interface and �- direction edges nodes 

10---interface and ✁- direction edges nodes 

2) Smoothing processing 

Based on the neighbourhood group definition, a Laplacian smoothing operator was 

defined for each node with weights ✂☛✄ for each related neighbour, resulting in a set 

of displacements: 

☎✆☛ ✌ ✝✂☛✄✒✆✄ ✟ ✆☛✠
✄✡☛☞

 (3-20) 

where weights ✂☛✄ are non-negative numbers that add up to unity for each node: 

✝✂☛✄ ✌ ✍
✄✡☛☞

 (3-21) 

If all the nodes all treated as having the same importance, the weight ✂☛✄  can be 

defined as: 

✂☛✄ ✌
✍
✎✏✑✎

 (3-22) 

where ✎✏✑✎ is the number of nodes which related to the current node✏✑. 
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Displacements✄✞☛  form the signal to which low pass filtering via Laplacian 

smoothing can be applied. The Laplacian transfer function is✞☛
✑ ✌ ✞☛ � ✁✂✞☛, where 

✁ is a scaling factor☎ ✆ ✝ ✁ ✝ ✟, can be applied a number of times (✠) to achieve a 

desired degree of smoothness. 

Although Laplacian smoothing is a linear operation and it is efficient for large 

meshes, it sometimes results in over-smoothing and hence undesirable mesh 

✡☞✍✎✏✒✓✔✕✖ ✗☞✕ ✡✘✙✚✛✎✘✏ ✛✘ ✛☞✎✡ ✜✍✘✢✙✕✣ ✎✡ ✛☞✕ ✒✕✤ ✘✥ ✗✓✚✢✎✏✦✡ ✥✓✎✍✎✏✔ ✓✜✜✍✘✓✧☞ ★86], 

where the transfer function is modified to: 

✞☛✑ ✌ ✩
✞☛ � ✁✪✞☛☎ ✫✬ ✠ ✫✭ ✮✯ ✰✱✰✯ ✯✲✳✴✰✵
✞☛ � ✶✪✞☛☎ ✫✬ ✠ ✫✭ ✮✯ ✷✸✸ ✯✲✳✴✰✵  (3-23) 

Through careful selection of✁  and ✶  an effective band-pass frequency for the 

transfer function is set by applying a number of smoothing iterations. This result in a 

low pass filters which does not cause polygonal mesh shrinkage. The restriction on 

choice of ✁ and ✶ proposed in [86] is as follows. 

✹✺✻ ✌
✟
✁

�
✟
✶

✼ ✆ (3-24) 

The values of✁, ✶ and ✹✺✻ have been chosen as follows [86]. 

✁ ✌ ✆✽✾✿✟,      ✶ ✌ ❀✆✽✾❁✿,         ✹✺✻ ✌ ✆✽✟ (3-25) 

The larger the number of smoothing iterations executed, the smoother the mesh. 

However, this makes the process more computationally expensive. In present work, 

after trial and error on the effects of the outcomes, it was concluded that 500 

iterations were sufficient for obtaining a sufficiently smooth mesh. As an illustration, 

the shrinking and non-shrinking meshes after repeating the smoothing process 500 

times are shown as Figure 3.24. 

 

(a) Voxel mesh             (b) Shrinking mesh                 (c) Non-shrinking mesh 

❂❃❄❅❆❇ ❈❉❊❋ ●❍❍❅■❏❆❑❏❃▲▼ ▲◆ ■❖❆❃▼P❃▼❄ ❑▼◗ ▼▲▼-■❖❆❃▼P❃▼❄ ■❘▲▲❏❖ ❘❇■❖ 
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With the mesh smoothing algorithm, voxel meshes for all types of mesoscale unit 

cells can be converted to smooth hexahedral mesh automatically. Some examples are 

shown in Figure 3.25 to illustrate the capability of this mesh smoothing method. 

 

 

(a) Plain weave model 

 

(b) 5-axial 3D braided model 

 

(c) Orthogonal interlock model 

�✁✂✄☎✆ ✝✞✟✠ ✡☛☞✆✌ ✍✆✎✏ ✑✒✓ ✎✍☛☛✔✏ ✏✆☞✑✏✆✓☎✑✌ ✍✆✎✏ 
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It can be concluded that the mesh smoothing algorithm introduced in this section is 

applicable for generating meshes for the unit cell models of composites with 

complex textile architectures. 

3.6 Development of UnitCells© 

To facilitate the unit cell modelling process, an automatic multi-scale composite 

material characterisation Python script code UnitCells© [73, 88, 89, 90] was adopted 

and extended. Initially, the Python script code UnitCells© were created by Li and 

Jeanmeure [89, 90] for carrying out unit cell modelling and subsequent composite 

material characterisation. These covered hexagonal and square unit cells representing 

the UD composites, and cubic unit cell for particle reinforced composites, with a 

primitive attempt made to the plain weave textile composite. The scripts ran on 

Abaqus [ 91 ] to calculate the effective stiffnesses and coefficients of thermal 

expansion. 

In the current research, these analyses were further extended to a substantial range of 

textile composites based on various types of woven and braided reinforcements. The 

analysis types were extended to strength analysis, flexural analysis, heat conduction 

analysis and electric conduction analysis. 

Using Abaqus as a platform and its Python script programming [91] facility as a 

vehicle, UnitCells© has been established as a fully automated composites 

characterization tool. Moreover, it is capable of drawing relevant functions from 

TexGen [45], an open source code for generating textile composite architectures, to 

generate the desirable textile preform configurations and from Hypermesh [92], a 

commercial FE pre-processor, to generate the appropriate meshes.  In an automated 

manner, correct periodic boundary conditions are imposed and precise loads are 

applied before a complete material characterisation simulation.  The effective 

material properties of the composite are readily obtained from simulation using this 

tool. The characterisation process is also fully controllable through the visual 

interfaces to define relevant geometric and material parameters.  It can also be used 

for multi-scale modelling in the sense that different phases can be characterised in a 

length scale below, e.g. yarns in a textile composite as UD composites. The flow 

chart of UnitCells© is given in Figure 3.26. 
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�✁✂✄☎✆ ✝✞✟✠ �✡☛☞ ✌✍✎☎✏ ☛✑ ✒✓✁✏✔✆✡✡✕✖ 

 

This automatic multi-scale composites characterisation toolbox UnitCells© can be 

used to calculate the effective properties of UD composites, particulate-reinforced 

composites, laminate composites, 2D woven composites, 2D braided composites, 3D 

woven composites and 3D braided composites. These effective properties include 

stiffness, thermal expansion, quasi-static strength, thermal conductivity and electrical 

conductivity. 

✗✘ ✙✚✛✜✢ ✣✤ ✥✢✚✛ ✦✧✧✚✢✢★ ✦ ✘✚✩ ✜✣✪✥✫✚ ✧✦✫✫✚✪ ✬✭✘✮✙✯✚✫✫✢✰ ✩✦✢ ✦✪✪✚✪ ✙✣ ✙✱✚ ✚✲✮✢✙✮✘✳

list of modules in Abaqus. The main window of UnitCells© is shown in Figure 3.27. 

Various buttons can be found on the left hand side of the window.  They can be 

clicked to select the type of the unit cell to be created for the characterisation of the 

composites it represents.  Once the type of the unit cell has been selected, the user is 

prompted by various pop-up windows to define the details of the architecture of unit 

cell and the properties of the constituent materials.  These are all carried out in an 

interactive manner.  User can also use the menu or buttons in the main window to 

open user manual and refresh the screen.  Any created unit cell can also be saved for 

retrieving on a later date, although the current set up as user exit from UnitCells© 
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will always be kept as the default value for next access to the same type of unit cell. 

None of the existing functionalities of Abaqus is affected by the installation of 

UnitCells©. 

 

�✁✂✄☎✆ ✝✞✟✠ ✡☛✁☞ ✌✁☞✍✎✌ ✎✏ ✑☞✁✒✓✆✔✔✕✖ 

 

In order to make this toolbox easy to update, a verification program was included. 

The verification program will run to check each analysis type of all the unit cells 

when the user clicks the verification button. 

3.7 Sanity Checks as Means of Verification 

Verification is needed when a new version of a model is established. For UnitCells©, 

the verification process is used to ensure that the mesh generated has met the 

requirements, the boundary conditions have been imposed to the unit cell precisely, 

the stress states have been applied correctly and the data extraction (post-processing) 

is performed logically. 

Sanity checks are essential for verifying the formulation and implementation of the 

unit cells, ensuring acceptability of mesh, strict imposition of boundary conditions, 

correct application of stress states and logical performance of data extraction (post-

processing). They are carried out for all the unit cells for all types of the analysis, 

which usually help to eliminate most of the mistakes in analyses of unit cells. The 

procedure is summarised as follows. 
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1) With the exception of the unit cells for porous materials, all unit cells have 

�✁✂✄☎✆✝✁✄ ✞✟✠✁✡☛☞ ✌✍✄✌✎✟✏ ✑✡☛✍ ✠✒✒ phases involve being given the same material 

properties. 

2) Perfectly uniform stress and strain fields are obtained. 

3) The uniform stresses or strains coincide with the stress states as prescribed, 

e.g. the prescribed values, a uniaxial stress state, and the strains corresponding to a 

uniaxial stress state. 

4) These stresses and strains are related to each other according to the material 

✓☎✝✓✄☎☛✡✄✟ ✠✟✟✡✆✁✄✂ ☛✝✔ ✄✕✆✕ ✖✝�✁✆✏✟ ✗✝✂�✒✡✔ ✟✍✄✠☎ ✗✝✂�✒✡ ✠✁✂ ✘✝✡✟✟✝✁✏✟ ☎✠☛✡✝✟✕ 

5) The obtained effective properties are identical to those used to define the 

material as input. 

As an illustration for the procedure of sanity check, unit cell models of 4-axial and 5-

axial 3D braided composites were generated using UnitCells© toolbox, and a 

thermo-mechanical analysis was performed with them. The unit cell models for these 

composites are shown in Figure 3.28. 

       

(a) 4-axial 3D braided          (b) 5-axial 3D braided 

✙✚✛✜✢✣ ✤✥✦✧ ★✩✪ ✫✬ ✤✭ ✮✢✯✚✰✣✰ ✱✫✲✳✫✪✚✴✣✪ ✵✮✢✯✚✰✚✶✛ ✯✶✛✷✣✸✦✹✥✧✺✻ ✼✽ ✸✾✿❀❁ 
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Both the matrix and the fibre phases of the unit cells were assigned the same 

assumed material properties as given in Table 3.5. 

�✁✂✄☎ ✆✝✞ ✟✠✠✡☛☎☞ ☛✁✌☎✍✎✁✄ ✏✍✑✏☎✍✌✎☎✠ ✁✠ ✌✒☎ ✎✓✏✡✌ ✔✑✍ ✠✁✓✎✌✕ ✖✒☎✖✗✠ 

✘ (GPa) 3.01 

✙ 0.3 

✚ (✛✜✢✣✤✥✢✦) 60 

 

To run the analysis process, the user only needs to input some necessary parameters 

to generate the model, such as geometry parameters and material properties for 

matrix and yarn. The model parameters and material properties for this sanity check 

are given in Figure 3.29. 

Seven loading cases are considered, six of them being uniaxial stress states of unity 

stress magnitude, and a temperature loading case corresponding to a uniform 

temperature increase of 1✧C. 

Under loading with macroscopic uniaxial stress 0
1 1★ ✩ , the obtained microscopic 

stress field should be completely uniform. Therefore, the predicted values of stress 

components should be precisely 1 1✪ ✫  and 2 3 23 13 12 0✬ ✬ ✭ ✭ ✭✮ ✮ ✮ ✮ ✮  as plotted in 

Figure 3.30 and one has to make sure that any discrepancy is no more than the 

rounding errors as shown in the 12✯  contour plot.  It is worth noting that the 

multicolour stress or strain contour plots obtained in the sanity checks usually 

suggest modelling issues, unless the plot legend indicates that the variation over the 

colour bar is truly negligible.  Similarly, the microscopic strain field should be 

uniform, with values given by 1 1 / E✰ ✱✲ , 2 3 1 / E✳ ✳ ✴✵✶ ✶ ✷  and 23 13 12 0✸ ✸ ✸✹ ✹ ✹ . 

The predictions for the remaining five load cases are assessed in exactly the same 

way. Under the temperature loading, all microscopic stresses should vanish, as well 

as the shear strains.  At temperature increase of 1oC, the magnitudes of the direct 

strains should be equal to the input values of the thermal expansion coefficient. The 

predicted effective properties are shown in Figure 3.31 and they should be equal to 

the input parameters. 
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(a) Model parameters for 4-axial 3D braided unit cell 

 

(b) Model parameters for 5-axial 3D braided unit cell 

 

(c) Material properties for 4-axial and 5-axial 3D braided unit cells 

�✁✂✄☎✆ ✝✞✟✠ ✡☛☞✄✌ ✍✎✌✎ ✏✑☎ ✒✎☛✁✌✓ ✔✕✆✔✖✒ ✑✏ ✌✕✆☎✗✑-✗✆✔✕✎☛✁✔✎✘ ✎☛✎✘✓✒✁✒ 
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�✁✂✄☎✆ ✝✞✝✟ ✠✡☛✆ ✡☞ ✌✍✆ ✎✁✏✌☎✁✑✄✌✁✡✒✏ ✡☞ ✏✌☎✆✏✏✆✏ ✡✓✆☎ ✌✍✆ ✔-✕✖✁✕✗ ✝✘ ✑☎✕✁✎✆✎ ✄✒✁✌

✙✆✗✗ 

 

       

(a) 4-axial 3D braided          (b) 5-axial 3D braided 

�✁✂✄☎✆ ✝✞✝✚ ✛☞☞✆✙✌✁✓✆ ✜☎✡✜✆☎✌✁✆✏ ✜☎✆✎✁✙✌✆✎ ✁✒ ✏✕✒✁✌✢ ✙✍✆✙✣ 
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The sanity checks will to a large extent to ensure that the following aspects have 

been dealt with correctly. 

a) The input data have been taken in and processed correctly; 

b) The mesh has been correctly generated topologically; 

c) The mesh generated is suitable for the application of periodic boundary 

conditions; 

d) Periodic boundary conditions have been imposed correctly; 

e) Loads have been applied correctly; 

f) The output has been post-processed correctly. 

The following aspects are NOT covered by the sanity checks. 

a) Whether or not the input data themselves are accurate; 

b) Whether or not the mesh has been sufficiently fine or efficient; 

c) Whether or not the microstructure employed reflects the physical material; 

d) Whether or not the volume fractions are correct. 

These should be verified or validated through other means, such as comparing with 

common sense, analytical results when available, e.g. those from the rule of mixtures 

and ultimately results from carefully conducted experiments. 

Passing the sanity checks is a necessary step for the establishment of any unit cell.  

Before this has been achieved, any attempt at comparison with experimental results 

is futile, no matter how closely the comparisons might be in one respect or another. 

3.8 Effective Stiffness of the Textile Composite 

At present, the UnitCells© toolbox incorporates unit cells models for 3D textile 

composites based on three types of woven and two types of braided reinforcement 

architectures. All the models have passed the necessary sanity checks.  To generate 

some meaningful verification cases with realistic material properties for fibre and 
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matrix, effective elastic properties were calculated for each of them. Material 

properties of the fibre and resin used in this study are listed in Table 3.6. 

�✁✂✄☎ ✆✝✞ ✟✄✁✠✡☛☞ ✌✍✎✌☎✍✡☛☎✠ ✎✏ ✑✒✓✔✟
✕✖

✗✘✙✚ ☎✌✎✛✜ ✍☎✠☛✢ ✁✢✣ ✓✔✤ ☞✁✍✂✎✢

✏☛✂✍☎ 

 Resin (PRIMETM 20LV) [93] Fibre (IM7) [94] 

✥ (✦✧★✩✪) 1140 1780 

✫✬ (GPa) 3.5 276 

✫✭ (GPa) 3.5 19 

✮✬✭ 0.35 0.28 

✮✭✪ 0.35 0.45 

✯✬✭ (GPa) 1.3 9.5 

 

A hexagonal unit cell was used to calculate the effective properties of the 

impregnated yarn. The fibre volume fraction within the yarns was set to as 90%. 

Based on these parameter values, the effective properties of yarns were obtained as 

specified in Table 3.7. 

�✁✂✄☎ ✆✝✤ ✟✄✁✠✡☛☞ ✠✡☛✏✏✢☎✠✠ ✌✍✎✌☎✍✡☛☎✠ ✎✏ ✓✔✤ ✰✱ ✜✁✍✢ ✲✳✴ ✵✶✘✷✸ 

✥ (✦✧★✩✪) ✫✬ (GPa) ✫✭ (GPa) ✮✬✭ ✮✭✪ ✯✬✭ (GPa) 

1720 248.2 15.4 0.29 0.45 7.4 

 

With the effective properties of yarns determined, all five types of textile composites 

as described above were characterised employing appropriate unit cell models for 

woven and braided composites, as shown in Figure 3.32 and Figure 3.28, 

respectively. 

In order to carry out a meaningful comparison of the effective properties of the 

materials considered, all five models were set to have the same yarn volume fractions. 
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Note that for 3D braided composites, yarn volume fraction and yarn angle can be 

specified in the input panel. The warp and weft yarn volume fractions for the 3D 

woven composites cannot be defined explicitly, yet can be obtained as an output of 

the analysis, hence the desirable and also practical yarn volume fractions can be 

defined by adjusting the geometric parameters accordingly. The detailed discussion 

regarding the definition of geometric parameters for the layer-to-layer interlock unit 

cell model is presented in Chapter 8. The user input for model parameters and 

material properties are shown in Figure 3.33. 

 

(a) Layer-to-layer angle interlock 

 

(b) Layer-to-layer interlock 

 

(c) Orthogonal interlock 

�✁✂✄☎✆ ✝✞✝✟ ✝✠ ✡☛☞✆✌ ✍☛✎✏☛✑✁✒✆✑ ✓✡✔☎✏✕ ✡✆✖✒ ✗✔☎✌ ☞☛✘✄✎✆ ✖☎✔✍✒✁☛✌✙ ✝✚✛✕✟✚✛✜ 
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(a) Model parameters input panel;          (b) Elastic properties input panel 

�✁✂✄☎✆ ✝✞✝✝ ✟✠✡✄☛ ✡☞✠✆✌✍ ✎✏☎ ✍☛✁✎✎✠✆✍✍ ✡☎✆✑✁✒☛✁✏✠✍ ✁✠ ✓✠✁☛✔✆✌✌✍✕ 

 

Effective elastic properties predicted with these composite models are summarised in 

Table 3.8, along with the properties of aluminium, which were included for the 

reference. 
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�✁✂✄☎ ✆✝✞ ✟✠✡☛✁☞✌✍✠✎ ✠✏ ✑✒☎ ☎✄✁✍✑✌✓ ☛☞✠☛☎☞✑✌☎✍ ☛☞☎✔✌✓✑☎✔ ✏✠☞ ✕✁☞✌✠✖✍ ✑✗☛☎✍ ✠✏

✑☎✘✑✌✄☎ ✓✠✡☛✠✍✌✑☎✍ 

 Aluminium Layer-to-
layer angle 
interlock 

Layer-to-
layer 
interlock 

Orthogonal 
interlock 

4-axial 3D 
braided 

5-axial 3D 
braided 

✙ (✚✛✜✢✣) 2850 1485.6 1485.6 1485.6 1485.6 1485.6 

E1 (GPa) 72.39 12.543 63.503 35.176 9.4352 15.517 

E2 (GPa) 72.39 67.934 67.819 62.798 9.4362 60.998 

E3 (GPa) 72.39 21.077 10.164 20.405 93.224 75.519 

G12 (GPa) 27.21 3.7247 3.874 3.2766 2.8255 5.0297 

G13 (GPa) 27.21 3.5255 8.3736 3.0695 11.321 10.022 

G23 (GPa) 27.21 3.4287 3.3747 3.0066 11.327 9.9816 

✤12 0.33 0.0601 0.0019 0.0599 0.3269 0.1127 

✤13 0.33 0.2307 0.4717 0.2468 0.0767 0.1475 

✤23 0.33 0.1429 0.4335 0.1816 0.0767 0.0914 

 

Analysing the predictions, it is easy to see that 3D woven composites and 5-axial 3D 

braided composite have stiffnesses along the ✥ -direction (E2) similar to that of 

aluminium. This shows that these types of textile composites can be suitable for 

constructing fan blade casings. Although the effective stiffnesses along other 

directions are lower than those of aluminium, the main load in the fan casing is 

directed along the circumferential direction, which is coincident to the ✥-direction of 

textile composites, therefore having high stiffness in this direction is crucial. 

More importantly, the analysis as presented here suggests that the use of textile 

composites should make the engine more efficient, as the density of textile composite 

is nearly half of the density of aluminium. 

3.9 Summary 

This chapter introduced a piece of software UnitCells© for micro/meso/macro level 

analysis of unit cells representing composites of various micro/meso/macro-
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architectures.  UnitCells© is a previously created Python script code, and it was 

extended extensively within the present research. A graphical user interface was 

created for ease of applications by users. The available models have been extended to 

included randomly packed UD composites and 3D textile composites, the analysis 

types have been extended to cover analyses for effective strengths, thermal 

conductivity and electricity conductivity.  Building on the platform of Abaqus, 

extensions have also been made in the present project to draw a range of facilitating 

functionalities from other established codes including Texgen and Hypermesh for 

mesoscopic architectures of textile composites and mesh generations. A high level of 

automated operations has been achieved. The effective properties of the composites 

concerned can be obtained as the direct outcomes of the highly automated analysis. 

The capabilities of UnitCells© have been illustrated through a range of typical 

examples, including models for UD composites, 3D braided and 3D woven 

composites. 

� ✁✂✁✄☎✆✝✄✞✟ ✠☎✡✞☛✞✟✝✄✞☞✌ ✆☎✄✍☞✎ ✏✁✝✌✞✄✂ ✟✍☎✟✑✒ ✓✝✁ ✞✌✄✡☞✎✔✟☎✎ ✝✌✎ ✞✕✕✔✁✄✡✝✄☎✎ ✔✁✞✌✖

3D braided composites as an example. The methodology introduced was verified by 

running a sanity check. This indicates that the unit cell modelling toolbox works 

properly. 

The effective stiffness of different types of 3D textile composites were calculated 

and compared. The results suggest that the effective stiffnesses of 3D textile 

composites along the circumferential direction are similar with that of aluminium, 

while the density of textile composite is nearly half of the density of aluminium. 

Therefore, it is expected that the use of textile composites should make the engine 

more efficient. 
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Chapter 4  Effective Strength Prediction of Textile Composites at 

Quasi-Static Stress state 

4.1 Introduction  

Applications of textile composites in various fields of mechanical engineering 

require the strength properties of these materials. While standard experiments can be 

carried out to determine some of them, it is impractical to support the phase of 

development on selection of materials and determination of key parameter, as there is 

a vast number of experiments to be conducted.  It is therefore essential to have the 

capability of predicting them theoretically, provided that the predicted values are of a 

reasonable accuracy. The methodology for predicting the elastic properties based on 

unit cell modelling, as presented in Chapter 3, is reasonably well established. It is the 

objective of the present chapter to tackle the effective strengths. Specifically, 

strength predictions can be affected by the local stress distribution and the stress 

concentration between the fibre and matrix. The location of stress concentration will 

vary with the stress states. In other words, textile composites have different failure 

mechanisms at different stress states.  This makes strength prediction of textile 

composites complicated. Furthermore, the damage of the material at a local material 

point results in the stress redistribution during the loading process, which makes the 

strength prediction more challenging. 

In this chapter, a multiscale modelling methodology developed for predicting the 

effective strength of textile composites is presented. 

The failure criteria used in this research for predicting localised failure within a unit 

cell are from open literature. A review of the failure criteria was given in the next 

section as a part of the development before an acceptable criterion was adopted. 

4.2 Review of Failure Criteria 

While for homogeneous isotropic materials, the failure criteria, such as von Mises 

�✁✂✄☎✆✝ ✞✆✂✟✝✆✂✁ ✁✠✡ ☛☞✌✆✍✎ �✁✂✄☎✆✝ ✞✆✂✟✝✆✂☞✠ ✏95], are well-established, the failure 

analysis for composite materials is far from straightforward. Many useful theories for 

prediction the failure of laminates can be found from World-Wide Failure Exercise 
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(WWFE-I and WWFE-II) [96, 97], some of them will be reviewed in next sub 

section, in addition to other well-known criteria often cited in the literature. 

Generally, the failure criteria for composites can be divided into two groups, the 

local criteria and the non-local criteria. 

It should be pointed out that all phenomenological failure criteria are meant to be 

applicable to homogenous UD composites in principle.  Any extrapolation to 

materials other than UD composites, such as a laminate as a material, or a textile 

composite, without appropriate justification represents an abuse of these criteria and 

should be rejected.  The failure criteria reviewed below are all meant to be applicable 

to UD composites although the objective of the present research is to obtain 

something applicable to textile composites.  Obviously the prediction of the failure of 

textile composites is no longer possible to be presented analytically in terms of 

failure functions.  Instead, multiscale modelling has to be resorted to in a numerical 

manner.  However, at the lowest length scale, i.e. the yarns of a textile composite 

which can be treated as a UD composite, an appropriate phenomenological failure 

criterion can be applicable to facilitate the failure prediction at this length scale.  

Other approaches, such as element deletion, will be employed at higher length scales 

in analyses in the corresponding length scale. 

4.2.1 Local failure criteria 

Local failure criteria predict failure based on the stresses or strains at a material point.  

In FE analyses, they are applied at each integration point.  Once the stress or strain 

components at the integration point are calculated, the combination of these 

components as specified by the formulation of a failure criterion is compared with 

the critical value, typically, 1. The material point is considered to have failed once 

the value exceeds the critical one. 

The difference between these criteria is the formulation of stress or strain 

combination, or the failure functions. The simplest form of failure criterion is the 

maximum stress (strain) criterion, which suggests that the material failure occur once 

�✁✂ ✄☎✆✝✄✞✄ ✟✠ �✁✂ ✡☎�✝✟☛ �✁✂ ☛�✡✂☛☛✂☛ ☎☞✌ ☛�✡☎✝☞☛ ✝☞ �✁✂ ✄☎�✂✡✝☎✍✎☛ ✏✡✝☞✑✝✏☎✍ ☎✆✂☛ �✟

their respective strengths exceeds 1. Since there is only one stress (strain) component 

involved in the failure function in this criterion, although the failure function is 
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applied to each stress component individually, it is mainly applicable to failure 

predictions for problems without strong interaction between stress components, i.e. 

�✁✂✄✂ ☎✆ ✝✞✟✠ ✝✞✂ ✡✝☛☎✞☞✞� ✄☞�☎✝ ✝✌ �✁✂ ✆�✄✂✆✆ ☞✞✡ ✆�✄☞☎✞ ☎✞ �✁✂ ☛☞�✂✄☎☞✟✍✆ ✎✄☎✞✏☎✎☞✟

axes to its respective strength while all others are insignificant.  

Under the general stress states, multiple stress (strain) components can contribute to 

the failure of the material. The failure mechanisms vary greatly with material 

properties and the stress state.  

In contrast to the maximum stress/strain criterion, the von Mises criterion includes all 

six stress components [98]. However, it has been developed for predicting the failure 

(yield) initiation in ductile isotropic materials, hence it is not directly applicable to 

composites. 

Hill [ 99 ] modified the von Mises criterion by adding weights to each stress 

component, to make it applicable for defining yielding initiation conditions in ductile 

metals with anisotropy. Tsai adapted this criterion to orthotropic composite material 

[100]. The difference between the strengths along different orientations was reflected 

by changing the coefficients of stress terms. A limitation of this criterion is that it 

does not distinguish directly between tensile and compressive strengths. 

Azzi and Tsai [ 101 ] applied the Tsai-Hill criterion to predict the failure of 

transversely isotopic material such as UD composites. 

Specifically for UD composites, Tsai and Wu developed a criterion [102], employing 

a quadratic failure function of all stress components. It has the capability to account 

for the difference between tensile and compressive strengths. This failure criterion is 

widely applied for strength predictions, although it failed to associate the predicted 

failure with its failure mode as if the failure mode made no difference to the failure. 

Hoffman [103, 104] suggested a modification to the anisotropic yield criterion of Hill 

[99] through inclusion the linear terms of stresses to the quadratic failure function  in 

order to allow different strengths between tensile and compressive direct stresses. 

The Tsai-Wu and Hoffman criteria allow for predicting the strength and failure of 

composites effectively in some cases. The main drawback of these criteria is that 

they do not distinguish between different failure modes. Since the composite 
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materials contain two or more constituent materials with very different properties, 

the stress and strain fields, hence the failure mechanisms within each phase can vary 

drastically from stress state to stress state.  

To distinguish between different modes of failure in a transversely isotropic fibre 

reinforced UD composite, Christensen [105] suggested a failure criterion based on 

seven invariants of the stress tensor. For UD composites two failure modes are 

distinguished, one being matrix dominated, and another being fibre dominated. For 

the matrix dominated mode, the matrix failure was mainly affected by transverse 

stresses and shear stresses, while the longitudinal stress was ignored. For the fibre 

dominated mode, the failure of fibre was caused by longitudinal stress only. 

Rotem [106, 107] proposed another failure criterion for UD composites, which also 

divides the failure of UD composites into fibre failure and matrix failure. However, 

�✁✂ ✄☎�✆✝✞ ✟☎✝✠✡✆✂ ✝☛ ☞✌�✂✄✍✎ ✟☎✝✠✡✆✂ ✏✆✝�✂✆✝☎ ✝✎ controlled by all the stress 

components. 

Hashin [108] developed quadratic failure criteria, which account for four types of 

failure, namely, fibre tensile and compressive, as well as matrix tensile and 

✏✌✄✑✆✂✎✎✝✒✂ ✟☎✝✠✡✆✂✓ ✔☛ ✕☎✎✁✝☛✍✎ ✟☎✝✠✡✆✂ ✏✆✝�✂✆✝☎✖ �✁✂ failure of fibre was mainly 

caused by longitudinal stress. The matrix failure is controlled by two transverse 

stresses and three shear stresses, but the formulations for tension and compression 

are different. 

The Hashin failure criteria were also adopted to predict the failure of fibre reinforced 

polymeric laminae in composite laminates under low energy impact by Batra et al. 

[109]. For impact analysis they added a lamina crush failure mode. They argued that 

the lamina crush mode occurs when the compressive stress in the through-thickness 

direction is larger than a critical value. 

Puck and Schürmann [110, 111] proposed failure criteria for the UD composites 

identify fibre failure and inter-fibre (matrix) failure. According to the criteria 

formulation, two modes are associated with the fibre failure, the first being a tensile 

failure, and the second being a compressive "fibre kinking" failure. For inter-fibre 

failure at in-plane stress states, three different inter-fibre failure modes have been 

identified, referred to as modes A, B, and C. These inter-fibre failure modes are 
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distinguished by the orientation of the fracture planes. Mode A corresponds to a 

fracture angle of 0°. The criterion is invoked if the transverse stress in the composites 

is positive. Mode B failure occurs due to the combined contribution of the transverse 

compressive stress and a longitudinal shear stress, which is below a fracture 

resistance. Mode C failure is initialled by a transverse compressive stress and a 

longitudinal shear stress, which is large enough to cause fracture on an inclined plane 

parallel to fibre direction. 

The failure criteria reviewed above are summarized in Table 4.1. 

�✁✂✄☎ ✆✝✞ ✟✠✡✡✁☛☞ ✌✍ ✍✁✎✄✠☛☎ ✏☛✎✑☎☛✎✁ 

 Tsai-Hill [99, 100]  

✒✓✔✕✕ ✖ ✔✗✗✘
✗ ✙ ✚✓✔✗✗ ✖ ✔✛✛✘

✗ ✙ ✜✓✔✛✛ ✖ ✔✕✕✘
✗ ✙ ✢✣✔✗✛

✗ ✙ ✢✤✔✕✛
✗ ✙ ✢✥✔✕✗

✗ ✦1 

In which, F, G, H, L, M, N are material properties. 

 Azzi-Tsai [101]  

✔✕✕
✗ ✖ ✔✕✕✔✗✗ ✙

✧✗

★✗
✔✗✗
✗ ✙

✧✗

✩✗
✔✕✗
✗ ✦ ✧✗ 

In which, ✧ is the strength in the fibre direction, ★ is the strength in the transverse 

direction, ✩ is the in-plane shear strength. 

 Tsai-Wu [102]  

✒✕✕✔✕✕
✗ ✙ ✒✗✗✔✗✗

✗ ✙ ✒✛✛✔✛✛
✗ ✙ ✒✪✪✔✗✛

✗ ✙ ✒✫✫✔✕✛
✗ ✙ ✒✬✬✔✕✗

✗ ✙ ✢✒✕✗✔✕✕✔✗✗ ✙

✢✒✕✛✔✕✕✔✛✛ ✙ ✢✒✗✛✔✗✗✔✛✛ ✙ ✒✕✔✕✕ ✙ ✒✗✔✗✗ ✙ ✒✛✔✛✛ ✦1 

In which,✭✮ are material properties as follows. 

✒✕✕ ✦
✯

✰✱✲✰✱✳
✴ ✒✗✗ ✦ ✒✛✛ ✦

✯

✰✵✲✰✵✳
✴ ✒✪✪ ✦

✯

✰✗✛
✗ ✴ ✒✫✫ ✦ ✒✬✬ ✦

✯

✰✕✗
✗ 

✒✕✗ ✦ ✒✕✛ ✦ ✖
✯

✢
✶✒✕✕✒✗✗✴ ✒✗✛ ✦ ✖

✯

✢
✶✒✗✗✒✛✛✴ 

✒✕ ✦
✯

✰✱✲
✖
✯

✰✱✳
✴ ✒✗ ✦ ✒✛ ✦

✯

✰✵✲
✖
✯

✰✵✳
 

 Hoffman [103,104]  

✷✕✓✔✕✕ ✖ ✔✗✗✘
✗ ✙ ✷✗✓✔✗✗ ✖ ✔✛✛✘

✗ ✙ ✷✛✓✔✛✛ ✖ ✔✕✕✘
✗ ✙ ✷✪✔✕✕ ✙ ✷✫✔✗✗ ✙ ✷✬✔✛✛ ✙

✷✸✔✗✛
✗ ✙ ✷✹✔✕✛

✗ ✙ ✷✺✔✕✗
✗ ✦1 

where the constants ✷✻, i =1, 9, are nine independent material parameters which 
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can be uniquely determined from six uniaxial tension and compression tests and 

three shear tests. 

 Christensen [105]  

Matrix dominated mode: 

✞�✁☛✂ ✌ ✄☎✆ ✌ ✞✝ ✒✟
✁☛✂✠
✆ ✌ ✁☛✂✁☛✂✡ ✌ ✁☞☛✁☞☛ ✍ �✠ ✎✏ ✑ ✓ ✆✏✔ 

In which, ✞ ✓ ☞
✠ ✕

✖✗✘
✖✗✙ ✟ ☎✚, � ✓ ✖✗✘

✠  

Fibre dominated mode: 

✟✞�✁☞☞ ✌
☎
✆ ✄

☎
✆ ✌ ✞✝ ✁☞☞✠ ✟ ✛☎ ✌ ✞✜✠

✆ ✁✁☞☞ ✍ �✠ 

In which, ✞ ✓ ☞
✠ ✕

✖✢✙
✖✢✘ ✟ ☎✚, � ✓ ✖✢✙

✠ , ✁ ✓ ✣✤✤✥✣✦✦
✠  

 Rotem [106, 107]  

Fibre failure: 

✁☞☞ ✧ ★✩✪ ✫✬ ✟ ✁☞☞ ✧ ★✩✭ 
Matrix failure: 

✄
✮✯✰✱✪
✲★✯

✝
✠
✌ ✳ ✁✠✠

✲★✴✱✪
✵
✠
✌ ✄✁☞✠★☞✠

✝
✠
✧ ☎ 

where ✮✯  ✶✷ ✸✹✺ ✻✼✽✾✿❀✷ ❁✼❂✽❃✽✷ ✼❄ ❁❅✸❆✶❇❈ ✰✱✪  is the tensile failure strain of 

fibre, ★✯ is the strength of matrix, ★✴✱✪ is the transverse tensile strength of fibre. 

 Hashin [108]  

Fibre tensile mode ❉☞☞ ❊ ❋: 

●☞ ✓ ✄✁☞☞★✩✪
✝
✠
✌ ☎
★☞✠✠

✛✁☞✠✠ ✌ ✁☞❍✠ ✜ ✓ ☎ ✫✬ ●☞ ✓
✁☞☞
★✩✪

✓ ☎ 

Fibre compressive mode ❉☞☞ ■ ❋: 

●✠ ✓
❏✁☞☞❏
★✩✭

 

Matrix tensile mode ❉✠✠ ✌ ❉❍❍ ❊ ❋: 

●❍ ✓
☞

✖✗✙✤ ✛✁✠✠ ✌ ✁❍❍✜✠ ✌
☞
✖✤✦✤ ✛✁✠❍✠ ✟✁✠✠✁❍❍✜ ✌

☞
✖❑✤✤ ✛✁☞✠✠ ✌ ✁☞❍✠ ✜ ✓1 

Matrix compressive mode ❉✠✠ ✌ ❉❍❍ ■ ❋: 

●▲ ✓
☞
✖✗✘ ▼✕

✖✗✘
✠✖✤✦✚

✠
✟ ☎◆ ✌ ☞

▲✖✤✦✤ ✛✁✠✠ ✌ ✁❍❍✜✠ ✌
☞
✖✤✦✤ ✛✁✠❍✠ ✟✁✠✠✁❍❍✜ ✌

☞
✖❑✤✤ ✛✁☞✠✠ ✌

✁☞❍✠ ✜ ✓1 
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 Puck [110,111]  

Fibre tensile failure: 

✄
✞☛� ✒✞✁✁ ✌ ✂☎✁✆

✝☎✁ ✟☞☎✠✆✆✡ ✍ ✄ 

Fibre compressive failure: 

✄
✞☛✎ ✏✞✁✁ ✌ ✂☎✁✆

✝☎✁ ✟☞☎✠✆✆✏ ✍ ✄ ✑ ✓✄✔✕✁✆✖✁ 

Inter-fibre failure mode A: 

✗✘✠✁✆
✙✁✆✚

✆
✌ ✘✄ ✑ ✛✜✢✣✤✥ ✙✦�

✙✁✆✚
✆

✘✠✆✆
✙✦�✚

✆
✌ ✛✜✢✣✤✥ ✠✆✆

✙✁✆ ✍ ✄ ✑ ✧✠✁✁
✠✁★✧ 

Inter-fibre failure mode B: 

✄
✙✁✆ ✒✩✠✁✆✆ ✌ ✪✛✜✢✣✫✥✠✆✆✬

✆ ✌ ✛✜✢✣✫✥ ✠✆✆
✙✁✆✡ ✍ ✄ ✑ ✧✠✁✁

✠✁★✧ 

Inter-fibre failure mode C: 

✄
✭✪✄ ✌ ✛✜✜✣✫✥✬ ✮✘✠✁✆

✙✁✆✚
✆

✌ ✒✠✆✆
✯✜✜✰ ✡

✆
✱ ✯✜✜✰

✑✠✆✆ ✍ ✄ ✑ ✧✠✁✁
✠✁★✧ 

In which, ✞✁✁ and ✕✁✆ are the longitudinal uniaxial strain and longitudinal shear 

strain, ✞☛�and ✞☛✎ are the longitudinal tensile and compressive failure strain, ✂☎✁✆ 

is longitudinal P✲✳✴✴✲✵✶✴ ✷✸✹✳✲ ✲✺ ✹✻✼ ✺✳✽✷✼✾ ✝☎✁ is longitudinal tensile modulus of 

the fibre, ✟☞☎ intended to capture the differences in the transverse stresses in the 

fibre and matrix, ✛✜✢✣✤✥ , ✛✜✜✣✫✥  and ✛✜✢✣✫✥  are the slopes of the (✠✆✆ ,✠✁✆ ) fracture 

envelope,✯✜✜✰  is fracture resistance of the stress action plane against its fracture 

due to transverse/ transverse shear stressing,✠✁★  is a "degraded" stress in the 

composite allowing for pre-fibre failure breakage of individual fibres. 

 

In Table 4.1, ✠✿❀  are the stress components expressed in the local material 

coordinates of the yarn, ✙☛� (✙☛✎) the axial tensile (compressive) strength along the 

longitudinal direction, ✙✦�  (✙✦✎) the axial tensile (compressive) strength along the 

transverse direction, ✙✁✆ and ✙✆❁the shear strengths in the longitudinal and transverse 

planes, respectively. 
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4.2.2 Non-local failure criteria 

The local failure models may result in underestimation of the strength of the 

composites. For instance, the experiment for plates with an open hole subjected to 

tensile loading revealed that the maximum stress criterion underestimated the tensile 

strength [ 112 ]. Since composite materials have a complex microstructure, 

complicated concentrations of the stresses and strains are present. The existence of 

voids and micro cracks in the composite also leads to stress concentrations. The 

stress within the composite may locally exceed the strengths at stress concentrations 

points, such as voids and micro cracks, yet the material would not fail. 

To take into account the influence of the stress concentrations (or strain gradients) 

within the composites, non-local failure criteria based on the mean values determined 

over a characteristic range were introduced. 

The basic idea of this approach is to replace a local variable (e.g. stress, strain, 

energy release rate) by its mean value average over a characteristic range [113, 114, 

115, 116]. The characteristic range can be a length, an area or a volume. 

For example, the simple criterion based on the maximum stress ✞☛� ✌ ✞☛�✁✂✄
 is 

replaced by the maximum mean stress calculated over the characteristic volume 

✞☎☛� ✆
✝
✟
✠ ✞☛� ✡ ☞✍✟  and ✞☎☛� ✌ ✞☛�✁✂✄

. Any local failure criteria can be applied here, 

including more complex ones, such as the Hashin [108] failure criteria. 

A number of studies employing various kinds of non-local criteria for predicting the 

strength of composite materials have been reported in the literature. 

Chen et al. [117✎ ✏✑✒✓✔✕✖✗✘✕ ✙ ✚✗✛✙✓✙✗✒✘✓✏✜✒✏✗ ✢✘✑✣✒✛✤ ✗✔✑✗✘✥✒ ✒✔ ✙✗✗✔✖✑✒ ✦✔✓ ✒✛✘ ✘✦✦✘✗✒

of a stress concentration caused by a notch. It was assumed that failure occurs when 

the stress in the 0° plies in a composite laminate over some distance away from the 

notch is equal to or greater than the longitudinal ultimate tensile or compressive 

strength of a unidirectional laminate. They suggested that the value of this 

✚✗✛✙✓✙✗✒✘✓✏✜✒✏✗ ✢✘✑✣✒✛✤ be determined by fitting the predictions against the 

experimental data. 
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Hochard et al. [115, 116] proposed a non-local criterion for laminated structures 

based on woven plies. Three internal damage variables were introduced, being 

related to the associated thermodynamic force. Instead of applying a failure criterion 

at a single material point, the mean of the associated force over a characteristic 

volume was used. The characteristic volume was defined as a cylinder in [115]. Its 

height was equal to the ply thickness and the diameter was defined as the 

characteristic length. The value of the characteristic length was regarded as a 

material property, which is independent to laminate configuration, geometry and 

stress distribution. 

Pyttel et al. [118] presented a non-local failure criterion for laminated glass subjected 

to an impact. It postulates that a critical energy threshold must be reached over a 

finite region before failure can occur. The finite region is a circle on the point of first 

impact. 

Instead of using mean average, some non-local criteria adopted weighted average. 

Zhu et al. [119] proposed a micromechanics-based non-local anisotropic failure 

criterion for brittle materials based on energy release rate. The basic idea 

implemented consists in replacing the local energy release rate for each micro crack 

by its weighted average over a representative volume of the material centred at a 

given point.  

It can be concluded that the definitions of the characteristic range can be different 

from case to case: it can be a length, an area or a volume. It can also be determined 

by the geometry and stress distribution [113]. In a one-dimensional bar, the 

characteristic range should be a line segment, the length of which is the characteristic 

length [113]. In laminate composite model [116], the characteristic range can be 

defined as a cylinder. For a normal 3D composite model, the characteristic range can 

be a sphere. 

It should be noted that the rational definition for the size of the characteristic range is 

rarely given by the authors of such studies. Moreover, the shape of the characteristic 

range is sometimes not specified [114]. Nevertheless, some common conclusions can 

be made. The characteristic length (size of the characteristic range) is a material 

property which must be determined by comparing the results of experiments and 
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numerical simulations. Next, the characteristic length is related to the level of 

material in homogeneity (level of stress concentration). As a compromise, 

characteristic length can be determined by comparing the FEM results with 

experimental data. However, experimental data fitting is not an efficient method for 

determining the characteristic length, as it would vary once the geometric/material 

parameters are changed. 

Apart from the definition of the characteristic length, another challenge of using non-

local failure criteria is applying those in finite element modelling. Incorporating non-

local criteria into a material model is substantially more complicated than applying a 

local criterion. Since non-local criteria are based on an average value, the criterion 

has to be applied at the end of a computational step after every Gauss point is 

calculated. Hence an average calculation step has to be added after each original 

incremental calculation step. 

When applying FEM for the analysis of composite materials with non-local criteria, 

the size of the mesh must be smaller than the range in which the mean value is 

calculated. In particular, Hochard et al. [115] reported that even in the high stress 

gradient zones around 10 integration points in the characteristic range are required in 

order to make the mean value stable. 

The non-local criteria make it possible to obtain mesh-independent results, even in 

structures with high stress gradients, which is not the case with most of the 

conventional methods. When a local criterion is used, the force at failure depends on 

the size of the element, and it does not converge if the solution is singular. It should 

be noted that with the local criterion, the results do not match the experimental data 

whatever the size of element used. An experiment of saw cut plate illustrated the 

mesh-independent results of non-local criterion [115]. 

The main challenge of applying non-local criteria is determining the value of the 

characteristic length. No rational method for calculating the characteristic length for 

3D textile composite model could be found in the literature. As a compromise, in the 

model development as presented here, local criteria were adopted. 
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4.3 Failure criteria for multiple scales modelling 

The strength prediction of textile composites is based on multiple scales modelling 

process. At a microscale, a UD unit cell model is used to predict the effective 

properties of yarn. These are assigned to mesoscale unit cell model to predict 

effective properties of textile composites. In both micro- and mesoscale unit cell 

models, failure criteria have to be applied to define the damage initiation within the 

constituent materials. Since unit cell models at different length scales have different 

damage mechanisms, the failure criteria for micro- and mesoscale unit cell models 

should also vary. 

4.3.1 Failure criteria for microscale unit cell model 

For a microscale UD unit cell model, material properties of fibre and matrix were 

used to predict effective properties of yarn. For the matrix, which can be regarded as 

an isotropic material, von Mises and maximum stress failure criteria were applied to 

define the damage initiation conditions. Since the definition of the von Mises failure 

criterion involves all the stress components, it is suitable for failure predictions under 

most of the stress states. However, it does not distinguish tensile and compressive 

failure modes, while for the most resins, the material strengths under tension and 

compression may be quite different. To cover this limitation of von Mises failure 

criterion, the maximum stress failure criterion was applied as follows. 

✞ ✌ �✁ ✂ ✄
☎☛
✆✝
✟
✠☎✡
✆☞

✍ ✎ ✏ (4-1) 

where ☎☛  is the first principal stress, ☎✡  is the third principal stress, ✆✝  is tensile 

strength, ✆☞ is compressive strength. 

On the other hand, the fibre can only fail under longitudinal tensile or compressive 

loading. Therefore, the maximum stress failure criterion as described by the Equation 

(4-1) was applied to define the damage onset stress within the fibres. 

4.3.2 Failure criteria for mesoscale unit cell model 

For the mesoscale unit cell model, considering the complicated composite structure 

and the stress distribution within it, the failure mechanisms are very complex.  
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On the other hand, the failure in UD fibre reinforced composites is understood 

reasonably well. Since a yarn within the textile composites has transversely isotropic 

material properties, it can be treated as a UD composite. Therefore, any failure 

criteria suitable for UD composites can be applied to the yarns within the textile 

composite, such as Tsai-Wu failure criterion [102, 120, 121], or Hashin failure 

criteria [108]. 

Since the Tsai-Wu criterion does not distinguish between the different failure modes, 

the Hashin failure criteria were considered to be more applicable for predicting 

failure within the yarns. The elements in the mesoscale unit cell models are under a 

3D stress state, therefore the full 3D formulation of the criteria was used. The 

explicit expressions defining the four modes of failure for the Hashin failure criteria 

are shown in Table 4.1. Damage is initiated when either of the conditions in the 

equations is satisfied. 

The matrix in the mesoscale unit cell model has the same material properties and 

failure mechanism as the matrix in the microscale unit cell model, therefore the same 

failure criterion can be applied to define matrix failure in the mesoscale model. 

4.3.3 Verification of failure criteria within user material subroutine 

The failure criteria for every component were implemented as user-defined material 

subroutines, UMAT for Abaqus/Standard, and VUMAT for Abaqus/Explicit. In 

order to verify the failure criteria implementation, the predictions obtained with the 

UMAT subroutine are compared with those of the Abaqus/Standard in-built models. 

To verify the von Mises and maximum stress failure criteria subroutines, a 

homogeneous unit cell model was created and loaded under the stress combination of 

✞☛=100 MPa, ✞�=273 MPa, ✂�☛=50 MPa. The von Mises and maximum principal 

stress distributions were calculated by the UMAT subroutine and compared to those 

calculated by Abaqus/Standard as part of stress output. The von Mises and maximum 

principal stress contour plots are shown in Figure 4.1 and Figure 4.2, respectively. 
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�✁✂✄☎✆ ✝✞✟ ✠✡☛ ☞✁✌✆✌ ✌✍☎✆✌✌ ✎☎✡✏ ✑☞✒✓ ✔✕✆✎✍✖ ✗☛✘ ✒✙✗✚✄✌✛✜✍✗☛✘✗☎✘ ✔☎✁✂✢✍✖ 

 

   

�✁✂✄☎✆ ✝✞✣ ☞✗✤✁✏✄✏ ✥☎✁☛✦✁✥✗✕ ✌✍☎✆✌✌ ✎☎✡✏ ✑☞✒✓ ✔✕✆✎✍✖ ✗☛✘ ✒✙✗✚✄✌✛✜✍✗☛✘✗☎✘

✔☎✁✂✢✍✖ 

 

In each case, the predictions obtained with the UMAT subroutine are identical to the 

values calculated by Abaqus/Standard. This verifies the implementation of these two 

failure criteria as a user defined materials subroutine. 

The Hashin failure criteria subroutine predictions were compared against those of the 

Abaqus in-built model. The formulation of Hashin failure criteria as available in 

Abaqus/Standard only applies to the plane stress problems, hence a FE model 

meshed with shell elements was generated in Abaqus/Standard to represent the UD 

lamina under plane stress. On the other hand, the complete 3D failure criteria 

formulation was implemented as a user-defined subroutine, hence, in order to make 

the comparison of predictions meaningful, only in-plane stress loading was applied 

to the solid element model representing the 3D composite. Both models were 

assigned the same material properties. The strengths of IM7 carbon fibre [94] were 

assigned to the FE model. 
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✞☛� ✌ ✄✁✂☎ ✆✝✟, ✞☛✠ ✌ ✡☞✁☎ ✆✝✟, ✞✍� ✌ ☞✎☎ ✆✝✟, ✞✍✠ ✌ ☞✏✄ ✆✝✟ (4-2) 

The models were consecutively loaded in tension and compression in longitudinal 

and transverse material directions. For each loading case, the stresses predicted by 

both models were compared, along with the failure indicators, which should assume 

a value of unity once the failure criterion is satisfied. Legends of contour plot for 

stresses and failure indicator at tensile loading in longitudinal direction are shown in 

Figure 4.3. For both models, once the tensile stress reached a critical value 

✄✁✂☎ ✆✝✟, the failure indicators assumed the value of unity. The same agreement 

between predictions of two models has been achieved by comparing stresses and 

failure indicator values in three remaining loading cases (longitudinal compression, 

transverse tension and transverse compression), from which it can be concluded that 

the two formulations are equivalent. 

   

(a) Abaqus/Standard model                                (b) User-defined subroutine 

✑✒✓✔✕✖ ✗✘✙ ✚✛✕✖✜✜ ✢✒✜✛✕✒✣✔✛✒✤✥ ✦✥✢ ✧✦✒★✔✕✖ ✒✥✢✒✩✦✛✤✕ ✧✤✕ ✛✖✥✜✒★✖ ★✤✦✢✒✥✓ ✒✥ ✧✒✣✕✖

✢✒✕✖✩✛✒✤✥ 

 

4.4 Damage Evolution Modelling 

Once the failure in the yarns is initiated, the material still retains some of its residual 

stiffness before ultimate failure occurs. Therefore, a damage evolution law is needed 

to estimate the value of the residual stiffness. The approach to modelling damage 

evolution was developed based on the damage evolution law proposed by 

Matzenmiller et al. [122], and the stiffness degradation can be represented as follows. 
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✞☞✌ � ✞☛
✁ ✄ ✒✂ ☎ ✆✝✟ ✞☛ � ✞✠✟ ✞✡✟ ✞✍✟ ✎✠✡✟ ✎✠✍✟ ✎✡✍ 

✆ � ✂ ☎ ✏✑✓ ✔
✂ ☎ ✕✖

✗
✘ 

(4-5) 

The final failure of fibre is also defined by the indicator of Equation (4-4). 

For yarn within mesoscale unit cell model, since the stiffness degradation mechanism 

in the yarns is more complicated and depends on the failure mode, an updated 

damage evolution law was developed. Instead of calculating damage variables 

directly, the failure variables ✙☛were calculated first. 

✙☛ � ✂ ☎ ✏✑✓ ✚
✠✛✜✢✣
✖ ✤, (i =1, 2, 3, 4), ✕☛ ✥ ✂ (4-6) 

Using the failure variables ✕✠ ☎ ✕✦  calculated from the Hashin failure criteria 

described in Table 4.1, damage variables related to different failure modes can be 

obtained as follows. 

✆✠ � ✗✧✑✒✙✠✟ ✙✡✝ 

✆✡ � ✆✍ � ✆★ � ✗✧✑✒✙✍✟ ✙✦✝ 

✆✦ � ✆✩ � ✗✧✑✒✙✠✟ ✙✡✟ ✙✍✟ ✙✦✝ 

(4-7) 

Then the effective stiffness can be updated based on these damage variables using 

the following relation. 

✪✞✫✬✬✬✬ � ✭ ✄ ✪✞✫ (4-8) 

In which, 

✪✞✫ � ✮✞✠✟ ✞✡✟ ✞✍✟ ✎✠✡✟ ✎✠✍✟ ✎✡✍✯ 

✭ � ✪✒✂ ☎ ✆✠✝✟ ✒✂ ☎ ✆✡✝✟ ✒✂ ☎ ✆✍✝✟ ✒✂ ☎ ✆✦✝✟ ✒✂ ☎ ✆✩✝✟ ✒✂ ☎ ✆★✝✫ 
(4-9) 

The yarn failed only if the fibre within the yarn failed, thus the final failure of yarn is 

defined by using an indicator as follows. 

✕✧✰✱ � ✲✂ ✒✙☛ ✥ ✳✴✵✶✟ ✰ � ✂✟✷✝
✳ ✏✱✸✏

 (4-10) 

In micro- and mesoscale unit cell model, the element will be regarded as utility failed 

when the indicator ✕✧✰✱ equal to 1. There are two different ways to represent the final 
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failure of element in Abaqus/Explicit user material subroutine VUMAT and 

Abaqus/Standard user material subroutine UMAT. 

Within Abaqus/Explicit, the failed element is deleted directly by setting the element 

deletion related state variable to 0. 

Since the element deletion option is not available in Abaqus/Standard, stresses of the 

element are reduced to zero instead of delete the element explicitly. However, 

reducing stresses to zero in a sudden will cause convergence problem. Therefore, the 

stresses were reduced to zero step by step as follows. 

If ✞�✁✂ ✌ ✄, ☎☞✆ ✌ ✝✟✠ ✡ ☎☛ ✍ ✁ ✌ ✄ ✎ ✏ (4-11) 

 

4.5 Effective Strength Prediction Module in UnitCells© 

With the failure criteria and stiffness degradation expressions defined and 

implemented as Abaqus user material subroutines, the effective strengths of textile 

composites can be predicted. The periodic boundary conditions have been assigned 

and a single load (tensile, compressive or shear) has been applied to the unit cell 

✑✒✓✔✕ ✖✗✘✒✙✚✗ ✖✗✔ ✛✘✔✜✔✘✔✢✣✔ ✤✒✥✢✖✦✧ ✙✢✖✥✕ ✖✗✔ ✑★✣✘✒✦✣✒✤✥✣ ✦✖✘★✥✢ ✘✔★✣✗✔✓ ★

prescribed value (this value depends on the failure strain of the material). The 

displacement and re★✣✖✥✒✢ ✜✒✘✣✔ ✒✜ ✖✗✔ ✛✘✔✜✔✘✔✢✣✔ ✤✒✥✢✖✦✧ ★✘✔ ✙✦✔✓ ✖✒ ✣★✕✣✙✕★✖✔

average stress-strain curves for a complete unit cell model according to the 

formulation described by Equation (3-16). The effective strength in each particular 

loading direction was defined as the maximum stress value on the average stress-

strain curve calculated for this particular loading case. The gradient of the curve 

calculated at the first time increment is the effective elastic modulus of the model 

along this direction. The illustration of a typical stress-strain curve was shown in 

Figure 4.5. 
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�✁✂✄☎✆ ✝✞✟ ✠✡✡✄☛☞☎✌☞✁✍✎ ✍✏ ✌ ☛☞☎✆☛☛-☛☞☎✌✁✎ ✑✄☎✒✆ ✑✌✡✑✄✡✌☞✆✓ ✔✁☞✕ ✌ ✄✎✁☞ ✑✆✡✡ ✖✍✓✆✡ 

 

Strength predictions with unit cell modelling method are strictly based on the 

assumption of microscopic homogeneity in damage distribution. In absence of this, 

e.g. in the late stages of the damage process, the localisation takes place and the 

approach becomes no longer inapplicable.  It is reasonable to expect that the failure 

prediction obtained should be of a conservative nature. 

To process strength prediction analysis automatically, a strength analysis module was 

integrated in UnitCells©, and it can be activated prior to analysis. The process of 

strength analysis in UnitCells© is similar to that of stiffness analysis. The user needs 

to input the model parameters and material properties of the constituents through the 

input windows. UnitCells© will create a geometry model, generate periodic mesh, 

assign periodic boundary conditions, assign material properties for constituent 

components, apply the loads, submit the job and extract effective properties 

automatically. The difference between stiffness prediction and strength prediction is 

that for strength prediction the material behaviour of constituents, incorporating 

damage initiation criteria and damage evolution law proposed in Sections 4.3 and 4.4, 

are defined via the user material subroutines. 

To predict the strength at different stress states, the software automatically generates 

nine single loading cases (three tensile, three compressive and three shear), which are 
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applied to the unit cell model one by one, and average stress-strain curve for each 

case is calculated. An example of nine average stress-strain curves for a unit cell 

model of layer-to-layer interlock 3D woven composites is shown in Figure 4.6. As 

can be seen, all the stress-strain curves are initially linear, which corresponds to the 

elastic response of the material. Beyond the linear elastic regime, softening of the 

stress-strain behaviour occurs, which is associated with the matrix damage. Once the 

stress reaches a certain point, fibre failure is triggered, following which the stress 

values reduce rapidly under the applied loading, typically, beyond the maximum 

point, as observed in stress-strain curves obtained under both tension and 

compression in Y-direction, which is due to the failure of the warp yarn. 

The calculation results suggest that the effective stiffnesses and strengths of the 

model are different along the different directions. This should be expected for the 

layer-to-layer interlock 3D woven composites, which has orthotropic effective 

properties. At the same time, the peak of stress-strain curve for shear in the ✞� plane 

much higher than the other two types of shear loading. This result is also reasonable, 

because the crimped warp yarn improves the material resistance to shear in ✞� plane. 

After loading and generating nine stress-strain curves, UnitCells© extracts the 

effective stiffnesses and strengths from these curves and records them to a report file 

automatically.  
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4.6 Effective Strength of 3D Textile Composites 

The strength prediction module of UnitCells© has been applied to predict the 

effective strengths of three types of 3D woven composites and two types of 3D 

braided composites, for which the elastic analysis can been carried out in Chapter 3 

(see Figure 3.28 and Figure 3.32). For effective strength prediction analysis, elastic 

properties input has been kept the same (Table 3.6), and it was supplemented with 

strength properties of the constituents as specified in Table 4.2. 

�✁✂✄☎ ✆✝✞ ✟✠✡☎☛☞✠✌ ✍✡✎✍☎✡✠✏☎✑ ✎✒ ✓✔✕✖✗
✘✙

✞✚✛✜ ☎✍✎✢✣ ✡☎✑✏☛ ✁☛✤ ✕✖✥ ✦✧ 

 Resin (PRIMETM 20LV) [93] Fibre (IM7) [94] 

St (MPa) 73.0 5600 

Sc (MPa) 120.0 3500 

m 0.3 0.3 

 

The first step of the analysis involved definition of the effective stiffnesses and 

strengths of the yarns based on UD unit cell modelling. The average stress-strain 

curves of the UD unit cell model calculated for nine uniaxial loading cases are shown 

in Figure 4.7.  

The calculation was based on a hexagonal unit cell, which is transversely isotropic 

within the elastic range.  Beyond that range, the stress-strain curves along the ★- and 

✩ -directions may no longer be identical.  The average value along these two 

directions was used to represent the properties in the transverse direction. The 

predicted strengths of the yarns are summarised in Table 4.3.  
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(a) Longitudinal tension and compression 

 

(b) Shear and transverse direction loading 

�✁✂✄☎✆ ✝✞✟ ✠✡☎✆☛☛-☛✡☎☞✁✌ ✍✄☎✎✆☛ ✏✑☎ ✍☞✒✍✄✒☞✡✆✓ ✏✑☎ ✔✕ ✄✌✁✡ ✍✆✒✒ ✖✑✓✆✒ 

 

✗☞✘✒✆ ✝✞✙ ✚✏✏✆✍✡✁✎✆ ☛✡☎✆✌✂✡✛☛ ✑✏ ✜✢✟ ✣� ✤☞☎✌ ✥✦✧★✩✪✫✬ 

SXt (MPa) SXc (MPa) SYt (MPa) SYc (MPa) Sxy (MPa) Syz (MPa) m 

5090.9 3130.3 68.5 106.0 52.7 52.2 0.3 

 

In the mesoscale unit cell, the constitutive behaviour of the yarns and the matrix was 

represented by a user defined material subroutine, incorporating the failure criteria 

and damage evolution law as described in Section 4.3 and Section 4.4. The effective 
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properties of the yarns and matrix were defined as the input properties for the user 

defined material subroutine. 

In this case, the Hashin [108] failure criteria was used to predict damage initiation in 

yarns and the maximum stress failure criteria was used to predict the damage 

initiation in the matrix. The damage evolution law extended from �✁✂✄☎✆✝✞✟✟☎✠✡☛

[122] theory was used to represent the stiffness degradation of both matrix and yarn. 

If the failure criteria and damage evolution law changes to a different one, the 

predicted result will be different. The interfaces of strength prediction are similar to 

the interfaces of stiffness prediction (Figure 3.33) but with two more input panels to 

define the failure criteria and strength properties for matrix and yarn, which are 

shown in Figure 4.8. 

 

 

(a) Criteria parameters input panel        (b) Strength properties input panel 

☞✌✍✎✏✑ ✒✓✔ ✕✖✗✎✘ ✌✖✘✑✏✙✚✛✑ ✗✚✖✑✜✢ ✙✣✏ ✢✘✏✑✖✍✘✤ ✚✖✚✜✥✢✌✢ ✌✖ ✦✖✌✘✧✑✜✜✢★ 
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Nine unidirectional loading cases were simulated for the mesoscale unit cell model, 

and the calculated stress-strain curves were processed in the same way as the UD 

unit cell. The predicted strength values are summarised in Table 4.4. 

�✁✂✄☎ ✆✝✆ ✞✟✠☎✡☛✟☞✌ ✍✠☎✎✏✑✟☎✎ ✒✓✠ ✎✏✒✒☎✠☎✡✟ ✟✔✍☎✌ ✓✒ ✕✖ ✟☎✗✟✏✄☎ ✑✓✘✍✓✌✏✟☎✌ 

Type Aluminium Layer-to-
layer 
angle 
interlock 

Layer-to-
layer 
interlock 

Orthogonal 
interlock 

4-axial 
3D 
braided 

5-axial 
3D 
braided 

SXt (MPa) 350 65.63 433.51 633.59 68.21 61.18 

SXc (MPa) 350 92.40 389.72 571.89 104.77 113.12 

SYt (MPa) 350 1486.30 1486.30 1321.10 68.17 1218.40 

SYc (MPa) 350 1170.40 1166.10 1082.90 104.72 1002.70 

SZt (MPa) 350 87.53 52.10 90.26 910.20 825.16 

SZc (MPa) 350 103.19 109.87 142.25 579.95 562.62 

Sxy (MPa) 250 37.91 40.35 36.74 42.80 84.02 

Sxz (MPa) 250 40.95 49.79 38.58 170.16 142.45 

Syz (MPa) 250 38.09 35.80 37.55 171.64 173.68 

 

From Table 4.4 it is easy to see that the strength of 3D textile composites along the 

✙-direction (SYt) is larger than that of aluminium, except for 4-axial 3D braided 

composites. The main load in the fan casing during a FBO event is directed along the 

circumferential direction, which is coincident to the ✙-direction of textile composites. 

This means it is more efficient by using 3D textile composites to replace aluminium 

in fan blade casing of aircraft engine. 

4.7 Summary 

This chapter introduced the method of predicting the effective static strength of 

textile composites under unidirectional loading. 
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The maximum stress failure criterion was adapted to indicate damage initiation of the 

matrix and fibre in the microscale unit cell model. The Hashin failure criteria were 

adopted to represent the start of stiffness degradation of yarns in mesoscale unit cell 

model. 

Damage evolution laws were developed based on Matzenmiller�✁ ✂✄✁✄☎✂✆✝ ✞✟

represent the stiffness degradation of matrix, fibre and yarn. 

Failure criteria and damage evolution laws were implemented as Abaqus user 

subroutine and verified by comparing with Abaqus/Standard in-built models. Based 

on these Abaqus user subroutines, strength prediction module were added to 

UnitCells© toolbox. 

As an application of strength prediction modulus, the effective strength of three types 

of 3D woven composites and two types of 3D braided composites were calculated 

using UnitCells© toolbox and compared with aluminium. 
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Chapter 5  Strain Rate Sensitivity Study of Textile Composites 

5.1 Introduction  

When considering constitutive behaviour of textile composites under dynamic 

loading, it is necessary to take into account the strain rate sensitivity of these 

materials.  Even assuming that the fibres and matrix involved in the composite are 

free from rate sensitivity, the undulations and the interlacing in the textile 

reinforcement alone can cause the composite to exhibit noticeable effective rate 

sensitivity [62]. In the modelling framework presented here, mechanical properties of 

constituent materials are used explicitly, i.e. once rate dependency of a constituent is 

known, it is assigned to mechanical properties of this constituent at micro- and 

mesoscale levels. 

To determine the rate sensitivity of the yarns within textile composites, a microscale 

analysis is employed, where a UD unit cell is loaded at eight different strain rates, 

effective properties are calculated, and rate sensitivity parameters related to moduli 

and strengths of yarns are extracted. Effective material properties so obtained at the 

microscale are assigned to the yarns in a mesoscale model, along with the rate-

dependent properties of the resin, and same analysis is carried out to quantify the 

rate-dependency of the material at a mesoscale.  

For the carbon fibre reinforced 3D textile composites, some of the published research 

[ 123 ] indicates that the rate-sensitive behaviour exhibited mainly in the resin, 

whereas the carbon fibre can be treated as a rate-independent. On the other hand, the 

rate dependency of glass fibres has been confirmed experimentally [124]. If required, 

it can be incorporated into the models of 3D textile composites by applying the same 

method as was developed here for the resin. The method of assigning rate 

dependency to the fibres has been implemented through appropriate material 

subroutines and made available to users.  However, in this chapter, all the analyses 

presented were carried out under the assumption that the fibre properties are 

independent of strain rate. 
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5.2 Mechanical Testing of the Epoxy Resin 

To determine the rate sensitivity of the resin, appropriate experiments have been 

carried out with pure resin samples under compression at quasi-static and high strain 

rate loading. 

The pure resin samples were produced with the PRIMETM [93] epoxy resin system 

supplied by Gurit [125]. The same resin system was used when manufacturing 

carbon and glass fibre reinforced textile composite samples, which were 

mechanically tested to validate the predicted material properties as will be presented 

in Chapters 7. The PRIMETM 20LV resin and PRIMETM slow hardener [93] were 

mixed in a weight ratio of 100:26 and degassed before being poured into aluminium 

tubes with inner diameter of 19mm, as shown Figure 5.1 (a). After being cured in an 

oven at 65✆ for 7 hours, the resin rods as shown in Figure 5.1 (b) were extracted 

from the tubes, and cut into 20 mm and 8 mm thick disks as the test specimens, 

respectively for different types of tests. 

   

(a) Aluminium tubes filled with the resin       (b) Cured resin samples 

�✁✂✄☎✝ ✞✟✠ ✡☎✝☛☞☎☞✌✁✍✎ ✍✏ ☎✝✑✁✎ ✑☞✒☛✓✝✑ 

 

Six specimens of 20 mm thickness were tested under quasi-static compression at a 

strain rate of 0.0004 s-1. The experimental set-up is shown in Figure 5.2.  The 

compressive load was applied by a 50 kN Instron machine. The axial force was 

measured by the load cell located in the upper cross head. The displacement 

measurements were taken by two LVDT probes, positioned on either side of the 
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specimen. These devices were interfaced with a PC. The measured force and 

displacement data were processed to give the compressive behaviour of the resin in 

terms of stress�strain curves for the quasi-static stress state. The sample was assumed 

to be a perfect cylinder. To ensure good contact between the upper and the lower 

surfaces of the sample and the loading platens of the testing machine, the two ends of 

the sample were polished with a sample polishing machine and 240 grit sand paper. 

RS® High Temperature Grease was applied on the specimen to reduce the fiction 

between the sample and the loading platens of the testing machine. 

 

✁✂✄☎✆✝ ✞✟✠ ✡☎☛☞✂-☞✌☛✌✂✍ ✍✎✏✑✆✝☞☞✂✎✒ ✌✝☞✌ ✝✓✑✝✆✂✏✝✒✌☛✔ ☞✝✌☎✑ 

 

The quasi-static experimental stress-strain curves are shown in Figure 5.3. For each 

✕✖✗✕✘ ✙✚✛✜✢✣✗ ✤✚✥✛✦✛✗ ✧★✗ ✥✖✕✖✩mined as the gradient of the linear part of the curve, 

and the strength was determined as the maximum stress value.  Among the tests, 

Case 1 differs from the rest in terms of the initial phase which might be because of 

the improper preparation of the specimen, e.g. the loading surfaces were not 

✗✛✪✪✫✬✫✖✜✕✦✭ ✮★✩★✦✦✖✦ ✕✚ ✖★✬✯ ✚✕✯✖✩✰ ✱✚✧✖✲✖✩✘ ✕✯✫✗ ✗✯✚✛✦✥ ✜✚✕ ★✪✪✖✬✕ ✕✯✖ ✙✚✛✜✢✣✗

modulus as it was extracted from the part of the stress-strain curve away from the 

initial phase. 
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�✁✂✄☎✆ ✝✞✟ ✠✡☛✆☎✁☞✆✌✍✎✏ ✑✍☎✆✑✑-✑✍☎✎✁✌ ✒✄☎✓✆✑ ✔✕✍✎✁✌✆✖ ✁✌ ✗✄✎✑✁-✑✍✎✍✁✒
✒✔☞☛☎✆✑✑✁✔✌ ✍✆✑✍ 

 

✘✙✚ ✛✜✢✣✤✥✦ moduli and strengths determined in all six experiments are summarized 

in Table 5.1. As can be seen from Fig. 5.3 and Table 5.1, the experimental data are 

consistent, as there is little variation within stiffness and strength values measured in 

all the tests. 

✧✎✕✏✆ ✝✞★ ✩✔✄✌✂✪✑ ☞✔✖✄✏✄✑ ✎✌✖ ✑✍☎✆✌✂✍✫ ✔✬ ✍✫✆ ☎✆✑✁✌ ✖✆✍✆☎☞✁✌✆✖ ✄✌✖✆☎ ✗✄✎✑✁-
✑✍✎✍✁✒ ✒✔☞☛☎✆✑✑✁✔✌ 

NO. 1 2 3 4 5 6 Mean STDEV 

E (GPa) 1.928 1.934 1.829 1.767 1.778 1.874 1.852 0.066 

Sc (MPa) 72.208 71.706 71.026 71.773 70.243 71.361 71.386 0.688 

 

To investigate the rate-dependent behaviour of the resin at high strain rates, the resin 

samples were tested with standard Split Hopkinson Pressure Bar (SHPB) set-up 

[126]. In this case, the 8 mm thick disk specimens were used. The specimens were 

polished using a sample polishing machine and 240 grit sand paper. RS® High 

Temperature Grease was applied to reduce the fiction between the specimens and the 
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pressure bars in a similar way as in the quasi-static tests.  A photograph of SHPB 

system used in the tests is shown in Figure 5.4. 

 

�✁✂✄☎✆ ✝✞✟ ✠✡☛☞☛✂☎✌✍✡ ☛✎ ✏✑✠✒ 

 

A total of sixteen 8 mm thickness samples were tested at strain rates in the range 

from 763 s-1 to 2543 s-1✓ ✔✕✖ ✗✖✘✙✚✛✖✜ ✢✣✚✤✥✦✙ ✗✣✜✚✧✚✙ ✘✤✜ ✙★✛✖✤✥★✕ ✩✘✧✚✖✙ ✘✛✖

summarised in Table 5.2 along with the quasi-static test data. The procedure of 

SHPB experiment and the data processing procedures are described in Appendix 1 

[127]. 

Analysing the experimental data, it is easy to see that a relatively low rate 

✜✖✪✖✤✜✖✤✫✬ ✣✭ ★✕✖ ✢✣✚✤✥✦✙ ✗✣✜✚✧✚✙ ✕✘✙ been observed. Comparing to the strength 

✗✖✘✙✚✛✖✗✖✤★✙✮ ✘ ✧✘✛✥✖✛ ✙✫✘★★✖✛ ✯✤ ★✕✖ ✢✣✚✤✥✦✙ ✗✣✜✚✧✚✙ ✗✖✘✙✚✛✖✗✖✤★✙ ✘✛✯✙✖✙ ✭✛✣✗ ★✕✖

complexity in extracting this quantity from the SHPB test data. On the other hand, 

compressive strength of the material shows a clearly increasing trend with the strain 

rate. 
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�✁✂✄☎ ✆✝✞ ✟✠✡☛☞☎✌✌✍✎☎ ✏✠✑✒✓✔✌ ✡✠✕✑✄✑✌ ✁✒✕ ✌✖☞☎✒✓✖✗✌ ✠✘ ✖✗☎ ☞☎✌✍✒ ✡☎✁✌✑☞☎✕ ✁✖

✕✍✘✘☎☞☎✒✖ ✌✖☞✁✍✒ ☞✁✖☎✌ 

NO. ✙✚ (s-1) E (GPa) Sc (MPa) 

Static 4✛10-4 1.85 71.39 

1 763 2.15 99.54 

2 1046 2.52 142.48 

3 1158 2.15 159.38 

4 1180 2.90 192.34 

5 1326 2.38 181.76 

6 1552 2.61 218.92 

7 1698 1.84 190.65 

8 1843 2.45 219.80 

9 1884 2.26 188.96 

10 1920 2.28 222.71 

11 1990 2.82 230.43 

12 2033 2.09 219.11 

13 2041 2.65 227.77 

14 2451 2.86 210.45 

15 2543 2.48 225.11 

16 2920 2.79 248.02 

 

5.3 Representation of Strain Rate Sensitivity 

To identify an appropriate method for assigning rate sensitivity to the material 

properties of the resin, a literature review has been carried out as presented in 

Chapter 2. It was concluded that phenomenological and empirical models are often 

used for this purpose, where the experimental data are fitting to an appropriate 

function. For the applications in this project, three such models were considered 
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which suggest logarithmic or exponential dependency of the elastic and strength 

properties on the strain rate as follows, each involve three material constants to be 

determined. 

�✁✂✄☎ ✆ ✒✝✞✟✠ ✡☛☞✌✍✎✏ ✑ ✡✓ ✔✆ ✕ ✖✗☎✘✌
✍✎
✍✎✓✏✙ (5-1) 

�✁✂✄☎ ✞ ✒✝✆✟✠ ✡☛☞✌✍✎✏ ✑ ✡✓ ✚✆ ✕ ✛✍✎✖✜
✢✣✤ 

(5-2) 

�✁✂✄☎ ✥ ✒✦✧✟✠ ✡☛☞✌✍✎✏ ✑ ★ ✕ ✩✍✎✪ (5-3) 

where ✡☛☞ ✫✬✭ ✮✯ ✰✱✯ ✲✳✴✭✵✶✷ ✸✳✹✴✺✴✷ ✳✻ ✷✰✻✯✭✵✰✱ ✬✷ ✬ ✼✴✭✫✰✽✳✭ ✳✼ ✷✰✻✬✽✭ ✻✬✰✯✾ ✡✓ is 

the quasi-static value of the appropriate parameter and✍✎the current effective strain 

rate, ✍✎✓ a reference strain rate. Quantities ✖✗ in Equation (5-1), ✖ and ✿ in Equation 

(5-2) and ★, ✩ and ❀ in Equation (5-3) are the parameters of the models, which are 

determined by fitting the experimental data to the respective expressions. 

The Matlab curve fitting toolbox was applied to fit the measured elastic and strength 

properties of the resin with Equations (5-1)-(5-3)❁ ❂✱✯ ✼✽✰✰✯✹ ✲✳✴✭✵✶✷ ✸✳✹✴✺✴✷ ✬✭✹
strength data are shown in Figure 5.5 (a) and (b), respectively. Two of the models, 

model 2 and model 3, suggest an exponential strain rate dependence as defined by 

Equation (5-2) and (5-3), respectively. The expressions are very similar, hence the 

curves obtained by fitting these two equations to the same set of experimental data 

are very similar, too. 

The accuracy of the fitting obtained with each of the models was assessed by 

calculating the coefficient of determination, R2, and Root Mean Square Error 

(RMSE). The RMSE allows comparing between the accuracy of the fitting for 

different models.  The lower the RMSE, the more accurate the data fitting to the 

formula.  On the other hand, the R2 provides an absolute measure of the error, where 

R2 = 1 indicates a perfect fit, while R2 close to zero suggests a poor fit. 

Comparing value of R2 and RMSE presented in Table 5.3 for the three models, it is 

✯✬✷❃ ✰✳ ✷✯✯ ✰✱✬✰ ✬✺✺ ✰✱✯ ✸✳✹✯✺✷ ✱✬❄✯ ✬ ✷✽✸✽✺✬✻ ✬✫✫✴✻✬✫❃ ✼✳✻ ✰✱✯ ✲✳✴✭✵✶✷ ✸✳✹✴✺✴✷
while for the strength Models 2 and 3 appear to outperform Model 1, which can be 

expected as the former ones have more fitting parameters than the last. However, 

despite providing a better fit within the data range considered, models 2 and 3 
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suggest an exponential dependency on the strain rate, hence are likely to 

overestimate the material properties beyond this range, because the exponential 

growth is rapid. To avoid this, the logarithmic dependence as defined in Equation (5-

1) �✁✂ ✁✄☎✆✝✞✄ ✝☎ ✟✞✆✟✞✂✞✠✝ ✝✡✞ ✟✁✝✞ ✂✞✠✂☛✝☛☞☛✝✌ ☎✍ ✝✡✞ ✎☎✏✠✑✒✂ ✓☎✄✏✔✏✂ ✁✠d strength 

of the resin, which is a relatively conservative approach in comparison with the other 

two. 

 

(a) Rate dependency of ✎☎✏✠✑✒✂ ✓☎✄✏✔✏✂ of the resin 

 

(b) Rate-dependency of the resin compressive strength 

✕✖✗✘✙✚ ✛✜✛ ✢✘✙✣✚ ✤✖✥✥✖✦✗ ✧✤ ✙★✥✚-✩✚✪✚✦✩✚✦✥ ✫★✥✚✙✖★✬ ✪✙✧✪✚✙✥✖✚✭ ✧✤ ✥✮✚ ✙✚✭✖✦

✩✚✥✚✙✫✖✦✚✩ ✤✙✧✫ ✯✰✱✲ ✥✚✭✥✭ 
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�✁✂✄☎ ✆✝✞ ✟✠✡☛☞✁✡☎✌ ☎✍✍✎✍✠ ☛✏ ✡✑☎ ✒✓✍✔☎ ✕☛✡✡☛✏✖ 

 ✗✘✙ ✚✘✛✜✢✣✤ ✥✘✦✛✧✛✤ E (GPa) For compressive strength Sc (MPa) 

 
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

R2 0.2097 0.2695 0.2696 0.489 0.8426 0.8438 

RMSE 0.2974 0.2953 0.3057 34.48 19.77 20.38 

 

Since the quasi-static testing of resin samples was carried out at a strain rate of 

0.0004 s-1, this was defined as the value of a quasi-static reference strain rate, ★✩✪. The 

✤✫✙✬✭✜ ✙✬✫✮ ✤✯✬✧✭✜✢ ✯✘✜✤✫✬✜✫ ✰✘✙ ✚✘✛✜✢✣✤ ✥✘✦✛✧✛✤ ✬✜✦ ✤✫✙✮✜✢✫✱✲ ✳✴  and ✳✵ , 

respectively, were determined by fitting the experimental data to expression (5-1). 

According to equation (5.1) the normalised stiffness/strength is linearly dependent on 

the logarithm of the normalised strain rate. The scaling constants for stiffness and 

strength can then be defined as the gradients of the linearly fitted lines as shown in 

Figure 5.6. The intersections of fitted linear functions with the ordinate axis were set 

to 1, so that at the reference strain rate the models would be capable of representing 

the quasi-static properties. For stiffness, the models reproduce the linear trend 

reasonably well. In terms of approximation of the strength properties, the data trend 

was not captured very well. The data points which were not represented properly by 

the fitted straight line were obtained at relatively lower strain rates, at which very 

limited number of tests were conducted. In the present work, the models developed 

were to be applied to simulate the impacts cases, which generate strain rates beyond 

this range. Therefore, this discrepancy was not expected to cause any problem. The 

fitting can be potentially improved by carrying out testing of the resin samples over a 

larger range of strain rates. However, at present it might not be possible due to 

limitations of the experimental equipment. 

The values of scaling coefficients ✳✴ and ✳✵ were determined as follows. 

✳✴ ✶ ✷✸✷✹✺✻     and        ✳✵ ✶ ✷✸✺✺✼✽ (5-4) 

Since the resin is an isotropic material, the rate dependence needs to be assigned only 

✫✘ ✬ ✤✭✜✢✧✮ ✮✧✬✤✫✭✯ ✾✙✘✾✮✙✫✿✲ ✚✘✛✜✢✣✤ ✥✘✦✛✧✛✤✲ E. Note that Poisson ratio, ❀ , is 
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considered to be unaffected by the strain rate. The rate dependence of the shear 

modulus, G, can be obtained from the isotropy, i.e. G=E/2(1+�). Failure of the resin 

was defined by the maximum stress failure criterion, hence the rate dependency was 

also assigned to tensile and compressive strengths, ✞☛ and✞✁. The impact response of 

the resin under the tension and compression was assumed to be the same, hence the 

same value of the scaling coefficient,✂✄, was used to prescribe the rate sensitivity to 

the tensile and compressive strengths. 

 

☎✆✝ ✟✠✡☞✌✍✎ ✏✠✑✡✒✡✎ 

 

(b) Compressive strength 
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Under the general stress states, the stiffness and strength were scaled with respect to 

the maximum strain rate. 

✞✒☛ ✌ �✁✂✄☎✞✒✆☎✝ ☎✞✒✟☎✝ ☎✞✒✠☎✝ ☎✡✒✆✟☎✝ ☎✡✒✆✠☎✝ ☎✡✒✟✠☎☞ (5-5) 

✍✎✏✑✓ ✔✎✏ ✏✕✖✗✘✙✘✔ ✏✕✖✚✏✛✛✘✜✑✛ ✢✜✚ ✣✜✤✑✥✦✛ ✧✜★✤✗✤✛ ✩✑★ ✛✔✚✏✑✥✔✎ ✩✛ ✢✤✑✙✔✘✜✑✛ ✜✢ ✔✎✏

strain rate become: 

✪✫✬✭✞✒☛✮ ✌ ✪✯ ✰✱ ✲ ✳✴ ✵✶ ✷
✸✹✺
✸✹ ✻
✼✽, ✾✫✬✭✞✒☛✮ ✌

✴✿❀❁✸✹✺❂
✟❁✆❃❄❂  

❅✫✬✭✞✒☛✮ ✌ ❅✯ ❆✱ ✲ ✳❇ ✵✶ ❈
✞✒☛
✞✒✯

❉❊ 
(5-6) 

With rate-dependent properties of the resin known, the rate-dependency of 3D textile 

composites can be predicted by applying FEM at micro- and mesoscales as presented 

in the subsequent subsections. 

5.4 Rate sensitivity study at the microscale 

At the microscale, the strain rate-dependent response of the yarns was defined based 

on the unit cell modelling of UD composites that was described in Chapters 3 and 4. 

The static analysis was extended by assigning the rate dependency defined by 

Equations (5-5) and (5-6) to the elastic and strength properties of the matrix and the 

also the fibre if required. A number of loading cases had been generated, when the 

unit cell model was loaded at a range of constant strain rates. These could not be 

defined directly in Abaqus, hence a variable displacement, or variable velocity, was 

prescribed in each case in order to simulate the loading at a constant strain rate. 

Given the logarithmic definition of the strain, the explicit expression of the variable 

velocity is as follows. 

❋ ✌ ●✯✞✒✯❍✸✹✻✬ (5-7) 

where ❋ is the velocity,■ is the time, ●✯ is the original length of the unit cell along the 

loading direction and ✞✒✯ is the constant strain rate. It should be noted that, because of 

the updated Lagrangian strain formulation adopted in Abaqus, constant strain rate 

cannot be achieved simply by loading the unit cell at a constant velocity. The strain 

rate curves calculated at a constant and variable velocity are shown in Figure 5.7. As 
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can be seen is Figure 5.7, the variable velocity loading as defined by Equation (5-7) 

results in a constant average strain rate. 

 

�✁✂✄☎✆ ✝✞✟ ✠✡☎☛✁☞ ☎☛✡✆ ✡✁✌✆ ✍✁✎✡✏☎✑ ✒☛✓✒✄✓☛✡✆✔ ✕✁✡✍ ✡✕✏ ✔✁✖✖✆☎✆☞✡ ✓✏☛✔✁☞✂

✌✆✡✍✏✔✎ 

 

The rate dependency expressed in terms of material properties was assigned to the 

resin via a user-defined subroutine UMAT for the microscale model. The subroutine 

incorporates a function representing the strain rate effects for both the stiffness and 

the strength of the resin. 

As a sanity check of the subroutine predictions, a homogeneous unit cell model was 

generated, where the rate-dependent material properties were defined by the user-

defined subroutine UMAT for the microscale model. Within this UMAT, the 

Equation (5-5) and Equation (5-6) were adopted to represent the strain rate 

sensitivity of stiffness and strength. The static stiffness and strength were assumed to 

be the same as those for the resin, E=1.85 GPa and S=71.76 MPa. The values of 

scaling coefficients for stiffness and strength are given in Equation (5-4). 
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(Equation (5-7))  
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The model was loaded at a range of strain rates and the average strain and stress was 

recorded at each increment. The average stress-strain curves calculated at different 

strain rates are shown in Figure 5.8.  
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✚✛✜ ✢✣✤✥✜✦ ✧★ ✩✧✥✪✫✬✦ modulus and strengths extracted from these curves are listed 

in Table 5.4 along with the values calculated from Equation (5-1). 

✭☛✗✏✆ ✝✞✮ ✯✖✄✍✂✰☞ ✓✖✑✄✏✄☞ ☛✍✑ ☞✌☎✆✍✂✌✔ ✖✒ ✌✔✆ ☎✆☞✁✍ ☛✌ ✑✁✒✒✆☎✆✍✌ ☞✌☎☛✁✍ ☎☛✌✆☞ 

✱✲ (s-1) 4✳10-4 763 1326 1843 2543 

E (GPa) 
from Equation (5-1) 1.85 2.36 2.38 2.40 2.41 

from UMAT 1.85 2.36 2.38 2.40 2.41 

S (MPa) 
from Equation (5-1) 71.76 192.69 197.32 200.08 202.78 

from UMAT 71.76 192.69 197.32 200.08 202.78 
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As can be seen, the properties matched identically, which confirms that the user-

defined material subroutine has passed a sanity check in representing the strain rate-

dependent material properties. 

As a verification case on the rate sensitivity analysis at a microscale, the rate-

dependent properties of the T300 carbon fibre yarn have been determined with a UD 

unit cell model similar to the model shown in Figure 3.5 (a). The fibre volume 

fraction within the yarn was defined as 78.6%. 

The UMAT subroutine for the microscale model was used to represent the material 

properties of the matrix and T300 carbon fibre. The T300 carbon fibre was defined as 

a rate-independent material, while the matrix was defined as a strain rate-dependent 

material. Material properties of matrix and T300 carbon fibre in this analysis are 

listed in Table 5.5, and the values of scaling coefficients for resin stiffness and 

strength are given in Equation (5-4). 

�✁✂✄☎ ✆✝✆ ✞✁✟☎✠✡✁✄ ☛✠☞☛☎✠✟✡☎✌ ☞✍ ✎✏✑✞✒
✓✔

✕✖✗✘ ☎☛☞✙✚ ✠☎✌✡✛ ✁✛✜ �✢✖✖ ✣✁✠✂☞✛

✍✡✂✠☎ 

 Matrix (PRIMETM 20LV) T300 carbon fibre [82] 

✤ (kg/m3) 1140 1780 

Ex (GPa) 3.5 230 

Ey (GPa) 3.5 15 

✥xy 0.35 0.2 

✥yz 0.35 0.0714 

Gxy (GPa) 1.3 15 

St (MPa) 73.0 2500 

Sc (MPa) 120 2000 

m 0.3 0.3 

 

The UD unit cell model was loaded at various strain rates, and the effective stiffness 

and strength calculated each at strain rate were extracted and listed in Table 5.6. Next, 
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Equation (5-1) was applied to fit each effective property in order to express it as a 

function of the strain rate. In all the cases, the reference strain rate was defined as 

✞✒☛ ✌0.0004 s-1. The calculated strain rate scaling parameters C for every stiffness and 

strength component are listed in Table 5.6 as well. 

�✁✂✄☎ ✆✝✟ ✠✡✡☎☞✍✎✏☎ ✑✓✔✑☎✓✍✎☎✕ ✔✡ ✖✗ ✘✔✙☎✄ ✁✍ ✙✎✡✡☎✓☎✚✍ ✕✍✓✁✎✚ ✓✁✍☎✕ ✛✜✢ ✣✤✥✝✟✦✧ 

 Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 C 

★✩  (s-1) 4×10-4 4×10-3 4×10-2 4×10-1 4×100 4×101 4×102 4×103  

Ex (GPa) 181.32 181.36 181.39 181.43 181.46 181.5 181.53 181.56 0.0001 

Ey (GPa) 10.67 10.83 10.98 11.12 11.26 11.4 11.52 11.64 0.0058 

Ez (GPa) 10.67 10.83 10.98 11.12 11.26 11.4 11.52 11.64 0.0058 

Gxy (GPa) 6.63 6.79 6.94 7.09 7.23 7.37 7.5 7.62 0.0095 

Gxz (GPa) 6.63 6.79 6.94 7.09 7.23 7.36 7.5 7.62 0.0095 

Gyz (GPa) 4.35 4.42 4.49 4.55 4.62 4.68 4.74 4.79 0.0065 

SXt (MPa) 2067.09 2067.48 2067.87 2068.26 2068.65 2069.04 2069.43 2069.81 0.0001 

SXc (MPa) 1631.92 1632.22 1632.53 1632.84 1633.14 1633.45 1633.76 1634.06 0.0001 

SYt (MPa) 70.89 86.64 102.66 119.4 135.56 150.86 168.32 184.38 0.0990 

SYc (MPa) 112.16 137.89 166.41 192.48 217.76 247.41 273.15 301.53 0.1041 

SZt (MPa) 62.46 76.62 92.84 107.51 122.1 136.97 152.1 167.65 0.1041 

SZc (MPa) 99.66 123.44 147.23 170.22 195.97 221.16 245.85 272.44 0.1061 

Sxy (MPa) 71.08 85.56 101.44 117.78 133.03 148.69 164.74 179.79 0.0949 

Sxz (MPa) 63.68 77.63 90.49 103.46 117.32 132.32 144.33 159.23 0.0924 

Syz (MPa) 50.04 62.16 74.38 86.96 98.88 111.74 124.69 137.49 0.1076 

 

The fitted values for parameter C were employed to define the strain rate dependency 

for each effective stiffness and strength property. Since transverse isotropy from the 

hexagonal unit cells is present only up to the limit of linear elasticity, the effective 

strengths along ✪- and ✫- directions are not identical. However, since the yarn was 

assumed to be transversely isotropic, the average values of the properties along ✪- 

and ✫ -direction were used to represent the transverse properties of yarn. The 
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calculated strain rate dependent effective properties of the carbon fibre yarn are 

summarised in Table 5.7� ✁✂✄☎✄ ✆✂✄ ✝✞✟✠✠✞✡☛✠ ☎☞✆✟✞✠ ☞☎✄ ☞✠✠✌✍✄✎ ✆✞ ✏✄ ✟✡✎✄✑✄✡✎✄✡✆

of strain rate. 

✒✓✔✕✖ ✗✘✙ ✚✛✜✓✢✣ ✜✓✛✖-✤✖✥✖✣✤✖✣✛ ✥✜✦✥✖✜✛✢✖✧ ✦★ ✒✩✪✪ ✫✓✜✔✦✣ ★✢✔✜✖ ✬✓✜✣
✭✮✯✰✙✱✘✲✳✴ 

 Quasi-static value Strain rate constant, C 

Ex (GPa) 181.32 0.0001 

Ey (GPa) 10.67 0.0058 

✵xy 0.2291 N/A 

vyz 0.2285 N/A 

Gxy (GPa) 6.63 0.0095 

SXt (MPa) 2067.09 0.0001 

SXc (MPa) 1631.92 0.0001 

SYt (MPa) 66.68 0.1016 

SYc (MPa) 105.91 0.1051 

Sxy (MPa) 67.38 0.0937 

Syz (MPa) 50.04 0.1076 

 

From Table 5.7 it is easy to see that the effective properties in the direction 

transverse to the fibres are more rate-dependent than those in the longitudinal 

direction along the fibres. This should be expected, since in the longitudinal direction, 

the properties of the yarn are similar to those of the fibres, which were defined as 

strain rate-independent, while the transverse properties of the yarns are mainly 

determined by rate-sensitive material properties of the matrix. 

The rate-dependent effective material properties of the yarn as obtained here can now 

be applied in the mesoscale model to characterize the strain rate-dependent response 

of 3D textile composites. 
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5.5 Rate sensitivity study at the mesoscale 

In the mesoscale UC models for textile composites, both the yarn and the matrix are 

modelled as strain rate-dependent materials. Similar to the microscale model, the 

matrix within the mesoscale model is also defined as an isotropic material, for which 

the strain rate effect on stiffness and strength is prescribed via the Equations (5-5) 

and (5-6). 

The rate-sensitivity of the effective properties of the yarns was established following 

the analysis as presented in Section 5.4, where values of the rate scaling parameters 

were determined for all the properties. Generally, the yarn is transversely isotropic, 

therefore three stiffness (✞☛✁ ✞�✁ ✂☛� ) and six strength parameters 

( ✄☎✆✁ ✄☎✝✁ ✄✟✆✁ ✄✟✝✁ ✄☛�✁ ✄�✠ ) should be defined for it. During the FE analysis at 

mesoscale, at each integration point within the yarns all six components of strain rate 

(3 direct and 3 shears) are calculated based on the current strain level and the current 

simulation time. From these values maximum strain rate values is determined 

according to Equation (5-5). 

At each integration point, the strain rate scaling of the stiffness (longitudinal, 

transverse and shear) is performed using the same logarithmic dependence on the 

maximum strain rate, where the values of strain rate scaling constants are different 

for longitudinal, transverse and shear stiffnesses: 

✞✡☞✆✒✌✍✎✏ ✑ ✞✡✓ ✔✕ ✖ ✗✘✙ ✚✛ ✜
✌✍✎
✌✍✓

✢✣ 

✞✤☞✆✒✌✍✎✏ ✑ ✞✤✓ ✔✕ ✖ ✗✘✥ ✚✛ ✜
✌✍✎
✌✍✓

✢✣ 

✂✡✤☞✆✒✌✍✎✏ ✑ ✂✡✤✓ ✔✕ ✖ ✗✦✙✥ ✚✛ ✜
✌✍✎
✌✍✓

✢✣ 

(5-8) 

Similarly, the strain rate scaling of all strength values (longitudinal tensile and 

compressive, transverse tensile and compressive and longitudinal and transverse 

shear) is carried out using the same equation but with individual rate related constant: 

✄✧☞
✆✒✌✍✎✏ ✑ ✄✧✓ ✔✕ ✖ ✗★✩ ✚✛ ✜

✌✍✎
✌✍✓

✢✣ ✁ ✪ ✑ ✕✁ ✫ ✬✭ (5-9) 
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To demonstrate how the rate-dependent material properties are defined for a 

mesoscale model, a unit cell model for layer-to-layer interlock 3D woven composite 

shown in Figure 5.9 was created and the effective stiffnesses and strengths were 

calculated at different strain rates. 

 

�✁✂✄☎✆ ✝✞✟ ✠✡✁☛ ☞✆✌✌ ✍✎☎ ✌✏✑✆☎-☛✎-✌✏✑✆☎ ✁✡☛✆☎✌✎☞✒ ✓✔ ✕✎✖✆✡ ☞✎✗✘✎✙✁☛✆ 

 

The volume fractions of warp and weft yarn were 38% and 28%, respectively. The 

warp yarn weaving angle was 27.34°. The matrix was assigned the same material 

properties as were specified in Table 5.5 for the matrix in the microscale model. The 

material properties of the yarns are determined from the UD composite unit cell 

model analysis as described in Section 5.5 (Table 5.7). 

The load was applied to the model at different strain rates, and the effective stiffness 

and strength values at each strain rate were calculated. These properties are presented 

in Table 5.8. Since the layer-to-layer interlock 3D woven composites are orthotropic, 

the stiffness and strength components obtained under all uniaxial stress states and 

pure shear stress states are independent. Therefore, for different stiffness and strength 

components, the strain rate scaling parameters C✚✛ ✜✢✣ ✢✛✛✤✥✦ ✧★✩✩✦✪✦✣✫ ✬✢✭✤✦✛✮ ✯✰✦

values of these parameters are presented as the rightmost column of Table 5.8 
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✡✏✛✍✏✑☞☛☎ ✜✢ ✛✏✓☎✄ ✁☛ ✓☞✠✠☎✎☎✗☛ ✑☛✎✁☞✗ ✎✁☛☎✑ 

 Load 1 Load 2 Load 3 Load 4 Load 5 Load 6 Load 7 Load 8 C 

✣✤  (s-1) 4×10-4 4×10-3 4×10-2 4×10-1 4×100 4×101 4×102 4×103  

Ex (GPa) 51.19 51.53 51.85 52.17 52.48 52.78 53.08 53.36 0.0027 

Ey (GPa) 55.73 55.86 56.00 56.13 56.26 56.39 56.52 56.65 0.0010 

Ez (GPa) 8.10 8.31 8.51 8.71 8.91 9.11 9.31 9.50 0.0108 

Gxy (GPa) 4.26 4.37 4.48 4.59 4.69 4.80 4.91 5.02 0.0118 

Gxz (GPa) 4.94 5.04 5.15 5.26 5.36 5.46 5.57 5.67 0.0092 

Gyz (GPa) 3.17 3.26 3.34 3.43 3.52 3.60 3.69 3.77 0.0111 

SXt (MPa) 424.26 506.34 584.31 655.96 717.60 745.96 766.47 778.89 0.0615 

SXc (MPa) 421.79 504.86 586.37 659.97 719.37 751.02 761.49 766.91 0.0619 

SYt (MPa) 719.80 724.18 730.90 748.60 770.55 774.67 777.18 779.10 0.0058 

SYc (MPa) 699.02 712.14 714.01 715.79 717.56 719.29 721.03 722.73 0.0025 

SZt (MPa) 61.56 75.92 91.17 107.46 123.53 137.63 153.23 171.13 0.1087 

SZc (MPa) 118.24 147.57 176.87 207.05 237.39 267.99 299.31 329.58 0.1103 

Sxy (MPa) 43.86 53.60 63.88 74.43 84.38 94.63 105.10 115.43 0.0888 

Sxz (MPa) 50.60 61.46 72.16 83.17 94.14 104.91 115.74 126.62 0.0932 

Syz (MPa) 38.98 46.78 55.03 62.78 70.88 78.74 86.71 94.98 0.1008 

 

The strain rate-dependent properties of layer-to-layer interlock 3D woven composites 

can now be applied to generate a macroscale model of a textile composite and 

perform a structural analysis. The macroscale model development is described in 

detail in Chapter 6. As a result of the composite material homogenisation at a 

macroscale, the composite can be represented as a monolithic material, for which a 

FE model can be generated, with its constitutive behaviour being represented via an 

appropriate user material subroutine. To verify the capability on that subroutine to 

accurately predict the rate-dependent material behaviour, a homogeneous unit cell 

model was generated and loaded along warp (✥-) direction at different strain rates. 
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The calculated average stress-strain curves for each loading case are shown in Figure 

5.10. 
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The effective strength of the homogenised macroscale model (defined as the 

maximum stress points) from the stress-strain curves in Figure 5.10 agree well with 

the calculated values of mesoscale unit cell model as specified in Table 5.8. This 

confirms that the macroscale user material subroutine is capable of representing the 

strain rate-dependent properties of layer-to-layer interlock 3D woven composites. 

5.6 Summary 

The multi scale modelling methodology of accounting for the strain rate sensitivity 

of textile composites has been established and presented in this chapter.  

To evaluate the strain rate sensitivity of the matrix, mechanical properties of the 

epoxy resin were determined experimentally at the quasi-static and high strain rate 

loading. The experimental data were approximated by a logarithmic model. In this 

way, the parameters of the model were determined and they are applied to represent 

the strain rate sensitivity of epoxy resin. 
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Based on this logarithmic model, the representation of strain rate sensitivity of matrix 

and yarn were developed and implemented as UMAT user subroutines. 

This multi scale modelling methodology was verified through systematic sanity 

checks and its application to composites has been demonstrated by predicting the 

strain rate dependent effective properties of T300 carbon fibre reinforced layer-to-

layer interlock 3D woven composites. 
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Chapter 6  Modelling Composites Based on Artificial Neural 

Networks 

6.1 Introduction  

Failure of 3D textile composites is an aspect upon what conventional failure criteria 

have not yet touched. To define a failure envelope for a material of this kind in a 

multi-dimensional stress space, conventional strength properties as obtained when 

the material is subjected to uniaxial stresses would be far from sufficient. 

Conventional strength criteria aim to construct failure envelopes using a minimum 

set of strength properties. While there have been huge amounts of effort made in this 

respect with some achievements published in the literature [128], their applicability 

has been restricted primarily to UD laminae. There is not yet any phenomenological 

failure criterion, i.e. having the composites treated as monolithic materials, which is 

directly applicable to 3D textile composites. While waiting for failure criteria 

suitable for textile composites to become available, an attempt has been made to 

move forward via a pragmatic approach as presented in this thesis. 

In absence of any obvious definition of the minimum set of strength properties for 

3D textile composites in general, and simple analytical functions to construct the 

failure criteria, one would expect that failure under general stress states can be 

reasonably captured only if a sufficient, usually very large, number of data points for 

failure could be collected under all possible stress states. Apparently, it is impossible 

to exhaust all possible combinations of stress states. With an appropriate sampling 

process, however, one might expect that the space can be reasonably covered with a 

finite set of data points through a certain interpolation process. The artificial neural 

network (ANN) systems [129] offer as an ideal methodology for this purpose. 

The next question is the generation of sufficient number of data points. For the 

coverage to be reasonable, a very large number of sampling points will be required, 

which could easily run into millions, if not more. Experimental means of generating 

them are simply unthinkable. Numerical testing is the way forward, which needs to 

be appropriately validated by designated experiments. Mesoscale unit cells (UCs) for 

3D textile composites, as presented in Chapter 3 and Chapter 4 offers a practical 

platform for such numerical testing [73]. 
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In this chapter, a methodology to predict failure of 3D textile composites under 

general stress states is presented. 

6.2 Overview of Artificial Neural Network 

Artificial neural network (ANN) [130, 131] is an advanced interpolation method 

inspired by biological neural networks. ANN is generally presented as a system of 

interconnected neural elements, which are the basic units of ANN. Each neural 

element has several inputs and one output. A schematic drawing of the neural 

element is shown in Figure 6.1. 

 

�✁✂✄☎✆ ✝✞✟ ✠ ✡✆✄☎☛☞ ✆☞✆✌✆✡✍ 
 

The relation between inputs and output of a neural element can be defined by a linear 

or nonlinear function [132] as follows. 

✎ ✏ ✑ ✒✓✔✕✖✕ ✗ ✘
✙

✕✚✛
✜ (6-1) 

where ✖✛,✖✢✣✤✖✙ signify the inputs, ✎ is the output, ✥✕ are the weight coefficients, ✘ 

is the threshold and ✑✦✖✧ is the response function, which can be linear or non-linear. 

For example, consider relationship between inputs and output as follows. 

★ ✏✓✔✕✖✕ ✗ ✘
✙

✕✚✛
 (6-2) 

Let the response function be defined as a signum function, i.e. 
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✞�✁✒✂✄ ✌ ☎✆✝ ✂ ✟ ✠
✠✝ ✂ ✡ ✠ (6-3) 

Then 

☛ ✌ ☞✒✍✄ ✌
✎✏
✑
✏✓✆✝ ✔✕✖✂✖

✗
✖✘✙

✟ ✚

✠✝ ✔✕✖✂✖
✗
✖✘✙

✡ ✚
 (6-4) 

A full ANN has numerous neural elements allocated to several layers. Generally, the 

layers of ANN can be classified into three different types, they are input layer, 

hidden layer and output layer. An ANN should have one input layer and one output 

layer. Hidden layers were used to improve the capability of ANN. The number of 

hidden layers and the number of neural elements in each hidden layers can be 

determined by trial and error.  The connection between the neural elements can vary 

and therefore there are several types of ANNs [133, 134], which have different 

architectures and properties. The ANN applied here is a feed-forward artificial neural 

network (FFANN) [135, 136], which has a simple architecture and provides an 

acceptable accuracy of predictions. The neural elements in the same layer are 

independent, while the neural elements in neighbouring layers are connected 

sequentially. There are no cycles or loops in this neural network. The value of the 

connected neural elements is transferred through a weight coefficient. The topology 

of three layers of FFANN is schematically shown in Figure 6.2. 

 

✛✜✢✣✤✥ ✦✧★ ✩✪✤✣✫✪✣✤✥ ✬✭ ✮✯ ✰✱✱ 
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The weights and thresholds of ANN can be determined based on a large number of 

known inputs and corresponding outputs. This process is called training, and a set of 

known inputs and outputs is called a training case. The training process is a 

mathematical optimization process, for which various algorithms have been 

developed [137, 138]. The most widely used one is backpropagation (BP) method 

[139]. It calculates the gradient of an error function with respects to all the weights in 

the network. The gradient is fed back to the optimization method to update the 

weights, in an attempt to minimize the error function. Training process is the most 

demanding step of ANN development, which can be substantially simplified by 

employing an ANN toolbox in Matlab. It allows for constructing and training the 

ANN relatively easily. A user needs to write an appropriate Matlab script to set up 

the training case and parameters of the ANN toolbox following the format as defined 

in Matlab, and most of the complicated mathematical manipulations are processed 

within Matlab automatically [140, 141]. 

ANNs are widely used in many research fields, such as pattern recognition, control, 

data processing, function approximation and artificial intelligence [142, 143]. ANNs 

were also used to predict the mechanical strengths of materials and structures [144, 

145]. 

For polymer composites, ANNs method has shown its capability of predicting certain 

properties [130, 146]. In particular, the ANN method was applied to predict the 

fatigue life of glass fibre reinforced UD composites [147] and of carbon/glass fibre 

reinforced laminate [148]. Some success has been achieved by using ANN to predict 

the tribological properties of polymer composites [149, 150, 151, 152]. Zhang et al. 

[153] employed ANN to evaluate the dynamic mechanical properties of polymer 

composites, such as the storage modulus and damping. Al -Haik et al. [154] applied 

ANN to investigate the viscoplastic behaviour of composites. ANNs were also used 

by researchers to conduct the optimization of the manufacturing process [155, 156, 

157] and design [158] of polymer composites. 

One of the first studies where ANN was employed to define the stress-strain 

behaviour of composites was that of Pidaparti and Palakal [159]. A back-propagation 

neural network was developed to predict the stress-strain behaviour of graphite-

epoxy laminates. The inputs of this ANN were the fibre angle, the initial stress and 
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the stress increment, while the output was total strain. Reasonable accuracy of 

prediction was obtained with this ANN. 

Labossière and Turkkan [160] applied ANN to predict the failure of composite under 

plane stress loading conditions. The three in-plane stress components, ✞☛, ✞� and ✁☛�, 

were treated as the inputs of the ANN and the indicator for the failure was regarded 

as an output. A failure envelope for a typical fibre-reinforced composite material was 

obtained using this ANN. 

Lee et al. [ 161 ] applied an ANN to predict the failure of cross-ply T300 

carbon/epoxy composite tubes under combined loading conditions. A failure 

envelope was plotted based on the ANN and then compared with the Tsai-Wu 

criterion and experimental results. The failure envelope calculated using ANN 

showed a better agreement with the experimental results than that obtained with the 

Tsai-Wu criterion. 

ANN has a unique capability of solving problems which have no explicit relations 

between the inputs and outputs. In textile composites, as in the conventional 

materials, the failure is related to the strain or stress state of the material. However, 

there is no explicit expression available to relate the failure to strain or stress states. 

Therefore, this relationship can be established by applying the ANN methodology. 

6.3 Using ANN for Composite Material Characterization 

With ANN, the effective constitutive relationships of composites can be predicted 

which is applicable for any combinations of loading cases. The road map of the 

method is schematically presented in Figure 6.3, and the procedure is as follows. 

Step 1: A large number of stress-strain relationships for the unit cell model are 

generated by running a Python script in Abaqus. These stress-strain relationships are 

regarded as the training samples for the ANN. 

Step 2: An ANN is created in Matlab. Its parameters are determined from training 

and the parameter values are recorded in a results file. 

Step 3: The structure of the trained ANN is implemented as user-defined material 

subroutines of Abaqus or LS-Dyna. 
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�✁✂✄☎✆ ✝✞✟ ✠✡☛☞ ✌☛✍ ✡✎ ✄✏✁✑✂ ✒✓✓ 

 

This method is suitable for all types of composite materials and can be applied at any 

length scale. Here, it was primarily developed to represent the constitutive behaviour 

of 3D textile composites at the macroscale level. 

The procedure of applying the ANN method to represent the constitutive behaviour 

of textile composites is shown in a flowchart form in Figure 6.4. The process is from 

microscale to macroscale level. At the microscale, the effective properties of the 

yarns are predicted based on the material properties of matrix and fibre. Then the 

predicted yarn properties and original matrix property serve as an input for 

mesoscale unit cell analysis, which is carried out to generate training cases for ANN. 

With the training cases, the ANN is constructed and trained. The output of the ANN 

is a database which includes all the parameters of the ANN. The database is accessed 

by the user material subroutine of Abaqus [91] or LS-Dyna [162] to reconstruct the 

ANN. In the macroscale model, the textile composite is modelled as a monolithic 

material with its constitutive behaviour being prescribed via the ANN related user 

material subroutine. 
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The inputs of ANN were defined as a combination of six strain 

components✞☛✁ ✞�✁ ✞✂✁ ✄☛�✁ ✄☛✂ ☎✆✝ ✄�✂ . The outputs of ANN are the six stress 

components✟☛✁ ✟�✁ ✟✂✁ ✠☛�✁ ✠☛✂ ☎✆✝ ✠�✂. 

The homogenised UD composite model was loaded at various stress combinations, 

and the strain and stress components were recorded at every increment. Since the 

stress in the fibre direction is not subjected to the progressive damage, the loading 

cases were defined as a combination of five stress components, taking three equally 

spaced values over desirable ranges as follows. 

✡�: [0.0, 180.0, 360.0] 

✡✂: [0.0, 180.0, 360.0] 

☞☛�: [0.0, 125.0, 250.0] 

☞☛✂: [0.0, 125.0, 250.0] 

☞�✂: [0.0, 165.0, 330.0] 

As an illustration, 242 loading cases were used, with 200 increments defined for each 

loading case, which results in 48400 pairs of stress-strain combination. Half of these 

stress-strain combination pairs were used to train the ANN, and half were used to 

verify the outcomes of the ANN.  For more serious applications, more sampling 

points should be introduced into the ranges as defined above in order to obtain a 

more faithful representation of the behaviour of the material. 

An ANN with two hidden layers was generated in Matlab, and the numbers of neural 

elements in two hidden layers were 26 and 20, respectively. The illustration of the 

ANN is shown in Figure 6.5 on Matlab. 

 

✌✍✎✏✑✒ ✓✔✕ ✖✑✗✍✘✍✙✍✚✛ ✜✒✏✑✚✛ ✜✒✗✢✣✑✤ ✘✣✑ ✥✦ ✙✣✧★✣✩✍✗✒ ✧✣✪✒✛ 
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This ANN was trained with the training cases. A screenshot of the progress of the 

training process is shown in Figure 6.6. 

 

�✁✂✄☎✆ ✝✞✝ ✟☎✠✂☎✆✡✡ ✠☛ ☞✆✄☎✌✍ ☞✆✎✏✠☎✑ ✎☎✌✁☞✁☞✂ 
 

The training output is a dataset of the values of all ANN parameters, which is written 

into a data file. 

In order to verify the trained ANN, it was applied to the testing cases. In Table 6.2, 

the normalized effective stress components ✒✓  and ✒✔  calculated with ANN are 

presented alongside with those calculated directly with the damage model. As can be 

seen, in most of the cases presented, the error is below 1%, which indicates that the 

ANN is capable of accurate representation of the damage model. 

✕✌✖✍✆ ✝✞✗ ✘✆☎✁☛✁✙✌✎✁✠☞ ✠☛ ✎☎✌✁☞✆✚ ✛✜✜ ☛✠☎ ✢✣ ✙✠✤✥✠✡✁✎✆✡ 

Normalised ✒✓ Normalised ✒✔ 

damage model ANN error damage model ANN error 

0.0657 0.0662 -0.806% 0.0589 0.0594 -0.906% 

0.0509 0.0515 -1.223% 0.0404 0.0407 -0.802% 

0.0432 0.0433 -0.349% 0.0308 0.0306 0.444% 

-0.0261 -0.0260 0.566% -0.0558 -0.0563 -0.765% 

-0.0359 -0.0358 0.393% -0.0681 -0.0685 -0.691% 

-0.0460 -0.0458 0.365% -0.0806 -0.0811 -0.571% 

-0.0563 -0.0561 0.397% -0.0936 -0.0940 -0.428% 

-0.0670 -0.0667 0.432% -0.1069 -0.1072 -0.291% 

-0.0780 -0.0776 0.432% -0.1206 -0.1208 -0.188% 
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The trained ANN was implemented as Abaqus UMAT and VUMAT subroutines. 

The parameters of ANN are automatically transferred to the subroutine through user 

defined material properties via the Python script, which has been automated on 

Abaqus/Standard. A segment of the user-defined material properties input for ANN 

is shown as a screenshot in Figure 6.7. 

 

�✁✂✄☎✆ ✝✞✟ ✠✡✡ ☛☞✌☞✍☞✎✆ ✌☎☞✏✎✑✆☎☎✆☛ ✁✏✌✒ ✌✓✆ ✄✎✆☎-☛✆✑✁✏✆☛ ✔☞✌✆☎✁☞✕ ✖☎✒✖✆☎✌✁✆✎

✗✁☞ ✘✙✌✓✒✏ ✎✚☎✁✖✌ 

 

In the Abaqus VUMAT subroutine, only the stress components should be updated. 

Since the input and output of ANN are the strain and stress components, the stress 

can be updated by calling ANN with current strain directly. 

As for Abaqus UMAT subroutine, both stress and the Jacobian matrix (DDSDDE) 

should be updated. The central difference method was used to calculate the 
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DDSDDE matrix from current strain and stress through ANN. The step by step 

description of the process of applying the central difference method to update 

DDSDDE matrix in Abaqus UMAT is as follows. 

Within the user defined material subroutine UMAT, at each increment, the Abaqus 

solver provides the current value of the stresses and the strains.  Denote ✞✌☛ and �✌☛ as 

the current strains and the current stresses in their contracted form, respectively, each 

having six components for a general 3D stress state. 

Step 1: An increment was added to the first component of the strain vector as follows. 

✞✌✁ ✂ ✞✌☛ ✄ ☎✞ ✆
✝✟
✠
✟✡

☞✍
✍✍
✍
✍✎✟

✏
✟✑

 (6-5) 

where ☎✞ is a strain perturbation specified by a user, the appropriate magnitude of 

which depends on the sensitivity of the ANN as will be briefly discussion later. 

Step 2: The neural network is called to evaluate stresses �✌✁ ✂ �✌✁✒ ✞✌✁✓, which are 

then used to obtain the stress increment ☎�✌✁ ✂ �✌✁ ✔ �✌☛. 

Step 3: Repeat step 1 and step 2 with ✞✌✕ ✂ ✞✌☛ ✄ ☎✞ ✆
✝✟
✠
✟✡

✍☞
✍✍
✍
✍✎✟

✏
✟✑

 to obtain ☎�✌✕ .  The 

procedure is repeated to obtain ☎�✌✖, ☎�✌✗, ☎�✌✘ and ☎�✌✙, for which the third, fourth, 

fifth and sixth component of the strain vector is perturbed respectively by the 

comment value of ☎✞ accordingly. 

Step 4: The Jacobian matrix or tangential stiffness matrix, 
✚✛✜✚✛✢, can be approximately 

expressed as follows. 

✣☎�
✣☎✞ ✂ ☞

☎✞ ✤☎�✌✁✥ ☎�✌✕✥ ☎�✌✖✥ ☎�✌✗✥ ☎�✌✘✥ ☎�✌✙✦ (6-6) 
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The magnitude of ✄✞ dictates degree of the approximation of the Jacobian obtained 

in two conflicting way.  When expression (6-6) is considered as a finite difference, 

then the smaller the ✄✞, the better the approximation to the Jacobian.  On the other 

hand, as ✄✞ reduces, numerical errors tend to build up and significant accuracy is lost 

in the evaluation of differences, such as ✄�✌☛ ✁ �✌☛ ✂ �✌☎ .  After some careful 

parametric study, a value of 0.0001 for ✄✞ was found to be able to strike a balance in 

the application of the ANN in present work. 

Uniaxial stress-strain curves along the transverse direction calculated using Abaqus 

UMAT and VUMAT subroutines based on material model defined by ANN are 

plotted in Figure 6.8 along with the curve calculated directly with the damage model 

subroutine. 

 

✆✝✟✠✡☞ ✍✎✏ ✑✒✓✔✕✡✝✖✒✗ ✒✘ ✙✚☞ ✖✙✡☞✖✖-✖✙✡✕✝✗ ✛✠✡✜☞✖ ✛✕✢✛✠✢✕✙☞✣ ✠✖✝✗✟ ✤✥✥ ✖✦✖✙☞✓
✕✗✣ ✙✚✒✖☞ ✔✡☞✣✝✛✙☞✣ ✧✝✙✚ ✙✚☞ ✒✡✝✟✝✗✕✢ ✣✕✓✕✟☞ ✓✒✣☞✢ 

 

In this case, the UD composite unit cell was loaded along the transverse direction. As 

can be seen, prior to damage initiation (at 300 MPa) the stiffness predictions are 

identical for all three models, while there is a marginal discrepancy in stress 

predictions past this point. This indicates a highly accurate prediction as the ANN-

based material model. 
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6.4.2 Neural network for 3D textile composites 

At the mesoscale, an ANN for 4-axial 3D braided composites with progressive 

damage was generated and implemented as Abaqus UMAT and VUMAT 

subroutines. The unit cell shown in Figure 3.28 (a) was applied to conduct the 

analysis. 

In this example, only six stress components were treated as inputs, while parameters, 

✞☛=60% and braiding angle=27°, as well as the material properties of fibre (Table 3.6) 

and matrix (Table 4.2), were kept fixed. The fibre volume fraction within the yarn 

was assumed as 90%. Effective properties of the yarn calculated with UD unit cell 

model are listed in Table 3.7 and Table 4.3. 

The mesoscale unit cell model for 4-axial 3D braided composites that was introduced 

in Section 4.6 of Chapter 4 was applied to generate the training cases for ANN. As 

mentioned above, the inputs of the ANN are the six strain components, and the 

outputs are the stress combinations corresponding to each of those strain 

combinations. Therefore, a combination of six strain components was applied to 

mesoscale unit cell model, and the output stress combinations were recorded at each 

increment. To ensure that ANN is capable of representing the constitutive behaviour 

of the material over a sufficiently large strain range, the six strains components, ✂�, 

✂✁ , ✂✄ , ☎�✁ , ☎�✄ , and ☎✁✄ , were assigned values from the set [-0.3,0.0, 0.3]. This 

resulted in total of 728 strain combinations. These 728 load cases were calculated 

using UnitCells© toolbox, where 30 increments was defined for each loading case. 

This results in 21840 stress-strain pairs being generated from the unit cell model. 

Half of them were treated as a training cases and the other half were treated as a 

testing cases. An ANN with two hidden layer was generated in Matlab and the 

number of neural elements in two hidden layers were 46 and 38, respectively. 

Comparison of the normalized effective stress components ✆✁ and ✝✁✄ in Table 6.3 

shows good the agreement between the predictions obtained with trained ANN 

material model and those obtained directly from the unit cell model. This verifies the 

applicability of the ANN approach in this case. 

  



136 

�✁✂✄☎ ✆✝✞ ✟☎✠✡☛✡☞✁✌✡✍✎ ✍☛ ✏✑✑ ☛✍✠ ✞✒ ✂✠✁✡✓☎✓ ☞✍✔✕✍✖✡✌☎ ✔✍✓☎✄ 

Normalised ✗✘ Normalised ✙✘✚ 

UC ANN error UC ANN error 

-0.0226 -0.0225 0.084% 0.0043 0.0043 0.496% 

-0.0162 -0.0162 0.051% 0.0078 0.0078 0.201% 

-0.0099 -0.0099 -0.054% 0.0113 0.0113 0.160% 

-0.0035 -0.0035 -0.155% 0.0148 0.0148 0.083% 

0.0028 0.0028 0.665% 0.0183 0.0183 0.081% 

0.0092 0.0092 0.319% 0.0219 0.0218 0.042% 

0.0155 0.0155 0.204% 0.0254 0.0254 0.044% 

0.0219 0.0219 0.189% 0.0289 0.0289 0.019% 

0.0282 0.0282 0.189% 0.0324 0.0324 0.023% 

0.0346 0.0345 0.148% 0.0359 0.0359 0.003% 

 

The trained ANN was then implemented as Abaqus UMAT and VUMAT 

subroutines. These subroutines can now be applied to define the constitutive 

behaviour of the material at a macroscale. As a verification case, 3D braided 

composite model was loaded along ✛-direaction. The average stress-strain curves 

calculated with UMAT and VUMAT subroutine material models are plotted 

simultaneously in Figure 6.9 along with the stress-strain curve obtained directly from 

original unit cell model. 
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�✁✂✄☎✆ ✝✞✟ ✠✡☛☞✌☎✁✍✡✎ ✡✏ ✑✒✆ ✍✑☎✆✍✍-✍✑☎✌✁✎ ✓✄☎✔✆✍ ✡✏ ✓✌✕✓✄✕✌✑✆✖ ✗✁✑✒ ✘✙✙ ✌✎✖

✑✒✡✍✆ ☞☎✆✖✁✓✑✆✖ ✖✁☎✆✓✑✕✚ ✏☎✡☛ ✑✒✆ ✛✠ ✌✎✌✕✚✍✁✍ 

 

Close agreement between the curves verifies the applicability of the ANN approach. 

The ANN-based model is capable of reflecting the effects of damage initiation and 

evolution in the mesoscale textile composite model. The accuracy can be improved 

by introducing more sampling points to the ANN training case within the given range 

of strains, which was from -0.3 to 0.3 in the present analysis. 

The ultimate goal of ANN model is to predict the failure of the textile composites.  

As was previously explained, the failure is defined here as the initiation of the 

localised deformation at macroscale which corresponds to the state soon after the 

tangential stiffness matrix for the unit cell as a representative volume of the material 

loses its positive definitiveness.  In order to achieve this, an appropriate failure 

criterion is required in the mesoscale modelling. As a conservative measure, a 

material point is considered to have failed and will be deleted from the mesh when 

the Jacobian matrix (DDSDDE) at this integration point becomes singular. The 

tangential stiffness reduces gradually as the damage in the material evolves, and the 

determinant of tangential stiffness matrix monotonically decreases to zero. As soon 

as the value of determinant becomes zero, the Jacobian matrix becomes singular and 

is considered to have lost its positive definitiveness. 
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This criterion has been implemented within Abaqus UMAT and VUMAT ANN 

subroutines. Within the VUMAT, an indicator was used to indicate the status of each 

element. The value of the indicator changes from zero to unity when the element 

deletion condition was activated.  The time histories of average stress and the 

element deletion indicator are shown in Figure 6.10. As can be seen, stress predicted 

with UMAT ANN subroutine reduces smoothly after the maximum point, while that 

calculated with VUMAT ANN subroutine drops to zero because of the use of 

element deletion. As can be seen from Figure 6.10, the DDSDDE matrix becomes 

singular and element deletion condition is activated when stress reaches its maximum, 

which is consistent with the definition of the failure as is used here. 

 

�✁✂✄☎✆ ✝✞✟✠ ✡☛☎✆☞☞ ✌✍✎ ✆✏✆✑✆✍☛ ✎✆✏✆☛✁✒✍ ✁✍✎✁✓✌☛✒☎ ✒✄☛✔✄☛ ✓✌✏✓✄✏✌☛✆✎ ✕✁☛✖ ✗✘✙✚

✌✍✎ ✛✗✘✙✚ 

 

With this ANN, the failure envelope for 3D braided composites under different stress 

combination were predicted and plotted in Figure 6.11 as a verification case for ANN 

related to this type of textile composites. 
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(a) ✞☛-✞� 

 

(b) ✞☛-✞✁ 

 

(c) ✞�-✞✁ 

✂✄☎✆✝✟ ✠✡☞☞ ✂✌✄✍✆✝✟ ✟✎✏✟✍✑✒✟✓ ✔✑✝ ✕✖ ✗✝✌✄✘✟✘ ✙✑✚✒✑✓✄✛✟✓ ✙✌✍✙✆✍✌✛✟✘ ✟✚✒✍✑✜✄✎☎

✢✣✣ ✓✜✓✛✟✚✓ ✤✥✟✘ ✒✑✄✎✛✓ ✌✝✟ ✒✝✟✘✄✙✛✄✑✎✓ ✚✌✘✟ ✦✄✛✧ ✛✧✟ ✚✟✓✑✓✙✌✍✟ ✆✎✄✛ ✙✟✍✍

✚✑✘✟✍★ ✗✍✆✟ ✒✑✄✎✛✓ ✦✟✝✟ ✙✌✍✙✆✍✌✛✟✘ ✦✄✛✧ ✢✣✣✩ 
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The failure envelopes of ✞☛-✞� and ✞✁-✞� should be identical in theory and they are 

similar enough here as an approximation, since the unit cell model of 3D braided 

composites is of identical structure in the ✂ and ✄ directions. Moreover, the failure 

envelope of ✞☛ -✞✁  should be symmetric about the axis in ☎✆✝  direction. The red 

points in Figure 6.11 are the uniaxial loading strengths calculated from mesoscale 

unit cell model. These strengths are well captured by the failure envelopes produced 

based on ANN. 

6.4.3 Neural network for the laminate 

At the macroscale, the ANN method was applied to conduct the failure analysis for a 

laminate. In accordance with this methodology, the laminate is treated as a 

monolithic material, rather than a stack of individual laminae. 

In order to verify the model developed, the failure envelopes were constructed and 

compared with those obtained following a conventional laminate analysis, which is 

based on classical laminate theory. In this case, failure is assessed by applying the 

failure criteria to each lamina as a UD composite. A large variety of failure criteria is 

available [165] for UD composites, among which some of the most commonly used 

are the Tsai-Wu failure criterion [102], Hashin failure criteria [108] and Chang-

Chang failure criteria [166]. It is worth noting that these criteria are only applicable 

for predicting the failure in UD composites. In absence of appropriate failure 

criterion for composites of more sophisticated architecture, e.g. textile composites, 

users might be tempted to extend the criteria for UD composites blindly.  An 

example will be shown below how erroneous it could be if a lamina-based failure 

criterion is applied to the entire laminate. It results in arbitrary failure predictions, 

which in some cases can be reasonable by chance, while in other cases would differ 

substantially from those obtained by applying the failure criteria at the lamina level. 

To demonstrate the disparity, the analysis has been carried out for a laminate of 

[0✟/90✟/90✟/0✟] lay-up of four plies of T300 carbon fibre reinforced UD composite 

(Vf =60%), with the material properties given in Table 6.4. The stress state within 

each layer was calculated at various stress states based on classical laminate theory. 

Within each layer, the stress state was checked against the Tsai-Wu failure criterion, 

which is defined for the 2D stress state as follows. 
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✞☛�☛ ✌ ✞✁�✁ ✌ ✞☛☛�☛
✁ ✌ ✞✁✁�✁

✁ ✌ ✞✂✂✄☛✁
✁ ✌ ☎✞☛✁�☛�✁ ✆ ✝ 

✞☛ ✆
✝

✟✠✡
☞

✝

✟✠✍
✎ ✞✁ ✆

✝

✟✏✡
☞

✝

✟✏✍
✎ ✞☛☛ ✆

✝

✟✠✡✟✠✍
 

✞✁✁ ✆
✝

✟✏✡✟✏✍
✎ ✞✂✂ ✆

✝

✟✑✒
✁ ✎ ✞☛✁ ✆ ☞

✝

☎
✓✞☛☛✞✁✁ 

(6-7) 

The failure envelopes for the laminate have been obtained, where strength is defined 

by the first instance of failure in any lamina of the laminate. 

✔✕✖✗✘ ✙✚✛ ✜✕✢✘✣✤✕✗ ✥✣✦✥✘✣✢✤✘✧ ✦★ ✔✩✪✪ ✫✕✣✖✦✬ ★✤✖✣✘ ✣✘✤✬★✦✣✫✘✭ ✮✯ ✫✦✰✥✦✧✤✢✘
✱✤✢✲ ✯✳✪✙✩ ✘✥✦✴✵ ✰✕✢✣✤✴ ✶✷✸ ✹✙✪✺✻ ✼✽✾✿ 

E1 (GPa) 138 

E2 (GPa) 11 

❀12 0.28 

G12 (GPa) 5.5 

S1t (MPa) 1500 

S1c (MPa) 900 

S2t (MPa) 27 

S2c (MPa) 200 

S12 (MPa) 80 

 

The macro strengths calculated with this method were SXt= 148 MPa; SXc= 629 MPa; 

SYt= 148 MPa; SYc= 629 MPa; Sxy= 65 MPa. With these macro strengths, if the Tsai-

Wu failure criterion was applied to the entire laminate model, where the laminate 

was treated as a monolithic material, a failure envelope would be obtained which was 

an ellipse determined by the four points on the axes as shown according to Equation 

(6-7). It is plotted alongside with the failure envelope based on lamina in Figure 6.12. 
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�✁✂✄☎✆ ✝✞✟✠ �✡✁☛✄☎✆ ✆☞✌✆☛✍✎✆✏ ✍✑ ✒✓✔✔ ✕✡☎✖✍☞ ✑✁✖☎✆ ☛✡✗✁☞✡✘✆ ✎☎✆✙✁✕✘✆✙ ✖✡✏✆✙ ✍☞

☛✡✗✁☞✡- ✡☞✙ ☛✡✗✁☞✡✘✆-✖✡✏✆✙ ✑✡✁☛✄☎✆ ✕☎✁✘✆☎✁✍☞ 
 

It can be seen that in this case, the failure envelopes based on lamina and laminate 

bear some similarities. The analysis has next been made for the laminate of same lay-

up, where the individual plies were assigned the properties of glass-fibre composite, 

as defined in Table 6.5. 

✒✡✖☛✆ ✝✞✚ ✛✡✘✆☎✁✡☛ ✎☎✍✎✆☎✘✁✆✏ ✍✑ ✜-✂☛✡✏✏ ✠✟✢✣✤✓ ✥✆✌✆✘✆✢ ✦✧ ✕✍✗✎✍✏✁✘✆ ★✁✘✩
✧✪✔✝✓ ✆✎✍✢✫ ✗✡✘☎✁✢ ✬✭✮ ✯✝✠✰✱ ✲✳✠✴ 

E1 (GPa) 53.48 

E2 (GPa) 17.7 

✵12 0.278 

G12 (GPa) 5.83 

S1t (MPa) 1140 

S1c (MPa) 570 

S2t (MPa) 35 

S2c (MPa) 114 

S12 (MPa) 72 
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Failure envelopes calculated by applying Tsai-Wu failure criterion on laminate and 

lamina level are plotted in Figure 6.13. As can be seen, in this case, the failure 

envelopes are drastically different. This confirms the importance of consistent 

modelling of failure in composites, where failure models applicable to the UD 

composites should not be extended blindly to anything other than UD. 

 

�✁✂✄☎✆ ✝✞✟✠ �✡✁☛✄☎✆ ✆☞✌✆☛✍✎✆✏ ✍✑ ✒-✓☛✡✏✏ ✑✁✔☎✆ ☛✡✕✁☞✡✖✆ ✎☎✆✗✁✘✖✆✗ ✔✡✏✆✗ ✍☞

☛✡✕✁☞✡- ✡☞✗ ☛✡✕✁☞✡✖✆-✔✡✏✆✗ ✑✡✁☛✄☎✆ ✘☎✁✖✆☎✁✍☞ 

 

At the same time, modelling the lamina explicitly and applying failure criteria to 

each layer is relatively more complicated and computationally demanding. Failure 

criterion that is applicable to the whole laminate can facilitate the failure analysis 

more conveniently.  However, it cannot be achieved in the way as shown above, as it 

is apparently misleading. The ANN method offers a solution to this problem. To 

demonstrate the applicability of this method, it was applied to construct the 

macroscale failure envelope for the whole laminate. 

The ANN training cases were generated for the GF laminate as in the previous 

example. The laminate model was loaded at 728 different macro stress combinations. 

Within each layer, the stress state at every increment of every stress combination was 

checked and compared with the Tsai-Wu failure criterion. The laminate was regarded 
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as have failed if any layer failed according to the Tsai-Wu failure criterion. In this 

�✁✂✄☎ ✁✆ ✝✆✞✝�✁✟✠✡ ☛☞✌ ✍✁✂ ✠✎✟✏✎✟ ✑✠✡ ✟✒✝✂ ✝✆�✡✄✓✄✆✟✔ ✠✟✒✄✡✍✝✂✄☎ ✁✆ ✝✆✞✝�✁✟✠✡ ☛✕✌ ✍✁✂

output. An ANN was generated and trained, where the macro stress components of 

every increment were treated as input of the training case for ANN, while the 

indicator was treated as output. 

The same GF laminate model as was used when the training case was created and 

loaded at different ratios of two macro stress components ✖✗ and ✖✘. The failure of 

the laminate was determined by the macro stress components via the ANN instead of 

applying the Tsai-Wu failure criterion to each layer. The failure envelope for the 

entire laminate based on the ANN is shown in Figure 6.14. 

 

✙✚✛✜✢✣ ✤✥✦✧ ✙★✚✩✜✢✣ ✣✪✫✣✩✬✭✣✮ ✭✢✣✯✚✰✱✣✯ ✜✮✚✪✛ ✩★✲✚✪★- ★✪✯ ✩★✲✚✪★✱✣-✳★✮✣✯

✴★✚✩✜✢✣ ✰✢✚✱✣✢✚✬✪✵ ★✪✯ ✰★✩✰✜✩★✱✣✯ ✣✲✭✩✬✶✚✪✛ ✷✸✸ ✮✶✮✱✣✲ 

As can be seen, the failure envelope that was calculated applying ANN method 

agrees reasonably well with that constructed by explicitly applying the failure 

criterion at the ply level.  The accuracy can be improved as more sampling points are 

incorporated into the ANN training. The explicit method can therefore be replaced by 

an ANN method, for which laminated composites are modelled as monolithic 

materials. This verifies the method developed and suggests that it can be extended 

for the analysis of textile composites. 
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The verification cases in this section have confirmed the capability of the ANN 

system to accurately represent the behaviour of composites at the microscale, 

mesoscale and laminate levels. However, in the present work, the main purpose of 

developing the ANN systems was to apply them for the definition of the constitutive 

behaviour of textile composites at the macroscale level.  The examples of such 

applications are given in Chapter 7. 

6.5 Summary 

A multiscale modelling methodology has been developed to define the constitutive 

behaviour of the textile composites, incorporating elastic behaviour, progressive 

damage and an ultimate failure. It employs the ANN method to define the 

constitutive behaviour of textile composites at the macroscale. With the ANN system, 

the strength of textile composites at multi-axial stress states can be predicted. As an 

illustration, the failure envelopes of a 4-axial 3D braided composites and a laminate 

were created. 

This ANN system was implemented as Abaqus user material subroutines (UMAT 

and VUMAT) to represent the properties of textile composite model at meso- and 

macroscales as a fictitiously monolithic material. Sanity checks have been carried out 

at each stage and scale of the analysis to verify the method. The capability of the 

methodology has been demonstrated through a simulation of rigid ball impact of a 

3D braided composite flat panel. 
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Chapter 7  Validation and Application 

7.1 Introduction  

The multiscale modelling methodology as established in Chapter 6 needs to be 

validated before it can be applied to solve practical problems. The validation process 

is carried out to ensure that the predictions of the model are reasonable and have an 

acceptable accuracy. For validation, the multi scale unit cell models were used to 

predict the effective stiffness of 3D braided and 3D orthogonal woven composites 

and compared with published data. Furthermore, the unit cell and ANN modelling 

method were used to predict the effective static and dynamic stiffness and strength 

and critical velocities of glass and carbon fibre reinforced layer-to-layer interlock 3D 

woven composites. The predicted results agreed well with the experimental results 

from a parallel PhD project [127]. To demonstrate the capability of the established 

method to predict the response of the textile composite materials at a component 

level which is at a macro-scale, a finite element simulation of the impact of the 

containment casing was carried out as presented and discussed in Section 7.4. 

7.2 Validation against Published Data 

In addition to the extensive verification exercises as described in Chapter 3 and 

Chapter 4, UnitCells© has also been partially validated against the limited 

experimental data available in the open literature. In this section, the effective 

properties obtained with UnitCells© for different types of composites are compared 

with those from [40, 82, 167, 168, 169]. 

7.2.1 Effective properties of UD composites 

As a validation of stiffness and strength predictions of UD composites, four types of 

unidirectional laminae were characterised employing the unit cell modelling. The 

predictions were compared with the experimental data [82]. Typical data for the 

properties of four fibres and epoxy resins are summarised in Table 7.1 and Table 7.2. 

These serve as the input material properties for the analysis. 
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�✁✂✄☎ ✆✝✞ ✟☎✠✡✁☛☞✠✁✄ ✌✍✎✌☎✍✏☞☎✑ ✎✒ ✒✎✓✍ ✏✔✌☎✑ ✎✒ ✏✡☎ ✒☞✂✍☎✑ ✕✖✗✘ 

Fibre type AS4 T300 
Gevetex E-glass 
21xK43 

Silenka E-glass 
1200tex 

Ef1 (GPa) 225 230 80 74 

Ef2 (GPa) 15 15 80 74 

Gf12 (GPa) 15 15 33.33 30.8 

✙f12 0.2 0.2 0.2 0.2 

Gf23 (GPa) 7 7 33.33 30.8 

XfT (MPa) 3350 2500 2150 2150 

XfC (MPa) 2500 2000 1450 1450 

✚f1T (%) 1.488 1.086 2.687 2.905 

✚f1C (%) 1.111 0.869 1.813 1.959 

 

�✁✂✄☎ ✆✝✗ ✟☎✠✡✁☛☞✠✁✄ ✌✍✎✌☎✍✏☞☎✑ ✎✒ ✒✎✓✍ ✏✔✌☎✑ ✎✒ ✏✡☎ ☎✌✎✛✔ ✍☎✑☞☛✑ ✕✖✗✘ 

Matrix type 
3510-6 
epoxy 

BSL914C 
epoxy 

LY556/HT907
/ DY063 epoxy 

MY750/HY917/ 
DY063 epoxy 

Em (GPa) 4.2 4 3.35 3.35 

Gm (GPa) 1.567 1.481 1.24 1.24 

✙m 0.34 0.35 0.35 0.35 

YmT (MPa) 69 75 80 80 

YmC (MPa) 250 150 120 120 

Sm (MPa) 50 70 
  

✚mT (%) 1.7 4 5 5 
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Fibre type AS4 T300 
Gevetex E-glass 
21xK43 

Silenka E-glass 
1200tex 

Matrix 
type 

3510-6 epoxy BSL914C epoxy 
LY556/HT907/ 
DY063 epoxy 

MY750/HY917/ 
DY063 epoxy 

Vf 0.6 0.6 0.62 0.6 

 
Test UnitCells© Test UnitCells© Test UnitCells© Test UnitCells© 

E1 (GPa) 126 136.62 138 139.54 53.48 50.87 45.6 45.74 

E2 (GPa) 11 9.55 11 9.44 17.7 16.34 16.2 14.99 

G12 (GPa) 6.6 4.7 5.5 4.52 5.83 4.96 5.83 4.58 

✚12 0.280 0.252 0.280 0.256 0.278 0.246 0.278 0.250 

✚23 0.40 0.26 0.40 0.27 0.40 0.25 0.40 0.26 

XT (MPa) 1950 2049.23 1500 1548.85 1140 1339.28 1280 1292.42 

XC (MPa) 1480 1557.42 900 1213.96 570 930.99 800 905.63 

YT (MPa) 48 50.9 27 54.04 35 44.13 40 44.96 

YC (MPa) 200 177.66 200 106.14 114 64.76 145 67.44 

S12 (MPa) 79 42.29 80 45.64 72 44.61 73 45.45 

✛1T (%) 1.38 1.5 1.087 1.11 2.132 2.7 2.807 2.91 

✛1C (%) 1.175 1.14 0.652 0.87 1.065 1.83 1.754 1.98 

✛2T (%) 0.436 0.54 0.245 0.6 0.197 0.27 0.246 0.3 

✛2C (%) 2 1.86 1.818 1.14 0.644 0.42 1.2 0.45 

✜12u (%) 2 0.9 4 1.02 3.8 0.9 4 1.02 

 

The effective properties of the unidirectional laminates were calculated and 

compared with the experimental data in Table 7.3. Reasonable agreements have been 

achieved between the predicted effective stiffnesses and the experimental results 

except for the odd ones which will be justified below. The same conclusion can be 

made comparing the measured and predicted tensile strength and tensile failure strain 

along both the longitudinal and transverse directions. At the same time, the predicted 
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values of the compressive strength in the longitudinal directions are larger than those 

determined experimentally. This is due to the fibre buckling that occurred in the 

experiments prior to the ultimate compressive failure. Fibre buckling is not 

accounted for in the unit cell model, hence the predicted strength values are expected 

to be larger than the measured ones. Under transverse compressive loading and shear 

loading, the predicted strength values are lower than the measured ones. These types 

of failure are dominated by matrix failure, hence within unit cell analysis, the 

material is considered to have failed when matrix failure occurred. However, in the 

real-life tests, the fibres can come into contact with each other and can sustain more 

load even after the matrix has failed. Because of that, the strength predictions under 

the shear and compressive tensile loading in the transverse direction are expected to 

be conservative. 

7.2.2 Effective properties of textile composites 

To validate the material characterisation methodology for textile composites, a 4-

axial 3D braided composite was considered. Some of the effective properties for this 

composite were calculated employing four different methods, namely, multi-unit cell 

model with rule of mixtures for the yarn (MUCM1) [40], multi-unit cell model with 

the bridging model [170] for the yarn (MUCM2) [40], weighted average model 

(WAM) [168] and hybrid stress element model (HYB) [167]. Some experimental 

results can be found in [40], where these were compared with the predictions made 

with the methods as proposed in [167, 168]. 

In accordance with the multi-scale modelling methodology, the effective properties 

of the yarns were calculated first. These are presented in Table 7.4, where the 

properties of the constituent materials, as were used in [40], are also reproduced. The 

microscale analysis was carried out by UnitCells©, where the UD composite with 

fibre volume fraction of 80% was represented by a hexagonal UC (Figure 3.5 (a)). 
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Fibre 

(AS4 carbon fibre) 

Matrix 

(epoxy resin) 

UD composites 

(Vf=80%) 

E1 (GPa) 234.6 2.94 188 

E2 (GPa) 13.8 2.94 9.61 

G12 (GPa) 13.8 1.176 6.00 

G23 (GPa) 5.50 1.176 3.59 

✣12 0.20 0.25 0.226 

At the mesoscale, the material characterisation was carried employing the unit cell of 

a 4-axial 3D braided composite (see Figure 3.28 (a)), which is available in 

UnitCells©. Six unit cell models were generated in total, each having the same 

braiding angles and fibre volume fractions as those in [40]. The braiding angles and 

fibre volume fractions are listed in Table 7.5.  With a fixed fibre volume fraction for 

the yarns, the specified fibre volume fractions can be achieved by selecting 

appropriate yarn volume fractions in the corresponding unit cells which can be done 

analytically [73].  It can be shown that moderate exchange between the fibre volume 

fraction in the yarns and the yarn volume fraction in the unit cell makes no 

significant difference to the predicted results.  The same conclusion applies to other 

unit cells (see section 8.3 in Chapter 8). 

At the mesoscale, the effective properties of UD composites listed in Table 7.4 were 

used to represent the material properties of yarns. The material properties of the 

matrix were the same as those of the epoxy resin in Table 7.4. Mesoscale material 

characterisation has been carried out for all six models, and the predicted 

longitudinal and transverse elastic moduli were compared with those from [40] in 

Table 7.5 and Table 7.6, respectively, where such data was available. Note that 

UnitCells© allows calculation of all the effective elastic properties, and for the sake 

of completeness, these are presented in Table 7.7, even though no experimental data 

were available for comparison. 

From Table 7.5 and Table 7.6 it is easy to see that the values of the elastic moduli 

predicted with UnitCells© agree well with the experimental data, as well as with the 



151 

values calculated via other mathematical models. Particularly good agreement has 

been achieved in terms of predictions of the longitudinal effective stiffness. 

�✁✂✄☎ ✆✝✞ ✟✠✠☎✡☛☞✌☎ ✄✍✎✏☞☛✑✒☞✎✁✄ ✓☛☞✠✠✎☎✓✓ ✌✁✄✑☎✓ ✍✂☛✁☞✎☎✒ ✔☞☛✕ ✒☞✠✠☎✖☎✎☛ ✗☎☛✕✍✒✓

☞✎ ✘✙✚✛ ✁✎✒ ✡✁✄✡✑✄✁☛☎✒ ✔☞☛✕ ✜✎☞☛✢☎✄✄✓✣ 

Specimen No. 1 2 3 4 5 6 

Braiding angle ✤ 0 17 17 20 22 25 

Vf 0.28 0.38 0.4 0.46 0.44 0.29 

Experiment (GPa) 66.9 43.6±1.9 45.9±1.2 48.0±3.0 38.5±2.4 21.2±1.8 

MUCM1 (GPa) 66.2 45.2 47.4 46.5 40.3 24.1 

MUCM2 (GPa) 66.2 43.9 46 45.3 39.1 23 

WAM[168] (GPa) 68.8 48.3 50.7 47 38.6 21.6 

HYB[167] (GPa) 69.2 46 46.9 44.8 38.1 23.8 

UnitCells© (GPa) 67.7 42.5 43.3 46.8 37.2 23.9 

 

�✁✂✄☎ ✆✝✥ ✟✠✠☎✡☛☞✌☎ ☛✖✁✎✓✌☎✖✓☎ ✓☛☞✠✠✎☎✓✓ ✌✁✄✑☎✓ ✍✂☛✁☞✎☎✒ ✔☞☛✕ ✒☞✠✠☎✖☎✎☛ ✗☎☛✕✍✒✓ ☞✎

✘✙✚✛ ✁✎✒ ✡✁✄✡✑✄✁☛☎✒ ✔☞☛✕ ✜✎☞☛✢☎✄✄✓✣ 

Specimen No. 1 2 3 4 5 6 

Experiment (GPa) N/A 6.21±0.41 N/A N/A 6.02±0.3 N/A 

MUCM1 (GPa) N/A 5.81 N/A N/A 6.39 N/A 

MUCM2 (GPa) N/A 5.62 N/A N/A 6.14 N/A 

WAM[168] (GPa) N/A 5.74 N/A N/A 6.21 N/A 

HYB[167] (GPa) N/A 6.22 N/A N/A 6.54 N/A 

UnitCells© (GPa) 4.54 5.48 6.09 6.95 6.78 5.72 

 

All effective properties are summarised in Table 7.7 for many of which experimental 

data were not available. 
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�✁✂✄☎ ✆✝✆ ✞✄✄ ☎✟✟☎✠✡☛☞☎ ✌✍✎✌☎✍✡☛☎✏ ✌✍☎✑☛✠✡☎✑ ✒✏☛✓✔ ✕✓☛✡✖☎✄✄✏✗ 

Specimen No. 1 2 3 4 5 6 

E1 (GPa) 67.7 42.5 43.3 46.8 37.2 23.9 

E2=E3 (GPa) 4.54 5.48 6.09 6.95 6.78 5.72 

G12=G13 (GPa) 1.78 5.22 5.9 8.07 8.43 6.64 

G23 (GPa) 1.54 1.9 2.08 2.29 2.17 1.68 

✘23 0.48 0.37 0.36 0.31 0.29 0.29 

✘12=✘13 0.3 0.57 0.58 0.69 0.74 0.73 

 

Another example is for non-crimp fabric (NCF, referred to as 3D orthogonal woven) 

composites. The fabric architecture and experimental results can be found in [169]. 

The total fibre volume fraction was given as 51.1%. A hexagonal unit cell similar to 

that shown in Figure 3.5(a) was used to predict the effective properties of the yarns 

as UD composites, but the fibre volume fraction within the yarns was assumed to be 

70%. The NCF composite architecture (Figure 7.1) was defined using UnitCells© 

such that the geometric parameters employed resulted in a yarn volume fraction of 

73%, gives the desired overall fibre volume fraction of 51.1%. The volume ratio of 

the warp, weft and binder yarns in the fabric was chosen to be the same as that given 

in [169] at 46.12:51.24:2.64%. Because of the limitation in model generation, the 

binders have 1.37% ✙✚✛✜✢✣✚ ✙✚✤✥✦✧★✩✩ ✪✧✫ ✬✭✮✯✰ ✪✩ ✱Z-✥✛✜✲✧✳ [169], respectively, as 

opposed to 1.34% and 1.30% as in [169]. Such a minor disparity would not be 

expected to result in much difference in the results. The yarn cross sections were 

chosen as a power ellipse, and the mesh for the yarns involved in the unit cell model is 

shown in Figure 7.1. 
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(a) Geometry generated using TexGen 

 

(b) Yarn mesh generated by HyperMesh (only those for the yarns are shown) 

�✁✂✄☎✆ ✝✞✟ ✠✡✁☛ ☞✆✌✌ ✍✎☎ ✏✑ ✎☎☛✒✎✂✎✡✓✌ ✔✎✕✆✡ ☞✎✖✗✎✘✁☛✆✘ 

 

The properties of the fibre and matrix were not provided in [169]. However, 

according to the types of fibre and matrix specified in [169], the relevant properties 

✙✚✛✚ ✜✢✣✤✥✦✚✧ ★✛✜✩ ✣✪✚✥✛ ✫✬✭✭✮✥✚✛✫✯ ✙✚✢ ✫✥✣✚✫ ✤✫ ✮✥✫✣✚✧ ✥✦ Table 7.8 [171, 172], while 

the obtained results are shown in Table 7.9. The same composite with simple 

rectangular yarn cross sections with straight yarn paths and binders bending at right 

angles was also attempted, and the results are included in Table 7.9 in the row marked 

✰✱✚✲✣✤✦✳✮✚✯✴ ✙✪✚✛✚ ✣✪✚ ✵-binder split was 1.62 and 1.02%, a bit further away from 

the ratio given in [169]. Again, no major error is expected in the results. In fact, the 

✮✤✲✶ ✜★ ✧✥★★✚✛✚✦✲✚✫ ✢✚✣✙✚✚✦ ✣✪✚ ✛✚✫✬✮✣✫ ★✛✜✩ ✰✱✚✲✣✤✦✳✮✚✯ ✤✦✧ ✰✷✜✙✚✛ ✚✮✮✥✭✫✚✯ ✸✤✛✦ ✲✛✜✫✫
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sections as shown in Table 7.9 suggests that effective elastic properties are not 

extremely sensitive to detailed geometric parameters while the dominant factors are the 

fibre volume fractions in the principal directions. 

�✁✂✄☎ ✆✝✞ ✟✠✡☛☎✠☞✌☎✍ ✡✎ ✌✏☎ ☎☛✡✑✒ ✠☎✍☞✓ ✁✓✔ �✡✏✡ �☎✓✁✑ ✕✁✠✂✡✓ ✎☞✂✠☎ 

Fibre 

(Toho Tenax) [171] 

E1 (GPa) 237.0 

E2 (GPa) 23.7 

G12 (GPa) 15.0 

✖23 0.45 

✖12 0.29 

Matrix 

(105 epoxy 209 extra 
slow hardener) [172] 

E (GPa) 3.98 

✖ 0.33 

 

�✁✂✄☎ ✆✝✗ ✘✡✙☛✁✠☞✍✡✓ ✡✎ ✌✏☎ ☎✎✎☎✕✌☞✚☎ ✍✌☞✎✎✓☎✍✍☎✍ ✡✎ ✛✘✜ ✌☎✑✌☞✄☎ ✕✡✙☛✡✍☞✌☎✍ 

 E1 (GPa) E2 (GPa) E3 (GPa) 

Experimental [169] 60.0 67.0 N/A 

Yarn cross section 
used in UnitCells© 

Rectangular 60.88 67.30 25.52 

Power elliptic 60.27 67.35 26.62 

 

The two examples shown above indicate that the effective properties predicted by 

using unit cell models agreed well with the experimental results. This means the 

developed multiple scale unit cell model has reasonable accuracy in predicting the 

effective properties of 3D textile composites. 

7.3 Validation against the Experiments 

The comparisons of the effective properties predicted using UnitCells© and the 

published experimental data in Section 7.2 should validate the unit cells involved to a 

certain extent. Further validation was carried out by comparing the predicted and 



155 

measured properties of the textile composites with 3D layer-to-layer interlock woven 

reinforcement. The mechanical testing of the composites was carried out by a 

different researcher from the team of the larger project on the simulation 

methodology for impact damage in composite components of aero-engines [83, 127]. 

The experimental program involved both coupon tests at quasi-static and dynamic 

stress states (SHPB), as well as ballistic impact tests on the composite panels. The 

specimen manufacturing, experimental procedures and data processing techniques 

are reported in detail in [127]. Here, the quasi-static and dynamic properties 

determined in the tests are employed for the validation of the modelling methodology. 

7.3.1 Static stiffness and strength of 3D woven composites 

The static stiffness and strength predictions were validated for two types of E-glass 

fibre reinforced layer-to-layer interlock composites and two types of carbon fibre 

reinforced layer-to-layer interlock composites. The resin transfer moulding (RTM) 

method was applied to form the fabric into the panel shape [83]. The specimens 

machined from the cured panels were used in the experiments, which were designed 

to determine the stiffnesses and strengths in the in-plane material principal directions 

under quasi-static loading [127]. Photographs of the glass fibre and carbon fibre 

composite samples in quasi-static tensile tests are shown in Figure 7.2 (a) and (b), 

respectively. 

 

(a) E-glass fibre 

 

(b) Carbon fibre 

�✁✂✄☎✆ ✝✞✟ ✠✡☛☞✡✌✁✍✆ ✌☞✆✎✁☛✆✏✌ ✁✏ ✑✄✒✌✁-✌✍✒✍✁✎ ✍✆✏✌✁✓✆ ✍✆✌✍✌ 
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The Multi-scale modelling approach has been applied for characterising the 

composite materials based on woven textile reinforcements. The mesoscale unit cell 

as shown in Figure 5.9 is employed, which explicitly defines the complex geometry 

of the fabric weave structure in a textile composite. The input parameters as required 

in order to follow the modelling process are categorised into three groups as follows. 

1) Material properties: elastic and strength properties as available from material 

suppliers and some special parameters introduced by various theories. 

2) Processing related parameters: fibre and yarn volume fractions. 

3) Geometric dimensions: definition of the textile architecture, e.g. the weaving 

angle of warp yarn and the size of the yarns cross sections. 

Measurements of the geometric parameters were carried out by processing the micro-

CT images of the fabrics [83]. Four types of preforms were analysed, with brief 

description of these fabrics being given in Table 7.10. 

�✁✂✄☎ ✆✝✞✟ ✠✡☛☞ ✌✍✎☎✏ ✡✑ ✄✁✍☎☞-✌✡-✄✁✍☎☞ ✁✒✓✄☎ ✔✒✌☎☞✄✡✕✖ ☞☎✔✒✑✡☞✕☎✗ ✌☎✘✌✔✄☎

✕✡✙✎✡✏✔✌☎✏ ✁✎✎✄✔☎✗ ✔✒ ✙✁✌☎☞✔✁✄ ✕✚✁☞✁✕✌☎☞✔✛✁✌✔✡✒ ✏✌☛✗✍ 

Notation Fibre material Yarn volume 
fraction ratio 
(warp:weft) 

Fibre volume 
fraction ratio 
(warp:weft) 

Thickness 

(mm) 

GF1 E-glass fibre 48.99%:13.24% 38.51%:9.88% 4.0 

GF2 E-glass fibre 42.62%:23.39% 33.50%:17.46% 4.0 

T300 CF 
T300 carbon 

fibre 
38.02%:28.41% 29.88%:22.33% 4.2 

IM7 CF 
IM7 carbon 

fibre 
42.25%:27.85% 33.21%:20.79% 4.2 

 

Within the first stage of modelling, the effective properties of the yarns were 

predicted via a UD unit cell analysis. The input parameters were the material 

properties of the fibre and the resin, and the fibre volume fraction, Vf, within warp 
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and weft yarns. The properties of the fibres and the resin are given in Table 7.11 and 

Table 7.12, while the fibre volume fractions in the warp (78.6%) and weft (74.65%) 

yarns were estimated by analysing the micro-CT images of the fabric. The predicted 

density, elastic and strength properties of the yarns are summarised in Table 7.13 and 

Table 7.14. 

�✁✂✄☎ ✆✝✞✞ ✟☎✠✡✁☛☞✠✁✄ ✌✍✎✌☎✍✏☞☎✑ ✎✒ ✏✡☎ ✠✎☛✑✏☞✏✓☎☛✏ ✔✁✏☎✍☞✁✄✑ ✕✍☎✑☞☛ ✁☛✖ ✗✄✁✑✑

✒☞✂✍☎✘ 

 ✙ (kg/m3) E (GPa) ✚ St (MPa) Sc (MPa) 

Resin 

(PRIMETM 20LV) 
1140 3.5 0.35 73 120 

E-glass fibre 2570 74 0.22 2000 1080 

 

�✁✂✄☎ ✆✝✞✛ ✟☎✠✡✁☛☞✠✁✄ ✌✍✎✌☎✍✏☞☎✑ ✎✒ ✏✡☎ ✠✎☛✑✏☞✏✓☎☛✏ ✔✁✏☎✍☞✁✄✑ ✕�✜✢✢ ✁☛✖ ✣✟✆

✠✁✍✂✎☛ ✒☞✂✍☎✘ 
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 ✗  ✘kg/m3) Ex (GPa) Ey (GPa) Gxy (GPa) ✙xy ✙yz 

Warp yarn (GF1&GF2) 2264.0 58.86 22.93 8.39 0.24 0.33 

Weft yarn (GF1&GF2) 2207.5 56.08 19.62 7.13 0.25 0.34 

Warp yarn (T300 CF) 1643.0 181.32 10.62 6.54 0.23 0.23 

Weft yarn (T300 CF) 1617.8 172.39 10.01 5.77 0.23 0.25 

Warp yarn (IM7 CF) 1643.0 217.42 12.21 5.29 0.29 0.45 

Weft yarn (IM7 CF) 1617.8 206.64 11.34 4.80 0.30 0.46 

 

�✁✂✄☎ ✆✝✞✚ ✠✡☎☛☞✌✍☎☛ ☎✒✒☎✌✍☞✓☎ ✏✍✡☎✎✛✍✖ ✔✡✕✔☎✡✍☞☎✏ ✕✒ ✍✖☎ ✑✁✡✎✏ 

 SXt (MPa) SXc (MPa) SYt (MPa) SYc (MPa) Sxy (MPa) Syz (MPa) 

Warp yarn (GF1&GF2) 1580.7 894.6 55.8 88.3 56.7 33.7 

Weft yarn (GF1&GF2) 1506.6 824.2 57.8 89.1 58.7 35.6 

Warp yarn (T300 CF) 1930.8 1150.0 37.0 220.0 84.0 48.8 

Weft yarn (T300 CF) 1835.7 1093.4 39.0 223.0 88.0 50.0 

Warp yarn (IM7 CF) 4435.4 2804.7 63.1 103.1 66.2 47.8 

Weft yarn (IM7 CF) 4215.5 2665.7 62.9 101.6 64.5 46.6 

 

To characterize the material at the mesoscale, the analysis was carried out for the UC 

as shown in Figure 5.9. In this case, the input parameters were the properties of resin 

as in Table 7.11, and parameters of the yarns were determined in the microscale 

analysis. In addition to that, the geometric parameters of the weave need to be 

specified. These include the width and height of the cross-sections of the warp and 

weft yarns, and the distance between two adjacent weft yarns. These were 

determined by processing the micro-CT images of the fabrics (see Figure 3.14 [83]).  

Image processing software ImageJ [173] was utilised to measure the dimensions of 

the yarns and their spacing at various locations within the fabric. The average values 
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and the standard deviations of the geometric parameters of the fabric as presented in 

Table 7.15 were determined based on approximately 20 measurements of each 

parameter. It can be seen that the measured geometric parameters are scattered due to 

the inherent variability of the weave geometry. This introduces errors in the predicted 

results. However, the scatter of the geometric parameters does not affect the 

predictions of the mechanical properties significantly, as long as the fibre volume 

fraction and the weaving angle are close enough to those of the real material. 

Influence of geometric properties of the weave on variation of the mechanical 

properties is investigated in a parametric study presented in Section 8.2 of Chapter 8. 

�✁✂✄☎ ✆✝✞✟ ✠☎✁✡☛☞☎✌ ✍☎✎✏☎✑☞✒✓ ✔✁☞✁✏☎✑☎☞✡ ✎✕ ✑✖☎ ✕✁✂☞✒✓✡ 

Type GF 1 GF 2 T300 CF IM7 CF 

Weft yarn space (mm) 4.52±0.4 4.35±0.3 3.75±0.5 4.52±0.14 

Weft yarn width (mm) 1.45±0.5 2.48±0.2 2.3±0.2 2.26±0.16 

Weft yarn thickness (mm) 0.36±0.05 0.42±0.06 0.36±0.05 0.37±0.03 

Warp yarn width (mm) 1.31±0.1 1.31±0.1 1.25±0.14 1.28±0.09 

Warp yarn thickness (mm) 0.38±0.05 0.37±0.15 0.4±0.1 0.37±0.04 

Warp yarn weaving angle 23°~27° 38°~43° 23°~34° 29°~35° 

Weft yarn layers 6 6 7 7 

 

With the input parameters defined as described above, the mesoscale UC analysis 

was carried out. The stress-strain curves in each loading case were calculated and the 

effective elastic and strength of the UC were extracted from the stress-strain curves. 

Some typical stress-strain curves are shown in Figure 7.3. 
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(a) Warp tension of GF1                       (b) Weft tension of GF1 

  

(c) Warp tension of IM7                       (d) Weft tension of IM7 

�✁✂✄☎✆ ✝✞✟ ✠✡☛☞✌☎✁✍✡✎ ✡✏ ✑✒✆ ✓✌✔✓✄✔✌✑✆✕ ✌✎✕ ✆✖☞✆☎✁☛✆✎✑✌✔ ✍✑☎✆✍✍-✍✑☎✌✁✎ ✓✄☎✗✆✍

✡✏ ✘�✙ ✌✎✕ ✚✛✝ ✓✡☛☞✡✍✁✑✆✍ 

 

As can be seen, there is a good agreement between the measured and the predicted 

stress-strain curves. The stress-strain curves obtained under warp tension show more 

nonlinearity than those under the weft tension. Since the weft yarns are straight, the 

material has higher stiffness in this direction, which is not affected much by the 

damage and failure in matrix constituent. The local reduction of the weft stiffness 

following the damage onset point in GF1 is due to the transverse failure of the warp 

yarn. This feature is not observed in the stress-strain curve of IM7 under weft tension, 

because the transverse stiffness of warp fibres is much lower than the longitudinal 

stiffness of the weft fibres. Therefore, the transverse failure of warp yarn does not 

significantly influence the properties in the weft direction. 
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The predictions of the effective elastic and strength properties are summarised in 

Table 7.16 and Table 7.17, respectively. Mesoscale unit cells can be used to 

represent the material under uniform stress states; hence the predictions can be 

directly compared with the experimental data obtained in standard coupon tests, 

through which the accuracy of the predictions are assessed and the modelling 

approach is validated. 
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SXt 

(MPa) 
SXc 

(MPa) 
SYt 

(MPa) 
SYc 

(MPa) 
SZt 

(MPa) 
SZc 

(MPa) 
Sxy 

(MPa) 
Sxz 

(MPa) 
Syz 

(MPa) 

GF1, 
predicted 185.16 184.85 223.16 185.08 48.74 70.03 35.89 43.49 27.34 

GF1, 
measured 223.49 173.33 206.46 199.07   28.57   

GF2, 
predicted 210.48 242.39 443.30 329.67 84.73 109.49 55.68 61.52 50.51 

GF2, 
measured 213.21 167.50 336.79 323.18   38.28   

T300 CF, 
predicted 327.27 296.87 512.21 422.45 32.38 171.31 50.51 50.62 35.12 

T300 CF, 
measured 335.53 197.30 485.29 386.22   39.41   

IM7 CF, 
predicted 439.37 167.15 941.74 294.92 46.74 122.77 42.49 44.72 35.22 

IM7 CF, 
measured 421.36 113.13 832.11 296.52   42.81   

 

Comparison of the measured and predicted stiffness and strength values shows that a 

good agreement was achieved between predictions of the effective elastic properties 

and the experimental data. In this case, the error between the measured and predicted 

values is within 10%.  On the other hand, at present, the predictions of the effective 

strengths are less accurate. This discrepancy is due to the definition of the input 

parameters. The input parameters affecting the calculation of the effective elastic 

properties were the material properties of fibres and resin, as well as geometric 

parameters of the fabric, which were measured explicitly. Hence the values of these 

parameters represented the actual constituent materials and the weaving architecture 

of the composite. The effective strength is defined as a maximum stress value on the 

average stress-strain curve calculated under the unidirectional loading. Before the 

material fails, a gradual reduction of stiffness takes place due to the evolution of 

damage. On the analysis as presented in above, the parameters defining damage 
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evolution were not based on measurements, and were assigned a single fixed value as 

a temporary measure to facilitate the development of the model. This affects the 

accuracy of predictions of stiffness degradation and hence the strengths of the 

material.  A more important consideration is that effective elastic properties are 

overall measures of the material behaviour obtained in some kind of average sense 

while strengths are closely associated with local distribution of stresses which are 

sensitive to variations of geometric parameters. 

 

7.3.2 Dynamic strength of 3D woven composites 

As a validation of the dynamic properties predictions, the effective strength of IM7 

carbon fibre composite with layer-to-layer interlock 3D woven reinforcement (IM7 

CF in Table 7.10), calculated at different strain rates, were compared with the 

experimental data. 

The method of assigning the rate sensitivity to the textile composite is described in 

detail in Chapter 5. For IM7 CF composite, the rate dependency was defined only for 

the matrix constituent, while the IM7 carbon fibre was considered to be strain rate 

independent. The material properties of matrix and IM7 carbon fibre are listed in 

Table 3.6 and Table 4.2. Following the methodology as presented in Chapter 5, strain 

rate scaling coefficients for the elastic and strength properties were calculated with 

the UD unit cell models representing the warp and the weft yarns. The determined 

values of the scaling coefficients are listed in Table 7.18 alongside with the quasi-

static values of the corresponding material properties. Employing appropriate user-

defined material subroutines, the rate-dependent effective material properties of the 

yarns were implemented in the mesoscale UC model. Applying the mesoscale UC 

analysis, the compressive strengths of the composite were calculated over a range of 

strain rates. In Table 7.19, the predictions are compared with the dynamic strength 

values obtained from SHPB tests [127]. 
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The predicted compressive strengths at different strain rates agree well with the 

measured ones. This means the strain rate sensitivity model is reasonable and is 
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capable to represent the strain rate sensitivity of 3D woven composites to some 

extent. 

7.3.3 Impact resistance of 3D woven composites 

The implementation of the ANN system was verified at micro-, meso- and laminate 

level in Chapter 6. As a validation of the ANN system, its capability to deliver 

reasonable predictions when applied for the analysis at a component level has been 

assessed. For that, the ballistic impact was simulated for three textile composites, 

GF1, GF2 and IM7 CF in Table 7.10, where the constitutive behaviour of the 

composite was prescribed by means of an appropriate ANN system. For all three 

composites, the critical velocities were calculated and compared with those 

determined based on the experimental data in [127]. 

The ANN system employed in the current analyses and associated developments 

have been presented in previous chapters.  The inter-yarn debonding damage model 

developed in a companion project [174] has been incorporated in generating the 

training cases for the IM7 specimens as the effect of this mode of damage was rather 

pronounced. 

In the experiments [127], the ballistic impact was performed on 150mm×150mm 

square composite panel. A typical test panel of GF2 composite is shown in Figure 

7.4(a). The panel was fixed to the rig by a steel frame with a circular cut-out, leaving 

an exposed circular area of 100 mm in diameter. Because of that, in the FE 

simulations, the test panel was modelled by a circular plate with its boundary fixed. 

The FE model of the ballistic impact test is shown in Figure 7.4 (b). The composite 

was defined as a monolithic material with its constitutive behaviour being prescribed 

via the ANN UMAT subroutine. In the tests, the steel ball bearing with a radius of 

6.35 mm was fired at the panels. In the FE simulations, it was modelled by a rigid 

ball. 
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In the simulations, the critical velocity was determined with the bisection method, 

the algorithm which is as follows. 

Step 1: The iterative velocity range from V1=0 m/s to V2=300 m/s is defined, which 

covers the range of the impact velocities in the experiments. 

Step 2: The panel is impacted at the initial velocity V0= (V1+V2)/2.  The time 

histories are taken for the acceleration, velocity and displacement of the rigid ball as 

the output. 

Step 3: The residual velocity of the rigid ball is determined from the velocity curve. 

The deformation of the GF1 composite panel and the output curves (acceleration, 

velocity and displacement) obtained from the case with the initial velocity V0=110 

m/s are shown in Figure 7.5 and Figure 7.6, respectively. As can be seen, the velocity 

changes sign before settling at a nearly constant value again after impact, which 

indicates the rebounding of the projectile. The deformation of the GF1 panel and the 

output curves forV0=140 m/s are shown in Figure 7.7 and Figure 7.8, respectively. In 

this case, the velocity of the projectile maintains the same sign throughout the 

simulation, which indicates the perforation of the target. If the panel was not 

penetrated, the lower boundary of the range of the velocities is updated as V1= V0. 

Otherwise, the upper boundary is updated as V2= V0. 
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Additional information can be extracted analysing the acceleration time history. 

Once the acceleration reduces to zero, this indicates that the rigid ball is no longer in 

contact with the target plate. 

The critical velocities for three types of textile composites determined with the 

bisection method are shown in Table 7.20. 

In the experiments [127], the initial, Vi, and the residual, Vr, velocities of the 

projectile were recorded during the test for all the impact cases, and the critical 

velocities were obtained by post-processing the experimental data. The impact 

simulations were performed over a similar range of velocities, and the experimental 

and calculated Vi�Vr plots for each composite are presented in Figure 7.9. As can be 

seen, the predicted Vi�Vr curves generally show the same trend as the experimental 

ones, both below and above the ballistic limit. 
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(a) Vi�Vr curve for GF1 composite 

 

(b) Vi�Vr curve for GF2 composite 

 

(c) Vi�Vr curve for IM7 composite 
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To determine the critical velocity based on the experimental data, the experimental 

Vi�Vr curves were fitted employing the Matlab curve fitting tool. The fitting function 

was the Lambert-Jonas equation [175], which is commonly used for this purpose. It 

is applicable for the range of impact velocities at which panels were penetrated by 

the projectile. The explicit expression for Lambert-Jonas equation is as follows. 

where ✞☛ is the initial velocity, ✞✁ is the residualvelocity, ✞✂✄ is the critical velocity 

which means there is 50% possibility to penetrate the panel by impact with this 

velocity, ☎ and ✆ are two parameters which need to be determined via fitting. 

The fitted experimental Vi�Vr plots for all three composites tested are shown in 

Figure 7.10. The critical velocities are extracted from the fitted curves and presented 

in Table 7.20 alongside with the predicted critical velocity values. 
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 Predicted (m/s) Experimental (m/s) Error 

GF1 130.2 173.1 -24.78% 

GF2 125.5 158.7 -20.92% 

IM7 CF 121.5 149.0 -18.46% 

 

As can be seen, the predicted values of the ballistic limit can be underestimated by 

up to 25%. In this case, material failure is defined based on an element deletion 

criterion. The material is assumed to fail once the Jacobian matrix (DDSDDE) 

becomes singular. This is a conservative criterion, as it does not account for the 

residual strength in the material. Therefore the predicted critical velocity should be 

on the conservative side of the experimental results. 

7.4 Application of ANN on Simulation of Containment Casing 

As a demonstration of the applicability of the ANN system to an analysis at 

component level, a model was generated to simulate a blade impact on a ring 

component represents a containment casing, which is assigned the same constitutive 

behaviour as IM7 composite, as defined in Section 7.3.3. The geometric properties of 

the blade and the containment ring were the same as in [19]. The model was 

simplified by modelling the blade as a steel plate, and not accounting for its failure 

and damage. The geometric and material parameters of the model are summarised in 

Table 7.21. 

The FE models of blade and containment casing are shown in Figure 7.11. One edge 

of the ring component is fixed, while the other edge is left free. An initial angular 

velocity 1464 rad/s is assigned to the blade. General contact is defined between the 

blade and containment casing. Simulation was carried out with Abaqus/Explicit. 
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Blade inner radius 213 mm 

Blade outer radius 328 mm 

Blade axial length 50 mm 

Blade thickness 3.6 mm 

Blade elastic modulus 200 GPa 

✚✛✜✢✣ ✤✥✦✧✧✥★✩✧ ✪✜✫✦✥ 0.3 

Blade density 7810 kg/m3 

Blade initial angular velocity 1464 rad/s 

Containment ring inner diameter 668 mm 

Containment ring thickness 6 mm 

Containment ring axial length 150 mm 
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The total step time is set to 0.002 s and the increment is automatic. The calculated 

time history of equivalent strain and deformation contour on the containment casing 

are shown in Figure 7.12. 
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(a) t = 0.00015 s 

 

(b) t = 0.00036 s 

 

(c) t = 0.00105 s 

 

(d) t = 0.0012 s 

�✁✂✄☎✆ ✝✞✟✠ ✡✁☛✆ ☞✁✌✍✎☎✏ ✎✑ ✒✆✑✎☎☛✓✍✁✎✔ ✓✔✒ ✌✍☎✓✁✔ ✕✎✔✍✎✄☎ ✎✔ ✍☞✆ ✕✎✔✍✓✁✔☛✆✔✍

✕✓✌✁✔✂ 
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Considering the predicted deformation and failure modes of both the composite ring 

and the impactor, it can be concluded that the ANN system is capable of representing 

the constitutive relationship of 3D woven textile composite at a component level. As 

can be seen in Figure 7.12, the released blade impacted the containment casing twice, 

and it started to bend (see Figure 7.12 (b)) following the first impact.  The second 

impact was more damaging (see Figure 7.12 (c)).  Similar behaviour was also 

captured in [19], which suggests the impact scenario predicted with ANN system was 

reasonable. 

On the other hand, the containment casing was not penetrated during the impact, 

which illustrated the high impact resistance of IM7 carbon fabric. 

7.5 Summary 

The modelling approach validation study as presented in this chapter confirmed that 

the predicted effective stiffnesses and strengths of both the UD composites and the 

3D textile composites agreed well with the published data and with the experimental 

results. This indicates that the developed multi scale unit cell modelling method has 

acceptable accuracy in terms of the prediction of the effective properties. 

Good correspondence has been achieved between the calculated impact resistance of 

3D woven composites and the ballistic test results. This confirms that the macroscale 

modelling based of ANN has a powerful capability of homogenizing 3D textile 

composites with damage and failure effects being duly reflected. 

The applicability of the ANN system for conducting the analysis at a macroscale has 

been demonstrated by carrying out the impact simulation of the composite 

component with 3D woven textile reinforcement. 
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Chapter 8  Parametric Study on Impact Resistance 

8.1 Introduction  

The objective of the current project is to develop a methodology for design, analysis 

and optimisation of textile composites. For the composites to be used in a fan blade 

containment casing, impact resistance is the dominant property. A parametric study 

has been carried out to demonstrate the effects of various the geometric parameters 

for textile composites on the impact resistance.  A composite with a layer-to-layer 

interlock weave architecture, based on the material characterisation study in Chapters 

3 and 4, was considered to be a feasible candidate for the application in fan blade 

containment casings. The parametric study was carried out with respect to three 

principal parameters: total fibre volume fraction, ratio of volume fraction of warp 

and weft yarns and weaving angle of warp yarns. ANN was generated for each 

combination of parameters and panel impact simulations were carried out to 

determine the critical velocity for each case.  An optimized combination of the 

geometric parameters was proposed based on the comparison of the critical velocities. 

8.2 Extraction of the Principal Parameters 

The definition of the mesoscale unit cell model of textile composites has been 

described in Chapter 4 and Chapter 5. The model input requires a relatively large 

number of parameters to be specified, which can be grouped into several categories, 

as was shown in the flowchart in Figure 6.4.  When designing a textile composite for 

a particular application, in order to obtain an optimal performance, decisions have to 

be made regarding the parameter choices within each category. Here, some rational 

considerations can be employed when selecting the constituent materials. In 

particular, for aerospace applications, it is practical to employ CF reinforcements. 

The type of the textile reinforcement as used here was chosen based on comparing 

the effective properties of the composites with various types of 3D textile 

reinforcements in Chapters 3 and 4 and manufacturing feasibility. Having selected 

the layer-to-layer interlock weave architecture, it is still not clear how the internal 

structure of the weave should be defined in terms of the dimensions of yarn cross-

sections and spacings between the warp and the weft yarns. To make an informed 
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decision in this respect, the effect of the weave geometry on the effective properties 

of the composite should be understood first. 

When defining the geometry of the layer-to-layer interlock 3D woven composites, 

seven geometric parameters can be identified in order to generate a mesoscale unit 

cell model as illustrated in Figure 8.1 where strings are used instead of algebraic 

symbols for direct correspondence with the software developed. Carrying out the 

parametric studies that account for all possible combinations of these parameters 

would be time-consuming. To facilitate the parametric studies, a method of reducing 

the number of parameters is to be employed. 

 

(a) Weft direction view 

 

(b) Warp direction view 

�✁✂✄☎✆ ✝✞✟ ✠✆✡☛✆☞☎✁✌ ✍✎☎✎☛✆☞✆☎✏ ✡✑ ✒✎✓✆☎-☞✡-✒✎✓✆☎ ✁✔☞✆☎✒✡✌✕ ✄✔✁☞ ✌✆✒✒ ☛✡✖✆✒ 

 

In order to investigate the effect of the geometric parameters on the effective 

properties, the material characterisation was carried out using UnitCells© for a range 
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of layer-to-layer interlock 3D woven composites. As well as having the same type of 

reinforcement, all the UC models had the same properties of the constituents, as 

specified in Table 8.1. Geometric parameters of the weave for each model are listed 

in Table 8.2. Substantial ranges of variations have been given to various geometric 

parameters while keeping the warp yarn weaving angle and the warp and weft yarn 

volume fractions constant for all the models. The effective stiffness and strength 

properties calculated for all the cases considered are summarised in Table 8.3 and 

Table 8.4, respectively. 

�✁✂✄☎ ✆✝✞ ✟✁✠☎✡☛✁✄ ☞✡✌☞☎✡✠☛☎✍ ✌✎ ✠✏☎ ☎☞✌✑✒ ✡☎✍☛✓ ✁✓✔ �✕✖✖ ✗✘ ✒✁✡✓ 

Matrix (PRIMETM 20LV) Yarn (T300 CF, Vf =78.6%) 

E (GPa) 3.5 Ex (GPa) 181.32 

✙ 0.35 Ey (GPa) 10.67 

St (MPa) 73.0 vxy 0.229 

Sc (MPa) 120 vyz 0.229 

m 0.3 Gxy (GPa) 6.63 

  SXt (MPa) 2067.1 

  SXc (MPa) 1631.9 

  SYt (MPa) 66.7 

  SYc (MPa) 105.9 

  Sxy (MPa) 67.4 

  Syz (MPa) 50.0 

  m 0.3 
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�✁✂✄☎ ✆✝✞ ✟☎✠✡☎☛☞✌✍ ✎✁☞✁✡☎☛☎☞✏ ✠✑ ☛☎✒ ✄✁✓☎☞-☛✠-✄✁✓☎☞ ✌✒☛☎☞✄✠✍✔ ✍✠✡✎✠✏✌☛☎

✡✠✕☎✄✏ 

No. 
Weft 
space 

Warp 
space 

Weft 
width 

Weft 
thick 

Warp 
width 

Warp 
thick 

Thick 
space 

Vf 

Warp 
Vf 

Weft 
Angle 

Vf 

Total 

1 2.00 0.14 0.80 0.20 0.14 0.14 0.18 35.0% 15.0% 31.3° 50.0% 

2 2.30 0.16 0.94 0.23 0.16 0.16 0.20 35.0% 15.0% 31.3° 50.0% 

3 2.60 0.19 1.03 0.27 0.19 0.19 0.24 35.0% 15.0% 31.3° 50.0% 

4 3.00 0.22 1.18 0.31 0.22 0.22 0.27 35.0% 15.0% 31.3° 50.0% 

5 3.50 0.26 1.37 0.37 0.26 0.26 0.32 35.0% 15.0% 31.3° 50.0% 

6 4.00 0.29 1.56 0.41 0.29 0.29 0.36 35.0% 15.0% 31.3° 50.0% 

7 4.50 0.34 1.73 0.48 0.34 0.34 0.42 35.0% 15.0% 31.3° 50.0% 

8 5.00 0.37 1.92 0.52 0.37 0.37 0.45 35.0% 15.0% 31.3° 50.0% 

9 5.50 0.40 2.17 0.57 0.40 0.40 0.49 35.0% 15.0% 31.3° 50.0% 

10 5.80 0.42 2.30 0.59 0.42 0.42 0.51 35.0% 15.0% 31.3° 50.0% 

 

�✁✂✄☎ ✆✝✖ ✗✑✑☎✍☛✌✘☎ ✏☛✌✑✑✒☎✏✏ ✠✑ ☛☎✒ ✄✁✓☎☞-☛✠-✄✁✓☎☞ ✌✒☛☎☞✄✠✍✔ ✍✠✡✎✠✏✌☛☎ ✡✠✕☎✄✏ 

No. 
Ex 

(GPa) 

Ey 

(GPa) 

Ez 

(GPa) 

Gxy 

(GPa) 

Gxz 

(GPa) 

Gyz 

(GPa) 
✙xy ✙xz ✙yz 

1 42.44 33.24 7.25 3.16 7.26 2.75 0.0054 0.9639 0.3365 

2 43.56 34.1 7.32 3.22 7.42 2.79 0.0048 0.9708 0.3344 

3 40.94 33.17 7.24 3.11 7.4 2.76 0.0035 0.9835 0.3356 

4 40.95 33.01 7.23 3.08 7.39 2.75 0.0036 0.9832 0.3356 

5 40.2 33.14 7.25 3.1 7.44 2.77 0.0032 0.9872 0.3339 

6 41.14 32.99 7.26 3.08 7.28 2.76 0.0046 0.9701 0.3371 

7 39.36 32.65 7.23 3.05 7.42 2.76 0.0031 0.9873 0.3343 

8 40.28 32.74 7.24 3.06 7.3 2.76 0.0042 0.9766 0.3360 

9 41.21 33.6 7.28 3.09 7.38 2.78 0.0040 0.9773 0.3357 

10 42.31 33.66 7.3 3.12 7.43 2.79 0.0038 0.9784 0.3362 
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�✁✂✄☎ ✆✝✞ ✟✠✠☎✡☛☞✌☎ ✍☛✎☎✏✑☛✒✍ ✡✁✄✡✓✄✁☛☎✔ ✕☞☛✒ ☛☎✏ ✄✁✖☎✎-☛✗-✄✁✖☎✎ ☞✏☛☎✎✄✗✡✘
✡✗✙✚✗✍☞☛☎ ✙✗✔☎✄✍ 

No. 
SXt 

(MPa) 

SXc 

(MPa) 

SYt 

(MPa) 

SYc 

(MPa) 

SZc 

(MPa) 

SZc 

(MPa) 

Sxy 

(MPa) 

Sxz 

(MPa) 

Syz 

(MPa) 

1 316.79 296.68 392.12 396.71 54.99 93.73 36.52 61.62 30.79 

2 331.19 307.32 402.65 407.55 54.96 94.93 36.42 61.98 30.68 

3 285.47 272.54 397.48 400.86 54.23 93.96 38.53 61.73 30.45 

4 285.41 269.9 398.03 397.29 53.92 93.16 40.32 62.12 30.63 

5 276.20 264.73 396.97 400.19 53.57 92.81 38.62 62.41 30.11 

6 289.50 276.23 395.77 398.41 53.55 93.95 38.18 62.47 30.02 

7 266.23 250.54 396.52 396.66 54.20 91.91 38.17 63.29 30.95 

8 275.69 267.08 394.56 394.36 52.94 92.21 38.19 61.54 29.93 

9 289.01 275.49 404.33 406.35 53.41 93.54 38.36 61.39 30.22 

10 299.27 283.23 407.14 407.95 53.48 94.10 38.20 61.63 31.47 

 

Comparing the effective properties predicted with different models, it can be 

observed that, despite the substantial variations in the geometric parameters of the 

weave, the effective material properties vary only marginally. This suggests that the 

material response is primarily dependent on combination of three principal 

parameters: total fibre volume fraction, warp: weft yarn volume fraction ratio and 

weaving angle of warp yarns.  To a large extent, these principal parameters capture 

the key trends of the variations caused by the seven individual geometric parameters. 

Definition of the total fibre volume fraction is rather straightforward, as it has to be 

as high as can be achieved for a given type of reinforcement and the practical 

composite processing technology. Therefore, the maximum practically achievable 

fibre volume fraction should be the design value. 
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This reduces the number of parameters for the parametric study to two principal 

parameters, the yarn volume fraction ratio and the warp yarn weaving angle and they 

will be investigated in the sections to follow. 

8.3 Volume Fraction Equivalency 

For textile composites, there are a number of methods available for determining the 

total fibre volume fraction, such as the burn-off test. However, the procedure for 

determining the fibre volume fraction within the yarns is far less straightforward. A 

numerical study was undertaken to assess the effect the definition of fibre volume 

fraction within the yarns has on predictions of the effective properties of the 

composite. 

Since the fibre within the yarn is not modelled explicitly in the mesoscale unit cell 

model, it can be represented by a homogeneous UD composite model. Two UD unit 

cell models, denoted as UC 1 and UC 2, were generated to represent the yarns with 

the fibre volume fractions of 66.4% (Figure 8.2 (a)) and of 80.1% (red area of Figure 

8.2 (b)), respectively. Additional matrix material was added to the boundary of the 

model UC 2, which reduced the volume fraction in this model to 66.4%, same as that 

of UC 1. 

   

(a) UC 1  (Vf =66.4%)                          (b) UC 2 (Vf =80.1%�Vf =66.4%) 

✁✂✄☎✆✝ ✞✟✠ ✡☛✂☞ ✌✝✍✍ ✎✏✑✝✍ ✒✏✆ ✡✓ ✔✕✆☛ 
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Material properties of the matrix and the fibre as given in Table 8.5 were assigned to 

the two UD unit cell models. The effective stiffness and strengths calculated with the 

two models are summarised in Table 8.6 and Table 8.7, respectively. 

�✁✂✄☎ ✆✝✞ ✟✁✠☎✡☛✁✄ ☞✡✌☞☎✡✠☛☎✍ ✌✎ ✏✑✒✟✓
✔✕

✖✗✘✙ ☎☞✌✚✛ ✡☎✍☛✜ ✁✜✢ �✣✗✗ ✤✥ 

 Matrix (PRIMETM 20LV) Fibre (T300 CF) 

Ex (GPa) 3.5 230 

Ey (GPa) 3.5 15 

vxy 0.35 0.2 

vyz 0.35 0.0714 

Gxy (GPa) 1.3 15 

St (MPa) 73.0 2500 

Sc (MPa) 120 2000 

m 0.3 0.3 

 

�✁✂✄☎ ✆✝✦ ✓✎✎☎✧✠☛★☎ ✍✠☛✎✎✜☎✍✍ ★✁✄✩☎✍ ✧✁✄✧✩✄✁✠☎✢ ✪☛✠✫ ✠✪✌ ✠✛☞☎✍ ✌✎ ✬✭ ✧✌✮☞✌✍☛✠☎

✬✤ ✮✌✢☎✄✍ 

 
Ex 

(GPa) 

Ey 

(GPa) 

Ez 

(GPa) 

Gxy 

(GPa) 

Gxz 

(GPa) 

Gyz 

(GPa) 
✯xy ✯xz ✯yz 

UC 1 153.89 9.13 9.07 5.03 4.85 3.42 0.2448 0.2469 0.2831 

UC 2 152.27 9.39 9.33 4.86 4.72 3.24 0.2459 0.2479 0.2889 

error 1.1% -2.9% -2.9% 3.4% 2.7% 5.3% -0.5% -0.4% -2.1% 
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✛✖✔☎✄✍ 

 
SXt 

(MPa) 

SXc 

(MPa) 

SYt 

(MPa) 

SYc 

(MPa) 

SZc 

(MPa) 

SZc 

(MPa) 

Sxy 

(MPa) 

Sxz 

(MPa) 

Syz 

(MPa) 

UC 1 1708.14 1338.82 52.22 80.83 49.68 78.65 39.40 40.19 39.37 

UC 2 1690.20 1324.75 53.60 84.88 51.90 82.35 40.64 41.84 40.65 

error 1.1% 1.1% -2.6% -5.0% -4.5% -4.7% -3.2% -4.1% -3.3% 

 

As can be seen, the effective properties of the two models are similar, despite the 

different distribution of the fibres. Therefore, it can be concluded that UC2 model, 

which had high fibre volume fraction within the yarn with some matrix surrounding 

it, can be equivalent to a yarn model with lower fibre volume fraction, as long as the 

total fibre volume fractions of the two models are the same. In other words, precise 

definition of the fibre volume fraction within the yarns is not essential in order to 

obtain acceptable predictions from a mesoscale model provided that the fibre 

contents in the warp and weft directions and overall fibre volume fraction are 

maintained.  This is a very important conclusion as it would help to trivialise the 

need for precise fibre volume fractions in the yarn which difficult to measure on one 

hand and hard to simulation on the other hand.  Advantages of this have been taken 

previously within the thesis where the fibre volume fractions were assumed at an 

unrealistic level of 90%. Comparing the effective properties of UC 1 and UC 2 

demonstrates the validity of this assumption in the present application. 

As a verification case, two layer-to-layer 3D woven unit cell models, Model 1 and 

Model 2, were generated and their effective stiffnesses and strengths were calculated. 

These unit cell models had the same weaving angle and the same fibre volume 

fraction of warp and weft yarns, but different fibre volume fractions within the yarns. 

The fibre and yarn volume fractions are specified in Table 8.8. 
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 Model 1 Model 2 

Angle 31° 31° 

Fibre volume fraction of warp yarn 23.73% 23.39% 

Fibre volume fraction of weft yarn 12.52% 12.56% 

Fibre volume fraction within yarns 69% 85% 

Yarn volume fraction of warp yarn 34.39% 27.52% 

Yarn volume fraction of weft yarn 18.14% 14.78% 

 

The material properties that were assigned to the constituents, the matrix and the 

fibre, are specified in Table 8.5. The effective material properties of the yarns as 

given in Table 8.9 were calculated using UD unit cell models. 

�✁✂✄☎ ✆✝✔ ✕✍✍☎✎✏✟✡☎ ✖✠☛✖☎✠✏✟☎✗ ☛✍ ✏✘☎ ✓✁✠✑✗ ✙✟✏✘ ✒✟✍✍☎✠☎✑✏ ✍✟✂✠☎ ✡☛✄☞✌☎ ✍✠✁✎✏✟☛✑✗ 

 
Yarn (Vf =69%) Yarn (Vf =85%) 

Ex (GPa) 159.62 195.80 

Ey (GPa) 9.21 11.72 

vxy 0.2429 0.2199 

vyz 0.2837 0.1881 

Gxy (GPa) 4.92 8.32 

SXt (MPa) 1771.77 2173.32 

SXc (MPa) 1388.69 1703.42 

SYt (MPa) 62.51 58.23 

SYc (MPa) 100.81 93.62 

Sxy (MPa) 62.32 50.70 

Syz (MPa) 42.52 45.50 
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The effective material properties of yarns were assigned to the two layer-to-layer 

interlock unit cell model to calculate the effective stiffness and strength as presented 

in Table 8.10 and Table 8.11, respectively. 

�✁✂✄☎ ✆✝✞✟ ✠✡✡☎☛☞✌✍☎ ✎☞✌✡✡✏☎✎✎ ✍✁✄✑☎✎ ✒✂☞✁✌✏☎✓ ✔✌☞✕ ☞✔✒ ☞✖✗☎✎ ✒✡ ✄✁✖☎✘-☞✒-✄✁✖☎✘ ✙✚
✔✒✍☎✏ ☛✒✛✗✒✎✌☞☎ ✛✒✓☎✄✎ 

 
Ex 

(GPa) 

Ey 

(GPa) 

Ez 

(GPa) 

Gxy 

(GPa) 

Gxz 

(GPa) 

Gyz 

(GPa) 
✜xy ✜xz ✜yz 

Model 1 26.561 34.111 6.46 2.67 4.43 2.31 0.0028 0.9651 0.3530 

Model 2 26.060 34.303 6.40 2.99 4.26 2.28 0.0036 0.9647 0.3506 

error 1.9% -0.6% 0.9% -12.0% 3.8% 1.3% -28.6% 0.0% 0.7% 

 

�✁✂✄☎ ✆✝✞✞ ✠✡✡☎☛☞✌✍☎ ✎☞✘☎✏✢☞✕✎ ✒✂☞✁✌✏☎✓ ✔✌☞✕ ☞✔✒ ☞✖✗☎✎ ✒✡ ✄✁✖☎✘-☞✒-✄✁✖☎✘ ✙✚
✔✒✍☎✏ ☛✒✛✗✒✎✌☞☎ ✛✒✓☎✄✎ 

 
SXt 

(MPa) 

SXc 

(MPa) 

SYt 

(MPa) 

SYc 

(MPa) 

SZt 

(MPa) 

SZc 

(MPa) 

Sxy 

(MPa) 

Sxz 

(MPa) 

Syz 

(MPa) 

Model 1 208.91 194.14 404.68 415.42 56.17 105.66 41.64 42.87 40.24 

Model 2 180.53 177.67 409.65 411.96 50.25 85.35 37.75 39.28 35.53 

error 13.6% 8.5% -1.2% 0.8% 10.5% 19.2% 9.3% 8.4% 11.7% 

 

Comparing the predicted values of the effective properties, it can be seen that the 

fibre volume fraction within the yarns does not effect the effective material 

properties significantly, especially for the effective stiffness. For effective strength, 

although the results from two different models are not identical, the difference of 

strength is still in an acceptable range with the 16% difference in fibre volume 

fraction within the yarns. Therefore, by assuming a fibre volume fraction within the 

yarns in a realistic range, reasonable predictions of the effective stiffness and 

strength can be produced. Based on the information available in the open literature 

[176, 177], the maximum fibre volume fraction within the yarns in textile composites 

can be as high as 88.7%. In the parametric study process as presented here, fibre 
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volume fraction within yarns was assumed to be 85%.  This should not compromise 

the validity of the conclusions achieved while offering significant convenience in 

modelling. 

8.4 Effect of Weft Yarn Offset on Effective Properties 

The modelling framework as described in the previous sections was developed 

assuming an idealized regular structure of the reinforcement. In real textile 

composites, however, some degree of geometric variability is inherent within fibrous 

reinforcements. Geometric variability can potentially affect the forming process and 

the material performance. An initial study was carried out to investigate the influence 

of alignment of weft yarns on the mechanical behaviour of the composite. As can be 

seen from micro-CT image in Figure 8.3, in the weave, the weft yarn cross-sections 

were not aligned to the vertical axis, but to a slightly inclined line. Therefore, in 

addition to an idealised mesoscale UC model as shown in Figure 8.4, distorted UCs 

were generated, where weft yarns were offset horizontally for more realistic 

representation of the actual composite weaving structure. An example of UC with 

offset weft yarns is shown in Figure 8.5. 
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Due to the limitation of model generation, this analysis was carried out with 

mesoscale UCs which represent a textile composite based on the glass fibre 

reinforced fabric perform defined as GF1 in Table 7.10, the same input material and 

geometric parameters were used in all models. The material properties of matrix and 

yarn are listed in Table 7.11, Table 7.13 and Table 7.14. In total, four mesoscale UCs 

were generated with different degrees of weft yarn offset. For each model generated, 

the fibre and yarn volume fractions were calculated, and warp yarn weaving angles 

were evaluated. These are summarised in Table 8.12. As can be seen, introducing 

weft yarn offset alters primarily the weaving angle of the weft yarn, which takes 

different values on different sides of the weft yarn due to the offset as indicated in 

Table 8.12.  The yarn volume fraction ratio and total fibre volume fraction within the 

UC are hardly affected. 

✙✒✚✌✆ ✝✞✛✜ ✢✆✒✣✁✡✂ ✒✡✂✌✆ ✒✡✏ ✓✒☎✡ ☎✒☛✁✎ ✒☛ ✏✁✑✑✆☎✆✡☛ ✏✆✂☎✆✆✖ ✎✑ ✗✆✑☛ ✓✒☎✡ ✎✑✑✖✆☛ 

Offset value Angle Yarn Ratio (Warp:Weft) V Vf 

0.0✤Weft_width 23.85°/23.85° 48.99%:13.24% 18.96 48.39% 

0.1✤Weft_width 22.30°/25.72° 49.05%:13.24% 18.96 48.44% 

0.2✤Weft_width 20.99°/28.06° 49.10%:13.24% 18.96 48.48% 

0.3✤Weft_width 19.86°/31.09° 49.16%:13.24% 18.96 48.52% 

 

Predictions of the effective stiffnesses and strengths obtained for the models with 

different degrees of offset are summarised in Table 8.13 and Table 8.14, respectively. 
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Offset value 
Ex 

(GPa) 

Ey 

(GPa) 

Ez 

(GP) 

Gxy 

(GPa) 

Gxz 

(GPa) 

Gyz 

(GPa) 
✗xy ✗xz ✗yz 

0.0✘Weft_width 24.61 19.81 10.23 4.95 5.38 3.71 0.14 0.51 0.35 

0.1✘Weft_width 24.79 19.74 10.04 4.96 5.32 3.64 0.13 0.52 0.36 

0.2✘Weft_width 24.38 19.70 9.96 4.96 5.33 3.64 0.13 0.53 0.35 

0.3✘Weft_width 24.60 19.52 9.84 4.94 5.20 3.57 0.13 0.55 0.35 

 

�✁✂✄☎ ✆✝✞✙ ✚☛✎☎✓✔☛✛ ✜✁✄✢☎✡ ✍✎☎✑☞✌☛☎✑ ✁☛ ✑☞✒✒☎✎☎✓☛ ✑☎✔✎☎☎✡ ✏✒ ✕☎✒☛ ✖✁✎✓ ✏✒✒✡☎☛ 

Offset value 
SXt 

(MPa) 
SXc 

(MPa) 
SYt 

(MPa) 
SYc 

(MPa) 
SZt 

(MPa) 
SZc 

(MPa) 
Sxy 

(MPa) 
Sxz 

(MPa) 
Syz 

(MPa) 

0.0✣Weft_width 185.16 184.85 223.16 185.08 48.74 70.03 35.89 43.50 27.34 

0.1✣Weft_width 184.32 186.39 203.87 180.69 49.80 72.17 36.00 43.23 27.87 

0.2✣Weft_width 186.38 187.00 233.85 187.13 52.21 74.46 35.59 45.38 28.35 

0.3✣Weft_width 183.85 185.70 232.26 186.17 55.36 75.50 36.24 50.78 29.07 

 

The results presented in Table 8.13 and Table 8.14 suggests that the offset of weft 

yarn does not substantially affect the predicted effective stiffnesses and strengths. 

Having considered variability in terms of distortion in weave pattern, it can be 

concluded that idealised models would serve as a good basis to facilitate design 

activities, given the range of variability in the results due to this factor. 

8.5 Parametric Study 

Having excluded side issues, such as fibre volume fraction in yarns and variability in 

woven structure, attention can now be focused upon the principal parameters.  A 

parametric study was carried out for a layer-to-layer interlock 3D woven composite 

material to determine the effects of warp yarn weaving angle and the yarn volume 

fraction ratio combination on the impact resistance of such composites. 
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For the parametric study of layer-to-layer interlock 3D woven composites, the 

parametric unit cell model was generated (Figure 8.1). The geometric parameters 

were adjusted to make sure the total yarn volume fraction of the unit cell models 

remained 60%, while the volume fraction ratio of the warp and the weft yarns and 

the warp yarn weaving angle were varied from case to case as specified in Table 8.15. 

In total, 17 different unit cell models were created to facilitate the parametric study. 

In this study, the constituent materials were PRIMETM 20LV epoxy resin and IM7 

carbon fibre. Their properties are given in Table 3.6 and Table 4.2, respectively. The 

fibre volume fraction within the yarns was assumed to be 85%, resulting in a total 

fibre volume fraction of 51%. Following the methodology presented in Chapter 5, 

the strain rate dependent effective properties of yarn, as specified in Table 8.16, were 

calculated. 

To represent the constitutive behaviour of the composite at the macroscale, the 

methodology as described in Chapter 6 was applied to generate the ANN systems for 

each of the cases in Table 8.15. For each composite configuration, the mesoscale UC 

was created, which was employed to generate the training cases for the ANN. The 

ANN was trained, and the generated ANN database was accessed by an appropriate 

user subroutine to define the composite material behaviour in the FE model. 
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NO. Weft 
space 

Warp 
space 

Thick 
space 

Weft 
width 

Weft 
thick 

Warp 
width 

Warp 
thick 

Angle Ratio, 
warp:weft 

1 2.8 0.220 0.612 1.339 0.740 0.220 0.220 50° 40%:20% 

2 3.1 0.130 0.599 1.717 0.770 0.130 0.130 50° 35%:25% 

3 3.9 0.100 0.546 2.583 0.740 0.100 0.100 50° 30%:30% 

4 2.7 0.220 0.596 1.040 0.650 0.220 0.220 45° 45%:15% 

5 3.1 0.295 0.526 1.603 0.605 0.295 0.295 45° 40%:20% 

6 3.9 0.310 0.512 2.350 0.635 0.310 0.310 45° 35%:25% 

7 3.9 0.385 0.388 2.690 0.500 0.385 0.385 45° 30%:30% 

8 3.4 0.100 0.551 1.484 0.560 0.100 0.100 40° 45%:15% 

9 3.9 0.385 0.613 1.842 0.755 0.385 0.385 40° 40%:20% 

10 3.5 0.190 0.477 1.949 0.635 0.190 0.190 40° 35%:25% 

11 3.6 0.325 0.424 2.239 0.605 0.325 0.325 40° 30%:30% 

12 3.1 0.325 0.489 1.215 0.545 0.325 0.325 35° 45%:15% 

13 3.8 0.310 0.515 1.816 0.635 0.310 0.310 35° 40%:20% 

14 3.2 0.370 0.371 1.745 0.500 0.370 0.370 35° 35%:25% 

15 3.8 0.370 0.375 2.360 0.545 0.370 0.370 35° 30%:30% 

16 3.9 0.385 0.476 1.640 0.500 0.385 0.385 30° 45%:15% 

17 3.9 0.355 0.414 1.955 0.500 0.355 0.355 30° 40%:20% 
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✤ (✥✦✧★✩) ✪✫✬✭ Strain rate constant, C 

E1 (GPa) 234.8 0.0000 

E2 (GPa) 13.9 0.0046 

✮12 0.288  

✮23 0.454  

G12 (GPa) 6.3 0.0053 

SXt (MPa) 4787.0 0.0001 

SXc (MPa) 3029.4 0.0000 

SYt (MPa) 63.5 0.1031 

SYc (MPa) 101.9 0.1048 

Sxy (MPa) 61.3 0.0982 

Syz (MPa) 48.4 0.1124 

m 0.3  

 

The impact resistance for different composite configurations was assessed by 

simulating the ballistic impact cases on the composite panels. The FE models in this 

study were identical to those employed in the model validation study in Section 7.3 

of Chapter 7. Specifically, a 4 mm thick circular composite plate, 100 mm in 

diameter, was impacted by a rigid ball with radius of 6.35 mm and density of 7800.0 

kg/m3. The composite was modelled as a homogenous material, with its material 

properties being represented via the ANN user material subroutine. An initial impact 

velocity was assigned to the rigid ball. The velocity, displacement and acceleration 

of the rigid ball were plotted as outputs. Output curves of this kind were previously 

obtained for the plate impact simulation in Section 7.3.3 of Chapter 7 and those are 

shown in Figure 7.6 and Figure 7.8. 

Two sets of simulations were carried out to assess the impact resistance of various 

configurations of the layer-to layer interlock composite. In one of them, an initial 
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impact velocity of 200 m/s was assigned to the rigid ball, and the residual velocities 

were determined for each layer-to-layer interlock 3D woven composite model as 

specified in Table 8.17 �✁ ✂✄☎ ✆✝✞✟✠✁ ✟✁✡☎☛ ☞✌☎✍�✡✟✎✞ ✏☎✞✝✆�✂✑✒✓ 

The bisection method as described in Section 7.3.3 of Chapter 7 was applied to 

determine the critical velocities, the values are also shown in Table 8.17 under the 

✆✝✞✟✠✁ ☞✔☛�✂�✆✎✞ ✏☎✞✝✆�✂✑✒✕ ✖✄�✆✄ ✎☛☎ ✗☛☎✍☎✁✂☎✡ ✎✍ ✎ ✁✎☛☛✝✖ ☛✎✁✘☎ ✎✍ ✂✄☎ ✡�☛☎✆✂✝☛

outcomes of the bisection analysis. 

✙✚✛✜✢ ✣✤✥✦ ✧✢✜★✩✪✫✬ ✭✮✢✯✪✩✫✪★✰✱ ✪✰ ✫✲✢ ✭✚✮✚✳✢✫✮✪✩ ✱✫✴✯✬ ★✵ ✜✚✬✢✮-✫★-✜✚✬✢✮
✪✰✫✢✮✜★✩✶ ✷✸ ✹★✺✢✰ ✩★✳✭★✱✪✫✢✱ 

NO. 
Impact velocity 

(m/s) 
Residual velocity 

(m/s) 
Critical velocity 

(m/s) 

1 200.0 138.28 [164.84, 165.63] 

2 200.0 127.41 [174.22, 175.00] 

3 200.0 81.75 [188.28, 189.06] 

4 200.0 112.05 [192.19, 192.97] 

5 200.0 105.57 [199.22, 200.00] 

6 200.0 122.90 [178.91, 179.69] 

7 200.0 -113.61 [202.34, 203.13] 

8 200.0 160.26 [159.38, 160.16] 

9 200.0 141.51 [167.19, 167.97] 

10 200.0 133.08 [177.34, 178.13] 

11 200.0 -135.28 [206.25, 207.03] 

12 200.0 137.20 [179.69, 180.47] 

13 200.0 144.00 [180.47, 181.25] 

14 200.0 135.91 [179.69, 180.47] 

15 200.0 105.81 [193.75, 194.53] 

16 200.0 145.05 [182.03, 182.81] 

17 200.0 -147.43 [203.91, 204.69] 
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To facilitate the assessment of data obtained in the parametric study, the graphic 

representation of the data was applied. The critical velocity was plotted as function 

of the warp yarn weaving angle in Figure 8.6 (a) where critical velocity was obtained 

at a range of weaving angles.  Different values of the critical velocity were shown at 

each pre-designated weaving angle due to different warp to weft fibre volume 

fraction ratios. As can be seen, the highest value of the critical velocity was obtained 

with the composite configuration having the weaving angle of 40° at an appropriate 

warp to weft fibre volume fraction ratio. 

 

(a) Critical velocity plotted against the weaving angle 

 

(b) Critical velocity plotted against the ratio of the warp and weft yarns 
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Similarly, plotting the critical velocity against the warp to weft yarn ratio in Figure 

8.6 (b), it becomes apparent that the composite configuration with equal volume 

fractions of warp and weft yarns should have the best impact resistance out of all the 

cases considered. According to the data presented in Table 8.17, the composite 

configuration 11, which has and 30% warp and 30% weft yarn volume fraction 

satisfies both conditions.  It should be pointed out that equal fibre volume fraction in 

warp and weft directions does not mean equal properties in these two directions at all.  

In fact, given the significant disparity between the undulating fibre path of the warp 

yarns and straight fibre path of the weft yarns, the effective properties of the 

composite in these two directions can be rather different. As an illustration, the 

effective properties of the parametric study unit cell models with the equal fibre 

volume fraction in the warp and weft directions are listed in Table 8.18. 
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No. 3 7 11 15 

Angle (°) 50 45 40 35 

Ex (GPa) 27.94 36.61 30.33 32.80 

Ey (GPa) 80.98 80.09 80.61 81.72 

Ez (GPa) 10.72 8.82 9.53 9.69 

Gxy (GPa) 3.17 3.66 3.35 3.43 

Gxz (GPa) 9.15 5.01 8.32 7.32 

Gyz (GPa) 2.98 3.12 3.36 3.40 

SXt (MPa) 917.58 1298.50 870.28 547.85 

SXc (MPa) 755.02 941.44 754.65 762.85 

SYt (MPa) 3337.50 3545.10 3367.80 3373.80 

SYc (MPa) 5364.60 5347.60 5364.10 5376.90 

SZt (MPa) 236.62 203.79 201.34 187.92 

SZc (MPa) 694.77 769.75 729.95 661.00 

Sxy (MPa) 242.22 281.31 266.75 251.44 

Sxz (MPa) 339.25 270.46 326.19 311.17 

Syz (MPa) 245.12 241.82 272.47 255.81 

 

8.6 Summary 

A parametric study for textile composites has been carried out in this chapter.  The 

process can be adapted as a methodology for preliminary optimisation as a part of 

material selection.  It has been illustrated using a layer-to-layer interlock 3D woven 

composite. Three principal parameters were identified out of seven geometric 

parameters, namely the total fibre volume fraction, the ratio of warp and weft yarns 

volume fractions and the warp yarn weaving angle. The effects of fibre volume 

fraction within yarn and the weft yarn offset on effective material properties were 
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studied and they were found to contribute only marginally to the behaviour of the 

composite and hence can be neglected in early stages of material selection and 

architecture design. Impact simulation of layer-to-layer interlock 3D woven 

composites with different principal parameters was performed in Abaqus/Explicit to 

evaluate the impact resistance of different models. From the analysis the conclusion 

can be made that the model with warp yarn weaving angle of 40° and 30% warp and 

30% weft yarn volume fraction has the best impact resistance out of the present 

analysis, given the limited scope of factors taken into consideration. 
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Chapter 9  Conclusions and Future Work 

9.1 Conclusions 

The undertaken project aimed to develop a multiscale material characterisation 

methodology, which could be applied to textile composites for design, analysis and 

optimisation, in view of their application for the fan blade containment casings of 

civil aero-engine. The major achievements of this research were highlighted below. 

9.1.1 Unit cell modelling toolbox UnitCells© 

UnitCells© was a pre-existing code developed at the University of Nottingham 

automated specifically for composite characterisation based on multiscale and multi-

physics modelling [73] but with rather limited functionality prior to the present 

project.  It has been subjected to substantial and systematic development within the 

present project.  The particular areas the present project contributed exclusively are 

the strength prediction and the mesoscale unit cells particularly relevant to textile 

composites.  To enable the construction of mesoscale models, two important 

extensions have been made such that UnitCells© has the access to other established 

codes, TexGen for constructing textile architecture and Hypermesh for generating 

appropriate meshes for subsequent FE analysis of the unit cells.  These are all in 

addition of the existing functionalities such as the imposition of periodic boundary 

conditions, extraction of effective properties.  After the efforts through the present 

project, there are seven types of microscale models and eleven types of mesoscale 

models available in this toolbox. The macroscale characterisation is limited to a 

laminate level, where the constituent laminae properties can be either defined by the 

user or as the outcomes of a previous micro- or mesoscale analysis of a UD or textile 

composite. The basic output parameters from UnitCells© are the effective elastic 

properties, effective strength, thermal expansion coefficients and thermal and electric 

conductivities. 

1) Types of applicable composites in UnitCells© 

a) The UD composites, such as a lamina in a composite laminate or a 

yarn in a textile composite. 
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b) Particulate reinforced/moderated composites which may be applied to 

define the matrix in a fibre reinforced composite. 

c) Textile composites: braided (2D and 3D) and woven (2D and 3D). 

d) Laminated composites: laminae can be UD or textile composites 

obtained from the analysis of the lower scale composite types which 

are listed above. 

2) Types of available unit cells in UnitCells© 

a) UD: square, hexagonal and random fibre distribution. 

b) Particulate reinforced: cubic (from simple cubic packing) and 

dodecahedral (for FCC face centred cubic packing). 

c) Porous materials: same as above with the particulate reinforcement 

replaced by void. 

d) 2D and 3D braided textile composites. 

e) 2D and 3D woven textile composites. 

f) Laminated composites. 

3) Types of available analyses in UnitCells© 

a) Thermo-mechanical analysis: for determining the effective elastic 

properties and thermal expansion coefficients. 

b) Flexural analysis: for calculating the bending stiffness and effective 

flexural properties. 

c) Heat conduction analysis: for identifying the effective heat 

conductivities. 

d) Electric conduction analysis: for calculating the effective electric 

conductivities. 
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e) Strength analysis: for calculating the effective strength at quasi static 

loading. 

The multi scale unit cell modelling toolbox UnitCells© has been verified via 

systematic sanity checks and other inspections of every observable perspective to 

iron out any inconsistency before any attempt at meaningful validation.  The 

establishment of a comprehensive set of verification cases is one of the most 

important outcomes in terms of software development. 

The predicted stiffness and strength was compared with experimental results to 

validate the accuracy of UnitCells©. 

9.1.2 Strain rate sensitivity study 

A method of accounting for the rate sensitivity in multi-scale modelling of textile 

composites has been developed and applied. The rate sensitivity of the stiffness and 

strength of the matrix (PRIMETM 20LV epoxy resin in this study) was measured 

experimentally and the appropriate parameters were determined by processing to fit 

the experimental data. The UD unit cell modelling was applied to determine the 

strain rate-dependent material properties of the T300 carbon fibre (CF) yarns as a UD 

composite, assuming that the CF constituent is not rate-sensitive. With the strain 

rate-dependent material properties of yarns and matrix, a mesoscale unit cell model 

was applied to calculate the strain rate-dependent material properties of T300 carbon 

fibre reinforced 3D textile composite. 

A similar exercise has also been conducted GF textile composites with the rate 

sensitivity of the fibres duly accounted for at the microscale level of modelling. 

9.1.3 ANN system 

The methodology for representing the constitutive behaviour of textile composites at 

a macroscale, which naturally incorporates the damage initiation, the stiffness 

degradation and the final failure, was proposed and applied. Since no failure criteria 

are readily available for textile composites, the method based on the ANN systems 

was proposed as an alternative. The ANN systems were verified for micro-, meso- 

and macroscale models, respectively. 
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At the microscale, the ANN system was applied to represent the response of UD 

composites. The training cases were generated by using a CDM model to account for 

material degradation at the microscale.  The outcome of the ANN simulation allows 

the UD composite to be homogenised into a monolithic counterpart.  The 

applicability of the approach has been verified by comparing the behaviour of the 

monolithic material through a model using a single finite element of a material as 

defined through the stress-strain relationship obtained from the ANN system that 

from original CDM model implemented through analysis of the microscale unit cell. 

The agreement achieved means the ANN system is sufficiently accurate to reflect the 

internal relationship between the inputs and outputs as brought in through all training 

cases. 

At the mesoscale, the ANN system was used in the same fashion. Unit cell models 

with progressive damage have been used to generate large numbers of training cases 

sufficiently comprehensive to cover all characteristics of the material. The results 

demonstrate that the ANN system so obtained is capable of reflecting damage 

initiation and evolution in the textile composite models. To predict the final failure of 

the element, a failure criterion based on the singularity of the Jacobian matrix has 

been developed and incorporated into the ANN system. An indicator was output 

from the ANN system to signify the status of failure of the element. With the ANN, 

the failure envelopes for the 3D braided composites were generated as an example to 

illustrate the capability of the ANN system to represent the damage initiation, 

stiffness degradation and final failure of 3D textile composites. 

As another example of applications of the ANN system at macroscale, it was applied 

to laminated composites to define the constitutive response of laminates, which are 

treated as homogenised monolithic materials. It has been demonstrated that, with the 

ANN system, failure envelopes could be constructed for the entire laminate, rather 

than for the individual plies.  The results were verified against those obtained from 

conventional laminate analysis. This eliminates the need of modelling each layer 

explicitly when dealing with the simulation of large components. As a result, the 

modelling efforts and the computational costs can be reduced efficiently, provided 

that an appropriate ANN system is established prior to the structural simulation. 
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As a validation, the ANN system was used to predict the critical velocities of three 

types of layer-to-layer interlock 3D woven composite panel. The predicted results 

matched well with the experimental data. 

Furthermore, as an illustration of its potential capability, the ANN system obtained 

for a type of 3D textile composite was applied to predict the impact behaviour of a 

component simulating the fan blade off scenario for the fan blade containment casing. 

9.1.4 Parametric study on impact resistance 

To explore the most important objective of this research, a parametric study based on 

ANN system was conducted to determine the effects of geometry parameters of the 

3D textile composite on for their impact resistance. This was performed on a 3D 

woven layer-to-layer interlock composite. Three principal parameters related to the 

geometry of the weave were identified that affect the effective properties of the 

composite most significantly, the total fibre volume fraction, ratio of warp and weft 

yarns volume fraction and warp yarns weaving angle.  The outcomes of the 

parametric study are informative for material selection and design optimisation and 

therefore are of significant practical implications. 

Strain rate dependency can also be incorporated in the ANN system which was 

successfully applied to represent the constitutive behaviour of 3D woven layer-to-

layer interlock composites. Impact simulations with different principal parameters 

were carried in Abaqus/Explicit to determine the critical velocity for different 

composite configurations. The obtained values of the geometric parameters at which 

the highest critical velocity was achieved would serve as an optimal set of parameters 

out of a preliminary material design exercise. 

9.2 Future Work  

1) In its present form, the mesoscale unit cells available in UnitCells© have a 

powerful capability in composite material characterisation. However, they can only 

be applied to predefined preform architectures within the toolbox, although 

geometric dimensions of various features are allowed to vary within practically 

meaningful ranges. This is the main limitation of applying this toolbox for textile 

composite material design.  Application to any architecture of a new topology will 
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require the intervention of the developer by putting a new unit cell in position before 

use can be made of it for subsequent analysis and optimisation. 

The developed toolbox, UnitCells©, can be potentially improved by supplementing it 

with a graphic user interface that allows the user to create new unit cells of different 

geometric models. At present, it only allows to modify the existing models in terms 

of the parametric input, mesh density, etc. Reference can be made to the interface of 

TexGen [45] where architecture can be created manually, although the actual 

provision of the interface of TexGen is limited to weaves. With such an interface, 

users should be able to create a geometric model with different yarn architecture 

easily by clicking some buttons. The main challenge in this development would be 

the automatic generation of the periodic mesh for the newly designed model. The 

current version TexGen can export periodic mesh of an acceptable quality for unit 

cells with a simple structure, while the mesh quality of the unit cells of complex 

structures is not acceptable. Therefore, a more powerful meshing module for TexGen 

is needed. 

Until the meshing module of TexGen become available, the approach of employing 

Hypermesh script as has been established in the present project will be the way 

forward.  The challenge will be the automatic generation of periodic meshes from the 

�✁✂✄✁☎✆✝✞ ✄✂✟✁ ✞✆✁✠☎✁✟ ✡✝☎☛✂☞☎ ☞✌✁✆✌✍ ✝✎☎✁✆✏✁✎☎✝✂✎✑ 

2) Since the inputs of the current ANN are the strain components and the 

outputs are the corresponding stress components, for a given strain state, the outputs 

of the ANN remain the same regardless whether it defines the material response 

during the loading or unloading of the material. However, once the damage is 

initiated in the material, its stiffness should reduce and during unloading the stress-

stain curve should follow a different path.  Therefore, a rational mechanism should 

be developed distinguish between loading, unloading and reloading of the material. 

3) The current criterion for element deletion in the ANN system is that the 

element gets deleted at the state when its Jacobian matrix becomes singular, which 

makes the predicted result conservative. In order to improve the accuracy of failure 

predictions, a different criterion can be devised that accounts for the residual 

strengths the material beyond that point, although deformation localisation will 
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remain as the limit of applicability as defined by the use of unit cells which are based 

on the assumption of regularity in the meso-structures. 

4) The parametric study as presented in Chapter 8 was carried out based on 17 

combinations of parameters, which was limited in scope. A mathematical 

optimization method can be adopted to determine the best parameter combination. 

The main challenge here is that covering all possible parameter combination would 

require a substantial computational effort, and this will be in addition to ANN 

training and an impact simulation. Theoretically, an ANN system could include all 

geometric parameters as a part of the inputs (a full parameter ANN system). 

However, the demand on computing power might easily make it impractical. A more 

efficient computational method will have to be introduced to overcome this difficulty. 

To make the full parameters ANN system feasible, the number of input parameters of 

ANN can be reduced by applying principal component analysis (PCA) [178]. PCA 

defines a set of new variables (principal components) of significantly reduced 

number, each as a combination of the original set of parameters. Successful 

application of PCA may offer a way forward when solving the problem of large 

inputs. 
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Appendix 1 Procedure of SHPB testing and the data processing 

procedures [127] 

A photograph of SHPB system used in the tests is shown in Figure 1. The incident 

and the transmission bars are made of maraging 300 ultra-high strength steel. Its 

yield strength is higher than 2000 MPa, the density is 8080 kg/m3 and elastic 

modulus is 198 GPa. Both of the bars are 1000 mm in length and 25.4 mm in 

diameter. The steel striker bar is 150 mm in length and 25.4 mm in diameter. 

The strain signals were measured by linear strain gauges on the incident bar and the 

transmission bar. The signals from the strain gauges were magnified by Wheatstone 

quarter bridges and then recorded by a data acquisition board with 2 MHz of 

sampling frequency. The magnified strain signals were also displayed and checked 

on an oscilloscope. 

The cured pure resin samples were cut into 8 mm thick disks as the test specimens. A 

total of sixteen 8 mm thickness samples were tested at strain rates in the range from 

763 s-1 to 2543 s-1.  Specimens were loaded on the end of the disks and the loading 

direction was perpendicular to the end surface. To ensure that the loading surfaces of 

the specimen were flat and parallel, cylindrical samples were initially cut by a 

diamond cutting wheel, and then gradually polished to the final dimensions by using 

a sample polishing machine and 240 grit sand paper. Prior to testing, RS® High 

Temperature Grease was applied as lubrication on the specimen/bar interfaces to 

avoid bulging. The specimens were carefully placed so that their geometric centres 

were aligned with those of the bars. 
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The general principle of SHPB testing is that the time histories of the strain rate, 

strain, and stress are determined based on the measured reflected and transmission 

strain signals. The strain rate ✞✒�✁✂ and strain ✞�✁✂of the specimen are calculated as 

follows. 

✞✒�✁✂ ✌ ✄
☎☛✆✝
✟ ✞✠�✁✂ (3) 

✞�✁✂ ✌ ✄
☎☛✆✝
✟ ✡ ✞✠

☞

✍
�✁✂✎✁ (4) 

where L is the length of the specimen, ✞✠�✁✂ is the strain caused by the reflected 

stress wave in the incident bar. 

The stress history of the specimen is calculated based on the transmission wave strain 

signal as follows. 

✏�✑✂ ✌
✓☛✆✝
✓ ✔☛✆✝ ✕ ✞☞�✁✂ (5) 

where, ✞☞�✁✂ is the strain caused by the stress wave in the transmission bar.  ✓☛✆✝ and 

✓ are the cross section area of the bars and the specimen, respectively. 

The strain signals of the incident and transmission bars were calculated from the 

voltage of the strain gauges as follows. 

✞ ✌
✖✗✘
✙✚✗✛

 (6) 

In which, ✞ is the strain signal, ✗✘  is voltage signal of the strain gauge, ✗✛  is the 

excitation voltage of the Wheatstone bridge, ✙✚ is gauge factor of the strain gauge. 

For different materials and testing rates, the shapes of the resultant signals show 

similarities. Typical signals obtained during the compressive SHPB testing pure resin 

specimens are shown in Figure 2. The signal was processed as follows. Given the 

length and the density of the striker, the time period of the stress wave was 

✜✢✢✣✤✥✦✧✜★✩✪✫ ✬✭ ✮✯✰ ✱✯ ✲✜✳ ✴✩ ✯✩✩✳ ✦✳ ✵✦✶✷✣✩ ✸✹ ★✺✩ ✦✳✲✦✻✩✳★✹ ✣✩✼✪✩✲★✩✻ ✜✳✻
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63� ✂✁ ✄n Figure 3 (b), over which the strain increased almost linearly. The average 

strain rate of 2451 s-1 over this period is regarded as a nominal constant strain rate in 

the test considered. Over this time period, the stress also reached its maximum, as 

can be seen in Figure 3 (c), and this is regarded as the compressive strength of the 

composite at the strain rate of 2451 s-1. The stress-strain curve was plotted by 

combining the strain history and stress history, which is shown in Figure 3 (d). The 

gradient of the stress-strain curve over the range of strain from 2% to 12% was 

treated as the stiffness of the specimen at the strain rate of 2451 s-1, because in this 

range the strain rate remains approximately constant. 

 

(a) Strain rate history                             (b) Strain history 

 

(c) Stress history                     (d) Stress-strain curve 

☎✆✝✞✟✠ ✡ ☛☞✌✆✍✎✏ ✌✟✑✍✠✒✒✠✓ ✓✎✔✎ ✑✕ ✖✗✘✙ ✔✠✒✔ 
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