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Abstract

The aim of this project is the conception, implementation, and application of

a simulation tool for the accurate modeling of electromagnetic fields within

inhomogeneous materials with complex shapes and the propagation of the re-

sulting fields in the surrounding environment. There are many methods that

can be used to model the scattering of an electromagnetic field, however one of

the most promising for hybridisation is the Boundary Element Method (BEM),

which is a surface technique, and the Unstructured Transmission Line Model-

ing (UTLM) method, which is a volume technique. The former allows accurate

description of the scatterer’s boundary and the field’s radiation characteristics,

but cannot model scattering by materials characterized by a non-uniform re-

fraction index. The latter, on the contrary, can model a very broad range of

materials, but is less accurate, since it has to rely on approximate absorbing

boundary conditions. A method resulting in the hybridisation of BEM and

UTLM can be used to construct a tool that takes into account both the in-

teraction with non-uniform tissue and propagation in its environment. The

project aims to describe in detail the implementation of the novel method,

and deploy it in a heterogeneous distributed computing environment.
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1
Introduction

The first chapter of the thesis will describe the background of the

research, including current electromagnetic modelling techniques,

how these techniques are implemented in practice, and the mo-

tivation for carrying out the proposed project. The thesis as a

whole will then be introduced.

$ � %

1.1 Background

The dawn of the twenty-first century brought the rise of electromagnetic (EM)

wireless technology. Real world wireless appliances have complex and irregu-

lar features, so their electromagnetic fields cannot be analytically calculated.

However, computational and numerical techniques have the ability to model

a vast range of applications. The results of these computational simulations

allow optimum design of radar systems, medical imaging, cell-phone antennas

etc. and also check for electromagnetic interference (EMI) and compatibility

1



Chapter 1. Introduction

(EMC). Time domain numerical solvers in the field of electromagnetics have

evolved rapidly, on the one hand due to the rapid increase in computational

power over the last few decades and on the other hand due to a number of

breakthroughs in the efficient solution of linear systems that lie at the heart of

the algorithms. Realistic scenarios which involve fields travelling through inho-

mogeneous and complex targets positioned in large free space environments are

difficult to simulate accurately and efficiently with traditional schemes.

1.2 Modeling Techniques

There are several numerical methods which model scattering of an electro-

magnetic field. Equation 1.1 shows the generic model of the scattering prob-

lem. [1.1]

L {f(x)} = g(x) (1.1)

where g(x) is the stimulus function and f(x) is the response function to be

found.

Variable x can be in time-domain (TD) or frequency-domain (FD). TD meth-

ods are best for transients, wide-band applications and non-linear problems,

whereas FD methods are best for steady-state, narrow-band applications [1.2].

Operator L can be a differential equation (DE) where operations on every

point in the problem space is required, or an integral equation (IE) where op-

erations on the surfaces (or volumes) of the problem space are enforced [1.2].

The former has the ability to detail complex geometrical features but is com-

putationally expensive, whereas surface integral methods are computationally

cheaper but cannot deal with intricate geometries or inhomogeneous materi-

als.

Popular methods used in computing the scattering of electromagnetic fields in-

clude the Finite Element Method (FEM), the Finite-Difference Time-Domain

2



Chapter 1. Introduction

(FDTD) method, the Boundary Element Method (BEM), and the Transmission-

Line Modeling (TLM) method.

Also known as the Method of Moments (MoM), BEM is a surface technique

which allows accurate description of the scatterers boundary and the fields

radiation characteristics, but cannot model scattering by non-homogeneous

media. The BEM method solves Maxwell’s equations in differential form using

jump conditions and the wave equation which are then formulated as integral

equations [1.3]. The technique uses less computational resources for problems

with a small surface to volume ratio (where the volume is homogeneous, ideally

free space). The method is commonly used as a standard for checking other

methods and is efficient at solving problems with wire-like structures.

There are time domain volume integral equation techniques that are formu-

lated in the same manner as BEM, but can model inhomogeneous objects.

However, they are generally computionally expensive as the whole volume

is discretised (rather than just the surface) [1.4] , but there have been re-

cent advancements that have improved the efficiency [1.5] and further en-

hancements that enable investigation of time-varying media also look promis-

ing [1.6,1.7].

FEM is a well-established numerical modeling technique for finding approxi-

mate solutions to partial differential equations through numerical discretisa-

tion. It is traditionally formulated in the FD, although TD formulations have

also been developed [1.8]. The technique can be applied to complex geometries

with varying material coefficients and boundary conditions [1.9], but can be

inefficient when dealing with highly conducting radiators when compared to

BEM [1.8].

FDTD is a well-established finite difference method and, as the name suggests,

belongs to the class of time-domain differential methods. Maxwell’s equations

in partial differential form are discretised and the resulting finite-difference

equations are solved in a leapfrog manner; the electric field vector compo-

nents are found then the magnetic field vector components are found at the

next instant in time. The process is repeated until the desired electromag-

netic field behaviour is determined. In this way, the technique is intuitive and

extremely easy to implement whilst providing animated displays of electromag-

3



Chapter 1. Introduction

netic movement through the model. This has led to the availability of many

commercial packages that use this technique. The disadvantages include the

fact that the entire domain has to be meshed and the electromagnetic response

of the medium must be modeled explicitly, resulting in a large computational

domain and poor quality of approximations between grid points. The tech-

nique in it’s structured form suffers from staircasing, and dispersive materials

require considerable effort to implement [1.8].

The TLM method is based on the analogy between an electromagnetic field

and a mesh of transmission lines. TLM is a powerful time-domain, volume

method which and has the ability to model a very broad range of three-

dimensional structures and materials, including complex, non-homogeneous

materials with time-varying properties. However, just like FDTD, the tech-

nique suffers from staircasing, has to rely on approximate absorbing boundary

conditions (ABCs) and is computationally expensive as the entire problem

space is discretised.

1.3 Motivation for hybridising the Boundary

Element Method and the Unstructured

Transmission-Line Modeling method

Techniques that are the amalgamation of two numerical methods to combine

the best features from both are called hybrid methods. These methods can

be very efficient, but are difficult to design and implement and so there are

not many available commercial packages that take advantage of hybrid meth-

ods.

Many advancements are constantly being applied to integral equation (sur-

face) techniques, and differential equation (volume) techniques. By creating

a hybrid solver in an elegant manner, we can enjoy the advantages of each

technique, without modifying the underlying derived methods. We can use a

volume technique to model the fields inside the scatterers, and a surface tech-

nique to model the external field interactions and radiation conditions.

4



Chapter 1. Introduction

The Time Domain (TD) Boundary Element Method (BEM) can be solved by

a marching-on-in-time technique which gives an accurate description of out-

wardly radiating fields because it uses the explicit expression for the Green’s

function to represent these radiating fields. The method decreases the dimen-

sionality of the problem by one dimension which, when combined with modern

matrix-vector product acceleration techniques, leads to a very efficient method

(for homogeneous materials). For details of the state-of-the-art discretisation

and implementation of marching-on-in-time space-time Galerkin methods, the

reader is referred to, for example, [1.10–1.14].

The Unstructured Transmission-Line Modeling (UTLM) method is a time do-

main volume technique which is unconditionally stable for all time (subject to

a maximum timestep constraint) and can model complex, non-linear materi-

als with complex geometries. It is based on core engineering principles, from

which a physical insight into the propagation of waves is retained. Curved

surfaces can be represented in the mesh with much higher accuracy than is

possible with the Cartesian meshing required of structured TLM, thus avoiding

staircasing errors. Furthermore, there is a large code base of legacy implemen-

tations that have proven their worth in academia and industry. Unfortunately

just like the structured TLM, the UTLM method requires the use of Approx-

imate Boundary Conditions (ABCs) to model the radiating behaviour of the

fields at the boundary of the simulation domain. Moreover, for these ABCs to

be accurate, the simulation domain needs to be extended beyond the domain

occupied by the device under study, leading to an increase in the size of the

problem and thus an increase in solution time [1.2,1.15]. Finally, the ability

to model plane wave excitations and compute radar cross sections, though

possible, is not immediately available using TLM [1.16].

UTLM can be compared to other time domain volume techniques such as

the Finite-Difference Time-Domain (FDTD) and the Finite Element Method

(FEM) which are both well-established numerical modelling methods. These

methods also have the ability to model inhomogeneous and complex me-

dia [1.17–1.19], but only FEM is naturally constructed for unstructured grids

(though FDTD has been extended to non-orthogonal and unstructured meshes

previously [1.20,1.21]). FDTD has the advantage of being exceptionally simple

to implement and FDTD meshes can be terminated with very good absorbing

boundary conditions. However, the exact location of boundaries can be prob-

5



Chapter 1. Introduction

BEM

UTLM

Non-
homogeneous

media

Complex
geometry

Perfect free space
boundary conditions

Electromagnetic
plane wave
excitation

Figure 1.1: Arbitrary objects modelled using UTLM, separated by free space modelled
by BEM.

lematic due to the offset nature of the electric and magnetic field grids, and the

appealing simplicity is lost when attempting to apply FDTD to unstructured

meshes. FEM can naturally handle complex geometries and dispersive materi-

als, and has the ability to model multi-physics applications, however it is more

difficult to implement compared to FDTD, and its meshes can become very

complex [1.8]. Unlike UTLM and FDTD, FEM is an implicit time-marching

scheme i.e. the solution of a linear system via a matrix inversion is computed

at each time step, which if directly solved is computationally expensive. It-

erative solvers can be used, which have roughly linear memory and compute

requirements, but rely on the appropriate use of dedicated preconditioners.

Alternatively, the sparse matrix seen in FEM can be approximated to a di-

agonal matrix via “mass lumping”, but this technique can give an unstable

algorithm which depends heavily on the problem [1.22].

As with UTLM, FDTD and FEM do not include radiation conditions for open

regions. This is overcome by hybridizing with an efficient integral equation

technique.

Fig. 1.1 shows a typical example of a device comprising complex materials and

complex geometries inside spatially distinct and well separated regions. Scat-

tering by and transmission through such a device is most efficiently modelled

by a method hybridising the UTLM and the BEM methods. The advantages

of this hybridised scheme are:

• Modeling of complex, non-linear media [1.23] with geometrically complex

features
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Chapter 1. Introduction

• Perfect radiating boundary conditions

• Straightforward excitation by plane waves

• Free space region does not need to be meshed, enabling a significant

decreases in the degrees of freedom and more efficient computation of

open boundary problems

The novel hybrid method described in this paper is called the Boundary El-

ement Unstructured Transmission-line (BEUT) method. It is conceptually

very simple and can be easily applied to existing solvers of the two under-

lying methods. In fact its derivation is directly linked to the construction

of the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) integral equation

for the modelling of transmission problems through piecewise homogeneous de-

vices [1.24]. The key ingredient is the construction of a representation formula

valid on the (inner) boundary of the TLM governed regions.

Previous hybridisations between TLM and BEM have been attempted [1.25–

1.31]. However these solvers either contain complicated connection processes

that require a large number of discrete Green’s functions, contain discreti-

sation errors on subdomain boundaries (therefore requiring padding between

the object and the TLM/BEM interface), or require the use of the inaccurate

TLM ABCs. They do not take advantage of unstructured meshes or take into

account recent advancements that make BEM and TLM more robust, stable

and accurate. These techniques are reviewed in chapter 5.

There are other hybrid techniques that couple with BEM such as FDTD-

BEM [1.32,1.33] and FEM-BEM [1.34,1.35]. Unlike FEM and FDTD, UTLM

uses a physical discretization which can translate to a network of lumped el-

ements. By using circuit theory, the method demonstrates the educational

appeal of TLM, as its workings can be understood at an early stage using con-

cepts that are available in a classic electrical engineering programme. Also, the

transmission line description of the low frequency response of the domain au-

tomatically guarantees stability during runtime, i.e. the output energy equals

the input energy, which is especially useful for large simulations.

A UTLM-BEM hybrid has advantages over a FDTD-BEM technique, since

7
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most FDTD implementations rely upon a structured mesh, limiting the free-

dom in meshing and the accuracy of boundary representation. The advantages

of UTLM-BEM over FEM-BEM are more subtle. On the one hand, many ex-

isting codes are based on structured and unstructured TLM. The ability to

directly couple these codes to a BEM solver should definitely be seen as an

advantage. On the other hand, UTLM lends itself to the relatively easy inclu-

sion of more exotic media such as meta-materials, cells containing wires, and

active media [1.36–1.39]. Finally, UTLM has more straightforward stability

properties then FEM. In fact, for passive lossless media, the Euclidian norm

of the solution vector at different time steps is exactly conserved. In FEM

stability is regulated by bounds that contain hard to estimate constants and

that depend on the spatial meshing and temporal oversampling. Given the

sensitivity of the stability of TD-BEM solvers, coupling to the trivially stable

UTLM is considered to be a more conservative choice.

It must be noted that there are methods to obtain good absorbing boundary

conditions through the use of a Perfectly matched Layer (PML) in TLM [1.40–

1.42], however these methods are still inferior to PMLs previously implemented

in FDTD [1.43,1.44]. The use of BEM to truncate the UTLM mesh gives more

accurate boundary conditions that can be applied directly to the surface of

the scatterers and also allows spatially distinct scatterers to interact without

modelling the space between. However, it requires computation of a global

interaction matrix for all surface elements at each timestep. This means that

the hybrid method is more efficient only for transient scattering problems

involving large free space regions, and where accuracy is vital.

1.4 Implementation proposal

The project aims to deploy a novel hybridisation of the two dimensional (2D)

BEM and 2D UTLM methods in a distributed computing environment. To

achieve this, an array of computational techniques will be required, includ-

ing the use of coding languages C++ and MATLAB, and also the use of the

Armadillo matrix library. For execution across many processors, the Open

MultiProcessing (OpenMP) interface is used, and for portability of the code,

makefiles are created with the help of CMake’s build system. Other spe-
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cialist software has also been used such as GIT which assists in organizing

and versioning source code besides collaboration management via GitHub,

which hosts all the published code related to this project online at https:

//github.com/dan-phd.

For now, we use a straightforward implementation of BEM and UTLM which

have computational complexities ofO(N2
SN

2
t ) andO(NVNt) respectively, where

NV and NS denote the number of spatial field sampling points within the vol-

ume and on the surface of the scatterer respectively, and Nt is the number of

timesteps. However, the BEM implementation could be further accelerated us-

ing techniques such as the Time Domain Adaptive Integral Method (TD-AIM)

[1.45,1.46] which uses a spatial and temporal Fast Fourier Transform (FFT)

for computing convolutions, and the Plane Wave Time-Domain (PWTD) al-

gorithm [1.47,1.48] which aggregates far-fields from source sub-scatterers into

plane waves which are then superimposed onto the observer.

1.5 Synthesis of thesis

This thesis will begin by introducing Maxwell’s equation and deriving the

one dimensional (1D) and 2D representation formulas in chapter 2. From

these equations, the frequency domain (FD) and thus time domain (TD) BEM

Poggio-Miller [1.49] style equations will be derived along with implementation

guidelines in 3. The 1D TLM and 2D UTLM formulations will be derived in

chapter 4. A review of previous attempts to couple BEM and TLM will be

discussed in chapter 5. Comparisons will be made between 1D TD BEM and

1D TLM, which will consequently be used when hybridising the 2D methods,

which will be described in chapter 6. Results obtained using the novel method

for validation and demonstration will be shown in chapter 7. Conclusions and

advice on future work will be given in chapter 8.
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2
Electromagnetic Theory

In this chapter, the theory of electromagnetism and Maxwell’s

equations will be introduced. The theory will be derived from

first principles and result in the frequency domain representation

formulas. This will give a solid foundation for which to base all

proceeding time domain theory.

$ � %

2.1 Maxwell’s Equations

The fundamental equations that govern the propagation of electromagnetic

waves are Maxwell’s equations. These equations consist of Faraday’s law of

induction (2.1), the Ampere-Maxwell law (2.2), Gauss’ law for magnetism

(2.3), Gauss’ law (2.4), and the continuity equation (2.5). The constitutive

equations, 2.6 and 2.7, are shown for a linear isotropic medium. The descrip-

tion of each symbol is shown in table 2.1, where a bold variable indicates a

vector quantity in space and time. Derivation and further explanation for
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these equations can be found in reference [2.1].

∇× e = −∂tb−m (2.1)

∇× h = ∂td + j (2.2)

∇ · b = ρm (2.3)

∇ · d = ρe (2.4)

∇ · j = −∂tρe (2.5)

b = µh (2.6)

d = εe (2.7)

∂t denotes the differential with respect to time, ∇· indicates a divergence

operation, and ∇× indicates a curl operation which can be explicitly be written

as shown in equations 2.8 and 2.9 respectively.

∇ ·ϕ ≡ ∂ϕx
∂x

+
∂ϕy
∂y

+
∂ϕz
∂z

(2.8)

∇×ϕ ≡

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

ϕx ϕy ϕz

∣∣∣∣∣∣ (2.9)

Material parameters are chosen so that they are assumed to be linear and non-

complex, as shown in equations 2.10 and 2.11, where the free space parameter

values are shown in 2.12 and 2.13.

ε = εrε0 (2.10)

µ = µrµ0 (2.11)

ε0 = 8.854187817× 10−12 Fm−1 (2.12)

µ0 = 4π × 10−7 Hm−1 (2.13)
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Table 2.1: Description of notations related to electromagnetic problems

Symbol Unit Name

e V/m Electric field intensity

h A/m Magnetic field intensity

d C/m
2

Electric flux density

b Wb/m
2

Magnetic flux density

j V/m
2

Electric current density

m A/m
2

Magnetic current density

ρe C Electric charge

ρm Wb Magnetic charge

ε F/m Electric permittivity

ε0 F/m Free-space permittivity

εr - Relative permittivity

µ H/m Magnetic permeability

µ0 H/m Free-space permeability

µr - Relative permeability

2.2 Representation Formulas

We can reduce equations 2.1-2.7 to

∇× e = −∂tµh−m

∇× h = ∂tεe + j
(2.14)

We can then combine the equations in 2.14 to obtain the scalar wave equa-

tions,

∇2e− 1

c2
∂2
t e = −∂tµj −∇×m

∇2h− 1

c2
∂2
t h = −∂tεm + ∇× j

(2.15)

where c(= 1/
√
εµ) is the speed of propagation. The theory henceforth will

consider problems in the absence of magnetic sources.
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The solution for both the electric and magnetic fields in 2.15 is fulfilled by the

scalar and vector potentials after imposing the Lorenz gauge condition. The

solution can be found using the Green’s function with a Dirac pulse excitation

acting instantaneously at t = t′ in time and r − r′ in space,

∇2G(R, t)− 1

c2
∂2
tG(R, t) = −δ(R)δ(t− t′) (2.16)

where the distance from the origin is R = |r − r′|, and G denotes the Green’s

function, which is explained in more detail in section 2.2.1. In 3D space, the

distance is computed using Cartesian coordinates by R =
√
x2 + y2 + z2, in

2D space this is R =
√
x2 + y2, and in 1D space this is simply R = x. The

Dirac delta function can be loosely defined as

δ(x) =

+∞, x = 0

0, x 6= 0

however the Dirac delta is not technically a function and can be more accu-

rately defined as a distribution [2.1]. If f(x) is a continuous function, the Dirac

delta function has the ability to pick out the value of f(x) at x = 0:

〈δ, f〉 =

∫ ∞
−∞

f(x)δ(x− a) dx = f(a)

By convolving 2.15 with the Green’s function and 2.16 with the field, and

then integrating the difference over the entire exterior region, Ω∞, we obtain

2.17, where the incident field is denoted by ui. r′ and r denote the source

and observation locations respectively. We shall use u as a symbol to rep-

resent the vector field which will enable us to derive the TE and TM modes

simultaneously.

∫
Ω∞

G∗∇2u(r, t)− u(r, t)∗∇2G dΩ = −ui(r′, t) +

∫
Ω∞

u(r′, t)δ dΩ (2.17)

where ∗ indicates a temporal convolution which is defined as

f(t)∗g(t) =

∫ ∞
−∞

f(τ) g(t− τ) dτ
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The second scalar Green’s theorem states∫
ΩC

ψ∇2ϕ =

∫
Γ

ψ∇nϕ dS −
∫

Ω

ϕ∇nψ dS (2.18)

where Γ is the surface of the volume, Ω, and the normal unit vector n̂ points

outwards from the surface. The spatial derivative in the direction of the normal

unit vector can also be written as

∇nϕ =
∂ϕ

∂n
= n̂ · ∇ϕ

We then apply the second scalar Green’s theorem to the left hand side (LHS)

of 2.17 and the definition of the Dirac delta function to the right hand side

(RHS) to get∮
Γ∞

[
G∗∂(r, t)

∂n
− u(r, t)∗∂G

∂n

]
dΓ +

∮
Γ0

[
u(r, t)∗∂G

∂n
−G∗∂u(r, t)

∂n

]
dΓ

+ui(r, t) = u(r′, t)

(2.19)

where Γ0 is the boundary of the object, and Γ∞ is the boundary of the exterior

region (a circle with radius approaching infinity). The radiation condition

is satisfied by both G and u which, when substituted into 2.19, makes the

boundary integral over Γ∞ tend to zero as it’s radius approaches infinity, thus

the total field becomes

u(r′, t) = ui(r′, t) +

∮
Γ0

[
u(r, t)∗∂G

∂n
−G∗∂u(r, t)

∂n

]
dΓ︸ ︷︷ ︸

us(r′,t)

(2.20)

where us is the scattered field.

Equation 2.20 states that once the field and its normal derivative are known

on the boundary of a domain, the field everywhere in that domain can be

found.

It is customary in literature at this stage to exchange source and observation

points, resulting in the scattered field shown in 2.21. We may also want to

take the normal derivative of the scattered field when the observation point is
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close to the surface of the scatterer as shown in 2.22, where the unit normal

vector faces inwards for a point inside the boundary.

us(r, t) =

∮
Γ0

[
u(r′, t)∗∂G(r, r′, t)

∂n′
−G(r, r′, t)∗∂u(r′, t)

∂n′

]
dΓ′ (2.21)

∂us(r, t)

∂n
=

∮
Γ0

[
u(r′, t)∗∂

2G(r, r′, t)

∂n∂n′
− ∂G(r, r′, t)

∂n
∗∂u(r′, t)

∂n′

]
dΓ′ (2.22)

2.2.1 The Green’s Function

Mathematically, the Green’s function is the kernel of an integral operator that

represents the inverse of a differential operator. Physically, it is the response

of a system when a unit point source is applied to the system [2.2].

2.2.1.1 Green’s Function in 2D

Since the 2D Green’s function can be interpreted as an infinitely long line

source in 3D, we can derive it by integrating the 3D Green’s function along

the z axis.

The well-known causal 3D Green’s function in the time domain is

g3D(R, t) =
δ(t−R/c)

4πR
(2.23)

A rigorous derivation for this function can be found in many textbooks on

function analysis, for example in references [2.2,2.3].

The integral to solve in order to obtain the 2D Green’s function is there-

fore

g2D(R, t) =
1

4π

∫ ∞
−∞

δ(t−
√
x2 + y2 + z2/c)√
x2 + y2 + z2

dz (2.24)

By a change of variables, the generalized scaling property may be written
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as ∫ ∞
−∞

f(x) δ(g(x)) dx =
∑
i

f(xi)

|g′(xi)|
(2.25)

where the summation extends over all roots of g(z). Between [−∞,∞], these

roots are

z = ±
√

(ct)2 − (x2 + y2) (2.26)

By applying 2.25 to 2.24, and then substituting the two roots from 2.26, we

can obtain

g2D (R, t) =
1

4π

2c√
(ct)2 −R2

(2.27)

The real roots occur when ct > R, which then introduces the Heaviside func-

tion, denotedH. The Heaviside function is also known as the unit step function

and can be defined as

H(x) =

0, x < 0,

1, x ≥ 0,

It can also be differentiated as

d

dx
H(x) = δ(x)

The causal 2D TD Green’s function can therefore be written as

g2D (R, t) =
H (t−R/c)

2π

√
t2 − (R/c)

2
(2.28)

The 2D Green’s function can be interpreted as the field radiated in the x,y

plane by an infinitely long line source in the z direction. This gives rise to a

singularity at t = R/c, and also an exponential decaying signal which follows

the initial disturbance set by the source.
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2.2.1.2 Green’s Function in 1D

To find the time domain Green’s function in 1D, we first derive the frequency

domain version. The FD Green’s function is the solution to the Helmholtz

equation shown in 2.16, which for the 1D frequency domain is

∂2
RG1D(R)− k2G1D(R) = −δ(R) (2.29)

where k is the wavenumber. The solution can be found to be

G1D(R) = Ae−ikR (2.30)

where A is a coefficient which can be found by integrating 2.16 over the origin

(the singularity) between an infinitesimal distance [−ε, ε], thus giving

G1D(R) =
1

2ik
e−ikR (2.31)

The TD Green’s function is expressed as the field radiated by a Dirac source,

and can be found by applying the inverse Fourier transform to 2.31. The

inverse Fourier transform is defined as:

F−1g(x) :=

∫
Rn
e2πix·ξ g(ξ) dξ

Consequently, we can obtain the 1D Green’s function in the time domain:

g1D(R, t) =
1

2
H(ct−R) (2.32)

There are many other ways to derive this formula, either using the method of

d’Alembert to find the solution to the 1D wave equation, or by integrating the

2D Green’s function along the y axis.
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Figure 2.1: 1D electromagnetic wave.

2.2.2 1D Representation Formulas

For an x-directed, one-dimensional electromagnetic wave emanating from an

electric current source in the absence of magnetic current as shown in figure

2.1, we can combine the equations in 2.21 and 2.22 to obtain us(r, t)

∂nu
s(r, t)

 =

∫ ∂G1D(r,r′)
∂n′ dr′ −

∫
G1D(r, r′) dr′∫ ∂2G1D(r,r′)

∂n ∂n′ dr′ −
∫ ∂G1D(r,r′)

∂n dr′

 ∗
 u(r′)

∂nu(r′)


(2.33)

where the spatial integration occurs over the surface of a 1D domain, i.e.

a single point, which is equivalent to evaluating at that point, thus can be

excluded in the 1D case.

We must note that the normal derivatives are linked using the equations in

2.14. For example, if u = e, the normal derivative is derived as shown in

2.34.

∂e

∂n
= n̂ · ∇e

= (t̂× ẑ) · ∂e
∂x

= −t̂ ·
(
∂e

∂x
× ẑ

)
= −µ

(
t̂ · ŷ

)
∂th

(2.34)
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𝑧  

𝑛  

𝑡  
𝑧  

𝑛  

𝑡  𝑦  

𝑥  

Figure 2.2: Local normal unit vectors on opposing faces.

where t̂ is the tangential unit vector, and ŷ is the unit vector in the y-direction.

The dot product,
(
t̂ · ŷ

)
, can be either +1 for a wave travelling in the positive

direction, or −1 for a wave travelling in the negative direction, as depicted in

figure 2.2.

Substituting 2.34 into 2.33, we get the 1D representation formula for the

transverse magnetic (TM) case, where the transverse electric (TE) case is

identical except for the orthogonal polarity and change in material parameter

(µ→ ε)esz(r, t)
hst (r, t)

 =

 ∂G1D(R,t)
∂n′ µ∂G1D(R,t)

∂t

− 1
µ

∫
t
∂2G1D(R,t)
∂n ∂n′ dt −∂G1D(R,t)

∂n

 ∗
ez(r′, t)
ht(r

′, t)

 (2.35)

where distance R = |r − r′|, and the tangential components of the electric and

magnetic fields are ez and ht
(
= t̂ · hxy

)
respectively.

As can be seen in 2.35, the spatial and temporal derivatives, as well as temporal

integral, are required of the TD Green’s function shown in 2.32. These can be

found as

∂g1D(R, t)

∂t
=
c

2
δ(ct−R)

∂g1D(R, t)

∂n′
= −1

2
δ(ct−R)

∂g1D(R, t)

∂n
=

1

2
(n̂ · n̂′)δ(ct−R)∫

t

∂2g1D(R, t)

∂n ∂n′
dt = − 1

2c
(n̂ · n̂′)δ(ct−R)

(2.36)

Using the Green’s function definitions in 2.36, we can now expand 2.35 to give
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𝒏  𝒓 𝒏′  𝒓′ 
𝒏 ∙ 𝒏′ = −𝟏 

𝒓 ≠ 𝒓′ 

𝒏  𝒓 
𝒏′  𝒓′ 
𝒏 ∙ 𝒏′ = 𝟏 

𝒓 = 𝒓′ 

Figure 2.3: Unit normal vectors in 1D for self-patch and otherwise.

the total fieldez(r, t)
ht(r, t)

 =

 1
2δ(ct−R) η

2 δ(ct−R)

1
2η (n̂ · n̂′)δ(ct−R) 1

2 (n̂ · n̂′)δ(ct−R)

 ∗
ez(r′, t)
ht(r

′, t)

+

eiz(r, t)
hit(r, t)


(2.37)

In 1D, the dot product of the primed and unprimed unit vectors, (n̂ · n̂′), can

be either +1 or −1, and are related as shown in figure 2.3.

The equation in 2.37 is related and used in both 1D TLM and 1D BEM, thus

will be revisited in section 6.1.1.

2.2.3 2D Representation Formulas

A cross section of the z-plane (at z = 0) of a 3D object is equivalent to a 2D

object. The 2D representation formulas as shown in equations 2.21 and 2.22

will hold for any observed point apart from on the surface itself since the 2D

Green’s function (as shown in 2.28) and its derivative are singular when r = r′.

This is dealt with by deforming the boundary around the observation point and

splitting the integral into 2 parts as shown in equation 2.38. [2.4, p.407]∮
Γ0

f(r′) dΓ′ = lim
ε→0

{∫
Γ0−Γε

f(r′) dΓ′ +

∫
Γε

f(r′) dΓ′
}

(2.38)

where Γ0 is the object surface, and Γε is a circular surface surrounding the

observation point which has a radius tending to zero, as shown in figure
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𝒏  Γ𝜖 

𝒓 − 𝒓′  
𝒓 

−𝒏  

𝒓′ 

Γ𝜖 
Γ0 

Figure 2.4: Object boundary deformed to exclude singular point.

2.4.

The first integral on the right hand side (RHS) of 2.38 can be denoted as

the Cauchy integral which is an integral along Γ0 but with the singular point

excluded. The second integral on the RHS of 2.38 can be solved by evalu-

ating over the boundary of a semi-circle of radius equal to ε. Applying this

integration to equations 2.21 and 2.22, we obtain

∮
Γε

[
u(r′, t)

∂G(r, r′, t)

∂n′
−G(r, r′, t)

∂u(r′, t)

∂n′

]
dΓ′ =

1

2
u(r′, t) (2.39)∮

Γε

[
u(r′, t)

∂2G(r, r′, t)

∂n∂n′
− ∂G(r, r′, t)

∂n

∂u(r′, t)

∂n′

]
dΓ′ =

1

2

∂u(r′, t)

∂n′
(2.40)

Thus using Cauchy principle value integration, the representation formulas

2.21 and 2.22 become

us(r, t) =
1

2
u(r′, t) (2.41)

+ p.v.

∫
Γ0

[
u(r′, t)

∂G(r, r′, t)

∂n′
−G(r, r′, t)

∂u(r′, t)

∂n′

]
dΓ′ (2.42)

∂us(r, t)

∂n
=

1

2

∂u(r′, t)

∂n′
(2.43)

+ p.v.

∮
Γ0

[
u(r′, t)

∂2G(r, r′, t)

∂n∂n′
− ∂G(r, r′, t)

∂n

∂u(r′, t)

∂n′

]
dΓ′

(2.44)

where p.v. stands for principle value.

From now on, principle value integration is assumed whenever the observed
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point is on the boundary. Equations 2.42 and 2.44 can be written more con-

cisely as us

∂nu
s

 =

1

2
+
∫

Γ
∂G(r,r′,t)

∂n′ ϕ(r′) dr′ −
∫

Γ
G(r, r′, t)ϕ(r′, t) dr′∫

Γ
∂2G(r,r′,t)
∂n ∂n′ ϕ(r′) dr′

1

2
−
∫

Γ
∂G(r,r′,t)

∂n ϕ(r′) dr′


 u

∂nu


(2.45)

The transverse and longitudinal components of u are found by taking the

tangential component of equations 2.1 and 2.2, then by taking the vector triple

product, we obtain

∂nez = ∂tµ(n̂× hxy) (2.46)

∂nhz = −∂tε(n̂× exy) (2.47)

The normal derivatives do not have to be continuous at the interface between

two homogeneous, isotropic materials but can be transformed into tangen-

tial derivatives that are continuous by application in an orthogonal axis set

(n̂, t̂, ẑ). [2.5, p.11]

Substituting 2.46 and 2.47 into 2.45, we get the time domain representation

formulas for the TM and TE cases, respectively, as shown in equations 2.48

and 2.49.

ez
ht

 =

1

2
+D −µS

−N
µ

1

2
−D′


ez
ht

+

eiz
hit

 (2.48)

hz
et

 =

1

2
+D εS

N

ε

1

2
−D′


hz
et

+

hiz
eit

 (2.49)
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where the operators are defined as

Dϕ (r′, t) =

∫
Γ

∂g (R, t)

∂n′
∗ϕ(r′, t) dr′

D′ϕ (r′, t) =

∫
Γ

∂g (R, t)

∂n
∗ϕ(r′, t) dr′

Sϕ (r′, t) =

∫
Γ

g(R, t)∗ ∂
∂t
ϕ(r′, t) dr′

Nϕ(r′, t) =

∫
Γ

∫
t

∂2g(R, t)

∂n ∂n′
ϕ(r′, t) dt dr′

(2.50)
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3
The Boundary Element
Method

The boundary element method solves either the electric, mag-

netic, or combined field integral equation (EFIE, MFIE, CFIE)

for electric/magnetic currents on the surface of an object, which

consequently leads to the knowledge of EM fields radiated from

the object. BEM can be applied in the frequency domain or the

time domain. BEM in the time domain has the advantage of sim-

ulating transient responses but also frequency responses can still

be acquired through Fourier analysis. The principles of 2D BEM

algorithms that have been implemented thus far are explained

below. Implementation to allow generic basis and temporal func-

tions will be thoroughly reviewed, and validation and stability for

the algorithm will also be discussed.

$ � %
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𝒏 + 

𝑗Γ 
𝑚Γ 

𝜴+ 

𝜴− 

𝜇+𝜀+ 

𝜇−𝜀− 

Γ 

Figure 3.1: Jump conditions at the boundary.

3.1 Jump conditions

A volume (domain Ω−) is separated from free space (Ω+) with a closed surface

Γ as shown in figure 3.1.

At the surface, the permittivity jumps from ε− to ε+ (along with the per-

meability) hence the term jump conditions. The singular contributions to

Maxwell’s equations at a point on the surface are derived from equations 2.3,

2.4 and 2.14

[n̂× e] = n̂× e+ − n̂× e− = −mΓ

[n̂× h] = n̂× h+ − n̂× h− = jΓ

[n̂ · b] = n̂ · b+ − n̂ · b− = ρm

[n̂ · d] = n̂ · d+ − n̂ · d− = ρe

(3.1)

where n̂· signifies the normal components of inductions, and n̂× signifies the

tangential components of fields.

The electric and magnetic current density on the surface, denoted mΓ and

jΓ respectively, and also the electric and magnetic charge, denoted ρe and

ρm respectively, are the only terms that can be concentrated on the bound-

ary.

If there is no surface charge or surface current, then the right hand values will

be zero and the relevant fields are continuous across the interface. These equa-

tions, as well as the radiation condition which stipulates fields must radiate

outwards, are used to find out if a given set of fields are the correct solutions

to Maxwell’s equations.
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𝑗Γ 
𝑚Γ 
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ℎ− = 0 𝑒+ 
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𝜴+ 𝜴− 

𝑒+ 

ℎ+ 

Figure 3.2: Equivalence principle a) before, and b) after, where the fields inside the
scatterer are zero and equivalent surface currents are now to be solved.

3.2 Equivalence Principle

In general, the representation formula, which solves the total field everywhere,

can be written as:

u(r′, t) = ui(r′, t) + us(r′, t)

= ui(r′, t) +

∫
t

∫
Γ

G(R, t) ·ϕΓ(r, t− τ)dr′dτ
(3.2)

where the subscripts i and s denote the incident and scattered fields respec-

tively. The integral acts on the whole surface Γ and the Green’s function G

translates the current density seen at the source point r′ to the field at the ob-

servation point r. The Green’s function changes depending on the medium it

is associated with. For simplification, we proceed to replace the scatterer with

free space and introduce equivalence currents just outside region. This makes

the surface currents easier to find since we can now just use the free space

Green’s function. The solution will still be correct as Maxwell’s equations,

jump conditions, and radiation conditions are still satisfied.

Consider the interface between an arbitrary material as shown in 3.2a. The

fields generated by the material can be generated in the same way using equiv-

alent surface currents as shown in 3.2b.

Using 3.1, we can obtain the relationship between the equivalent currents and
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Table 3.1: PEC equations

EFIE MFIE

TM eiz = µSjz n̂× hixy =
(

1
2 +D′

)
jz

TE n̂× eixy = N
ε jxy hiz =

(
− 1

2 +D
)
jxy

the tangential fields on the boundary

jΓ = n̂× h−

= −n̂× h+

mΓ = −n̂× e−

= n̂× e+

(3.3)

3.3 Scattering by a Perfect Electric

Conductor

Inside a Perfect Electric Conductor (PEC), the fields are zero; only the surface

will sustain electrical surface current, though not magnetic surface current,

thus the occurrence of jump conditions at the object boundary gives us the

equations in 3.4 for points just outside the surface. [3.1, pp.408-409]

n̂× exy = n̂× eixy + n̂× esxy = mz = 0

n̂× hxy = n̂× hixy + n̂× hsxy = jz

ez = mxy = 0

hz t̂ = −(n̂× hz)ẑ = −jxy

(3.4)

Plugging 3.4 into 2.48 and 2.49 results in the equations to obtain the unknown

current densities from the corresponding incident fields, as shown in table

3.1.
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𝒏 𝟐 

Ω2 

Ω1 

𝜇0𝜀0 

𝜇1𝜀1 

𝒏 𝟏 

Figure 3.3: An arbitrary penetrable object with labelled regions and normals.

3.4 Scattering by a Penetrable Object

A penetrable object in the context of this thesis is one that can be penetrated

by an EM wave.

The scattered field inside and outside of the object needs to be solved when

dealing with penetrable objects. This requires two sets of representation for-

mulas, one for each region. Assigning equation 2.48 to region 1 gives equation

3.5, which for brevity will be represented as shown in equation 3.6.
u1

∂nu1

 =


1

2
+D1 −µ1S1

− 1
µ1
N1

1

2
−D′1




u1

∂nu1

+


ui1

∂nu
i
1

 (3.5)

U1 = Z1U1 + U i1 (3.6)

Similarly, region 2 will have the same form but with subscript 2. Continuity of

fluxes normal to the surface is conserved across the boundary and this is the

common ground for the representation formula for both regions. However we

must note that the normal vector for region 2 points in the opposite direction

to that of region 1, as shown in figure 3.3. All terms with relation to a normal

unit vector will change as follows

∂nu2|Ω2
= −∂nu2|Ω1

D2|Ω2
= −D2|Ω1

D′2|Ω2
= −D′2|Ω1

(3.7)
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𝒏 𝟑𝑨 
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Γ𝐴 
Γ𝐵 

Figure 3.4: Two arbitrary penetrable objects with labelled regions and normals.

Hence the representation formula assigned to region 2 can be written as

U1 = Z ′2U1 + U i2 (3.8)

Z ′2 =


1

2
−D2 µ2S2

1
µ2
N2

1

2
+D′2

 (3.9)

Taking 3.9 from 3.5 and rearranging to solve for the incident fields yields a

Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) type equation,

U i1 − U i2 = (Z ′2 − Z1)U1 (3.10)

Z ′2 − Z1 =


−D1 −D2 µ1S1 + µ2S2

1
µ1
N1 + 1

µ2
N2 D′1 +D′2

 (3.11)

From here we can derive the TM and TE equivalent formulas using 2.46 and

2.47 respectively.

3.5 Scattering by 2 Spatially Distinct

Penetrable Objects

When considering 2 spatially distinct penetrable objects, the scattered field

will need to be solved for 3 regions. Regions 1 and 2 will denotes the space
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inside the objects, and region 3 will denote all space outside these regions. The

regions and boundaries are depicted in figure 3.4 where Ω denotes the region,

ΓA denotes the object boundary of Ω1, and ΓB denotes the object boundary of

Ω2. This requires three sets of representation formulas, one for each region. For

brevity, we will represent the equation for regions 1-3 (restricted to boundary

A or B) as shown in 3.6 to get

U1A = Z1U1A + U i1A (3.12)

U2B = Z2U2B + U i2B (3.13)

U3 = Z3U3 + U i3 (3.14)

where 3.14 contains contributions from both object boundaries, i.e.

U3 =



u3A

u3B

∂nu3A

∂nu3B


(3.15)

Continuity of fluxes normal to the surface is conserved across all boundaries,

however we must take into account the change in direction of the normal vector.

Taking this into account, equations 3.12 and 3.13 become

U3A = Z ′1U3A + U i1A (3.16)

U3B = Z ′2U3B + U i2B (3.17)

These equations must be superimposed to match the form of equation 3.14

U3 = Z12U3 + U i12 (3.18)
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where

Z12 =



1

2
−D1 0 µ1S1 0

0
1

2
−D2 0 µ2S2

1
µ1
N1 0

1

2
+D′1 0

0 1
µ2
N2 0

1

2
+D′2


U i12 =



ui1A

ui2B

∂nu
i
1A

∂nu
i
2B


(3.19)

Subtract 3.14 from 3.18 and solve for the incident field to obtain the final

equation

U i3 − U i12 = (Z12 − Z3)U3 (3.20)

3.6 Reducing the Singularity

To reduce the order of the singularity contained by the hypersingular integrals

in the N operator, we apply the Green’s identity as derived in [3.2, p.6-7] to

produce

Nϕ (r′, t) = −n̂ · ∇
∫

Γ

n̂′ · ∇′G(R, t)ϕ(r′, t) dr′

=

∫
Γ

t̂ · ∇2G(R, t)t̂
′
ϕ(r′, t)− t̂ · ∇G(R, t)∇′ϕ(r′, t) dr′

(3.21)

where ∇G and ∇ · G is the surface gradient and surface divergence of the

Green’s function, respectively, which reduce to simple derivatives along the

boundary in the counter-clockwise direction. The equation in 3.21 can be

reduced using the Helmholtz equation when r 6= r′, which stipulates ∇2G =
1
c2 ∂

2
tG.

We can split the N operator into two components; the first term being the

singular contribution, Ns, and the second term being the hypersingular con-
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tribution, Nh. Thus 3.21 becomes

Nϕ (r′, t) = Nsϕ
(
r

′
, t
)

+Nhϕ (r′, t)

Nsϕ (r′, t) =
1

c2
t̂ ·
∫

Γ

t̂
′ · g (R, t) ∗ ∂

∂t
ϕ (r′, t) dr′

Nhϕ (r′, t) = −t̂ ·
∫

Γ

∇g (R, t) ∗
∫
t

[∇′ϕ (r′, t)]dt dr′

(3.22)

3.7 Implementation

We can generalise each operator in equation 2.50 as

V (r′, t) = Z(R, t)∗ϕ (r, t) (3.23)

where V is the incident field, ϕ is the unknown boundary field, and Z is the

appropriate operator.

When considering implementation on arbitrary surfaces, meshing must be used

to limit the number of solutions along the contour to a finite amount. The

length of the longest edge should generally be less than a tenth of the smallest

wavelength encountered in the simulation.

The unknown current density must also be discretised using a linear combina-

tion of spatial, Sn(r), and temporal, T (t), basis functions as shown in equation

3.24, where r is a selected point in space, t is a selected time, NF is the to-

tal number of basis functions on the contour, and NT is the total number of

temporal basis functions, a.k.a. number of timesteps.

ϕ (r, t) u
NT−1∑
i=0

NF∑
n=1

xi,nT (t− ti)Sn(r) (3.24)

Spatial basis functions are linear distributions on an edge of a geometric shape

and are the building blocks for the current density at the source (denoted

by primed vectors). Since the Green’s function must be integrated over both

source and observation points, testing functions must also be used for the ob-

servation edges (denoted by unprimed vectors). For symmetry and robustness

of the discretised operators, we use the spatial Galerkin method, which stipu-
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lates that the basis and testing functions in space are the same. Galerkin-in-

time schemes have been recently accomplished [3.3], but for ease of implemen-

tation in this project, the temporal testing functions will be Dirac delta/pulse

functions.

3.7.1 Testing functions

We can test equation 3.23 over the whole surface using a testing function,

κ(r): ∫
Γ

κ(r)V(r′, t)dr =

∫
Γ

κ(r)Z(R, t)ϕ(r, t)dr (3.25)

For the special case of theNh operator, we can use partial integration, i.e.∫
Γ

t̂κ · ϕ = −
∫

Γ

∇ · t̂κϕ+

∫
∂Γ

n̂ · t̂κϕ

however the testing function vectors are always orthogonal to the boundary

normals, so n̂ · t̂ = 0, thus:∫
Γ

κ(r)Nhϕ(r′, t) =

∫
Γ

∫
Γ

[
∇ · κ(r)g(R, t)∗

∫
t

[∇′ · ϕ(r′, t)] dt

]
dr′dr (3.26)

From equation 3.25, we discretise the unknown as shown in 3.24. We then use

the Galerkin-in-space scheme which stipulates that the spatial testing functions

should equal the basis functions, and then exploit time translation symmetry

(using k = j − i) to get the discrete convolution:

∫
Γ

Sm(r)V(r′, tj)dr =

j−1∑
k=0

NF∑
n=1

xj−k,n

(∫
Γ

∫
Γ

Sm(r)Z(R, tk)Sn(r′)dr′dr

)
(3.27)

where tj = j∆t and j = 0, 1, ..., NT − 1.
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Timestep, 𝑗 

𝑍0 

𝑍0 𝑍1 

𝑍2 𝑍0 𝑍1 

𝑍2 𝑍0 𝑍1 𝑍3 

𝑍2 𝑍0 𝑍1 𝑍3 𝑍4 

Figure 3.5: Operators used in the marching-on-in-time routine.

We can describe equation 3.27 in matrix form,

{Vm}j =

j−1∑
k=0

[Zm,n]k {xn}j−k for j = 0, 1, ..., NT − 1 (3.28)

where m,n = 1, 2, . . . , NF denote the current spatial testing and basis func-

tions respectively, k denotes the current temporal basis function, and matrix

Z is of size N2
F × NT . For example, one element of matrix Z can be found

using:

Zm,n,k =

∫
Γ

∫
Γ

Sm(r) · F (R, k)Sn(r′)dr′dr (3.29)

where F represents the appropriate convolution depending which operator

from 2.50 is being computed.

To solve 3.29, we use the marching-on-in-time (MOT) scheme. For each time

step, j, we can deduce the unknown using:

{x}j = [Z]−1
0

(
{V }j −

j−1∑
k=1

[Z]k{x}j−k

)
(3.30)

For example, when j = 0, {x}0 can be solved directly. When j = 1, the system

contains {x}1 and the previously found {x}0. This process continues in the

same manner up to j = NT − 1 for which the system contains all past values

of {x}, as depicted in Fig. 3.5.
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Once x is known, the unknown can then be derived using equation 3.24. This

simply equates to ϕ = x for integer values of timestep and vertex and function.

This is because both spatial and temporal basis functions are unity at vertex

n and timestep i, and 0 elsewhere. For more accuracy between vertices or

between time steps, one can simply use linear interpolation.

3.7.2 Piecewise Polynomials

Before continuing, we must introduce the concept of a generic piecewise poly-

nomial; a function split into several sub-functions. Each polynomial sub-

function is described by an equation containing coefficients and a single positive

and descending variable with integer exponents. The greater the polynomial

degree, the more coefficients there will be, e.g. a linear polynomial (of degree

1) will have 2 coefficients, whereas a quadratic polynomial (of degree 2) will

have 3 coefficients.

We can evaluate any piecewise polynomial using

S(x) =


∑P
p=0 dα,px

P−p if x ∈ α

0, elsewhere
(3.31)

where each polynomial coefficient is denoted by d, the maximum degree is

denoted by P , the variable is denoted by x, and α = 1, 2, . . . ,Υ denotes a

particular sub-function (which acts between partitions). A typical polynomial

will have the form dα,0x
P +dα,1x

P−1 + ...+dα,P . As such, a coefficient matrix

has the form

Coefficient matrix =



d1,0 d1,1 . . . d1,P

d2,0 d2,1 . . . d2,P

...
...

. . .
...

dΥ,0 dΥ,1 . . . dΥ,P


(3.32)

where the matrix size is [(P+1)×Υ], and Υ is the number of sub-functions.
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-0.2 -0.1 0 0.1 0.2
0

1
Hat function

-0.2 -0.1 0 0.1 0.2
-10

0

10
Differentiated

x
-0.2 -0.1 0 0.1 0.2
0

0.1
Integrated

Figure 3.6: Piecewise polynomial example using a hat function which has then be
spatially differentiated and integrated.

This concept may be better explained with a simple example. Consider the

piecewise linear ‘hat’ function operating in the partitions located at [−0.1, 0, 0.1]

with a height of 1 as shown at the top of figure 3.6. The piecewise definition of

this function is shown in equation 3.33. Figure 3.6 also shows the differentiated

and integrated hat function.

∧(x) =


10x+ 1, if − 0.1 ≤ x < 0

−10x+ 1, if 0 ≤ x < 0.1

0, elsewhere

(3.33)

The differentiated and integrated functions can easily be found by applying

the corresponding rules to the coefficients. After differentiation, the degree

will decrease by 1 whereas the number of partitions remain the same. After

integration, the degree and number of partitions will increase by 1. To con-

tinue the example from equation 3.33, figure 3.7 demonstrates the integration

procedure.

As well as the hat function, the other important function to be considered is
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Partition(1)=-0.1 

Partition(3)=0.1 

Partition(2)=0 

f2(partition(2)) = f1(partition(2)) 

f3(x) 

f1(partition(1)) = 0  

Partition(4)=inf 

To get C1, use initial condition: 

𝑓1 −0.1 = −0.05 + 𝐶1 = 0 ⇒ 𝐶1 = 0.05 

To get C2 and C3, use boundary conditions: 

𝑓2 0 = 𝐶2 = 𝑓1 0 = 0.05 ⇒ 𝐶2 = 0.05 

𝑓3 0.1 = 𝐶3 = 𝑓2 0.1 = 0.1 ⇒ 𝐶3 = 0.1 

𝑓1 𝑥 = 5𝑥2 + 𝑥 + 𝐶1 

𝑓2 𝑥 = −5𝑥2 + 𝑥 + 𝐶2 

𝑓3 𝑥 = 𝐶3 

Figure 3.7: A demonstration of the integration procedure on a hat function.

the rectangular pulse, which is defined as

u(x) =

1, if x ∈ α for α = 1, 2, . . . ,Υ

0, elsewhere
(3.34)

Both rectangular and hat functions can be more generally described in a piece-

wise definition as shown in equation 3.31.

3.7.3 Spatial basis functions

Piecewise linear spatial functions must be used for the test and basis derivatives

in the Nh operator, hence hat functions are used. The hat functions can be

visualized at both source and observation vertices as shown in figure 3.8 where

Sm represents the function at the observation/test edges, and Sn represents

the function at the source/basis edges. Each sub-function index is denoted by

α and β for test and basis function, respectively. For all other basis fucntions,

rectangular pulses are used.
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𝑆𝑛  

𝑆𝑚 

𝑎𝛼=1 𝑏𝛼=2 

Figure 3.8: Hat function.

3.7.4 Discretised Equations

For clarity, we will explicitly show the discretised form of the BEM formulas

in equation 2.48 as:

u{

∧{


ez

ht

 =


G

2
+ D −η

c
S

− c
η
N

Gᵀ

2
−D′



ez

ht


}∧

}u

+


eiz

hit


}u

}∧

(3.35)

where superscript ᵀ denotes the transpose, and where the operators are now

defined as

Dm,n,k =

∫
Γ

∫
Γ

um(r) ∧n (r′)

F (R,k)︷ ︸︸ ︷[
∂g

∂n′
(R, t) ∗T (k∆t− t)

]
dr′ dr

D′
m,n,k =

∫
Γ

∫
Γ

∧m(r) un (r′)

[
∂g

∂n
(R, t) ∗T (k∆t− t)

]
dr′ dr

Sm,n,k =

∫
Γ

∫
Γ

um(r) un (r′)

[
g(R, t)∗ ∂

∂t
T (k∆t− t)

]
dr′ dr

Nm,n,k = Nsm,n,k + Nhm,n,k

Nsm,n,k =
1

c2

(
t̂ · t̂′

)∫
Γ

∫
Γ

∧m(r) ∧n (r′)

[
g(R, t)∗ ∂

∂t
T (k∆t− t)

]
dr′ dr

Nhm,n,k =

∫
Γ

∫
Γ

∇ · ∧m(r) ∇ · ∧n(r′)

[
∇g(R, t)∗

∫
t

T (k∆t− t)dt
]
dr′ dr

Gm,n,k = δ0
k

∫
Γ

um(r) ∧m (r) dr
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where u and ∧ denote the rectangular and hat test/basis functions respectively,

k is the current timestep, and the Kronecker delta is defined as

δij =

0 (i 6= j)

1 (i = j)
.

The field contribution between a pair of basis and test functions is due to

interactions between all partitions. For example, testing with hat functions

and using square basis functions, denoted 〈∧,u〉, will have 2 edge interactions

(α = 1, 2 and β = 1), whereas using hat functions for both test and basis,

〈∧,∧〉, will have 4 edge interactions. When dual basis functions are used

(explained later on), the mesh has to be refined, meaning we get double the

amount of edges to work with. Thus for the combination of dual hat basis and

dual hat test functions, there will be 16 edge contributions.

3.7.5 Gaussian coefficient table

We can limit the spatial integration acting on the basis functions in the opera-

tors over just the interacting edges. Each edge is parameterized using s ∈ [0, 1]

so that the integral limits become 0 and 1 as shown in 3.36, where a and b are

the start and end vertices for each edge, respectively.

r(s) = a+ (b− a)s (3.36)

When finding the inner and outer integral of a parameterized function with 2

arguments, f(xm, xn), we use Gaussian quadrature,

∫ bm

am

∫ bn

an

f(xm, xn)dxndxm = lmln

Qm∑
qm

Qn∑
qn

wqmwqnf (xm(sqm), xn(sqn))

(3.37)

where subscripts m and n denote the outer and inner function respectively, l

is the length of the discrete function, Q is the number of quadrature points to

use, and w is the weight across Gaussian point q.
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If we consider each basis function as a piecewise polynomial, it will consist

of a subset of coefficients at different degrees, thus can be evaluated as in

equation 3.31. So we can now compute the integral of the sampled function

using:

∫ bm

am

∫ bn

an

f(xm, xn)dxndxm =

Υm∑
α

Υn∑
β

lαlβ

Pm∑
pm=0

Pn∑
pn=0

dα,pmdβ,pn

Qm∑
qm=1

Qn∑
qn=1

wqms
Pm−pm
qm wqns

Pn−pn
qn︸ ︷︷ ︸

Gcoeffsm Gcoeffsn︸ ︷︷ ︸
Gcoeffs

f(rm(sqm), rn(sqn))

(3.38)

where lα is the length, and dα,p is the pth coefficient of sub-function α. For

computing the convolutions, we are only interested in the distances between

Gaussian quadrature points. Therefore, Gcoeffs represents a table of values

which gives every possible combination of Gaussian quadrature distances, split

into every combination of polynomial degree interaction.

As an example, if we use an outer linear function (Pm = 1) and an inner

quadratic function (Pn = 2), along with 2 outer and 4 inner quadrature points
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(Qm = 2, Qn = 4), we obtain

Gcoeffsm =


w1s1 w1

w2s2 w2

 =


a c

b d



Gcoeffsn =



w1s
2
1 w1s1 w1

w2s
2
2 w2s2 w2

w3s
2
3 w3s3 w3

w4s
2
4 w4s4 w4


=



e i m

f j n

g k o

h l p



Gcoeffs =




ae af ag ah

be bf bg bh



ai aj ak al

bi bj bk bl



am an ao ap

bm bn bo bp


ce cf cg ch

de df dg dh



ci cj ck cl

di dj dk dl



cm cn co cp

dm dn do dp





Using Gaussian quadrature to compute the integral, a single element of the Z

matrix from 3.29 becomes

Zm,n,k =

Υm∑
α=1

Υn∑
β=1

Qm∑
qm=1

Qn∑
qn=1

lαml
β
nwqmwqn

[
Sm(rαm(sqm)) · F (R, k)Sn(rβn(sqn))

]
∇ · Sm ∇ · Sn = (t̂

α

m · t̂
β

n)Sm(rαm(sqm))Sn(rβn(sqn))

(3.39)

where lαn is the length and t̂
α

n is the tangential unit vector of the nth edge

at sub-function α, wqm is the weight across Gaussian point qm, and distance

R =
∣∣rαm(sqm)− rβn(sqn)

∣∣. Qm and Qn is the number of Gaussian quadrature

points used for the test and basis integral respectively. To use arbitrary basis

and test functions, it is useful to implement the above formula in terms of
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polynomial coefficients,

Zm,n,k =

Υm∑
α=1

Υn∑
β=1

Pm∑
pm=0

Pn∑
pn=0

dα,pmdβ,pnCmα,nβ ,k(pm, pn) (3.40)

where we sum over all test and basis function polynomial coefficients, denoted

d(Sαm) and d(Sβn) respectively, multiplied by the convolution polynomials of

the same degree, C. pm and pn denote the current test and basis degree,

and Pm and Pn denote the maximum test and basis degree. The integrated

convolution polynomials for test function m and basis function n are to be

preprocessed for each timestep, k, using

Cm,n,k(pm, pn) = lmln

Qm∑
qm=1

Qn∑
qn=1

Gcoeffs(qm, qn, pm + 1, pn + 1)F (k,R) (3.41)

where the convolution, F , acts on all distances between the test and basis

Gaussian quadrature points R = |rm(sqm)− rn(sqn)|. The result of Cm,n,k

for a single element will yield a (Pm + 1)× (Pn + 1) matrix of coefficients for

all combinations of test and basis degrees.

3.7.6 Basis function index tables

A standard procedure for organising basis functions that span potentially sev-

eral distinct objects is to use some indexing scheme. For instance, if there

are multiple objects, the indexing scheme should not allow a basis function

to stretch between the different surfaces. This project uses basis function

index tables which specify the boundary edges that each spatial function cov-

ers.

Fig. 3.9a demonstrates a simple example creating a basis function index table

using hat functions, which each stretch over 2 edges. Fig. 3.9b demonstrates

creating a basis function index table using dual hat basis functions, which each

stretch over 4 edges.
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Figure 3.9: How to make the basis function index tables.
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Figure 3.10: Lagrange interpolator and the associated differentiated and integrated
functions, for degrees 1 and 2.

3.7.7 Temporal basis functions

The temporal basis functions are scaled versions of the Lagrange interpolator

function of degree p

T (t) : [−1, p]→ R :
t

∆t
→

i∏
φ=1

φ− t
∆t

φ

p−i∏
φ=1

φ+ t
∆t

φ
, (3.42)

if
t

∆t
∈ [i− 1, i], i = 0, 1, . . . , p (3.43)

The plots of Lagrange interpolator functions for different degrees with their as-

sociated differentiated and integrated functions are shown in Fig. 3.10.

The Lagrange interpolator function of at least degree 1 should be used for

all operators. The differentiated Lagrange function will be used in operators

S and Ns whereas the integrated Lagrange function will be used in operator

Nh. Higher degree polynomials can be used, which will sometimes give more

accurate results, but will take longer to compute and will be more suscepti-

ble to instabilities because of the dependency on a more accurate Gaussian

quadrature rule to effectively sample the more complex polynomial.

Similar to the representation of the test/basis functions in 3.31, we can im-

plement the Lagrange interpolator as a set of separate piecewise polynomi-
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Figure 3.11: Lagrange interpolator function of degree 2 with associated quadratic equa-
tions at each interval, α, along with the matrix of coefficients.

als

T (t) =


∑P
p=0 dα,pt

P−p if t ∈ α

0, elsewhere
(3.44)

where α = 1, 2, . . . ,Υ.

As an example, the Lagrange interpolator of degree 2 is shown in Fig. 3.11

with its associated 2nd order quadratic equations for each partition, α, and

its matrix of coefficients. The Lagrange interpolator has Υ partitions between

[−∆t, P∆t].

3.7.8 Temporal convolutions

Now that the construction of the piecewise polynomials for the spatial and

temporal basis functions has been explained, along with the Gaussian coef-

ficient tables, and basis function index tables, we can continue deriving the

implementation from equation 3.29.

The temporal convolutions, denoted by F , are described by convolving the

Green’s function with the appropriate temporal basis function. The straight-

forward case for the 2D Green’s function convolved with an arbitrary temporal

basis functions is shown in 3.45.
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𝑎 𝑏 

Green function 

Shifted Lagrange 

interpolator 

Figure 3.12: Decomposition of the temporal convolution including plots of the Green’s
function, and the translated Lagrange interpolator function, superimposed to demon-
strate the use of the integration limits a and b.

F (R, k) = g(R, t)∗T (t)|t=tk =

∫ (k+1)∆t

R/c

H
(
t− R

c

)
2π

√
t2 −

(
R
c

)2T (k∆t− t)dt (3.45)

Equation 3.45 can be analytically solved and more generally defined for any

degree:

F (R, k) =
1

2π

Υ∑
α=1

P∑
p=0

dα,P−pIp (3.46)

where the solved integrals are

I0 =

log

t+

√
t2 −

(
R

c

)2
b

a

I1 =

√t2 − (R
c

)2
b
a

Ip =
1

p

[
tp−1I1 + (p− 1)

(
R

c

)2

Ip−2

]b
a

(3.47)
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where the updated limits, a and b become

a = max

(
(k − α)∆t,

R

c

)
b = max

(
(k − α+ 1)∆t,

R

c

) (3.48)

Figure 3.12 shows the Green’s function superimposed with the translated La-

grange interpolator which demonstrates the use of the integration limits, a

and b. As can be seen, g(R, t) is a polynomial between [R/c,∞] which is due

to the Heaviside function, H. The Green’s function singularity that occurs at

R = 0 can also be seen. The translated Lagrange interpolator, T (k∆t− t), is

a polynomial between [(k − α)∆t, (k − α + 1)∆t] for α = 1, 2, . . . ,Υ. Hence

the convolution will have contributions between [a, b] which become the limits

of integration as described in equation 3.48. The limit, a, effectively replaces

the Heaviside function.

The temporally differentiated version of 3.46 is required for operators S and

Ns, and the temporally integrated version is required for operator Nh. These

variations can easily be found by applying the corresponding differentiation

and integration rules to the coefficients. The spatial derivatives of the con-

volutions are required for the D and D′ operators. It is important to note

that the limits, as well as the integrand, in the convolution have spatial de-

pendency. The resultant differentiated equations are shown in 3.49, 3.50, and

3.51. Because of the linear relation of the limits, the differentiated limits be-

come Heaviside functions. For the convolution derivatives to be found, the

convolution itself must be computed at the same time, which is useful to note

for implementation.

∂RF (R, k) =
1

2π

Υ∑
α=1

P∑
p=0

dα,P−p∂RIp (3.49)
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∂RI0 =


∂Rt+

t ∂Rt−Rc√
t2−(Rc )

2

t+

√
t2 −

(
R
c

)2

b

a

∂RI1 =

 t ∂Rt− R
c√

t2 −
(
R
c

)2
b
a

∂RIp =
1

p

[
∂Rt

p−1I1 + tp−1∂RI1 + (p− 1)

(
2
R

c
Ip−2 +

(
R

c

)2

∂RIp−2

)]b
a

(3.50)

∂Ra = H

(
R

c
− (k − α)∆t

)
∂Rb = H

(
R

c
− (k − α+ 1)∆t

) (3.51)

Because collocation in time is used, which means the temporal testing func-

tions are simple pulses, the temporal testing functions do not need taking into

account in the implementation and will not be discussed further. More in-

formation on using more elaborate temporal testing functions can be found

in [3.3].

Some sample convolutions and their corresponding differentiated and inte-

grated functions are shown in figs. 3.13a–3.13d. As can be seen, there are

singularities associated with all convolutions at k = 0 and R = 0. There are

additional singularities associated with the temporal differential and integral

convolutions at different values of k as well. This means that the inner spa-

tial integrals cannot be computed using Gaussian quadrature and will need to

be solved analytically, or split at the singularity regions. A straightforward

method of bypassing this problem is to have a different number of Gaussian

quadrature points for inner and outer integrals (i.e. Qm 6= Qn) so that the

points never overlap, thus R never becomes 0.
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(a) No modification. (b) Temporally differentiated.

(c) Temporally integrated. (d) Spatially differentiated.

k=0
k=1
k=2
k=6
k=9

(e) Legend.

Figure 3.13: The Green’s function convolved with the Lagrange interpolator of degree
2 at different timesteps, k.
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3.8 Validation

The TD BEM code was implemented using the equations described above and

applied to a cylinder meshed using 69 boundary edges was excited with a

Gaussian pulse which had a maximum frequency response of ωmax.

The equations were evaluated at equidistant timesteps according to the fol-

lowing constraint

∆t =
π

Φωmax
(3.52)

where Φ is an oversampling factor and was chosen to be 7, and the maximum

frequency in radians is ωmax = 2πc/λmin.

The maximum frequency is calculated by allowing at least 10 basis functions

per wavelength [3.4]. This is given by equation 3.53, where the surface is

assumed to be closed, and lmin is the minimum edge length encountered in

the discretised boundary.

ωmax =
2πc

10lmin
(3.53)

The number of inner and outer Gaussian quadrature points was chosen to be

5 and 4 respectively. The number of Gaussian points used when computing

the integral of the incident field, {Vm}, was chosen to be 3.

The temporal basis function used in all cases was the Lagrange interpolator

function of degree 1, which is the same as a hat function.

3.8.1 Scattering by a Perfect Electric Conductor

Using the equations in the table 3.1, we excite a 2D PEC cylinder with a

plane wave from the left. After monitoring the electric field at the surface at
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the exposed side (boundary edge nearest to the excitation source) and shadow

side (boundary edge furthest from the excitation source) for a sufficient time,

we compute the Fourier transform. There is an analytical solution to this

problem in the frequency domain; the derivation can be found, for example,

in [3.1,3.5].

The tangential current densities, Jxy and Jz, that were computed numerically

using BEM are compared with the analytic solutions for TE and TM modes,

respectively. The analytical solution for the current density can be found using

3.54 and 3.55 for the TE and TM modes respectively, where H
(2)
n and H

(2)′

n is

the Hankel function of the second kind and its derivative. For computational

purposes, the limits, [−n, n], become [−(ka+ 10), (ka+ 10)] to allow the end

orders to sufficiently decay before the limits are reached. Further reading for

derivation can be found in [3.6].

The Hankel function differentiated with respect to the argument (ka) can be

computed using equation 3.56. [3.7]

jxy(ϕ) =
2i

πka

∞∑
n=−∞

i−n

H
(2)′
n (ka)

einϕ (3.54)

jz(ϕ) =
−2

πηka

∞∑
n=−∞

i−n

H
(2)
n (ka)

einϕ (3.55)

H(2)′

n (ka) =
1

2

(
H

(2)
n−1(ka)−H(2)

n+1(ka)
)

(3.56)

An electric field in 2D using cylindrical coordinates has 3 components as il-

lustrated in figure 3.14, which includes the z-directed component,Ez, the az-

imuthal component, Eϕ, and the radial component, Eρ. The cylinder has

radius a.

When computing the time domain operators in 2.50, it is more efficient to

compute them together since the convolutions and their derivatives can be

calculated at the same time. Because the TE EFIE and TM MFIE require at

least piecewise polynomial basis and testing functions for accurate results, all

basis and testing functions are set to hat functions.

Figures 3.16a, 3.16b, 3.16c, and 3.16d show the comparison between numerical
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𝑎 
y 

x 

𝐸𝜌 

𝐸 

𝐸𝜑 

𝐸𝑧
𝑖  

Figure 3.14: Diagram of a 2D cylinder with fields in a cylindrical coordinate system.

Figure 3.15: The modelled 2D cylinder showing the exposed and shadow side observation
locations.

and analytical solutions for the TE EFIE, TE MFIE, TM EFIE, and TM MFIE

respectively, where the shadow and exposed sides indicate the observation

points demonstrated in figure 3.15. As can be seen, the error is negligible at

low frequencies and only starts to deviate at the higher end of the spectrum,

which is expected since this is where the Gaussian pulse frequency response

will be approaching zero.

3.8.2 Scattering by a Penetrable Cylinder

The 2D cylinder is now filled with a dielectric (with εr = 2) and is excited

with a plane wave. After monitoring the electric field at the surface at the

exposed side and shadow side and computing the Fourier transform, we can

compare the results with the analytical solution shown in equation 3.58 for the
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(a) TE EFIE. (b) TE MFIE.

(c) TM EFIE. (d) TM MFIE.

Exposed side - Numerical
Shadow side - Numerical
Exposed side - Analytical
Shadow side - Analytical

(e) Legend.

Figure 3.16: Comparison of the current densities of the exposed and shadow sides of a
PEC cylinder and the corresponding analytical results.
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Figure 3.17: Comparison of the current densities of the exposed and shadow sides of a
dielectric cylinder and the corresponding analytical results for the TM case.

TM case. Jn and J ′n is the Bessel function and its derivative, and kint denotes

the wave number inside the cylinder. The full derivation of these equations

can be found, for example, in [3.1,3.5].

bn = −i−n
√
εrJ
′
n(ka)Jn(kinta)−√µrJn(ka)J ′n(kinta)

√
εrH

(2)′
n (ka)Jn(kinta)−√µrH(2)

n (ka)J ′n(kinta)
(3.57)

jz(ϕ) =

∞∑
n=−∞

bnH
(2)
n (ka)einϕ (3.58)

Because the N operator in equation 2.48 requires at least piecewise polynomial

basis functions, we will use a mixture of hat and square basis and testing

functions for this case scenario.

The results in figure 3.17 show good comparison between the numerical and

analytical solutions for the TM case. Again, the error is negligible at low

frequencies but starts to diverge at the higher end of the spectrum which is

expected.

3.8.3 Scattering by 2 Penetrable Cylinders

Two spatially distinct cylinders of free space are suspended in free space as

shown in 3.18a. Using the implementation of equation 3.20, a plane wave
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excitation from the left is observed propagating through both cylinders at the

correct times as shown in 3.18b. We expect this result because no scattering

should occur, thus the total field should equal the incident field.

A slight systematic displacement can be seen which is due to the choice of

basis functions, in this case, a mix of hats and rectangles. Because the hat

functions act at the edge centers, and the rectangle functions act at the edge

vertices, the observation points for the incident wave and current density are

offset by half an edge length. Normally this would not be a problem. Using

dual basis functions would alleviate the inconsistency by aligning the degrees

of freedom for all basis functions to the edge centers.
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(a) The modelled 2D cylinders showing the locations of the observed halfedges.

(b) Comparison of the total electric field and the incident electric field.

Figure 3.18: Simulation of two spatially distinct cylinders in free space.
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4
The Unstructured
Transmission-Line Modelling
Method

The TLM method uses lumped circuit models to temporally and

spatially discretise the simulation problem into nodes. The basis of

the method compares a network of transmission lines with a medium

of propagating EM waves. The simplest representation of the tech-

nique uses Huygens Principle as shown in figure 4.1; each point of

an advancing wave front becomes a secondary source spherical wave,

which sequentially sources a new family of wave fronts and so on.

This chapter will begin by easing the reader into the TLM method

by first deriving the 1D formulations. The extension to 2D unstruc-

tured TLM is not trivial and will be described in detail, starting

from Maxwell’s equations. Its implementation and stability will be

discussed, and will include a validation test case.

$ � %
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1 0.5 0.25 

Negative 
𝑡 = Δ𝑡  
𝑡 = 2∆𝑡  
𝑡 = 3∆𝑡  

Figure 4.1: Graphical representation of Huygens’ principle at different points in time,
where the thickness of the lines indicates the magnitude of the wave.

4.1 1D TLM Theory

There are numerous publications that discuss the TLM method in great detail

such as [4.1–4.4]. This section will focus on the 1D case.

The 1D scalar wave equation in free space (without losses), as shown in 2.16

can be compared with the equivalent circuit problem of a 1D transmission

line.

Figure 4.2 shows a circuit diagram of a section from a 1D transmission line

which consists of a capacitor, resistor and inductor, where L is the inductance,

C is the capacitance, and R is the resistance. Assuming that the distance

between sections, ∆x → 0, we can apply Kirchoff’s voltage and current laws

to obtain equations 4.1 and 4.2, respectively, where V is the voltage, and I is

the current.

−∂V
∂x

∆x = L
∂i

∂t
(4.1)

−∂I
∂x

∆x = C
∂v

∂t
+
V

R
(4.2)

After combining these equations and eliminating I, we obtain(
∂2

∂x2
− LC

(∆x)2

∂2

∂t2
− L

R(∆x)2

∂

∂t

)
V = 0 (4.3)
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𝑅 𝐶 

Δ𝑥 

𝐿 

Figure 4.2: Circuit elements in an equivalent 1D transmission line.

Equations 4.1 and 4.2 can be compared with Faradays law in 1D (shown in

4.4) and the 1D TD scalar wave equation in the presence of no source currents,

derived from 2.15 and shown in 4.5 where σ is conductivity.

− ∂e

∂x
= µ

∂h

∂t
(4.4)(

∂2

∂x2
− µε ∂

2

∂t2
− µσ ∂

∂t

)
e = 0 (4.5)

In this thesis, we are only considering low loss dielectrics, so we will ignore the

diffusion-like behaviour of the 3rd term of equation 4.5 and use only the wave-

like behaviour. After comparing 4.1 with 4.4, and 4.3 with 4.5, an analogy can

be found. Hence we are able to obtain the equivalence between circuits and

electromagnetic fields as shown in table 4.1.

The theory assumes ∆x → 0 which is an impractical resolution, but can be

more realistically defined using a rule of thumb that a mesh should have a fine

enough resolution to determine one tenth of the smallest wavelength that is

encountered in the simulation [4.2]. This is described by equation 4.6, and is al-

most identical to the BEM spatial constraint described by equation 3.53.

∆x ≤ λmin
10

(4.6)

4.2 2D UTLM Theory

This section will derive the 2D unstructured TLM method from Maxwell’s

equations described in chapter 2.1.

67



Chapter 4. The Unstructured Transmission-Line Modelling Method

Table 4.1: Equivalences of the field and transmission-line quantities.

Field theory Transmission line theory

Quantity Symbol unit Quantity Symbol unit Equivalence

Electric field e [V/m] Voltage V [V] e↔ − V
∆x

Magnetic field h [A/m] Current I [A] h↔ − I
∆x

Permittivity ε [F/m] Capacitance C [F] ε↔ C
∆x

Permeability µ [H/m] Inductance L [H] µ↔ L
∆x

In TLM it is assumed that the electric and magnetic fields are constant over

intervals of time ∆t. For each cell, a transmission line circuit is constructed

such that:

i) the travel time on each of the constituent transmission lines equals ∆t,

ii) the low frequency response equals that of an equally shaped region of

free space,

iii) in the lossless case, only passive or energy conserving elements are present.

We first define a triangle containing 3 link lines emanating from the circum-

center of the triangle to the edges of the triangle as shown in figure 4.3, where

φα denotes the angle between the link lines. These link lines connect to neigh-

bouring triangles via ports, each denoted by subscript α, and have link length

∆α. Because the links connect the circumcenter of each triangle, the link

lines are always perpendicular to the edges, thus allowing implicit continuity

of tangential components of field values at the edges.

The scalar wave equation from equation 2.15 written in a 2D FD cylindrical

coordinate system in TM mode, in terms of Ez, reduces to

∂2

∂r2
Ez(r, ϕ) +

1

r2

∂2

∂ϕ2
Ez(r, ϕ) = k2Ez(r, ϕ) (4.7)

where k
(
= ω
√
µε
)

is the wavenumber.
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𝑝𝑜𝑟𝑡 3 

𝜙1 

𝑙3 

𝜙3 

𝜙2 

𝑅 

𝑅 
𝑅 

Figure 4.3: Diagram indicating lengths and angles in a UTLM triangle.

The field local to an observation point, where the mesh is sufficiently fine,

can be expressed as the superposition of local solutions of the wave equation.

When the mesh constraint in 4.6 is used, we can accurately approximate the

solution using the first 3 modes, [4.2]

Ez = J0(kr)X1 + cos(ϕ)J1(kr)
2X2

k
+ sin(ϕ)J1(kr)

2X3

k
(4.8)

where Jn denotes the Bessel function of order n andX represents the expansion

coefficients. This can be written in matrix form for each port as
Ez1

Ez2

Ez3

 =


J0(k∆1) 2cos(0)J1(k∆1)

k 2sin(0)J1(k∆1)
k

J0(k∆2) 2cos(φ3)J1(k∆2)
k 2sin(φ3)J1(k∆2)

k

J0(k∆3) 2cos(φ1 + φ3)J1(k∆3)
k 2sin(φ1 + φ3)J1(k∆3)

k




X1

X2

X3


(4.9)

We can assume the arguments of the Bessel functions are small because of the
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mesh constraint in 4.6, thus can be approximated as

J0(kr)|kr�1
= 1

J1(kr)|kr�1
=
kr

2

∂rJ0(kr)|kr�1
=
k2r

2

∂rJ1(kr)|kr�1
=
k

2

(4.10)

Using these approximations, equation 4.9 can be reduced to

Ez = TEX (4.11)

where Ez represents a vector of the electric field at all 3 ports, X represents a

vector of all 3 expansion coefficients, and

TE =


1 ∆1 0

1 cos(φ3)∆2 sin(φ3)∆2

1 cos(φ1 + φ3)∆3 sin(φ1 + φ3)∆3

 (4.12)

The modal components for the magnetic field, Hϕ, can be expressed similarly

using 4.4 in 2D cylindrical coordinates

∂

∂r
Ez = −iωµHϕ (4.13)

and plugging this into 4.11, along with the Bessel function derivative approx-

imations shown in 4.10, to obtain

−iωµHϕ = TMX (4.14)
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where Hϕ represents a vector of the magnetic field at all 3 ports, and

TM =


−k2∆1

2 1 0

−k2∆2

2 cos(φ3) sin(φ3)

−k2∆3

2 cos(φ1 + φ3) sin(φ1 + φ3)

 (4.15)

Rearranging 4.11 and inserting into 4.14 to solve for the magnetic field yields

an admittance relationship

−iωµHϕ = TM TE
−1 Ez (4.16)

Using the sine rules in 4.17, this can be found to be the sum of a capacitive

and inductive admittance matrix shown in 4.18 where sα = sin(φα) is used

for brevity (where α = 1, 2, 3).

sin(a)cos(b) + cos(a)sin(b) = sin(a+ b)

sin(φ1 + φ3) = −sin(φ2)
(4.17)
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
Hϕ1

Hϕ2

Hϕ3

 =
iωε

2


∆1∆2∆3s1 ∆2

1∆3s2 ∆2
1∆2s3

∆2
2∆3s1 ∆1∆2∆3s2 ∆1∆2

2s3

∆2∆2
3s1 ∆1∆2

3s2 ∆1∆2∆3s3


∆2∆3s1 + ∆1∆3s2 + ∆1∆2s3


Ez1

Ez2

Ez3



+
1

iωµ


∆3s2 + ∆2s3 −∆3s2 −∆2s3

−∆3s1 ∆3s1 + ∆1s3 −∆2
1s3

−∆2s1 −∆1s2 ∆2s1 + ∆1s2


∆2∆3s1 + ∆1∆3s2 + ∆1∆2s3


Ez1

Ez2

Ez3


(4.18)

The equation in 4.18 is required to be reciprocal which can be satisfied by

considering low frequencies, where the inductive term will be dominant. This

assumption is appropriate for cases where the mesh constraint 4.6 is adhered

to. However, the capacitive term must not be neglected because the inductive

term can be seen to disappear when V1 = V2 = V3. In this case, by taking a

factor of ∆α in each row of the capacitive term in equation 4.18, the numerator

can be seen to equal the denominator, thus we obtain 4.19.


Hϕ1

Hϕ2

Hϕ3

 =
iωε

2


∆1

∆2

∆3




Ez1

Ez2

Ez3

 (4.19)

This capacitive equation can replace the one in 4.18.
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Using the circuit equivalences in table 4.1, we can determine the circuit equiv-

alences as

V = Ez lz

I = Hϕ l
(4.20)

where V , I, and l are vectors of the voltage, current, and edge lengths at all

3 ports, respectively. The z-directed length, lz, is unitary when solving 2D

problems.

The circuit equivalent of 4.18 becomes

I = (YC + YL)V (4.21)

where YC and YL denote the capacitive and inductive components of the ad-

mittance matrix respectively, and are defined as

YC =
iωε

2


l1∆1

l2∆2

l3∆3



YL =
1

iωµ


l1(∆3s2 + ∆2s3) −∆3l1s2 −∆2l1s3

−∆3l2s1 l2(∆3s1 + ∆1s3) −∆1l2s3

−∆2l3s1 −∆1l3s2 l3(∆2s1 + ∆1s2)


∆2∆3s1 + ∆1∆3s2 + ∆1∆2s3

(4.22)

By applying simple geometrical rules to figure 4.3, we find that sin(φi) =

lα/(2R), where R is the radius of the circumcircle. Thus the inductive com-
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ponent of the admittance matrix becomes

YL =
1

iωµ


l1(∆3l2 + ∆2l3) −∆3l1l2 −∆2l1l3

−∆3l2l1 l2(∆3l1 + ∆1l3) −∆1l2l3

−∆2l3l1 −∆1l3l2 l3(∆2l1 + ∆1l2)


∆2∆3l1 + ∆1∆3l2 + ∆1∆2l3

(4.23)

The admittance relationship in 4.21 can be compared with the nodal admit-

tance matrix for a three bus network, as shown in figure 4.4, where the equiv-

alent admittance matrix is

Y =


y1 + y12 + y13 −y12 −y13

−y12 y2 + y12 + y23 −y23

−y13 −y23 y3 + y13 + y23

 (4.24)

The admittance values can therefore be equated as:

yα =
iωε

2
lα∆α for α = 1, 2, 3

y12 =
1

iωµ

l1l2∆3

∆2∆3l1 + ∆1∆3l2 + ∆1∆2l3

y13 =
1

iωµ

l1l3∆2

∆2∆3l1 + ∆1∆3l2 + ∆1∆2l3

y23 =
1

iωµ

l2l3∆1

∆2∆3l1 + ∆1∆3l2 + ∆1∆2l3

We can then perform a standard delta-star transformation to the inductive

admittances to obtain a circuit which has 3 branches, with each branch con-

taining an inductor link and a capacitor drain as shown in 4.5. The capacitive

component of the admittance of each branch, α, can easily be obtained as

YCα = yα.

The associated capacitance and inductance of each branch can then be found
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𝑦12 

𝑦23 𝑦13 

𝑦3 

𝑦1 𝑦2 

Figure 4.4: Circuit diagram for a three bus network.

𝑉1 
𝐼1 

𝐶1 

𝐿1 

𝑉3 

𝐼3 

𝐶3 

𝐿3 

𝑉2 

𝐼2 

𝐶2 
𝐿2 

Figure 4.5: Circuit diagram for a single UTLM triangle.
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𝑌𝑠𝑡𝑢𝑏3  

𝑌𝑙𝑖𝑛𝑘3  

(a) Full form.

𝑌𝑠𝑡𝑢𝑏3  

𝑌𝑙𝑖𝑛𝑘3  

(b) A reduced form of the circuit which will be used
in this thesis for brevity from now on.

Figure 4.6: Transmission line circuit diagram for a single UTLM triangle.

using equations 4.25 and 4.26 respectively.

Cα =
YCα
iω

=
εlα∆α

2
(4.25)

Lα =
1

iωYLα
=
µ∆α

lα
(4.26)

We now translate the circuit in 4.5 into the transmission line circuit equivalent,

which uses inductive link lines (indicated by subscript link) and open circuit

capacitive stub lines (indicated by subscript stub). The resulting transmission

line circuit can be seen in figure 4.6a, where figure 4.6b shows a reduced form

of the circuit in a typical triangle which, for brevity, will be the form used in

this thesis from now on.

To find the values of Ylink and Ystub, we convert the circuit parameters in

4.25 and 4.26 to their time domain admittance counterparts which are shown

in 4.27. Note that the transit time for a signal to traverse a link line, from

circumcenter to an edge, is ∆t/2.

YLα =
∆t/2

Lα
=

lα∆t

2µ∆α

YCα =
Cα

∆t/2
=
εlα∆α

∆t

(4.27)
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The parasitic capacitance associated with the link line inductance is

Cαerror =
(∆t)2

Lα
(4.28)

and can be subtracted in the stub so that the line has the correct net capaci-

tance. This means that the stub admittance that models the line capacitance

becomes 4.29, whereas the link admittance that models the line inductance is

simply the inductive component of the admittance, shown in 4.30.

Ystubα = YCα − YCαerror =
εlα∆α

∆t
− lα∆t

2µ∆α
(4.29)

Ylinkα = YLα =
lα∆t

2µ∆α
(4.30)

To minimize dispersion error and guarantee stability, we must ensure that the

stub admittance is positive, which means the timestep is constrained by

∆t < ∆min

√
2µε. (4.31)

where ∆min is the minimum link length used in the mesh. This constraint

allows the synchronisation of signals travelling via transmission lines whose

lengths that are larger than the minimum link length. In this way, every

travelling signal, regardless of position in the mesh, will be located at some

edge at all integer values of timestep.

4.3 Implementation

To ensure that a stable algorthm is created and a physically reasonable timetep

is chosen, Delaunay triangular meshes must be used, as explained in [4.5]. This

means that link lines connect each triangle circumcenter through the midpoints

of each triangle edge to create a Voronoi mesh, as shown in figure 4.7a. The

link lines create a 1D transmission line network which uses piecewise constant

basis functions defined on the triangle edges. Unlike BEM, the basis functions

are implicit in the implementation of the algorithm and will not be included

here on in.
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(a) With Voronoi mesh.

l1

Δ1

l3
l2

Δ3

Δ2

(b) A magnified UTLM triangle with edge
lengths, lα, and link lengths, ∆α, labelled
for each port, α.

Figure 4.7: Example triangles of an unstructured mesh.

Once the transmission line network has been constructed, the response of the

cell to a piecewise constant voltage signal (with respect to the time step) can

be computed. The system conserves energy exactly and its solution is known

analytically.

Computation of the transmission line parameters for the specified mesh using

equations 4.29 and 4.30 will be performed with the dimensions indicated in

figure 4.7b. Note that, to maximise the timestep and for ease of computation,

the link lengths across non-boundary edges are now defined as half the distance

between the connecting circumcenters.

The TLM method can be solved in many different ways, but derives its ease

of use from the fact that given a piecewise constant input signal, the response

can be calculated exactly using traditional transmission line techniques. Note

that the transmission line description of the low frequency response of the

domain automatically guarantees stability, i.e. the output energy equals the

input energy.

The computation is traditionally split into two parts: the scatter process where

the reflection of voltages impinging on the triangle center is computed, and

the connect process where the reflection of voltages impinging on the ports is

computed. Both computations are based on the construction of a Thévenin

equivalent, and on the splitting of the total voltage anywhere on a line into its
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m n
o

Zlink3(n) Ystub3(n)

3

2

1

1
1

2

3

scatter

boundary
connect

Figure 4.8: The transmission lines inside 3 connected UTLM triangles.

subsequent incident and reflected voltages,

V t = V i + V r (4.32)

where superscript t, i, and r denote the total, incident, and reflected values.

The topology of the TLM circuits relevant to the scatter and connect steps is

indicated in figure 4.8.

The implemented algorithm can be drawn as a simple flow diagram as shown

in figure 4.9.

4.3.1 Scatter process

The scatter process computes the voltages reflected from the triangle center

using the voltages incident from the triangle edges and from the open end of

the stub lines. The voltages incident on the end of the stub lines are simply

reflected, whereas the voltages reflected by the triangle center can be found

using the network in figure 4.10, which makes use of equation 4.32.

V rstubα(n, k) = V istubα(n, k) (4.33)

V rlinkα(n, k) = V0(n, k)− V ilinkα(n, k) (4.34)
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Scattering process 

EM field calculations 

Excitation 

Connection process 

& connection at boundary 

Figure 4.9: The flow diagram of the processes in a UTLM algorithm.

2Vlink1(o,k) 2Vlink2(o,k) 2Vlink3(o,k)

Zlink1(o) Zlink2(o) Zlink3(o)
V0(n,k)

Figure 4.10: The Thevénin equivalent circuit diagram at timestep, k, for the scatter
process inside triangle o.
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2Vlink1(m,k) 2Vstub1(m,k) 2Vstub2(n,k)

Zlink1(m) Zstub1(m) Zstub2(n)

2Vlink2(n,k)

Zlink2(n)
Vt(n,k)

Figure 4.11: The Thevénin equivalent circuit diagram at timestep, k, for the connection
between triangles m and n.

for α = 1, 2, 3, where superscript i and r denote the incoming and reflected

voltages respectively, and V0(n, k) is the total voltage in the centre of triangle

n at timestep k.

Investigation of the Thévenin equivalent circuit as shown in figure 4.10 gives

the total voltage at the centre of a triangle,

V0(n, k) =
2
∑3
α=1 V

i
linkα

(n, k)Ylinkα(n)∑3
α=1 Ylinkα(n)

. (4.35)

4.3.2 Connect process

In the connect process, the voltages reflected at the inter-triangle ports are

computed.

Using nodal analysis on the Thevénin equivalent circuit as shown in figure

4.11, and equation (4.32), the total voltage at the port between triangles m

and n is

V t(m, k) = V t(n, k) =

2

V rlink1(m, k)Ylink1(m) + V rstub1(m, k)Ystub1(m)

+V rlink2(n, k)Ylink2(n) + V rstub2(n, k)Ystub2(n)


Ylink1(m) + Ystub1(m) + Ylink2(n) + Ystub2(n)

.

The incident link and stub voltages for the next timestep are

V ilinkα(n, k + 1) = V t(n, k)− V rlinkα(n, k) (4.36)

V istubα(n, k + 1) = V t(n, k)− V rstubα(n, k) (4.37)

for α = 1, 2, 3. These values are then used in the scatter process at the next
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2Vlink1(n,k) 2Vstub1(n,k)
Vt(n,k)

Zlink1(n) Zstub1(n)
Zb(n) b

Figure 4.12: The Thevénin equivalent circuit diagram at timestep, k, for the connection
at a boundary edge of triangle n.

timestep.

4.3.3 Connection at the boundaries

To model the radiating behaviour of the fields at the TLM boundary of the

problem space, the simplest approach is to terminate the mesh with a lumped

impedance, the so called matched impedance, with value equal to the wave

impedance of free space. This is indicated in the circuit of fig. 4.8c. In this

situation the total voltage and current at the exterior edge becomes

V tb (n, k) =
Itb(n, k)

Ylink1(n) + Ystub1(n)+Yb

Itb(n, k) = 2V rlink1(n, k)Ylink1(n)

+ 2Vstub1(n, k)Ystub1(n)

(4.38)

where subscript b indicates values at the boundary edge, and Yb is the boundary

admittance.

The boundary admittance can be calculated using the reflection coefficient, Γ

as shown in equation 4.39. For a matched, or radiating, boundary condition,

Γ = 0. For an open circuit boundary condition, Γ = 1.

Yb = Yfs
1− Γ

1 + Γ
(4.39)

The characteristic admittance of free space, Yfs, is given by

Yfs =
Ifs
Vfs

=
l

η0

(4.40)
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where Vfs and Ifs represent the equivalent voltage and current, respectively,

due to a field propagating in free space, and the free space impedance is η0 =√
µ0/ε0. This can be confirmed by finding the characteristic admittance of a

transmission line in free space, which is

YTL = Ylink + Ystub

=
∆α

∆t
ε0lα

= c0ε0lα

=
lα
η0

(4.41)

where c0 is the wave propagation in free space.

Alternatively, one can simulate a PEC boundary by replacing the boundary

impedance in figure 4.12 with a short circuit. In this case, the updated incident

voltages would simply become

V ilinkα(n, k + 1) = Γ V rlinkα(n, k) (4.42)

V istubα(n, k + 1) = Γ V rstubα(n, k) (4.43)

for α = 1, 2, 3.

The matched boundary condition placed at each surface edge effectively re-

duces the radiation problem to one dimension. Unfortunately, this is a crude

approximation to a perfect radiating boundary condition that is inaccurate at

non-smooth boundaries and for obliquely incident fields. Current implementa-

tions of TLM get around this shortfall by enlarging the meshed domain so that

the reflections do not reach the observed area, but at significant computational

cost.

There are other methods to improve the boundary conditions, such as using

Perfectly Matched Layers (PMLs) as described in [4.6,4.7], but these methods

currently cannot reach the level of performance that would make them com-

parable with Finite-Difference Time-Domain (FDTD) PML algorithms [4.8].

This is because the ideal numerical conductivity values required to construct

the PML material are difficult to implement in TLM.

83



Chapter 4. The Unstructured Transmission-Line Modelling Method

x (m)
-1 -0.5 0 0.5 1

y 
(m

)

-1

-0.5

0

0.5

1

(a) 21 boundary edges.
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(b) 40 boundary edges.
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(c) 69 boundary edges.

Figure 4.13: A 1m cylindrical cavity in 2D meshed using Delaunay criteria.

4.4 Validation

A test using the 2D UTLM algorithm was performed by applying a Gaussian

pulse excitation to a random node in a cylindrical PEC cavity, and the results

compared with the analytical resonant frequencies. The cavity is then more

finely meshed and the test is repeated to monitor convergence. The cylindrical

cavity meshes that were used had a radius, a = 1, and was discretised using

21, 40 and 69 boundary edges as shown in figure 4.13.

The Delaunay meshes were created using a Matlab library, details of which

can be found in appendix A. Meshing of arbitrary structures that satisfy the

Delaunay condition is not a trivial task and the details for which is outside the

scope of this thesis, but there are tools available that can help; for examples,

the reader is directed to appendix A.

To obtain the analytical results, the Helmholtz equation for TM fields using

cylindrical coordinates as shown in 4.44 must be solved. The solution is com-

prised of a radial, ρ, component and an azimuthal, ϕ, component as shown in

4.45 where Jm is the mth order Bessel function of the first kind, and the field

components are depicted in figure 4.14.(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂ϕ2

)
Ez + k2Ez = 0 (4.44)

Ez(ρ, ϕ) = (Asin(mϕ) +Bcos(mϕ))Jm(ρk) (4.45)
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Figure 4.14: Cylindrical field components.

The resonant modes of the cavity are determined by the boundary condition,

ρ = a, hence we must solve Jm(ak) = 0, which consequently gives us the

resonant frequencies,

(fr)mn =
χ

2πa
√
µε

(4.46)

where χ represents the Bessel function zeros, and m and n denotes the Bessel

function order and root, respectively.

A Fourier transform was applied to the resultant fields obtained from multiple

observation points in the UTLM solver to monitor convergence at specific

frequencies. These frequency domain results are shown via stems in 4.15 and

the analytical results (calculated using 4.46) are shown via downwards pointing

arrows. The graphs in 4.15 show the results for increasingly fine meshes. Each

graph indicates increasingly excellent agreement as the mesh becomes more

fine.
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(a) Results using mesh with 21 boundary edges.

(b) Results using mesh with 40 boundary edges.

(c) Results using mesh with 69 boundary edges.

Figure 4.15: Comparison between analytical (black arrows) and numerical (blue) reso-
nant frequencies at different observation points for different meshes.
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5
Review of Previous
Hybridisation Attempts

Previous TLM-BEM hybrids have been attempted. This section

of the thesis will describe the methods that have previously been

published in various conferences and journals. This will include

their advantages and disadvantages, and overall conclusions.

$ � %

5.1 The TLM-IE method

In the TLM-IE method as described by Pierantoni which can be found in ref-

erences [5.1,5.2], objects are encompassed within near-field TLM subdomains

as shown in figure 5.1. The tangential electromagnetic field components on

the subdomain boundary represent equivalent surface currents (as described in

the equivalence theorem). These equivalent sources are coupled in the external

free-space region using the Green’s function and solved using MoM.
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Subdomain boundary 

TLM subdomain 

Green’s 
function 

Padding 

Figure 5.1: Diagram depicting the TLM-IE method.

The point source field,
TLM

Einc
t , is placed in the near-field region and is calcu-

lated on the subdomain boundary using TLM. Tangential radiated fields, Er
t ,

in free space are calculated on the boundary using Green’s functions.

By applying continuity, the total tangential fields at the subdomain boundary

are found to be

Et =
TLM

Einc
t + Er

t (5.1)

The 3D TD EFIE and MFIE is used to solve for the radiated field. The electric

field can be defined in compact dyadic form:Et(r, t)

Ht(r, t)

 =

Ce Ch

De Dh


Et(r

′, t)

Ht(r
′, t)

+


TLM

Einc
t

TLM
Hinc

t

 (5.2)

where Ce, Ch, De and Dh represent the integral and differential operators.

The radiated field includes a coefficient, T , which changes according to self-

interactions; T = 2 when calculating the boundary self-interactions, and T = 1

when calculating interactions from external structures as proven in [5.3]. This

is assumed to be an alternative to using the Gram matrix.

The discretised form of 5.2 uses rectangular/pulse functions for the surface ba-

sis and time basis functions, Φ and P respectively as demonstrated in equation
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5.3.

Et(r, t) =

M∑
m′=1

N∑
n′=0

Eφ(rm′ , tn′)Φ(r − r′m)P (t− t′n)

Eφ(m,n) =

M∑
m′=1

N∑
n′=0

[
Ce(m,m

′, n− n′)Eφ(m′, n′)+

Ch(m,m′, n− n′)Hψ(m′, n′)
]

+
TLM

Einct (m,n)

(5.3)

where Eφ and Hψ are the unknown expansion coefficients.

As can be seen in 5.3, the total field at time t = tn can be directly computed

from the incident field at the same time and the past history of tangential

fields in all cells from t = 0 to t = tn−1.

Testing is then applied to 5.3 with Dirac delta weighting functions, where the

weights are defined as

Wmn(rm, tn) = δ(t− n∆t)δ(r − rm) (5.4)

Because of the choice of basis and testing functions, a smooth field distribution

is assumed on the subdomain boundary. This means that padding is required

between the object and subdomain boundary. The novel method described

in chapter 6 of this thesis is able to solve this problem by using expansion

functions of the correct regularity via the introduction of a dual mesh.

The steps of the TLM-IE algorithm are as follows:

1) TLM starts with absorbing boundary conditions on the subdomain bound-

ary.

2) For any timestep, tn, we know the incident field at the subdomain bound-

ary.

3) For a particular observation cell outside the TLM subdomain (m) there

will be a contribution from a source cell on the boundary (n) using

integral equation 5.3 after testing. This contribution will be in effect
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when the current time satisfies the condition tn ≥ Rmn/c where Rmn =

|rm − rn|.

4) Repeat for every observation cell for every timestep.

5) For every timestep, the corrected tangential field provides new boundary

conditions for the TLM algorithm on the subdomain boundary.

5.2 The Adapted Radiating Boundaries

(ARB) method

In the TLM-IE method, the field components on the subdomain boundaries

are expanded/approximated using rectangular basis functions. However, the

approximations lead to discretisation errors on the subdomain boundaries and

so a distance has to be kept (padding) between the objects and boundaries in

order to ensure a smooth field distribution along the boundaries.

An extension to the TLM-IE method was found by using the discrete time-

domain TLM-Green’s function (or Johns matrix) to decrease the padding of

free space around the scatterer and enable more accurate open boundary con-

ditions. [5.4–5.6]

At the boundary of 2 structures, the reflected voltages of the observed “re-

moved branches” are defined using Johns matrix [5.7]V r1 (m, k)

V r2 (m, k)

 =

G11 G12

G21 G22

 ∗
V i1 (m, k′)

V i2 (m, k′)

 (5.5)

where the diagonal submatrices, G11 and G22 represent reflection (self-interaction)

matrices, whilst G12 and G21 represent transmission matrices.

Figure 5.2 demonstrates the signal paths between two objects. Both objects

are encompassed by a TLM subdomain Free Space Boundary (FSB) surface,

SB , and have an intermediary Equivalent Source (ES) surface, SS that can
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Figure 5.2: Diagram showing the signal paths and wave amplitudes between two arbitrary
objects (which can now fill SS).

now be filled completely by the objects. The minimal distance between the

FSB surface and the ES surface is now 1 cell, making the technique quicker

than the previously proposed TLM-IE method. The coupling between these

objects occurs in multiple paths as shown in 5.2. The journeys of these paths

and their computation method is as follows:

1) From object 1 to SB1 using TLM.

2) From SS1 to SB1 using the discrete TLM-Green’s function (for the radi-

ating boundary condition).

3) From SS1 to SB2 using G21 of the dyadic Green’s function.

4) From SB2 to object 2 using TLM.

This process is repeated for all objects. When computing the path from SS2 to

SB1, the G12 interaction of the dyadic Green’s function would be used. Hence,

only the external contributions of the Green’s functions are needed because

self-interactions are computed using the TLM algorithm.

Wave amplitudes refer to the voltage values used in the TLM algorithm; a ≡
V i, b ≡ V r.

• aF refers to the waves propagating within free space.

• aO refers to the waves propagating within the object region.
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• aB refers to the waves propagating on the FSB surface (coefficients of

aF ).

• aS refers to the waves propagating on the ES surface from free space.

• as refers to the waves propagating on the ES surface from the object.

Using these variables, the TLM scattering and connection matrices are found

as shown in equations 5.6 and 5.7, respectively.

bF(j)

bS(j)

bs(j)

bO(j)


=



SF SFS − −

SSF SS − −

− − Ss SsO

− − SOs SO





aF(j − 1)

aS(j − 1)

as(j − 1)

aO(j − 1)


(5.6)



aF(j)

aS(j)

as(j)

aO(j)


=



CF − − −

− − I −

− I − −

− − − CO





bF(j)

bS(j)

bs(j)

bO(j)


(5.7)

where S, C and I denote the scatter, connection and unit matrix, respec-

tively.

Using equations 5.6 and 5.7, a matrix of discrete Green’s functions can be

derived, as shown in equation 5.8, to obtain the wave amplitudes anywhere in

free space at timestep j using equation 5.9.

G(j − i) = (CFSF)j−1−i(CFSFS) (5.8)

aF(j) =

j−1∑
i=0

G(j − 1)aS(i) (5.9)

All the waves in free space are dependent on the previous wave amplitudes

detected on the ES surface. Using this knowledge, the wave amplitudes on

94



Chapter 5. Review of Previous Hybridisation Attempts

the FSB surfaces can be found using the combination of signals coming from

the interior structure (along with those from free space) and the equivalent

sources radiated from the exterior structures,

aB = aF|FSB +
1

2
(−n̂× n̂×Er

B + Z n̂×Hr
B) (5.10)

where the tangential fields radiated onto the ES surface from the exterior

structure, Er
B and Hr

B, are calculated using the continuous Green’s functions

as in the usual IE method.

5.3 Modelling thin wire structures

In reference [5.8], Lindenmeier used a technique similar to the one used in his

other papers [5.1,5.2,5.4–5.6] incorporating the Green’s function to find the

current on a thin PEC wire structure. The Schelkunoff Huygens representa-

tion of the equivalence theorem was used, where surface currents are defined

by the tangential field components on the surface and thus are sources of

radiation.

A hybrid method combining TLM and MoM was used by Khlifi in [5.9] which

closely resembles the TLM-IE method but is used to analyse the interaction

between a thin wire and a complex object. The complex object was discretised

in a TLM subregion surrounded by an imaginary boundary whilst the thin

wire was some distance away. By applying continuity of the field at the TLM

boundary, the electric field at the boundary can be found as

EB = ErBw + ErBself + EiB (5.11)

where ErBw is the field radiated by the wire onto the boundary, ErBself is the

field radiated by the boundary onto itself, and EiB is the incident field at the

boundary (a point source emanating from inside the TLM subregion). The

radiated fields, ErBself , are calculated using MoM with the EFIE and MFIE

equations multiplied by a coefficient, T which is either 2 for self interactions

or 1 otherwise. The field values of the self-interactions on the TLM boundary

are expanded using rectangular basis functions.
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𝐺12 

TLM subdomain 2 TLM subdomain 1 
𝐺21 

Padding 

Figure 5.3: Diagram of the IRIS method using only 2 components of the Green’s dyad.

To inject the waves back into the TLM subregion, equation 5.12 is used, ob-

tained from [5.10].

am =
1

2
(−n̂m × n̂m ×Er

Bm + Z n̂m ×Hr
Bm) (5.12)

where the wave amplitudes, am, on those transmission lines cut by the TLM

subregion boundary at patchm, are mapped by the field values at that point.

5.4 IRIS (Interference and Radiation of

Internal Surfaces) method

The Interference and Radiation of Internal Surfaces (IRIS) method described

in [5.11] is almost exactly the same as the TLM-IE method except that the

internal surfaces are coupled to each other using only the G12 and G21 com-

ponents of the TD dyadic Green’s function.

Self-interactions are computed within the TLM algorithm. The outer sur-

faces/external boundaries use traditional ABCs for termination of the TLM

subdomain, hence a large amount of padding is used so spurious reflections do

not interfere with the internal domain as depicted in figure 5.3.
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ABC (PML) 

𝜕𝑉: Huygens surface 

Ω1:scattered field 

Ω2:total field 

IE 

Figure 5.4: Diagram showing the different regions in the TF/SF technique.

5.5 Total-Field/Scattered-Field (TF/SF)

Technique

In reference [5.12], Fichtner uses elements of the TLM-IE method to model

a Huygens surface surrounding a TLM subdomain. On this surface (denoted

as ∂V ), there exists current distributions in accordance with the Huygens-

Schelkunoff representation of the equivalence theorem. The TF/SF method

separates the simulation domain into regions as shown in 5.4. The inner region,

Ω2, contains incident and scattered fields, whereas the outer region, Ω1, only

contains scattered fields. This is a consequence of using the Huygens surface

and integral equation method. This means that arbitrary sources can be used

for excitation [5.13], but no sources can be placed inside region 1.

The IE method is used between the ∂V of different structures, where the factor

T again is used and equates to 2 when source and observation points lie on

∂V . The EFIE and MFIE are expanded with 2D pulse basis functions in both

space and time, and point-matching is used for testing.

The fields are mapped at ∂V using a special connection process which forces

the TLM wave amplitudes in region 1 to zero,

a = Γb+
1

2
(ΓEEB + Z0ΓHHB) (5.13)

where a and b refer to the incident and reflected wave amplitudes, and Γ

denotes the connection matrix which depends on the TLM node location; i.e.

if it is located in the total field region or the scattered field region.
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𝑇𝐿𝑀𝑝𝑒𝑟 

MoM 

𝑇𝐿𝑀𝑖𝑛𝑡 

Figure 5.5: Diagram of the hybridised FD-TLM-IE approach where there are internal
and perimeter TLM nodes.

5.6 Hybridisation of 2D FD-TLM with

2D-EFIE

In reference [5.14], Zedler uses four-port shunt TLM nodes (structured 2D TM

propagation) in the frequency domain, where the currents at the perimeter and

the interior of the TLM subdomain, as shown in figure 5.5, can be expressed

as Iper
Iint

 =

Y11 Y12

Y21 Y22


V per
V int

 (5.14)

where each 4×4 admittance matrix is defined for isotropic materials as

Y −1 =
1

2
iωµd

1 1 1 1

+
1

iωεd
(5.15)

where d is the TLM node length and 1 is a 4× 4 matrix of ones.

Using the associated 2D EFIE equation for TM propagation of the scattered

electric field in the frequency domain,

VMoM (r) =
1

2
V (r)−

∫
Γ0

∂G(r, r′)

∂n′
V (r′)dr′ + iωµ

∫
Γ0

G(r, r′)I(r′)dr′

=

(
1

2
−D

)
V per − iωµSIper

(5.16)
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where S and D are the Neumann and Dirichlet operators respectively, Γ0 is

the TLM subdomain boundary, and VMoM is the plane wave incident field.

The discretised equation uses pulse expansion basis functions and point match-

ing.

By rearranging and then adding equation 5.14 to equation 5.16, the following

representation formulas are obtained:−S−1

iωµ V
MoM

Iint

 =

Y11 − S−1

iωµ

(
1
2 −D

)
Y12

Y21 Y22


V per
V int

 (5.17)

where VMoM is an external plane wave source (or the scattered field from

another structure), and Iint is an internal point source.

With a known excitation, V int can be obtained using the TLM algorithm, and

V per can be obtained at all points on the boundary using equation 5.17. Iper

is then obtained using equation 5.16, which can then be plugged back into the

TLM algorithm.

The author has presented the FD-TLM-IE to overcome the artefact resonances

that are caused when exciting an object with a plane wave using purely TLM

and resistive ABCs, and showed that the technique worked well to simulate

accurate radiating boundary conditions. However, due to the author solving

a very specific problem, one must note that equation 5.17 does not explicitly

conserve the symmetry between electric and magnetic fields. The novel method

described in chapter 6 includes both the EFIE and MFIE in its formulation,

therefore conserving duality.

5.7 Comparisons and Conclusions

The discretised integral equations of all methods were approximated using

rectangular/pulse basis functions in time and space, where the subdomains of

such functions are defined by the TLM grid, and point-matching (Dirac delta

testing).

99



Chapter 5. Review of Previous Hybridisation Attempts

All time domain hybrid methods have a coefficient in their integral equations,

T , which is a consequence of following an outdated method. Newer schemes

use the Gram matrix which is more advantageous to use.

The principal hybrid techniques are compared in table 5.1. Clearly, there is

no particular method that is without its disadvantages, however by choosing

more appropriate basis and testing functions, the schemes could have overcome

many of their limitations.

A more successful method would combine the advantages of these hybrid meth-

ods, whilst avoiding their disadvantages. A superior technique should have the

following characteristics:

• Solves TD fields, which allows for coupling to non-linear systems.

• Allows for easy computation of secondary technically relevant quantities

such as the scattered field, radar cross sections, port impedances, and

resonant frequencies.

• Provides perfectly absorbing boundary conditions that do not rely on

the inaccurate TLM ABCs

• Does not need padding between objects and the TLM/BEM interface.

• Does not need to store discrete Green’s functions.

• Self interactions are computed with TLM, only the coupling between

objects is considered by the Green’s function.

• The hybrid technique is easy to understand, and can be straightforwardly

deduced from the representation theorem and continuity conditions at

the inter-method boundary.

• When implementing the new technique, minimal changes should be made

to the underlying methods.

The following chapter describes a method that achieves the above goals, and

furthermore, also makes use of unstructured meshes to allow modelling of

complex geometries using UTLM.
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Table 5.1: Comparison of current hybrid TLM-BEM methods.

Method Advantages Disadvantages

TLM-IE
• More accurate open

boundary condition
than traditional TLM
ABCs

• All Green’s function
interactions are com-
puted

• Discretisation errors
on subdomain bound-
aries, meaning padding
between object and
boundary is required

ARB
• TLM subdomain

boundary can be as
little as 1 cell from
object surface

• More accurate ABCs

• Large number of dis-
crete Green’s functions
calculated and stored

• Padding of 1 cell or
more is required

IRIS
• Simple to understand

• Self interactions are
computed by TLM,
meaning less Green’s
functions are used

• Necessary use of tradi-
tional TLM ABCs

TF/SF
• High quality PML

boundaries

• able to simulate exter-
nally excited fields

• Complicated connec-
tion process

• Scattered fields are not
available in the whole
domain

2D FD-
TLM &
EFIE

• More accurate ABCs • Method only proven in
frequency domain with
TM EFIE
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6
The Boundary Element
Unstructured
Transmission-line Method

The novel hybrid method described in this thesis is called the

Boundary Element Unstructured Transmission-line (BEUT) method.

It is conceptually very simple and can be easily applied to existing

solvers of the derived methods. In fact its derivation is directly

linked to the construction of the PMCHWT integral equation for

the modelling of transmission problems through piecewise homo-

geneous devices [6.1]. The key ingredient is the construction of a

representation formula valid on the (inner) boundary of the TLM

governed regions. Using the separate theories of each 2D method

described previously, this chapter will detail the way in which

both methods were coupled.

$ � %
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6.1 Theory

The hybridisation of BEM and UTLM is achieved by enforcing continuity of

fields across the boundary interface.

Traditional matched boundaries for TLM consist of applying an impedance to

terminate the transmission line as shown in figure 6.1a. However this does

not take into account the interactions from all the other boundary edges.

The BEUT method here introduces the local boundary impedance with a

non-local interaction matrix resulting from the representation theorem for the

external domain. This operator takes into account contributions from voltages

at all boundary edges, including those from multiple surfaces, and all previous

timesteps. This can be thought of as replacing the exterior region with a multi-

port TLM cell connecting all boundary edge fields at the current timestep and

all boundary edge fields from all previous timesteps, as illustrated in figure

6.1b.

Each link line and stub circuit model at the boundary can be reduced to a

Thévenin equivalent circuit containing a voltage source and impedance, as

shown in 4.12. This in turn gives rise to a single transmission line network, as

shown in 6.2, where the closed circuit current and open circuit voltage can be

found as

Iclosed = 2V rlinkYlink + 2V rstubYstub

Vopen =
Iclosed
YTL

(6.1)

where the total transmission line admittance, YTL = Ylink+Ystub, and impedance

ZTL = 1/YTL.

Using simple circuit analysis on the circuit shown in 6.2, the boundary voltage,

Vb, and current, Ib, can be expressed as

Vb = Vopen + IbZTL

Ib = VbYTL − Iclosed
(6.2)

With these simple equations, we can begin to couple the voltages and currents
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Zb(n)

(a) The boundary conditions used
in classic TLM.

Vb(n,k)
Ib(n,k) Zb(n,k)

+(k-1)
		+(k-2)
			+	...

+

+

+

+

+

(b) The boundary conditions used in BEUT.

Figure 6.1: The circuit representations of the boundary conditions.
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Vopen(n,k)

V	(n,k)
ZTL(n)

b

I	(n,k)b

Figure 6.2: The Thévenin equivalent circuit diagram at timestep, k, for the connection
at a boundary edge of triangle n.

(a.k.a. the tangential electric and magnetic fields) just inside the boundary

with the tangential fields found using BEM just outside the boundary.

6.1.1 1D Comparison

Using 6.2, we can derive the one dimensional UTLM representation theorem,

valid for voltages and currents on the boundaries, which readsVb
Ib

 =

 1
2

ZTL
2

YTL
2

1
2


Vb
Ib

+

 Vopen
2

−Iclosed
2

 (6.3)

where subscript b denotes the boundary values, and the matrices YTL and ZTL

are diagonal.

The representation formulas for the equivalent boundary transmission line (eq.

6.3) is similar to the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT)

integral equation in one dimension. This is derived in section 2.2.2 where the

final formula is shown in 2.37. In this case, the equation is evaluated only for

self-patch elements, giving

ez(r, t)
ht(r, t)

 =

 1
2

η

2
1

2η
1
2


ez(r, t)
ht(r, t)

+

eiz(r, t)
hit(r, t)

 (6.4)

As can be seen, the matrices in equations in 6.3 and 6.4 are identical, which

underlines the link between both methods.
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There is such a representation theorem for each edge on the boundary between

the TLM and BEM governed domains. Arranging these in a large block di-

agonal system yields an interior representation theorem valid for the current

time step.

6.1.2 The Boundary Element Unstructured

Transmission-line Representation Formulas

The comparison of 1D BEM and UTLM means that the inner UTLM repre-

sentation theorem (as shown in equation 6.3) can be equated with the exterior

representation theorem (as shown in equation 2.48).

Taking into account the equivalences in 4.20 repeated in equation 6.5 for

convenience), the representation formulas for the exterior domain becomes

6.6.

V = ez

I =
ht
l

(6.5)

Vb
Ib

 =


1

2
+ D −µSlb−1

−N

µ
lb

1

2
−D′


Vb
Ib

+

 eiz

lbh
i
t

 (6.6)

Taking equation 6.3 from 6.6 and rearranging slightly yields the UTLM/BEM

counterpart of the PMCHWT and boundary integral equation:

 eiz

hitlb

+
1

2

−Vopen
Iclosed

 =

 −D ZTL
2

+
η

c
Slb
−1

YTL
2

+
c

η
Nlb D′


Vb
Ib

 (6.7)

The first term represents an exterior incident plane wave contribution and the

second term represents the transmission line signals incident on the bound-

ary.
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1

(a) UTLM square basis functions.

1

(b) Dual hat basis functions used in the
BEM formulation of BEUT.

Figure 6.3: The boundary section of a scatterer showing different basis functions.

The BEUT method requires the following steps to be taken for every timestep:

1) Perform the UTLM scatter process, then find Vopen and Iclosed using

equation 6.1.

2) Solve the coupling equation 6.7 to obtain the boundary values.

3) Run the UTLM connect process using the updated boundary values.

6.2 Implementation

6.2.1 Basis functions

To ensure that a stable algorithm is created and a physically reasonable timestep

is chosen, Delaunay triangular meshes must be used, as explained in [6.2],

where the link line lengths will never be negative. The voltages and currents

that are the unknowns in the TLM description correspond to samples of the

electric and magnetic field in the centers of interface edges, as shown in figure

6.3a. Therefore, to satisfy spatial continuity at the boundary edges, BEUT

uses normalised dual basis functions to expand BEM field vectors which have

degrees of freedoms attached to edge centers [6.3], as shown in figure 6.3b,

which allows for a natural mapping between TLM and BEM degrees of free-

dom.

We must explain how the testing coefficient stemming from the BEM equations

can be identified with the field samples (which are the degrees of freedoms)
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Figure 6.4: The eigen decomposition of Gram matrices for various dual basis and test
functions (scaled by 1/l) for a cylinder with 70 boundary edges.

on the TLM side. Since UTLM does not explicitly use weighting or testing

functions, the BEM operators must be carefully tested to transform the nor-

mally tested unknowns into appropriate untested equivalents. This can be

accomplished by making use of the inverse Gram matrix, which can be ap-

proximated to a diagonal matrix for computational purposes. To obtain a

low order approximation of the inverse Gram matrix, we can scale the test-

ing functions that make up the matrix. The scaling factor can be found by

taking the eigen decomposition of the Gram matrix for different combinations

of dual basis and test functions. In figure 6.4, the eigen decomposition for

various dual basis and test functions of height 1/l is shown. We can easily see

that sampling and testing with square functions in this way gives an array of

singular values equal to 1. Hence, by scaling a square testing function by the

inverse of the edge length that it acts upon, we can then equate the unknown

with its untested counterpart.

The same reasoning can be applied to other testing functions, however now

the scaling will only be valid for slowly varying fields. This constraint is

already guaranteed by a rule of thumb that defines the UTLM mesh resolution,

which is that each edge length should be less than a tenth of the smallest

wavelength.
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6.2.2 Stability

It could be argued that the unconditionally stability of UTLM may be jeop-

ardised if coupled with a conditionally stable method such as BEM. However,

the optimum conditions for BEM stability can be deduced:

1) The stability strongly depends on the geometrical discretisation of the

body, i.e. stability is more likely when the discretisation is uniform and

regular, and less likely when the body has wedges or tips. [6.4]

2) The resolution of the integration scheme should be fine enough to resolve

the discontinuties of the temporal convolutions (as depicted in figure 6.5),

i.e. as c∆t decreases, the number of Gaussian quadrature points should

increase. [6.5]

For the first point, UTLM is an ideal choice for coupling with, because its

meshing constraints means that the geometrical discretisation provides opti-

mum conditions for BEM stability.

To address the second point, we must realise that BEM and UTLM share the

same timestep, which is defined by UTLM and the constraint set in equa-

tion 4.31. Since this is likely to be small, the BEM temporal convolutions

must be carefully integrated, especially near the convolution discontinuities

and the Green’s function singularities. In cases where short link lines are

necessary, the timestep can be maximised by clustering ill-conditioned trian-

gles to create higher order elements, thus increasing the link line lengths, as

described in [6.2]. In our experiments, simply using a sufficient number of

Gaussian quadrature points was enough to ensure stability throughout all the

tests.

6.2.3 Code

An implementation using Matlab of the 2D UTLM, BEM, and BEUT methods,

as described in this thesis, can be found at https://github.com/dan-phd/

BEUT. Kernels for matrix assembly that rely upon an optimised C++/openMP
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𝒓𝒎 𝑏 𝑎 

(k-2) cΔt 
(k-1) cΔt 

k cΔt 

(k+1) cΔt 

Figure 6.5: An observation point is located on an edge and has an example quadratic
convolution (shown in green) at timestep k, which is to be integrated over. Discontinu-
ities can be seen to occur at certain intervals (shown in orange).

implementation can be found at https://github.com/dan-phd/2DTDBEM.

Appendix A can be referred to for more information regarding the BEM,

UTLM, excitation and meshing implementation in Matlab. Appendix B ex-

plains the the BEM implementation in C++, along with installation guidelines.

Appendix C demonstrates how to run the compiled code step by step.

6.2.4 Parallelisation

A fast, parallelised implementation that computes the BEM operators using

C++ and OpenMP has been developed to work in collaboration with the

Matlab code, and can be found via the URL above.

The code was tested using a PC with 4 threads, but it soon became clear

this was too slow for some of the canonical test cases, and so the code was

ported and run using other computer clusters, ranging from 8 cores (within the

University of Nottingham) to 36 threads (using Amazon Web Services Elastic

Compute Cloud). This demonstrates the portability of the C++ code.

Unfortunately, the Matlab code running the meshing tools, UTLM algorithm

and visualisation tools were not written in C++, so could not be easily opti-

mised using parallel computing resources. The bottleneck of the project be-
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came the large amount of memory needed to run the larger simulations where

Matlab was needed, even with a computer with 16GB of RAM.

6.3 Alternative Methods of Hybridisation

For this project, the UTLM voltage and current values were reformulated to

obtain the equivalent UTLM representation formulas that could couple easily

to the BEM representation formulas.

An alternative method is to modify the BEM representation formulas to obtain

values that could plug into the UTLM algorithm, which will be hypothesized

here.

By rearranging the representation formula for the electric field in equation

2.48, assuming no external excitation, we can obtain

ht =
1

µ

(
D − 1

2

)
S−1ez (6.8)

Then by plugging this into the representation formula for the magnetic field

in equation 2.48, we can obtain

ht =
1

µ

[(
1

2
−D′

)
S−1

(
D − 1

2

)
−N

]
︸ ︷︷ ︸

YBEM

ez (6.9)

where YBEM can then be used as a terminating boundary admittance in the

UTLM algorithm.

The issue of coupling the UTLM and BEM basis functions would be similar

for this method as it is for the method described earlier. The equation in

6.9 finds the magnetic field on the boundary, directly from the electric field

on the boundary. It skips finding the electric and magnetic field everywhere,

which leads to an algorithm requiring a MOT inside a MOT. This could lead

to slow convergence of accurate solutions , which is why the previous method

was ensued.
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7
Results using BEUT

In this section, the implementation of the novel BEUT method is

validated and assessed in terms of accuracy and speed. Canon-

ical test cases are demonstrated to glimpse the potential of this

powerful technique.

$ � %

7.1 Validation

This section will discuss the different validation techniques and results that

were obtained using the BEUT method.

7.1.1 Free space cylinder excited with plane wave

To test the method initially, a 2D cylinder with a radius of 1m with the same

characteristics as the background medium was meshed (as shown in figure 7.1b)
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and then excited with a plane wave travelling in the positive x-direction. The

expected result would be that the wave passes through without any scattering,

and that the electric field seen inside the UTLM region matches the plane wave

entering the region (albeit at a different time). The results are shown in figure

7.1a, and indeed match the expected results.

7.1.2 Free space cylinder excited with a point source at

different locations

A simple test to compare the BEUT method with pure UTLM was performed

using a cylinder of free space. In this test, we are using the same mesh as in

section 7.1.1, but now the excitation is a point source in the interior of the

cylinder, first using the traditional TLM matched impedance boundary con-

ditions, and then repeated using the BEUT method (with the more accurate

boundary conditions).

The propagation of the wave should be independent of the position of the

source. Three different points in the cylinder were excited (at halfedges 58, 64

and 263), and the electric field was observed at the same relative distance away

from each one (at halfedges 206, 106 and 277), as shown in figure 7.2b.

Using the TLM matched impedance boundary condition at the boundaries

gives conflicting results that are polluted by spurious reflections originating

from the artificial simulation domain boundary. Using the BEUT method,

in contrast, gives results that are not dependent on the exact location of the

source and are not affected by spurious reflection, within reasonable discreti-

sation tolerance. The results are shown in figure 7.2a.

7.1.3 Free space cylinder excited with a point source at

different frequencies

As another simple test, we excited the same meshed cylinder of free space as

in section 7.1.2, but this time using a point source with different wavelengths.

In this way, we can change the cutoff frequency. The higher the frequency,
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(a) Mesh showing observation points.

(b) Plot of time domain electric fields passing through each observation point.

Figure 7.1: Results modelling a plane wave through a cylinder of free space using the
BEUT method.
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(a) Mesh showing source and observation halfedges.

(b) Plot of time domain electric fields passing through each observation point.

Figure 7.2: Results comparing traditional UTLM with the BEUT method when modelling
free space.
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the more accurate the matched impedance boundary is and thus the results

using traditional UTLM ABCs will more likely converge to the results using

BEUT. This will be true up to the frequency at which dispersion error becomes

significant.

The results comparing the transient response at the boundary of the cylinder

for different incident waves is shown in figure 7.3a.

The theory that the matched impedance boundary condition is more accurate

at higher frequencies is confirmed by figure 7.3b which interpolates the relative

error across the frequency range that was tested.

7.2 Accuracy: Dielectric cylinder excited with

a plane wave

We excite a 2D dielectric cylinder meshed in a domain of free space (as shown

in figure 7.4a) with a plane wave. After monitoring the electric field of the

surface at the exposed side (the boundary edge nearest to the excitation source)

and the shadow side (the boundary edge furthest from the excitation source)

for a sufficient time, we compute the Fourier transform. There is an analytical

solution to this problem in the frequency domain as as can be found for example

in [7.1]. This solution is compared with pure UTLM, and then with the BEUT

method.

Modelling plane waves in TLM can be found for example in [7.2] and [7.3].

The boundaries normal to the angle of incidence are terminated with matched

boundaries, and the boundaries tangential to the angle of incidence are ter-

minated with open circuits. However, these boundary conditions are only ac-

curate for the incident field, hence our UTLM model updates the boundaries

once the scattered field is detected for more precise results.

The results are compared in Figure 7.4b. The frequency response using the

BEUT method more closely matches the analytical results than the corre-

sponding pure UTLM method. Of course, the areas of mesh representing free

space are no longer needed if the BEUT method is used and no padding is
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(a) Plot of time domain electric fields passing through the same point for different
frequencies.

(b) Plot of the relationship between the relative error between UTLM and BEUT, and
frequency.

Figure 7.3: Results comparing traditional UTLM with the BEUT method when modelling
free space at different frequencies.
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Shadow sideExposed side

(a) Mesh showing observation points.

(b) Plots of frequency domain results.

Figure 7.4: Results comparing BEUT with pure UTLM and analytical solutions when
modelling a dielectric cylinder.
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required either, so we can simply use the inner cylindrical mesh to get even

more accurate results, and with less computational resources.

7.3 Speed: Two Spatially Distinct Dielectric

Cylinders

The interaction between two spatially distinct cylinders was investigated us-

ing BEUT, and the accuracy and speed was compared with a purely UTLM

simulation. The UTLM mesh domain was increased (as depicted in 7.5a) to

reduce the effects of the artificial absorbing boundaries, and re-compared the

results using BEUT to monitor the convergence.

Because BEUT only requires the objects to be meshed, there were just 248

triangles to model, as opposed to pure UTLM which required the whole domain

to be meshed. Consequently, the pure UTLM simulations had mesh sizes of

2192, 4140, 7888 and 12560 triangles. It is obvious to see that the more

triangles that are present in the simulation, the longer the UTLM algorithm

takes to compute.

As predicted, the pure UTLM results showed evidence of non-physical reflec-

tions from the matched boundaries; the beginning of which are labelled in

figure 7.5b. The results from the BEUT method, however, contained no re-

flections and the perfectly radiating fields were observed.

The graph in figure 7.6 shows that the UTLM results converge to the BEUT

result as the mesh size increases. Figure 7.6 also reveals the times taken to run

the UTLM algorithm for each test, and shows the relative speed gain when

simulating less triangles.

7.4 Canonical test cases

Here we will demonstrate the suitability for problems that contain multi-

ple smooth geometries containing inhomogeneous materials separated in free
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2192
4140

7888
12560

248

(a) Delaunay meshes demonstrating the different sized UTLM domains surrounding the
meshed cylinders, along with labels indicating the number of triangles each mesh contains.

Time (s) ×10-7
0.5 1 1.5 2

E
z

UTLM with 2192 triangles
UTLM with 4140 triangles
UTLM with 7888 triangles
UTLM with 12560 triangles
BEUT with 248 triangles

Reflection

Reflection

Reflection

Reflection

No reflections

(b) Plots of time domain results, along with labels indicating where the main reflections
from imperfect boundaries begin.

Figure 7.5: Results comparing BEUT with pure UTLM when modelling two spatially
distinct dielectric cylinders for different sized meshes.
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Figure 7.6: Graph showing the speed and accuracy gains of BEUT over UTLM.

space. This ability is clearly an additional advantage of the BEUT method

over traditional absorbing boundary conditions.

7.4.1 Two Spatially Distinct Lüneburg Lens

Antennas

To demonstrate the capability of BEUT, we modelled a point source signal

transmitted over-the-air using two Lüneburg lens antennas. A Lüneburg lens

antenna is a non-uniform lens that transforms a spherical wave into a plane

wave (and vice versa) [7.4,7.5].

An ideal Lüneburg lens is a radially symmetric sphere with a continuously

varying relative permittivity ranging from 1 at the surface to 2 at the cen-

ter,

εr(r) = 2−
( r
a

)2

(7.1)

where a is the radius, and r is the distance from the center. Figure 7.7a shows

the relative permittivity coverage and the location of the point source used in

the test case.
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To compute this problem using UTLM alone would be inefficient and inaccu-

rate, as interference would occur from artificial reflections from the boundary

of the simulation domain. On the other hand, BEM cannot be used to model

transmission through the non-uniform Lüneburg lens. Using BEUT enables

accurate modelling of the lens, and accurate modelling of the transmitted

waves through free space. Furthermore, only the lenses need to be meshed,

so computational resources are conserved when compared to a fully meshed

solver.

Fig. 7.7b displays the total electric field due to a point source positioned at

the left lens. As can be seen, the incident wave produced by the point source

is converted to a plane wave during transmission over the free space region,

and then concentrated back to a point source at the right lens.

The fields inside the Lüneburg lens antennas are modelled using UTLM, and

the mesh shown in fig. 7.7b is the Delaunay triangulation used in this domain.

All fields outside these regions, i.e. in free space, are modelled by BEM; the

mesh shown in fig. 7.7b is an auxiliary mesh used for visualisation of the fields

only.

7.4.2 Dipole Antenna and Radome Interaction

As a more applied example involving an irregular geometry, the effect of a

radome positioned over a radiating antenna for aerospace communication is

analysed here. A radome is a structural enclosure which protects an antenna

from damage by the surrounding environment without effecting performance.

A typical example would be the nose of an aircraft which protects the antenna

beneath from aerodynamic stresses.

The radome design is tailored to the frequency range of the protected antenna,

and depends on the materials used for its construction, the number of layers,

and its shape. For this analysis, we will monitor a wireless LAN dipole antenna

operating at 2.5GHz, protected by a spherically blunted cone with a base inner

radius of 1.2λ and an inner height of 1λ. The radome is built with a 35mm

thick outer layer made of plastic polymer (εr = 4.8), and a 68.7mm thick inner

layer made of foam polyethylene (εr = 1.25).
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Source location

(a) Diagram showing the relative permittivity values across two Lüneburg Lenses, along
with the point source location used in the test case.

(b) 2D plot showing the total normalised electric field at a point in time.

Figure 7.7: Simulation of two spatially distinct Lüneburg lens antennas.
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(a) Diagram showing the observation points used to find the scattered field in the external
region.

(b) 2D plot showing the total normalised electric field at a point in time.

Figure 7.8: Simulation of the coupling between a 2.5GHz dipole antenna and a radome.
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The dipole antenna consists of two identical, perfectly conducting elements

either side of a free space gap where the point source is located. The antenna

length is λ/2 and the structure is meshed very finely at roughly 80 edges per

wavelength. The radome has a much more coarse mesh. It is common in the

design of radomes to first compute the incident field radiated by the antenna,

and then to model the radome using this incident field in a separate simulation,

neglecting any mutual coupling. Using the BEUT method, the dome and the

source geometry are modelled by a mesh with mesh size only dependent on

the local geometry. This is in stark contrast to the structured TLM where

the finest geometric detail determines the global mesh size. In addition, the

empty space region in between dome and source is governed by the BEM,

resulting in a technique that uses the bare minimum of degrees of freedom

without jeopardising the solution’s accuracy.

As can be seen in fig. 7.8b, the fields inside the objects are modelled using

UTLM with a triangular mesh. All fields outside these regions are modelled

by BEM. In this case, the scattered field is found at points defined in a struc-

tured mesh with a 10mm edge length; the auxiliary mesh is displayed in figure

7.8a. Because the vertices inside the TLM regions are discarded (for the benefit

of computational resources), a function is used to determine if an observation

point is inside the object. For more than one object, this function can some-

times anomalously discount a vertex (or vertices) between the objects. In this

case, 3 vertices at [0.1,0], [0.11,0] and [0.12,0] were incorrectly removed.

To confirm the effectiveness of this particular radome, we can compare the far-

field of the antenna with and without the radome at the design frequency of

2.5GHz. The far-field array pattern can be obtained by measuring the electric

field at a distance sufficiently far away from the source. It is directly available

from the BEM boundary data and, because it is computed using the exact

Green’s function of the propagation environment, its accuracy is not affected

by dispersion error. This comparison can be seen in fig. 7.9, where the results

are normalised w.r.t. the peak antenna response.

The results show that the forward signal is amplified when the radome is used

at the design frequency. This is expected because each layer of the radome

has a half wavelength thickness, which introduces a 360◦ phase shift. Because

of this phase shift, the reflections at each interface are superimposed causing
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Figure 7.9: Plot showing the total normalised electric far-field response from the dipole
antenna at 2.5GHz with and without the radome.

an increase in the net transmission of waves.

Computing the far field using a purely UTLM based technique would require

enlarging the simulation domain and even then the far field would be com-

promised by spurious reflections from the simulation domain boundary and

accumulated dispersion errors.
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8
Conclusions

This chapter of the thesis will revisit the significant segments of

the project along with some concluding statements. Some pro-

posed directions for future work in this area will also be suggested,

including the ideal steps needed for the inevitable expansion to

3D.

$ � %

8.1 Overview of the work presented

The aim of this work was to provide and demonstrate a new technique that

could model the electromagnetic scattering between non-homogeneous, possi-

bly non-linear objects with geometrically complex features.

This thesis has presented the 2D BEUT method, a novel EM simulation

technique which hybridises the BEM and UTLM methods. The individual

techniques were derived, and implementation guidelines were described in de-
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tail.

The novel technique combines the power of UTLM (unconditional stability,

ability to model inhomogeneous materials and smooth geometries) with the

accuracy of TD BEM (perfectly radiating boundaries, resolvable fields any-

where in free space). The technique can find the scattered field anywhere

in the domain, provides perfectly absorbing boundary conditions that do not

rely on the inaccurate TLM ABCs, does not need padding between objects and

the TLM/BEM interface, and does not need to store discrete Green’s func-

tions. Moreover, the technique is easy to understand, and minimal changes are

required to the underlying methods for implementation. These advantages dif-

ferentiate the method from previous hybridisation attempts, and make it more

favourable to use when modelling transient scattering problems involving large

free space regions where accuracy is vital.

The technique was successfully demonstrated by modelling non-trivial struc-

tures within free space domains. The new technique outperformed UTLM in

comparative simulations in terms of accuracy, and it showed how perfectly

radiating boundaries can be used in UTLM. Furthermore, BEUT reduced the

number of meshed elements when compared with pure UTLM, thus reducing

the computational resources required when performing the scatter and connect

processes.

Simple test cases showed significant accuracy and speed gains compared to

using pure UTLM. Scattering between two spatially distinct, non-uniform

Lüneburg lenses, and also the scattering between an antenna and a radome

were shown using BEUT. Results obtained from the demonstrations matched

that of expected and previously published results.

There is enormous scope for the BEUT method. In space applications, the

accurate response due to radiation from multiple satellites at far distances

away can now be modelled without needing to mesh the free space in between.

Recent advances in TLM also allow it to model materials with frequency de-

pendent properties [8.1], which would be useful for measuring the effects of

solar wind, and spacecraft charging. The method would be equally valuable to

perhaps the electronics, communications, automotive, military, and scientific

engineering industries, and consequently, the overall benefit is very signifi-
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cant.

To summarize, this thesis has described the development of a new simulation

technique which can provide more accurate and efficient solutions to transient

scattering problems involving complex materials and geometries which are

immersed in free space.

8.2 Future work

In this contribution, we use a straightforward implementation of the 2D BEM

which could be further accelerated using techniques such as the Time Domain

Adaptive Integral Method (TD-AIM) [8.2], and the Plane Wave Time-Domain

(PWTD) algorithm [8.3].

For BEUT to fully realise its potential, the extension to 3D needs to be

achieved. As well as the advantage of modelling more realistic scenarios, the

3D BEM uses a Green’s function which does not have a tail (unlike the 2D

Green’s function), thus the MOT algorithm will perform faster as it does not

depend on all previous timesteps.

However, the basis functions commonly associated with 3D BEM are the Rao-

Wilton-Glisson (RWG) functions [8.4], which have degrees of freedoms at-

tached across the edges, whereas 3D UTLM has degrees of freedoms at the

center of faces; this may introduce difficulties in coupling the 3D techniques.

Initially, it may be worth attempting to interpolate the BEM surface currents

to a piecewise constant value for each face which could then assist in coupling

to the UTLM unknowns. Failing this, there may be an equivalent method

for the 3D case which is similar to the dual basis functions that were used in

the 2D case to match the degrees of freedoms. Another option would be to

refer to [8.5–8.8] and implement a penalty (Nitsche-type) method so that a

discontinuous Galerkin scheme can be used.
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A
BEUT Matlab
Implementation Manual

The implementation for BEUT can be found at https://github.com/dan-phd/

BEUT. The Matlab code has the ability to create meshes, compute 2D BEM,

UTLM and BEUT, and output graphs, figures and animations. However,

computing the BEM kernels is very slow and takes a large amount of mem-

ory. For scenarios that are more complex than a cylinder ∗, you will need to

use an external mesher and the C++ implementation to compute the BEM

operators.

∗A cylinder with edges of equal length has the special advantage of having identical
diagonal elements in the BEM operator matrices, meaning that a ”cheat” can be performed
whereby only 1 row and column needs to be computed for each timestep - significantly
improving the run-time speed.
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The BEUT project repository has the following directory structure:

BEUT ....................................license and readme files

+BEUT .........................................project folder

+BEM ........................container for the BEM solver

+Analytical ........analytical solutions for comparison

+Demo .......examples demonstrating BEM components

+Main ...................main code for BEM test cases

+Excitation ...........container for the excitation classes

+Demo ....examples demonstrating the excitation classes

+Main .................main code for the BEUT test cases

+Meshing ................container for the meshing classes

+distmesh .......................a third party mesher

+Main ........main code for creating or loading meshes

meshes ..........contains .mat meshes ready to be used

unconverted ........contins meshes to be converted

+UTLM ..................... container for the UTLM solver

@UTLMClass .the UTLM class definition and its methods

+Analytical ........analytical solutions for comparison

+Main .................main code for UTLM test cases

To install the project in Matlab, place the entire contents of +BEUT inside a

Matlab search path.

The + character at the beginning of a folder defines a package folder in Matlab,

which allows better organisation of classes and functions. The @ character at

the beginning of a folder defines a class folder in Matlab, which allows the use

of multiple files for one class definition. These characters are not used when

calling package members; for instance, creating an instance of UTLMClass is

performed using the following syntax:

BEUT.UTLM.UTLMClass ()

The +BEUT/+Main folder contains examples on how to use BEUT. There are

+Main folders elsewhere in the project to demonstrate the use of UTLM and

BEM as individual solvers. The +BEUT/+Meshing/+Main folder is the first

point of call for creating a mesh or loading a custom 2D mesh from an external

file. For demonstration and testing of individual classes and functions, refer
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Figure A.1: The flow diagram showning the link between the different components of
the Matlab BEUT implementation.

to the +Demo folders.

For convention, script and class names begin with a capital letter, functions

begin with a lower case letter (unless an acronym is used). Generally, you will

only want to open and run scripts in the +Main and +Demo folders.

If using the C++ program to compute BEM operators, you will need to change

the path which stores the resulting .mat files; This can done by modifying the

path string in +BEUT/CFolder.m.

The following sections will describe the major functions, classes and scripts

that can be found in the BEUT project, which are linked as shown in the

diagram of figure A.1.
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Figure A.2: The process diagram of the meshing implementation.

A.1 BEUT

The general flow of a typical BEUT simulation is shown in figure A.2, which

can be summarised as follows:

1) Create/load mesh and save as a UTLMClass object (for UTLM) and a

MeshBoundary object (for BEM), and then set material parameters.

2) Create excitation (as either a point source or plane wave).

3) Calculate BEM operators (using either the Matlab or C++ solver), and

then roll through the timestepping loop (Marching-on-in-Time).

4) View results by plotting the surface currents, or animating the fields

inside the scatterer. Further computation can be done to find the fields

anywhere outside the scatterer, or even animate an entire region of space.

Appendix C demonstrates these steps for a typical simulation example.

The main scripts inside the +BEUT/+Main folder are as follows:
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ModelFreeSpace1 (script)

In this script, the results demonstrated in section 7.1.1 are demonstrated.

Region 1 is a UTLM cylinder of free space, region 2 is the external region

of free space. The cylinder is excited with a plane wave. Note that this

script is the only one in +BEUT/+Main which allows you to choose whether

to use Matlab to compute the BEM operators, the others will require

using the C++ program.

ModelFreeSpace2 (script)

In this script, the results demonstrated in section 7.1.2 are demonstrated.

Region 1 is a UTLM cylinder of free space, region 2 is the external region

of free space. The cylinder is excited with a point source at different

locations, and then the results are compared using pure UTLM.

ModelDielectric (script)

In this script, the results demonstrated in section 7.2 are demonstrated.

Region 1 is the meshed background of free space, region 2 is the inner di-

electric cylinder. The domain is excited with a plane wave, and then the

results using BEUT and pure UTLM are compared against the analytical

solutions in the frequency domain.

ModelLuneburgLens (script)

In this script, a Lüneburg lens (as described in section 7.4.1) is modelled.

Region 1 is the densely meshed Lüneburg lens which is excited with a

point source. An animation is shown for the fields inside the lens, and

optionally, outside the lens once complete.

A.2 Meshing

The top of the diagram in figure A.1 demonstrates the link between the dif-

ferent components of the meshing code in Matlab.

The major elements related to the meshing part of the project are as fol-

lows.
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CreateMesh (script)

In this script, the library distmesh (found at http://persson.berkeley.

edu/distmesh) is used inside Matlab to create 2D meshes ready for sim-

ulation purposes. However, the tool is only useful for meshing simple

shapes, for example a circle or square. For more complex structures, a

dedicated mesher should be used, where the resulting file can be imported

into Matlab. A good 2D mesher is featured in the Comsol Multiphysicsr

modeling software (uk.comsol.com) where meshes can be saved as a

.mphtxt file and imported to the Matlab project. Alternatively, there

are free 2D meshers in the form of Triangle (www.cs.cmu.edu/~quake/

triangle.html) and Gmsh (gmsh.info) which also have the ability to

export files suitable for use in the Matlab project.

CombineMeshes (script)

This script allows the user to load two meshes and combine them so one

is spatially distinct from the other.

LoadMesh (script)

This script loads a mesh from an external file, converts it to a halfedge

mesh format (an instance of UTLMClass) that the project can use, sets

the material ID numbers for each triangle (if necessary), and then checks

the mesh to make sure there are no excessively small link lines.

The supported input file types in terms of their extensions are:

• .in (custom)

• .gmsh/.msh (GMSH)

• .mphtxt (Comsol)

• .obj (Wavefront)

• .node along with the corresponding .ele (Triangle)

• .mat (BEUT)

• .poly (Triangle)

• .gid (GiD)

save (function)

This function takes the halfedge mesh as an input and saves it to a file

ready for Matlab simulation. It also extracts the mesh boundary and
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saves this in a file ready for the C++ BEM operator computation.

Arguments

• mesh - UTLMClass object.

• dual - boolean to decide whether to use dual basis functions.

• mat_file - the path and filename to output the file that Matlab

will use. This can be an empty string if not required.

• c_file [optional] - the path and filename to output the file that

C++ will use. This can be an empty string if not required.

• dt [optional] - the chosen timestep. This will be calculated auto-

matically if not given.

• mu_0 [optional] - the permeability of free space. This will be calcu-

lated automatically if not given.

• eps_0 [optional] - the permittivity of free space. This will be cal-

culated automatically if not given.

HalfedgeMesh (class)

This class acts as a database for the halfedge mesh. A halfedge is simply

the side of the edge belonging to a particular face.

Properties

• vertices - a [number of vertices× 2] matrix with the first column

indicating the x-coordinate and the second column indicating the

corresponding y-coordinate of each vertex.

• material_boundaries - an array of cells, one for each material.

Inside each cell contains an array of halfedge indices that act as the

boundary for that material.

• mesh_boundary - an array of halfedge indices that act as the bound-

ary of the whole mesh. The halfedges are connected when the array

is read in order.

• mesh_body - an array of halfedge indices that are inside the mesh

and not on the boundary.

• faces - an array of structs. Each struct contains the vertices,

fnum, and area for the corresponding face index.

• halfedges - array of structs. Each struct contains information on
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the associated halfedge, including:

– face

– vertices

– flip (the flip halfedge index)

– circumcenter

– midpoint

– edgeLength

– linkLength

• TR - Matlab triangulation object - stores Points and ConnectivityList.

• nF - number of faces.

• nV_face - number of vertices per face. For 2D triangles, it will

always be 3.

• nH - number of halfedges.

• num_materials - number of different materials used in the mesh.

• shortestLinkLength - the shortest link length.

• color - an array for cycling through material colors (when plotting).

Constructor arguments

• vertices - as above.

• faces - a [number of faces× 3] matrix with each row containing 3

vertex indices that are connected to form a triangle.

• fnum [optional] - an array of size [number of faces] with each element

defining the face number of the triangle (in an iterative manner),

which will be later used to decide the material placement. If the

mesh contains just 1 material, the array would be full of 1s.

Methods

• plot_mesh - plots the mesh and renders each triangle depending on

the material number it represents.

• plot_face(face) - plots the mesh and labels the faces given in the

array face. If no argument is given, all the faces are labelled.

• plot_vertex(vertex) - plots the mesh and labels the vertices given

in the array vertex. If no argument is given, all the vertices are

labelled.

• plot_halfedge(he,col) - plots the mesh and labels the halfedges
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given in the array he. Each labelled halfedge is highlighted with a

color indicated by col. If col is not given, all halfedges are colored

the same. If he is not given, all the halfedges are labelled.

• plot_boundary - plots and labels the halfedges that act as bound-

aries to different materials.

MeshBoundary (class)

This class acts as a database for the boundary halfedge mesh used by

BEM.

Properties

• halfedges - array of structs. Each struct contains information on

the associated boundary halfedge, including:

– he_idx (halfedge index that this boundary edge corresponds to

in the original halfedge mesh from which this class is derived)

– a (vertex at the head of the edge)

– b (vertex at the tail of the edge)

– l (length of the edge)

– t (vector tangent to the edge)

– n (vector normal to the edge)

– shape (shape number that this edge belongs to)

• dual - array of structs which has the same fields as halfedges

but is used as an alternative to halfedges when using dual basis

functions.

• n_V - number of vertices (equal to the number of halfedges for a

closed surface).

• num_shapes - number of distinct shapes in the mesh.

• color - an array for cycling through material colors (when plotting).

Constructor arguments

• HalfedgeMesh - as above.

Methods

• plot(he) - plots the mesh and labels each halfedge given in the
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array he If no argument is given, all halfedges are labelled.

A.3 Excitation

An excitation is generally a time dependant function which acts as a wave

that can then be applied to the algorithm of choice, either as a point source

(injected directly to the source) or as a plane wave (which can be used after

appropriate testing).

We have implemented two types of function, the Gaussian pulse as shown

in figure A.3a, and the sinusoidal signal. The sinusoidal wave can be modu-

lated by a Gaussian pulse, as shown in figure A.3b, or a cosine wave can be

used to envelope just the beginning and end of the signal, as shown in figure

A.3c.

The major elements related to the excitation section of the project are as

follows.

Excitation (abstract class)

This class acts as a container for any class that computes a function to

be used as an excitation.

Properties

• c - speed of wave propagation.

• direction - row vector specifying direction as a 2D unit vector;

e.g. [1 0] = x-direction, [0 -1] = negative y-direction, 1 = normal

to plane (z-direction).

• T - width of pulse.

• t0 - time of arrival (as a ratio of T).

• A - a factor by which to scale the wave amplitude.

Methods

• Fc = freq_response(time_array,plot_fig) - determine the fre-
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(a) Time domain Gaussian pulse with corresponding frequency domain inset.

(b) Frequency domain of a sinusoidal wave modulated by a Gaussian pulse, with corre-
sponding time domain inset.

(c) Frequency domain of a sinusoidal wave modulated by a cosine wave, with corre-
sponding time domain inset.

Figure A.3: Plots of different excitation functions.
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quency response of the wave where the time_array as an array

of time values at which to evaluate the function at. The optional

boolean plot_fig specifies whether or not to plot the frequency

domain (default is false). The output Fc is the cutoff frequency

(the frequency at which the spectrum reaches below 1% of its peak).

GaussianWave (subclass of Excitation)

Properties

All properties are inherited from Excitation.

Constructor arguments

• width - width of pulse.

• timeOfArrivalRatio (optional) - time of arrival (as a ratio of

width). Default is 1.5.

• c (optional) - speed of wave propagation. Default is 1.

• direction (optional) - row vector specifying direction as a 2D unit

vector. Default is [1 0] (which specifies the positive x-direction).

Methods

• E = eval(t, rho) - evaluates the function at time t, at location

rho (distance from source). If rho is not given, E is evaluated at

rho=0.

• E = evalDifferential(t, rho) - evaluates the differential of the

function at time t, at location rho (distance from source). If rho

is not given, E is evaluated at rho=0.

• E = evalIntegral(t, dt, rho) - evaluates the integral of the

function at time t with timestep dt, at location rho (distance from

source). If rho is not given, E is evaluated at rho=0.

• E = evalAmplitudeResponse(omega) - evaluates the amplitude re-

sponse due to the time domain signal at the frequency given by

omega.

SineWave (subclass of Excitation)
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Properties

As well as the properties inherited from Excitation;

• f - value of the modulated frequency.

• envelope - string indicating the envelope to modulate the wave.

This can be “Gaussian” or “cosine”.

• G - Gaussian pulse object (to be used for the envelope).

Constructor arguments

• freq_width - width of pulse (in the frequency domain).

• modulated_frequency - frequency of arrival (in the frequency do-

main).

• c (optional) - as above.

• direction (optional) - as above.

• timeOfArrivalRatio (optional) - time of arrival (as a ratio of what-

ever the time of arrival is calculated at inside the constructor). De-

fault is 1.5.

Methods

• E = eval(t, rho) - evaluates the function at time t, at location

rho (distance from source). If rho is not given, E is evaluated at

rho=0.

A.4 UTLM

The diagram in figure A.4 demonstrates the link between the different com-

ponents of the code in a typical UTLM simulation.

The major elements related to the UTLM section of the project are as fol-

lows.

UTLMClass (subclass of HalfedgeMesh)

This class acts as the storage and computation for all UTLM variables
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Figure A.4: The process diagram of the UTLM implementation.

and functions.

Properties

As well as the properties inherited from HalfedgeMesh;

• fields - a struct which contains the following matrices, each matrix

is of size [number of halfedges× NT ] and represent the fields at all

halfedges for all timesteps:

– E_z (z-directed electric field)

– H_xy (magnetic field tangential to the plane)

– H_x (x-directed magnetic field)

– H_y (y-directed magnetic field)

• V0 - a matrix of size [number of faces× NT ] which represents the

voltage at all triangle circumcenters for all timesteps.

• I0 - a matrix of size [number of faces× NT ] which represents the

current at all triangle circumcenters for all timesteps.

• dt - timestep value.

• reflection_coeff - an array of size [number of halfedges] which

indicates the reflection coefficient for each halfedge. This also in-

cludes halfedges inside the object because PEC boundaries may

need to be considered.

• Y_boundary - an array of size [number of halfedges] which indicates
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the boundary admittance for each halfedge.

• PEC_boundary - an array of variable size which indicates the halfedges

that are to reflect signals because of a PEC boundary.

• V_open - an array of size [number of boundary halfedges] which is

used to store the open circuit voltage at the boundary halfedge for

the current timestep.

• I_closed - an array of size [number of boundary halfedges] which

is used to store the closed circuit current at the boundary halfedge

for the current timestep.

• halfedges - array of structs. Each struct contains information on

the associated halfedge, including the fields defined in HalfedgeMesh,

plus:

– V_linki (incident link voltage for the current timestep)

– V_linkr (reflected link voltage for the current timestep)

– V_stub (stub voltage for the current timestep)

– doConnect (boolean to determine if the halfedge is to be re-

quired in the connect process)

– Y_link (link line admittance associated with the halfedge)

– Y_stub (stub line admittance associated with the halfedge)

Constructor arguments

The constructor is inherited from HalfedgeMesh.

Methods

• excite_E(sourceEdges, V_source) - excite all source halfedges

specified by sourceEdges with the value given by V_source.

• animate(field, scale) - animate either the electric field (using

field = ‘E’) or magnetic field (using field = ‘H’), where the

field is normalised and scale allows the user to empirically scale

the fields so that the colorbar gives a clearer result. This is some-

times required because UTLM usually has a much larger field at

the excitation than everywhere else.

• calcAdmittance - calculate admittances and set connect flags.

• checkMesh - plot Voronoi diagram and highlight the location of the

shortest link length. The text output to screen tells the user the

shortest link length, the average link length, and the ratio (which
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from experience is good below 10, and best below 5).

• connect(k, E) - run the connect process for timestep k. If the

electric field E is given, then we use this as the incident voltage at

the boundary halfedges, as is stipulated by the BEUT method. If

E is not given, compute the connect process as normal.

• plot_interfaces - plot the mesh interfaces between different ma-

terials.

• plot_materials(material_parameter) - plot the mesh with the

color of each triangle equal to the values of relative permittivity

(using material_parameter = ‘eps_r’) or relative permeability

(using

material_parameter = ‘mu_r’).

• reset - re-initialise all voltages.

• scatter(k) - run the scatter process for timestep k.

• setBoundary(condition) - set the boundary condition for the whole

domain, or for each boundary halfedge individually. Each condition

can be 1(=open), -1(=short), 0(=absorbing).

• setMaterial(relative_eps, relative_mu) - set the relative per-

mittivity (relative_eps) and relative permeability (relative_mu)

of the mesh. Each argument can either be a value that should be

applied across the entire mesh, an array of size [number of faces],

or an array of size [number of materials].

A.5 BEM

The diagram in figure A.5 demonstrates the link between the different com-

ponents of the code in a typical BEM simulation.

The major elements related to the BEM part of the project are as follows.

PiecewisePolynomial (class)

This class acts as a superclass for any piecewise polynomial function.
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Figure A.5: The process diagram of the BEM implementation.

Properties

• degree - the maximum degree of all the polynomials.

• coeffs - a matrix of [size number of partitions × degree+1] where

each row defines the coefficients of the polynomial for that partition.

• partition - an array of [size number of partitions+1] which deter-

mines the limits of each polynomial.

Constructor arguments

• partition - as above.

• coeffs - as above.

• degree - as above.

Methods

• y = eval(t) - evaluate the polynomial at a point or points in time

t, to output y of the same size as t.

• obj = translate(k, p) - copy the PiecewisePolynomial, shift

the copied function across the x-axis by the value of k, then trans-

form the function by p. Output the new function to obj.
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• obj = diff() - differentiate the piecewise polynomial and output

the resulting piecewise polynomial to obj.

• obj = int() - integrate the piecewise polynomial and output the

resulting piecewise polynomial to obj.

LagrangeInterpolator (subclass of the PiecewisePolynomial)

This class creates and stores the properties of PiecewisePolynomial

required for a Lagrange Interpolator.

Properties As well as the properties inherited from PiecewisePolynomial;

• dt - the timestep used for this function.

Constructor arguments

• dt - as above.

• degree - degree of the Lagrange interpolator.

Methods

• varargout = padCoeffs(varargin) - pad the coefficients of any

number of LagrangeInterpolator instances (specified in the argu-

ments) so that they all match the instance this function is called

from.

BasisFunction (class)

This class creates and stores basis functions (or testing functions) in the

form of PiecewisePolynomial instances which are defined on every edge

of a geometry.

Properties

• pol - a cell matrix of size [number of partitions × number of edges]

which stores the basis function(s) for each edge in the form of

PiecewisePolynomial instances.

• idx - a cell array of size [number of edges], each cell contains an

array of indices that define which polynomials in pol apply to the
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edge.

• idx_table - a matrix of size [number of edges × number of parti-

tions]. Each row of the index table represents the halfedges that

the i’th polynomial applies to (where i is the column number).

Constructor arguments

There is no constructor, instead the basis functions are created directly

from the methods explained below.

Methods

• obj = createHat(halfedges, scale) - create hat basis functions

that apply to the halfedges of a mesh. scale is a an optional

boolean (set to false by default) which determines whether to scale

the function amplitude by 1/length, i.e. force the function to have

a unit height.

• obj = createSquare(halfedges, scale) - create square basis func-

tions that apply to the halfedges of a mesh. scale is a an optional

boolean (set to false by default) which determines whether to scale

the function amplitude by 1/length, i.e. force the function to have

a unit height.

• obj = createDualSquare(dual_halfedges, scale) - create dual

square basis functions that apply to the dual_halfedges of a mesh.

scale is a an optional boolean (set to false by default) which

determines whether to scale the function amplitude by 1/length,

i.e. force the function to have a unit height.

• obj = createDualHat(dual_halfedges, scale) - create dual hat

basis functions that apply to the dual_halfedges of a mesh. scale

is a an optional boolean (set to false by default) which determines

whether to scale the function amplitude by 1/length, i.e. force the

function to have a unit height.

• obj = divergence(halfedges) - outputs an instance of

BasisFunction which has it’s polynomials spatially differentiated

with respect to the halfedges input.

• obj = plot_basis(halfedges,basis) - collapse the 2D geometry

given by halfedges into a horizontal line, and plot the basis func-

tions given by basis associated with each edge on the line.
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computeConvolutions (function)

This function processes the temporal convolution between the Lagrange

interpolator temporal-basis function (and its integrated and derivative

forms) and the 2D time-domain Green’s function.

Arguments

• distances - a matrix of distances (from source to observation).

• intTB - the integrated temporal basis function, as an instance of

LagrangeInterpolator.

• TB - the temporal basis function, as an instance of

LagrangeInterpolator.

• dTB - the derivative of the temporal basis function, as an instance

of LagrangeInterpolator.

Outputs

• Fh - a matrix of convolution values of the same size as distances

(computed with the integrated Lagrange interpolator).

• Fs - a matrix of convolution values the same size as distances

(computed with the Lagrange interpolator).

• dF - a matrix of convolution values the same size as distances

(computed with the derivative of the Lagrange interpolator).

RHS (class)

This class computes the right hand side i.e. the V vector for the 2D

TDBEM which includes testing the incident field.

Properties

• N_T - total number of timesteps.

• dt - timestep.

• geometry - a list of halfedges in the form of MeshBoundary.halfedges

or MeshBoundary.dual.

• test_function - the function used for testing, in the form of a

BasisFunction.

• display_plot - a boolean which determines whether to plot the

156



Appendix A. BEUT Matlab Implementation Manual

wave at various points on the mesh after computation. The default

is false.

• excitation - a function which evaluates the amplitude of the wave

given a time and location, i.e. the eval an instance of an Excitation

subclass.

• polarization - row vector specifying a polarization as a 2D unit

vector; e.g. [1 0] = x-direction, [0 -1] = negative y-direction, 1 =

normal to plane (z-direction).

• Gaussian_points - a value to specify how many Gaussian quadra-

ture points to use per edge. The default is 3.

Constructor arguments

• N_T - as above.

• dt - as above.

Methods

• V = compute(tangent) - compute the right hand side and output a

matrix of size [number of edges × NT ], where tangent is a boolean

which enables or disables taking the edge tangents into account;

used for fields transverse to the plane. If tangent is not given, the

default is false.

GramMatrix (class)

This class computes the Gram matrix.

Properties

• basis_function - the function used for sampling, in the form of a

BasisFunction.

• test_function - the function used for testing, in the form of a

BasisFunction.

• geometry - a list of halfedges in the form of MeshBoundary.halfedges

or MeshBoundary.dual.

• test_points - a value to specify how many Gaussian quadrature

points to use per edge. The default is 3.
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Constructor arguments

There is no constructor.

Methods

• G = compute - compute the Gram matrix and output a matrix of

size
[
number of edges2

]
.

ZMatrices (class)

This class computes the 2D TDBEM matrices for S, D, D′, Nh, and Ns.

Properties

• N_T - total number of timesteps.

• dt - timestep.

• c - speed of propagation through the medium.

• timeBasis_D - the temporal basis function, as an instance of

LagrangeInterpolator.

• timeBasis_Nh - the integral of the temporal basis function, as an

instance of LagrangeInterpolator.

• timeBasis_Ns - the derivative of the temporal basis function, as an

instance of LagrangeInterpolator.

• basis_function_Z - the function used for sampling fields in the

z-direction, in the form of a BasisFunction.

• basis_function_S - the function used for sampling fields transverse

to the plane, in the form of a BasisFunction.

• test_function_Z - the function used for testing fields in the z-

direction, in the form of a BasisFunction.

• test_function_S - the function used for testing fields transverse

to the plane, in the form of a BasisFunction.

• outer_points_sp - a value to specify how many Gaussian quadra-

ture points to use per edge for the outer (testing) integral when it

is at a potential singular point. Default is 50.

• inner_points_sp - a value to specify how many Gaussian quadra-

ture points to use per edge for the inner (sampling) integral when

it is at a potential singular point. Default is 51.

• outer_points - a value to specify how many Gaussian quadrature
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points to use per edge for the outer (testing) integral. Default is 3.

• inner_points - a value to specify how many Gaussian quadrature

points to use per edge for the inner (sampling) integral. Default is

4.

Constructor arguments

• N_T - as above.

• dt - as above.

• geom_obj - a list of halfedges in the form of MeshBoundary.halfedges

or MeshBoundary.dual.

• c - as above.

Methods

• [S,D,Dp,Nh,Ns] = compute(cheat) - compute the TDBEM ma-

trices for S, D, D′, Nh, and Ns and output them as S, D, Dp, Nh,

and Ns respectively. Each matrix is of size
[
number of edges2 × NT

]
.

The cheat boolean can be set to true when the geometry is a cylin-

der with equal edge lengths. When using the cheat, the algorithm

runs much faster because it only has to compute 1 row and column

of the matrix for each timestep, then copies them to fill the rest of

the matrix. If cheat is not defined, the default is false.
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Because Matlab dynamically allocates memory, and doesn’t support pointers

or referencing, it can be slow compared to C++. Furthermore, portable code

that can run in parallel on multiple threads is much more convenient using an

open source C++ compiler, OpenMP, and CMake. The implementation for

2DTDBEM can be found at https://github.com/dan-phd/2DTDBEM.

The 2DTDBEM project repository has the following directory structure:

2DTDBEM ........... contains the license, readme and install script

2DTDBEM ........ contains the source code and CMakeLists file

build .........................where the built binaries go

CMake .........................additional tools for CMake

input .....................where the input Matlab files go

results .................where the output Matlab files go
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B.1 Installation

To install, use the CMakeLists file. There are dependencies on the following

libraries:

• OpenMP (optional but recommended for parallel computing and faster

run-times)

• Zlib (optional but recommended for compression)

• HDF5 (optional but recommended for large files)

• MatIO (required)

• Armadillo (required)

B.1.1 Linux

From a fresh install (e.g. Amazon Web Services EC2 Ubuntu), download the

project to a custom directory, then run the install.sh script:

sudo apt -get install git
git clone https :// github.com/dan -phd/2 DTDBEM.git
cd 2DTDBEM
chmod +x install.sh
sudo ./ install.sh

Alternatively, you can install the above libraries (in order) yourself using the

standard ./configure and sudo make install commands. If you don’t have root

privileges, you will need to install the libraries in a local folder, and use

./ configure --prefix =/home/<local_lib_folder >

or

cmake . -DCMAKE_INSTALL_PREFIX =/home/<local_lib_folder >

If HDF5 is installed, MatIO should be configured using

./ configure --with -default -file -ver =7.3
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Once the libraries have been installed, 2DTDBEM is installed using

cd 2DTDBEM/build
sudo cmake ..
sudo make install
cd ..

The program options can then be viewed with ./bin/2DTDBEM. If you get an

error wile loading the shared libraries, use

export LD_LIBRARY_PATH =/usr/local/lib/

for root users or otherwise use

export LD_LIBRARY_PATH =/home/<local_lib_folder >/lib

B.1.2 Windows

First download and unzip the armadillo and MatIO libraries to a low level

directory (such as C:\build).

Edit the user environment variables for your machine to include the di-

rectories to the unzipped libraries in variables named ARMADILLO_ROOT and

MATIO_ROOT.

To run the code using Visual Studio in Windows, open the 2DTDBEM.sln file

located in the top directory.

Make sure that the correct solution platform is being used (Win32 or x64) and

check the following settings are configured correctly:

• Configuration Properties → C/C++ → General → Additional Include

Directories:

– $(ARMADILLO_ROOT)\include

– $(MATIO_ROOT)\include

• Configuration Properties→ Linker→ General→ Additional Library Di-

rectories:
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– $(ARMADILLO_ROOT)\include\examples\lib_win64

– $(MATIO_ROOT)\visual_studio\x64\Debug (or Release depend-

ing on solution configuration)

• Configuration Properties→ Linker→ Input→ Additional Dependencies:

– lapack_win64_MT.lib

– blas_win64_MT.lib

– libmatio.lib

After building the Visual Studio project but before running, make sure that

lapack_win64_MT.dll, blas_win64_MT.dll, and libmatio.dll is copied to

the runtime directory i.e. the same directory as the 2DTDBEM.exe file.

To run the application straight from Visual Studio, you can append program

arguments in Configuration Properties→ Command Arguments. The program

can then be run without the debugger by pressing Ctrl + F5.

B.2 Usage

From the 2DTDBEM directory, run the program using ./bin/2DTDBEM [options],

where the options are:

-h or --help - Print usage and exit.

-f<arg> or --file=<arg> - Input mesh filename, without extension (re-

quired).

-t<num> or --timesteps=<num> - Number of timesteps. [1000]

-q<num> or --quadrature_points=<num> - Number of Gaussian quadrature

points used on the outer integral. [25]

-d<num> or --degree=<num> - Lagrange interpolator degree to use for the

temporal convolutions. [1]

-s<arg> or --suffix=<arg> - suffix to attach to end of result filename.

-c or --cheat - Use cheat for faster computation (only applicable for cylinder

with symmetric edge lengths).
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-S or --scattered - Compute scattered field.

-T<args> or --test <args> - Perform test specified in the argument.

B.2.1 Examples

A very simple example using the input file cyl_res21.mat, and all defaults:

./bin/2 DTDBEM --file cyl_res21

Using the input file cyl_res21.mat, compute the operator matrices for 300

timesteps, using 4 quadrature points, and using the cheat:

./bin/2 DTDBEM --file=cyl_res21 --timesteps =300 --
quadrature_points =4 --cheat

The same as above but reduced:

./bin/2 DTDBEM -fcyl_res21 -t300 -q4 -c

Compute the scattered fields in file scattered_mesh.mat for 500 timesteps

./bin/2 DTDBEM --scattered -fscattered_mesh -t500

The input file is a specific Matlab type file which contains boundary edges, dt,

c, number of shapes, and an option to decide whether or not to use dual basis

functions.

The results folder contains the output files, which have the same name as the

input (plus a suffix if specified).

B.2.2 Initial test

Once all the files are copied and the libraries are installed, run the following

initial test to check everything works:
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./bin/2 DTDBEM --test computeConvolutions

Then in the Matlab program, modify the locationOfFolder variable set in

BEUT.CFolder to the directory in which the C++ program is installed; this

should be one directory down from the folders /input and /results.

Now you can run the BEUT.BEM.Demo.computeConvolutions script and com-

pare the time and accuracy for the results using Matlab and the results using

C++.
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This section will demonstrate the steps required to model a Lüneburg lens

from scratch.

1) Download the BEUT Matlab project and the 2DTDBEM C++ project

from https://github.com/dan-phd/BEUT and https://github.com/

dan-phd/2DTDBEM, respectively.

2) Unzip both projects into a custom directory. For example,

C:\tutorial\BEUT and C:\tutorial\2DTDBEM.

3) Open Matlab and change the path to the BEUT folder.

4) In Matlab, type open BEUT.CFolder, and change the locationOfFolder

variable to the location of the 2DTDBEM directory.

5) In Matlab, type open BEUT.Meshing.Main.CreateMesh and make sure the

script is creating a “cylinder resonator” with 1 wavelength per radius.

Run the script and observe the graphical output which shows the link

line mesh as shown in figure C.1a, and the output triangle mesh, which

in this case should have 69 boundary edges, as shown in figure C.1b.
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(a) Link line mesh, with smallest link line
circled.

(b) Output triangulation.

Figure C.1: Resulting mesh using the CreateMesh Matlab script.

Observe the output in the Matlab command window which displays the

ratio between the average link length and shortest link length (which

from experience is most efficient below 5). The command window out-

put also displays the location of the output files, such as:

Matlab file output to: C:\ tutorial\BEUT\+BEUT\+ Meshing\
meshes\cyl_res69.mat

C++ file output to: C:\ tutorial \2 DTDBEM \2 DTDBEM\input\
cyl_res69.mat

6) To compute the BEM operators, open command prompt from the

2DTDBEM directory (C:\tutorial\2DTDBEM\2DTDBEM in this case) and

type:

bin\2 DTDBEM.exe --file=cyl_res69 --timestep =3000
--quadrature_points =4 --cheat

Once the computation is complete, the command window should display

the location of the output file (which should be in the results folder)

as shown in figure C.2.

7) In Matlab, type open BEUT.Main.ModelLuneburgLens and follow the code

through:

(a) Load the geometry (along with dt, mu0 and eps0):

filename = ’cyl_res69 ’;
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Figure C.2: Command prompt output after computing BEM operators.
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Figure C.3: Relative permittivity coverage for the Lüneburg lens.

global mu0 eps0;
load([ fileparts(which(’BEUT.Meshing.load’)) filesep

’meshes ’ filesep filename ’.mat’]);
boundary=BEUT.Meshing.MeshBoundary(mesh);
radius=max(range(vertcat(boundary.halfedges.a)))/2;
c0 = 1/sqrt(mu0*eps0);

Make sure the filename variable matches the name of the mesh

(which is also the same as the 2DTDBEM results file).

(b) Define material layers, where the Lüneburg lens has an εr that is a

function of the distance from the center:

CC = circumcenter(mesh.TR);
for i=1: mesh.nF

r = norm(CC(i,:));
eps_r(i) = (2-(r/radius).^2);

end
mu_r =1;

(c) Set the materials in the mesh object, and plot the relative permit-

tivity coverage:

mesh.setMaterial(eps_r ,mu_r);
mesh.calcAdmittances;
mesh.plot_materials(’eps_r’)

The resulting figure should look similar to figure C.3.

(d) Set the total number of timesteps and make the time vector:

N_T = 3000;
time = 0:dt:(N_T -1)*dt;
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(e) Set the excitation, in this case a Gaussian modulated sinusoidal

wave:

min_edge_length = min(vertcat(boundary.halfedges.l)
);

f_width = 0.3 * c0;
f_mod = 0.9 * c0;
direction = [1 0];
inc_wave = BEUT.Excitation.SineWave(f_width , f_mod ,

c0, direction , 0.8);
V_source = inc_wave.eval(time);

View the excitation in the time domain (as shown in figure C.4a:

figure; plot(time ,V_source)
title(’Incident wave in the time domain ’); xlabel(’

time’);

Check the stability and view the excitation in the frequency domain

(as shown in figure C.4b):

min_edge_length = min(vertcat(boundary.halfedges.l)
);

min_wavelength = c0/inc_wave.freq_response(time ,
true);

if min_edge_length >min_wavelength /10
warning ([’Minimum edge length (’ num2str(

min_edge_length) ’) should be less than a
tenth of the minimum wavelength (’num2str(
min_wavelength) ’)’])

end

A warning may appear which can be safely ignored if the minimum

edge length is not less than, but close to, a tenth of the minimum

wavelength.

(f) Set the probe positions, which will be located on the observed

halfedges:

observation_edges = [117 1048];
mesh.plot_halfedge(observation_edges);

In this case, the observed points are located on the boundary at the

far left and far right sides of the cylinder as shown in figure C.5.

(g) Compute the hybrid operators (using the C++ operator file) and

perform the main timestepping algorithm:

171



Appendix C. BEUT Tutorial

(a) In the time domain.

(b) In the frequency domain.

Figure C.4: Incident wave.

Figure C.5: Locations of the observation points.
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Figure C.6: Real-time simulation plot.

source_edge = observation_edges (1);
operator_file = matfile ([BEUT.CFolder filesep ’

results ’ filesep filename ’.mat’]);
[mesh , M_TM , J_TM] = BEUT.Main.MOT(mesh , boundary ,

operator_file , observation_edges , time , mu0 , 0,
0, V_source , source_edge);

The 7th and 8th arguments represent the electric and magnetic

incident plane waves, which are set to zero in this case because there

is no plane wave present in this simulation. The real-time animation

figure, similar to the one shown in figure C.6, can be closed if not

required (simulations run slightly faster without plotting at every

timestep).

(h) Once the simulation has completed, you can plot the field at the

observation points specified previously using:

tstop = size(mesh.fields.E_z ,2);
figure; plot(time (1: tstop),mesh.fields.E_z(

observation_edges ,1: tstop))
entries = cell(1,numel(observation_edges));
for i=1: numel(observation_edges)

entries(i) = {sprintf(’E_z at halfedge %i’,
observation_edges(i))};

end
legend(’String ’,entries);

The resulting figure should look similar to the one shown in figure

C.7.

(i) For an animation of the electric field inside the object (the UTLM

region), use:
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Figure C.7: Locations of the observation points.

Figure C.8: Animation of the internal fields paused at timestep 865.

mesh.animate(’E’)

The animated figure that appears allows you to play, pause and

skip frames, as shown in figure C.8.

(j) For scattered fields outside of the UTLM region, observation points

must be defined so that the BEM operators can act upon those

points. We can output a file which will contain this information

using a structured set of points. BEM will also need to know the

surface current densities and whether or not to use dual basis func-

tions:

[X,Y] = meshgrid ([ -1.5:0.2:2] ,[ -1.5:0.2:1.5]);
x_coords = X(:); y_coords = Y(:);
M = mesh.fields.E_z(mesh.mesh_boundary ,:);
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Figure C.9: Locations of the observation points to be used when finding the scattered
field outside of the UTLM region.

J = -mesh.fields.H_xy(mesh.mesh_boundary ,:);
dual = true;
c_file = [BEUT.CFolder filesep ’input’ filesep

filename ’_scattered.mat’];
in_scatterer = BEUT.BEM.Main.

saveScatteredFieldPoints(mesh ,x_coords ,y_coords
,M,J,dual ,c_file);

A figure should then be output which shows the object outline and

observation points around it, similar to figure C.9. The command

window output indicates the number of points that will be com-

puted; the less points, the less memory required and the quicker

the computation. The output also reveals the filename that is to be

input into the 2DTDBEM program, for example:

Number of grid points: 208
C++ file output to: C:\ tutorial \2 DTDBEM \2 DTDBEM\

input\cyl_res69_scattered.mat

8) To compute the scattered fields outside of the object, open command

prompt from the 2DTDBEM directory and type:

bin\2 DTDBEM.exe --file=cyl_res69_scattered --timestep
=3000 --scattered

9) Return to the Matlab script BEUT.Main.ModelLuneburgLens, and use

the following code to animate the BEM scattered fields:

operator_file = matfile ([BEUT.CFolder filesep ’results ’
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Figure C.10: Animation of the external fields paused at timestep 1000.

filesep filename ’_scattered.mat’]);
E_s = BEUT.BEM.Main.organizeScatteredField(

operator_file , X, in_scatterer );
BEUT.animate_fields (2,’domain ’,X,Y, ’animation ’,E_s/max

(max(max(E_s))), ’overlay ’,vertcat(boundary.
halfedges.a),’dimensions ’,2, ’skipTimesteps ’,10, ’
max_amplitude ’,1,’min_amplitude ’,-1);

The animation window will look similar to figure C.10.

10) To plot the fields inside and outside the scatterer at a particular timestep

(in this case we will specify the timestep as 1000), use the following:

BEUT.Main.plotFields( filename ,mesh ,X,Y,in_scatterer
,1000, true )

The resulting output will look similar to figure C.11, where the external

scattered field is now interpolated across the structured mesh for a more

visually appealing image.
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Figure C.11: The electric field plot inside and outside of the scatterer at timestep 1000.
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