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Abstract

This thesis mainly focuses on the statistical modelling of a selection of games,

namely, the minority game, the urn model and the Hawk-Dove game. Chapters

1 and 2 give a brief introduction and survey of the field. In Chapter 3, the key

characteristics of the minority game are reproduced. In addition, the minority

game is extended to include wealth distribution and leverage effect. By assuming

that each player has initial wealth which rises and falls according to profit and

loss, with the potential of borrowing and bankruptcy, we find that modelled wealth

distribution may be power law distributed and leverage increases the instability of

the system. In Chapter 4, to explore the effects of memory, we construct a model

where agents with memories of different lengths compete for finite resources. Using

analytical and numerical approaches, our research demonstrates that an instability

exists at a critical memory length; and players with different memory lengths are

able to compete with each other and achieve a state of co-existence. The analytical

solution is found to be connected to the well-known urn model. Additionally, our

findings reveal that the temperature is related to the agent’s memory. Due to its

general nature, this memory model could potentially be relevant for a variety of

other game models. In Chapter 5, our main finding is extended to the Hawk-Dove

game, by introducing the memory parameter to each agent playing the game. An

assumption is made that agents try to maximise their profits by learning from

past experiences, stored in their finite memories. We show that the analytical

results obtained from these two games are in agreement with the results from

our simulations. It is concluded that the instability occurs when agents’ memory

lengths reach the critical value. Finally, Chapter 6 provides some concluding

remarks and outlines some potential future work.
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2.1 Generalised Pólya-Eggenberger scheme [89]. . . . . . . . . . . . . . 23

3.1 Example of a strategy for the case of m = 3. . . . . . . . . . . . . . 36

3.2 Example of the value of parameter b with different numbers of time

steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 The average value of parameter b with different numbers of time

steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Example of the value of parameter b with different values of mem-

ories and time steps (zero-sum case). . . . . . . . . . . . . . . . . . 46

3.5 The average value of parameter b with different values of time steps

(zero-sum case). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Example of the value of parameter b with leverage effect. . . . . . . 48

3.7 The average value of parameter b with leverage effect. . . . . . . . . 48

12



Chapter 1

Introduction

1.1 Econophysics

The term ‘econophysics’ was first coined by Mantegna and Stanley [1] in 1996,

to describe the application of statistical physics to study economic and financial

systems. Specifically, concepts such as stochastic modelling and probability theory

have been fruitfully applied to economics, finance and social science [1, 2, 3, 4]. The

subject of econophysics has received much attention [5, 6, 7, 8], and subsequently

developed to such an extent that some has argued that it can be classified into two

broad categories, namely, the statistical and the phenomenological econophysics

[9]. Today, econophysics is often regarded as a subject in its own right, and

in recognition of its significance, many universities/institutions offer courses and

training programmes on econophysics [10].

A key strength of econophysics is that it offers a rigorous and quantitative

approach to understanding and analysing economic issues [11, 12]. Historically, its

most established contribution is in the area of complex correlations and financial

time series analyses [13, 14]. For example, the fluctuations and volatilities of

individual stocks are shown to be correlated, which can in turn help explain the

financial behaviour of the overall market [15]. As an example, Stanley et al. [16]

used a detrended fluctuation analysis (DFA) to quantify the correlations in their

13



analysis of S&P 500 data.

In econophysics, probabilistic method is a common approach to economics

and finance [17]. For example, Silva et al. [18] applied the Lévy distribution to

investigate the multi-scale properties in foreign exchange rates. From the Lévy

sections theorem, the relationship between the local volatility in foreign exchange

rates and fat tails in distribution can be explained [19].

The ubiquitous power law distribution in statistical physics also makes frequent

appearance in finance, e.g. in the time series of stock prices and exchange rates

[20, 21]. Econophysics attempts to relate pricing to equilibrium thermodynamics

[22, 23]. The economic system is extremely complex, but the statistics of the

market is often characterised by a power-law distribution [22]. Interestingly, the

two-power law function has been successfully applied to analyses of the distribution

of personal income as well as gross domestic production by using two different

exponents to fit high and low-to-middle regions respectively [24].

In recent years, it has become popular to regard econophysics as an interdis-

ciplinary research. According to the research by Fan et al. [25], econophysics is

interconnected with other fields as part of a network: this approach can explain

the rapid development of the subject of econophysics, and it is believed that the

network will continue to enhance its research and development. For example,

econophysics can be studied in connection with subjects like psychology, probabil-

ity theory and the theory of preference [26], and of course, econophysics can play a

vital role in society through economics and finance. For instance, Fry [27, 28, 29]

developed mathematical models to understand dramatic financial bubbles which

affect us all.

The past few decades saw a meteoric rise in the volumes traded in the financial

derivatives market, involving instruments such as the options. An option provides

its holder(s) with the right to buy or sell an underlying asset in the future, but

it is not compulsory to implement this agreed contract [30]. The Black-Scholes

formula, essentially a diffusion equation, has been hugely successful in pricing
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options [31], though discrepancies exists, e.g. the option smile [32].

It is well known that the derivatives can lead to a significantly leveraged and

risky market. This leverage effect has been studied in order to explain the financial

crisis of 2008 [33, 34]. Although there is a huge trading volume in existing deriva-

tives, investors sometimes are unlikely to consider the worst possible scenario [35].

When traders employ new financial derivatives, they seem to pay less attention to

risks. The improvement of financial markets regulation is likely to keep the risks

at an acceptable range [36]. Academics and market participants need to analyse

potential risks with suitable methods [37]. Till now, research has largely focussed

on analysing those risks in the financial markets, especially for highly-leveraged

derivatives [38].

A well-constructed option game theory can offer an understanding of the uncer-

tainty in a competitive environment [39]. Option game theory can provide insights

into the financial markets, for example, levered firm’s equity can be regarded as

an option on the firm and priced by option pricing techniques [40, 41].

1.2 Models of games

Econophysics can become more productive and relevant when combined with sta-

tistical models of games, an example of which is the minority game. Whilst simple

in construction, the game captures the complex collective behaviour of a group

of agents competing for finite resources. The minority game has been studied

extensively with tools of statistical physics, and it has been suggested that the

game provides a basis for understanding broader financial markets [42, 43]. For

example, agents may cooperate to create a more resilient market, and develop a

particular wealth distribution [44, 45, 46]. In this thesis, we extend the minority

game by allowing agents to accumulate wealth through play, and borrowing and

bankruptcy are introduced. A key feature of the game model is the propagation
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of information through time: the game memorises the past via wealth distribution

and strategy choice, but resets via bankruptcy.

The theme of memory is formally explored through two classes of models,

namely the statistical urn model and the Hawk-Dove model. We find that, when

competing in a game for finite resources, a long memory can help players to make

‘wiser’ choices by weeding out irrelevant noises, but too long a memory could lead

to large collective fluctuations resulting in limit cycles and instability. In those

situations, players with shorter memory could gain an advantage by adapting

faster to the changing environment, and thus players of different memories could

coexist in a dynamical equilibrium, characterised by a Hopf bifurcation [47]. Our

main findings with memory are general, and should be applicable to other game

models such as the rock-paper-scissors game [48, 49].

The rest of this thesis is structured as follows: Chapter 2 provides a focussed

review of the three models considered in this thesis: the minority game, the urn

model and the Hawk-Dove game. In Chapter 3, we present the minority game

with extension to the wealth distribution and the leverage effect. Chapter 4 offers

our variation of the urn model to explore the effectiveness of memory. In Chapter

5, we demonstrate how our findings from Chapter 4 are applied to the Hawk-Dove

game. In the final chapter, a conclusion is drawn, along with a description of the

limitations of the study and what further developments could be undertaken.
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Chapter 2

Review of models

2.1 The minority game

Game theory models offer an alternative approach to finance, especially in areas

such as asset pricing and corporate finance [50, 51, 52]. For instance, models

can be used to understand the arrangement of dividend payments, firms capital

structure, market microstructure, etc [53]. More recently, game theory models

have been employed to study multifractality and turbulence found in financial

markets’ dynamics, e.g. logarithm stock price, absolute returns and transaction

volume [54, 55, 56]. Furthermore, the game theory model has been extended to

seek methods for stabilising the financial markets including the futures market [57].

Interestingly, some researchers have also attempted to predict the stock markets

using game theory models [58, 59]. For example, the minority game is one of the

most popular game models for market behaviour [60]. In contrast, the majority

game is dominated by the majority group. The mixed majority-minority game

can be used to model the market dynamics and traders strategies [61, 62, 63].

The minority game (MG) formulates the El Farol bar problem, in which a

group of people have to decide whether to go to the El Farol bar each night [64].

The capacity of the bar is limited, so that if the number of visitors exceeds its

capacity on a given night, these people will not enjoy their night out, in which
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case, it would be better for them to stay at home. However, if the capacity is not

reached, all attendees share a positive experience. The minority rule governs this

problem. Everybody attending the bar expects that it will not be overcrowded,

but in reality, they will face one of two outcomes. Based on the knowledge of

previous attendance records and their individual strategies, people try to optimise

their next decision.

The El Farol bar problem was formulated and solved, providing insight into

some complex scenarios [65, 66, 67, 68]. Marsili, Challet and Zecchina’s work [69]

provided significant results in the attendance (price) dependence of each player.

Franke [70] also found a long-run equilibrium frequency distribution in addition

to the Nash equilibrium solutions. Furthermore, the El Farol bar problem with

externally ‘imposed comfort levels’ was explored [71]. In Lustosa and Cajueiro’s

study [72], previous work in this area was extended by offering players unparalleled

information to analyse arbitrage opportunities. The MG has also been utilised

in various fields, such as the financial markets. Therefore, it is instructive to

investigate the relation between the minority game and financial games [68].

In the MG, each of N agents has to make a choice between two strategies,

and the overall minority category wins. However, the agents are free to specialise

in a line of strategies, S [67]. Players can utilise the history of their previous

strategy performances to determine their future outcome. The following condi-

tions govern the game: firstly, the resources are scarce, and participating agents

cannot all win. Secondly, the behaviour of participants is determined by others’

behaviour. Thirdly, there is no classification of bad or good behaviour in the game.

Fourthly, prediction is possible but only through players’ experiences and choices

(strategies).

Traditionally, market and economics models utilise equilibrium ideology, the

assumption being that the players’ decisions in the financial market revolve around

two factors [73, 74, 75]. One factor is that markets are subject to external in-

fluences, such as incoming information relating to regulation change, business,
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technological advances and political dealings. The quest for equilibrium in the fi-

nancial markets must cope with the fact that balance is often disturbed by external

factors. These models typically assume that markets would remain inherently sta-

ble even after large external shocks. The second factor is that the large number

of market participants (pursuing their individual interests) necessarily create a

fluctuating market, where decisions by key players may result in market prices

moving out of equilibrium. However, market activities such as arbitrage will en-

sure that fundamental values are more or less sustained in the long run. Challet

et al. [76, 77] used the MG to model the real market mechanisms by accounting

for roles of different agents.

The minority game can be interpreted in terms of buying and selling prefer-

ences. In the case of the buyer/seller, it is not possible to determine the day that

most clients would be buying or selling, and, therefore, the day chosen by a client

might turn out to be one when the market is over- or under- sold. In particular,

consider a new product in the market where N players are expected to participate

in either buying or selling of a specific commodity at time t. If the minority de-

cides to buy, then buyers gain an advantage [78]. Similarly, if the minority decides

to sell, they gain by obtaining a better price due to the excess demand.

The market scenario resembles the minority game to a degree. Interaction in

the market is not controlled by one factor or one strategy. The profitable strat-

egy is not independent of other strategies. After all, the winner is determined

by the other strategies in play. In particular, the minority game engages interre-

lated strategies [79]. Although buyer and seller strategies may move the price in

ways that will be an advantage to one or the other (minority or majority), the

market dynamics are also controlled by time t. Players who fall into the majority

category, say selling, may opt to change their strategies with time and join the

minority buyers [69]. Evidently, the market would fluctuate without any exter-

nal influence affecting it. The agents’ evolving strategies ultimately control the

market dynamics.
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The strategy for optimising two choices can arise from trial-and-error learning.

It may require a player to have played the game for a considerable period to

successfully come up with a personal definitive strategy. If we use 1 and −1 to

represent the two choices available to a player, then a strategy is a particular way

of mapping from a sequence of M outcomes, represented by a string of 1’s and

−1’s, to a single number of 1 or −1 [67]. Each player may have a number of

available strategies to choose from, according to their historical performance. In

theory, each player will have to consider 2M of possible scenarios. We defer the

detailed formulation to Chapter 3.

2.2 Urn models

The statistical urn model consists of a number of urns containing different coloured

balls [80, 81]. Players pick up and add ball(s) from urn(s) each round according

to certain rules of play. The rules vary, leading to different types of urn models.

Following play, the distributions of different coloured balls and other statistics can

be analysed. The distributions can range from the discrete to the continuous, and

ultimately, urns and/or balls represent some real objects of interest, such as atoms

or people.

The basic Pólya urn model has been heavily studied [82], and it consists of

only one urn, containing balls of two different colours, say white and black. Each

round, a player randomly selects a ball from the urn and returns it with an extra

ball of the same colour. As play continues, the number of balls increases, and

the number of white or black draws can be shown to settle into the beta-binomial

distribution. More recently, Chen and Kuba’s [83] derived the exact equations to

demonstrate the expected value and variance for the Pólya model, together with

a new two-urn generalisation [84]. Mahmoud [85] investigated the relationship

between Pólya urn models and random trees.

The Ehrenfest model is another popular type of urn model, first introduced to
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the second law of thermodynamics. There are only two urns and N balls, which

are labelled from 1 to N . A ball is randomly selected and moved into the other urn.

It can be shown that when the system stabilises, the entropy reaches a maximum

[86]. Metzler et al. [87] studied this class of urn models with deterministic, time-

reversible conditions using different types of distributions, including hierarchical

and power-law ones. Prestipino [88] generalised the Ehrenfest model enabling it

to be used for energy considerations.

Many variations of the urn model exist [89]. For instance, we may insist that

different coloured balls are picked in the two consecutive rounds; it is also pos-

sible to temporarily neglect one or more urns [90, 91]. We can add balls of the

opposite colour to the urn if there are only two coloured balls. Or we do not have

to add back any balls at all. Another example is where the number of replace-

ment balls is a random variable generated by a specific distribution. We can also

increase the number of coloured balls in the urn to more than two. Godrèche

and Luck [92] investigated the non-equilibrium dynamics of urn models, especially

the backgammon model and the zeta urn model. Prestipino [88] generalised the

Ehrenfest model to study an ideal gas, reproducing the Boltzmann entropy for-

mula (S = kB lnW ). In ideal gas, S is the entropy, W is number microstates

of system of gas particles, and kB is Boltzmann constant. In urn model, S is

corresponding entropy and W arises from the number of urns. The system can

lead to a stable state by using a stochastic urn model to analyse the probable

evolution of the system. In the paper by Buhot et al. [93], a generalised form

of urn model yielding non-constant number of particles was obtained and both

equilibrium and non-equilibrium dynamics were analysed using mean-field theory

which has the form of a diffusion-annihilation process and is accurate in describing

out-of-equilibrium dynamics in the low temperature regime. Randomness is a key

issue connected with urn models. Laruelle and Pagè [94] demonstrated its effi-

ciency when applying stochastic approximation to randomised urn models. The

combination of the urn model and the random partitioning model has been used
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to explore the multiplicities of box occupancies [95].

The urn model, which can be classified into the Ehrenfest class and the Monkey

class, has been applied not only to physics, but also to economics. Different

from Ehrenfest class, which randomly chooses the ball initially, the Monkey class

will randomly choose the urn first. The equilibrium statistical properties of a

disordered urn model, including both classes, were studied by Jun-ichi Inoue and

Jun Ohkubo [96]. Interestingly, they found heavy-tailed power-law behaviour in

the occupation probability distribution. The arbitrary energy function was added

to the formula and a possible linkage to the macro economy was constructed [96].

The application of urn models extends to the social sciences [97, 98, 99, 100,

101, 102]. For example, a one-dimensional urn model can be applied to traffic

models and driven-diffusive systems. A generalised form for one class of zero-

range processes was achieved by Levine, Mukamel and Ziv [98]. As another exam-

ple, the relationship between Italian cities’ economical structure and population

distribution has been analysed in association with economic, historical, demo-

graphic and political considerations at national and regional levels [99]. In Tong

and Mahmoud’s paper [100], an Ehrenfest urn model was generalised to develop

an understanding of migration issues. Lambersona and Page [101] used an urn

model to model feedback from the markets. The urn model can be applied to

inventory distribution, products reproduction, frequency of seeing films, etc [101].

They built new theorem showing the relationship between second-order stochastic

dominance and expected market share [101]. In addition, a new model named

‘immigrated urn’ was proposed by Zhang et al. [102], which can be employed to

analyse the immigration process.

Urn models have also been applied to medical studies. A clinical trial using

an urn model with modification of the reinforcement scheme was constructed by

Aletti et al [103]. Their work presented the convergence theorem numerically.

Their goal was to help patients receive treatments more efficiently and effectively

[103].
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2.2.1 Pólya-Eggenberger model

To illustrate the mathematics involved, we choose the Pólya-Eggenberger urn

model [104], which differs from the basic Pólya model only in the exact crite-

ria for adding extra balls. We start with the basic Pólya model of a single urn

containing balls with two colours (w white balls and b black balls). The replace-

ment rule is modified so that s of the same coloured balls will be added after each

discrete time step (s = 1 redueces to the basic Pólya model). After n time steps,

the distribution of the number of black balls drawn is described by the following

equation.

P[k] =

(
n

k

)
b(b+ s)...{b+ (k − 1)s}w(w + s)...{w + (n− k − 1)s}

(b+ w)(b+ w + s)...{(b+ w) + (n− 1)s}
, (2.1)

where k specifies the number of black balls drawn. For the special case s = 0, it

can be simplified to:

P[k] =

(
n

k

)
wk bn−k

(w + b)n
(2.2)

which is the standard binomial distribution.

The generalized Pólya-Eggenberger distribution is defined via the following re-

placement scheme in Table 2.1.

Colour of the chosen ball

White Black
Number of balls White ωw ωb
added to the urn Black βw βb

Table 2.1: Generalised Pólya-Eggenberger scheme [89].

According to Table 2.1, if we choose white at a particular time, there are ωw

white balls and βw black balls being added. Otherwise, we will add ωb white balls

and βb black balls. In both cases, the chosen ball will be returned to the urn as

well. Suppose after n rounds we have bn black balls and wn white balls, then the
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above reasoning can be written as:

bn+1 = bn + Tnβb + (1− Tn)βw, (2.3)

where Tn is a random variable defined as:

P[Tn = 0] =
wn

bn + wn
, (2.4)

P[Tn = 1] =
bn

bn + wn
. (2.5)

Therefore, the expected value and variance can be found to be:

E[bn+1|bn, wn] = bn +
bnβb + wnβw
bn + wn

, (2.6)

var[bn+1|bn, wn] =
(βb − βw)2bnwn

(bn + wn)2
. (2.7)

Note βw = ωb = 0, βb = ωw corresponds to the Pólya-Eggenberger model before

generalisation.

2.2.2 Stagewise linkage model

Another interesting variant of the urn model is the ‘stagewise linkage’ model [105].

Only one urn is used, and it is filled with n > 2 balls, labelled 1 to n. In each

round, a player picks out two balls. For example, in the first round, ball i and ball

j are picked up say, they are then individually labelled with both labels i and j

(so-called ‘linkage’), before being returned to the urn. Now two balls are doubly

labelled with both numbers i and j, and the remaining (n − 2) balls are singly

labelled. The game is played continuously, and all balls gain labels (links) until

they are all labelled 1 to n eventually. What is the minimum number of rounds

required to ensure all the balls have the same label? In other words, how long does

it take to make all balls labelled 1, 2, ..., n? It can be shown that the expected
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number of drawings C satisfies:

(1− ε)n lnn < E[C] < (2 + ε)n(lnn)2 for all n ≥ N(ε), (2.8)

where ε� 1, denotes any positive constant; and N(ε)� 1, is an integer function

of ε. The linkage model is equivalent to the telephone model [106], where n people

each possessing a unique piece of news, and C random individual calls would be

required before they all know the news.

2.2.3 Urn transfer model

The earliest urn transfer model was introduced by Bernoulli in 1713 [107]. There

are two urns in this model, one of which contains k white balls and the other,

k black balls. In each round, one ball is drawn from urn 1 and returned to urn

2. Then one ball is drawn from urn 2 and returned to urn 1. This is a repeated

process. The general formula for the expected number of white balls in urn 1 is

given by:

Er =
1

2
k

{(
k − 1

k + 1

)r
+ 1

}
. (2.9)

where k denotes the number of balls in each urn, and r represents the number of

balls have been drawn.

2.2.4 Ehrenfest model

The Ehrenfest urn model involves two urns [108]. Urn 1 contains k′ balls and urn

2 contains k′′ balls. The Ehrenfest urn model is equivalent to a Pólya-Eggenberger

urn model if we express the system as a single urn model which contains k′ white

balls and k′′ black balls. We randomly select one ball in each round and replace

it with one in the opposite colour. According to Table 2.1 , this is the case when

ωw = βb = −1, ωb = βw = 1. The probability of having k white balls after n
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rounds is defined as Pn(k) which can be written as:

k0Pn(k) = (k + 1)Pn−1(k + 1) + (k0 − k + 1)Pn−1(k − 1), (2.10)

where k0 = k′ + k′′ (the total number of balls) with initial conditions P0(k′) = 1,

and P0(k) = 0 for all (k 6= k′). When n → ∞, this distribution becomes a

binomial distribution.

The Ehrenfest urn model can be generalised by adding a probability parameter

p. Probability p describes the probability of changing the chosen ball with an

opposite coloured ball. The remaining probability is (1 − p), which refers to the

probability of returning the ball to the urn without changing its colour. The

distribution of the number of white balls after n rounds becomes:

k0Pn(k) = (k + 1)pPn−1(k + 1) + k0qPn−1(k) + (k0 − k + 1)pPn−1(k − 1), (2.11)

where q = 1− p. Note that the distribution does not depend on the probability p.

2.2.5 Application of the urn model to social science

In social science, issues such as analysing and interpreting social experiments can

be viewed as allocation problems [97], which consist of categories and objects. Urns

and balls can represent categories and objects respectively, thus the urn model has

been used to understand the relationship between lottery winnings and political

attitudes, the effect of voting costs on turnout [97]. Similarly, the urn model has

been applied decision making, reinforcement learning, technology usage, and other

statistics in our society [109].

Human populations can be divided according to geography (country, county,

city, area, street, etc), and similarly to race or social class. When sampling, it

is common to make a selection based on one criterion after another, a multistage

sampling process. Suppose a large urn represents the whole population; it contains

µ smaller urns each of which might contain even smaller urns, etc; eventually,
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the lowest level urns contain balls representing people [89]. We could sample

the population via simple random sampling, or we could perform a multistage

sampling, but at each stage we have to weigh the probability of choosing an urn

by the number of people it and its subsidiary urns contain, a process known as the

probability proportional to size (PPS) sampling [110]. For simplicity, we consider

only one intermediate stage, so that our µ smaller urns contain ν1, ν2,..., νµ people

respectively. The selection rule is to choose m urns from the pool of µ urns and

select ni individuals from the ith urn if that urn has been chosen. The definition

of a ith urn sampling fraction is ni/νi. Let xi1, xi2, ..., xiνi be the numbers on the

νi balls in the i-th smaller urn, and these numbers represent the characteristics

of interest. We can estimate the characteristics of the entire population via the

following construction:

ξ =

µ∑
i=1

νi∑
j=1

xij =

µ∑
i=1

νix̄i, (2.12)

where x̄i = ν−1
i

∑νi
j=1 xij. The statistics of each stage of sampling can also be

formulated following this construction.

2.2.6 Application of the urn model in genetics

In genetics, different generations may be represented by urns and their correspond-

ing genes may be interpreted as balls, thus the urn model has been generalised

to topics ranging from the spread of infectious diseases, population dynamics, to

the biological evolutionary [111]. Limiting behaviour of Polya-like urn process has

been applied to population genetics by Hoppe [112]. In particular, the process of

coalescent, a retrospective trace back of genetic drift, is mapped to the urn model

in reverse time [112]. In Trieb’s work [113], a single urn model containing one

black and various numbers of other coloured balls is used to analyse coalescent.

The drawing of different coloured balls leads to the genetic variations of the next

generation, with the black ball representing a genetic mutation [113]. Another no-

table example in population genetics is the Wright-Fisher model (may be viewed
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as a variation of the urn model) [111], which analyses how specific allele frequen-

cies in a finite population and their mating behaviour evolve over generations. It

helps geneticists to understand different factors contributing to the evolutionary

process.

In a simplified case, all balls in an urn represent the genes in a population. Each

colour denotes one type of a gene. We pay attention to genetics in the language

of urn models in two areas: the composition of the coloured balls in a sequence of

urns in each time step and the colour compositions of lots of balls drawn from one

urn. Suppose we have m genes in a generation of one population and each gene

has two types, A1 & A2. A single population consists of i type A1 and (m− i) type

A2 genes. Assume the genetic composition from parents is binomially distributed.

The probability of i genes of type A1 in the next generation is:

pij =

(
m

j

)(
i

m

)j (
1− i

m

)m−j
, (2.13)

where j is the number of balls in the second urn.

This can be explained in the context of urn models. Suppose we have a se-

quence of urns. The first urn consists of m coloured balls. The colour can be either

red or green. The second urn will be filled by the same coloured balls drawn from

the first urn until it reaches the number of m. We then calculate the probability

of j red balls in the second urn given that there are i red balls in the first urn.

This rule is continuously applicable in the next urn. This can be extended to the

concept of mutation if the next urn has a (1 − u) probability of being filled with

the same coloured ball. And the remaining probability of u fills the next urn with

an entirely new colour, where it indicates the appearance of a new property. In

addition to the applications elaborated in this study, the urn models can also be

applied to many other fields, such as the military, and in physiology and computer

science.

28



2.3 The Hawk-Dove game

We seek to connect the urn model to evolutionary game models [114]. The Hawk-

Dove game is first used to as a toy model to explore the implications. In the

real world, some species behave aggressively and fight for their allocated resource

maximisation. In contrast, the remaining groups possess a conservative attitude

and opt to minimise their potential incurred costs, such as injuries. The Hawk-

Dove game addresses this phenomenon mathematically. It was first introduced by

Smith and Price in 1973 [115, 116]. This game model assumes that there are only

two groups in the system. One group, namely ‘H’, representing ‘hawk’ players,

fights for allocated resources until they win or lose. The other group, called ‘D’,

denoting ‘dove’ players, avoids direct conflicts [117].

This simple game was initially used to explore the evolution of animal contest

behaviour [118, 119]. For example, Pham and Feng, who studied Asian carp in-

vasions, used a varied Hawk-Dove game model to establish simulations, aiming to

provide an efficient and low-cost method to solve the problem [120]. The appli-

cation of the Hawk-Dove game became popular not only in the field of biology,

but also in the measurement of reciprocity and fairness [121]. Additionally, it has

also been applied widely in modern economics and finance [122]. For instance,

the financial crisis of 2008 was analysed by Hanauske et al. using the Hawk-Dove

game in a quantum approach [122]. This study concluded that an evolutionary

stable strategy (ESS) can emerge, which could help mitigate future economic and

financial crises [122].

The basic Hawk-Dove game has been developed in a variety of forms for wider

applications. In 2008, Carlsson and Johansson proposed a development of the

Hawk-Dove game called the iterated Hawk-and-Dove game [123]. They noted

that the evolutionary Hawk-Dove game is a repeated game throughout history.

The iterated Hawk-and-Dove game was created to analyse the ESS [124]. The

two-stage Hawk-Dove game was mathematically written by Cressman [125]. It

emphasises the change of input in additional rounds in the game [125]. In social
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science, the Hawk-Dove game can play a significant role in managing customer

expectation, in that it helps firms achieve a better financial performance and

create stronger values [126]. Moreover, the game itself can be used in political

science to investigate international relations [127]. Finally, it has been applied to

entrepreneurship in macro- and micro-economics [128].

2.3.1 Model definition

There are three situations in total: 1) hawk vs. hawk, 2) hawk vs. dove, and

3) dove vs. dove. In the first situation, each of the hawk strategy players has a

50% chance of winning the game. We assume there is V resource and the cost of

a flight is C. Therefore, the payoff in this situation is (V − C)/2. In the hawk

vs. dove situation, the payoff for the hawk is V and for the dove, 0. For the last

situation, the payoff for each dove strategy player is V/2. The result is given in

the following payoff matrix.

Hawk (H) Dove (D)
H (V − C)/2 V
D 0 V/2

where V > 0 and C > 0.

Suppose that we have a group of players with the same initial fitness of W0,

and p denotes the probability of players choosing a hawk strategy. Therefore, the

Hawk-and-Dove strategy players’ fitness can be expressed respectively:

W (H) = W0 + pE(H,H) + (1− p)E(H,D), (2.14)

W (D) = W0 + pE(D,H) + (1− p)E(D,D), (2.15)

where E(H,H) denotes the expected payoff when ’Hawk’ strategy player plays

against ’Hawk’ strategy player, E(H,D) demonstrates the expected payoff when

’Hawk’ strategy player plays against ’Dove’ strategy player, E(D,D) shows the

expected payoff when ’Dove’ strategy player plays against ’Dove’ strategy player.
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Assume that the players reproduce their kind in proportion to their fitness.

The probability of a hawk player being in the next generation is:

p′ = pW (H)/W̄ , (2.16)

where

W̄ = pW (H) + (1− p)W (D). (2.17)

2.3.2 Evolutionary stable strategy

Now the dynamics of the game can be explored. Suppose we have a two-strategy

(strategies: I and J) game [115], the evolutionary stable strategy I for a two-

strategy game is satisfied by

W (I) = W0 + pE(I, I) + (1− p)E(I, J), (2.18)

W (J) = W0 + pE(J, I) + (1− p)E(J, J). (2.19)

If a population adopt evolutionary stable strategy I, this group cannot be invaded

by any other strategies. In other words, strategy I does better than J in two-

strategy game, i. e. W (I) > W (J). As J 6= I, either

E(I, J) > E(J, I), (2.20)

or

E(I, I) = E(J, I) and E(I, J) > E(J, J). (2.21)

In consideration of these conditions, the Hawk-Dove game’s evolutionary stable

strategy (ESS) can be found [129]. Because the payoff from dove against dove is

less than the payoff from hawk against dove, the dove strategy cannot be ESS.

If V > C, in other words, the cost of two hawks’ flights is relatively small, the

hawk strategy is pure ESS. Finally, the situation when V < C is considered. In
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this case, the cost of fights is higher than the rewards. Players will use a hawk

strategy with probability p and a dove strategy with the probability (1− p). This

is known as the mixed ESS. The general form of probability p is calculated as:

p =
(b− d)

(b+ c− a− d)
, (2.22)

with a generalised payoff matrix

I J
I a b
J c d

2.3.3 Retaliator

When payoff values from the Hawk-Dove game are substituted, the probability of

p is equal to V/C. Then the ‘retaliator’ strategy, R, is introduced to the model

in order to demonstrate system behaviour with more than a two-strategy game.

When the R strategy player meets the hawk strategy player, the R strategy player

will use the hawk strategy. If a R strategy player meets the dove strategy player,

they will behave like a dove. The following payoff matrix illustrates the ideas.

H D R
H −1 2 −1
D 0 1 0.9
R −1 1.1 1

Strategy R is an ESS, since E(R,R) > E(D,R) and E(R,R) > E(H,R). The

following calculations prove that the mixed strategy I = H/2 + D/2 is also an

ESS.

E(H, I) =
1

2
× (−1) +

1

2
× 2 =

1

2
, (2.23)

E(D, I) =
1

2
× 0 +

1

2
× 1 =

1

2
, (2.24)
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E(R, I) =
1

2
× (−1) +

1

2
× 1.1 = 0.05. (2.25)

Therefore, the system has two ESSs, I = H/2 +D/2 and R. Smith has concluded

that “a game with only two pure strategies always has at least one ESS; but if

there are three or more strategies, there may be no ESS” [114].

The Hawk-Dove game can be applied to social science such as: negotiation

skills, business strategy, management and cooperate social responsibility (CSR),

etc. [130, 131, 132]. For example, Garćıa et al. provided an analysis based on the

sequential Hawk-Dove game in order to improve the bargaining power [133]. Using

the game, it can provide company throughout ideas to survive in the competition

[134]. Additionally, the Hawk-Dove game is able to model the establishment of

property rights and laws [135, 136]. Furthermore, the Hawk-and-Dove strategy has

already been applied to the United Kingdom’s grocery market, where the sacrifice

of short-term profits can be defined as the ‘hawk’ strategy [137].
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Chapter 3

The minority game and its

extension

In order to establish a robust and thorough understanding of the MG, we include

derivations and a series of generated graphs. The rules and logic of the MG are

extended to create the new model to be developed in the following sections.

We follow Challet and Zhang’s first formulation of the minority game of 1997

[65]. For simplicity, the number of participants is set to be odd; thus the minority

side can be identified without ambiguity. During the decision-making process,

each player has a finite set of strategies to engage with. Finally, each player’s

payoff is determined by the others’ choices.

The rest of this chapter is structured as follows. In Section 3.1, the mathe-

matical formulations of the MG are defined. In Section 3.2, major results from

the MG are listed. In Section 3.3 and 3.4, the wealth distribution and bankruptcy

rates are presented. The chapter ends with a brief conclusion.
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3.1 Mathematical formulations

Suppose N players are engaged, where N is an odd number and each player has

S strategies in a game (S is a finite number). These players can only choose one

of two possible outcomes in each game, namely side ‘A’ or side ‘B’. This game

can be interpreted as the El Farol bar problem by setting side ‘A’ as ‘going to the

bar’. MG is played in discrete time, which equals number of times game is played.

ai(t) = 1, (3.1)

where ai(t) represents an individual participant’s decision at time t, i = 1, 2, ..., N .

Meanwhile, side ‘B’ represents ‘staying at home’

ai(t) = −1. (3.2)

Consequently, when we collect the actions of all the players, the overall action can

be expressed as

A(t) =
N∑
i=1

ai(t). (3.3)

Multiplying by individual decision with A(t), each of them has the payoff in a

mathematical form

Payoffi = −ai(t)g[A(t)], (3.4)

where g(x) is an odd function. Challet and Zhang initially chose g(x) = sign(x)

[65, 138]. However, this does not limit the choices of function g(x), some other

functions can also be applied to g(x) (e.g. g(x) = x/N).

All of the players make their decisions using inductive reasoning [139]. In other

words, players have finite limited memories for the record of past winning sides.

The letter m stands for the value of memory to be taken into consideration, which

means each player employs m historical records to make their decision in the next

game round.
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According to the information of the last m winning group, there are a total

of P = 2m possible inputs for each strategy, which must predict an output (of 2

possible variations) for each of those inputs. Hence, the total number of possible

strategies is 22m . For example, when the value of memory is set to 3, the total

number of strategies is 256. The following table shows one possible strategy in

the case of m = 3.

Input Output

−1 −1 −1 +1

−1 −1 +1 −1

−1 +1 −1 +1

−1 +1 +1 −1

+1 −1 −1 +1

+1 −1 +1 +1

+1 +1 −1 −1

+1 +1 +1 −1

Table 3.1: Example of a strategy for the case of m = 3.

Figure 3.1: Demonstration of the MG [139].

Figure 3.1 illustrates the entire set-up of the classical minority game. The
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logical flow starts from the top of the figure displaying a sequence of numbers

with values of 1 or −1. The values represent the record of the full set of the

historical winning group/side. Arrows below the historical data indicate that the

records of previous m winning groups flow into each player’s memory. According

to their strategies, players will then perform their preferred actions. The winning

group is established when all of the players have completed strategy selections,

and the payoffs for each player will be calculated. Finally, the historical winning

group is updated in a current time step.

We introduce the following vector formula

~ri
a = (−1,−1,+1,−1,−1,+1,−1,+1) (3.5)

to represent the a-th strategy belonging to the i-th player.

Then we use µ(t) to describe the set of possible strategies, where µ(t) ∈

{1, .., 2m}. Thus, each player’s decision within one particular time step comes

from one of its components. Recall that the entire set is expressed as {1, .., 2m}.

The changing of binary expressions of the historical winning group can be more

efficient (i.e. +1 → 1,−1 → 0). Using updated notations, µ(t) can be expressed

clearly. For instance, the original expressions for the historical data are given

by set {+1,−1,−1}. Corresponding to the latest notation, the historical data is

presented as {1, 0, 0}, where µ(t) = 5.

Additionally, the new vector ~I(t) is introduced. This vector has all other zero

components except the µ(t) component, which is 1. The product of ~I(t) and ~ri
a

provides the prediction of strategies. According to the example above, we obtain

the µ(t) = 5 and ~I(t) = (0, 0, 0, 0, 1, 0, 0). We assume that each player wants

to maximise their payoffs. They track the virtual total payoffs of their available

strategies:

pai (t+ 1) = pai (t)− ~ri
a~I(t)g[A(t)], (3.6)

where t shows time step and pai denotes the virtual total payoffs of the a-th strategy
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of the i-th player, if it were used all the time. The minus sign arises from the payoffs

equation (3.4). The virtual payoffs are then used to rank strategies in terms of

their effectiveness, with the top ranking strategy being used for the next round.

If two or more strategies are ranked joint top, then a random choice of those is

made:

ai = ~ri
βi(t)~I(t), (3.7)

where βi(t) ∈ {1, ..., s} represents the best performing of strategies, and it may

vary with time steps.

In summary, we have described the basic formulation of the MG. In the fol-

lowing section, we reproduce some of the key results.

3.2 Results

3.2.1 Time evolution of attendance

Figure 3.2 shows some typical time evolution sequences of attendance for the

standard MG. This is generated by program MATLAB [140].

The first curve has the property of periodicity, which indicates that the function

has the relationship f(x) = f(x + T ), where T denotes the value of period. A

player with a long memory (compared to T ) could easily predict the outcome if

pitched against a group of such players. Compared to the first curve, the second

and third curves become less ‘predictable’, and the magnitudes of fluctuations also

vary greatly amongst the three scenarios.

3.2.2 Volatility of the standard MG

The analyses of Figure 3.2 in previous section show the importance of the magni-

tude and periodicity of the fluctuations. The volatility/variance plot the minority

game is key to characterising the behaviour of the system. The variance is defined
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Figure 3.2: Time evolution of attendance for original MG. We assume the function
g(x) = x, N = 301 and s = 2. From top to button, the memories are set to the
values of m = 2, 7 and 15 respectively.

as:

σ2 = 〈[A(t)− 〈A(t)〉]2〉, (3.8)

where 〈...〉 devotes the time average, · · · presents an average over possible realisa-

tions of ~ri
a.

Since the magnitude of A(t) arises from the disparity of the winning and losing

groups, the value of σ indicates the size of the winning and losing group. A larger

σ implies that there is a smaller number of winners, and vice versa. Therefore,

it is essential to analyse the behaviour of σ. Different parameters, such as length

of memory of players’ strategy, m, and number of players’ accessible strategies, s,

are used to characterise σ2. Figure 3.3 plots the volatilities of the standard MG,

where N = 1001, t = 100000, s = 2, repeats= 100.

In Figure 3.3, different shapes of symbols represent different numbers of players

taking part in the MG (red circle: 51, green star: 101, blue plus: 201, black star:

301, up triangle: 501). It is interesting that the data generated from different

number of players collapse into a single curve. The values of the memory parameter
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Figure 3.3: Volatility plot of standard MG.

are set from 1 to 12. Initially, the volatility decreases sharply with an increasing

value of α. Volatility reaches its minimum value around α = 0.5, it begins to

increase and finally tends to 1 at larger values of α.

The random historical data does not affect the performance of variance as a

function of α. The critical value, that is, the minimum value of volatility has

practical implications. In the real world, if the volatility of the financial market

stays at or around the critical value, the whole market would become desirably

stabilised and create an investment environment with less risks. We assume that

the simulated minority game is consistent with the efficient market hypothesis,

which maintains that the resulting winning group (price) shown to each agent

reflects all information [141, 142].
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3.2.3 Information and frozen agents

Extensive studies on the MG model have shown that the optimal strategy can be

determined [139]. The information is denoted by H, and the fraction of frozen

agents is demonstrated by φ.

Figure 3.4: Information H (open symbols) and fraction of frozen agents φ (full
symbols) as a function of the control parameter α = 2m/N for s = 2 andm = 5, 6, 7
(circles, squares and diamonds respectively).

The figure above displays the information content of the distribution and the

fraction of frozen agents [139]. These characteristics can be utilised to predict

an optimal future strategy. The parameter α facilitates the prediction of future

prices using past price records.

The data above show that a larger α is correlated with an increase in infor-

mation content [143]. However, the agent’s flexibility with strategies determines

the probability of catching on this pattern. Identifying the pattern requires a

large memory capability; therefore, few agents are able to identify these recurring

patterns for exploitation. Furthermore, the market may retain its level of unpre-

dictability if few agents are in play [143, 144, 145]. The recurrence of the pattern

depends on the diversity of the strategies utilised by the agents [146].

On the other hand, a smaller α is likely to change the game. According to
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Savit et al., the probability of landing into the winning pattern becomes low at

this point [147]. With a large α, the pattern is bound to appear on several agents’

plans, making identification likely. In this case, however, the pattern is likely to

appear in one agent’s range of strategies. However, the prediction of future prices

is likely to be difficult in reality due to transaction costs.

3.3 Wealth distribution

3.3.1 Non-zero-sum case

The linkage between the MG and wealth distribution is explored in this section.

The assumption of odd player numbers is retained. The initial total wealth of par-

ticipants is set to a constant, and it could be any positive finite number (e.g. £100).

This assumption can be relaxed in the later work using a number of methods, for

instance, generating an initial wealth distribution for all players.

At the preliminary stage, the program simulates artificial data for the historical

winning group. The players follow the rules in the standard MG to play the game

in each round. For simplicity, the number of strategies, s, is set to the value of 2,

and can be increased in the future. In the second step, the updated process for

wealth will be added to the standard MG. The decision from each player at each

round will be recorded.

Each participant chooses the most profitable strategy from the available strate-

gies in order to maximise its own profits. We keep track of the change of wealth

for all participants, which is described below. Each winning player gains 1 unit of

wealth, and the rest lose 1 at each time step.

This method fundamentally assumes the equality of all players. This assump-

tion can also be relaxed by adding payoff equations, organising the payoffs to each

player after each round.

Figure 3.5 shows an example of artificial wealth distribution. In this figure,

N = 101, m = 3 and t = 1000. The program generates a series of wealth distri-
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Figure 3.5: An example of generated wealth distribution.

butions using various values of time steps. However, the distribution generated in

this fashion never truly stabilises. This is caused by the decrease in the sum of

players’ wealth: since only minority wins each time step, the total wealth of the

group is not conserved. The distribution eventually contains increasing number of

negative-value bins, indicating that the system allows players to continue playing

the game even when their wealth is negative.

However, in the real world, investors must attract external resources to con-

tinue participating in the game when they are facing the risk of bankruptcy. Oth-

erwise, they have to leave the market with losses. In order to make the statistical

model more realistic, the study assumes that an equal number of new investors

will come to the market with the same amount of initial wealth if any existing

investors go bankruptcy.

The wealth distribution generated by the updated model no longer contains

negative values, and the total number of players remains the same as the initial

odd number throughout the game because the number of inflow players equals the

number of outflow players. Thus, the system might be in a stable condition. The

following figure shows the newly generated wealth distribution histograms.

Figure 3.6 is an example of non-negative wealth distribution (T = 1000). It
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Figure 3.6: An example of generated wealth distribution without negative bins.

evidently contains no negative bins in the histograms, as we replace the bankruptcy

players with fresh ones. However, the distributions from different program runs

do not achieve a stationary state, continuing to evolve slowly with time. Figures

3.10 and 3.11 in the appendix demonstrate the cases that at very large time steps

(T = 2000 and T = 3000 respectively), the distribution broadens with a sharp

peak near the origin representing the fresh injection of players. Leaving aside the

peak near the origin, we have been able to use the following equation to perform

curve fitting on the generated wealth distributions.

f(x) = ax−b, (3.9)

where a, b are both non-zero constants.

The confidence bounds are set to 95% as default. Table 3.2 below shows the results

from different runs.
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N m T The value of parameter b

10001 3 2000 0.7559 0.7891 0.6694 0.5392 0.5263

10001 3 3000 0.8225 1.0390 0.7848 0.8448 0.8765

10001 3 4000 1.1150 0.9688 0.9983 1.0220 1.0110

Table 3.2: Example of the value of parameter b with different numbers of time
steps.

According to Table 3.2, the value of power parameter, b, increases as the time step

increases. Table 3.3 shows the average value of power from different runs with the

same parameters’ values.

N m T b

10001 3 2000 0.6598± 0.1007

10001 3 3000 0.8543± 0.0870

10001 3 4000 1.0224± 0.0493

Table 3.3: The average value of parameter b with different numbers of time steps.

The standard deviation is relatively small compared to the value of power.

However, the value of power still increases as time steps increase, indicating that

the wealth distribution within the system continues to evolve. The following sec-

tion suggests a method that potentially reduces this effect.

45



3.3.2 Zero-sum case

Recall that the wealth distribution from the standard MG is unstable due to the

system’s decreasing wealth. Increasing the system’s wealth by introducing new

players does not give rise to a stationary distribution either. Next, the system is

adjusted to the zero-sum case.

A new option is added in order to achieve the zero-sum: the payoffs are scaled

so that at each time step the gain made by the winners cancels exactly the loss

made by the losers. In addition, if the wealth of any of the players decreases to zero,

this(these) player(s) can borrow the initial wealth from other players repeatedly.

The contributions from other players are proportional to their existing wealth.

Then the modified model could be understood as a type of ‘self-financing’ system

where there are either no external outflows or cash inflows [148].

As before, curve fitting is performed for the generated wealth distribution.

Repeatedly, the system generates values of parameter b. The results are presented

in Table 3.4.

N m T The Value of Parameter b

10001 3 2000 0.7135 0.8974 0.6696 0.5522 0.7559

10001 3 3000 0.8454 0.8717 0.8163 0.9425 0.9965

10001 3 4000 0.9316 1.0200 1.0610 1.0500 0.9842

10001 4 3000 0.6717 0.6604 0.5906 0.6688 0.6454

10001 4 4000 0.7342 0.7678 0.6851 0.8358 0.5758

10001 4 5000 1.0590 0.7585 0.9906 1.0040 0.8524

Table 3.4: Example of the value of parameter b with different values of memories
and time steps (zero-sum case).

Table 3.5 lists the average values of power with different memories and time

steps.
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N m T b

10001 3 2000 0.7177± 0.1260

10001 3 3000 0.8945± 0.0737

10001 3 4000 1.0094± 0.0527

10001 4 3000 0.6474± 0.0333

10001 4 3000 0.7197± 0.0973

10001 4 5000 0.9329± 0.1237

Table 3.5: The average value of parameter b with different values of time steps
(zero-sum case).
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Figure 3.7: Values of calculated parameter b (N = 1001, repeats= 100).

Figure 3.7 represents the values of power from the fitting curves (red: m = 3,

blue: m = 4, green: m = 5). As the figure illustrates, the appear to asymptote,

but within the time and computational resources available, the system did not

completely stabilise. The results obtained from zero-sum processes appear to

improve on those from non-zero-sum processes, but the results are not deemed

consistent enough for publication. This remains an area of possible future work.
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3.4 Leverage effect

3.4.1 The leverage effect

Previously, the assumption was made that every player play had the same stake at

each time step. With consideration of leverage products in the financial markets,

we relax this assumption in this section. We introduce the double bet situation

when a player loses the previous game. It offers the chance to potentially double

their payoffs and win back losses. Table 3.6 presents the fitted values of power

after this modification.

N m T The Value of Parameter b

10001 3 2000 1.427 1.252 1.267 1.393 1.606

10001 3 3000 2.103 3.594 2.308 2.148 2.345

10001 4 4000 2.206 1.265 2.033 1.548 2.210

Table 3.6: Example of the value of parameter b with leverage effect.

The values of parameter b range from 1.3 to 2.2. The following table shows the

average value of power for each scenario when the leverage effect is introduced.

N m T b

10001 3 2000 1.3890± 0.1434

10001 3 3000 2.4996± 0.6203

10001 4 4000 1.8522± 0.4250

Table 3.7: The average value of parameter b with leverage effect.

We see that changing the time step from 2000 to 3000 whilst keeping the

memory as a constant, lead to a significant change of power. The leverage effect

generally destabilises the system, which is confirmed by increased bankruptcy rates

presented in the the next section. As risk theory states [149], the higher the risk

is, the more profit one can gain. A leveraged product may create increased profits,

but it may also lead to larger losses for investors.
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3.4.2 The bankruptcy rate vs. memory

This section demonstrates the relationship between bankruptcy rate and memory.

When the wealth of a player drops to zero, the player is considered bankruptcy.

An example of a plot where T = 500 is given in Figure 3.8:
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Figure 3.8: Bankruptcy rates vs. memory lengths when t = 500.

In Figure 3.8, the red crosses show cases without leverage effect, and the blue

crosses shows cases with leverage effects. The bankruptcy rate climbs as the value

of memory increases. In other words, the leverage effect increases the chance of

going bankruptcy, which is in line with the financial theory that leverage prod-

ucts are highly risky [150]. Likewise, we have obtained plots from different time

steps which are attached in this chapter’s appendix (Figure 3.12 - Figure 3.15).

According to the sets of figures, the leverage effect is found to affect instability in

all cases. In the case where leverage is considered, the memory is also a factor for

increasing the system’s instability.
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3.4.3 The bankruptcy rate vs. time steps

This section investigates the relationship between the bankruptcy rate and time

steps. The memory is kept as a constant for each run of the program. An example

is given in the following figure:

Figure 3.9: Bankruptcy rates vs. time steps when m = 4.

Figure 3.9 shows the relationship between bankruptcy rate and time steps

(m = 4). The blue curve indicates cases with a leverage effect and the red curve

indicates cases without a leverage effect. The leverage effect makes the player

go bankruptcy quicker and also leads to more players going bankruptcy. The

bankruptcy rate jumps when time increases, which refers to the ‘cluster effect’

[151]. As a result, one or some players’ losses might affect other players.

Additional curves have been generated with different parameter values indi-

cating similar patterns, which are attached in this chapter’s appendix (Figure

3.16 - Figure 3.19). A proper risk analysis seems appropriate before investing in

leveraged products.

The MG has drawn the attention of many researchers’ attention and has been

a popular research topic in recent years. In our study, we have extended the MG
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to explore the wealth distribution and the leverage effect. We have found that

leverage could dramatically increase the system’s instability, which implies that

in the real financial market, the risks of trading leveraged products should not be

under-estimated. The statistics of our simulation did not reach the high standard

for publication, but we believe our effort offers a basis for exploring broader issues

of financial stability and market regulations. This area clearly merits further

research work.

51



3.5 Appendix

The following section presents the figures generated from different parameter val-

ues. Firstly, the wealth distribution is generated by using two different time steps,

t = 2000 and t = 3000.
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Figure 3.10: The generated wealth distribution without negative bins where N =
10001, t = 2000.
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Figure 3.11: The generated wealth distribution without negative bins where N =
10001, t = 3000.

These generated wealth distributions indicate that they may be fitted by power
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law distribution. Then the plots of bankruptcy rates against memory lengths are

shown.

The Value of Memory
0 2 4 6 8 10 12

Th
e 

B
an

kr
up

tc
y 

R
at

e

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
The Bankruptcy Rate vs. Memory (t=1000)

Figure 3.12: Bankruptcy rates vs. memory lengths when t = 1000.
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Figure 3.13: Bankruptcy rates vs. memory lengths when t = 2000.
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Figure 3.14: Bankruptcy rates vs. memory lengths when t = 3000.
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Figure 3.15: Bankruptcy rates vs. memory lengths when t = 5000.

These four generated figures follow similar patterns. It agrees that the leverage

effect increases risk. Finally, we present the plots for bankruptcy rates against time

steps using different agents’ memory lengths.
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Figure 3.16: Bankruptcy rates vs. time steps when m = 5.

Figure 3.17: Bankruptcy rates vs. time steps when m = 6.
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Figure 3.18: Bankruptcy rates vs. time steps when m = 7.

Figure 3.19: Bankruptcy rates vs. time steps when m = 8.
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Chapter 4

New urn model

This chapter demonstrates how a model is built to illustrate the effectiveness of

memory. Agents, in this model, have different memory lengths and compete for

finite resources. Using analytical and numerical approaches, the research demon-

strates that instability exists at a critical memory length; hence, players with

different memory lengths are able to compete with each other and achieve a state

of co-existence. The analytical solution is found to be connected to the urn mod-

els. Additionally, the findings also demonstrate that the temperature introduced

in the urn model is mirrored by the agent’s memory. This simple model could

potentially be applied to a variety of other game models, where an example is

investigated in the next chapter.

The rest of this chapter is structured as follows. In Section 4.1, the model is

defined. In Section 4.2, simulation results are presented followed by theoretical

analysis in Section 4.3. Finally, a conclusion is drawn, along with a brief discussion

on the limitations of the study and potential future work.
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4.1 Model definition

The case of two urns and a total of n agents is considered. The urns yield U1(t)

and U2(t), where they are random variables uniformly distributed on [0, ωn] and

[0, n], at round t respectively. ω is a parameter we set, ω > 1, so that urn 1

yields more on average than urn 2. This choice of yield distribution is motivated

by simplicity-only one extra model parameter, ω, is required to describe it. The

behaviour of the model is not tied to the particular choice of yield distribution; it

requires only that the yields have finite variance, allowing the central limit theorem

[152] to be applied to sums of payoffs. At time t, agents’ access to the arithmetic

mean of the last τ payoffs is allowed, however other forms of sampling could also

be used. Letting φt be the fraction of agents in urn 1, then the difference in the

average payoffs between urn 1 and urn 2 is

∆t :=
1

τ

τ−1∑
s=0

[
U2(t− s)
n(1− φt−s)

− U1(t− s)
nφt−s

]
, (4.1)

where τ is refereed as the “memory length” of the agents. Agent dynamics is

encoded in transition probabilities between urns, which are deterministic functions

of ∆t. At each round, each agent will switch urns using the probabilities

W1→2(∆) =
ε

2
[1 + tanh(β∆)], (4.2)

W2→1(∆) =
ε

2
[1− tanh(β∆)]. (4.3)

These transitions are used in evolutionary game models, where changes in

strategy are made based upon perceived increases in payoff, but with some degree

of noise or irrationality in the switching process. The level of this stochasticity

in decision making, which has been experimentally measured in humans [153] is

captured by the parameter β, the “inverse temperature”. For finite β, agents may

decide to switch strategies even though their estimate of the payoff difference is
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unfavourable. In the limit β → ∞, agents will only move if their estimate of the

payoff difference indicates that the move is favourable. The parameter ε controls

the rate at which strategy switching takes place compared to the rate at which

yield information arrives, or equivalently the inertia in agent’s decision making.

It may also be seen as the frequency with which opportunities to switch strategy

arise. In the limit ε → 1, at most one agent will move at each round. The

effects which we uncover do not require that the transition probabilities take the

particular forms of Equations (4.2) and (4.3). In Section 4.5.1, we show that the

same qualitative behaviour is observed for transition probabilities that increase in

proportion with the perceived payoff difference (±∆), provided the difference is

positive and |∆| < ε−1.

4.2 Simulation results

4.2.1 Instability

The model for a series of values of τ when n = 106 is simulated. Two different

values of ε are used; in Figure 4.1, we have ε−1 = 106 � τ and in Figure 4.2,

ε = 10−3 is set. For ε = 10−6, the expected number of moves at each step

is < 1, and φ appears very stable. For larger ε, φ experiences much larger

fluctuations about the steady-state value, driven by the yield process. For shorter

memory values these fluctuations are random, but as τ approaches ε−1, periodic

oscillations appear and dominate. The appearance of these stable oscillations at

critical memory, τc, calculated analytically in Section 4.3, is known as a Hopf

bifurcation [47]. The bifurcation parameter is memory, which is a combination of

ε and τ , whilst simulations are shown for different ε and same τ , analysis will be

performed assuming varying τ with ε fixed. From Figures 4.1 and 4.2, the number

of rounds taken for the system to evolve to steady state have been observed,

in the probabilistic sense, starting from an equal distribution between the two

urns, is ≈ ε−1. By allowing agents to access only to the mean of their memory,
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we implicitly assume that changes in the expected payoff over the course of their

memory, brought about by oscillations, are too subtle for them to infer from noise.

Figure 4.1: Evolution of φt when n = 106, ω = 2, β = 5, ε = 10−6, and φ0 = 0.5.
Memory values are τ ∈ {5, 10, 50, 500} (squares, circles, dots, triangles, respec-
tively). Dashed lines are analytical equilibrium values [see Equation (4.12)]. Crit-
ical memory is τc = 1.8× 105.

Figure 4.2: Evolution of φt when n = 106, ω = 2, β = 5, ε = 10−3, and φ0 = 0.5.
Memory values are τ ∈ {5, 10, 50, 500} (squares, circles, dots, triangles, respec-
tively). Dashed lines is solution to Equation (4.16) when τ = 500 and ω, β, ε are
as above. Critical memory is τc ≈ 390.
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4.2.2 Coexistence

We now investigate how agents switch two different memories, and compete against

one another by interpreting the payoff as reproduction rate. The quantities δ and

γ are defined as rates of death and reproduction per unit payoff, respectively.

Reproduction is assumed to occur before death in each round, but in practice the

probability of any one agent reproducing and dying in the same round is extremely

small for the γ, δ values we choose. Letting pτi (t) be the number of agents with

memory τ in urn i at time t we set the probability of birth for each agent in urn

i to be

P(birth) =
γUi(t)∑
τ p

τ
i (t)

. (4.4)

Figure 4.3: Scaled populations pτ (t) := pτ1(t) + pτ2(t) for τ = 10 (circles) and τ =
1000 (triangles) when total initial populations is n = 106, ε = 10−3, β = 5 with γ =
10−4 and δ = 2× 10−4. Also shown (thin black line) is evolution of variance of φt,
over a moving time window of 105 steps, during population dynamics simulation.
Straight dashed line shows variance of homogeneous population with the same ε,
β, ω values at critical memory τc ≈ 390, where τc is calculated analytically using
the theory of Hopf bifurcation. Note: rapid initial equilibration of population
values (bringing birth and death into balance) is not visible on time scale of plot.

The denominator in this term is the total population in urn i, reflecting the

fact that the yield Ui(t) is shared between all agents in the urn. When a given

agent reproduces, he produces a copy of himself in his current urn, having the
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same memory length, τ . The death probability for each agent is set equal to δ.

If populations are fixed in size and the system is not in an oscillatory state, the

longer-memory agents will dominate the high yielding urn is expected. Their long

memory allows them to perceive smaller statistical advantages that are obscured by

noise for the short-memory agents. Using the thermodynamic analogy, the higher-

temperature (shorter-memory) agents are more likely to make moves that leave

them in an urn with a lower expected payoff, corresponding to a higher “energy”

state. Above zero temperature, and in the absence of oscillations, the high yield

urn will be under-exploited, placing long-memory agents at an advantage. This

effect can be observed in Figure 4.3, where a mixed population of two memories

τ ∈ {10, 1000} beginning with a ratio of 10 : 1 short-memory to long-memory

agents has been simulated. We observe that initially the advantage afforded by the

long-memory agents causes their population to grow, whereas the short-memory

agents reduce in number. Were this advantage to be sustained indefinitely then

we would expect the short-memory agents to eventually disappear, but in fact

the populations stabilize. This effect appears because the long-memory agents

cause oscillations to develop once they are in sufficiently high concentration. In

the presence of oscillations the short-memory agents have an advantage because

they can quickly observe opportunities offered by the oscillating payoffs. Therefore

we expect the system to evolve to the point where oscillations are just beginning

to form. We may observe this evolution by making use of the variance of φt as

an order parameter that captures proximity to the Hopf bifurcation point. In

Figure 4.3 we see that at a critical ratio of short- to long-memory agents, the

variance climbs rapidly, stabilizing just below the value seen in a system where all

agents have memory τc but all other parameters are equal. In this way the Hopf

bifurcation may be viewed as a self-organized state.

62



4.3 Analysis

4.3.1 Equilibrium

The behaviour of our model is considered as ε → 0, allowing us to view it as an

urn model in the Ehrenfest class [92], where agents independently make transitions

using state (φt) dependent probabilities. Provided τ � ε−1, the fraction φt may

be approximated by a constant φ during the window over which payoff averaging

takes place. In this case, by the central limit theorem, the marginal distributions

of ∆t for each t are approximately normal N(∆̄, σ2/τ), (the detailed derivations

are produced in Section 4.5.2). Here we quote the expressions for ∆̄(φ, ω) and

σ2(φ, ω)/τ as

∆̄(φ, ω) :=
1

2

(
1

1− φ
− ω

φ

)
, (4.5)

σ2(φ, ω)

τ
:=

1

12τ

[
ω2

φ2
+

1

(1− φ)2

]
, (4.6)

respectively. Recall that ∆ is the differential payoff of the 2 urns in an agent’s

memory (Equation (4.1)), and ∆̄ is its average over the urn payoff (characterised by

ω) at any given φ; correspondingly, σ2/τ is the standard deviation arising from this

average. A intermediate time scale T is introduced which satisfies τ � T � ε−1

and the time average 〈...〉 is defined, over a window of length T ,

〈Wi→j(∆)〉(t) :=
1

T

t∑
s=t−T+1

Wi→j(∆s). (4.7)

This average is a random variable which, for constant φ, has expected value

E[Wi→j(∆)], where the expectation is taken over the marginal distribution of ∆.

The condition τ � T � ε−1 ensures that φ is approximately constant over the

window and that the variance of 〈Wi→j(∆)〉 is proportional to T−1 (because ∆t1

and ∆t2 are dependent only when |t2−t1| < τ � T ). As ε→ 0, then assuming T is

sufficiently large, the probability that an agent will make a transition i→ j during
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interval T approaches T 〈Wi→j(∆)〉 ≈ TE[Wi→j(∆)], equivalent to a memoryless

(Ehrenfest class) model, where transition probabilities, Equations (4.2) and (4.3),

are replaced with their expectations E[Wi→j(∆)]. Averaging over the normally

distributed difference ∆ we find that

〈Wi→j(∆)〉 ≈ E[Wi→j(∆)] ≈ ε

2
[1 + tanh(α∆̄)], (4.8)

where

α =

√
2τβ2

2τ + πβ2σ2
. (4.9)

To obtain this result, the approximation tanh(β∆) ≈ erf(
√
πβ∆/2) has been

made, when β∆ is small, allowing us to make use of the exact relationship E[erf(
√
πβ∆/2)].

The constant α acts as an effective inverse temperature and we see that increas-

ing τ “cools” the system closer to the inverse temperature β, and in the limit

β →∞, α ∝
√
τ . To complete our analogy to a thermal urn model we now write

the probability of finding the agents in a particular arrangement, or microstate, i,

such that a fraction φ are in urn 1, as pi(φ) ∝ e−αE where E is an “energy” func-

tion. Considering two microstates separated by a single transition, and defining

δφ = 1/n, then detailed balance requires that in equilibrium 2α∆̄ = ∂φ(αE)δφ.

This condition allows E(φ) to be computed, in principle, by integration. A closed

form approximation E(φ) ≈ −n ln[φω(1 − φ)] is obtained by noting that α de-

pends weakly on φ compared to E so that ∂φ(αE) ≈ α∂φE. Summing over

all microstates corresponding to macrostate φ we have a Boltzmann probability

distribution for φ,

P(φ) =
n!

(nφ)![n(1− φ)]!

e−α(φ)E(φ)

Z
, (4.10)

where Z is the partition function. Taking the thermodynamic limit n → ∞, and

making use of Stirling’s approximation, we find that the most likely fraction, φ̄,

satisfies (where detailed derivations can be found in Section 4.5.2)

1

2n

∂

∂φ
ln P(φ) = −α∆̄− 2φ+ 1 = 0. (4.11)

64



As the memory increases and the system cools we expect the agents to arrange

themselves so that yields are shared more fairly. Therefore Equation (4.11) is

linearised about the perfectly fair state, φ = ω/(1 +ω), where agents in both urns

receive the same expected payoff, finding that

φ̄ ≈
f(τ) + β(1+ω)2

2

2f(τ) + β(1+ω)3

2ω

, (4.12)

where

f(τ) =
√

1 + πβ2(1 + ω)2/(12τ). (4.13)

The accuracy of this approximation is verified in Figure 4.1. For larger values

of ε (Figure 4.2), agents move more quickly so the averaging effect Equation (4.8)

damps fluctuations in transition rates less strongly, creating larger fluctuations in

φt. For finite β the system cannot reach perfect fairness for any memory length,

but in the limit β → ∞ where the transition probabilities, Equations (4.2) and

(4.3), become step functions, we have that

φ̄ ≈ ω

ω + 1

[
1−

√
π(ω − 1)√

3π(ω + 1)2
+ O

(
τ−1
)]
. (4.14)

From this we see that the distance away from the fair state decreases as τ−1/2 as

the memory of the agents becomes large.

We have shown that when the time-scales of switching and agent memory are

sufficiently separated, our model behaves as a memoryless dynamical urn model

[92, 108] with time-averaged transition rates. This averaging is equivalent to a

rescaling of temperature, and we have given an approximate analytic expression

for this new temperature, α, in terms of the underlying “selection temperature”

of agents, β, and their memory length, τ . The study of the dynamics of par-

ticles in urns began with Ehrenfest’s dog-flea model [108], where agents make

random transitions between two urns at a fixed rate without reference to energy

or temperature. Thermal models [92] include an energy, E, and have transition
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probabilities that respect detailed balance with respect to the Boltzmann distri-

bution. These probabilities are decreasing functions of β∆E, where ∆E is the

energy change associated with the transition, and β is the inverse thermodynamic

temperature, so that reducing temperature makes energy increasing transitions

less likely. In our case, ∆̄ plays the role of an energy change and α is the inverse

temperature. Increasing memory reduces α, making payoff reducing transitions

less likely. However, if memory is increased to the extent that it becomes compa-

rable to the timescale of switching between urns (≈ ε−1) then the model begins

to behave quite differently to classical thermal urn models [92, 108]. It becomes

important that the average payoff agents use to make decisions is calculated from

the history of the system. This is because the populations in the urns are able

to change significantly during the course of a single agent’s memory, and so using

delayed information for decision making can falsely identify the optimal urn. To

understand mathematically why increasing τ too far, when ε is finite, destabilizes

the system, we must make use of the theory of delay differential equations [47].

4.3.2 Instability

As τ increases, fluctuations in ∆t due to the yield process are reduced but for

finite ε we can no longer treat φt as a constant over the averaging window. It

is instructive, therefore, to study the effect of variations in φt, neglecting the

variations in yield. Promoting t to a continuous variable and replacing the urn

yields with their mean values we have

∆t ≈
1

2τ

∫ t

t−τ

[
1

1− φs
− ω

φs

]
ds. (4.15)

Then the evolution of φt is approximated by using the following delay differential

equation:

φ̇t = (1− φt)W2→1(∆t)− φtW1→2(∆t). (4.16)

A numerical solution to this equation is shown in Figure 4.2, along with simu-
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lation results using the same parameter values. The oscillations in the simulation

are accurately captured by Equation (4.16), but the stochastic yield disrupts their

perfect periodicity. To discover the parameter values at which stable oscillations

develop, Equation (4.15) is linearised by writing φt = φ̄ + ψt, where ψt are small

fluctuations and φ̄ is the constant fixed point, not necessarily stable, of Equation

(4.15). In terms of these new variables,

∆t ≈ ∆̄(φ̄, ω) + 6
σ2(φ̄,

√
ω)

τ

∫ t

t−τ
ψsds, (4.17)

where the functions ∆̄ and σ2 are defined in Equations (4.5) and (4.6). After

expanding the tanh functions in the transition rates to first order about ∆̄(φ̄, ω),

the following linear delay equation is obtained:

ψ̇t = −ε
[
ψt +

A

τ

∫ t

t−τ
ψsds

]
, (4.18)

where

A = 3βsech2[β∆̄(φ̄, ω)]σ2(φ̄,
√
ω). (4.19)

To determine the stability of this equation, an exponential trial solution ψt =

eλt where λ = x + iy is introduced. Substitution into Equation (4.18) yields a

characteristic equation with real and imaginary parts given by

x2 − y2 + εx+
εA

τ
(1− e−τx cos τy) = 0, (4.20)

2xy + εy +
εA

τ
e−τx sin τy = 0. (4.21)

For sufficiently small memory, τ , the real part, x, of the solutions to Equations

(4.20) and (4.21) is negative so the fixed point φ̄ is stable. As τ is increased,

λ crosses through the imaginary axis, destabilizing the fixed point and creating

oscillations of exponentially increasing magnitude in the linearised version Equa-
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tion (4.18) of the full delay Equation (4.16). Although the fixed point of the full

Equation (4.16) shares this transition to instability, we find that the resulting

oscillations are bounded. The appearance of these stable oscillations as τ passes

through a critical value, which we denote τc, constitutes the Hopf Bifurcation [47].

To compute τc we set x = 0 in Equation (4.21) so that sinc(τy) = −A−1, where

sinc(τy) = sin(τy)/τy. Expanding the sinc function to second order about its root

at π/τ and solving the resulting quadratic, we find that

y ≈ π

2τ

(
3−
√

1− 4A−1
)

:=
κ

τ
, (4.22)

which defines a new constant κ. Substitution of this solution into Equation (4.20)

yields the following expression for the critical memory length:

τc =
κ2

εA(1− cosκ)
. (4.23)

Figure 4.4: Estimated variance of φt in steady state, as a function of memory
length τ , from simulations with n = 106, ω = 2, β = 5 and ε = 10−3 (squares),
10−4 (dots), 10−5 (circles). Variance estimates computed using time average over
106 time steps for ε ∈ {10−3, 10−4} and 107 time steps for ε = 10−5. Vertical black
line marks theoretical Hopf bifurcation point ετc = 0.39, computed from Equation
(4.16).
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In order to test this analysis, in Figure 4.4 we have plotted estimates of the

variance of φt in equilibrium as a function of memory length for three values

of ε ∈ {10−3, 10−4, 10−5}. The transition from stable fixed point to limit cycles

should, according to Equation (4.23), occur when the product ετ reaches a critical

value, beyond which we expect the oscillations to increase the variance of φt. This

behaviour is clearly observed in the Figure 4.4. For the largest ε value, the variance

is significantly greater than zero for τ < τc because the shorter memory length

has a reduced damping effect on stochastic fluctuations in the yield process.

4.4 Conclusion

We have defined a simple thermal urn model of competition between agents with

memory. Increasing memory allows agents to more accurately determine the

most productive strategy and reduces the temperature of the model. However,

a large number of long-memory agents can give rise to large collective fluctua-

tions in the form of a limit cycle which reduces their competitiveness, whereas

short-memory agents can exploit the fluctuations more effectively. By modelling

payoffs as birthrate, we demonstrated a coexistence of different memories, and a

self-organized Hopf bifurcation driven by population dynamics. The simplicity of

our memory model, its connection to classical urn models, together with the fact

that limit cycles arise naturally, suggest it might be fruitfully generalised and em-

ployed to study different games. For example, our approach may be applied to the

Hawk-Dove game and the Rock-Paper-Scissors game [114], where agents, interact-

ing pairwise, recall their last τ interactions [154]. Other natural extensions include

the introduction of multiple urns to represent different sources of yield or game

strategies, or heterogeneity in switching rates and a more general distribution of

memory lengths. By introducing multiple urns we might expect to observe more

complex patterns of oscillation [155] and regimes of behaviour [156]. Experimental

research into the nature of human and animal memory [157, 158, 159, 160] places
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emphasis on the “forgetting function”, which describes how memories decay with

time. Such a function, or greater powers of statistical inference, could be naturally

incorporated into our analysis, and their effects on stability explored.
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4.5 Appendix

4.5.1 Alternative transition probabilities

In this subsection, we address the following question: Is the (smoothed step)

transition probability function essential to the effects we uncover? To motivate

this question, we note that the step form,

W1→2(∆) =
ε

2
[1 + tanh(β∆)], (4.24)

produces transition rates that remain approximately constant for values of the

payoff difference ∆ � β−1. As β becomes large, agents become progressively

less sensitive to the magnitude of the payoff difference, and in the limit β → ∞

they react only to its sign. As an alternative we consider the following form of

transition probability:

W̃1→2(∆) =


min(ε∆, 1), if ∆ ≥ 0

0, if ∆ < 0

, (4.25)

with W̃2→1 = W̃1→2(−∆). Here we have no concept of irrationality in agent

behaviour, and stochasticity in decision making is driven purely by noise inherent

in the finite memory of agents. This corresponds to taking the limit β → ∞ in

the original rates. In contrast to the original form of Equation (4.24), here the

transition probability is proportional to payoff difference provided that ∆ < ε−1.

For the values of ε we consider, this condition is always met so, in contrast to the

original rates, agents remain sensitive to the magnitude of ∆. With these new

transition rates, the connection to thermal urn models is lost because they do

not satisfy detailed balance with respect to a Boltzmann distribution for which ∆

plays the role of an energy change.
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Figure 4.5: Evolution of φt (fraction of agents in urn 1) using alternative transition
probabilities when n = 106, ε = 10−3, ω = 2, and φ0 = 0.5. Memory values are
τ ∈ {5, 100, 1750} (open circles, dots, squares).

We first explore the evolution of a system where all agents have identical mem-

ory. In Figure 4.5 we consider the case ε = 10−3 where we see that provided agents’

memory is sufficiently short, the system remains stable. As with the original rates,

increasing memory brings the system closer to the fair state φ = ω/(1+ω), but for

long enough memory, high-amplitude regular oscillations appear. Qualitatively,

therefore, the system behaves in the same way for both choices of rate. However,

the critical memory length at which oscillations appear differs between the two

choices.

We now consider the case of mixed memory with population dynamics. In

Figure 4.6 we have simulated a population of two memory lengths τ ∈ {100, 4000}

in the case ε = 10−3. From Figure 4.5 we see that these memory values lie

below and above the critical length, respectively. We see that the behaviour

of the system matches its behaviour in the case of smoothed step rates Equation

(4.24): initially the population of short-memory agents declines. While the system

possesses a stable fixed point (no oscillations) agents with a longer memory make

more accurate estimates of the true payoff difference between the urns and are less
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Figure 4.6: Scaled populations pτ (t) := pτ1(t) + pτ2(t) for τ = 100 (circles) and
τ = 4000 (triangles) when the initial populations is n = 106 with memory types
in ratio short:long = 10 : 1. Parameters values are ε = 10−3, γ = 10−4 and δ =
2×10−4. Also shown (thin black line) is evolution of variance of φt, over a moving
time window of 105 steps, during population dynamics simulation. Note: rapid
initial equilibration of population values (bringing birth and death into balance)
is not visible on time scale of plot.

likely to make detrimental moves. Once oscillations appear, short-memory agents

have an advantage because they respond more quickly to opportunities created by

oscillating payoffs. The onset of oscillations takes place once long-memory agents

are in sufficient concentration and is marked by a dramatic jump in the window

averaged variance φt. This jump coincides with a stabilization of the population

dynamics, indicating that the advantage of long-memory players has disappeared.

Figure 4.6 demonstrates that the phenomenon of a dynamical equilibrium between

competing memory lengths appears both with “smoothed step” probabilities (W )

and “proportional” probabilities (W̃ ).

To complete our analysis we perform a population dynamics simulation using

the original transition probabilities (W ) in the limit β → ∞, obtaining a pure

step functional form

W̃1→2(∆) =


ε, if ∆ ≥ 0

0, if ∆ < 0

, (4.26)
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so that individual agents react only to the sign of the perceived payoff difference.

In this way we are able to compare the two types of transition probability when

agents have no intrinsic irrationality of behaviour. The simulation results are

shown in Figure 4.7. We use the same ε value in both simulations, but agents

make fewer moves with proportional rates because the payoff difference is typically

small: ∆ � 1 ⇒ W̃1→2(∆) � ε. This delays the appearance of payoff differences

between memory lengths that drive the population changes, so these changes take

place on a longer time scale for proportional transition probabilities. This effect

is evident in Figures 4.6 and 4.7.

Figure 4.7: Scaled populations pτ (t) := pτ1(t) + pτ2(t) in the original model with
step rates when inverse temperature β →∞. Memory lengths are τ = 10 (circles)
and τ = 1000 (triangles) and the initial populations is n = 106 with memory
types in ratio short:long = 10 : 1. Parameters values are ε = 10−3, γ = 10−4

and δ = 2 × 10−4. Also shown (thin black line) is evolution of variance of φt,
over a moving time window of 105 steps, during population dynamics simulation.
Note: rapid initial equilibration of population values (bringing birth and death
into balance) is not visible on time scale of plot.

In both Figures 4.6 and 4.7, we see that the population of short-memory agents

initially declines, but eventually stabilises. This stabilisation occurs coincidentally

with a jump in the variance of φt, indicating that Hopf Bifurcation is responsible

for the dynamical equilibrium between memory lengths. It is interesting to note
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that the jump in variance is more dramatic in the case of proportional probabilities

(Figure 4.6). We suggest that this occurs because the proportional form of tran-

sition probability damps fluctuations more effectively than the step form, so that

when oscillations do appear in φt they have a more significant effect on the be-

haviour of the system, and therefore on the relative competitiveness of agents with

different memory lengths. Variance builds more gradually with step probabilities

because fluctuations are damped less effectively, and prior to the fixed point los-

ing stability, we see decaying oscillations (under damping) that increase variance

when coupled with stochastic fluctuations. The relative equilibrium frequency of

short- to long-memory agents depends, in a non-trivial way, on the functional

form of switching probabilities, memory length, and population dynamics, and

can vary quite considerably (Figures 4.6 and 4.7). A theoretical calculation of

these equilibrium population sizes remains an open challenge.

We conclude by noting that the proportional transition probability we have

considered in this appendix is a representative of a wider class of functional forms

that are zero when ∆ � 0 and increase continuously with ∆ for ∆ > 0. When

∆ is small, the behaviour of such systems will depend on the first derivative of

the transition probability at ∆ = 0+, which in the case we have considered is

equal to ε. We therefore expect to see similar behaviour for all such forms when

fluctuations about the fixed point are small.

4.5.2 Derivation of analytical solutions

The derivation of Equation (4.5) and (4.6)

In this section of appendix we show the derivations in this chapter. Firstly, we

show the derivation of Equations (4.5) and (4.6) from Equation (4.1). Assuming

φt ≈ φ, ∆t becomes

∆t ≈
1

τ

τ−1∑
s=0

[
U2(t− s)
n(1− φ)

− U1(t− s)
nφ

]
. (4.27)
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Assuming φ to be constant and averaging over payoff, ∆̄ can be calculated as

∆̄(φ, ω) ≈ 1

n(1− φ)

∫ n

0

x
1

n
dx− 1

nφ

∫ ωn

0

y
1

ωn
dy. (4.28)

Simplifying Equation (4.28), ∆̄ can be expressed as

∆̄(φ, ω) ≈ 1

2

(
1

1− φ
− ω

φ

)
. (4.29)

Similarly, E[∆2] can be calculated as

E[∆2(φ, ω]) ≈ 1

n2(1− φ)2

∫ n

0

x2 1

n
dx− 1

n2φ2

∫ ωn

0

y2 1

ωn
dy. (4.30)

Simplifying Equation (4.30), E[∆2] can be expressed as

E[∆2(φ, ω)] ≈ 1

3

[
1

(1− φ)2
+
ω2

φ2

]
. (4.31)

Combining Equations (4.29) and (4.31), we have

σ2(φ, ω)

τ
≈ 1

τ

[
E[∆2]− ∆̄2

]
, (4.32)

Then, Equation (4.32) becomes

σ2(φ, ω)

τ
≈ 1

3τ

[
1

(1− φ)2
+
ω2

φ2

]
− 1

4τ

[
1

(1− φ)2
+
ω2

φ2

]
, (4.33)

Finally, the variance, σ2(φ, ω)/τ can be expressed as

σ2(φ, ω)

τ
≈ 1

12τ

[
ω2

φ2
+

1

(1− φ)2

]
. (4.34)
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The verification of approximation of transition probability

The program Mathematica [161] is used to verify the approximation of transition

probability. The equations below are defined in the program.

WErf[x , β ] :=
1

2

(
1 + Erf

[
π1/2

2
xβ

])
, (4.35)

φ[x , µ , σ ] :=
Exp

[
−(x−µ)2

2σ2

]
(2π)1/2σ

, (4.36)

α[β , σ ] :=

√
2β√

2 + πβ2σ2
, (4.37)

WErfBApx[µ , β , σ ] := WErf[µ, α[β, σ]]. (4.38)

Firstly, we set β = 1 and σ = 1. The plot is generated to show the difference

between error function and the result from Gaussian averaging the error function.

The code is as follows.

Plot[{WErfBApx[µ, 1, 1]−NIntegrate[WErf[x, 1]φ[x, µ, 1], {x,−∞,∞}]}, {µ, 0, 20}].

(4.39)

5 10 15 20

-8.´ 10-11

-6.´ 10-11

-4.´ 10-11

-2.´ 10-11

2.´ 10-11

4.´ 10-11

Figure 4.8: The difference plot when β = 1 and σ = 1.
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Then, we set β = 2 and σ = 3.

Plot[{WErfBApx[µ, 2, 3]−NIntegrate[WErf[x, 2]φ[x, µ, 3], {x,−∞,∞}]}, {µ, 0, 20}].

(4.40)

5 10 15 20

-6.´ 10-10

-4.´ 10-10

-2.´ 10-10

2.´ 10-10

4.´ 10-10

6.´ 10-10

8.´ 10-10

Figure 4.9: The difference plot when β = 2 and σ = 3.

From the two figures, the difference is in the range between 10−11 and 10−10.

Therefore, we conclude that Gaussian averaging the error function gives another

error function.

The derivation of approximation for energy function

In equilibrium, the condition satisfies the relationship 2α∆̄ = ∂φ(αE)δφ. Rear-

ranging this condition, we have

α

(
1

1− φ
− ω

φ

)
=
d(αE)

dφ
. (4.41)

Since α depends weakly on φ compared to E, the right hand side of Equation(4.41)

is approximated to

d(αE)

dφ
≈ α

dE

dφ
. (4.42)

Substituting Equation (4.42) into Equation (4.41), we have

(
1

1− φ
− ω

φ

)
=
dE

dφ
. (4.43)
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Integrating both sides of Equation (4.43), we obtain

∫
dE =

∫ (
1

1− φ
− ω

φ

)
dφ. (4.44)

Then Equation (4.44) becomes

∫
dE =

∫
1

1− φ
dφ− ω

∫
1

φ
dφ. (4.45)

So that, E is calculated as

E ≈ − ln(1− φ)− ω lnφ = −[ln(1− φ) + lnφω]. (4.46)

Finally, E is approximated as

E ≈ − ln[φω(1− φ)]. (4.47)

The derivation of equation (4.11)

The following part shows the derivation of Equation (4.11). Recall that Boltzmann

probability distribution for φ,

P(φ) =
n!

(nφ)![n(1− φ)]!

e−α(φ)E(φ)

Z
, (4.48)

Recall that α depends weakly on φ compared to E in Equation (4.10). So that

the partial derivative gives

1

2n

∂

∂φ
ln P(φ) =

1

2n

{
∂

∂φ
[−αE(φ)]− ∂

∂φ
ln[(nφ)!]− ∂

∂φ
ln ([n(1− φ)]!)

}
.

(4.49)

Since we use the Stirling approximation ln[z!] ≈ z ln z−z+ 1
2

log(2πz), the equation
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becomes

1

2n

∂

∂φ
ln P(φ) ∝ −α∂E(φ)

∂φ
− n ln(nφ) + n ln[n(1− φ)]. (4.50)

Recall that E(φ) ≈ −n ln[φω(1− φ)] in Equation (4.10), we have

E(φ) = −nω lnφ− n ln(1− φ), (4.51)

so that

∂E(φ)

∂φ
= n

(
1

1− φ
− ω

φ

)
. (4.52)

Therefore,

∂E(φ)

∂φ
= 2n∆̄. (4.53)

The term −n ln(nφ) + n ln[n(1− φ)] is approximated by Taylor series at φ = 1/2

for simplicity, rather than ω/(1 + ω),

−n ln(nφ) + n ln[n(1− φ)] = n ln

(
1− φ
φ

)
≈ 2n(1− 2φ). (4.54)

Substituting Equation (4.53) and (4.54) into Equation (4.50), we obtain

1

2n

∂

∂φ
ln P(φ) =

1

2n

[
−2nα∆̄ + 2n(1− 2φ)

]
, (4.55)

= −α∆̄− 2φ+ 1. (4.56)

The verification of approximations made in section 4.3.1

The following part demonstrates how the program Mathematica [161] is used to

verify the approximation of φ̄. The definitions of α and σ are listed in Equations
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(4.57) and(4.58)

α[β , σ ] :=
2β√

4 + 2πβ2σ2
, (4.57)

σ[ω , φ , τ ] :=

(
1

12τ

(
ω2

φ2
+

1

(1− φ)2

))1/2

. (4.58)

Substituting Equation (4.58) into Equation (4.57), we obtain

α[β, σ[ω, φ, τ ]] =
2β√

4 +
πβ2

(
1

(1−φ)2
+ω2

φ2

)
6τ

. (4.59)

Then α becomes a function of β, ω, φ and τ .

α[β , ω , φ , τ ] := α[β, σ[ω, φ, τ ]]. (4.60)

Recall entropy derivative defined in Equation (4.11) and derived in Section 4.5.2

(Equation (4.48) - Equation (4.56)).

g[φ , ω , α ] := −2(−1 + 2φ)− α
(
− 1

1− φ
+
ω

φ

)
. (4.61)

Then, we linearise function g[...] about ω/(1 + ω) using program Mathematica

[161] language as below.

Solve

[
Normal

[
Series

[
g[φ, ω, α[β, ω, φ, τ ]]/.φ→ ω

1 + ω
− δ, {δ, 0, 1}

]]
== 0, δ

]
,

(4.62)

The result is displayed as


δ → 2(−1 + ω)

(1 + ω)

4 +
2β(3+ 1

ω
+3ω+ω2)√

4+
πβ2(1+2ω+ω2)

3τ




. (4.63)
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Then, the definition of φ̄1 is given as

φBar1[ω , β , τ ] :=
ω

1 + ω
− 2(−1 + ω)

(1 + ω)

4 +
2β(3+ 1

ω
+3ω+ω2)√

4+
πβ2(1+2ω+ω2)

3τ

 . (4.64)

Recall the definitions of function f and φ̄2 in Equations (4.12) and (4.13).

f [β , ω , τ ] :=

(
1 +

πβ2(1 + ω)2

12τ

)1/2

, (4.65)

φBar2[ω , β , τ ] :=

(
f [β, ω, τ ] + β (1 + ω)2/ 2

2f [β, ω, τ ] + β (1 + ω)3/ (2ω)

)
. (4.66)

Comparing the difference between φ̄1 in Equation (4.64) and φ̄2 in Equation (4.66),

we have

Simplify[φBar1[ω, β, τ ]− φBar2[ω, β, τ ]] = 0. (4.67)

The results show that there is no difference between φ̄1 and φ̄2. Finally, we look

at the simplification of φ̄ when β →∞ by using program Mathematica [161].

Simplify[Series[Limit[φBar2[ω, β, τ ], β →∞], {τ,∞, 1}],Assumptions→ ω > 0].

(4.68)

The program provides us the following result.

ω

1 + ω
−

√
π
3
(−1 + ω)ω

√
1
τ

(1 + ω)3
+

2π(−1 + ω)ω2

3(1 + ω)5τ
+O

[
1

τ

]3/2

. (4.69)
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The derivation of equations in section 4.3.2

The following part shows the derivation from Equation (4.15) to Equation (4.17).

Writing φt = φ̄+ ψt, we have

∆t ≈
1

2τ

∫ τ

t−τ

[
1

1− (φ̄+ ψs)
− ω

φ̄+ ψs

]
ds. (4.70)

The variable φ̄ is being Taylor expanded in Equation (4.15), then the approxima-

tion becomes

∆t ≈
1

2τ

∫ τ

t−τ

[
1

1− φ̄
+

ψs
(1− φ̄)2

− ω

φ̄
+
ωψs
φ̄2

]
ds, (4.71)

≈ 1

2τ

∫ τ

t−τ

[
1

1− φ̄
− ω

φ̄

]
ds+

1

2τ

∫ τ

t−τ

[
(
√
ω)2

φ̄2
+

1

(1− φ̄)2

]
ψsds. (4.72)

According to the definition of ∆̄(φ̄, ω) and σ2(φ̄,
√
ω), finally we have

∆t ≈ ∆̄(φ̄, ω) + 6
σ2(φ̄,

√
ω)

τ

∫ t

t−τ
ψsds. (4.73)

Since φt = φ̄+ ψt, we have φ̇t = ψ̇t. Thus Equation (4.16) becomes

ψ̇t = (1− φt)
ε

2
[1− tanh(β∆t)]− φt

ε

2
[1 + tanh(β∆t)] . (4.74)

Simplifying Equation (4.60), we obtain

ψ̇t =
ε

2
− εφ̄− εψt −

ε

2
tanh(β∆t). (4.75)

Expanding tanh function at ∆̄(φ̄, ω), we have

tanh(β∆t) ≈ tanh(β∆̄) + β[1− tanh2(β∆̄)](∆t − ∆̄). (4.76)
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Note the hyperbolic functions relation, 1− tanh2(β∆̄) = sech2(β∆̄). Substituting

Equation (4.17) into it, the tanh function becomes,

tanh(β∆t) ≈ tanh(β∆̄) +
6βσ2sech2(β∆̄)

τ

∫ t

t−τ
ψsds. (4.77)

Substituting Equation (4.77) into Equation (4.75), we obtain

ψ̇t =
ε

2
− εφ̄− ε

2
tanh(β∆̄)− εψt −

εA

τ

∫ t

t−τ
ψsds, (4.78)

where A = 3βsech2[β∆̄(φ̄, ω)]σ2(φ̄,
√
ω).

Since the first three terms give the value of zero, Equation (4.78) becomes

ψ̇t = −ε
[
ψt +

A

τ

∫ t

t−τ
ψsds

]
, (4.79)

as required.

The derivation of characteristic equation

The following part demonstrates the derivations of Equations (4.20) and (4.21).

Recall that the Equation (4.18).

ψ̇t = −ε
[
ψt +

A

τ

∫ t

t−τ
ψsds

]
, (4.80)

and an exponential trial solution ψt = eλt where λ = x+ iy, we have

ψ̇t = λeλt, (4.81)

and ∫ t

t−τ
ψsds =

∫ t

t−τ
eλsds, (4.82)
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=
1

λ

[
eλt − eλ(t−τ)

]
, (4.83)

=
eλt

λ

(
1− e−λτ

)
. (4.84)

Substituting above equations into Equation (4.18), we obtain

−λe
λt

ε
= eλt +

A

τ

eλt

λ

(
1− e−λτ

)
. (4.85)

Simplifying equation above, we have

λ2 + ελ+
εA

τ

(
1− e−λτ

)
= 0. (4.86)

Recall that λ = x+ iy, we have

λ2 = x2 − y2 + 2xyi, (4.87)

and

e−λτ = e−τxe−τyi, (4.88)

= e−τx[cos(τy)− i sin(τy)]. (4.89)

Substituting these equations above into Equation (4.86), we have

x2 − y2 + 2xyi+ εx+ εyi+
εA

τ
[1− e−τx cos(τy)] +

εA

τ
sin(τy)i = 0. (4.90)

Since both real and imaginary parts equal zero, we obtain Equations (4.20) and

(4.21)

x2 − y2 + εx+
εA

τ
(1− e−τx cos τy) = 0, (4.91)
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2xy + εy +
εA

τ
e−τx sin τy = 0. (4.92)

To compute τc we set x = 0 in Equation (4.21):

εy +
εA

τ
sin(τy) = 0. (4.93)

Simplifying it, we have

sinc(τy) = −A−1, (4.94)

as required.

Expanding the sinc function as Taylor series to the second order at π/τ , we have

−τ(y − π/τ)

π
+
τ 2(y − π/τ)2

π2
= −A−1. (4.95)

The solutions of above quadratic function are

y =
π

2τ

(
3±
√

1− 4A−1
)
. (4.96)

The root which satisfies our system is

y =
π

2τ

(
3−
√

1− 4A−1
)
. (4.97)

86



Chapter 5

Memory and limit cycles in the

Hawk-Dove game

The Hawk-Dove game is an example of simple models from game theory. In this

chapter, we extend the memory analysis from the previous chapter to this game, by

introducing a finite but variable memory to each individual player. The analytical

results obtained from this modified games are in agreement with the simulation

results presented in Chapter 4. We draw special attention to the critical memory

length affecting the instability of the system.

The rest of this chapter is structured as follows. In Section 5.1, the model of the

Hawk-Dove game with memory parameter is defined. In Section 5.2, simulation

results are presented followed by theoretical analyses in Section 5.3. Finally, we

offer some concluding remarks.
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5.1 Model definition

We adopt the standard Hawk-Dove game, with the following payoff matrix.

H D
H V/2− C V
D 0 V/2

where V > 0 and C > 0.

A group of L ≥ 2 agents play this Hawk-Dove game in discrete time. Inter-

actions take places via random pairing between agents at a rate of L/2 per unit

time, such that each agent has one interaction per unit time on average. When the

interaction happens, each agent adopts either ‘Hawk’ or ‘Dove’, according to its

specific probabilistic strategy, φi(t), defined as the probability of agent i adopting

‘Hawk’ at time t. Each interaction results in a payoff which is memorized by the

pair. Each agent has a memory m of its previous interactions, which is used by

the agent to adapt his/her strategy.

Figure 5.1: Domains in which either strategy is assessed to be optimal.

If h is the number of hawks encountered in an agent’s memory ofm interactions,

then φ̃ = h/m is its estimate of the average strategy of other agents. Given the

payoff matrix, its optimal strategy is to adopt ‘Hawk’ if φ̃ < V/2C and ‘Dove’ if

φ̃ > V/2C, see Figure 5.1. The critical fraction, V/2C, is determined by equating

the expected payoffs of the two strategies:

(
V

2
− C

)
φc + V (1− φc) =

V

2
(1− φc), (5.1)
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which leads to

φc =
V

2C
. (5.2)

We denote the probability of φ̃ < V/2C as p̃h, which can be expressed in terms of

the Heaviside function H:

p̃h(φ̃) = H
(
V

2C
− φ̃
)
. (5.3)

In a small time interval δt, an agent has a probability of Lδt interacting, and if

so, it has a probability p̃h of evolving towards a pure ‘Hawk’ strategy φ = 1, and

a probability of (1− p̃h) towards φ = 0:

φi(t+ δt) =


φi(t) w.p. (1− Lδt)

φi(t) + ε(1−φi)
L

w.p. p̃hLδt

φi(t)− εφi
L

w.p. (1− p̃h)Lδt

, (5.4)

where ε is the ‘update’ or ‘learning’ rate which regulates how fast agents adapt to

change, and so should remain in the range of [0, 1]. The Equation (5.4) simplifies

to

δφi
δt

= ε
[
p̃h(φ̃)− φi

]
, (5.5)

which shows the evolution of agent i’s strategy evolution according to his/her

memory φ̃.

The overall probability weights associated with ‘Hawk’ is given by the average

over the agents (denoted by i)

φ(t) :=
1

L

L∑
i=1

φi(t), (5.6)

and the average probability of ‘Dove’ is 1− φ(t).
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5.2 Simulation results

t
0 20 40 60 80 100 120 140 160 180 200

h,
d

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Figure 5.2: Probability weights of hawk (circle) and dove (square) agents in a
group of size L = 10000 with V = 1, C = 1. All agents have memory m = 100 and
update rate ε = 6 × 10−3. Dashed lines show solutions to delay Equation (5.11)
using the same parameter values.

t
5 10 15 20 25 30 35 40

h,
d

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5.3: Probability weights of hawk (pentagram) and dove (dot) agents in
a group of size L = 10000 with V = 1, C = 1 and t ∈ [1, 40]. All agents have
memory m = 100 and update rate ε = 3 × 10−3. Dashed lines show solutions to
delay Equation (5.11) using the same parameter values.

A population of identical agents is simulated, with the same memory length
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t
160 165 170 175 180 185 190 195 200

h,
d

0.4

0.45

0.5

0.55

0.6

Figure 5.4: Probability weights of hawk (pentagram) and dove (dot) agents in a
group of size L = 10000 with V = 1, C = 1 and t ∈ [160, 200]. All agents have
memory m = 100 and update rate ε = 3 × 10−3. Dashed lines show solutions to
delay Equation (5.11) using the same parameter values.

and update rate. Figure 5.2 shows the evolution of probability weights. The values

of update rate and memory are ε = 6× 10−3 and m = 100 respectively. We note

that there is decaying oscillations associated with the probability weights. After

all, the probability weight tends to be stable with minor volatilities. In Figures

5.3 and 5.4, the update rate is changed to ε = 3× 10−3, and the behaviour of the

population dynamics has changed to stable oscillations. Since the update rate is

large, this scenario occurs with fixed memory length for each player. It can also be

achieved with large memory lengths for each player with the fixed updated rate.

The relationship between the critical values of update rate for stable oscillations

and agents’ memory lengths analytically will be demonstrated later, which is in

agreement with that of a Hopf Bifurcation.
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5.3 Theory

In this section, an analysis of the system dynamics (exact in the limit of large

m and L) is presented, and the mathematical expression for system stability is

derived.

5.3.1 Strategy optimization

For large m and L, an individual agent encounters an average strategy over a

memory of m, defined as:

φ̄m :=
1

m

∫ m

0

φ(t− s)ds. (5.7)

Statistically, we expect its memory of m interactions to consist of h ‘Hawk’ strate-

gies according to the binomial distribution associated with probability φ̄m:

f(n, φ̄m) =
m! φ̄nm(1− φ̄m)m−n

n! (m− n)!
. (5.8)

In reality, this distribution is non-stationary over time and agents. However, we

expect the approximation to be accurate for large memory, m, and agent number

L, provided that the system reaches a steady state. This allows us to average over

agents’ memories, and thus the expectation value of p(φ̄m) can be defined as

p(φ̄m) :=
m∑
h=0

p̃h(
h

m
) f(h, φ̄m), (5.9)

and incorporating Equation (5.3), it simplifies to:

p(φ̄m) =

mV
2C∑
h=0

f(h, φ̄m), (5.10)

which is the average probability of an agent evolving towards a pure ‘Hawk’ strat-

egy, whilst in interaction with a population with an average strategy φ̄m. The

plots of Equations (5.7), (5.8) and (5.9) are presented in Section 5.5.1.
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5.3.2 Delay equation

The strategy evolution Equation (5.5) can now be averaged over the population

of agents and their memories. Taking the limit of δt to 0, we have

dφ

dt
= ε

[
p(φ̄m)− φ

]
,where p given by (5.9) and φ̄m by (5.7), (5.11)

which is a delay equation for the evolution of φ(t) over time t, since φ̄m contains the

memory m of the previous time. This delay equation can be solved numerically,

and we have included the solutions in Figures 5.2, 5.3 and 5.4 for comparison. The

agreement with the simulation results is excellent.

5.3.3 Linear stability analysis

In order to determine the critical condition for stability, we now seek to linearise

the delay equation around its fixed point. The analysis can be carried out with

general values of V and C. However, for simplicity, V = C = 1 is set, and therefore

the fixed point is φ0 = V/2C = 1/2. Equations are introduced as follows.

ψ(t) := φ(t)− 1

2
, (5.12)

and

ψ̄m(t) :=
1

m

∫ t

t−m
ψ(τ)dτ. (5.13)

To evaluate p, as given in Equation (5.10), the summation with a continuous

integral is replaced, and the binomial distribution is approximated with a Gaussian

distribution of the same mean, µ and variance, σ, where

µ(φ) = mφ, (5.14)

σ(φ) =
√
mφ(1− φ). (5.15)
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Then Equation (5.10) leads to the following approximate expression, of which

detailed derivations are listed in the appendix:

p(ψ̄m) ≈ 1

2
−
√

2m√
π
ψ̄m. (5.16)

The approximation is verified by comparing the expansion coefficients to the exact

values of the derivatives of p(φ) evaluated at φ = 1/2, as shown in Figure 5.5.

20 40 60 80 100

-8

-6

-4

-2

Figure 5.5: The derivative ∂p/∂φ evaluated directly from Equation (5.10) at φ̄m =
1/2. The derivative is plotted using black dot. The blue line shows corresponding
expansion coefficients from Equation (5.16).

The delay Equation (5.11) is finally linearised to:

1

ε

dψ

dt
= −
√

2m√
π
ψ̄m(t)− ψ(t). (5.17)

The expression ψ(t) = eλt is substituted as a trial solution to obtain the char-

acteristic equation. Since ψ(t) = eλt, dψ(t)/dt = λeλt is derived. Then the

characteristic equation becomes:

λeλt

ε
= −

√
2√
πm

1

λ

[
eλt − eλ(t−m)

]
− eλt. (5.18)

By simplifying Equation (5.18), we obtain

λ2 + ελ+
ε
√

2√
πm

(
1− e−λm

)
= 0. (5.19)
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Substituting λ = x+iy, the real and imaginary parts of the characteristic equation

are separated as:

x2 − y2 + εx+
ε
√

2√
πm

(
1− e−mx cos(my)

)
= 0, (5.20)

2xy + εy +
ε
√

2√
πm

e−mx sin(my) = 0. (5.21)

Numerical solution shows that the system is stable with fixed memory length

m and small value of ε. As ε increases past a critical value, a stable limit cycle

emerges, leading to instability. This is also known as a ‘Hopf Bifurcation’. In

order to calculate the critical value of the update rate εc, x = 0 is set in Equation

(5.21) giving rise to:

sin(my)

my
= −

√
π√

2m
. (5.22)

Assuming m is large and choosing the root near y = π/m, we truncate the expan-

sion for the limit m→∞:

y ≈ π

m
+

√
π3

2m3
. (5.23)

Setting x = 0 in Equation (5.20), we obtain

ε =

√
mπ√
2

y2

1− cos(my)
. (5.24)

Substituting our approximate expression for y into this equation where detailed

derivations are produced in the appendix, we have

εc ≈
π5/2

(
2
√
m+

√
2π
)2

sec2
(

π3/2

2
√

2
√
m

)
8
√

2m5/2
, (5.25)

≈ π5/2

2
√

2m3/2
+

π3

2m2
+
π7/2 (4 + π2)

16
√

2m5/2
+

π6

16m3
. (5.26)

This analytical result has been verified using numerical solutions, see Figure 5.7.
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t
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Figure 5.6: Black line shows φ(t) from the numerical solutions to Equation (5.11)
in the symmetric case when m = 100 and ε = 5 × 10−3. Blue dashed line shows
corresponding solution when ε = 7 × 10−3. Open black circles and open blue
squares show corresponding simulation results in a system of size L = 10000.
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Variance Plot of Hawk Dove Game

m=201

m=101

m=51

Figure 5.7: Dependence of the steady state amplitude of φ(t) on ε for m = 51
(light blue), m = 101 (blue) and m = 201 (black). L = 100 in all cases.
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5.3.4 Numerical tests of stability

The delay Equation (5.11) can be numerically solved. The probability p(φ̄m) is ob-

tained by summing over the binomial distribution. The critical point is calculated

by our stability analysis, where the figure is generated. Plotting the result finally

shows a set of stable oscillations, which is in line with the theoretical analysis.

The verification has numerically carried out to confirm the relationship between

memory and the corresponding critical value of ε. We have obtained variance plot

for three different values of memory. In Figure 5.7, x-axis indicates the increasing

values of ε, and y-axis shows the corresponding values of variance. The results

demonstrate that the simulated outcomes are in agreement of analytical solutions.

5.4 Conclusion

In this chapter, we have extended the traditional Hawk-Dove game to include

memory effects. We have presented both numerical and analytical results which

are in excellent agreements.

The system is found to have a stable fixed point. Initially players with longer

memories are better at selecting an optimal strategy, as they are more accurate

at assessing the true probability characteristics of the system. However, when the

agent memory exceeds a certain value, large collective fluctuations can emerge

in the form of limit cycles, and players with shorter memories can exploit the

fluctuations more effectively than those with longer memories. In essence, for a

population of players with different memories, a better memory does not always

help with games.
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5.5 Appendix

5.5.1 The plots of equations (5.7), (5.8) and (5.9)

We present the plots of Equations (5.7), (5.8) and (5.9).
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Figure 5.8: The plot for f(n, φ) in Equation (5.8) against n and φ.
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Figure 5.9: The plot for f(h, φ) in Equation (5.8) against time t for an individual
agent where m = 100, L = 10000, V = C = 1, ε = 3× 10−3.
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Figure 5.11: The plot for p(φ̄m) in Equation (5.9) against time t for an individual
agent where m = 100, L = 10000, V = C = 1, ε = 3× 10−3.

As a reference, the term φ̄m in Equation (5.7) is plotted as well.
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Figure 5.12: The plot for φ̄m in Equation (5.7) against time t for an individual
agent where m = 100, L = 10000, V = C = 1, ε = 3× 10−3.

5.5.2 The derivation of equation (5.16)

We present the derivation for Equation (5.16). Recall Equation (5.10), and V =

C = 1

p(φ̄m) =

m
2∑

h=0

f
(
h, φ̄m

)
. (5.27)

The summation can be approximated by integration, then Equation (5.27) be-

comes

p(φ̄m) ≈
∫ m/2

h=0

f
(
h, φ̄m

)
. (5.28)

The binomial distribution f
(
h, φ̄m

)
is approximated with a Gaussian distribution.

p(ψ̄m) ≈ 1

σ
√

2π

∫ m/2

0

exp(−
(
h−

(
mψ̄m +m/2

))2

2σ2
)dh. (5.29)

Since the integrand is insignificant for (−∞, 0], the lower limit of the integration

has been approximated to −∞:

p(ψ̄m) ≈ 1

σ
√

2π

∫ m/2

−∞
exp(−

(
h−

(
mψ̄m +m/2

))2

2σ2
)dh. (5.30)
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By expanding the exponential in Equation (5.30), we obtain

p(ψ̄m) =
1

σ
√

2π

∫ m/2

−∞
exp(−(h−m/2)2

2σ2
)exp(

mψ̄m (h−m/2)

σ2
)(1 +O

(
ψ̄2
)
)dh.

(5.31)

The term O
(
ψ̄2
)

is neglected due to its small value. The Equation (5.31) becomes

p(ψ̄m) ≈ 1

σ
√

2π

∫ m/2

−∞
exp(−(h−m/2)2

2σ2
)exp(

mψ̄m (h−m/2)

σ2
)dh. (5.32)

By changing of variable h, x = h−m/2, we have

p(ψ̄m) =
1

σ
√

2π

∫ 0

−∞
exp(− x2

2σ2
)exp(

mψ̄mx

σ2
)dx. (5.33)

The term exp(mψ̄mx
σ2 ) has been approximated by Taylor series.

p(ψ̄m) =
1

σ
√

2π

∫ 0

−∞
e−

x2

2σ2

(
1 +

mψ̄mx

σ2

)
dx. (5.34)

Rearranging the above equation, we have

p(ψ̄m) =
1

σ
√

2π

∫ 0

−∞
e−

x2

2σ2 dx+
ψ̄mm

σ3
√

2π

∫ 0

−∞
xe−

x2

2σ2 dx. (5.35)

The first term of Equation (5.35) is the Gaussian distribution with mean 0 and

standard deviation σ.

1

σ
√

2π

∫ 0

−∞
e−

x2

2σ2 dx =
1

2
. (5.36)

The second term of Equation (5.35) can be calculated as

ψ̄mm

σ3
√

2π

∫ 0

−∞
xe−

x2

2σ2 dx =
ψ̄mm

σ
√

2π

[
−e−

x2

2σ2

]0

−∞
, (5.37)

= − mψ̄m

σ
√

2π
. (5.38)
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Recall that σ =
√
m/2. Finally, equation (5.35) becomes

p(ψ̄m) =
1

2
−
√

2m√
π
ψ̄m. (5.39)

5.5.3 The derivation of equation (5.25)

Recall Equation (5.22),

sinc(my) =
sin(my)

my
= −

√
π√

2m
. (5.40)

Expanding the sinc function as Taylor series to the second order at π/m, we have

−τ(y − π/m)

π
+
τ 2(y − π/m)2

π2
= −

√
π√

2m
. (5.41)

The solutions of above quadratic function are

y =
π

2m

3±

√
1− 4

√
π

2m

 . (5.42)

The root which satisfies our system is

y =
π

2m

3−

√
1− 4

√
π

2m

 . (5.43)

Applying the Taylor expansion for
√

1− x ≈ 1− x/2, we have

y =
π

2m

(
3−

(
1− 2

√
π

2m

))
. (5.44)
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Finally, we obtain the expression for Equation (5.23).

y ≈ π

m
+

√
π3

2m3
. (5.45)

Substituting Equation (5.23) into Equation (5.24), we obtain

εc =

√
mπ√
2

(
π
m

+
√

π3

2m3

)2

1− cos

(
m

(
π
m

+
√

π3

2m3

)) . (5.46)

The term of cos(.) can be simplified to

cos

(
π +

π3/2

√
2m

)
= − cos

(
π3/2

√
2m

)
. (5.47)

Applying double angle formulas from trigonometric identities, cos(2x) = 2(cos x)2−

1, we obtain

cos

(
π +

π3/2

√
2m

)
= 2

(
cos

(
π3/2

2
√

2
√
m

))
. (5.48)

Note that sec2(.) = 1/ cos2(.), then Equation (5.24) becomes

εc ≈
π5/2

(
2
√
m+

√
2π
)2

sec2
(

π3/2

2
√

2
√
m

)
8
√

2m5/2
. (5.49)
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Chapter 6

Conclusion

I conducted research on the statistical modelling of a selection of three games,

namely the minority games, the statistical urn models and the Hawk-Dove games.

In Chapter 3, the key characteristics of the minority game were explored. We

extended the standard MG by allowing players to accumulate profits and losses in

each game round. Bankruptcy and borrowing (leverage) were introduced, and the

resulting game statistics were analysed numerically. Curve fitting was performed

for wealth distributions, showing a weak evidence of power law behaviour. We

explored a number of variations when curve fitting for wealth distributions, for

example a zero-sum rule could be introduced. Due to the time limit of the re-

search and possible variations in the system parameters, we did not obtain fitting

of sufficient quality for publication. It is possible that with larger set of players

simulated for longer time could lead to better statistics and higher quality curve

fitting for wealth distributions. However, our results clearly demonstrated that

leverage increases the instability of the system. This corresponds to the increased

risks of trading leveraged financial products in the real market. Our model pro-

vides a possible testing ground for introducing new measures that might modify

and control the risks arising from the leverage effects.

In Chapter 4, a new simple urn model was developed to investigate the ef-

fectiveness of memory. The model consists of a group of agents with different
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memories competing against each other for finite resources. Our results showed

that instability exists in the model at a critical memory length, which can be

verified both numerically and analytically. Additionally, we showed that the tem-

perature in the urn model is related by the agent’s memory length, suggesting

that this model may be applied to other game models with links to classical ther-

modynamics. Increasing memory lengths can allow agents to more accurately and

reliably determine the optimal strategy, and in terms of thermodynamics, this is

equivalent to less thermal noise and a lower temperature. However, if a sufficient

number of agents with very long-memory lengths are present, instability in the

form of a limit cycle occurs, resulting in reduced competitiveness, in which case

agents with shorter memories can exploit the fluctuations more effectively. By

modelling payoffs as birthrates, we demonstrated a coexistence of different mem-

ories, leading to a self-organised Hopf bifurcation driven by population dynamics.

The simplicity of our memory model, its connection to classical urn models, to-

gether with the fact that limit cycles arise naturally, suggested that it might be

fruitfully generalised to different games. Indeed Chapter 5 extended this approach

to the Hawk-Dove game. However, other extensions might include using multiple

urns to represent different sources of yield or game strategies, introducing hetero-

geneity in switching rates, and utilising a more general distribution of memory

lengths and behaviour. Multiple urns might give rise to more complex patterns

of oscillation and regimes of behaviour. Experimental research into the nature of

human and animal memory puts an emphasis on the ‘forgetting function’, which

describes how memories decay with time. Such a function, or greater powers of

statistical inference, could be naturally incorporated into our analysis and their

effects on stability explored.

In Chapter 5, the main findings from Chapter 4 were extended to the Hawk-

Dove game. We generalised the standard HD game so that players possess finite

memories and utilise them to optimise their strategies in each round. With each

time step, agents use a form of online learning to amend their strategies. We
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presented both analytical and numerical results for this generalised HD game,

showing excellent agreement. In particular, we derived an analytical expression

for the critical memory length where instability occurs, and this is confirmed by

simulation. Our analysis is not only limited to HD game, it can also potentially

be applied to, for example, all evolutionary games.

Our work on minority games and the two-urn model has shown a range of

complex behaviours which offer possible future foci. A direct link between the

game models and real financial markets still needs to be fully developed. Stock

price movement may be related to minority game by assuming that one side in the

game are the sellers and the other buyers. The prediction for markets needs to be

verified by comparisons with historical stocks data. Similarly our urn model can be

applied to real markets. It may also be used to analyse the effectiveness of financial

resource allocation, by considering urn 1 to represent the cash holding, and urn

2 to be other financial instruments holdings, i.e. stocks, bonds, derivatives, etc.

We can analyse the transition between these holdings under different investment

environment. Furthermore, this urn model could be extended to multi-urn model,

in order to capture the dynamics of different financial portfolios.
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