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Abstract

This thesis presents the study of a relatively new class of photonic structures in-

voking Parity-Time (PT )-symmetry. PT -symmetric structures in photonics, as a

realisation of PT -symmetric Quantum Mechanics problems, are constructed by a

judicious design of refractive index modulation which requires the real part of the

refractive index to be an even function and the imaginary part of the refractive in-

dex to be an odd function in space. PT -symmetric structures in the form of Bragg

gratings, coupled resonators and chain resonators are the main configurations stud-

ied in this thesis. These PT -symmetric structures feature a spontaneous symmetry

breaking at which interesting wave behaviour such as an asymmetric response de-

pending on the direction of the incident wave, unidirectional invisibility, simultane-

ous coherent-perfect-absorber lasing and localised termination modes are observed;

these behaviours are presented in this thesis. Theoretical and numerical studies of

these PT -symmetric structures are undertaken which assume realistic material pa-

rameters, including material dispersion and material non-linearity. Moreover, in this

thesis, potential applications of these PT -symmetric stuctures are explored.

The first part of the thesis considers PT -symmetric Bragg grating structures which

are formed by introducing a PT -symmetric refractive index modulation into a Bragg

grating structure. If gain/loss dispersion is considered, it is shown that dispersion

limits the PT -symmetric operation to just a single frequency. As such sponta-

neous symmetry breaking can only be achieved by varying the gain/loss parameter.

Nevertheless, it is shown that by switching the gain/loss in the system, a switch-

ing operation can be achieved by using the PT -Bragg grating at a single frequency.

Subsequently, a non-linear PT -Bragg grating is investigated by using a time-domain

numerical method, namely the Transmission-Line modelling (TLM) method. For
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the present work a TLM code is developed from scratch in order to ensure full-

flexibility when modelling a dispersive and non-linear material. Using the TLM

solver, it is demonstrated that gain/loss saturation is an important material prop-

erty which should be considered as it may impact the practical applications of a PT -

symmetry-based device. In the context of a non-linear PT -Bragg grating (NPTBG),

the gain/loss saturation affects the interplay between the PT -symmetric opearation

and the Kerr non-linear effect. It is further shown that gain/loss saturation plays

a crucial role in securing a stable operation of non-linear PT -based devices. For

practical applications, it is demonstrated that a non-linear PT -symmetric Bragg

grating offers an additional degree of freedom in their operation, by modulating the

gain/loss and the intensity of the input signal, compared to a passive structure which

can only be manipulated by the input signal intensity. Two applications based on

the interplay of PT -symmetric behaviour and Kerr non-linearity are demonstrated,

namely a memory device and a logic-gate device.

The second part of the thesis studies PT -symmetric resonator structures as a cou-

pled system and as a periodic chain system. For these studies, a semi-analytical

method based on the Boundary Integral Equation (BIE) method is developed and

used together with a two-dimensional TLM method. The impact of realistic mate-

rial parameter on the spectral properties of the structure is again investigated. It

is shown that the PT -symmetric behaviour can be observed at a single frequency.

Moreover, it is shown that PT -symmetry-like behaviour is observed but with com-

plex eigenfrequencies due to the radiation losses; this is a deviation of the strict

definition of a PT -symmetric structure with balanced gain and loss. Lowering las-

ing threshold by increasing loss in the system is demonstrated; this occurs due to

induced early symmetry breaking. The final part of the thesis studies the spectral

properties of an infinite and finite chain of PT -symmetric resonators. It is shown

that the type of modulation along the PT -chain affects the position of the breaking

point of the PT -structure. For a finite PT -chain structure, and for a particular
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type of refractive index modulation, early PT -symmetry breaking is observed and

shown to cause the presence of termination states which are localised at the edge

of the finite-chain resulting in localised lasing and dissipative modes at each end of

the chain.

* * *
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1
Introduction

This chapter provides the background of the work presented in this the-

sis, i.e. parity-time symmetric photonic systems. An interpretation of

parity-time symmetry in the simplest form, as a source-drain problem,

is conceptually introduced. This chapter also shows the development of

research in the area of PT -symmetry systems and further shows the de-

velopment of research, especially in PT -symmetric photonics systems.

Finally this chapter outlines the contents of the thesis.

* * *
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1.1 Background to the Thesis

In 1998, Bender and Boetcher published a seminal paper [1.1] in which they studied

the spectra of a new class of complex quantum mechanical systems‡. In the paper,

it is established that a complex quantum mechanical system which satisfies Parity

and Time (PT ) symmetry may have a completely real spectrum, i.e. it is a stable∗

system.

This concept of a PT -symmetric system is elaborated further in [1.2] where Bender,

et al. provided an example of a simple PT -symmetric system as [1.2,1.3],

H =

−jα κ

κ jα

 . (1.1)

Interestingly, the system given in (1.1) is similar to the eigenvalue problem matrix

of a source and drain, in which α represents source (+) and drain (−) that are

coupled by a coupling mechanism represented by κ. As such, in the simplest form,

the concept of PT -symmetry can be depicted as a source-drain system which is

schematically illustrated in Fig. 1.1. It can be seen from Fig. 1.1(a) that a system

with a source is unstable, in the same way as for a system with a drain, portrayed

in Fig. 1.1(b); the system with a source has a growing (unbounded) state while the

system with a drain has a decaying state. It is, however, by coupling these systems

together that a system with growing energy can be tamed by a dissipating system

which yields to a stable system, as illustrated in Fig. 1.1(c).

Since the publications of [1.1–1.6], PT -symmetric systems have been the subject of

intense investigation in the last couple of years. Figure 1.2 shows the number of pub-

lications associated with PT -symmetry (blue bar) from its conceptualisation in 1998

‡Within this context the quantum mechanical system refers to the Hamiltonian of the
Schrödinger equation. The formal definition of a Hamiltonian is presented in Section 3.1.

∗A stable system here refers to a system which yields neither a non-decaying nor amplifying
output.
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stable system

unstable system

Figure 1.1 Illustration of source-drain system. An isolated system with (a) source, (b)

drain and (c) the coupled source-drain system.

up to 2014. Note that in 2014 on average almost one publication associated with PT -

symmetry was published daily. Despite the extensive theoretical developments of the

PT -symmetric system [1.1–1.10], experimental observation of PT -symmetry within

its original context of a quantum mechanical system is found to be elusive and very

challenging [1.11–1.13]. Meanwhile, PT -symmetry has also been reported in a vari-

ety of physical systems such as gravity theory [1.14], cold atom systems [1.15–1.17],

electronics [1.18–1.20], mechanical oscillators [1.21], acoustics [1.22,1.23], microwave

electromagnetics [1.24,1.25] and optics-photonics [1.11,1.12,1.26–1.63].

In particular, it is noted that an enormous amount of research on PT -symmetry

has been done within the optical framework; from 2011 more than half of the publi-

cations in the field are associated with PT -symmetric optical structures, which in-
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Year
1998 2003 2008 2013

C
o
u
n
t

0

100

200

300

400

PT-symmetry

PT-symmetry & Optics

Figure 1.2 Number of publications on PT -symmetry from 1998 to 2014. Data from

publication query service Scopus accessed in October 2015.

clude gratings [1.26–1.28,1.30,1.37,1.42,1.44,1.47,1.51,1.64,1.65], lattices [1.26,1.31,

1.41,1.66,1.67], waveguides [1.13,1.29,1.38,1.39,1.43,1.48,1.54,1.68–1.70], plasmonics

[1.32,1.55,1.60] and resonant cavities [1.11,1.53,1.56,1.61,1.62,1.71]. Motivated by

the source-drain PT -symmetry concept, simple PT -waveguide couplers have been

demonstrated on a LiNbO3 platform where one waveguide was providing gain and

the other an equal amount of loss [1.34], marking the first experimental observa-

tion of PT -symmetric photonics. Since [1.34], more experimental work on PT -

symmetric photonics has emerged such as PT -symmetric Bragg gratings [1.72] in

which the authors demonstrate the unidirectional transparency previously theoret-

ically predicted by [1.26,1.30], PT -symmetric ring gratings for the demonstration

of single-frequency laser application [1.58,1.73], PT -symmetric lattices and PT -

symmetric microresonators. These structures are summarised in Fig. 1.3.

Within the optical context, the main feature of PT -symmetric photonic structures

is that they may have purely real spectra, i.e. zero net-power amplification or

dissipation, despite having both gain and loss in the system [1.13,1.34,1.75]. How-

ever, there exists a threshold defined for a certain amount of gain/loss for which

the PT -system undergoes a spontaneous PT -symmetry breaking, and above which

the power grows exponentially [1.13,1.34,1.38,1.57,1.75] within the structure. In-

teresting properties of PT -photonic structures at this threshold point have been
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PT -symmetric
coupled waveguide [1.34]

PT -symmetric
waveguide grating [1.74]

PT -symmetric
ring grating [1.61]

PT -symmetric coupled
microresonators [1.11,1.58]

Figure 1.3 Examples of experimentally demonstrated PT -symmetric photonic struc-

ture.

observed which include loss-induced invisibility [1.12,1.26,1.30,1.72], simultaneous

lasing and coherent perfect absorption [1.57,1.75], anomalous Bloch-mode power

oscillation [1.12,1.76], asymmetric beam scattering [1.69,1.72] and lasing in a loss-

dominated system [1.56,1.71].

PT -symmetric structures in optics come in a vast range of configurations, for that

very reason this thesis will focus mainly on the study of PT -symmetric Bragg grat-

ing and PT -symmetric resonant microcavities structures. In particular the work

presented in this thesis addresses some fundamental challenges in the modelling and

practical consideration of PT -symmetric photonic structures.

From the aspect of model analysis, it came to my attention during the course of this

work that most of the published works on PT -symmetric photonic structures have

neglected the dispersive behaviour of material which naturally occurs in all realistic

implementation with gain or loss [1.47,1.50,1.69,1.71,1.77–1.79]. As a result it has

raised questions regarding the influence this may have on the practical application
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of PT -symmetry-based devices. For that reason a significant part of this thesis has

been devoted to modelling PT -symmetric photonic structures under a realistic dis-

persive material scenario. It will present the impact of realistic dispersive gain/loss

media on the performance of PT -symmetric structures, and in particular on how

realistic dispersion puts a fundamental limitation on the practical application of

PT -symmetric based devices. Despite this limitation, the work described in this

thesis will demonstrate the potential applications which can be exploited from the

unique properties PT -symmetric structures.

As for the method of study, a time-domain Transmission-Line Modelling (TLM) code

is developed from scratch to provide a greater flexibility to model PT -symmetric

structures, incorporating dispersive gain and loss material, within a time-domain

framework. Moreover, an accurate analytical method based on the Boundary Inte-

gral Equation (BIE) method has been developed to aid the modelling of microcavity

structures. The aim of using both frequency and time-domain methods of analysis is

to provide complete temporal and spectral pictures of PT -symmetric photonic struc-

tures, which has been missing from most of the previously reported results.

1.2 Overview of the Thesis

Chapter 2 presents the fundamental theories of electromagnetism which form the

foundation of the work described in this thesis. The chapter starts with a description

of the time-varying and time-harmonic electromagnetic fields and introduces the

concept of the time causality properties of matter. This chapter also defines the

scattering matrix formalism which describes a multi-port optical network system.

The concept of reciprocity is described and found to place a symmetry condition on

the scattering matrix. Finally, the concept of causal material properties is elaborated

and gives the Kramers-Kronig conditions which relate the real and imaginary parts

6



Chapter 1. Introduction

of the dielectric permittivity.

It is followed by chapter 3 which describes the concept of PT -symmetric photonics

as a translation of the PT -symmetric Hamiltonian problem in quantum mechanics.

The chapter also studies the spectral properties of a PT -symmetric scattering sys-

tem. In particular, it presents the properties of the transfer matrix M and the scat-

tering matrix S under PT -transformation, under which a PT -symmetric scatterer

is shown to exhibit exotic behaviour such as, unidirectional unitary transmission,

spontaneous PT -symmetry breaking and simultaneous coherent perfect absorber-

lasing operation. Moreover, this chapter also presents the generalised conservation

relationship for an asymmetric left-right response and provides a criterion for de-

scribing PT -symmetry breaking in a scattering system.

Following the study of a PT -symmetric scattering system in the previous chapter,

Chapter 4 focuses on a one-dimensional (1D) PT -symmetric Bragg grating. The

chapter overviews the dispersion properties of passive Bragg gratings and compares

them to the PT -symmetric Bragg gratings. For the case of a PT Bragg grating,

the impact of the gain/loss upon the transmission and reflection spectra is analysed.

Furthermore the asymmetric scattering phenomena depending on the direction of

the incident wave is studied. Moreover, the phase transition of PT -symmetry is

demonstrated showing how the gain/loss parameter breaks the PT -symmetry of

the system. Finally, the spectral singularity of the scattering system associated

with the simultaneous coherent perfect absorber-lasing (CPAL) operation state is

also shown.

In order to model a PT -symmetric structure within a realistic material framework,

Chapter 5 provides a simple practical realistic gain/loss material model which is

dispersive and saturable. A frequency domain model of such a dispersive and

saturable model is presented. Moreover this chapter also details the time-domain

Transmission-line modelling (TLM) method in one-dimension. The telegrapher equa-
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tion is introduced and shown to give an analogue representation of Maxwell’s equa-

tions in the electromagnetic field theory as a lumped-element electrical circuit. Sub-

sequently, a numerical TLM method is developed based on this analogy using the

bilinear Z-transformation formulation. Moreover, a gain material satisfying the

Kramers-Kronig relations is described and implemented in the TLM method. Fi-

nally, the implemented TLM gain material model is validated for two study cases,

namely for a linear and saturable gain.

In Chapter 6 the impact of dispersion in a realistic causal gain/loss material model,

which satisfies the Kramers-Kronigs relations, upon the spectral behaviour of a PT -

Bragg grating (PTBG) is investigated. This chapter will show the application and

validity of the numerical time-domain TLM method to model a realistic dispersive

PTBG based on a typical GaAs material. This chapter shows that dispersion put

a practical limit in the operation of a PT -symmetric Bragg grating. Nevertheless,

the chapter demonstrates a novel application of a PTBG for a switching application

in the time-domain.

Chapter 7 further investigates the properties of a PT -symmetric Bragg grating by

including non-linear behaviour in the material model. First, the 1D-TLM model is

developed further to also include a non-linear property of material. A realistic dis-

persive and non-linear Duffing material model is used for the purpose of modelling.

Employing the enhanced TLM model, which includes both a dispersive-saturable

gain/loss material model and a non-linear-dispersive Duffing model, the performance

of non-linear PT -symmetric Bragg grating structures are investigated. Two variants

of non-linear PT -Bragg grating structures are considered in this chapter. The chap-

ter further investigates the impact of non-linearity in the operation of such structures

in a realistic scenario when the gain/loss material is dispersive and saturable. Two

applications exploiting this combined (PT -symmetric and non-linearity) behaviour

are also demonstrated as a memory device and a logic gate device.
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In Chapter 8 the formulation of 2-dimensional (2D) TLM model is presented. This

chapter serves as a prelude to the modelling of PT -symmetric structures in the 2D

spatial domain. In particular, the chapter extends the implementation of the digital

filter design of a realistic dispersive and saturable gain/loss model which was used

to model a realistic PT -symmetric Bragg grating in the previous chapters.

Chapter 9 investigates the fundamental properties of the PT -resonant system based

on two coupled whispering gallery resonators within the context of both realistic

material properties and practical operating constraints. In particular the chapter

will discuss how practical dispersive property of gain and loss material that sat-

isfy the Kramers-Kronig relationship affects the performance of microcavity-based

PT -resonant structure. Theoretical background for an isolated circular resonator

is also overviewed. An exact analytical model based on the Boundary Integral

Equation (BIE) method is developed to calculate the characteristic frequencies of

PT -symmetric microresonators.

Chapter 10 considers the extension of the PT -symmetric coupled microresonator

structure studied in the previous chapter as a finite periodic Parity Time chain

made of resonant dielectric cylinders. The main case studied in this chapter is a

PT -chain on which a more general case of PT symmetry is achieved by modulating

both the real and imaginary parts of the material refractive index along the resonator

chain. The band-structure of the finite PT resonator chains is compared to infinite

case in order to understand the complex interdependence of the Bloch phase and the

amount of the gain/loss in the system that causes the PT symmetry to break.

Finally Chapter 11 gives a summary and the conclusions of this thesis and discusses

possibilities for further developments based on this work.
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2
Electromagnetism and Matter

Fundamental theories of electromagnetism, which form the foundation

of the work described in this thesis, are presented in this chapter. The

chapter starts with a description of the time-varying and the Helmholtze-

quation for electromagnetic field and introduces the concept of the time

causal properties of matter. This chapter also defines the scattering ma-

trix formalism which describes a multi-port optical network system. The

concept of reciprocity is described and found to place a symmetry con-

dition on the scattering matrix. Finally, the concept of causal material

properties is elaborated and gives the Kramers-Kronig conditions which

relate the real and imaginary parts of the dielectric permittivity.

* * *
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Chapter 2. Electromagnetism and Matter

2.1 Basic Theory of Electromagnetism

2.1.1 Maxwell’s Equations for Time-Varying

Electromagnetic Field

Year 2015 is marked as the International Year of Light to recognise the advance-

ment of light based technologies since the description of light as electromagnetic

wave phenomena 150 years ago by James C. Maxwell in 1865 [2.1]. Formulated

by James C. Maxwell in 1861 [2.2], Maxwell’s equations are the embodiment of

a hundred years of theoretical and experimental work previously done by Johann

Carl Friedrich Gauss, André-Marie Ampère, Hans Christian Ørsted, Heinrich Lenz,

Michael Faraday, Oliver Heaviside and many others [2.3–2.5]. Maxwell’s equations

are a complete set of equations describing the dynamics of macroscopic electro-

magnetic phenomenon. They can be expressed in two forms, i.e. in integral and

differential form. Although the integral form of Maxwell’s equations may provide a

more in-depth understanding of the underlying physical phenomena, they are often

analytically solvable only for canonically shaped objects [2.6]. Meanwhile, supported

by the development of advanced computing technologies, the differential form pro-

vides mathematical advantages to naturally discretise any non-standard problem

both in spatial and time domains to be solved numerically [2.5,2.7]. The curl pair

of Maxwell’s equations in the differential form is given as,

 ∇×H
−∇×E

 =

Je

M

+
∂

∂t

D
B

 (2.1)

where the description of each quantity, including their units in an SI system, is

given in Table 2.1. It is important to note that in the time-domain formulation of

the Maxwell’s equation (2.1), all the vector field quantities E, H , Je, D, and B

are real functions of both position and time, i.e. E = E(x, y, z; t) in a Cartesian
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Table 2.1 Symbol and unit notation of electromagnetics quantities

Symbol Unit Name

E V/m Electric field vector

D C/m2 Electric flux density vector

Pe C/m2 Dielectric polarisation vector

H A/m Magnetic field vector

B Wb/m2 Magnetic flux density vector

Je A/m2 Electric current density vector

M V/m2 Magnetic current density vector

ε F/m Electric permittivity

ε0 F/m Free-space permittivity

ε̄ − Relative permittivity

χe − Dielectric susceptibility

σ S/m Electrical conductivity

µ H/m Magnetic permeability

µ0 H/m Free-space permeability

coordinate system. Moreover, as the focus of the thesis will be on applying Maxwell’s

equations in the optical regime where non-magnetic materials are considered, the

magnetic current density is negligible, i.e. M = 0 is assumed throughout this

thesis.

From (2.1), it can be seen that the rate of change of the electric flux densityD in time

excites the generation of magnetic field H in space, while the rate of change of the

magnetic flux density B generates the electric field E implying that the dynamics of

electric and magnetic fields in space and time are coupled. This coupling is related

to the macroscopic response of the electric and magnetic properties of a material

to the applied electromagnetic field, which is given by the so called constitutive
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relations. For an homogeneous and isotropic material the constitutive relationships

in the time-domain are given by [2.4,2.8–2.10],

Je = σ(t) ∗E, (2.2)

D = ε0E + ε0χe(t) ∗E, (2.3)

B = µH . (2.4)

where the electromagnetic properties of the material, (σ, ε, ε0, χe, µ, µ0), are also

described in Table 2.1. Moreover for photonic applications in the THz regime, it

is typical to assume a non-magnetic material, i.e. (µ = µ0); henceforth a non-

magnetic material is assumed in this thesis. Note that ∗ in (2.2) and (2.3) denotes

the time-domain convolution operator which is defined as [2.8–2.10],

f(t) ∗E(t) =

∞̂

0

f(τ)E(t− τ)dτ (2.5)

where the time-varying function f(t) can be of σ(t) or χe(t). The convolution

operation of (2.5) suggests that D(t) and J(t) are non-local functions of time; as

such the field-matter response at time t depends on the field response at times other

than t.

Another important theorem in electromagnetism, associated with the conservation

of energy, is the Poynting theorem. The Poynting theorem is obtained directly as a

result of imposing vector identities on (2.1) and is given as [2.3–2.5,2.7,2.11],

‹

Ω

(E ×H) · dS +

˚

V

[
E · Je +H · ∂B

∂t
+E · ∂D

∂t

]
dv = 0 (2.6)

The interpretation of (2.6) is that the power dissipated and the rate of change of

energy stored in a closed volume V are related to the net electromagnetic energy

flowing into the volume V through the closed surface Ω. The energy density influx
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is commonly referred to as the Poynting vector S, i.e.

S = E ×H (2.7)

In this work, a general interpretation of the Poynting vector S is that the magnitude

of the Poynting vector |S| denotes the instantaneous energy fluxes (also known as

instantaneous intensity) in units of power per unit area, Watts/m2, and that the

direction of S signifies the direction of the propagating field [2.5,2.12,2.13].

2.1.2 Boundary Conditions

In the preceding section, the curl formulae form of Maxwell’s equations have been

defined in the time domain. The time-varying form is capable of describing the in-

stantaneous electric and magnetic response at any point in space and time and is fun-

damental in the development of the time-domain numerical method (Transmission-

Line Modelling Method) which is described in Chapter 5. It is important, however,

to note that the curl formulae of Maxwell’s equations are valid only in a continuous

medium. In the presence of a material discontinuity solutions to Maxwell’s equa-

tions also need to satisfy appropriate boundary conditions depend on the geometrical

structure of the system considered.

The response of the field at the interface discontinuity of different materials can be

described by the divergence formulae of Maxwell’s equations which for the time-

varying field and in a source-free region are given by [2.5,2.7],

∇ ·D = 0, (2.8)

∇ ·B = 0. (2.9)

Applying Gauss’s law to (2.8) at the boundary of two different media denoted by
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Medium 1: ε1, µ1

Medium 2: ε2, µ2

Dn1

Dn2
Et1

Et2

Bn1

Bn2

Ht1

Ht2Normal

Figure 2.1 Boundary condition of magnetic and electric field quantities at the inter-

face of two different media. Adapted from [2.3–2.5,2.7,2.12–2.14].

ε1, and µ1 and ε2, and µ2 as shown in Fig. 2.1, it can be shown that the normal

components of electric field density Dn are continuous [2.5,2.7], i.e.

Dn1 = Dn2. (2.10)

This implies that the normal components of the electric fields En are not contin-

uous. Meanwhile upon an application of Stoke’s integral theorem on (2.1) within

an infinitesimal region around the interface, it can be shown that the tangential

components of the electric field are always continuous at the interface [2.3–2.5,2.7,

2.12–2.14],

Et1 = Et2. (2.11)

The boundary conditions for B and H may be obtained in an analogous way and

are given as [2.3–2.5,2.7,2.12–2.14],

Bn1 = Bn2 (2.12)

Ht1 = Ht2 (2.13)

The relations (2.10) to (2.13) are illustrated in Fig. 2.1. It is important to note that

the boundary conditions decribed here are valid in a source-free interface only; hence

they ignore surface current and surface charge densities which can occur in the case
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of interfaces with metallic or magnetic materials [2.3–2.5,2.7,2.12–2.14].

2.1.3 Helmholtz Equation for Time-Harmonic

Electromagnetics

In the previous subsection, Maxwell’s equations in the time-domain have been de-

fined, together with boundary conditions to be satisfied at the interface between

different media. It was briefly introduced that solving Maxwell’s equations subject

to appropriate boundary conditions is enough to describe an electromagnetic prob-

lem. This concept will be elaborated further in Section 5.3.1 with the description of

the time-domain numerical (the Transmission-Line Modelling) method that is used

in the work described in this thesis to solve the Maxwell’s equation numerically

in the time-domain. This section will focus on the formalisation of the dynamics

of an electromagnetic field in the frequency domain. This formalism gives a nice

description of the response of the electromagnetic field in the presence of matter,

known as the Helmholtz wave equation for electromagnetics. As such, it will be

shown that the Helmholtz equation relates the electrical properties of a material

in the frequency domain to the phase and attenuation (or gain) constants of the

propagating electromagnetic field.

Consider the expansion of the temporal function as a Fourier series of monochromatic

plane waves. As such the time-domain dependent vector fields E, H , Je, D, and
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B can be expressed as a cosine phasor component,

H(x, y, z; t) = Re
[
H(x, y, z)ejωt

]
B(x, y, z; t) = Re

[
B(x, y, z)ejωt

]
E(x, y, z; t) = Re

[
E(x, y, z)ejωt

]
D(x, y, z; t) = Re

[
D(x, y, z)ejωt

]
Je(x, y, z; t) = Re

[
J e(x, y, z)ejωt

]
(2.14)

In this thesis, the notation in (2.14) is used throughout, so that a Roman letter is

used to denote field quantities in the time domain whilst calligraphic letters are used

for the quantities in frequency domain.

By applying the Fourier expansion to Maxwell’s curl equations, (2.1), the frequency

domain Maxwell’s equations in matrix form are given by

∇×H

−∇× E

 =

J e

0

+ jω

D
B

 , (2.15)

where in (2.15) the magnetic current density M which appeared in (2.1) has been

assumed to be zero. Moreover, the constitutive relations in frequency domain are

given by,

J e = F {σe(t)}E ,

D = ε0E + ε0F {χe(t)}E ,

B = µ0H.

(2.16)

Here, F is used to denote the Fourier transformation operation. Since the time-

variation component has been assumed to be of the form ejωt, see (2.14), the Fourier
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transformation is given by,

F {f(t)} ≡ f(ω) =

∞̂

0

f(t)e−jωtdt, (2.17)

where ω = 2πf denotes the angular frequency in rad/s. Note that the Fourier

transformation given in (2.17) is assumed for a causal system, i.e.

f(t)


= 0, if t < 0

6= 0, if t > 0

Substituting the constitutive relation (2.16) into Maxwell’s equations, (2.15), in the

frequency domain, and solving simultaneously for H and E , results in the Helmholtz

equation for the field Ψ as,

∇2Ψ− γ2Ψ = 0, (2.18)

where Ψ can be either of the H or E field and the propagation constant γ is defined

as,

γ2 = −ω2µ0ε. (2.19)

The electrical properties of the material can be expressed in the frequency domain

by using the complex dielectric constant,

ε(ω) = ε0

(
1 + χe(ω)− j σe(ω)

ε0ω

)
, (2.20)

It is noted that throughout this thesis, the notation ε is used to denote the dielectric

permittivity while ε̄ is used to denote the dimensionless relative permittivity,

ε̄ =
ε

ε0
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It follows from (2.19) that the propagation constant γ is also complex and it is thus

defined as,

γ = α + jβ (2.21)

where,

α = attenuation (or amplification) constant in (m−1)

β = phase constant in (rad/m).

For propagation in free-space, the light velocity is given by [2.5,2.7],

c0 =
ω

β0

=
1

√
µ0ε0

(2.22)

It is emphasised here that, the subscript “0” is used to denote the free-space proper-

ties throughout this thesis. It is worth commenting that in optics, the phase constant

β is also alternatively known as the wave-number k = k0neff, where k0 and neff rep-

resent the free-space wave-number and effective refractive index, respectively.

The Poynting theorem in the time-harmonic form is expressed as [2.4,2.5],

‹

Ω

S · ds+

˚

V

[
1

2
(J e · E∗) + jω

1

2
(B ·H∗ −D · E∗)

]
dv = 0 (2.23)

and the Poynting vector in the time-harmonic form is given as,

S =
1

2
Re {E ×H∗} (2.24)

where “∗” is the conjugation operator.
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2.2 Optical Network Theory

The solution of Maxwell’s equations for a specific given boundary condition gives a

complete description of the electromagnetic response at any point in space and time,

and is effective in describing the underlying physical properties of waveguiding and

cavity structures [2.5,2.12,2.15]. However in most practical situations, it is desirable

to have a macro model in which the system need only be described at its input and

output ports. This macro model of an arbitrary system is usually referred to as

optical network theory and was originally developed for application to microwave

network analysis [2.3,2.5,2.7]. This section will focus on the description of a macro

model known as the scattering matrix formalism. In this model, an optical network

is considered as a scattering system which couples the incoming and outgoing light

signal between port channels.

2.2.1 The Scattering Matrix Formalism

Examples of optical network systems are depicted Fig. 2.2 where, Fig. 2.2(a) shows

the two-port system of a waveguide grating, Fig. 2.2(b) shows a circular cavity

being coupled with two waveguides and Fig. 2.2(c) illustrates the six-port network

of a multimode interference coupler (MMI). Conceptually the structures here can

be seen as an arbitrary “black box” system enclosed by surface boundary Ω with

definite input/output port channels as illustrated in Fig. 2.3. The input/output

waveguide ports are assumed to be lossless and linear and to support a finite number

of propagating modes.

Now, consider the system depicted in Fig. 2.3. The figure illustrates a “black-box”

model to represent an N -port optical network system. The system is bounded by

the boundary Ω and communicates to other confined systems by the input/output

ports which support both incoming and outgoing signals. The incoming and out-
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Port 3 Port 4

Port 1 Port 2

Port 1

Port 2

Port 3

Port 4

Port 5

b

c

a

Port 1 Port 2

Figure 2.2 Illustrative examples of optical network circuits. (a) Two ports waveguides

gratings system, (b) coupled whispering-gallery mode resonant cavity with four input/output

ports, (c) one to four multi-mode interference coupler. These illustrative results were obtained

using the Transmission-line modelling (TLM) method.

(2)
(3)

(N)

(1)
(Ω)

ε, σ

a(1)

b(1)z(1)

−z(1)

a(N)

b(N)

z(N)

−z(N)

Figure 2.3 Schematic illustration of an N -port optical network system
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going mode amplitudes at port-n, where 1 ≤ n ≤ N , are denoted by a(n) and b(n)

respectively. Each individual port is assumed to have its independent coordinate

system which are illustrated for the case of incoming and outgoing modes. One

can expand the transverse field in terms of all supported modes in each individual

port [2.12,2.15]. So, for example, consider that port-n can support N propagating

modes; it follows that the transverse electric and magnetic field at the port-n can

be expressed as,

E (n)
T (x, y, z) =

∑
m∈N

(
a(n)
m e−jβ

(n)
m z + b(n)

m ejβ
(n)
m z
)

eT ,m(x, y)

H(n)
T (x, y, z) =

∑
m∈N

(
a(n)
m e−jβ

(n)
m z − b(n)

m ejβ
(n)
m z
)

hT ,m(x, y)
(2.25)

In (2.25), each port has its own local coordinate axis (x, y, z), with z assumed to be

the propagation axis and (x, y) the transverse plane. Moreover, here the incoming

propagation is assumed in the form of e−jβmz whilst the outgoing propagation is

ejβmz. The eT ,m(x, y) and hT ,m(x, y) denote the transverse mode dependence of a

particular guided mode m which are comprised of a suitable set of vector orthogonal

function in the transverse plane (x, y). For the case of lossless modes, the following

orthogonality property is valid,

¨

Ω(n)

(
eT ,m × h∗T ,m′

)
· ẑdS =


2, if m = m′

0, if m 6= m′
(2.26)

where Ω(n) denotes the a surface normal to propagation direction ẑ located at the

port-n. As such the net-power flow at the opening of port-n can be calculated by

(2.24) and is given by

P =
1

2

¨

Ω(n)

(
E (n)

T ×H(n)∗
T

)
· ẑdS =

∣∣a(n)
m

∣∣2 − ∣∣b(n)
m

∣∣2 . (2.27)

Exploiting the fact that the propagating mode m exists only on the associate waveg-
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uide port-n; the expansion (2.25), which is valid on the port-n, can be generalised

to the whole boundary Ω by extending the modal field as [2.12,2.15,2.16],

generalised modal field (n,m) =


original field on port-n

0 elsewhere.

As such, the whole set of local modal expansions, specific to the various ports, can

be condensed into a single expansion as

ET (x, y, z) =
∑
µ∈M

(
aµe

−jβµz + bµe
jβµz
)

eT,µ(x, y)

HT (x, y, z) =
∑
µ∈M

(
aµe

−jβµz − bµejβµz
)
hT,µ(x, y).

(2.28)

In (2.28), µ stands for the composite notation (n,m) and M is used to denote the

total number of propagating modes supported on all waveguides, i.e. the union of

N for all ports.

Furthermore, considering the system associated with Fig. 2.3 to be linear, time

independent and isolated, i.e. energy can only enter and leave only through the

ports, the outgoing wave bµ is completely determined by the inward wave aµ. The

relation between the outgoing and the ingoing wave can be related by a scattering

matrix as [2.3,2.4,2.12,2.15,2.16],

b = S · a, (2.29)

where, the incoming wave amplitude vector a, the outgoing wave amplitude vector
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b, and the scattering matrix S are in the form of,



b1

b2

b3

...

bµ


=



S11 S12 S13 · · · S1ν

S21 S22 S23 · · · S2ν

S31 S32 S33 · · · S3ν

...
...

...
. . .

...

Sµ1 Sµ2 Sµ3 · · · Sµµ





a1

a2

a3

...

aµ


. (2.30)

From (2.30), it can be seen that the diagonal elements of the S-matrix, i.e. Sµµ

are the reflection coefficients of mode µ back to the respective mode, and the non-

diagonal elements Sµν give the transmission coefficient from mode µ to mode ν.

2.2.2 Lorentz Reciprocity Theorem

In the previous subsection, a “black-box” representative model was developed to

describe an optical network by the scattering matrix formulation. It can be seen from

(2.30) that the outgoing wave amplitude b depends only on the incoming wave a. As

such it can be argued that there can be only one solution of b for a given a because

if there exists another solution for a given incoming wave a, denoted for instance

by b′, the difference of these waves (b − b′) will imply that there is energy leaking

from (or added to) the system which violates the underlying assumption of the

model [2.4,2.12,2.15,2.16]. This suggests that there is a fundamental property of S

that it is independent of the incoming wave amplitude a. The following discussion on

the reciprocity theorem in this subsection follows the argumentation in [2.16] which

shows the validity of the reciprocity theorem in a system with complex refractive

indices.

For this reason, now consider the time-harmonic Maxwell’s equations for two differ-

ent states, namely state-(1) and state-(2). In practice, these two different states can

be achieved by, for example, changing the configuration of the incoming amplitude
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a. As such, Maxwell’s equations for these two different state configurations are

expressed as,

∇×H1 = σE1 + jωε0(1 + χe)E1

−∇× E1 = jωµ0H1

 for state-(1) (2.31)

and

∇×H2 = σE2 + jωε0(1 + χe)E2

−∇× E2 = jωµ0H2

 for state-(2). (2.32)

By solving both (2.31) and (2.32) simultaneously, it can found that the electric and

magnetic field of the different state systems are related by the so-called Lorentz

reciprocity relation, which in a source-free system is expressed by,

∇ · (E1 ×H2 − E2 ×H1) = 0 (2.33)

or in the integral form, obtained from (2.33) by applying Gauss’ divergence law on

a volume enclosed by a closed surface Ω, as,

¨

Ω

(E1 ×H2 − E2 ×H1) dΩ = 0 (2.34)

It is important to note that the reciprocity relation (2.33) or (2.34) is valid for

materials with gain or loss but not in the case of magneto-optical, non-linear and

time-dependent materials [2.3–2.6,2.10,2.12,2.15,2.16].

In order to see the implication of Lorentz reciprocity to the scattering matrix S,
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consider the two states in terms of input and scattered wave amplitudes as,

E1 =
∑
µ

a1,µeµ +
∑
ν

b1,νeν

H1 =
∑
µ

a1,µhµ −
∑
ν

b1,νhν

 for state-(1) (2.35)

and

E2 =
∑
µ

a2,µeµ +
∑
ν

b2,νeν

H2 =
∑
µ

a2,µhµ −
∑
ν

b2,νhν

 for state-(2). (2.36)

Applying the reciprocity relation (2.34), to both (2.35) and (2.36) it can be shown

that [2.3,2.12,2.15,2.16],

2
∑
µ

∑
ν

(b1,νa2,µ − a1,µb2,ν)

¨

Ω

eµ × hν dΩ = 0. (2.37)

Moreover, because the waveguide ports are assumed lossless, the transverse field

vector are real function in (x, y) as a result the orthogonality condition of guided

modes [2.4,2.15,2.16],

¨

Ω

eµ × hν dΩ =


1, if µ = ν

0, if µ 6= ν

,

equation (2.37) can be simplified and represented in matrix form as,

∑
µ

(b1,µa2,µ − a1,µb2,µ) = bT1 a2 − aT1 b2

= aT1 STa2 − aT1 S a2 = 0

(2.38)

where, the superscript T denotes the transpose operation. An important conclusion

from (2.38) is that Lorentz reciprocity requires the scattering matrix of an optical
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system to be symmetric, i.e.

S = ST (2.39)

when the system is comprised of linear, non-magnetic, and time independent mate-

rials.

2.3 Kramers-Kronig Relationship

Section 2.1.1 introduced the fact that the field-matter response is a non-local func-

tion of time which depends on the temporal material response as,

D(t) = χe(t) ∗E(t) =

∞̂

0

χe(τ)E(t− τ)dτ (2.40)

Equation (2.40) suggests that the interaction of electric field E with the material

function χe(t) at any instant t is dependent on the E that existed at earlier times.

It is important to note that since E is a real quantity, the material response χe(t)

has to be real too. The dielectric susceptibility in the frequency domain is obtained

by Fourier transformation and is given by,

χe(ω) =

∞̂

0

χe(t)e
−jωtdt. (2.41)

Here, the causality principle has been enforced, i.e. χe(t) = 0 for t < 0. In general

the frequency domain dielectric susceptibility is a complex parameter,

χe(ω) = χ′e(ω) + jχ′′e(ω), (2.42)
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where, χ′e and χ′′e are the real and imaginary parts of the dielectric susceptibility

respectively.

We now see the implications of imposing the causality principle to the Fourier trans-

formation. First, it can be shown that from (2.41) that, dielectric susceptibility has

to satisfy, i.e.,

χe(−ω) = χ∗e(ω), (2.43)

meaning that the real part of the susceptibility is an even function, whilst the

imaginary part is an odd function, of frequency, i.e.

χ′e(−ω) = χ′e(ω)

χ′′e(−ω) = −χ′′e(ω).
(2.44)

Moreover by definition‡, χe(ω) has to be a single-valued complex function and ana-

lytic (having no singularities) in the lower half-plane of the complex frequency plane,

ω = ω′ + jω′′. Hence, for ω′′ < 0 the integration in (2.41) converges as it includes

the exponentially decaying factor eω
′′t, whilst in the upper half-plane the definition

in (2.41) is invalid as the integration diverges.

From (2.41), it can be shown that the Kramers-Kronig relations are given as [2.5,

2.6,2.10],

χ′e(ω) =
1

π
p.v.

ˆ ∞
−∞

χ′′e(Ω)

Ω− ω
dΩ

χ′′e(ω) = − 1

π
p.v.

ˆ ∞
−∞

χ′e(Ω)

Ω− ω
dΩ

(2.45)

The Kramers-Kronig relations (2.45) imply that any material with non-zero imagi-

nary part of susceptibility |χ′′e(ω)| > 0 has to be dispersive. Moreover the causality

‡The existence of the Fourier tranform of a function f together with its inverse transform,
requires f to be a single-valued and continuous function [2.17,2.18]

34



Chapter 2. Electromagnetism and Matter

condition requires the material susceptibility function χe(ω) to be analytical in the

bottom half-plane of the complex frequency plane, so that any singularity in the

χe(ω) function has to be located in the upper half-plane [2.10]. A full derivation of

the Kramers-Kronig relations is given in the Appendix A.
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3
Parity-Time Symmetric Scattering System

The concept of PT -symmetric photonics as a translation of the PT -

symmetric Hamiltonian problem in quantum mechanics is introduced

in this chapter. The chapter studies the spectral properties of a PT -

symmetric scattering system. In particular, it presents the properties of

the transfer matrix M and the scattering matrix S under PT -transformation,

under which a PT -symmetric scatterer is shown to exhibit exotic be-

haviour such as, unidirectional unitary transmission, spontaneous PT -

symmetry breaking and simultaneous coherent perfect absorber-lasing

operation. Moreover, this chapter also presents the generalised conser-

vation relationship for an asymmetric left-right response and provides a

criterion for describing PT -symmetry breaking in a scattering system.

* * *
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Chapter 3. Parity-Time Symmetric Scattering System

3.1 Parity and Time-Reversal (PT ) Symmetry

In order to understand the concept of Parity and Time (PT ) symmetric structures

in photonics, it is natural to review some fundamental theorems and postulates in

Quantum Mechanics (QM) in which the PT -symmetric problem was firstly defined.

In QM, it is well-known that the behaviour of a particle is described by the so-called

Schrödinger equation, the time-independent form of which is given by [3.1,3.2],

Ĥψ = Eψ, (3.1)

where ψ denotes the scalar time-independent wavefunction which is a function of

position, i.e. ψ(x, y, z) in the Cartesian coordinate system, E refers to the energy

corresponding to the state described by the wave function ψ and Ĥ denotes the

Hamiltonian operator and has important roles as summarised below [3.3–3.5]:

1. To determine the energy eigenstates E which essentially are the solution of

(3.1). It implies that the energy eigenstates E are the result of the action

described by Ĥ applied on the state vector ψ. Moreover, considering that E

is a physically measurable quantity, it is essential for E to be real.

2. Within the context of the time-domain Schrödinger equation,

Ĥψ(x, y, z; t) = i}
∂

∂t
ψ(x, y, z; t), (3.2)

the Hamiltonian has a role to describe the time evolution of the state vector

ψ which is the time-domain solution of (3.2). To avoid confusion, in this

subsection the complex number notation (i = −j) is used as is customary in

most of Quantum Mechanics textbooks [3.1,3.2].

3. The Hamiltonian incorporates symmetry properties into the theory. In QM

the Hamiltonian may exhibit continuous symmetries, such as time and spa-
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tial translation, and discrete symmetries, such as parity inversion and time-

reversal invariance [3.3–3.5]. For example if the Hamiltonian is commute with

the parity inversion symmetry, the Hamiltonian is said to be parity inversion

invariant.

The Hamiltonian Ĥ is expressed in terms of the position x and momentum p̂ oper-

ator as,

Ĥ = p̂2 + V (x) (3.3)

where, p̂ and V (x) denotes the linear momentum operator and potential energy

function of a particle, respectively. The linear momentum operator is imaginary and

anti-symmetric, defined as p̂ = −i∇. It follows that p̂2 = −∇2 is real and symmetric

(Hermitian) and therefore if the potential function V (x) is a real function in space,

it can be guaranteed that all the energy states E are also real with the Hamiltonian

Ĥ satisfying,

Ĥ = Ĥ†, (3.4)

where † denotes a Hermitian adjoint operation which in matrix form denotes a

combined transpose and complex conjugation operation

As suggested by Bender and Boettcher [3.5], although the Hermitian condition (3.4)

is sufficient to ensure all possible energy states to be completely real, it is not

necessary. In [3.3–3.5], it is further shown that a weaker symmetry than Hermiticity

(3.4) may lead to real eigenvalues E, and this weaker symmetry is denoted as a Parity

(P) and Time (T ) symmetric Hamiltonian. As such the Hamiltonian Ĥ is invariant

under the PT transformation,

PT ĤT P = Ĥ, (3.5)
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where the parity operator P is defined as a linear operator which inverts space and

momentum, and the time-reversal operator T is an operator which reverses time, i.e.

t → −t. The transformations performed by the parity and time-reversal operators

are defined as [3.3–3.8],

P : x→ −x ; p̂→ −p̂ (3.6)

T : j → −j ; x→ x ; p̂→ −p̂. (3.7)

As such, it can be shown that a PT -symmetric Hamiltonian in Quantum Mechanics

is achieved when the potential function satisfies [3.3–3.8],

PT V (x)T P = V ∗(−x) = V (x). (3.8)

where ∗ denotes the conjugation operation. The PT -symmetric condition (3.8)

implies that the energy potential V (x) is a complex function where the real part is

an even function and the imaginary part is an odd function in space.

3.2 Photonics System Analogue of Quantum

Mechanics PT -Symmetric Hamiltonian

In contrast to the Schrödinger equation in Quantum Mechanics, in optics the dy-

namics of an electromagnetic field is defined by the Helmholtz equation (2.18). For

the electric field, the Helmholtz equation is given as,

∇2E +
ω2

c2
0

ε̄(x)E = 0 (3.9)
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where ε̄(x) is the relative permittivity of the material and is a function of space x,

such that it can be expressed in the form of,

ε̄(x) = ε̄b + ∆ε̄(x) (3.10)

In (3.10), ε̄b denotes the homogeneous background material relative permittivity on

which the spatial modulation ∆ε(x) occurs. By substituting, the permittivity profile

function (3.10) to (3.9), the Helmholtz equation can also be formulated as [3.9],

{
∇2 +

ω2

c2
0

∆ε̄(x)

}
E = −ω

2

c2
0

ε̄bE (3.11)

By comparing (3.11) and (3.1), it can be seen that the time-harmonic Helmholtz

equation of wave dynamics, albeit multicomponent, is isomorphic with the time-

independent Schrödinger (3.1). The comparison of the Schrödinger and Helmholtz

equations is summarised in Table 3.1. Based on this analogy, it can be shown that

PT -symmetric photonic structure has a dielectric profile that satisfies,

ε̄(x) = ε̄∗(−x) or n(x) = n∗(−x) (3.12)

so that the real part of permittivity (or refractive index) is an even function and

the imaginary part of the permittivity (or refractive index) is an odd function of

Table 3.1 Comparison of the Helmholtz and Schrödinger equations [3.10].

Quantum Mechanics Electromagnetics

Field Ψ(x, t) = ψ(x)eiEt/} E(x; t) = Re [E(x)ejωt]

Eigenvalue problem Ĥψ = Eψ Θ̂E = −( ω
c0

)2εbE

Hamiltonian Ĥ = p̂2 + V (x) Θ̂ = ∇2 + ( ω
c0

)2∆ε̄(x)

41



Chapter 3. Parity-Time Symmetric Scattering System

space,

ε′(−x) = ε′(x) (3.13)

ε′′(−x) = −ε′′(x). (3.14)

As such (3.14) implies that a PT -symmetric structure in photonic requires the

presence of both gain and loss in the system.

3.3 PT -Symmetric Scattering System

In the previous section, the Helmholtz equation is shown to be isomorphic with the

Schrödinger equation. Photonic system in particular offers a practical platform for

realisation as a PT -symmetric system by a judicious composition material so that,

the dielectric material parameter satisfies (3.12), i.e. the real part of the dielectric

material parameter is a even function, whist the imaginary part is an odd function

in space. This section focuses on a one-dimensional (1D) PT -symmetric scatterer,

where modulation of dielectric permittivity (or refractive index) occurs only along

one axis, i.e. n∗(x) = n(−x).

3.3.1 Generalised Conservation Relations

For definiteness, consider a 1D PT -symmetric structure schematically illustrated in

Fig. 3.1. The structure has a length L with a refractive index profile satisfying the

PT -symmetric condition in the longitudinal direction, i.e. n∗(x) = n(−x), and is

embedded in a lossless background material of refractive index nb. In Fig. 3.1, the

incoming a and outgoing b wave amplitudes are denoted for both the left and right

sides, using a similar notation to that defined previously in (2.28). The transversal-
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n(x)nb nb

a1

b1

a2

b2

−L
2

L
2

Figure 3.1 Schematic illustration of a one-dimensional scattering system.

components of the electric field on each port can be expanded as,

ET (x) =


a1ejβx + b1e−jβx for : x < −L

2

a2ejβx + b2e−jβx for : x > L
2

(3.15)

As such the wavescattering can be modelled by the S-matrix as,

b1

b2

 = S

a1

a2

 where, S =

rL tR

tL rR

 (3.16)

and the quantities in the S-matrix are defined as,

tL : effective transmission coefficient for left incidence,

tR : effective transmission coefficient for right incidence,

rL : effective reflection coefficient for left incidence,

rR : effective reflection coefficient for right incidence.

Based upon the Lorentz reciprocity theorem for linear and non-magnetic materials,

see Section 2.2.2, a further reduction in the S-matrix can be attained based on the

reciprocality of left and right transmission coefficients, tL = tR ≡ t, as,

S =

rL t

t rR

 (3.17)
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n(x)nb nb

b∗2

a∗2

b∗1

a∗1

−L
2

L
2

Figure 3.2 PT -transformed scattering system. The original system before PT -symmetry

transformation is illustrated in Fig. 3.1.

From (3.16) and (3.17), the transfer matrix‡ M-matrix associated with Fig. 3.1,

which relates the left and right wave amplitudes, could be constructed as:

a1

b1

 = M

b2

a2

 where, M ≡

 1
t

− rR
t

rL
t

t− rLrR
t

 . (3.18)

Moreover since the structure is PT -symmetric, the PT -transformed solutions should

also be solutions of the Helmholtz equation. As such, Fig. 3.2 depicts the PT

transformed solution of the original problem in Fig. 3.1. The PT -transformed

solutions are expressed as,

PT {ET (x)} =


b∗2e

jβx + a∗2e
−jβx for : x < −L

2

b∗1e
jβx + a∗1e

−jβx for : x > L
2

The corresponding M-matrix formulation is now given by,

b∗2
a∗2

 = M(PT )

a∗1
b∗1

 . (3.19)

By a direct comparison of (3.18) and (3.19), the corresponding PT -transformed

matrix M is [3.7,3.8,3.11,3.12],

M
PT−−→M(PT ) ≡M−1∗ (3.20)

‡For the detailed formulation and definition of the transfer matrix method, see Appendix B
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Since the structure is PT -symmetric invariant, it can be deduced that,

M = M−1∗ (3.21)

Exploiting the fact that det(M) = 1, see (B.4) in Appendix B, it can be shown

that,

M11 = M∗
22 and Re[M12] = Re[M21] ≡ 0.

Using these relations, the M-matrix can be parameterised as,

M =

 A −jB

jC A∗

 where {B,C} ∈ R. (3.22)

Here, each entry of the M-matrix is defined as,

A =
1

t
= t∗ − r∗Lr

∗
R

t∗
,

B = −j rR
t

= j
r∗R
t∗
,

C = −j rL
t

= j
r∗L
t∗
.

(3.23)

By further exploitation of det(M) = 1 on (3.22), the generalised conservation rela-

tion is formulated as [3.7,3.8,3.11,3.12],

1− |t|2 = rLr
∗
R = r∗LrR (3.24)

From (3.24) the generalised conservation relation can also be expressed in terms of

the transmittance T = |t|2 and reflectance RL,R = |rL,R|2 coefficients as [3.7,3.8,

3.11,3.12],

|1− T | =
√
RLRR (3.25)
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Generally, the conservation relation (3.25) implies that one the following cases may

occur:

1. For the case of T < 1, (3.25) reduces to T +
√
RLRR = 1. It can be seen that

√
RLRR replaces the conventional R in the case of an orthogonal system. It

follows that when T < 1 the scattering of a single incident wave from one side

of the structure yields to a loss of power flux [3.7]. This operation is referred

to throughout this thesis as sub-unitary transmission operation.

Moreover, from (3.24) one can evaluate the phase relation between the left

and right reflected light. Consider that the reflected signal from left side is of

the form of rL = |rL|ejφL and from the right side is of the form rR = |rR|ejφR .

From (3.24) it can be found that the phase for the left and right reflected

signal is related by φL = φR.

2. For the case of T > 1, (3.25) reduces to T −
√
RLRR = 1. In this case, a single

incident beam yields to a super-unitary transmission with the phase relation

between left and right reflected waves as φL − φR = π.

3. For the case of T = 1, (3.25) reduces to
√
RLRR = 0 which implies that the

product of the left and right reflectances must be zero. Such an operation

is typically accomplished by having no reflection from one side of the struc-

ture. This particular operation case is referred to as unidirectionally invisible

operation.

To sum up, throughout this work the term sub-unitary transmission refers to the

first case of T < 1, super-unitary transmission refers to the second case of T > 1

and unidirectionally invisible operation refers to the third case of T = 1.
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3.3.2 Spontaneous Symmetry Breaking in a PT Scattering

System

The relationship between the incoming and outgoing waves in an optical network

is well-described by using the scattering matrix S. The formal description and

definition of the S-matrix was presented in Section 2.2.1 and this section will focus

on investigating the spectral properties of the S-matrix associated with the PT -

symmetric scattering system depicted in Fig. 3.1.

It is well-understood that for any linear passive structure, i.e. no gain and loss, the

S-matrix is unitary [3.13–3.17],

S† = S−1, (3.26)

where † denotes the transpose and conjugation operation. The unitary relation

(3.26) puts a strict condition that the eigenvalues sn of the S-matrix have to be

unimodular, i.e.

|sn| = 1. (3.27)

Hence, for a passive structure, power is conserved with no net-amplification or dis-

sipation.

However, in the case when a gain or/and lossy element is present, as is the case

in PT -symmetric structures, the spectral behaviour of the S-matrix is non-trivial.

It will be shown shortly that the PT -symmetric structure may undergo a phase

transition from a power conserving operation, with no net-amplification or dissipa-

tion, to a non-conserving system. Hence, consider the scattering matrix formulation
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associated with Fig. 3.1 expressed as,

b1

b2

 = S

a1

a2

 where, S =

rL t

t rR

 (3.28)

where the ingoing and outgoing field amplitudes (a and b) for each individual port

can also be expressed compactly‡ as,

ET (x) =
2∑

n=1

[ane−jβnx + bnejβnx] (3.29)

Following similar reasoning to that employed in Section 3.3.1, a PT -symmetric

scattering system should support the PT -transformed solution on each port, which

is

PT {ET (x)} =
2∑

n=1

[(PT an)ejβnx + (PT bn)e−jβnx] (3.30)

As such the following scattering formulation is also valid,

PT

a1

a2

 = SPT

b1

b2

 (3.31)

where in the matrix formulation the operators P and T are defined as

P =

0 1

1 0

 and T = K (3.32)

where K is the conjugation operation. As such, by comparing (3.28) and (3.31),

it can be found that the scattering matrix S obeys the following PT -symmetric

transformation,

PT SPT = S−1. (3.33)

‡Using the same notation as that introduced in Section 2.28.
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For convenience, consider the parameterised S-matrix using (3.23) as,

S =
1

A

jC 1

1 jB

 where, {B,C} ∈ R. (3.34)

By direct calculation, the eigenvalues sn, with n = {1, 2} can be expressed as

[3.7],

s1, s2 =
j

2A

[
(B + C)±

√
(B − C)2 − 4

]
where, {B,C} ∈ R. (3.35)

Since the parameters B and C are real numbers, it can be deduced that one of the

following cases may happen,

1. For the case of (B − C)2 < 4, the eigenvalues are

s1, s2 =
j

2A

[
(B + C)± j

√
4− (B − C)2

]
where, {B,C} ∈ R, (3.36)

and the corresponding eigenvectors are,

ψ1,ψ2 =

2 + j
[
(C −B)± j

√
4− (B − C)2

]
2 + j

[
(B − C)± j

√
4− (B − C)2

]
 for: s1, s2 (3.37)

From (3.36), it can be found by direct calculation that the eigenvalues are

unimodular, i.e. |sn| = 1. This implies that, for this case, power is conserved

thus there is no net amplification nor dissipation. Note that, in this case, the

eigenvectors themselves are PT -symmetric as the PT -operation transforms

the eigenvectors back to themselves,

ψ1,ψ2
PT−−→ ψ1,ψ2 (3.38)

This particular operation case is referred to as the PT -symmetric phase.
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2. For the case of (B − C)2 > 4, the eigenvalues are

s1, s2 =
j

2A

[
(B + C)±

√
(B − C)2 − 4

]
where, {B,C} ∈ R, (3.39)

with the corresponding eigenvectors as,

ψ1,ψ2 =

2 + j
[
(C −B)±

√
(B − C)2 − 4

]
2 + j

[
(B − C)±

√
(B − C)2 − 4

]
 for: s1, s2, (3.40)

and the transformed solution is

PT {ψ1,ψ2} =

2 + j
[
(C −B)∓

√
(B − C)2 − 4

]
2 + j

[
(B − C)∓

√
(B − C)2 − 4

]
 for: s1, s2.

Hence, it can be seen that, in this case, the eigenvectors are not PT -symmetric

but the pair satisfies the PT -transformation, by transforming to each other,

ψ1,ψ2
PT−−→ ψ2,ψ1 (3.41)

Exploiting the symmetry properties of the PT -symmetric S-matrix (3.33), it

can be deduced that the pair of eigenvalues are reciprocally conjugate, i.e.

s∗1,2s2,1 = 1 (3.42)

which implies in general that if |s1| > 1 then |s2| < 1. Operation in this case

is denoted as the PT -broken symmetry phase.

3. The case of (B − C)2 = 4, is the case when both of the above cases are true.

In this case, one can find that the eigenvalues are degenerate, as

s1 = s2 ≡
j

2A
(B + C) = ±j |A|

A
where, {B,C} ∈ R, (3.43)
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with the associated eigenvectors,

ψ1 = ψ2 ≡

1± j

1∓ j

 for: s1, s2 (3.44)

This particular point is referred to as the PT -breaking point.

It has been shown that the eigenvalues of the S-matrix characterise the operational

phase of a PT -symmetric system. As such when the eigenvalues are unimodular,

the system is in the PT -symmetric phase whilst if the eigenvalues are reciprocal

conjugate the system is in the PT -broken symmetry phase. However, a simpler

criterion can be obtained by evaluating the value of (B − C)2 using the identities

given in (3.23). The criterion of PT -symmetry phases can be expressed in terms of

the transmittance and reflectance coefficients as [3.7],

RL +RR

2
− T


< 1, for : PT -symmetric phase,

= 1, for : PT -symmetry breaking point ,

> 1, for : PT -broken symmetric phase,

(3.45)

where, T = |t|2 denotes the transmittance and RL,R = |rL,R|2 denotes the reflectance

coefficients for the incident wave arriving from the left or the right of the structure,

respectively.

3.3.3 Simultaneous Coherent Perfect Absorber and Lasing

A simultaneous lasing and absorbing action in a PT -symmetric scatterer was noted

in [3.7,3.8,3.11,3.12]. In order to understand the properties of this operation, first

consider a laser system. In a laser system, the structure emits light even in the

absence of an injected signal beam hence a1 = a2 = 0 whilst {b1, b2} → ∞. Imposing

this solution upon the M-matrix (3.18) means that the entry M11 = 0. On the
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other hand, if a structure behaves as a coherent prefect absorber (CPA), there is

no scattered wave b1 = b2 = 0 whilst {a1, a2} 6= 0, and this requires the entry

M22 = 0. In practice, the conditions M11 = 0 and M22 = 0 do not coincide at the

same frequency, hence the system is either lasing or absorbing, but not both.

However, in a PT -symmetric structure the condition (3.21) does allow this to happen

as M11 = M22 = 0 can occur generically at the same frequency. Moreover, since

det(M) = 1, it can be further shown that,

M11 = M22 = 0 and M12,M21 6= 0, (3.46)

which implies that transmission and reflection from the both sides are such that,

|t| → ∞ and |rL|, |rR| → ∞, (3.47)

and their phase can be calculated from (3.18) as,

φR + φL = 2φt (3.48)

where, φL and φR denote the phase for the reflected wave for the signal incident

from left and right side for the structure respectively whilst φt is the phase of the

transmitted wave.

The scenario of (3.47) can only occur in the PT -broken symmetry phase, i.e. oper-

ation case 2 described in Section 3.3.2. This implies that one of the eigenvalues of

the S-matrix is |s1| → 0 whilst the other one is |s2| → ∞, noting that the product of

them should remain unity (3.42). This physically means that the structure has both

lasing and coherent perfect absorber(CPA) states simultaneously. Such operation is

referred to as simultaneous coherent perfect absorber-lasing(CPAL) operation. Since

| det(S)| = |s1s2|, one can also interpret that CPAL occurs when the poles and zeros

of the S-matrix coalesce in the real frequency axis.
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In order to see how CPAL operation occurs, consider 2 incident beams where one is

incident from the left and the other from the right side of the PT -scatterer, i.e.

a1 = 1

a2 = ejθ
(3.49)

In (3.49), the left incident a1 has been taken as a reference beam incident whilst the

right incident a2 has an equal amplitude to a1 but it differs in phase by θ. As such

in practice θ could be varied with respect to the reference beam a1.

It can be found from (3.28) that the intensity on the left and right side of the

structure are given by [3.7],

IL ∝ |b1|2 = |t|2
(

1 +
∣∣∣rL
t

∣∣∣2 + 2
∣∣∣rL
t

∣∣∣ cos(φL − φt − θ)
)

(3.50)

IR ∝ |b2|2 = |t|2
(

1 +
∣∣∣rR
t

∣∣∣2 + 2
∣∣∣rR
t

∣∣∣ cos(φR − φt + θ)

)
(3.51)

where IL and IR denotes the left and right emitted intensities respectively. Moreover,

from (3.18), the phases of the transmitted and reflected beams are related by φL +

φR = 2φt; as such the intensity at each port can also be expressed as,

IL,R ∝ |b1,2|2 = |t|2
(

1 +
∣∣∣rL,R
t

∣∣∣2 + 2
∣∣∣rL,R
t

∣∣∣ sin θ) (3.52)

For the particular case when |t|, |rL| and |rR| → ∞, (3.52) can be reduced to,

IL,R ∝ 2|t|2∆ where, ∆ = 1 + sin θ (3.53)

It can be seen from (3.53) that CPA operation can only occur for the particular

value of ∆ = 0 while lasing happens in the more general case ∆ 6= 0. In practice, to

observe CPA one needs to first acquire the lasing operation of the PT -structure, i.e.

when T → ∞, for the given operation frequency fop and the gain/loss parameter.

Subsequently a second incident beam at the same frequency is launched from the
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opposite side of the structure while varying the phase of the second beam with

respect to the first beam. The CPA operation is achieved when the total scattered

field is zero. It is noted also that in practice once the structure enters the lasing

state, the structure operates in an unstable regime and usually the behaviour is

non-linear.

3.4 Summary

This chapter outlines the isomorphism between the Schrödinger equation for the

wave-function in quantum mechanics and the Helmholtz equation for electromag-

netic field in photonics. As such the concept of a PT -symmetric Hamiltonian in

quantum mechanics can be well translated into the photonics system by having a

PT -symmetric profile of dielectric material properties.

Furthermore, this chapter also investigates the spectral behaviour of a PT -symmetric

scattering system. As such, it is shown that a PT -symmetric photonic scattering

system satisfies a more general conservation relation which relates the asymmetric

response between ports. Moreover, this chapter shows that a PT -symmetric scat-

tering system may undergo a spontaneous PT -symmetry breaking. The breaking

of PT -symmetry is marked by a degeneracy of the eigenvalues of the scattering

matrix, with the PT -symmetric phase is defined by unimodular eigenvalues but not

in PT -broken symmetry phase. Lastly, this chapter describes the operation of a

simultaneous lasing and coherent perfect absorber in a PT -symmetric scattering

system.
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4
Parity-Time Symmetric Bragg Grating

Following the study of a PT -symmetric scattering system in the previous

chapter, this chapter focuses on an one-dimesional (1D) PT -symmetric

Bragg grating. The chapter overviews the dispersion properties of passive

Bragg gratings and compares them to the PT -symmetric Bragg gratings.

For the case of a PT Bragg grating, the impact of the gain/loss on the

transmission and reflection spectra is analysed which features the asym-

metric scattering phenomena depending on the direction of the incident

wave. Moreover, the phase transition of PT -symmetry is demonstrated

showing how the gain/loss parameter breaks the PT -symmetry of the

system. Finally, the spectral singularity of the scattering system asso-

ciated with the simultaneous coherent perfect absorber-lasing (CPAL)

operation state is also shown.

* * *
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4.1 Introduction

The dispersion properties of optical structures with periodic refractive index mod-

ulation have been first studied more than 200 years ago [4.1]. The main feature of

these periodic structures is the highly-frequency-selectivity reflection depending on

the periodicity of the structure known as Bragg diffraction. The structures became

a hot topic fuelled by the first experimental demonstration [4.2,4.3] of fibre based

Bragg gratings and the observation of non-linear behaviour of photosensitive effects

in such structures in the 90s’ [4.4,4.5].

It is noted that the first fabrication and experimental work on a Bragg grating was

done by Hill and Meltz in 1978 [4.5] utilising the photosensitive effect of Germanium

doped silica Ge−Si fibres. In the experiment, an intense Argon-ion laser beam

was launched into a Ge−Si fibre from which they observed about 4% reflectivity.

However, the reflectivity was gradually increasing in time and reached about 90%

after several minutes [4.5] implying that the grating was fully formed. The formation

of grating in this technique can be understood as follows: upon the incident laser

beam into the fibre, a standing-wave was formed due to a superposition of forward

and backward propagating wave reflected by the partial mirror formed by the fibre-

air interface at both ends of the structure. Subsequently, GeO defects are formed

due to a prolonged exposure of the high intensity periodically-localised field within

the fibre core, so forming the grating.

Although the single-beam internal technique was successfully applied to fabricate

Bragg gratings, its application was limited since the resulting grating operates at

the same frequency as the laser beam used to make it. Subsequently, several other

methods were developed to overcome this limitation which offer flexibility on grating

periodicity and fabrication ease, such as the dual-beam holographic technique [4.5]

and the phase mask by photolithographic method [4.6,4.7]. In addition, different

chemical and physical treatments such as hydrogen loading [4.8] and flame brushing
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[4.9] were introduced, which are applied prior radiation in order to enhance the

refractive index modulation strength ∆n of the grating; a ∆n of the order of 10−2

could be obtained by hydrogen loading treatment.

In terms of applications, conventional Bragg gratings have been used for a large

variety of applications, mainly in optical communications as dispersion compensators

[4.10,4.11], wavelength-selectors [4.12,4.13], band-rejection filters [4.14], fibre taps

[4.15], erbium doped fibre lasers [4.16,4.17], cascade Raman amplifiers [4.18], fibre

mode converters, switching and signal processing devices. Other applications such

as bio-chemical sensors and optical memory device with improved performance have

also been reported [4.19].

The study of PT -Bragg gratings (PTBGs) is motivated by the introduction of

a PT -symmetric refractive index profile [4.20,4.21]. Intriguing features of PTBG

such as unidirectional loss-induced invisibility [4.20,4.21] and asymmetric response

depending on the direction of incident beam [4.20,4.21] have been reported both

theoretically and experimentally. Motivated by the unique spectral behaviour of

the PTBG, novel functionality for applications, such as switching [4.20–4.23], opti-

cal logic [4.24–4.26], memory devices [4.24,4.27], lasers [4.28–4.31], coherent-perfect

absorber (CPA) [4.32–4.35], dense wavelength division multiplexing (DWDM) de-

vice [4.24] are enabled.

Throughout this chapter, an idealised PTBG, comprised of non-dispersive and linear

media is considered by using an exact transfer-matrix (T-matrix) method [4.36].

Details of the formulation and implementation of the T-matrix method can be found

in Appendix B.
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4.2 Spectral Properties of a Passive Bragg

Grating

A Bragg grating has refractive index variation along the propagation direction which

leads to a collective reflection and transmission from the interfaces of the different

dielectric media. In the case of a Bragg grating, this collective process of reflection

and transmission is enhanced by the presence of a regular periodicity. The grating

considered in this section has piecewise constant layers of refractive index n =

navg±∆n′, where navg is the average refractive index, and ∆n′ is the modulation of

the real parts of the refractive index. The grating is surrounded by a background

material of average refractive index nb = navg and has a total length of NΛ, where

Λ is the length of one unit cell and N is the number of periods. This structure is

illustrated in Fig. 4.1.

The operation of a Bragg grating is based on the Bragg reflection in which the

periodical modulation of refractive index along the propagation direction intensifies

the collective interaction between the forward and backward propagation wave. The

superposition of these two propagating waves leads to a very high reflectivity at a

certain frequency at which the strongest mode coupling occurs. The condition for

the strongest coupling is referred to as the Bragg condition and occurs at the Bragg

frequency fB,

fB =
c0

2navgΛ
. (4.1)

From (4.1), it can be seen that the Bragg frequency depends on the physical period

length Λ of the grating and the average refractive index navg of the grating, with c0

denotes the speed of light in the free-space.

In practice, the strength of the Bragg grating, which defines the steepness and the
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Figure 4.1 Schematic of a passive Bragg grating structure. (a) Passive grating com-

prised of N -number of unit cells in a background material nB, (b) single unit cell of the grating

with 2 slightly different refractive indices navg + ∆n′ and navg −∆n′.

width of the transmission and reflection spectra, depends on the number of unit

cells N and the depth of modulation ∆n′. To demonstrate this, a Bragg grating

is designed for a Bragg frequency of fB = 336.845 THz (λB = 0.89 µm) and is

surrounded by a background material having a refractive index of nb = 3.5. By

assuming that the average refractive index corresponds to the background material,

the physical length of a unit cell of the grating can be calculated by (4.1), i.e.

Λ = 0.127 µm.

Figure 4.2 shows (a) the transmitted and (b) the reflected power spectra calculated

using the T-matrix method for different numbers of unit cells N and different depths

of modulation ∆n′. It can be seen that, in all cases, a stop-band is formed and

centred at f = fB. The total power of the scattered wave is conserved, i.e. T+R = 1.

Furthermore, Fig. 4.2 shows that the steepness of the transmission and reflection
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Figure 4.2 (a) Transmittance and (b) reflectance spectra of a passive Bragg grating.

spectra is dependent on the number of unit cells N , such that an increase in N

leads to a steeper spectral response. The width of the transmission and reflection

spectra is controlled by the depth of modulation of the real part refractive index

∆n′. Moreover since the dielectric material is passive, the scattering matrix is

unitary (S−1 = S†), which implies that the system has the same reflection when

excited from the left or the right sides of the grating.
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4.3 Bragg Grating with a PT -Symmetric

Refractive Index Modulation

In this section, a PT -symmetric refractive index modulation profile is introduced

to the Bragg grating to form a PT -symmetric Bragg grating (PTBG) structure. In

particular, this section will be focused on the study of the effect of the PT -symmetric

phase transition and the spectral singularity on the operation of the PTBG. Special

attention will be given to different kinds of transmission, i.e. the sub-unitary, super-

unitary and unitary transmissions which were described in Subsection 3.3.1.

The PT -symmetric refractive index modulation requires that the real part of the

refractive index is an even function of position and the imaginary part of the re-

fractive index, which represents gain and loss, is an odd function of position. The

PT -symmetric Bragg grating (PTBG) considered has piecewise constant layers of

refractive index n = (navg ±∆n′)± jn′′, where navg is the average refractive index,

and ∆n′ and n′′ are the modulations of the real and imaginary parts of the refractive

index, respectively. The grating is surrounded by a background material of average

refractive index nb = navg and has total length of NΛ, where Λ is the length of one

unit cell and N is the number of unit cells. This is schematically illustrated in Fig.

4.3.

For definiteness, consider a PTBG with a depth of real part modulation of ∆n′ =

0.02 that is designed with a Bragg frequency fB = 336.845 THz (λB = 0.89 µm)

and that the a number of periods of N = 200. Moreover, the background material

and the average refractive index of the structure are designed to correspond to the

refractive index of commonly used GaAs material, i.e. nb = navg = 3.5. Using

(4.1), the pitch length of a single unit cell of the grating could be calculated as

Λ = 0.127 µm. The transmittance and reflectance for both left and right incident

waves are plotted in Fig. 4.4 for an increasing value of gain/loss parameter, i.e.
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Figure 4.3 Schematic of a PT -Bragg grating structure. (a) Grating composed of N

unit cell in a background material nB, (b) single unit cell of the grating with 2 slightly different

refractive indices navg + ∆n′ and navg − ∆n′. Red coloured sections denote gain while the

lossy sections are coloured blue.

n′′ = 0, 0.0041, 0.015, 0.02, 0.022 and 0.02429.

The Lorentz reciprocity theorem, described in Subsection 2.2.2, states that the S-

matrix of a linear, non-magnetic and time-independent system is symmetric. It im-

plies that the linear PT -symmetric Bragg grating (PTBG), studied in this chapter,

has the same transmittance for left and right incidence. As such the transmittances

are denoted only as transmittance T and are shown in the top panel of Fig. 4.4.

The reflectances, however, are different for left and right incidence and are denoted

by RL and RR, respectively, and displayed in the middle and bottom row of Fig.

4.4.

The transmittance and reflectance of a passive grating has been discussed in detail in
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the previous section. As the gain/loss parameter n′′ is introduced to the system, the

reflectance for left incidence differs from the reflectance for right incidence. Looking

at the transmittance spectra, in the top panel of Fig. 4.4, it can be seen that as

the gain/loss parameter n′′ increases the transmission band-gap reduces and almost

unitary transmission (T = 1) occurs at n′′ = 0.02, with a further increase of n′′ from

this point leading to super-unitary transmission (T > 1) spectra.

The reflectance for the left incident wave RL is shown in the middle panel of Fig. 4.4.

It can be seen that as the gain/loss parameter n′′ increases, the reflectance from the

left side RL also increases. Meanwhile, the reflectance for the right incident wave RR

behaves differently in that as the gain/loss parameter increases the right reflectance

decreases and reaches almost no reflection RR = 0 for all frequencies at n′′ = 0.02.

Operation for gain/loss parameters above this point leads to RR > 0.

It is important to note that for the particular gain/loss parameter of n′′ = ∆n′ =

0.02, the transmittance is unity (T = 1) for all frequencies, and the grating is almost

reflectionless for the right incident wave (RR = 0) whilst the left incident wave

experiences amplified reflection (RL > 1). This particular operation at n′′ = ∆n′ is

also known as unidirectional invisible operation [4.21], since the PTBG is invisible

when it is excited from one side (right) but not the other (left).

Finally, consider the transmittance T and reflectances (RL and RR) for the case

when the gain/loss parameter n′′ = 0.02429, shown in Fig. 4.4(f). For this particu-

lar value of gain/loss parameter, the value of T , RL and RR approach infinity at the

Bragg frequency f = fB. This particular singularity at f = fB is associated with the

simultaneous coherent perfect absorber-lasing (CPAL) operation point. The prop-

erties of the CPAL point are discussed in detail in Subsection 3.3.3. It is important

to note that, in practice, once the PTBG enters a lasing state, operating at or above

the CPAL point, the system is in an unstable regime since the power inside the

structure is increasing exponentially. Therefore, controllable practical applications
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of the PTBG are constrained to be before the CPAL operation point.

In Subsection 3.3.1, it has been shown that in a PT -symmetric scattering system

a more general conservation relationship, see (3.25), which relates both asymmetric

left and right responses is applied. This is reproduced again here:

|1− T | =
√
RLRR . (4.2)

In order to show the validity of (4.2), the top row of Fig. 4.5 depicts the difference

between the left and the right hand side of (4.2). It can be seen from the top panel

of Fig. 4.5 that the difference is zero throughout the spectra for an increasing value

of gain/loss parameter n′′ which implies that the general conservation relation is

satisfied in a PT -symmetric Bragg grating structure.

Moreover, it is also discussed in Subsection 3.3.2 that a PT -symmetric scattering

system may undergo a spontaneous symmetry breaking which could be observed by

the magnitude of the eigenvalues of the S-matrix or by a simpler condition defined

by the PT -symmetry transition criterion, given in (3.45). Consider the middle

panel of Fig. 4.5. This part of the figure shows the magnitude of the eigenvalue

of the S-matrix, denoted by |sn| where n ∈ {1, 2}, and bottom panel depicts the

PT -symmetry transition criterion of (3.45) as a function of frequency for different

gain/loss parameter n′′.

Now consider the middle panel of Fig. 4.5 which shows the magnitude of the eigen-

values of the S-matrix, i.e. |sn| on a semi-log scale for different gain/loss parameters

n′′. It can be seen from the middle panel of Fig. 4.5(a) that the eigenvalues of the

passive grating are unimodular |s1,2| = 1 throughout the frequency spectrum, imply-

ing that the S-matrix is orthogonal. However, as the gain/loss is introduced into the

system the S-matrix is no longer Hermitian but will be in either the PT -symmetry

or PT -broken-symmetry phase. As such, in the PT -symmetry phase the eigenvalue
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Chapter 4. Parity-Time Symmetric Bragg Grating

is unimodular |s1,2| = 1 whilst in the PT -broken-symmetry phase the product of

the eigenvalues is unimodular, i.e. s∗1,2s2,1 = 1. Therefore it can be seen from Fig.

4.5(b) that for a gain/loss parameter value of n′′ = 0.004108, the PTBG operates in

the PT -symmetric phase throughout the frequency range considered. However from

Fig. 4.5(c-f) it can be observed that for larger values of n′′, the PTBG could operate

under the PT -symmetry phase and PT -broken-symmetry phase, depending on the

operational frequency f . It is important to note that since the coupling between

the forward and backward propagating waves is strongest at the Bragg frequency

fB, the PT -symmetry will be firstly broken at the Bragg frequency and then spread

within the band-gap of the grating.

The transition from the PT -symmetric phase to the PT -broken-symmetry can be

clearly observed by studying the PT -transition criterion of (3.45). For the operation

in the PT -symmetric phase the criterion is 1
2
(RL+RR)−T < 1 whilst for operation

in the broken-symmetry phase, the criterion is 1
2
(RL+RR)−T > 1. It is noted that

operation at the criterion of 1
2
(RL +RR)− T = 1 is denoted by the PT -symmetric

breaking point operation.

The bottom panel of Fig. 4.5 plots the criterion 1
2
(RL +RR)−T for different values

of gain/loss parameter n′′; the insets depict the detail of the criterion value with the

dashed line denoting the 1
2
(RL+RR)−T = 1 value. It can be seen that for the passive

grating structure, the criterion value is below 1 throughout the frequency spectrum.

As the gain/loss parameter value increases, the criterion value also increases. It is

noted that at the particular value of n′′ = 0.004108, the criterion value at the Bragg

frequency is just touching the dashed line. It implies that the value of gain/loss

parameter n′′ = 0.004108 indicates the initial PT -symmetry breaking which occurs

at the Bragg frequency and which is followed by other frequencies within the band-

gap region proximity.

It is important to inspect the operation at the gain/loss parameter value of n′′ =
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Figure 4.6 Magnitude of the eigenvalues of the S-matrix. Plotted in a semi-log scale

as a function of frequency and for different gain/loss parameter n′′

0.02429, depicted by Fig. 4.5(f). Although the PTBG exhibits CPAL operation,

the PT -system satisfies the general conservation relationship. Furthermore, the

eigenvalues of the S-matrix show a strong singularity at the Bragg frequency fB

with one of the eigenvalues approaching infinity whilst the other approaches zero.

This implies that the structure supports both lasing and coherent-perfect-absorber

operation simultaneously at the same operating frequency and at the same gain/loss

parameter value. The singularity signatures also observed in Fig. 4.5(f, bottom

panel) where the criterion at the Bragg frequency is also approaching infinity.

In order to study the PT -symmetry phase transition process, Fig. 4.6 depicts the

magnitude of the eigenvalues of the S-matrix on a semi-log scale as a function

of both gain/loss parameter and the operating frequency f . For this figure, the

PTBG considered is the same as that presented in Fig. 4.4 and Fig. 4.5. It

can be seen from this figure that, as a passive grating, i.e. with no gain/loss, the

eigenvalues are uni-modular. However, as the gain/loss increases, the PT -symmetry

starts to break which initially happens at fB for the gain/loss parameter value

of n′′ = 0.004108. For a further increase of gain/loss in the system, more PT -

symmetry breaking is observed. The black dashed line in this figure denotes the

value of 1
2
(RL + RR) − T = 1, i.e. the PT -symmetry breaking point. Furthermore
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this figure demonstrates that PT -symmetry breaking occurs at a frequency located

within the band-gap region of the grating. It can be explained since propagation

of a wave at a frequency outside of the band-gap experiences almost no dispersion,

and the interaction between the forward and the backward propagation wave is

negligible. Moreover, this figure also shows the singularity point of the eigenvalues

of the S-matrix, with one eigenvalue approaching infinity whilst the other approaches

zero. Operation at this singular point is associated with the CPAL point which is

depicted in more detail in Fig. 4.5(f). It is important to note that in practice as

the structure reaches the CPAL point the system becomes unstable as it is now

operating as a laser cavity, hence that operation beyond the CPAL point leads to

unstable operation.

4.4 Summary

To summarise, this chapter overviewed the dispersion properties and the impact of

design parameters, such as number of unit cells N and depth of modulation ∆n′, on

the transmission and reflection spectra of a passive Bragg grating. As such, it was

shown that a passive Bragg grating operates as a band-stop structure centred at

the Bragg frequency, which parameter depends on the design parameters of average

refractive index and physical length of a unit cell Λ.

Subsequently, the chapter studied the transmission and reflection spectra of a PT -

symmetric Bragg grating. It was demonstrated that a PT -Bragg grating has an

asymmetric scattering response depending on the direction of the incoming incident

wave. Moreover, the possible operation of the so-called unidirectional invisibility

operation which occurs when the modulation of the real part of the refractive index

is equal to the modulation of the gain/loss parameter of the refractive index, ∆n′ =

n′′ was also shown. This chapter also demonstrated the PT -symmetry transition
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process, which was studied in two ways, first by investigating the magnitude of the

eigenvalues of the scattering matrix S and secondly by the PT -phase transition

criterion given in Section 3.45. Moreover, the PTBG was shown to exhibit the

spectral singularity operation which is associated with the simultaneous coherent

perfect absorber-lasing (CPAL) operation state. The signature of the CPAL state

is marked by the singularities in the eigenvalues of the S-matrix and the PT -phase

transition criterion.
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5
Transmission-Line Modelling of Active

Photonic Medium

The chapter starts with an overview of a simplified gain and loss mate-

rial model typically used to model erbium-doped active material. The

telegrapher’s equation is introduced and shown to give an analogue rep-

resentation of Maxwell’s equations in the electromagnetic field theory as

a lumped-element electrical circuit. Subsequently, a time-domain numer-

ical method namely the Transmission-line modelling (TLM) is developed

based upon this analogy using the bilinear transformation formulation.

By using the digital filter approach, simple realistic dispersive and sat-

urable gain (or loss) material is implemented within the time-domain

TLM model. Finally, the implemented TLM gain (or loss) material model

is validated for two cases, i.e. a linear and saturable gain.

* * *
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5.1 A Realistic Gain (or Loss) Medium Model

Light amplification phenomena can be explained using the concept of energy levels

and the transitions of electrons between the energy levels [5.1–5.3]. To elaborate the

concept of gain by the mechanism of electron transition between different energy

levels, consider a three-energy-level model, illustrated in Fig. 5.1.

The three-energy-level model, illustrated Fig. 5.1, is a simplified model which is

typically used to describe light amplification phenomena in an erbium-doped optical

amplifier [5.2–5.5]. In such a configuration, there are three energy levels denoted by

E1, E2 and E3, with E1 being the lowest energy level. The level E3 is typically a

collection of closely spaced energy levels in comparison to the discrete levels E1 and

E2.

The amplification process starts with an upward transition of electrons from E1

to E3 by an external pumping beam. Almost immediately, electron transitions

between the closely spaced energy levels in E3 as well as from E3 to E2 occur. These

rapid transitions are usually associated with phonon and non-radiative transition.

Meanwhile, the large energy gap between E2 and E1 causes a transition between

these energy levels while emitting light. Additionally E1 and E2 are discrete levels,

hence the emitted photons has a distinct energy E2 − E1.

During the transition from E2 to E1, two kinds of emission occur, namely stimulated

and spontaneous emissions. The stimulated emission occurs because of an induced

downward transition by an incoming light signal frequency which is matched to the

energy gap, i.e. E2 − E1. This emission is usually almost instantaneous, thus pro-

duces a coherent light amplification. Meanwhile the spontaneous emission happens

regardless the presence of incoming signal and is typically slow and in a random

manner, thus the emitting light is not coherent and in random directions and po-

larisation. In practice, the spontaneous emission causes noise problems in optical
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E3

E2

E1

External pumping beam

Light signal

Instantaneous transition
accompanied with

phonon emission

Photon emission

Stimulated &
spontaneous emission

Figure 5.1 Light amplification by population inversion. Thee-energy levels of an atomic

system, denoted by E1, E2 and E3 with E1 the lowest and E3 is the highest energy level.

Adapted from [5.1–5.4].

amplifier applications [5.2].

For the case when the electron transition between E2 and E1 is considered to be ho-

mogeneous, the electron response to the incoming light is characterised by the same

atomic transitional angular frequency ωσ and the same time relaxation parameter τ .

In such an homogeneous system, the time relaxation parameter τ models the time

required by the electrons to come to rest after transition, which is responsible for

the finite material response described previously in Section 2.3. The finite material

response introduces a broadening in the spectrum of the emitted light in the shape

of Lorentzian lineshape function.

A macroscopic model of the homogeneously broadened gain medium can conve-

niently be modelled through the electrical conductance of the medium as [5.6],

σe(I, ω) = S(I)
σ0

2

[
1

1 + j(ω − ωσ)τ
+

1

1 + j(ω + ωσ)τ

]
(5.1)

where, ωσ denotes the atomic transitional angular frequency, τ is the atomic relax-

ation time parameter, and σ0 is related to the conductivity peak value that is set

by the pumping level at ωσ. The saturation coefficient S is non-linear in nature as a

consequence of the finite number of electrons available in the case of large incident
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signal and is given as [5.2,5.5–5.7],

S(I) =
1

1 + (I/Isat)
. (5.2)

In the case of a small incident signal, variation of the saturation coefficient is typ-

ically negligible. The value of the saturation intensity Isat is highly dependent on

the detail of structure and material [5.8].

Overall, the frequency domain relative dielectric permittivity (2.20) is given by,

εr(ω, I) = 1 + χe(ω)− jS(I)
σ0

2ε0ω

[
1

1 + j(ω − ωσ)τ
+

1

1 + j(ω + ωσ)τ

]
. (5.3)

It is important to note that the material model given by (5.3) satisfies the Kramers-

Kronig relations by the fact that a change in the imaginary part causes the real

part of the dielectric constant to be dispersive and it meets the analytic condition

of the Fourier transform that all singularities of the model are located in the upper

half-plane of the complex frequency plane.

In order to associate the conductivity model given in (5.3) with the resulting gain,

assume that the dielectric susceptibility is constant and real, i.e. χe(ω) = χe and

consider the case of small signal gain. The relative permittivity can then be simpli-

fied as,

εr(ω) = 1 + χe +
σ′′e (ω)

ε0ω
− j σ

′
e(ω)

ε0ω
, (5.4)

where, the frequency domain (small signal) conductivity has been considered in

the form of σe(ω) = σ′e(ω) + jσ′′e (ω), so that the real and imaginary parts of the
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conductivity are given by,

σ′e(ω) = σ0
1 + (ω2

σ + ω2)τ 2

{1 + (ω2
σ − ω2)τ 2}2 + 4ω2τ 2

,

σ′′e (ω) = σ0
(ωτ){−1 + (ω2

σ − ω2)τ 2}
{1 + (ω2

σ − ω2)τ 2}2 + 4ω2τ 2
.

(5.5)

In the refractive index formalism, the propagation constant in (2.19) can also be

expressed as,

γ = α + jβ = j
ω

c0

n(ω) (5.6)

where, the complex frequency-domain refractive index is defined as,

n(ω) ≡n′(ω) + jn′′(ω) =
√
εr(ω) (5.7)

Consequently, the phase constant (β) and gain (α) depend only on the real and

imaginary parts of the refractive index respectively as,

α = − ω
c0

n′′(ω), (5.8)

β =
ω

c0

n′(ω). (5.9)

By assuming propagation in the +z direction in the form e−γz, it can be seen from

(5.5), (5.6) and (5.8) that gain is achieved by having σ0 < 0.

It is also important to note that the three-level system, illustrated in Fig. 5.1,

also describes light absorption phenomena. From Fig. 5.1, it can be seen that in

the absence of external pumping beam, most of the electrons are at E1 and the

incoming light signal induces an upward transition from E1 to E2. The upward

transition induces loss at the corresponding frequency of the appropriate energy

E2 −E1. Mathematically, this induced absorption loss can be modelled by (5.3) by

having σ0 > 0.
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5.2 The Transmission-Line Theory

This section presents the manifestation of Maxwell’s equations describing propagat-

ing electromagnetic fields in circuit theory, which becomes the underlying concept of

the time-domain electromagnetic modelling scheme on which the Transmission-line

modelling (TLM) method is based.

In order to exemplify the analogous principle, consider the two-wire transmission-

line shown in Fig. 5.2. Figure 5.2 schematically shows a section of transmission

line with length ∆x with voltage V across the wires and a propagating current I

(top) for which the equivalent circuit is represented by the lumped components of

inductor (L), capacitor (C) and conductance (G) (bottom).

Applying the Kirchhoff voltage and current conservation laws to the bottom circuit of

Fig. 5.2, the voltage V and current I are described by the coupled partial differential

equations [5.9],

−∂I(x, t)

∂x
∆x = GV (x, t) + C

∂V (x, t)

∂t
(5.10)

−∂V (x, t)

∂x
∆x = L

∂I(x, t)

∂t
(5.11)

Equations (5.10) and (5.11) are commonly known as the Telegrapher equations.

Assuming the steady-state, the solution of the coupled PDEs is assumed to take the

form of,

V (x, t) = v̄(x)ejωt (5.12)

I(x, t) = ī(x)ejωt (5.13)

Equations (5.10) and (5.11) can be solved simultaneously to give the travelling wave
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∆x

V (x, t)

+

−

I(x, t)

V (x+ ∆x, t)

+

−

∆x

L

C Ge
V (x, t)

+

−

I(x, t)

V (x+ ∆x, t)

+

−

Figure 5.2 Schematic illustration of a transmission-line section. (top) A section of

length ∆x of two wire transmission-line; (below) The circuit representation of the transmission-

line lumped-elements of inductor L, capacitor C and conductance Ge.

equations,

dψ(x)

dx2
− γ2ψ(x) = 0 (5.14)

where, ψ(x) can be either v̄(x) or ī(x), and γ denotes the propagation constants

which are defined as

γ = ±

√(
jω

L

∆x

)(
G

∆x
+ jω

C

∆x

)
(5.15)

Equation (5.15) signifies that the solution to (5.14) is comprised of two wave trav-

elling in +x and −x direction as,

v̄(x) = v+
0 e−γx + v−0 eγx

ī(x) = i+0 e−γx + i−0 eγx
(5.16)
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Note that here, we have adopt e−γx to represent propagation in the +x direction and

eγx for propagation in the −x direction. By solving (5.10) and (5.16) simultaneously

the characteristic impedance ZTL of the transmission line (Fig. 5.2) can be defined

as,

v+
0

i+0
= −v

−
0

i−0
= ZTL =

√
jωL

G+ jωC
. (5.17)

Meanwhile, from (2.1), Maxwell’s equations for a one-dimensional wave propagating

in the x-direction with the electric field polarised in y-direction and the magnetic

field in z-direction are,

−∂Hz

∂x
= Jey +

∂(εEy)

∂t
(5.18)

−∂Ey
∂x

= µ0
∂Hz

∂t
(5.19)

In this context, the Maxwell’s equations have again been assumed for non-magnetic

material (µ = µ0) which is typical of optical materials.

By comparing (5.10)-(5.11) with (5.18)-(5.19), the equivalences of the field and the

transmission-line theory can be obtained and are summarised in Table 5.1, along

with the corresponding symbol notation and units. Note that the negative signs on

the magnetic field (H) and current (I) equality are due to the fact that clockwise

current direction has been adopted.

5.3 Transmission-Line Modelling of Gain Medium

In this section, the concept and methodologies of the time-domain Transmission-

line modelling (TLM) numerical method is introduced. The alternative approach

of the TLM method based on the bilinear Z-transformation formulation will also
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Table 5.1 Equivalences of the field and transmission-line quantities [5.10,5.11].

Field theory Transmission line theory

Quantity Symbol unit Quantity Symbol unit Equivalences

Electric field E [V/m] Voltage V [V] E ↔ − V
∆x

Magnetic field H [A/m] Current I [A] H ↔ − I
∆x

Permittivity ε [F/m] Capacitance C [F] ε↔ C
∆x

Permeability µ0 [H/m] Inductance L [H] µ0 ↔ L
∆x

Conductivity σ [S/m] Conductance Ge [S] σ ↔ Ge
∆x

be described and shown to be suited for modelling of material with dispersion and

non-linear properties [5.11–5.14].

5.3.1 TLM: Concept and Methodology

Having established the analogous formulation of electrodymamics in dielectic media

and the scattering of voltages and currents in within the transmission-line model,

this section presents a simulation technique of electodynamics best-known as the

transmission-line modelling (TLM) method [5.10–5.18]. The TLM method is a time-

domain numerical model based upon the analogous principle between the propagat-

ing electromagnetic field and voltage impulses travelling on an interconnected mesh

of transmission lines [5.10–5.18]. In its simplest, 1D, case the TLM discretises the

problem of interest into sections of length ∆x, represented by a transmission line

model as is illustrated in Fig. 5.2 [5.10–5.18].

At the conceptual level, the TLM simulation can be distinguished by the 3+1 main

block processes illustrated in Fig. 5.3. Before the calculations, one needs to define

the simulation conditions which include excitation sources, geometry and material
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1. INITIALISATION

Material parameters,

Geometries,

Input sources, etc Z

2. SCATTERING

Calculates and scatters voltages

and currents on every node.

V4 V5

performed as

necessary

3. CONNECTIONS

Passing on computation variables

between node points.
4. POST-PROCESSING

Fourier transformations,

Data fitting, etc.

Figure 5.3 Schematic illustration of a TLM simulation. Adapted from [5.10].

parameters of structures. Based upon the specified simulation conditions the TLM

calculation is performed starting with a scattering process. In the scattering process,

each TLM node receives the incoming voltage pulses from the neighbouring nodes

and scatters them depending on the material defined on each node (this process

is detailed in Subsection 5.3.2). The output of the scattering process is the set of

scattered voltage pulses, these scattered voltage pulses need to be communicated to

the adjacent nodes by the connection process. The connection process mimics the

propagation of voltages by passing on each scattered voltage pulse to the adjacent

nodes. The iterative scattering-connection process is repeated as many times as is

needed to simulate the propagation of voltage pulses between all the TLM nodes in

the problem space. After all the scattering-connection processes, the TLM simula-

tion is ended with data collections and post-processing. The post-processing of the

time-domain data may include data-fitting, Fourier transformations and complex
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eigenvalue extractions.

In this thesis, an alternative TLM formulation using bilinear Z-transformation of

Maxwell’s equations approach is employed [5.11–5.14,5.18]. In this approach, the

TLM is formulated using less of an electical analogy but more of transmission-line

characteristics and a Z-transformation of Maxwell’s equations [5.11–5.14,5.18]. In

particular, this approach offers flexibility in the implementation of dispersive and

non-linear material properties [5.11–5.14,5.16–5.18].

5.3.2 Scattering Process

Maxwell’s equations (2.1) for a one-dimensional problem with the electric field po-

larisation in the y-direction are,

− ∂

∂x

Hz

Ey

 =

σe ∗ Ey
0

+
∂

∂t

ε0(Ey + χe ∗ Ey)

µ0Hz

 (5.20)

In (5.20), the curl Maxwell’s equations are displayed in a compact matrix notation,

where ∗ denotes the time-domain convolution operator.

Utilising the field-circuit equivalences (See Table 5.1), the circuit form of (5.20) is

illustrated by Fig. 5.4 and the Telegrapher equation is formulated as,

− ∂

∂x
∆x

Iz
Vy

 =

Ge ∗ Vy

0

+
∂

∂t

C0 (Vy + χe ∗ Vy)

L0Iz

 , (5.21)

By introducing the following normalisation transformation,

x→ X∆x | ∂x→ ∆x∂X,

t→ T∆t | ∂t→ ∆t∂T
(5.22)
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V4 V5

V r
4 V i

4 V i
5 V r

5

I4 I5VyL0/2 L0/2

C0

2

C0

2
C0χe Ge

∆x

Figure 5.4 Lumped-component circuit form of (5.21). Build based upon the equivalences

of Maxwell’s curl and transmission-line telegrapher’s equations. Adapted from [5.10–5.14,5.18].

whereX and T are dimensionless variables. Equation (5.21) can be simplified further

as a single unit operation (volt) as,

− ∂

∂X

 iz
Vy

 =

ge ∗ Vy
0

+
∂

∂T

Vy
iz

+
∂

∂T

χe ∗ Vy
0

 . (5.23)

Here, the normalised conductivity and current parameters are defined as ge = GeZTL

and iz = IzZTL, where ZTL denotes the characteristic impedance of the transmission-

line and has been adopted to correspond to the properties in free-space, hence ZTL =√
L0/C0 and ∆x = c0∆t where c0 = 1/

√
ε0µ0 .

By utilising the travelling-wave format [5.11–5.14,5.18],

− ∂iz
∂X
− ∂Vy
∂T

= 2V i
4 + 2V i

5 − 2Vy, (5.24)

−∂Vy
∂X
− ∂iz
∂T

= 2V i
4 − 2V i

5 − 2iy, (5.25)

where V i
4 and V i

5 denote the incident impulses coming from the left and right re-

spectively, as illustrated in Fig. 5.4. The travelling-wave form of (5.23) in the

Laplace-domain is given as,

2

V r
y

irz

 ≡ 2

V i
4 + V i

5

V i
4 − V i

5

 = 2

Vy
iz

+

geVy
0

+ s̄

pey
0

 . (5.26)
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In (5.26), the convolution operator ∗, which appeared in (5.23), has been transform

to a simple multiplication in the frequency domain and pey = χeVy denotes the

normalised dielectric polarisation. Note that the normalised Laplacian operator is

s̄ = ∂/∂T . Performing a bilinear Z-transform of the normalised Laplacian operation

[5.11–5.14,5.18],

s̄
Z−→ 2

(
1− z−1

1 + z−1

)
, (5.27)

equation (5.26) becomes in Z-domain,

2

V r
y

irz

 = 2

Vy
iz

+

geVy
0

+ 2

(
1− z−1

1 + z−1

)pey
0

 . (5.28)

Equation (5.28) is suited for material modelling with dispersive and nonlinear prop-

erties, which are modelled through the dielectric polarisation pey and the conduc-

tivity ge. Right after obtaining the voltage Vy and current iz quantities, the new

scattered voltage impulses can obtained by [5.10–5.14,5.18],

V r
4 = Vy − V i

4

V r
5 = Vy − V i

5

(5.29)

and be communicated to the neighbouring nodes during the connection process.

5.3.3 Internodal Connection Process

In the connection process, the new calculated reflected voltage impulses will become

the incident voltages of the next time step. Hence, the reflected voltages of nodeX at

time step T become the new incident voltage impulses of the neighbouring nodes at
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the time iteration step T+1. This process can be expressed as [5.11–5.14,5.18],

T

V4[X]

V5[X]

r →
T+1

V5[X − 1]

V4[X + 1]

i (5.30)

where, [X − 1] and [X + 1] denote the adjacent nodes on the left and right side,

respectively.

5.3.4 Digital Filter Formulation of Active Material Model

In this Subsection, a digital filter is designed based on the material model described

in the previous section. The purpose of designing a digital filter of the material

model is to facilitate the implementation of the frequency-domain material model

within the time-domain TLM method as a feed-back system.

The gain (or loss) material model given in (5.1) can be conveniently expressed in

the Laplace domain as,

σe(I, s) = S(I)σ0

[
K1s+ (K1)2

s2 + 2K1s+ (K2)2

]
, (5.31)

where the constants K1 and K2 are defined as,

K1 =
1

τ
and K2 =

1 + (ωστ)2

τ 2
.

Using the normalisation procedure introduced in Subsection 5.3.2, the material

model of (5.31) in the TLM form can be expressed as,

ge(I, s) = S(I)g0

[
K1s+ (K1)2

s2 + 2K1s+ (K2)2

]
, (5.32)
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and by performing the bilinear Z-transformation on the Laplacian operator as,

ge(I, z) = S(I)g0

[
K3 + z−1(K4) + z−2(K5)

K6 + +z−1(K7) + +z−2(K8)

]
, (5.33)

where, the constants in (5.33) are given by,

K3 = 2K1∆t+ (K1∆t)2 ; K4 = 2(K1∆t)2 (5.34)

K5 = −2K1∆t+ (K1∆t)2 ; K6 = 4 + 4K1∆t+K2(∆t)2 (5.35)

K7 = −8 + 2K2(∆t)2 ; K8 = 4− 4K1∆t+K2(∆t)2 (5.36)

Furthermore, any system with a causal response can always be described as a feed-

back system whose current response depends on a past event. Hence it can be shown

that [5.13,5.18] ,

(1 + z−1)ge = ge0 + z−1(ge1 + ḡe(z)), (5.37)

where the constants ge0 and ge1 and the causal response ḡe(z) are given by,

ge0 = gs

(
K3

K6

)
,

ge1 = 0,

ḡe(z) =
b0 + z−1b1 + z−2b2

1− z−1(−a1)− z−2(−a2)
,

(5.38)
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with the corresponding constants being defined as,

gs = g0

(
1

1 + (I/Isat)

)
,

b0 = gs

(
K3

K6

)(
K3 +K4

K3

− K7

K6

)
,

b1 = gs

(
K3

K6

)(
K4 +K5

K3

− K8

K6

)
,

b2 = gs

(
K3

K6

)(
K5

K3

)
,

a1 =
K7

K6

,

a2 =
K8

K6

.

(5.39)

5.3.5 Implementation of Digital Filter

In this subsection, the digital filter for a gain (or loss) material (5.37) is implemented

within the TLM method in the one-dimensional regime described in section 5.3.2.

For convenience, the first row of (5.28) is reproduced here,

2V r
y = 2Vy + geVy + 2

(
1− z−1

1 + z−1

)
pey (5.40)

After multiplying both sides by (1 + z−1) and rearranging, (5.40) can also be ex-

pressed as,

(2V r
y − 2Vy) + z−1(2V r

y − 2Vy) = (1 + z−1)geVy + 2(1− z−1)pey (5.41)

Substituting the digital filter for the conductivity given in (5.37), and by further

assuming the case of linear and dispersionless dielectric polarisation pey = χe∞Vy,

(5.41) reduces to

2V r
y + z−1(Sey) = Ke2Vy, (5.42)
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ḡeSec Vy

Vy ∑

∑
−1

Sec

b0

b1

b2

−a1

−a2

z−1

z−1

Figure 5.5 Signal flow diagram modelling gain material in TLM algorithm. (a) Overall

signal flow diagram from the incoming voltage impulses V r
y to the resulting nodes voltage Vy.

(b) Detail field updating scheme of conductivity model of gain material which is marked in the

dashed box in (a).

where the cumulative past response is given by,

Sey = 2V r
y +Ke1Vy + Sec,

Sec = −ḡeVy,
(5.43)

with the constants Ke1 and Ke2 defined as,

Ke1 = −(2 + ge1 − 2χe∞),

Ke2 = 2 + ge0 − 2χe∞,
(5.44)

and ge0, ge1 and ḡe are as in (5.38).
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The signal flow diagram of system (5.42) is illustrated in Fig. 5.5(a), the subsystem

defining the conductivity digital filter system (within the dashed line box) is detailed

in Fig. 5.5(b). It is also noted here that, for the case of a saturable gain (or loss)

model, the saturation coefficient S(I) is updated as follows: if |Vy| at the time-step T

is greater than |Vy| at T−1 at the same location in space, then S(I) is updated using

the last value of |Vy|. However, if |Vy| has decreased from its previous value, it is not

updated; hence S(I) remains based on the most recent peak value. In this manner,

intensity feedback in the time-domain retains, as much as possible, its frequency

domain meaning [5.6]. Thus the time-averaged intensity I can be calculated by

(2.24) which, for a one-dimension problem is reduced to,

I =
1

2

E2
y

η
=

1

2

V 2
y

η∆x2
, where η =

η0

n′
(5.45)

where η0 =
√
µ0/ε0 is the free-space impedance of a normally incident wave and n′

is the real-part of the refractive index.

5.3.6 Validations

This section demonstrates the accuracy of the implemented gain model for both

low-signal gain amplification and strong-signal amplification where gain saturation

dominates.

For the small-signal gain case - the TLM model will be validated using the

structure illustrated in Fig. 5.6 which is based on GaAs material with χe∞ = 11.8881

[5.6]. It is noted that for validation purposes in this subsection, a constant value

of dielectric constant as given in [5.6] is used, in the following chapter, such as in

Chapter 7, a more realistic dispersive and non-linear dielectric material model will

be developed and used. By injecting current into the centre region of length L = 5

µm, this region becomes active. The gain region is assumed to have a conductivity
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Figure 5.6 Schematic illustration of the validating structure. The 1D structure used

for the validation of the gain material model implemented in the TLM method and relevant

coordinate axis.

σ0 = −5000 S/m, atomic transition angular frequency ωσ = 2π(336.845) rad/ps

and time relaxation parameter τ = 0.07 ps [5.6]. Furthermore, for small-signal

amplification the gain can be assumed to be linear and unsaturable (S = 1). As

such by assuming a linear gain medium, the TLM calculation can be validated with

one obtained by using the exact T-matrix model. Detail on the implementation of

the T-matrix method is given in Appendix B.

The TLM simulation is conditioned as follow: a single Gaussian pulse function

modulated at f = ωσ/(2π) with Full-Width Half Magnitude (FWHM) 20 fs was

launched from the left side of the structure before the gain region. The simulation

was performed with a spatial discretisation ∆x = λ0/(50n) and run for 3 ps, which

ensured that all of the signal had passed through the structure and provided a

sufficient frequency-domain resolution.

Two separate TLM simulations were under-taken. The first simulation was per-

formed without the gain region and acts as a reference. The second simulation

serves as the main simulation, where the gain region is present. In both simulations,

two sets of time-domain data (electric field in this case) were recorded at M1 and M2

monitor points. From the first simulation, the recorded data at M1, namely Ey,1,

was reserved as the incident signal and the other one, at M2, namely Ey,2, was used

as a reference to calculate the phase change of the transmitted signal for the case

when the gain region is present. The second simulation included the gain region

and was monitored at M2, namely Ey,3. As such, the transmittance T and phase
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Figure 5.7 Transmittance and phase difference of signal passing through gain

medium. Results of the first validation case of linear GaAs material, i.e. S = 1 calculated

by the TLM and the analytical T-matrix method. (a) The transmittance and (b) the phase

difference of the transmitted signal observed at the monitor point M2 plotted as a function of

frequency.

difference ∆φ can be calculated as,

T =
|E|2y,3
|E|2y,1

and ∆φ = ∠

(
Ey,3
Ey,2

)
,

where Ey,1 Ey,2 and Ey,3 denote the Fourier transformed Ey,1, Ey,2 and Ey,3 data

respectively. ∠ denotes the argument of a complex number.

Figure 5.7(a) compares the transmittance of the structure illustrated in Fig. 5.6 as

a function of frequency from the TLM simulation and the analytical transfer-matrix

(T-matrix) method. The transmittance indicates an amplification of the incident
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Figure 5.8 Complex refractive index of the gain GaAs material. (a) The real part of the

refractive index and (b) the imaginary part of the refractive index of the gain region material.

The gain region material parameter used are conductivity parameter σ0 = −5000 S/m, atomic

transition angular frequency ωσ = 2π(336.845) rad/ps and time relaxation parameter τ = 0.07

ps, as used in [5.6].

light with a Lorentzian line-shape and a maximum amplification of almost 4 times

at f = 336.85 THz. The phase difference ∆φ is plotted in Fig. 5.7(b) as a function

of frequency. It can be seen from Fig. 5.7 that the TLM simulation results agree

with the results calculated by the analytical T-matrix method.

To provide a better understanding of the result given in Fig. 5.7, the dispersion of

the gain region is now examined. By substituting all the parameters in (5.3) for

the material defined above, Figs. 5.8(a,b) show the real part and the imaginary

part refractive index as a function of frequency, respectively. Figure 5.8(a) shows
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that the real part of the refractive index is dispersive so that the value of n′ varies

between 3.58 and 3.6. It is also important to note that there is zero phase change at

the atomic transitional frequency fσ = ωσ/(2π), as the light is amplified coherently

at this frequency. The imaginary part of the refractive index depicted in Fig. 5.8(b)

is shown to be positive with a Lorentzian lineshape; this signifies that the maximum

amplification occurs at fσ = ωσ/(2π) with the peak value of n′′(fσ) = 0.0186.

Comparing Fig. 5.7(a) with Fig. 5.8(b), it can be seen that the amplified signal

follows the profile of the imaginary part of the refractive index, n′′; this is reflected

by the maximum amplification which happens at f = 336.85 THz and is associated

with the peak of n′′, that is fσ = ωσ/(2π). From Fig. 5.7(b), it can be seen that

∆φ is positive for f < 336.85 THz whilst it is negative for f > 336.85 THz. This

can be explained by examining the variation of real part of refractive index given in

Fig. 5.8(a). It can be seen from Fig. 5.8(a) that for f < 336.85 THz the real part

of the refractive index n′ is smaller than that of the background material, whist it

is higher than that of the background for f > 336.85 THz. This causes light signal

with f < 336.85 THz to propagate faster, which gives rise to a positive ∆φ, while for

f > 336.85 THz the light propagates slower, which results in a negative ∆φ.

For the strong-signal gain case - the model used for validation is a simple Fabry-

Perot laser cavity based on GaAs material. The Fabry-Perot cavity is comprised of a

section of GaAs gain region (χe∞ = 11.8881) of length L = 12.4 µm, as illustrated in

Fig. 5.6, but within an air (nb = 1) background. The gain material parameters used

are ωσ = 2π(336.845) rad/ps, τ = 0.07 ps and saturation intensity Isat = 65.2× 107

W/m2 [5.6]. As such, two partial mirrors are formed at the GaAs and air interface

on both sides of the GaAs gain region.

Figure 5.9 depicts the electric field Ey monitored at M2 as a function of time for the

case of a gain region with a conductivity σ0 = −7000 S/m, which corresponds to

an imaginary part of the refractive index, calculated by (5.7), of n′′(fσ) = 0.02604.
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Figure 5.9 Second validation study of strong-signal gain material model. (a) Trans-

mitted electric field amplitude as a function time recorded at M2 and (b) the enlarged view of

the electric field Ey between a 0.03 ps window at the steady state. Part (c) is the normalised

spectrum of the time-domain TLM result.
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Figure 5.10 The dependence of the output intensity on the conductivity σ0 param-

eter. The output intensity is calculated at the steady state. Dashed line is the extrapolation.

In the TLM simulation, a Gaussian pulse (FWHM 20 ps) modulated at f = ωσ/2π

with a peak intensity of 0.01%Isat, is launched from the left side of the cavity. It can

be seen from Fig. 5.9(a) that the electric field increases rapidly and saturates after

2 ps as the gain saturates. Figure 5.9(b) shows the enlarged electric field amplitude

over a 0.03 ps window after the steady-state is reached. Furthermore, Fig. 5.9(c)

depicts the Fourier transformation of the time-domain data and confirms that lasing

occurs at f = 336.85 THz, which corresponds to the atomic transitional frequency

of the gain region.

In order to investigate the impact of the conductivity σ0 parameter on the laser

performance, several TLM simulations were undertaken for smaller values of the σ0

parameter. The output intensity monitored at the steady-state is plotted in Fig. 5.10

for different σ0 parameters. From Fig. 5.10, it can be seen that the output intensity

varies linearly. A similar profile was also reported in [5.6]. Further extrapolation

shows that laser threshold occurs at σ0 ≈ −1800 S/m.

For the case of no material loss, the threshold gain required to achieve lasing could
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be obtained analytically by [5.2,5.5,5.6],

αth =
1

2L
ln(R) (5.46)

where, R is the reflection coefficient of the GaAs-air interface and L is the length of

the gain region. For the Fabry-Perot configuration described above, the minimum

gain required to achieve lasing is αth = −0.046147 × 106 m−1 or the corresponding

conductivity σ0,th = −1759 S/m, which is calculated by (5.8). Therefore, it can be

seen that the gain threshold obtained from the TLM simulations agrees pretty well

with the theoretically predicted value.

5.4 Summary

A simple realistic gain (or loss) material model based on three-energy level concept

has been presented. In this chapter it was shown that a realistic material with gain

(or loss) is dispersive. It was further shown that under small-signal excitation, a

linear gain can be used by assuming S = 1 but not for the strong-signal excitation

case, mimicking the finite number of electrons available as in practical material.

Subsequently, a transmission-line theory was presented which shows the conceptual

equivalences between the propagation of electromagnetic waves and the scatter-

propagation of voltage pulses. Based on these equivalences, the time-domain numer-

ical Transmission-Line Model (TLM) based on the alternative bilinear Z-transform

was developed for the one-dimensional case. It was shown that this method is well-

suited to a dispersive and non-linear material model. Moreover in order to implement

the frequency-domain gain (or loss) material model, a digital filter was designed to

model a feed-back system and implemented within the TLM model. This chapter

was finalised by the validation of the implemented model, which was shown to have

a good agreement with the analytically calculated results.
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6
All-Optical Switching Device Using a

Parity-Time Symmetric Bragg Grating

This chapter investigates the impact of dispersion on the spectral be-

haviour of a PT -Bragg grating (PTBG) when a realistic causal gain/loss

material model, which satisfied the Kramers-Kronigs relations, is used.

The application and validity of the numerical time-domain TLM method

to model a realistic dispersive PTBG based on GaAs-based material is in-

vestigated. Furthermore, the chapter will also demonstrate the real-time

switching application of the PTBG.

* * *
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6.1 Introduction

In Chapter 4, the spectral properties of a PT -symmetric Bragg grating (PTBG)

were investigated. One of the key findings in Chapter 4 is that a PTBG has unique

asymmetric scattering response, as such the response for the left incident signal is

different from that of the right incident signal. In particular, it was highlighted that

it is possible to engineer an interesting unidirectional invisibility operation under

certain parameter conditions, where by a total unity transmission with no reflection

from one side and amplified reflection from the other side is achieved. Moreover,

Chapter 4 also shows the coherent perfect absorber-Laser (CPAL) operation point;

operation at and beyond this point yields to an unstable operation.

Meanwhile, in Chapter 5 the operation concept of gain (or loss) material, which

is the ingredient of PT -symmetric material, is studied. It was shown that the

amplification (or dissipation) process is related to the stimulated emission which

may happen due to a population inversion process. As with any other physical

phenomena, the emission process is constrained by the so-called causality condition.

As such a realistic causal material with gain (or loss) has to be dispersive, which is

the conclusion obtained from the Kramers-Kronig relationship which was introduced

in Subsection 2.3.

This chapter will investigate the impact of material dispersion upon the spectral

performance of a PTBG. Moreover, this chapter will also demonstrate an application

of a PTBG as temporal switching device. In order to observe the temporal behaviour

of a PTBG the time-domain Transmission-Line Modelling (TLM) method, equipped

with the dispersive gain/loss material model, is used. Details on the implementation

and numerical scheme of the TLM method were given in Chapter 5.
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6.2 Impact of Dispersive Gain/Loss Medium on

the Performance of a PT -Bragg Grating

Consider the PTBG illustrated in Fig. 6.1. The structure is embedded in a back-

ground material with a refractive index ε̄b and has a total length of NΛ, where

Λ denotes the physical length of an unit cell and N is the total number of unit

cells. The relative permittivity distribution in a single unit cell, ε̄(x), along the

propagation direction x, shown in Fig. 6.1, can be expressed as,

ε̄(x, ω) =



ε̄b + ∆ε̄′ − j σe(ω)

ε0ω
, x <

Λ

4

ε̄b −∆ε̄′ − j σe(ω)

ε0ω
,

Λ

4
≤ x <

Λ

2

ε̄b −∆ε̄′ + j
σe(ω)

ε0ω
,

Λ

2
≤ x <

3Λ

4

ε̄b + ∆ε̄′ + j
σe(ω)

ε0ω
,

3Λ

4
≤ x < Λ

(6.1)

where, ∆ε̄′ denotes the constant modulation of the real part of the dielectric per-

mittivity and ε0 denotes the free-space permittivity. The material conductivity σe

is a function of frequency as was given in (5.1) and reproduced here for conve-

nience,

σe(ω) =
|σ0|
2

[
1

1 + j(ω − ωσ)τ
+

1

1 + j(ω + ωσ)τ

]
. (6.2)

In (6.2), ωσ denotes the atomic transitional angular frequency, τ is the dipole re-

laxation time, and σ0 is related to the conductivity peak value that is set by the

pumping level at ωσ. Physical interpretation of these parameters is discussed in

Chapter 5. It is important to note that in (6.2), the absolute value of peak conduc-

tivity σ0 is considered. As such from (6.1), it can be seen that the first two sections

of the PTBG have gain while the other two sections are lossy. Moreover, it is a com-

mon practice in optics to denote dielectric material properties using the complex
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ε̄b + ∆ε̄′ ε̄b + ∆ε̄′

ε̄b −∆ε̄′

Figure 6.1 Schematic of PT -Bragg grating structure. (a) N -number of period grating

in a background material ε̄b, (b) single unit cell of the grating with 2 slightly different dielectric

constants ε̄b + ∆ε̄′ and ε̄b −∆ε̄′.

refractive index, n = n′+ jn′′ which is related to the complex dielectric permittivity

by n =
√
ε̄(ω) . It is important to note that in this section a small incident signal

is considered, hence the saturation effect is negligible and S = 1.

For definiteness, consider a PTBG made of GaAs-based material with the fol-

lowing material parameters used throughout this chapter: the background dielec-

tric constant ε̄b = (3.625)2 and modulation of the real-part of dielectric constant

∆ε̄′ = (0.02)2 as used in [6.1]. The parameter related to the gain/loss material used

is similar to that reported in [6.2], in which the atomic transition angular frequency

ωσ = 2π(336.85) rad/ps, and time relaxation parameter τ = 0.1 ps. It is here noted

that in practice a small change in the dielectric constant ∆ε̄′ can be achieved by
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adjusting a small amount of Ga by Al as in [6.3–6.5]. The PTBG is designed as

follows: the grating has N = 200 and the Bragg frequency is centred at the atomic

transitional frequency fB = 336.85 THz. It follows that the physical length of an

unit cell, calculated by (4.1), is Λ = 112.7 nm.

It is emphasised here that the gain/loss considered in this chapter is different to

that in Chapter 4. In Chapter 4 the gain/loss parameter n′′ is non-dispersive. In

this chapter the gain/loss parameter is dispersive and causal, as such the gain/loss

is a function of frequency and the gain/loss causes the real part of the dielectric

constant to be dispersive. To quantify, the amount of gain/loss, the gain/loss pa-

rameter used is the imaginary part of the refractive index at the atomic transitional

frequency which in this case has been associated with the Bragg frequency so that

n′′(ωσ/(2π)) = n′′(fB). The value of n′′(fB) can be calculated directly by substitut-

ing ω → (2πfB) to (5.5) and (5.4).

The performance of the PTBG is depicted in Fig. 6.2 for different values of gain/loss.

Figure 6.2 considers the transmittance, T , and reflectance for the left, RL, and

right, RR, incidence for increasing values of gain/loss parameter for (a) a passive

structure, (b-f) n′′(fB) = 0.0045, 0.015, 0.02, 0.022 and 0.0245. The transmittance

T , reflectance left RL and reflectance right RR are depicted on the top, middle and

bottom panel, respectively. It is noted that the transmission for both left and right

incidence, is the same, as for a reciprocal system, and is shown here as T . In contrast

to the non-dispersive PTBG structure, depicted in Fig. 4.4, it can be seen from the

top panel of Fig. 6.2(d) that for a dispersive PTBG system the unidirectional

operation occurs only at a single point. Moreover, the reflectance for left incidence

RL, increases as the gain/loss parameter increases, although in the dispersive case

most amplification of RL occurs at the fB. A further look at the first five panels

on the bottom row of Fig. 6.2, reveals that in general RR decreases as the gain/loss

parameter n′′(fB) increases. In addition, Fig. 6.2(f) shows that for n′′(fB) = 0.0245

both transmittance and reflectance approach infinity regardless of the direction of
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incidence; operation at this point is related to the CPAL operation case where the

spectral singularity occurs.

To further analyse the impact of dispersion upon the spectral performance of the

PTBG, Fig. 6.3 plots the conservation relations (4.2) and the magnitude of the

eigenvalue of the scattering matrix S for different gain/loss parameters as in Fig. 6.2.

It was discussed before in Section 4.3 that a PT -symmetric scattering system has

to satisfy the generalised conservation relation (4.2) so that the difference between

the left and right hand-sides of the equation remains zero. In the dispersive PTBG

system, the top panel of Fig. 6.3 shows that the generalised conservation relation

only valid at a single frequency fB.

The bottom panels of Fig. 6.3 show the magnitude of the eigenvalues of the scat-

tering matrix |sn| where n = {1, 2}. As a reminder, it was discussed in more detail

in Subsections 3.3.2 and Section 4.3 that a PT -symmetric scattering system may

undergo a spontaneous symmetry breaking as the gain/loss parameter increases.

These different symmetry phases are determined by the magnitude of the eigenval-

ues of the S-matrix, so that in the symmetric phase the eigenvalues are unimodular

(|sn| = 1) while in the broken-symmetry phase the eigenvalue is not-unimodular. In

the non-dispersive PTBG structure, see Fig. 4.5, it was shown that the eigenvalues

of the S-matrix are unimodular until a certain value of gain/loss parameter, with

operation beyond this point leading to a splitting in the value of |s| which is depicted

as “egg-shaped” spectra. In the dispersive PTBG system, it can be seen from the

bottom panels of Fig. 6.3 that the eigenvalues are in general not-unimodular even

with a small gain/loss parameter; it, however, can be seen in detail from the inset

of Fig. 6.3(b, bottom) that at a frequency fB the eigenvalues are still unimodular

for n′′ = 0.0045. It implies that even with a small amount of gain/loss, the PT -

symmetry can occur only at a single frequency fB. From Fig. 6.3(f, bottom), it

can be seen that there exists a spectral singularity, which is related to the CPAL

point operation, that also appeared in Fig. 6.2 as the transmittance and reflectance

107



Chapter 6. All-Optical Switching Device Using a PT -Bragg Grating

G
ai

n
/l

os
s

p
ar

am
et

er
n
''
(f

B
)

in
cr

ea
se

s

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

n
''
(f

B
) 

=
 0

.0
04

5
p
as

si
ve

 s
tr

u
ct

u
re

 
n
''
(f

B
) 

=
 0

.0
15

n
''
(f

B
) 

=
 0

.0
2

n
''
(f

B
) 

=
 0

.0
22

n
''
(f

B
) 

=
 0

.0
24

5

f 
- 
f B

 /
 T

H
z

f 
- 
f B

 /
 T

H
z

f 
- 
f B

 /
 T

H
z

f 
- 
f B

 /
 T

H
z

f 
- 
f B

 /
 T

H
z

f 
- 
f B

 /
 T

H
z

F
ig

u
re

6
.3

T
h

e
sp

ec
tr

a
l

b
eh

a
vi

o
u

r
o

f
a

d
is

p
er

si
ve

P
T

B
G

.
T

h
e

to
p

p
an

el
s

sh
ow

th
e

d
iff

er
en

ce
b

et
w

ee
n

th
e

le
ft

an
d

ri
gh

t
te

rm
s

of
ge

n
er

al
is

ed

co
n

se
rv

at
io

n
re

la
ti

on
an

d
th

e
b

ot
to

m
p

an
el

s
sh

ow
th

e
m

ag
n

it
u

d
e

of
th

e
ei

ge
n

va
lu

es
of

th
e

sc
at

te
ri

n
g

m
at

ri
x
S

.
S

ix
d

iff
er

en
t

va
lu

e
of

ga
in

/l
os

s

p
ar

am
et

er
s

ar
e

co
n

si
d

er
ed

(a
)

p
as

si
ve

st
ru

ct
u

re
,

(b
-f

)
n
′′ (
f B

)
=

0
.0

04
5,

0.
01

5,
0.

02
,

0
.0

22
an

d
0.

0
24

5.
T

h
e

in
se

ts
sh

ow
th

e
m

ag
n

ifi
ed

sp
ec

tr
a.

108



Chapter 6. All-Optical Switching Device Using a PT -Bragg Grating

coefficients approach infinity.

In order to understand the reason why the PT -symmetric behaviour is only ob-

served at a single isolated frequency in the PTBG structure with a dispersive causal

gain/loss medium, recall that a PT -symmetric structure requires a spatially modu-

lated dielectric constant, (See (3.13) and (3.14)), which reproduced below,

ε̄′(−x) = ε̄′(x), (6.3)

ε̄′′(−x) = −ε̄′′(x). (6.4)

That is, the real part of permittivity has to be an even function in space while

the imaginary part is an odd function in space and both condition occur indepen-

dently of frequency. On the other hand, one also needs to consider that the mate-

rial permittivity has to satisfy the Kramers-Kronig relations‡, so that the modified

Kramers-Kronig is now given by:

ε′(ω, x) = ε0 +
1

π
p.v.

ˆ ∞
−∞

ε′′(Ω, x)

Ω− ω
dΩ, (6.5)

ε′′(ω, x) = − 1

π
p.v.

ˆ ∞
−∞

ε′(Ω, x)

Ω− ω
dΩ. (6.6)

Considering operation at a real frequency ω and substituting x → −x, (6.5) be-

comes,

ε′(ω,−x) = ε0 +
1

π
p.v.

ˆ ∞
−∞

ε′′(Ω,−x)

Ω− ω
dΩ. (6.7)

Further, substituting the condition (6.4) into (6.7), it can be shown that

ε′(ω,−x) = ε0 −
1

π
p.v.

ˆ ∞
−∞

ε′′(Ω,−x)

Ω− ω
dΩ, (6.8)

‡Derived in Appendix A
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a

b

f - fB / THz

f - fB / THz

Figure 6.4 Gain and loss profile of the dispersive gain/loss material model operating

at the unidirectional invisibility point. (a) The real part and (b) the imaginary part of the

refractive index.

from which follows the condition of

p.v.

ˆ ∞
−∞

ε′′(Ω,−x)

Ω− ω
dΩ = 0. (6.9)

Equation (6.9) means that the PT -symmetric condition (6.3) and (6.4) can not be

satisfied for an infinite frequency interval except for the case of ε′(ω, x) = ε0(ω, x)

and ε′′(ω, x) = 0, hence a continuous medium without gain (or loss). The conditions

(6.3) and (6.4) can, however, be satisfied at a single frequency associated with the

resonant behaviour of the medium. Consider the homogeneous gain/loss material

model given by (5.3) which are plotted in Fig. 6.4.
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Figure 6.4 depicts the real part and the imaginary part of the refractive index of (6.4)

using the material parameter of ε̄ = 1 + χe = (3.625)2, atomic transition angular

frequency ωσ = 2π(336.85) rad/ps, and time relaxation parameter τ = 0.1 ps, the

conductivity peak σ0 = 211.65 S/m. These are the same material parameters used to

generate Fig. 6.2 and Fig. 6.3. The refractive index of the gain medium is presented

with a red line while the refractive index of the loss medium is plotted with a blue

line. Figure 6.4(a) shows the impact of generating gain/loss in a medium. It can be

seen from this figure that the real part of the refractive index is modulated in the

frequency domain, i.e. dispersive.

Meanwhile, the frequency dependence of the imaginary part of the refractive index

is depicted in Fig. 6.4(b). It can be seen from this figure that the gain/loss is

dispersive, so that a different operation frequency leads to a different gain/loss. It

is noted that the notation n′′ < 0 corresponds to loss while n′′ > 0 corresponds to

gain. For this figure the value of σ0 has been set to generate a gain/loss parameter

n′′(fB) = 0.02, i.e. the unidirectional invisibility operation depicted in Fig. 6.2(d).

It can be seen from 6.4(a) and 6.4(b) that the PT -symmetric refractive index profile

(6.3) and (6.4) can only be satisfied at a single frequency of fB, i.e. when the

modulation of the real part of the refractive index is zero.

6.3 Time-domain Modelling of PTBG Using

the TLM Method

This section demonstrates the application of the Transmission-Line Modelling (TLM)

method to model the dispersive PTBG structure in the time-domain. It is well-

known that in modelling a continuous medium using the TLM method a mesh

discretisation condition ∆x 6 λ/10, where λ is the wavelength inside the medium,

is a rule of thumb used to obtain an accurate simulation [6.6]. However in modelling
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a deep sub-wavelength periodic structure with different materials, like the case of

a PTBG structure, the mesh discretisation condition ∆x = λ/10 is not enough to

provide an accurate representation of the multi-layered structure [6.7,6.8].

In order to demonstrate the dependence between the accuracy of the TLM method

to model a PTBG structure with the discretisation parameter, the spectral perfor-

mance of a PTBG under unidirectional invisibility operation is shown in Fig. 6.5.

The unidirectional operation point here refers to the operation when the real part

modulation of the refractive index is equal to the gain/loss parameter. The analyti-

cal calculation using the Transfer-matrix (T-matrix) method at this operation point

is displayed in Fig. 6.2(d).

Figure 6.5(a-c) shows the transmittance T , reflectance left RL and reflectance right

RR of PTBG operating at the unidirectional invisibility point. The PTBG structure

for the TLM simulation is designed and made using the same material parameters as

described in Section 6.2 and is set to operate at the unidirectional invisibility point,

i.e. the peak conductivity |σ0| = 211.65 S/m is used. Moreover, the TLM simulation

is excited using a single Gaussian pulse function modulated at f = fB with FWHM

20 ps. Different mesh discretisation parameters are used, i.e. ∆x = λ/24 and λ/96

where λ is the wavelength in the medium λ = λ0/nb, to demonstrate the impact

of discretisation on the spectra of the scattered light. The TLM simulation is run

for 9 ps, which ensured that all of the signal has passed through the structure and

provided a sufficient frequency-domain resolution. The frequency domain response is

obtained by Fourier transformation of the time-domain signal. For reference, results

from the analytic T-matrix method are included in the figure.

Consider the frequency response of the TLM simulation with ∆x = λ/24, plotted

with the green lines. It can be seen from Fig. 6.5 that the spectral response for this

case is shifted to a lower frequency compared to the analytical results, this shifting

is usually referred to as a red-shifting error. The occurrence of the red-shifting
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b

a

c

f - fB / THz

f - fB / THz

f - fB / THz

Figure 6.5 The impact of TLM mesh discretisation on the spectral response of a

PTBG. The (a) transmittance, (b) reflectance left RL and (c) reflectance right RR of PTBG

with dispersive gain/loss. For reference results from the analytic T-matrix method is also

included.
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error can be explained as a result of increased numerical dispersion created by the

unphysical spatial discretisation process; this is a well-known source of error in any

numerical method involving spatial discretisation [6.6,6.7,6.9]. Moreover, it can be

seen that when ∆x is not fine enough, not only is the spectra red-shifted, but the

amplitudes are also modified significantly.

Now, consider the spectral response for the TLM simulation with ∆x = λ/96

which is plotted by the blue coloured circle bullet points. The spectral response

for this mesh discretisation parameter agrees well with the analytical result both

in frequency and in amplitude. It can be seen that modelling a PTBG using the

TLM method requires a fine discretisation parameter ∆x in order to guarantee the

accuracy of the TLM simulation. For that reason, a discretisation parameter of

∆x = λ/96 will be used in the next section to demonstrate a switching application

of a PTBG by using the TLM method.

6.4 A Temporal Optical Switch Using the

PT -Symmetric Bragg Grating

This section investigates the transient and dynamic behaviour of a PT -Bragg grating

where the gain is suddenly introduced into parts of the system. Practically, it can be

done by suddenly turning on a gain pumping current or optical beam while masking

the loss region. The PTBG considered in this section is as described in Fig. 6.1 and

studied in the previous section.

The structure is excited with a continuous wave (CW) of constant amplitude at the

Bragg frequency f = fB. The choice of input signal amplitude ensures that the

PT -Bragg grating operates in the linear regime, i.e. the effect of gain saturation is

negligible, S = 1.
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The scenario that is modelled is as follows: initially, the Bragg grating is assumed

to be uniformly lossy n′′(fB) = −0.02, i.e. the gain pumping is off, throughout for

a 5 ps duration, under which conditions the Bragg grating has a stop band centred

at the Bragg frequency fB. After the 5 ps duration, the gain is introduced as might

be achieved practically by turning on the gain pumping in the gain section while

masking the loss sections. After another 5 ps the same temporal switching pattern

is then repeated.

Figure 6.6 shows the time-domain response for the input-normalised transmitted

and reflected signal of the PTBG optical switch for the left and right excitations.

Figure 6.6(a) shows the input-normalised incident signal, (b and c) the transmitted

and reflected signal when the grating is excited from the left and (d and e) the

transmitted and reflected signal when the grating is excited from the right. It can

be seen that the transmitted signal switches from nearly 0 to ≈ 1 over a transient

period of less than 1 ps.

Figure 6.6(c and e) show that the reflected signal for left incidence has increased in

the presence of gain but that the reflected signal for the right incident has sharply

reduced to almost zero. The time-domain simulation results confirm that when the

gain pumping beam is turned on, the grating transforms to a PTBG operating at

the unidirectional invisibility point, and when excited from the right, its response

will change from purely reflective to all transmitting and thus exhibit a switch-

like behaviour. It is also emphasized that this is achieved when the grating is

operated at the Bragg frequency fB with a background medium of nb and is the

first demonstration of a temporal PT -Bragg grating switch using a numerical time-

domain code [6.10]. Moreover, Fig. 6.6 demonstrates that switching on gain in the

grating in the real-time triggers a switch-like response from the grating.
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Figure 6.6 Switching application of PTBG in time-domain. Time-domain response of

the (a) incident signal, (b) transmitted signal amplitude, (c) reflected signal amplitude for

left incidence, (d) transmitted signal amplitude and (e) reflected signal amplitude for right

incidence. 116
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6.5 Summary

The chapter demonstrated the impact of dispersion on the performance of a PTBG

when realistic causality properties of gain/loss medium are considered. It was shown

that the dispersion causes the PT -symmetric condition to be satisfied only at a

single frequency and hence the PT -symmetry behaviour, including PT -symmetry

transition, unidirectional invisibility and spectral singularity, can only be observed

at a single frequency.

Moreover, the chapter demonstrated the application of the numerical TLM time-

domain method to model PT -Bragg gratings with a dispersive and causal gain

material model in time-domain. The results presented shown that an optical switch

can be engineered by suddenly switching on the gain pumping in the grating and

ensuring that the grating is operating in the linear regime. The switching oper-

ation is possible when the grating operates at the unidirectional invisibility point

and is excited from the right side with total transmission and almost zero back

reflection.
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7
Non-Linear and Dispersive Parity-Time

Bragg Grating for Optical Signal

Processing Applications

This chapter focuses on the impact of non-linearity in a realistic sce-

nario when the gain/loss medium within the PT-Bragg Grating (PTBG)

is dispersive and saturable. For that reason, the TLM model will be

extended further to include a non-linear material model. The chapter

demonstrates the bistable properties of a PTBG and studies the impact

of the interplay between the non-linearity and saturation properties of

gain/loss material. The interplay of non-linearity and PT -behaviour is

investigated on two different types of Bragg grating structures. Further-

more, practical applications of non-linear PTBG as a memory and logical

gate device are also demonstrated.

* * *
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7.1 TLM Model for Non-Linear Medium

The alternative formulation of the TLM method based upon the Z-transformation

has been developed to model a realistic dispersive gain/loss model in Chapter 6. This

section will extend the TLM model further to also include the non-linear property

of a material.

As found in practice, the interaction between light and matter is non-linear. These

non-linear interactions are usually manifested in various physical phenomena, such

as: optical rectification, Pockels effect, optical Kerr effect, photo-thermal effect,

two-photon absorption, etc [7.1–7.3]. In most cases, non-linear interactions can be

classified as second-order or third-order non-linearity effects. It is worth comment-

ing that although there are higher orders of non-linearity, they are very small and

typically ignored [7.1–7.3].

Various mathematical models have been developed to incorporate these non-linearity

effects within a numerical framework [7.4–7.6]. As for Kerr-type non-linearity it

usually has been assumed that the non-linearity interaction is non-causal [7.1–7.4].

In this thesis, a dispersive and causal non-linear material model, namely the Duffing

material model [7.6–7.12], is implemented within the TLM method. The non-linear

Duffing material model has been extensively used to model a particular class of non-

linear dispersive materials accurately and with no-instabilities [7.6,7.10–7.13].

7.1.1 Duffing Model of Non-Linear Medium

It is known that material response to an electromagnetic excitation is non-linear.

Mathematically, the non-linear interactions can be described by the polarisation of

the material which behaves in a non-linear manner in the presence of strong optical

electric field [7.1–7.4,7.14,7.15]. As such one can expand the dielectric polarisation
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in terms of its linear and non-linear terms as [7.4,7.14],

Pe = χeL|E|︸ ︷︷ ︸
PL

+χ(2)
e |E|2 + χ(3)

e |E|3 + · · ·︸ ︷︷ ︸
PNL

(7.1)

In (7.1), PL denotes the linear polarisation while PNL represents the non-linear di-

electric polarisation interaction, which may include different orders of non-linearity.

Consider that the non-linear polarisation PNL is modelled through the Duffing po-

larisation PD [7.6,7.7,7.10–7.13],

∂2PD

∂t2
+ 2δ

∂PD

∂t
+ ω2

0DPDfD (Pe) = ε0∆χe0ω
2
0DE (7.2)

where, PD and E are the Duffing non-linear polarisation and electric field vector

quantities which are both functions of space and time. The parameters ω0D and δ

are related to the Duffing polarisation angular resonant frequency and the damping

constant, ∆χe0 denotes the dielectric susceptibility measured at the zero frequency

(DC). The function fD (Pe) denotes the non-linear terms of the Duffing polarisation

which depend on the total dielectric polarisation Pe. The application of the Duffing

equation to model non-linear material properties has been extensively analysed and

shown to be superior to the Kerr model of a non-linear material [7.6–7.13]. It is

mainly due to the fact that the Duffing model incorporate both the non-linear and

dispersive nature of the material response and thus is closer to realistic material

properties [7.6,7.8–7.13].

For the case of a one-dimensional problem, with the electric field polarised in the

y-direction, the Duffing equation (7.2) can be simplified to,

∂2PDy
∂t2

+ 2δ
∂PDy
∂t

+ ω2
0DPDyfD (Pey) = ε0∆χe0ω

2
0DEy. (7.3)

For the particular case of fD (Pey) = 1, the Duffing polarisation is linear and disper-

sive with a Lorentzian type of dispersion and, by performing a Fourier transformation
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the complex dielectric permittivity, can be obtained as,

ε(ω) =
PDy
Ey

=
∆χe0ω

2
0D

2jδω + (ω2
0D − ω2)

ε0, when fD = 1. (7.4)

In (7.4) the field quantities PDy and Ey are the Fourier transformed Duffing polari-

sation PDy and electric field Ey which are both complex.

For the more general case of non-linear problem, fD (Pey) 6= 1, different non-linear

functions fD (Pey) have been used and analysed such as in [7.6,7.8–7.13],

Exponential non-linearity : fD (Pey) = eα|Pey |
2

, (7.5)

Polynomial non-linearity : fD (Pey) = 1 + α|Pey|2, (7.6)

where, α denotes the Duffing non-linearity parameter, so that α = 0 defines the

linear case. It is important to note that the polynomial non-linearity function (7.6)

is an approximation of the exponential non-linear function (7.5). It can be seen that

by expanding the exponential function in a Taylor’s series,

ex =
∞∑
k=0

xk

k!
= 1 + x+

x2

2!
+
x3

3!
+ · · · , (7.7)

the polynomial non-linearity function (7.6) is only the first two terms of the Taylor

expansion of the exponential non-linearity (7.5). This approximation is valid only

for small values of Pey. Furthermore, the polynomial approximation of the Duffing

non-linear polarisation shows an association with the Kerr-type non-linearity.

Hence, consider the Kerr non-linear effect which is typically expressed as the instan-

taneous perturbation of the real part of the refractive index as

n(t) = nL ± n2I(t), (7.8)

where nL denotes the constant linear refractive index which is the total of the asymp-
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totic contribution at DC and infinity, nL =
√
χe∞ + ∆χe0 + 1 . The Kerr non-linear

constant n2 is given in units of m2/Watt. The parameter I is the instantaneous

intensity which is given previously by (5.45) and reproduced here,

I =
1

2

E2
y

η
, where η =

η0

nL
. (7.9)

where η0 =
√
µ0/ε0 is the free-space impedance of a normal propagating electro-

magnetic waves. The total dielectric polarisation in the presence of instantaneous

Kerr non-linearity is,

Pey = ε0(n2(t)− 1)Ey (7.10)

which can be approximated by,

Pey ≈ ε0(n2
L − 1)Ey + 2ε0nLn2IEy, since (n2I)2 → 0. (7.11)

Expanding the linear refractive index, the dielectric polarisation can be expressed

as,

Pey = ε0 (χe∞ + ∆χe0)Ey + 2ε0nLn2IEy (7.12)

By substituting the intensity I defined in (7.9) to (7.12) and comparing it to (7.1),

the dielectric susceptibility can be obtained as,

χeL = (χe∞ + ∆χe0)ε0, (7.13)

χ(3)
e =

(χe∞ + ∆χe0 + 1)n2

η0

ε0, (7.14)

where, χ
(3)
e denotes the Kerr non-linear susceptibility constant.

In order to find the association between the Duffing non-linearity and the Kerr non-

linearity, consider a dispersion-less non-linear Duffing polarisation by substituting
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∂PDy/∂t→ 0 into (7.3). The dielectric polarisation can be obtained as,

fD(Pey)PD = ε0∆χe0Ey (7.15)

By substituting the polynomial approximation for non-linear polarisation (7.6) it

can be shown that,

Pey + αP 2
ey(Pey − P∞) = ε0(χe∞ + ∆χe0)Ey, (7.16)

where P∞ = ε0χe∞Ey is the asymptotic polarisation contribution at the infinity. By

direct comparison of (7.16) and (7.12), the relation between the Duffing non-linear

parameter α and the Kerr non-linear parameter n2 at the small-signal excitation

can be found as,

α = − n2
Ln2

ε2
0η0(χe∞ + ∆χe0)2∆χe0

where, n2
L = χe∞ + ∆χe0 + 1 (7.17)

For comparison, the total dielectric polarisation Pey is plotted as a function of electric

field Ey in Fig. 7.1 for (a) positive sign and (b) negative sign of Kerr non-linearity. In

Fig. 7.1(a,b) the dielectric polarisation is plotted for three functions of non-linearity,

i.e. Kerr non-linearity, exponential and polynomial Duffing non-linearity. The linear

polarisation, Pey = ε0(χe∞+∆χe0)Ey , is plotted for reference. Material parameters

typical of GaAs-based material are used [7.16], with DC dielectric susceptibility

χe0 = 7.5, susceptibility at infinity χe∞ = 2.5 and the Kerr non-linear parameter

n2 = 2× 10−17 m2/W [7.17–7.19].

It can be seen from Fig. 7.1 that, for both the cases of positive and negative

values of n2, for a small signal excitation the non-linear polarisation response for all

three different functions of non-linearity agree very well. However as electric field

excitation increases the non-linear dielectric polarisation responses start to deviate.

For the positive Kerr parameter from Fig. 7.1(a) it can be seen that the Duffing
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Figure 7.1 Non-linear relation between dielectric polarisation Pey and electric field

Ey. (a) Posivitive and (b) negative sign of Kerr non-linear parameter n2 are considered. Three

different non-linearities such as, Kerr non-linear polarisation and Duffing with exponential and

polynomial non-linear polarisation are considered.

with exponential non-linearity and polynomial have very different responses. It is

important to note that the polarisation for the Duffing non-linearity with positive

Kerr parameter is double valued for both exponential and polynomial non-linearity.

This may cause instability when used in a numerical code at high signal excitation

intensity, however such high intensity is beyond a practical setting [7.10–7.12].

For the negative Kerr parameter n2 the dielectric polarisation plotted in Fig. 7.1(b)

shows that for strong-signal excitation the polarisation with the Duffing non-linearity

saturates. On the other hand the Kerr non-linearity does not saturate for strong-

125



Chapter 7. Non-Linear and Dispersive PT -Bragg Grating

signal excitation which can cause instablilities in the numerical implementation

[7.10–7.12].

Throughout this thesis, the Duffing model with exponential non-linearity is used

considering the fact that the polynomial non-linearity is an approximation of the

exponential non-linearity in the small signal limit.

7.1.2 Implementation of Non-Linear Duffing Material Within

the TLM Framework in Z-Domain

In this subsection, the digital filter design of Duffing non-linear polarisation model

(7.3) is developed and implemented within the TLM algorithm. The 1D Duffing

polarisation equation is reproduced below,

∂2PDy
∂t2

+ 2δ
∂PDy
∂t

+ ω2
0DPDyfD (Pey) = ε0∆χe0ω

2
0DEy (7.18)

After normalisation of the electromagnetic quantities (described in Subsection 5.3.2),

the normalised Duffing model is given by,

∂2pDy
∂T 2

+KD1
∂pDy
∂T

+KD2pDyfD (pey) = KD3Vy (7.19)

where, pDy is the normalised Duffing polarisation and is defined by pDy = −PDy∆x
ε0

.

The dimensionless constants in (7.19) are defined as,

KD1 = 2δ∆t,

KD2 = (ω0D∆t)2 ,

KD3 = ∆χe0 (ω0D∆t)2 .
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where, δ and ω0D are the Duffing polarisation damping and angular resonant fre-

quency respectively, and ∆t is the TLM time-step. By an application of the bilinear

Z-transform on the normalised Duffing model,

∂

∂T
→ 2

1− z−1

1 + z−1
,

and after some re-arrangement, the Duffing model in the Z-domain is given by,

pDyKD4 + pDyKD2fD (pey) + z−1SD1 = KD3Vy, (7.20)

where,

KD4 = (4 + 2KD1) , (7.21)

SD1 = [pDy (−8 + 2KD2fD)− 2KD3Vy] + z−1SD2, (7.22)

SD2 = [pDy (4− 2KD1 +KD2fD)−KD3Vy] . (7.23)

The normalised non-linear Duffing exponential function is given by,

fD (pey) = eα|pey |
2

(7.24)

with the Duffing non-linear parameter α as given in (7.17). The main result of

this section is the transcendental non-linear polarisation (7.20) which will be solved

simultaneously within the TLM scheme by an iteration method.

For this reason, the 1D-TLM scattering equation (5.40), is reproduced below as,

2V r
y = 2Vy + geVy + 2

(
1− z−1

1 + z−1

)
pey (7.25)

Upon substituting the normalised expanded dielectric polarisation,

pey = p∞ + pDy = χe∞Vy + pDy. (7.26)
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and multiplying both side by (1 + z−1), (7.25) can also be expressed as,

2
(
V r
y − Vy

) (
1 + z−1

)
=
(
1 + z−1

)
geVy + 2

(
1− z−1

)
(χe∞Vy + pDy) (7.27)

By substituting the dispersive conductivity model (5.37), (7.27) becomes

2
(
V r
y − Vy

) (
1 + z−1

)
={

ge0 + z−1(ge1 + ḡe(z))
}
Vy + 2

(
1− z−1

)
(χe∞Vy + pDy) .

(7.28)

By grouping the present and past variables in (7.28), it can be shown that

2V r
y + z−1

(
2V r

y +Ke1Vy − ḡe(z)Vy + 2pDy
)

= Ke2Vy + 2pDy, (7.29)

where the constants are defined as,

Ke1 = −(2 + ge1 − 2χe∞), (7.30)

Ke2 = 2 + ge0 + 2χe∞. (7.31)

By further calling the sum of all the past variables in (7.29) as,

Sey = 2V r
y +Ke1Vy + Sec + 2pDy (7.32)

Sec = −ḡe(z)Vy (7.33)

Equation (7.29) can be simplified further as,

Ke2Vy + 2pDy = 2V r
y + z−1Sey (7.34)

The equations (7.34) and (7.20) are two coupled equations with two unknown vari-
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Present work
tted by (7.4)

Figure 7.2 Refractive index profile of GaAs-based material. The experimentally mea-

sured (square bullets) refractive index of GaAlAs based alloy material from [7.21,7.22], Sellmeier

model (circle bullets) for typical GaAs-based material taken from [7.23] and the present model

(solid line) using (7.4).

ables Vy and pDy,


Ke2Vy + 2pDy = 2V r

y + z−1Sey

KD3Vy = pDyKD4 + pDyKD2fD + z−1SD1

which are now ready to be solved simultaneously for pDy by an iterative method, e.g.

either the Newthon-Rhapson or Bi-section methods [7.20]. The nodal voltage Vy can

be subsequently obtained by substituting the solved pDy back into (7.34).

7.2 Bistability of a Non-linear Bragg Grating

This section demonstrates the application of the TLM method with the non-linear

Duffing model to simulate the bistablity property of a Bragg grating based on GaAs

material. In this section, a non-linear Bragg grating is first studied to familiarise the

reader with the concept of non-linear operation and its modelling procedures.
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Figure 7.3 Refractive index of 2 slightly different refractive index GaAs materials.

The material dispersion (7.4) is used to model a GaAs-based material. Figure 7.2

plots the experimentally measured refractive index of AlGaAs-based alloy reported

in [7.21,7.22], the approximate Sellmeier model of typical GaAs material taken from

[7.23] and the fitted refractive index obtained by using (7.4). For modelling purposes,

the material dispersion (7.4) is fitted to the approximate Sellmeier model of typical

GaAs taken from [7.23] for the frequency range of interest of around 337 THz.

From that process the following constants are obtained: dielectric susceptibility at

infinity χe∞ = 2.5, the Duffing material parameter ∆χe0 = 7.5, δ = 0.0923 rad/ps

and ω0D = 4614.4 rad/ps.

Furthermore in order to create a grating with two slightly different refractive indices,

a variant of GaAs-based material with a higher refractive index is assumed to be

obtained by adjusting the concentration of Ga-Al within the AlxGa1-xAs alloy is

varied as was done in [7.22]. In Fig. 7.3, the real part of the refractive indices are

depicted within the frequency range of interest; the higher refractive index profile is

denoted by n′hi while the lower refractive index denoted by n′lo. It can be seen from

Fig. 7.3 that n′hi has a higher refractive index with parallel profile to that n′lo; this

parallel spectral profile is a typical behaviour when there is only a small change in

the Al-Ga concentration ratio, as is reported in [7.22]. For modelling purposes, the
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parameters used to generate of both n′hi and n′lo profiles are summarised in Table

7.1.

Based on these two variants of GaAs-based materials, a non-linear Bragg grating

is designed and modelled. For a clearer picture, Fig. 7.4 illustrates the structure

considered which is embedded in a background material with a linear and dispersion-

less refractive index nb. The structure has a total length of NΛ, where Λ denotes

the physical length of an unit cell of the grating and N is the total number of unit

cells. The refractive index in a single period, nG, along the propagation direction x

shown in Fig. 7.4, can be expressed as,

nG(x, ω, I, t) =



nhi(ω) + n2I(x, t), x <
Λ

4

nlo(ω) + n2I(x, t),
Λ

4
≤ x <

Λ

2

nlo(ω) + n2I(x, t),
Λ

2
≤ x <

3Λ

4

nhi(ω) + n2I(x, t),
3Λ

4
≤ x < Λ

(7.35)

It can be seen from (7.35) that the grating is non-linear denoted by the Kerr non-

linearity parameter n2, which is modelled through the Duffing non-linear exponential

polarisation as described in the previous section. Parameter I is the input beam

intensity calculated by (7.9).

Furthermore, the grating is designed for a Bragg frequency of fB = 336.85 THz

Table 7.1 Material parameters used to model non-linear Bragg grating.

Parameters Low refractive index High refractive index

χe∞ 2.5 2.8

∆χe0 7.5 7.5

δ (rad/ps) 0.0923 0.0923

ω0D (rad/ps) 4614.4 4614.4
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Figure 7.4 Schematic of passive Bragg grating structure. (a) N -number of period

passive grating in a background material nB, (b) single unit cell of the grating with refractive

index profile.

(λB = 0.89 µm). The real part of the low and the high refractive index at this

frequency are nlo (fB) = 3.6053 and nhi (fB) = 3.6466; these are marked in Fig. 7.3

as points “a” and “b” respectively. As such the average refractive index at fB is

navg (fB) = 1
2

(nhi (fB) + nlo (fB)) = 3.6260, and is used as the background material

refractive index nb = 3.6260. Therefore from (4.1) the physical length of an unit cell

can be calculated as Λ = 122.73 nm. It follows that the modulation of the real part of

the refractive index at the Bragg frequency is ∆n′ (fB) = 1
2

(nhi (fB)− nlo (fB)) =

0.02068. For this application, 200 periods of unit cells are considered with the

Kerr non-linearity parameter n2 = 2× 10−17 m2/Watt as experimentally measured

in [7.18,7.19]. The simulations are done by using the TLM method with the non-

linear Duffing material model with a spatial discretisation ∆x = λB/96.

Figure 7.5 shows the transmittance (a) and reflectance (b) of the passive linear Bragg
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b

a

Figure 7.5 Comparison of the (a) transmitted and (b) reflected spectra of a passive

grating calculated by the T-matrix and the TLM method. The dashed lines denotes the

different operational frequencies for hysteresis analysis.

grating (n2 = 0) calculated by using the analytical Transfer matrix (T-matrix)

method‡ and the TLM method. It can be seen that the results obtained by the

TLM method agree with the ones calculated analytically by using the T-matrix

method. In order to investigate the bistable behaviour of the Bragg gratings using

the TLM method, 4 different operational frequencies are considered, i.e. fop =

‡Detail implementation of T-matrix method is presented in Appendix B
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4.5 ps

Figure 7.6 An illustration of input signal used for hysteresis simulation.

337.26, 337.48, 337.57 and 337.70 THz which are located at the right flank of the

band-gap; these frequencies are marked in Fig. 7.5 by vertical lines. The reason

for operation at the right flank of the band-gap is because in general a positive

non-linearity will shift non-linearly the entire transmission spectra to the left (lower

frequency), hence it will open a transmission window on the right side of the band-

gap [7.10,7.12,7.16,7.24,7.25].

The TLM simulation for hysteresis analysis is conditioned as follows: a Continuous

Wave (CW) is excited at operation frequency fop. The intensity of the CW increases

after 4.5 ps duration until the desired maximum intensity after which decreases

each time after 4.5 ps duration to the initial intensity. The intensity is increased

and decreased in a single simulation. An illustrative example of the input signal is

presented in Fig. 7.6.

Figure 7.7 shows the bistable behaviour of the transmittance (a) and reflectance

(b) of a passive non-linear Bragg gratings operated at four different frequencies,

i.e. fop = 337.26, 337.48, 337.57 and 337.70 THz. From Fig. 7.7, it can be seen

that the hysteresis for both the transmittance and reflectance occurs at lower input

intensity when the grating is operated at higher operational frequency. However as

the operation frequency increases, the width and the on/off ratio of the transmission

hysteresis reduces. In particular it is important to comment on the hysteresis when

the grating is operated at fop = 337.26 THz; it can be seen that the on/off ratio

of the hysteresis is significantly reduced compared to the ones operated at other

frequencies.
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a

b

Figure 7.7 Hysteresis of passive Bragg grating structure. (a) Transmittance and (b)

reflectance as a function of input signal intensity I. For 4 different operational frequencies.

To rationalise this significant change, Fig. 7.8(a) plots the temporal response of

transmitted electric field when the structure is operated at fop = 337.26 THz and

I = 4.21 × 1014 W/m2, i.e. at the on state; this is indicated by arrow “a” in Fig.

7.7. It can be seen in Fig. 7.8(a) that the transmitted electric field is pulsating

in the time-domain. This is because when the grating is operated close to the

Bragg frequency, a high intensity signal is required to switch on the grating which

induces a strong non-linear self-pulsation effect to the incident signal. To get a better

insight to the nature of self-pulsation behaviour, the spectrum of the transmitted
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a

b

Figure 7.8 Self-pulsation of the transmitted electric field. (a) Temporal and (b) fre-

quency response of the transmitted electric field of the passive Bragg grating operated at

fop = 336.26 THz with intensity I = 4.21× 1014 W/m2, marked by square bullet “a” in Fig.

7.7. Spectra when operated at point “b” included for comparison.

electric field is plotted in Fig. 7.8(b). For comparison the transmission spectrum

operated at fop = 337.57 THz and I = 2.7 × 1014 W/m2, denoted by arrow “b” in

Fig. 7.7, is also shown in Fig. 7.8(b). By comparing the transmission spectra of

these two operation conditions, it can be seen that there exist a set of longitudinal

modes which are spaced at multiples of ∼0.65 THz around the main excitation

frequency fop = 337.26 THz when operated at point “a”, while the operation at

point “b” shows a single peak at fop = 337.57 THz. The significant decrease in the
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transmission when operated at point “a” can thus be explained as a result of energy

conversion to other frequencies. In practice to exploit the bistable operation of such

a structure, the operational frequency is usually set to give a hysteresis that is wide

enough for the designated application with pronounced on/off ratio but operated at

as lowest an intensity as possible to minimise power usage.

7.3 Non-Linear PT -Bragg Grating

Using the same geometrical design as was described in the previous section, a non-

linear PT -Bragg grating (NPTBG) is made by adding both gain and loss at different

sections within a unit cell. For this purpose the realistic dispersive and saturable

gain/loss model described in Section 5.1 is used to model the gain and loss materials

while the Duffing material model is used to model the Kerr non-linearity of the

medium. Hence the refractive index in a single period, nG, along the propagation

direction x shown in Fig. 7.9, is now modified as,

nG(x, ω, I, t)



nhi(ω) + n2I(x, t)− j c0

ω
α(ω, I), x <

Λ

4

nlo(ω) + n2I(x, t)− j c0

ω
α(ω, I),

Λ

4
≤ x <

Λ

2

nlo(ω) + n2I(x, t) + j
c0

ω
α(ω, I),

Λ

2
≤ x <

3Λ

4

nhi(ω) + n2I(x, t) + j
c0

ω
α(ω, I),

3Λ

4
≤ x < Λ

, (7.36)

where, nhi and nlo are frequency dependent complex high and low refractive indices,

respectively, n2 is the Kerr non-linearity coefficient, I is the input signal intensity

and ±α denotes the gain (-) and loss (+) in the grating lattices that are now both

dispersive and saturable. The gain/loss is modelled by the conductivity of the

medium that is dispersive and saturable, using the realistic gain/loss conductivity
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Figure 7.9 Schematic of a non-linear PT -Bragg grating structure (NPTBG). (a)

NPTBG with N unit grating cell in a background material nB, (b) single unit cell of the

grating with two slightly different refractive indicies nhi and nlo. Red coloured sections denote

gain while the blue sections denote lossy lattices.

model described previously in Section 5.1 and reproduced here as,

σe(ω) = S(I)
σ0

2

[
1

1 + j(ω − ωσ)τ
+

1

1 + j(ω + ωσ)τ

]
. (7.37)

The gain/loss material parameters σ0, ωσ and τ in (7.37) have been described in

Section 5.1 in more detail. By using the relation (5.8), between the gain/loss α and

the dispersive imaginary part of the refractive index, the peak value of gain/loss

parameter α0 can be defined as

α0 =
ωσ
c0

n′′(ωσ). (7.38)

The intensity dependent saturation S factor denotes the amount of gain/loss under
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the influence of strong signal intensity which is expressed as,

S(I) =
1

1 + I
Isat

(7.39)

where I and Isat are the field intensity and the gain/loss saturation intensity, re-

spectively. Noting that in practice the amount of Isat is dependent on the material

treatment during fabrication process [7.26]. For modelling purposes it is assumed

that the saturation factor S varies in the range of 0 < S < 1, with S → 1, i.e.

I
Isat
→ 0 referring to a non-saturated condition, and S→ 0, i.e. I

Isat
→∞, referring

to a highly saturated condition.

7.3.1 Impact of Saturable Gain/Loss on Bistability

of Non-Linear PT -Bragg Grating

For modelling purposes, the gain/loss material parameters are set as follows: the

atomic transition frequency of the gain/loss material is set to coincide with the

Bragg frequency, i.e. ωσ = 2πfB with the time relaxation constant τ = 0.1 ps as

in [7.5,7.16,7.27,7.28]. The saturation intensity Isat is varied to analyse its impact

on the hysteresis.

The first case considered is when the saturation intensity is set at Isat = 5 ×

1013 W/m2. Figure 7.10 shows (a) transmittance TL and (c) reflectance RL for

the left incidence case and (b) transmittance TR and (d) reflectance RR for the right

incident signal as a function of input signal intensity and for different gain and loss

parameter α0. It is noted that for the given variation of input signal intensity, the

saturation factor S varies between 0.125 < S < 0.77 although it is emphasized that

saturation factor may vary between layers. For comparison, the response of a passive

non-linear Bragg grating (NBG) (i.e. one without gain and loss, α0 = 0 ) is depicted

by dashed lines.
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Figure 7.10 Hysteresis of non-linear PTBG with high saturation intensity gain/loss

material. (a) Transmittance TL, (c) reflectance RL, for the light incident from the left, (b)

transmittance TR, (d) reflectance RR for the light incident from the right of the grating.

Saturation intensity is Isat = 5 × 1013 W/m2. Dashed line represents the response of the

passive NBG for reference.

As in the previous section, in order to obtain bistable operation the input signal

frequency is set to be at the right flank of the band-gap [7.10,7.12,7.16,7.24,7.25], in

which a continuous-wave (CW) operating at fop = 337.57 THz is chosen. The hys-

teresis is obtained by gradually increasing and decreasing the input signal intensity

in a single computation. This is repeated for different gain/loss parameters, namely

α0 = 800 cm−1 and 2000 cm−1.

Figure 7.10(a-d) shows that the NPTBG is bistable for both transmittance and re-

flectance regardless of the side of incidence (left or right). Figure 7.10(a,c) shows that

compared to a non-linear Bragg grating (NBG), the bistability of NPTBG occurs

at lower input intensities for the signals incident from the left of the grating and at
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Figure 7.11 Hysteresis of non-linear PTBG with no saturation effect. (a) Transmit-

tance TL, (c) reflectance RL, for the light incident from the left, (b) transmittance TR, (d)

reflectance RR for the light incident from the right of the grating. Dashed line represents the

response of the passive NBG for reference.

higher intensity for signals incident from the right side of the grating. It is noted that

the transmittances for the left and right incidence are different, TL 6= TR as shown

in Fig. 7.10(a,b), showing that the NPTBG does not satisfy Lorentzian reciprocity.

This is due to the fact that the scattering matrix is no longer a complex-symmetric

matrix, S 6= ST . Furthermore, it is observed that at high intensity, both RL and

RR are very low while transmittances are almost unity, implying the behaviour of

bidirectionally transparent material at high intensity (Fig. 7.10(c,d)).

When the NPTBG is operated with very low saturation intensity, e.g. Isat = 65.2×

107 W/m2, as taken from [7.5,7.27], for the same input field intensity range the

saturation factor varies in the range of 1.5× 10−6 < S < 20× 10−6. For that case it
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a

b

Figure 7.12 Self-pulsation of transmitted signal from NPTBG. (a) Time and (b) fre-

quency response of the transmitted electric field of NPTBG at α0 = 1460.24 cm−1 with input

intensity I = 2× 1014 W/m2 and the incident is from the left side of the grating.

is observed that, regardless of the amount of gain and loss in the system, all results

overlap with that of the passive NBG (dashed line on Fig. 7.10), i.e TL = TR and

RL = RR. This result, which is not shown separately, confirms that when gain

and loss saturation intensity are very low, PT -behaviour is inhibited due to the

negligible effective gain and loss.

Attention is now focused on the case of no gain/loss saturation, i.e. S = 1. Figure

7.11(a-d) shows that the NPTBG is bistable for both transmittance and reflectance
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regardless of the direction of input signal incidence (respectively from left or right

side). It is noted that in the absence of gain/loss saturation, S = 1, both the width

and on/off ratio of hysteresis reduce as the gain/loss in the grating is increased.

Similarly as in Fig. 7.11(a,c), the bistability occurs at lower input intensities for the

signals incident from the left of the grating compared to signals incident from the

right. Of special interest is when the NPTBG is operated at α0 = 1460.24 cm−1 at

which the structure loses the hysteresis properties and its responses (transmittance

TL and reflectance RL) behave erratically. Furthermore, Fig. 7.11(a,b) show that

the transmittances for the left and right incidence are different, TL 6= TR, again

confirming that the NPTBG does not satisfy Lorentzian reciprocity.

Figure 7.12 shows the temporal response (a) and frequency content (b) of the trans-

mitted signal for the left incident signal for an input intensity I = 2× 1014 W/m2.

The results confirms the presence of longitudinal modes that fall within the gain/loss

profile of the grating and are spaced at multiples of ∼1.04 THz around the input

signal frequency f = 337.57 THz. The erratic behaviour of the TL in Fig. 7.11(a)

can thus be explained as a result of the transfer of energy to other frequencies.

Overall, it can be summarised that high saturation intensity (with respect to the

Kerr non-linear parameter) is required in order to have an interplay of both non-

linear Kerr effect (bistability) and the PT -symmetry. It is however noted that

the saturation effect should not be neglected as it is shown that in the absence of

saturation light can be amplified greatly within the grating and induce a strong

self-pulsation effect which causes dynamic light instability.
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7.3.2 Non-Linear PT -symmetric Bragg Grating as an

Optical Memory Device

In this subsection, an application of non-linear PTBG as a memory device is demon-

strated. Exploiting the interplay of both the PT -symmetric behaviour and the Kerr

non-linearity, a memory device can be achieved by considering a gain/loss material

with a high saturation intensity as in the case studied in Fig. 7.10.

The NPTBG is operated at fop = 337.57 THz with gain/loss parameter α0 =

2000 cm−1 and with a saturation intensity Isat = 5 × 1013 W/m2 as in Fig. 7.10.

The TLM modelling was undertaken as follows: a CW light signal was excited from

the left side of the NPTBG at fop, and the intensity of the CW was varied through-

out the simulation to emulate memory reading, writing and resetting operations of

memory device. The reading operation is set to be at Iread = 2.2 × 1014 W/m2,

the memory writing operation occurs by increasing the input intensity to Iwrite =

2.725×1014 W/m2 while the resetting operation is achieved by decreasing the input

intensity to Ireset = 1.5 × 1014 W/m2. During the simulation each process happens

for a duration of 10 ps and patterned as read, write, read and reset; the same pattern

is then repeated.

Figure 7.13(a) depicts the input signal (electric field) as a function of time, each

process is labelled within the figure as read, write and reset over a total simulation

time of 120 ps. The transmitted electric field is plotted in Fig. 7.13(b). It can be

seen in this figure that initially the memory is in the “0” null state. At t = 10 ps a

“write” operation occurs by increasing the input signal intensity to achieve the “on”

state in the hysteresis, to fill the memory storage, denoted by memory “1”. After the

writing the information, the input signal intensity is reduced to the reading intensity

level. It can be seen from Fig. 7.13(b) that the transmitted signal during the reading

process with memory “1” (20 < t < 30 ps) is higher when compared to when the

memory is null “0”(0 < t < 10 ps). By sending the reset signal (reducing the input
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Figure 7.13 Demonstration of application of NPTBG as a memory device. The electric

field of (a) the input signal and (b) the transmitted signal.

signal intensity), the hysterisis is now at the “off” state; as such the output during

the reading process gives a small transmitted signal (memory value reset back to

null). Furthermore, Fig. 7.13(b) shows that the write, read and reset operation can

be performed many times with reproducible response. By using a NPTBG grating

the RAM operation is performed at lower input power compared to that would be

resulted for passive non-linear Bragg grating.

7.4 Application of Non-Linear and Dispersive

PTBG as Logical-Gate Device

This section considers the design of a non-linear PT -symmetric Bragg grating based

on common GaAs-based material for an application as optical logical-gate device.
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The Kerr non-linearity of the material is modelled by the Duffing material model.

Realistic dispersive and saturable gain/loss are modelled by using the homogeneously

broadened gain/loss material model described in Section. 5.1.

7.4.1 Kerr Non-Linearity Induced PT -Bragg Grating (K-

NPTBG)

The grating design considered in this section is illustrated in Fig. 7.14. The grating

has a total length of NΛ, where N is the total number of unit cells and Λ is the

physical length of an unit cell, and is embedded in a medium with a refractive

index nB. Each unit cell has the same background refractive index and four non-

linear layers with alternating positive and negative Kerr non-linearity. This design is

inspired by the grating structure studied by Sargent and Brozozowski [7.29], where

the grating had an alternating layers of negative and positive Kerr non-linearity, but

without the inclusion of gain/loss. The refractive index profile associated with the

unit cell, nG, depicted in Fig. 7.14, can be expressed as,

nG(x, ω, I, t)



navg(ω) + n2I(x, t)− j c0

ω
α(ω, I), x <

Λ

4

navg(ω)− n2I(x, t)− j c0

ω
α(ω, I),

Λ

4
< x <

Λ

2

navg(ω)− n2I(x, t) + j
c0

ω
α(ω, I),

Λ

2
< x <

3Λ

4

navg(ω) + n2I(x, t) + j
c0

ω
α(ω, I),

3Λ

4
< x < Λ

, (7.40)

where, navg represents the base refractive index of the grating as a function of fre-

quency ω, n2 is the Kerr non-linearity constant, I is the field intensity and ±α

denotes the gain (-) and loss (+) in the grating lattices that is both dispersive and

saturable. The gain/loss parameter α is related to the imaginary part of the refrac-

tive index n′′ by the relation (5.8) given in Section 5.1. It can be seen from (7.40)

that the refractive index profile nG has an intensity modulated real refractive index,
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Figure 7.14 Schematic illustration of Kerr-induced PT -symmetric Bragg grating

structure (K-NPTBG). (a) N unit cells of the grating embedded in a background mate-

rial nB and (b) detailed composition of a unit cell of the K-NPTBG

i.e. when the signal intensity is very small (n2I �), there is no modulation of the

real part of the refractive index and the grating reduces to only alternating layers

with gain and loss. For a strong signal intensity, the refractive index of the grating

is modulated by the intensity of the input signal, effectively splitting each layer via

the positive and negative Kerr non-linearity. As such grating is referred as Kerr

non-linearity induced PT -Bragg grating (K-NPTBG). Throughout the K-NPTBG,

the dispersive and intensity dependent media are defined by the Duffing model for

dielectric polarisation and is implemented in the TLM method as described in the

previous section. Meanwhile the gain/loss sections are modelled by the conductivity

of the material which includes the dispersive and saturable properties in the same

way as in the previous section.
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7.4.2 Intensity Dependent Performance of K-NPTBG

For definiteness the K-NPTBG investigated is based on GaAs material properties

and comprises of 200 periods with the following material parameters: χe∞ = 2.65,

χe0 = 7.5, ω0D = 4614.4 rad/ps, and δ = 0.0923 rad/ps. For the present numerical

investigation the magnitude of the Kerr non-linearity constant is also taken to be

that of GaAs, |n2| = 2× 10−17m2/W [7.18,7.19,7.30] throughout the structure. The

gain and loss material parameters are τ = 0.1 ps and ωσ = 2116.5 rad/ps [7.27],

while the σ0 depends on the gain or loss given. The periodicity of K-NPTBG is

designed so that the Bragg frequency is at the atomic-transitional frequency, i.e.

fB = ωσ/(2π) = 336.85 THz. Using the given material parameters the real part of

the refractive index at fB can be calculated using (7.4), i.e. navg(fB) = 3.6260 from

which the length per unit cell Λ = 112.73 nm can be calculated using (4.1). The

refractive index of the background material is again taken to be that of GaAs at fB,

i.e. nB = 3.626.

The input beam comprises of two different beams, i.e. a probe beam and a strong

pump beam. The pump beam is a continuous wave (CW) and is used to alter the

base refractive index of the grating through the Kerr non-linearity. The frequency

of the pump beam, fpump, is set to be far from the Bragg frequency, i.e. fpump = 200

THz, hence providing a uniform magnitude of real index modulation throughout the

structure due to the Kerr non-linearity [7.29]. The probe beam is a Gaussian pulse

modulated at the Bragg frequency fB and is low in intensity, with its maximum

intensity being 1% of the pump beam intensity. Since the probe beam intensity is

very low compared to that of the strong pump beam, its effect can be seen as a

perturbation to the pump beam and hence the intensity of the pump beam can be

considered as the intensity of the input beam.

In order to identify the range of stable operation of the K-NPTBG, the structure

is first modelled without the non-linearity (n2 = 0), and the transmittance and re-
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1

Figure 7.15 Comparison of the transmission and reflectance of a K-NPTBG as a

function of gain/loss parameter α0. Results are calculated by using the analytical T-matrix

and the TLM method.

flectance of PTBG is analysed using both the analytical Transfer matrix (T-matrix)

method and the TLM method. The T-matrix method models the linear and dis-

persive structures. Figure 7.15 shows the response of the PTBG grating assuming

that the non-linearity is switched off, i.e. n2 = 0, for different gain/loss parameters.

Two sets of results are presented, namely the TLM results that include dispersive

material model and saturation; and the T-matrix results for a dispersive material

model but no saturation. The saturation intensity is set to Isat = 2.5× 1013 W/m2

and the intensity of the pump and probe beams are set as described with the pump

beam intensity of 2.5×1011 W/m2. Figure 7.15 shows the transmittance, T , and re-

flectance of a K-NPTBG when excited from the left and right of the grating, RL and

RR respectively, as a function of gain/loss parameter α0. The results are calculated

at the Bragg frequency.

Figure 7.15 depicts that the reflectances of the K-NPTBG with n2 = 0 are the

same, RL = RR, regardless of the side of excitation. This is unlike the PTBG

structures studied before, in Chapter 6, where the reflectances are different, and the

results imply that this is due to the absence of the phase grating. The TLM results

agree well with the T-matrix results for low gain/loss parameter. As gain/loss in

149



Chapter 7. Non-Linear and Dispersive PT -Bragg Grating

the structure increases, transmittance and reflectance also increase. The T-matrix

results show a singularity at α0 = 1008 cm−1 which is associated with the coherent-

perfect-absorber and laser(CPAL) point, at which the S-matrix poles of the linear

PTBG cross the real frequency axis [7.31–7.33]. More importantly, as the only

difference between the TLM and analytical results is the presence of the saturation

in the TLM modes, it is observed that the TLM results do not exhibit a singularity

meaning that gain/loss saturation can limit the accumulation of energy inside the

grating.

The response of the K-NPTBG grating for different saturation intensities is analysed

in Fig. 7.16(a,b) as a function of input intensity for three different cases namely,

grating with no gain/loss, α0 = 0, with gain/loss parameter α0 = 800 cm−1 and

saturation turned off (S = 1), and α0 = 800 cm−1 with gain and loss saturation

intensity Isat = 2.5 × 1013 W/m2. In all cases Kerr non-linearity is present with

|n2| = 2 × 1017 m2/W. Figure 7.16(a) shows the transmittance, T , which is the

same regardless of the side of excitations. For the case α0 = 0, total transmittance

T = 1 is observed at low intensities but then transmittance gradually decreases

to zero at high intensities. This can be explained by the fact that at high input

intensities modulation of the refractive index due to Kerr non-linearity becomes

dominant and results in the formation of a Bragg grating. Since the structure for

the case α0 = 0 is orthogonal (reciprocal and lossless), i.e. T + R = 1 , it follows

that R ≈ 0 at low intensities and there is an almost-total reflectance T ≈ 1 at high

intensities (Fig. 7.16(b)).

For the case when the K-PTBG is operated with gain/loss parameter α0 = 800 cm−1

and no saturation (S = 1), the transmittance slowly increases and then decreases at

higher input intensities. Figure 7.16(b) shows that reflectance generally has different

responses, RL 6= RR, depending on the side of excitation, with larger differences

occurring at higher input intensities. At the intensity of IU = 5.65 × 1014 W/m2,

unidirectional invisibility is observed; when T = 1, reflectance from the right, RR,

150



Chapter 7. Non-Linear and Dispersive PT -Bragg Grating

a

b

Figure 7.16 Impact of saturation to the transmittance and reflectance of a non-linear

K-NPTBG. (a) Transmittance and (b) reflectances as a function of input beam intensity for

K-PTBG with gain/loss parameter α0 = 800 cm−1 with no saturation S = 1; and gain/loss

parameter α0 = 800 cm−1 with saturation intensity Isat = 2.5× 1013 W/m2. The response of

the passive structure α0 = 0 is included for reference.

is at its minimum, but RL is highly amplified [7.31–7.35]. This condition can be

explained by the fact that at higher input intensities, the phase grating is induced

by strong Kerr non-linearity causing the reflectances to differ, RL 6= RR as observed

in a linear PTBG. It is noted that, when there is no saturation, the structure is

dominated by PT -symmetry at lower intensities. This shows that for a certain

range of intensities (IPT-K < I < I2) both PT and non-linear behaviour are present

and can be exploited simultaneously. At lower intensities PT -behaviour is dominant,
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whereas non-linear dynamics dominate at higher intensities.

In the case of α0 = 800 cm−1 and Isat = 2.5 × 1013 W/m2, the transmittance de-

creases as the intensity increases and after I1 = 5 × 1013 W/m2 overlaps with the

transmittance of a passive non-linear Bragg grating with α0 = 0. Figure 7.16(b)

further shows that the reflectances for this case are the same regardless of the side

of incidence. Similarly, the reflectances overlap with that of the passive grating

structure (α0 = 0) at very high intensities. This can be explained by the fact that

saturation reduces the effective gain and loss in the structure, thus prohibiting PT -

behaviour at high input intensities. At higher intensities, I1 > 5× 1013 W/m2, the

behaviour of the K-NPTBG corresponds to the nonlinear Bragg grating with no gain

and loss. Therefore, low saturation intensity causes the gain and loss to saturate

early and thus inhibits the asymmetric behaviour RL 6= RR of a PTBG.

Now, consider the region where we can manipulate both PT and non-linear be-

haviour. Figure 7.17 shows the frequency response, obtained by Fourier transfor-

mation of the time-domain signal, for the case in Fig. 7.16 when α0 = 800 cm−1

and the gain and loss saturation is turned off (S = 1) for three different input beam

intensities, i.e. IL = 7× 108, IU = 5.65× 1014, and I2 = 1× 1015 W/m2, as marked

in Fig. 7.16. The intensity of IU is when the unidirectional invisibility occurs as

shown in Fig. 7.16. Results obtained by the T-matrix method are included for

reference. Generally the transmittance is the same for the left and right incidence

but reflectances differ for input intensities of IU and I2. Figure 7.17(a) shows the

impact of input beam intensity on the the transmittance spectrum. The transmit-

tance at low input intensity, IL, fits with the one calculated using the T-matrix

method. However, at high input intensity, IU , i.e., at the unidirectional invisibility

operation, almost-total transmittance T ≈ 1 is observed at the Bragg frequency.

Further increase of the input intensity increases the background index modulation

even further, which reduces the impact of the gain and loss resulting in a more

defined band-gap.
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a

b

c

Figure 7.17 Spectra of the transmitted and reflected probe signal for different input

signal intensities. (a) Transmittance, (b) reflectance RL for signal incident from left and (c)

reflectance RR for signal incident from right side of the grating, for 3 different input intensities

namely, IL = 7× 108, IU = 5.65× 1014, and I2 = 1× 1015 W/m2. For all cases the gain/loss

saturation is turned off S = 1. For clarity, the insets are showing the magnified spectra.
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The reflectances RL and RR are shown in Fig. 7.17(b) and Fig. 7.17(c) respec-

tively. For low input intensity, IL, the TLM calculations agree with the results

calculated by the T-matrix method, showing that the structure operates in a lin-

ear regime. However, when operated at the unidirectional point with intensity IU ,

the reflectances are different, showing that the Kerr non-linearity induced a strong

phase grating [7.31,7.34,7.35]. Further increase in input intensity to I2 reduces the

reflectance RL while increasing the reflectance RR, which again can be explained

by the fact that as the input intensity increases, the Kerr non-linearity induced

modulation of the background refractive index becomes more dominant and reduces

the impact of gain and loss in the system resulting in a more pronounced band-gap

property of the structure.

7.4.3 Intensity Driven All-Optical Logical Gate Device

by Kerr Non-linear PT -Bragg Grating

In this section, a potential applications of the K-NPTBG by controlling the level

of the pump beam is investigated. The input signal comprises of both aweak probe

beam and a strong pump beam. The probe beam is a CW signal operated at

the Bragg frequency fprobe = 336.85 THz with low intensity and is kept constant

throughout the simulation with intensity Iprobe = 1 × 106 W/m2. The pump beam

is a CW signal operated far from the Bragg frequency at fpump = 200 THz. The

intensities of the pump beam are switched between two different values i.e., I1 =

5 × 1013 W/m2 and I2 = 1 × 1015 W/m2 which are marked in Fig. 7.16(a). The

gain/loss has a saturation intensity Isat = 2.5× 1013 W/m2 as in Fig. 7.16.

Figure 7.18(a) shows the pump beam as a function of time, initially turned “off”

and then turned “on” to intensity I1 for a duration of 10 ps, followed by an increase

of intensity to I2 for another 10 ps, and then repeating the same pattern. The probe

beam is set to be constant throughout the simulation as shown in Fig. 7.18(b).

154



Chapter 7. Non-Linear and Dispersive PT -Bragg Grating

Pump beam

Probe beam

Transmitted probe beam

a

b

c

E
le

ct
ri
c 

el
d
 /

 V
/m

OFF OFF OFF
I1 I1I2 I2

Figure 7.18 Logical gate operation using K-NPTBG structure. Time domain response

of the K-PTBG grating of (a) the pump beam, (b) the input probe beam and (c) the trans-

mitted probe beam.

Figure 7.18(c) shows the transmitted probe field when the grating is excited from

the left. It can be seen that when the pump beam is switched off, the probe beam

intensity is amplified by almost 10 times. A subsequent increase in the pump beam

intensity to I1 causes a decrease in the transmitted probe beam to the same value

as the input probe beam (T = 1). When the pump beam intensity is increased to

I2, the transmitted probe field is significantly reduced.

It is important to note that the change in response occurs almost instantaneously,

with the longest switching time being 2.5 ps. Figure 7.18(a,c) demonstrates that the
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K-NPTBG can potentially be used as an optical amplifier (when the pump beam is

turned off), optical switch (by using the pump beam to control the ON/OFF output

of the probe beam) or as an optical negation logic gate, i.e. modulation of probe

beam by the pump beam whereby the presence of a strong pump beam (logic 1)

produces a low probe beam content (logic 0).

7.5 Summary

This chapter described the implementation of a non-linear material property in the

TLM model by using the Duffing equation. A realistic GaAs-based material dis-

persion was fitted to the Duffing model and used throughout to study a non-linear

PT -symmetric Bragg grating structure. Two different PT -symmetric Bragg struc-

tures were studied in this chapter, namely a simple non-linear PT -Bragg Grating

(NPTBG) and Kerr-induced PT -Bragg Grating (K-NPTBG).

For both structures, it was found that gain/loss saturation plays an important role in

the exploitation of the non-linear behaviour. A high saturation intensity is essential

to allow an interplay between PT -behaviour and Kerr non-linearity behaviour. It

is, however, noted that if the saturation effect is neglected, the unbounded gain/loss

in the material may cause instability for the high intensity non-linear operations.

Furthermore, a low saturation intensity may prohibit the PT -behaviour in high

intensity operation where the Kerr non-linearity starts to take effect.

This chapter proposed and demonstrated two applications based on non-linear PT -

Bragg gratings, namely a memory device and a logical gate device. The results

shown that the non-linear PT -Bragg grating is a promising platform for building a

novel optical information processing devices. Moreover it is shown that non-linear

PT -symmetric based devices offer more degrees of freedom in their operation, such

as gain/loss and input signal intensity, compared to a passive non-linear devices
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which can only be manipulated by the input signal intensity.
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8
The Transmission-Line Model of

Electromagnetics in 2D

In this chapter the formulation of a two-dimensional (2D) Transmission-

Line Model (TLM) method is presented. In particular, the chapter ex-

tends the implementation of the digital filter design of realistic dispersive

and saturable gain/loss model which was developed for one-dimensional

(1D) in Chapter 5 and was used to model realistic PT -symmetric Bragg

gratings previously in Chapter 6.

* * *
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8.1 TLM Formalism in 2D Domain

In this thesis, the development of the 2D-TLM model is defined in the Cartesian

coordinate system, i.e. (x, y, z). As such Maxwell’s equations (2.1) can be expanded

to its axis components as,


(∇×H) · x̂ = Jex +

∂Dx

∂t

(∇×H) · ŷ = Jey +
∂Dy

∂t

(∇×H) · ẑ = Jez +
∂Dz

∂t

(8.1)


(∇×E) · x̂ = −∂Bx

∂t

(∇×E) · ŷ = −∂By

∂t

(∇×E) · ẑ = −∂Bz

∂t

(8.2)

where x̂, ŷ and ẑ are unit vector elements in the x, y and z direction and ( · )

denotes the vector product. The rest of the field quantities are defined in Table.

2.1.

In 2D, the electromagnetic fields (Ex,y,z and Hx,y,z) are invariant in one direction.

For consistency, it is taken to be the z-direction hence,

∂

∂z
≡ 0. (8.3)

Implementation of condition (8.3) within (8.1) and (8.2) leads to two sets of uncou-

pled Maxwell’s equations associated to Ez or Hz. As such an E-type wave has Ez

as the primary field component and an H-type wave has Hz as the primary field

component throughout this thesis. It is emphasised here that although in several

publications in the literature [8.1–8.3], the E-type and H-type waves are also re-

ferred to as the TE and TM polarised wave, in this thesis the use of TE and TM

notations will be restricted to denote guided waves in a waveguide structure.
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8.1.1 E-Type Wave Nodal Scattering Process

The Maxwell’s equations for E-type waves, are given by,

(∇×E) · x̂ = −∂Bx

∂t
,

(∇×E) · ŷ = −∂By

∂t
,

(∇×H) · ẑ = Jez +
∂Dz

∂t
.

(8.4)

Upon substituting the constitutive relations (2.2)-(2.4), (8.4) can also be expressed

as,

(∇×E) · x̂ = −µ0
∂Hx

∂t
,

(∇×E) · ŷ = −µ0
∂Hy

∂t
,

(∇×H) · ẑ = σe ∗ Ez + ε0
∂Ez
∂t

+
∂Pez
∂t

,

(8.5)

It is important to note that a non-magnetic material has been assumed in (8.5), µ =

µ0 and M = 0, as it was discussed in Chapter 2. From the transmission-line theory

[8.2–8.5] , a 4-port shunt transmission line, which is obtained by concatenating the

1D transmission lines (see Fig. 8.1), can be utilised to model the E-type wave

propagation. Figure 8.1 depicts the schematic of a single 2D-TLM shunt node in a

Cartesian system along with the voltage at each of its 4 ports.

It can be seen from Fig. 8.1 that the shunt node has 4 ports which, for consistency

with [8.2,8.3,8.6–8.9], are called ports 8, 9, 10 and 11. Hence the corresponding

voltages at these ports are denoted as V8, V9, V10 and V11. Moreover the differential
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x
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∆`

∆`

Figure 8.1 Schematic of 2D-TLM nodes for an E-type wave. A structured TLM

meshing paradigm is considered, i.e. rectangle based meshing. Three different integration

contour Cx, Cy and Cz are denoted by its normal axis.

operators ∇ and ∂/∂t can be normalised by ∆` and ∆t as (5.22),



1

∆`
(∇̄ ×E) · x̂ = −µ0

1

∆t

∂Hx

∂T
1

∆`
(∇̄ ×E) · ŷ = −µ0

1

∆t

∂Hy

∂T
1

∆`
(∇̄ ×H) · ẑ = σe ∗ Ez + ε0

1

∆t

∂Ez
∂T

+
1

∆t

∂Pez
∂T

(8.6)

where, T ≡ t∆t and ∇̄ ≡ ∇∆` are the (dimensionless) normalised parameters, ∆`

denotes the length of the side of an unit cell and ∆t denote the time step of the TLM

calculation. The relation between ∆` and ∆t is discussed below. Furthermore, by

implementing the field-circuit equivalences (See Table 5.1), the Maxwell’s equations

(8.6) can be shown in the circuit form as,



− 1

∆`2
(∇̄ × V ) · x̂ = µ0

1

ZTL∆`∆t

∂ix
∂T

,

− 1

∆`2
(∇̄ × V ) · ŷ = µ0

1

ZTL∆`∆t

∂iy
∂T

,

1

ZTL∆`2
(∇̄ × i) · ẑ =

σe
∆`
∗ Vz +

ε0

∆`∆T

∂Vz
∂T

+
ε0

∆`∆t

∂pez
∂T

.

(8.7)

Since a TLM model based on structured meshing is developed in this thesis, i.e.
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rectangular based spatial discretisation in 2D, where ∆x = ∆y = ∆`, it is cus-

tomary to define the transmission-line impedance ZTL and the unit transit time

∆t to correspond to the properties of wave propagation in free-space with a 45◦

angle [8.2–8.4,8.6–8.10] as,

ZTL =
η0

sin 45◦
=
√

2 η0,

vTL =
∆`

∆t
=

c0

cos 45◦
=
√

2 c0,

(8.8)

where vTL denotes the velocity of voltage pulse propagation between TLM nodes

and c0 = 1/
√
ε0µ0 and η0 =

√
µ0/ε0 respectively denote the free-space speed of

light and the free-space wave impedance of a normal wave propagation. Substituting

(8.8) into (8.7), yields


−(∇̄ × V ) · x̂ =

∂ix
∂T

,

−(∇̄ × V ) · ŷ =
∂iy
∂T

,

(∇̄ × i) · ẑ = ge ∗ Vz + 2
∂Vz
∂T

+ 2
∂pez
∂T

.

(8.9)

Using the Stokes’ theorem to solve the curl operations on the contours Cx, Cy and

Cz indicated in Fig. 8.1, leads to


−(V9 − V8) =

∂ix
∂T

,

−(V10 − V11) =
∂iy
∂T

,

(V8 + V9 + V10 + V11) = ge ∗ Vz + 2
∂Vz
∂T

+ 2
∂pez
∂T

.

(8.10)

After transforming the normalised time derivative to the Laplace domain,


−(V9 − V8) = s̄ix,

−(V10 − V11) = s̄iy,

(V8 + V9 + V10 + V11) = geVz + 2s̄Vz + 2s̄pez.

(8.11)
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Utilising the travelling-wave form format [8.2,8.6–8.9] of the port voltage, (8.10) can

be expressed as,


−2(V i

9 − V i
8 ) = 2ix

−2(V i
10 − V i

11) = 2iy

2(V i
8 + V i

9 + V i
10 + V i

11) = geVz + 4Vz + 2s̄pez

(8.12)

Equations (8.12) are the governing equations for the TLM nodal voltage calculation

which are ready for material implementation. Subsequently, after calculating the

nodal field values ix, iy and Vz, the new scattered voltage impulses in the condensed

TLM nodes can be obtained by [8.2,8.6–8.9],



V r
8 = Vz − ix − V i

9

V r
9 = Vz + ix − V i

8

V r
10 = Vz + iy − V i

11

V r
11 = Vz − iy − V i

10

(8.13)

8.1.2 TLM Shunt Nodes Internodal Connection Process

Following the nodal and scattering calculation, the TLM algorithm continues with

the internodal connection process. In the connection process, the new calculated

reflected voltage impulses are communicated to the adjacent nodes which become

the new incident voltage impulses. Hence it can be shown that by performing,

T


V8[X, Y ]

V9[X, Y ]

V10[X, Y ]

V11[X, Y ]



r

→

T+1


V9[X, Y − 1]

V8[X, Y + 1]

V11[X − 1, Y ]

V10[X + 1, Y ]



i

(8.14)
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Figure 8.2 Schematic illustration of TLM connection process.

on every node within the computation window, the information is passed to the

neighbouring nodes and in that way mimics the wave propagation in space. This

connection process is schematically illustrated in Fig. 8.2 for a node located at

(X, Y ).

8.1.3 TLM Matched Boundary Condition

The connection processes described in Section 8.1.2 are executed on all nodes within

the computation space except at the boundary. At the boundary a special treatment

is required, according to the application of the simulation. The simplest boundary

conditions are PEC and PMC boundary conditions [8.1,8.3]. The PEC boundary

condition mimics a termination of the simulation window by a Perfectly Electric

Conducting wall; hence the voltage at the port next to the boundary is set to zero.

This is accomplished by short circuiting the boundary port and the reflected voltage

166



Chapter 8. The Transmission-Line Model of Electromagnetics in 2D

for such aboundary is,

V r
on boundary = −V i

on boundary (8.15)

Meanwhile the PMC boundary condition stands for Perfect Magnetic Conductance

wall. Thus the voltage at the port on the boundary is maximum; this is realised by

an open circuit at the port on the boundary and the scattered voltage is,

V r
on boundary = V i

on boundary (8.16)

Another kind of important boundary condition is the radiating boundary condi-

tion. Different types of radiating boundary condition have been reported for the

TLM and the FDTD methods namely, Engquist-Majda Boundary Condition (BC),

Higdon BC, Ramahi BC, Berenger’s Perfectly Matched Layer (PML) scheme [8.1,

and references therein]. In this thesis, a simpler matching boundary condition is

implemented which gives good approximation of the radiating boundary condi-

tion [8.2–8.4,8.6–8.9]. This is accomplished by matching the impedance of the mod-

elled material with the impedance of the transmission-line [8.2–8.4,8.6–8.9]. The

reflected wave for a matched boundary is given by,

V r
on boundary = ΓV i

on boundary, (8.17)

where Γ is the reflection coefficient given as,

Γ =
Zmaterial − ZTL

Zmaterial + ZTL

, (8.18)

where the impedance of the material is related to the refractive index of the material,

i.e. Zmaterial = η0/nmaterial.
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8.2 TLM Shunt Node Model for Realistic

Gain Medium

In this section, the TLM shunt node model is developed to model the realistic

dispersive and saturable gain/loss medium which was previously implemented in

the 1D-TLM nodes. Performing the Z-bilinear transformation on the normalised

Laplace variable s̄,

iix = −ix, (8.19)

iiy = −iy, (8.20)

2V i
z = (4 + ge)Vz + 2

(
2

1− z−1

1 + z−1

)
χeVz, (8.21)

where for convenience in (8.21) the incoming pulses have been renamed as iix, i
i
y and

V i
z and are given by

iix = V i
9 − V i

8

iiy = V i
10 − V i

11

V i
z = V i

8 + V i
9 + V i

10 + V i
11

It can be seen from (8.19) and (8.20) that the TLM model for E-type waves and a

non-magnetic material has a simple nodal calculation for the transverse field com-

ponents (ix and iy). The material parameters responsible for dielectric modelling χe

and gain/loss ge are only found in (8.21) which is responsible for the calculation of

electric field Vz. Thus for clarity, consider (8.21) which after multiplying both sides

by (1 + z−1) and some rearrangement, yields

(1 + z−1)(2V i
z − 4Vz) = (1 + z−1)geVz + 4(1− z−1)χeVz (8.22)
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By substituting the digital filter for conductivity, (5.37), into (8.22) and after some

rearrangement, (8.22) becomes

2V i
z + z−1Sez = Ke2Vz (8.23)

where the accumulated delayed variable Sez,

Sez = 2V i
z +Ke1Vz + Secz,

Secz = −ḡeVz,
(8.24)

and the constants Ke1 and Ke2 are given by,

Ke1 = −(4 + ge1 − 4χe), (8.25)

Ke2 = 4 + ge0 + 4χe. (8.26)

It is important to note that constants ge0 and ge1 are the same as the ones given in

(5.38) and are reproduced below,

ge0 = gs

(
K3

K6

)
,

ge1 = 0,

ḡe(z) =
b0 + z−1b1 + z−2b2

1− z−1(−a1)− z−2(−a2)
.

(8.27)

Details of the digital filter design of the conductivity are given in Section 5.3.4.

Moreover, the updating scheme for the conductivity Secz is the same as shown in

Fig. 5.5(b). In summary the nodal calculation in the presence of a gain medium

is comprised of (8.19), (8.20) and (8.23) which are subsequently followed by the

updating scheme (8.24).

169



Chapter 8. The Transmission-Line Model of Electromagnetics in 2D

8.3 Summary

This chapter has summarised the 2D TLM method for an E-type electromagnetic

wave. The alternative 2D TLM algorithm based on the bilinear Z-transformation

is used which offers greater flexibility on modelling dispersive material model in

comparison of the traditional TLM scheme based on lumped-circuit element. The

chapter presented the voltage node scattering, connection and also boundary condi-

tions. Finally the digital filter procedure for implementing a realistic saturable gain

(or loss) medium is presented. The 2D TLM model is used in the next chapter to

model PT -symmetric resonant structure and real-time analysis.
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9
Parity-Time Symmetric Coupled

Microresonators With a Realistic Gain/Loss

This chapter investigates the fundamental properties of the PT -resonant

system based on two coupled whispering gallery resonators within the

contexts both of realistic material properties and practical operating con-

straints. In particular the chapter will discuss how practical dispersive

properties of material gain and loss that satisfy the Kramers-Kronig rela-

tionship affect the performance of microcavity-based PT -resonant struc-

tures. The theoretical background for an isolated circular resonator is

also overviewed. An exact analytical model based on the Boundary Inte-

gral Equation (BIE) method is developed to calculate the characteristic

frequencies of PT -symmetric microresonators.

* * *
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9.1 PT -Symmetric Coupled Microresonators

In this section the theoretical background of a PT -symmetric system based on two

coupled microresonators is described. The system, in which both microresonators

have radius a and are separated by a gap g, is illustrated schematically in Fig.

9.1. The active and passive microresonators have complex refractive indices nG

and nL respectively, that are chosen to satisfy the PT -symmetric refractive index

condition nG = n∗L, where * denotes complex conjugate, n = (n′ + jn′′), and n′

and n′′ represent the real and imaginary parts of the refractive index. In practice,

localised gain might be achieved by means of erbium doping and optical pumping

of the active microresonator or electrical pumping with GaAs-based material, while

masking the lossy microresonator as in [9.1–9.6]. Both resonators are assumed to

be surrounded by air.

The refractive index of dispersive materials is frequency dependent but must also

satisfy the causality property between the real and imaginary parts of the material

refractive index [9.7,9.8]. The material properties are conveniently modelled by

assuming a linear dielectric constant that uses a Lorentzian model for dispersion as

described in Section 5.1

εr(ω) = ε∞ − j
σ0

2ε0ω

(
1

1 + j(ω + ωσ)τ
+

1

1 + j(ω − ωσ)τ

)
. (9.1)

Here ε∞ denotes the permittivity at infinity, ωσ denotes the atomic transitional

angular frequency, τ is the dipole relaxation time and σ0 is related to the conductivity

peak value that is set by the pumping level at ωσ. The time variation has been

assumed to be of the form ejωt and therefore σ0 > 0 denotes loss while σ0 < 0 denotes

gain. The parameter τ controls the degree of dispersion, with τ = 0 corresponding to

a dispersion-less system. Throughout this chapter, the frequency-domain refractive

index is expressed as n =
√
εr(ω) and the material gain/loss parameter is expressed

using the imaginary part of the refractive index as γ = ωn
′′
.

173



Chapter 9. PT -Symmetric Coupled Microresonators

Gain Loss

a a

gnG nL

RG RLnb

Figure 9.1 Schematic of PT -symmetric resonators. Microresonators with gain and loss

are denoted by µRG and µRL, respectively.

9.2 Resonant Frequencies of an Isolated Circular

Resonator

Before looking at the coupling problem between two resonators, this section will

first overview the solutions of the Maxwell’s equations for an isolated cylindrical

dielectric resonator with radius a. For convenience, consider Helmholtz equation

defined in a cylindrical coordinate system (r, θ, z) for the E-type wave electric field

component Ez, (
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2

)
Ez − (k0n)2Ez = 0. (9.2)

Assuming no variation in the z-direction, as in (8.3), (9.2) can be reduced to,

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
Ez − (k0n)2Ez = 0 (9.3)

where k0 = ω/c0 denotes the free-space wave-number and n is the refractive index of

the material. Solution for (9.3) could be obtained by a separation of variables ansats

for Ez [9.9–9.11]. Once the solution for Ez is obtained the rest of the field components

for an E-type wave, Hr and Hθ, can directly be obtained by substituting Ez into
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Maxwell’s equations,

1

r

∂Ez
∂θ

= −jωµ0Hr, (9.4)

−∂Ez
∂r

= −jωµ0Hθ, (9.5)

1

r

∂(rHθ)

∂r
− ∂Hr

∂θ
= jωεEz. (9.6)

Now, consider that the solution of Ez is comprised of two functions, R(r) and P (θ)

which are independent functions of the radius r and azimuthal parameter θ respec-

tively. Substituting Ez(r, θ) = R(r)P (θ) to (9.3) yields,

d2P

dθ2
+ k2

θP = 0, (9.7)

r2d
2R

dr2
+ r

dR

dr
+ (r2(k0n)2 − k2

θ)R = 0. (9.8)

These two ordinary differential equations can be solved independently. The solution

of (9.7) is,

P (θ) = Cθe
jkθθ. (9.9)

Moreover, since P (θ) has to be periodic in the azimuthal direction, θ = θ + 2mπ,

it leads to condition that kθ has to be an integer. Hence (9.9) can be rewritten

as,

P (θ) = Cθe
jmθ , where m = ±1,±2,±3, · · · (9.10)

where Cθ is a constant which will be obtained later by enforcing appropriate bound-

ary conditions.

The ordinary differential equation in (9.8) has known solutions named the Bessel

function of the first kind Jm and the Bessel function of the second kind Ym [9.12,

9.13]. The physical condition decides the appropriate solution between the two
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possible functions. For instance, the value of the Bessel function of the second

kind Ym approaches negative infinity at 0 and hence is not applicable as part of

the solution of (9.8) inside the resonator. However outside the resonator the field

should satisfy radiation condition, the radiating cylindrical function can be either

a Hankel function of order m of the first kind (H
(1)
m = Jm + jYm) or second kind

(H
(2)
m = Jm − jYm). The Hankel function of the second kind is chosen here H

(2)
m

which is representing an outgoing wave, see Appendix C. It follows that the solution

to the differential equation (9.8) is,

R(r) =

{
C in
r Jm(nk0r) for r < a (9.11a)

Cout
r Hm(k0r) for r > a (9.11b)

where for notation simplicity in (9.11b), H
(2)
m has been written as Hm and Cr is a

constant defined by enforcing the boundary conditions. The total solution Ez can

be found as,

Ez(r, θ) =


C inJm(nk0r)e

jmθ for r < a

CoutHm(k0r)e
jmθ for r > a

, (9.12)

where the constants C in/out is the product of the two constants contribution, C in/out =

C
in/out
r Cθ. The tangential magnetic field Hθ can be obtained directly by substituting

(9.12) into (9.5),

Hθ(r, θ) =
1

jωµ0


C ink0nJ

′
m(nk0r)e

jmθ for r < a

Coutk0H
′
m(k0r)e

jmθ for r > a

. (9.13)

Now in order to get the complete solution, the boundary conditions are applied

which require that the tangential electric field Ez and the tangential magnetic field
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Hθ are continuous at the dielectric boundary, i.e.

Ez(a− δ, θ) = Ez(a+ δ, θ) when δ → 0

Hθ(a− δ, θ) = Hθ(a+ δ, θ) when δ → 0
(9.14)

where δ is an infinitesimal distance from the boundary. By applying this condition,

it can be found that the interior constants are related to the exterior constants

by

C in

Cout
=

Hm(k0a)

Jm(nk0a)
(9.15)

C in

Cout
=

H ′m(k0a)

nJ ′m(nk0a)
. (9.16)

Equating (9.15) and (9.16) yields,

Jm(ak0n)H ′m(ak0)− nHm(ak0)J ′m(ak0n) = 0. (9.17)

By solving the transcendental equation (9.17) for k0, the resonant frequency associ-

ated with the azimuthal mode m can be obtained as fres = k0c0/(2π).

In contrast to a metallic resonator, where the metal wall provides a high confinement

to the field, dielectric resonators are inherently lossy as the dielectric boundary may

let the field escape to the surrounding environment typically referred to radiation

losses. As such the resonant frequencies of a dielectric resonator are complex valued,

fres = f ′res + jf ′′res. In order to quantify the amount of energy escaping the resonator

a quality factor Q is used. The Q-factor is defined as the ratio of energy stored

to the energy escaping the resonator, and is related to the resonant frequency as

[9.14–9.23],

Q =
f ′res

2f ′′res

. (9.18)

The Q-factor is an indication of the duration of the transient in the resonator, or in
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Figure 9.2 Whispering-gallery modes (WGM) of a cylindrical resonators. (a) Resonant

frequencies plotted with respect to the Q-factor. Spatial field profile amplitude Ez for (b)

WGM(5,3), (c) WGM(7,2) and (d) WGM(10,1). Dashed line denotes the microresonator

boundary.
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other words when energy is coupled to the resonator, the Q-factor is related to the

length of time over which the resonator is capable of holding that energy. Hence,

the higher the value of Q-factor the smaller the radiation losses. Moreover, it is

important to note that since the time-dependent component has been assumed in the

form of ejωt and the real part of the resonant frequency f ′res is always positive, a lossy

resonant mode is denoted by +f ′′res hence +Q-factor and vice-versa for amplifying

resonant mode.

Figure 9.2 plots the Q-factor of the resonant modes of a circular resonator as a

function of the real part of the resonant frequency (a) and field profiles of some of

the resonant modes. Results are obtained for a passive circular resonator of radius

a = 0.53775 µm with a refractive index of a typical GaAs-based material n = 3.5 and

on air background nb = 1. Figure 9.2(a) shows the resonant frequency for different

orders of m between 0 − 450 THz. It can be seen from the figure that the higher

order resonant modes are located at higher frequencies. Moreover, higher order

modes have higher Q-factors. It is emphasised here that the resonant frequencies of

a resonator are discrete, and in Fig. 9.2(a) they are plotted as square bullet points;

the dashed lines merely serve as a guide to the reader.

Figures 9.2(b-d) show the spatial field amplitude profile of Ez obtained by using

the TLM method. In the TLM simulation the resonators are excited by an electric

dipole located near the boundary, i.e. 0.2a from the boundary. The electric dipole is

excited with a Gaussian-type pulse modulated at the resonant frequency of the mode

of interest, f
(5,3)
res = 359.3125 THz, f

(7,2)
res = 341.5849 THz and f

(10,1)
res = 336.8524 THz

with FWHM of 0.4 ps in order to provide a very narrow bandwidth source. The

resonant frequencies and the associated Q-factors are marked in Fig. 9.2(a). Note

that the mode number (m,n) is used to refer to the azimuthal and the radial order

respectively. As such it can be seen from Fig. 9.2(b) that there are five pairs of

field maxima and minima in the azimuthal direction and three peaks in the radial

179



Chapter 9. PT -Symmetric Coupled Microresonators

direction. In comparison the Whispering-Gallery Mode (WGM)‡ (7,2) has 7 pairs

of maxima-minima in the azimuthal direction and two peaks in the radial direction:

WGM (10,1) (Fig. 9.2(d)) has 10 pairs of maxima-minima in the azimuthal direction

and only one peak in the radial direction.

9.3 Analysis of Inter-Resonator Coupling in the

Frequency Domain

An analysis of coupling between resonators based on boundary integral methods is

now given. This approach is particularly suited to a perturbative approximation

of the coupling strength in the weak coupling limit, but also provides an efficient

platform for exact calculation when coupling is strong. The calculation is based on

an approach used in [9.25] to describe coupling between fully bound states in coupled

resonators and optical fibres, but is adapted here to allow for radiation losses. It is

also similar to methods used in [9.14,9.15,9.19–9.21].

9.3.1 Notation and Assumptions

The coupled PT -microresonator depicted in Fig. 9.1 is now considered. For consis-

tency the subscripts “G” and “L” are used for variables associated with the gain and

lossy resonators respectively. Both resonators have radius a and uniform refractive

index, with the electric field polarized along the resonator axis.

From the previous section, it is known that the electric field Ez takes the form

ψL =
Jm(nLk0r)

Jm(nLk0a)
ejmθ inside the isolated lossy resonator and its normal derivative

‡Historically, the term whispering-gallery mode come from an observation by Lord Rayleigh in
St Paul’s Cathedral, London in which he observes that one’s whispers at a point on the cathedral’s
dome wall can be heard periodically around the dome wall [9.24].
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on the boundary of the resonator can be written as

a
∂ψL
∂n

= FL
mψL, (9.19)

where

FL
m = (nLk0a)

J ′m(nLk0a)

Jm(nLk0a)
, (9.20)

where, k0 is the free-space wave number and ψG and FG
m are defined similarly for the

gain resonator. It is emphasised that for notation simplicity, ψL has been adopted

to denote the electric field Ez on the lossy resonator and ψG for the electric field Ez

on the gain resonator.

9.3.2 Graf’s Addition Theorem

In the next subsection, the coupling of two circular resonators is studied. As a

prelude to this, the present subsection will overview Graf’s addition theory. Graf’s

addition theory allows us to displace one cylindrical system of coordinates into

another using Bessel function expansion. Consider F , which can be any function

from the Bessel function family J , Y , H(1), H(2) or indeed any linear combination

of them. The following relation is valid [9.13],

Fm(W )ejnχ =
∞∑

n=−∞

Fm+n(U)Jn(V )ejnα, with U > V (9.21)

where in this thesis U , V and W are real numbers defining distances. As such they

can be interpreted as the edges of a triangle [9.13] as illustrated in Fig. 9.3.
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α
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V

W

Figure 9.3 Graf’s addition theorem triangle.

9.3.3 Exact Solution Using Boundary-Integral

Representation

In this subsection, coupling between two dielectric circular resonators is studied

using the Boundary Intergal Equation (BIE) method. Expanding the solution on

each resonator boundary as a Fourier series, the solution can be written as

ψG =
∑
m

ϕGmejmθG and ψL =
∑
m

ϕLmejmθL , (9.22)

in the polar angles θG and θL centred respectively on the gain and lossy resonators,

running in opposite senses in each resonator and zeroed on the line joining the two

centres. The corresponding normal derivatives at each boundary can be written

as:

∂ψG
∂n

=
∑
m

1

a
FG
mϕ

G
mejmθG and

∂ψL
∂n

=
∑
m

1

a
FL
mϕ

L
mejmθL . (9.23)

An exact boundary integral representation of the coupled problem is conveniently

achieved by applying Green’s identities to a region Ω which excludes the resonators,

along with an infinitesimally small layer surrounding them (so that the boundaries

BG and BL of the resonators themselves lie just outside Ω), see Fig. 9.4. In Ω, we

assume that the refractive index takes the value n0 = 1, so that the free-space Green
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ΩθG θLBG BL

Figure 9.4 Integration region Ω around the resonators system.

function is, see Appendix C,

G0(x,x′) = −j
4
H0(k0|x− x′|), (9.24)

where x and x′ are the receiver and the source points and H0(z) = J0(z) − jY0(z)

denotes the Hankel function of the second kind (and the solution is assumed to

have time dependence ejωt). Then, applying Green’s identities to the region Ω and

assuming radiating boundary conditions at infinity leads to the equation,

0 =

ˆ
BG+BL

(
G0(x,x′)

∂ψ(x′)

∂n′
− ∂G0(x,x′)

∂n′
ψ(x′)

)
ds′ (9.25)

when x lies on either BL or BG (and therefore just outside of Ω).

Using Graf’s addition theorem, see Subsection 9.3.2, the Green’s function G0(x,x′)

is expanded analogously in polar coordinates on each boundary. First with respect

to the triangle x′ OL x (see Fig. 9.5), it can be shown that,

H0(k0|x− x′|) =
∑
`

H`(k0r
′)J`(k0a)ej`(θL−θ

′
L)

=
∑
`

(
H`(k0r

′)e−j`θ
′
L

)
J`(k0a)ej`θL .

(9.26)

Expanding the term in the bracket in (9.26) with respect to triangle OG x′ OL (see

183



Chapter 9. PT -Symmetric Coupled Microresonators
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θ′G
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Figure 9.5 Expansion of the free-space Green’s function between the 2-coupled res-

onators by the Graf’s addition theorem. Cross-contribution from the gain resonator to the

lossy resonator.

Fig. 9.5), yields

H`(k0r
′)e−j`θ

′
L =

∑
`′

H`+`′(2bk0)J`′(k0a)e−j`
′θ′G . (9.27)

Substituting (9.27) to (9.26), the Green’s function can be expressed as,

G0(x,x′) = −j
4

∑
`

∑
`′

H`+`′(2bk0)J`′(k0a)J`(k0a)ej`θL−j`
′θ′G , (9.28)

with the corresponding normal derivatives of the Green function,

∂G0(x,x′)

∂n′
= −jk0

4

∑
`

∑
`′

H`+`′(2bk0)J ′`′(k0a)J`(k0a)ej`θL−j`
′θ′G . (9.29)

Then Green’s boundary integral on the lossy resonator due to the presence of gain

resonator is

ˆ
BG

(
G0(x,x′)

∂ψ(x′)

∂n′
− ∂G0(x,x′)

∂n′
ψ(x′)

)
ds′, (9.30)
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where the first term is calculated by,

ˆ
BG

G0(x,x′)
∂ψ(x′)

∂n′
ds′

= − j

4a

∑
m``′

ϕGmF
G
mH`+`′(2bk0)J`′(k0a)J`(k0a)ej`θL

˛
ej(m−`

′)θ′Gdθ′G.
(9.31)

Due to the orthogonality of the trigonometric function,

˛ ∑
m`′

ej(m−`
′)θ′Gdθ′G =


2π for m = `′

0 for m 6= `′
, (9.32)

equation (9.31) can be simplified to,

ˆ
BG

G0(x,x′)
∂ψ(x′)

∂n′
ds′ = −j π

2a

∑
m`

ϕGmF
G
mH`+m(2bk0)Jm(k0a)J`(k0a)ej`θL . (9.33)

The second term of (9.30) is calculated as,

ˆ
BG

∂G0(x,x′)

∂n′
ψ(x′)ds′

= −jk0

4

∑
m``′

ϕGmH`+`′(2bk0)J ′`′(k0a)J`(k0a)ej`θL
˛

ej(m−`
′)θ′Gdθ′G,

(9.34)

which due to the orthogonality property of the trigonometric function can be sim-

plified to,

ˆ
BG

∂G0(x,x′)

∂n′
ψ(x′)ds′ = −j πk0

2

∑
m`

ϕGmH`+m(2bk0)J ′m(k0a)J`(k0a)ej`θL . (9.35)

The Green’s boundary integral for the lossy resonator is now,

ˆ
BG

(
G0(x,x′)

∂ψ(x′)

∂n′
− ∂G0(x,x′)

∂n′
ψ(x′)

)
ds′

= −j π
2a

∑
m`

ϕGmH`+m(2bk0)J`(k0a)ej`θL
[
FG
mJm(k0a)− k0aJ

′
m(k0a)

]
.

(9.36)

Likewise, the Green’s boundary integral on the gain resonator due to the presence

185



Chapter 9. PT -Symmetric Coupled Microresonators

x′ x

r′ a

OL BL

θL
θ′L

Figure 9.6 Expansion of the self-contribution Green’s function by the Graf’s addition

theorem.

of the lossy resonator,

ˆ
BL

(
G0(x,x′)

∂ψ(x′)

∂n′
− ∂G0(x,x′)

∂n′
ψ(x′)

)
ds′

= −j π
2a

∑
m`

ϕLmH`+m(2bk0)J`(k0a)ej`θG
[
FL
mJm(k0a)− k0aJ

′
m(k0a)

] (9.37)

As such (9.36) describes the contribution of the gain resonator to the lossy res-

onator while (9.37) describes the contribution of the lossy resonator to the gain

resonator.

Following the cross-contribution to the Green’s integral, the self-contributions to

the Green’s integral can be calculated. First consider only the lossy resonator as

depicted in Fig. 9.6. The self-contribution of the lossy resonator can be calculated

as,

ˆ
BL

(
G0(x,x′)

∂ψ(x′)

∂n′
− ∂G0(x,x′)

∂n′
ψ(x′)

)
ds′. (9.38)

As before, first expand the free-space Green’s function with respect to the triangle x′

OL x. By using the Graf’s theorem, the Hankel function can be expanded as,

H0(k0|x− x′|) =
∑
`

H`(k0r
′)J`(k0a)ej`(θL−θ

′
L). (9.39)
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As such the Green’s function and its derivative at the boundary are given by

G0(x,x′) = −j
4

∑
`

H`(k0r
′)J`(k0a)ej`(θL−θ

′
L), (9.40)

∂G0(x,x′)

∂n′
= −j k0

4

∑
`

H ′`(k0a)J`(k0a).ej`(θL−θ
′
L) (9.41)

Integrating the first term in (9.38) gives,

ˆ
BL

G0(x,x′)
∂ψ(x′)

∂n′
ds′

= − j

4a

∑
m`

ϕLmF
L
mH`(k0a)J`(k0a)ej`θL

˛
ej(m−`)θ

′
Ldθ′L

= −j π
2a

∑
m

ϕLmF
L
mHm(k0a)Jm(k0a)ejmθL ,

(9.42)

and integrating the second term results in,

ˆ
BL

∂G0(x,x′)

∂n′
ψ(x′)ds′

= −j k0

4

∑
m`

ϕLmH
′
`(k0a)J`(k0a)ej`θL

˛
ej(m−`)θ

′
Ldθ′L

= −j πk0

2

∑
m

ϕLmH
′
m(k0a)Jm(k0a)ejmθL .

(9.43)

Hence the Green’s integral due to self-contribution of the lossy resonator is,

ˆ
BL

(
G0(x,x′)

∂ψ(x′)

∂n′
− ∂G0(x,x′)

∂n′
ψ(x′)

)
ds′

= j
π

2a

∑
m

ϕLmJm(k0a)ejmθL
[
k0aH

′
m(k0a)− FL

mHm(k0a)
]
.

(9.44)

Likewise, the self-contribution of the gain resonator can be obtained as,

ˆ
BG

(
G0(x,x′)

∂ψ(x′)

∂n′
− ∂G0(x,x′)

∂n′
ψ(x′)

)
ds′

= j
π

2a

∑
m

ϕGmJm(k0a)ejmθG
[
k0aH

′
m(k0a)− FG

mHm(k0a)
]
.

(9.45)
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Summing the self-contribution and cross-contribution for each resonator and sub-

stituting in (9.25), it can be shown that the Green’s boundary integral for the gain

resonator becomes

∑
m

Jm(k0a)Hm(k0a)

[
FG
m − k0a

H ′m(k0a)

Hm(k0a)

]
ϕGm

+
∑
m`

Jm(k0a)H`+m(2bk0)J`(k0a)

[
FL
m − k0a

J ′m(k0a)

Jm(k0a)

]
ϕLm = 0,

(9.46)

and for the lossy resonator,

∑
m

Jm(k0a)Hm(k0a)

[
FL
m − k0a

H ′m(k0a)

Hm(k0a)

]
ϕLm

+
∑
m`

Jm(k0a)H`+m(2bk0)J`(k0a)

[
FG
m − k0a

J ′m(k0a)

Jm(k0a)

]
ϕGm = 0.

(9.47)

Equations (9.46) and (9.47) can also be expressed in matrix form as,

DGϕG +CGLϕL = 0

CLGϕG +DLϕL = 0,
(9.48)

where,

ϕG =



...

ϕGm

ϕGm+1

...

 and ϕL =



...

ϕLm

ϕLm+1

...

 (9.49)

are Fourier representations of the solution on the boundaries of the gain and lossy

resonators respectively. The matrices DG and DL are diagonal with entries

DG,L
mm = Jm(u)Hm(u)

(
FG,L
m − uH ′m(u)

Hm(u)

)
, where u = k0a, (9.50)

and provide the solutions for the isolated resonators. The matrices CGL and CLG de-
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scribe coupling between the resonators. The matrix CGL has entries of the form

CGL
lm = Jl(u)Hl+m(w)Jm(u)

(
FL
m −

uJ ′m(u)

Jm(u)

)
, (9.51)

where u = k0a, w = k0b and b is the centre-centre distance between the gain and

lossy resonators as indicated in Fig. 9.1. The matrix CLG is defined analogously by

exchanging the labels G and L.

It is interesting to note that in the case of an non-interacting resonator, there is no

coupling between the resonators, i.e. CGL
lm = CLG

lm ≡ 0; the self-contribution of the

Green’s integral DG,L
mm is then equivalent to (9.17) which describes the problem of

the isolated single resonator.

9.3.4 PT -Symmetry in the Exact Solution

The system (9.48) can be presented more symmetrically by using the scaled Fourier

coefficients

ϕ̃Lm = Jm(u)

(
FL
m −

uJ ′m(u)

Jm(u)

)
ϕLm (9.52)

(along with an analogous definition of ϕ̃Gm). Then (9.48) can be rewritten

D̃Gϕ̃G + C̃ϕ̃L = 0

C̃ϕ̃G + D̃Lϕ̃L = 0,
(9.53)

where the diagonal matrices D̃G,L have entries

D̃G,L
mm = −jHm(u)FG,L

m − uH ′m(u)

Jm(u)FG,L
m − uJ ′m(u)

, where u = k0a, (9.54)
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and the matrix C̃, with entries

C̃lm = −jHl+m(w), (9.55)

couples solutions symmetrically in both directions.

An overall factor of −j is included in these equations to emphasise an approximate

PT -symmetry that occurs when nG = n∗L. Then, in the limit of high-Q (low loss)

whispering gallery resonances, the following approximations hold,

jHm(u) ' Ym(u) and jHl+m(u) ' Yl+m(u), (9.56)

and the matrices in (9.53) satisfy the approximate conditions

(
D̃L
)∗
' D̃G and C̃∗ ' C̃, (9.57)

which are a manifestation of PT -symmetry of the system as a whole: deviation from

these conditions is a consequence of the radiation losses.

9.3.5 Perturbative Weak-Coupling Approximation

The system of (9.53) can be used as the basis of an efficient numerical method

for determining the resonances of the coupled system with arbitrary accuracy. In

practice, once the gap g = b − 2a between the resonators is wavelength-sized or

larger, a truncation of the full system to a relatively small number of modes suffices

to describe the full solution.

In the limit of very weak coupling an effective perturbative approximation can be

achieved by restricting our calculation to a single mode in each resonator. We
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consider in particular the case of near left-right symmetry in which

nG ≈ nL. (9.58)

PT -symmetry is achieved by further imposing nG = n∗L, but for now the effects of

dispersion are allowed by assuming that this is not the case. The full solution is

built around modes for which

ψ± ≈ ψG ± ψL, (9.59)

where ψG and ψL are the solutions of the isolated resonators described at the begin-

ning of this section. A single value of m is used for both ψG and ψL and in particular

the global mode is approximate using a chiral state in which the wave circulates in

opposite senses in each resonator. That is, the coupling between m and −m that

occurs in the exact solution is neglected.

Then a simple perturbative approximation is achieved by truncating the full system

of (9.53) to the 2× 2 system

M

 ϕ̃Gmm

ϕ̃Lmm

 = 0, where M =

 D̃G
mm C̃mm

C̃mm D̃L
mm

 . (9.60)

Resonant frequencies of the coupled problem are then realised when

0 = det M = D̃G
mmD̃

L
mm − C̃2

mm. (9.61)

In the general, dispersive and non-PT -symmetric, case this reduces the calculation

to a semi-analytic solution in which the (complex) roots of the known 2 × 2 de-

terminant in (9.60) are sought, in which the matrix elements depend on frequency

through both k0 = ω/c and n = n(ω).
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9.3.6 Further Analytic Development of the Perturbative

Solution

To develop a perturbative expansion let,

D0
mm =

1

2

(
D̃G
mm + D̃L

mm

)
and DI

mm =
1

2j

(
D̃G
mm − D̃L

mm

)
(9.62)

(and note that in the high-Q-factor PT -symmetric case, D̃G ' (D̃L)∗, both D0
mm

and DI
mm are approximately real). It is assumed that both DI

mm and Cmm are small

and comparable in magnitude. Expand the angular frequency

ω1,2 = ω0 ±
∆ω0

2
+ · · · (9.63)

about a real resonant angular frequency of an averaged isolated resonator satisfy-

ing

D0
mm(ω0) = 0. (9.64)

Then to first order of accuracy the coupled resonance condition becomes

0 = det M = ∆ω2
0D

0
mm
′
(ω0)2 +DI

mm(ω0)2 − C̃mm(ω0)2 + · · · (9.65)

from which the angular frequency shifts can be written as,

∆ω0

2
=

√
C̃mm(ω0)2 −DI

mm(ω0)2

D0
mm
′(ω0)

, (9.66)

where D0
mm
′
(ω) denotes a derivative of D0

mm(ω) with respect to frequency.
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The simple condition

C̃mm(ω0)2 = DI
mm(ω0)2 (9.67)

is obtained for the threshold at which ∆ω0 = 0 and the two resonant frequencies of

the coupled system collide. In the PT -symmetric case, where C̃mm and DI
mm are

approximately real (and whose small imaginary parts represent corrections due to

radiation losses), we therefore have a prediction for a real threshold frequency.

9.4 Results and Discussions

In this section, the impact of dispersion on the resonant frequencies and threshold

behaviour of the PT -symmetric microresonators is analysed. Frequency mismatch

between the resonant frequency of the microresonator and gain pump frequency

is investigated for practical levels of dispersion and the practical implications of

a slight unbalance between the gain and loss in the system are investigated. The

section concludes with an investigation of how coupling between resonators manifests

itself in the time development of solutions.

9.4.1 Effects of Dispersion on Threshold Behaviour in the

Frequency Domain

For all cases, weakly coupled microresonators are considered, the coupled resonators

each have a dielectric constant ε∞ = 3.5 [9.22,9.26] radius a = 0.54 µm and are

separated by distance g = 0.24 µm. Operation at two different whispering-gallery

modes is analysed, namely a low Q-factor mode (7,2) and a high Q-factor mode

(10,1). The corresponding isolated resonator resonant frequencies are respectively

f
(7,2)
0 = 341.59 THz and f

(10,1)
0 = 336.85 THz, with Q-factors Q(7,2) = 2.73 × 103
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Figure 9.7 Frequency bifurcation of PT -coupled microresonator. Resonators have

balanced gain/loss (n′′G = −n′′L). The plots shows the real and imaginary part of the reso-

nant frequenices calculated by both the Boundary Integral Equation (BIE) and the numerical

Transmission-Line Modelling (TLM) method. Results from the BIE are shown by solid lines and

from the TLM by discrete points. These are displayed as a function of the gain/loss parameter

calculated at the peak of pumping beam n′′(fres) for three different dispersion parameters,

(a,b) ωστ = 0, (c,d) ωστ = 212 and (e,f) ωστ = 0.7.

and Q(10,1) = 1.05× 107 as they are displayed before in Fig. 9.2(a).

Figure 9.7 shows the real and imaginary parts of the eigenfrequencies f1 and f2 of
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the PT -symmetric coupled microresonators with balanced gain and loss, n′′G = −n′′L,

and is depicted as a function of the imaginary part of the refractive index n′′(fres) for

both the low and high Q-factor modes. The gain and loss are assumed to be tuned

to the resonant frequency of an isolated microresonator, i.e. ωσ = 2πfres. Three

different levels of dispersion, controlled by the parameter τ , are considered. These

are ωστ = 0 corresponding to the case of no dispersion, ωστ = 212 taken from [9.26]

to exemplify the case of high dispersion and ωστ = 0.7 to exemplify the case of low

dispersion.

Figures 9.7(a and b) show the frequency splitting of the real and imaginary part of

the complex eigenfrequencies for the case of no dispersion. In the passive case, where

n′′ = 0, the super-modes beat at a rate corresponding to the frequency differences

Re(f1 − f2) = 0.61 THz and 0.185 THz for the (7,2) and (10,1) modes respectively.

Figure 9.7(a) indicates that operation in a higher Q-factor mode results in weaker

coupling between the microresonators compared to the case of operation in the

lower Q-factor mode. Increasing the gain and loss in the system, decreases the

beating rate and the super-modes coalesce at the threshold points of n′′(fres) =

0.0032 and 0.001 for the low and high Q-factor modes of operation respectively,

confirming that the high-Q factor mode has a lower threshold point [9.3]. In the

case of operation in the low Q-factor mode, the eigenfrequencies shown in Fig. 9.7(b)

have a significant constant and positive imaginary part before the threshold point,

which is a consequence of the higher intrinsic losses due to radiation in that case.

The corresponding imaginary part is insignificant in the case of the high Q-factor

mode, for which radiation losses are much smaller. Furthermore it is noted here

that the coupled system first starts to lase, i.e. one of the eigenfrequencies satisfies

Im(f1,2) < 0, only when operated significantly beyond the threshold n′′(fres) =

0.00326 for the low Q-factor operation while this onset occurs immediately after the

threshold point in the high Q-factor case.

Figures 9.7(c and d) show the real and imaginary parts of the eigenfrequencies for
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the case of strong dispersion, corresponding to the parameter values ωστ = 212

taken from [9.26]. These are again shown for both high and low Q-factor modes.

It is noted that the threshold point for the low Q-factor mode is reduced from

n′′(fres) = 0.0032 to n′′(fres) = 0.0030 in this case while for the high Q-factor mode

it remains unchanged at 0.001 (compared to the case of no dispersion). Below the

threshold point the imaginary parts of the eigenfrequencies are not constant, but

are instead skewed towards a lossy state with positive and increasing imaginary

part. Extension beyond the threshold point shows that the imaginary parts of

the eigenfrequencies do not split evenly and are also skewed towards overall loss,

implying that in the highly dispersive case the eigenfrequencies both are complex

but no longer complex conjugates after the threshold point.

Furthermore, Figs. 9.7(a-d) compares the eigenfrequencies calculated by the Bound-

ary Integral Equation (BIE), i.e. zeros of the linear problem (9.53), and the time-

domain 2D-TLM method described in Chapter 8. The TLM method simulates the

same problem as the BIE counterpart except that the TLM model introduces spa-

tial discretisation for which in these calculations ∆` = 2.5× 10−3 µm is used‡. The

TLM model uses electric dipole excitation with Gaussian profile modulated at the

resonant frequency of the isolated resonator fres with FWHM of 250 fs to provide

a narrow bandwidth source for a total simulation time of 3 ps. The complex eigen-

frequencies are extracted by using the harmonic inversion method [9.27–9.29]; for

these calculations the freely available Harminv package [9.29] was used. Details of

the harmonic inversion by filter diagonalisation method are not described in this

thesis and reader is referred to [9.27–9.29]; the package used in this work is freely

available to download∗.

By comparing the eigenfrequencies calculated by the BIE and the TLM methods

(discrete bullet points), it can be seen from Figs. 9.7(a,c) that the real part of the

‡This discretisation parameter is equivalent with λsim/100, where λsim is the maximum simu-
lation bandwidth in material, i.e. λsim = 0.875 µm/3.5.

∗http://ab-initio.mit.edu/wiki/index.php/Harminv
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eigenfrequencies calculated by the TLM method are shifted to the lower frequencies

(red-shifting) which occurs due to numerical dispersion and stair-casing approxi-

mation. It is noted that a similar red-shifting error was also observed during the

investigation of PT -Bragg grating in Section 6.3 using the TLM method. This error

can be minimised by reducing the mesh discretisation length with the cost of longer

CPU simulation time. Nevertheless, Figs. 9.7(a,c) show that both the TLM and the

BIE calculations predict and follow the same threshold behaviours. A more detail

temporal analysis using the TLM model will be discussed in the next section.

The real and imaginary parts of the eigenfrequencies for the case of low levels of

dispersion, for which we take ωστ = 0.7, are shown in Fig. 9.7(e and f). Figure

9.7(e) shows that there is no clear threshold point in this case: the imaginary parts

split for a very low value of the gain/loss parameter n′′(fres), with no sharp point of

onset. The appearance of a threshold point typically associated with PT -behaviour

is lost and the eigenfrequencies are always complex valued.

The key conclusion to be made from Fig. 9.7 is therefore that PT -like threshold

behaviour is observed in the cases of no dispersion and of high dispersion, but

not for the case of intermediate dispersion. While there is some skewness in the

high-dispersion case, which amounts to a quantitative deviation from strict PT -

symmetry, there is an essential qualitative similarity to the dispersionless case in

which there appears to be a sharp threshold. By contrast, in the case of intermediate

dispersion there is no sharp transition point and the imaginary parts of the two

resonant frequencies begin to diverge from the beginning.

To further investigate and explain this phenomenon, we examine the dependence of

the real part of the complex refractive index on the dispersion parameter 2ωστ . This

dependence is plotted in Fig. 9.8(a) for the cases of both gain and loss, and which

σ0 = ±2ε0ωσ and ωσ = ω0 respectively. Figure 9.8(a) shows that the real parts of

the refractive indices behave differently for the cases of loss and gain in the system,
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Figure 9.8 Relation between gain/loss dispersion and eigenfrequencies after thresh-

old. (a) Impact of dispersion to the real part of material at atomic transitional angular

frequency ωσ due to the presence of gain and loss for different dispersion parameters; (b)

Contrast between the real part of eigenfrequencies of PT -coupled microresonators for two

different gain/loss parameter, i.e. n′′(fres) = 0.0035 for (7,2) and 0.0012 for the (10,1) mode

as function of dispersion parameter τ .

with the maximum difference occurring when τ = 1/(2ωσ). However, in two limiting

cases τ = 0 (dispersion-less system) and τ → ∞ (strong dispersion), the real parts

of the refractive index converge. This means that the PT -condition nG = n∗L can

only be satisfied accurately for the cases of no dispersion and of high dispersion. For

the case of intermediate dispersion there is necessarily some discrepancy between

the real parts of the refractive indices of the resonators.

Figure 9.8(b) shows the minimum difference in the real parts of the two eigenfre-
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a
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d

Figure 9.9 Mismatching gain/loss material transitional frequency and the resonator

resonant frequency. Frequency bifurcation of coupled microresonators with balanced gain

and loss as function of gain/loss parameters n′′(ωσ), for two different atomic transitional

frequencies ωσ = 2π(fres + δ) with δ = −0.1 and 0.1 THz.

quencies for different dispersion levels and operated at a fixed value of the gain/loss

parameter, i.e. at n′′(fres) = 0.0035 for the low Q-factor and at 0.0012 for high

Q-factor modes of operation. These values of the gain/loss parameter are chosen

to lie above the expected threshold so that qualitatively PT -like behaviour would

imply eigenfrequencies with a common real part. Figures 9.8(a,b) confirm that the

maximum difference between the real parts of the two refractive indices coincides

with the maximum deviation from PT -like threshold behaviour, where the differ-

ence between the real parts of the eigenfrequencies is greatest. This result further

confirms the fact that realistic levels of dispersion preserve the essential features of

PT -behaviour.
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Having confirmed that realistic levels of dispersion preserve PT -behavior, Figure

9.9 considers a practical scenario in which there is high dispersion ωστ = 212 and

a frequency mismatch between the resonant frequency and the gain/loss atomic an-

gular frequency. The material atomic frequency is defined to be ωσ = 2π(fres + δ),

where δ is the mismatch parameter. The structure is operated with balanced gain

and loss, i.e. n′′G = −n′′L and two values are assumed for the frequency mismatch,

namely δ = −0.1 and 0.1 THz. Figure 9.9(a,b) shows the results for the low Q-

factor mode (7,2) and Fig. 9.9(c,d) for the high-Q factor mode (10,1). In both

cases there is no sharp threshold point for the real parts of eigenfrequencies and the

imaginary parts begin to diverge at low gain/loss values. Neither are the imaginary

parts symmetrically placed about a branching value. This result confirms the fact

that PT -behaviour is preserved only when the angular transitional frequency of the

dispersive gain/loss profile is aligned with the resonant frequency of the microres-

onators. If that is not the case, the frequency misalignment causes the coupled

system to continue to beat after a threshold region.

Another practical scenario is considered in Fig. 9.10 where the gain and loss are

not balanced, i.e. µRL has a loss |n′′L| while µRG has a gain |n′′G|. Figure 9.10(a,b)

shows the real and imaginary parts of the eigenfrequency for three different values of

loss namely, |n′′L| = 0.0026, 0.0030 and 0.0034 which correspond to values below, at,

and above the threshold point of a PT -symmetric structure with balanced gain and

loss respectively. The low Q-factor mode is considered with a practical dispersion

parameter of ωστ = 212 as taken from [9.26]. Interestingly, it can now be observed

that the PT -threshold point can also exist for structures with unbalanced gain/loss

as shown by the plots for |n′′L| = 0.0026 and |n′′L| = 0.0034 in Fig. 9.10. In the

former case, the PT -threshold is increased and in the latter case the PT -threshold

is decreased when compared with the PT -threshold of the balance structure. Of

special interest is the observation that increasing loss results in the reduction of the

PT -threshold which consequently reduces the levels of gain at which lasing occurs.
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a

b

Figure 9.10 Complex eigenfrequency in a PT -coupled microresonator system with

variable gain and fixed loss. Plotted as a function of gain parameter |n′′G|, dispersion

parameter ωστ = 212 [9.26] and shown for three different fixed loss value, i.e. |n′′L| = 0.0026,

0.0030, and 0.0034.

This counter-intuitive principle of switching lasing on by increasing loss has been

experimentally demonstrated in [9.2] where a metal probe was used to enhance loss

in the lossy microresonator.
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9.4.2 Real Time Operation of PT -Symmetric Coupled

Microresonators

In this subsection the real-time operation of the PT -symmetric coupled microres-

onators is demonstrated for different levels of dispersion. For this purpose, the

two-dimensional (2D) time-domain Transmission Line Modeling (TLM) numerical

method is used. A more detailed description of the TLM method and the imple-

mentation of dispersive gain/loss materials is presented in Chapter 8. In each of

the simulations shown in this section, the low Q-factor (7,2) mode is excited by a

very narrow-band Gaussian dipole located in µRG whose frequency is matched to

the resonant frequency of this mode as used in the calculation for Fig 9.7. Depend-

ing on the levels of gain and loss, and their relation to the threshold points, it is

found in practice, however, that small unintentional initial excitations of the high

Q-factor (10,1) mode may grow to become a significant feature and even dominate

the evolved state. In all cases it is found that the TLM simulations are consistent

with the frequency-domain calculations provided in the previous section and in fact

have been used to independently validate the BIE analysis, comparison with which

are presented in Figs. 9.7.

First consider the case of evolution from the low Q-factor mode using a model with

no dispersion. Figure 9.11(a) shows the spatial electric field distribution of coupled

microresonators with no gain and loss (n′′G = n′′L = 0) and operating at the resonant

frequency of the low Q-factor (7,2) mode. The black line connecting the centre of

the two resonators denotes a monitor line on which the electric field is observed

during the TLM simulation. Figures 9.11(b and c) show the temporal evolution and

the spectra of the electric field observed along the monitor line for the case of no

gain and loss, respectively.

The case of no gain and loss, reported in Fig. 9.11(b), shows a typical oscillation

of the electric field between the microresonators having a regular beating pattern
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Figure 9.11 Passive coupled resonator modelled by the 2D-TLM method. (a) Spatial

electric field distribution of the coupled microresonators operated in the (7,2) mode. The

black line connecting the centre of the two resonators denotes the monitor line. The temporal

evolution (b) and spectra (c) of the field on the monitor line are shown for the passive case.

in which maximum intensity being observed in one microresonator corresponds to

minimum intensity being observed in the other. It is noted that the slight mod-

ulation in the beating profile pattern is due to the unintentional excitation of the

higher Q-factor mode (10,1). Figure 9.11(c) shows the frequency content of the

modes, indicating the presence of two resonating frequencies centered around f
(7,2)
res ,

in agreement with Fig. 9.7(a).

The real-time performance of PT -coupled microresonators with balanced gain and

loss n′′G = n′′L = n′′ and with no dispersion is depicted in Fig. 9.12. The temporal

evolution and the spectra of the electric field are observed along the monitor line

for two levels of gain and loss: the levels of gain and loss are n′′(fres) = 0.002, i.e.
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Figure 9.12 Real time operation in the non-dispersive case. The temporal evolution

and spectra of the field on the monitor line are shown for different gain/loss parameters, (a,b)

for n′′(fres) = 0.002 and (c,d) for n′′(fres) = 0.0034 with a negligible dispersion parameter

using the TLM method.

lower than the threshold point of the low Q-factor mode but beyond the threshold

of the high Q-factor mode in Fig. 9.12(a and b), and n′′(fres) = 0.0034, i.e. lying

above the threshold points of both modes in Fig. 9.12(c) and 9.12(d).

Figure 9.12(a) shows the energy beating between the microresonators with gain/loss

n′′(fres) = 0.002, set below the threshold point of the low-Q-factor mode. Comparing

the results shown with those presented for the passive coupled resonator in Fig. 9.11,

it is noticeable that beating between microresonators is reduced, i.e. it takes longer

time for the field to be coupled to the other resonator. Additionally, Fig. 9.12(a)

indicates the presence of additional modes, observable at later times. Frequency

analysis of the fields is given in Fig. 9.12(b) and shows an additional peak at 336.85

204



Chapter 9. PT -Symmetric Coupled Microresonators

Frequency / THz
336 338 340 342 344

N
or

m
al

is
ed

 s
p
ec

tr
a

0

0.2

0.4

0.6

0.8

1

dB

Frequency / THz
336 338 340 342 344

N
or

m
al

is
ed

 s
p
ec

tr
a

0

0.2

0.4

0.6

0.8

1

dB

a

c

b

d
341.6336.85

341.6336.85

Figure 9.13 Real time operation of PT -coupled resonators with realistic gain/loss

dispersion. Temporal and spectra of electric field along the monitor line with balanced gain

and loss parameters operated for (7,2) mode with practical dispersion parameters ωστ =

212 [9.26] and for two different gain/loss parameter, i.e. (a,b) n′′(fres) = 0.002, and (c,d)

n′′(fres) = 0.0034,.

THz, which corresponds to the resonant frequency of the mode (10,1), explaining

the high frequency beating in Fig. 9.12(a). Referring to Fig. 9.7(a) it can be seen

that at n′′(fres) = 0.002, the (10,1) mode is operating above its threshold point and

is thus experiencing amplification, whilst the (7,2) mode is still below its threshold

point.

A further increase in gain/loss to n′′(fres) = 0.0034, in Fig. 9.12(c), shows an

exponentially growing field in the gain microresonator with no beating between the

resonators and a stronger presence of the high Q-factor mode as shown in Fig.

9.12(d). Referring to Fig. 9.7(a,b) it is confirmed that for n′′(fres) = 0.0034 both
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low and high Q-factor modes are operating above their threshold.

Figure 9.13 shows corresponding results for the case of realistically high dispersion

with ωστ = 212. The gain/loss parameters n′′(fres) = 0.002 and 0.0034 are chosen.

Figure 9.13(a) shows a decaying beating pattern. The corresponding spectral analy-

sis in Fig. 9.13(b) shows that the beating may be attributed to low Q-factor modal

frequencies, indicating that the highly dispersed gain/loss profile has stabilized the

operation of PT -coupled resonators system at a desired mode of operation. For

operation with gain/loss parameter n′′(fres) = 0.0034, the temporal response in Fig.

9.13(c) indicates an exponentially growing field with no presence of other modes.

The spectrum in Fig. 9.13(d) shows a single peak at the resonant frequency of the

(7,2) mode, confirming that the resonators are operating above the PT -threshold

point. The strongly dispersive gain/loss profile limits operation of PT -coupled mi-

croresonator system to the low Q-factor (7,2) mode only in this case. This again

confirms the result that when the material atomic frequency is chosen to be at

a desired resonant frequency, the PT -symmetry is limited to that particular mode

only [9.8,9.30], as in the case of the PT -symmetric Bragg grating discussed in Chap-

ters 6, Section 6.2.

Figure 9.14 demonstrates the real-time operation of the PT -structure with unbal-

anced gain and loss shown in Fig. 9.10. Here, the same scenario as in [9.2] was

applied, where the gain in the active microresonator is fixed at |n′′G| = 0.0033 and

the loss is varied in the lossy microresonator. The low Q-factor mode with practical

dispersion parameters of ωστ = 212 is considerd [9.26]. Figure 9.14(a) shows the

electric field observed along the monitor line for the case of loss |n′′L| = 0.0026, i.e.

more gain than loss in the system. It can be seen that there is a non-periodic and

long temporal beating pattern. The field is not growing, which indicates that the

system is stable and is not lasing. The spectral decomposition shown in Fig. 9.14(b)

is unable to distinguish the splitting of the resonant frequency due to the limited

spectral resolution of the Fourier transformation of the time domain simulation re-
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Figure 9.14 Laser operation in an unbalanced gain/loss PT -coupled resonators.

Temporal and spectra of electric field along the monitor line for operation of low Q-factor

(7,2) mode with realistic dispersion parameters ωστ = 212 [9.26], i.e. (a,b) |n′′L| = 0.0026,

(c,d) |n′′L| = 0.0030 and (e,f) |n′′L| = 0.0034 while the gain parameter is kept constant at

|n′′G| = 0.0033.

sult.

Figure 9.14(c) shows the temporal evolution of the field for the case of |n′′L| = 0.0030.
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It can be seen that there is no beating between the resonators and no growing field,

suggesting that the structure is operating above the PT -threshold point but before

the lasing point which occurs at |n′′G| = 0.0034 (Fig.9.10(b)). The spectral analysis

shows only a single peak centred at f
(7,2)
res .

Figure 9.14(e) shows the temporal evolution for |n′′L| = 0.0034 and |n′′G| = 0.0033,

i.e. more loss than gain in the system. It can be observed that the field is growing

with no beating between the microresonators, suggesting lasing action. This result

is in agreement with observations in [9.2] where laser generation by reversing the

effect of loss at threshold is demonstrated. The corresponding spectrum is depicted

in Fig. 9.14(f) and has a sharp peak centred at f
(7,2)
res .

9.5 Summary

In this chapter, an eigenfrequency analysis of an isolated circular dielectric resonator

as a boundary condition solution of Maxwell’s equations was presented. An exact

model of a coupled microresonator using the Boundary Integral Equation (BIE)

method was developed. For the case of very high-Q factor resonator, a perturbation

analysis was applied on the BIE model to approximately locate the threshold point

of PT -symmetric coupled resonators.

The chapter demonstrates the validity of the 2D-TLM method to model PT -symmetric

coupled microresonator, in which the complex eigenfrequencies are extracted by us-

ing the Harminv package. Although, the 2D-TLM model suffers from a numerical

dispersion due to discretisation and staircasing approximations, it is capable of phys-

ically modelling the structure with considerable accuracy.

Furthermore, in this chapter the impact of material dispersion on the spectral

propetries of PT -symmetric coupled microresonators was studied in detail. It has
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been shown that the practical case of high dispersion preserves the requirement for a

PT -structure. However the results show that this is only the case when the material

atomic frequency is aligned with the resonant frequency of the microresonator. This

comes as a direct consequence of the Kramers-Kronig relationship, which implies

that changes in the imaginary part of the refractive index cause the real part of

the refractive index to change too. Moreover the chapter also demonstrated the

concept of lasing generation by reversing the effect of loss in threshold which is

triggered by an early PT -symmetry breaking. Real-time operation of PT -coupled

microresonators verifies that the dispersion due to the Kramers-Kronig relationship

limits the operation of PT -coupled microresonators to a single frequency and hence

forbids multi-mode PT -symmetry breaking.
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10
Localized Single Frequency Lasing States

in a Finite Parity-Time Symmetric

Resonator Chain

This chapter considers a finite Parity Time (PT ) chain made of resonant

dielectric cylinders on which a more general case of PT symmetry is

achieved by modulating both the real and imaginary part of the material

refractive index along the resonator chain. The band-structure of the

finite PT resonator chains is compared to infinite case in order to under-

stand the complex interdependence of the Bloch phase and the amount

of the gain/loss in the system that causes the PT symmetry to break.

The results show that the type of the modulation along the unit cell can

significantly affect the position of the threshold point of the PT system.

In all cases the lowest threshold is achieved near the end of the Brillouin

zone. For finite PT -chains, and for a particular type of modulation, early

PT symmetry breaking is observed and shown to cause the presence of

termination states localised at the edges of the finite chain resulting in

localised lasing and dissipative modes at each end of the chain.

* * *
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10.1 Introduction

In the previous chapter, PT -coupled resonator cavities comprised of two coupled

resonators, one having gain while the other has loss, was considered. To study the

spectral properties of such structures, an analytical representation of the coupling

mechanism, based upon the Green’s boundary integral equations (BIE) for a weakly

coupled system was developed. In particular two different scenarios were considered,

i.e. a balanced gain/loss condition and a fixed-loss-variable-gain scenario. Moreover

an induced PT -symmetry-breaking phenomenon was demonstrated by increasing

loss in the system, which suggests a counter-intuitive concept of laser operation in

a system dominated by loss rather than gain.

This chapter will further extend the capability of the BIE method to analyse a

finite PT periodic chain structure comprised of two-dimensional resonant cavities

each supporting whispering-gallery modes. The PT -symmetry is introduced by

either having a chain of resonators with constant refractive index and an alternating

arrangement of gain/loss resonators, or in a more general case where both real and

imaginary parts of the resonator refractive index are modulated.

10.2 Parity Time Symmetric Microresonator Chain

This section outlines the structure considered in this chapter, namely the PT -

symmetric microresonator chain. In order to satisfy the condition of PT -symmetry

[10.1,10.2], the refractive index profile should satisfy the condition n(x) = n∗(−x),

where ∗ denotes complex conjugate. This means that the real part of the refractive

index is an even function and the imaginary part of the refractive index is an odd

function in space. To capture this condition, a unit cell that is comprised of four

resonant cavities, as shown schematically in Fig. 10.1 is considered. The unit cell is
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Figure 10.1 Schematic illustration of the unit cell of the PT resonant chain.

of length Λ, all the resonant cavities have the same radius a and are separated by an

equal gap g. The complex refractive index in each resonant cavity is given by,

n1 = navg + ∆n′ + jn′′

n2 = navg −∆n′ + jn′′

n3 = navg −∆n′ − jn′′

n4 = navg + ∆n′ − jn′′

, (10.1)

where navg is the average real refractive index, ∆n′ denotes the modulation of the

real part and n′′ is the imaginary part of the refractive index such that n′′ > 0

represents gain and n′′ < 0 represents loss. The E-type wave is considered where

the electric field is directed along the longitudinal resonator axis and it is assumed

that the system is weakly coupled, i.e. the coupling is considered to be only between

nearest neighbours through the evanescent field.

Detailed calculations provided in this chapter are for the case of finite PT periodic

resonator chains comprised of N = 6 unit cells, each containing four resonators

having the same radius a = 0.54 µm, average real refractive index navg = 3.5 and

separation gap g = 0.3µm. The background material is assumed to be air (nb = 1).

Corresponding isolated resonators are excited at fres = 336.85 THz and support a

high Q-factor whispering-gallery mode of azimuthal order m = 10, and radial order

n = 1 with a Q-factor of 1.05× 107.

214



Chapter 10. Parity-Time Symmetric Microresonator Chain

10.3 Analytical Representation of the Coupling

System

Here, the BIE technique, derived in Section 9.3, is extended to model a finite and

infinitely long PT -chain structure associated with Fig. 10.1.

Infinite PT -Chain BIE Model - For the case of an infinite chain there exists a

continuity of eigenstates ϕ̃i evolving between the left and right end of the unit cell

with a phase delay given by the Bloch phase βΛ [10.3]. Using the Bloch theorem,

the BIE reduces to 4× 4 linearly independent equations of the form,


D̃1 C̃ 0 ejβΛC̃

C̃ D̃2 C̃ 0

0 C̃ D̃3 C̃

e−jβΛC̃ 0 C̃ D̃4




ϕ̃1

ϕ̃2

ϕ̃3

ϕ̃4

 = 0 (10.2)

where, elements D̃i=1,2,3,4 describe the field of an individual isolated resonator de-

rived in Section 9.3 and reproduced below as,

D̃i=1,2,3,4 = −j zHm(u)J ′m(zi)− uH ′m(u)J ′m(zi)

zJm(u)J ′m(zi)− uJ ′m(u)Jm(zi)
(10.3)

where zi = nik0a and u = k0a, k0 is the free space wavenumber, and m denotes an

azimuthal order of the whispering gallery mode. The elements C̃ represent the field

outside the resonator which couples the solution of the neighbouring resonator for

a given mode m and are

C̃ = −jH2m(w) (10.4)

where w = k0(2a + g). In (10.3) and (10.4), Jm and J ′m denote the Bessel function

of order m and its derivative respectively, Hm and H ′m denote the Hankel function
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of the second kind of order m and its derivative respectively. The eigenfrequencies

are obtained as solutions of (10.2) which for the PT infinite chain comprised of

four resonators results in four eigenfrequencies fi=1,2,3,4 associated with the specified

whispering-gallery mode m and at the desired Bloch phase βΛ.

Finite PT -Chain BIE Model - In the case of the finite chain consisting of N unit

cells, the coupling matrix given in (9.60) is modified to



D̃1 C̃ 0 0 0 0

C̃ D̃2 C̃ 0 0 0

0 C̃ D̃3 C̃ 0 0

0 0 C̃ D̃4 C̃ 0

0 0 0 C̃ D̃1
. . .

0 0 0 0
. . . . . .





ϕ̃1

ϕ̃2

ϕ̃3

ϕ̃4

ϕ̃1

...


= 0 (10.5)

The eigenfrequencies fi for i = 1, 2, · · · , 4N are obtained by numerically solving

(10.5) for the specified mode number m.

10.4 Results and Discussions

This section will start by describing the essential features and notation for the finite-

chain models under investigation and summarises one of the key features, found in

their solution: that when there is an appropriate modulation between resonators,

then among the global modes of the system there are distinctive termination states.

Unlike most global modes, which can be understood as simply discretely sampling

the band-structure of the infinite-chain case, these termination states are localised

near the ends of the finite chain and have resonant frequencies lying inside the

band-gaps of the infinite case.
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a

b

In nitely long Finite case : 6

Figure 10.2 Band structure diagram and termination states of finite PT -chain. (a)

Real and (b) imaginary part of the eigenfrequencies for the infinite chain (surface plot) and

finite PT -chain (discrete square bullets) as a function of Bloch phase βΛ and gain/loss pa-

rameter n′′ and for ∆n′ = 0.0005. The termination eigenfrequencies are depicted as the black

bullets.

The qualitative features of the termination states and how they are related to the

band structure of the infinite-chain limit will be first discussed. Figure 10.2 il-

lustrates how the band-structure of a chain of resonators evolves as the gain/loss

parameter n′′ is increased: the case shown corresponds to the coupling of whispering-

gallery modes for a sequence of refractive indices of the formats given in (10.1) with

real modulation ∆n′ = 0.0005.

Real and imaginary parts of the resonant frequency are shown respectively in parts

(a) and (b) of Fig. 10.2 as a function of n′′ and of the Bloch phase βΛ, which is
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a b

Figure 10.3 Degree of excitation of the termination state within the finite PT -chain.

Eigenvector ϕ̃ of the termination states with operated at gain/loss parameter n′′ = 0.0004.

(a) Eigenvector for the lasing threshold states (Im(f) < 0) and (b) for the dissipative threshold

states (Im(f) > 0). The PT -chain structure is illustrated on the top of each plot.

defined so that the solution repeats with a phase delay ejβΛ from one unit cell to

the next, and where Λ is the physical length of a unit cell as illustrated in Fig.

10.1. In Fig. 10.2, the band-structure of the limiting infinite-chain limit is shown

as a surface. This surface shows threshold behaviour: for each value of βΛ, as

the gain/loss parameter n′′ is increased, the real parts of the resonant frequencies

approach and coalesce at a critical value (which is dependant on βΛ), after which

the imaginary parts split and become significantly complex. This is commonly

referred to as the PT -symmetric threshold, beyond which the structure is in the

PT broken-symmetry phase [10.4,10.5]. For the case where the real part of the

refractive index is modulated, as it is here, we find that there is a distinct threshold

(at nonzero values of n′′) for all values of βΛ. It will be seen in the more detailed

discussion of the following sections that when the modulation is decreased, this

threshold also decreases, so that when there is no modulation at all, the eigenvalues

are thresholdless for some values of βΛ. It is important to note that there are

multiple band-gaps formed between the band surfaces when the gain/loss parameter

n′′ is below the threshold, as seen in Fig. 10.2.
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Most eigenvalues of the finite PT -chain case can be understood by sampling this

band surface at discrete values of the Bloch phase βΛ, as indicated by the bullets on

Fig. 10.2. In addition, however, there are eigenvalues that are completely separate

from the band structure of the infinite case. These correspond to the termination

states and are denoted using the black bullets in Fig. 10.2. While typical eigen-

vectors behave in a pseudo-Bloch way, changing gradually from one unit cell to the

next throughout the chain, the termination states are entirely different. Termina-

tion states are localized at one of the ends of the finite chain, as illustrated in Fig.

10.3. Figure 10.3 shows typical eigenvectors corresponding to termination states,

in which each component describes the degree of excitation of the corresponding

whispering gallery mode in an individual resonator. Note that these are related to

each other by application of a PT transformation. In this example, the termination

state localized on the left is lasing (Im(f) < 0) while the termination state localized

on the right is dissipating (Im(f) > 0). Noting that the resonators terminating

the chain on the left have gain whilst the resonators terminating the chain on the

right are lossy. In this context, the localised termination states have the following

meaning: modes at either end of the chain and have frequencies that are complex

conjugate and are distinct from the band structure of the infinite chain.

In subsequent subsections, the spectral behaviour of the finite PT -chain of res-

onators for two different cases of resonator medium refractive index modulation will

be discussed in more detail. In the first case, PT -symmetric behaviour is intro-

duced by periodically modulating only the imaginary part of the refractive index

whilst the real part stays constant (∆n′ = 0, n′′ 6= 0). This case is referred to as

simple PT -symmetry periodicity. In the second case, a more complex form of PT -

symmetric periodicity is also considered when the modulation of both the real part

and imaginary part of the refractive index is present (∆n′ 6= 0, n′′ 6= 0). This will be

referred to as the general case PT -symmetric periodicity. In particular, it is shown

that breaking PT -symmetry forces the termination modes, which are initially de-
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generate in the passive case, to form a complex conjugate pair. As the result, the

termination mode with broken-PT -symmetry is lasing at one end and dissipating at

the other. These localised termination states are robust because they are protected

by the breaking-PT -symmetry.

10.4.1 Simple Finite PT -Chain Case

The more detailed analysis is started by discussing the special case of a finite PT -

chain in the absence of a modulation in the real part of the refractive index, i.e.

∆n′ = 0 in (10.1). In this case, it was found that the spectra of the finite PT -chains

are obtained as a discrete sampling of the limiting infinite PT -chain within the

Brillouin zone. As such, the structure can be both in a PT -symmetric phase and a

symmetry-broken phase depending on the Bloch phase and the amount of gain/loss

in the system. It is also important to comment that in the absence of a real refractive

index modulation, the termination states that occur in the general PT -chain case

when both real and imaginary parts of the refractive index have modulation are not

observed.

Figure 10.4(a-d) compares the real and the imaginary parts of the eigenfrequencies

of the PT -resonator chain for both an infinitely long chain (solid line) and a finite

chain consisting of 6 unit cells (discrete points) as a function of the Bloch phase

βΛ. Real and imaginary parts of eigenfrequencies are shown in the top and bottom

panels respectively. Results are given for different values of gain/loss in the system

i.e. n′′ = 0, 0.0003, 0.0004472 and 0.0005 respectively. It is emphasized that in

the case of no gain/loss, the system does not strictly represent a PT -symmetric

structure as it is an array of identical passive dielectric resonators but is included

here for completeness. Figure 10.4(a) shows that in the case of the passive resonator

chain, the real part of the eigenfrequency forms two clusters of modes centred at the

operating frequency f0 and the band-structure is symmetrical with respect to the
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In nitely long Finite case : 6

No gain/loss n'' = 0 n'' = 0.0003 n'' = 0.00044705 n'' = 0.0005

a b c d

e f

In nitely long Finite case : 6

g

Figure 10.4 Band structure diagram of the simple PT -chain resonators. Subplots (a-

d) show the real part (top panel) and the imaginary part (bottom panel) of the eigenfrequencies

obtained for the case of ∆n′ = 0 for infinite PT -chain (solid line) and finite PT -chain (discrete

square bullets) for: (a) passive chain n′′ = 0; (b) n′′ = 0.0003; (c) n′′ = 0.00044705 and (d)

n′′ = 0.0005. Parts (e) and (f) show the surface plot of the real and imaginary part of the

eigenfrequencies as a function of Bloch phase βΛ and gain/loss parameter n′′. Part (g) shows

the minimum threshold of the simple finite PT -chain.
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βΛ = 0 axis. In the absence of gain/loss, where n′′ = 0, the imaginary part of the

eigenfrequency is very small due the coupling between the underlying high Q-factor

resonator modes (Fig. 10.4(a) bottom panel), i.e. radiation loss is very small. The

real part of the eigenfrequencies of the infinite passive resonator chain shows the

presence of degenerate modes at the centre, βΛ = 0, and the end of Brillouin zone,

βΛ = ±π.

In the case of the finite chain with N = 6 unit cells, (Fig. 10.4(a)) the eigen-

frequencies are discrete. They may be understood as sampling the continuous

band-structure at discrete values of βΛ = ±
(
i− 1

2

)
π
N

around βΛ = 0, where

i = 1, 2, · · · , N . It is worth noting that although these discrete eigenfrequencies

follow the general pattern of the eigenfrequencies of the infinite chain, they are not

identical. Furthermore, the eigenfrequencies of the finite chain only approach Bloch

phases at the points βΛ = 0 and ±π, as N is increased.

When the amount of gain/loss in the system is increased to n′′ = 0.0003 the band

structure is modified in such a manner that the degenerate mode at βΛ = 0 splits

and forms a bandgap around the frequency f0, as shown in Fig. 10.4(b). At the

same time at the end of Brillouin zone βΛ = ±π, the real values of the eigenfre-

quencies coalesce but the imaginary parts split and form a complex conjugate pair.

This shows that the threshold point is determined both by the amount of gain/loss

in the system and the Bloch phase. The PT -symmetric region corresponds to where

the eigenfrequencies are approximately real. The PT -broken-symmetric phase cor-

responds to where the eigenfrequencies become complex-conjugate pairs. This is in

agreement with the case of PT periodic waveguide lattices, except that in the case

of PT -periodic resonator chains the eigenfrequencies have a lossy offset, see Fig.

9.7. This is due to the fact that a resonant structure is inherently radiative.

A further increase of gain/loss causes more modes to be in the PT broken-symmetry

phase. The eigenfrequencies for a critical value of gain/loss n′′ = 0.0004472 are pre-
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sented in Fig. 10.4(c). In this specific case, the top panel shows that all the real

parts of the eigenfrequencies have coalesced whilst the imaginary parts are split ev-

erywhere except at βΛ = 0. It is important to note that increase of gain/loss beyond

n′′ > 0.0004472 causes all eigenfrequencies to occur in complex conjugate pairs and

hence the system is in a completely PT -broken symmetry phase, as depicted in Fig.

10.4(d) for n′′ = 0.0005.

As above, Figs. 10.4(e) and 10.4(f), show the band surface plots of the real and

imaginary part of eigenfrequencies as a function of both gain/loss parameter n′′ and

the Bloch phase βΛ. The eigenfrequencies of the infinite PT chain are plotted as a

surface plot while the eigenfrequencies of the finite PT chain are plotted as discrete

bullet points. From Fig. 10.4(e), it can be seen that for the infinite-chain case, the

degenerate mode at βΛ = 0 instantaneously splits to form a forbidden-gap around

fres whilst the high and low frequency eigenfrequency bands coalesce, starting from

the edge of Brillouin zone βΛ = ±π towards the centre of the Brillouin zone βΛ = 0

as the gain/loss is increased. Equally Fig. 10.4(f) shows that the imaginary part

starts splitting from βΛ = ±π towards βΛ = 0 as the gain loss increases, clearly

showing that even a small amount of gain/loss can cause PT symmetry breaking in

this case.

Moreover Fig. 10.4(e,f) show that the infinite PT chain is a thresholdless lasing

structure when operated at the end of Brillouin zone (βΛ = ±π). However, a

practical finite PT chain will require a small amount of gain/loss to cause PT -

symmetry breaking at βΛ = ±
(

2N−1
2N

)
π. This is referred to as minimum threshold

gain/loss in the finite chain as n′′th and plot it in Fig. 10.4(g) that the minimum

threshold n′′th decreases as the number of unit cells N increases. Figure 10.4(g)

further shows that the minimum threshold can be further reduced by increasing

the separation gap g. It is emphasised here that the minimum threshold n′′th of a

practical finite simple PT -chain behaves asymptotically as N increases, and as such

a finite simple PT -chain is not a thresholdless structure, in contrast to the finite
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one.

The main conclusion of this subsection can be summarised as follows: an infinite

chain of simple PT -resonators exhibits no threshold, due to the presence of continu-

ous band structure within the Brillouin zone −π 6 βΛ 6 π. In contrast, in the finite

case, the eigenfrequencies are discrete and as such the presence of the mode close

to the edge and centre of the Brilluoin zone can only be approached by increasing

the number of unit cells. As a result there exists a threshold in order to break the

PT -symmetry.

10.4.2 Finite PT -Chains with Real Modulation

This subsection focuses on the general finite PT -chain when modulation of both

real and imaginary part of the refractive index are present, i.e. (∆n′ 6= 0 and

n′′ 6= 0) in (10.1). We find that, by introducing real refractive index modulation,

field localization is achievable which leads to a formation of termination states.

Furthermore, a judicious distribution of gain/loss causes the termination states to

be in the PT broken-symmetry phase, which localizes the solution of the lasing and

dissipative termination states at either end of the finite PT -chain structure.

Consider a unit cell of the PT chain which is modulated in the manner of (10.1)

with ∆n′ = ±0.0005, so that it satisfies the PT condition, i.e. that the real part

of the refractive index profile is an even function, while the imaginary part of the

refractive index is an odd function in space. Figure 10.5 compares the corresponding

band-structure of the infinite (solid line) and finite PT -chains with N = 6 unit

cells (discrete bullet points) for different values of the gain/loss parameter n′′. It

is emphasized here that the sign of the real index modulation will not affect the

eigenfrequencies of the infinite chain as it results in identical set of coupled equation

(10.2). However, for the finite PT chain case, the sign of modulation will affect the
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In nitely long Finite N = 6 and n' = -0.0005 Finite N = 6 and n' = 0.0005

a
No gain/loss n'' = 0 n'' = 0.000333 n'' = 0.0004 n'' = 0.00044705 n'' = 0.0005

b c d e

Figure 10.5 Band structure diagram of finite PT -chain with modulation at different

gain/loss parameter. The real part (top panel) and the imaginary part (bottom panel) of

the eigenfrequencies for the infinite (solid line) and finite (discrete points) PT -chain as a

function of Bloch phase βΛ for different values of gain/loss n′′: (a) passive chain n′′ = 0; (b)

n′′ = 0.000333; (c) n′′ = 0.0004, (d) n′′ = 0.00044705 and (e) n′′ = 0.0005. Real refractive

index modulation ∆n′ = −0.0005 and 0.0005 are represented by diamond and square points

respectively. The blue and red arrows points to the termination states of the negative and

positive modulation respectively.

position of the eigenfrequencies which are denoted as diamonds for ∆n′ = −0.0005

and squares for ∆n′ = +0.0005.

Figure 10.5(a) shows the eigenfrequencies of the infinite and finite long passive res-

onator chain, i.e. n′′ = 0. The band dispersion structure shows three band-gaps in

the real eigenfrequenices whilst the imaginary parts of the eigenfrequencies are al-

most zero for all values of the Bloch phase. Comparing this result with Fig. 10.4(a),

it can be seen that the introduction of the real index modulation has caused the

splitting of degenerate eigenfrequencies at βΛ = 0 and ±π thus creating three for-

bidden band-gaps whereas there is only one in Fig. 10.4(a). In the case where

the finite resonator chain is passive, the discrete eigenfrequencies mainly follow the

path of the eigenfrequencies of the infinite resonator chain, with the exception of

the degenerate modes at βΛ = ±5.5π/6, which are referred to here as the termina-

tion states (Fig. 10.5(a)). In the case of positive real refractive index modulation
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(∆n′ = 0.0005) and for the real values of the eigenfrequencies, the termination

states occur at the low frequency band cluster and are highlighted by blue arrows,

whilst for the case of negative real refractive index modulation (∆n′ = −0.0005)

the termination states occur at the high frequency band-cluster and are highlighted

by red arrows. Furthermore, for the finite passive resonator chain, the imaginary

parts of the eigenfrequencies are almost zero for both cases of positive and negative

real part modulation and are shown by overlapping discrete points in the bottom

panel of Fig. 10.5(a). The imaginary part of the termination states is the same for

both positive and the negative modulation of the real part of the refractive index as

indicated by the red and blue arrows. It is emphasised that the presence of these

degenerate modes at βΛ = ±5.5π/6 is a consequences of having a finite chain of

resonator with real modulation.

The eigenvectors associated with the termination states of the finite passive chain of

resonators are depicted in Fig. 10.6. As a passive chain, the termination states are a

degenerate mode pair which led to the formation of even and odd spatial termination

states. Note that the eigenvectors here are associated with the amplitude of the

whispering-gallery mode distributed within the chain. The eigenvectors show that

the termination states are highly localized; the field near the termination is the

strongest in amplitude and the field amplitude decreases towards the middle of the

chain. Figure 10.6(a) and 10.6(b) depict the eigenvectors for negative and positive

real index modulation, respectively, and demonstrates the difference between the

two modulations which cause the resonator to be excited with different phase but

with equal strength. In practice, it is important to note that because the termination

states of a passive chain are degenerate, both the even and odd termination states

are simultaneously excited.

The band diagram for infinite and finite PT -chain resonators with the gain/loss

value n′′ = 0.000333 is depicted in Fig. 10.5(b). The real part of the eigenfrequency

is given by the top panel and demonstrates that the forbidden band-gaps at the
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Figure 10.6 Distribution of eigenvectors of termination states for the finite passive

resonator chain. The top (a) and bottom (b) panel are for positive real index modulation

respectively. The real refractive index modulation considered ∆n′ = ±0.0005. The eigenvector

of index (1) associated with the even mode and index (2) associated for the odd termination

states (TS).

high and low frequency clusters are reduced as the real part of eigenfrequencies co-

alesce at βΛ = π. Most of the eigenfrequencies of the finite PT chain mimic the

behaviour of the eigenfrequencies of the infinite PT chain, with the exception of

the eigenfrequencies of the termination states. The real parts of the eigenfrequen-

cies of termination modes coalesce whilst the imaginary parts split into complex

conjugate pairs as shown in the figure. It is important to note that although the

values of real parts of the eigenfrequency of the termination states are approximately

equal, they are not degenerate because the imaginary parts of the eigenfrequency

are different.
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Figure 10.7 Degree of excitation of the termination state within the finite PT -chain.

Eigenvector ϕ̃ of the termination states with operated at gain/loss parameter n′′ = 0.0004.

(a) Eigenvector for the lasing threshold states (Im(f) < 0) and (b) for the dissipative threshold

states (Im(f) > 0). The PT -chain structure is illustrated on the top of each plot. Negative

sign real modulation ∆n′ = −0.0005.

With a further increase of gain/loss n′′, in the case of both infinite and finite PT

resonator chains, more states coalesce in both the high and low frequency band-

clusters from βΛ = ±π towards βΛ = 0. Correspondingly, the imaginary part splits

to form pairs of complex conjugates eigenfrequencies, as shown in Fig. 10.5(c,d).

Operation with gain/loss n′′ > 0.00044705 leads to an operation with completely

complex conjugated eigenfrequencies, indicating that the system is completely in the

PT broken-symmetry phase, as shown in Fig. 10.5(e). Finally, it can be observed

from Fig. 10.5(b-e) that the imaginary parts of the termination states continue to

increase in value as gain/loss increases in the system.

The eigenvectors of the termination states of the finite PT -chain are depicted in Fig.

10.3 for the positive sign of real index modulation and Fig. 10.7 for the negative

sign real index modulation with gain/loss value n′′ = 0.0004. Comparing the eigen-

vectors of the termination states for the different signs of real index modulation, it

is observed that the amplitudes of the eigenvectors are the same but have different

phase. It confirms that for both cases the lasing termination states are localized
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at the left end of the chain whilst the dissipative termination states are localized

at the right end. It is important to note that the localisation of the eigenvectors is

achieved by breaking the PT -symmetry of the termination state. As a result the

termination states have to be related by the PT -transformation which causes one

of the termination states to lase at one end and the other to be dissipative at the

other end.

In practice, these termination states manifest themselves as localized lasing or dis-

sipating modes at either termination end of the PT chain. The imaginary part

of the eigenvectors starts to increase as the gain/loss parameter n′′ increases. It

is worth commenting that these termination states are similar to the topological

states induced in the PT two-dimensional honeycomb photonic crystal lattices sys-

tem [10.6] which are immune to the presence of a defect. Both termination and

topological states exist on the edges of the periodic medium, but while topological

states propagate around the edge of the structure, the termination modes in the

present configuration are stationary and have either lasing or dissipating behaviour

at different ends of the chain.

Figure 10.8 shows surface plots of the real and imaginary parts of the eigenfrequen-

cies of the PT chain, with a real refractive index modulation of ∆n′ = −0.0005, as

a function of both gain/loss parameter n′′ and the Bloch phase βΛ. These results

differ from the case illustrated in Fig. 10.2(a,b) by having a negative rather than a

positive value of ∆n′. Again, the eigenfrequencies of the infinite PT chains are plot-

ted as a surface plot while the eigenfrequencies of the finite PT chain are plotted as

discrete points. It is noticeable that the infinite PT -chain with a general modulation

has a significantly different band-structure compared to the band-structure for the

case of simple PT modulation shown in Fig. 10.4(e,f). Prominent forbidden band-

gaps appear in the PT -chain with real index modulation; these band-gaps cause

symmetry-breaking to occur at much higher values of gain/loss n′′. However, the

main difference is the presence of the termination states which are marked by black
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In nitely long Finite case : 6

a

b

Figure 10.8 Band structure diagram and termination states of finite PT -chain with

negative value real modulation. (a) Real and (b) imaginary part of the eigenfrequencies for

the infinite (surface plot) and finite PT -chain (discrete square bullets) as a function of Bloch

phase βΛ and gain/loss parameter n′′ and for ∆n′ = −0.0005. The termination states are

depicted as the black bullets.

bullets in all plots. It can be seen that for the case of negative modulation the ter-

mination states occur at the high frequency band-cluster, as shown in Fig. 10.8(a),

while for the positive modulation the termination eigenfrequencies are located at the

low frequency band-cluster as shown in Fig. 10.2(a). It can also be observed that

for the Bloch phase βΛ = ±5.5π/6, the termination states undergo spontaneous PT

symmetry-breaking. This is almost thresholdless as the imaginary part splits into

pairs of complex conjugate eigenfrequencies immediately once gain/loss is present,

see Fig. 10.2(b) and 10.8(b). This almost zero gain/loss threshold indicates that a
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Figure 10.9 Threshold point of the termination states of the finite PT chain. The

impact of the number of unit cell N and separation gap g to the critical gain/loss parameter

n′′th. For the general PT -chain case with real modulation ∆n′ = 0.0005

finite PT -chain can support lasing modes with very low amounts of added gain/loss

in the system. The lasing mode is highly localized at one end of the chain. In or-

der to reach the next gain/loss threshold much higher gain/loss is needed at which

point the system reaches the PT symmetry-broken phase when more modes start

to lase.

Closer investigation of the threshold points of the finite PT -chains in Fig. 10.4

and Fig. 10.5 suggests that the minimum threshold for a finite PT -chain with real

modulation occurs at lower values of gain/loss than for the case of the PT -chain

with simple modulation. The minimum modulation termination states undergo a

PT symmetry-breaking at lower values of gain/loss than for the case of the PT -

chain with simple modulation. The minimum threshold for the finite chain with

simple modulation is given in Fig. 10.4(g). For comparison, the minimum thresholds

n′′th needed to break the PT -symmetry of the termination states of the PT -chain

with real modulation is plotted in Fig. 10.9 as the function of number of unit

cells and the separation gap g. By comparing Figs. 10.4(g) and 10.9, it can be

observed that the gain/loss needed to cause PT symmetry-breaking is lower in

the case of PT -chain with real modulation. Furthermore, it can also be seen that

the rate at which minimum threshold decreases is faster for the PT -chain with
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real modulation. The minimum threshold can be further reduced by increasing

the separation gap g between the resonators, which decreases the coupling strength

between the resonators. It is emphasised here, that in contrast to the simple finite

PT -chain case, if N is “large enough”, the threshold does not strongly depend on

the number of periods. “Large enough” is only N = 2 for g = 0.35 µm and is N = 3

for g = 0.3 µm, confirming that there is no strong dependence of the threshold above

this number of periods.

10.5 Summary

In this chapter the spectral properties of finite PT -symmetric chains of dielectric

resonators have been analysed. The PT -symmetry was introduced either as a sim-

ple modulation of resonators refractive index along the chain i.e., as a chain of

alternating gain and loss resonators or, by additionally introducing a modulation

of the real part of the resonator refractive index so that PT symmetry condition

is satisfied. In order to consider the more general PT symmetry condition a unit

cell of four dielectric resonators is considered. The results show that in the case of

simple PT modulation, the infinite PT resonator chain has a zero PT threshold

whilst the finite PT resonator chain needs a certain critical gain/loss to achieve

PT -symmetry breaking. Furthermore the band-structure of the finite PT -chain is

a discretely sampled limit of the infinite PT -chain case.

In the case of general PT symmetry the band-structure shows clear band-gaps for

both infinite and finite PT -chains. Furthermore the finite PT -chain shows the

existence of termination states, which have their highest field intensity localized

near the termination ends of the resonator chain. Although general PT symmetry-

breaking occurs at much higher values of gain/loss compared to PT -chains with

simple modulation, the presence of the termination states in the practical finite-
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chain causes an almost thresholdless PT symmetry-breaking. This PT -breaking

is now localized to the edge resonators, with one end of the chain lasing and the

other dissipating. Significantly higher gain/loss is needed to achieve complete PT -

symmetry breaking in the case of PT resonator chains with general PT symmetry,

indicating that the region in between localized PT -symmetry can be utilized for

lasing applications.

In both cases the amount of the threshold gain can be further reduced by reducing

the coupling in the system, for example by increasing the resonator separation or

by increasing the number of unit cells in the finite PT chains.
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11
Summary and Conclusion

11.1 Summary of the Work Presented in

this Thesis

Loss has, without a doubt, been one of the key issues in optical telecommunication

and quantum technologies [11.1,11.2]. On the other hand, the applications of gain

materials have been primarily in laser technologies. As a result, it has been a

scientific quest to find a way to compensate loss by using a gain material, but in

a controllable manner, and to investigate a range of potential applications that

emerge as a result. The work presented in this thesis studied a relatively new

Parity-Time (PT ) symmetry photonics concept, as a direct translation from PT -

symmetric systems in Quantum Mechanics, which offers the avenue to compensate

loss by having a judicious design of gain and loss media within a stable system.

Numerous theoretical designs and configurations of PT -symmetric photonic systems

have been recently proposed and are found to exhibit unique properties which have

never been observed before. An asymmetric response, depending on the direction of

the wave incidence, broadband unidirectional invisibility, simultaneous laser-absorber

operation and lasing in a loss-dominated system are some of the unique properties

that can be exploited from a PT -symmetric photonic structure.
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It is noted, however, that oversimplification in the early theoretical studies of PT -

symmetric phontonics structures has raised questions regarding the practical aspects

of the realisation of PT -symmetric photonic technology. As a result the aims of this

work were: (1) to model PT -symmetric structures in a realistic scenario, including

gain/loss material dispersion, saturation and material non-linearity; (2) to analyse

the fundamental limitations of PT -symmetric optical devices under these realistic

scenario; (3) to explore a range of different applications that can be exploited by

using the PT -symmetric concept in photonics.

The concept of PT -symmetry in Quantum Mechanics was first introduced in Chap-

ter 3, which was then extended to photonics by showing the isomorphism of the

Hamiltonian in Quantum Mechanics and in photonics scattering systems. From this

isomorphism, it was shown that a PT -symmetric photonic system can be achieved

by having a judicious design of the complex refractive index profile in space. It

was further shown that, for a PT -symmetric scattering system, the more general

conservation relationship, which accommodates the asymmetric left-right response,

should be used instead of the conventional conservation relation. Different opera-

tional regimes of PT -symmetric structures, such as PT -symmetric phase, broken

PT -symmetry phase, and PT -breaking point were also defined in this chapter.

In Chapter 4 the concept of PT -symmetry breaking was analysed in detail by study-

ing the spectral properties of an idealised PT -symmetric Bragg grating (PTBG)

structure. The idealised PT -symmetric Bragg grating structure referred to here

was a PTBG structure with a constant complex refractive index, i.e. non-dispersive,

which has also been widely studied in the published literature. It was shown that

in the idealised case the PT -symmetric condition is satisfied at all frequencies, and

as such the unique PT -behaviour can be observed regardless of the operational fre-

quency; this led to the claim by several authors that unidirectional invisibility in a

PT -symmetric Bragg grating is a broadband phenomenon.
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To model a more realistic PTBG, including materials with dispersive gain/loss ma-

terial, a simple yet realistic gain (or loss) material model was presented in Chapter

5. The simple realistic gain/loss material model described was based on the three-

energy level model which is typically used to illustrate an erbium-doped gain mate-

rial. The dispersive gain/loss model was further implemented into the Transmission-

Line Modelling (TLM) method. The TLM is the time-domain numerical method of

choice used in this thesis and was overviewed in Chapter 5.

By using both the analytical Transfer matrix (T-matrix) method and the time-

domain numerical TLM method, the impact of realistic dispersive gain/loss material

on the performance of a PT -symmetric Bragg grating structure was studied in

Chapter 6. The key finding of the study was that the PT -symmetric condition can

only be satisfied at a single frequency; this frequency is associated with the atomic

transitional frequency which is an inherent property of the gain/loss material. As a

result, it was shown that the unique behaviours of a PTBG, such as unidirectional

invisibility and coherent perfect absorber and lasing (CPAL) operations, can only be

achieved at this single frequency; this limits the practical application of a PTBG to

operation only at a single frequency. This is considered to be one of the main findings

of this thesis. Nevertheless, it was demonstrated that practical application such as

all-optical switching can be still achieved, exploiting the unidirectional invisibility

operation at this particular frequency, by temporally turning “on” and “off” the

gain in the structure.

Chapter 7 investigated the properties of a PT -Bragg grating structure with ma-

terial non-linearity. For this purpose the Duffing model for non-linear material

was implemented in the time-domain TLM method. Two different non-linear PT -

Bragg grating structures were studied, namely the non-linear PT -Bragg grating

(NPTBG) and the Kerr-induced PT -Bragg grating (K-NPTBG). For both cases, it

was demonstrated that gain/loss saturation intensity plays a crucial role in securing

stable operation of non-linear PT -based devices. It was noted, however, that in
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order to allow the interplay of PT -symmetric behaviour and the Kerr non-linear

behaviour at high input intensity, a material with a high saturation intensity is re-

quired. Nevertheless, two applications were demonstrated in this chapter, namely a

memory and all-optical logic gate device.

Following the detailed studies of PT -symmetric Bragg gratings in a one-dimensional

spatial domain, the focus moved to two-dimensional (2D) problems to investigate the

spectral properties of PT coupled microresonators. Chapter 8 extended the realistic

dispersive gain/loss model to the 2D TLM method.

A coupled microresonator structure, where one resonator has gain whilst the other

has loss, was the focus of the study of 2D PT -symmetric structures in Chapter 9. In

this chapter, a semi-analytical method was developed based on the Boundary Inte-

gral Equation (BIE) method to study the intercoupling problem of PT -symmetric

coupled microresonators. The BIE method was used to model the coupled PT -

symmetric microresonator with a realistic dispersive gain/loss model. The results

obtained with the BIE method were compared with the results obtained from the

TLM method; it was found that although the results from the TLM suffered from

a red-shifting error due to numerical dispersion, this can be minimised by using a

finer mesh. The TLM method was capable of resolving the PT -symmetric behaviour

such as PT -symmetry breaking.

Furthermore, Chapter 9 analysed the impact of dispersion of gain/loss material on

the spectral properties of PT -coupled microresonators. It was found that the PT -

symmetric behaviour can only be observed at a single frequency; this observation

was in agreement with the conclusion in Chapter 6 for the case of a PT -symmetric

Bragg grating structure. Furthermore, a lasing application has been demonstrated

exploiting the early PT -symmetry breaking by increasing the loss of the lossy res-

onator.

The final chapter investigated the PT - symmetric chain of coupled microresonators.
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The chapter studied the band-structure of an infinite and finite PT -chain structure

with two different kinds of PT -symmetric refractive index modulations, i.e. a sim-

ple PT -chain and a PT -chain with real index modulation. The simple PT -chain

considered a chain of microresonators with gain and loss. The PT -chain with real

index modulation considered a chain of microresonators with an even function mod-

ulation of the real part of refractive index and an odd function modulation of the

imaginary part of the refractive index. It was shown that in the case of a simple

PT -chain, an infinite PT -resonator chain has a zero PT -threshold whilst the finite

PT -chain needs a certain critical gain/loss to break the PT -symmetry. In the case

of a PT -chain with real index modulation, the band-structure shows clear band-gaps

for both infinite and finite case chains. The existence of localised termination modes

was noted; i.e a modes exists at either end of the chain which have frequencies that

are complex conjugates of each other and which are distinct from the band structure

of the infinite PT -chain. As such the localised termination modes are characterised

by lasing at one end and dissipation at the other end.

11.2 Areas for Future Work

PT -symmetry in photonics is a relatively young research theme but has already

gained popularity in the community with more than one new publication published

daily from 2014. Nevertheless, I personally believe that there is still plenty of room

for exploration in PT -symmetric photonics which may lead to more exciting physics

discoveries. This section presents my attempts to outline some research themes

which can be associated with PT -symmetric photonics.

Complex PT -symmetric photonic structure - There is an infinite amount of

possible PT -symmetric photonic structure configurations. Studies of simple PT -

symmetric structures, such as waveguides, gratings, coupled resonators and many
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others, have been extensively reported. The TLM model, which is developed in

this thesis, can be directly extended to model a more complex PT -symmetry struc-

ture, for example by combination with non-linear, magnetic, plasmonic, thermal-

dependent, time-dependent material properties. In particular introducing the PT -

symmetric concept within a plasmonic structure may offer a solution for the funda-

mental limitation in the application of plasmonic technology of high ohmic losses in

metal [11.1]. Moreover, the studies of microresonator structures presented in Chap-

ter 9 and Chapter 10 can easily be extended to study Fano resonance in coupled

resonator systems. It is noted that, the BIE method developed in Chapter 9 can

easily be extended for study of disordered resonator chain structures in order to

study localised modes in a disordered system. It is also important to note that a

PT -symmetric structure is in fact a member of a larger class of non-Hermitian sys-

tems [11.3,11.4]. One can construct a different non-Hermitian class problem from

a PT -symmetric problem by deviating from the strict definition of PT -symmetry

condition which requires balanced gain/loss. For example, the coupled microres-

onator structure with dispersive gain/loss studied in Chapter 9, strictly speaking,

is not a PT -symmetric structure due to the fact that the structure has imbalanced

gain-loss.

Topologically protected modes in a PT -symmetry structure - The recent

discovery of topologically protected modes in photonics [11.5] has led to the realisa-

tion of one way travelling modes in photonic crystals and topological insulators (or

super conductors) [11.6–11.8]. In a topological photonic structure only a forward

propagating mode is allowed while the time-reversed backward travelling wave is

forbidden; realisation of this phenomena requires a spontaneous time-reversal sym-

metry breaking. A one-way travelling mode is crucial in the development of an op-

tical insulator, which is important in optical telecommunication devices to suppress

spurious interferences, interactions between different devices and undesired light

routing [11.9]. Typical optical-insulators employ opto-magnetic active elements in
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order to break the time-reversal symmetry, such as a Faraday rotator, but opto-

magnetic effects become negligible at high frequency and an optical insulator based

on the Faraday effect is highly sensitive to temperature changes [11.10]. On the

other hand, a PT -symmetric structure allows spontaneous PT -symmetry breaking

by means of increasing gain/loss or reducing coupling mechanically (for example

decreasing the coupling strength between gain and loss elements by increasing the

gap size) [11.11]; as such PT -symmetric photonics may offer a pathway for the

realisation of high-frequency optical insulators.

11.3 Overall Conclusion

In this thesis, PT -symmetric structures have been studied within a realistic material

scenario, i.e. including dispersion, saturation and Kerr non-linear behaviour. It was

established that gain/loss dispersion is an important material property which should

not be ignored; as such it was shown that gain/loss dispersion limits the operation

of PT -symmetric structures to a single frequency. Moreover, it was shown that for

a practical application of a PT -symmetric structure with strong signal excitation a

high gain/loss saturation intensity is essential if an interplay between PT -behaviour

and the Kerr non-linear behaviour is to be allowed and exploited. It was also shown

that if the saturation effect is neglected, the unbounded gain in the material may

cause instability.

Different practical applications of PT -symmetric structures are identified, such as

all-optical switching, memory, logical-gate, laser and localised modes. It was demon-

strated that PT -symmetric devices offer more degrees of freedom in their operation;

for example by modulating the gain/loss, the intensity of the input signal compared

to a passive structure which can be manipulated solely by using the input signal

intensity.
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Furthermore, the thesis studied the spectral properties of the PT -coupled microres-

onators. A BIE method was developed which accurately modelled the coupling

between resonators. The impact of dispersion and unbalancing gain and loss were

investigated. The dispersion of a realistic gain/loss material causes PT -symmetry

to be satisfied at a single frequency. Furthermore, it was observed that by increasing

loss in the lossy resonator causes the PT -symmetry to break earlier than in the case

of balanced gain/loss.

The work described in the thesis also demonstrated a topologically protected mode

in a PT -chain structure with a real index modulation. This causes localised ter-

mination modes, which means that modes exist only at either end of the structure

with one mode lasing at one end and the other dissipating at the other end.
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A
Kramers-Kronig Relations

An introductory concept of time-causality is given in Section 2.3, in this supplemen-

tary material, the Kramers-Kronig relations (2.45) are derived in detail.

First consider the fact that a causal material properties has zero response before

being excited with an external field, as such the material properties in time-domain

can be expressed as

χe(t) = χe(t)H(t) (A.1)

where, H(t) is a Heaviside function and is defined as

H(t) =


0, for t < 0

1, for t > 0

(A.2)

Performing a convolution operation on (A.1) yield,

F{χe(t)} = F{χe(t)H(t)} = F{χe(t)} ∗ F{H(t)} (A.3)
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The Fourier transform of a Heaviside function F{H(t)} is given by [A.1],

F{H(t)} =

ˆ ∞
−∞

H(t)e−jωtdt =
1

2
δ(ω) + p.v.

j

2πω

and the Fourier transform of the material parameter F{χe(t)} is,

F{χe(t)} =

ˆ ∞
−∞

χe(t)e
−jωtdt.

Noting that the property of the convolution operator:

p ∗ q =

ˆ ∞
−∞

p(Ω)q(ω − Ω)dΩ

Upon applying the convolution property on (A.3), it can be shown

F{χe(t)} = F{χe(t)} ∗ F{H(t)}

=

ˆ ∞
−∞

{ˆ ∞
−∞

χe(t)e
−jΩtdt

}{
1

2
δ(ω − Ω) + p.v.

j

2π(ω − Ω)

}
dΩ

=
1

2

ˆ ∞
−∞

ˆ ∞
−∞

χe(t)δ(ω − Ω)e−jΩtdtdΩ +

ˆ ∞
−∞

ˆ ∞
−∞

χe(t)p.v.
j

2π(ω − Ω)
e−jΩtdtdΩ

=
1

2

ˆ ∞
−∞

χe(t)e
−jωtdt︸ ︷︷ ︸+

j

2π

ˆ ∞
−∞

p.v.
1

(ω − Ω)

ˆ ∞
−∞

χe(t)e
−jΩtdt︸ ︷︷ ︸ dΩ

χe(ω) =
1

2
χe(ω) +

j

2π
p.v.

ˆ ∞
−∞

χe(Ω)

(ω − Ω)
dΩ

As such that it can be found that,

χe(ω) =
j

π
p.v.

ˆ ∞
−∞

χe(Ω)

(ω − Ω)
dΩ

Considering the complex material constant in frequency domain that is defined as,
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χe(ω) = χ′e(ω) + jχ′′e(ω), it follows that

χe(ω) =
j

π
p.v.

ˆ ∞
−∞

χe(Ω)

(ω − Ω)
dΩ

χ′e(ω) + jχ′′e(ω) =
j

π
p.v.

ˆ ∞
−∞

χ′e(Ω) + jχ′′e(Ω)

(ω − Ω)
dΩ

=
j

π
p.v.

ˆ ∞
−∞

χ′e(Ω)

(ω − Ω)
dΩ +

j

π
p.v.

ˆ ∞
−∞

jχ′′e(Ω)

(ω − Ω)
dΩ

We have the Kramers-Kronig relations as,

χ′e(ω) = − 1

π
p.v.

ˆ ∞
−∞

χ′′e(Ω)

ω − Ω
dΩ

χ′′e(ω) =
1

π
p.v.

ˆ ∞
−∞

χ′e(Ω)

ω − Ω
dΩ

or

χ′e(ω) =
1

π
p.v.

ˆ ∞
−∞

χ′′e(Ω)

Ω− ω
dΩ

χ′′e(ω) = − 1

π
p.v.

ˆ ∞
−∞

χ′e(Ω)

Ω− ω
dΩ

These Kramers-Kronig relations has the significant to relate the real and imaginary

part of the material parameter χe. As such the Kramers-Kronig relations state that

a realistic material with non-zero imaginary part has to be dispersive. Moreover,

it is important to note that during the derivation of the Kramers-Kronig relation a

Fourier transform is performed; this implies that the inverse of the Fourier transform

should exist which requires that the material parameter in the frequency domain

has to be analytical in the lower half-plane of the complex plane.

245



B
The Transfer Matrix Method

This section presents the frequency-domain Transfer matrix (T-matrix) method used

in the modelling 1-dimensional multi-layers problem. The method is well-suited to

describe the relation between input-output ports in a multiple layered dielectric

problem associated with Fig. B.1. The transfer matrix M for the given structure is

defined as,

ψleft

ϕleft

 = M

ψright

ϕright

 (B.1)

where, ψ(left,right) denotes the amplitude of the forward propagating, whilst ϕ(left,right)

is the backward propagating electric field amplitudes at the left and right side of the

structure as illustrated in Fig. B.1. By associating the transfer matrix M with the

effective transmission and reflection coefficient of the structure, the following result

ψleft

ϕleft

ψright

ϕright

Figure B.1 Schematic illustration of a multi layers structures.

246



Appendix B. The Transfer Matrix Method

for M holds,

M =

 1
tL

− rR
tL

rL
tL

tR − rLrR
tL

 (B.2)

where the entries of matrix M are defined as,

tL : effective transmission coefficient for left incident

tR : effective transmission coefficient for right incident

rL : effective reflection coefficient for left incident

rR : effective reflection coefficient for right incident

(B.3)

Is important to note that if the structure studied is reciprocal‡, the transmittance

is equal for both sides, i.e. tR = tL ≡ t. This has a direct consequence that,

det(M) = 1 (B.4)

Note that the quantities given in (B.3), are in general complex numbers. The real

quantities which relate the transmitted and reflected powers are,

TL or R ≡ |t|2L or R

RL or R ≡ |r|2L or R

Here, the T and R is commonly referred as the transmittance and reflectance coef-

ficient, respectively.

In detail, the procedure to calculate the transfer matrix M are described as follows.

Consider a multi-layer dielectric structure schematically illustrated in Fig. B.1,

which is comprised of N dielectric layers with piece-wise refractive index profile. To

accommodate, discontinuities at the interface between two layers and the change of

‡See Lorentz reciprocity theorem in Section 2.2.2
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a b

ni nj

ψi

ϕi

ψj

ϕj

rij rji ni

∆x

ψ(x)

ϕ(x)

ψ(x+ ∆x)

ϕ(x+ ∆x)

Figure B.2 Transfer matrix method illustration.

propagation constant γ within layers, the transfer matrix M is comprised of all the

junction J and phase matrices P.

The junction matrix J describes the change of amplitude and phase due to the

boundary condition at the interface. For illustration, Fig. B.2(a) depicts an interface

between two layers of uniform refractive index ni and nj, with the ingoing wave ψi

and ϕj from left and right of the interface respectively; and the scattered electric

field amplitude ϕi and ψj. By imposing the boundary condition at the interface, the

junction matrix is formulated as,

ψi
ϕi

 = Jij

ψj
ϕj

 , where Jij =

 1
tij

− rji
tij

rij
tij

tji − rijrji
tij

 (B.5)

Here, tij and rij are the transmission and the reflection coefficient between the

interface for normal incident and are given as,

tij =
2ni

ni + nj
and rij =

ni − nj
ni + nj

(B.6)

Substituting (B.6) to (B.5), the junction matrix has an alternative form as,

Jij =

ni+nj2ni

ni−nj
2ni

ni−nj
2ni

ni+nj
2ni

 (B.7)

Moreover, propagation within the layer also contributes to the phase change of the

electric field. To illustrate this, Fig. B.2(b) displays the propagation of electric field
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in the medium with refractive index ni and hence the phase change for displacement

by ∆x in matrix form can be shown as,

ψ(x)

ϕ(x)

 = Pi

ψ(x+ ∆x)

ϕ(x+ ∆x)

 , where Pi =

ejk0ni∆x 0

0 e−jk0ni∆x

 (B.8)

Consequently, the transfer matrix of the multiple thin layer of dielectrics with piece

wise refractive index distribution can be formulated as the products of all the junc-

tions and phase matrices,

ψleft

ϕleft

 = M

ψright

ϕright

 , with M = Jb1

(
N−1∏
i=1

PiJi(i+1)

)
PNJNb (B.9)

where, Jb1 and JNb denote the junction matrices at the left and right sides of the

structure respectively.

Furthermore, by comparing (B.9) and (2.30), the scattering matrix S can be ex-

pressed as,

 ϕleft

ψright

 = S

 ψleft

ϕright

 , where S =

M21

M11
M22 − M12M21

M11

1
M11

−M12

M11

 (B.10)
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C
Free-Space 2D Green’s Function in

Cylindrical Coordinates

Green’s function is the solution of the Helmholtz equation for a unit point source.

For detail the reader referred to [A.2, see §7.2], while a summary is provided in this

supplementary appendix. We assume that a point source is located at x′ and the

response is being observed at point x [A.2, see (7.2.5)], the inhomogeneous Helmholtz

equation is given by,

∇2G(x,x′) + k2G(x,x′) = −δ(x,x′) (C.1)

We will consider the solution of (C.1) in a cylindrical coordinate (r, θ, z) system,

for a two-dimensional problem which is invariant in z-direction. Assuming that the

source is located at the origin, such that the vector x − x′ can be simplified as

r = |x− x′| as such,

∇2G(r) + k2G(r) = −δ(r) (C.2)
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where δ is the kronecker delta function in two-dimension. Equation (C.2) can also

expressed as,

1

r

d

dr

(
r
G(r)

dr

)
+ k2G(r) = −δ(r) (C.3)

since,

δ(r) =


1, r = 0

0, else

(C.4)

Equation (C.3) can expressed as,

1

r

d

dr

(
r
G(r)

dr

)
+ k2G(r) = 0. (C.5)

Equation (C.5) is known as the Bessel differential equation [A.1,A.3,A.4], and has a

solution of Bessel functions J0(kr) and Y0(kr) and its combination as Hankel func-

tions the first kind H
(1)
0 (kr) = J0(kr) + jY0(kr) and the second kind H

(2)
0 (kr) =

J0(kr)− jY0(kr). Since the Bessel function J and Y are real functions for real argu-

ments, they each represent a standing-wave, in-comparison to the complex Hankel

functions which represent a travelling-waves. Furthermore, considering that the

wave is travelling outwards from the source, the appropriate solution is the Hankel

function of the second kind as it contains the factor e−jkr. The Hankel function of the

first kind contains the factor ejkr and hence represents an incoming wave, [A.4, see

(9.2.3)&(9.2.4)]. It follows that the appropiate solution for (C.5) is,

G(r) = CH
(2)
0 (kr), (C.6)

where C is a constant. The constant C can be obtained by substituting (C.6) to

(C.3) and integrate within a small circle S around the source δ. Assuming that the

radius a of the small circle is infinitesimally small, the approximation of the Hankel
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function for small argument can be applied [A.4, see (9.1.7)&(9.1.8)],

H
(2)
0 (kr) ≈ 1− j 2

π
ln(kr), for r → 0 (C.7)

By integrating (C.3) around the small area S, [A.4, see discussion on §7.2] , it can

be shown that,

C

¨
S

(
∇ · ∇+ k2

)(
1− j 2

π
ln(kr)

)
dS =

¨
S

(−δ)dr ≡ −1 (C.8)

By Gauss divergence theorem it can be shown

C

¨
S

(
∇ · ∇+ k2

)(
1− j 2

π
ln(kr)

)
dS = C

˛
∂S

∇
(

1− j 2

π
ln(kr)

)
d`

+ Ck2

¨
S

(
1− j 2

π
ln(kr)

)
dS

(C.9)

where
¸
∂S
· · · d` is the contour integral around the boundary of the small area ∂S.

The contour integral is calculated as,

˛
∂S

∇
(

1− j 2

π
ln(kr)

)
d` = −j 2

π

2πˆ

0

1

r
rdθ = −4j. (C.10)

The surface integration yields,

k2 lim
a→0

aˆ

0

(
1− j 2

π
ln(kr)

)
2πrdr = 4jk2 lim

a→0

r2

4
(2 ln(kr)− 1)

∣∣∣∣a
0

= 0, (C.11)

so that, from (C.8), it can be shown that

C = −j
4
. (C.12)

The free-space Green function of 2D cylindrical coordinates is then given by,

G(r) = −j
4
H

(2)
0 (kr). (C.13)
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For the case when the source is not located at the origin, the generalised Green’s

function are given by,

G(r, r′) = −j
4
H

(2)
0 (k|r − r′|), (C.14)

where r′ is the location of the unit source point and r is the observation point.
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