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Abstract

Basic Helix-Loop-Helix proteins are transcriptional regulators crucial for many development

processes. Using gain- and loss-of-function analysis in zebrafish, the functional role of two

members of this protein family, lyl1 (Lymphoblastic leukaemia 1) and Id4 (Inhibitor of

differentiation 4) in stem cell fate was determined. Ectopic overexpression of lyl1 resulted in

the expansion of haematopoietic stem cell pool and its progeny promoting erythrocyte

differentiation and suppressing myeloid differentiation. TALEN-mediated lyl1-/- embryos

developed normally but displayed distinct marker gene expression during primitive and

definitive haematopoiesis establishing a role for lyl1 in both waves of haematopoiesis.

During primitive haematopoiesis expression of scl/tal1 and gata1 was unaltered but

expression of pu.1 was increased suggesting that lyl1 antagonises myeloid differentiation.

Lyl1-deficiency resulted in reduction of Gfi1aa expression during primitive and definitive

haematopoiesis. In addition, a reduction in the expression of c-myb in the caudal

hematopoietic tissue and rag1 in the thymus was observed indicating that lyl1 is required to

maintain the definitive haematopoietic stem cell pool and to drive T lymphopoiesis. In adult

zebrafish lyl1 regulates lineage choice driving lymphopoiesis and suppressing myelopoiesis.

Morpholino-mediated knockdown of Id4 alone or in combination with p53 resulted in

reduced cell proliferation, increased cell death and premature neuronal differentiation.

Phenotypic analysis of TALEN-mediated Id4 mutants confirmed that Id4 plays a crucial role

in the expansion of neural stem cells and timing of neuronal differentiation. Inhibition of

p38MAPK in Id4 morphants as well as Id4-/- mutants resulted in a phenotypic rescue

establishing that Id4 negatively regulates p38MAPK activity to ensure normal neurogenesis.
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Chapter 1

Introduction

1.1 bHLH protein family

Helix-Loop-Helix (HLH) or basic (b) helix-loop-helix (bHLH) proteins have been

shown to regulate many cellular processes during development and adulthood. More than 200

members of bHLH proteins have been identified in organisms from yeast to human. bHLH

proteins have been found to play important role in cellular differentiation, gene expression,

cell cycle control, lineage commitment and sex differentiation (Jan and Jan, 1993; Massari

and Murre, 2000). Cell-type-specific bHLH proteins are involved in cell fate determination

such as Id4 in neurogenesis and scl/tal1 in haematopoiesis while ubiquitously expressed Myc

proteins regulate transcription initiation and when associated with Max proteins they function

as transcription activators (Jones et al., 2004; Bedford et al., 2005; Gering et al,, 1998;

Schmidt, 2004; Nair and Burley, 2003).

bHLH proteins possess two highly conserved and functionally different domains. The

N-terminal end of the bHLH domain is the basic domain that binds DNA whereas the helix-

loop-helix domain facilitates homo and hetero dimer formation (Fairman et al., 1993). Based

on tissue distribution, dimerisation abilities and DNA-binding specificity Murre et al (1994)

divided the bHLH proteins into seven different classes. Class I consist of E proteins that are

expressed in many different tissues. Expression of class II bHLH proteins including myoD,

neurogenins, MASH1, scl/tal1 and lyl1 is restricted to certain tissues. Class II bHLH proteins

are known to form heterodimers with Class I E proteins (Murre et al., 1989; Massari and
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Murre, 2000). Members of class II regulate myogenesis (MyoD and myogenic regulatory

factors), neurogenesis (Ngn1, Math1) cardiogenesis (dHAND, eHAND) and haematopoiesis

(scl/tal1, lyl1) (Weintraub, 1991; Jan and Jan, 1993; Srivastava and Olson, 1997; Porcher et

al., 1996).

The Myc family of transcription factors belongs to Class III that possesses a Leucine-

Zipper domain adjacent to the HLH domain (Henthorn et al., 1991; Zhao et al., 1993) and

Class IV HLH proteins such as Mad andMax form heterodimers with the Myc proteins

(Blackwood and Eisenman, 1991). Myc/Mad/Max family transcription factors expressed

widely in many different cell types and their main targets are genes involved in cell cycle

control (Grandori et al., 1997; Jones, 2004).

Id proteins (class V) also comprise a HLH domain but they are lacking the DNA-

binding basic domain. Heterodimers of Id proteins and class I and class II bHLH proteins

cannot bind DNA and as such Id proteins negatively regulate the activity of these bHLH

proteins (Ellis et al., 1990).

Class VI bHLH proteins (Hes family) have a proline in their basic region that alters

the DNA-binding specificity (N-box instead of E box) and class VII members feature a

bHLH-PAS domain (Figure 1.1; Klambt et al., 1989; Crews, 1998; Rushlow et al., 1989)
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Figure 1.1 Subdivision of HLH protein families. HLH region which mediates homo or

hetero dimerisation is made up of two amphipathic α helices, each 15-20 residues long, 

separated by a shorter intervening loop. Adjacent to the HLH domain is the basic domain (b),

which binds DNA at E-box or N-box. Id family members lack the basic domain and

negatively regulate other bHLH proteins. Some members of bHLH proteins possess an

additional domain for dimerisation. Class III and IV HLH family have a leucine zipper

domain whereas class VII have a bHLH-PAS domain (Sablitzky, 2005).
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1.2 Id Proteins

Id (Inhibitor of differentiation) proteins (Id1 - Id4 in vertebrates and

extramacrochaetae (emc) in drosophila) are dominant-negative HLH transcription factors

that antagonise bHLH protein function (Benezra et al., 1990; Norton et al., 1998; Massari and

Murre, 2000). Id proteins compete with bHLH proteins in dimer formation sequestering one

of the bHLH proteins. As Id proteins lack the basic domain, Id/bHLH hetero dimers cannot

bind DNA (Figure 1.2). The HLH domain is highly conserved between the Id proteins with

each protein possessing some unique amino acids. Id4 has four such amino acids in the first

helix and loop. Id1 has 3 such change whereas Id2 has 4 and ten in Id3.
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Figure 1.2 Mechanism of Id activity. A. A bHLH protein heterodimer binds to the E box

sequence (CANNTG), which leads to transcription of downstream target genes resulting in

cell differentiation. B. Id proteins form inactive heterodimers with bHLH protein that cannot

bind DNA. Hence transcription of downstream target genes is blocked and cell differentiation

is inhibited (Sikder et al., 2003).
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Id proteins play an important role in regulating early embryogenic processes, such as

cell proliferation, differentiation and apoptosis (Benezra et al., 1990). Biochemical and

genetic data revealed that Id proteins are positive regulators of cell proliferation and negative

regulators of differentiation (Benezra et al., 1990; Norton et al., 2000; Yokota, 2000;

Lasorella et al., 2001). Id proteins are highly expressed in undifferentiated, proliferating cells

and the expression is subsequently down-regulated in differentiated cells. In mammalian cell

culture systems, down-regulation of Id proteins resulted in cell differentiation whereas up-

regulation blocked differentiation and increased cell proliferation (Lasorella et al., 2001).

1.3 bHLH proteins function in neural stem cell proliferation and differentiation

The nervous system develops from neural stem cells in the neural epithelium that

differentiate to mature and functional neuronal and/or glial cell types (Ross et al., 2003;

Guillemot et al., 2005). Several transcription factors and signalling pathways control this

process to ensure stem and progenitor cells proliferate sufficiently prior to differentiation,

maintenance of progenitor population throughout development and timing of the

differentiation at appropriate locations (del Corral and Storey 2001; Bertrand et al., 2002;

Ross et al., 2003). Vertebrate nervous system development follows three sequential

processes such as the proliferation of the neural stem cells, neurogenesis and gliogenesis.

During early stages of neural development the neuroepithelial cells undergo a rapid

proliferation to form neural plate. These neuroepithelial cells are actually neural stem cells

that are mitotically active giving rise to progenitor cells. Neural stem cells are found

throughout the brain during early development but the stem cell population declines over

time (Rao, 1999; Temple, 2001; Fujita, 2003). Neuroepithelial cells become radial glia cells,

which are also embryonic neural stem cells with some glial characteristics that undergo rapid

cell division producing radial glial cells and neurons. Glial cells remain in the ventricular
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zones whereas neurons migrate to the outer layer via radial fibres. After producing neurons

radial glial cells switch to differentiate to glial cell types such as astrocytes and

oligodendrocytes (Bayer and Altman 1991; Temple, 2001). Several bHLH proteins and

signalling pathways control the differentiation of neural stem cells into the different cell types.

Premature differentiation results in the production of early born neurons and in a disorganised

brain architecture (Bertrand et al., 2002; Ross et al., 2003).

It is critical that neural stem cells expand sufficiently before they differentiate. Two

different classes of bHLH proteins Id and Hes factors maintain neural stem cells in a

proliferative state and regulate the timing of neural differentiation. Once the neuronal cell fate

is specified which leads to the transition of proliferation to neurogenesis the expression of the

repressor factors Id and Hes decreases while the expression of proneural bHLH proteins

increases (Ross et al., 2003; Kageyama et al., 2005).

Both Id and Hes factors are expressed in the ventricular zones of the telencephalon

(Jen et al., 1997; Akazawa et al., 1992). Loss of Hes family genes (Hes1 and Hes5) leads to

premature neuronal differentiation both in vivo and in vitro (Nakamura et al., 2000; Kabos et

al., 2002) and forced expression results in restricted neurogenesis with an increase in

progenitor population (Ishibashi et al., 1995). Knockdown of Id proteins also resulted in

precocious differentiation of progenitors into neurons and oligodendrocytes (Lyden et al.,

1999; Wang et al., 2001; Yun et al., 2004; Bedford et al., 2005). Overexpression of Id

proteins blocked differentiation of neurons and oligodendrocytes (Kondo and Raff, 2000;

Wang et al., 2001). These factors repress the proneural genes by direct binding to proneural

bHLH proteins (Hes factors) or binding to the E-proteins that are needed for the proneural

activity (Id proteins) (Sasai et al., 1992; Norton, 2000).

Proneural bHLH proteins (Neurogenins, Mash1 and Math) are expressed at low levels

during development but once progenitors are specified to the neuronal fate their expression
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increases resulting in neurogenesis. Proneural genes are expressed in the telencephalon,

where neural stem cells start to differentiate and not in the cortical plate where mature

neurons are located (Wilson and Rubenstein, 2000). In the absence of proneural factors the

number of cortical neurons decreased, which is due to a failure in progenitor specification

and also resulted in premature astrocyte differentiation (Fode et al., 2000; Nieto et al., 2001;

Tomita et al., 2000). Glial cell differentiation starts after the neurons have migrated to their

target locations. Hes factors are known to promote astrocyte development. Ectopic expression

of Hes proteins convert retinal progenitors to muller glia cells (Hojo et al., 2000) and initiate

astrocyte differentiation in the spinal cord (Wu et al., 2003). It is known that the loss of

proneural genes blocked neurogenesis and during later stages of development there is an

increased differentiation of glial cells suggesting that the proneural genes inhibits glial cell

and astrocyte formation in addition to their role in neuronal differentiation (Tomita et al.,

2000; Nieto et al., 2001). While astrocyte differentiation occurs in the dorsal telencephalon

the ventral telencephalon differentiates to form oligodendrocyte progenitors. Olig1 and Olig2

bHLH proteins are required for the oligodendrocyte fate and their disruption leads to

complete loss of oligodendrocytes (Lu et al., 2000; Zhou et al., 2000; Zhou and Anderson et

al., 2002). Thus different members of bHLH proteins regulate each other to mediate stem cell

fate and the timing of differentiation in the developing CNS. In addition, the expression of

certain bHLH proteins at specific region within the developing brain determines the fate of

neural stem cells to differentiate into neuronal and glial subtypes.
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Figure 1.3: bHLH mediated progenitor specification and differentiation in

telencephalon. Id and Hes proteins maintain cortical progenitors in the dorsal and ventral

telencephalon. A. Ngn and neuroD promotes the formation of pyramidal neurons in the dorsal

telencephalon and Hes is involved in astrocyte differentiation. B. On the ventral side Mash1

is required for GABAergic interneuron specification. Olig proteins specify ventral

progenitors to differentiation into oligodendrocytes (Ross et al., 2003).



10

1.4 Id4 function in neural stem cell proliferation and differentiation

During mouse development Id1, Id2 and Id3 exhibited overlapping expression in

multiple tissues including the nervous system. In contrast, Id4 expression was more restricted

and particularly seen throughout the development of nervous system (Duncan et al., 1992;

Evans and O’Brien 1993; Neuman et al., 1993; Ellmeier et al., 1995; Riechmann and

Sablitzky 1995; Zhu et al., 1995; Jen et al., 1997).

At embryonic day 11.5, the expression of Id4 was observed throughout the

telencephalic vesicles, later noticed in the spinal cord and in the presumptive motor neurons

of the mesencephalon. During embryonic day 12.5 the expression of Id4 is seen in many

areas of the brain including frontal and parietal cortex of the telencephalon, medulla,

cerebellar peduncle, epithalamus, postoptic and preoptic areas. It is also expressed in the

mantle and marginal layers of the thalamus and in the post-mitotic nuclei of the hind brain

and mid brain (Riechmann and Sablitzky, 1995; Jen et al., 1997). At embryonic day 17.5, Id4

expression was reduced in the telencephalon and mesencephalon (Riechmann and Sablitzky,

1995). Expression of Id4 is also noted in adult tissues such as brain, kidney, testis

(Riechmann et al., 1994), thyroid, pancreas, (Rigolet et al., 1998), prostate (Sharma et al.,

2013) and mammary gland (Dong et al., 2011).

1.4.1 Id4 regulates timing of neural differentiation

As outlined above, development of the nervous system is a complex process involving

many external and internal factors that determine the fate of multipotent neural stem cells that

in turn generate lineage restricted progenitors followed by cell-type restricted progenitor cells

which finally differentiate into neurons and glial cells (Anderson, 2001; Gage, 2000; Frisen

and Lendahl 2001; Vetter, 2001). In situ hybridization on mouse embryos showed that Id4 is

specifically expressed in ventricular zones (Riechmann and Sablitzky, 1995).
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Two Id4 null mouse model were developed (Fred Sablitzky’s group and Mark Israel’s

group) that had a common phenotype, reduced forebrain. In the model established by

Sablitzky’s group the HLH domain and most of the regions in the C-terminal was replaced by

lacz-neo cassette via homologous recombination and Mark Israel group replaced the first two

exons with GFP-neo (Bedford et al., 2005; Yun et al., 2004).

Lack of Id4 resulted in reduction in forebrain size due to the reduction of proliferative

cells in the ventricular zones by 20-30% suggesting the loss of neural progenitor cells. This

proliferation defect was followed by 3-fold increase in the apoptosis in the neocortex. The

mice also displayed precocious neuronal differentiation. In addition, the adult mice brain also

displayed reduced astrocytes indicating the premature differentiation of the neural progenitor

cells during early development has led to the loss of astrocytes in the adult (Bedford et al.,

2005, Sablitzky group Id4 model).

Israel group also reported that the loss of Id4 leads to reduction in the forebrain size

especially the dorsomedial progenitor zones (ventricular zone) due to premature

differentiation of the neural progenitor cells. They also reported that the reduced brain size is

due to the defect in the G1-S transition of the neuroepithelial cells that resulted in reduced

proliferation of the neuro epithelium, but increased in the region outside the ventricular zones.

However they did not observe any abnormal apoptosis as observed in Bedford et al., 2005

(Yun et al., 2004).

1.4.2 Id4 is required for timing of oligodendrocyte differentiation

Ectopic expression of Id4 inhibits oligodendrocyte differentiation in cultured

progenitor cells and the expression of Id4 declines once the progenitors start to differentiate

both in vitro and in vivo (Kondo and Raff, 2000). Loss of Id4 in mice resulted in premature

differentiation into oligodendrocytes determined by the expression of late oligodendrocyte
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markers and mature CC1 oligodendrocytes in the sub-ventricular zones and white matter of

neonatal Id4-deficient mice (Marin-Husstege et al., 2006). Premature differentiation also

resulted in decreased oligodendrocyte progenitors and increased apoptosis in adult mice

(Marin-Husstege et al., 2006). Enforced expression of Id4 blocks the activity of myelin basic

protein promoter (Gokhan et al., 2005). In the Id4 null neonatal mice the level of myelin gene

transcripts for MBP and CGT were increased with PLP and MAG protein levels decreased.

But the expression of myelin genes and myelination looked normal in the adult despite the

smaller size of the brain (Marin-Husstege et al., 2006).

1.5 Id4 function in the adult

1.5.1 Id4 is required for self-renewal of spermatogonial stem cells (SSC) and act as

marker to distinguish As from other spermatogonia progenitors

Spermatogenesis is a process by which undifferentiated single spermatogonia (Asingle

or As) forms an Apaired that proliferates to form Aaligned which eventually differentiates into

spermatozoa. As cells have self-renewal ability to maintain the stem cell pool and Apaired,

Aaligned are progenitors. Within the spermatogonial populations Id4 selectively labels the

Asingle cells whereas the other Id proteins (Id1-3) are expressed in spermatocytes and sertoli

cells (de Rooij and Russell 2000; Oatley and Brinster 2012). Disruption of Id4 resulted in

impairment of quantitatively normal spermatogenesis as it loss resulted in premature

differentiation of the SSC. The fertility defects are mainly due to reduced population of germ

cells and not due to the altered endocrine system (Oatley et al., 2011). Expression of Id4-

GFP transgene is restricted to the rare subset of cells that possess regenerative capacity in the

undifferentiated cells of spermatogonial population. This suggests that a subset of As cells are

progenitors while the other functions to maintain the SSCs pool by self-renewing and the

subsets were distinguished based on Id4 expression. Transplantation of Id4-GFP+ cells
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confirmed that these cells have regenerative capacity suggesting that Id4 represents SSC pool

(Chan et al., 2014).

1.5.2 Id4 regulates mammary gland development by suppressing p38 MAPK activity

Id4 is also expressed in mammary epithelial and basal cells (de Candia et al., 2006).

Expression of Id4 was observed in myoepithelial and in luminal cell population of adult

mammary gland whereas it is expressed in terminal end buds cap cell layer and in

myoepithelium of subtending ducts during puberty. A severe developmental defect in the

mammary gland was observed in the Id4-deficient mice. It also required for ductal

elongation, cap and luminal epithelial cell proliferation (Dong et al., 2011). The

developmental defects are followed by decreased proliferation and increased apoptosis as

observed in Id4-deficient mouse (Bedford et al., 2005). Id4 promotes proliferation of cell by

suppressing p38MAPK, which is known to block cell cycle by activating cell cycle inhibitors

and supressing cyclin D1. In Id4-deficient mouse mammary gland the activity of p38MAPK

was elevated suggesting this increased activity of p38MAPK is responsible for reduced

proliferation and increased apoptosis in the Id4 null mammary gland. One of the downstream

targets of p38MAPK is known as BimEL that is involved in apoptosis. BimEL was found to

be activated in the Id4-deficient mammary gland that caused the increased apoptosis of

terminal end buds. Suppression of p38MAPK in the Id4 null mice reversed the defects caused

by Id4 in mammary development. Id4 stimulates proliferation of mammary epithelium by

suppressing the p38MAPK activity, which was increased in Id4-deficient mammary gland

(Dong et al., 2011).
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1.6 Id4 functions as a tumour suppressor as well as oncogene depending on the cell type

and context

Expression of Id proteins were observed in a variety of tumours and often resulted in

loss of differentiation, enhanced malignancy and aggressive clinical behaviour of tumours

(Lasorella et al., 2001; Perk et al., 2005; Fong et al., 2004). Apart from proliferation and

differentiation of normal and cancer cells, Id proteins are also involved in tumour progression

(Park el al., 2005; Fong et al., 2004) such as the ability of tumour cells to invade

neighbouring tissues, metastasise and promote the formation of new blood vessels, which

allows expansion of the tumour mass (Fong et al., 2004; Hanahan and Weinberg 2000). Id4

acts as tumour suppressor in many cancers including leukemia, pancreatic cancer, gastric

cancer, lymphoma, glial neoplasia and lung cancers (Chan et al., 2003; Yu et al., 2005;

Vincent et al., 2011; Hagiwara et al., 2007; Castro et al., 2010). However, Id4 also act as an

oncogene promoting glioblastoma and ovarian cancer (Kuzontkoski et al., 2010).

In glioblastoma multiforme and its derived cell lines the expression of Id4 is elevated.

Xenograft from the cell lines expressing high levels of Id4 had broad vasculature, increased

expression of matrix GLA proteins (Kuzontkoski et al., 2010), which is known to promote

tumor angiogenesis (Chen et al., 1990). The pro-angiogenic functions of Id4 are mediated by

matrix GLA proteins (Kuzontkoski et al., 2010). In another report it was found that Id4

suppresses the invasion of glioblastoma multiforme in vitro. Expression of MMP2 (Matrix

metalloproteinases 2) which is known to digest the various components of brain extracellular

matrix to mediate tumour invasion, was down-regulated in the glioma cell lines expressing

high levels of Id4. This reduced expression of MMP2 was due to the direct interaction of Id4

with Twist1 another bHLH protein that is known to promote MMP2 expression (Rahme and

Israel, 2014). Enforced expression of Id4 in Ink4a/Arf-deficient mouse astrocytes resulted in

dedifferentiation of glioma cells to glioma stem-like cells. Neurospheres exhibited properties
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of brain cancer stem cells such as self-renewal activity and increased expression of marker

genes like sox2, nestin and CD133. This enforced expression of Id4 supports tumour

formation by activating notch signalling and up-regulating cyclin E (Jeon et al., 2008).

Glioma stem cells, a subpopulation of cancer cells in brain tumour, are responsible for

tumour initiation, self-renewal, differentiation and progression of glioma (Singh et al., 2003;

Vescovi et al., 2006). These stem cells are resistant to chemotherapy and irradiation (Dean et

al., 2005; Bao et al., 2006). Id4 supresses microRNA-9* to enhance sox2 expression and

sox2 directly regulates the ATP binding cassette transporters ABCC3 and ABCC6 which

supports the chemoresistance of Glioma stem cells (Jeon et al., 2011).

In normal breast epithelium and in carcinoma the expression of Id4 is limited to

oestrogen receptor (ER) negative cells suggesting that Id4 is negatively regulated by ER. Id4

promoter was frequently hyper-methylated in breast cancer cell lines and tissues indicate the

suppressor role of Id4 in breast cancer (Noetzel et al., 2008; Umetani et al., 2005). Id4 is also

known to promote mammary and ovarian tumourigenesis by suppressing the expression of

BRCA1 (Beger et al., 2001; Roldán et al., 2006). Id4 expression marks a subpopulation of

basal cells that have the ability to produce multi-lineage mammary epithelial cells. As

mentioned earlier, Id4 is required for normal mammary ductal morphogenesis and luminal

differentiation (Dong et al., 2011; Junankar et al., 2015). Id4 is also expressed in basal like

breast cancer (BLBC) and these BLBC are thought to be derived from luminal progenitors

especially the one with a mutation in BRCA1 (Lim et al., 2009; Molyneux et al., 2010;

Junankar et al., 2015). BLBC expressing high levels of Id4 possess properties more similar to

basal cell than to luminal cells and expressed mammary stem cell markers (Junankar et al.,

2015). Id4 is also highly expressed in the cancer stem cell population isolated from the 4T1

cell line, a mouse mammary cancer line and knockdown of Id4 in these cells resulted in

reduced tumoursphere formation (Park et al., 2011).
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In prostate cancer, Id4 acts as tumour suppressor and its expression is downregulated

in prostate cancer as well as in DU145 prostate cancer cell line due to hyper-methylation

(Carey et al., 2009). In the adult mice prostrate Id4 is highly expressed in the glandular

epithelial cells in a way similar to human prostrate. Id4 loss in the mouse prostate resulted in

reduced size of the genital tract, decreased size and number of tubules, and lack of

differentiated epithelial cells (Sharma et al., 2013). A similar phenotype was observed with

the loss of androgen receptor (Simanainen et al., 2007). Id4-deficient mice exhibited a ductal

branching morphogenesis, epithelial hyperplasia and dysplasia that are also observed in

Nkx3.1 deficient mice (Bhatia-Gaur et al., 1999; Sharma et al., 2013). Id4 loss further

supported the formation of PIN (prostatic intraepithelial neoplasia) lesions, earliest stage of

prostate cancer which was associated with increase in expression of Myc, sox9 and Id1.

(Sharma et al., 2013).

1.7 Id4 function in zebrafish development

17.1 Knockdown of Id4 during zebrafish development results in reduced brain size and

lack of brain boundaries

Id4 is expressed in the central nervous system of zebrafish (Thisse et al., 2001) and

RT-PCR has shown that Id4 mRNA is present as early as 6 hpf in the developing zebrafish

embryos (Bashir, 2010). Knockdown of Id4 using translation blocking morpholinos (MOs)

resulted in various phenotypes in the developing embryo at 10.6 hpf and 24 hpf. The embryos

displayed reduced brain size and lacked brain boundaries at 24 hpf. As some morpholinos

have been shown to result in upregulation of the p53 pathway causing similar phenotypes as

described above, p53 MOs were co-injected with Id4 MOs to eliminate these off-target

effects. Double morphants still showed a similar phenotype in the developing embryos, albeit
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less severe, suggesting the requirement of Id4 in normal brain development (Bashir, 2010;

Dhanaseelan, 2011).
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Figure 1.4: Morpholino mediated knockdown of Id4 resulted in a severe phenotype in

the developing brain. Wild type embryos at 2 somites (A) and 24 hpf (D). Embryos injected

with Id4 morpholinos (B, E) lack proper development of the brain. Co-injection of p53

morpholino (C, F) eliminated the p53 mediated off-target effects but the embryos still

displayed reduced brain size, revealing the requirement of Id4 for normal brain development

(Bashir, 2010; Dhanaseelan, 2011).



19

1.7.2 Id4 morphants exhibit decreased cell proliferation and increased apoptosis

Id proteins are highly expressed in the proliferating cells while the expression is

reduced in the differentiating cells indicating that they are important for proliferation (Norton

et al.. 1998; Lyden et al., 1999). Loss of Id4 in mouse revealed that 20-30% of proliferative

cells was lost in the neural region (Bedford et al., 2005). Id4 and Id4/p53 morphant embryos

also showed a reduction in the number of proliferative cells (Figure 1.4). Up to 50% of the

cells were lost in Id4 morphants and in Id4/p53 morphants proliferating cells were reduced by

30-35% (Figure 1.4 H). In addition to this proliferation defect, the embryos also demonstrated

an 8 fold increase in apoptotic cells (Figure 1.4 D-G, I). Reduced proliferation and increased

apoptosis in the developing embryos is likely to impact on the expansion of neural epithelium

resulting in a reduced brain size at later stages (24 hpf) of development (Dhanaseelan, 2011).
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Figure 1.5: Knockdown of Id4 resulted in reduced cell proliferation and increased

apoptosis. Phospho-histone H3 immunostaining revealed a reduction in proliferating cells in

Id4 and Id4/p53 morphants (B and C) compared to the wild type (A). TUNEL staining of Id4

and Id4/p53 morphants (F and G) reveals that more cells are undergoing apoptosis in the

morphants. (D) Wild type and (E) DNaseI treated wild type embryo, positive control.

Quantification confirms that there is significant reduction in the number of proliferating cells

(H) and an increase in the number of apoptotic cells (I) (Dhanaseelan, 2011).



22

1.8 Notch signalling and nervous system development

Notch signalling mediates various cell-cell interactions via lateral inhibition where

cells adopting a fate inhibit its neighbour cells from embracing a similar fate (Bray, 1998;

Artavanis-Tsakonas et al., 1999). Notch functions as receptor and forms a single-pass

transmembrane heterodimer to its ligands Delta and Jagged gene families (Kopan and Illagan,

2009). Upton binding to its ligand, γ secretase cleaves the Notch transmembrane domain and 

releases the intracellular domain (NICD) from the plasma membrane. The NCID enters the

cytoplasm and activates the Recombining binding protein suppressor of hairless (RBPJ) by

recruiting co-activators like Mastermind. The activated RBPJ upregulates the expression of

Hes and Herp genes that antagonise the proneural bHLH proteins (Wu et al., 2001; Kopan

and Illagan, 2009; Bertrand et al., 2002). Thus notch signalling inhibits neuronal

differentiation through lateral inhibition.

It has been reported that Mind bomb1 (Mib) an ubiquitin ligase, activity is essential

for the endocytosis of notch ligand and they are known to regulate all of the notch ligands. In

zebrafish and mouse mib mutants, notch signalling mediated lateral inhibition was reduced

leading to premature differentiation of the neural progenitor cells (Itoh et al., 2003; Koo et

al., 2005). Thus, Notch signalling is activated by Mib mediated ubiquitylation followed by

the interaction of Notch with its ligands. Interaction of Notch with its ligands activates the

proteolytic cleavage of the notch receptor resulting in a membrane-bound Notch fragments.

The NCID fragment was released into the cytosol and activates RBPJ once the remaining

receptor fragments are cleaved by γ secretase (Itoh et al., 2003; Lai, 2004; Brou et al., 2000).

In zebrafish, Notch pathway can be disrupted by three different ways. Deletion of

mib1 will prevent the binding of the notch with its ligands. Zebrafish naturally occurring

mind bomb mutant has a defective mib activity. Secondly, γ secretase mediated cleavage can 
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be inhibited using chemical inhibitors such as DAPM (N-[N-3,5-difluorophenacetyl]-L-

alanyl-S-phenylglycine methyl ester). This will result in the NCID fragment bound to the

membrane thus inhibiting the activity of RBPJ complex (de Strooper and Annaert, 2010).

Activation of Hes proteins by RBPJ is critical for notch-mediated lateral inhibition. Targeting

RBPJ using morpholinos (or genome editing) will block the interaction of RBPJ with the

Notch intercellular domain. This restrict the activity of notch target genes (Hes) (Sieger et al.,

2003).
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Figure 1.6: Hypothetical model of Notch signalling based on Delta endocytosis and ways

to block Notch signalling. I. Notch signalling is initiated once Mib interacts with Delta

which promotes its ubiquitylation and endocytosis. This endocytosis then assists the S2

proteolytic cleavage which releases the Notch extracellular domain. The remaining NICD is

then cleaved by γ secretase releasing the NICD into nucleus which activates target genes. II.

Notch signalling can be blocked by different ways to inhibit notch activity A. Mutation in

mib can block the interaction of Notch with its receptors thereby preventing the entire

process. B. Inhibition of γ secretase by DAPM can prevent the release of NICD from the 

extracellular domain. C. Morpholinos (Su(H)/RPBJ) that can prevent the formation of

transcription activator complex. This blocks the activation of notch target genes. (Itoh et al.,

2003)

A

B

C

I II
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1.9 bHLH proteins in haematopoiesis

Haematopoiesis is a process, through which multipotent haematopoietic stem cells

differentiate into lineages restricted progenitors and to functionally different unipotent blood

cells types such as erythrocytes, monocytes/macrophages, neutrophils, basophils, eosinophils,

platelets and lymphocytes (Orkin and Zon, 2008). Haematopoiesis is controlled through a

network of signalling pathways and transcription factors (Huang and Zon, 2008).

Haematopoietic stem cells have the ability to self-renew in the way in which one or two of

the daughter cells have the characteristics of the mother cell to maintain the HSC pool at the

constant level (He et al., 2006). During murine development, haematopoiesis first occurs as

cell cluster in yolk sac blood islands and later in the aorta-gonad-mesonephros (AGM),

placenta, fetal liver and finally in the bone marrow. Zebrafish haematopoiesis is initiated in

the Anterior Lateral Mesoderm (ALM) and Posterior Lateral Mesoderm (PLM) then in

intermediate cell mass (ICM) and subsequently in the AGM, the caudal haematopoietic tissue

before the cells colonise in kidney marrow (Orkin and Zon, 2008; Dzierzak et al., 2008).

1.9.1 Haematopoietic stem cells (HSCs)

Haematopoietic stem cells are cells that have the capacity to regenerate the entire

blood system of an adult (Orkin and Zon, 2008). Transplantation of HSC from bone marrow

to lethally irradiated mice resulted in complete, long-term engraftment of all blood lineages

by donor-derived stem cells (Till and McCulloch et al., 1961; Müller et al., 1994; Moore et

al., 1970). HSC isolated from the recipient using monoclonal antibodies that are specific for

various cell-surface proteins like c-kit and stem-cell antigen 1 (SCA 1) demonstrated the

HSC containing cell population and in this population one in 5 cells showed the property of

long-term engraftment (Yilmaz et al., 2006). Thus HSCs are pluripotent, which is
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characterised by their potential to generate eight major haematopoietic lineages such as the

erythrocytes, megakaryocyte/platelets, basophils, eosinophils, neutrophils, monocytes, B and

T cells (Jordan et al., 1990; Szilvassy et al., 1990). HSCs maintain high proliferation

potential and are self-renewal (Morrison et al., 1994; Osawa et al., 1996). HSCs possess

multipotency as well as self-renewal ability and give rise to multipotent progenitors (MPPs)

that possess limited self-renewal ability but can maintain full-lineage differentiation potential

(Morrison and Weissman, 1994; Christensen and Weissman, 2001). MPPs differentiate into

lymphoid-primed multipotent progenitor cells (LMPPs). LMPPs can be differentiated into

common lymphoid progenitors (CLPs) that give rise to lymphocytes and NK cells. LMPPs

have reduced ability to differentiate into megakaryocytes and erythrocytes. Hence these cells

must develop through common myeloid progenitors (CMPs) that differentiate into

megakaryocyte-erythrocyte progenitors (MEPs) that develop into erythrocytes/platelets and

granulocyte-monocyte progenitors (GMPs) which further differentiates into

granulocytes/macrophages/dendritic cells (Serwold et al., 2009; Kondo et al., 1997;

Adolfsson et al., 2005; Zandi et al., 2010).
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Figure 1.7: Haematopoietic hierarchy. Haematopoietic system is maintained by HSCs that

have the self-renewal ability, giving rise to various progenitor cells which proliferate

progressively and generates mature blood cells. These progenitor cells have only limited self-

renewal ability, hence they were replaced continuously. Abbreviations: LT-HSC, long-term

haematopoietic stem cells; ST-HSC short-term haematopoietic stem cells; MPP, multipotent

progenitor; CMP, common myeloid progenitor; LMPP, lymphoid-primed multipotent

progenitor; CLP, common lymphoid progenitors; MEP, megakaryocyte/erythroid

progenitors; GMP, granulocyte/ macrophage progenitor. (Blank and Karlsson, 2015).

LMPP
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1.9.2 Waves of haematopoiesis

Vertebrates display two waves of haematopoiesis known as the embryonic or

primitive haematopoiesis and adult or definitive haematopoiesis. Primitive haematopoiesis

results in the production of red blood cells and macrophages, which provides the rapidly

developing embryo with tissue oxygen and innate immunity respectively. This primitive

wave is transient and is replaced by definitive or adult haematopoiesis. The primitive

haematopoiesis was seen extra-embryonically in the yolk sac while the adult one is noted

intra-embryonically in the ventral wall of the dorsal aorta known as the aorta-gonad-

mesonephros (AGM), where HSC arise (Taoudi et al, 2007). In vitro studies using mouse

have shown the presence of majority of the multipotent haematopoietic precursors in these

regions (Godin et al, 1999; de Bruijn et al, 2000). Apart from AGM haematopoietic activity

was also observed in umbilical arteries and in allantois where

co-localisation of haematopoietic and endothelial cells occurs (Inman and Downs, 2007).

Umbilical veins lack the haematopoietic potential but HSC were observed in mouse placenta

(Gekas et al., 2005; Ottersbach and Dzierzak, 2005). In mammals, definitive haematopoiesis

involves colonisation of the fetal liver, thymus, spleen and ultimately bone marrow. It is

believed none of these sites generated HSC de novo and that populations of HSCs have been

migrated there from the AGM (Orkin and Zon, 2008).

1.9.3 Zebrafish haematopoiesis

Like the vertebrates, Zebrafish also display two waves of haematopoiesis: primitive or

the embryonic and definitive or the adult wave. Primitive wave is initiated in the ventral

lateral mesoderm at 10 hpf giving rise to haemangioblast which express markers for both

haematopoietic (scl/tal1, lmo2) and endothelial markers (flk1) (Galloway and Zon, 2003;

Dooley et al., 2005; Paik and Zon, 2010). Ectopic expression of scl/tal1 resulted in the
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expansion of both blood and endothelial precursors indicating its importance in

haemangioblast specification (Gering et al., 1998). Primitive haematopoiesis give rise to a

transition population of erythrocytes and primitive myeloid cells (Ciau-Uitz et al., 2014).

Primitive haematopoiesis occurs in anterior lateral mesoderm (ALM) and posterior lateral

mesoderm (PLM) (Davidson et al., 2003; Detrich et al., 1995). ALM expresses the myeloid

marker pu.1 at 12hpf which migrates rostrally and then laterally across the yolk sac. These

myeloid progenitors later mature into different myeloid populations expressing myeloid-

specific l-plastin and granulocytic specific myeloperoxidase (Lieschke et al., 2002; Bennet et

al., 2001).

At 4 somites stage in the PLM the expression of gata1 in a subset of scl/tal1+ cells

which marks the erythrocyte precursors (Davidson et al., 2003; Detrich et al., 1995). PLM

cells migrate medially to fuse to the midline forming intermediate cell mass (ICM) at 14

somite stage. Primitive erythropoiesis occurs in the ICM which produces the primitive Red

Blood Cells (prRBC) (Sood and Liu, 2012). These scl/tal1+/ gata1+ cells give rise to the first

circulating blood cells (Lieschke et al., 2002). These primitive erythrocytes are

morphologically different from the adult zebrafish erythrocytes, which have less cytoplasm

and a long nucleus. Transfusion experiments using rhodamine labelled circulating

erythrocytes have demonstrated that these primitive erythrocytes are the only circulating

erythroid cell during the first 4 dpf (Weinstein et al., 1996). Gata1 and pu.1 antagonise each

other to promote erythroid and myeloid differentiation, respectively. Loss of gata1 resulted in

the transformation of erythroid precursors into myeloid and knockdown of pu.1 increases the

erythroid production at the expense of myeloid cells (Galloway et al., 2005; Berman et al.,

2005).



30

Definitive haematopoiesis in zebrafish occurs in two waves; a transient pro-defintive

wave in the posterior blood island (PBI) at 24 hpf which produces erythro-myeloid

progenitors (EMP) and second definitive wave that produces HSCs (Ciau-Uitz et al., 2014).

EMPs are observed before HSC and have the potential to give rise to both erythroid and

myeloid colonies in culture but they were not observed in kidney marrow or thymus in vivo

(Bertrand et al., 2007). Zebrafish definitive haematopoiesis that give rise to HSC occurs at

around 30 hpf from the heamogenic endothelium on the ventral wall of dorsal aorta (Burns et

al., 2002; Bertrand et al., 2010). From 48 hpf the HSC that are c-myb and runx1 positive,

migrate to caudal haematopoietic tissue (CHT). CHT acts an intermediate niche for HSC

expansion and differentiation to erythroid and myeloid cells. Definitive erythropoiesis occurs

approximately from 3.5 dpf and gradually replaces the primitive erythrocytes whereas the

myelopoiesis starts from 3dpf (Murayama et al., 2006; Jin et al., 2009; Monteiro et al., 2011).

HSC starts to seed the thymus and from 4 dpf thymus express the lymphoid differentiation

marker rag1 (Kissa et al., 2008; Le Guyader et al., 2008). HSCs also start to seed the

developing kidney marrow from 4dpf which acts as primary site of haematopoiesis (Bertrand

et al., 2010).
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Figure 1.8. Zebrafish haematopoiesis. Haematopoiesis in zebrafish occurs in two waves

primitive and definitive wave.Primitive waves occurs at 2 somites in two regions known as

the ALM and PLM which produces myeloid (Green) and erythrocytes (Blue) respectively.

Before the wave switch to definitive there was transient phase (pro-definitive wave, 22-24

hpf) that produces EMPs (Pink) arise from PBI. Definitive wave occurs in the ventral wall of

dorsal aorta where HSCs are generated. Unlike, other vertebrate EHT does not occurs in the

lumen of the DA but occurs in the space between the DA and posterior cardinal vein. The

HSC then seed the CHT where they differentiate into erythroid and myeloid progenitors.

HSC finally seed the kidney marrow at around 4dpf. Lymphoid differentiation occurs in

thymus. HSC-Haematopoietic stem cells; ALM- anterior lateral mesoderm; PLM- posterior

lateral mesoderm; EMP- erythroid myeloid progenitor; PBI- posterior blood island; DA-

dorsal aorta; CHT- caudal haematopoietic tissue (Ciau-Uitz et al., 2014),
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1.10 Lymphoblastic leukemia 1 (lyl1) function in haematopoiesis

Lyl1 (lymphoblastic leukemia 1) is a member of class II bHLH protein and

closely related to scl/tal1 (Stem cell leukemia) (Mellentin et al., 1989; Visvader et al., 1991).

Lyl1 was first discovered at chromosomal translocation sites in T-cell acute lymphoblastic

leukemia (Mellentin et al., 1989). Both lyl1 and scl/tal1 displayed more than 90% amino acid

identity in the bHLH region and interact with the leukemia oncogene proteins LMO1/LMO2

(lim-only-domains) suggesting that they share some biological functions (Mellentin et al.,

1989; Wadman et al., 1994; Porcher et al., 1996; Schlaeger et al., 2004). However, the

domains other than bHLH domain are quite diverged indicating distinct roles for these bHLH

proteins (Visvader et al., 1991; Kallianpur et al., 1994). Indeed, lyl1 and scl/tal1 display

overlapping but not identical expression patterns in the mouse (Visvader et al., 1991;

Chapman et al., 2003; Giroux et al., 2007) and analysis of knockout mice have demonstrated

both redundant functions as well as distinct roles for both proteins in haematopoiesis

(Souroullas et al., 2009).

1.10.1 Comparison of scl/tal1 and lyl1 expression in mouse haematopoietic system and

other tissues of mouse

At 7 dpc (days post-coitum) expression of scl/tal 1 was observed both at mRNA

(Silver and Palis, 1997) and protein (Kallianpur et al., 1994) level in the extra-embryonic

mesoderm. The mouse reporter line also showed β-gal activity in extra-embryonic mesoderm 

at 7 dpc (Elefanty et al., 1998). Expression of lyl1 mRNA had a similar pattern to that of

scl/tal1 at this stage but the reporter mouse (whose C-terminal end was replaced by a lacZ

reporter gene) didn’t show any β-gal activity (Giroux et al., 2007). In the yolk sac blood

islands both lyl1 and scl/tal1 mRNAs were detected but still β-gal activity was undetectable 
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(Silver and Palis, 1997; Giroux et al., 2007). At 7.75 dpc the first β-gal activity for lyl1 was 

observed in the intra-embryonic mesoderm in the pre-cardiac plate. During the later stages of

cardiac development the expression of lyl1 and scl/tal1  mRNAs as well as the β-gal activity 

was restricted to the endocardium (Giroux et al., 2007).

By 10.5 dpc HSC production in the AGM reaches its maximum level and β-gal 

activity in lyl1lacZ embryos was detected in the ventro-lateral part of the dorsal aorta known as

the haematopoietic intra-aortic clusters (HIAC) where the HSC are cytologically identifiable

(Garcia Porrero et al., 1995; Bertrand et al., 2005). Yolk sac derived circulating

haematopoietic cells colonise the fetal liver and later AGM derived HSCs move to the fetal

liver marking it as a major haematopoietic organ of the embryo. The presence of X-gal

positive haematopoietic cells in the fetal liver as soon as it is morphologically traceable

suggests the presence of lyl1/ β-gal protein in some of the yolk sac derived cells. The X-gal 

positive haematopoietic fetal liver cells had a different morphology indicating that lyl1 is

expressed by multiple haematopoietic cell types. β-gal activity was also seen in the 

developing spleen from 13 dpc and in the circulating cells between 9-10 dpc; but absent in

thymus of the lyl1lacZ embryos suggesting that T cells do not express lyl1 (Godin et al., 1999;

Visvader et al., 1991; Giroux et al., 2007).

Besides the endothelial and the haematopoietic system, scl/tal1 is expressed in the

central and peripheral nervous system (Kallianpur et al., 1994; Elefanty et al., 1999; van

Eekelen et al., 2003). Also scl/tal1 is expressed in dermis, epidermis, nasal epithelium,

adrenal medulla, ribs and jaws (Kallianpur et al., 1994). Neither lyl1 mRNA nor the β-gal 

activity was observed in the nervous system and some other areas where scl/tal1 expression

was noted. Thus, lyl1 is specifically expressed in the endothelial, endocardial and

haematopoietic cells during the development of mouse (Giroux et al., 2007).
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1.10.2 Adult haematopoietic stem and progenitors require lyl1 for survival

The importance of scl/tal1 for haematopoietic development was demonstrated early

on when scl/tal1-deficiency in mice resulted in the absence of haematopoietic progenitors as

well as vascular defects and lethality (Robb et al., 1995; Shivdasani et al., 1995). However,

transplantation analysis indicated that loss of scl/tal1 impairs short term repopulation ability

of HSCs but long term self-renewal ability of the HSCs was normal (Curtis et al., 2004)

indicating that scl/tal1 is required for the formation but not for maintenance of adult HSCs

(Mikkola et al., 2003). In contrast to scl/tal1, lyl1-deficient mice did not show any embryonic

lethality but had a reduced number of B cells (Capron et al., 2006). Although the common

lymphocyte precursor was normal, the immature B cell compartment was reduced. The

number of multipotent progenitor spleen colony forming units was also reduced and lyl1-

deficient mice exhibited decreased erythropoiesis with partial arrest in differentiation and

enhanced apoptosis (Capron et al., 2006, Capron et al., 2011). Transplantation experiments

revealed however, that fetal liver as well as bone marrow-derived HSCs lacking lyl1 were

severely impaired in their reconstitution ability, especially in respect of B and T cells (Capron

et al., 2006).

4 Scl/tal1 loss leads to absence of haematopoietic progenitors and to vascular defects

suggesting normal development of blood and blood vessels require scl/tal1 (Robb et al.,

1995; Shivdasani et al., 1995). However scl/tal1 is not required for the maintenance of HSCs

after development as a conditional knockout of scl/tal1 in adults has no impact on long-term

HSC repopulation (Curtis et al., 2004; Mikkola et al., 2003; Hall et al., 2005). Double

knockout mice revealed that lyl1 is critical for normal maintenance of adult HSC function in

the absence of scl/tal1 (Souroullas et al., 2009). A single allele of lyl1 in scl/tal1 null HSCs

could maintain normal haematopoiesis whereas rapid apoptosis was observed when both lyl1

and scl/tal1 were deleted (Souroullas et al., 2009). This functional alteration of scl/tal1 and
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lyl1 in adult HSCs was unexpected as lyl1 was not able to rescue the scl/tal1 during early

haematopoiesis (Chan et al., 2006; Porcher et al., 1999). As both proteins possess an

essentially identical bHLH domain, they have been shown to dimerise with the same set of

proteins such as E-proteins, Lmo1/2 and other factors required for normal haematopoiesis

and lineage commitment (Miyamoto et al., 1996; Wadman et al., 1994). When both lyl1 and

scl/tal1 are deleted, HSCs undergo rapid cell death, which is due to the disruption of multiple

transcriptional networks. However, some molecular features of lyl1 must be different to

scl1/tal1 to be able promote adult HSC survival and maintenance in the absence of scl1/tal1

(Souroullas, et al., 2009). Similarly, during development both proteins appear to have

different functions that might be mediated through domains other than the bHLH domains

(Porcher et al., 1999).

1.10.3. Lyl1-deficiency induces stress erythropoiesis

Lyl1-deficiency leads to reduced reconstitution capacity of the erythroid lineage from

bone marrow although their progenitors appeared normal. This decrease in differentiation of

bone marrow erythroblast followed by increase in apoptotic cells with a decrease the Bcl-XL

which is known to prevent apoptosis during erythropoiesis (Capron et al., 2011). Although

accompanied by reduced differentiation in the bone marrow, spleen erythropoiesis looked

normal and the spleen derived mature erythroblast in the lyl1-deficient mice showed an

increase expression in gata1 and scl/tal1. This suggests that this transcription factor might

compensate lyl1 loss in the spleen (Capron et al., 2011). Lyl1-deficient phenotype is much

more similar to the gata1low erythropoiesis than scl/tal1-/- erythropoiesis. Both in lyl1-/- and

gata1low didn’t seems to affect the erythroid progenitors in the bone marrow but altered

erythroid maturation (Vannucchi et al., 2001; Kuo et al., 2007; Gregory et al., 1999). The

difference observed in the spleen and bone marrow in the lyl1-deficient mice might be due to
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the compensatory mechanism related to the altered erythropoiesis which leads to stress

erythropoiesis or its different role in bone marrow and spleen. Although different in bone

marrow and spleen lyl1 has a role in erythropoiesis and its function is required to maintain

bone marrow erythropoiesis while it negatively regulates spleen erythropoiesis (Capron et al.,

2011).

1.10.4 Role of lyl1 in the maturation of adult blood vessels:

Overlapping expression of lyl1 and scl/tal1 is also seen in the developing vasculature

and endocardium (Girox et al., 2007). Scl/tal1 was undetectable in the adult quiescent

endothelium but is active in the newly formed blood vessels (Kallianpur et al., 1994; Pulford

et al., 1995) including the vascular proliferation and tumour lymphatic vessels (Chetty et al.,

1997; Tang et al., 2006). In contrast to scl/tal1, lyl1 is expressed in both angiogenic and

mature adult endothelium. Loss-of-function analysis showed that lyl1 is not required for the

initiation of angiogenesis but required for postnatal remodelling to promote the maturation of

newly formed blood vessels (Pirot et al., 2010). In lyl1-deficient mice tumour growth was

accelerated and the tumour blood vessel exhibited poor coverage, increased vascular leakage,

and lumen enlargement. Bone marrow and fetal liver transplantations exhibited higher

tumour rate and reduced vessel coverage were not due to haematopoietic defects of the lyl1-

deficient mice and the same was observed in the caveolin-l-deficient mice (Lin et al., 2007).

Lyl1 acts as a stabilising signal for developing vessels and its expression occurs both in

angiogenic and mature vessels suggesting lyl1 involved in the maintenance of quiescent

vessels (Pirot et al., 2010).
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1.10.5 Overexpression of lyl1 expands T cells and haematopoietic progenitors and

supports leukemia formation

Lyl1 overexpression resulted in significant increase in T cells and haematopoietic

progenitor population by driving proliferation and suppressing apoptosis. Scl/tal1 and lyl1

have overlapping expression and scl/tal1 targets transcription factors and members of MAPK

pathways to facilitate proliferation and lyl1 might target these genes as well to stimulate stem

and progenitor cell proliferation. Overexpression of lyl1 resulted in T cell

lymphoproliferative effect and also stimulates the expansion of the leukemia cells with stem /

progenitor cell like phenotype (Lukov et al., 2011). Aberrant expression of lyl1 in the mouse

resulted in shorten tails and loss of hair follicles and it was also found to be lethal when

expressed at high levels (Zhong et al., 2007). A similar phenotype was observed in scl/tal1

transgenic mice (Aplan et al., 1997). Ectopic expression of lyl1 was oncogenic which

induced highly malignant lymphoma with respect to both the B and T cells. Lyl1 inhibits the

function of E2A by competitively binding to it and loss of E2A resulted in high degree

T-cell lymphoma (Bain et al., 1997; Yan et al., 1997). Scl/tal1 inhibits E2A–HEB and thus

scl/tal1 induces leukemia by repressing E2A-HEB complex by recruiting mSin3A/HIDAC to

its target genes (Aplan et al., 1997; Chervinsky et al., 1999; O’Neil et al., 2004). Lyl1 also

inhibited E2A-HEB activity and some of its target genes (CD5, RAG1/2) were down-

regulated in the thymus of lyl1 transgenic mice (Zhong et al., 2007).
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1.11 Zebrafish as a model organism

Mammalian models systems are always challenging to use as they develop internally

in the female and genetic studies often require detailed analysis of the embryo, hence a new

system with feasible access was needed. Zebrafish is considered to be an ideal alternative as

it develops externally with a short generation time. During early embryonic development the

embryos remain transparent making it easy for microscopic observations. A single breeding

pair can yield large number of embryos and due to their small size are easy to maintain with

relatively low cost (Chakrabarti et al., 1983; Walker and Streisinger 1983; Streisinger et al.,

1986; Lin 2000). As the development of Zebrafish occurs outside the female in a transparent

form it is easy to manipulate the embryos. Large-scale genetic screens in zebrafish led to the

identification of new pathways and genes related to vertebrate development (Driever et al.,

1996; Haffter et al., 1996). As many of the zebrafish mutant phenotypes have similarities

with human diseases, zebrafish have also been used as disease models (Dooley and Zon 2000;

Amsterdam and Hopkins 2006). The recent techniques such as anti-sense morpholinos,

artificial endonucleases, RNA guided nucleases and Tol2 system have been successfully used

in zebrafish to manipulate the gene of interest where the genome editing in the past had only

limited success (Sun et al., 1995; Doyon et al., 2008; Meng et al., 2008; Sander et al., 2011;

Auer et al., 2014).

1.11.1 Reverse genetics in zebrafish

Earlier geneticists depended on forward genetic tools to uncover the genes involved in

a biological pathway or processes. This is an unbiased approach which involves generation of

heritable mutagenic lesion using agents like irradiation, murine leukaemia virus and N-ethyl-

N-nitrosourea and observing the phenotype of carrier embryos followed by mapping of the

allele within the genome (Chakrabarti et al., 1983; Walker and Streisinger, 1983; Mullins et
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al., 1994). The forward genetic screens have identified novel genes and pathways in

vertebrate development including those required for gastrulation / mesoderm induction, cilia

formation, cardiovascular development, organogenesis (Driever et al., 1996; Haffter et al.,

1996; Zhang et al., 1998; Sun et al., 2004; Bakkers, 2011) Due to the functional redundancy

between genes it is impossible to identify the function of all developmental genes using

forward genetics. Further, whole-genome sequencing and expression analysis have identified

possible genes that are likely responsible for the certain developmental processes (Vogel,

2000; Thisse and Thisse, 2008; Flicek et al., 2011). The recent advancement in various

reverse genetics tools has made it possible to identify a gene from the genomic sequence to

make specific mutation of that gene and analyse the resulting phenotype.

1.11.1.1 Morpholino mediated gene knockdown in zebrafish

Antisense morpholinos has been widely used reverse genetic tool in zebrafish to

knockdown gene of interest (Heasman et al., 2000). Morpholinos are modified

oligonucleotide sequence of 25 monomers, that are resistant to nucleases (Nasevicius and

Ekker, 2000; Bill et al., 2009). Morpholinos may be splice morpholinos targeting the intron

exon junctions to block the pre-mRNA splicing and cause exon skipping (Draper et al., 2001)

or translation blocking morpholinos targeting the start codon to prevent the mRNA

translation (Summerton et al., 1999). Injecting morpholinos into early zebrafish embryos

have global effect on the protein expression and activity is limited to the dorsal forerunner

cells when the timing of the injection was delayed (Amack and Yost, 2004). Conditional gene

knockout in certain tissues was achieved with caged morpholino, which can be activated or

repressed under UV (Shestopalov et al., 2012) and with fluorescein labelled morpholinos the

cell population of the targeted genes can be observed (Hyde et al., 2012).
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Morpholinos have helped us to understand the role of genes during early development

including primordial germ cell migration, haematopoietic stem cell development, left-right

asymmetry (Doitsidou et al., 2002; North et al., 2009; Neugebauer et al., 2009). The degree

of knockdown in the embryos is variable and since the morpholino amount declines over

time, their efficacy is limited to 5 days (Nasevicius and Ekker, 2000; Bill et al., 2009; Eisen

and Smith, 2008). Another problem with using morpholinos is the possible upregulation of

p53 pathway resulting in neuronal apoptosis. This can be prevented by co-injecting p53

morpholinos (Robu et al., 2007). Hence it is important to perform rescue and control

experiments to conclude the observed phenotypes were actually due to the knockdown of the

gene of interest (Eisen and Smith, 2008)

1.11.1.2 Zinc finger nucleases

Zinc finger nucleases (ZFNs) are the first reverse genetic tool to be used to introduce

targeted mutations into the zebrafish genome. ZFNs have a modular structure containing two

domains; a DNA-binding Zinc finger protein domain fused to FokI endonuclease cleavage

domain (Kim et al., 1996). The FokI domain is very crucial for ZFNs targeted genome

editing and it requires dimerisation to cleave DNA. Due to its dimeric requirement two

adjacent ZFNs with a spacer of 5-7 bp are required to generate a lesion in the genome and the

dimerisation doubles the length of recognition sites, which substantially increases the

specificity (Urnov et al., 2010). ZFNs consist of tandem arrays of Cys2His2 zinc fingers that

determine the sequence specificity of the ZFNs and a single zinc finger recognizes 3-bp DNA

sequence. Usually 3-6 zinc fingers form a single ZFN subunit which can bind approximately

9 to 18 bp. Zinc finger array is responsible for site specific DNA binding and cleavage

activity is provided by the endonuclease. This cleavage leads to a double stranded break in

the genome, which is repaired by non-homologous end joining (NHEJ) leading to indel
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mutations (Urnov et al., 2010; Bibikova et al., 2002; Handel et al., 2009). Mutations

generated by ZFNs in zebrafish have provided the new understanding of the developmental

processes including the chemokine signalling in vasculature patterning (Siekmann et al.,

2009; Bussmann et al., 2011). Although Zinc fingers were successfully applied to modify the

genome of different organisms and in vitro cells the efficiency of zinc finger nuclease to

cause mutations is rather low. Generation of ZFNs with high specificity and efficiency is

complex, time consuming and very expensive. ZFNs are known to cause off-target effects

leading to developmental defects and also have a limited targeting range; one potential target

to every 500 bp making it difficult to target certain genes (Foley et al., 2005).
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Figure 1.9: Schematic representation of ZFN, TALENS and RGN. A. ZFNs contain a

ZFP that mediate DNA recognition while the double stranded break is generated by FokI

dimerisation. B. TALEN has a DNA binding TALE domain made up of several tandem

repeats, which is fused to FokI. Each repeat in the TALE domain has 33-35 amino acids, the

position of the RVD 12 and 13 amino acids recognise a specific nucleotide.

C. RNA-guided engineered nuclease contains CRISPR cas9 and guide RNA (sgRNA) which

has 20 bp complementary to the target (Kim and Kim, 2014).
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1.11.1.3 Transcription Activator Like Effector Nucleases (TALENS)

TALEs are bacterial proteins secreted by the plant pathogen Xanthomonas species to

infect plant cells (Bogdanove et al., 2010; Scholze and Boch, 2011). TALE proteins consist

of N-terminal nuclear translocation domain, C-terminal transcription activation domain and a

central DNA binding domain. Once injected into the cell by the bacteria these factors

promote pathogen multiplication and spreading. The DNA binding domain that is responsible

for sequence recognition has 15.5-19.5 single repeats and each repeat has 34 highly

conserved amino acid residues except for the last residue which has only 20 amino acids

hence it is half repeat (Boch et al., 2009). The position of amino acid at 12 and 13 of each

repeats known as the repeat-variable di-residues determines the DNA binding specificity for a

single nucleotide. Thus any sequence of interest can be targeted by modular assembly of

multiple repeats, which was not at possible with zinc finger nucleases (Boch and Bonas,

2010; Cermak et al., 2011). TALENS were made by fusing the DNA binding TALE domain

with the cleavage domain, FokI endonuclease (Miller et al., 2011; Christian et al., 2010). As

the FokI functions only as dimer a pair of TALENS was required (Bitinaite et al., 1998).

Once the TALENS are bound to their specific target site FokI dimerisation results in a double

stranded break in the genome that can be repaired by either NHEJ pathway leading to indel

mutations or through homologous recombination (Lombardo et al., 2007). TALENS were

considered as an alternative to ZFN mainly due to their high mutation rate (Moore et al.,

2012). Further they offer high targeting range with high specificity and low off-target effects

(Reyon et al., 2012). TALEN-mediated targeted genome editing has been successfully used

in yeast, zebrafish, mouse, rat, drosophila, frog and human somatic and pluripotent stem cells

(Li et al., 2011; Huang et al., 2012; Lei et al., 2012; Tesson et al., 2011; Hockemeyer et al.,

2011). In addition, the cleavage domain of TALEN can be replaced by a transcription
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activator domain or repressor to activate or knockdown endogenous gene expression (Miller

et al., 2011; Zhang et al., 2013).
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Figure 1.10: Nucleases based genome editing. Use of nuclease creates DSB at the target

locus that can be repaired by either NHEJ mediated leading to indel mutation (insertion/

deletion) or homology-directed precise insertions. (Joung and Sander, 2013)
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1.11.1.4 CRISPR-cas9

Clustered regularly interspaced palindromic repeats / CRISPR associated

(CRISPR/Cas) are part of bacterial adaptive immune system that defend them against the

foreign nucleic acids of invading viruses (Marraffini and Sontheimer, 2008; Bhaya et al.,

2011). Type II CRISPR-Cas system depends on the CRISPR locus to uptakes the foreign

DNA and transcribe it in the form of small CRISPR RNAs (crRNAs), which then anneal to

trans-activating crRNA (tracrRNA) that guides the Cas protein to the site leading to site

specific cleavage of the foreign nucleic acids (Barrangou et al., 2007; Brouns et al., 2008;

Jinek et al., 2012). For genome editing a single guide RNA (sgRNA) consisting of both the

crRNA and tracrRNA has successfully directed the Cas9 to cleave the target site in vitro

(Jinek et al., 2012). sgRNA has complementary sequence to the target site in its 5’ and

tracrRNA derived cas9-interaction interface in its 3’ end. RNA guided nucleases (RGN)

requires a 20 nucleotide complementary sequence of the target site in the sgRNA, which will

bind to the genomic locus and lead to Cas9-mediated cleavage at the site. In addition to the

20 nucleotides the widely used cas9 from Streptococcus pyogenes need a protospacer

adjacent motif (PAM) sequence (NGG) to the 3’ end of the target site (Hsu et al., 2013; Jinek

et al., 2012). Cleavage of the target site by cas9 leads to DSB in the genome and was repaired

in a way similar to other nucleases that is through NHEJ or HR (Jinek et al., 2012; Hwang et

al., 2013). RGN has been successfully employed in cultured mammalian cells and also in

various animal models such as zebrafish, Drosophila, mouse, medaka and C. elegans (Chang

et al., 2013; Hwang et al., 2013; Dicarlo et al., 2013; Basset et al., 2013; Ansai and

Kinoshita, 2014). Multiplex gene editing was highly effective with CRISPR/cas9 as in mouse

stem cells it simultaneously deleted five genes and 8 alleles (Wang et al., 2013).

CRISPR/cas9 stand out from other gene editing techniques as they are relatively cheap, quick

and does not require assembling of fingers (as in zinc fingers) or modular assembly (in case
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of TALENs). Genome editing with RGN often leads to some off target effects. Although

12bp match including the PAM site does not targeted in mice (Wang et al., 2013), C. elegans

(Friedland et al., 2013) and Drosophila (Bassett et al., 2013; Gratz et al., 2013) a mismatch

of five nucleotide off-target cleavage was observed in zebrafish and cultured human cells

(Jao et al., 2013; Hsu et al., 2013; Chao et al., 2014 ). To reduce the off-target effect two

sgRNA complementary to opposite strand of the target site was cleaved with mutated cas9

that can only nick a single strand and the two individual nicks resulted in a site-specific DSB

repaired by NHEJ (Ran et al., 2013). Truncating the sgRNA from 20 to 17 nucleotides also

reduced the off-target cleavage (Fu et al., 2014).

1.12 Objectives

The main objective was to study the functional role of Id4 in neurogenesis and lyl1 in

haematopoiesis using TALEN-mediated mutagenesis. Primary studies using mopholino-

mediated knockdown of Id4 has suggested its role in neural progenitor proliferation.

However we also observed an upregulation of p53 that caused neuronal apoptosis. The Id4

mutant will eliminate this disadvantage and can also be used to study the relation between Id4

and p53. Lyl1-deficient mice highlighted the importance of lyl1 in HSC function and clearly

demonstrated its distinct role from scl/tal1. However, it did not address the question whether

lyl1 is required for primitive haematopoiesis neither did they reveal the position of lyl1 in the

gene regulatory network regulating HSC fate. This lack of knowledge is in part due to the

rather complex experimental approaches required when using mice as a model system. To

overcome such limitations we want to utilise zebrafish and determine lyl1 function in

primitive haematopiesis and extend the current knowledge of lyl1 function in adult HSCs.

.
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o To this end, ectopic overexpression (gain-of-function) and morpholino-

mediated knockdown as well as TALEN-mediated mutagenesis (loss-of-

function) was employed.

o Phenotypic analysis utilising marker gene expression and Flow cytometry was

performed to establish potential mechanisms underlying the function of Id4

and lyl1.

o Cell proliferation using pHH3 and TUNEL (apoptosis) in the

presence/absence of chemical inhibitors was performed to dissect the role of

Id4 and p38MAPK in neural progenitor proliferation

In the first part of this thesis we will be using TALEN to generate target disruption of

the lyl1 and id4 locus and subsequent establishment of the homozygous lines. Next, spatial

and temporal expression of the lyl1 will be analysed. Gain-of-function analysis by injecting

Lyl1 RNA into zebrafish embryos to study its possible role in primitive and haematopoietic

waves using various lineage markers at different time points. Then the embryos from the lyl1

mutant and lyl1-/- adult kidney were studied to further determine its role using markers and

FACS.

In the final part, we will study the expression pattern of Id4 during development and

in embryos in which the notch pathway is blocked to check whether Id4 is regulated by notch

signalling. Next, we will inhibit p38MAPK in the Id4 and id4/p53 morphants to study its

connection with impaired proliferation and increased apoptosis. To validate the morphant

phenotype we will analyse the id4-/- embryos with expression markers for neurogenesis.

Finally, cell proliferation and apoptosis of the Id4 mutant embryos with and without the

p38MAPK inhibitor will be analysed.
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Chapter 2

Materials and Methods

2.1 Materials

2.1.1 Zebrafish Maintenance

Zebrafish were maintained at 28.5oC in system water on a 12 hour light / 12 hour dark

cycle. Fertilisation of the eggs is almost synchronous and embryos were collected after

natural spawning and raised at 28.5oC in a water containing methylene blue, a fungicide.

Staging of the fish was done according to the standard criteria shown by Kimmel et al.,

(1995).

2.1.2 Maintaining mutant lines

All mutant lines are maintained as described in section 2.1.1. Id4 mutant line were

maintained as heterozygous carrier and crossed with each other to obtain homozygous

mutant. Lyl1 mutant lines were maintained both as heterozygous carrier and homozygous

mutants. All the zebrafish experiments were performed under the Home office project licence

authority (40/3457) and personal licence (IE8CAOD7A)

2.1.3 Technical laboratory equipment

Name Source

Pipettes (2 μl, 20 μl, 200 μl and 1000 μl) Gibson 

Heating block DRI-BLOCK DB3 Jencons Techne

Electrophoresis power supply EPS300 Pharmacia Biotech

Centrikon T-42K centrifuge Kontron instrument

Minispin plus centrifuge Eppendorf

Water bath Jencons

Dual-intensity UV transilluminator UVP, LLC
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2.1.4 Microinjection apparatus, Microscope used during microinjection and Image

visualisation

Name Source

Fine forceps World Precision instruments

Incubator LEEC

Microloader tips (2µl and 20µl) Eppendorf

Glass capillary 1mm/0.58 mm Harward apparatus

Needle puller Sutter instrument CO

Morpholino Gene tool

Camera DS-5MC Nikon

Cold light source KL 1500

LCD

Zeiss

Stereomicroscope stemi SV 6 Zeiss

Digital Sight DS-U1 Nikon

2.1.5 Buffers and solutions

Gel electrophoresis

6X loading buffer New England Biolabs

1kB DNA ladder New England Biolabs
1X TBE (Tris Borate EDTA

buffer )
45mM Tris Borate; 1mM EDTA

Microbiological media

Antibiotics Ampicillin Stocks 100mg/ml in
distilled water, working
concentration 100µg/ml

LB (Luria-Bertani) Medium 10g bactotryptone; 5g yeast
extract; 5g NaCl; adjusted to pH
7 with 1M NaOH and made up to
1 litre with Distilled water

LB agar LB agar used for plates solidified
with 1.5% bacto- agar

Whole Mount in situ

Hybridization

BCL Buffer III 0.1M Tris-HCL pH 9.5;
0.1M NaCl; 50mM MgCl2;
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0.1% Tween20
BM purple Roche
DIG block 2% Blocking reagent (Roche)

dissolved in MABT

Hybridization Buffer (Hybe+) 50% deionised formamide; 5X

SSC; 0.5mg/ml yeast tRNA;

50mg/ml Heparin; 9.2 mM citric

acid; 0.1 % Tween 20

Maleic acid buffer (MAB) 0.1M Maleic acid; 0.15M NaCl;

pH 7.5

MABT 0.1% Tween 20 in MAB

Phosphate Buffered Saline (PBS) 1.7mM KH2PO4; 5.2mM

Na2HPO4; 150 mM NaCl

PBST 0.1% Tween 20 in PBS

Paraformaldehyde (PFA) 4% PFA in 1X PBS

20X SSC (Saline Sodium

Citrate)

Promega

tRNA from Baker’s yeast Roche

Immunostaining

Anti-Phospho Histone H3 Cell signalling (Cat no: 9701s)

Swine Anti-Rabbit IgG Dako (Cat no: P0217)

DAB  (3,3′-Diaminobenzidine 

tetrahydrochloride)

Sigma Aldrich

PBSBT (Phosphate Buffered

Saline+ BSA and Triton X-100)

0.2% BSA; 0.1% Triton X-100 in

PBS

TUNEL Assay

ApopTag Peroxidase In Situ

Apoptosis detection kit

Millipore (S7100)
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2.1.6 Primers

2.1.7 TALEN plasmid

Plasmid Target sequence

Lyl1 Left (TAL3111) TCATACGAGCGTTACTGA

Lyl1 Right (TAL3110) TCTTTCCTCATGCCGCCG

Id4 Left (TAL3294) TTTATTACAATGAAGGCC

Id4 right (TAL3295) TAGAAGGAAGCTTATGAG

Primers Sequence (5’-3’)

Lyl1 FP TTCGGGATCTTCAGTAACGC

Lyl1RP AGTATGGGCTCCCTGCTGTG

Lyl1 full length FP ATGAGCAGTGATGATGGAGAAG

Lyl1 full length RP CCAGTATGGGCTGGGCTGG

Id4 FP TGCGTTCACACTCAGAGAGG

Id4 RP GGAACGGATTCTCTCCAA

Lyl1 TALEN screening FP CTGTTCCAGGATAAATG

Lyl1 TALEN screening RP CACACCTCACTGCTACAAATCACTG

Id4 TALEN screening FP GTCAAAGCTCGAGCGGAT

Id4 TALEN screening RP TTTCGGGTCCTGCTTACGT
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2.2 Methods

2.2.1 DNA preparation

2.2.1.1 Transformation of Competent cells

DH5α (Invitrogen) and NEB5α (New England Biolabs) competent cells were used to 

amplify plasmids. 50µl of the cells were thawed on ice and 10-100ng of the plasmid DNA

was added, mixed gently, incubated on ice for 30 minutes, heat-shocked at 42oC for 45

seconds and immediately chilled on ice for 2 minutes. Pre-warmed SOC medium (250µl) was

then added to this suspension and the bacteria was allowed to grow for an hour in 37oC

shaking incubator. Half of the culture was spread out into LB agar containing 100mg/ml

ampicillin or 30mg/ml kanamycin and incubated at 37oC overnight. The following day the

LB plates were observed and colonies were picked and incubated overnight in LB broth

containing appropriate antibiotics at 37OC with agitation at 220rpm.

2.2.1.2 Plasmid DNA preparation

Plasmid DNA was extracted using sigma mini prep DNA kit. The overnight grown

bacterial culture was transferred to a 1.5 ml eppendorf tube and was centrifuged in a

microfuge at room temperature at 10,000 rpm for 5 minutes. The supernatant was discarded

and pellet was resuspended in 200 µl of resuspension buffer P1. Then 200 µl of lysis buffer

P2 was added and mixed by inverting for 4-6 times to lyse the bacterial cells. Finally 300 µl

of the neutralization buffer N3 was added and mixed by inverting the tubes. After this, the

suspension was centrifuged at 13,000 rpm for ten minutes and the lysed cells were pelleted.

The sigma spin column was prepared by applying 500µl of column preparation buffer and

centrifuged at 13,000 rom for a minute. The buffer was discarded and the resulting

supernatant from the suspension was applied to the spin column either by decanting or

pipetting. The column was centrifuged at 13,000 rpm for a minute and it was washed with

500 µl wash buffer centrifuged for a minute. The flow through was discarded. The column
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was again washed with 700 µl of PE buffer and centrifuged for one minute. The flow through

was discarded and further spun for a minute to remove any residual buffer. Plasmid DNA was

eluted by adding 50 µl of elution buffer to the centre of the column and centrifuged for a

minute.

2.2.1.3 Quantification of DNA

The concentration of DNA was determined by using a Nanodrop 3300

spectrophotometer with a UV absorbance at 260 nm. The Nanodrop peddle was cleaned with

70% ethanol and blank reading was made using nuclease free water. Then 1.5 µl of the

sample was loaded and the concentration was measured. The purity was assessed by

260nm/280nm and 260nm/230nm ratios.

2.2.1.4 Restriction enzyme digestion

Restriction enzymes and their buffers were obtained from New England Biolabs

(NEB). To obtain a desired fragment from the plasmid construct about 1 µg of DNA/ 1 unit

of enzyme is required. Hence a reaction is set with 1 µg DNA, 2 μl of 10X digestion buffer, 

10 units of each restriction enzyme, and nuclease-free water was added to make up the

mixture to 20 μl. The tubes were placed in 37oC incubator for 2 hours. DNA digestion was

confirmed by running the sample on 1% agarose gel along with undigested DNA and 1kb

DNA ladder.

2.2.1.5 Agarose gel electrophoresis

Agarose gel electrophoresis was performed to separate the DNA fragments by their

size. DNA is negatively charged at neutral pH and it will move towards the positive pole

once an electrical potential is applied. The DNA is allowed to pass through agarose gel,

smaller molecules passes through the gel easily while the larger molecules are slowed down.

Thus a mixture of large and small DNA molecules in a mixture is separated. Usually 1-1.5%
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agarose was melted in 1x TBE buffer and once cooled nucleic acid stain SafeView was added

(1µl SafeView to 10ml). Agarose gel is solidified in a gel casting tray and 5X loading dye

was added to the nucleic acid samples to give a 1X final concentration. The sample and DNA

molecular weight ladder (1Kb) which is used to determine the size were added to the gel one

by one and allowed to run for an hour at 120V. Then, the gel was taken to the gel doc system

and bands were visualised by using dual intensity UV trans-illuminator.

2.2.1.4 Gel extraction

Gel extraction was performed using Macherry-Nagel gel and PCR Purification kit

(Cat no: 28704). DNA fragment were purified by gel extraction using NucleoSpin Gel and

PCR clean-up kit. After electrophoresis the desired fragment is excised from the gel under

low intensity UV. The gel size is weighed and for every 100mg of the gel slice 200µl of NTI

buffer was added. The gel with the buffer was incubated at 50oC for 10 minutes with

occasional vortex and once the gel is dissolved completely it is bind to the spin column by

centrifuging at 13,000 rpm for a minute. Flow through is discarded, column is washed by

adding buffer NT3 and spun a minute to completely remove the buffer. Purified DNA was

then eluted from the column with 30µl buffer NE.

2.2.1.5 Ligation

DNA ligation involves the joining of two DNA molecule ends by creating a phosphor

diester bond between the 3’ hydroxyl of one and the 5’ phosphate of another catalysed by T4

DNA ligase. For cohesive end 50ng of vector was mixed with a 3-5 fold molar excess of

insert, 1μl 10x ligation buffer and 1μl of T4 DNA ligase (NEB). The volume was adjusted to 

10μl with dH2O. The reaction was left overnight at 16OC and 2-5ul was transformed in

competent E.coli cells. For blunt-ended fragments, 100ng of vector with the vector insert

molar ratio of 1: 5-10 was used.
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2.2.1.6 Phenol chloroform extraction

Equal volume of phenol: chloroform: isoamylalcohol (25:24:1) was added to the

DNA sample, mixed, centrifuged at 13,000 rpm for 5 minutes. The upper aqueous phase was

carefully transferred to a fresh tube and extracted with equal volume of chloroform. DNA

was precipitated by Sodium acetate (pH 5.2) to a final concentration of 0.3M and 2.5 volumes

of ice-cold ethanol. The sample was mixed by inverting the tubes and allowed to precipitate

at -20oC for 30 minutes and they were centrifuged at 13,000 rpm for 30 minutes at 4oC. The

supernatant was discarded and the pellet was washed with 70% ethanol, air dried and

resuspended in 15µl of nuclease free water.

2.2.1.7 Polymerase chain reaction

A 50µl reaction was step up using 2µl of extracted DNA, 1X Q5 reaction buffer,

200µM dNTPs, 0.5µM of each primer and 0.1 units of Q5 hot start high-fidelity DNA

polymerase. For high GC-rich sequence 1x Q5 GC enhancer was added to improve the

reaction. The reaction conditions are initial denaturation at 98oC for 2 minutes followed by

30 cycles of 98oC for 30 seconds, 45-60oC for 30 seconds, 72oC for 45 seconds and a final

extension for 2 minutes at 72oC and maintained at4oC until use. The amplified products were

verified by analysing the samples in 1.5% agarose gel.

2.2.1.8 Preparation of pBUT-HA + Lyl-1Plasmid

pBUT-HA and pSC-B-lyl1 plasmids are double digested with XbaI and XhoI.

Digestion of the plasmid pSC-B-lyl1 releases the lyl1 fragment which was then purified by

gel extraction. Lyl1 fragment is then ligated to pBUT-HA and mailed to source bioscience for

sequencing and the analysis of the sequence confirmed that HA was in-frame to lyl1.
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2.2.2 RNA manipulation

2.2.2.1 In vitro transcription of RNA for embryo injection

Injection of capped RNA into zebrafish have been routinely used to study the function

of genes by overexpress and gene editing tools like TALEN, ZFN, CRISPR-cas9 are injected

as capped mRNA. mRNA’s are synthesized using mMessage mMachine Transcription kits

(ambion). A transcription reaction containing 1µg of linearized plasmid, 10µl of NTP mix,

2µl T7 buffer and 2µl T7 enzyme was set, mixed and incubated at 37oC. After two hours the

DNA was digested with 1µl turbo DNase at 37oC for 15 minutes. TALEN mRNA was

processed for an additional polyA tailing reaction for 45 minutes at 37oC by adding a mix

containing 1x E-PAP buffer 1mM ATP, 2.5mM MnCl2 and 8U E-PAP. The reaction is

stopped by adding 10µl of ammonium acetate solution. mRNA is extracted by equal volume

of phenol: chloroform: isoamylalcohol (25:24:1) and then by chloroform. The upper aqueous

phase is transferred to a fresh tube and RNA was precipitated by chilling the mix with

isopropanol for 30 minutes. Centrifugation at high speed for 15 minutes yielded the pellet

which was washed, resuspended in DEPC water and stored at -80oC.

2.2.2.2 In vitro transcription of mRNA for whole mount in situ hybridization

To make RNA probes for in situ hybridization the plasmid DNA was linearized using

desired restriction enzyme, extracted by phenol/ chloroform and transcribed using T7, T3 or

SP6 RNA polymerase (Promega). A 20 µl reaction was set with 2.5 µg of linearized and

purified DNA template, 4 µl of 5X transcription buffer (Promega), 2 µl of 10X DIG labelling

mix/ 10X fluorescein labelling mix (Roche,) 2µl of 100mM DTT, 0.5 µl RNasin (Promega)

and 2 µl of RNA polymerase (T7, T3 or SP6; Promega). The reaction was incubated for 2

hours at 37oC. The residual plasmid was removed by digesting with 1 µl of DNase I (RNase

free; Roche) at 37oC for 15 minutes. This reaction was stopped by adding 1 µl of 0.5M
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EDTA and 9 µl of nuclease free water. Further, the volume was raised to 100 µl with

nuclease free water. The RNA was precipitated for 20 minutes at -20oC by adding 10/3

volume 10M ammonium acetate and 2.5 volume ice cold 100% ethanol. It was centrifuged at

13,000 rpm for 15 minutes at 4oC, washed with 70% ethanol, air dried and resuspended in 50

µl of DEPC water. The presence of the RNA was visualised by running on a 1.5% Agarose

gel and stored at -70OC. For in situ hybridization a typical dilution of 1µl of probe to 200µl of

hybridization mix was used.

2.2.3 RNA extraction and cDNA synthesis

2.2.3.1 RNA extraction

Zebrafish embryos at different stages were collected and their RNA was isolated

using Trizol. Embryos were washed briefly with PBS and 100µl of Trizol was added. Then it

was homogenized with a pestle and further 900µl of Trizol was added. This mixture was

incubated for 5 minutes at room temperature. 200µl of chloroform was added, mixed and

incubated for two minutes at room temperature. The suspension was centrifuged at 13,000

rpm for 10 minutes and the upper phase containing the RNA was carefully transferred to a

new tube. 0.7 volume of isopropanol was added, incubated at room temperature for 20 mins

and centrifuged at 13,000 rpm for 10 minutes at 4oC. The supernatant was removed and the

pellet was washed with 75% ethanol, air dried and resuspended in 50 µl of RNase free water

and stored at -80oC.

2.2.3.2 Assessment of total RNA quality and quantification

The quality of the RNA was assessed by running the RNA on a 1.5% RNase free

agarose gel after denaturing the RNA at 65OC. The presence of sharp, clear 18s and 28s

rRNA bands used to indicate that the RNA was not degraded. A Nanodrop was used to

quantify the extracted RNA. The optimal ratio of absorbance at 260nm/280 nm 2.0 and

260nm/230nm 2.0-2.4 indicated that the RNA samples were pure.
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2.2.3.3 Reverse transcription

First strand cDNA was synthesised using Superscript II Reverse Transcriptase (RT).

1µg RNA was denatured with random hexamer primer at 65OC for five minutes and cooled

on ice. A mixture containing 200 units of Superscript RT, 40 units of RNaseOUT, 4µl of

First-strand buffer, 0.1M DTT was added to the denatured RNA. Complementary DNA was

synthesised by incubating at 25OC for 10 minutes and further 50 minutes at 42OC. The

reaction was terminated by denaturing the enzyme at 70OC for 15 minutes and the cDNA was

stored at -20OC.

2.2.4 Manipulation of zebrafish embryos

2.2.4.1 Microinjection

Microinjection allowed rapid and efficient introduction of foreign substance such as

morpholino, RNA and DNA into zebrafish embryos. The setup has needle loaded with

injection sample connected to a micro-manipulator and the micro-manipulator controls were

adjusted in a manner to obtain required injection volume.

2.2.4.2 Preparation and loading of needles for microinjection

Injection needles were prepared by pulling the glass capillaries in a micropipette

puller with the settings P=500, Heat=295, pull=200, velocity=115, and time=115. The

needled is then loaded with morpholino or mRNA and fixed into the micropipette holder

which was connected with picopump to allow injection with pressure. Using a fine forceps

the tip of the needle was broken under the microscope at highest magnification (5X). The

injection volume was calibrated to 500pL or 1nL by injecting the sample into mineral oil on a

micrometre and adjusting the pressure. Embryos are aligned along the edge of the slide which

is placed on a petri-dish lid. So to allow the needle to pass through the yolk and into the cell,

the embryos animal pole was faced on the edge of the slide.
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2.2.4.3 Morpholino and mRNA Injection

Translation blocking morpholinos were designed and synthesised (Gene tools). Stocks

were prepared at 50ng/nl concentration in non DEPC treated nuclease free water and stored at

-20oC. Before injection morpholino was heated at 65oC for five minutes and cooled for few

seconds. Finally they were centrifuged at 13,000 rpm for a minute. Working concentration

was prepared from the stocks and the morpholino were injected into the blastomere of the

animal pole of the 2 to 8 cell staged embryos as their small size allows efficient diffusion.

Capped full-length mRNA stock were thawed on ice and diluted to required concentration in

DEPC water. The diluted working solution was loaded into the injection needle and

calibrated. Embryos at 2 cell stage were collected, aligned, injected into the animal pole and

incubated at 28.5oC. Injected embryos were collected in a petridish containing fish water with

methylene blue or in the E3 medium. Wild type embryos were collected separately. Both the

injected and wild type embryos were incubated at 28.5oC. The development of the embryos

were checked periodically and once they reach the desired stage they were taken out for

phenotypic analysis and imaging.

2.2.4.5 Microinjection of TALEN mRNA

Equal amount of left and right TALEN mRNAs were injected into one cell stage

zebrafish embryos. On the following day the embryos were observed under the microscope

and the dead/deformed embryos were removed. The embryos which looked normal were

analysed to check the efficiency of the TALENs.

2.2.4.6 Detection of somatic mutations

Presence of mutation in the embryos was determined by extracting genomic DNA

from at least 10 individual embryos followed by PCR and restriction digestion. A single

embryo was placed in microfuge tube and boiled for 30 minutes at 95oC in 50µl 1X base

solution. The tube is cooled to room temperature and neutralised with 50µl neutralisation
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solution. The reaction was spun at 3000 rpm for 5 minutes, stored at 4oC and 2µl was used

for a 50µl PCR reaction with appropriate primers. PCR products was further analysed for the

presence of indel mutations by restriction digestion. A 20µl reaction was set using 10µl of the

amplified PCR product, 1x cut smart buffer and 10units enzyme. The reaction was incubated

at 37oC for 90 minutes and run in 1.5% agarose gel. Presence of un-cleaved bands indicated

the presence of indel mutations. To detect the efficiency the PCR product was cloned by

using StrataClone blunt end PCR cloning kit. At least 20 colonies were analysed by PCR and

restriction digestion screening. Further the positive screens were purified and sequenced.

2.2.4.7 Detection of heritable mutation

Injected F0 fish were allowed to reach adulthood and out-crossed with wild type fish

to asses heritable mutation. From each cross atleast genomic DNA was extracted from atleast

20 individual embryos and screened by PCR-restriction digestion assay. Positive screens

were cloned and sequenced. F1 progeny of the founder screen was raised to adulthood and

heterogeneous carriers were identified by fin-clipping and screened by extracting DNA

followed by PCR-restriction digestion screening. Two heterogeneous carrier were crossed

which each other to get a homogenous mutant.

2.2.4.8 Fin-clipping

Fish were anaesthetised by placing them in 0.012% MS-222. Once the gill movement

is slowed the fish is removed into a paper towel and a small piece of the tail fin is clipped

using scissors. The fish was immediately transferred to an isolated tank and allowed to

recover. The fin-clip is placed in an eppendorf tube and processed for screening. Fish was

observed for the next seven days for any signs infection.

2.2.4.9 Treatment of embryos with p38MAPK inhibitor SB 239063

A 10mM stock of the inhibitor SB239063 was prepared using DMSO. Once embryo

reaches shield stage the fish water is replaced with 15µM inhibitor prepared with fish water
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and allowed to develop to desired stage. After that they were fixed in 4% PFA and

immunostaining was performed.

2.2.4.10 Fixation and storage of embryos for In Situ hybridization and immunostaining

Embryos at desired stage were fixed overnight at 4oC in 4% PFA. Embryos older than

22 hpf were dechorionated before fixing. Next day, PFA was removed and the embryos were

rinsed three times with PBSTw for 5 minutes each. Embryos that development pigments were

treated with 3% H2O2/ 0.5%KOH at room temperature until the pigmentation disappeared

and washed in PBSTw for 5 minutes. They were dehydrated through a series of washes in

25%, 50%, 75% and 100% methanol, each 5 minutes. Then they were stored at

-20oC in 100% methanol for at least overnight after which they were used either for in situ

hybridization or immunostaining.

2.2.4.11 Whole-mount In Situ Hybridization

All the steps were performed in 1.5ml microfuge tube and the washes are done in

500µl volume. Embryos in 100% methanol were rehydrated through 75%, 50% and 25%

methanol in PBSTw, five minutes each. Then the embryos were washed for four times in

PBSTw for five minutes. Embryos were then permeabilized with Proteinase K (10µg/ml in

PBSTw) at room temperature for 1minute for embryos younger than 15hpf, 10 minutes for

embryos between 15-24 hpf and 30 minutes for embryos older than 24hpf. The proteinase K

digestion was stopped by fixing embryos in 4% PFA for 20 minutes. To remove the PFA

residues embryos were washed in PBSTw for four times, five minutes each. Embryos were

then hybridised for 3 hours at 68OC in 100% pre-hybridization solution. The pre-

hybridization solution was removed and replaced by fresh hybridization mix containing a

1:200 dilution of labelled, antisense RNA probes. This hybridization reaction was allowed

overnight at 68oC.
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Next day, the probes were removed and stored at -20oC as they can be reused up to

five times. Excess probe was removed from the embryos by series of washes at 68OC for 5

minutes in prewarmed 66% hybridization mix/33% 2xSSC, 33% hybridization mix/ 66%

2xSSC, and 2x SSC (Hybridization mix does not contain heparin and tRNA). To prevent the

non-specific hybridization of the probes high-stringency washes at 68OC with pre-warm 0.2X

SSCTw and twice in 0.1X SSCTw, 20 minutes each. Embryos were washed at room

temperature for five minutes each with 66% 0.2X SSC/ 33% MABTw, 66% 0.2X SSC/ 33%

and 100% MABTw. To saturate the non-specific binding sites for the antibody embryos were

blocked 2% blocking reagent for 2 hours at room temperature with shaking. The block was

removed and replaced with anti-digoxygenin/anti- fluorescein antibody fragments conjugated

to alkaline phosphatase (Roche) solution diluted in 1/5000 with blocking reagent for either

three hours at room temperature. The antibody solution was removed and the embryos were

washed in MABTw for 6 times, 10 minutes each to remove any excess antibody. To avoid

background the embryos were further allowed for an overnight wash with MABTw at 4OC.

The next day embryos were equilibrated by washing with freshly prepared BCL buffer III for

three times, 5 minute each. Then, the embryos were stained in a solution containing 1:1 ratio

of BM purple (Roche) and BCL buffer III. This reaction was protected from light and

monitored regularly under the microscope. Once desired staining has reached staining in

stopped by washing in PBSTw containing 20mM EDTA for 3 times, 10 minutes each and

fixed with 4%PFA to stop the reaction permanently. Embryos were washed with PBSTw,

mounted in 80% glycerol and stored at 4OC.
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2.2.4.12 Whole mount Phospho histone H3 immunostaining

Phospho histone H3 (PHH3) immunostaining was performed to determine the number

of cells undergoing mitosis. Histone H3 phosphorylation may be initiated at different phases

of cell division in different organisms, but metaphase chromosomes are always found to be

heavily phosphorylated, which can be detected using anti-PHH3 antibody.

The dehydrated embryos were rehydrated through 75%, 50% and 25% methanol in

PBS, five minutes each. Then they were washed twice in PBS for 1 hour each. Later, the

embryos were bleached for 30 minutes in 1% H2O2, 5% formamide and 0.5X SSC. They

were rinsed with PBS, PBSBT and blocked for an hour in 10% FBS in PBSBT. Embryos

were then incubated in anti-phospho histone H3 antibody (1/ 1000 dilution) overnight at 4oC.

Next day, the antibody was removed, washed in 10% FBS in PBSBT and then washed

for four times in PBSBT one hour each. Then they were incubated in swine anti-rabbit IgG

(1/2000) overnight at 4oC. On the final day, swine anti-rabbit IgG antibody was removed and

a brief wash was given with 10% FBS in PBSBT. Then the embryos were washed four times

in PBSTB, each for an hour. They were then stained using DAB enhanced liquid substrate

system for 10-60 minutes. The embryos were washed with water and then with PBS and

finally stored in 90% glycerol at 4oC.

2.2.4.13 Apoptosis assay (TUNEL staining by In situ)

Apoptosis is a process of programmed cell death which is controlled by multiple

signals and pathways. Apoptosis in the embryos can be detected by TUNEL (Terminal

deoxynucleotidyl Transferase dUTP Nick End Labelling) assay. The principle behind

TUNEL is that the nick in DNA was detected by the enzyme TdT (Terminal

deoxynucleotidyl Transferases) and this also catalyses the addition of nucleotide which is

digoxigenin conjugated to the DNA. This incorporated digoxigenin conjugated nucleotide

was then identified by using an anti- digoxigenin antibody. TUNEL assay can also detect
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DNA that is severely damaged. TUNEL assay was done using the Apoptag Peroxidase In Situ

Apoptosis detection kit from Millipore (Cat no: S7100).

The dehydrated embryos were rehydrated by washing with 75% methanol and 25%

PBSTw, 50% methanol and 50% PBSTw, 25% methanol and 75% PBSTw, each wash for

five minutes. Then, the embryos were washed for four times in PBSTw for five minutes and

they were bleached for 30 minutes in 1%H2O2, 5% formamide, 0.5 X SSC to block the

endogenous peroxidase activity. They were washed in PBSTw for five minutes, three times.

Half of the wild type embryos were separated and used as positive control. Proteinase K

(10µg/ml in PBSTw) was added to the remaining wild type and the morpholino treated

embryos for one minute (This time period depends on the development stages of the

embryos). The proteinase K reaction was stopped by fixing the embryos in 4% PFA for 20

minutes. After this the embryos were washed 3 times in PBS for 5 minutes. The removed

wild type embryos were treated with DNase I (1µl DNase I (Roche, 04716728001)/ 50 µl

equilibration buffer (From apoptag peroxidase In situ kit, Millipore, S7100)) at room

temperature for 10 min then the embryos were washed 3 times with PBS for 5min each.

Then, the embryos were incubated in the equilibration buffer. The equilibration buffer was

replaced with the reaction buffer containing the TdT enzyme. The reaction was kept at 37oC

in a humid chamber usually in the water bath for an hour. Then, the reaction was stopped by

adding the stop buffer. The embryos were washed with PBSTw twice for 5 minute each.

Then, it was incubated in anti- digoxigenin antibody for 30 minutes and washed with PBSTw

thrice for 5 minutes each. They were then stained using DAB enhanced liquid substrate

system for 10-60 minutes. The embryos were washed with water and then with PBS and

finally stored in 90% glycerol at 4oC.
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2.2.4.14 Imaging of Zebrafish embryos

Visualisation of live, in situ hybridised or immunostained embryos was carried out

under a Nikon SMZ1500 microscope and the images were captured with Nikon-DS-5M

camera, a Nikon DS-1 control unit and Nikon ACT-2U 1.40 software. Images were edited by

cropping; brightness and contrast were adjusted in Adobe Photoshop.
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Chapter 3

3.1 TALEN-mediated targeted mutagenesis

Loss-of-function studies in zebrafish largely relied on antisense morpholinos.

Morpholinos offered an efficient knockdown of target genes by targeting the translational

start site (Nasevicius and Ekker, 2000) or splice-site junctions (Draper et al., 2001). Although

morpholinos led to the understanding of gene function in early development it had various

limitations such as transient knockdown, the degree of knockdown is variable, activity of the

morpholino is limited to the first few days of development (Bill et al., 2009; Nasevicius and

Ekker, 2000; Smart et al., 2004), off-target effects and p53-mediated neuronal apoptosis

(Robu et al., 2007). To overcome these limitations and to further study gene function during

later stages of development, generation of germline mutations was critical. Zinc-finger

nucleases (ZFNs) and Transcription Activator Like Effector Nucleases (TALENS) are site-

specific nucleases that emerged as a powerful tools and have been successfully employed in

zebrafish for gene disruption (Bogdanove and Voytas 2011; Carroll, 2011; Doyon et al.,

2008; Bedell et al., 2012). ZFNs, a chimeric molecule that consist of a DNA-binding zinc-

finger domain and FokI cleavage domain allowed targeted germline gene inactivation in

zebrafish (Doyon et al., 2008; Meng et al., 2008). As the cleavage is activated by

dimerisation it is important to generate two zinc-fingers. Assembling engineered zinc fingers

with high efficiency were always challenging and often the targeting range was limited

making it difficult to target some genes (Sander et al., 2011). TALENs offered an alternative

option that uses the same principle as ZFNs. As the 12 and 13 position in each repeat

determines the base specificity it allowed to customise the effector domain to target any

sequence in the genome (Cermak et al. 2011; Reyon et al. 2012; Sanjana et al. 2012). Here,
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we show that injection of TALEN RNA targeting zebrafish lyl1 and Id4 resulted in a site-

specific genome modification creating null alleles.

3.2 Design and construction of TALENS targeting zebrafish lyl1/ Id4 locus

Lyl1 and Id4 are (b)HLH proteins that function by forming heterodimers mediated via

their HLH domains. Therefore, TALEN target site were selected that would result in

premature stop codons and possible truncated proteins that lacked the (b)HLH domain.

Zebrafish lyl1 gene (Gene: ENSDARG00000091603) has five exons and encodes 320 amino

acids. The bHLH domain of lyl1 is located in exon 5 and therefore TALEN pairs targeting

exon 4 were selected. Left TALEN binding sequence (5’TCTTTCCTCATGCCGCCG3’) and

right TALEN binding sequence (5’TCATACGAGCGTTACTGA3’) have both 17.5 TAL

effector repeats for sequence specific binding which are separated by 16bp spacer containing

the unique restriction site for HinfI (5’GCAGGATTCGGGATCT3’). The HLH region of Id4

is encoded in the first exon of the Id4 gene (Gene: ENSDARG00000045131); so TALEN

pairs targeting sequences upstream of this region were selected. Left

(5’TTTATTACAATGAAGGCC3’) and right (5’TAGAAGGAAGCTTATGAG3’) Id4

TALEN pairs were selected again with 17.5 repeats separated by a 16bp spacer that in this

case contained a HpaII restriction site (5’AGCGTGCCGGTTCGCC3’). TALEN pairs were

made by Keith Joung research group and purchased from addgene (addgene.org). All

TALENs were synthesised by golden gate assembly on a JDS71 plasmid background (For

plasmid maps refer to appendix I).
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Figure 3.1: Disruption of zebrafish Lyl1 and Id4. Genomic structure of zebrafish lyl1 and

Id4 genes, showing the primers for detecting the mutations. Lyl1 TALENs targets the 4th

exon while the first exon of Id4 is targeted. Lyl1 spacer has a HinfI site and Id4 has a HpaII

site for analysing the mutation. FP - Forward primer, RP - Reverse primer.
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Figure 3.2: Overview of TALEN-mediated genome editing in zebrafish. A. Toxicity,

mutation efficiency and the amount of RNA required for successful genome editing was

calculated by injecting different concentration of TALEN RNAs. B. Then TALEN injected

embryos were raised to adulthood and screened for heritable mutation. Embryos from

positive founders were raised and fin clip genotyping was used to identify the carriers. Two

heterozygous F1 fish were crossed and the embryos were used for phenotypic analysis. A null

biallelic mutant was generated by growing the embryos from a carrier in cross.
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3.3 Lyl1 and Id4 TALEN-induced site-directed mutagenesis in zebrafish

To determine the efficiency of TALENs, RNA was synthesized in vitro and

injected into zebrafish 1 to 2 cell stage embryos at different concentration (50 pg - 500 pg).

Genomic DNA was extracted from individual embryos (1-4 dpf) that apparently developed

normally. PCR amplicons including the TALEN target site were made using lyl1 TALEN

screening primers or id4 TALEN screening primers (see section 3.2). The PCR amplicons

were then digested with either HinfI for lyl1 or HpaII for Id4.

A 400 bp DNA fragment was amplified covering the lyl1 target site from either

injected or control embryos and digested with HinfI. PCR amplicons from wild type control

and low amount of TALEN RNA (125 pg) injected embryos were completely digested (220

bp and 180 bp fragments) indicating lack of mutations (Figure 3.3 A). In contrast, digestion

of PCR amplicons isolated from embryos injected with 500 pg of lyl1 TALEN RNA resulted

in undigested fragment (400 bp) in addition to the two digested fragments (Figure 3.3 B)

indicating the presence of mutations that had destroyed the recognition site for HinfI on either

one allele in all cells or both alleles in some cells. To confirm the presence of mutations,

PCR amplicons were cloned and the nucleotide sequences determined (Figure 3.3 C).

Comparison to the wild type sequence indicated the deletion of 7 (2x independently), 11 and

102 nucleotides (Figure 3.2 C).

Genomic DNA from either wild type control or TALEN-injected RNA targeting Id4

was amplified and the PCR amplicons (580 bp) digested with HpaII (Figure 3.3 D). Digestion

of wild type PCR amplicons gave rise to the expected sizes of 335 bp and 275 bp (Figure 3.3

D). In contrast, almost all amplicons derived from embryos injected with Id4 TALENs (either

50 pg or 125 pg RNA) had genome modifications as indicated by the presence of undigested

DNA fragments (580 bp; Figure 3.3 D&E). Nucleotide sequence analysis revealed deletions

of 6, 7, 9 and 16 nucleotides (Figure 3.3 F).
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3.4 Efficiency of TALEN-mediated mutagenesis appears to be target-site dependent

As described above, TALEN-mediated mutagenesis resulted in a variety of deletions

ranging from 6 bp to 102 bp some of which resulting in a frameshift disrupting the open

reading frame. The efficiency of TALEN-mediated mutagenesis was variable however. While

in both cases the mutation efficiency increased with increasing amounts of RNA injected, a

relatively high amount of TALEN RNA (500 pg) was required to target the lyl1 locus (~13%

of injected embryos), but much less TALEN RNA (50 pg) was needed in the case of Id4

(~55% of injected embryos) (Figure 3.4 A). Injection of 125 pg id4 TALEN RNA resulted in

over 95% of embryos with targeted mutations (Figure 3.4 A).

Injection of TALEN RNA was accompanied with phenotypic anomalies as well as

embryonic death. Only ~40% of embryos injected with 50 pg id4 TALEN RNA developed

normally when analysed at 5 dpf and even injection of 125 pg of lyl1 TALEN RNA, that did

not give rise to targeted mutants, resulted in phenotypic abnormalities and embryonic death

(Figure 3.4 B).
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Figure 3.3: Induction of somatic mutations using TALENs. PCR and restriction enzyme

analysis of embryos injected with lyl1 or id4 TALEN RNA. A, B. HinfI digested PCR

products from 125 pg and 500 pg lyl1 TALEN RNA injected embryos respectively. Digestion

of PCR amplicons from wild-type embryos yields two fragments. Amplicons from 125 pg

lyl1 TALEN RNA injected embryos also digested into two fragments by HinfI (A), while 500

pg lyl1 TALEN injected embryos shows an undigested fragment. C. Sub-cloned sequences

from 500 pg lyl1 TALEN injected embryos. D, E. HpaII digested PCR product from id4

TALEN injected embryos. Wild-type PCR products were digested into two fragments of size

335 and 275. Amplicons from 50 and 125 pg id4 TALEN injected embryo an undigested

fragment. F. Sub-cloned sequences from the injected confirm gene disruption. TALEN

binding sites were highlighted in yellow and number on the right indicates deleted base pairs.

WT, wild-type; M, Marker



76

B

A



77

Figure 3.4: Efficiency of targeted mutagenesis and off-target effects in embryos injected

with either lyl1 or Id4 TALEN RNA. A. Mutation rate of lyl1 (0% for 125pg and 13% for

500 pg) and Id4 (55% for 50 pg and 95% for 125 pg) TALENS in somatic zebrafish cells.

Mutation rate was calculated by dividing the number of positive clones (with indels) with

total number of clones analysed. B. Percentage of dead, deformed and normal embryos (5

dpf) when injected with varying amounts of TALEN RNAs as indicated.
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3.5 Efficient germ-line transmission of TALEN-induced mutations

Having established that injection of both, lyl1 and id4 TALEN RNA give rise to

targeted mutations with sufficient efficiency, one cell stage embryos were again injected to

identify founder (F0) zebrafish carrying the mutation. As outlined in Figure 3.2 B, embryos

injected with TALEN RNA were allowed to develop to adulthood and subsequently crossed

with wild type zebrafish. The offspring was screened for mutations to identify parent

founders carrying the mutation. As before, genomic DNA from embryos was amplified and

the amplicons subjected to restriction enzyme digests. Sequence analysis of potential mutant

genomic DNA was performed to select founders that carried frameshift mutations. Initially

F1 embryos were genotyped in groups and once the F0 founder was identified the embryos

were genotyped individually.F0 founder fish was again crossed with wild type fish to

establish mutant lines. Genomic DNA isolated from fin clips of adult offspring (F1) was

subjected to the same analysis as before (Figure 3.7 to identify mutant F1 fish (Figure 3.4 B).

F1 heterozygous fish (m/+) were in-crossed and the offspring (F2) genotypically and

phenotypically analysed. Adult F2 fish were screened for homozygous mutants and these

were in-crossed to establish homozygous lines.

Out of 100 embryos injected with 500 pg of lyl1 TALEN RNA, 55 developed

normally (at 5dpf) and 30 reached adulthood. Ten of these were crossed with wild type fish

and their offspring genotypically analysed revealing that two of out of the ten had

successfully transmitted the mutation to their off-spring. The germ line transmission rate of

both F0 founders was 13% (3 out of 23) and 15% (3 out of 20), respectively (Table 3.1).

Analysis of the sequences showed two types of mutation in Lyl1 F1 embryos Founder 1 had a

7bp deletion whereas founder 2 had a 10bp deletion and 26bp deletion (Figure 3.5, Table

3.2).
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In the case of Id4, 46 embryos out of 126 injected with 125 pg of Id4 TALEN RNA

hatched with only 17 reaching adulthood. Twelve F0 fish were crossed with wild type fish

and genotypic analysis of their offspring revealed that 8 of them had transmitted the

mutation. Transmission rate ranged from 40% to 60%. Twelve different mutation patterns

were observed as listed in Table 3.2 and shown in Figure 3.5. Both Id4 and lyl1 F1 embryos

developed normally without any phenotype.
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Table 3.1: Survival and germline transmission of TALEN injected animals

Concentration

of targeting

nucleases

Number

of

Embryos

injected

Number

survived

at 5 dpf

Number

reached

adulthood

Number of

F0 animals

screened

No. of animals

with heritable

transmission

Lyl1(500 pg) 100 55 30 10 2

Id4 (125 pg) 126 46 17 12 8
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Table 3.2: Heritable mutation was observed in TALEN injected fish. TALEN injected

embryos were raised and crossed with wild type fish for founder screening. Embryos from

each cross were genotyped by PCR / restriction enzyme digestion. Both lyl1 and Id4

TALENS induced heritable mutation with frequency ranging from 13-60%.
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Figure 3.5: Sequences of TALEN induced heritable mutations. Two lyl1 TALEN RNA

injected and 8 id4 TALEN injected induced heritable mutation. Sub-cloning and sequencing

of the PCR amplicons from F1 embryo confirmed the disruption of the genes. Red dashes

indicate deletion and red letters indicates insertions. Out of frame deletions that are

anticipated for frameshift are highlighted in bold. Yellow box on wild type (WT) sequence

indicates TALEN binding sites.
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3.6 Establishment of Lyl1 and Id4 mutant lines

As shown in Table 3.2 and Figure 3.5, both lyl1 mutations that were transmitted

caused a frameshift and therefore both F0 founders 1 & 2 were again crossed with wild type

fish and the offspring (F1) raised to adulthood. From 100 embryos only 40 reached

adulthood and genotypic analysis of 21 of these using genomic DNA isolated from fin clips

revealed that four F1 fish carried the same mutation in one allele (10 bp deletion and 26 bp

addition) (Table 3.3, Figure 3.6). This mutation is predicted to result in a truncated lyl1

protein lacking the bHLH domain (Figure 3.7). The lyl1 mutant line will be referred to as

qmc801. All the analysed F1 adult fish from founder 1(11 fish) turned out to be wild-type,

hence the allele qmc801 was chosen. In-crossing of heterozygous lyl1 fish produced off-

spring in mendelian fashion (Figure 3.8). Both heterozygous and homozygous lyl1 fish

developed normally without any abnormality..

In the case of Id4, only F0 founders 4 and 5 exhibited frameshift mutations (in

addition to in-frame deletions; Table 3.2), so they were crossed with wild type fish and raised

to adulthood. From initially 125 embryos (75 founder 4 and 50 founder 5), 55 reached

adulthood (35 founder 4 and 20 founder5). Genomic DNA from 43 fish (28 founder 4 and 15

founder 5) were genotyped revealing that twenty fish (13 founder 4 and 7 founder 5) were

heterozygous for Id4 mutations but only 5(4 founder 4 and 1 founder 5) carried frameshift

deletion (Table 3.3, Figure 3.6). Four of them had an 8 bp deletion and the other one had a 10

bp deletion. 8 bp deletion would essentially retain six original amino acid while the 10bp

deletion retains 4 original amino acid and also 36 amino acids that are encoded by a different

reading frame. Both these deletion are predicted to truncate the HLH domain of Id4.

(Figure3.7).
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The Id4 mutant fish line will be referred to as qmc803 (8bp deletion) and qmc804

(10bp deletion). In-crossing of heterozygous Id4 fish (qmc803) produced off-spring in

mendelian fashion (Figure 3.8) and homozygous Id4 fish (qmc803) are viable.

Qmc801 and qmc803 were picked to study their role in zebrafish development as they

were available in pairs.
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Figure 3.6: Establishment of mutant Lyl1 and Id4 lines. Off-spring from founders that

carried frame shift mutations were raised and the adult fish genotyped by PCR / restriction

enzyme digestion using genomic DNA isolated from fin clips. F1 heterozygous carriers are

labelled: *.
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Table 3.3 Distribution of mutation in F1 adults

Targeting

nucleases

Number of F1

animals screened by

Mutations observed

Lyl1 21 4 (10 bp deletion / 26 bp addition)

Id4 43 6 (12 bp in-frame deletion, Founder 5)

9 (6 bp in-frame deletion, Founder 4)

1 (10 bp deletion, Founder 5)

4 (8 bp deletion, Founder 5)
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Figure 3.7. DNA and predicted amino acid sequences of lyl1 and Id4 mutant fish lines.

Nucleotide sequences from wt and qmc801 (lyl1 mutant) allele (A); WT and qmc803,

qmc804 (Id4 mutant) alleles (C). TALEN binding sites are highlighted in yellow and red

dashes indicate deletions. B. Alignment of amino acid sequences of WT and truncated lyl1

protein which lost the HLH domain. D. Alignment of amino acid sequences of WT and

truncated Id4 protein.
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Figure 3.8: Mutant alleles are inherited in a mendelian fashion.

A. Qmc801 (lyl1+/-) was in-crossed and the embryos were screened by PCR / restriction

enzyme digestion. We found 7/30 were homozygous (∆), 14/30 heterozygous (*) and the 9/30 

wild type. B. Embryos screened from qmc 803 (Id4+/-) in-cross were also distributed in a

similar way (WT 6/30; homozygous 9/30; heterozygous 15/30).
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3.7 Summary

 Injection of lyl1 or Id4 TALENS resulted in targeted deletion in somatic zebrafish

cells.

 Mutations induced were successfully transmitted to the germline (11-23% for lyl1 and

40-60% for Id4).

 TALEN-mediated targeted deletions resulted in in-frame mutations predicting

production of truncated lyl1 and Id4 proteins lacking the (b)HLH domain.

 Lyl1 (qmc801) and Id4 (qmc803) mutant lines were established to study their role in

haematopoietic and neural stem cell fate, respectively.
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Chapter 4

4.1 Introduction

Like in other vertebrates such as the mouse and human, haematopoiesis in zebrafish

occurs in two waves: primitive or the embryonic wave and definitive or the adult wave

(Galloway and Zoon, 2003). But unlike mammals in which the site of primitive

haematopoiesis are the extra-embryonic yolk sac blood islands, in zebrafish it is the intra-

embryonic intermediate cell mass (Al-Adhami and Kunz, 1977; Detrich et al., 1995). During

definitive haematopoiesis in zebrafish, all major blood cell types are derived from

haematopoietic stem cells that are initially formed from the ventral wall of dorsal aorta and

later migrate and reside in the kidney marrow (Thompson et al., 1998; Burns et al., 2002;

Kalev-Zylinska et al., 2002; Murayama et al., 2006; Jin et al., 2007).

In addition, many transcription factors that controls haematopoiesis are highly

conserved in vertebrates including zebrafish (Chen and Zon, 2009). Two such transcription

factors, the class II bHLH proteins lymphoblastic leukemia 1 (Lyl1) and stem cell leukemia/

T-cell acute lymphocytic leukemia (Scl/tal1), have both been implicated in the regulation of

haematopoiesis in the mouse (Robb et al., 1996; Porcher et al., 1999; Capron et al., 2006).

They share an almost identical bHLH domain (Mellentin et al., 1989; Porcher et al., 1999;

Schlaeher et al., 2004) and they both are known to interact with lim-only-domain leukemia

oncogenes (Wadman et al., 1991). Although, the expression patter of these two related

transcription factors overlap in mouse haematopoietic and endothelial cells, Scl/tal1

expression is noted much earlier than Lyl1 (Giroux et al., 2007) and its expression marks the

haemangioblast that produces both endothelial and haematopoietic lineages (Gering et al.,

1998). Targeted deletion of scl/tal1 in mice leads to severe haematopoietic defects during

both primitive and definitive haematopoiesis (Robb et al., 1995; Shivdasani et al., 1995)
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while Lyl1 mutant mice had a reduced number of B cells but had normal blood count and

were viable (Capron et al., 2006).

Despite the similarities between Lyl1 and Scl/tal1, it is clear that both have distinct

role in haematopoiesis. Although Lyl1 is dispensable for the early mouse development its

precise role in primitive haematopoiesis has not been studied due to the complex

experimental approach using the mouse system. To overcome such limitations we want to

utilise zebrafish and determine Lyl1 function in primitive haematopoiesis and extend the

current knowledge of Lyl1 function in adult HSCs ultimately establishing a lyl1 gene

regulatory network determining HSC fate. During zebrafish development, scl/tal1 expression

was first observed in the ALM and PLM at 3 somite stage. Its expression is also observed in

the ICM (21hpf) and circulating blood cells (Gering et al., 1998). Ectopic expression of

scl/tal1 can specify blood and endothelial cells (Gering et al., 1998; Liao et al., 1998). Loss-

of-function studies using morpholinos for Scl/tal1 demonstrates that it is crucial for the

development of haemangioblast and haemogenic endothelium (Patterson et al., 2005). The

function of Lyl1 in zebrafish haematopoiesis nor its expression was not studied. Using gain-

of-function studies by overexpressing lyl1 in zebrafish embryos we show that Lyl1 can

promote erythroid differentiation. TALEN-mediated loss-of-function analysis shows that

Lyl1 plays a role in both waves of haematopoiesis.

4.2 Lyl1 bHLH domain is highly conserved among different species

Lyl1 amino acid sequence was obtained from ENESMBL (ENSDARG00000091603)

genome and compared with the other vertebrate. Zebrafish Lyl1 protein has 320 amino acids

and the bHLH domain comprises from amino acid 188 to 243. Multiple sequence alignments

of zebrafish lyl1 with, mouse, rat and human proteins show that the bHLH domain is highly

conserved among vertebrates (Figure 4.1 A). Zebrafish Lyl1 bHLH domain is 92% identical

to human bHLH domain of Lyl1 and 90% conserved in mouse and rat. In addition to the
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bHLH domain other regions are also conserved across species. Entire Lyl1 amino acids are

43% identical to human Lyl1 and 40% identical to rat and mouse. As mouse Scl/Tal1 and

Lyl1 have almost identical bHLH domains, we compared the amino acid in the bHLH region

of zebrafish Lyl1 and scl/tal1. Similar to mouse the region is 90% identical to zebrafish

scl/tal1 bHLH region (Figure 4.1 B). However as observed in mouse, regions other than the

bHLH are much less conserved (33%). The function of lyl1 in zebrafish has not been studied

yet.
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Figure 4.1: Multiple sequence alignment of Zebrafish Lyl1. (A). Zebrafish Lyl1 protein

sequence was aligned and compared to other vertebrates. bHLH domain was marked

by black bar. (B) Amino acid in the bHLH domain of zebrafish Lyl1 and Scl/Tal1 were

90% identical. All the amino acid sequences are obtained from ENSEMBL. Human Lyl

(ENSG00000104903); Mouse Lyl1(ENSGMUSG00000034041); Zebrafish

Lyl1(EBSDARG00000091603); Rat Lyl1 (ENSRNOG00000002850); Zebrafish Scl/tal1

(ENSDARG00000019930)
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4.3 Lyl1 RNA is detected during both primitive and definitive waves of zebrafish

haematopoiesis

RNA was extracted from zebrafish embryos at different stages of development and

reverse transcriptase PCR (RT-PCR) was performed to determine whether lyl1 is expressed

during zebrafish development. Primitive haematopoiesis in zebrafish is initiated at 2 somites

stage (~10.6 hpf) coinciding with the start of scl/tal1 expression (Gering et al., 1998). In

contrast, weak lyl1 expression was first observed at 11 hpf (5 somites stage) and strong

expression was observed from 14 hpf (10 somites) onwards (Figure 4.2 B). No PCR product

was detected in RT- control amplification (Figure 4.2). The lyl1 PCR product was cloned and

sequenced. Sequence comparison revealed that it was identical to ENESMBL lyl1 cDNA

confirming specificity of the PCR reactions (Appendix 2).

We next wanted to establish the expression pattern of lyl1 using whole mount in situ

hybridization. However, several lyl1 antisense probes were tested and all resulted in un-

specific back ground signal (example at 24 hpf shown in Figure 4.2 C). As lyl1 mRNA has

high GC content, it might have been difficult to establish appropriate hybridization conditions

for whole mount in situs. In contrast, in situ hybridization on kidney sections resulted in

strong signals in regions where haematopoietic stem cells reside (Figure 4.2 D, D’). No

signals were observed using a sense control probe (Figure 4.2 F & F’). As a positive control,

scl/tal1 expression was also analysed (Figure 4.2 E & E’). Comparing both signals, it appears

as if lyl1 gave rise to strong positive signals than scl/tal1 (Figure 4.2 E, E’). These

preliminary data seem to suggest that lyl1 expression is more widespread than scl/tal1 in adult

HSCs and that it might therefore play a distinct role in adult HSC function and fate.
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Figure 4.2 Lyl1 expression profile in embryos and adult kidney sections. RT-PCR using

RNA isolated from zebrafish embryos at different stages as indicated. (A) PCR using lyl1-

specific primers produced a 443 bp weakly detectable at 11 hpf and clearly visible from 14

hpf onwards. (B) Control PCR using Elf1a-specifc primers resulted in amplification in all

stages tested. RT- : Reverse transcriptase negative control; L- 100 bp Ladder. (C) Whole

mount in situ hybridization using 24 hpf zebrafish embryos with lyl1 mRNA probes did result

in high background signal (C’) sense control. (D-E) In situ hybridization on adult kidney

sections comparing lyl1 and scl/tal1 expression. (F) Lyl1 control sense probe did not give rise

to any signal. (D’-F’) Representative enlargement of marked areas from D, E and F. Arrows

indicate positive cells for lyl1 and scl/tal1.
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4.4 Ectopic overexpression of lyl1 in zebrafish embryos resulted in mild to moderate

morphological phenotype

Gain-of-function studies in zebrafish can be achieved by microinjecting in

vitro transcribed mRNA into 1 or 2 cell stage embryos (Chao et al., 1991; Kelly et al., 1995;

Toyama et al., 1995; Nikaido et al., 1997; Koos and Ho, 1999). However, this approach

results in ectopic overexpression of the protein in all cells that might give rise to ectopic

phenotypes. Full length in vitro transcribed lyl1 RNA (Section 2.2.2.1) was injected at

different concentration (50 pg and 100 pg) into two cell stage embryos and at 24 hpf

morphology of embryos was analysed. Out of 103 embryos injected with 50 pg lyl1 mRNA,

72 embryos developed and at 24 hpf 47% (34/72) embryos displayed a similar morphology as

wild type embryos (Figure 4.3 A). 26 out of 72 embryos (36%) displayed a mild phenotype

with a slightly curved tail. 17% (12/72) of the embryos were classified as moderate as they

possessed curved tail defect that resulted in reduced body axis and their head was not

properly developed (Figure 4.3 A). 88 of the 130 embryos survived after injection of 100 pg

lyl1 mRNA. 35% (31/88) of these embryos looked normal, whereas 43% (38/88) exhibited a

mild phenotype in the trunk (Figure 4.3 B). A moderate phenotype was observed in 19 out of

88 (22%) embryos injected with 100 pg lyl1 mRNA. These results suggest that ectopic lyl1

overexpression give rise to morphological alterations that are dose dependent (Figure 4.3 C).
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Figure 4.3 Ectopic overexpression of lyl1 in zebrafish embryos results in a dose

dependent phenotype. Phenotypes observed in the embryos injected with 50 pg lyl1 mRNA

(A) and 100 pg lyl1 mRNA (B) at 24 hpf. Based on the morphology they are divided into

normal, mild and moderate. A representative embryo from each division is shown. (C)

Quantification of the phenotypes in the lyl1 mRNA injected embryos. About 47% of the

embryos developed normally while 53% showed a phenotype in 50 pg injected embryos

whereas 65% percentage of the embryos displayed a phenotype when 100 pg lyl1 mRNA was

injected.
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4.5 Ectopic overexpression of lyl1 leads to impaired primitive haematopoiesis

To check whether enforced expression of lyl1 induces any haematopoietic alterations

in the developing zebrafish embryos, the expression of several marker genes for

haematopoiesis was determined at 14 hpf (for primitive wave). Primitive haematopoiesis in

zebrafish occurs at the ALM (Anterior Lateral Mesoderm) and PLM (Posterior Lateral

Mesoderm). PLM consist of vascular and erythroid cells whereas myelopoiesis occurs in the

ALM.

At 14 hpf scl/tal1 is expressed in both ALM and PLM as two stripes and its

expression marks the initiation of haemangioblast formation that produces both vascular and

blood cells. Ten out of 12 embryos injected with 100 pg of lyl1 mRNA displayed an increase

in scl/tal1 expression whereas two out of 12 embryos did not show any change in the

expression at 14 hpf (Figure 4.4 A, B). We next observed the expression of erythrocyte

marker gata1, which is expressed by a subset of scl/tal1 positive cells (Davidson et al., 2004)

in the PLM at 14 hpf. As observed for scl/tal1, expression of gata1 was also increased in the

PLM of lyl1 RNA-injected embryos at 14 hpf (Figure 4.4 C, D). In the ALM a subset of

scl/tal1 positive cells express pu.1, a myeloid cell marker (Bennett et al., 2001). In contrast to

the increase in the expression of gata1, expression of pu.1 was reduced Figure 4 E, F).

As described above, endogenous scl/tal1 expression occurs earlier than lyl1

expression and therefore lyl1 cannot be part of the early regulatory network. Nevertheless,

ectopic overexpression of lyl1 could still alter such network by for example synergising or

competing with scl/tal function. The observed enhanced scl/tal1 and gata1 expression and

reduced pu.1 expression might therefore reflect Lyl1’s contribution to the expansion of

scl/tal1 expressing cells and to the biased differentiation into erythroid fate to the expense of

myeloid cells.
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Figure 4.4 Abnormal primitive haematopoiesis was observed in the 100 pg lyl1 RNA

injected embryos. (A-B) At 14 hpf scl/tal1 is expressed in the PLM as two stripes in the wild

type (A) and lyl1 mRNA injected (B) embryos. (C-D) Expression of gata1 is also elevated in

the lyl1 mRNA injected embryos (E-F) Myeloid marker pu.1 expression is reduced with

elevated levels of lyl1 when compared with wild type embryos. (A-D Dorsal view; E and F

Lateral view).
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4.6 Exogenous lyl1 mRNA expression has enhanced the primitive red blood cells

Primitive erythropoiesis occurs in the ICM and produces the prRBC which is the only

circulating RBC for the first four days of development (Weinstein et al., 1996). Injection

of scl/tal1 into zebrafish embryos resulted in overproduction of blood and the most of the

embryos also displayed circulation defect (Gering et al., 1998). In order to check whether

enforced expression of lyl1 also resulted in the increased production of primitive erythrocytes,

we observed the expression of various marker genes on lyl1 injected embryo at 24-30 hpf. At

24 hpf, 13 out of the 14 embryos injected with 100 pg of lyl1 RNA exhibited

increased scl/tal1 expression (Figure 4.5 A, B) and 9 out of 12 embryos injected

with lyl1 mRNA also displayed an increased gata1 expression (Figure 4.5 C, D).

Both scl/tal1 and gata1 at 24 hpf marks the primitive erythrocytes and this elevated

expression of them indicates an increase in the blood cell production. At 30 hpf, expression

of c-myb noticed in the ventral wall of the dorsal aorta, was increased in embryos injected

with lyl1 mRNA (Figure 4.5 E, F). Ikaros that is required for normal development of

lymphocytes, which starts around 4 dpf (Willet et al., 2001). It is also expressed in the ICM

at 24 hours and in the embryos with enforced Lyl1 expression had an increased expression

of ikaros in the ICM. These enhanced expressions of these two markers also suggest that the

ICM is packed with prRBC. Unlike scl/tal1 injected embryos which displayed an increase in

the expression of angioblast marker flk1, the expression of flk1 in all the lyl1 mRNA injected

embryos (10/10) was not altered (Figure 4.5 I, J).
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Figure 4.5 Expansion of prRBCs in embryos ectopically overexpressing lyl1. Injection of

lyl1 mRNA has increased the expression of prRBC markers (A, B) scl/tal1 (C, D) gata1 (E,

F) ikaros at 24 hpf and (G, H) c-myb at 30 hpf. However the expression of endothelial

marker (I, J) flk1 was unaltered at 24 hpf (A-J Lateral view)
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4.7 lyl1 homozygous mutant embryos exhibit normal morphology

To further analyse the role of Lyl1 in zebrafish haematopoiesis, TALEN-mediated

mutation of the lyl1 gene was performed. TALEN pairs targeting DNA upstream of the

region encoding the bHLH domain created a mutation with 10bp deletion/26bp addition

predicted to result in a truncated Lyl1 protein lacking the bHLH domain. Both heterozygous

(lyl1+/qmc801) and homozygous (lyl1qmc801/qmc801) fish developed normally and produced

embryos without obvious morphological defects. As example, a 24 hpf lyl1 qmc801/qmc801

embryos is shown in Figure 4.7, which appears morphologically identical to the wild type

embryo.



108

F00

Figure 4.6 lyl1qmc801/qmc801 embryos at 24 hpf are morphologically indistinguishable from

wild type embryos. Lateral view of wild type embryo (A) and lyl1qmc801/qmc801 embryo (B) at

24 hpf.
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4.8 Loss of Lyl1 results in impaired haematopoiesis during both primitive and definitive

haematopoiesis

As described above, lyl1 expression was clearly detectable at 14 hpf by RT-

PCR (Figure 4.2 A) so loss of Lyl1 function could have an impact on heamatopoiesis at this

and later developmental stages. However, in situ hybridization using scl/tal1 and gata1

probes indicated that expression of these genes was unaltered in lyl1qmc801/qmc801 embryos at

14 and 24 hpf (Figure 4.8). As lyl1 is not expressed early on, haemangioblast formation and

early production of primitive erythrocytes was not compromised in lyl1 qmc801/qmc801 embryos

and their maintenance at 14 hpf seems independent of Lyl1. In contrast, expression of pu.1 in

the PBI and yolk sac of lyl1 qmc801/qmc801 embryos at 24 hpf was increased (Figure 4.9).

Together with the results described above that overexpression of lyl1 resulted in a reduction

of pu.1 expression, these results suggest that Lyl1 is antagonising myeloid differentiation. In

addition, Lyl1 can promote erythrocyte differentiation but is not required during early phases

of erythropoiesis.
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Figure 4.7 Loss of lyl1 does not alter the expression of scl/tal1 and gata1.

(A-D) Expression of Scl/tal1 in Wt and lyl1qmc801/qmc801 embryos at 10 somite (A, C) and 24

hpf (B, D). (E-H) No difference in the cells expressing Gata1 in the mutants (G and H) when

compared with wild type (E and F) during zebrafish development. (A, C, E and F Dorsal

view; B, D, E and F Lateral view)
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Figure 4.8 Elevated expression of pu.1 in the lyl1qmc801/qmc801 embryos. (A) pu.1 is

expressed in the yolk sac of wild type embryos at 24 hpf. (B) Increase in pu.1 positive cells

are noticed in the ventral wall of dorsal aorta and also in the PBI of the lyl1qmc801/qmc801

embryos at 24 hpf. (A and B Lateral view)
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4.9 Lyl1 is required for regulation of Gfi1aa during primitive and definitive

haematopoiesis

In mammals, gfi1 is expressed in HSCs and lymphoid cells. Deletion of gfi1

suggested that it is critical for maintenance and self-renewal of HSCs (Grimes et al., 2006;

Zheng et al., 2004; Hock et al., 2004; Hock and Orkin, 2006). In addition, Lyl1 was shown to

directly regulate gfi1 expression during T cell lymphopoiesis (Zohren et al., 2011). The

zebrafish gfi1aa ortholog is also expressed in prRBC (Wei et al., 2008). Therefore,

expression of gfi1aa was determined. As shown in Figure 4.10 loss of lyl1 resulted in a clear

reduction of gfi1aa in the ICM of 18 hpf as well as the ventral wall of 24 hpf lyl1qmc801/qmc801

embryos (Figure 4.10).

Primitive haematopoiesis in zebrafish produces prRBC that starts to circulate around

24hpf. Gfi1aa expression was first observed in the prRBC progenitors at 5ss and its

expression start to reduce in the ICM around 19-20hpf (Cooney et

al., 2013). lyl1qmc801/qmc801 embryos seem to be slightly older which could be due to staging

difference hence analysing the embryos at a much earlier time point (10ss) should validate

the loss of gfi1aa expression during primitive haematopoiesis in

lyl1 qmc801/qmc801. Gfi1aa expression was also reduced in the lyl1 qmc801/qmc801at 24 hpf. The

expression of gfi1aa is restricted to ventral wall of the dorsal aorta and inner ear at 26hpf. As

only a few cells express gfi1aa in the vDA at 22-24 hpf the observed reduction in the

lyl1 qmc801/qmc801 embryo may be due to embryos being slightly younger. Hence, it is necessary

to validate the gfi1aa expression at an earlier (5-10ss) and later (26 hpf) developmental stage.
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Figure 4.9 Disruption of lyl1 markedly reduces gfi1aa expression. Expression of gfi1aa in

wild type (A, B) and lyl1qmc801/qmc801 (C, D) embryos in the ICM (arrows) at 18 hpf (A, C) and

in the ventral wall (arrows) at 24 hpf (B, D). A-D: lateral view.
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4.10 Lyl1 is required for definitive haematopoiesis and lymphopoiesis

Studies using lyl1 mutant mice showed that Lyl1 is not required for development of

HSCs but essential for long-term repopulation ability of the HSCs. In addition, mutant mice

displayed a reduction in the number of B cells (Capron et al., 2006).

As shown in Figure 4.11, loss of Lyl1 function resulted in reduction in c-myb

expression at 2 dpf in the caudal haematopoietic tissue that is formed from the PBI. It seems

therefore that in zebrafish Lyl1 contributes to the formation and/or maintenance of definitive

HSCs.

Although identified at chromosomal translocation sites in T cell acute lymphoblastic

leukemia, lyl1 is not expressed in mature T cells (Capron et al., 2006). Lymphoid

differentiation in zebrafish occurs from 4 dpf in the thymus. From 3 dpf HSCs/lymphoid

progenitors from the CHT start to seed the thymus and expression of lymphoid markers are

apparent from 4 dpf. lyl1 qmc801/qmc801 mutant embryos displayed a reduced expression of rag1

in the thymus at 5 dpf (Figure 4.12). Given that expression of two HSC markers Gfi1aa and

c-myb was reduced in the absence of Lyl1, it seems likely that lymphopoiesis and/or

colonisation of the thymus by HSCs/lymphoid progenitors is impaired resulting in reduced

lymphocytes.
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Figure 4.10 Reduction of definitive HSC in the lyl1qmc801/qmc801 mutant (A) Expression of

c-myb in the wild type embryos at 2dpf. (A’) Expression in the CHT is highlighted (B) Loss

of lyl1 resulted in the reduction of c-myb positive cells and CHT of the mutant embryo is

highlighted in B’. (A, A’, B and B’- Lateral view)
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Figure 4.11 Lyl1 is required for lymphoid cell maintenance in the thymus (A) Expression

of rag1 thymus of wild type embryos at 5dpf. (B) Reduced expression of rag1 in the thymus

of lyl1qmc801/qmc801 embryos at 5dpf. (A, A’, B and B’- Lateral view)
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4.11 Adult lyl1qmc801/qmc801 mutant fish exhibit a reduced lymphopoiesis and increased

myelopoiesis

By day 4 of zebrafish development HSCs in the CHT seed the kidney that serves as

primary site of adult haematopoiesis producing all major blood cells. To determine whether

lack of Lyl1 impaired adult haematopoiesis, kidneys from 8 month old wild type and

lyl1 qmc801/qmc801 fish were isolated and whole kidney marrow cells analysed using flow

cytometry. Forward and side scatter are sufficient to separate the kidney marrow cells into

four different cell populations that have been identified as erythroid cells, myelomonocytes,

lymphocytes and immature precursor cells (Traver et al., 2003). As shown in Figure 4.13

(Appendix II), lyl1qmc801/qmc801 fish exhibited a strikingly different flow cytometry profile

compared to wild type fish. The myelomonocyte population that include neutrophils,

granulocyte and monocytes was increased from 3.25% (±0.3%) in the wild type to 10%

(±2.82%) in the lyl1qmc801/qmc801 fish. Conversely, the lymphocyte population was decreased

from 10% (±1.4%) in the wild type to 2.75 % (±1.06%) in mutant fish. In contrast, the

erythrocyte population didn’t show a marked difference (51% vs 49.5%) and the immature

precursor cell population was only slightly reduced (3.65% (±0.2%) vs 2% (±1.4%)) in

lyl1qmc801/qmc801 (Figure 4.13 and Appendix II).

Taken together these results confirm and extend the data obtained from lyl1 knockout

mice demonstrating the functional role of Lyl1 in adult haematopoiesis suppressing

myelopoiesis and driving lymphopoiesis.
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Figure 4.12 Separation of whole kidney marrow cells revealed the loss of lymphocyte

and rise in myelomonocytes. FACS sorted whole kidney marrow cells from adult wild type

(A) and lyl1 mutant (B) fish. SSC-Side scatter, FSC- Forward scatter. Myelomonocytes are

highlighted in green, erythroid cells in black, blue denotes lymphocytes and immature

precursor cells shown in light blue.
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4.12 Summary

 Ectopic expression of lyl1 enhanced primitive red blood cells production and

suppressed the myeloid differentiation. The enhanced expression of marker

genes suggests that these embryos produced an increase in primitive red blood

cells.

 lyl1qmc801/qmc801 embryos developed normally but displayed distinct marker

gene expression during primitive and definitive haematopoiesis establishing a

role for lyl1 in both waves of haematopoiesis.

Primitive wave: Expression of scl/tal1 and gata1 was unaltered

suggesting normal primitive erythropoiesis. However increased

expression of pu.1 indicates that Lyl1 antagonises myeloid

differentiation.

Reduction of gfi1aa expression in the lyl1qmc801/qmc801 during primitive

haematopoiesis (18 hpf) did not have any effect on primitive erythroid

cells, which may be due to redundancy between Gfi1aa and Gfi1b.

Definitive wave: Loss of Lyl1 resulted in reduction in the expression

of c-myb (HSC) at 2dpf in the CHT and rag1 (lymphocyte) at 5dpf in

the thymus.

 In adult zebrafish Lyl1 regulates lineage choice driving lymphopoiesis and

suppressing myelopoiesis
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Chapter 5

5.1. Introduction

bHLH proteins have been shown to be crucial regulators of the development of the

central nervous system. Id4 is a members of Id protein family that anatogonise bHLH protein

function. Thus Id proteins in general drive cell proliferation and inhibit cell differentiation

(Benezra et al., 1990; Norton et al., 2000). During mouse embryogenesis, Id4 is mainly

expressed in the developing nervous system, but in the adult, Id4 expression is more

widespread (Riechmann and Sablitzky, 1995; Riechmann et al., 1993). Deletion of Id4 in the

mouse resulted in impaired neurogenesis with significant reduction in neural stem cell

proliferation and increased apoptosis (Yun et al., 2004; Bedford et al., 2005). But it was later

shown that loss of Id4 also resulted in impaired mammary cell development (Dong et al.,

2011) and premature differentiation of spermatogonial stem cells (Oatley et al.,2011).

Furthermore, Id4 acts as a molecular switch promoting osteoblast differentiation (Tokuzawa

et al., 2010) and silencing of its expression contributes to the pathogenesis of mouse and

human chronic lymphocytic leukaemia (CLL; Chen et al., 2011).

5.2 Id4 expression in zebrafish embryos

Thisse et al (2001) showed that id4 is also expressed in the developing central

nervous system of zebrafish. However, this analysis did not cover early development and

earlier RT-PCR had demonstrated that id4 mRNA could be detected from 6 hpf onwards

(Basir, 2010). Hence we cloned the full length zebrafish id4 cDNA and used RNA probes

(see Materials & Methods) for in situ hybridization to establish the expression pattern of Id4

at different developmental stages. id4 expression was first observed throughout the embryo at

6hpf (Shield stage) (Figure 5.1 A). At 70% epiboly, id4 expression was widespread including
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the precordal plate (Figure 5.1 B). During somite stages (1-18) the expression of id4 was

noticed in multiple regions including the central nervous system and retina (Figure 5.1 C-

E).At 24 and 48 hpf the expression of id4 was again restricted to the developing nervous

system; especially in various regions of the brain such as the midbrain, hindbrain,

telencephalon, diencephalon, retina and tegmentum. These results indicate that id4 is

ubiquitously expressed in early stages (6 hpf) but its expression becomes restricted to the

developing nervous system during later stages.
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Figure 5.1 ID4 expression during zebrafish development.

Id4 is ubiquitously expressed during early stages of zebrafish development (A) Shield, (B)

70% epiboly. In later stages id4 is expressed in the neural plate, Telencephalon (C) 2 somites

(D) 5 somites (E) 18 somites stage and finally the expression is restricted to the developing

nervous system (F, F’-Ventral view) 24 hpf (G, G’-Enlarged) 36 hpf. No expression was

observed with the sense probe (H). T: Telencephalon; H: Hindbrain; D: Diencephalon;

Te: Tegmentum (A-G Lateral View)
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5.3 Id4 expression is regulated via notch signalling

Notch signalling pathway controls cell fate in many developmental processes and

genome-wide transcriptome analysis of Notch-1 induced genes in murine embryonic stem

cells have reported that activated Notch1 has upregulated id1, id3 and id4, while id2 is

downregulated (Meier-Stiegen et al.,2010；Li et al., 2012). Zebrafish mind bomb mutants

have a defective notch signalling pathway due to a mutation in the E3 ubiquitin ligase gene.

Reduced notch signalling in the mind bomb mutants resulted in complex phenotypes

including aberrant neurogenesis (Itoh et al., 2003). Due to premature differentiation of neural

stem cells, primary neurons were increased while secondary neurons were reduced (Jiang et

al., 1996; Itoh et al., 2003). Despite the complex phenotype, aberrant neurogenesis in mind

bomb resembled somewhat the phenotype of Id4 knockout mice, as both displayed

precocious neuronal differentiation (Yun et al., 2004; Bedford et al., 2005) which prompted

us to test whether Id4 expression is regulated via notch signalling. Wild type embryos were

treated with N-[N-3,5-difluorophenacetyl]-L-alanyl-S-phenylglycine methyl ester (DAPM), a

well known inhibitor of notch signalling (de Strooper and Annaert, 2010), and Id4 expression

was analysed by in situ hybridization. As shown in Figure 5.2, expression of id4 appeared

elevated in DAPM treated embryos at 25 hpf suggesting that notch signalling inhibits id4

expression in zebrafish rather than driving it. In line with this observation are previous results

showing that ectopic expression of id4 in Su(H) morphants that exhibit a defective notch

signalling (Sieger et al., 2003) could not rescue the Su(H) morphant phenotype (premature

neuronal differentiation) but in contrast enhanced it (Ganguly, 2013). Indeed it was shown

that high level of ectopic overexpression of id4 in wild type embryos also resulted in a severe

neurogenic phenotype (Patlola, 2009; Bashir, 2010). In addition, mindbomb mutants and

Su(H) morpholino treated embryos also displayed an eleaveted id4 expression at 24hpf
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(Figure 5.2 C, D)Together with the result above (Figure 1.5) that Id4 morphants exhibited a

reduction in proliferative cells and an increase in cells undergoing apoptosis resulting in

abnormal brain development (Dhanaseelan, 2011), these results strongly suggest that a tightly

controlled expression of Id4 in time and space is essential for normal neurogenesis in

zebrafish.



126

Figure 5.2 Id4 expression level is elevated in the absence of notch. Expression of id4 in

(A, C, E) Wild type embryo (B) DAPM-treated embryos (D) Su(H) morphants and (E)

Mindbomb1 mutnats at 25 hpf . DAPM selectively blocks Notch activity resulting in an

increased of Id4 expression. (A-F lateral view)
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5.4 Id4 promotes neural progenitor proliferation and survival by suppressing p38

MAPK activity

We had earlier shown that morpholino-mediated knockdown of Id4 in zebrafish

impaired neurogenesis. Id4 morphants exhibited a reduction in proliferative cells and an

increase in cells undergoing apoptosis resulting in abnormal brain development (Figure 1.5;

Dhanaseelan, 2011). To ensure that the observed phenotype was specific and not due to an

artifical upregulation of the p53 pathway (Robb et al., 2007), p53 morpholinos were co-

injected with Id4 morpholinos. Indeed, the phenotypic effect in double morphants was less

severe but significant decrease of cell proliferation and increase of apoptosis was still

observed (Figure 1.5; Dhanaseelan, 2011). To further elucidate the downstream targets of

Id4, we asked whether the observed phenotype in Id4 and Id4/p53 morphants was due to

activation of p38MAPK function. p38MAPK is known to inhibit cell proliferation and

promote apoptosis during development (Molnar et al., 1997; Sarkar et al., 2002). p38MAPK

activation leads to cell cycle arrest by inhibiting cyclin D (Molnar et al., 1997; Galibert et al.,

2001) and it was shown that Id4 regulates mammary gland development by surpressing

p38MAPK activity (Dong et al., 2011).

Hence to analyse whether the phenotypes observed in the Id4 and Id4/p53 morphants

are indeed mediated through p38MAPK function, SB239063, a chemical specifically

inhibiting p38MAPK, was used. Once the morphants and wild type control embryos reached

75% epiboly (8 hpf), the E3 medium/fish water was replaced with water containing 15 µM

SB239063 and the embryos were allowed to develop further until they reached the 2 somites

stage. Analysis using antibodies recognising pHH3, a marker for cells undergoing mitosis,

revealed that wild type embryos treated with inhibitor had an average of 282 (±9) positive

cells for pHH3.
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The average number of proliferative cells in Id4 morphants treated with the inhibitor

was 225 (±17) which is 20% less when compared with the treated wild type embryos

(p=7.6X10-8). Id4/p53 morphants treated with the p38MAPK inhibitor exhibited an even

higher number of proliferative cells (272±13) that was similar to the treated wild type

embryos (Figure 5.3).

Compared to the results established previously (Figure 1.5), both Id4 and Id4/p53

normal cell proliferation was rescued. While Id4 morphants showed a 50% reduction in

proliferating cells compared to wild type, Id4 morphants treated with SB239063 exhibited a

20% reduction indicating a partial rescue. Id4/p53 morphants showed about 30% reduction of

proliferating cells compared to wild type and inhibition of p38MAPK almost completely

rescued this phenotype (Figure 1.5, Figure 5.3 D/E).
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Figure 5.3 Cell proliferation defects observed in Id4 and Id4/p53 morphants was

partially rescued through inhibition of p38MAPK. Whole-mount pHH3 immunostaining

on zebrafish embryos treated with SB239063 at 2 somites stage (A) wild type (B) Id4

morphants (C) Id4/p53 morphants. (D) Quantification of pHH3 positive cells from embryos

treated with inhibitor. Average number of positive cells for pHH3 was determined for wild

type, Id4 and Id4/p53 morphants and the ratio in percentage was calculated. (E) Comparison

of cell proliferation between wild type, Id4 and Id4/p53 morphant embryos either untreated

(taken from Figure 1.5) or treated with p38MAPK inhibitor A-D: Lateral view.
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In addition to its role in cell proliferation and differentiation, p38MAPK also

promotes cell death (Sarkar et al., 2002). Both Id4 and Id4/p53 morphant embryos displayed

an increase in apoptotic cells compare to the wild type (Figure 1.5; Dhanaseelan, 2011).

Hence TUNEL staining was carried out on embryos grown in the presence of the p38MAPK

inhibitor. In wild type embryos only a few apoptotic cells could be detected (21±12) and Id4

morphants treated with SB239063 still exhibited a much higher level of apoptosic cells

(125±32) significantly different from wild type (p=2.1X10-8) (Figure 5.4). However,

compared to the number of apoptotic cells in untreated Id4 morphants (180±16) the number

of apopotics cells in treated Id4 morphants (125±32) was significantly reduced

(p=1.041X10-5). Inhibition of p38MAPK in Id4/p53 morphants resulted in few apoptotic cells

(28±15) similar to treated wild type embryos (Figure 5.4). In contrast, Id4/p53 morphant that

had not been treated with the inhibitor displayed 8 times more apoptotic cells compared to the

wild type (p=3.9X10-13) again indicating that inhibition of p38MAPK resulted in a complete

rescue of the Id4/p53 morphant phenotype.

Taken together, these experiments strongly suggest that the phenotype observed in Id4

morphants is indeed due to aberrant activation of p38MAPK and that the severity of the

phenotype was enhanced by the accompanied up regulation of p53.
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Figure 5.4 Increased apoptosis observed in the Id4/p53 morphants are p38 MAPK mediated.

Whole-mount TUNEL on zebrafish embryos injected with embryos with morpholinos at 2-4

cell stage, treated with SB239063 at 75% epiboly and staining was performed at 2 somites

stage (A) wild type (B) DNaseI treated (C) Id4 morphants (D) Id4/p53 morphants. (E)

Quantification of the number of apoptotic cells in wild type and morphant embryos treated

with SB239063. Average number of TUNEL positive cells was calculated for wild type, Id4

morphants and Id4/p53 morphants. (F) Comparison of apoptotic cell death between wild

type, Id4 and Id4/p53 morphant embryos either untreated (taken from Figure 1.5) or treated

with p38MAPK inhibitor A-D: Lateral view.
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5.5 id4qmc803/qmc803embryos displayed normal morphology

It was recently demonstrated that phenotypes observed in morpholino-mediated

knockdown experiments could often (but not always) not been reproduced in mutant

knockout fish (Kok et al., 2015). To see whether the phenotype observed in Id4 morphants

described above was specific, TALEN-mediated mutagenesis was employed to establish Id4

mutant zebrafish. TALEN pairs targeting the Id4 gene created a mutation that is predicted to

produce a truncated Id4 protein lacking the HLH domain (Figure 3.7 C, D). In contrast to Id4

morphants, id4qmc803/qmc803embryos at 24 hpf were morphologically indistinguishable from

wild type embryos (Figure 5.5 A, B). Especially brain boundaries that were severely affected

in the morphants (Figure 1.4 E, F) looked normal in the mutant embryos. However, more

detailed analysis shown in the next sections revealed that morpholino-mediated knockdown

and TALEN-mediated knockout of Id4 resulted in a similar phenotype.
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Figure 5.5 id4qmc803/qmc803developed normally at 24 hpf. A. Later view of wild type embryo.

(B) Embryos derived from id4qmc803/qmc803fish did not show any phenotype.
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5.6 Id4 knockout leads to premature neuronal differentiation

To determine whether the loss of Id4 had an effect on neurogenesis as it was

described above, the expression pattern of neurogenin 1 (ngn1) and ELAV like neuron-

specific RNA binding 3 (elavl3/HuC) was analysed in homozygous embryos and compared to

wild type embryos.

Ngn1 is a pro neural bHLH protein, activating pan neuronal genes, driving

differentiation of cortical progenitors into neurons. At 2-somite stage ngn1 is expressed in the

multiple regions of the developing central nervous system (CNS) including the proneural

clusters which has a potential for a neural fate (Thisse et al., 2001). Loss of Id4 had a marked

effect on the expression pattern of ngn1. While the overall expression of ngn1 at 2 somites

stage was incomparable between the wild type and id4qmc803/qmc803embryos, the pattern of

expression seemed altered in the mutants and a slight increase in ngn1 positive cells was

observed in the pro neural clusters (Figure 5.6 A, A’, B and B’). At 24 hpf the expression of

ngn1 was observed in telencephalon, diencephalon, hindbrain, tegmentum and spinal cord

(Thisse et al., 2001). At 24 hpf expression of ngn1 was clearly increased throughout the

central nervous system (including telencephalon, midbrain, hindbrain and spinal cord)

suggesting premature neurogenesis in id4qmc803/qmc803 embryos (Figure 5.6 C, C’, D and D’).

To verify the above results, expression of HuC/elavl3, a marker for neuronal

determination and differentiation, was also determined (Park et al., 2000). Huc is also

expressed along the proneural clusters at 2 somite stage and in the multiple regions of

developing CNS like the telencephalon, diencephalon and hind brain at 18 hpf (Thisse et al.,

2001). Like in the case of ngn1, HuC/elavl3 expression at 2 somite stage was similar in wild

type and mutant embryos, perhaps with a small increase in the ventral pro neural clusters in

the id4qmc803/qmc803 (Figure 5.7 A, B). At 18 hpf, expression of HuC/elavl3 in the

telencephalon, ventral diencephalon, midbrain, and ventral hindbrain and in the spinal cord
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regions was clearly increased in the id4qmc803/qmc803embryos compared to the wild type

embryos (Figure 5.7 C, D). Taken together, these results suggest that knockout of Id4 in

zebrafish leads to premature neuronal differentiation.



138



139

Figure 5.6 Expression of ngn1 is elevated in id4qmc803/qmc803mutants. (A-B) Ngn1

expression in wild type and id4qmc803/qmc803 embryos at 2 somites stage. (A’-B’) Highlighted

areas from A and B, respectively. (C-D) Elevated expression of neurogenin 1 in the

developing central nervous system of id4qmc803/qmc803 at 24 hpf. (C’-D’) Dorsal view showing

the expression of ngn1 in different regions of the CNS in wild type and id4qmc803/qmc803. VPC-

ventral pro-neural clusters, FB- forebrain, HB- hindbrain, MB- midbrain, T-tectum, CG-

cranial ganglia. Arrows indicate spinal cord. (A, A’, B and B’- dorsal view; C, C’, D and D’-

ventral view)
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Figure 5.7 Premature neuronal differentiation in the id4qmc803/qmc803 embryos. (A-B)

HuC/elavl3 expression is similar in wild type and id4qmc803/qmc803 at 2 somites stage. (A’-B’)

Highlighted areas from A and B, respectively. (C-D) Elevated expression of HuC/elavl3 in

the id4qmc803/qmc803 developing central nervous system at 24 hpf. (C’-D’) HuC/elavl3

expression in the dorsal CNS. VPC-ventral pro-neural clusters, FB- forebrain, HB- hindbrain,

VD- ventral diencephalon, Te-telencephalon. (A, A’, B and B’- dorsal view; C, C’, D and D’-

ventral view)
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5.7 id4qmc803/qmc803- mutant embryos exhibit a decrease in cell proliferation and an

increase in apoptosis

Knockout of Id4 in the mouse resulted in impaired neural stem cell proliferation

and increased apoptosis (Yun et al., 20040; Bedford et al., 2005) and Id4 morphants also

exhibited reduced cell proliferation and increased apoptosis resulting in aberrant neurogenesis

(Figure 1.5; Dhanaseelan, 2011).

To analyse whether zebrafish Id4 mutants had a defect in cell proliferation, whole

mount pHH3 immuno-staining was performed on mutant and control wild type embryos at 2

somites stage. Phosphorylated histone H3 specifically marks the cells that are undergoing

mitosis. Wild type embryos showed positive cells for pHH3 throughout (Figure 5.8A, A’),

and on an average contained 370 (±11) proliferating cells. Similarly, id4qmc803/qmc803 embryos

exhibited proliferating cells but the number was reduced to 280 (±17) cells; a reduction of

24% compared to wild type (p=2.1 X 10-9) (Figure 5.8).

To test whether Id4 knockout in zebrafish also exhibited increased apoptosis,

TUNEL assay was performed as before on 2 somites stage embryos comparing wild type and

id4qmc803/qmc803 mutants. As shown in Figure 5.9, control wild type embryos displayed on

average of about 66 (±8) apoptotic cells but the number of apoptotic cells in the

id4qmc803/qmc803 embryos was increased up to 2.3 fold (average of about (158±10) (p=3.9 X 10-

20)) again indicating that Id4 mutants display a similar (albeit not identical) phenotype to Id4

morphants.
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n=12 n=16
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Figure 5.8: Id4 mutants displayed a reduction in the number of dividing cells.

(A) Wild type embryos at 2 somites stage had positive cell throughout the embryo. (A’)

Dorsal view of the developing CNS showing the proliferating cells. (B) id4qmc803/qmc803

embryos also had positive cells in the embryo and in the CNS (B’), but had fewer cells

compared to the wild type. (C) Quantification of the positive cells for pHH3. Average

number of positive cells for pHH3 was calculated for wild type and Id4 mutants. Percentage

is the ratio of mutant to wild type. (A,B- Lateral view; A’, B’- Dorsal view)
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Figure 5.9 Id4 loss resulted in enhanced apoptosis in the developing brain. TUNEL assay

in wild type (A, A’) and id4qmc803/qmc803 (B, B’) embryos at 2 somite stage. (C) Quantification

of the apoptotic cells. Average number of TUNEL positive cells was calculated for wild type

(66±8) and Id4 mutants (158±10). Two-tailed Student’s t-tests showed a significant (p<0.001;

three asterisks) increase in the number of apoptotic cells in the mutants (A, B - Lateral view;

A’, B’- Dorsal view).
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5.8 Impaired cell proliferation in the Id4 mutant embryos is mediated through elevated

p38 MAPK activity

As shown above, inhibition of p38MAPK was sufficient to partially rescue Id4

morphants. To confirm the latter findings, p38MAPK activity was suppressed in the Id4 null

embryos using 15 µM SB239063.

Both wild type and id4qmc803/qmc803 embryos were treated with 15µM SB239063 at

75% epiboly, the embryos were raised until they reach 2 somites stage and pHH3/ TUNEL

immuno staining was performed (Figure 5.10). The average number of mitotically active cells

in the inhibitor treated id4qmc803/qmc803 embryos was 397 (±24; n=17) which was similar to the

wild type (400 (±25, n=17)) but significantly different from the untreated Id4 mutant embryos

(p=6.7 X 10-13) that exhibited a 24% reduction in the number of proliferating cells compared

to wild type (Figure 5.8; Figure 5.10 D ). There was a significant reduction in the number of

apoptotic cells in the id4qmc803/qmc803 when p38MAPK is inhibited via chemical inhibitors.

Average number of apoptotic cells in the inhibitor treated id4qmc803/qmc803 embryos was 66

((±14; n=17). This apoptosis r6ate is similar to the wild type embryos (60 ((±12; n=10)).

Overall, the analysis of id4qmc803/qmc803 embryos reciprocated the phenotypic

analysis of Id4 morphants and together revealed the novel finding that Id4 negatively

regulates p38MAPK activity to ensure sufficient cell proliferation and expansion of neural

stem and progenitor cells and preventing premature differentiation and cell death.
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Figure 5.10 Inhibition of p38MAPK in Id4 mutants restores cell proliferation. (A) Wild

type embryos treated with p38MAPK inhibitor exhibited proliferating cells throughout the

embryo. (A’) pHH3 positive cells in the developing nervous system. (B-B’) Inhibition of

p38MAPK in Id4 mutants rescues the proliferation defect, as pHH3 positive cells were

observed throghtout the embryo including the developing brain. (C) Quantification of the

pHH3+ cells from embryos treated with inhibitor. Average number of positive cells for pHH3

was calculated for wild type and id4qmc803/qmc803 embryos. Ratio (in persentage) of mutant to

wild type is shown. (D) Comparison of cell proliferation between wild type and Id4 mutant

embryos either untreated or treated with p38MAPK inhibitor (A,B- Lateral view; A’, B’-

Dorsal view)
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Figure 5.11 Inhibition of p38MAPK has rescued the survival defects in the

id4qmc803/qmc803 embryos. (A) Wild type embryo treated with SB239063 displayed a few

TUNEL positive cells. (A’) TUNEL positive cells in the developing nervous system (B)

id4qmc803/qmc803 embryos treated with inhibitor has very few apoptotic cells when compared to

the id4qmc803/qmc803 embryos when p38MAPK was not inhibited. (B’) TUNEL positive cells in

the developing nervous system. (C) Quantification of TUNEL positive cells. Average number

of apoptotic cells was calculated for wild type and the qmc803/qmc803. (D) Comparison of

apoptosis between wild type and id4qmc803/qmc803 embryos either treated or untreated with

inhibitor (A,B- Lateral view)
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5.9 Summary

 Inhibition of p38MAPK resulted in a complete rescue of impaired cell proliferation

and increased apoptosis in Id4/p53 morphants and to a partial rescue in Id4

morphants.

 id4qmc803/qmc803 embryos at 24 hpf developed normally but displayed an increased

expression of the pro neural bHLH protein ngn1 as well as the HuC/elavl3 protein

suggesting precocious neuronal differentiation.

 id4qmc803/qmc803 embryos exhibited decreased cell proliferation and increased apoptosis

similar to to the Id4 and Id4/p53 morphants. Quantitative comparison between mutant

and morphants would suggest that the enhanced phenotype observed in Id4 morphants

is indeed due to artifical up regulation of p53.

 Impaired proliferation in the id4qmc803/qmc803 embryos is p38MAPK mediated and

inhibiton of p38 MAPK restored normal cell proliferation.
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Chapter 6

Discussion

Using gain-of-function and loss-of-function approaches, the role of two cell fate regulators,

lyl1 and Id4 was analysed using zebrafish as a model system. To this end, ectopic

overexpression and morpholino-mediated knockdown as well as TALEN-mediated

mutagenesis was employed. Phenotypic analysis of morphant and mutant zebrafish revealed

potential mechanisms underlying the function of lyl1 and Id4 in haematopoiesis and

neurogenesis, respectively. The data presented that lyl1 role during zebrafish haematopoiesis.

Gain-of-function studies suggest that if expressed at early during development they can

promote erythrocyte differentiation. But the mutant displayed normal erythrocyte

development. However, the mutant had a reduction in HSCs and an impaired lymphopoiesis.

In addition, the data also demonstrate that lyl1 regulates lineage choice driving lymphopoiesis

and suppressing myelopoiesis

Id4 is required for maintenance and expansion of neural stem cells preventing

premature cell differentiation and death through negatively regulating p38MAPK activity.

6.1 TALEN a powerful tool for genome editing

Site-specific programmable nucleases emerged as a powerful reverse genetic tool

allowing genomic engineering in many model organisms including zebrafish. Here, we have

targeted two different loci in the zebrafish genome and have successfully established mutant

lines using TALENS. TALENS possessed various advantages as their targeting range is quite

high compared to ZFNs and thus they can be used to target any region of the genome (Joung

and Sander, 2013). While TALENS effectively generated somatic mutation in zebrafish,

ZFNs failed to create deletions (Moore et al., 2012).
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Both Lyl1 and Id4 TALEN pairs were highly efficient resulting in site-directed

mutagenesis in zebrafish somatic cells. The mutation was also transmitted through the

germline. TALEN-mediated approach in zebrafish had a targeting efficiency ranging from

20%-77% (Moore et al., 2011) and in some cases up to 100% (Bedell et al., 2012). Targeting

efficiency of the TALENS used in this study range from 11% to 90% and in few embryos,

100% efficiency was also observed. TALENs induce mutations at a particular target site in

dose-dependent fashion (Dahlem et al., 2012). When injected with 125 pg of lyl1 TALEN

RNA into zebrafish embryos we did not observe any gene disruption but increasing the

amount of RNA resulted in targeted mutations. Injection of 50 pg of id4 TALEN RNA into

zebrafish had a mutation frequency of 50%-70% whereas the mutation frequency in 125 pg

injected embryos was 90%. This suggests the frequency of mutation is dose-dependent and

increasing amounts of RNA will increase the frequency of mutations. However injecting too

much of TALEN RNA also increases the toxicity leading to developmental defects or even

death of the embryos. For example, injecting 500 pg of each id4 TALEN RNA resulted in

morphological phenotypes in all embryos within 48 hours of injection. Hence for every

TALENS pairs it is important to establish the amount of TALEN RNA required to cause gene

disruption without causing developmental defects.

Both Lyl1 and Id4 TALENS created targeted mutations in zebrafish somatic cells and

screening of F0 adults revealed that mutations were transmitted to the germline. However,

only 2 lyl1 F0 founder displayed heritable mutations and the frequency of mutation is only 11

and 23%. On the other hand, 66% of the embryos analysed had transmitted the Id4 mutation

to their offspring with a 40-60% frequency. A similar frequency was also observed by others

targeting different loci of the zebrafish genome and in these cases founder fish displayed

transmission frequencies ranging from 6-75% with some had 100% mutation frequency

(Dahlem et al., 2012; Cade et al., 2012). Usually F0 founder fish are mosaic harbouring a
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number of different mutations (Dahlem et al., 2012; Ansai et al., 2013; Ota et al., 2013) but

most of our founders exhibited only single mutations.

We did not observe any large deletions in the F1 embryos as all deletions observed

were in the range of 6-18 bp while in one instance deletion and insertion occurred. All the

deletions observed in Lyl1 embryos were out-of-frame deletions but the majority of the

mutations in Id4 F1 embryos were in-frame. Genotyping revealed that Lyl1 F1 fish carried a

mutation in one of the alleles with 10 bp deletion and 26 bp insertion. In addition to two type

of in-frame mutations, Id4 F1 fish also had out-of-frame deletions (10 bp and 8 bp). The

mutant allele are inherited in mendelian fashion and the F1 adult fish were viable and fertile.

DNA-binding specificity of TALENS is high due to the long DNA-binding domain

reducing off-target effects frequently observed with other programmable nucleases like ZFNs

and CRISPR cas9 (Meng et al., 2008; Cradick et al., 2013). This is due to the fact that

TALENS fail to cleave 3-6 base mismatches and only partially cleave 2-base mismatch. We

did not find any potential off-target sites by using the online TALEN off-site predictor

suggesting that the TALENS used are specific for their targets.

Several assays are available to detect mutations caused by programmable nucleases.

Genomic DNA extracted from TALEN injected and control embryos are amplified with

primers spanning the target site. The template can be analysed by surveyor nucleases such as

the T7 endonuclease or Cel-I which can detect and cleaves heteroduplex DNA (Mussolino et

al., 2011). High resolution melt analysis (HRMA) can also be used to identify the hetero-

duplex (Dahlem et al., 2012). To detect the TALEN-mediated mutations we use PCR

followed by restriction enzyme digestion. This approach requires the presence of a restriction

site in the spacer region that will be destroyed through TALEN-mediated DSB and NHEJ

repair; hence the enzyme cannot digest the PCR product. Recently it has been reported that

TALEN-mediated DSB occur in the middle of the spacer region in 70% of cases targeting 4-5
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bp (Yu et al., 2014). The spacer regions of lyl1 and Id4 TALEN target sites contain

restriction sites at these 4-5 bp and hence identifying the TALEN-mediated mutations at these

loci by restriction enzyme digestion was very effective.

Lyl1 (Qmc801) and Id4 (Qmc803) mutant lines were established to study their role in

haematopoietic and neural stem cell fate, respectively.

6.2 Lyl1 is required for HSC function and lymphoid differentiation

6.2.1 Lyl1 RNA is present during both waves of haematopoiesis

In zebrafish, RT-PCR analysis using whole embryos indicated that lyl1 was expressed

albeit weakly from 11 hpf; slightly later than scl/tal1 that was expressed in the lateral

mesoderm from 10.5 hpf onwards (Gering et al., 1998). Unfortunately, in situ hybridization

using several different anti sense RNA probes produced high background and therefore it was

not possible to determine Lyl1 expression during zebrafish embryogenesis in more detail.

Nevertheless, the RT-PCR analysis indicated that lyl1 RNA was detectable in zebrafish

embryos at developmental time points when primitive and definitive haematopoiesis.

6.2.2 Ectopic overexpression of lyl1 enhanced primitive red blood cells production

Ectopic expression of scl/tal1 mRNA resulted in overproduction of primitive

erythrocytes that displayed increased expression of gata1 in the ICM at 22 hpf (Gering et al.,

1998). Similarly, injection of lyl1 mRNA resulted in an increase of scl/tal1 and gata1

expressing cells at 14 hpf (Figure 4.4) suggesting that Lyl1 can promote primitive

haematopoietic progenitors and enhance primitive erythrocyte differentiation. A clear

increase in scl/tal1 and gata1 expression was also observed at 24 hpf (Figures 4.5 and 4.6).

Given that blood cell circulation starts around 24 hpf it is possible that the observed increase
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in scl/tal1 and gata1 expressing cells was due to increase in blood cell production. Scl/tal1

and gata1 are known to express in circulating blood cells and together with their elevated

expression in 14 hpf suggest that there is an increase in the primitive red blood cell

production. The expression of ikaros in the ICM at 24 hpf and c-myb at 30 hpf further

suggest that the primitive red blood production has enhanced in the lyl1 mRNA injected

embryos. This enhanced expression of marker genes of primitive erythrocytes suggest that

overexpression of Lyl1 resulted in an increase in primitive blood cell production.

6.2.3 Ectopic overexpression of lyl1 had no effect on expression of endothelial cell

marker flk1

In contrast to scl/tal1 mRNA injected embryos that displayed an increase in the

expression of the endothelial marker flk1 (Gering et al., 1998), flk1 expression appeared

normal in lyl1 injected embryos (Figure 4.5). Both, Scl/tal1 and Lyl1 are expressed in mouse

endothelium (Giroux et al., 2007) and given the potential for redundancy (as discussed

above) this result seems surprising. Injection of increasing amounts of Lyl1 RNA is needed to

see whether flk1 expression will increase with increasing amounts of Lyl1. This seems

unlikely though, given that Gering et al. (1998) inject 70 pg Scll/tal1 RNA compared to 100

pg Lyl1 RNA injected here. It seems therefore that ectopic overexpression of Lyl1 has no

effect on flk1 expression suggesting a non-redundant role for Scl/tal1 and Lyl1 in endothelial

cells.

6.2.4 Lyl1 mutant fish (qmc 801/qmc801) had normal primitive haematopoiesis

Targeted deletion of Scl/tal1 in the mouse resulted in the absence of haematopoiesis

in the yolk sac and Scl/tal1-/- embryos died around 9.5 dpc (Robb et al., 1995). Similarly,

morpholino-mediated knockdown of Scl/tal1 failed to develop primitive haematopoiesis
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(Patterson et al., 2005). In contrast, Lyl1 mutant embryos displayed normal yolk-sac

haematopoiesis and mutant mice were viable (Capron et al, 2006). Similarly, primitive

haematopoiesis seemed unaltered in lyl1qmc801/qmc801 zebrafish embryos (normal expression of

the scl/tal1 and gata1; Figure 4.7) suggesting that in contrast to Scl/tal1, Lyl1 function is not

required for primitive haematopoiesis in both mice and zebrafish.

6.2.5 Lyl1 mutant fish (qmc 801/qmc801) had impaired definitive haematopoiesis

In the mouse Lyl1 expression was high in the immature haematopoietic and pro-B

cells at embryonic day 14 and Lyl1 mutant displayed a 2-fold reduction in immature B-cell.

Bone marrow multipotent HSC population is also reduced in the lyl1-/- animals indicating that

it is important for HSC maintenance. Reconstitution assays demonstrate that Lyl1-/- bone

marrow cells displayed a severe defect in their ability to reconstitute lymphoid lineages

(Capron et al., 2006). lyl1 qmc801/qmc801 embryos also displayed a marked reduction in the

c-myb expressing blood progenitors in the CHT at 2 dpf (Figure 4.10). In addition, there was

a clear reduction in the rag1 expressing lymphoid cells in the thymus of lyl1 qmc801/qmc801

embryos at 5dpf suggesting that Lyl1 function is required for definitive HSC maintenance as

well as T cell development.

The reduction of blood progenitors and lymphocytes in the CHT and thymus

respectively, can be validated by analysing the expression of these genes by qRT-PCR.

Another possibility would be to cross qmc801 with qmc551:GFP that expresses GFP in

prRBCs, HSCs (dorsal aorta) and lymphocytes (thymus) (Dr Gering, personal

communication). This would allow to visualise GFP-expressing blood cells in live embryos

and to quantify them using flow cytometry.
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6.2.6 Lyl1 antagonises myeloid differentiation

Lyl1 mutant mice had normal myeloid cell number (Capron et al., 2006). At 24 hpf

the number of pu.1 positive cells throughout the ventral wall was increased in

lyl1 qmc801/qmc801 embryos when compared with the wild-type (Figure 4.8). Overexpression of

lyl1 mRNA has suppressed the expression of pu.1 at 14hpf (Figure 4.4 E, F). In line with the

overexpression data this enhanced expression of pu.1 in lyl1 qmc801/qmc801 embryos suggests

that Lyl1 might antagonize myeloid differentiation. Circulation in zebrafish starts around 24

hpf and hence there is possibility that the observed cells may be the circulating cells rather

than the elevated pu.1 expression. To avoid this confusion and to validate the observed

upregulation of pu.1 it is important to check their expression around 27-30 hpf. Yet, the data

here presents a possible role of Lyl1 in suppressing myeloid cell differentiation.

6.2.7 Lyl1 regulate lineage specification promoting lymphopoiesis and suppressing

myelopoiesis

In the mouse, transplantation of Lyl1-/- bone marrow cells failed to engraft into

lymphoid lineage (Souroullas et al., 2009; Capron et al., 2006). Although the number of MPP

remains unaltered in the lyl1-/- animals the frequency of LMPP was severely reduced. Lyl1-/-

LMPP achieved only partial thymic engraftment and failed to generate T cells (Zohren et al.,

2012).

Flow cytometric analysis of kidney marrow cells from wild type and lyl1qmc801/qmc801

adult fish has revealed that Lyl1-deficiency supported an alternative lineage fate choice as a

4-fold reduction in lymphocyte population and a 3-fold increase in myeloid population was

observed in lyl1qmc801/qmc801. This is consistent with the earlier observation of reduced rag1

expression in the thymus at 5 dpf (Figure 4.10) and enhanced pu.1 expression in the ventral

wall at 24 hpf (Figure 4.8). Thus the analysis of kidney marrow cells suggests that lyl1
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regulate lineage specification promoting lymphocyte differentiation and suppressing myeloid

differentiation.

6.2.8 Lyl1 may regulate Gfi1aa expression

Gfi1 is expressed in mouse HSC and in mice lacking gfi1, differentiation of

lymphocytes was blocked (Hock et al., 2006; Hock et al., 2003). Gfi1 plays important role in

regulating self-renewal and maintenance of adult HSCs (Zeng et al., 2004; Hock et al., 2004).

We observed a reduced expression of gfi1aa at 18 hpf and 24 hpf in the lyl1 qmc801/qmc801

(Figure 4.9). At 18 hpf gfi1aa is expressed in the prRBC and the reduction of gfi1aa does not

alter the primitive erythrocyte differentiation in lyl1qmc801/801 as the marker for primitive

erythrocyte looked normal (gata1; figure 4.7). Morpholino-mediated knockdown of Gfi1aa

resulted in impaired primitive haematopoiesis (Cooney et al., 2013). However, more recent

analysis of gfi1aa mutant zebrafish revealed that gfi1aa, gfi1ab and gfi1b play redundant

roles during primitive and definitive haematopoiesis compensating for each other’s loss

(D Ucanok and M Gering, personal communication). Hence it is important to check the

expression of other gfi1 genes in lyl1qmc801/801. Also the expression of gfi1 was significantly

reduced in mouse LMPP. Transduction of Lyl1-/- cells with retrovirus expressing lyl1 or gfi1

rescued the impaired T-cell development suggesting that Gfi1 acts downstream of Lyl1

during T-cell development (Zohren et al., 2012). This is consistent with our observation of

reduced gfi1aa expression in the lyl1qmc801/qmc801 embryos. Together these suggest Lyl1 might

play a role in regulating Gfi1aa expression. However, our observation on the expression of

gfi1aa in lyl1qmc801/qmc801 was hampered by the staging difference of the embryos. As the

expression of gfi1aa leaves the prRBC from 19 hpf and it start to express in the ventral wall

at 24 hpf, the selected stage to observe the expression of gfi1aa in the mutants was not ideal.

To overcome this staging difference it is necessary to check the expression of gfi1aa during
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10ss (for primitive haematopoiesis) and 27 hpf or later (for definitive haematopoiesis) which

will give a clear idea about the Lyl1 role in regulating Gfi1aa.

6.3 Id4 promotes neuronal proliferation by suppressing p38MAPK activity

6.3.1 Expression of id4 is conserved in vertebrates

It is known that Id proteins are highly expressed in the undifferentiated proliferating

cells and their expression starts to decline once the cell starts to differentiate (Lasorella et al.,

2001). In the mouse central nervous system, Id4 expression was observed in the lateral

ventricles, epithalamus and optic recesses at 12.5 dpc. Id4 expression was detected in the

telencephalon at 14.5 dpc and at 17.5 dpc its expression was restricted to the developing

central nervous system (Riechmann and Sablitzky, 1995). In the developing chick embryos

the expression of id4 was observed from stage 5 in the neural plate and at stage 10 in the

neural tube. At day 3 (stage 19) the expression of id4 is restricted to telencephalon, hind

brain, mid brain and in the eye (Kee and Bronner-Fraser, 2001). In Xenopus, the expression

of Id4 is noticed in the neural plate, eye, and in trigerminal ganglia (Liu and Harland, 2003).

Similar to other vertebrate, expression of id4 is also restricted to the developing central

nervous system in zebrafish at 24 and 48 hpf (Figure 5.1; Thisse et al., 2001). Id4 is mainly

expressed in the telencephalon, diencephalon, tectum and in the hindbrain. The expression of

id4 was also noticed in the precordal plate and in the presumptive neural tube (6-10 hpf;

Figure 5.1 A-C). This clearly suggests that the expression of Id4 is conserved with other

vertebrates and during early development Id4 play a role in promoting the proliferation of

neural epithelial cells. Id4 expression was also observed in other tissue such as mammary

gland, spermatogonial stem cells, adipocytes, osteoblast and prostrate epithelial cells (Oatley

et al., 2011; Sharma et al., 2013; Dong et al., 2011; Patel et al., 2015). During early
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development Id4 is critical for central nervous system and at later stages Id4 might promote

the development of other developmental processes.

6.3.2 id4qmc804/qmc804 phenocopied the mouse Id4 mutant

Two Id4 knockout mouse models are known and they exhibited a similar phenotype

in the developing central nervous system (Yun et al., 2004; Bedford et al., 2005). Both mouse

models displayed a reduction in forebrain due to precocious neuronal differentiation. The

mice also displayed 20-30% reduction in proliferation and 3 fold increase in apoptosis (Yun

et al., 2004; Bedford et al., 2005). Morpholino-mediated knockdown of Id4 in zebrafish

resulted in various phenotypes in the developing embryos. The morphants displayed an

impaired proliferation as the number of proliferating cells was decreased by 50%. In addition,

an 8-fold increase in the cells undergoing apoptosis was observed (Dhanaseelan, 2011).

However, this analysis was hampered by the fact that injection of Id4 morpholinos resulted in

up-regulation of p53. Nevertheless, injection of Id4 and p53 morpholinos still exhibited a

similar phenotype albeit with less severity (Dhanaseelan, 2011). Hence to overcome this

disadvantage with morpholinos, Id4 mutant zebrafish (id4qmc803/qmc803) were generated using

TALEN-mediated mutagenesis. Cell proliferation was reduced by 24% and apoptosis was

enhanced by 2.3 fold in id4qmc803/qmc803 embryos at 10.6 hpf (Figure 5.8 and 5.9). Comparing

this impaired proliferation and survival defects with the Id4-deficient mice it is clear that

id4qmc803/qmc803 also exhibited a similar proliferative defects. In addition Yun et al., (2004)

indicated that the Id4 mutant mice displayed precocious neurogenesis as the expression of

marker genes for neurogenesis was up-regulated (ngn2, neurod). Expression of post-mitotic

neuronal marker βIII tubulin was also increased in the developing forebrain at E12.5 and 14.5 

in the Id4 mutants which suggest that loss of Id4 resulted in premature differentiation to

neurons (Bedford et al., 2005). Analysis of marker genes for neuronal differentiation (ngn1,
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huC) in id4qmc803/qmc803 embryos suggests that their expression looked normal during 2 somite

stage however a clear increase in their expression was observed during later stages of

development in id4qmc803/qmc803 (Figure 5.6 and 5.7). Together these results clearly indicate

that Id4 function is required for neural stem cell expansion and timing of differentiation. In

this regard, the data are in line with earlier work showing that Id4 knockout mice exhibited a

reduction in neural stem cells accompanied with premature neurogenesis and increased cell

death (Yun et al., 2004; Bedford et al., 2005).

6.3.3 Id4 function by negatively regulating p38MAPK activity

The observed phenotype in Id4 morphants and mutant embryos is mediated through

enhanced activity of p38MAPK. p38MAPK activation was observed when Id4 was silenced

in the mammary gland and in cultured mammary tumour cells. p38MAPK is known to arrest

cell cycle by phosphorylating p21 (cyclin-dependent kinase inhibitor), upregulating p16

(inhibitor of cyclin-dependent kinase 4 and 6) and by phosphorylating cyclin D1 leading to its

degradation (Kim et al., 2002; Bulavin et al., 2004; Casanovas et al., 2000). However the

molecular mechanism through which Id4 negatively regulates the activity of p38MAPK is not

clear but it was shown in Id4-deficient mice that Id4 regulates mammary gland development

by suppressing p38MAPK activity (Dong et al., 2011).

Id4-deficient mice (six week old) exhibited impaired mammary development that

include irregular terminal end bud (TEB), disorganized cap cell layer and shorten ductal

branching. Similar to the impaired proliferation observed in the central nervous system of Id4

mutant mice (Bedford et al., 2005; Yun et al., 2004), Id4 null mammary gland also displayed

a reduced proliferation and increased apoptosis in the TEB and ducts. The observed

phenotype in the id4-/- mammary gland is mediated by p38MAPK as the expression of

p38MAPK in mature ducts and TEB of Id4 mutant animal is very high when compared with
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wild type. Inhibition of p38MAPK has rescued the impaired proliferation and apoptotic

defects observed in the mammary gland (Dong et al., 2011).

Inhibition of p38MAPK using chemical inhibitor has rescued the proliferation defects

observed in the id4qmc803/qmc803embryos (Figure 5.10). In addition, inhibition of p38MAPK

also reversed the survival defects as the apoptotic rate in the id4qmc803/qmc803 was completely

rescued once p38MAPK activity was inhibited. A similar observation was also observed in

the Id4 and Id4/p53 morphants. Average number of proliferation was reduced by 50% and 8

times more apoptosis was observed in the Id4 morphants (Dhanaseelan, 2011). Inhibition of

p38MAPK in the Id4 morphants was rescued only partially which is due to the p53 activity.

However, inhibition of p38MAPK in the Id4/p53 morphants has completely rescued the

proliferation and surviving defects (Figure 5.3).

p38MAPK like other MAP kinases are activated by MAP kinase kinases (MKK) such

as MKK3 and MKK6. Overexpression of p38MAPK is known to inhibit cell proliferation

(Yee et al., 2003) and in addition to their function in apoptosis and cell cycle control

p38MAPK is also known to promote differentiation of adipocytes, cardiomyocytes, myoblast,

erythroblast and neurons (Yehia et al., 2001). p38MAPK expression was observed

throughout zebrafish early development. At 24 and 48 hpf p38MAPK is expressed in the

different areas of the developing central nervous system such as tegmentum, diencephalon,

cerebellum and hindbrain (Krens et al., 2006). Activation of p38MAPK by expressing MKK6

during zebrafish cardiogenesis has reduced the proliferation and enhanced the differentiation

of cardiomyocytes leading to a severely disturbed cardiogenesis (Jopling et al., 2012). Hence,

Id4 might negatively regulate p38MAPK activity not only to promote proliferation of the

NPC but also to inhibit differentiation. Although it is clear that inhibition of p38MAPK by

Id4 is necessary for NPC proliferation and differentiation, the mechanism how Id4

orchestrate this p38MAPK regulation remains to be determined. ID4 is known to
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downregulate matrix metalloproteinases (MMPs) by directly binding to Twist1 a bHLH

protein that mediates MMPs expression and tumor invasion (Rahme and Israel, 2015). Hence,

it is important to check whether Id4 regulates p38MAPK by directly binding to p38MAPK or

by binding to other bHLH proteins that are required for p38MAPK activity.

In conclusion, this study presents the successful employment of TALEN-mediated

mutagenesis to generate Id4 and Lyl1 mutant lines. It was shown that Lyl1 may play a role

during primitive haematopoiesis suppressing myelopoiesis and is required to maintain blood

and T-cell progenitors. It also presents the role of Id4 in regulating NPC proliferation and

differentiation by negatively regulating p38MAPK activity.
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Appendix I

All TALEN plasmids were cloned on JDS74 deposited by Keith Joung lab. All TALEN insert
were cloned into between SacI and HindIII. (For TALEN target site refer section 3.1)
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Appendix II

Separation of kidney marrow cells based on forward and side scatter (A,B) Wild type

(C, D) lyl1qmc801/qmc801


