
 
 

 

 

 

Numerical Simulations of Geotechnical 

Engineering Problems Considering the 

Principal Stress Rotation 
 

 

 

By 

 

Zhe Wang 

 

B.Eng. 

 

 

 

 

 

 

Thesis submitted to the University of Nottingham for 

 

the degree of Doctor of Philosophy 

 

 

2016 



I 
 

Abstract 

 

Soil behaviors are quite complex under dynamic loadings, such as wave 

loading, earthquake loading, etc, but they share common characteristics that the 

soil is subjected to considerable principal stress rotations (PSR). PSR can 

generate plastic deformation even without a change of principal stress 

magnitudes. Continuous PSR can also generate excess pore water pressures 

and cumulative shear strains in undrained condition. Therefore, the PSR from 

the dynamic loadings can accelerate undrained soil liquefaction because it can 

cause cumulative plastic volumetric deformations. Ignoring PSR induced 

deformation may lead to unsafe design. It is therefore important to understand 

the soil behaviors under cyclic loadings with the PSR and take account of this 

PSR impact in the numerical simulations of corresponding geotechnical 

problems. 

Although researchers have recognized the importance of the PSR in real 

geotechnical problems under diverse loading conditions and conducted 

extensive experimental studies, there are limited considerations of the PSR 

impact on numerical simulations of boundary value problems. Moreover, most 

of the constitutive models widely-used in the numerical investigations at 

present cannot simulate this PSR behavior properly. Therefore, a new 

kinematic hardening soil model (PSR model) developed on the basis of a 

well-established model with bounding surface concept is used to simulate the 

PSR behavior in this research. It can take account of the PSR impact by 

treating the stress rate generating the PSR independently. 
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To investigate the impacts of PSR in numerical simulations of geotechnical 

problems, the PSR model is implemented into both the single element and 

finite element analysis of a series of geotechnical problems by a constitutive 

model subroutine written in Fortran. In this subroutine, an explicit substepping 

integration algorithm with automatic error controls is used to perform the 

constitutive formulations. The imposed strain increment can be automatically 

divided and the sizes of the sub-increments are also automatically determined 

based on the prescribed error tolerance in this numerical integration scheme. 

The single element analyses include the simulations of the triaxial and hollow 

cylinder tests with monotonic, rotational and torsional loading paths, while the 

finite element analyses consist of the simulations of the centrifuge 

experimental tests under wave loadings and earthquake loadings. The predicted 

results by using the soil model with and without considering the PSR impact, 

as well as the experimental results will be compared. 

From these single element and finite element analyses, it is evident that the 

rotational, torsional and dynamic loadings such as wave and earthquake 

loadings can produce the PSR and non-coaxiality in the soil. The comparisons 

between the predicted results from the modified PSR model, the original model, 

and the laboratory results from these experimental tests all show that although 

the original model can reflect some non-coaxiality, it can produce very limited 

build-up of pore water pressure and cumulative shear strain under cyclic 

loading path. However, due to consideration of the PSR impact, the modified 

PSR model can generate higher pore water pressure and shear strain than the 

original model, thus bringing the soil to the liquefaction and agrees better with 

the experimental results. Therefore, it is important to consider the PSR effect in 

the simulation of geotechnical problems such as wave-seabed interactions and 
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the earthquake induced liquefactions, and the PSR model presented in this 

research has a great ability and plays an important role in these numerical 

simulations. 
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Chapter 1 Introduction 

 

1.1 Background 

Dynamic loadings such as wave loadings and earthquake loadings can generate 

considerable principal stress rotation (PSR) in the soil. In 1983, Ishihara & 

Towhata first proposed that the PSR can cause the plastic deformation and 

non-coaxiality even without a change of principal stress magnitudes. 

Continuous PSR can also generate excess pore water pressure and cumulative 

shear strain in undrained condition. Similar phenomenon is also found by 

Ishihara & Yamazaki (1984), Bhatia et al. (1985), Miura et al. (1986), Gutierrez 

et al. (1991), etc. Therefore, the cumulative plastic volumetric deformations 

caused by the PSR from the dynamic loadings can accelerate undrained soil 

liquefaction. Ignoring this PSR induced deformation may lead to unsafe design.  

Researchers have been carrying extensive work to investigate and model the 

soil behaviors under the PSR in experimental, theoretical, and numerical fields, 

and have greatly promoted the understanding and modeling of this research 

topic. For example, from the experimental perspective, the early simple shear 

tests and hollow cylinder tests revealed the relationship between the 

non-coaxiality and the fabric anisotropy (Roscoe et al., 1967). Then a series of 

centrifuge and 1 g wave tests on seabed with sand have been carried out by 

different researchers to investigate the wave-seabed interactions (Nago & 

Maeno, 1987; Zen et al, 1990; Sassa & Sekiguchi, 1999). Sassa & Sekiguchi 

(1999) found that in their tests, the soil behaviors were largely affected by the 
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PSR under the progressive wave loading. Besides, researchers have also been 

paying enormous efforts to investigate the soil behaviors under the earthquake 

loadings. One of the most famous projects was the VELACS project 

(Verification of Liquefaction Analysis using Centrifuge Studies), which 

includes a variety of centrifuge tests among several universities in America 

(Arulanandan & Scott, 1993). In this project, 12 sets of different centrifuge 

models are subjected to various base motions to investigate the soil 

liquefaction under earthquake loadings and acquire data for the validation of 

different analysis tools including the numerical modeling. 

Apart from the experimental tests, researchers also utilize a variety of soil 

models to simulate the soil behaviors with the PSR under both static and 

dynamic loadings, such as the multi-mechanism model, microplane model, 

hypoplasticity model, double shearing types of models, yield vertex theory 

model, etc (Rudnicki & Rice, 1975; Dafalias, 1986; Kolymbas, 1991; Fang, 

2003; Yu & Yuan, 2005; Chang & Sture, 2006; Tejchman & Wu, 2009). 

However, the results of the numerical simulations are largely affected by the 

soil models used. Although there are a few models considering the PSR effect, 

most of them have not been seriously implemented into the finite element 

analysis of boundary value problems. For the wave-seabed interaction, one of 

the best known studies was the finite element simulation conducted by Sassa & 

Sekiguchi in 2001. They presented a cyclic plasticity constitutive model and 

implemented it to the finite element analysis of seabed liquefactions under both 

progressive and standing waves. However, in 2013, Jeng stated that Sassa’s 

model had several limitations in the simulation of this kind of problem, such as 

the lack of consideration of viscosity, the assumption of infinite bed, etc. 

Furthermore, the simulation results from this cyclic plasticity model seem to be 
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very sensitive to the model parameters, which restricts its application. For the 

earthquake loading, although several researchers have implemented their soil 

models into the numerical simulations of the VELACS project subsequently 

(Andrianopoulos et al., 2010; Sadeghian & Namin, 2013; Pak et al., 2014), 

there are few of them taking account of the PSR effect.  

In conclusion, the PSR effect plays an important role in the soil behaviors in 

many geotechnical problems such as the wave-seabed interactions and the 

earthquake induced liquefactions. It is essential to consider the PSR impact in 

these numerical simulations as the PSR can lead to plastic deformations and the 

soil liquefaction under these loading conditions. Although researchers have 

been paying efforts to investigate the soil behaviors under the PSR, there are 

few of them considering the PSR impact in numerical simulations of boundary 

value problems. Therefore, this research aims to simulate the geotechnical 

problems using a newly-developed PSR model which can take account of the 

PSR impact, thus testing its ability in the simulations of a variety of 

experimental tests and the significance of the PSR impact in the simulation of 

boundary value problems. 

1.2 Aims and Objectives of the Research 

The lack of the numerical simulations investigating the PSR effects and the 

proper soil model considering the PSR impact lead to this research. The aim of 

this investigation is to numerically test the ability of the PSR model and 

examine the significance of the PSR impact by implementing this model into 

the numerical simulations of boundary value problems. Therefore, the 

numerical simulations of a series of triaxial and hollow cylinder tests and 
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experimental centrifuge tests under wave loadings and earthquake loadings are 

carried out to investigate the PSR behaviors under these loading conditions. In 

these numerical simulations, the predicted results from the soil models with 

and without the PSR, as well as the experimental results will be compared. 

The aims of the research can be divided as follows: 

 To implement the original base model and the modified PSR model into 

both the single element and finite element simulations. The PSR model is 

modified based on a kinematic hardening model with bounding surface 

and critical state concept by treating the stress rate generating the PSR 

independently. It also employs the back-stress ratio as the hardening 

parameter and state parameter to represent sand with different confining 

stresses and void ratios. 

 To study the significance of the PSR impact and validate the PSR model in 

the single element numerical simulations of a series of experimental tests.  

 To investigate the significance of the PSR impact, validate the PSR model, 

and investigate the wave-induced liquefaction in the wave-seabed 

interactions using the finite element method.  

 To study the significance of the PSR impact and the earthquake-induced 

liquefaction in the boundary value problem under the earthquake loadings, 

and also test the ability of the PSR model by the finite element simulation.  

To achieve these aims, the specific objectives pursued are as follows: 

 To carry out a literature review on the theoretical, experimental and 
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numerical studies of soil behaviors under the PSR impact as well as the 

liquefaction in undrained soil under dynamic loadings. 

 To develop a constitutive model subroutine with the numerical integration 

scheme for the PSR model and modify the finite element computer 

programs to enable the incorporation of the PSR model into the numerical 

simulations of boundary value problems.  

 To implement the modified PSR model and the original base model into 

the numerical analysis with the single element computer programs. 

Experimental tests include a series of triaxial tests and hollow cylinder 

tests for both the Leighton Buzzard sand (Fraction B & E) and Nevada 

sand are simulated and comparisons are made between the predicted 

results and the experimental results. 

 To calibrate the model parameters of the soils which will be used in the 

finite element analyzes by the single element simulations. 

 To implement the modified PSR model and the original base model into 

the numerical analysis of boundary value problems using the finite element 

computer programs. The centrifuge wave tests for Leighton Buzzard sand 

(Fraction E) under both the progressive waves and the standing waves with 

different intensities and the centrifuge test for Nevada sand under the 

earthquake loadings are simulated. 

1.3 Outline of the Thesis 

This thesis consists of seven chapters, including this introductory section 
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(Chapter 1). 

Chapter 2 presents a general introduction on the soil behaviors related to the 

PSR effects, including the definition of the principal stress rotation and 

non-coaxiality, as well as the experimental evidence for them. Then the 

previous numerical studies and soil models considering the PSR and 

non-coaxiality are listed, together with their main findings and conclusions. 

The experimental tests simulated in this research are also reviewed. 

Furthermore, this section gives an introduction of the soil liquefaction which 

can be induced by the PSR effect as well as the criteria of liquefaction used in 

this research. 

Chapter 3 introduces the soils used in the simulations—Leighton Buzzard 

sand (Fraction B & E) and Nevada sand, as well as the experimental tests 

simulated. These tests include the triaxial tests, hollow cylinder tests, 

centrifuge wave tank tests, and centrifuge tests under the earthquake loading. 

Then this chapter summarizes the numerical simulation tools used in this 

research, including the Fortran program for the single element simulations, as 

well as the finite element method, explicit integration scheme, the PSR model 

subroutine, the finite element Fortran program and the commercial software for 

the simulations of boundary value problems. 

Chapter 4 introduces the original base model and the development of the new 

model considering the PSR impact (PSR model). Then the single element 

simulations for a series of experimental tests for both the Leighton Buzzard 

sand and the Nevada sand are presented. The PSR effect is investigated by the 

comparisons between the simulation results from the soil model with and 

without the PSR. Parameters for these two types of sand used in the following 
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finite element simulations are also calibrated in this chapter. 

Chapter 5 presents the predicted results of the centrifuge wave tests from both 

the original model and the modified PSR model and compare them with the 

experimental results. The performance of the PSR model in the wave-seabed 

interactions is validated by these comparisons. The PSR effect under the 

progressive wave loadings and the standing wave loadings as well as the 

wave-induced liquefaction is also discussed in this section. 

Chapter 6 focuses on the numerical simulation of the experimental centrifuge 

test under the earthquake loading. The predicted results from two models and 

the experimental results are compared, thus investigating the PSR effect and 

validate the modified PSR model in such a loading condition. Furthermore, the 

earthquake-induced liquefaction is discussed in this chapter as well. 

Chapter 7 summarizes the main findings and conclusions obtained from the 

previous chapters. Future suggestions and limitations of this research are also 

discussed in this chapter.  
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Chapter 2 Literature Review 

 

2.1 Introduction 

The literature review first introduces the soil behaviors under the principal 

stress rotation, including the definition of the PSR and non-coaxiality, the 

previous experimental investigations on this topic, and the associate 

experimental evidences supporting the PSR effects.  

Secondly, the numerical studies including the discrete element and finite 

element studies as well as the development of the soil models considering the 

PSR effects and soil non-coaxiality are briefly reviewed. The main findings 

and conclusions of these investigations are also listed.  

Thirdly, the experimental tests simulated in the single element and finite 

element analyzes are introduced. The backgrounds of the investigations on the 

wave-seabed interaction and earthquake-induced liquefaction are also 

introduced. 

This section finally introduces the soil behavior of liquefaction in undrained 

conditions together with the liquefaction criteria adopted in this research. The 

liquefaction behavior is examined in the following numerical simulations and 

is largely affected by the PSR. 
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2.2 Principal Stress Rotations and Non-coaxiality 

2.2.1 Definition of the PSR and non-coaxiality 

The loading conditions in the real geotechnical problems often cause the 

rotation of principal stresses. Plastic deformations can be induced in the soil 

when the principal stress directions are changing even without a change of 

principal stress magnitude. Furthermore, PSR can lead to the soil 

non-coaxiality, which means the non-coincidence between directions of the 

principal strain increment and directions of the principal stress. Numerical 

analysis carried out by Yang and Yu (2006) demonstrates that it is essential to 

take account of the PSR impact of a granular soil in geotechnical problems. 

They proposed that the PSR might be involved in both static and dynamic 

loadings and neglecting the deformations caused by the PSR can lead to unsafe 

designs. The importance of considering the PSR impact in the design of 

geotechnical structures has also been verified in a more secure project from Yu 

and Yuan (2005). In addition, special attentions should be paid to the PSR 

under dynamic loadings, such as wave and earthquake loadings because they 

can cause cumulative plastic volumetric deformations, thus leading to the 

liquefactions in undrained soils. 

The PSR and non-coaxial behaviors are often associated with the anisotropic 

behavior of granular material. An anisotropic specimen is presented in Figure 

2-1. In Figure 2-1(a), when the loading direction and the bedding plane are not 

normal to each other, the axis of principal stresses and axis of principal strain 

increments are coaxial even if the anisotropy is included in the specimen fabric. 

However, if the loading direction is not normal to the bedding plane as shown 
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in Figure 2-1(b), the axis of principal strain increments will deviate from the 

axis of principal stresses, thus inducing the non-coaxiality. 

 

    (a)                    (b) 

Figure 2-1. The relationship between the anisotropy and non-coaxiality 

(Cai, 2010). 

2.2.2 Previous experimental studies on the PSR and 

non-coaxiality 

During last 5 decades, numerous experimental studies have revealed the PSR 

and the non-coaxial behavior of the soil. For example, Roscoe et al. (1967) 

carried out an early simple shear test and proposed that the principal stress 

directions were not coincident with the principal strain rate directions before 

the peak shear stress was reached. The experimental results from Roscoe (1970) 

in Figure 2-2 also show the non-coaxial rotation of the principal stress and the 

principal strain increment, especially during the early stage of the shearing. 

Then the directions tend to be coincident as the shear strain increases. The 

non-coaxiality was also observed in the micro-mechanical study of a 
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photoelastic disc assembly to simulate the two-dimensional granular material 

from Drescher & Jong (1972). 

 

 

Figure 2-2. Principal stress and strain increment rotations against shear 

strain during simple shear tests. (a) σy=135 kPa; (b) σy =396 kPa (Roscoe, 

1970). 

The non-coincidence of the directions of the principal stress and principal 

strain increment was also observed by Wong & Arthur (1985) using the 

Directional Shear Cell (DSC). In these tests, samples were subjected to a 



12 

 

two-stage loading under drained conditions in an initially isotropic plane. 

Figure 2-3 presents the relationships between the measured degree of 

non-coaxiality ξ and the stress ratio with different reloading directions. The 

experimental results show an obvious non-coaxiality when the samples were 

reloaded with the directions of the principal stress Φ equals to 40° and 70° to 

the directions of pre-loading. However, the sand behaves almost coaxial when 

Φ = 0° or Φ = 90°. Furthermore, the results again show that the non-coaxiality 

gradually becomes smaller with the increasing stress ratios and the coaxial 

behavior was achieved when the stress state was close to the failure. In 1986, 

they conducted another tests for both dense and loose sands during cyclic 

rotation of principal stresses using the directional shear cell apparatus. These 

studies showed that the difference between the principal stress and the 

principal strain incremental directions could be more than 30° in sand during 

continuous rotation of the principal stress. 

 

Figure 2-3. Non-coaxiality measured in the directional shear test (Wong & 

Arthur, 1985). 
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Ibraim et al. (2010) carried out a series of strain controlled tests for a two 

dimensional analogue granular material. The laboratory apparatus used in these 

tests allows the rotation of principal directions and the full control of plane 

deformations. The strain path was controlled by the imposed dilation angle and 

the direction of principal strain increment. The response of the difference 

between the directions of principal stresses and stain increments against the 

strain is presented in Figure 2-4. The direction of principal strain increment ξ 

and the imposed dilation angle v of the tests are indicated in the test names. For 

instance, A-T42 (9.6c) is a test with the direction of principal strain increment ξ 

= 42º and the imposed dilation angle v = 9.6 º. The letter d and c represents the 

dilation and compression respectively. It can be observed from Figure 2-4 that 

the degree of non-coaxiality between the directions of the principal stress and 

the strain rate gradually reduces as the shear strain continues increasing. Once 

again, coaxiality was almost achieved as the stress approaches the asymptotic 

state. Moreover, the results show that the rate of the rotations of principal stress 

axes increases with the inclination angle of the principal strain increment to the 

vertical direction. 
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Figure 2-4. Difference between the direction of the major principal stress 

and the direction of the major principal strain increment, with the fixed 

direction of principal axes (Ibraim et al., 2010). 

More recently, the PSR and the non-coaxial behavior are also reported in tests 

from the hollow cylinder apparatus, which allows the pure rotations of the 

principal stress (Ishihara & Towhata, 1983; Symes et al., 1982, 1984, 1988; 

Miura et al., 1986; Pradel et al., 1990; Gutierrez et al., 1991, 1993; Gutierrez & 

Ishihara, 2000; Lade et al., 2009).  

Before the hollow cylinder apparatus was formally introduced by Hight et al. 

(1983), Symes et al. (1982) had firstly introduced their investigation on the 

effects of stress rotation and intermediate principal stress using this equipment. 

Drained tests were performed using Ham River sand with the constant effective 

confining stress of 600 kPa and back pressure of 400 kPa. The study was 
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divided into the monotonic loading tests (α = 45°, 67.5° and 90°, and b = 0.5), 

and the tests of continuous principal stress rotation (b = 0.5, q = 110 kPa, and α 

rotated from 0° towards 90°). In the results from the monotonic loading tests 

shown in Figure 2-5(a), they found that the degrees of the principal stress were 

smaller than degrees of the principal strain increment. In the pure rotational 

tests shown in Figure 2-5(b), the non-coaxial soil behavior was observed and 

the deviation between the directions of the principal stress and principal strain 

rate reduced as the principal stress rotated from 0° towards 90°. 

 

(a)  monotonic loading tests with α=45° and with α=67.5°. 
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(b)  pure rotation of principal stress with constant q of 110kPa 

Figure 2-5. Results of drained tests: (a) monotonic loading tests with α=45° 

and 67.5°; (b) pure rotation of α at constant q=110 kPa (Symes et al., 

1982). 

Then Symes et al. (1984) investigated the effects of the PSR as well as the 

anisotropy using the medium-loose Ham River sand again. They carried out a 

series of undrained tests using the hollow cylinder apparatus with the 

dimensions of 254 mm/203 mm/254 mm. Three tests with the fixed direction 

of the major principal stress α of 0°, 24.5° and 45°were performed in total. The 

mean normal pressure p and the value of b are maintained at 600 kPa and 0.5 

respectively, with gradually increased deviator pressure q until failure. When 

the direction of the major principal stress equals to 0° and coincides with the 

axis of the symmetry of the specimen, the directions of principal stress and 
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strain increment was coaxial. When α = 24.5° and α = 45°, directions of the 

principal stress and principal strain increment were not coaxial, as shown in 

Figure 2-6. It can be seen that the maximum degree of non-coaxiality reaches 

as much as 20 degrees, and this non-coaxiality reduces as the stress approaches 

the failure state. 

 

Figure 2-6. Directions of principal strain increment in tests with α = 24.5° 

and α = 45° for undrained tests (Symes et al., 1984). 

The authors also conducted another investigation focusing on the effects of the 

PSR using drained saturated medium-loose sand (Symes et al., 1988). The 

same stress paths from their previous work in 1984 were applied to the 

specimen. Similar to the results from undrained tests, the results in Figure 2-7 

also show the non-coaxiality between the directions of principal stresses and 

principal strain increments, and coaxiality was again observed when the 
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direction of major principal stress α = 0°. For test with α = 24.5°, the directions 

of principal stress and principal strain rate were coaxial at some point of the 

early stage. Generally, the degree of non-coaxiality still decreased with the 

increasing q for the other two tests, and the largest deviation was still obtained 

about 20° at the beginning of test with α = 45°. 

 

Figure 2-7. Principal strain increment directions in tests with α=24.5° and 

45° for drained tests (Symes et al., 1988). 

Researchers from Japan have also paid enormous efforts to investigate the PSR 

behavior of granular materials using the hollow cylinder apparatus for a long 

time. Early in 1983, Ishihara & Towhata published the experimental results of 

the sand response under the cyclic rotation of principal stress directions. A 

hollow cylindrical specimen prepared using Toyoura sand with dimensions of 
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60 mm×100 mm×104 mm was subjected to the cyclic torsion. The result of 

strain increment vectors imposed on the stress space is presented in Figure 2-8. 

It can be seen that directions of strain increments did not coincide with the 

directions of current principal stresses or the stress increments. The deviation 

was large at the beginning of the cyclic rotation and reduced in the last stage.  

 

Figure 2-8. Plot of strain increment vectors imposed on the stress space 

(Ishihara & Towhata, 1983). 

Miura et al. (1986) carried out a series of drained tests on dense Toyoura sand 

with an average relative density of 82% using the hollow cylinder apparatus to 

investigate the sand behavior under principal stress rotations. More general 

loadings involving the rotations of principal stress were applied to the 

specimens with the dimensions of 60 mm × 100 mm × 200 mm, prepared using 

the multiple sieving pluviation method.  
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The value of the effective confining pressure p’ and the intermediate principal 

stress ratio b remained constant at 98 kPa and 0.5 respectively throughout the 

tests. Two types of drained loading paths were applied to the specimen in total. 

The first one was the monotonic shear test called the F test (Figure 2-9(a)). 

Monotonic loadings were applied with a fixed major principal stress direction α 

at 0°, 15°, 30°, 45°, 60°, 75° and 90° respect to the bedding plane. The second 

type is the pure PSR path called R test (Figure 2-9(b)), in which principal 

stresses rotated clockwise without changes of amplitudes. The R tests were 

performed at two different stress ratios and the major principal stress started to 

rotate at different initial angles. In the R1 test, the stress ratio of (σ1-σ3)/(σ1+σ3) 

equals to 0.5 and started at an angle of 0°. In the R2 test, this stress ratio was 

held at 0.6 and started at an angle of 90°. Figure 2-10(a) plots the strain 

increment vectors from the F test. It can be seen that the directions of principal 

strain increment is slightly different from the directions of current principal 

stress. The maximum deviation of 7° was achieved towards the direction of 

α=45°. When the shear stress equals to 0 (F 0° and F 180°), the directions of 

principal strain increments coincide with the principal stresses, which agrees 

with the results from Symes et al. (1984). Figure 2-10(b) and Figure 2-10(c) 

presents the directions of strain increments of the R test. The non-coaxial 

behavior can be clearly seen in these figures, and the larger the strains, the 

smaller the deviation between principal stress directions and principal strain 

incremental directions. Miura et al. (1986) concluded that in the R test, the 

directions of strain increments were between the directions of major principal 

stresses and principal stress increments. 
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(a) Stress path of the monotonic loading (F tests) 

 

(b) Stress path of the pure principal stress rotational loading (R tests) 

Figure 2-9. Plot of the stress paths of F tests and R tests (Yang & Yu, 

2013). 
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(a) Strain increment vectors under the monotonic loadings 

  

(b) Strain increment vectors under the principal stress rotations (R1+0°) 
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(c) Strain increment vectors under the principal stress rotations (R2+180°) 

Figure 2-10. Plot of the non-coincidence between principal strain 

increment directions and principal stress directions (Miura et al., 1986). 

Pradel et al. (1990) used the improved hollow cylinder apparatus to investigate 

the plastic flow of granular materials. This apparatus allows the independent 

control of the axial force, torque, inner cell pressure and outer cell pressure. 

The specimens of dense Toyoura sand with a relative density of Dr = 70% were 

subjected to the shear stress path firstly, and then the cyclic loading and 

unloading were applied with the small stress increments. They concluded from 

the results that the directions of principal plastic strain increment were highly 

related to the stress increment. 
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After that, Gutierrez et al. (1991, 1993) carried out a series of work to study the 

soil behavior under the PSR. In 1991, a plastic potential theory was proposed 

by them according to the experimental results from the hollow cylinder tests, 

which established the dependency of the plastic strain increment direction on 

the stress increment direction. Therefore, in this theory, the plastic flow of sand 

was represented based on the directions of the stress increment. Gutierrez et al. 

(1991) also carried out another experimental study in the same year to examine 

the non-coaxiality between the directions of principal stress and principal 

plastic strain increment. Specimens with the geometry of 100 mm in outer 

diameter, 60 mm in inner diameter, and 104 mm in height were subjected to 

three different stress paths including the monotonic loading tests at different 

fixed principal stress directions, pure rotation of principal stress directions at 

constant mobilized angles of friction of Φ = 20, 25, 30, 35, 40 and 45°, and 

combined loading paths involving simultaneous increase in shear stress and 

rotation of principal stress direction. Figure 2-11 shows the plastic strain 

increment vectors of the sand during these three tests. Generally, non-coaxial 

behavior can be seen in results from all the tests. In the result from the 

monotonic loading test shown in Figure 2-11(a), the plastic strain increment 

directions were deviated from the radial stress paths especially at low shear 

stress level, and these deviations reduced and may be neglected as the 

specimen approached the failure surface. The result also shows that the plastic 

strain increment takes much larger proportion in the total strain increment than 

the elastic strain increment. Figures 2-11(b) and 2-11(c) show the experimental 

results from the pure rotation loading and the combined loading tests. 

Compared to the monotonic loading test, the deviations between the principal 

stress direction and the principal plastic strain increment direction were more 

significant. The degree of non-coaxiality of plastic principal strain increment 
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directions and principal stress directions also reduced at higher shear stress 

levels.   

Gutierrez et al. (1993) proposed an elastoplastic constitutive model to simulate 

the behavior of sand under the rotational shear on the basis of the experimental 

results from these three tests. Then, Gutierrez & Ishihara (2000) also published 

an analysis on the effects of non-coaxiality from the energy dissipation of sand 

according to the experimental results from the hollow cylindrical tests on sand 

conducted by Gutierrez et al. (1993). 

  

(a) Measured non-coaxiality in monotonic loading tests along different fixed 

principal stress directions. 
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(b) Measured non-coaxiality in pure principal stress rotation tests at different 

levels of mobilized friction angle. 

 

(c) Measured non-coaxiality in combined loading tests. 

Figure 2-11. Unit plastic strain increment vectors superimposed on the 

stress path for: (a) monotonic loading, (b) pure rotation and (c) combined 

loading (Gutierrez et al., 1991). 
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Recently, Lade et al. (2009) carried out a series of tests using the hollow 

cylinder apparatus on the Santa Monica Beach sand specimen with the 

geometry of 22 cm × 18 cm × 40/25 cm. The directions of the principal stress 

and the principal strain increment are plotted in Figure 2-12. Similarly, 

Non-coaxiality was observed and the directions of principal stresses and 

principal strain increments were coincident at the failure state.  

 

Figure 2-12. Comparison of directions of principal stress with directions of 

principal plastic strain increments at failure during rotation of principal 

stresses in torsion shear tests on Santa Monica Beach sand (Lade et al., 

2009). 

In conclusion, in these experimental tests including the simple shear test, 

directional shear test, hollow cylinder test, etc., various types of soil were 

subjected to the monotonic shearing at a fixed principal stress direction, the 
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pure principal stress rotation at constant deviatoric stress, or the combined 

loading paths. Researchers found that the deviation between the directions of 

principal stress and principal strain increment can be observed in the test 

results and this non-coaxiality decreases as the stress ratio increases and the 

specimen approaches the failure state. Moreover, the deviation between the 

principal stress direction and the principal strain incremental direction varies in 

the different tests and could be more than 30 degrees during the continuous 

rotation of the principal stress directions.  

2.2.3 Previous numerical studies on the PSR and non-coaxiality 

Apart from the experimental studies, researchers have been paying enormous 

efforts to numerically explore and model the non-coaxial and PSR behavior of 

soil. As the discrete element method (DEM) can be a useful tool to study the 

soil behavior, many investigations have been carried out using this method. For 

example, Thornton and Zhang (2006) investigated the shear banding and 

simple shear non-coaxial flow rules by a series of two dimensional numerical 

simulations. The simulation results of 5000 elastic spheres with seven different 

sizes using DEM are presented in Figure 2-13. They found from the results that 

the axis of principal stress and principal strain rate becomes coaxial as the 

specimens approaching the critical state, which agrees with the conclusion 

from Roscoe’s research (Roscoe, 1970). 
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Figure 2-13. Evolutions of the angle of non-coaxiality (Thornton & Zhang, 

2006). 

Li and Yu (2009) carried out a two dimensional DEM simulation to model the 

anisotropy effect and the non-coaxial behavior of the granular material under 

the monotonic loading at fixed strain incremental directions. In their 

simulations, a specimen was prepared using a controlled deposition method to 

investigate the initial anisotropy generated during specimen preparation. 

Another specimen made of two equal sized clumps was first deposited and 

prepared by preloading the initial anisotropic specimen in the vertical direction 

and then unloading it to an isotropic stress state. The specimens were then 

sheared in a number of fixed principal strain incremental directions varying 

from vertical (α = 90°) to horizontal (α = 0°) at 15° intervals. Figure 2-14 

presents the measured non-coaxiality of the directions of principal strain 
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increments and principal stresses versus the stress ratio for these two 

specimens. The experimental results of the first sample in Figure 2-14(a) show 

very limited deviations between the angles of principal stress directions and the 

principal strain increment directions. Because the greatest value observed was 

under 5°, the soil behavior could be approximately considered as coaxial in this 

case, which agrees well with the conclusions of Miura et al. (1986) and 

Gutierrez et al. (1991). In Figure 2-14(b), greater deviations between the 

directions of principal stress and principal strain increment were observed. This 

non-coaxiality was observed to be especially large when the loading direction 

was close to the normal direction of the preloading. However, the sand behaves 

almost coaxial when the reloading direction of major principal stress coincides 

with or perpendicular to the direction of previous loading. Moreover, this 

research also reveals that the deviation between directions of principal stress 

and principal strain increment reduces gradually as the shear strain and the 

stress ratio increases. 

 

 

(a)  Initially anisotropic specimen 
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(b)  Preloaded specimens 

Figure 2-14. Measured stress and strain increment directions for: (a) 

initially anisotropic specimens; (b) preloaded specimens (Li & Yu, 2009). 

Li and Yu (2009) also carried out an analysis of the microscopic information 

characterized by principal directions of contact normal and contact force in the 

same year to investigate the underlying mechanisms of non-coaxiality. The 

results in Figure 2-15(a) show that the principal directions of contact force 

were almost coaxial with the loading direction throughout the loading stage. 

The principal directions of contact normal are presented in Figure 2-15(b). It 

can be seen from the figure that the principal directions of contact normal were 

coaxial with the direction of deposition when the tests started. Then generally 

the principal directions of contact normal gradually rotated and finally they 

were more or less coincident with the loading direction at large strain states 

except for the case with the loading directions α = 0° and 90°. For the test with 

the loading direction perpendicular to the preloading direction (α = 0°), the 

direction of contact normal suddenly reached the coaxial state with the loading 

direction at the early stage of test. In the test with the loading direction parallel 
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to the pre-loading direction (α = 90°), there was no deviation between the 

principal direction of contact normal and loading direction throughout the test. 

Oda et al. (1985) observed similar behaviors from their experimental research 

on two-dimensional assemblies of photoelastic rods. Therefore, Li and Yu 

(2009) concluded that as principal directions of contact force is almost 

coincident with the loading directions, non-coaxiality is mainly induced by the 

deviations between the principal directions of contact normal and the loading 

directions. 

 

(a) Principal directions of contact force 
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(b) Principal directions of contact normal 

Figure 2-15. Principal directions of: (a) contact force and (b) contact 

normal (Li & Yu, 2009). 

Apart from the DEM method, the finite element method (FEM) is also an 

effective tool to explore the soil behavior and has been widely used in many 

numerical studies for the PSR. For instance, Sassa & Sekiguchi (2001) carried 

out a series of numerical simulations including the finite element analysis of 

centrifuge wave tank tests. Three sets of stress paths for individual elements 

were firstly simulated to validate a constitutive soil model considering the PSR 

effect. The stress path and predicted results of the second set of simulation are 

presented in Figure 2-16. It can be seen from the figure that the undrained 

rotation of the principal axis can lead to the reduction of mean effective stress. 

The results from the third simulation with the undrained rotational shear stress 

also demonstrate that the contractive soil behavior along with the development 
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of shear strain can be induced by the PSR (Figure 2-17). Then this model was 

implemented into the finite element analysis of boundary value problems under 

the progressive wave and the standing wave loadings. They proposed the 

definition of cyclic stress ratio χ0 =ҡu0/Ƴ’ to reflect the intensity of the wave 

loadings, where ҡ is the wave number, u0 is the amplitude of the fluid pressure 

fluctuation imposed on the soil surface and Ƴ’ is the saturated unit weight of 

soil. They found that a greater build-up of the excess pore pressure u can be 

observed under the progressive wave loading. Therefore, the soil bed was less 

resistant to the progressive wave than the standing wave due to the more 

significant PSR effect induced by the progressive wave (Figure 2-18). They 

also verified the value of critical cyclic stress ratio χcr. This value represents the 

critical intensity of wave loadings above which liquefaction will occur in the 

centrifuge model test. 

 

(a) 
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(b) 

Figure 2-16. The stress path of undrained cyclic rotation of principal stress 

axis (a) and the predicted decrease of the mean effective stress (b) from 

simulation 2 (Sassa & Sekiguchi, 2001). 

 

(a) 
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(b) 

Figure 2-17. Predicted soil responses for undrained rotational shear from 

simulation 3 (Sassa & Sekiguchi, 2001). 

 

Figure 2-18. Comparison of predicted and measured relationships of umax 

/σv0 to χ0 at shallow depth (Sassa & Sekiguchi, 2001). 
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In order to implement the elastoplastic constitutive models in the FEM, it is 

essential to integrate the non-linear stress-strain responses over a given strain 

increment, thus obtaining the stresses at the end of a known displacement 

increment. Therefore, an effective numerical integration scheme is required to 

ensure the convergency and the efficiency of the numerical computations. 

Generally, there are two types of integration algorithms (Neto, 2008). The 

explicit integration scheme has been widely used to integrate the nonlinear 

stress-strain relationships, while the implicit integration scheme has also 

becoming increasingly popular recently. An explicit Euler scheme modified by 

Abbo (1997) to incorporate several refinements is used in this research. The 

comparative studies between the explicit and implicit integration schemes from 

Abbo (1997) show that this modified explicit algorithm provides the desirable 

error control and automatic sub-stepping, thus ensuring the efficiency and 

robustness during the finite element computations. 

Numerical simulations of the non-coaxial and PSR behavior have also been 

attempted by the development of varies models with different theories. 

Non-coaxiality can be originally found in several pre-failure plasticity models 

for granular materials, such as hypoplastic models (Wang et al., 1990; 

Kolymbas, 1991) and multi-laminate models (Iai et al., 1992). Based on the 

conventional plasticity theory, Rudnicki and Rice (1975) also proposed the 

yield vertex theory to study the shear banding and strain localizations of 

granular materials. Besides the traditional plastic hardening modules 

simulating the stress increment orthogonal to the yield surface, they introduced 

a second hardening parameter to simulate the response of the stress increment 

directed tangentially to the yield surface (shown in Figure 2-19). Models 

developed based on the yield vertex theory shares a common feature that the 
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elastoplastic stiffness matrix is independent of stress increments, thus allowing 

the easy numerical implementations in the geotechnical problems. They 

concluded that the PSR and non-coaxiality plays an important role in shear 

band formations in sand. 

 

Figure 2-19. Schematic illustration of coaxial and non-coaxial plastic 

strain rates on a yield surface in deviatoric plane (Yang & Yu, 2006). 

Non-coaxiality has also been a feature of a number of kinematic plasticity 

theories for granular materials. In 1958, Jong proposed the earliest kinematic 

models for granular material flow with graphical methods. These flow rules 

were based on the assumption of shear flow occurring along two surfaces 

where the available shear resistance had been exhausted. Then, Spencer (1964) 

developed the double shearing model using the same concept of double sliding 

but different rotation term from the model of Jong (1958). Mandel and 

Fernandez (1970) proposed a similar model and conducted further analysis for 
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the double sliding model to investigate the non-coaxiality between principal 

stress directions and principal strain increment directions.  

In 1989, the formation of localized shear bands was simulated by using a 

non-coaxial cam-clay model developed by Yatomi et al. (1989). After that, 

several models were proposed based on the hypoplasticity theory (Wang et al., 

1990; Kolymbas, 1991; Tejchman, 2009). In 1993, Gutierrez et al. proposed an 

elastoplastic kinematic hardening model based on experimental studies. It can 

consider the rotational loading and the volumetric strain induced by the PSR, 

thus simulating the PSR behaviors under cyclic loadings and the liquefactions 

of undrained sands. Moreover, in their model, the plastic principal strain 

increment direction was defined based on the effects of fabric anisotropy on 

non-coaxiality. However, its numerical implementations can be more 

complicated because its elastoplastic stiffness matrix is a function of the stress 

increment, thus leading to the nonlinear relationship between the stresses and 

strain increments. 

Recently, more models were developed by researchers, such as the 

multi-mechanism model (Fang, 2003), extended platform model (Li &Dafalias, 

2004), double shearing models (Yu & Yuan, 2005), microplane model (Chang 

&Sture, 2006), and so on. Nottingham Centre of Geomechanics (NCG) has 

also produced valuable work focusing on the PSR and non-coaxiality of 

granular materials. For example, Yu et al. (2005) and Yang and Yu (2006) 

employed the yield vertex non-coaxial theory by Rudnicki and Rice (1975) to 

explore the influences of the non-coaxial soil models on the stress-strain 

responses of soils. In their studies, the non-coaxial models was numerically 

integrated and implemented into the finite element software ABAQUS to 
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simulate the behaviors of shallow foundations under various initial conditions 

and loading conditions. Results from these simulations indicated that the 

coaxial models usually underestimate the soil deformations compared to the 

non-coaxial models when the soil is subjected to the PSR. Therefore, they 

argued that ignoring the PSR effects will under-predict deformations of the 

geotechnical structures for a given applied load, thus leading to an unsafe 

design in practice. 

In 2013, Yang & Yu carried out a series of numerical simulations to explore the 

impact of PSR by using an elastoplastic model considering the PSR effect 

developed based on a kinematic hardening model with bounding surface 

concept. It includes the features of critical state concept, phase transformation 

line, back stress ratio and state parameter. This new model (PSR model) is also 

adopted in this research to investigate soil behaviors under the PSR and will be 

introduced in detail in Chapter 4. The basic concepts employed in this model 

are introduced here. 

Critical state soil mechanics (Schofield & Wroth, 1968; Wood, 1990) provides 

the basic theoretical framework for this model. When the stress ratio q/p equals 

the critical state stress ratio M=qc/pc, and simultaneously the void ratio e equals 

the critical void ratio ec, the soil is considered to deform continuously in shear 

with zero volumetric strain rate. The linear relationship between ec and ln pc is 

commonly used but in this research, the relation proposed by Li & Wang (1998) 

is adopted as follows: 

ec = e0 – λc(pc/pat)                        (2.1) 

where e0 is the void ratio when pc=0 , λc and  are constants. Then, the state 
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parameter Ψ=e-ec from Been & Jefferies (1985) is introduced to represent 

sands in different densities with one set of model constants. This model also 

adopts the phase transformation line to define the state when the soil transform 

from the contractive behavior to dilatant behavior (Ishihara et al., 1975). This 

concept is also known as the dilatancy stress ratio. 

They firstly simulated stress-strain responses in the experimental drained tests 

of Toyoura sand under several typical loading conditions (Miura et al., 1986; 

Gutierrez et al., 1991). Stress paths of the F test and R test have been 

introduced in the last section. Figure 2-20 compares the test results and 

predicted results for the F tests. These simulations are intended to fit the 

average of the experimental results along different loading directions because 

the modified PSR model does not include the role of fabric change. It can be 

seen that the predicted results generally agree well with the test results and 

these monotonic loading tests are also simulated to calibrate the model 

parameters. 

 

(a) Relationships between the stress ratio and the shear strain 
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(b) Relationships between the volumetric strain and the stress ratio 

Figure 2-20. Comparisons between the test results and model predictions 

of the monotonic loadings in Miura et al. (1986) for Toyoura sand (F 

denotes the angle of loading) (Yang & Yu, 2013). 

Figure 2-21 and 2-22 show the evolutions of different strain components with 

rotational angles of principal stress from experimental results and numerical 

predictions for the PSR path R1 and R2. Figure 2-21 shows the reasonably 

good agreement between the test results and predictions from the original base 

model in the PSR path R1, except for the radial strain. However, in Figure 2-22, 

the discrepancy between the predicted and measured results from the original 

base model is much larger in R2 than in R1 especially for the shear strain and 

volumetric strain. The predicted results from the modified PSR model in these 

two figures indicate that the modified PSR model performed overall better than 

the original predictions, especially for the shear and volumetric strains. 
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(a) Axial strain, circumferential strain and radial strain 

 

(b) Shear strain and volumetric strain. 

Figure 2-21. Test results and predictions of PSR loadings R1 in Miura et al 

(1986) with the original base model and the PSR model (eps-a: axial strain; 

eps-t: circumferential strain; eps-r: radial strain; eps-at: shear strain; 

eps-v: volumetric strain) (Yang & Yu, 2013). 
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(a) Axial strain, circumferential strain and radial strain 

 

(b) Shear strain and volumetric strain. 

Figure 2-22. Test results and predictions of PSR loadings R2 in Miura et al 

(1986) and the volumetric strain for the additional stress ratio (0.65) with 

the original base model and the PSR model (eps-a: axial strain; eps-t: 

circumferential strain; eps-r: radial strain; eps-at: shear strain; eps-v: 

volumetric strain) (Yang & Yu, 2013). 



45 

 

The authors also numerically studied the model performances with two PSRs 

along different directions by simulating the tests by Miura et al. (1986). In this 

test, σx was increased to 196 kPa under the drained condition with the initial 

isotropic confining pressure of 98 kPa. The major cyclic shear stress τxy of the 

constant value of 10 kPa was then applied under undrained conditions. After 

one quarter of a cycle later than τxy, τxz was applied with three different 

amplitudes of 0, 5 and 10 kPa, giving the ratio of shear amplitudes of 1:0, 2:1, 

1:1, respectively. The predicted results of pore water pressures and axial strains 

from the modified PSR model and original model are shown in Figure 2-23. It 

can be seen from the figure that the modified PSR model generated much 

higher pore water pressures than the original model and resulted in the sudden 

increase of strains. Therefore, the liquefaction took place in all the cases by 

using the modified PSR model while the liquefaction didn’t occur in the 

predictions by using the original model. This agrees with the observations 

before that the original model predicts a smaller plastic volumetric contraction 

(or even volumetric expansion) at a higher stress ratio under the PSR. They 

finally concluded that the PSR plays an important role in the soil behaviors and 

this PSR model is capable to reproduce the PSR induced soil behaviors. 

Furthermore, this simulation also reveals that multiple PSRs make soil reach 

liquefaction faster than one PSR. 
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(a) Predicted results of pore water pressures 

 

(b) Predicted results of axial strains 

Figure 2-23. Predicted pore water pressure and axial strain with different 

ratios of shear amplitudes in two PSRs from the original base model and 

PSR model (Yang & Yu, 2013). 
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2.3 Experimental Tests and Problems Investigated in 

this Research 

2.3.1 Experimental tests for single element simulations 

Before the finite element simulations, the modified PSR model is first 

implemented into the single element simulations of 3 sets of experimental tests 

by using a single element computer program. The experimental tests simulated 

are introduced here. 

Firstly, a series of monotonic loading tests with different loading directions (α 

= 0
o
 to 90

o
) and drained pure rotational shear tests with different stress ratios 

(Yang, 2013) are simulated. These tests were conducted in NCG at the 

University of Nottingham using the hollow cylinder test apparatus with 

Leighton Buzzard Sand (Fraction B). Details of the material and these tests can 

be found in Yang (2013).The stress paths of these test are illustrated in Figure 

2-24 and Figure 2-25 in the space of σ13 and σ1-σ3 (PSR space) because the 

pure rotation of principal stress can be presented clearly in this space. 
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Figure 2-24. Stress paths of monotonic loading in the PSR space (Yang, 

2013). 

 

Figure 2-25. Stress paths of pure rotational loading in the PSR space (Yang, 

2013). 
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Figure 2-26. Actual stress paths of pure rotational loading with different 

stress ratios in the PSR space (Yang, 2013). 

In these tests, specimens were firstly consolidated isotropically to an effective 

mean pressure p’ of 200 kPa. Then, the effective mean stress p’ and the 

intermediate principal stress parameter b were maintained at 200 kPa and 0.5, 

respectively. In drained pure rotational tests, the major principal stress direction 

was rotated at a slow rate of 2 degree/min to ensure the full drainage.  

Secondly, a series of drained triaxial tests using loose Leighton Buzzard sand 

(Fraction E) from Visone (2008) are simulated. After the isotropic 

compressions, the tests were conducted by increasing or decreasing the axial 

stress with constant effective confining stress p’ of 100 kPa and 200 kPa. 

Thirdly, a series of triaxial, tosional and rotational tests for Nevada sand from 

Chen & Kutter (2009) are simulated. The stress paths of the undrained tosional 

and rotational tests are illustrated in Figure 2-27. 
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(a) Torsional shear tests 

     

√𝐽2d = √
(𝜎z − 𝜎𝜃)2 + 3𝜎𝑧𝜃

2

3
= constant 

(b) Rotational shear tests 

Figure 2-27. Stress paths of undrained torsional shear tests (a) and 

undrained rotational shear tests (b) (Chen & Kutter, 2009). 
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The triaxial tests began with the isotropic initial condition. The mean confining 

pressure p was held constant during the shearing step of all the triaxial and 

hollow cylinder tests. In the undrained torsional shear tests, the axial loading 

was applied on the isotropically consolidated sample until K = σθ/σz  reached 

the desired value. The specimen was then subject to the cyclic shear stress. In 

the undrained rotational shear tests, the axial loading was also applied to the 

isotropically consolidated specimen before the rotational stress path in Figure 

2-27 was performed. 

2.3.2 The background and previous research works on 

wave-seabed interactions 

Study of wave-seabed interaction is essential to offshore developments. There 

are a few characteristics on loading conditions on seabed soil, and one of them 

is that the soil is subjected to considerable PSR. In 1983, Ishihara & Towhata 

first proposed that the PSR can generate plastic deformations and the 

non-coaxiality even without a change of principal stress magnitudes. 

Continuous PSR can also generate excess pore water and cumulative shear 

strain in undrained condition. Similar phenomenon is also found by Ishihara & 

Yamazaki (1984), Bhatia et al. (1985), Miura et al. (1986), Gutierrez et al. 

(1991), etc. Therefore, the PSR induced by the wave loading can accelerate 

undrained soil liquefaction because it can cause cumulative plastic volumetric 

deformations. Due to the significance of the PSR in seabed soil, numerous 

experimental studies have been carried out. For instance, Nago & Maeno (1987) 

and Zen et al. (1990) investigated the behavior of cohesionless sediments 

subjected to oscillatory pore pressure with large scale model in 1g condition. 

Sassa & Sekiguchi (1999) also carried out a series of centrifuge wave tests on 
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seabed with fine-grained sand. They found that in the tests, the soil behaviors 

are largely affected by the PSR under the progressive wave loading. They also 

proposed the concept of critical cyclic stress ratio χcr, below which the 

liquefaction will not occur. 

Although researchers have recognized the importance of the PSR in seabed soil 

and conducted extensive experimental studies, there are few considerations of 

the PSR impact on numerical simulations of wave-seabed soil interactions. 

Only a few studies can be found in Dunn et al. (2006), Li & Jeng (2008). One 

of the best known researches in this topic was the finite element simulation 

conducted by Sassa & Sekiguchi (2001). They presented a cyclic plasticity 

constitutive model and implemented it to the finite element analysis of seabed 

liquefactions under both the progressive and standing waves. They compared 

the simulation results with the experimental data and found that the sand bed is 

less resistant to the liquefaction under progressive waves than standing waves 

due to the PSR impact. However, Jeng (2013) claims that Sassa’s model has 

several limitations in the simulation of this kind of problem, such as the lack of 

consideration of viscosity and the assumption of infinite bed. One of them is 

that the simulation results from this cyclic plasticity model seem to be very 

sensitive to the model parameters, which restricts its application. Therefore, the 

significance of the PSR impact in numerical simulations of wave-seabed 

interactions will be examined by the numerical simulation of the centrifuge 

wave tank tests carried by Sassa & Sekiguchi (1999) using the modified PSR 

soil model, which can take into account the PSR effect.  
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2.3.3 The background and previous research works on 

earthquake-induced liquefactions 

The soil behavior under the earthquake loading is a major research area in both 

numerical simulations and experimental tests in the field of geotechnical 

engineering. The loading conditions under earthquakes are quiet diverse and 

complex, but they share a common characteristic that the soil is subjected to 

considerable PSR. Continuous PSR induced by earthquake loadings can 

generate excess pore water pressure and cumulative shear strain in undrained 

condition, thus accelerating soil liquefaction. Ignoring PSR induced 

deformation may lead to unsafe earthquake design. 

Numerous researches have been carried out to investigate the soil behavior 

under earthquake loadings. One of the most famous researches is the VELACS 

project (Verification of Liquefaction Analysis using Centrifuge Studies). It 

includes a variety of centrifuge tests and the corresponding numerical 

simulations among several universities in America (Arulanandan & Scott, 

1993). However, in 1995, Arulanandan & Manzari claimed that the predicted 

results from these numerical simulations have great variations and errors which 

may be due to different soil models used by different researchers. They also 

stated that the predicted results were largely affected by the computer code and 

it seems that the program with fully coupled governing equations performs the 

best among all the results. Although several researchers have implemented 

their soil models into these numerical simulations subsequently 

(Andrianopoulos et al., 2010; Sadeghian & Namin, 2013; Pak et al., 2014), 

there are few of them considering the PSR effect. Therefore, this research aims 

to take into account the impacts of PSR in numerical simulations of the 
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centrifuge earthquake  tests — model No. 3 from the VELACS project — by 

using the modified PSR model and a fully coupled finite element program 

DYSAC2 (Muraleetharan et al., 1994). 

2.4 Soil Behaviors of Liquefaction  

2.4.1 Introduction 

Last 20 years have witnessed the rapid development of marine structures, such 

as wind turbines, oil platforms, etc. The seabed foundations of these structures 

are vulnerable to the liquefaction due to excess pore water pressure (Ye et al., 

2014). Several marine structure failures have been reported during these years, 

such as the quay wall failures in Turkey in 1999 and the port failures in Japan 

in 2003 (Sumer et al., 2007). Most of the structure collapses were resulted from 

the liquefaction of the seabed foundations, which can be induced from wave 

loadings and earthquake loadings. Liquefactions may occur in a short duration 

but cause catastrophic failures, financial losses, and deaths. Therefore, the 

study of the liquefaction behavior is important to the offshore foundation 

designs. 

Soil liquefaction happens when the fluid saturated soil reduces its strength and 

stiffness to essentially zero under either monotonic or dynamic loadings and 

behaves like fluid. The reduction of effective stress under dynamic loadings 

can also lead to cyclic mobility, in which the soil will dilate and regain its 

strength as the shear strain increases. In this case the dynamic loadings can 

cause cumulative build-up of pore pressure and shear strains. These behaviors 

come from the mutual interaction of the soil components, particularly the soil 
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skeleton composed of grains and the pore fluid. When the soil is subjected to 

the dynamic loadings, the soil particles tend to rearrange to reach their optimal 

potential state in a dense manner, thereby leading to the compaction of the soil 

and the build-up of pore pressure, which consequently reduces the frictional 

forces between the soil particles and the bearing capacity of the whole seabed 

(Ehlers et al., 2013). Furthermore, the liquefaction mechanism consists of two 

types:  transient liquefaction and residual liquefaction, and both of them have 

been observed in laboratory and field tests. Transient liquefaction is caused by 

the phase lag of the wave-induced pore pressure and can only occur in the 

elastic seabed. Residual liquefaction, which is the main risk for the marine 

structure failures, can only occur in the elastoplastic seabed due to the build-up 

of pore pressure caused by the densification of soil under cyclic loadings (Ye et 

al., 2014). This research deals with the residual liquefaction caused by both the 

wave and earthquake loadings in an elastoplastic seabed as few investigations 

have addressed the residual liquefaction before. 

However, liquefaction is difficult to investigate although it is important in the 

offshore foundation design. The laboratory tests such as the triaxial test, simple 

shear test, even the hollow cylinder test cannot properly simulate the loading 

paths causing liquefaction. The in-situ measurements are not practical while 

the centrifuge tests are expensive (Jefferies & Shuttle, 2011). Therefore, the 

numerical simulation has the potential to be the suitable method to investigate 

the liquefaction behavior and is utilized in this research. 
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2.4.2 Liquefaction criteria in the research 

Identification of the occurrence of liquefaction is crucial to investigate this soil 

behavior. Basically, the liquefaction of the soil specimen in this research is 

judged by the criterion proposed by Sassa & Sekiguchi (1999). The definition 

and the theoretical reason for the liquefaction criterion are briefly introduced 

below. 

 

Figure 2-28. Definitions of the pore water pressure components (Sassa & 

Sekiguchi, 1999). 

Figure 2-28 shows the fluid wave trains passing a soil bed and this passage of 

fluid waves can cause pressure oscillations at the fluid-soil interface. Therefore, 

the pore pressure u at a generic point of the soil bed will vary with the time due 
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to the wave-induced pressure fluctuation and u can be obtained from the 

equation that 

u = ue + us                       (2.2) 

where ue represents the wave-induced excess pore pressure at time t at a 

generic point and us stands for the hydrostatic pressure. Assume the excess 

pore water pressure is divided into two parts: 

ue = ue
1 

+ ue
2
                       (2.3) 

where ue
1
 is the oscillatory part and ue

2
 is the residual pore water pressure, 

which is determined by taking the average of the moving wave ue and stems 

from the contraction of the soil under cyclic plasticity. The average of ue
1
 over 

any wave cycle is defined to be zero. Unless specified, all pore water pressure 

presented in this thesis is the excess pore water pressure hereinafter.  

Then let σv denote the vertical effective stress at a given location. Liquefaction 

is considered to take place at a location that when the measured ue
2
 reaches the 

value of the initial vertical effective stress σv0’ because it follows that  

σv’ = σv0’ + (dσv – ue) 

= σv0’ + (dσv – ue
1
 - ue

2
)              (2.4) 

where dσv is the total vertical stress change induced by the wave at the same 

location. The occurrence of liquefaction is defined as the state where σv’ = 0. 

Meanwhile, the horizontal effective stress σh’ is also assumed to be zero. 

Because the time averages of dσv and ue
1
 over any wave cycle is considered to 
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be zero, from the mathematic manipulation it follows that when the 

liquefaction state is reached, 

ue
2
 = σv0’                         (2.5) 

Therefore, in theory, the liquefaction is considered to take place when the 

measured residual pore water pressure ue
2
 has reached the value of the initial 

vertical effective stress σv0’ at a certain location.  

However, the previous laboratory observations and numerical simulations for 

sand show that when the liquefaction occurs, ue
2
 usually does not reach the 

value of σv0’. For example, U.C. Berkeley performed several laboratory tests 

and found that liquefaction could still occur even when the residual pore water 

pressure is less than the downward initial vertical effective stress (Wu et al., 

2003). Furthermore, in most of the numerical computations or the laboratory 

tests, sandy soil is a non-cohesive material and cannot withstand any tensile 

stress. So let k denote the liquefaction coefficient and equation 2.5 becomes 

ue
2
= k * σv0’                       (2.6) 

where the value of k may vary from 0.78 - 0.99 depending on the soil 

characteristics (Wu et al., 2004). Therefore, the occurrence of liquefaction is 

judged by comparing the value of the residual pore water pressure ue
2
 and the 

initial effective vertical stress σv0’ in this research. Moreover, liquefaction is 

also proved by some other criteria such as the reduction of effective confining 

pressure p’ and the dramatic increase of the shear strain, which also indicates 

the lower shear stiffness, and that the soil becomes less resistant to the shear 

stress. Although the liquefaction coefficient k would be different in different 
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cases, in this research, liquefaction is considered to occur when k is equal to or 

larger than 0.9 or a dramatic increase of the shear strain (more than doubled) is 

observed. 

2.5 Summary 

This chapter has introduced the soil behaviors of the PSR and the 

non-coaxiality, and then has reviewed the previous experimental as well as the 

numerical investigations about this topic. The corresponding experimental 

evidences, numerical findings and the soil models used have been listed. The 

soil liquefaction and the liquefaction criteria used in this research have also 

been given. 

Results from numerous experimental tests indicate that the non-coaxial 

behavior is often caused in the soil samples under various loading conditions 

including the PSR. The deviation between the directions of the principal stress 

and the principal strain increment can be observed especially during the early 

stage of the shearing. Then this non-coaxiality tends to reduce as the soil 

specimen approaches the critical state. Moreover, the difference between the 

principal stress direction and the principal strain incremental direction could be 

found more than 30 degrees during the continuous rotation of the principal 

stress directions. 

Researchers have also paid great efforts to explore the PSR impact and 

non-coaxial behaviors by numerical methods. A variety of soil models 

associated with different theories have also been proposed during last decades. 

The simulation results also show that the non-coaxiality can be induced by the 

loading conditions with the PSR. Generally, the authors concluded that this 
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PSR can lead to the plastic deformations in the soil and it is essential to take 

account of the PSR behavior in geotechnical engineering simulations and 

designs.  

The soil liquefaction has also been reviewed in this chapter because the 

foundations of the geotechnical structures are vulnerable to this phenomenon 

due to the excess pore water pressure. It may occur in a short time but cause 

catastrophic failures, financial losses, and deaths, hence is very important in the 

offshore foundation design. The liquefaction can be induced usually from the 

dynamic loadings such as wave loadings and earthquake loadings, which will 

be investigated in the following simulations. To judge the occurrence of the 

liquefaction, the criterion proposed by Sassa & Sekiguchi (1999) as well as 

other factors such as the effective confining pressure and the shear strain will 

be used in this research. 
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Chapter 3 Methodology 

 

3.1 Introduction 

The PSR behavior will be investigated in the single element simulations and 

the finite element simulations of a series of experimental tests. This chapter 

introduces the soils, simulation procedures and the numerical tools involved in 

both the single element and finite element simulations. The properties of the 

three types of sand used in this research are introduced firstly, followed by a 

brief introduction of the single element simulations as well as the Fortran 

computer program used. Then this chapter describes the finite element 

simulations of boundary value problems. This section consists of an 

introduction of the finite element method, the commercial software — 

ABAQUS — used in the wave-seabed simulations and the DYSAC2 computer 

program used in the earthquake simulations. In order to apply the original 

model and modified PSR into the finite element simulations, it is essential to 

write the constitutive model subroutine with the numerical integration scheme. 

The subroutine representing the constitutive models written in Fortran and the 

explicit integration scheme adopted are introduced in this section as well. 

Finally, a summary is presented in the last section. 
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3.2 Soil Used in the Research 

3.2.1 Introduction 

In this research, the newly developed PSR model is adopted to simulate a series 

of experimental tests, in which three types of sand are used. Leighton Buzzard 

sand (Fraction B) is used in the simulations of hollow cylinder tests from Yang 

(2013) while Leighton Buzzard sand (Fraction E) is used in the simulations of 

the experimental tests from Visone (2008), as well as the centrifuge wave tests. 

Nevada sand No. 120 is used in the simulations of triaxial, tosional and 

rotational tests from Chen & Kutter (2009) and the centrifuge tests under the 

earthquake loading. These three types of sand are widely used in both the 

numerical and experimental investigations, therefore providing comparable 

data for this research (Arulmoli et al., 1992; Arulanandan, 1995; Sassa & 

Sekeguchi, 1999; 2001; Jeng, 2013; Sadeghian & Namin, 2013). 

3.2.2 Soil properties 

Leighton Buzzard sand is quarried in and around Bedfordshire, Leighton 

Buzzard in the east of England. It consists of sub-rounded particles and 

contains mainly quartz (Yang, 2013). The index properties of Leighton Buzzard 

sand (Fraction B & E) are listed in Table 3-1. Nevada No. 120 sand is uniform 

fine sand and its index properties are also summarized in Table 3-1 (Chen & 

Kutter, 2009). 
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Table 3-1. Physical properties of Leighton Buzzard sand and Nevada sand 

(Chen & Kutter, 2009; Yang, 2013; Sassa & Sekiguchi, 1999). 

Property 

Leighton 

Buzzard sand 

(fraction B) 

Leighton 

Buzzard sand 

(fraction E) 

Nevada 

sand 

Mean grain size D50: mm 0.62 0.15 0.17 

Uniformity coefficient Cu: D60/ 

D10 
1.56 1.58 2.0 

Specific gravity Gs 2.65 2.65 2.67 

Minimum void ratio emin 0.52 0.64 0.511 

Maximum void ratio emax 0.79 1.07 0.887 

 

3.3 Single Element Simulations 

3.3.1 Introduction 

To assess the ability of the modified PSR model in simulating the soil 

behaviors, particularly the PSR behavior, a series of laboratory tests are 

simulated by a single element computer program. Firstly, a series of monotonic 

loading tests with different loading directions (α = 0
o
 to 90

o
) and drained pure 

rotational shear tests with different stress ratios (Yang, 2013) are simulated. 
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Leighton Buzzard sand (Fraction B) is used in these tests. Then, the triaxial 

tests with constant effective confining stress p’ from Visone (2008) are 

simulated with Leighton Buzzard sand (Fraction E). Finally, a series of triaxial, 

tosional and rotational tests for Nevada sand from Chen and Kutter (2009) are 

simulated. Furthermore, as the centrifuge wave tests and the centrifuge 

earthquake tests in the following chapters use the Leighton Buzzard sand 

(Fraction E) and Nevada sand respectively, the corresponding single element 

simulations for these two types of sand are also carried out to calibrate the 

model parameters which will be used in the following finite element 

simulations for the centrifuge tests under the wave and earthquake loadings. 

The comparison will be made between the predicted results from original 

model, the modified PSR model, and the experimental results. 

3.3.2 The Fortran program 

All the single element simulations are carried out with a computer program 

which applies to the single element stress-strain response analysis for the 

original model and the modified PSR model. This program is written in Fortran 

language, which is briefly introduced below. 

Fortran is the first advanced computer programming language in the world. 

Although it has been used for more than 40 years, it is still very popular 

because of its similarity to the natural language, e.g. English, and math 

expressions. It always plays the important role in the computer programming, 

especially in scientific and engineering computation, thus suitable for the 

geotechnical project (Griffiths & Smith, 2003). 

As the computer technology is developing rapidly, WINDOWS has gradually 
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replaced the DOS to become the new operating system. Therefore, Fortran77 

and Intel Visual Fortran compiler, which is an application based on 

WINDOWS, are mainly utilized in this research. 

3.4 Finite Element Simulations of Boundary Value 

Problems 

3.4.1 Introduction and the finite element method 

After the single element numerical simulations, two geotechnical boundary 

value problems—the experimental centrifuge wave test from Sassa & 

Sekiguchi (1999) and the centrifuge earthquake test No. 3 from the VELACS 

project (Verification of Liquefaction Analysis using Centrifuge Studies) 

(Arulanandan & Scott, 1993)—are simulated to further examine the 

performance of the modified PSR model. In these two simulations, the two 

models are implemented into two computer software using the finite element 

method which is introduced as follows. The predicted results by using the soil 

models with and without considering the PSR impact will be compared in these 

simulations as well. 

Finite element method is one of the most widely used numerical methods in 

scientific researches and engineering analysis today. Because of its versatility 

and effectiveness, it attracts great attention in the engineering field. With the 

rapid development of computer science and technology, it has become an 

important part of computer aided engineering and numerical simulation 

(Griffiths & Smith, 2003). 
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The essence of finite element method lies in the following three aspects (Bathe, 

1996): 

 Split the computational domain representing a structure or a continuum 

into several elements, and connect them through the nodes in their borders. 

 Represent the unknown field variables in the whole solution domain with 

the approximate function assumed in each element. The approximate 

functions in every element are then expressed by the values of the 

unknown field functions on each node and its corresponding interpolation 

function within the element, thus converting the original problem of 

solving the unknown field function with infinite degrees of freedom into a 

problem of solving the values of field functions on each node, which is a 

problem of limited degrees of freedom. 

 Establish the algebraic equations or ordinary differential equations for 

solving basic unknown variables through the equivalent variational 

principle or weighted residual method to the mathematical model from the 

original problem. These equations are called finite element equations, and 

are expressed in the form of matrix. Then the solution of the problem can 

be obtained by solving these equations using numerical methods. 

Due to the factors above, the finite element method has the following features: 

 Adaptability for complex geometric configuration 

 Applicability in various physical problems 

 Reliability due to the establishment based on the strict theory  
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 Efficiency and suitability in computer calculation  

3.4.2 ABAQUS in wave-seabed interactions  

To investigate the soil behaviors under the wave loadings, the centrifuge wave 

tests from Sassa & Sekiguchi (1999) are simulated using the commercial finite 

element software – ABAQUS. 

ABAQUS is one of the most powerful large scale finite element software in the 

world. It can be applied into a variety of projects, from simple linear elastic 

problems to complex nonlinear problems. Meanwhile, its effectiveness in the 

application of both engineering and science research is well verified. ABAQUS 

contains abundant element and material library, practical soil constitutive 

models, powerful interface module to simulate the soil and structure interaction, 

it can also calculate effective stress and pore pressure, model the filling or 

excavation, flexibly and accurately establish the initial stress state, thus has the 

a strong applicability in geotechnical engineering problems (Simulia, 2010). 

Furthermore, it has various interfaces of subroutine such as the UMAT, thus 

providing a platform for secondary development. Applying the user defined 

material subroutine written in Fortran into ABAQUS, constitutive models 

developed by researchers can be utilized in the finite element modeling. 

Therefore, in this research, the original model and the modified PSR model are 

incorporated into ABAQUS by the UMAT subroutine to simulate the 

wave-seabed interactions. 

In ABAQUS, Newton’s method or quasi-Newton’s algorithm are used to solve 

the non-linear equilibrium equations. ABAQUS adopts the exact Newton’s 
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method when the user defined material subroutine is used. During the iteration 

for solving the non-linear equations, several parameters are used to control the 

error. For example, Rαn is the ratio of the largest residual force to the 

corresponding average force, and Cαn is the ratio of the largest displacement 

correction to the largest corresponding incremental displacement. The default 

force residual tolerance Rαn is 0.5% of the average force, while the default 

displacement correction tolerance Cαn is 1% of the incremental displacement. 

The error tolerances Rαn and Cαn can be modified larger than the default values 

by users to solve the non-linear problems difficult to converge (Yang & Yu, 

2006).  

To solve non-linear problems effectively, the size of the time increments is 

automatically adjusted in ABAQUS. If two consecutive increments take fewer 

than five iterations to achieve a converged solution, the solution is considered 

to be found relatively easily. In this case, ABAQUS automatically increases the 

size of the time increment by 50%. Conversely, for highly non-linear problems 

in which the converged solution is hard to obtained, ABAQUS will have to 

reduce the size of increment repeatedly. If the solution has not converged in 

fewer than 16 iterations or the solution appears to diverge, the current 

increment size will be abandoned by ABAQUS and the increment size is reset 

to the 25% of its previous value to start the iteration again. This process is 

repeated until the solution is converged. However, ABAQUS stops the analysis 

and reports the error massages if more than five attempts are required in 

reducing the time increment or the increment size becomes smaller than the 

minimum defined (Yang & Yu, 2010). 
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3.4.3 DYSAC2 program in earthquake-induced liquefactions 

The soil characteristics including the PSR behavior are further investigated in 

the simulation of Model No. 3 from the VELACS centrifuge tests 

(Arulanandan & Scott, 1993). In this simulation, a finite element computer 

program DYSAC2 that can analyze the two dimensional dynamic geotechnical 

problems under plane strain conditions is utilized. 

DYSAC2 was originally developed at University of California, Davis in 1988. 

During past years researchers have made several enhancements to DYSAC2 

and presently it can solve the fully coupled dynamic governing equations of a 

two-phase saturated porous media (Muraleetharan et al., 1988). This program 

utilizes the four-node elements with reduced integration and the fluid bulk 

modulus terms. Each node has four variables of two soil skeletons and two 

fluid displacements. Both the vertical and horizontal base motions can be 

applied to the geotechnical structure. The spatially discrete governing 

equations of DYSAC2 are introduced as follows and details of formulations are 

available in Muraleethatan (1990) and Muraleetharan et al. (1994).  

The equation for the mixed grain-fluid motion is given as: 

σ + ρg – (1 – ƞ) ρsu –ƞρf (u + w/ƞ)=0          (3.1) 

The equation for the pore fluid motion is given by: 

w = – k [h –ρg +ρ (u+w/ƞ)]                (3.2) 

The equation from the conservation of mass for the grain-fluid system can be 

written as: 
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ε = – w – [ƞ/Kf + (1– ƞ)/Ks]h + (1– ƞ)δσ / 3Ks           (3.3) 

The combined bulk modulus Г of the solid grains and pore fluid can be defined 

as: 

1/Г = ƞ/Kf + (1–ƞ)/Ks                             (3.4) 

The bulk modulus Kf is of the order of 10
5
 – 10

6
 kPa, while the bulk modulus 

Ks is of the order of 10
10 

– 10
20

 kPa. Therefore, the last term of equation (3.3) 

can be neglected relative to other terms. With equation (3.4), equation (3.3) can 

be rewritten as: 

ε = – w – h/Г                      (3.5) 

The effective stress for the soil is defined as: 

σ = σ’ – hδ                       (3.6) 

The stress-strain relationship is given as: 

dσ = D dε +dσ0                                (3.7) 

The boundary conditions in this analysis indicates that at every point along the 

boundary of the soil mass, 

T = σn                          (3.8) 

With the spatial discretization and mathematical formulations of these 

equations and substituting w with the relationship U = u + w/ ƞ, the spatially 

discrete governing equations can be rewritten in matrix form as: 
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Ma + Cv + Kpd + p = f                  (3.9) 

where a, v and d are the vector of nodal accelerations, nodal velocities and 

nodal displacements respectively. The coefficient matrices M, C and Kp are 

mass matrix, damping matrix and pore fluid stiffness matrix, while p is the 

internal force load vector and f is the applied force load vector. 

This program adopts a three parameter time integration scheme called the 

Hilber-Hughes-Taylor α method to integrate the spatially discrete finite 

element equations. Moreover, a predictor/multi-connector algorithm is also 

used to provide the quadratic accuracy and numerical damping characteristics 

(Hilber et al., 1977). The applicability of DYSAC2 has been demonstrated by 

numerous published examples, such as Muraleetharan and Arulanandan (1991), 

Arulanandan and Manzari (1992), Muraleetharan (1993), Muraleetharan et al. 

(1994; 1995), Arulanandan et al. (1997), etc. It has also been successful utilized 

in the design of Port of Los Angeles’ Pier 400 together with other design 

methods (Wittkop, 1993; Muraleetharan et al., 1997). 

The original DYSAC2 has only two constitutive models based on the bounding 

surface plasticity theory. To implement the modified PSR model into the 

analysis, the computer code needs to be rewritten. Fortunately, DYSAC2 is 

written in Fortran 77 with carefully selected variable names reflecting the 

quantities they represents and is quite modular, thus facilitating the 

incorporation of the modified PSR model as well as the VELACS centrifuge 

earthquake test. Moreover, a finite element mesh generation scheme together 

with a number of output files which can be easily post-processed is available in 

DYSAC2. However, it still took a great effort to modify the computer code in 

many locations to carry out the finite element analysis in this research. 
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3.5 Constitutive Model Subroutine and Explicit 

Integration Scheme 

3.5.1 Introduction 

The modified PSR model is implemented into the finite element problems by a 

constitutive model subroutine written in Fortran. In this subroutine, the 

constitutive formulations are performed using an explicit substepping 

integration algorithm with automatic error controls. According to this 

integration scheme, the strain increment passed down from the main program is 

divided into multiple sub-increments. Then the constitutive equations are 

integrated firstly using Euler scheme which is of the first order accuracy, 

followed by using the modified Euler scheme which is of the second order 

accuracy in each sub-increment. The error measurement of the numerical 

integrations is defined by taking the difference of the integration results of 

these two schemes. Once the integration error exceeds the error tolerance, the 

current sub-increment is re-subdivided according to the ratio of the local 

current error to the value of error tolerance. Furthermore, for a given 

sub-increment, the size of the next sub-increment is determined by the 

extrapolation of the current error compared with the error tolerance prescribed. 

Therefore, the imposed strain increment can be automatically divided based on 

the prescribed error tolerance in this scheme (Yang & Yu, 2006; 2010). The 

next sections will firstly present the numerical integration scheme adopted, 

followed by a introduction of the structure of the constitutive model subroutine. 
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3.5.2 The explicit integration scheme 

To apply this integration scheme into the original and modified PSR model in 

the elasto-plastic regime, consider a time sub-increment ∆Tn and corresponding 

strain sub-increment ∆ɛn. Given all the quantities at sub-step n-1, the quantities 

at sub-step n are to be solved. The first step is to integrate the constitutive 

formulations using Euler scheme, given as: 

∆σ1 = Dep (σn-1, μn-1) ∆ɛn                 (3.10) 

∆μ1 = ∆λ1 (σn-1, μn-1, ∆ɛn)B(σn-1)              (3.11) 

where μ is the hardening parameter and λ is the plastic strain rate multiplier. In 

the above and following equations, the subscript in vectors and tensors is left 

out for clear demonstration. The second step is to integrate the constitutive 

formulations using the modified Euler scheme, given as: 

∆σ2 = Dep (σn-1+∆σ1, μn-1+∆μ1) ∆ɛn             (3.12) 

∆μ2 = ∆λ1 (σn-1+∆σ1, μn-1+∆μ1, ∆ɛn )B (σn-1+∆σ1)       (3.13) 

The value of σn and μn at the end of a time step are given as: 

σn = σn-1 + ∆σ1                               (3.14) 

μn = μn-1 + ∆μ1                     (3.15) 

The final values of σ and μ at sub-step n are expressed as: 

σn’ = σn-1 + 
1

2
 (∆σ1 + ∆σ2)                 (3.16) 
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μn’ =μn-1 + 
1

2
 (∆μ1 + ∆μ2)                (3.17) 

The local truncation error is determined based on ∆σ1, ∆σ2 and ∆μ1, ∆μ2, given 

as: 

Rn = max [
||∆𝛔1−∆𝛔2||

2||𝛔𝑛||
 ,

||∆𝜇1−∆𝜇2||

2𝜇𝑛
]             (3.18) 

If Rn is larger than the error tolerance STOL, the current time sub-increment 

and corresponding strain sub-increment are extrapolated to smaller sizes 

according to the ratio of the Rn to STOL, and the above computations are 

carried out again by using the reduced sub-increment. If Rn is smaller than 

STOL, the computations move forward to next substep n + 1 and its 

sub-increment size is found based on Rn and STOL, given as: 

∆Tn+1 = √STOL/𝑅𝑛 ∆Tn                 (3.19) 

Moreover, for substep n, when Rn exceeds STOL, the sub-increment ∆ɛn is 

reduced by q, which is defined as: 

q = max { 0.9√STOL/𝑅𝑛 , 0.1}             (3.20) 

When Rn is less than STOL, the next sub-increment ∆ɛn+1 is increased by q, 

which is defined as: 

q = min { 0.9√STOL/𝑅𝑛 , 1.1}             (3.21) 

When implementing this integration scheme, many additional details are to be 

considered, such as the transition from the elastic to plastic zones, the solution 
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for the negative plastic multiplier and the correction of stresses to yield 

surfaces, etc. The schemes for the yield surface intersection and the negative 

plastic multiplier are briefly introduced in the following sections. Further 

details can be found in Abbo (1997). 

3.5.3 The yield surface intersection scheme 

During the iteration of the elastoplastic analysis, the strain increments are 

determined by the nodal displacement increments using the relationship 

between the strain and displacement, which can be expressed as: 

∆ɛ = B∆u                        (3.22) 

where ∆ɛ is the vector of incremental strain, B is the strain-displacement 

matrix and ∆u denotes the nodal incremental displacements. Then the 

corresponding elastic stress increment is calculated from the elastic 

stress-strain matrix De by using 

∆σe = De ∆ɛ                      (3.23) 

A change from elastic to plastic behavior caused by this increment occurs when 

f(σ0, μ0) < 0 and f(σ0+∆σe, μ0) = f(σe, μ0) > 0, hence depending on the initial 

stress σ0, the initial hardening parameter μ0, the yield function f, and the elastic 

stress σe =σ0+∆σe. Therefore, it essential to determine the fraction of ∆σe 

belongs to the inner side of the yield surface. This judgment is needed many 

times during the iteration of an elastoplastic finite element analysis. A 

relatively efficient and accurate intersection scheme for this judgment is 

illustrated in Figure 3-1. In this scheme, an alternative approximation of the 
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yield condition |f(σ, μ)| ≤ FTOL is used to replace the exact yield condition of 

f(σ, μ) = 0, where FTOL is a small positive constant with the suitable value 

which are typically in the range of 10E-6 to 10E-9. From the finite precision 

arithmetic the yield condition above can be modified as: 

f(σ0, μ0) < - FTOL and f(σ0, μ0) > + FTOL          (3.24) 

It is postulated that the stress increment intersects with the yield surface at σint. 

Then to find the elastic portion of ∆σe becomes to determine the scalar of a in 

the nonlinear equation: 

f(σ0+a∆σe, μ0) = f(σint, μ0) = 0              (3.25) 

In this equation, the unity value of a means that the ∆σe causes purely elastic 

strains, while the 0 value of a indicates that the ∆σe causes purely plastic 

strains. Therefore, the transition from the elastic to plastic occurs when the 

value of a lies in the range of 0 <a< 1, and elastic portion of the stress 

increment is given as a∆σe. This single non-linear type of equation can be 

solved using the methods of secant, bisection, regula-falsi, modified 

regula-falsi, and Newton-Raphson method. In this research, the modified 

regula-falsi algorithm is used because it is unconditionally convergent and does 

not require calculating derivatives, thus usually converging in five iterations. 
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Figure 3-1. Illustration of yield surface intersection: elastic to plastic 

transition (Abbo, 1997). 

3.5.4 Negative plastic multiplier 

Apart from the situation in 3.5.3, a transition from the elastic to plastic may 

also occur when an elastic stress increment of the type shown in Figure 3-2 is 

applied to a stress state initially lying on the yield surface. In this case, the 

plastic multiplier is negative (∆λ< 0) and f(σe, μ0) > + FTOL. The stress points 

with negative plastic multipliers can be found under monotonic loadings, 

especially when the trial stress increment ∆σe is very large. In this situation, the 

integration of the elastoplastic constitutive law is only required beyond the last 

intersection point because the fraction of the stress increment that lies inside 

the yield surface is elastic. 
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Figure 3-2. Illustration of yield surface intersection: negative plastic 

multiplier (Abbo, 1997). 

To detect the negative plastic multipliers, the cosine of the angle θ between 

df/dσ0 and ∆σe is computed to check whether the cos θ < LTOL, where LTOL is 

another tolerance. In this method, there is no need to calculate ∆λ explicitly, 

thus providing the efficiency. Finding the yield surface intersection for a 

negative plastic multiplier follows the same procedure introduced in the last 

section. However, it can be seen from Figure 3-2 that the use of the tolerance 

FTOL instead of the exact yield condition allows the stress points to lie just 

outside the yield surface. Therefore, the incremental stress path may cross the 

yield surface twice, thus making the situation more complex. To ensure the 

correct crossing using the modified regula-falsi algorithm, a different set of 

starting value of a will be used. a0 and a1 must now satisfy the conditions of 

f(σ0+a0∆σe, μ) < - FTOL and f(σ0+a1∆σe, μ) > + FTOL, which make sure that a0 

and a1 deal with the second intersection with yield surface. In this situation, 
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a=1 again means that the ∆σe causes purely elastic strains, while a=0 indicates 

that the ∆σe causes purely plastic strains. The value of a still lies in the range of 

0 <a< 1. 

To locate the suitable starting values of a, a strategy is used to break up the trial 

stress increment ∆σe into smaller sub-increments with the number of NSUB, 

which is usually set to ten. Each of these sub-increments is checked to see 

whether it crosses the yield surface. In the iteration, the stress increment and a 

are divided by NSUB to obtain the sub-increments of ∆a = 1/NSUB. Then each 

intervals determined by (an-1, an) is checked to see if the desired intersection 

occurs within it, where an=an-1 + n∆a, a0=0, and n is from 1 to NSUB. The 

crossing with the yield surface occurs when f(σ0+an-1∆σe, μ) < - FTOL and 

f(σ0+an-1∆σe, μ) > + FTOL. A successful search with 4 sub-increments is 

geometrically illustrated in Figure 3-3. It can be seen that the required crossing 

with the yield surface lies between a=0.75 and a=1, which may be chosen as 

the suitable starting values for the modified regula-falsi method. 

 

Figure 3-3. Starting values for yield surface intersection: negative plastic 

multiplier (Abbo, 1997). 
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3.5.5 The structure of PSR model subroutine 

With the numerical integration scheme introduced above, the constitutive 

formulations of the original model and modified PSR model can be performed 

in the model subroutine. In the finite element simulations of this research, the 

model subroutine is implemented into two different finite element software, 

which have different interfaces as well. ABAQUS has the interface of UMAT 

subroutine for the incorporation of user developed model subroutines. However, 

DYSAC2 is not as powerful as ABAQUS. Although it is quite modular, it still 

does not have a specific interface for the user defined soil models. To 

implement the PSR model subroutine into DYSAC2, the whole code of this 

program needs to be modified in a number of lines. Therefore, the PSR model 

subroutines used in ABAQUS and DYSAC2 have different interfaces, format, 

and variables. However, they still share the similar structure of the main 

program, which will be presented as follows. 
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Subroutine of the PSR model 

 

3.6 Summary 

This chapter has introduced three types of soils—Leighton Buzzard sand 

(fraction B), Leighton Buzzard sand (Fraction E) and Nevada sand, which were 

used in the experimental tests simulated in this research. Physical properties of 

these sands including their index properties and particle shapes have been 

presented. 

The numerical methods and processes used in the single element simulations 

have been described in detail. A series of experimental tests for the three types 

of sand specimen will be simulated to validate the modified PSR model and 
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investigate the PSR behavior. These numerical simulations are carried out by a 

single element computer program written in Fortran, which has also been 

introduced. The model parameters used in the finite element simulations will 

be also calibrated in these simulations. 

This chapter has also listed the numerical tools used in the finite element 

simulations of the experimental centrifuge tests under the wave and earthquake 

loadings. To implement the modified PSR model into these boundary value 

problems, a constitutive model subroutine with the explicit substepping 

integration scheme and automatic error control has been written in Fortran. 

This scheme can automatically divide the imposed strain increment based on 

the prescribed error tolerance and determine the size of the next sub-increment 

by the extrapolation of the current error compared with the error tolerance 

prescribed. For the centrifuge wave tests, the commercial finite element 

software — ABAQUS — is used while the centrifuge earthquake tests use the 

finite element program called DYSAC2 which can analyze the 

two-dimensional dynamic geotechnical problems under plane strain conditions. 
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Chapter 4 The PSR Model and Single 

Element Simulations 

 

4.1 Introduction 

The modified PSR model will be validated firstly by single element 

simulations of a series of experimental tests using three types of sand. The 

model parameters used in the following chapters of finite element simulations 

are calibrated in this chapter as the soils used in the single element simulations 

are also used in the finite element problems. This chapter starts with the 

introduction of a typical kinematic hardening model served as the original base 

model, followed by the development of the new model considering the PSR. 

Then it shows the single element simulation results for experimental tests for 

three different materials, including the hollow cylinder tests from Yang (2013) 

for Leighton Buzzard sand (Fraction B), triaxial tests from Visone (2008) for 

Leighton Buzzard sand (Fraction E) and triaxial, tosional and rotational tests 

from Chen & Kutter (2009) for Nevada sand No. 120. These simulation results 

are presented in three sections and the predicted results from the models with 

and without considering the PSR impact, as well as the experimental results 

will be compared. 

4.2 The Original Base Model 

A well-established soil model based on the classical plasticity with bounding 

surface concept and kinematic hardening is chosen as the base model. It 
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employs the back-stress ratio as the hardening parameter and the state 

parameter to represent influences of the different confining stresses and void 

ratios on sand behaviors. It also adopts the critical state concept and phase 

transformation line. However, it does not consider the PSR effect. This model 

will be briefly introduced here, and more details about this model can be found 

in Dafalias & Manzari (2004). 

The yield function of the model is 

f = [(s - pα) : (s - pα)]
1/2

 -√2/3pm = 0            (4.1) 

where s is the deviatoric stress tensor and p are the confining pressure. α is the 

back-stress ratio tensor, which represents the center of yield surface in the 

stress ratio space (Figure 4-1) and serve as the hardening parameter. m is the 

radius of yield surface, and m is assumed to be a small constant, indicating no 

isotropic hardening. The normal to the yield surface is defined as: 

l = 
∂𝑓

∂𝛔
 = n - 

1

3
 (n:r) I;   n = 

𝐫−𝛂

√2/3𝑚
             (4.2) 

where I is the isotropic tensor and n represents the normal to the yield surface 

on the deviatoric plane. r represents the stress ratio and is equal to s / p. The 

elastic shear strain rate ede and volumetric strain rate e

vd  are 

Gdd e 2/= se                       (4.3) 

Kdpd e

v /                         (4.4) 

where G and K are the elastic shear modules and bulk modules, respectively, 
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which are expressed as: 

G = G0 pat [(2.97 –  𝑒)2 / (1 + e)] (p / pat) 
1/2         

 (4.5) 

K = 2(1 + v) G / 3(1 – 2v)                (4.6) 

where G0 is a constant with the unit of MPa in this research, pat is the 

atmospheric pressure, e is the void ratio, and v is the Poisson’ s ratio.  

The plastic strain rate pdε are defined as: 

Rε Ld p =                        (4.7) 

σ
σ

d
f

K
L

p

:
1













                      (4.8) 

     R = n + 
1

3
 D I                       (4.9) 

where L represents the plastic multiplier (or loading index), and R is the 

normal to the potential surface, indicating the direction of the plastic strain rate. 

Kp is the plastic modulus, and D is the dilatancy ratio.  
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Figure 4-1. Schematic illustration of the yield surface, critical, bounding, 

and dilatancy surfaces in the space of principal stresses (Manzari & 

Dafalias, 1997). 

The bounding surface plasticity allows the model to capture the features of 

reverse and cyclic loading response. In this bounding surface model, Kp and D 

are related to the distance of back-stress ratio α from the bounding surface and 

dilatancy surface. Figure 4-1 shows these two surfaces as well as the critical 

state surface in the space of s/p. The dilatancy surface and the critical state 

surface are extended from the phase transformation line and the critical state 

line, respectively. These principles apply to the full set of six stress variables, 

but only principal stresses are illustrated here for clarity. It can be seen that all 

these three surfaces are functions of the modified Lode angle θ, which is 

defined as the angle between the deviatoric stress and the major principal stress 

in the deviatoric stress space of s/p and also schematically illustrated in Figure 

4-1. A straight line is plotted from the origin of stress space with the direction n, 
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which is the gradient of the yield surface. This line intersects with the critical 

state surface, bounding surface and dilatancy surface and gives the bounding 

back-stress ratio b

θα ,dilatancy back-stress ratio d

θα and critical back-stress 

ratio c

θα , respectively. They are defined as: 

mψnMcθgαdbcaα aa

θ

a

θ

a

θ -)exp(),(=;,,=;3/2= nα     (4.10) 

c
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2
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         (4.11) 

From the equations above, the scalar a

 represents the size for different 

surfaces, and it is a function of the modified Lode angle and state parameter. If 

the current state is looser than its critical state with a positive state parameter, 

its bounding surface is inside the critical state surface, and its dilatancy surface 

is outside the critical state surface. It is the opposite if the current state is 

denser than its critical state with a negative state parameter. Its dependence on 

the modified Lode angle is reflected in the definition of g(θ,c), where c is the 

ratio of a variable between the parameter of triaxial extension Qe and triaxial 

compression Qc. In the equations above, the model parameters n
b
 and n

d
 are 

associated with the bounding and dilatancy back-stress ratios, respectively, and 

they are both positive. M is the critical state stress ratio at the triaxial 

compression, and m is the radius of the yield surface in the stress ratio space. 

The negative sign in the bracket is used for the bounding back-stress ratio, and 

the positive sign for the dilatancy one. The critical back-stress ratio is 

independent of state parameters, which makes n
c
 zero. From the equations, the 

bounding and dilatancy surfaces vary according to the state parameter. When 
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the critical state is reached, the state parameter becomes zero and these two 

surfaces coincide with the critical state surface. Kp and D are given as: 
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n:ddAD =                        (4.14) 

where b and d are the distances between the current back-stress ratio tensor 

and bounding and dilatancy back-stress ratio tensors, respectively. h0,ch and Ad 

are the model parameters. αin is the initial value of α at the start of a new 

loading process and is updated when the denominator becomes negative. These 

equations indicate that Kp and D depend on the position of α  relative to b

θα  

and d

θα , respectively, as well as the gradient n. Finally, according to the 

consistency condition, the evolution of back-stress ratio or hardening parameter 

can be derived as: 

)-()3/2(== ααRα
b

θα hLLd        (4.15) 

Where αR  represents the direction of back-stress ratio evolutions. It can be 

approximated to coincide with the loading path as the radius of yield surface is 

very small.  
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4.3 The Development of the PSR Model Considering the 

Principal Stress Rotation 

To consider the impact of the PSR, the original model was modified by Yang & 

Yu (2013) and the development of the new model is introduced below. Details 

of this modified PSR model can be found in Yang & Yu (2013). 

In the modified PSR model, the plastic strain rate is split into the monotonic 

strain rate p

mdε  and the PSR strain rate p

rdε , where the subscript m and r 

represent the monotonic and PSR loading respectively, and it also applies to 

other quantities. It is postulated that this treatment of separation only applies to 

the derivation of plastic strain rates and the evolution of hardening parameter is 

not affected by this treatment. Therefore, according to the classical plasticity, 

the plastic strain rate can be expressed as: 

mm

pm

mm

p

m d
f

K
Ld Rσ

σ
Rε )

 ∂

 ∂
(

1
==             (4.16) 

rr

pr

rr

p

r d
f

K
Ld Rσ

σ
Rε )

 ∂

 ∂
(

1
==              (4.17) 

It is assumed that Kpm= Kp and Rm = R (equation 4.8 & 4.9) because the 

original model is for non-PSR loading. The direction of the PSR strain rate Rr 

can be expressed as:  

InR rrr D
3

1
+=                     (4.18) 

where nr is the direction of deviatoric plastic strain rate and can be 
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approximated as n for simplicity. Therefore, parameter cnr for the computation 

of nr from their original development is omitted here. Dr is the dilatancy ratio 

for the PSR loading rate, it can be derived from the postulate of the PSR 

dilatancy ratio of Gutierrez et al. (1991), which is expressed as: 

p

q
cD c 

         (4.19) 

)Φ2cos(c             (4.20) 

where ηc represents the critical state stress ratio and q/p is the current stress 

ratio. Φ is the difference of angles between the principal stress and principal 

plastic strain rate, thus represents the non-coaxiality. This well-established 

theory is proposed on the basis of work and energy dissipation considering the 

non-coaxiality. c will become unity, and the dilatancy ratio will be downgraded 

to Rowe’s postulate in the case of coaxiality. These formulations can be 

rewritten as: 

p

q
c

p

q
DDD crm )1()(  

    (4.21) 

The first term Dm represents the contribution from the monotonic loading while 

the second term Drrepresents the contribution from the pure rotational loading. 

The formulation shows that the contribution of the second term is small when 

q/p is close to the critical state stress ratio as the non-coaxiality is small. 

However, its contribution is also small when q/p is close to zero although the 

non-coaxiality is large. Therefore, the largest contribution from the 

non-coaxiality to the dilatancy ratio occurs when the intermediate stress ratio is 
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reached. The assumption of small radius of yield surface indicates that 

bc  /)2cos(  . Therefore, Dr can be approximately defined as: 

Dr=Ar(1- α/α
b

θ) α                   (4.22)  

where Ar is a model parameter for the impact of PSR on the dilatancy ratio. 

The plastic modulus Kpr for the PSR loading rate is defined as: 

r

inat

hrpr
p
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echGpK
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   (4.23) 

where h0r and ξr are new model parameters. In order to make Kpr more 

sensitive to the stress ration, ξr is usually larger than unity as the single element 

numerical simulations at different stress ratios (Yang & Yu, 2013) indicate that 

the soil responses under the PSR loadings are more sensitive to stress ratios 

than the responses under the monotonic loadings. 

At present, all new parameters for the modified PSR model have been 

introduced. Finally, to complete the model, the definition of the PSR loading 

rate dσr is required. To determine dσr in general stress space, it is first 

considered in the space with only x and y direction denoted as α. Let αd rσ  

represent 
T

rxyryrx ddd ),,(  
, in the space of α with only one PSR. Let α

rdt  

represent the vector 
T

rxyryrx ddd ),2/)((   
, and 

α
t represent the vector 

T

xyyx ),2/)((  
. To consider the PSR, the following conditions should be 

satisfied: 
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α

αα

αα

αα

r

d
dd t

tt

tt
tt

:

:
-=         (4.24) 

0   ryrx dd
            (4.25) 

 

 

Figure 4-2.Schematic illustration of the total, monotonic, and PSR stress 

increments in the space of ((σx-σy)/2,σxy) (Yang & Yu, 2013). 

The meaning represented by equation (4.24) is schematically illustrated in 

Figure 4-2. Equations (4.24) and (4.25) can be re-arranged and expressed as 

σNσ dd α

r

α

r = , and then in matrix form as: 
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where 
22 4/)( xyyxJt   . In this case, σd  contains only three stress 

variables ),,( xyyx ddd  . Similarly, in the   space (y, z) and   space (z, x), 

the PSR 
Tβ

ryz

β

rz

β

ry

β σdσdσdd ),,(=rσ  and Tγ

rzx

γ

rx

γ

rz

γ σdσdσdd ),,(=rσ can be 

defined as σσ dd β

r

β

r N= and σσ dd γ

r

γ

r N= , respectively. They can also be 

expressed in the matrix form as: 
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where
22 4/)( yzzyJt    and 

22 4/)( zxxzJt   . Combining
αd rσ , 

βd rσ and 
γd rσ , and letting 

  rxrxrx ddd  ,   ryryry ddd   and 

  rzrzrz ddd  , rdσ  in the general stress space can be obtained as: 

σσ dd rr N=                       (4.29) 

Nr can be expressed by α

rN , β

rN  and γ

rN in the matrix form as: 
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The numbers in the bracket represent the element in the matrices of α

rN , β

rN  

and γ

rN  in the Equations 4.26 to 4.28. The PSR related equations derived so 

far are independent of stress increments and the number of PSRs. 

With the formulations derived before, the elastoplastic stiffness can be obtained. 

The total stress increment can be defined as: 

)--(=)-(= p

r

p

m

p dddddd εεεEεεEσ       (4.31) 

)3/2( klijjkiljlikklijijkl GKE  
          (4.32) 

whereE is the elastic stiffness tensor. Substituting p

mdε  and p

rdε  from 

equations (4.16) and (4.17) into equation (4.31), it can be obtained that 

  

))((
1

-))((
1

-= rr

pr

m

p

d
K

d
K

dd σlREσlREεEσ

      

 (4.33) 

Multiplying equation (4.33) with the normal to the yield surface l, it can be 

obtained that 
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))((
1

-))((
1

-= rr

pr

m

p

d
K

d
K

dd σlRElσlRElεElσl      (4.34) 

Similarly, multiplying equation (4.31) with Nr, and using the relationship 

rr NΝΕ G2=                    (4.35) 

it can be obtained that 
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G
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 (4.36) 

Multiplying equation (4.36) with l, it can be obtained that 
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-)(2= rrr
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rr d
K

G
d
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G
dGσd σlRNlσlRNlεNll

  

 (4.37) 

From equations (4.34) and (4.37), mdσl  and rdσl can be expressed as 

functions of εl d . Therefore, the relationship between the stress and strain 

increments can be expressed as:  

 dσ = E
ep

 dɛ                  (4.38) 
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rr G NN 2=*                    (4.40) 
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Formulations above show that the stiffness tensor is independent of stress 

increments, and the stress and strain increments have a linear relationship, 

which indicates the easier numerical implementations in boundary value 

problems compared to the models whose stiffness tensor is the function of 

stress increments. In these equations, if Kpr is set to be Kp and Rr to be R, they 

will be downgraded to the formulations in the classical plasticity. 

4.4 The Calibrations and Single Element Simulations 

4.4.1 Introduction and calibration 

The PSR model developed above will be validated firstly by three single 

element simulations of a series of experimental tests. The model parameters are 

also calibrated by these simulations as the centrifuge tests simulated in the 

following chapters use the same materials as experimental tests in this chapter. 

This section starts with the single element simulation of the hollow cylinder 

tests from Yang (2013) for Leighton Buzzard sand (Fraction B). Then the 

triaxial tests from Visone (2008) for Leighton Buzzard sand (Fraction E) are 

simulated. Finally, the simulations of triaxial, tosional and rotational tests from 

Chen & Kutter (2009) for Nevada sand No. 120 is carried out. The predicted 

results from the models with and without considering the PSR effect, together 

with the experimental results will be compared. The specific notations in the 
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results presented in this chapter are introduced as follows. Basically, all 

stresses described in this thesis are effective stresses unless specified 

otherwise.  

Effective confining stress:  

p’= (σ1’+σ2’+σ3’)/3                  (4.43) 

Deviatoric stress:  

q = {[(σ1-σ2)
2
+(σ2-σ3)

2
+(σ1-σ3)

2
]/2}

1/2                 
(4.44) 

 

Volumetric strain: 

ɛv= (ɛ1+ɛ2+ɛ3)/3                   (4.45) 

Deviatoric strain:  

ɛq = {[(ɛ1-ɛ2)
2
+(ɛ2-ɛ3)

2
+(ɛ1-ɛ3)

2
]*2/9}

1/2               
(4.46) 

All the model parameters are shown in Table 4-1 and divided into categories 

based on their functions. The calibration can be done from the results of triaxial 

tests. The elastic parameter G0 is determined by the Equation 4.5 with pat 

equals 100 kPa in this research. The poisson’s ratio v is determined by the 

Equation 4.6. The critical state parameters e0, λc and   are calculated from the 

plot of the relationship between ec and pc with Equation 2.1. M can be 

determined from the experimental results of stress ratio-strain relationship at 
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the critical state. c is calculated from the critical state stress ratios at triaxial 

compression and triaxial extension with Equation 4.11. The m for the yield 

surface is often determined by M/100. Parameters n
b
 and n

d
 are determined 

from n
b
=ln(M/M 

b
)/Ψ 

b
 and n

d
=ln(M/M 

d
)/Ψ 

d
 proposed by Li & Dafalias (2000), 

where Ψ 
b
 and M 

b
 are values of Ψ and q/p at the peak stress ratio, and Ψ 

d
 and 

M 
d
 are those two values at the phase transform state. The parameters h0, ch and 

A0 can be found by trial and error. The calibration of A0 can be started with 

fitting the curves of relationship between the volumetric strain and axial strain. 

Three new model parameters related to the PSR are incorporated into the 

modified PSR model. They are h0r and ξr for the plastic modulus, and Ar for the 

flow rule. All of them are independent of the monotonic loading, and can be 

easily calibrated through the pure rotational loading paths at different stress 

ratio levels. As the shear strain is not influenced by the dilatancy ratio, h0r and 

ξr can be obtained first by the curves of shear stress-strain relationship fitting 

the test results. Ar can be obtained from the response between the other stress 

components and the volumetric strain. 

 

4.4.2 The single element simulation of Leighton Buzzard sand 

(Fraction B) 

A series of monotonic loading tests with different loading directions (α=0
o
 to 

90
o
) and drained pure rotational shear tests with different stress ratios (Yang, 

2013) are simulated using the original model and then the modified PSR model 

to test its ability in simulating the PSR and soil liquefaction. The model 
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parameters and initial conditions used in these simulations are listed in Table 

4-1 and 4-2 respectively. Some critical test results are shown in Figures 4-3 and 

4-4. 

Table 4-1. Soil parameters of Leighton Buzzard Sand (Fraction B). 

 Constant Parameters Value 

Original model Elasticity G0 275 

  v 0.25 

 Critical state M 1.07 

  c 0.77 

  
c  0.017 

  e0 0.77 

    0.7 

 Yield surface m 0.014 

 Plastic 

modulus 

h0 2.5 

  ch 0.868 

  n
b
 0.7 

 Dilatancy A0 0.7 

  n
d
 0.3 

Modified model Plastic 

modulus 

h0r 2.27 

  r  1.5 

 Dilatancy Ar 0.7 
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Table 4-2.Initial conditions of Leighton Buzzard Sand (Fraction B) in the 

rotational shear tests. 

Relative density 

after 

consolidation (%) 

Voil ratio after 

consolidation 

econ 

Stress ratio 

q/p’ 

Principal stress 

parameter  

b 

75.9 0.585 0.6 0.5 

76.3 0.584 0.7 0.5 

75.9 0.585 0.8 0.5 

75.9 0.585 0.9 0.5 

75.9 0.585 0.93
 

0.5 
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(b) 

Figure 4-3. Comparison of stress ratio-strain responses between the 

predicted results and laboratory results under the monotonic loading 

(dilation: positive). 

Figure 4-3 shows the comparison between the predicted results and the 

laboratory results under monotonic loadings. The original experimental tests 

consider the different loading angles to investigate the effect of fabric 

anisotropy of the sand. However, this model does not consider the fabric effect 

and cannot reflect the difference between the results under different loading 

angles. Therefore, the predicted results are intended to fit the average of the 

laboratory results. These results verify the ability of this model in simulating 

soil behaviors under the monotonic loading path. 
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(a) stress ratio = 0.6. 

 

(b) stress ratio = 0.7. 
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(c) stress ratio = 0.8. 

 

(d) stress ratio = 0.9. 
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(e) stress ratio = 0.93. 

Figure 4-4. Comparison of volumetric strain developments between the 

predicted results and laboratory results under the drained pure rotational 

loading (dilation: positive).  

The predicted and experimental results of rotational shear loadings are shown 

in Figure 4-4. It can be seen that the original model underestimates the 

volumetric strain in the case of q/p’ = 0.93 & 0.9, while it significantly 

overestimates the volumetric strain in the case of q/p’ = 0.8, 0.7 & 0.6. This is 

mainly because the original model does not consider the PSR effect. 

To better simulate this problem, the PSR model is developed based on the 

original model and used to simulate the same problem. In Figure 4-4, it can be 

observed that in the simulation of the same loading conditions, results from the 

modified PSR model show a significant difference compared to the original 

one. In the cases of q/p’=0.6, 0.7 & 0.8, the modified PSR model generate less 

volumetric strain, which agrees much better with the laboratory results. In the 
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case of q/p’=0.9, the original model underestimates the volumetric contraction, 

while the results from the modified PSR model only fit the laboratory results 

before the third cycle due to the large nonlinear effect as the principal stress 

continues to rotate. In the case of q/p’=0.93, which is close to the failure stress 

ratio, the results from the modified PSR model fit the laboratory results very 

well, while the original model still significantly underestimates the volumetric 

contraction. Generally, results from the modified PSR model fit better with the 

laboratory results than the original model. The experimental results also show a 

slight nonlinear trend while the responses of the predicted results are quite 

linear. This difference may be due to the fabric anisotropy which is beyond the 

scope of this study and not considered by the original and modified model in 

this research. 

Therefore, the results from numerical simulations demonstrate that both the 

modified PSR model and the original model have the ability to simulate the 

monotonic loading conditions. However, the modified PSR model performs 

better than the original model under the rotational loading conditions with the 

PSR.  

4.4.3 The calibration and the single element simulation of 

Leighton Buzzard sand (Fraction E) 

Because the experimental centrifuge wave tests, numerically simulated in 

Chapter 5, use the loose Leighton Buzzard sand Fraction E (BS 100/170), the 

first 13 parameters in the original model are calibrated by using a series of 

triaxial tests with constant effective confining stress p’ from Visone (2008). All 

parameters including 3 PSR parameters which will be used in the finite element 
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simulations for the modified PSR model are listed in Table 4-3. The 3 PSR 

parameters are basically calibrated to better fit the experimental results from 

the centrifuge wave tank tests from Sassa & Sekiguchi (1999). Some typical 

results are shown in Figure 4-5. Compression is represented as positive sign.  

Table 4-3. Soil parameters of Leighton Buzzard Sand (Fraction E) used in 

the finite element analysis. 

 Constant Parameters Value 

Original model Elasticity G0 100 

  v 0.25 

 Critical state M 1.35 

  c 0.712 

  
c  0.15 

  e0 0.977 

    0.203 

 Yield surface m 0.013 

 Plastic modulus h0 10 

  ch 0.968 

  n
b
 0.3 

 Dilatancy A0 1.0 

  n
d
 0.1 

Modified model Plastic modulus h0r 3.3 

  r  1.5 

 Dilatancy Ar 5.5 

 



107 

 

 

(a) Stress-strain responses  

 

(b) Development of volumetric strain 

Figure 4-5. Predicted results and test results of Leighton Buzzard sand 

(Fraction E) from drained triaxial tests with constant p’ (100 & 200 

indicate the confining pressure, C stands for compression while E stands 

for extension). 
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Figure 4-5 show that the predicted results generally fit the lab results very well. 

There is no difference between the simulation results from the original model 

and the modified PSR model because all the tests are subjected to the 

monotonic loadings which do not involve the PSR effect.  

4.4.4 The calibration and the single element simulation of 

Nevada sand 

The sand used in the centrifuge earthquake tests from VELACS project (Model 

No. 3) is the Nevada sand which has a specific gravity of 2.67 and the 

maximum and minimum void ratios of 0.887 and 0.511 respectively. All 

parameters used in the simulations of these centrifuge earthquake tests for the 

Nevada sand are calibrated by a series of triaxial, tosional and rotational tests 

for Nevada sand from Chen & Kutter (2009). The triaxial tests do not have the 

PSR effect because of their monotonic loading path, while the tosional and 

rotational tests have the PSR effect. These tests are also carried out to 

investigate the significance of the PSR and test the ability of the modified PSR 

model in simulating the PSR impact and soil liquefaction. All parameters are 

listed in Table 4-4. Some typical results are shown in Figures 4-6 to Figure 

4-13.  
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Table 4-4. Soil parameters of Nevada sand used in the finite element 

analysis. 

 Constant Parameters Value 

Original model Elasticity G0 150 

  v 0.25 

 Critical state M 1.45 

  c 0.712 

  
c  0.005 

  e0 0.807 

    0.5 

 Yield surface m 0.05 

 Plastic modulus h0 5.5 

  ch 0.968 

  n
b
 0.55 

 Dilatancy A0 0.6 

  n
d
 3.5 

Modified 

model 

Plastic modulus h0r 0.9 

  r  1.1 

 Dilatancy Ar 0.5 

 

The initial conditions of the drained and undrained tests are summarized in 

Table 4-5. Figure 4-6 to Figure 4-9 show the predicted results along with the 

experimental results. It can be seen that both the predictions for the drained and 
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undrained tests generally fit the laboratory results very well. Therefore, this 

model has a good performance in reflecting soil behavior under drained 

monotonic loadings as well as the undrained monotonic loadings.  

Table 4-5. Test conditions for drained and undrained triaxial tests (Chen 

& Kutter, 2009). 

Specimen Relative 

density (%) 

Back 

pressure 

(kPa) 

B value (%) Initial 

confining 

pressure 

(kPa) 

N70D501 74 250 98.1 50 

N70D1001 72 250 98.6 100 

N70D100A 76 200 100 100 

N70D100B 82 200 98.3 100 

N70D100C 85
 

200 99 100 

N70D2501 75 250 99.1 250 

N50U1 70 250 98.9 50 

N60U1002 63 250 96 100 

N60U2501 75 250 95.5 250 

N60U4002 66 250 97.3 400 
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(a) 

 

(b) 

Figure 4-6. Test results and model predictions of stress strain behaviors for 

the drained monotonic loadings. 
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(a) 

 

(b) 

Figure 4-7. Test results and model predictions of relationships between 

stress ratios and volumetric strains for the drained monotonic loadings. 
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(a) 

 

(b) 

Figure 4-8. Test results and model predictions of volumetric strain 

behaviors for the drained monotonic loadings. 
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(b) 
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(c) 

Figure 4-9. Test results and model predictions for the undrained 

monotonic loadings. 
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In Figure 4-11, it can be seen from the results of the original model that the 

effective confining pressure p’ reduced about 75 kPa, then the q-p’ stress path 

shows the butterfly shape and p’ stops reducing. Meanwhile, as the shear stress 

continues to move repeatedly, no dramatic shear strain is observed, which is 

significantly different from the laboratory results because the original model 

does not consider the PSR. In the results from the modified PSR model, the 

effective confining pressure reduced from 200 kPa to 75 kPa, which is much 

lower than the minimum value from the original model (120 kPa). The 

modified PSR model also predicts greater value of (σz-σθ)/√3p’ than the 

original model in Figure 4-11(b) because σz-σθ is held constant in the tests and 

the variation of this value is due to the variation of p’. In addition, a dramatic 

increasing of shear strain (more than doubled) can be seen in the last cycle in 

Figure 4-11(c), indicating the liquefaction of soil. 

Figure 4-12 generally shows the similar trends. In Figure 4-12(a), both models 

overestimate the rate of the reduction of p’ in the first stage with the smaller 

value of the shear stress, while the p’ from the modified PSR model reduced 

almost 15 kPa more than the results from the original model and agrees much 

better with the lab results in the second stage of shearing. In Figure 4-12(c), the 

original model still significantly underestimates the shear strain while the 

modified PSR model overestimates the shear strain which may be due to the 

more complicated loading conditions of two stages with different shear stress 

magnitudes. Furthermore, it is difficult to accurately predict the shear strain 

after the liquefaction has taken place. Generally, although the modified PSR 

model still slightly underestimates the reduction of p’ and sometimes 

overestimates the shear strain, it brings the soil to the liquefaction as the shear 

strain is more than doubled at the later stage and performs much better than the 
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original model compared with the experimental results in the simulation of 

torsional shear tests. 

Table 4-6. Test conditions for torsioanl shear tests (Chen & Kutter, 2009). 

Specimen Relative 

density 

(%) 

Back 

pressure 

(kPa) 

B 

value 

(%) 

Cell 

pressure 

(kPa) 

K 

(σθ/σz) 

Testing 

cycles 

NK73CU6-1 68 100 97 213 0.73 12.5 

NK73CU6-2 68 100 97 213 0.73 10 

NK10CU63 65 100 100 300 1.0 4 

NK138U51 71 200 99.2 400 1.38 4.75 
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(b) 

Figure 4-10. Test results and model predictions for the Torsional Shear 

Test NK10CU63. 
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(b) 

 

(c) 

Figure 4-11. Test results and model predictions for the Torsional Shear 

Test NK138U51. 
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(c)  Shear stress strain behaviors 

Figure 4-12. Test results and model predictions for the Torsional Shear 

Test NK73CU6. 
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4-7, and the simulation results and experimental results are shown in Figure 

4-13. It can be seen from Figure 4-13(a) that the stress paths from these two 

models are exactly the same, while the soil responses are quite different. In the 

rest of figures, the predicted results from the original model show the limited 

effective confining pressure reduction and very small shear strain and 

deviatoric strain. Therefore, the original model can only predict limited 

reduction of p’ and evolution of the shear strain of soil under undrained cyclic 
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However, in the predicted results from the modified PSR model, the effective 

confining pressure reduced 25 kPa more than the original model, and the 

maximum shear strain reached 3.5% with a dramatic increase in the last cycle, 

which agrees very well with the lab results and brings the soil to the 

liquefaction as well. 

Table 4-7. Test conditions for the rotational shear rest (Chen & Kutter, 

2009). 

Specimen Relative density 

(%) 

Back pressure 

(kPa) 

B value (%) Cell 

pressure 

(kPa) 

NR40CU62 67 100 99 300 
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(b) 
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(d) 

Figure 4-13. Test results and model predictions of the rotational shear test 

NR40CU62. 

In conclusion, the results from single element numerical simulations 

demonstrate that the modified PSR model has the ability to simulate the 

principal stress rotation and soil liquefaction, and agrees much better than the 

original model with the laboratory results under the same loading condition. 

Therefore, it is important to consider the PSR impact in the single element 

numerical simulations of these experimental tests. These results will be further 

verified by the finite element analysis in the following chapters. 
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4.5 Summary 

This chapter has firstly introduced the original base model and the modified 

model considering the PSR impact. Then three single element simulations 

including the Hollow Cylinder tests from Yang (2013) for Leighton Buzzard 

sand (Fraction B), triaxial tests from Visone (2008) for Leighton Buzzard sand 

(Fraction E) and triaxial, tosional and rotational tests from Chen & Kutter 

(2009) for Nevada sand No. 120. have been presented to validate the model 

performance in simulating the PSR impact and calibrate the model parameters 

for these sands. 

The original base model is developed based on the classical plasticity with 

bounding surface concept and kinematic hardening. The back-stress ratio and 

the state parameter are employed in this model to represent influences of the 

different confining stresses and void ratios on the sand behavior. Then, the new 

model is developed by treating the plastic strain rate induced from the PSR 

separately and without the modification on the evolution of the hardening 

parameter. The modified PSR model introduced three new PSR parameters 

which are independent of the monotonic loading, and can be easily calibrated 

through the pure rotational loading paths at different stress ratio levels. The 

stiffness tensor of the modified PSR model is independent of stress increments, 

and the stress and strain increments have a linear relationship, which indicates 

the easy numerical implementations in boundary value problems. Moreover, 

formulations in the modified PSR model will be downgraded to the original 

model when there is no PSR effect involved in the loading conditions. 

In all the single element simulations, the predicted results from the models with 
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and without considering the PSR effect, as well as the experimental results 

have been compared to investigate the significance of PSR impact. Although 

diverse stress paths under both drained and undrained conditions have been 

simulated, the comparison generally show that the original model can only 

produce very limited p’ reduction and cumulative shear strain under cyclic 

loading paths, thus significantly underestimates the laboratory results and is 

unable to bring the soil to the liquefaction. However, in the same loading 

conditions, the modified PSR model generates much more reduction of p’ and 

shear strains, and agrees much better with the experimental results due to its 

complete ability in the simulation of the PSR impact. Furthermore, 

liquefactions can be observed in the predicted results from the modified PSR 

model, which agrees with the experimental sand behaviors. Both models are 

suitable for simulations of the monotonic loadings under drained and undrained 

conditions. 
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Chapter 5 The Finite Element 

Simulation of Wave-Seabed Interactions 

 

5.1 Introduction 

The wave loading can generate considerable PSR in seabed soil. This chapter 

simulates the wave-seabed interactions using the finite element method. The 

impact of principal stress rotation (PSR) on the soil stress-strain responses in 

the simulations is considered by utilizing the modified PSR model. The focus 

of this chapter is on the investigation of PSR impacts. Both the original model 

and modified PSR model will be implemented into the finite element software 

to simulate experimental results by Sassa & Sekiguchi (1999). The predicted 

results by using the soil models with and without considering the PSR impact 

as well as the laboratory results from the centrifuge tests will be compared to 

explore the PSR impact in these boundary value problems. Both the 

progressive wave and standing wave loadings will be applied to the sand bed 

and the soil behaviors under these different wave loadings will be investigated. 

5.2 Problem Definition 

The centrifuge experimental study carried out by Sassa & Sekiguchi (1999) 

investigated the behaviors of sand bed under fluid wave trains. They found that 

the liquefaction has occurred in the sand specimen because of the build-up of 

residual pore pressures and the PSR effect plays an important role in this sand 

behavior. They also observed the different liquefaction resistance under the 
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progressive wave loading and the standing wave loading. 

In these centrifuge tests with plane strain condition, a seabed with saturated 

sand is 100 mm deep and 200 mm wide (Figure 5-1). A steady-state 

acceleration of 50 g is applied to the centrifuge. The sand is loose Leighton 

Buzzard sand 100/170. The soil specimen is subjected to both the progressive 

wave loading and the standing wave loading which has the wave length 

denoted by L and wave period by T. These two types of wave loadings are 

defined by the pore pressure u0 on the soil surface (z=0) as follows: 

u = u0 sin(ҡx-wt)   (progressive wave)         (5.1) 

u = u0 cos(ҡx) sin(wt)  (standing wave)         (5.2) 

where u0 is the amplitude of the fluid pressure fluctuation imposed on the soil 

surface (z=0). ҡ is the wave number and w is the angular frequency of the 

waves, they are defined as: 

ҡ = 2π/L                        (5.3) 

w = 2π/T                       (5.4)  
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Figure 5-1. Sand bed setup for the progressive wave loading. 

Table 5-1. Cases analyzed for progressive wave loading. 

Description P1 P2 P3 P4 P5 P6 P7 P8 

u0 1.0 2.0 3.0 3.5 4.0 4.5 5.0 6.0 

χ0=ҡu0/Ƴ’ 0.03 0.06 0.09 0.10 0.12 0.13 0.14 0.17 

 

For the progressive wave loading, 8 cases with different u0 from 1 kPa to 6 kPa 

were simulated (Table 5-1). The intensity of the progressive wave is also 

represented by the cyclic stress ratio χ0=ҡu0/Ƴ’ (Sassa & Sekiguchi, 2001), 

where the saturated unit weight of soil, Ƴ’, was 425 kN/m
3
, and ҡ was 12.2m

-1
. 

The standing wave loading is illustrated in Figure 5-2 and 10 cases with 

diverse cyclic stress ratios are also analyzed (Table 5-2). Antinode is set at the 

middle of the seabed width.  

The problem is simulated by a finite element software—ABAQUS. The soil 

model and two types of waves are implemented by ABAQUS user subroutines 
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written in Fortran language. 55 quadrilateral elements (11 columns by 5 rows) 

with 4 nodes are used for the simulations. The bottom boundary is set to be 

fixed while the side boundaries are smooth vertically, and all of them are 

impermeable. The permeability KD used is 0.0015 m/s. All cases analyzed are 

assumed to be under K0 condition before the wave loading is applied, and K0 is 

set to be 0.52, which is in accordance with the simulation from Sassa & 

Sekiguchi (2001). 25 cycles of the wave loading are considered in total, with a 

time increment of 0.0024 suggested by Sassa & Sekiguchi (2001). Generally, 

the same setting is used in this simulation compared to the simulation from 

Sassa & Sekiguchi (2001). Furthermore, the numerical implementation of the 

modified PSR model is performed using an explicit substepping integration 

algorithm with automatic error controls. In this integration scheme, the 

imposed strain increment can be automatically divided based on the prescribed 

error tolerance and details can be found in Abbo (1997). 

 

Figure 5-2. Sand bed setup for the standing wave loading. 
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Table 5-2. Cases analyzed for standing wave loading. 

Description S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

u0 1.0 2.0 3.0 4.0 5.0 6.0 6.7 7.0 7.2 8.0 

χ0=ҡu0/Ƴ’ 0.03 0.06 0.09 0.12 0.14 0.17 0.19 0.20 0.21 0.23 

 

5.3 Predicted Results and Comparisons with the 

Experimental Data 

5.3.1 The progressive wave 

Case P8 with the cyclic stress ratio χ0=0.17 is studied first. The soil response in 

the centerline of the seabed width with the depth of 15 mm (point a in Figure 

5-1) is presented in Figure 5-3 to 5-7. Only 19 cycles are recorded in these 

figures because the modified PSR model has already brought the soil to 

liquefaction in the 19
th

 cycle. Unless specified, all stresses described in this 

chapter are effective stresses unless specified otherwise. Different formulation 

of deviatoric stress q presented as follows is used in this chapter and next 

chapter to consider the full six stress variables.  

Effective confining stress:  

p’= (σ1’+σ2’+σ3’)/3                    (5.6) 

Deviatoric stress:  

q = {2*[(σx-σy)
2
+(σy-σz)

2
+(σx-σz)

2
]+σxy

2
+σyz

2
+σxz

2
}

1/2         
(5.7) 
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In Figure 5-3, a significant build-up of residual pore water pressure can be 

observed in results from both the original model and modified PSR model due 

to the plastic contractive behavior of sand under the cyclic loading. However, 

the modified PSR model produces a higher pore pressure in the whole process, 

and finally reaches a residual pore pressure of 6.0 kPa. This value is about 95% 

of σv0, indicating the occurrence of liquefaction. The original model has a 

maximum residual pore pressure of 4.9 kPa, which is lower than the results 

from the modified PSR model and experimental tests, and does not reach 

liquefaction because it is only about 76% of σv0. Generally, the modified PSR 

model agrees better with the laboratory results, especially the residual pore 

pressure at liquefaction. However, both two models overestimate the pore 

pressure during the early stage of the simulation. 

 

Figure 5-3. Comparison of time history of excess pore water pressure 

between the simulations and laboratory tests in case P8. 
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The same difference can be seen in the effective confining pressure p’ as well. 

In Figure 5-4, as the progressive wave repeatedly moving along the seabed 

surface, p’ continues to decrease in both the original and modified PSR model. 

But p’ from the modified PSR model decreases much more rapidly than the 

original model, and finally reaches a value very close to 0 as the residual pore 

pressure reaches the maximum value. In the original model, p’ reaches the 

lowest value of 0.75 kPa, and the average trend becomes flatter after 2 seconds. 

The q-p’ curve of the modified PSR model presented in Figure 5-5 also shows 

the decrease of p’. The test starts from point A and end at point B, where q and 

p’ approaches the value of 0. 

 

Figure 5-4.Predicted reductions of effective confining pressure in case P8. 
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Figure 5-5. Predicted stress paths from the modified model in case P8. 

The stress paths of the original model and modified PSR model in stress space 

of σxz and (σx-σz)/2 are plotted separately in Figures 5-6(a) and 5-6(b) for clarity. 

They clearly show that the principal stress is continuously rotating under the 

progressive wave. In addition, as (σx-σz) decreases, σx tends to be equal to σz. 
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(b) the modified model 

Figure 5-6. Predicted stress paths in the PSR space in case P8. 
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mm) of case P8 (Figure 5-7(b)), the modified PSR model brings the soil to 

liquefaction in 19
th

 cycle while the original model only achieves the maximum 

pore pressure of 5.7 kPa in 25
th

 cycle, which is close but still does not reach the 

90% of σv0. In the case of P7, the modified PSR model achieves the 

liquefaction in the last cycle, while the original model only predicts the 

maximum pore pressure of 4.6 kPa, which is much lower than the modified 

PSR model even after full 25 cycles are performed. In the case of P6, 

liquefaction doesn’t occur with both two models. The modified PSR model 

also predicts higher pore water pressures than the original model in cases of P3, 

P4 and P5. 

However, this difference between the original model and modified PSR model 

becomes unapparent when the cyclic stress ratio is small. In the cases of P1 and 

P2, the results of the original model and modified PSR model are very similar, 

only slight difference around depth 15 mm in case P2 can be observed. This is 

because the PSR effects are decreasing while the amplitudes of imposed waves 

are reducing. Figure 5-7(a) shows a clear trend that generally, the higher cyclic 

stress ratio leads to the more obvious difference between the modified and 

original model, which means the larger PSR effects. In summary, among all 8 

cases, liquefaction occurs only in case P7 and P8 with the modified PSR model, 

in which the excess pore water pressures are close to the σv0 above the depth of 

20 mm. This agrees with Sassa & Sekiguchi (1999) that the cyclic stress ratio 

of 0.14 in case P7 is the critical value for liquefaction in this depth. The 

original model cannot predict this critical value of cyclic stress ratio because it 

significantly underestimates the pore pressure build-up. 
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(b) 

Figure 5-7. Predicted umax with depth under progressive wave loadings. (a) 

results with full range of model depth. (b) detailed results above the depth 

of 20 mm. 
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the result of the modified PSR model agrees better with the laboratory results 

than the original model, especially in the range of high cyclic stress ratios. For 
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the cases of χ0 from 0.05 to 0.1, although the results from the original model 

are closer to the lab data, the differences between these two models are very 

small, which can be neglected. Figure 5-9 shows the reduction of p’ in the 

simulations by using these two models. Among all the data, p’ shows a strong 

nonlinear behavior and only reduces to zero in the cases of P7 and P8 with the 

modified PSR model, indicating the same trend in the excess pore water 

pressure discussed above. 

 

Figure 5-8. Comparison of umax/σ’v0 with χ0 at the shallow soil depth (-15 

mm) between the predicted results and laboratory results under the 

progressive wave loading. 
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Figure 5-9. Predicted p’ with χ0 at the shallow soil depth (-15 mm) under 

the progressive wave loading. 

Figures 5-10 to 5-12 show the predicted pore water pressure contours at 
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5-12, the largest pore pressure zone progress downwards from the top level to 

the shallow depth (around 20 mm) at the time of 1.7 seconds. The overall 

predicted results from the modified PSR model are again larger than the results 

from the original model because of the consideration of PSR impact. 

 

(a) The original model 

 

(b) The modified model 

Figure 5-10. Pore water pressure contours at t=0.0024 seconds in case P8. 
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(a) The original model 

 

(b) The modified model 

Figure 5-11. Pore water pressure contours at t=0.18 seconds in case P8. 
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(a) The original model 

 

(b) The modified model 

Figure 5-12. Pore water pressure contours at t=1.7 seconds in case P8. 

5.3.2 The standing wave 

The overall results from the two models of antinode and near node, which is set 

at the depth of 5 mm, 85 mm from the mid-width, are presented in Figure 5-13. 
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The results of near node are discussed firstly. Generally, results from the two 

models both show a nonlinear trend that the larger cyclic stress ratio can 

generate higher excess pore water pressure. The modified PSR model can still 

generate higher excess pore water pressure than the original model, although 

liquefaction does not happen in both two models. It should be noted that the 

PSR impact still increases with the cyclic stress ratio, as the difference of pore 

water pressure between two models are becoming larger as the cyclic stress 

ratio increases, which is similar to the results from the progressive wave 

loading. The predicted results of positions near node cannot be verified due to 

the lack of laboratory results, but the general trend still show that more severe 

waves lead to larger PSR effects and the modified PSR model predicts larger 

build-up of pore pressure than the original model. 

The general trend of results from the modified PSR model of antinode agrees 

well with the laboratory results and shows the same characters mentioned in 

results of the near node. It achieves the umax/σv0 of 90% (the occurrence of 

liquefaction) at the cyclic stress ratio of 0.2, which is exactly the same wave 

intensity as the laboratory results. However, the predicted results from the 

original model nearly coincide with the results from the modified PSR model, 

which means that there is almost no difference between simulation results from 

these two models in this position. The stress path in the PSR space in Figure 

5-14 shows that this is because the PSR can hardly be observed in this position. 

It can be seen that the maximum value of (σx-σz)/2 is nearly 30 times the 

maximum value of σxz, which means their magnitudes are not in the same order. 

This indicates that the cyclic loadings without the PSR play the main role now, 

thus leading to the limited effect of the modified PSR model at the antinode 

under the standing wave loading. Furthermore, this PSR effect laterally 
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increases from the antinode to the boundary of the soil bed. However, this is 

just one special position under a specific type of wave loading. As the 

progressive wave plays the main role in natural wave conditions, the overall 

different performances between the modified PSR model and original model 

show that it is still essential to consider the PSR impact in the simulation of 

most of the real wave loading conditions. 

 

Figure 5-13. Comparison of umax/σ’v0 with χ0 at the shallow soil depth (-5 

mm) between the predicted results and laboratory results under the 

standing wave loading. 
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Figure 5-14. Predicted stress paths in the PSR space from the modified 

model at the antinode under the standing wave loading. 
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in the simulations of wave-seabed interactions, generally the modified PSR 

model performs better and agrees better with the lab results than the original 

model. The critical conclusions are summarized in detail as follows. 

 It is evident that both the progressive wave and the standing wave loadings 

produce the PSR in problems of wave-seabed interactions. Therefore, 

simulation of the PSR is important in offshore foundation designs. This 

PSR effect increases with the severity of imposed wave loadings reflected 

by the cyclic stress ratio. The higher cyclic stress ratio leads to the more 

obvious difference between the modified PSR model and the original 

model. 

 Generally, wave loadings with larger cyclic stress ratios can generate 

higher pore water pressures. The original model can only produce very 

limited p’ reduction and cumulative shear strain under wave loadings. The 

modified PSR model can generate higher excess pore water pressures and 

larger shear strains than the original model, thus bringing the soil to the 

liquefaction and agrees better with the laboratory results due to its 

complete ability in the simulation of the PSR impact. Therefore, ignoring 

the PSR impact can lead to the underestimation of pore pressure build-up 

and deformations. Moreover, the modified PSR model can also reflect the 

characteristics of critical cyclic stress ratio above which the liquefaction 

will occur.  

 The standing wave produces less PSR effect than the progressive wave, 

and under the standing wave, the PSR effect laterally reduces from the 

boundary of the soil bed to the antinode, where nearly no PSR was 

observed. Therefore, the modified PSR model has limited effect in the 
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simulation at the antinode under the standing wave. However, this is just 

one very special case. As the natural wave loadings are much more random, 

it is important to consider the PSR effect in the simulation of 

wave-induced liquefactions. Therefore, the modified PSR model presented 

in this research has the ability to simulate the PSR impact and plays an 

important role in the numerical simulations of wave-seabed interactions. 
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Chapter 6 The Finite Element 

Simulation of Earthquake-Induced 

Liquefactions 

 

6.1 Introduction  

Dynamic loadings such as earthquake loadings can generate considerable 

principal stress rotation (PSR) in the saturated sand. This PSR effect can 

generate excess pore water pressures and cumulative shear strains, thus causing 

liquefaction in undrained conditions. This chapter simulates a centrifuge model 

test under the earthquake loading using the fully coupled finite element method 

and the modified PSR model to investigate the impact of PSR. This modified 

model and the original base model will be implemented into the numerical 

simulation of a boundary condition problem — Centrifuge Model Test No. 3 

from the VELACS project. The capability of this PSR soil model is also 

verified by comparisons of the predicted results between the modified PSR 

model, the original model and the laboratory results from the centrifuge tests. 

 

6.2 Problem Definition 

The centrifuge test of Model No. 3 in VELACS project is selected to assess the 

ability of the modified PSR model and investigate the significance of the PSR 

impact under earthquake loadings. This is a water saturated layer of sand 
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deposited in a laminar box of the depth of 220 mm (Figure 6-1). The model is 

divided vertically into two sand layers which have the relative density of 40% 

and 70% respectively. The laminar box is subjected to the base motion 

illustrated in Figure 6-2. The base shaking in the y direction was negligible and 

the base shakings in the x and z directions are major and minor shakings 

respectively. 

 

 

(a) Front view 
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(b) Plan view 

 

Figure 6-1. The configuration and the location of measuring instruments 

for the centrifuge model test (Yang, 2003). 

The input base motions and accelerations along the height of the soil sample 

were measured with 7 accelerometers. 10 pore pressure transducers were used 

to measure the pore pressures at the corresponding locations. The lateral 

deformations and settlements were measured by 6 displacement LVDT 

transducers. In total 23 transducers, illustrated in Figure 6-1, were used in this 

test. 
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(a) Horizontal base motion 

 

 

(b) Vertical base motion 

Figure 6-2.The input acceleration time history (Yang, 2003). 
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To simulate the centrifuge test, the two dimensional finite element computer 

code DYSAC2 with the fully coupled analysis was used. This program adopts 

the finite element solution of the dynamic governing equations for a saturated 

porous media as well as a three parameter time integration scheme called the 

Hilber-Hughes-Taylor α method. A predictor/multi corrector algorithm is also 

used to provide the quadratic accuracy. More details of this computer program 

can be found in Chapter 3. 

The problem is simulated in the model scale with the gravitational acceleration 

of 50 g. The whole box is divided into 162 elements (Figure 6-3). The mesh 

size is in accordance with numerical simulations for this centrifuge model 

carried by Yang (2003). No horizontal water flow is allowed on the side 

boundaries while no vertical water flow is allowed on the base, which is fixed 

to the ground. The adjacent nodes on the sides of the box are tied up with each 

other to simulate the behaviors of the soil sample in the laminar box. The 

permeability used in this simulation is 4.6E10
-5

 by taking the average value 

from Figure 6-4 to account for the different relative densities of the sand. The 

pore water pressure, stress, strain and the displacement are recorded for 30 

seconds with a time increment of 0.0018 s, because after 30 s the liquefaction 

spreads over the majority of the model and the soil becomes very unstable.  
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N: nodal point 

E: element 

x: tied up nodes for the simulation of laminar box 

Base: fixed and no vertical water flow 

Sides: no horizontal water flow 

 

Figure 6-3. Elements and boundary conditions of the finite element model 

(Yang, 2003).  
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Figure 6-4.The permeability of Nevada sand (Arulmoli et al. 1992). 

 

6.3 Predicted Results and Comparison with the 

Experimental Data 

6.3.1 Pore water pressures 

The induced excess pore water pressures (denoted by u) of typical locations of 

P1, P2, P3, P6, P7, P10 are presented in Figures 6-5. In the loose sand (P1, P3, 

P7), the results from the modified PSR model reach nearly the same peak value 

from the experimental data. The maximum pore water pressure in location P7 

reaches 21 kPa, which exceeds the 90% of initial vertical stress (18.9 kPa). The 

predicted pore water pressures in locations P1 and P3 does not exceed the 90% 

of initial vertical stresses. This indicates that liquefaction only occurs in the top 
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level of the soil model, which agrees with the laboratory results. However, the 

original model does not bring the soil to liquefaction at all measured locations 

as the predicted results are lower than the 90% of initial vertical stresses and 

significantly underestimate the pore water pressures. For example, in location 

P1, the peak pore water pressure from the original model is 29 kPa, which is 16 

kPa lower than the experimental value. Generally, the results from the modified 

PSR model agree better with the experimental data, although they slightly 

overestimate the pore water pressure in the early stage.  

In the dense sand (P2, P6, P10), the modified PSR model slightly overestimates 

the pore water pressure during the full stage, while the original model 

overestimates the pore water pressure during the early stage and still 

underestimates the pore water pressure during the later stage. Liquefaction is 

still not reached in the results from the original model while the modified PSR 

model brings the soil to the liquefaction at the top level of soil sample (location 

P10).  

Therefore, generally the modified PSR model performs better than the original 

model. The difference between the results of these two models comes from the 

large PSR effects induced by the earthquake loading in the sand. Accumulative 

excess pore water pressure is caused by the PSR impact which the original 

model does not consider. 

It also can be seen that the loose sand liquefies faster than the dense sand. For 

example, in the results from the modified PSR model at the shallow depth 

(locations P7 and P10), the peak pore water pressure of 21 kPa is reached at the 

time of 20 s in the loose sand while the peak value of 20 kPa is reached at 30 s 

in the dense sand. However, the pore water pressures in the loose sand dissipate 
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faster after the peak value. This may be due to the movement of water from the 

loose sand to the dense sand and the soil behaviors are difficult to predict after 

liquefaction has taken place. 

 

(a) Location P1. 

 

(b) Location P2. 
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(c) Location P3. 

 

(d) Location P6. 
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(e) Location P7. 

 

(f) Location P10 

Figure 6-5.Comparison of time history of excess pore water pressure 

between the predicted results and the experimental results. 
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6.3.2 Stress paths 

The PSR effects can be clearly seen in the stress space of σxz and (σx-σz)/2. The 

stress paths in the PSR stress space of location P6 from both models are shown 

in Figures 6-6. It can be seen that although the stress paths are quite random, 

the principal stresses from the two models are both continuously rotating under 

the earthquake loading. Furthermore, as (σx-σz) decreases, σx tends to be equal 

to σz, which indicates the lower of the deviatoric stress and the shear strength 

of soil. 

In Figures 6-7, the stress paths of location P6 from the two models start from 

point A and end at point B. They both show the decrease of the effective 

confining stress p’ and the butterfly shape in the final stages. It can be seen that 

the amplitudes of deviatoric stresses decrease as well. However, the modified 

PSR model brings the effective confining pressure p’ and the deviatoric stress q 

to 0 even without the incorporation of fabric effects, while the original model 

only brings the p’ to the lowest value of 5 kPa. This indicates the lower shear 

strength of soil from the modified PSR model than that from the original model. 

This difference between the two models still comes from the accumulative 

plastic volumetric deformations caused by the PSR effect. 
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(a) The original model 

 

(b) The modified model 

Figure 6-6. Predicted stress paths in the PSR space in location P6. 
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(a) The original model 

 

(b) The modified model 

Figure 6-7. Predicted stress paths in location P6. 
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6.3.3 Time history of accelerations 

The time history of the accelerations measured in the centrifuge tests and 

predicted from the two models in the numerical simulations are presented in 

Figure 6-8 to Figure 6-11. It can be seen that the predicted accelerations from 

the modified PSR model generally agree with the measured results in locations 

of all the 4 accelerometers. Only some slight overestimations of less than 0.05 

g can be observed. However, in the predicted results from the original model, 

the discrepancy can be more than 0.25 g, such as accelerations in location A6. 

The predicted results from the modified PSR model agree better with the 

measured accelerations because of its consideration of the PSR impact, thus 

better reflecting the true behavior of the sand. 

 

(a) Lab results 
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(b) Predicted results from the modified model 

 

(c) Predicted results from the original model 

Figure 6-8. The measured and predicted acceleration from the modified 

model in location A4. 
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(a) Lab results 

 

(b) Predicted results from the modified model 
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(c) Predicted results from the original model 

Figure 6-9. The measured and predicted acceleration from the modified 

model in location A5. 

 

(a) Lab results 

-0.2

-0.1

0

0.1

0.2

0 10 20 30 40

original model

A
cc

el
er

at
io

n
 (g

) 

Time (s) 

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 10 20 30 40

lab results

A
cc

el
er

at
io

n
 (g

) 

Time (s) 



167 

 

 

(b) Predicted results from the modified model 

 

(c) Predicted results from the original model 

Figure 6-10. The measured and predicted acceleration from the modified 

model in location A6. 
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(a) Lab results 

 

(b) Predicted results from the modified model 
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(c) Predicted results from the original model 

Figure 6-11. The measured and predicted acceleration from the modified 

model in location A7. 
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underestimates the settlement of the soil. However, the modified PSR model 

still underestimates the settlements compared with the experimental data. This 

may be due to the movement of the LVDT transducer and the assumption of the 

constant permeability. Numerous studies found that the permeability tends to 

increase as the liquefaction spreads during the earthquake loadings 

(Andrianopoulos et al., 2010; Fareet al., 2011; Shahiret al., 2012). Therefore, to 

simulate the settlements better, the changing KD is required in the future 

investigations. 
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(b) Location L6 

Figure 6-12. Comparison of time history of settlement between the 

predicted results and the experimental results. 
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relatively close to the locations of L5 and L6. 

 

(a) L1 

 

(b) L2 
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(c) L3 

 

(d) L4 

Figure 6-13. Comparison of time history of lateral displacements between 

the predicted results and the experimental results. 
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6.4 Summary 

In this chapter, the earthquake-induced liquefaction of sand has been simulated 

using the newly developed PSR model which can consider the principal stress 

rotation. Both the modified PSR model and the original model were 

implemented into the finite element simulations of the centrifuge test under 

earthquake loadings to test their abilities and comparisons were made between 

the predicted results and the experimental results. 

The original model significantly underestimates the pore water pressure 

build-up, the reduction of p’ and the cumulative shear strain. Liquefactions are 

not observed in the predicted stress path from the original model. However, the 

modified PSR model can generate higher excess pore water pressure than the 

original model and bring the soil to the liquefaction at the top level, which 

agrees with the laboratory results. The accelerations predicted agree well with 

the measured results. The comparisons show that the modified PSR model 

predicts much larger lateral displacements and settlements than the original 

model and performs better compared with the experimental results. However, 

the modified PSR model still underestimates the lateral displacements and 

settlements close to the surface, which may be due to the movement of the 

LVDT transducer and the assumption of the constant permeability. Generally, 

the predicted results from the modified PSR model agree better with the 

experimental results due to its complete ability in the simulation of the PSR.  

It is evident that the earthquake loading can produce the PSR in the soil. 

Continuous rotation of principal stresses can be observed in simulation results 

from both the original model and the modified PSR model. As the natural 
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earthquake loadings are much more complex, it is therefore important to 

consider the PSR effects in the simulation of earthquake-induced liquefactions. 

In conclusion, the modified PSR model presented in this research has the 

ability to simulate the PSR effects and plays an important role in the numerical 

simulations of soil behaviors under earthquake loadings. 
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Chapter 7 Summary and Conclusions 

 

7.1 Summary 

7.1.1 Background and reasons for the study of principal stress 

rotations 

Principal stress rotations (PSR) occur in most of geotechnical problems under a 

variety of loading conditions. Plastic deformations and the non-coaxiality 

which means the non-coincidence between the principal strain increment 

directions and the principal stress directions can be caused by this PSR even 

without a change of principal stress magnitudes. Continuous PSR can also 

generate excess pore water pressure and cumulative shear strain in undrained 

conditions, especially under the dynamic loading. This PSR behavior can 

further accelerate undrained soil liquefaction because of the cumulative plastic 

volumetric deformations. Ignoring the PSR impacts may lead to unsafe design.  

The PSR and non-coaxial behavior can be found in numerous experimental 

investigations. Roscoe et al. (1967) proposed that the principal stress directions 

were not coincident with the principal strain rate directions before the peak 

shear stress based on their findings from a simple shear test. The non-coaxiality 

was also observed in the directional shear cell tests from Wong & Arthur (1985) 

and micro-mechanical study of a photoelastic disc assembly to simulate the 

two-dimensional granular material from Drescher & Jong (1972). After that, 

the PSR impact and non-coaxiality were widely explored by researchers using 
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the hollow cylinder apparatus. Results from these experimental tests indicate 

that loading conditions involving the PSR can cause the non-coaxial behavior 

in the soil samples. This non-coaxiality can be observed especially during the 

early stage of the shearing. Then the difference between the directions of the 

principal stress and the principal strain increment tends to reduce as the soil 

specimen approaches the critical state. Moreover, the deviations between the 

principal stress directions and the principal strain incremental directions could 

be more than 30 degrees under the continuous PSR. 

The investigation of the PSR and non-coaxial behaviors has been attempted by 

numerous numerical methods as well. The discrete element method (DEM) 

was widely used by researchers to study the non-coaxiality (Thornton & Zhang, 

2006; Li & Yu, 2009), and similar conclusions from the experimental studies 

were proposed by them. A few researchers have also explored the significance 

of PSR using the finite element method (FEM) together with different 

numerical integration schemes (Abbo, 1997; Sassa & Sekiguchi, 2001). A 

variety of soil models based on different theories have been proposed during 

the last decades to simulate the PSR and non-coaxial impacts as well, such as 

double shearing model (Spencer, 1964), hypoplastic models (Wang et al., 1990; 

Kolymbas, 1991), multi-laminate models (Iai et al., 1992), yield vertex theory 

model (Rudnicki & Rice, 1975), etc. In 2013, Yang and Yu conducted a series 

of numerical simulations to investigate the impact of PSR by using an 

elastoplastic model considering the PSR effect (PSR model) developed based 

on a kinematic hardening model with bounding surface concept. This model is 

also used in this research to study the PSR impact under various loading 

conditions. 
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Generally, the experimental studies and numerical simulations all demonstrated 

that the PSR can lead to the plastic deformations and non-coaxiality in the soil 

and it is essential to take account of the PSR impact in geotechnical studies and 

designs. Therefore, this research aims to investigate the significance of PSR 

effect in geotechnical problems by numerical simulations of various 

experimental tests using the newly-developed PSR model which can take 

account of PSR impacts. The ability of this PSR model is also tested in the 

simulations of these experimental tests including the triaxial tests, simple shear 

tests, hollow cylinder tests, and centrifuge tests under wave loadings and 

earthquake loadings. 

7.1.2 Liquefaction and its criteria 

Liquefaction is a phenomenon in which the soil behaves like fluid due to the 

significant reduction of its strength and stiffness under various loading 

conditions. The change of the interaction between the soil skeleton composed 

of grains and the pore fluid leads to this phenomenon. When the soil is 

subjected to the cyclic loadings, the contraction of the soil and the build-up of 

pore pressure occur because of the rearrangement of the soil particles to reach 

an optimal potential state, which further causes the loss of the frictional force 

and bearing capacity of the soil. According to Ye et al. (2014), there are two 

mechanisms of the liquefaction—transient liquefaction and residual 

liquefaction. Transient liquefaction comes from the phase lag of the pore 

pressure in the elastic seabed. Residual liquefaction is caused by the 

compaction of elastoplastic seabed soil under dynamic loadings and is 

investigated in this research. 
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It is important to study the liquefaction because the offshore foundations are 

vulnerable to this soil behavior. Catastrophic failures of the structure have been 

reported to occur in a short time due to the soil liquefaction and caused further 

damages such as financial losses and deaths. Moreover, liquefaction can be 

induced under a variety of loading conditions such as wave loadings and 

earthquake loadings. However, it is difficult to study the liquefaction because 

of the limitations of the laboratory tests and in-situ measurements such as the 

inappropriate stress path and the high research price, etc. Therefore, the 

numerical simulations used in this research can be considered as a suitable 

method to explore the liquefaction behavior. 

The criterion proposed by Sassa & Sekiguchi (1999) is adopted in this research 

to judge the occurrence of the liquefaction. In this theory, the excess pore water 

pressure ue is divided into the oscillatory part ue
1
 and the residual pore water 

pressure ue
2
, which is determined by taking the average of the moving wave 

and stems from the contraction of the soil under cyclic plasticity. Then the 

occurrence of the liquefaction is judged by calculating the ratio k of the 

measured ue
2
 to the value of the initial vertical effective stress σv0’ at one 

location. The typical values for this ratio of liquefaction may vary from 0.78 - 

0.99. Moreover, liquefaction is also considered by some other criteria such as 

the sudden increase of the shear strain and the reduction of effective confining 

pressure as they also indicates the lower shear stiffness of the soil. 

7.1.3 Numerical implementations 

In this research, a series of experimental tests for the Nevada sand and 

Leighton Buzzard sand (Fraction B & E) were numerically simulated using the 
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modified PSR model and original model to study the PSR impact. The 

simulation consists of two parts: the single element simulation and the finite 

element simulation.  

In the single element simulations, these two models were incorporated into a 

single element computer program written in Fortran, which is the first 

advanced computer programming language in the world and especially suitable 

for scientific and engineering computations such as geotechnical problems 

(Griffiths & Smith, 2003). This program is performed with the Intel Visual 

Fortran compiler and capable for the single element stress-strain response 

analysis. The PSR model parameters are also calibrated in these single element 

simulations. 

The finite element method was used to simulate the experimental centrifuge 

tests under the wave loading and the earthquake loading to further explore the 

PSR impact in the geotechnical boundary value problems. The simulation of 

centrifuge wave tests utilizes the commercial finite element 

software—ABAQUS, which is one of the most powerful large scale finite 

element software in the world. It contains abundant element and material 

library and can be used for nonlinear problems with the freedom of pore 

pressure. Furthermore, it has various interfaces of subroutines such as UMAT, 

which allows the implementation of the modified PSR model in this research. 

When the user defined material subroutine is used, ABAQUS uses the exact 

Newton’s method to solve the non-linear equilibrium equations (Simulia, 2010). 

In the simulation of the centrifuge earthquake tests, another finite element 

computer program DYSAC2 which can analyze the two dimensional dynamic 

geotechnical problems under plane strain conditions is adopted. DYSAC2 can 
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solve the fully coupled dynamic governing equations of a two-phase saturated 

porous media using the four-node elements with the reduced integration and 

the fluid bulk modulus terms (Muraleetharan et al., 1988). This program adopts 

a three parameter time integration scheme called the Hilber-Hughes-Taylor α 

method to integrate the spatially discrete finite element equations, along with a 

predictor/multi-connector algorithm to provide the quadratic accuracy and 

numerical damping characteristics (Hilber et al., 1977). In this research, the 

computer code of DYSAC2 written in Fortran 77 has been modified to 

incorporate the modified PSR model and original model into the centrifuge 

earthquake test from the VELACS project. 

The original model and modified PSR model were implemented into the finite 

element simulations by a constitutive model subroutine written in Fortran. This 

constitutive model subroutine adopted an explicit substepping integration 

algorithm with automatic error controls. In this integration scheme, the strain 

increment obtained from manipulations of the main program is divided into 

multiple sub-increments. The constitutive formulations are integrated firstly 

using Euler scheme of the first order accuracy, then using the modified Euler 

scheme of the second order accuracy in each sub-increment. The difference of 

the integration results from these two schemes gives the error measurement of 

the numerical integrations. The current sub-increment is re-subdivided based 

on the ratio of the local current error to the integration error tolerance if the 

error tolerance is exceeded. Furthermore, the imposed strain increment can be 

automatically divided based on the prescribed error tolerance because the size 

of the next sub-increment is also determined by the extrapolation of the current 

error compared with the error tolerance prescribed (Yang & Yu, 2006; 2010). 

When implementing this integration scheme, many additional details such as 
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the transition from the elastic to plastic zones, the solution for the negative 

plastic multiplier and the correction of stresses back to the yield surface were 

considered as well (Abbo, 1997). 

7.2 Conclusions 

This research has firstly simulated a series of experimental soil tests including 

the triaxial tests, simple shear tests and hollow cylinder tests using the single 

element computer program. Then the centrifuge wave tests and centrifuge 

earthquake tests have been numerically simulated using the finite element 

method. The critical conclusions are summarized in detail as follows. 

7.2.1 Soil behaviors in the single element simulations 

 Although the original model can reflect some PSR effects in the single 

element simulations under the PSR loadings, generally the modified PSR 

model performs better and agrees better with the experimental results than 

the original model. The original model can only produce very limited 

reduction of effective confining pressures and cumulative shear strains 

under cyclic loading paths, thus significantly underestimates the laboratory 

results and is unable to bring the specimen to the liquefactionin most of 

cases. However, the modified PSR model generates much more reduction 

of p’ and larger shear strains, and agrees much better with the experimental 

results due to its complete ability in the simulation of the PSR impact. 

Furthermore, the modified PSR model brings the soil to liquefaction, 

which agrees with the soil behaviors in the experimental results.  

 It is evident that the predicted results from the modified PSR model only 
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show difference compared to the original model when the specimen is 

subjected to loading paths involving the PSR. There is no difference 

between the simulation results from these two models under monotonic 

loadings because the stress paths do not involve the PSR. The comparison 

from the simulations for all three types of sand all demonstrates that both 

two models have the great ability to simulate the monotonic loadings under 

drained and undrained conditions. 

7.2.2 Soil behaviors in the finite element simulations under the 

wave loading 

 It can be seen from the simulation results that the principal stress is 

continuously rotating under the progressive wave, and both the progressive 

wave and the standing wave loadings produce the PSR in the seabed. 

Therefore the consideration of the PSR impact is important in offshore 

foundation designs.  

 Generally, the original model significantly underestimates the build-up of 

the excess pore water pressure, the reduction of the effective confining 

pressure and the cumulative shear strain under both the progressive waves 

and standing waves. However, the modified PSR model generates higher 

excess pore water pressure and the shear strain than the original model, 

thus bringing the soil to the liquefaction and agrees better with the 

laboratory results.  

 Generally, more severe wave loadings can generate higher pore water 

pressures. The PSR impact also increases with the severity of imposed 
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wave loadings reflected by the cyclic stress ratio. The higher cyclic stress 

ratio leads to the more obvious difference between the modified PSR 

model and the original model, which means the larger PSR effects. 

Therefore, the modified model can bring the soil to liquefaction, thus 

reflecting the characteristics of critical cyclic stress ratio above which the 

liquefaction will occur. 

 Although the standing wave produces less PSR effect than the progressive 

wave, the modified PSR model still performs better than the original 

model compared to the experimental results under the standing wave. 

Under the standing wave, the PSR effect laterally reduces from the 

boundary of the soil bed to the antinode, where nearly no PSR was 

observed. Therefore, the modified PSR model has limited effect in the 

simulation at the antinode under the standing wave. However, this is just 

one very special case and location. As the natural wave loadings are much 

more random, it is important to consider the PSR impact in the simulation 

of wave-seabed interactions. Therefore, the modified PSR model presented 

in this research has a great ability and plays an important role in the 

simulations of wave-induced liquefaction. 

7.2.3 Soil behaviors in the finite element simulations under the 

earthquake loading 

 It is evident that the earthquake loading can produce the PSR in the soil 

bed. Continuous rotation of principal stresses can be observed in 

simulation results from both the original model and the modified PSR 

model. Therefore, it is also important to consider the PSR impact in the 
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simulation of earthquake-induced liquefaction.  

 The simulation results show that the original model significantly 

underestimates the pore water pressure build-up, the p’ reduction and the 

cumulative shear strain. Liquefaction cannot be observed in the predicted 

stress path from the original model. The modified PSR model can generate 

higher pore water pressures and shear strains than the original model, and 

bring the soil to the liquefaction which agrees well with the laboratory 

results. The accelerations predicted also agree well with the measured 

results from the experimental centrifuge test. 

 The comparison of the lateral displacements and settlements show that 

both the modified PSR model and the original model underestimate these 

results. This may be due to the movement of the LVDT transducer and the 

assumption of the constant permeability. However, the modified PSR 

model still predicts much larger displacements and settlements than the 

original model and performs much better compared with the experimental 

results. 

 Generally, the predicted results from the modified PSR model agree much 

better with the experimental results due to its ability in the simulation of 

the PSR impact. As the natural earthquake loadings are much more 

complex, it is therefore important to consider the PSR effects in 

earthquake designs. In conclusion, the modified PSR model presented in 

this research has a great ability and plays an important role in the 

simulations of the soil behaviors under earthquake loadings. 
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7.3 Recommendations for Future Research 

The current study has compared the predicted results from numerical 

simulations of a series of experimental tests with the test results and provided 

the better understanding of the PSR effect and other soil behaviors related to 

the PSR. However, as a tool to find the solution to the real geotechnical 

problem, numerical simulations still have some limitations, such as the 

postulations, the simplifications made. In this process, important features are 

retained while less important features are omitted to achieve the result. 

Furthermore, numerical problems are often encountered in the computations. 

To achieve better simulation results, it is essential to consider the problem 

more completely. Therefore, some suggestions for the future work are 

discussed below. 

7.3.1 The modified PSR model 

 This study focuses on the impact of the PSR on the soil behaviors using 

the PSR model modified on the basis of a kinematic hardening model from 

Dafalias & Manzari (2004). Therefore, the fabric anisotropy and 

non-associativity in deviatoric space in their original model are not 

considered to facilitate the postulations used in this research. However, the 

soil behaviors from the fabric anisotropy have been widely observed in the 

experimental tests. The PSR and fabric effects are both important and they 

are often mutually interacted. Therefore, to achieve more accurate results 

for problems such as the experimental tests investigating the anisotropy, 

the corresponding features can be added into the model. 
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 It can be seen from the formulations of the original model and modified 

PSR model that the square root of the effective confining pressure p’ is 

included. However, in the finite element simulation of boundary value 

problems, the singularity problem is likely to occur in the soil elements, 

especially at the surface of the soil bed. This problem may lead to the 

negative effective confining pressure, thus causing numerical problems 

such as computation errors and non-convergence in some elements during 

the iterations. Although these problems only happen in the late stage in a 

few integration points very close to the surface of soil beds and do not 

affect the computation of the whole soil bed, special cares such as the 

cutoff value of the effective confining pressure p’ and very small 

increments are given to these elements in this research. These measures 

may cause a slight discrepancy of the simulation results and increase the 

computation costs. Therefore, it is recommended that the model can be 

further developed to avoid this problem by using the rounded tip on the 

yield surface or modifying the related formulations and theories for the 

cases when the effective confining pressure becomes negative. 

7.3.2 Numerical implementations 

 The simulation results from the centrifuge earthquake test in Chapter 6 

show that both the original model and the modified PSR model 

underestimate the displacements and settlements under the earthquake 

loading. This may be due to the constant permeability used in the research. 

Studies demonstrate that the permeability tends to increase as the 

liquefaction spreads in the soil during the earthquake shakings 

(Andrianopoulos et al., 2010; Fareet al., 2011; Shahiret al., 2012). 
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Therefore, in order to obtain more accurate results for the displacements 

and settlements, the changing value of permeability is suggested to use in 

future numerical studies. 

 The centrifuge earthquake tests are simulated in this research using the 

DYSAC2 program which is only available for finite element problems 

under the plane strain condition. To further investigate the soil behaviors 

under the PSR, it is essential to simulate more complex geotechnical 

problems under the 3-dimensional condition. Therefore, DYSAC2 

program can be modified to consider the 3-D condition or implement the 

modified PSR model into other software which is capable for the 

earthquake analysis under the 3-D condition. Although the 3-D finite 

element model is used in the numerical simulation of centrifuge wave tests 

in Chapter 5, this model is fully constrained in the z direction, hence 

simulating the plane strain condition as well. Further investigations 

considering more complex geotechnical problems under wave loadings 

such as the soil-structure interaction of the embankment, breakwater and 

wind turbine under the 3-D condition are suggested to be conducted. 

 The single element simulations and conventional laboratory tests are useful 

to study the soil responses under the PSR. Several single element 

simulations under the PSR in one direction have been carried out in this 

research. However, it is important to investigate the soil behaviors under 

the PSR in two and three directions using the single element simulations 

because there are multiple PSRs (or shear stresses) in real world 

geotechnical engineering problems. Therefore, parallel studies including 

both the single element numerical simulation and experimental study under 
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multiple PSRs are highly recommended in future. 
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