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ABSTRACT 

 

 

Large amount of image data transmitting across the Wireless Visual Sensor Networks 

(WVSNs) increases the data transmission rate thus increases the power transmission. 

This would inevitably decreases the operating lifespan of the sensor nodes and 

affecting the overall operation of WVSNs. Limiting power consumption to prolong 

battery lifespan is one of the most important goals in WVSNs. To achieve this goal, 

this thesis presents a novel low complexity Discrete Wavelet Transform (DWT) 

Cauchy Reed Solomon (CRS) Minimal Instruction Set Computer (MISC) architecture 

that performs data compression and data encoding (encryption) in a single 

architecture. There are four different programme instructions were developed to 

programme the MISC processor, which are Subtract and Branch if Negative (SBN), 

Galois Field Multiplier (GF MULT), XOR and 11TO8 instructions. With the use of 

these programme instructions, the developed DWT CRS MISC were programmed to 

perform DWT image compression to reduce the image size and then encode the DWT 

coefficients with CRS code to ensure data security and reliability. Both compression 

and CRS encoding were performed by a single architecture rather than in two separate 

modules which require a lot of hardware resources (logic slices). By reducing the 

number of logic slices, the power consumption can be subsequently reduced. Results 

show that the proposed new DWT CRS MISC architecture implementation requires 

142 Slices (Xilinx Virtex-II), 129 slices (Xilinx Spartan-3E), 144 Slices (Xilinx 

Spartan-3L) and 66 Slices (Xilinx Spartan-6). The developed DWT CRS MISC 

architecture has lower hardware complexity as compared to other existing systems, 

such as Crypto-Processor in Xilinx Spartan-6 (4828 Slices), Low-Density Parity-

Check in Xilinx Virtex-II (870 slices) and ECBC in Xilinx Spartan-3E (1691 Slices). 

With the use of RC10 development board, the developed DWT CRS MISC 

architecture can be implemented onto the Xilinx Spartan-3L FPGA to simulate an 

actual visual sensor node. This is to verify the feasibility of developing a joint 

compression, encryption and error correction processing framework in WVSNs. 
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CHAPTER 1 

INTRODUCTION 
 

 

Wireless Sensor Networks (WSNs) consists of many tiny sensor nodes that are 

capable of sensing the environment conditions, process the sensed data and send the 

data to the sink. At the sink, the received data will be displayed and analyzed either by 

computer(s) or human being(s). With these capabilities, the WSNs has a wide range 

of applications such as health, military and security [1]. The rapid deployment, self-

organisation and fault tolerance characteristic of sensor networks, make them very 

important in military command, control, communications, reconnaissance and 

targeting systems [2]. 

 With advances of image sensor technology, many products are now embedded 

with low-powered image sensors, such as cellular phones, computers, toys and robots. 

At the same time, recent development in WSNs and distributed processing have 

promoted the use of image sensors for the network that resulted the development of 

Wireless Visual Sensor Networks (WVSNs) [3], where sometimes it is referred to as 

Visual Sensor Networks (VSNs) [4]. The WVSNs provides a broad range of 

applications such as remote and distributed video-based surveillance systems that 

collect visual data from a network with smart distributed image sensor nodes. These 

systems can be connected to the Internet which allow authorized Internet users to do 

remote visiting interesting locations (i.e. virtual reality), monitoring the environment, 

surveillance of sensitive headquarters and industrial process control [5] [6]. 

 However, most of the WSNs applications have low bandwidth demands with 

delay tolerant and they measure the physical environment conditions such as pressure, 

humidity, and temperature. Once the sensor nodes are deployed, they are usually 

battery driven and operated with sacred energy source [7]. Furthermore, these sensor 

nodes are required to operate for months or years since battery replacement is not 
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recommended for networks with thousands of distributed physically embedded nodes. 

The introduction of image sensors to WSNs generates large amount of image data into 

the widely distributed visual sensor nodes. Consequently. this requires larger network 

bandwidth usage thus higher energy consumption is required for transmitting the large 

amount of image data [3]. 

 The thesis presents a novel low complexity Discrete Wavelet Transform 

(DWT) Cauchy Reed Solomon (CRS) Minimal Instruction Set Computer (MISC) 

architecture that performs data compression, data encryption and data correction in a 

single architecture. The developed DWT CRS MISC processor was programmed to 

perform DWT image compression to decrease the image data thus subsequently 

reduces the network bandwidth. Later on, the programmed MISC processor performs 

the CRS coding scheme onto the reduced image data to provide secure and reliable 

data transmission. With the CRS encoded data, the base-station can correct a small 

number of errors occurred onto the received image data thus it requires less number of 

retransmission. The developed new DWT CRS MISC architecture was implemented 

into a Field Programmable Gate Array (FPGA) to demonstrate its feasibility for use in 

the WVSNs. 

 

 

 

1.1 PROBLEM STATEMENT 

 

Transmitting large amount of image data requires longer transmission time that 

increases the power consumption of transceiver thus reduces the life span of sensor 

nodes [8]. Therefore, introducing compression scheme into the WVSNs to reduce the 

amount image data to be transmitted has a great potential in reducing communication 

energy costs and thus increasing the sensor nodes operating lifespan [9]. Meanwhile, 

image data transmitted across the wireless communication channel are prone to 

security threat such as eavesdropping [10]. Adversary can intercept the unencrypted 

data transmission in the WVSNs and learn any important information from the 

intercepted data. In the meantime, it requires high retransmission rate when the 

WVSNs operates in noisy environment, whereby the base-station often requests the 
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sensor nodes to retransmit the received error image data. Consequently, this increases 

the power consumption of the transceiver which may reduce the operating lifetime of 

the sensor nodes [5]. As a result, there is a need to develop a low complexity image 

processing system to address the aforementioned issues in the resource constrained 

WVSNs. 

 The first issue to be addressed is to have an image processing system that 

reduces large amount of image data produced by visual sensor, before transmitting the 

data across the WVSNs.  The cost of transmitting 1kB data (in terms of energy) is 

comparable to the same amount of energy used by a general-purpose processor 

executes 3 million instructions [11]. As a result, this provides improvement by 

reducing the power consumption for transmitting lower amount of image data [12]. 

 Second issue to be resolved is the security protection on the image data that 

are to be transmitted across wireless channel. Sensitive data such as surveillance 

image that are used for military purposes, especially in providing information on vital 

battlefield telemetry or monitoring [13], are exposed to security threats across the 

wireless communication channel. These image data transmitted across the WVSNs 

are prone to adversary attacks and eavesdrops on the wireless communication network 

[14]. 

 Lastly, the compressed and encrypted image data are usually prone to error 

while transmitting the data across the noisy wireless communication channel. 

Although the WVSNs do have error correction capabilities at the link layer [15], it is 

still not sufficient because unreliable data transmission will results in incorrect 

encrypted data received by the base-station (sink) or by remote user through the 

Internet. Thus decrypting correct plaintext is not possible with the use of these 

corrupted ciphertext (encrypted data). With these three aforementioned issues, there is 

a need to develop a novel solution (architecture) that could resolve the issues. The 

novel architecture need to be of low hardware utilisation, such that low power 

consumption is achieved. 
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1.2 SYSTEM OVERVIEW 

 

An image processing system for WVSNs was developed to resolve the 

aforementioned issues in Section 1.1. As shown in Figure 1, the final developed 

image processing system consists of a novel DWT CRS MISC architecture. The 

proposed MISC architecture has the capability of reducing the large amount of image 

data, and at the same time provides data security and reliable data transmission in a 

single architecture.  

 

 
Figure 1   Developed image processing system with DWT CRS MISC. 

 Modifications were made onto the Subtract and Branch if Negative (SBN) 

architecture [16] such that it can be further developed into DWT CRS MISC 

architecture. The additional functional blocks were added into the modified SBN 

architecture, which are Galois Field (GF) [17]  Multiplier (MULT) block, XOR block 

and 11TO8 block. By adding these functional blocks, the SBN (i.e. One Instruction 

Set Computer [18] ) was developed into a MISC architecture that consists of a 

minimal number of instructions. 

 The developed DWT CRS MISC architecture consists 4 programme 

instructions, which are SBN, GF MULT, XOR and 11TO8 instructions. Based on 

these programme instructions, the DWT CRS MISC was programmed to perform 

Lifting Scheme DWT image compression [19] to reduce the image data and CRS 

encoding (encryption) [20] onto the selected DWT coefficients to provide secure and 
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reliable data transmission. Therefore, the developed system reduces the amount of 

image data that are required to be transferred across the WVSNs and thus decreases 

the network bandwidth. At the same time, the compressed image data were encoded 

using the CRS coding scheme [20] to provide Forward Error Correction (FEC) 

capability such that the base-station can correct the errors that occurred onto the 

received image data. This reduces the number of request for retransmission of 

incorrect received data by the base-station. Thus less amount of energy is consumed 

by the sensor nodes since lower data retransmission rate is required. Besides, the CRS 

encoded image data are also encrypted such that any adversary cannot eavesdrop and 

extract information from the intercepted the data. 

 

 

 

1.3 RESEARCH AIM AND OBJECTIVES  

 

The aim of research works presented in this thesis is to develop a low complexity 

joint compression, forward error correction and encryption processing framework for 

resource constrained WVSNs. The main objectives of the research works are listed as 

follows: 

 

1. Develop an alternative processing approach for the Reed Solomon (RS) 

encoding scheme to be used in the WVSNs such that the base station can 

correct the errors that occurred onto the RS encoded image data. Therefore, 

less retransmission of image data are required from the sensor nodes when 

incorrect data are received. 

 

2. Further improvement on the RS processing approach such that the CRS 

encoding scheme can be integrated into the WVSNs. The CRS processing 

approach allows encryption and FEC to be performed onto the image data 

transmitted from the sensor nodes. 
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3. Develop a new processing approach for combined DWT filtering and CRS 

encoding scheme to be used in the WVSNs such that image compression, 

encryption and FEC can be performed onto the image data transmitted 

from the sensor nodes. 

 

4. Design of a custom visual sensor platform with the DWT CRS MISC 

architecture onto a reconfigurable hardware to verify the feasibility of 

implementing the developed low complexity joint compression, encryption 

and FEC image processing system for image data transmitted from the 

sensor nodes. 

 

 

 

1.4 SIGNIFICANCE OF RESEARCH 

 

A new low complexity RS MISC architecture was developed for use in WVSNs to 

provide reliable data transmission. The developed RS MISC architecture has lower 

hardware utilisations (61.2% less Slices) as compared to the traditional RS Linear 

Feedback Shift Register (LFSR) encoder circuit [17]. Both the RS MISC and RS 

LFSR encoder were implemented in the Xilinx Spartan-3L FPGA. Meanwhile, the 

power consumption of developed RS MISC architecture is also reduced by 17.4%. 

Because the developed RS MISC architecture has only one GF Multiplier block. The 

RS MISC does not encode the data as fast as the RS LFSR, which has many parallel 

GF Multiplier blocks. However, for WVSNs application, the interval between image 

transmissions to sink may be in hours, days, weeks or months. Therefore, the use of 

RS MISC in the WVSNs is justifiable as achieving low power consumption is of the 

utmost importance. With RS MISC, it provides error protections onto the image data 

such that less request for retransmission is required. With lower retransmission rate, 

less amount of energy is consumed by the sensor nodes. 

 Further improvement was made to the RS MISC architecture, whereby a CRS 

MISC architecture was developed to provide both data security and data reliability. 

With the CRS MISC, the encoded image data are protected from any eavesdropping 

and errors while the data are transmitted across the wireless communication network. 
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In comparison to the existing ECBC method [21], which were used to provide 

security and reliable data transmission, the CRS MISC architecture requires less than 

90.8% of the hardware utilisations that were required by the ECBC. The existing 

ECBC method was developed in Xilinx Spartan-3E FPGA, whereby the Spartan-3E 

FPGA builds on the Spartan-3 family of FPGA [22]. The contents of this part of 

research forms part of the work published in [23]. 

 Further development was made onto the CRS MISC architecture such that 

image compression capability was incorporated in the architecture. Therefore, a DWT 

CRS MISC architecture was developed and proposed for use in WVSNs to reduce 

size of the image data, provide data security and data reliability. With the DWT CRS 

MISC, the DWT image compression is performed first and followed by CRS coding 

scheme that encodes (encrypt) the compressed image data. To the knowledge of the 

author, the DWT CRS MISC architecture was the only jointed compression, 

encryption and error correction scheme processing framework for WVSNs that was 

ever developed. In comparison to the literature in [24], an existing simulation study 

was performed to show the feasibility of using the existing SAC (jointed compression 

and encryption techniques) combined with Multiple-Input Turbo (MIT) error 

correcting coding technique for WSNs. However, the SAC combined with MIT code 

technique only process scalar data (eg. temperature) that allowed occasional losses of 

sensor measurements and this technique is impractical for WVSNs that has larger data 

traffic [5]. 

 By considering existing methods, with the lowest hardware utilisations, both 

CL-DCT compression [25] and ECBC [21] requires 1060 Slices (Xilinx Spartan-3L) 

and 1,691 Slices (Xilinx Spartan-3E) respectively. The developed DWT CRS MISC 

architecture only requires 144 Slices (Xilinx Spartan-3L) and 129 Slices (Xilinx 

Spartan-3E) respectively, which is comparatively a very low amount of hardware 

utilisations. Note that the CL-DCT, ECBC and DWT CRS MISC were implemented 

in the Xilinx Spartan-3 family of FPGA. Therefore, the developed DWT CRS MISC 

performs both DWT image compression and CRS encoding in a single architecture 

such that low hardware complexity of the proposed image processing system was 

achieved. 
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1.5 THESIS ORGANISATION 

 

This thesis presents the concepts, approaches and methods that are involved to 

develop the new low complexity joint compression, FEC and encryption processing 

approach for WVSNs with adhere to the constrained hardware resources. The thesis 

organisations are as follow: 

 

Chapter 1 – Introduction 

For this chapter, it gives the introduction on the related area of research and provides 

the motivations of this research. From the problem statements, the listed problems 

were addressed by the proposed image processing system stated in this chapter. 

 

 

Chapter 2 – Literature Review 

This chapter reviews on the existing image processing system in WVSNs. The 

reviewed image processing systems are those that provide data compression, data 

encryption and data reliability. The chapter also provides the necessary details on the 

Galois Field, Lifting Scheme DWT and CRS coding scheme that are required by the 

MISC architectures developed. 

 

Chapter 3 – DWT CRS Minimal Instruction Set Computer Architecture 

The chapter explains the process of developing the new DWT CRS MISC architecture. 

The detail explanations on the DWT CRS MISC architecture are presented in this 

chapter. Besides, the algorithm to perform the joint processing schemes framework is 

discussed. As such, the written programme instructions are listed out and the number 

of clock cycles required to run these instructions are estimated. 

 

Chapter 4 – Results and Discussions 

The results and simulation waveforms for the developed DWT CRS MISC 

architecture are discussed in this chapter. Analysis shows the improvement of data 

transmission time, reconstructed image quality for errors occurred on compress image 

data and security level of the encoded image data are presented in this chapter. 
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Chapter 5 – Hardware Implementations 

The focus in this chapter is to develop a custom Wireless Visual Sensor Platform. 

This is done by integrating the proposed DWT CRS MISC architecture with a 

wireless transceiver such that to verify its feasibility for use in the WVSNs. 

 

Chapter 6 – Conclusions and Future Works 

The last chapter of the thesis provides conclusion on the research works and offers 

suggestions on future works that can be performed through the use of the newly 

developed DWT CRS MISC architecture discussed from previous chapters. 
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CHAPTER 2 

LITERATURE REVIEW 
 

 

Chapter 2 reviews related existing research works that were performed by the research 

community. First, a brief introduction on the DWT was given in Section 2.1. This 

includes the reason of using DWT over CWT are also discussed. Secondly, Section 

2.2 provides a brief introduction on the Reduced Instruction Set Computer (RISC) 

architecture. The DWT CRS MISC architecture was developed based on the Subtract 

and Branch if Negative (SBN) architecture. Section 2.3 discusses on the Wireless 

Visual Sensor Networks (WVSN) and the existing WVSN platforms that are available 

in the literature. Section 2.4 reviews the existing compression techniques that were 

used in Wireless Sensor Networks (WSNs). Section 2.5 discusses on the available 

proposed FEC encoding scheme for WSNs. Section 2.6 reviews on the existing 

security schemes for WSNs. Section 2.7 reviews on the combined schemes that 

provides data compression, secure and reliable data transmissions in WSNs. 

 

 

 

2.1 DISCRETE WAVELET TRANSFORM 

Discrete Wavelet Transform (DWT) is known to be a wavelet transform that 

processes and represents a continuous-time signal [26]. The DWT is also used as a 

means to extract relevant features from signals [27], images [28] and video [29]. In 

contrast to the DWT, the Continuous Wavelet Transform (CWT) compares the 

analysed signals (images) with many shifted and stretched (scaled) wavelet. The CWT 

uses only 1 filter and produces a large amount of wavelet coefficients. As a result, the 

CWT is considered to produce more redundant wavelet coefficients [30] and this does 
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not reduce the amount of data representing the signals (mainly used in signal 

processing). Whereas for the DWT, it uses both high pass filter and low pass filter to 

analyse the signals (images), with each filter’s outputs are down-sampled by 2 [31]. 

As a result of down-sampling, the DWT high pass filter produces Detail DWT 

coefficients and the DWT low pass filter produces Approximate DWT coefficients, 

with each of these DWT coefficients are half the length of the original signals. The 

Detail DWT coefficients represent the high frequency of the signals (or represent the 

edges in images) and the Approximate DWT coefficients represent the Low frequency 

of the signals (or represent an approximation of the images). With half the amount of 

data to represent the original signals (images), reconstruction of signals (images) is 

made possible with the use of Approximate DWT coefficients only. To reduce the 

amount of data representing the signals (images), the DWT was used for image 

compression because it has the advantages which overcome the wavelet redundancy 

issues encountered in CWT [32]. There are two different approaches of DWT, one is 

through the use of traditional filter bank [26] and another will be lifting scheme [19] 

[33]. 

 

2.1.1 Recent DWT and CWT Research Works 

In [34], image compression integrated with selective encryption was introduced. The 

authors proposed the use of combined Embedded Zerotrees of Wavelet (EZW) 

transforms [35] and random shuffle or permute the wavelet Spatial Orientation Trees 

(SOTs). The DWT is used to decompose the image data and then a randomized key is 

used to shuffle the wavelet trees (SOTs). Later, it was found that this proposed 

method, when used as the only security mechanism, is insure against a chosen 

plaintext attack [36]. With the knowledge on wavelet trees configurations, an 

adversary would be able to predict the correct size of image and number level of 

decompositions. The intercepted cipher-text will leak information on the randomized 

key used to shuffle the SOTs. Therefore, this allows the adversary to decipher the 

encrypted compressed image data. 

 Later on, both CWT and DWT were used for analyzing non-stationary and 

quick changing Partial Discharge (PDs) signals [37]. The PDs measurement is a 

method to diagnose the insulating system condition of High Voltage (HV) electrical 

equipment. With the use of CWT, it calculates the wavelet coefficients at every 
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possible scale and along every time instant. This result in having a wavelet details 

coefficients distribution throughout the entire time-scale view. For the de-noising 

process, a model-based DWT simulator is used to filter the corrupted PDs signals. 

With noise disturbance has been thinned out, the unchanged waveform of PDs can 

then be extracted [37]. 

 A study and analysis on the usage of these techniques - Principle Component 

Analysis (PCA), Discrete Cosine Transform (DCT) and DWT, to perform the image 

fusion (processing) [38]. Image fusion is used to improve the quality of information 

from a set of images. From this study, the authors found that the use of DWT 

technique itself in fusing the images, does provide a significant fused image quality of 

78.9555 dB. Compared to both PCA and DCT techniques, the fused image quality 

obtained were only 30.7729 dB and 30.9663 dB respectively. 

 The used of CWT for power limited wearable Electroencephalography (EEG) 

was introduced by the literature [39]. The EEG is a device that measures the voltage 

of electrodes placed between the scalp. Usually the voltages recorded are in between 

peak-to-peak voltage of 1 - 150V over a bandwidth frequency of 1-70 Hz. In this 

research work, the CWT will be used to perform physiological (analogue) signal 

processing. As a result, a low power gmC Low Power CWT (LPCWT) filter was 

developed using 0.35m CMOS technology process. The developed LPCWT filter is 

capable in reducing analogue domain signals, such that it lowers the total system 

power consumption of EEG [39]. 

 Meanwhile, the surface Electrocardiogram (ECG) is a non-invasive tool for 

diagnosis of many heart diseases. In order to detect abnormal cardiac events, 

continuous electrical recording of heart behaviour is performed. In order to extract the 

relevant information from ECG signal, the literature [40] proposed a method in 

segmenting and analyzing the waveforms of ECG signal. For segmentation, multi-

scale CWT is used to detect different ECG waveforms. Later on, the PCA is used in 

detecting and locating defects. It is done by modelling the behaviour of the biological 

process in a normal state. Then the PCA compares the observed behaviour with the 

normal state behaviour. This is used to detect any defects that may occur [40]. Next, 

the authors in [41] had proposed and designed a CWT-based multi-functional 

processor. The CWT-based processor is suitable for long-term real-time ECG signal 

analysis and abnormal cardiac event detection. Based on reported results, it was 
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concluded that the proposed architecture is feasible to use in continuous ECG 

monitoring system [41]. 

 Table 1 summarizes the recent DWT and CWT research works that were 

mentioned in this section. It can be seen that the CWT transform was mainly used in 

signal processing. As mentioned in [42], the main usage of CWT is for analysis of 

signals (images). For images, the CWT is usually used to detect specific features - 

hierarchical structure, edges, contours etc. The CWT are very efficient in detecting 

specific features in signals or images [42]. As oppose to CWT, the DWT is mainly 

used when data compression is considered to be essential. The DWT produces 

impressive data compression rates that are very useful in image processing [42]. 

 

Table 1   List of recent research works related to DWT and CWT for image/signal processing. 

Authors Year 
Research 

Works 
Type of 
Wavelet 

Summary Applications 

Salama, Paul; 
King, Brian [34] 

2005 
Efficient Secure 
Image 
Transmission 

EZW 
(DWT) 

DWT image compression 
Image 

Processing 

Candela, R.; 
Romano, E.; 
Romano, P. [37] 

2009 

Combined CWT-
DWT Method 
using Model-based 
Design Simulator 

CWT / 
DWT 

Filtering onto online 
partial discharges signals 
measurement systems, 
after analysis CWT 
coefficient, with model-
based DWT simulator. 

Signal 
Processing 

Assegie, Samuel; 
Salama, Paul; 
King, Brian [36] 

2010 

An Attack on 
Wavelet Tree 
Shuffling 
Encryption 
Schemes 

DWT 
Proved that the research 
work [34] is not strong 
against plaintext attack. 

Image 
Processing 

Casson, A. J.; 
Rodriguez-
Villegas, E. [39] 

2011 
60pW gmC CWT 
Circuit 

CWT 

Portable EEG systems 
with 7th order CWT band 
pass filter for analogue 
physiological signals 

Signal 
Processing 

Hanen Chaouch; 
Khaled Ouni; 
Lotfi Nabli [40] 

2012 
Segmenting and 
supervising an 
ECG signal 

CWT 
Segmentation and 
analysis of ECG signal 
with CWT and PCA 

Signal 
Processing 

Li-Fang Cheng; 
Tung-Chien Chen 
[41] 

2012 
Wavelet-based 
ECG 
Microprocessor 

CWT 
Real-time ECG analysis 
and abnormal cardiac 
event detection 

Signal 
Processing 

Desale, R. P.; 
Verma, S. V. [38]

2013 

Study and Analysis 
of PCA, DCT & 
DWT based Image 
Fusion Techniques

DWT 

Analysis shows that 
DWT based fusion 
techniques provide good 
quality fused images than 
PCA & DCT based 
techniques 

Image 
Processing 
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2.1.2 DWT and CWT Comparison 

In Section 2.2.1, there are many literatures that focus on the usage of DWT for image 

processing. In order to show the difference in image compression performance for 

both CWT and DWT, MATLAB simulations were performed. The same “lena1.tif” 

image (256 x 256 pixels) was used to perform the simulations that determine the 

quality of reproduced compressed image. For the CWT image compression, the CWT 

Fast Fourier Transform based algorithm was considered. This is the available 

MATLAB function, capable in performing both forward and inverse CWT transform 

onto the image data.  

 For each row of the image data, the CWT transform produces a total of 17 x 

256 = 4,352 real and imaginary CWT wavelet coefficients. Since there are a total of 

256 rows of image data, a total of 4,352 x 256  = 1,114,112 Real and Imaginary 

(number) CWT wavelet coefficients are produced. By summing up both Real and 

Imaginary CWT wavelet coefficients, for a single image, the total amount of CWT 

wavelet coefficients produced are 2,228,224. Since each wavelet coefficients are 

represented by 7-bit signed integer (1 Byte). The memory spaces needed to store the 

wavelet coefficients are approximately 2.228 MBytes. Further on, taking all the CWT 

coefficients, an inverse CWT transform was performed to reproduce the original 

image. In Figure 2(a), using all the CWT wavelet coefficients, the quality of the 

reproduced compressed image is 19.4513 dB. For image compression, only ¾, ½ and 

¼ of all the CWT coefficients are used to reconstruct the images. The quality of the 

reproduced images are 17.3952 dB, 15.1599 dB and 14.0359 dB respectively. These 

reproduced images are shown in Figure 2(b), Figure 2(c) and Figure 2(d) respectively. 

 Subsequently, the DWT transform performed onto the ‘lena1.tif’ image and 

produces a total of 65,536 DWT wavelet coefficients. With each wavelet coefficients 

are represented by 7-bit integer (1 Byte), total amount of memory needed is 65,536 

Bytes. This the similar amount of memory spaces needed to store ‘lena1.tif’ image 

data (256 x 256 pixels/Bytes), where each pixels is represented by 1 Byte. By taking 

all the wavelet coefficients, a lossless compressed image can be reproduced with the 

image quality measured as infinite, as shown in Figure 3(a). To consider for image 

compression, only ¾, ½ and ¼ of wavelet coefficients will be used to reproduce the 

image. The quality of the reproduced images are 37.1123 dB, 28.9856 dB and 

27.6737 dB respectively, which are shown in Figure 3(b), Figure 3(c) and Figure 3(d). 
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DWT ¼ coefficients only. 

(PSNR = 27.6737 dB) 

 
DWT ½ coefficients only. 

(PSNR = 28.9856 dB) 

 
DWT ¾ coefficients only. 

(PSNR = 37.1123 dB) 

 
All DWT subband coefficients. 

(PSNR =  dB, lossless) 

Figure 3   Reproduced compressed image using DWT in MATLAB simulation. 

 Based on the results in Table 2, the DWT produces less amount of DWT 

wavelet coefficients as compared to the CWT wavelet coefficients. Even with the 

used of statistical analysis onto these CWT wavelet coefficients, there is a memory 

constraint issue for the low powered sensor nodes to store these coefficients, which 

needs to be resolved. For example, each of the Telos sensor nodes only has 10kB of 

RAM buffer. As a result, these sensor node will not be able to store large amount of 

data (2,228,244 coefficients/Bytes) while processing these coefficients. Even though 

performing inverse CWT transform with a complete set of CWT wavelet coefficients, 

the quality of reproduced compressed image is very poor. For the DWT technique, 

with only ¼ of coefficients, the reproduced compressed image achieves a better image 

quality compared to the CWT technique. Based on the experimental result, it can be 

concluded that the DWT is much more suitable for use in performing image 

compression at resource constrained WISNs. 
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2.2 REDUCED INSTRUCTION SET COMPUTER 

 

Primary goal in computer design is to develop a much more cost-effective computer 

than their predecessor. However, this results architectural change with its trend going 

towards more and more complex machines were developed [43]. Therefore, the 

Complex Instruction Set Computer (CISC) was developed and less programme 

memory was required because implementing complex instructions in high-order 

language requires many words of main memory [44]. Next, a Reduced Instruction Set 

Computer (RISC) was also presented and it could be employed with little or no 

microcode. The RISC requires only simple instruction decode procedure that could be 

implemented by a fast combinational circuit [44]. Therefore, RISC is comparable in 

terms of performance and cost-effective to the CISC [43]. Besides, the complexity of 

CISC architecture will determine the size of the processor and the critical path in the 

machine that affects the speed of processor [45]. As such, the RISC tends to have 

simpler implementations and can be easily optimised in hardware and it operates at 

fast speed [45]. 

 

2.2.1 Ultimate Reduced Instruction Set Computer 

In 1988, Farhad and Behrooz had presented a very simple processor, which is known 

as the Ultimate Reduced Instruction Set Computer (URISC) [16] [18]. The URISC 

processor is also known as the One Instruction Set Computer (OISC) and it is also 

considered to be as the penultimate Reduced Instruction Set Computer (RISC) [46] 

[44]. As oppose to OISC, the current available Complex Instruction Set Computer 

(CISC) has many complex instructions as micro programmes within the processor 

[18]. The advantages of the OISC is that its architecture is very simple since it is 

implemented using only single instructions [44]. The next advantage for using the 

OISC will be the instruction decoder circuitry and its complexity can be eliminated 

since all the instructions are the same. There are three different paradigms of OISC 

[47], these includes the Subtract and Branch if Negative (SBN) [48] [49], MOVE and 

Half Adder [50]. 

 The MOVE processor is known to as a “practical” OISC that offloads much of 

its processing to a memory-mapped functional unit [46] [44]. The MOVE processor 
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architecture is shown in Figure 4 [18]. The function of the MOVE processor is to have 

the Operand A move to Operand B. However, the actual computational is performed 

by its available underlying hardware. 

 

 
Figure 4   MOVE processor architecture [18]. 

 Another simple OISC that was built previously with the use of the Half Adder 

(HA) as the basic instruction set [46] [44] [50]. For a Half Adder, it has all the 

program counter, general registers, special registers and memory location and they are 

all treated to be as one part of the address space. The Half Adder can also be used to 

implement the SBN instruction [46] [44]. The basic element of the Half Adder is 

shown in Figure 5. With the use of basic elements, it can then be connected together 

to form a mesh of connected Half Adder elements, as shown in Figure 6. From the 

architecture shown, it is suggested as a possible concept that can be used in the 

artificial intelligence and neural computing [44]. 

 

 
Figure 5   Basic Half Adder element [44].

 
Figure 6   Mesh connected Half Adder elements [44]. 

 A simple Subtract and Branch if Negative (SBN) processor, was initially 

presented by van der Poel in 1952 [48]. This type of processor will only execute 

single standard 3-address instruction that is shown in Figure 7. Although this SBN 

processor has only one standard instruction, it has the capability of executing a 
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particular function with the use of a few simple SBN instructions. For this processor 

with only one standard instruction, the SBN instruction, the processor will execute the 

arithmetic operation of subtracting the 2nd operand (operand B) with the 1st operand 

(operand A). Then the result from the subtraction will be stored back to the 2nd 

operand (B = B – A) thus replacing its original values [16] [44]. 

 

 
Figure 7   SBN instruction format. 

 If the result of the arithmetic operation is a negative value, the processor will 

then jump to another targeted address instruction that is stated in the program 

instruction, instead of executing the next following address instruction. In order to 

have the target address instruction to be executed by the processor for the next 

program instructions, the “jump target” address will be added to the current program 

counter (PC) register value. Consequently, the “jump target” address needs to be set 

such that the program counter will be set to execute the targeted address instruction 

[44]. 

 

2.2.2 Summary 

The SBN architecture was modified such that the architecture can be expanded and 

further developed into RS MISC, CRS MISC and DWT CRS MISC. The SBN 

architecture was modified such that it allows additional functional blocks to be added 

into the architecture. By adding these functional blocks, the SBN was further 

developed into a MISC architecture which consists of a minimal number of 

instructions. The new DWT CRS MISC architecture specifically performs DWT 

image compression and CRS encoding in a single architecture. 
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2.3 WIRELESS VISUAL SENSOR NETWORK 

 

In recent years, inexpensive hardware such as CMOS cameras are widely available in 

the market, which allows images to be captured from the environment in the WSN 

[15]. With this development, it gives rise to a new form of network known as 

Wireless Visual Sensor Networks (WVSNs). Each of these sensor nodes, it can 

process captured image data locally and extract the relevant information to be sent to 

the base-station. Besides, the sensor nodes are able to collaborate with other nodes on 

the application-specific task that is able to provide the user with information rich in 

description for a particular captured event [3]. The WVSN offers a wide range of 

applications, from remote and distributed video-based surveillance system to ambient 

assisted living and personal care applications. Users can remotely visit interesting 

locations through virtual reality using WVSN [5]. 

 The WVSN offers many new applications compared to the WSN that uses 

only scalar sensors. Nevertheless, WVSN does face new problems such as a huge 

amount of data produced from the camera sensors [5]. Processing such large amount 

of data under constrained conditions, where there are limited amount of energy source, 

low bandwidth resources and limited processing power [3], is a challenge for 

generally low-powered sensor nodes. In the literature [7], it is stated that the amount 

of energy that can be used to process the data is much lower compared to the energy 

for use in transmitting the data across the wireless network. The transmitting cost (in 

terms of energy) of 1kb data is comparable to the same amount of energy use by a 

general-purpose processor that executes 3 million instructions [11]. As a result, large 

amount of data that is produced by the visual sensor nodes can be locally compressed, 

such that it reduces the large amount of data transmitting through the wireless 

network [9]. 

 Since the sensor nodes have limited energy constraints and also limited 

processing power, the image compression techniques/encoders developed for use in 

WVSNs need to be low in power consumption [5]. Traditional image compression 

algorithms are not suitable for use in WVSNs [9] as they are mainly designed for 

multicasting/broadcasting applications [5], which is shown in Figure 8. The emphasis 

is to design a low-complexity decoder with the tradeoffs that the encoder bears the 

computational burden in the process of transmitting the information. However, for the 
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WVSNs, the complexity requirements are reversed due to their mostly many-to-one 

information flow. 

 For this research, the focus is on sensor node that captures still images and 

transfers the image data to the sink (base-station) across the resource-constrained 

WVSNs. The purpose of developing the visual sensor node is to provide surveillance 

for the military, especially to determine the number of enemy soldiers beyond the 

enemy line. Various existing WVSN platforms that were previously developed are 

reviewed in the following Section 2.2.1 to show the differences between these 

platforms and the developed joint image compression, encryption and error correction 

processing framework for WVSNs. 

 

 
Figure 8   Information flows in traditional broadcasting application [5]. 

 

2.3.1 Existing WVSN Platforms 

In [51], a wireless sensor device or “mote” known as Telos was introduced by the 

researchers from the University of California, Berkeley. The Telos was designed to 

sleep for major of time, wake up quickly on an event, process the information and 

return to sleep. The Telos platform was controlled using the Texas Instrument (TI) 

MSP430 microcontroller with 48kB of Programme Memory (FLASH memory) and 

10kB of RAM buffer (SRAM). For the communication radio, the Telos uses the 

Chipcon CC2420 radio that operates in IEEE 802.15.4 standard [52] with 

transmission frequency of 2.4GHz. The Telos platform was developed such that it 

provides the capability to incorporate sensor into the platform. For the microcontroller 
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unit to write data into flash memory, the power consumed by the Telos platform is 

27.18mW at operating voltage of 1.8V [51]. However, the developed Telos platform 

was designed to be a basic WVSN platform that transmitted scalar data to the base-

station without performing any data processing.  

 Later on in the literature [53], Cyclops platform was developed to perform 

hand posture recognition onto the captured images. Cyclops is an electronic interface 

that connects a camera module and a lightweight wireless host together. The Cyclops 

module is made up of a Xilinx XC2C256 CoolRunner Complex Programmable Logic 

Device (CPLD), 64kB of SRAM, 512kB of FLASH memory storage, an Atmel 

ATmega128L Micro-Controller Unit (MCU) running at 4MHz and an Agilent CMOS 

camera module (ADCM-1700). For the maximum power consumption, the worst case 

scenarios is considered when the Cyclops platform performs a write data operation 

with the permanent memory access. As reported, the maximum power consumed by 

the Cyclops platform operating at 3.0V is 64.8mW [53]. 

 Next, an Intel Mote platform for industrial monitoring that measures vibration 

was developed [54]. The developed Intel Mote platform incorporates an Zeevo 

integrated wireless microcontroller module, industrial vibration sensor and a surface-

mount 2.4GHz antenna together as a complete platform. The Zeevo module used for 

the Intel Mote consists of an ARM7TDMI architecture core, 64kB of SRAM, 512kB 

FLASH memory and a CMOS Bluetooth radio. TinyOS operating system was ported 

into this ARM architecture and this leaves about 11kB of free SRAM available to be 

used by any written applications in the platform [54]. 

 In [55], the Panoptes video sensor platform was developed by integrating Intel 

StrongARM 206MHz embedded processor, a Logitech 3000 USB video camera, 

64MB of memory, Linux 2.4.19 operating system kernel and an 802.11-based 

networking card together in a Bitsy board. For the proposed Panoptes video sensor 

platform, the power consumed by Computer Processing Unit (CPU) alone is 2.287W. 

The total power consumption required for Panoptes platform to capture, process and 

transmit the video is 5.268W. Since the proposed Panoptes platform is intended for 

use with a wind-powered generator that has unlimited energy source. Therefore, the 

high power consumption by the Panoptes platform is suitable in this applications [55]. 

 The author in [56] had proposed an image sensor mote for use in Wireless 

Image Sensor Networks (WISNs). The microcontroller unit used in this sensor mote is 

the Atmel AT91SAM7S128 microcontroller based on the ARM7TDMI architecture 



 

23 
 

core. The operating frequency of the microcontroller was set at 48MHz with available 

memory storages: 32kB of RAM and 128kB of Flash memory. Meanwhile, the 

proposed sensor mote used the Chipcon CC2420 based on IEEE 802.15.4 

communication radio. The sensor mote operating voltage is at 3.3V and the power 

consumption for the microcontroller itself is 99mW. The developed image sensor 

mote was used to detect and determine the direction of pedestrian movement in a 

narrow pathway [56]. 

 A CRITIC wireless camera mote was developed for the Heterogeneous Sensor 

Networks (HSNs) [57]. The CRITIC platform consists a 1.3 Megapixel OmniVision 

OV9655 CMOS sensor, Intel XScale PXA270 fixed-point processor (256kB internal 

SRAM), 64MB of external SRAM, 16MB Flash memory and Chipcon CC2420 radio. 

In the Idle mode (with no active processes), the power consumption of the Intel 

XScale processor was between 428mW - 478mW. The proposed CRITIC platform 

was developed to perform multiple target tracking and sending low amount of image 

data across the low bandwidth WSNs. This was done by processing the captured 

images locally on the camera board by using background subtraction for single target 

tracking and camera localization for multiple target tracking. Then transmitting only 

compressed low-dimensional image features to the sink (base-station), which routes 

the information to various clients for further processing and visualisation [57]. 

 

2.3.2 Summary 

Most of the existing sensor nodes mentioned earlier were operating in the IEEE 

802.15.4 standard that only consists of an error detection (CRC-16) [52]. In the IEEE 

802.15.4 standard, there is no security protection is applied onto the data. The 

available data security protections is only applicable for the Waspmote (eg. Digi 

XBee, which is a proprietary Radio Frequency transceiver) that operates in IEEE 

802.15.4 standard. As such, the CRS coding scheme was used in this research to 

provide data security. The CRS coding scheme has similar security level as the 

Advanced Encryption System (AES), which is the standard use for encrypting data by 

the US National Institute of Standards and Technology (NIST) [58]. At the same time, 

the CRS coding scheme also offers error protection capability as offered by traditional 

Reed Solomon coding scheme [59]. 
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2.4 COMPRESSION IN WSN 

 

Large amount of image data are produced by the visual sensor nodes and the captured 

information are then transmitted to the base station. However, transmitting these 

image data would increase the power usage in data transmission. Hence this would 

reduce the operating lifespan of the visual sensor nodes and interruption of image 

surveillances from that particular area. Therefore, many research were initiated to 

compress the image data before transmitting in the resource constrained WSNs such 

that to reduce the amount of energy used in data transmission. In this Section 2.3, the 

existing research works on the compression scheme for use in WSNs were reviewed. 

 

2.4.1 S-LZW Compression for Energy-Constrained WSNs 

A modified Lempel-Ziv-Welch (LZW) [60] lossless compression algorithm for 

Sensor Nodes (S-LZW) was presented to reduce energy consumption of sensor nodes 

[12]. The proposed S-LZW compresses data with the use of a dictionary of 512 

entries which requires 2,618Bytes of RAM and 1,264Bytes of ROM. Besides, the 

author also proposed a 32-entry mini-cache version of S-LZW (S-LZW-MC32) that 

requires 2,687Bytes of RAM and 1,566Bytes of ROM. The propose S-LZW 

compression algorithm is used to compress strings of data in 1-dimensional rather 

than consider it as image data in 2-dimensional [12]. 

 

2.4.2 Lapped Biorthognal Transform for WSNs 

In [61], a distributed Lapped Biorthogonal Transform (LBT) based image 

compression is introduced for WSN. First, the image is captured by the camera node 

which later send a message to cluster head through its neighbour S. The Cluster head 

selects the idle nodes (above a threshold energy level) within the cluster and requests 

the camera node to send the image data. Then neighbour S perform LBT pre-

processing on 8 rows of image data received from camera node. After LBT pre-

processing, neighbour S sends these processed image data to idle node P. Finally, 

node P sends the processed compressed image data to the Cluster head. 

 The performance of proposed scheme is evaluated by using MATLAB [61]. 

The proposed approach does overcome the computation and energy limitation of 
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individual nodes, by sharing the processing tasks among the nodes in the cluster [61]. 

However, the high frequency of transmitting and receiving data among the nodes may 

reduce the lifespan of the nodes since RF transceiver module is the device with largest 

energy consumption [62] [63]. 

 

2.4.3 SPHIT MIPS Processor for WVSNs 

The Set Partitioning In Hierarchical Trees (SPIHT) encoder can be developed using a 

Microprocessor without Interlocked Pipeline Stages (MIPS) processor that has a very 

low memory wavelet compression architecture using strip-based processing 

introduced in [64] [65]. The process of SPIHT image compression consists of a few 

separate modules. Figure 9 illustrates the first few lines of the image which are loaded 

into the Discrete Wavelet Transform (DWT) module to perform wavelet transform 

onto the image data. Then the computed wavelet coefficients are stored into a strip-

buffer that will be used for SPIHT encoding in the later part. Once the image is fully 

encoded by the SPIHT encoder, the bit-stream generated will be output and then can 

be transmitted across the communication channel. 

 

 
Figure 9   Block diagram of strip-based compression [64]. 

 Before the image data is passed through the SPIHT encoder module, a four-

scale DWT decomposition is applied onto an image of size pixels [64] [65]. Figure 10 

illustrates the DWT_Module used in applying the DWT decomposition onto the input 

images. Initially, the image data are read into the DWT_Module in a row-by-row 

order from the external memory. After which the row filtering is performed on the 

image row and the coefficients are stored into a temporary buffer (Temp_Buffer). 

With these four lines of row-filtered coefficients available, the column filtering is then 

carried out onto the row filtered coefficients. Finally, these DWT coefficients HH, HL, 

LH and LL are stored into the STRIP_BUFFER [64] [65]. For a particular N-scale of 

DWT decomposition, the LL coefficients generated from 1N  stage will then be 

loaded back to the Temp_Buffer from STRIP_BUFFER. Then a further N-scale of 
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DWT decomposition is performed onto these LL coefficients. As the produced 

wavelet coefficients are arranged in a pyramidal structure in the STRIP_BUFFER, the 

SPIHT_ZTR coding is implemented using a one-pass upward scanning and a 

one/multipass downward scanning methodology [64] [65]. Figure 11 illustrates the 

architecture of the SPIHT encoder implemented in the SPIHT MIPS processor. The 

strip-based SPIHT-ZTR architecture is implemented using a soft-core microprocessor 

based approach, where a customized MIPS processor architecture is adopted. The 

actual implementation is onto a Xilinx Spartan-3L 3S1500L FPGA and it requires a 

total of 2,366 slices (1,272 flip-flops and 3,416 LUTs) [65]. 

 

 
Figure 10   DWT_Module architecture [65]. 

 
Figure 11   SPIHT_Encoder architecture [65]. 
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2.4.4 JPEG FPGA-Based Wireless Vision Sensor Node 

A prototype of the vision sensor node is developed, which consists of CMOS image 

sensor, Field-Programmable Gate Array (FPGA), Nios II soft-core microprocessors 

and nRF24L01 transceiver [66]. The vision sensor node adopts Joint Photographic 

Experts Group (JPEG) Baseline system for image compression using the Altera 

EP2C35 FPGA development platform. Then the Nios II microprocessor controls the 

nRF24L01 transceiver to transmit the compressed image data to the base-station 

(sink). For the developed JPEG system, the system requires 7,173 Logic Elements 

(LEs) as mentioned in [66]. 

 

2.4.5 Low Power Wavelet Transform for WSNs 

In [67], the authors proposed to use the fractional wavelet for WSNs. As mentioned in 

the tutorial, a sensor node was built using a 16-bit Microchip dsPIC30F45013 digital 

signal microcontroller with 2 kB of RAM. Besides, a C328-7640 camera module with 

Universal Asynchronous Receiver/Transmitter (UART) was also integrated. Study 

made on the proposed system by having the sensor node to capture 8 frames of 256 x 

256 pixels of images. Then performs a six-level fractional wavelet transform that 

involves the 16-bit integer arithmetic. The study concluded that fractional wavelet 

transform for integer arithmetic requires half of the time needed for the floating point 

case [67]. 

 

2.4.6 DWT Selective Retransmission for Wireless Image Sensor Networks 

At the sensor node, Discrete Wavelet Transform (DWT) decomposes the captured still 

image data into subbands of DWT coefficients. These produced DWT coefficients 

have different relevancies in reconstruction of original image [68]. By knowing the 

different priority level of DWT coefficients, a DWT-based selective retransmission 

mechanism is proposed for Wireless Image Sensor Networks (WISNs). Depending on 

the application requirement, reliable transmission is only assured for the most relevant 

data, with providing retransmission of corrupted data; while the low relevant data are 

not retransmitted, if they are corrupted during transmission. Hop-by-hop 

retransmission of corrupted compressed image data is performed rather than end-to-

end approaches to increase energy saving on nodes. For the purposed mechanism, 
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comprehensive energy consumption models were designed and extensive 

mathematical verifications were performed [68]. However, this approach of 

retransmission may reduces the lifespan of these intermediate nodes (between end 

nodes and sink) since they consume more energy for retransmission of image data in 

noisy communication channel [62]. 

 

2.4.7 CL-DCT for Wireless Camera Sensor Networks 

In [25], the Cordic Loeffler Discrete Cosine Transform (CL-DCT) compression 

processor was introduced and implemented onto FPGA. The CL-DCT processor was 

designed to perform compression on captured image data for the WVSNs. The CL-

DCT processor was implemented onto the Xilinx Spartan-3 XC3S200 FPGA, which 

requires a total of 2,385 Logic Cells (1,060 Slices). However, the authors did not 

consider the external SRAM memory used by the proposed CL-DCT processor as part 

of the hardware implementation [25]. 

 

2.4.8 Summary 

From the existing compression techniques, a huge amount of hardware utilisations 

were required for implementing the image compression schemes in the WSNs. The 

reason is that these existing image compression techniques required complex 

algorithm/architecture in order to perform image compression. The Lifting Scheme 

DWT image compression was used in this research because this method is much 

simpler compared to other compression. With simple compression techniques, the 

reuse of hardware (MISC architecture) to encode the compressed image data was 

made possible. This would lead to improved efficiency and less hardware usage [21]. 

Besides, there is a reduction in the amount of image data required to be transmitted 

across the WVSNs. Longer operating lifespan of the sensor node could be achieved 

when lower data transmission energy is required for sending these reduced amount of 

image data. Therefore, this research was performed in order to develop an image 

compression processing framework for use in the resource constrained WVSNs. 
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2.5 FORWARD ERROR CORRECTION IN WSN 

 

The error control system is an important area in communication to maintain the 

reliability and integrity of the data transmitted across a communication channel [69]. 

While the data is transmitted across the communication channel, it is prone to error 

due to interferences that often occur in the channel. For some applications, it requires 

high data integrity to be transmitted across the communication channel and to be 

received at the receiver, for example satellite communications [70]. With the use of 

error correction code, the receiver can correct the errors that occurred on the received 

data. Therefore, the receiver requests less number of data retransmission that resulted 

in less data transmission performed by the sensor node. Under normal situation, error 

controls coding are applied to the data before it is transmitted [71]. After the data is 

received at the receiver, the receiver performs error correction on incorrect received 

data to retrieve the correct data. 

 Error correction methods are divided into two different areas. The first 

correction method is the Automatic Request for Retransmission (ARQ) [72]. Whereas 

the second correction method is the Forward Error Correction (FEC) [73]. For ARQ 

technique, the receiver detects any error on the received message. If there is any error 

on the received message, then the receiver requests for retransmission of correct 

message from the transmitter again. Whereas the FEC coding scheme, the transmitter 

side encodes the message to produce additional data (redundant bits) and add these 

data onto the message. A complete codeword is formed by adding the redundant bits 

to the original message. Then the codeword are transmitted across through the 

communication channel. With codeword received, the receiver can detect any error 

and correct the error using the available redundant bits to reproduce the correct 

message. 

 There are two common codes that are still in use, which include the block 

codes and the convolution codes [17] [69] [74]. The block codes encode the input 

message in a fixed block size of k information bits (symbols) for each codeword. The 

block codes will then produce n symbols of output codeword with respect to the 

corresponding k input message symbols. Each of the input messages is encoded 

independently and it is not related to the previously produced codewords. Therefore, 

the encoder is memoryless and this allows the implementation of the encoder in the 
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form of combination logic circuit as mentioned in [75]. Examples of the block coding 

are the Reed Solomon [76] and Hamming code [17] [74]. For the convolutional codes, 

the message are encoded depending on the corresponding k-bit of message block and 

m previous message blocks. Hence an m order of memory space is required for the 

encoder. As a result, the convolutional codes encoder will be implemented in the form 

of sequential logic circuit. Examples of a convolutional codes are the Odenwalter 

code [69] and Self-Orthogonal Codes [17]. 

 Initially, the input message for block coding is divided into blocks, with each 

block in k-bit that is known as datawords (message) [69]. Then it is followed by 2t 

redundant bits that will be added to each corresponding message block to form n-bit 

of codeword. Equation (1) shows the relationship between n codeword, 2t redundant 

bits and k datawords. 

 

Codeword length, n = k + 2t (1) 

 

 In error corrections, the Hamming distance between the two words is the 

measure of differences between the corresponding bits in these words [17] [74]. The 

Hamming distance can be determined through applying the XOR operation between 

these two words. Next, the minimum Hamming distance is determined through 

finding the smallest Hamming distance between the whole words. The notation for the 

minimum Hamming distance is dmin. The Hamming distance is related to the number 

of error bits that occurs in a particular message word. For example, a codeword in the 

form of 10101 is sent and the receiver received the codeword as 00111 [77]. As a 

result, there will be 2 error bits occurring on the received codeword and the Hamming 

distance will then be 3. 

 In order to have a block code that is capable of detecting up to e number of 

errors, the minimum Hamming distance for the block code must be, dmin = e + 1. For 

the block code to be able to correct up to t corrupted bits codeword, the minimum 

Hamming distance for the block code would be, dmin = 2t + 1 [69]. This ensures that 

the block code can correct up to t-bit of errors that occurred on the codeword. As 

shown in Equation (4), the coderate, r for a block code is a measure of how efficient 

of a block code in protecting the codewords [17]. 
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Hamming distance, d = e + 1 (2) 

Minimum Hamming distance, dmin = 2t + 1 (3) 

Coderate,
n

k
r   (4) 

 

 The following sections review on the existing research works that are related 

to Forward Error Correction (FEC) coding schemes in WSNs. 

 

2.5.1 Old-Weight-Column Code in Wireless Sensor Network 

In [78], the Old-Weight-Column code that can correct Single-bit Error and Detect 

Double-bit Errors (SECDED) was implemented onto the Mica2dot sensor node with 

ChipCon CC1000 radio. Two different coding schemes were implemented, where the 

first one was Old-Weight-Column code with 8-bit data and 13-bit codeword 

(SECDEC (13,8)). The second coding scheme implemented was Old-Weight-Column 

code with 24-bit data and 30-bit codeword (SECDEC(24,30)). Besides the Old-

Weight-Column code, a (16,8) systematic quasi-cyclic coding scheme was also 

implemented. The implemented (16,8) systematic quasi-cyclic coding scheme 

(DECTED (16,8)) can correct up to 2-bit errors and detect 3-bit errors [78]. 

 With the use of Error-Correction Code (ECC), it helps to reduce the packet 

drop rate for both outdoors and indoors transmission tests performed [78]. From these 

ECC implementations, the SECDEC(13,8) produced the smallest packet drop rate as 

compared to the SECDEC(30,28). The reason is the SECDEC(30,28) had large 

amount of data (bits) in one packet with 1-bit error correction capability only thus 

having weaker error-correction capability as compared to SECDEC(13,8). As for the 

double-bit error correction coding scheme, the DECTED (16,8) is not that efficient 

than SECDEC(13,8) since most errors encountered are single-bit or multiple-bit errors 

[78]. 

 With this ECC implementations, they are effective on bit error rate that is not 

high and most errors occurred were single bit for each packet of data transferred [78]. 

Due to constraints of low power consumption and small form factor, the error-

correction codes have been designed to be simple. Therefore, these codes could only 

correct single-bit or double-bit errors. When most errors are burst errors, then these 

codes would not be able to reduce packet losses effectively. As a result, error 
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correction codes that could correct more than double-bit errors are needed for such 

situations. However, these error correction schemes were likely to be computationally 

complex and required intensive processing with large amount of memory storage [78]. 

 

2.5.2 Reed Solomon Code in WSNs 

In 1960, the Reed Solomon (RS) coding scheme was presented by Irving Reed and 

Gus Solomon [76] [79]. The discovery of Reed Solomon leads to broad range of 

applications, such as digital television, wireless communications, broadband, compact 

disc (CD) players, satellite communications etc [80]. Reed Solomon code is 

considered as a sub class of the Bose, Chaudhuri, and Hocquenghem (BCH) codes 

[17]. As compared to Hamming code, Reed Solomon has the capability in encoding 

more data since it can encode k number of symbols, with each discrete symbol is an 

m-bit of message [81]. 

 For an (n, k) Reed Solomon (RS) code, the encoder will take in k information 

symbols and generates knt 2 of redundant symbols [82]. The redundant symbols 

produced by the RS encoder, are also known as the parity symbols that will be used in 

RS decoding. Having 2t redundant symbols, the encoder can combine both parity 

symbols and information symbols to produce one block of codeword, with n number 

of symbols for each codeword. With this configuration, the minimum distance of the 

Reed Solomon code will be 12min  td . The breakdown of one block of codeword 

produced by the Reed Solomon encoder is shown in Figure 12. 

 

 
Figure 12   One codeword of Reed Solomon. 

 For RS coding scheme, the encoding of the input message involves the Galois 

Field arithmetic operations in generating the parity symbols. The Galois Field 

arithmetic operations are also involved in decoding the received RS codeword by the 

RS decoder. Consider that α to be a primitive element in the finite field GF(2m) with 

symbols of α, α2, ... , α2t-1, α2t are from the field GF(2m), the generator polynomial g(x) 

for RS(n,k) coding scheme for t number of error correcting capability is shown in 
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Equation (5) [17]. Using the generator polynomial g(x), the message symbols u(x) is 

multiplied with xn-k that shifts the message symbols into the rightmost k stages of a 

codeword. Then the message symbols are divided by the generator polynomial g(x) 

through the use of Galois Field arithmetic operations. In Equation (6), the remainder 

of the division operations produces 2t parity symbols p(x). After which the final 

codeword will be produced by having the message symbols added with the parity 

symbols, as shown in Equation (7). 
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 In hardware implementation, the parity symbols are computed through the use 

of a division circuit, known as the Linear Feedback Shift Register (LFSR) circuit [17] 

[83] [84]. Figure 13 represents the arrangement of the generator polynomial 

coefficients in the LFSR circuit. For the LFSR circuit, the message symbols will be 

clocked into the circuit sequentially to all the 2t registers at the input message 

symbols. While the message symbols are clocked in, Switch 1 is closed with Switch 2 

is set to the input message symbols position. This will allow the k message symbols to 

be input into the registers and at the same time with the entire message symbols are 

clocked out as part of the codeword. After which the entire message symbols are input, 

the Switch 1 will be set to open and Switch 2 will be set to the output of LFSR circuit. 

This will allow the 2t parity symbols to be output to form one block of complete 

codeword. As the Switch 1 is opened, the parity symbols that are shifted from one 

register to another would be affected. Consequently, the LFSR circuit requires a total 

of n clock cycles to generate one block of complete codeword for k message symbols 

and 2t parity symbols. 
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Figure 13   RS(n,k) encoder in LFSR circuit configuration [17]. 

 Beside the Old-Weight-Column Code was used in the WSNs, the RS coding 

scheme was also used in WSNs to provide data reliability. For example in [85], RS 

coding scheme [76] was implemented on the WSNs using the Mica2Dot motes. The 

RS(29,8) coding scheme was then used in such implementation. It required 512Bytes 

for operation table, 64Bytes for matrix, 232Bytes for 8 packet buffers, 68Bytes for 

erasure code component and 4Bytes for other variables. Such implementation requires 

a larger amount of memory storage to store these data in the processor available at the 

motes [85]. 

 In another literature [86], the effect of using different Forward Error 

Correction (FEC) codes for the developed AMPS sensor node was studied. The 

AMPS sensor node was made up of Intel StrongARM 1100 processor and RFM-

TR1000 radio module that operates at 916.5MHz. The FEC codes used in this study 

were the RS, Viterbi and Bose, Chaudhuri and Hoquenghem (BCH) coding schemes. 

For this study, the energy consumption by different FEC codes decoding algorithms 

were determined by using the JouleTrack. By using JouleTrack, the RS coding 

scheme was found to be the most energy efficient for used in the WSNs as compared 

to the other FECs [86]. 

 In simulation study [81], the Bit Error Rate (BER) performance of a few 

different FEC codes for WSNs were considered, which included Hamming, Golay, 

Convolution and RS coding schemes. Among these FEC codes, the RS coding scheme 

was considered to be the best choice for WSNs since it outperformed the others. With 

RS code considered, the power consumption for different of the RS coding schemes 

were studied. The RS(31,21) coding scheme was found to give the lowest power 

consumption in comparison with the other coderates of RS coding scheme. Therefore, 



 

35 
 

the RS(31,21) was considered to be the optimal choice of ECC for Wireless Sensor 

Network applications [81]. 

 In [87], the Reed Solomon channel code was performed on WSNs by using 

software implementations. In this study, the CC2530 Texas Instrument sensor nodes 

(motes) were used. The use of soft implementations of Reed Solomon coding scheme 

on the transmitted data required MATLAB program that was run on a PC workstation. 

Such implementation requires a PC to perform RS encoding before the image data 

transmit across the WSNs. It would not be feasible for actual WSNs deployment since 

a PC could not be put together to be used with a sensor node that has limited energy 

source [87]. 

 

2.5.3 Turbo Codes in WSNs 

In the simulation study [88], powerful soft-decision decoding algorithm such as Turbo 

Code coding scheme [89] [90] was considered for hard-detected signal in the WSNs. 

For a simplified wireless multi-hop sensor network channel model (Figure 14), the 

channel could be assumed to be a chain of symmetric Binary-Input and Binary-Output 

(BIBO) channel. Usually, the intermediate nodes perform the regenerative repeating 

process such as error correction, detection and re-encoding. If no error is detected, the 

data are sent to the next intermediate node until to the Central Station (sink). If error 

is detected, the node requests retransmission of the data again. However, these 

processes extend latency but reliable relay data transmission are guaranteed [88]. 

 The author presented a channel model without error correction and detection 

processes in the intermediate nodes [88]. Therefore, these intermediate notes only 

have regenerative repeating process that performed routing and relayed the data to the 

Central Station, which is shown in Figure 15. For the Central Station (destination), a 

powerful soft-decision decoding (Turbo Code decoding) was performed onto the 

received hard-detected signal, as shown in Figure 16. The simplified system model 

presented by the authors did show that the error-detected reliability had slight 

improvement than the conventional turbo decoding scheme with hard-decision at low 

range of SNR. As for the moderate to high range of SNR, the simplified system model 

had shown a 2.0dB improvement in BER performance [88]. 
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Figure 14   Simplified multi-hop channel model of WSN [88]. 

 
Figure 15   Regenerative repeating process at intermediate node [88]. 

 
Figure 16   Simplified system model without regenerative repeating process [88]. 

 In another literature [91], a MATLAB simulation on the Parallel Concatenated 

Convolutional Code (PCCC) Turbo Code configuration was studied for WSNs. The 

design of the PCCC Turbo Code technique was built with coding rate of 1/3 for 

performance and systematic feature. The approach used the PCCC encoder circuit at 

the source node to encode data packets. Then the PCCC decoder circuits on the 

routing nodes were shifted to the base station such that the decoding process was 

performed at unlimited energy resources platform. Such method is much more energy 

efficient and less processing time required on the routing nodes. MATLAB simulation 

was performed for a one dimensional sensor network with a source node transmitting 

Turbo Coded data over a multi-hops network to the base-station. The results from the 

simulation were very promising with increased in Bit Error Rate performance [91]. 

 In another simulation study [92], a new algorithm for distributed encoding and 

decoding of Turbo Code for a heterogeneous WSNs was presented. The proposed 

algorithm distributes parallel concatenation of multiple convolutional codes encoder 

and iterative decoder structures into various sensor nodes. With this algorithm, larger 
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coding gains were able to be achieved by using the parallel concatenation of multiple 

convolutional codes. In the mean time, it also provided reliable communication over 

noisy channel. The simulation results had shown the practicality of using the high 

performance of distributed encoding and decoding of Turbo Codes in sensor nodes 

with limited computational resources [91]. 

 In [93], a Xilinx CoolRunner-II Complex Programmable Logic Device (CPLD) 

Turbo Code encoder was developed for WSNs. The developed CPLD Turbo Code 

encoder was coupled with Crossbow’s MICAz to form a complete sensor node. When 

processing and transmission of data, the use of CPLD Turbo Code encoder (hardware-

based) had led to a 40.7% decrease in energy consumption compared to the software-

based Turbo Code encoder. At coderate of 1/3, the processing/transmission time for 

each packet (480bits) of hardware-based Turbo Code encoded data required 12.682ms. 

Meanwhile, there was a significant amount of reduction in message retransmissions 

when using the Turbo Coding compared to uncoded data transmission in noisy 

communication channel. As such, the reduced in message retransmission also lead to 

a reduction of 44% overall energy consumption of the sensor node [93]. 

 

2.5.4 Cauchy Reed Solomon in WSNs 

A reliable data transmission for metal fill monitoring with the use of WSNs was 

introduced [94]. The literature uses the Cauchy Reed Solomon (CRS) erasure coding 

scheme to recover correct data. This reduces the amount of retransmission thus 

increase the network bandwidth with more packets transmitted by each mote. Cauchy 

matrix was used to perform the systematic Reed Solomon encoding onto the sensed 

information (data). Systematic Reed Solomon encoding still shows the message 

(original data) in the encoded codeword that does not give any security protection 

against eavesdropping [94]. 

 

2.5.5 Hybrid ARQ/FEC Error Control in WSNs 

The simulation study in [62] showed that the use of both convolutional codes for error 

correction and Automatic Request Retransmission (ARQ) in WSNs can significantly 

increase the node and network lifetime. There are situations where the link error rates 

among different pairs of network nodes are different. Since there are some nodes that 
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have over dimensioned error control schemes, this generates a reduced network 

energy efficiency which is not desirable. Therefore, a Hybrid ARQ/FEC (HARQ) 

protocol was proposed to recover errors before requesting a retransmission. This is 

done by optimising the code complexity to be employed along each transmission hop. 

The memory order is also optimised depending on the average received Signal to 

Noise Ration (SNR) value. With the use of the optimised complexity, the overall 

energy consumption by the local node processing and the HARQ retransmission 

protocol is reduced [62]. 

 In [95], a simulation study was carried out on the use of hybrid ARQ/RS 

scheme to enhance the quality of service for multimedia content (eg. video) over 

multi-hop WSNs. In this study, a few different RS coding schemes were used and 

combined with ARQ to give a hybrid ARQ/RS scheme. Based on the MICAz video 

sensor nodes (motes) platform, the simulation study was performed by using ns-2 

network simulator and along with video quality evaluation tool, Evalvid. Based on a 

perceived video quality and frame loss rate, the results showed that hybrid ARQ/RS 

scheme outperformed the individual RS and ARQ schemes [95]. 

 

2.5.6 Hamming Code in WSNs 

Hamming code [83] was considered to be the first class of linear block codes for use 

in error correction [17]. For Hamming code, with a minimum Hamming distance of 

dmin = 3, it is capable to correct up to single error bit that occurs over a length of n 

codeword [77]. In the meantime, the Hamming code can detect up to a total of 2 error 

bits for a particular codeword. Details on the method of encoding and decoding the 

codeword can be referred to [17]. 

 Hamming coding [83] is one of the most commonly used techniques in sensor 

networks, to guarantee data integrity at the sink node [96]. Two different Hamming 

coding schemes were tested and compared with the CRC coding scheme in [96]. The 

Hamming coding schemes implemented were (63, 57) Hamming code and (7, 4) 

Hamming code. As for comparison, the 12-bit Cyclic Redundancy Check (CRC) 

coding scheme was used to compare with the Hamming codes. 

 A MATLAB simulation model was built to study on the effect of using error 

correction coding schemes [96]. With the Additive White Gaussian Noise (AWGN) 

channel, the effectiveness of these coding schemes was compared by measuring its 
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Information Per Joule (IPJ). This measured the compromise between the data 

throughput and the lifetime of the sensor node. From the MATLAB simulation model, 

the Hamming code has a very low effect on sensor network lifetime. Whereas, the 

CRC code has a significant effect on the lifetime of the sensor network, which was a 

reduction of 37.3% as compared to an uncoded system. This is due to CRC’s high 

processing energy required at high Signal to Noise Ratio (SNR), where no 

retransmission was needed [96]. 

 As for the long (63,57) Hamming code, it was found that the code had given 

the lowest SNR and the highest Energy per Binary Operations, Eoper for higher IPJ 

[96]. In comparison to the IPJ for both CRC and (7,4) Hamming code at highest SNR 

and lowest Eoper, the IPJ for the long Hamming code at the worst conditions 

outperforms both codes at its best condition. Therefore, long (63,57) Hamming code 

is much more suitable in sensor networks than that of the (7,4) Hamming code for 

implementation [96]. 

 

2.5.7 Error Concealment for Robust Image Transmission over WSNs 

The watermarking based Error Concealment (EC) approach [97] was used to provide 

a robust image transmission over WSNs [63]. For this simulation study, DWT is 

performed onto the image data to produce DWT wavelet coefficients and also a 

minimised replica of the image (LL2). These minimised replica is then embedded into 

the macro-blocks of subbands (LH1, HL1, HH1). After which, inverse DWT is 

performed onto the watermarked image in wavelet domain. The EC encoding phase 

produces watermarked image without changing the size of original image. Without 

reducing the image data size, the whole reproduced image is then transmitted to the 

base-station [63]. 

 

2.5.8 LDPC Coding in WSNs 

For LDPC error correction, a custom designed processor that performed data 

encoding in bits was implemented onto the FPGA [98]. The LDPC encoder/processor 

was developed onto a Xilinx Vertex-II XC2V6000-6 FPGA, having four different 

configurations. The hardware utilisation for 1 encoder instances was 870 slices and 19 

Block RAMs. For the case with 16 encoder instances, the LDPC encoding was 
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performed onto the data with block length of 2,000 bits at a code rate of ½ and 

operating frequency of 82MHz. In this 16 encoder instances, this implementation 

required a large amount of hardware utilisation required, which required a total of 

16906 slices and 107 Block RAMs. Furthermore, half of the encoded block length of 

the codeword consisted of only the data to be transmitted. Therefore, through the use 

of the LDPC processor, the sensor nodes have to transmit a large amount of redundant 

data and it is considered to be not efficient for coding in WVSNs [98]. 

 In [99], simulation studies on the proposed combined Multiple Input Multiple 

Output (MIMO) and Low-Density Parity-Check (LDPC) codes [100] system for 

WSNs was presented. Multiple sensor nodes were used to form the MIMO system 

that allows higher data transmission rate between the master unit (base-station) and 

the sensor nodes. To further enhance the data transmission rate, a (128,256) Non-

Systematic LDPC code was used in the proposed system. From the MATLAB 

simulation models, the results showed that good BER performance was maintained 

with the used the LDPC code. As such, the use of LDPC code did improve on the data 

transmission and reduce the number of retransmission required which would 

relatively reduce the transceiver transmission power [99]. 

 

2.5.9 Summary 

Eight different Forward Error Correction (FEC) coding schemes were discussed, 

which include the Old-Weight-Column Code, Hamming Code, RS Code, Turbo Code, 

CRS Code, LDPC Code and BCH Code. From these reviewed literatures, most of the 

FEC codes proposed for use in the WSNs were simulation studies. A few research 

works were implemented onto actual sensor nodes that were equipped with a sensor, a 

microcontroller and a Radio Frequency (RF) transceiver. 

 For the Old-Weight-Column coding scheme, the presented SECDEC(13,8) 

had the capabilities of correcting only a single bit error. The SECDEC(13,8) is 

suitable for use in low data transmission, for example WSNs. This is not suitable for 

WVSNs because it is not efficient in correcting single error bit for large amount of 

image data that may have more than 1 error bit. As for Hamming code, it also could 

correct a single bit error which is not efficient in providing error protection for large 

amount of data. Turbo Code, LDPC Code and BCH Code do provide an acceptable 

level of error protections but they need complex coding scheme in order to be 
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implemented onto the WSNs. Complex architecture of the coding scheme would 

require a large amount of hardware area and thus increases the power consumption. 

 The block coding method, particularly Reed Solomon coding is considered for 

this research. The reason is that the RS coding schemes can correct more number of 

errors (in Bytes) in one codeword. Whereas, Hamming code only can correct 1-bit of 

error in one codeword. As such, the RS code is very effective in correcting random 

errors and random burst errors [17]. Hence the RS code is considered to be efficient 

coding schemes as compared with other block coding schemes [86] [81]. As a result, 

Reed Solomon coding scheme is preferred to be implemented on the WSN to provide 

data integrity. Meanwhile, the RS coding scheme does not provide any protection 

against security threats when the data are transmitted across the wireless 

communication channel. 

 

 

 

2.6 ENCRYPTION IN WSN 

 

Transmitting captured information securely in a battlefield is the upmost importance 

such that these information would not be known when they are eavesdropped by the 

enemy. Therefore, the research on security in data transmission for WSNs were one of 

the mainly focused area. Many research works were available in the literature on this 

research area. In this Section 2.5, some of the existing research works that were 

related to the security scheme in the WSNs were reviewed. 

 

2.6.1 SPINS: Security Protocols for Sensor Networks 

A set of Security Protocols for Sensor Networks (SPINS) was presented in the 

literature [101]. The SPINS security protocol run on two secure building blocks, 

which are the Secure Network Encryption Protocol (SNEP) and the Tesla. The 

SNEP offered data confidentiality, two-party data authentication and data freshness. 

Whereas, the Tesla provided authenticated streaming broadcasting. In this literature, 

the SPINS was implemented onto SmartDust prototype nodes, which consists of a 

916MHz  communication radio, 8kB instruction FLASH memory, 512Bytes of RAM, 
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512Bytes of EEPROM and an 4MHz 8-bit processor. The nodes were run on TinyOs 

operating system that consumed almost half of the instruction FLASH memory. 

Therefore, it only had 4500Bytes of available memory for security application. With 

the resources constraints, the implementation of the Tesla was achieved with 2kB of 

programme memory and 120Bytes of RAM [101]. 

 

2.6.2 TinySec Security Architecture for WSNs 

In year 2004, a TinySec security architecture, which is the first fully implemented link 

layer security suite, was developed for WSN [102]. The TinySec was implemented 

onto a few different platforms, which are the Mica, Mica2 and Mica2Dot nodes. Each 

of these nodes consists of Atmel processors. While Mica sensor node uses the RFM 

TR1000 radio, both the Mica2 and Mica2Dot sensor nodes use the Chipcon CC1000 

radio. Besides, the TinySec was ported to a Texas Instruments microprocessor. The 

TinySec was written in 3000 lines of NesC code, which is the programming language 

for TinyOS. Such implementation required a total of 728Bytes of RAM and 

7,146Bytes of program space. It can be seen that the TinySec required large amount 

of memory (hardware) and heavy processing while the data were encrypted thus a 

10% increase in power consumption as compared to without having TinySec [102]. 

 

2.6.3 Advanced Encryption Standard for WSNs 

In [103], an Advanced Encryption Standard AES-128 Block Cipher was developed 

that performs the AES encryption. The proposed design for the AES-128 Block 

Cipher was optimized for low die size and low power consumption. The AES-128 

Block Cipher was developed onto a 0.35m CMOS technology chip and occupied an 

area of 3,400 GEs (Gate Equivalents). The power consumed by the developed AES 

chip was 5mW when the chip was operating at 100kHz and the operating voltage at 

1.5V [103]. 

 In [104], a simulation study to develop secure Advanced Encryption Standard 

(AES) coprocessors with four different S-Box configurations for WSNs were 

performed. All these configurations were implemented with the use of United 

Microelectronics Corporation (UMC) 0.25m 1.8V technology chip library from 

Synopsys Design Compiler. First method of applying the AES was by constructing 
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the S-Box circuits directly by using combinatorial Look-Up-Table (LUT), which 

required 573 gates count. Second method of implementing the AES was by using the 

Decode-Switch-Encoder (DSE) S-Box which needed 780 gates count. The third 

method was by multiplicative inverse in composite field GF(24) that needed 373 gates 

count. The last method of implementing the AES was by using the improved power-

efficient Galois Field with Positive Polarity Reed-Muller required a total of 577 gates 

count. From all the configurations of S-Box, the GF AES is considered to have the 

least hardware utilisations in performing AES encryption [104]. 

 In [105], AES encryption scheme was implemented onto the WSNs with the 

use of Texas Instrument MSP430 processor and Chipcon CC2420 ZigBee radio. The 

written C code for AES encryption-decryption was optimized such that to match the 

communication speed of the ZigBee radio. The software implementations of the AES 

encryption scheme for the MSP430 processor required a total of 260Bytes of RAM 

and 5,160Bytes of ROM [105]. 

 

2.6.4 HIGHT Block Cipher for Low-Resource Device 

In the year 2006, a new block cipher known as HIGHT was implemented in [106]. 

The authors had presented HIGHT block cipher with 64-bit block length and 128-bit 

key length. The block cipher was designed for low-resource environment such as 

RFID tag and other tiny ubiquitous devices. This block cipher requires a total of 3048 

gates (435 flip-flops) with a throughput of 150.6 Mbps, operating under the frequency 

of 80MHz. Each HIGHT encryption performed by the designed block cipher would 

require 34 clock cycles [106]. 

 Later, the HIGHT encryption algorithm was considered for implementation in 

the WSNs, which was presented by the literature [107]. Such implementation was 

performed onto the Mica2 mote, a low-powered sensor node developed by UC 

Berkeley. The Mica2 mote consists of an 8-bit Atmel AVR processor, 128kB of code 

memory, 512kB EEPROM, 4kB of data memory and a ChipCon CC1000 radio. Since 

the operating system of the Mica2 mote is in TinyOS, the HIGHT block cipher was 

written in NesC. The HIGHT block cipher implementation requires a total of 

3906Bytes of ROM and 584Bytes of RAM [107]. 
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2.6.5 MiniSec Architecture for Secure WSNs 

In later years, a secure sensor network communication architecture known as MiniSec 

was then introduced in the literature [108]. The MiniSec was developed as to achieve 

lower energy consumption and higher security level than the previously proposed 

TinySec [102] architecture. The MiniSec was implemented onto Moteiv Telos mote 

that features 8 MHz TI MSP430 microcontroller that has a 16-bit Reduce Instruction 

Set Computer (RISC) processor. The Moteiv Telos mote transmits data through the 

use of available CC2420 radio. 

 Two different modes of MiniSec were presented, which are the MiniSec-U 

and MiniSec-B. For the MiniSec-U, it involves two security primitives, which are the 

Offset CodeBook (OCB) encryption and Skipjack encryption. The MiniSec-U 

requires about 4000 lines of NesC code with 874 bytes of RAM and 16KB of code 

memory utilisations. Nevertheless, the 80-bit symmetric keys used in the Skipjack 

block cipher will not be secured in future that was mentioned in the literature [109]. 

Whereas for MiniSec-B, it utilizes both loose time synchronization and Bloom filters 

for implementation. However, details of hardware implementations for MiniSec-B 

were not mentioned in the literature [108]. 

 

2.6.6 TinyECC: Elliptic Curve Cryptography in WSNs 

In [110], a TinyECC was developed based on the Elliptic Curve Cryptography (ECC) 

and implemented onto the WSNs. The developed TinyECC included three ECC 

schemes, which are the Elliptic Curve Diffie-Hellman (ECDH) key agreement scheme, 

the Elliptic Curve Digital Signature Algorithm (ECDSA) and the Elliptic Curve 

Integrated Encryption Scheme (ECIES). These ECC configurations were 

implemented onto a few different sensor platforms, which are MICAz, TelosB, Tmote 

Sky and Imote2. These are the popular sensor platforms which were embedded with 

8-bit, 16-bit and 32-bit processors respectively [110]. 

 Besides, a set of optimization switches was added to provide flexible 

configuration of TinyECC such that different resource consumptions and performance 

demands were met [110]. As reported in the literature, lower energy consumption was 

achieved for ECDSA, ECIES and ECDH configurations when all the optimization 

switches enabled. However, such implementations had a great increased in ROM and 
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RAM utilisation. For example, ECDSA required a total of 19,308Bytes of ROM and 

1,510Bytes RAM on MICAz sensor platform when the optimization switches were 

enabled. While the optimization switches were disabled, the ECDSA required 

10,180Bytes of ROM and 152Bytes of RAM. With all the optimization switches 

being disabled, the code size has been greatly reduced but the execution time of 

TinyECC is increased which increased the energy cost by 6 to 25.4 times [110]. 

 

2.6.7 CURUPIRA Block Cipher for WSNs 

In [111], the CURUPIRA encryption was implemented by using VLSI with 0.13m 

technology. The proposed CURUPIRA block cipher uses a 96-bit key and it operates 

for 10 rounds. For this CURUPIRA block cipher, it involved both the Key Scheduling 

unit and the CURUPIRA Core unit. The implementation achieves a throughput 960 

Kbps at 100 KHz frequency. This implementation requires gate counts of 9,450 gates 

(1,350 flip-flops) and 40 bytes of block RAM. The CURUPIRA Block Cipher 

requires to undergo a complex processing in order to have the data encrypted that 

would increase the image data transmission latency. Besides, high throughput with 

high hardware utilisation of the CURUPIRA Block Cipher is not recommended for 

use in the WSNs, as it introduces higher power consumption [111]. 

 Previously developed TinySec [102] and MiniSec [108] do have security 

concerns that lead to the development of CURUPIRA-2 block cipher for WSNs [112]. 

In this literature [112], there are 2 different configurations of CURUPIRA-2 block 

ciphers were developed and evaluated. One of the CURUPIRAC-2 configurations was 

implemented with two 256-byte tables (one for S-Box and another for the xtimes 

operations) and uses many pointers and matrices. For another case, CURUPIRAk96-2 

configurations were restricted to 96-bit keys and relied on basic-type variables instead 

of indirect addressing instructions used in CURUPIRAC-2. Both of these 

configurations were implemented onto the 8-bit PIC18F8490 microcontroller. The 

CURUPIRAC-2 requires a total of 512Bytes of ROM and 1,238Bytes of programme 

memory. Then the CURUPIRAk96-2 requires a total of 512Bytes of ROM and 

1532Bytes of program memory [112]. 
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2.6.8 Broadcast Encryption Scheme in WSNs 

In 1993, the broadcast encryption scheme was initially introduced by Fiat and Naor 

[113]. Based on the Identity-Based Encryption (IBE) and Attribute-Based Encrpytion 

(ABE), an efficient broadcast encryption scheme was proposed by the literature [114]. 

The simulation study showed that the proposed scheme was also collusion resistant 

and stateless. The proposed broadcast encryption scheme in this literature is assumed 

to be performed in simulation since the authors did not mention the hardware 

involved [114]. 

 In [115], another efficient Identity-Based Broadcast Signcryption (IBBSC) 

scheme was proposed for WSNs. The proposed IBBSC scheme was an extension of 

Delerablée’s Identity-Based Broadcast Encryption scheme [116]. The proposed 

IBBSC scheme was then implemented on the Tmote Sky sensor platform which was 

equipped with MSP 430F1611 microprocessor [115]. 

 

2.6.9 Authenticated-Encryption Schemes in WSNs 

In [10], a different Authenticated-Encryption with Associated Data (AEAD) schemes 

were tested in WSNs. The authors found that the CCFB+H, EAX, OCB and 

LETTERSOUP algorithms have its corresponding performance for different security 

level and data size. With the use of MSP430-size and MSP430-ram-usage tools, the 

authors managed to determine that CCFB+H algorithm requires 3,856Bytes of ROM 

and 204Bytes of RAM. As a result, the CCFB+H algorithm was selected for used in 

the proposed AEAD scheme because the small memory usage of the block cipher 

used in this algorithm. The proposed AEAD schemes were implemented onto the 

Crossbow TelosB nodes (motes) [10]. 

 

2.6.10 Crypto-Processor Encryption Algorithms for WSNs 

The Crypto-Processor architecture that performs the encryption algorithms onto the 

sensed data before transmitting it across the WSNs [117]. As mentioned in this 

literature, software implementation of the encryption algorithms are considered to be 

less energy efficient, less time efficient and also less secure. Software based 

encryption algorithms are vulnerable to security threat such as ease in modification 

and compromising the keys used for encryption. As a result, a Crypto-Processor 
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architecture was designed for a custom hardware platform that provides hardware-

based key generation, storage and encryption. The Crypto-Processor consists of a few 

encryption techniques which includes AES-128 encryption, Elliptic-Curve GF(163) 

and SHA-256 encryption. The developed Crypto-Processor was implemented onto 

Xilinx Spartan-6 FPGA and required a total of 4828 slices and operates at 92.67MHz 

with power consumption of 17mW. However, the Crypto-Processor only provides 

security protection on the data and does provide any error correction capabilities on 

the encrypted data. Usually encrypted data (ciphertexts) do not have any tolerance 

against error since decrypting the ciphertexts requires correctly received data [117]. 

 

2.6.11 Summary 

For most of the proposed encryption block cipher, the implementations were mainly 

programmed onto the available microcontroller of the sensor nodes. As for FPGA 

implementation of encryption schemes, the AES technique would require the least 

amount of hardware compared to both Crypto-Processor and CURUPIRA encryption 

method. The encrypted data produced from the developed Block Cipher do not have 

any error correction capabilities. Decrypting erroneous ciphertext (encrypted data) 

would lead to obtaining incorrect data (plaintext). Any received error encrypted data 

at base-station, it still need to rely on Automatic Request for Retransmission (ARQ) to 

retransmit the encrypted data until correct data is received. Thus it would require the 

sensor node to spend additional transmission energy for retransmitting the data. 

Therefore, this research was carried out as to develop a joint encryption and forward 

error correction scheme processing framework that would provide both data security 

and data reliability in the resource constrained WVSNs. Hence, the Cauchy Reed 

Solomon (CRS) coding scheme was considered in this research, as this coding scheme 

has both encryption and forward error correction capabilities [20]. 
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2.7 JOINT SCHEMES 

 

Compression schemes, forward error correction schemes and encryption schemes for 

use in WVSNs were review in the previous Section 2.3, Section 2.4 and Section 2.5, 

respectively. All these schemes were performed in separate module and combining 

them would result in complex hardware implementation for the WSNs. In order to 

reduce the hardware complexity, many research works were performed and to prove 

the feasibility in combining the aforementioned schemes together in WSNs. Therefore, 

the following Section 2.6 describes the existing research works on combined schemes 

(eg. compression with encryption, encryption with error correction, compression with 

error correction) for used in the WSNs. 

 

2.7.1 Joint Source Channel Coding and Power Control for WSNs 

In [118], the literature combines JPEG2000 compression and error resilient coding 

scheme on image transmission over WSNs to provide both image compression and 

error protection. The authors proposed an energy efficient system to minimize the 

overall processing-and-transmission energy consumption, known as low-complexity 

Joint Source Channel Coding and Power Control (JSCCPC) algorithm. The system 

does not provide any security protections and this allows the adversary to learn any 

coded data transmitted across the WSNs. Simulation study shows good performance 

is achieved by the JSCCPC algorithm [118]. 

 

2.7.2 Video Compression BCH Code in Wireless Video-Surveillance Networks 

In another literature [119], simulation studies on the effect of combined video 

compression scheme and FEC coding scheme for Wireless Video-Surveillance 

Networks were carried out. For the simulated system platform, an Intel StrongARM 

1100 microprocessor operating at 59MHz was considered to be used for this 

simulation studies. The JPEG integer kernel with 8:1 image compression ratio was 

selected to compress streams of image data. As reported by the authors, such 

operations (compression) would required to have energy consumption of 2.87mJ and 

execution time of 89.8ms. Next, the BCH(255,177,11) coding scheme was integrated 

with the JPEG integer kernel to provide reliable data transmission in a noisy 
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communication channel and protect streams of compressed image data. As such, the 

effects of using the FEC coding scheme on the compressed image data were 

investigated. From the simulation studies, it showed that FEC always provides 

successful image delivery to the base-station. This reduced the energy consumption of 

sensor nodes when less number of compressed image data retransmission was needed. 

However, the software implementation (StrongARM processor) of FEC required an 

enormous energy cost as compared to hardware implementation. Therefore, the 

authors recommended to use FEC dedicated integrated circuit (hardware 

implementation) for the Wireless Video-Surveillance Networks, especially when the 

communication channel is very bad [119]. 

 

2.7.3 SAC and Multiple-Input Turbo Code for WSNs 

In the effort of combining three schemes together, combined secure data aggregation 

and source-channel coding algorithm (called as SAC) was proposed to provide data 

compression, data security and reliability for the WSNs [24]. Data aggregation was 

used to reduce the redundant data and combine several unreliable data measurement 

to produce more accurate data. When direct communication between two neighbour 

sensor nodes is available, sensor node with more residual energy performed the data 

encryption and source-channel coding using the Multiple-Input Turbo (MIT) code on 

the encrypted data. However, the MIT code was only performed by the sensor nodes 

to provide reliable data transmission in WSNs when the Bit Error Rate (BER) is not 

acceptable. For unacceptable BER, the performance of the MIT code was evaluated 

by simulating it with an Additive White Gaussian Noise (AWGN) channel at a 

coderate of ½. From the evaluation results, it showed the feasibility of using 

combined secure data aggregation and MIT code for WSNs [24]. 

 

2.7.4 Robust Encryption for Secure Image Transmission in Wireless Channels 

An “Opportunistic Encryption” was introduced and used to encrypt the JPEG 

compressed image [120]. The “Opportunistic Encryption” performed encryption on 

image data with different security level based on the channel conditions. The study 

claims that the “Opportunistic Encryption” does provide a better throughput compared 

to fixed block length encryption.  At the same time, better performance was achieved 



 

50 
 

by “Opportunistic Encryption” under all channel conditions. However, the authors did 

not mention the error correction code used to protect the encrypted compressed image 

data. If there are any errors occurred onto the encrypted image data, it may cause 

incorrect compressed image data to be decrypted. Furthermore, incorrect compressed 

image may cause degradation in the quality of reconstructed image. Therefore, this 

may increase the rate of retransmission thus reducing throughput of the wireless 

network [120]. 

 

2.7.5 FPGA Image Compression Encryption Scheme 

Image Compression Encryption Scheme (ICES) implemented on Altera FPGA was 

proposed in [121]. The ICES compresses the image through the use Significance-

Linked Connected Component Analysis (SLCCA) algorithm, which can achieve a 

high compression ratio and little distortion. After compressing the image, AES is used 

to encrypt the compressed image data such that it provides security on the image data. 

The study also shows that the hardware approach (FPGA) of encryption are faster 

compared to software-based solution (eg. Visual C++, JAVA) [121]. 

 

2.7.6 Error-Correcting Cipher for Wireless Networks 

In [122], an error-correcting block cipher was proposed that performs both encryption 

and error correction for use in wireless networks. The High Diffusion (HD) code was 

used in the proposed cipher which is capable of providing security level similar to 

AES (in terms of number of active S-Boxes). Besides, the HD code also ensures good 

error-resilient on the encoded data. The proposed block cipher requires a long 

complicated processes and many keys (eg. Cipher key, Round key) to perform the 

encryption process [122]. As such, it is much more suitable to be performed in 

software based rather than in hardware based. 

 

2.7.7 MVMP Secure and Reliable Data Transmission in WSNs 

In [123], a new Multi-Version Multi-Path (MVMP) mechanism was proposed for use 

in the WSNs. The proposed MVMP mechanism integrates data segmentation, FEC 

coding, multiple paths and multiple versions of cryptographic algorithms together in 
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order to achieve secure and reliable data transmission in WSNs. For encrypting the 

data, the MVMP mechanism uses a group of different Secret-Key Cryptography (SKC) 

(such as Skipjack, AES/Rijndael etc) and Public-Key Cryptography (PKC) (including 

Elliptic Curve Cryptography (ECC), NtrEncrypt etc). Once the data are encrypted, 

encrypted data are reorganized into k-packet size blocks. Then the selected Reed 

Solomon (RS) code encodes the encrypted data to ensure reliability and less request 

retransmission of data is needed [123]. 

 

2.7.8 ContikiSec in WSN 

The use of Contiki operating system for Wireless Sensor Network with encryption 

schemes was presented in [124]. The author presented it as ContikiSec that is 

implemented onto the Modular Sensor Board (MSB-430). It has three different modes 

of operations, which are ContikiSec-Enc, ContikiSec-Auth and ContikiSec-AE. 

ContikiSec-Enc provides confidentiality and integrity, with Initialization Vector (IV) 

added, encryption using Cipher Block Chaining-Ciphertext Stealing (CBC-CS) with 

AES as underlying block cipher. ContikiSec-Auth provides authentication and 

integrity, through removing checksum field and includes a Cipher-based Message 

Authentication Code (CMAC) cryptographic algorithm [124]. 

 ContikiSec-AE gives the highest security level that provides confidentiality, 

authentication and integrity [124]. This mode uses the OCB mode with AES as 

underlying block cipher, with a single shared-key for encryption and authentication. 

However, the ContikiSec-AE has the highest power consumptions among all these 

three operations. Besides, these implementations use the available microcontroller 

MSP430F1612 and Chipcon CC1020 that is embedded onto the MSB-430 board. The 

Contiki configuration was written in C language and utilized 2kB of RAM and 40kB 

of ROM [124]. The amount of actual hardware utilisation is not fully optimized since 

there will be unused peripherals available in the microcontroller. 

 

2.7.9 Joint AES-LDPCC-CPFSK Schemes in WSN 

In simulation study [125], a new joint scheme ‘Multilevel/Advanced Encryption 

Standard-Low Density Parity Check Coded-Continuous Phase Frequency Shift 

Keying’ (ML/AES-LDPCC-CPFSK) [126] was introduced for use in the WSNs. In 
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this literature, the authors had incorporated multilevel inputs to AES encryption block 

in multiple of 128 bits (5 x 128 bits). Besides, multilevel inputs to LDPC encoder was 

also incorporated to protect the individual bits at each level of signal points. Based on 

the simulation results, the proposed ML/AES-LDPCC-CPFSK coding scheme did 

have improvement in coding gain and reduction in the number of CPFSK levels [125]. 

 

2.7.10 Secure and Reliable Distributed Data Storage in Unattended WSNs 

Secure and reliable data distributed storage scheme was introduced that is based on 

RS coding scheme [127]. The proposed scheme provides Forward Secrecy (FSe), 

probabilistic Backward Secrecy (BSe) and reliability of data without relying on 

reliable nodes and communication channels. The simulation study also guarantees 

data confidentiality and data reliability against attacks launched by the Mobile 

Adversary [127]. 

 

2.7.11 Reliable and Secure Distributed In-Network Data Storage in WSNs 

Reliable and secure distributed in-network data storage scheme for resource-

constrained WSNs were introduced based on the combination of an elliptic curve 

cryptography scheme and erasure coding scheme [128]. For the proposed scheme, 

integration of both elliptic curve based stateful Public-Key Encryption (PKE) scheme 

and authenticated encryption mode-offset cookbook (OCB). This integration provides 

confidentiality, integrity and authentication, but also forward and backward secrecy of 

data confidentiality at lower energy consumption and memory overhead. The erasure 

coding scheme (RS coding scheme) was used to encode the data into sets of redundant 

fragments that guarantee original data recovery against pollution attack. To maintain 

reliable storage node with valid coded data fragments, simple and efficient data 

fragment integrity and consistency verification scheme was also integrated [128]. 

Performance evaluation was performed in MATLAB with results showing that less 

storage cost and energy consumption, as compared to similar approaches [127]. 
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2.7.12 Error Correction-Based Cipher in WSN 

From the previous literatures [124] [125], two different separate encryption block and 

error correction block were arranged together to provide a secure communication in 

Wireless Sensor Network (WSN). Figure 17 shows the traditional arrangement of the 

two separate encryption and error correction blocks for a secure communication in 

WSN. In [21], the authors had proposed a secure communication system using Error 

Correction-Based Cipher (ECBC) model for use in WSN. The proposed ECBC carries 

out both encryption and error correction in a single step rather than in two separate 

steps. Figure 18 shows the proposed ECBC model that will provide a secure 

communication system that prevents eavesdropper from retrieving the transmitted 

message [21]. 

 

 
Figure 17   Conventional secure communication system model [21]. 

 

 
Figure 18   Secure communication system using ECBC model [21]. 

 Based on the block chaining technique, the ECBC does not only provide 

security protection against eavesdropping but also provides data integrity [21]. For 

hardware implementations, the authors proposed two different ECBC architectures, 

which are the non-pipelined ECBC architecture and the pipelined ECBC architecture. 

For the non-pipelined ECBC architecture, it operates at a maximum frequency of 

130.924 MHz and requires a total of 1,691 slices. Whereas the pipelined ECBC 

architecture, it operates at a maximum frequency of 105 MHz and requires a total of 

2,058 slices [21]. Although hardware usage is lower, compared with the two separate 

AES and LDPC units, the ECBC architecture still acquires a significant amount of 
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hardware area. This would also lead to high power consumption of nodes while 

performing encryption and encoding. Besides, the ECBC architecture has high 

operating frequency that would also relatively contribute to high power consumption. 

Thus the operating lifespan of sensor nodes will be significantly reduced. 

 

2.7.13 Multipath Routing Approach for Secure and Reliable Data in WSNs 

For the proposed approach [129], RS code is used to provide reliability and selective 

encryption is perform to provide security on multipath WSNs data transmission. First, 

the sink estimates the available node-disjoint paths from source node to sink. Then the 

sink decides on which np node path is the most secure paths (satisfy the required 

security level) to transmit data. Subsequently, using the RS coding scheme, the source 

node encodes M fragments of data that produces K parity fragments, which forms a 

complete codeword. Depending on the required security level, encryption is 

performed on the K parity fragments and different amount of data fragments [129]. 

Different fragments these encoded and encrypted data are then transmitted to the sink 

through different node path. This prevents the adversary from decoding the encrypted 

codeword. Extensive simulation studies were conducted on the performance of the 

proposed protocol using C++. However, the encryption method was not stated and the 

hardware complexity of the proposed protocol was not presented [129]. 

 

2.7.14 Compressed Sensing System for WSNs with Reliability 

A system was designed with a Compressed Sensing (CS) based source encoding 

system for the data compression in WSNs [130]. With the use of Cyclic-Redundancy 

Check (CRC) coding, the proposed system has error detection capabilities and it 

discards any received data that consists of any errors. While discarding these error 

data, there is a small reduction in the measurement value. However, it is less 

destructive in obtaining reduced measurement value as compared to reconstructing the 

signal with corrupted measurements. The proposed system is suitable for used in 

WSNs which transfers compressed measurement value and not compressed image 

data. Discarding error compressed image data may cause distortion in the 

reconstructed image [130]. 
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2.7.15 Summary 

Nonetheless, joint compression, encryption and error correction capabilities are 

needed to provide a reliable secure low bandwidth data communications for the 

WVSNs. Compression schemes, security protection schemes and error correction 

schemes were previously developed to work independently without processing them 

in a single architecture. This is because processing them together requires complex 

hardware implementation. Consequently, there is a lack of research focus in this 

particular area. Nevertheless, there are some research works done in combining two 

schemes together. 

 There a few different joint encryption and error correction schemes that were 

previously proposed for WSNs. These include the Error-Correcting Cipher, MVMP, 

ContikiSec and Joint AES-LDPCC-CPFSK scheme. However, these approaches 

combined encryption and error correction schemes together without data compression. 

Besides, combined of compression and error correction schemes together for WSNs 

were also developed, including JSCCPC algorithm, JPEG combined BCH and CS 

combined CRC. Nevertheless these methods do not provide any security protection 

against adversary attack, such as eavesdropping of sensitive data (surveillance images) 

across the wireless communication channel. In the effort of combining these three 

schemes, simulation study on secure data aggregation combined with Slepian-Wolf 

coding principles on Multiple-Input Turbo (MIT) code was introduced. This 

simulation study showed that combining compression, encryption and channel coding 

(error correction) schemes together are feasible for WSNs. 

 As a result, this research was performed to develop a joint image compression, 

encryption and forward error correction processing framework for use in the resource 

constrained WVSNs. The joint image processing framework combined all three 

different schemes such that it provided the capabilities in reducing the size of image 

data, data security protection against eavesdropping and error data recovery at the 

base station. 
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CHAPTER 3 

DEVELOPED DWT CRS MISC 
 

 

In this Chapter 3, the methodology of the developed DWT CRS MISC architecture is 

discussed. At first, the Galois Field (GF) arithmetic operations were briefly 

introduced and explained in Section 3.1. The GF multiplier was one of the important 

functional blocks in the developed DWT CRS MISC architecture. Next, Section 3.2 

describes the developed DWT CRS MISC architecture. Then Section 3.3 describes 

the control signals that are generated by a combinational circuit based on the Boolean 

Logic equation. The memory used in this DWT CRS MISC architecture, including 

programme memory and data memory, are discussed in Section 3.4. The programme 

instructions formats of the DWT CRS MISC architecture are shown in Section 3.5. 

With the developed DWT CRS MISC architecture, an algorithm that performs both 

DWT image compression (filtering) and CRS encoding was described in Section 3.6. 

In Section 3.7, the programme instructions were written and programmed into the 

DWT CRS MISC architecture. 

 

 

 

3.1 GALOIS FIELD 

 

GF operations can be found in many areas such as in error correction coding [17] [73] 

and cryptography systems [131] [132]. Sometimes, the Galois Field operations are 

also known as the finite field arithmetic operations in some literature. Usually, the 

simplest prime field GF(2) is extended to perform the subsequent finite field GF(22), 

GF(24) and GF(28) arithmetic operations. For example, the finite field GF(28) 



 

57 
 

arithmetic operation is used to perform the RS coding scheme and CRS coding 

scheme. For this research, the developed DWT CRS MISC architecture used the 

Galois Field GF(28) arithmetic operations to perform the CRS encoding onto the 

compressed image data. Therefore, a brief introduction on the Galois Field arithmetic 

operations was included in the following Section 3.1.1 and Section 3.1.2. 

 

3.1.1 Galois Field GF(2) 

The Galois Field, GF(2), is the simplest form of prime field arithmetic operations. In 

some context, the Galois Field is also known as the finite field [133]. For this 

arithmetic operations, it contains the elements of 0 or 1 only. Its arithmetic operations 

are only in modulo-2. The arithmetic operations are shown in Equation (8) to 

Equation (11) [73] [17]. 

 

101   (8) 

011   (9) 

001   (10) 

111   (11) 

 

3.1.2 Extension Galois Field GF(28) 

In the Galois Field GF(28), the addition between these two field elements, q(x) and 

w(x), also follows the same principle as the addition of Galois Field GF(2). For the 

addition, the arithmetic operation is carried out by using the bitwise XOR onto the 

corresponding binary representations [133]. Nonetheless, the product of multiplication 

between these two field elements is the product of multiplying both q(x) and w(x), in 

modulo of the irreducible polynomial, for example 1)( 238
2  xxxxP . This 

GF(28) arithmetic operations are used in the DWT CRS MISC architecture that 

performs the CRS(20,16) coding scheme (in Section 3.2 and Section 3.6) 

 By considering that finite field element          82,,, GFxzxzxwxq ba  , the 

Galois Field GF(28) arithmetic operations are shown in Equation (12) to Equation (14). 

 

Let   01
2

2
3

3
4

4
5

5
6

6
7

7 qxqxqxqxqxqxqxqxq    
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   01
2

2
3

3
4

4
5

5
6

6
7

7 wxwxwxwxwxwxwxwxw    

addition, 

       
       0011

2
22

3
33

4
44

5
55

6
66

7
77

wqxwqxwqxwq

xwqxwqxwqxwq

w(x)q(x)(x)za







 

(12) 

multiplication, 

01
2

2
3

3
4

4
5

5
6

6
7

7

2mod

zxzxzxzxzxzxzxz

(x)P w(x) q(x)(x)zb




 

(13) 

where 

7162

534435261773645546

3775665776672011022

716253443526

177263544536277465

5647756657302112033

716253443526

177263544536277364

5546377740312213044

726354

453627736455463774

6556475041322314055

73

645546377465564775

6657605142332415066

7465564775665776

6770615243342516077

wqwq

wqwqwqwqwqwqwqwqwq

wqwqwqwqwqwqwqwqwqz

wqwqwqwqwqwq

wqwqwqwqwqwqwqwqwq

wqwqwqwqwqwqwqwqwqz

wqwqwqwqwqwq

wqwqwqwqwqwqwqwqwq

wqwqwqwqwqwqwqwqwqz

wqwqwq

wqwqwqwqwqwqwqwqwq

wqwqwqwqwqwqwqwqwqz

wq

wqwqwqwqwqwqwqwqwq

wqwqwqwqwqwqwqwqwqz

wqwqwqwqwqwqwqwq

wqwqwqwqwqwqwqwqwqz


























 

7162534435

2617756657766777000

7263

5445362776677710011

wqwqwqwqwq

wqwqwqwqwqwqwqwqwqz

wqwq

wqwqwqwqwqwqwqwqwqz







 

   

inverse/division,   (X)P qqqqqqqq 2
1286432168421 mod  (14) 

 

 The Galois Field GF(28) multiplications shown above was performed using the 

Massey-Omura method that is stated in the literature [134]. The GF(28) multiplication 

operation for hardware implemented is accomplished by performing bitwise XOR 

operations on all the listed bitwise AND operations, which is shown in Equation (13). 

The Equation (13) can be determined through multiplying both field element 

polynomials together. The product of multiplications between both field elements will 
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be substituted with the corresponding primitive polynomial as stated in literature 

[134].  

 Less hardware resources were needed for the RS MISC architecture when only 

one Galois Field, GF(28) multiplier block was used to perform the Reed Solomon (RS) 

coding scheme. Example for RS(255,223), the RS Linear Feedback Shift Register 

(LFSR) encoding circuit would require a total of 32 GF(28) multiplier block. The RS 

LFSR encoding circuit performed the GF(28) multiplication in parallel that requires 

large hardware resources. However, the RS MISC performed the GF(28) 

multiplication sequentially, and it only requires to use one GF(28) multiplier block. 

 

 

3.2 PROPOSED DWT CRS MISC ARCHITECTURE 

 

The proposed new DWT CRS MISC architecture which consists of four main 

functional blocks is shown in Figure 19. The four main functional blocks are 11-bit 

XOR, Galois Field GF(28) Multiplier (GF MULT), 11-bit To 8-bit Conversion 

(11TO8) and an 11-bit ADDER. With these functional blocks, the new custom 

designed DWT CRS MISC architecture has four different programme instructions to 

be used to programme the architecture. The corresponding four programme 

instructions are XOR, GFMULT, 11TO8 and SBN instructions (refer to Section 3.3 

for details on these programme instructions). These four functional blocks are 

designed to take in two input data and then process the input data depending to its 

block’s functionality. The details of these functional blocks are discussed in Section 

3.2.2 to Section 3.2.5. 

 In Figure 19, it shows that the DWT CRS MISC architecture consists of many 

registers. They are the three 11-bit registers (PC, R, MAR), one 12-bit register (MDR), 

and four 1-bit registers (OPCODE0, OCPODE1, N, Z). Besides, there are also two 

11-bit 1-to-4 Multiplexers (MUXs), one 11-bit 4-to-1 MUXs, one 11-bit 2-to-1 MUXs 

and one 2-bit 2-to-1 MUXs. The most important part of the DWT CRS MISC 

architecture is the MEMORY. This is because the MEMORY stores both the 

programme memory and data memory. At the 12-bit output of MEMORY, there is a 

branch off to right from the output, show in Figure 19. The branch off is a 11-bit wide 

word length signal that is connected to the MAR. This is to output the 1st Operand and 
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2nd Operand Memory Addresses to the MAR. Whereas for 12-bit output to the left, it 

will output the 1st Operand and 2nd Operand (data) to the R register and the functional 

blocks respectively. Notice that the Most Significant Bit (MSB) of right output is 

connect to the MSB of MDR. This is have the OPCODE of the programme memory 

to remain the same, when there is a modification on the programme memory. The 

details on the Memory is presented in Section 3.4. 

 

 

Figure 19   Proposed New DWT CRS MISC architecture. 

 For Programme Counter (PC) register, it stores the programme memory 

address location that needs to be read and executed. This is followed by the Read (R) 

register that stores the 1st Operand (data) value read from the Memory. The Memory 

Data Register (MDR) stores the output data from the functional blocks before the data 

is written to the Memory. This is done by having the output of 4:1 MUX drives the 

10:0 bit line input of MDR. Then the MSB of MDR (bit 11) is driven by the MSB of 
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the 2nd Operand, output from Memory. These two connections make up the complete 

11:0 bits input signals into the MDR register. Next, the Memory Address Register 

(MAR) stores the memory address location before data/programme instruction are 

read and written back into the Memory. Both OPCODE0 and OPCODE1 registers 

store OPCODEs that are read from the programme instructions. This will determine 

the two Operands to input to required functional blocks. Lastly, the Negative (N) 

register indicates whether the SBN instruction produces a negative result and the Zero 

(Z) register indicates whether the PC value is zero. Further details on register, refer 

Section 3.3.3 on the detail arrangement of a 11-bit register. 

 Before the MISC architecture operates, the Program Counter (PC) register 

stores the location of the initial programme memory address, where this is the first 

programme instruction that will be executed (read) from the Memory. Once the MISC 

reads its first line of programme code, the PC register will store the next programme 

memory address such that the MISC will read the next line of programme code from 

the Memory again. Usually, the PC register stores next programme code address 

determined by increasing the current programme memory address by 1. However, if 

there is any programme branch occurred, then the current programme memory 

address at the PC register will be added with the ‘Target Address’. As such, the MISC 

will jump to and execute the corresponding targeted programme instructions when 

negative result is obtained from the SBN instruction. Details on how the MISC jump 

to and execute the new ‘targeted’ programme instructions, are further explained in the 

Section 3.5. 

 

3.2.1 NAND Gate Representations 

Logic gates are used in designing digital circuits, such as Inverter (INV), AND gate, 

OR gate, NOR gate and XOR gate. In realization the logic gates, these gates can be 

represented by NAND gates. The reason to represent them in NAND gates is because 

this research is implementing the proposed new DWT CRS MISC architecture into 

FPGA. The FPGA logic blocks can be fine grain modules such as two-input NAND 

gates. Besides, the logic blocks can also be coarse gain modules consisting complex 

structures, such as multiplexers, Look-Up Tables (LUTs) and Programmable Array 

Logic (PAL) [135]. Therefore, conversion of the basic logic gates into NAND gates to 

determine the longest gate delay that may encounter. This is required to set the 
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operating frequency of the proposed DWT CRS MISC. The commonly used gates for 

this DWT CRS MISC architecture are INV, AND, OR and XOR. In Figure 20 to 

Figure 23, the NAND gates representations for AND, OR and XOR gates are shown. 

 

 
Figure 20   NAND gate representation of INVERTER. 

 
Figure 21   NAND gates representation of AND gate. 

 
Figure 22   NAND gates representation of OR gate. 

 
Figure 23   NAND gates representation of XOR gate. 

 

3.2.2 ADDER Block 

The ADDER block in this DWT CRS MISC will be made up of 11 full adders that are 

interconnected with each other. In Figure 24, the basic full adders are made up of 3 

AND gates, 2 OR gates and 2 XOR gates. Based on the NAND gates representations 

in Section 3.2.1, a total of 28 NAND gates are required to represent a basic full adder. 
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Meanwhile, for the output to change, the longest delay path encounter would be 6 

NAND gates, when there are changes at the inputs. 

 

 
(a) Basic logic circuit build up. 

 
(b) Block diagram representation. 

Figure 24  The representations of a full adder. 

 In Figure 25, the logic circuit of the ADDER block was designed for used in 

the proposed DWT CRS MISC architecture. Based on the logic circuit of ADDER 

block, the minimum longest delay path of the ADDER block is determined by 

considering the Bit 0 Full Adder (with 6 NAND gates), 9 subsequent Full Adder (each 

with 4 NAND gates) and 2 XOR gates. In NAND logic gate representations, it will 

encounter a total of 45 NAND gates delays for the outputs of ADDER block to 

stabilise. This situation only occurs when the summation for two inputs does not give 

zero output result. As for zero output result situation, the ZERO (Z) signal output will 

require an additional 9 NAND gates delays. The Z signal output has gates delays of an 

INV gate and 4 AND gates. This result in having the maximum longest gate delay 

path for the ADDER block to be 54 NANDs. 

 The main purpose of the ADDER functional block in the DWT CRS MISC is 

to perform the Subtract and Branch If Negative (SBN) instructions, as mentioned in 

Section 2.1.1. The functional block performs the subtraction of Operand B with 

Operand A (B = B - A). The result of arithmetic subtraction between these two 

Operands is stored back to Operand B. To have Operand A to become a negative value, 

the 1’s complement is performed by bitwise inverse onto Operand A. Then it will be 

followed by 2’s complement onto the bitwise inversed Operand A. The 2’s 

complement is done by adding a Logic 1 to the 1’s Complement of Operand A. In 

order to do this, the CIN signal is used to input a Logic 1 by the control signal circuit 

at Clock Cycle 5. 

 Besides performing the SBN instructions, the ADDER block also increases the 

PC value during Clock Cycles 1, 4 and 8. If negative result is obtained from the SBN 



 

64 
 

instruction, the ADDER block also adds the ‘Target Address’ onto the PC value at 

Clock Cycles 7. This is to execute the next targeted (jump to) programme instruction 

after the current instruction has completely executed. 

 

 
Figure 25   The ADDER Block consisting of 11 full adder 
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 The ADDER functional block is designed to take in two 11-bit data. The 

reason for using 11-bit wide word length of data is the large memory spaces that are 

provided to store the large amount of programme instructions and data into the 

memory. With the 11-bit wide word length, this gives a total of 211 = 2048 address 

memory location available in the memory. 

 

3.2.3 GF(28) MULT Block 

The MISC architecture was designed with the capabilities of performing the Galois 

Field arithmetic multiplications that are required for the CRS coding scheme. The 

advantage of the MISC architecture is that the Galois Field arithmetic multiplications 

are performed on the fly. In comparison to the method that uses lookup table for the 

Galois Field (GF) arithmetic multiplications [71], less amount of memory is needed 

for the CRS MISC processor to perform the GF multiplications. The GF(28) 

Multiplier (GF MULT) block is added into MISC architecture. This will allow the 

MISC to perform the GF(28) arithmetic multiplication onto two input Operands (B = 

B x A). The GF MULT block is needed to perform the CRS(20,16) coding scheme 

since each of the message symbols (input data) is in 8-bit wide word length. 

 The GF MULT block is made up of combinational logic circuits that performs 

the GF(28) Multiplier. The block consists of bitwise ANDs and XORs logic circuit 

processes two input Operands (data). Ideally, the output of combinational logic circuit 

will change immediately once the input changes. However, in reality, the changes in 

output will encounter a slight delay due to the delay of logic gates that are used in the 

circuits. In Figure 26, there are two data inputs (q, w) are fed into the GF Multiplier 

block. Only the 8 Least Significant Bits (LSBs, bit 7 to bit 0) from both data inputs 

are used and the remaining 3 Most Significant Bits (MSBs, bit 10 to bit 8) of both 

data inputs are not used. The reason for not using the 3 MSBs, from both data inputs, 

is the GF(28) multiplications only performs on 8-bit (LSBs) of data. Therefore, the 8 

LSBs from the two input data will be fed into the Block Z7 to Z0. Each of these blocks 

is made up of logic circuits that represents the logic Equation (13) mentioned in 

Section 3.1.2. Figure 27 to Figure 34 shows the details of logic circuits that made up 

the Block Z7 to Z0. The output from these block represents the result for GF 

multiplications of two input data (in 8-bit). So the outputs of Block Z7 to Z0 are 
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connected to the outputs of GF Multiplier block, from bit 7 to bit 0 respectively. 

Meanwhile, the output of 3 MSBs of the GF Multiplier block are set to zero since the 

outputs of GF block are only in 8-bit (8 LSBs of 11-bit). 

 

Table 3   Gates delays of the GF MULT Block. 

No. Block 
Gates Delays 

AND XOR NAND 
1 Z7 1 5 17 
2 Z6 1 5 17 
3 Z5 1 5 17 
4 Z4 1 5 17 
5 Z3 1 5 17 
6 Z2 1 5 17 
7 Z1 1 4 13 

8 Z0 1 4 13 

 

 

 The GF MULT block does affect the operating frequency of MISC 

architecture. Before the result of GF multiplication is written in the Memory, a stable 

output from the GF MULT block is needed. For the output to be stabled, it will 

encounter a certain amount of gates delays. The gates delays for each of the individual 

Block Z7 to Z0 are listed in Table 3. From this table, the longest logic gates delays 

path encounter will be 1 AND gate delay and 5 XOR gates delays. This is considered 

to have 2 NAND gates delays and 15 NAND gates delays respectively. These gates 

are interconnected with each other. The final total count of gates delays will encounter 

in GF MULT block are 17 NAND gates delays. 
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Figure 26   The complete GF(28) Multiplier block for DWT CRS MISC architecture. 

 

 
Figure 27   Block Z0 (Bit 0) internal logic circuit block for the GF(28) Multiplier. 
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Figure 28   Block Z1 (Bit 1) internal logic circuit block for the GF(28) Multiplier. 

 

 
Figure 29   Block Z2 (Bit 2) internal logic circuit block for the GF(28) Multiplier. 
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Figure 30   Block Z3 (Bit 3) internal logic circuit block for the GF(28) Multiplier. 
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Figure 31   Block Z4 (Bit 4) internal logic circuit block for the GF(28) Multiplier. 

 

 

 

 

 

z4

q
4

q
5

q
6

q
7

q
0

q
1

q
2

q
3

w
4

w
5

w
6

w
7

w
0

w
1

w
2

w
3

Longest Path : 1 AND, 5 XOR



 

71 
 

 

 

 

 

 

 

 
Figure 32   Block Z5 (Bit 5) internal logic circuit block for the GF(28) Multiplier. 
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Figure 33   Block Z6 (Bit 6) internal logic circuit block for the GF(28) Multiplier. 

 
Figure 34   Block Z7 (Bit 7) internal logic circuit block for the GF(28) Multiplier. 
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3.2.4 XOR Block 

The XOR block performs the 11-bit bitwise XOR onto the two Operands (data) that 

are input into this functional block (B = B XOR A). Figure 35 shows the internal logic 

circuits of the XOR block. The longest logic gate delays for the XOR block would be 

3 NANDs (1 XOR gate). This would not be the determining factors on the operating 

frequency of the MISC architecture. 

 With the XOR block, it allows the data located at a particular memory location 

to be cleared. This is done by XORing the two same input data together and the zero 

value output data is stored back to the particular memory location. Besides, the XOR 

block can be used to copy the data from the initial location to another empty data 

memory location. In comparison to SBN instruction, the XOR instruction saves an 

additional programme instruction that is required to copy the data from one memory 

location to another new location. Although the XOR block performs 11-bit XOR, the 

XOR can still perform the GF arithmetic addition that involves 8-bit data. Therefore, 

the XOR block plays an important role in performing the GF(28) arithmetic addition 

which is required in encoding the data using the CRS coding scheme. 

 
Figure 35   11-bit XOR Block that performs GF(28) Additions, Data Copying and Clearing Data. 
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3.2.5 11TO8 Block 

For the 11TO8 functional block, its main purpose is to perform the conversion of 11-

bit input data to become 8-bit output data. This is performed by taking the 7 LSBs of 

the input data combined with the MSBs (sign bit or bit 10) of the input data to 

produce a final 8-bit output data. It can seen that the bit 7 output is directly connected 

to bit 10 of the input. This is also meant the concatenations between MSB of the 11-

bit input data and the 7 LSBs of the same 11-bit input data. The two MSBs (10:9) 

output from 11TO8 are fixed to Logic 0. They are fixed to Logic 0 since these bit line 

are not used for the GF arithmetic operations. Once the 4:1 MUX selected the 11TO8 

block, the 10:0 bits of MDR will be driven by the output of the 4:1 MUX. The MSBs 

of the MDR will be driven by the MSBs of the 2nd Operand output from the Memory. 

The internal logic circuit of the 11TO8 block is shown in Figure 36. The logic circuit 

is made up of wire connection from input to output. There is no logic gate involved 

and the logic gate delay is considered to be insignificant as compared to other 

functional blocks, mentioned in Section 3.2.2 to Section 3.2.4. The reason of having 

this conversion function for the MISC architecture is to convert any negative values 

of the DWT coefficients from 11-bit signed data to 8-bit signed data. 

 

 
Figure 36   11TO8 block internal logic circuit. 
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3.3 DWT CRS MISC CONTROL SIGNALS 

 

The proposed DWT CRS MISC architecture requires input control signals to perform 

compression and encoding onto the image data. Each of the programme instructions 

executed by the MISC requires a total of 9 Clock Cycles. During each Clock Cycles, 

different sequences of control signals are generated and input into the MISC 

architecture. The Logic state of these control signals required to input into the MISC 

architecture are shown in the Truth Table (Table 4). The Boolean Logic equation for 

each of the corresponding control signals can be determined from the Truth Table. 

With the Boolean Logic equations determined, as stated in Equation (15) to Equation 

(31), a combinational logic circuit is developed and it generates these control signals 

based on a 4-bit counter. The 4-bit counter counts from 0 to 8 and then restarts to 0 

again once it has reached the maximum value 8. Each counter value changes the 

control signals according to the combinational circuit. Figure 37 illustrates the 

combinational logic circuit that generates the required control signals input into the 

MISC architecture. Note that during Clock Cycle 7, the PC_WRITE control signal is 

depended on the N signal output from the N register in the MISC architecture. The 

longest gate delay encountered by the control signals circuit is 6 NAND gates (i.e. 1 

AND gate and 2 OR gates). The complete simulation waveforms on the control 

signals produced by the combinational logic circuit can be found in Section 4.1. 

 

0120323 CCCCCCCALU_A   (15) 

01203231 CCCCCCCALU_B   (16) 

01230 CCCCALU_B   (17) 

0123013123 CCCCCCCCCCCIN   (18) 

013123 CCCCCCMAR_SEL   (19) 

0123012301230123 CCCCCCCCCCCCNCCCCPC_WRITE   (20) 

0123 CCCCR_WRITE  (21) 

0123 CCCCZ_WRITE  (22) 

0123 CCCCN_WRITE  (23) 

013023023 CCCCCCCCCMAR_WRITE   (24) 
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0123 CCCCMDR_WRITE  (25) 

0123013013123 CCCCCCCCCCCCCMEM_READ   (26) 

0123 CCCCMEM_WRITE  (27) 

23013 CCCCCOP_OUT_SEL   (28) 

0123 CCCCOP1_WRITE  (29) 

0123 CCCCOP0_WRITE  (30) 

0123 CCCCOP_SEL  (31) 

 

 

 

(a) Part 1 

 

(b) Part 2 

Figure 37   Combinational logic circuit for MISC architecture control signals. 
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Table 4   Truth table of DWT CRS MISC control signals. 

 

 

  

CLK ALU_A ALU_B1 ALU_B0 CIN MAR_SEL PC_WRITE R_WRITE Z_WRITE N_WRITE MAR_WRITE MDR_WRITE MEM_READ MEM_WRITE OP_OUT_SEL OP1_WRITE OP0_WRITE OP_SEL

0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0

1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0

2 X X X X X 0 1 0 0 0 0 1 0 1 0 0 0

3 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

4 1 1 0 1 1 1 0 0 0 1 0 1 0 1 0 1 1

5 0 0 1 1 X 0 0 0 1 0 1 1 0 0 0 0 0

6 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

7 0 0 0 0 X 1/0 (N) 0 0 0 0 0 1 0 0 0 0 0

8 1 1 0 1 X 1 0 0 0 0 0 0 0 0 0 0 0
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3.3.1 D-Latch 

In designing digital circuits, the D-Latch is considered as one of the basic building 

block in constructing most sequential circuits [136]. Latches are usually used by 

digital designer to have a sequential device that watches its inputs consistently. When 

enable input is at High (Logic 0), the D-Latch will change its outputs at any time. 

Figure 38(a) shows the block diagram of a simple D-latch. The logic circuit that made 

up the D-latch is shown Figure 38(b). Based on the different inputs of D-Latch, the 

corresponding output waveforms are shown in Figure 39. 

 

 
(a) Block Diagram. 

 
(b) Logic Circuit. 

Figure 38   The Block Diagram Representations and Logic Circuit of a Typical D-Latch. 

 

 
Figure 39   Output Waveforms of a Typical D-Latch with delays. 

 

3.3.2 Edge-Triggered D Flip-Flop 

Next, the edge-triggered D Flip-Flop is the basic building blocks that are used to 

construct a sequential device that normally samples its inputs [136]. Based on the 

inputs to D Flip-Flop, it will change its output only when there is a raise (or fall) in 

clock signal. The positive edged-triggered D Flip-Flop is constructed by joining two 

D-Latches. This is done by having the output of first D-latch connected to the input of 
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next D-latch, shown in Figure 40 and Figure 41. From the D Flip-Flop logic circuit, it 

can be seen that the longest logic delay path is 2 INV and 4 NAND gates (total of 6 

NAND gates). The functional behaviour waveform for a typical D Flip-Flop is also 

shown in Figure 42. 

 

 
Figure 40   Positive Edge-Triggered D Flip-Flop Logic Circuit. 

 
Figure 41   Block diagram of D Flip-Flop Constructed with 2 D-Latches. 

 
Figure 42   Functional Behaviour Waveform of a Positive Edge-Triggered D Flip-Flop. 
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3.3.3 Registers 

The registers are memory storage devices that can be used to store data. For example,  

the MDR is a very important register that are used to store the result data. The result 

data are produced from each functional blocks (XOR, GF MULT, ADDER, 11TO8). 

As for the R register, it is used to store the Operand A read from the Memory. 

Another MAR is used to store the Operands’ memory addresses (locations). The 

Operands’ memory addresses are read from the Memory first before reading the data 

register. This is because the DWT CRS MISC architecture is built on a von Neumann 

architecture. The von Neumann architecture has both data memory and programme 

memory combined together as a single memory. In this DWT CRS MISC, the 

programme memory contains the Operands’ memory addresses with an OPCODE. 

 For this research, these registers used are considered to be edge-triggered 

register. The data will be stored into the register during the rising edge of clock only. 

In Figure 43, there are 11-bit lines inputs/outputs from the registers. For each bit line 

(inputs/outputs), they are all connected to a edge-triggered D Flip-Flop, mentioned in 

Section 3.3.2. As for the 12-bit register, there will be an additional D Flip-Flop for 

one more extra bit line (inputs/outputs) compared to the 11-bit register. 
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Figure 43   D Flip-Flops Arrangements to Form a 11-bit Registers. 

 

3.3.4 4-Bit Counter for Control Signals 

The 4-bit counter is made up of 4 D Flip-Flops and a sequential circuit. In Figure 44, 

the sequential circuit forms the connection between the outputs and inputs of the D 

Flip-Flops. This will allow these 4 D Flip-Flops to operate as a 4-bit counter. The 4-

bit counter will keep on increasing its value during each rising edge of clock. For each 

counter value, specific control signals will be output to the DWT CRS MISC 
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architecture. These control signals control the writing data to registers, read/write data 

to memory, multiplexers (MUXs) and DE-MUXs. 

 From Figure 44, the longest logic path encountered by the sequential circuit is 

6 NAND gates. Since the 4-bit counter are depended on the sequential circuit 

mentioned. The longest logic delay path encountered for the 4-bit counter, such that 

its value to become stable, is 12 NAND gates. 

 

 
Figure 44   A 4-Bit Counter that Counts from 0 to 8. 

 

3.3.5 Multiplexer and De-Multiplexer 

Multiplexer (MUX) is used to select different digital inputs and routed onto a single 

line that transmits the digital data into a common destination [137]. The MUX usually 

has a few digital input signals and only one digital output signal. By using the data-
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select inputs, the MUX allows particular digital input signal to be selected. Then the 

selected digital input signal will become the digital output signal. Figure 45 shows 

single bit 2-To-1 and 4-To-1 MUX. From these MUXs, the longest logic gates delay 

path encounter will be 5 NAND gates (1 INV. 1 AND, 1 OR) and 9 NAND gates (1 

INV, 2 AND, 2 OR) respectively. 

 

 
(a) 2-To-1 MUX. 

 
(b) 4-To-1 MUX. 

Figure 45   Multiplexer logic circuit diagram. 

 
(a) 1-To-2 DEMUX. 

 
(b) 1-To-4 DEMUX. 

Figure 46   De-Multiplexer logic circuit diagram. 

 As for the Demultiplexer (DEMUX), it has the opposite function of MUX 

[137]. Instead, it takes one digital input signal and distributes to a particular number 

of digital output signals. Figure 46 show the logic circuit diagram of single bit 1-To-2 

and 1-To-4 DEMUX. The longest logic gates delay encounter are 3 NAND gates (1 

INV, 1 AND) and 5 NAND gates (1 INV, 2 AND) respectively. The single bit MUX 

and DEMUX are actually the basic building blocks for the 11-bit 2-To-1 MUX, 4-To-

A

B

C

D

Longest Path : 1 Inverter, 2 AND
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1 MUX and 1-To-4 DEMUX. The complete logic block diagram for these MUXs are 

shown in Figure 47, Figure 48 and Figure 49 respectively. 

 

 

 

Figure 47   2-To-1 11-bit Multiplexer logic block diagram. 
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Figure 48   4-To-1  inputs 11-bit Multiplexer logic block diagram. 
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Figure 49   1-To-4 11-bit Demultiplexer logic block diagram. 
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3.3.6 Estimated Longest Logic Gates Delays 

Based on the proposed new DWT CRS MISC architecture, as described in Section 3.2, 

the longest path delay encountered is listed in Table 5. This includes counter, control 

signals logic circuit, R OUT DEMUX, INV block (Inverters), ALU_B MUX, Adder, 

MDR IN MUX and MDR. By referring to Fujitsu 300mm FAB process [138], a 90nm 

CMOS NAND gate, with considering interconnect load, has gate delay of 30.8 ps. 

With the known NAND gate delay, an estimated of 102 NAND gates delay is 

expected that constitutes to time delay of 3.1416 ns, as calculated in Equation (15). 

Next, Equation (16) shows the estimated maximum operating frequency of the 

propose architecture will be 318.3091 MHz. The estimated maximum operating 

frequency only considers the combinational logic circuit delay. However, this does 

not include the Memory (Block RAM) used in this designed architecture. As a result, 

the maximum operating frequency will be much lower to the estimated value. 

 

Table 5   Sequence of Logic components in longest delay path. 

Sequence 
No. 

Logic Components Logic Gates Delay 
NAND 

Gates Delay 
1 Counter 12 NAND 12 
2 Control Signals Circuit 1 AND, 2 OR 6 
3 R OUT DEMUX 1 INV, 2 AND 5 
4 Inverter (INV) 1 INV 1 
5 ALU_B MUX 1 INV, 2 AND, 2 OR 9 
6 Adder Block 54 NAND 54 
7 MDR IN MUX 1 INV, 2 AND, 2 OR 9 
8 MDR 2 INV, 4 NAND 6 

Total 102 

 

Total combinational 
delay 

= Number of NAND gates x 1 NAND gate delay  

 = 102 x 30.8 x 10-12  
 = 3.1416 x 10-9 s  
 = 3.1416 ns (15) 

Maximum Operating 
Frequency = 

Delay nalCombinatio

1
  

 = 9-10x 3.1416

1
  

 = 318.3091 x 106 Hz  
 = 318.3091 MHz (16) 
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3.3.7 Control Signals Timing Waveforms 

The expected control signals timing waveforms are described based on the Boolean 

Logic Equation and Truth Table mentioned in Section 3.3. There are two different 

situations on the control signals outputs. In Figure 50, the control signals will follow 

this timing waveforms when the DWT CRS MISC is executing SBN Instruction that 

does not have negative result. This condition also applies to the execution of GF, 

XOR and 11TO8 Instructions. 

 When negative result is obtain from SBN Instruction, the timing waveforms 

shown in Figure 51, will only be applicable. Both control signals timing waveforms 

are quite similar but with a difference that occurs during Clock Cycle 7 for 

PC_WRITE signal. When negative results are produced while executing the SBN 

Instruction, the PC_WRITE signal will be set to High (Logic 1) during Clock Cycle 7. 

This will allow the newly changed Program Counter (PC) values to be written into the 

PC register. Thus not executing the subsequent programme instruction. Subsequently, 

it will execute the new ‘targeted’ programme instruction. However, the PC_WRITE 

signal will be Low (Logic 0) during Clock Cycle 7 when no negative results are 

obtained or non-SBN Instructions are executed. 

 

 
Figure 50   Control Signals generated at particular Clock Cycle, non-SBN / N=0 (SBN). 



 

89 
 

 
Figure 51   Control Signals generated at particular Clock Cycle, N=1 (SBN). 

 

3.3.8 Data Flow in DWT CRS MISC Architecture 

Based on these control signals, the path that data flows in the proposed DWT CRS 

MISC architecture are not the same for each Clock Cycles. Figure 52 to Figure 64 

illustrate the data paths that are active from Clock Cycle 0 to Clock Cycle 8. These 

active data paths are shown in dark black colour in the MISC architecture while the 

inactive data paths are those in light gray colour. There are data paths in blue colour 

that represents active paths but these are not the main focus in these figures. The 

reason is that the blue colour active paths will not have any significant impact on the 

data written into the registers and Memory. These registers and Memory are not in the 

write state and will not overwrite its current value with any new input data. 

 Besides having the main Clock, there is an input clock which is double the 

frequency of the main Clock. This clock is also required to drive the Memory such 

that it is able output the data before the next rising edge of main Clock. The data will 

be output from the Memory during the failing edge of the main Clock. The frequency 

of input clock is divided by two to give the main Clock, that drives all the operations 

in DWT CRS MISC architecture. 

 During Clock Cycle 0, the Program Counter (PC) value of the PC register is 

output to the Memory Address Register (MAR) through two Multiplexers (MUXs) 
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and an ADDER block. As shown in Figure 52, the PC value is stored into MAR and is 

available to be read after the next rising edge Clock Cycle 1. The PC value is the 

memory address locations for the first line of the programme instruction to be read 

from the Memory. 

 At Clock Cycle 1, the PC value is increased by 1 through the ADDER block 

with CIN input as Logic 1. Then the increased PC value is stored back into the PC 

register at the rising edge Clock Cycle 2. This is to have the PC value to become 

memory address location for second line of the programme instruction. Meanwhile, at 

failing edge Clock Cycle 1, the MAR provides the memory address location for the 

Memory to read and output the first line of programme instruction. The programme 

instruction contains the information of 1st Operand (A) address location. Figure 53 

shows that the first line of programme instruction (read from the Memory) consists of 

1st OPCODE at the Most Significant Bit (MSB) and the 1st Operand (A) memory 

address location. 

 Once the 1st OPCODE is read from the MSB of the output memory, it is stored 

into OPCODE1 register at rising edge of Clock Cycle 2. Similarly at rising edge of 

Clock Cycle 2, the 1st Operand memory address location is then stored into the MAR 

and this overwrites the currently stored PC value. After rising edge of Clock Cycle 2, 

the MAR provides the data address location to read the 1st Operand (A) value from the 

Memory. The 1st Operand (A) value is read during the falling edge Clock Cycle 2. As 

shown in Figure 54, the read 1st Operand (A) value from the Memory is then stored 

into the Read (R) register. The 1st Operand value is only stored into the R register 

during the rising edge of Clock Cycle 3. 

 As for Clock Cycle 3, the previously increased PC value is output from the PC 

register to the MAR again through two MUXs and the ADDER block. As shown in 

Figure 55, the PC value is stored into MAR and is available to be read after the next 

rising edge of Clock Cycle 4. The PC value is the memory address locations of the 

second line of the programme instruction to be read from the Memory. 

 During failing edge of Clock Cycle 4, the second line of programme 

instruction is read from the memory that consists of the 2nd OPCODE at the MSB and 

the 2nd Operand (B) data address location. The 2nd OPCODE is read from the MSB of 

the output data from the Memory and stored it into OPCODE0 register. 

 At the rising edge of Clock Cycle 5, the 2nd Operand memory address location 

is then stored into the MAR which overwrites the currently store PC value, shown in 
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Figure 56. Meanwhile, the PC value is again increased by 1 through the ADDER 

block and stored the PC value back to the PC register at the rising edge of Clock 

Cycle 6. At Clock Cycle 5, the MAR provides the data address location to read the 2nd 

Operand (B) value from the Memory. During the falling edge Clock Cycle 5, the 2nd 

Operand (B) value is only output from the Memory. Note that there are four different 

data paths for the MISC architecture during Clock Cycle 5, which are shown in Figure 

57 to Figure 60. 

 For these four differences, the 1st Operand (A) value from the R register and 

the 2nd Operand (B) value are input into the corresponding functional block (GF 

MULT, XOR, 11TO8, ADDER). The two Operands (A, B) input into the 

corresponding functional block are based on the OPCODE1 and OPCODE0 values, 

which are read from the first two lines of programme instruction. Both OPCODE1 

and OPCODE0 are combined together to form a complete output of 2-bit OPCODE, 

where OPCODE1 is the MSB and OPCODE0 is Least Significant Bit (LSB). For 

OPCODE is 00, the Operands (A, B) are input into the GF MULT functional block, 

which is shown in Figure 57. The output from the GF MULT functional block is the 

result of GF arithmetic multiplication. As shown in Figure 58, the Operands (A, B) are 

input into the XOR functional block when the OPCODE is 01. The output for the 

XOR functional block is the result of bitwise XOR operation performed onto both 

input Operands (A, B). If the OPCODE is 10, then the Operands (A, B) are input into 

the ADDER block that performs the SBN instruction. The data paths for executing the 

SBN instruction is shown in Figure 59. If the OPCODE is 11, then the Operands (A, B) 

are input into the 11TO8 functional block that performs the conversion of Operand B 

from 11-bit data to 8-bit data. Figure 60 shows the data path for the Operands (A, B) 

input to 11TO8 functional block. The output data from all these functional blocks (GF 

MULT, XOR, 11TO8, ADDER) is stored into the MDR. The data stored into the 

MDR will be available after the next rising edge of Clock Cycle 6. 

 At falling edge Clock Cycle 6, the data stored in the MDR is then input into 

the Memory. The data input to the Memory is stored at data memory address of 

Operand B, which is output from MAR. Meanwhile, the PC value is also input into 

the MAR through two MUXs and ADDER, which is shown in Figure 61. The PC 

value input into the MAR will only be available at the next rising edge Clock Cycle 7. 

The PC value is actually the memory address location for the third line of the 

programme instruction that contains the ‘Target Address’. 
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Figure 52   Data flow in DWT CRS MISC at Clock Cycle 0. 

 
Figure 53   Data flow in DWT CRS MISC at Clock Cycle 1. 
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Figure 54   Data flow in DWT CRS MISC at Clock Cycle 2. 

 
Figure 55   Data flow in DWT CRS MISC at Clock Cycle 3. 
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Figure 56   Data flow in DWT CRS MISC at Clock Cycle 4. 

 
Figure 57   Data flow in DWT CRS MISC at Clock Cycle 5 (GF MULT). 
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Figure 58   Data flow in DWT CRS MISC at Clock Cycle 5 (XOR). 

 
Figure 59   Data flow in DWT CRS MISC at Clock Cycle 5 (SBN). 
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Figure 60   Data flow in DWT CRS MISC at Clock Cycle 5 (11TO8). 

 
Figure 61   Data flow in DWT CRS MISC at Clock Cycle 6. 
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Figure 62   Data flow in DWT CRS MISC at Clock Cycle 7 (N = 1). 

 
Figure 63   Data flow in DWT CRS MISC at Clock Cycle 7 (Non-SBN/N = 0). 
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Figure 64   Data flow in DWT CRS MISC at Clock Cycle 8. 

 At falling edge Clock Cycle 7, the ‘Target Address’ is read from the Memory 

at the memory address location input from the MAR. When the SBN instruction is 

executed, for N = 1 case, the ‘Target Address’ is added with the PC value read from 

the PC register at the ADDER block. The addition of the ‘Target Address’ and the PC 

value produces the next programme memory address location (that jumps to ‘Target’ 

programme instruction) that the MISC will execute next. Figure 62 shows the next 

‘Target’ programme memory address produced. At the rising edge of Clock Cycle 8, 

this address is stored into the PC register when negative result is obtained from the 

SBN instruction (N = 1). Next, Figure 63 shows that the next ‘Target’ programme 

memory address is not stored into the PC register. In this situation, the value inside 

the PC register will not be modified. This allows the MISC to continue executing the 

subsequent programme instruction. This particular data paths occurred only for the 

case when non-SBN instruction is executed or a positive result is obtained from SBN 

instruction (N = 0). 
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 For the last Clock Cycle 8, the PC value in the PC register is output to the 

ADDER block and the PC value is increased by 1. Figure 64 shows the increased PC 

value is input back into the PC register. The PC register will only store the increased 

PC value at the next rising edge Clock Cycle 0. The increased PC value is the next 

programme instruction (programme memory location) that will be executed by the 

MISC architecture. With 9 Clock Cycles, these complete the execution of one 

programme instruction consists of 3 lines of programme codes. 

 

3.3.9 Timing Diagram 

The timing diagrams for each registers and Memory in the DWT CRS MISC 

architecture are presented in Figure 65 to Figure 79. Based on the Clock Cycle 0 to 

Clock Cycle 8, each of these timing diagram illustrates how the data are output from 

the Memory and written into the registers. From the timing diagrams, it can be seen 

that data are stored into the registers after the rising edge of clock. Note that the 

timing diagrams shown is just a representation of what logic signals (data) will be 

expected. Although these timing diagrams show the logic signals delays, that usually 

occurred in hardware, they do not represent the actual precise logic signals delays. 

 Besides the registers, the timing diagrams for the MUXs are also shown in 

Figure 80 to Figure 96. These timing diagrams illustrates how logic signals (data) are 

selected, from different sources, and then output to registers or to control another 

MUX and DEMUXs. Next, the timing diagrams for DEMUXs are also indicated in 

Figure 97 to Figure 108. Each of these timing diagrams shows how the single logic 

signal, either from Memory or registers, is to be output to the selected outputs. These  

outputs can either be functional blocks or the registers. 
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Figure 65   PC register timing diagram for N = 0 (SBN / NON-SBN). 

 

 
Figure 66   PC register timing diagram for N = 1 (SBN). 
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Figure 67   R register timing diagram. 

 

 
Figure 68   MAR register timing diagram. 
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Figure 69   OPCODE1 and OPCODE0 registers timing diagram for GF MULT. 

 
Figure 70   OPCODE1 and OPCODE0 registers timing diagram for XOR. 
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Figure 71   OPCODE1 and OPCODE0 registers timing diagram for SBN. 

 
Figure 72   OPCODE1 and OPCODE0 registers timing diagram for 11TO8. 
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Figure 73   Memory output and input timing diagram for Non-SBN / N=0. 

 
Figure 74   Memory output and input timing diagram for N=1. 
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Figure 75   MDR register timing diagram for GF MULT instruction. 

 

 
Figure 76   MDR register timing diagram for XOR instruction. 
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Figure 77   MDR register timing diagram for SBN instruction (N = 0). 

 
Figure 78   MDR register timing diagram for SBN instruction (N = 1). 
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Figure 79   MDR register timing diagram for 11TO8 instruction. 

 
Figure 80   ALU_A MUX timing diagram for SBN instruction (N = 1). 
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Figure 81   ALU_A MUX timing diagram for SBN instruction (N = 0) 

 
Figure 82   ALU_A MUX timing diagram for Non-SBN instruction. 
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Figure 83   ALU_B MUX timing diagram for SBN instruction. 

 
Figure 84   ALU_B MUX timing diagram for Non-SBN instruction. 
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Figure 85   OP_OUT MUX timing diagram for GF MULT instruction (OPCODE=00). 

 
Figure 86   OP_OUT MUX timing diagram for XOR instruction (OPCODE=01). 
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Figure 87   OP_OUT MUX timing diagram for SBN instruction (OPCODE=10). 

 
Figure 88   OP_OUT MUX timing diagram for 11TO8 instruction (OPCODE=11). 
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Figure 89   MAR_IN MUX timing diagram for SBN instruction (N = 0). 

 
Figure 90   MAR_IN MUX timing diagram for SBN instruction (N = 1). 
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Figure 91   MAR_IN MUX timing diagram for Non-SBN instruction. 

 
Figure 92   MDR_IN MUX timing diagram for GF MULT instruction. 
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Figure 93   MDR_IN MUX timing diagram for XOR instruction. 

 
Figure 94   MDR_IN MUX timing diagram for SBN instruction (N = 0). 
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Figure 95   MDR_IN MUX timing diagram for SBN instruction (N = 1). 

 
Figure 96   MDR_IN MUX timing diagram for 11TO8 instruction. 
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Figure 97   OP_SEL DEMUX timing diagram for GF MULT instruction (OPCODE=00). 

 

Figure 98   OP_SEL DEMUX timing diagram for XOR instruction (OPCODE=01). 

Clock 
Cycle 0

CLK

iCLK2

Clock 
Cycle 1

Clock 
Cycle 2

Clock 
Cycle 3

Clock 
Cycle 4

Clock 
Cycle 5

Clock 
Cycle 6

Clock 
Cycle 7

Clock 
Cycle 8

MUXIN

MUXOUT1

OP_SEL

MUXOUT0

X X

X

OPCODE0 = 1
OPCODE1 = 0



 

117 
 

 

Figure 99   OP_SEL DEMUX timing diagram for SBN instruction (OPCODE=10). 

 

Figure 100   OP_SEL DEMUX timing diagram for 11TO8 instruction (OPCODE=11). 
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Figure 101   R_OUT DEMUX timing diagram for GF MULT instruction (OPCODE=00). 

 

Figure 102   R_OUT DEMUX timing diagram for XOR instruction (OPCODE=01). 
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Figure 103   R_OUT DEMUX timing diagram for SBN instruction (OPCODE=10). 

 

Figure 104   R_OUT DEMUX timing diagram for 11TO8 instruction (OPCODE=11). 
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Figure 105   MEM_OUT DEMUX timing diagram for GF MULT instruction (OPCODE=00). 

 

Figure 106   MEM_OUT DEMUX timing diagram for XOR instruction (OPCODE=01). 
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Figure 107   MEM_OUT DEMUX timing diagram for SBN instruction (OPCODE=10). 

 

Figure 108   MEM_OUT DEMUX timing diagram for 11TO8 instruction (OPCODE=11). 
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3.4 DWT CRS MISC MEMORY 

 

The DWT CRS MISC architecture contains only single memory storage that follows 

the von Neumann architecture. The reason to use the single memory space for DWT 

CRS MISC is to design a MISC architecture with low hardware complexity. Similarly, 

most of the general-purpose computers are modelled with this concept because of the 

simplicity of von Neumann architecture [139]. 

 As a result, the DWT CRS MISC architecture were designed with both data 

memory and program memory stored in the single memory storage space. The total 

amount of available memory is 3,072 Bytes (2,048 x 12-bit), which is shown in 

Figure 109. The memory is separated into two parts, where 33.59% for storing of data 

and another 66.41% is used to store the program instructions. In actual 

implementations, the data only takes up 100% of the total available data memory and 

the program instructions utilized 46.32% of the total available programme memory. 

 The input data (image data) are located at memory location from 2 to 257 (64 

pixels x 4 pixels). These image data will be overwritten to become different level 

subband of DWT coefficients after the MISC performs the DWT filtering (Algorithm 

1.0). Next, the data in the memory location from 258 (0x102) to 596 (0x254) are 

made up of fixed data. Examples of the fixed data are the coefficients of the SEC 

Generator Matrix GSEC values and the counter value used in repeating the program 

instructions (Algorithm 2.0). As for data situated at memory location from 597 (0x255) 

to 687 (0x2AF), these data are the temporary data that will be used during the 

program execution. At the end of the program, the CRS encoded symbols will also be 

written back into these memory locations. The encoded CRS symbols are stored at 

memory location from 608 (0x260) to 687 (0x2AF). For the program instructions, 

they are stored at the memory location from 688 (0x2B0) to 1,517 (0x5ED). 
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Figure 109   DWT CRS MISC memory location. 

 

 

 

3.5 PROGRAMME INSTRUCTIONS FORMAT 

 

With four functional blocks mentioned in Section 3.2, four different programme 

instructions were developed such that these instructions control the operation of the 

MISC architecture. As shown in Figure 110, the corresponding four programme 

instructions are GF, SBN, XOR and 11TO8 instructions. The standard format for all 
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the programme instructions is written in 3 lines of Hexadecimal (HEX) codes in the 

programme memory. The first line of HEX code states the memory address location 

for the 1st input Operand (data). Next, the second line of the HEX code consists of the 

2nd input Operand (data) memory address location. 

 

 

Figure 110   Program Instructions for DWT CRS MISC architecture. 

 Lastly, the third line of HEX code represents the ‘Target Address’ that is used 

by SBN instruction to jump to the designated programme memory address location. If 

negative result is obtained from the SBN instructions, then the ‘Target Address’ is 

added to the PC value read from PC register. This allows the MISC to jump and 

execute the targeted next programme memory address location. As for the other three 

instructions, the MISC only executes the subsequent programme instruction. For 

failsafe, the ‘Target Address’ is set to zero in these three programme instructions to 

prevent the MISC to make any changes on the current PC value. 

 

 
Figure 111   Written Programme Instruction and its corresponding machine codes. 

 In Figure 111, an example of DWT CRS MISC programme instructions that 

performs the SBN instruction is written at memory address location 0x2F8. At Clock 

Cycle 6, the PC value is 0x2FA and it is output to the MAR register. After the rising-

edge Clock Cycle 7, the MAR register is set to the 0x2FA PC value. During falling-

edge Clock Cycle 7, the ‘Target Address’ (0x7F7) will be read from the Memory. 

While the ‘Target Address’ is read, current PC value 0x2FA is added with 0x7F7 to 

Memory Address Instructions Operand A Operand B ‘Target Address’ 

0x2F8 SBN $one $t7 0x7F7 
 

Memory Address Operand A Address Operand B Address ‘Target Address’ 

0x2F8 0x801 0x259 0x7F7 

Machine Codes
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get the new PC value 0x2F1. If SBN instruction produces negative results (N = 1), 

this new PC value (0x2F1) is stored into PC register after the rising-edge Clock Cycle 

8. However, if SBN instruction produces positive results (N = 0), this new PC value 

will not be stored into the PC register. After that, the new PC value is increased by 1 

to become 0x2F2. This increased new PC value (0x2F2) is actually the next 

programme instruction memory address location. Therefore, it allows the DWT CRS 

MISC to jump to a different location of programme instruction. Figure 112 gives a 

better illustrations how the PC value is manipulated when negative results are 

obtained for SBN instructions (N = 1). 

 

To jump to ‘Target’ Instruction 
Address 

0x2F2 

Current PC Value after rising-
edge Clock Cycle 7 

0x2FA 

‘Target Address’ Read from 
Memory after falling-edge

Clock Cycle 7 
0x7F7 

New PC Value after falling-edge 
Clock Cycle 7 

0x2FA + 0x7F7 = 0x2F1 

Increased New PC Value to be 
stored in PC register after rising-

edge Clock Cycle 8 (N = 1) 
0x2F2 

PC Value at Next
rising-edge Clock Cycle 0 

0x2F2 
(‘Target’ Instruction’s Address) 

  
Figure 112   Setting the 'Target Address' for SBN (N = 1). 

 

 
Figure 113   Machine Code of SBN instruction in programme memory. 
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Figure 114   Machine Code of Non-SBN instruction in programme memory 

 For each programme instructions, the 2-bit OPCODE is read from the MSB of 

the 1st and 2nd line of HEX code. With the OPCODE read, it determines which 

functional blocks that will process the two input data. Figure 113 and Figure 114  

illustrate how the OPCODE are arranged in the each programme instructions (1st and 

2nd line of HEX code). It can be seen that the OPCODE are located at the MSB of the 

1st and 2nd line of the 3 lines HEX code programme instruction. 

 However, an exception for the 11TO8 programme instruction, whereby this 

particular functional block only converts the 2nd input Operand (data) from 11-bit to 

become 8-bit output data. Section 3.2.5 presents a better illustration on how the 

11TO8 block converts the input data from 11-bit to 8-bit.  For better illustrations on 

these programme instructions, refer to Section 4.2 for the simulation waveforms on 

these four programme instructions. 
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3.6 DWT CRS ALGORITHM 

 

For the DWT CRS MISC to perform DWT compression and CRS coding, programme 

instructions need to be written and programmed it into memory of the MISC 

architecture. First, the Lifting Scheme DWT filter was briefly explained in Section 

3.6.1. Next, Section 3.6.2 describes how the MISC operate as an DWT filter that 

processes and decomposes the image data into DWT coefficients. With the use of 

DWT, image compression could be performed onto the image data captured by the 

visual sensor node. Afterwards, Section 3.6.3 briefly describes on the CRS coding 

scheme used in the DWT CRS MISC processor. Lastly, Section 3.6.4 describes the 

selective CRS encoding (encrypting) process on the DWT coefficients. 

 

3.6.1 Lifting Scheme Discrete Wavelet Transform 

In the year of 1998, Wim Sweldens introduced the Lifting Scheme DWT as another 

alternative of DWT computation [19] [33]. The Lifting Scheme DWT was developed 

into integer wavelet transforms that can be used in lossless image compression [140]. 

The advantage of the Lifting Scheme DWT is that less operation is required to 

perform the DWT computation as compared with the traditional filter bank scheme 

[141] [142]. Another advantages of the Lifting Scheme DWT is that it computes an 

integer wavelet transform thus enabling both lossless and lossy image encoders to be 

designed in an embedded system [27]. Therefore, the Lifting Scheme DWT is selected 

to be used to reduce the amount of image captured at the sensor nodes. 

 

 
Figure 115   Lifting Scheme Discrete Wavelet Transform Filter Bank [143]. 

 For Lifting Scheme DWT, the sampled image pixels are split into odd, s[n] 

and even, d[n] samples. These samples will then be input into filter bank using lifting 
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step [144]. The odd, s[n] and even, d[n] samples properties are improved using the 

alternative lifting and dual lifting steps [145], as shown in Figure 115. The Predict 

step, P is a dual lifting step that consists of applying a Low Pass filter on the even 

samples and subtracting the result from the odd samples. The Update step, U is the 

lifting step that does the opposite of Predict step, where the odd samples are being 

passed through a High Pass filter and subtracting it from the even samples. Lastly, 

with going through several of the dual and primal lifting steps, the Low Pass 

coefficients are the even samples output from the filter bank. For the High Pass 

coefficients, it would be the odd samples output from the filter bank [145]. 

3.6.2 DWT Image Compression Algorithm 

The DWT CRS MISC processor perform 2 Levels of 2-dimensional Lifting Scheme 

DWT filtering onto the image data (size of 64 pixels x 4 pixels) that are input to it. 

For 1st Level 2-dimensional DWT, the Row (Horizontal) Filtering onto the original 

image data was performed first and followed by Column (Vertical) Filtering onto the 

L and H subband coefficients. For better visualisation, the DWT coefficients were 

arranged in the manner illustrated in Figure 116. However, the actual arrangement is a 

continuous data memory as shown in the Figure 117. 

 

 

(a) Row (horizontal) filtering. 

 

(b) Column (vertical) filtering. 

Figure 116   Level 1 DWT coefficients arrangement in 2D. 

 

(a) Row (horizontal) filtering. 

 

(b) Column (vertical) filtering. 

Figure 117   Actual Level 1 DWT coefficients arrangement in memory. 
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 The DWT Filter used in the DWT CRS MSC processor is the Lifting Scheme 

DWT Haar filter. The process of filtering is performed by subtracting the Even image 

pixel with the Odd image pixel (H = $R1 - $R0) to give High Pass DWT coefficient 

(L subband). Then the division of two is performed onto the High Pass DWT 

coefficients and the result is summed with the Odd image pixel (L = $R0 + ½ x H) to 

obtain the low pass coefficients (H subband). Algorithm 1.0 describes how the  DWT 

CRS MISC actually performed the Level 1 DWT Filtering onto the image data that 

were stored in the memory. Inside the Algorithm 1.0, it also includes both Algorithm 

1.1 and Algorithm 1.2 that describe the Row and Column DWT Filtering process 

respectively. 

 

 

 

 

 

  Algorithm 1.0 Level 1: DWT Filtering 
1: Define: 
2: $R0 - odd image pixel (reads from: row filtering - $s0, column filtering - $s0) 
3: $R1 - even image pixel (reads from: row filtering - $s1, column filtering - $s64) 
4: $s576 - division value, 2; $s577 - half image column size, 32 
5: $s578 - image row size to be processed, 4; $s579 - full image column size, 64 
6: $t6 - column counter; $t5 - row counter 
7: $t4 - temporary variable for use in jumping programme instruction 
8: $t3 - temporary variable for storing divided value 
9: $t2 - temporary variable for storing high pass coefficients 
10: Initialisation data address for row filtering: $R0 = 2; $R1 = 3 
11: Initialisation for row filtering: $t5 = -4 
12: STEP 1: Perform level 1 row filtering onto the image 
13: do level 1 DWT row filtering (Algo. 1.1) 
14: STEP 2: Reset the data address back to initial settings by decreasing the data address 
15: Initialisation: $t5 = -4 
16: while $t5 < 0 do 
17:  Decrease $R0 data address by $s579 
18:  Decrease $R1 data address by $s579 
19:  $t5 = $t5 + 1 
20: end while 
21: Initialisation data address for column filtering: $R0 = 2; $R1 = 66 
22: Initialisation for column filtering: $t5 = -2 
23: STEP 3: Perform level 1 column filtering onto the image 
24: do level 1 DWT column filtering (Algo. 1.2) 
25: STEP 4: Reset the data address back to initial settings by decreasing the data address 
26: Initialisation: $t5 = -4 
27: while $t5 < 0 do 
28:  Decrease $R0 data address by $s579 (64) 
29:  Decrease $R1 data address by $s579 (64) 
30:  $t5 = $t5 + 1 
31: end while 
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  Algorithm 1.1 Level 1: DWT Filtering (Row Filtering) 
1: while $t5 < 0 do 
2:  Initialisation: $t6 = -32 
3:  while $t6 < 0 do 
4:   STEP 1: Determine high pass coefficient, $R1 
5:   $R1 = $R1 - $R0 
6:   Initialisation: $t2 = 0; $t3 = 0; $t4 = 0 
7:   STEP 2: Determine low pass coefficient, $R0 
8:   if $R1 is positive then 
9:    $t2 = -$R1 
10:    while $t2 < 0 do 
11:     $t2 = $t2 - 2 
12:     if $t2 < 0 then 
13:      $t3 = $t3 + 1 
14:     end if 
15:    end while 
16:    $R0 = $R0 + $t3 = $R0 + 0.5*$R1 
17:   else 
18:    $t2 = $R1 
19:    while $t2 < 0 do 
20:     $t2 = $t2 - 2 
21:     if $t2 < 0 then 
22:      $t3 = $t3 + 1 
23:     end if 
24:    end while 
25:    $R0 = $R0 - $t3 = $R0 + 0.5*(-$R1) 
26:   end if 
27:   $t6 = $t6 + 1 
28:   STEP 3: Update the data address in the programme memory 
29:   Increase $R0 data address by 2 
30:   Increase $R1 data address by 2 
31:  end while 
32:  $t5 = $t5 + 1 
33: end while 



 

131 
 

 

 

 Once the 1st Level DWT Filtering process was completed, the MISC processor 

continued to perform the 2nd Level DWT Filtering onto the LL1 coefficients. 2nd Level 

DWT Filtering process was performed as to have an additional reduction of image 

data size such that lower amount of image data could be transferred across the 

WVSNs, especially when the sensor nodes were low in energy resources (low battery 

power). For better visualisation, the Level 2 DWT coefficients were then arranged in 

the manner illustrated in Figure 118. However, the actual arrangement of Level 2 

DWT coefficients is a continuous data memory as shown in the Figure 119.  

 

  Algorithm 1.2 Level 1: DWT Filtering (Column Filtering) 
1: while $t5 < 0 do 
2:  Initialisation: $t6 = -64 
3:  while $t6 < 0 do 
4:   STEP 1: Determine high pass coefficient, $R1 
5:   $R1 = $R1 - $R0 
6:   Initialisation: $t2 = 0; $t3 = 0; $t4 = 0 
7:   STEP 2: Determine low pass coefficient, $R0 
8:   if $R1 is positive then 
9:    $t2 = -$R1 
10:    while $t2 < 0 do 
11:     $t2 = $t2 - 2 
12:     if $t2 < 0 then 
13:      $t3 = $t3 + 1 
14:     end if 
15:    end while 
16:    $R0 = $R0 + $t3 = $R0 + 0.5*$R1 
17:   else 
18:    $t2 = $R1 
19:    while $t2 < 0 do 
20:     $t2 = $t2 - 2 
21:     if $t2 < 0 then 
22:      $t3 = $t3 + 1 
23:     end if 
24:    end while 
25:    $R0 = $R0 - $t3 = $R0 + 0.5*(-$R1) 
26:   end if 
27:   $t6 = $t6 + 1 
28:   STEP 3: Update the data address in the programme memory 
29:   Increase $R0 data address by 1 
30:   Increase $R1 data address by 1 
31:  end while 
32:  $t5 = $t5 + 1 
33:  STEP 4: Increase the data address to the 3rd and 4th row of coefficients 
34:  Increase $R0 data address by $s579 (64) 
35:  Increase $R1 data address by $s579 (64) 
36: end while 
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(a) Row (horizontal) filtering. 

 

(b) Column (vertical) filtering. 

Figure 118   Level 2 DWT coefficients arrangement in 2D. 

 

(a) Row (horizontal) filtering. 

 

(b) Column (vertical) filtering. 

Figure 119   Actual Level 2 DWT coefficients arrangement in memory. 

 Again, the LL1 DWT coefficients undergone Row (Horizontal) Filtering and 

then followed by Column (Vertical) Filtering, which is described in Algorithm 2.0. 

The Algorithm 2.0 shows that the algorithm is broken up into Algorithm 2.1 for DWT 

Row Filtering and Algorithm 2.2 for DWT Column Filtering. Once both Row and 

Column DWT Filtering was performed, the DWT CRS MISC processor had 

completed performing the 2 Levels 2-dimensional DWT Filtering onto the image data. 
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  Algorithm 2.0 Level 2: DWT Filtering 
1: Define: 
2: $R0 - odd image pixel (reads from: row filtering - $s0, column filtering - $s0) 
3: $R1 - even image pixel (reads from: row filtering - $s2, column filtering - $s128) 
4: $s576 - division value, 2; $s577 - half image column size, 32 
5: $s578 - image row size to be processed, 4; $s579 - full image column size, 64 
6: $s580 - level 2 subband column size. 16 
7: $t8 - temporary variable to store -64; $t7 - temporary variable to store -4 
8: $t6 - column counter; $t5 - row counter 
9: $t4 - temporary variable for use in jumping programme instruction 
10: $t3 - temporary variable for storing divided value 
11: $t2 - temporary variable for storing high pass coefficients 
12: Initialisation data address for row filtering: $R0 = 2; $R1 = 4 
13: Initialisation for row filtering: $t5 = -2 
14: STEP 1: Perform level 2 row filtering onto the image 
15: do level 1 DWT row filtering (Algo. 2.1) 
16: STEP 2: Reset the data address back to initial settings by decreasing the data address 
17: Initialisation: $t5 = -2 
18: while $t5 < 0 do 
19:  Decrease $R0 data address by $s579 
20:  Decrease $R1 data address by $s579 
21:  $t5 = $t5 + 1 
22: end while 
23: Initialisation data for column filtering: $R0 = 2; $R1 = 130 
24: STEP 3: Perform level 2 column filtering onto the image 
25: do level 1 DWT column filtering (Algo. 2.2) 
26: STEP 4: Reset the data address back to initial settings by decreasing the data address 
27: Decrease $R0 data address by $s579 (64) 
28: Decrease $R1 data address by $s579 (64) 
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  Algorithm 2.1 Level 2: DWT Filtering (Row Filtering) 
1: while $t5 < 0 do 
2:  Initialisation: $t6 = -16 
3:  while $t6 < 0 do 
4:   STEP 1: Determine high pass coefficient, $R1 
5:   $R1 = $R1 - $R0 
6:   Initialisation: $t2 = 0; $t3 = 0; $t4 = 0 
7:   STEP 2: Determine low pass coefficient, $R0 
8:   if $R1 is positive then 
9:    $t2 = -$R1 
10:    while $t2 < 0 do 
11:     $t2 = $t2 - 2 
12:     if $t2 < 0 then 
13:      $t3 = $t3 + 1 
14:     end if 
15:    end while 
16:    $R0 = $R0 + $t3 = $R0 + 0.5*$R1 
17:   else 
18:    $t2 = $R1 
19:    while $t2 < 0 do 
20:     $t2 = $t2 -2 
21:     if $t2 < 0 then 
22:      $t3 = $t3 + 1 
23:     end if 
24:    end while 
25:    $R0 = $R0 - $t3 = $R0 + 0.5*(-$R1) 
26:   end if 
27:   $t6 = $t6 + 1 
28:   STEP 3: Update the data address in the programme memory 
29:   Increase $R0 data address by 4 
30:   Increase $R1 data address by 4 
31:  end while 
32:  $t5 = $t5 + 1 
33:  STEP 4: Update the data address in the programme memory to next row of LL1 coefficients 
34:  Increase $R0 data address by $s579 (64) 
35:  Increase $R1 data address by $s579 (64) 
36: end while 



 

135 
 

 

 

3.6.3 Cauchy Reed Solomon Coding Scheme 

The Reed Solomon (RS) coding scheme works in the infinite Z field [20]. However, 

the computers that were available to perform computation in binary words of a fixed 

word length L. As a result, the RS codes are implemented over a Galois Field with 2L 

elements, represented as GF(2L). The elements for GF(2L) are made up of integer 

numbers from 0 to 2L – 1, with each element comprising of L bits word length. In 

order to ensure that the computational of GF(2L) is correct, the GF(2L) should contain 

at least more than n + m elements, where nmL 2  [20] [59]. 

 From the mentioned RS coding scheme in Section 2.4.2, part of the encoded 

codeword comprises the message word itself, which is called as the Systematic Code 

[59] [94]. Instead of using the Vandermonde matrix, to encode the data with RS 

coding scheme, the Cauchy Reed Solomon (CRS) coding scheme can also be used to 

  Algorithm 2.2 Level 2: DWT Filtering (Column Filtering) 
1: Initialisation: $t6 = -32 
2: while $t6 < 0 do 
3:  STEP 1: Determine high pass coefficient, $R1 
4:  $R1 = $R1 - $R0 
5:  Initialisation: $t2 = 0; $t3 = 0; $t4 = 0 
6:  STEP 2: Determine low pass coefficient, $R0 
7:  if $R1 is positive then 
8:   $t2 = -$R1 
9:   while $t2 < 0 do 
10:    $t2 = $t2 - 2 
11:    if $t2 < 0 then 
12:     $t3 = $t3+ 1 
13:    end if 
14:   end while 
15:   $R0 = $R0 + $t3 = $R0 + 0.5*$R1 
16:  else 
17:   $t2 = $R1 
18:   while $t2 < 0 do 
19:    $t2 = $t2 -2 
20:    if $t2 < 0 then 
21:     $t3 = $t3+ 1 
22:    end if 
23:   end while 
24:   $R0 = $R0 - $t3 = $R0 + 0.5*(-$R1) 
25:  end if 
26:  $t6 = $t6 + 1 
27:  STEP 3: Update the data address in the programme memory 
28:  Increase $R0 data address by 2 
29:  Increase $R1 data address by 2 
30: end while 
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encode the data. The CRS coding scheme uses the Cauchy matrix to encode (encrypt) 

the data and it also provides the similar error protection capabilities. The CRS coding 

scheme is also known as the Secure Erasure Code (SEC) that was introduced in [20]. 

In order to decode the encoded (encrypted) data, the generator matrix G of the 

particular CRS coding scheme is required. If the generator matrix G is kept as a secret 

key, even the adversary that manages to retrieve sufficient number of fragments, 

he/she will not be able to reproduce the original data. Based on the CRS coding 

scheme, the data is encrypted by using the generator matrix G that is created from a 

user specified key [20]. 

 For an nm matrix G over GF(2L), this matrix is known as a Secure Generator 

matrix of the SEC scheme if and only if the matrix G is non-singular. The generator 

matrix G must also not consist of any    11  nm singular matrix. With the Cauchy 

matrices which is considered to be an important subclass of non-singular matrices 

over GF(2L) [20], the generator matrix GSEC can be constructed by customizing the 

Cauchy matrix, which is defined as follows. 

 

ji xx   jim},...,,{ji,  1  (34) 

ji yy   jin},...,,{ji,  1  (35) 

ji yx   n}...,,{jm},...,,{i 11   (36) 
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 First, let  mxx ,,1   and  nyy ,,1   to be the two sets of elements in 

Galois Field GF(2L) with both sets x and y must satisfy the following constraints 

stated in Equation (34) to Equation (37). Therefore, the matrix stated in Equation (37) 

will be known as the Cauchy matrix over GF(2L). Every square submatrix of this 
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Cauchy matrix is non-singular where the square Cauchy matrix is invertible, provided 

that the determinant matrix is not zero, 0)det( G . 

 The generator matrix GSEC is made up of a large matrix which is impractical to 

keep it as a secret key. Consequently, the GSEC can be constructed by using a user 

defined lk bit secret key kG. Since the GSEC is an nm  matrix over GF(2L), the 

algorithm parameters needed besides kG will be m and n. Hence the value of lk needs 

to be in a multiple of nm , which constitute  nmlL k  /  [20] [59]. Then the value 

of kG can be divided into a vector consisting of nm  elements, where each of the 

elements is a bit string of size L. Considering that the redundancy rate as mnr / , 

the following Equation (38) and Equation (39) are the constraints of the parameters in 

generating the key [20]. 

 

 )]1([log)(log 22 rmnmL   (38) 

 )]1()( rmLnmLlk   (39) 

 

 To have the original data to be encoded, the data will be segmented into 

vectors, with each of them having m bits strings of size L. Hence, the vector-matrix 

multiplication yields an encoded vector of size n for each vector. Nevertheless, all the 

ith elements in these encoded vectors will produce the ith encoded fragment and finally 

n encoded fragments are obtained [20]. Considered that the original data fragments 

can be viewed as a vector  mDDDD ,,, 21   and the encoding function Enc that 

maps the original data fragments onto the encoded fragments,   EDEnc  with the 

vector  nEEEE ,,, 21  . The Reed Solomon encoding is described as the vector-

matrix multiplication   DGDEnc  , where G is the generator matrix or GSEC is the 

SEC generator matrix [20] [59]. Equation (40) shows how the data in the vector E is 

being encoded through the use of GSEC. 

 



 

138 
 

  

 n

nmmm

n

n

m

SEC

EE

yxyxyx

yxyxyx

yxyxyx

DD

GD

DEncE

......

1
......

11
.

.

.

.

.

.

.

.

.

.

.

.

1
......

11

1
......

11

......

)(

1

21

22212

12111

1














































 

 

 

 

 

 

 

 

(40) 

   
m

m

m

m

ii

imimim

iii

iii

m EE

yxyxyx

yxyxyx

yxyxyx

DD ......

1
......

11
.

.

.

.

.

.

.

.

.

.

.

.

1
......

11

1
......

11

......
1

21

21

21

222

111

1 







































 (41) 

   










  mPmP mrl

l

L
k

2,22,2  (42) 

 

 Supposedly if an m encoded fragments of data  
miii EEEE ,,,

21
  has been 

retrieved by the adversary from the initial n number of encoded fragments of data. 

Then this implies that only one sequence of  
miim yyxx ,,,,,

11   that can 

generate the mm  matrix. This matrix will be used in Equation (41) to recover the 

original data from m encoded fragments. Consequently, the adversary can only guess 

the particular sequence over GF(2L) for decrypting the encoded data [20]. Since there 

is only 2m of different elements required in that sequence, the adversary needs to 

figure out a total of  mP L 2,2  times for the worst case scenario. From the stated 

Equation (42), it can be seen that at a particular fix lk and r values, the strength of the 

key is determined by m. 
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3.6.4 CRS Encoding Algorithm 

After completing the 2 Levels 2-dimensional DWT Filtering process, the DWT CRS 

MISC processor continued to perform the CRS(20,16) encoding onto all the produced 

Level 2 DWT coefficients. Based on the CRS coding scheme method in Section 2.4.3, 

the Secure Generator Matrix, GSEC is stored in the Memory of the MISC processor. 

For each 16 DWT coefficients, the processor performed Galois Field (GF) arithmetic 

multiplication and addition onto the DWT coefficients with the Secure Generator 

Matrix. Before GF arithmetic operation was performed, the DWT coefficients were 

undergone a 11-bit to 8-bit conversion, such that the DWT coefficients are encoded 

by the CRS coding scheme that required 8-bit wide word length data. A complete 20 

symbols (Bytes) of codeword was obtained from the GF arithmetic operations 

performed between the DWT coefficients and the Secure Generator Matrix. After 

completing the first codeword, another 16 DWT coefficients were processed to 

produce the second, third and fourth codeword. Algorithm 3.0 shows the complete 

process of CRS encoding performed by the DWT CRS MISC processor onto the 

DWT coefficients. As for Algorithm 3.2, it shows how each codeword was produced 

by performing GF arithmetic operation onto the DWT coefficients. Algorithm 3.3 

shows how a particular symbol of codeword was generated from the GF arithmetic 

operation performed. 
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  Algorithm 3.0 Cauchy Reed Solomon 
1: Define: 
2: $R0 - to be clear variables (from $t8 - $t90) 
3: $R1 - target write CRS value (from $t11 - $t90) 
4: $R2 - read data value (reads from $s0 - $s190) 
5: $R3 - read generator matrix value (reads from $s256 - $s575) 
6: $s576 - division value, 2; $s577 - half image column size, 32 
7: $s582 - value of number of data to be clear for CRS, 83 
8: $s583 - number of generator matrix coefficients, 320 
9: $t5 - counter for row of level 2 DWT coefficients 
10: $t7 - counter for next codeword in the same row 
11: $t8 - counter for complete codeword; $t9 - counter for 16 input symbols 
12: Initialisation: $t7 = -83 
13: STEP 1: Clear previously processed data 
14: do clear previous data (Algo. 3.1) 
15: Initialisation data address: $R1 = 608; $R2 = 2; $R3 = 258 
16: Initialisation for CRS encoding: $t6 = -32; $t5 = -2; $t4 = -64 
17: STEP 2: Perform CRS encoding on all the level 2 DWT coefficients 
18: while $t5 < 0 do 
19:  Initialisation: $t7 = -2 
20:  STEP 3: Encode the next codeword from next 16 input symbols 
21:  while $t7 < 0 do 
22:   Initialisation: $t8 = -20 
23:   STEP 4: Encode a complete codeword with 20 symbols 
24:   do encode complete codeword (Algo. 3.2) 
25:   $t7 = $t7 + 1 
26:  end while 
27:  Increase $R2 data address by 64 
28:  $t5 = $t5 + 1 
29: end while 
30: Initialisation: $t7 = -4 
31: STEP 5: Reset data address back to initial settings 
32: do reset data address (Algo. 3.4) 

  Algorithm 3.1 Cauchy Reed Solomon (Clear Previous Data) 
1: STEP 1: Clear the previous data in the memory 
1: Initialisation data address: $R0 = 605 
2: while $t7 < 0 do 
3:  $R0 = 0 
4:  Increase $R0 data address by 1 
5:  $t7 = $t7 + 1 
6: end while 
7: STEP 2: Reset the data address back to initial settings 
8: Decrease $R0 data address by $s582 (83)

  Algorithm 3.2 Cauchy Reed Solomon (Encode Complete Codeword) 
1: while $t8 < 0 do 
2:  Initialisation: $t9 = -16 
3:  STEP 1: Encode each output symbol from 16 input symbols 
4:  do encoding for each output symbol (Algo. 3.3) 
5:  $t8 = $t8 + 1 
6: end while 
7: Decrease $R3 data address by 320 
8: Increase $R2 data address by 32 
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3.7 PROGRAMME INSTRUCTIONS/CLOCK CYCLES 

 

In this section, the programme instructions were written for the developed MISC 

processor to perform image data processing. The programme instructions can be 

broken into 3 different parts, which are Level 1 Lifting Scheme DWT, Level 2 Lifting 

Scheme DWT and CRS(20,16) encoding scheme. Each part of the programme 

instructions are discussed in the following Sections. The programme instructions are 

executed in sequence, where the programme instructions on Level 1 Lifting Scheme 

DWT were executed first. Then it is followed by executing programme instructions 

on Level 2 Lifting Scheme DWT and finally executing the CRS(20,16) encoding 

scheme programme instructions. 

 

3.7.1 Level 1 Lifting Scheme DWT Programme 

There are 90 lines of programme instructions written and programmed onto the DWT 

CRS MISC, such that it performs the 1st Level Lifting Scheme DWT Filtering onto 

the image data size (64 x 4 pixels). Listing 1 shows the 1st Level 2-dimensional 

Lifting Scheme DWT Filtering programme instructions that covered both DWT Row 

(Horizontal) Filtering and DWT Column (Vertical) Filtering processes. 

  Algorithm 3.3 Cauchy Reed Solomon (Encode Codeword Symbol) 
1: while $t9 < 0 do 
2:  $t10 = $R2 
3:  Convert $t10 from 11-bit to 8-bit 
4:  $t10 = $t10 x $R3, GF Multiplication 
5:  $R1 = $R1 + $t10 
6:  Initialisation: $t10 = 0 
7:  Increase $R2 data address by 2 
8:  Increase $R3 data address by 1 
9:  $t9 = $t9 + 1 
10: end while 
11: Increase $R1 data address by 1 
12: Decrease $R2 data address by 32 

  Algorithm 3.4 Cauchy Reed Solomon (Reset Data Address) 
1: while $t7 < 0 do 
2:  Decrease $R1 data address by 20 
3:  Decrease $R2 data address by 64 
4:  $t7 = $t7 + 1 
5: end while 
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 In the DWT Row Filtering, there are groups of programme instructions are 

executed repeatedly, as shown in Listing 1(a). Programme instructions at address 

0x2C8 to 0x313 are repeated for 32 times to process the image data by performing the 

1st Level DWT Row Filtering. This produces both 1st Level Low Pass (L1) and High 

Pass (H1) subband of DWT coefficients. Once the MISC completed processing the 

first row of image data, these programme instructions were executed again to process 

the next 3 rows of the image data. Therefore, these programme instructions at address 

0x2C8 to 0x313 were repeated for 4 times, including two additional instructions at 

address 0x2C5 and 0x316. After processing the image data, the programme 

instructions at address 0x31C to 0x331 are repeated for 4 times to reset the modified 

data address of the programme instructions at address 0x2C8, 0x2C9, 0x2D5, 0x2D7, 

0x2EA, 0x2EF, 0x2FC back to initial data address. This is done by subtracting the 

address value by 64 each time. 
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(a) Row (Horizontal) Filtering. 

 
(b) Column (Vertical) Filtering. 

Listing 1   Level 1 Lifting Scheme DWT Filtering programme instructions. 

 For the DWT column filtering, there are also programme instructions to be 

executed repeatedly, as shown in Listing 1(b). Programme instructions at address 

0x33A to 0x385 are repeated for 64 times to process the coefficients by performing 

the 1st Level DWT Column Filtering. This produces 1st Level of Low Pass Low Pass 

(LL1), Low Pass High Pass (LH1), High Pass Low Pass (HL1) and High Pass High 

Pass (HH1) subband of DWT coefficients. Once the MISC completed processing the 

first 2 rows of DWT coefficients, these programme instructions continued to process 

the subsequent 2 row of DWT coefficients. Therefore, these programme instructions 

at address 0x33A to 0x385 were repeated for 2 times, which includes the 10 

programme instructions at address 0x337, 0x388 to 0x3A0. After completing the 1st 

  Addr. Instructions   
0x2B0 XOR $t0 $t0 0
0x2B3 XOR $t1 $t1 0
0x2B6 XOR $t5 $t5 0
0x2B9 XOR $t6 $t6 0
0x2BC SBN $one $t0 0
0x2BF SBN $s576 $t1 0
0x2C2 SBN $s578 $t5 0
0x2C5 SBN $s577 $t6 0
0x2C8 SBN $s0 $s1 0
0x2CB XOR $t2 $t2 0
0x2CE XOR $t3 $t3 0
0x2D1 XOR $t4 $t4 0
0x2D4 SBN $zero $s1 0x018
0x2D7 XOR $s1 $t2 0
0x2DA SBN $s576 $t2 0x006
0x2DD SBN $t0 $t3 0
0x2E0 SBN $one $t4 0x7F7
0x2E3 XOR $t2 $t2 0
0x2E6 SBN $t3 $t2 0
0x2E9 SBN $t2 $s0 0
0x2EC SBN $one $t4 0x00F
0x2EF SBN $s1 $t2 0
0x2F2 SBN $s576 $t2 0x006
0x2F5 SBN $t0 $t3 0
0x2F8 SBN $one $t4 0x7F7
0x2FB SBN $t3 $s0 0
0x2FE SBN $t1 0x2C8 0
0x301 SBN $t1 0x2C9 0
0x304 SBN $t1 0x2D5 0
0x307 SBN $t1 0x2D7 0
0x30A SBN $t1 0x2EA 0
0x30D SBN $t1 0x2EF 0
0x310 SBN $t1 0x2FC 0
0x313 SBN $t0 $t6 0x7B2
0x316 SBN $t0 $t5 0x7AC
0x319 SBN $s578 $t5 0
0x31C SBN $s579 0x2C8 0
0x31F SBN $s579 0x2C9 0
0x322 SBN $s579 0x2D5 0
0x325 SBN $s579 0x2D7 0
0x328 SBN $s579 0x2EA 0
0x32B SBN $s579 0x2EF 0
0x32E SBN $s579 0x2FC 0
0x331 SBN $t0 $t5 0x7E8

Repeat 
x32 

Repeat 
x4 

Repeat
x4 

  Addr. Instructions   
0x334 SBN $s576 $t5 0 
0x337 SBN $s579 $t6 0 
0x33A SBN $s0 $s64 0 
0x33D XOR $t2 $t2 0 
0x340 XOR $t3 $t3 0 
0x343 XOR $t4 $t4 0 
0x346 SBN $zero $s64 0x018 
0x349 XOR $s64 $t2 0 
0x34C SBN $s576 $t2 0x006 
0x34F SBN $t0 $t3 0 
0x352 SBN $one $t4 0x7F7 
0x355 XOR $t2 $t2 0 
0x358 SBN $t3 $t2 0 
0x35B SBN $t2 $s0 0 
0x35E SBN $one $t4 0x00F 
0x361 SBN $s64 $t2 0 
0x364 SBN $s576 $t2 0x006 
0x367 SBN $t0 $t3 0 
0x36A SBN $one $t4 0x7F7 
0x36D SBN $t3 $s0 0 
0x370 SBN $t0 0x33A 0 
0x373 SBN $t0 0x33B 0 
0x376 SBN $t0 0x347 0 
0x379 SBN $t0 0x349 0 
0x37C SBN $t0 0x35C 0 
0x37F SBN $t0 0x361 0 
0x382 SBN $t0 0x36E 0 
0x385 SBN $t0 $t6 0x7B2 
0x388 SBN $s579 $t6 0 
0x38B SBN $t6 0x33A 0 
0x38E SBN $t6 0x33B 0 
0x391 SBN $t6 0x347 0 
0x394 SBN $t6 0x349 0 
0x397 SBN $t6 0x35C 0 
0x39A SBN $t6 0x361 0 
0x39D SBN $t6 0x36E 0 
0x3A0 SBN $t0 $t5 0x797 
0x3A3 SBN $s578 $t5 0 
0x3A6 SBN $s579 0x33A 0 
0x3A9 SBN $s579 0x33B 0 
0x3AC SBN $s579 0x347 0 
0x3AF SBN $s579 0x349 0 
0x3B2 SBN $s579 0x35C 0 
0x3B5 SBN $s579 0x361 0 
0x3B8 SBN $s579 0x36E 0 
0x3BB SBN $t0 $t5 0x7E8 

Repeat 
x64 

Repeat 
x4 

Repeat
x2 
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Level DWT Filtering process, the programme instructions at address 0x3A6 to 0x3BB 

were repeated for 4 times to have the modified data address of the programme 

instructions at address 0x33A, 0x33B, 0x347, 0x349, 0x35C, 0x361, 0x36E to be 

reset back to the initial data address value. 

 In the Row Filtering, High Pass DWT coefficients were determined first from 

the image data available in the Memory. Then the programme instructions at address 

0x2D7 to 0x2FB were executed to determine the Low Pass DWT coefficients. The 

Low Pass coefficients were determined by dividing the High Pass coefficients and 

adding it with odd image pixels. For these programme instructions at address 0x2D7 

to 0x2FB, they are selectively executed based on the value of High Pass coefficients 

determined previously. If positive High Pass coefficients were obtained, then 8 

programme instructions at address 0x2D7 to 0x2EC were executed to determine the 

Low Pass coefficients. If negative High Pass coefficients were obtained, 5 written 

programme instructions at address 0x2EF to 0x2FB were executed instead. In each of 

the (positive/negative) division programme instructions, the number of repetition in 

executing these three lines of instructions at address 0x2DA to 0x2E0 or 0x2F2 to 

0x2F8 were depended on the High Pass coefficients value. As for the Column 

Filtering, the same programme instructions at address 0x349 to 0x36D were written 

and executed to determine the Low Pass coefficients for the corresponding Row 

Filtered DWT coefficients. 

 

 

  
executed nsinstructio368,8

328244885324

848225
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executed nsinstructio739,16

372,8368,8

nsInstructio Filtering Row  nsInstructio FilteringColumn nsInstructio Total





 

(45) 

cyclesclock 651,150

cyclesclock  9executed nsinstructio739,16CyclesClock  Total




 
(46) 
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 In order to determine the Low Pass coefficients, estimations on the number of 

programme instructions executed were made in the followings. Therefore, the average 

number of instructions required to perform the division of High Pass coefficients are 

estimated to be, 16 x 3 + ½ x (5 + 2) = 52 programme instructions. The estimated 

values is calculated based on the assumption that the average High Pass DWT 

coefficients values were 32. Therefore, 16 times of division by 2 was performed onto 

the assume High Pass DWT coefficients values. The number of instructions were 

executed to perform the 1st Level DWT Row Filtering were estimated to be 8,368 

instructions, which is determined in Equation (43). Next, a complete 1st Level DWT 

Column Filtering process required the MISC to execute 8,372 instructions, which is 

shown in Equation (44). In Equation (45), the combined of both 1st Level of Row 

Filtering and Column Filtering processes required a total of 16,739 instructions to be 

executed. Based on each instruction requires 9 clock cycles, the total clock cycles 

required to perform the Level 1 DWT Filtering are 150,651 cycles, which is 

calculated in Equation (46). 

 

3.7.2 Level 2 Lifting Scheme DWT Programme 

For 2nd Level 2-dimensional DWT Filtering, a total of 84 lines of programme 

instructions were written and programmed onto the MISC architecture. The written 

Level 2 DWT Filtering programme instructions are shown in Listing 2. The Level 2 

DWT Filtering programme instructions covered both DWT Row (Horizontal) 

Filtering and DWT Column (Vertical) Filtering. 

 Similar to Level 1 Lifting Scheme DWT, the Level 2 DWT Row Filtering 

consists many parts of the programme instructions that were repeatedly executed, 

shown in Listing 2(a). However, the Level 2 DWT Row Filtering is only performed 

onto the LL1 DWT coefficients produced from the 1st Level DWT Filtering process. 

Therefore, the programme instructions at address 0x3D3 to 0x41E were repeated for 

16 times to process the LL1 DWT coefficients by performing 2nd Level DWT row 

Filtering on these coefficients. This produces the Level 2 Low Pass (L2) and High 

Pass (H2) subband of DWT coefficients. Once the MISC completed processing the 

first row of LL1 coefficients, these programme instructions are executed again to 

process the next rows of LL1 coefficients. Therefore, these programme instructions at 

address 0x3D0 to 0x436 were repeated for 2 times. After completed processing the 



 

146 
 

image, the programme instructions at address 0x43C to 0x451 were repeated for 4 

times to reset the modified data address of the programme instructions at address 

0x3D3, 0x3D4, 0x3E0, 0x3E2, 0x3F5, 0x3FA, 0x407 back to initial data address. 

This is done by subtracting the address value by 64 each time. 

 For 2nd Level DWT column filtering, there are many parts of the programme 

instructions were repeatedly executed, as shown in Listing 2(b). Programme 

instructions at address 0x457 to 0x4A2 were repeated for 32 times to process the 2nd 

Level DWT coefficients by performing the 2nd Level DWT Column Filtering. This 

produces 2nd Level of Low Pass Low Pass (LL2), Low Pass High Pass (LH2), High 

Pass Low Pass (HL2) and High Pass High Pass (HH2) subband of DWT coefficients 

from the DWT Row Filtered coefficients. After completed the 2nd Level DWT 

Column Filtering process, the programme instructions at address 0x4A5 to 0x4B7 

were executed such that the modified data address of the programme instructions at 

address 0x457, 0x458, 0x464, 0x466, 0x479, 0x47E, 0x48B were reset back to the 

initial data address value. 

 The number of instructions were executed to perform the 2nd Level DWT Row 

Filtering are 2,137 instructions, which is determined from the Equation (47). Next, for 

a complete 2nd Level DWT Column Filtering process, the MISC required to execute a 

total of 2,098 instructions, which is shown in Equation (48). In Equation (49), the 

combine 2nd Level of Row Filtering and Column Filtering processes required a total 

4,235 instructions to be executed. Since each programme instruction requires 9 Clock 

Cycles, the total Clock Cycles required by the MISC to perform the Level 2 DWT 

Filtering were 38,115 Clock Cycles, as calculated in Equation (50). 
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(a) Row (Horizontal) Filtering. 

 
(b) Column (Vertical) Filtering. 

Listing 2   DWT Level 2 Filtering Programme Instructions. 

 

 

  
executed nsinstructio137,2

327944885162

8478125
2

1
31685162nsInstructio Filtering Row

















 

 

(47) 

 

  
executed nsinstructio098,2

8104488532

7125
2

1
3168532nsInstructio FilteringColumn 

















 

 

(48) 

  Addr. Instructions   
0x3BE XOR $t6 $t6 0
0x3C1 XOR $t7 $t7 0
0x3C4 XOR $t8 $t8 0
0x3C7 SBN $s579 $t8 0
0x3CA SBN $s578 $t7 0
0x3CD SBN $s576 $t5 0
0x3D0 SBN $s580 $t6 0
0x3D3 SBN $s0 $s2 0
0x3D6 XOR $t2 $t2 0
0x3D9 XOR $t3 $t3 0
0x3DC XOR $t4 $t4 0
0x3DF SBN $zero $s2 0x018
0x3E2 XOR $s2 $t2 0
0x3E5 SBN $s576 $t2 0x006
0x3E8 SBN $t0 $t3 0
0x3EB SBN $one $t4 0x7F7
0x3EE XOR $t2 $t2 0
0x3F1 SBN $t3 $t2 0
0x3F4 SBN $t2 $s0 0
0x3F7 SBN $one $t4 0x00F
0x3FA SBN $s2 $t2 0
0x3FD SBN $s576 $t2 0x006
0x400 SBN $t0 $t3 0
0x403 SBN $one $t4 0x7F7
0x406 SBN $t3 $s0 0
0x409 SBN $t7 0x3D3 0
0x40C SBN $t7 0x3D4 0
0x40F SBN $t7 0x3E0 0
0x412 SBN $t7 0x3E2 0
0x415 SBN $t7 0x3F5 0
0x418 SBN $t7 0x3FA 0
0x41B SBN $t7 0x407 0
0x41E SBN $t0 $t6 0x7B2
0x421 SBN $t8 0x3D3 0
0x424 SBN $t8 0x3D4 0
0x427 SBN $t8 0x3E0 0
0x42A SBN $t8 0x3E2 0
0x42D SBN $t8 0x3F5 0
0x430 SBN $t8 0x3FA 0
0x433 SBN $t8 0x407 0
0x436 SBN $t0 $t5 0x797
0x439 SBN $s578 $t5 0
0x43C SBN $s579 0x3D3 0
0x43F SBN $s579 0x3D4 0
0x442 SBN $s579 0x3E0 0
0x445 SBN $s579 0x3E2 0
0x448 SBN $s579 0x3F5 0
0x44B SBN $s579 0x3FA 0
0x44E SBN $s579 0x407 0
0x451 SBN $t0 $t5 0x7E8

Repeat 
x16 

Repeat 
x4 

Repeat
x2 

  Addr. Instructions   
0x454 SBN $s577 $t6 0 
0x457 SBN $s0 $s128 0 
0x45A XOR $t2 $t2 0 
0x45D XOR $t3 $t3 0 
0x460 XOR $t4 $t4 0 
0x463 SBN $zero $s128 0x018
0x466 XOR $s128 $t2 0 
0x469 SBN $s576 $t2 0x006
0x46C SBN $t0 $t3 0 
0x46F SBN $one $t4 0x7F7
0x472 XOR $t2 $t2 0 
0x475 SBN $t3 $t2 0 
0x478 SBN $t2 $s0 0 
0x47B SBN $one $t4 0x00F
0x47E SBN $s128 $t2 0 
0x481 SBN $s576 $t2 0x006
0x484 SBN $t0 $t3 0 
0x487 SBN $one $t4 0x7F7
0x48A SBN $t3 $s0 0 
0x48D SBN $t1 0x457 0 
0x490 SBN $t1 0x458 0 
0x493 SBN $t1 0x464 0 
0x496 SBN $t1 0x466 0 
0x499 SBN $t1 0x479 0 
0x49C SBN $t1 0x47E 0 
0x49F SBN $t1 0x48B 0 
0x4A2 SBN $t0 $t6 0x7B2
0x4A5 SBN $s579 0x457 0 
0x4A8 SBN $s579 0x458 0 
0x4AB SBN $s579 0x464 0 
0x4AE SBN $s579 0x466 0 
0x4B1 SBN $s579 0x479 0 
0x4B4 SBN $s579 0x47E 0 
0x4B7 SBN $s579 0x48B 0 

Repeat
x32 
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executed nsinstructio235,4

098,2137,2

nsInstructio Filtering Row  nsInstructio FilteringColumn nsInstructio Total





 

(49) 

cyclesclock 115,38

cyclesclock  9executed nsinstructio235,4CyclesClock  Total




 
(50) 

 

3.7.3 Cauchy Reed Solomon Encoding Programme 

In Listing 3, there are 36 lines of programme instructions were written to perform the 

CRS(20,16) encoding onto the Level 2 DWT coefficients. First, the programme 

instructions at address 0x4C0 to 0x4C9 were repeated for 83 times to clear any data in 

the temporary data memory from $t8 to $t90. Next, the CRS Encoding process was 

started by performing a multiplications between the data vector and Secure Generator 

Matrix GSEC, to produce a complete codeword with 20 symbols. 

 For each time, the CRS Encoder programme encodes 16 DWT coefficients 

(input symbols) to produce a codeword with 20 encoded symbols. The programme 

instructions at address 0x4E7 to 0x4FC were repeatedly executed for 16 times such 

that the MISC performed GF multiplication between the 16 input symbols with 

corresponding 16 coefficients in the GSEC. Then followed by GF addition on these 16 

GF multiplication operation results to produce 1 codeword symbols. In order to 

produce the subsequence 19 symbols, the GF multiplication and addition operations 

were executed repeatedly for 19 times with the use of same input symbols and 

different GSEC coefficients. Therefore, for the same 16 input symbols (DWT 

coefficients), the programme instructions at address 0x4E4 to 0x502 were repeatedly 

executed for 20 times. Details on CRS Coding Scheme are mentioned in Section 2.4.3. 

Once the first 16 Level 2 DWT Coefficients were encoded, the following 16 Level 2 

DWT coefficients were encoded with executing the programme instructions at address 

0x4E1 to 0x50E again. 

 There are 2 rows of Level 2 DWT coefficients, with each row having 32 DWT 

coefficients, that needed to be encoded. The programme instructions at address 

0x4DE to 0x514 were executed again to process and encode the next row of DWT 

coefficients. With the DWT coefficients encoded, programme instructions at address 

0x51A to 0x520 were repeatedly executed for 4 times to reset the modified data 

address (0x4F1, 0x4E7) back to its initial data address. These programme instructions 
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needed to be executed such that the MISC could perform the subsequent part of the 

image data. 

 

 
Listing 3   CRS(20,16) Encoder Programme Instructions. 

 Based on Listing 3, the number of instructions executed for the written CRS 

Encoder programme were calculated that gives a total of 10,936 instructions. From 

Equation (51), it can be seen that there are parts of programme instructions that were 

repeated for a few times. Inside these programme instructions, there are certain parts 

of the instructions that were repeatedly executed. Since each programme instruction 

requires a total of 9 Clock Cycles, a complete CRS encoded DWT coefficients needs 

a total of 98,424 Clock Cycles. Equation (52) shows the calculated number of Clock 

Cycles needed by MISC to perform the CRS Encoding onto the DWT coefficients. 

 

Addr. Instructions
0x4BA  XOR $t7 $t7 0
0x4BD  SBN $s582 $t7 0

0x4C0  XOR  $t8  $t8  0 
0x4C3  SBN  $t0  0x4C0  0 
0x4C6  SBN $t0 0x4C1 0
0x4C9  SBN $t0 $t7 0x7F4

0x4CC  SBN  $s582  0x4C0  0 
0x4CF  SBN  $s582  0x4C1  0 
0x4D2  SBN $s577 $t6 0
0x4D5  SBN $s576 $t5 0
0x4D8  XOR $t4 $t4 0
0x4DB  SBN $s579 $t4 0
0x4DE  SBN  $s576  $t7  0 
0x4E1  SBN  $s581  $t8  0 
0x4E4  SBN  $s580  $t9  0 

0x4E7  XOR $s0 $t10 0
0x4EA  11TO8 $t10 $t10 0
0x4ED  GF  $s256  $t10  0 
0x4F0  XOR  $t10  $t11  0 
0x4F3  XOR  $t10  $t10  0 
0x4F6  SBN $t1 0x4E7 0
0x4F9  SBN $t0 0x4ED 0
0x4FC  SBN $t0 $t9 0x7E8

0x4FF  SBN $t0 0x4F1 0
0x502  SBN $s577 0x4E7 0
0x505  SBN $t0 $t8 0x7DC
0x508  SBN $s583 0x4ED 0
0x50B  SBN $t6 0x4E7 0
0x50E  SBN  $t0  $t7  0x7D0 
0x511  SBN  $t4  0x4E7  0 
0x514  SBN  $t0  $t5  0x7C7 
0x517  SBN  $s578  $t7  0 

0x51A  SBN  $s581  0x4F1  0 
0x51D  SBN  $s579  0x4E7  0 
0x520  SBN  $t0  $t7  0x7F7 

0x523  SBN $one $t7 0x2D9

Repeat 
x83 

Repeat 
x16 

Repeat 
x4 

Repeat 
x20 Repeat 

x2 Repeat 
x2 
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   
   

   
   

      
     

executed nsinstructio936,10

1226332252912

122633223264422

12263322

341322022

34264832

3448162022nsInstructio Encoding CRS












 

(51) 

cyclesclock 424,98

cyclesclock  9executed nsinstructio10936CyclesClock  Total




 
(52) 

 

3.7.4 Clock Cycles of Complete DWT CRS MISC Programme 

The calculated number of programme instructions executed for Level 1 DWT Filter 

and Level 2 DWT Filter were just an estimated values since it depends on number of 

times that the High Pass DWT coefficients values were divided by 2. By estimating 

the number of instructions to be executed, a total 31,910 lines of instructions were 

executed by the DWT CRS MISC in order to perform compression and encoding onto 

the image (64 pixels x 4 pixels). As shown in Table 6, it takes an estimated 28,7190 

Clock Cycles to process and encode a part of the image (64 pixels x 4 pixels).  Based 

on the calculation in Equation (53), a total of 4,595,040 Clock Cycles is required for 

the MISC to completely process the complete image (64 pixels x 64 pixels) captured 

by a CMOS camera. Although the FPGA input frequency is at 48MHz, the DWT CRS 

MISC architecture is set to operate at the frequency of 24MHz. The MISC is set to a 

lower operating frequency is because of the maximum time delay (32.732ns) required 

for the data to become stable in between the connected components (eg. registers, 

multiplexers, functional blocks, Memory etc.) in the MISC architecture. 

 With estimated number of Clock Cycles, the total amount of time required by 

the MISC to process a complete image (64 pixels x 64 pixels) can be calculated. As 

shown in Equation (54), the MISC requires 0.1915s to completely process the image 

with the size of 64 pixels x 64 pixels. At this speed, the estimated number of images 

can be processed per second by the MISC architecture are 3 frames of images (3Hz). 
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Table 6   Number of Programme Instructions executed for DWT CRS MISC. 

Programme 
No. 

Instructions 
Memory 

(bits) 
Memory 
(Bytes) 

Instructions 
Cycles 

Clock 
Cycles 

Level 1 DWT Filter 90 3,240 405 16,739 150,651 

- Row Filtering 44 1,584 198 8,368 75,312 

- Column Filtering 46 1,656 207 8,372 75,348 

Level 2 DWT Filter 84 3,024 378 4,235 38,115 

- Row Filtering 50 1,800 255 2,137 19,233 

- Column Filtering 34 1,224 153 2,098 18,882 

CRS Coding Scheme 36 1,296 162 10,936 98,424 

 Total 210 7,560 945 31,910 287,190 

 

 

cyclesclock 040,595,4

61executed nsinstructio190,287CyclesClock  Total




 
(53) 

s1915.0

Hz000,000,24

cyclesclock 040,595,4
Time




 

(54) 

 

 

 

3.8 SUMMARY 

 

In Chapter 3, the methodology on developing the DWT CRS MISC architecture was 

presented. By designing the DWT CRS MISC architecture, a complete circuitry that 

interconnects the registers, functional blocks, MUXs and Memory was described by 

using the hardware descriptions language, VHDL. The functionality of the functional 

blocks were also described in separate VHDL files and then combined these files 

together at the architecture level. As such, the described functional blocks can be 

reused in other area of hardware implementations, for example the GF block and 

XOR block can be used to describe a RS LFSR encoder. 

 Subsequently, the developed DWT CRS MISC architecture requires to be 

programmed such that it will operate as an image processing framework for use in the 

WVSNs. Without programming the DWT CRS MISC, it would not operate and 

perform any image processing onto the image data available in its Memory. As a 
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result, programme instructions were written based on the algorithms that are described 

in Section 3.5. Then the DWT CRS MISC was programmed using the written 

programme instructions which are described in Section 3.6. The DWT CRS MISC 

architecture operating at 24MHz, would require 287,190 Clock Cycles (11.966ms) to 

completely execute the written programme instructions. However, the DWT CRS 

MISC only processed 4 rows of the image data (complete image size is 64 pixels x 64 

pixels). As a result, the DWT CRS MISC continued to process the subsequent 4 rows 

of image data until complete 64 rows of image was processed. This would require 

4,595,040 Clock Cycles (0.1915s) to have the whole image processed. 

 Once the DWT CRS MISC architecture was described, simulations were 

performed onto the combinational circuit that generates the control signals to verify 

its operations. Besides, simulations were also performed onto the MISC architecture 

for executing different programme instructions. This is to ensure that the data read 

from the Memory was flowing correctly in the MISC architecture and the processed 

data was written back correctly into the Memory. With considering the hardware 

delay, the Post & Route simulations were performed onto the DWT CRS MISC 

architecture. From these simulations, the longest delay occurred can then be 

determined such that correct operating frequency of the DWT CRS MISC can be set. 

Further information on the generated simulation waveforms for the DWT CRS MISC 

architecture are shown in Chapter 4. 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 
 

 

In Chapter 4, the results of the developed DWT CRS MISC architecture are presented 

and discussed. The Behavioral and Post & Route simulation were performed and the 

waveforms for the control signals in the DWT CRS MISC architecture are presented 

in Section 4.1. Next, Section 4.2 presents the Behavioral and Post & Route simulation 

waveforms on the operation of the four programme instructions. After the simulations 

were performed, the amount of hardware utilisations of the existing techniques and 

the FPGA synthesised DWT CRS MISC architecture were compared, which is 

discussed in Section 4.3. Meanwhile, the effect on the amount of DWT coefficients to 

be transmitted across the WVSNs were studied and discussed in Section 4.4. By 

determining the quality of reconstructed image, Section 4.5 shows the effect of errors 

that occurred onto the DWT coefficients. Lastly, Section 4.6 presents a study on the 

security level, in terms of number possible trials, for using different CRS coding 

scheme in encrypting (encoding) the image data. 

 

 

 

4.1 CONTROL SIGNALS WAVEFORMS 

 

The control signals waveforms that were produced by simulating the combinational 

logic circuit are shown in this section. This includes both the Behavioral waveforms 

and the Post & Route waveforms. The Behvioral simulation only simulated the Very 

High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) 

described circuit and generated the circuit’s output waveforms without considering 
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the hardware delays that occurred in the actual hardware implementation. Whereas, 

the Post & Route simulation simulated the VHDL described circuit with considering 

the hardware delays. These waveforms were generated by using the Xilinx ISim 

Simulator 11.5 software. 

 

4.1.1 Control Signals: Behavioral Simulation Waveforms 

The combinational logic circuit that produced the control signals for DWT CRS 

MISC architecture was described in Very High Speed Integrated Circuit (VHSIC) 

Hardware Description Language (VHDL). Simulation was performed onto the VHDL 

described control signals combinational logic circuit in the Xilinx ISE 11.5 

environment. In Figure 120, the Behavioral waveforms were generated based on the 

control signals combinational logic circuits shown in Section 3.2. The Behavioral 

waveforms were compared with the control signals Truth Table, which is shown in 

Table 4. For each Clock Cycle, it can be seen that the control signals output for both 

the Behavioral waveforms and the Truth Table were the same. Therefore, the control 

signals generated from the combinational logic circuit (based on the Boolean Logic 

equations) matched the required control signals shown in the Truth Table. Without 

considering hardware delays, this verified the output of control signals generated at a 

particular Clock Cycles in an ideal hardware implementation environment. 

 

4.1.2 Control Signals: Post and Route Simulation Waveforms 

In actual FPGA implementation, the designed combinational circuit may encounter 

hardware delays (eg. setup delay, hold delay etc.) that affect the operation frequency 

of the MISC architecture. By considering the hardware delays, the Post & Route 

simulation was performed to determine the control signals generated in an actual 

hardware implementation of the combinational circuits. For the Post & Route 

simulation, the waveforms of the control signals generated are shown in Figure 121 

and Figure 122. In these waveforms, it can seen that a 4-bit Counter (iCOUNT[3:0]) 

increased by 1 during every rising edge of input Clock (tb_CLK) with a delay of 

2.833ns. The MAR_SEL control signal was considered to be the maximum delay 

since the MAR_SEL control signal had the longest delay for the expected Logic state 

to become stable as compared to other control signals. For the MAR_SEL control 
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signal to reach the stable Logic state, an additional delay of 9.973ns was required after 

the 4-bit Counter value had been stabilized. For these control signals to become stable, 

the total maximum delay of 12.806ns from the rising edge of input Clock (tb_CLK) 

was required. 

 In Figure 121 and Figure 122, there are slight differences between these two 

waveforms. Figure 121 shows that the N (tb_N) signal did not come to the Logic state 

HIGH (Logic 1) between the Clock Cycle 6 to Clock Cycle 8. The N signal was 

determined by the result obtained from the SBN instruction. When the result is 

negative, then it would generate a HIGH (Logic 1) state to the N register. Then the N 

register would output its value as N input signal to the combinational circuit. The N 

signal affected the MISC architecture whether to add the ‘Target Address’ to the 

current Program Counter (PC) value. If negative result was obtained from the SBN 

instruction, then the ‘Target Address’ was added to the current PC value and 

overwriting the PC register. Otherwise, the ‘Target Address’ would not be added to 

the current PC value when positive result was obtained from the SBN instruction. 

Figure 122 shows that the PC_WRITE (tb_PC_WRITE) signal became HIGH (Logic 

1) state when N signal was at HIGH (Logic 1) state during the Clock Cycle 7. In the 

meantime, the delay of PC_WRITE signal had became longer (12.730ns) and this was 

caused by the additional N input signal that determined the PC_WRITE control signal 

at Clock Cycle 7. Table 7 and Table 8 listed out the corresponding time delays 

required by the control signals to become stable after each rising edge of the input 

Clock. The time delays required to increase the iCount4 counter value and become 

stable are also shown in Table 7 and Table 8.  

 Note that Table 7 shows the corresponding time delays of the control signals 

for the case where the input signal, N = 0. Whereas, Table 8 shows the respective time 

delays of the control signals for the case where the input signal, N = 1. For the case 

when N = 1, the MISC architecture was required to branch off to another programme 

address location. Therefore, the MISC would not execute the next in line programme 

instruction. Instead, the MISC would execute the programme instruction that was 

located at the targeted (jump to) programme address location. 

 From the time delays listed in Table 7 and Table 8, the longest time delay 

occurred among all the control signals was determined to be 12.730ns. Therefore, the 

operating frequency of the actual FPGA implementation at 48MHz (with period of 

20.833ns) is divided by two such that a lower operating frequency 24MHz (period 
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41.667ns) can be used to generate these control signals. This is to have the operating 

frequency of the DWT CRS MISC to meet the time delays that occurred on the 

combinational logic circuit that generates the control signals into the DWT CRS 

MISC architecture. Besides considering the time delays of control signals 

combinational logic circuit, the time delays of the DWT CRS MISC architecture also 

played an important role in determining the operating frequency of the MISC 

architecture. Therefore, the following Section 4.2 presents the Behavioral and Post & 

Route simulations that were performed onto the DWT CRS MISC architecture, which 

had the hardware time delays taken into account for. 

 

 



 

157 
 

 

 
Figure 120   DWT CRS MISC Control Signals Behavioral Waveforms. 
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Figure 121   DWT CRS MISC Control Signals Post & Route Waveforms with N = 0. 
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Figure 122   DWT CRS MISC Control Signals Post & Route Waveforms with N = 1. 
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160 
 

 

Table 7   Time delays of control signals generated for case input signal, N = 0. 

Clk 
Delay (ns) 

iCount4 ALU_A ALU_B0 ALU_B1 CIN MAR_SEL PC_WRITE R_WRITE Z_WRITE N_WRITE MAR_WRITE MDR_WRITE MEM_READ MEM_WRITE OP_OUT_SEL OP0_WRITE OP1_WRITE OP_SEL 

0 2.833 - - - 11.208 - 12.511 - 10.816 - 10.972 - - - 11.489 - - - 

1 2.833 - - - 11.716 12.806 12.614 - 11.446 - - - 11.241 - - - 11.822 - 

2 2.833 - - - 10.798 12.152 12.614 11.643 - - 11.389 - - - - - 10.819 - 

3 2.833 - - - - - - 11.643 - - 11.256 - - - - - - - 

4 2.833 - - - 10.798 12.152 12.725 - - - - - - - - 12.576 - 11.893 

5 2.833 11.652 12.273 11.996 - - 12.614 - - 11.932 11.256 12.300 - - 11.572 12.576 - 11.893 

6 2.833 11.652 12.273 11.996 10.798 12.152 - - - 11.932 11.256 12.300 11.374 11.933 - - - - 

7 2.833 11.652 - 11.996 - - - - - - 11.256 - 11.241 11.715 - - - - 

8 2.833 11.665 - 12.009 11.716 - 12.725 - - - - - 10.957 - - - - - 

 

 

Table 8   Time delays of control signals generated for case input signal, N = 1. 

Clk 
Delay (ns) 

iCount4 ALU_A ALU_B0 ALU_B1 CIN MAR_SEL PC_WRITE R_WRITE Z_WRITE N_WRITE MAR_WRITE MDR_WRITE MEM_READ MEM_WRITE OP_OUT_SEL OP0_WRITE OP1_WRITE OP_SEL 

0 2.833 - - - 11.208 - 12.511 - 10.816 - 10.972 - - - 11.489 - - - 

1 2.833 - - - 11.716 12.806 12.614 - 11.446 - - - 11.241 - - - 11.822 - 

2 2.833 - - - 10.798 12.152 12.614 11.643 - - 11.389 - - - - - 10.819 - 

3 2.833 - - - - - - 11.643 - - 11.256 - - - - - - - 

4 2.833 - - - 10.798 12.152 12.725 - - - - - - - - 12.576 - 11.893 

5 2.833 11.652 12.273 11.996 - - 12.614 - - 11.932 11.256 12.300 - - 11.572 12.576 - 11.893 

6 2.833 11.652 12.273 11.996 10.798 12.152 - - - 11.932 11.256 12.300 11.374 11.933 - - - - 

7 2.833 11.652 - 11.996 - - 12.730 - - - 11.256 - 11.241 11.715 - - - - 

8 2.833 11.665 - 12.009 11.716 - - - - - - - 10.957 - - - - - 
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4.2 PROGRAMME INSTRUCTIONS WAVEFORMS 

 

Simulations were performed onto the four programme instructions designed for the 

DWT CRS MISC. For Section 4.2.1, the Behavioral simulation waveforms for each 

programme instructions were shown. Next, the Post & Route simulations were 

performed onto these programme instructions and the results are shown in Section 

4.2.2. 

 

4.2.1 Programme Instructions: Behavioral Simulation Waveforms 

Before implementing the proposed DWT CRS MISC architecture in an actual FPGA, 

Behavioral simulation was performed in order to verify correct functionality of MISC 

architecture. Therefore, the DWT CRS MISC architecture was described using the 

VHDL hardware description language and the Behavioral simulation can then be 

performed on the described MISC architecture. The Behavioral simulation was 

performed using the simulation software integrated in the Xilinx ISE 11.5. 

 By referring to the waveforms in Figure 123, the SBN instruction required up 

to a total 9 Clock Cycles (iclock2) to completely execute the instruction. The signal 

iclock2 is an important clock signal input to the control signals combinational logic 

circuit. As mentioned in Section 3.2, the control signals combinational logic circuit 

generated the control signals that were input into the MISC architecture. These 

control signals controlled the registers when to write the data and also controlled the 

data when to read or write into the Memory. Note that the signal iclock2 was 

produced by dividing the main input clock signal (tb_clk) into half. The main input 

clock signal (tb_clk) was the external clock signal input into the FPGA. The reason of 

dividing the signal iclock2 by half was the Block RAM used by the DWT CRS MISC 

architecture requires a significant amount of time delay in order to correctly read or 

write the data into the Block RAM. The details on the time delay of the Block RAM 

will be further discussed in Section 4.2.2. In Figure 123, an example of the simulation 

waveforms showing the data flow in and out of the register/Memory while the MISC 

executed the SBN instruction. In the simulation waveforms, there are 3 programme 

addresses (0x2F8, 0x2F9, 0x2FA) that stored the two data addresses (0x001, 0x259) 

and the target address (0x7F7) at the Memory respectively. During Clock Cycle 0 and 
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3, the Program Counter (PC) register consisted the programme addresses (0x2F8, 

0x2F9) that would be stored into the Memory Address Register (MAR) to provide 

memory addresses when reading the data addresses from the Memory. The two data 

addresses (0x001, 0x259) were read from the Memory at Clock Cycle 1 and 4 

respectively. Then these two data addresses (0x001, 0x259) were used to read 

Operand A and B from the Memory during Clock Cycle 2 and 5, respectively. In 

Clock Cycle 5, the Operand B (0x000) was subtracted with Operand A (0x001) that 

gave the final result (0x7FF) in negative value. The final result (0x7FF) from the 

arithmetic subtraction was stored into the Memory Data Register (MDR). Throughout 

Clock Cycle 6, the final result (0x7FF) stored in the MDR, would be written into the 

Memory at the Operand B memory location (0x259). At Clock Cycle 7, the target 

address (0x7F7, 3rd line of the programme code) was added to the current PC value 

0x2F9 to give a jump to address 0x2F1. Before the next programme instruction was 

executed, the PC value was increased by 1 to become 0x2F2 during Clock Cycle 8. 

This completed the execution of SBN instruction inside the MISC architecture. 

 For the GF MULT programme instruction, Galois Field GF(28) arithmetic 

multiplication was performed on two Operands (data) that are read from the Memory 

(B = B x A). Then the result from the GF(28) multiplication was written back to 

Operand B (second read data location). The operation of the GF MULT instruction 

was similar to the SBN instruction. The only difference was that GF multiplication 

was performed onto the two Operands, A and B instead of arithmetic subtraction. 

From the example simulation waveforms shown in Figure 124, two data (address 

0x103 and 0x25F) were read from the Memory at Clock Cycle 2 and 5, where each of 

its value was 0x053 and 0x0F8, respectively. Once the second data was read at Clock 

Cycle 5, the result of the Galois Field multiplication (igf[10:0]) was obtained (0x0C2) 

and stored the result back to the second data location (0x25F) at Clock Cycle 6. The 

complete operation of GF MULT instruction performed by the MISC architecture can 

be observed from the waveforms in Figure 124. 

 Next, the XOR programme instruction commands the MISC to perform 11-bit 

XOR operation onto two Operands (data) read from the Memory (B = B XOR A). 

Again the result of the XOR operation was written to Operand B (second read data 

location). By referring to the example in Figure 125, two data (address 0x004 and 

0x25F) were read from the Memory during Clock Cycle 2 and 5, with the value 

0x7F8 and 0x000 respectively. Once the second data was read, the result of the XOR 
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(ixor[10:0]) was obtained (0x7F8) at Clock Cycle 5 and written back to the Operand 

B memory location (0x25F) at Clock Cycle 6. The XOR instruction was required to 

perform the GF arithmetic addition when encoding the data using the CRS coding 

scheme. A complete execution of the XOR instruction by the MISC architecture was 

shown in the simulation waveforms in Figure 125. 

 The fourth programme instruction, 11TO8 instruction was required for 

converting the negative DWT coefficients from 10-bit signed data (11-bit) to 7-bit 

signed data (8-bit). This 11TO8 instruction only read the operand B (second read data) 

from the Memory. Then the result obtained was the combined of MSB (sign bit, bit 10) 

of operand B with the 7 LSB of the operand B. For example shown in Figure 126, 

Operand B (address 0x25F) of value 0x7F8 was read at Clock Cycle 5 and the output 

(value 0x0F8) of this instruction (i11TO8[10:0]) was written back to Operand B 

memory location again (0x25F) at Clock Cycle 6. 

 Based on the waveforms for the programme instructions, it is shown that these 

programme instructions were able to process the data (read from the Memory) 

correctly. Afterwards, the processed data obtained from the respective programme 

instructions were then correctly written back to the Memory. Therefore, the operation 

of these four programme instructions in the DWT CRS MISC architecture were 

verified. With these four programme instructions, a complete DWT filter and 

CRS(20,16) encoder programme were written. The written programme is then 

programmed into the DWT CRS MISC such that it compresses and encodes the image 

data in a single MISC architecture. 
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Figure 123   Behavioral Simulation Waveforms SBN Instruction for DWT CRS MISC. 
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Figure 124   Behavioral Simulation Waveforms GF MULT Instruction for DWT CRS MISC. 
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Figure 125   Behavioral Simulation Waveforms XOR Instruction for DWT CRS MISC. 
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Figure 126   Behavioral Simulation Waveforms 11TO8 Instruction for DWT CRS MISC. 
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4.2.2 Programme Instructions: Post and Route Simulation Waveforms 

The Post & Route simulations were performed onto the DWT CRS MISC architecture 

to verify the four programme instructions operate according to the requirements 

(mentioned in Section 3.1) in an actual hardware (FPGA) implementation. Besides, 

these simulations were performed to determine the maximum time delay required by 

the outputs to become stable. By determining the longest delay, the correct operating 

frequency of the DWT CRS MISC architecture can be determined such that correct 

operation of the MISC architecture is achieved. 

 In Figure 127, the Post and Route simulation waveforms for SBN instruction 

show that the longest time delay of 32.095ns occurs on the Adder Output 

(adder[10:0]) at Clock Cycle 5. At this particular Clock Cycle 5, the Adder Output 

requires 32.095ns of time delay to have the correct output data to become stable. Then 

the next longest delay (30.429ns) is also the Adder Output to be stabled at Clock 

Cycle 7. Other time delays for the proposed DWT CRS MISC architecture are 

recorded in the Table 9. From Table 9, the data output from Memory (omemory[11:0]) 

requires a longest amount of time delay of 24.549ns to become stable. This was the 

longest time delay encountered in the operation of SBN instruction. 

 

Table 9   DWT CRS MISC Architecture SBN Instruction delays. 

Clock 
Delays (ns) 

iClock2 PC_reg MAR_reg OMemory Adder R_reg MDR_reg iGF iXOR

0 6.283 7.811 - - - - - - - 

1 6.283 - 8.036 24.549 11.820 - - - - 

2 6.283 7.811 8.062 24.531 11.839 - - - - 

3 6.283 - - - - 8.097 - - - 

4 6.283 - 8.062 24.549 12.464 - - - - 

5 6.283 7.811 8.062 24.549 32.095 - - - - 

6 6.283 - - - - - 8.027 - - 

7 6.283 - 8.062 24.549 30.429 - - - - 

8 6.283 7.811 - - 14.108 - - - - 

 

 Next, the Post & Route simulation was also performed onto the GF MULT 

instruction with its corresponding waveforms shown in Figure 128. From these 

waveforms, the longest time delay encountered was 32.732ns for the output of the GF 

MULT functional block (igf[10:0]) to become stable during Clock Cycle 5. The 

subsequent longest time delay was the output data from the Memory (omemory[11:0]) 
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to be stabled for different Clock Cycles. By referring to Table 10, other time delays 

were also recorded, such as time delay required for writing correct programme 

addresses to Programme Counter register (PC_reg), writing correct memory addresses 

to Memory Address Register (MAR_reg), writing correct data to Read register 

(R_reg), and writing correct output data from the functional block to the Memory 

Data Register (MDR_reg). Therefore, the longest time delay, encountered in the 

operation of GF MULT instruction, would be considered to be one of the affecting 

factors for the operating frequency of DWT CRS MISC architecture. 

 

Table 10   DWT CRS MISC Architecture GF MULT Instruction delays. 

Clock 
Delays (ns) 

iClock2 PC_reg MAR_reg OMemory Adder R_reg MDR_reg iGF iXOR

0 6.283 7.811 - - - - - - - 

1 6.283 - 7.967 24.549 11.839 - - - - 

2 6.283 7.811 8.062 24.549 - - - - - 

3 6.283 - - - - 8.097 - - - 

4 6.283 - 8.062 24.549 12.445 - - - - 

5 6.283 7.811 8.062 24.549 - - - 32.732 - 

6 6.283 - - - - - 8.027 - - 

7 6.283 - 8.062 24.549 - - - - - 

8 6.283 - - - 13.509 - - - - 

 

Table 11   DWT CRS MISC Architecture XOR Instruction delays. 

Clock 
Delays (ns) 

iClock2 PC_reg MAR_reg OMemory Adder R_reg MDR_reg iGF iXOR 

0 6.283 7.811 - - - - - - - 

1 6.283 - 7.967 24.549 12.184 - - - - 

2 6.283 7.811 8.062 24.549 - - - - - 

3 6.283 - - - - 8.097 - - - 

4 6.283  8.062 24.549 12.445 - - - - 

5 6.283 7.811 8.062 24.549 - - - - 27.301

6 6.283 - - - - - 8.024 - - 

7 6.283 - 8.062 24.549 - - - - - 

8 6.283 - - - 13.509 - - - - 

 

 For the XOR instruction, the longest time delay occurred at Clock Cycle 5 at 

the output of XOR functional block to become stable for 27.301ns, as shown in Figure 

129. The subsequent longest time delay (24.549ns) is the time delay required for the 

data output from the Memory (omemory[11:0]) to be stabled for different Clock 
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Cycles. Table 11 shows the other time delays that were required by the XOR 

instruction to operate and process the data correctly. The longest time delay 

encountered in the operation of XOR instruction was not the main affecting factor on 

the operating frequency of the DWT CRS MISC architecture. 

 

Table 12   DWT CRS MISC Architecture 11TO8 Instruction delays. 

Clock 
Delays (ns) 

iClock2 PC_reg MAR_reg OMemory Adder R_reg MDR_reg iGF iXOR 

0 6.283 7.811 - - - - - - - 

1 6.283 - 7.967 24.549 11.82 - - - - 

2 6.283 7.811 8.062 24.549 - - - - - 

3 6.283 - - - - - - - - 

4 6.283 - 8.062 24.549 12.79 - - - - 

5 6.283 7.811 8.062 24.549 - - - - - 

6 6.283 - - - - - 7.958 - - 

7 6.283 - 8.062 24.549 - - - - - 

8 6.283 - - - 13.509 - - - - 

 

 As shown in Figure 130, the 11TO8 instruction had the longest time delay of 

24.549ns for the output data from Memory (omemory[11:0]) to become stable. By 

referring to Table 12, the subsequence longest time delay (13.509ns) was the output 

from ADDER to be stabled at Clock Cycle 8. It can be seen that the output from the 

ADDER required significant amount of time delays to become stable. The output 

from the 11TO8 functional block was not able to determine in the simulator. The 

reason to this is the 11TO8 functional block was made of wire lines that were 

combined together to form an output. Consequently, it was assumed that the delay of 

these wire lines were less significant as compared to the time delays required to store 

data into the registers. The Memory Data Register (MDR_reg) required 7.958ns of 

time delay to store the output from the 11TO8 functional block. 

 By performing Post & Route simulations, the actual operations of these four 

programme instructions available in the DWT CRS MISC architecture could be 

verified. This included the time delays required for components in the MISC 

architecture to correctly functions as designed. The longest time delay encounter by 

the MISC architecture is the time delay (32.732ns) required by the output of GF 

MULT functional block to become stable. With the time delay known, this 

determined the maximum operating frequency of the MISC architecture described 
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into the Xilinx Spartan-3L FPGA. In order to meet these time delays requirements, 

the operating frequency of the DWT CRS MISC architecture was set lower than the 

maximum allowable frequency. 

 As a result, the proposed MISC architecture was set to operate at 24MHz 

(clock period of 41.667ns) instead of using the actual input clock frequency at 48MHz 

(clock period of 20.833ns) into the FPGA. This operating frequency is set to meet the 

hardware delays that occurred in the proposed architecture. This was done by dividing 

the actual input clock frequency into half such that the actual operating frequency of 

the DWT CRS MISC architecture could meet the available time delays from the 

architecture. 

 For future improvement, usage of only single frequency clock for the DWT 

CRS MISC architecture can be considered. This can be implemented by using a buffer 

delay to delay the clock signal fed into the Memory (Block RAM). With delayed 

clock, the Memory will be able to response correctly towards the changes in control 

signals. This will provide the minimum required amount of time for the control 

signals and registers’ output data to become stable. Later on, the Memory will only be 

able to input/output the correction information, such as the Operands’ memory 

addresses and the Operands’ values. 
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Figure 127   Post & Route Simulation Waveforms SBN Instruction for DWT CRS MISC. 
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Figure 128   Post & Route Simulation Waveforms GF MULT Instruction for DWT CRS MISC. 
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Figure 129   Post & Route Simulation Waveforms XOR Instruction for DWT CRS MISC. 
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Figure 130   Post & Route Simulation Waveforms 11TO8 Instruction for DWT CRS MISC. 
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4.3 DWT CRS MISC HARDWARE UTILISATION 

 

To verify that the DWT CRS MISC architecture can actually operate in the FPGA, a 

hardware implementation was performed onto a FPGA. This is done by writing the 

VHDL code that described the DWT CRS MISC architecture and performed a 

hardware implementation onto the Xilinx Spartan-3L FPGA. The hardware utilisation 

for such implementation is discussed in Section 4.3.1. Initial input image data was set 

in the memory such that it allowed the programmed DWT CRS MISC architecture to 

process the data and then produced the corresponding encoded data. After that, the 

MISC architecture produced encoded data were compared with the MATLAB 

generated encoded data. By comparing the data, both the encoded data produced from 

the DWT CRS MISC architecture and the MATLAB generated encoded data were of 

the same values. Therefore, this verified that the DWT CRS MISC architecture 

operates and processes the input image data correctly. 

 

4.3.1 DWT CRS MISC in FPGA 

The hardware utilisations for the proposed DWT CRS MISC architecture 

implemented onto Xilinx Spartan-3L FPGA was studied. This was obtained by 

synthesising the developed DWT CRS MISC architecture in the Xilinx ISE Design 

Suite 11.5. For this implementation, the MISC architecture required a total of 144 

Slices (i.e. 94 Flip-Flops, 248 LUTs, 2 Block RAMs), which is shown in Table 13. 

Note that in Spartan-3L FPGA, each of the Slices contains of 2 Flip-Flops and 2 Four-

Input LUTs [146] [147]. Besides synthesizing into one type of FPGA platform, the 

DWT CRS MISC architecture is also considered for Xilinx Virtex-II and Xilinx 

Spartan-3E. The hardware utilizations of the DWT CRS MISC are 142 Slices (i.e. 92 

Flip-Flops, 225 LUTs, 2 Block RAMs) and 129 Slices (i.e. 66 Flip-Flops, 223 LUTs, 

1 Block RAMs). Different FPGA platform was also considered because it is used for 

comparison of existing method with the same FPGA family. 

 Table 14 shows that there are 6 existing techniques that were previously 

developed for WSNs, whereby they either performed compression, encryption and 

error corrections. Some of the listed techniques or systems performed the 

aforementioned techniques separately rather than in a single architecture. For example, 
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the Cordic Loeffler Discrete Cosine Transform (CL-DCT) occupied 1,060 Slices in 

Xilinx Spartan-3L [25]. The Low-Density Parity-Check (LDPC) error correction 

encoder utilized a total of 870 Slices in Xilinx Virtex-II [98]. 

 

Table 13   Hardware utilisation of DWT CRS MISC architecture in Spartan-3L FPGA. 

Components Quantity Total Usage 

Slices 144 13,312 1.08% 

Flip-Flops 94 26,624 0.35% 

4-Input LUTs 248 26,624 0.92% 

- Logic 226 - - 

- Route-thru 22 - - 

- Dual Port RAMs 0 - - 

- Shift Registers 0 - - 

Bonded IOB 26 221 26.70% 

Block RAMs 2 32 6.25% 

GCLKs 2 8 25.00% 

 

 For the Reed Solomon (RS) error correction, the synthesised RS Linear 

Feedback Shift Register (LFSR) method [17] shown in Table 14, required hardware 

utilisation of 415 Slices and the power consumption of 198.9mW. As for the 

developed RS MISC architecture, it only required 161 Slices and 164.2mW. It can be 

seen that the RS MISC architecture has 61.2% lower hardware utilisations and 17.4% 

lower power consumption as compared with the RS LFSR method of hardware 

implementation. 

 Combining the encryption and error correction modules together, with the 

AES MISC [148] and followed by the RS MISC, would require a total of 480 Slices. 

The combined AES MISC and RS MISC may required power consumption of at least 

199.7mW, which is contributed by the AES MISC. The stated power consumption 

have not included the power consumed by the RS MISC and it may be even higher 

than the stated value. This method of implementing the image processing system has 

large amount of hardware utilisation and require relatively high power consumption. 

Instead of combining two separate modules together, a CRS MISC architecture was 

developed that uses the single code of encryption and error correction code (CRS 

coding scheme). The developed CRS MISC architecture only required a total of 155 

Slices and power consumption of 167.3mW. It can be seen that using single code of 
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encryption and error correction code is better than using two different modules in 

terms of the hardware utilisations and power consumption. 

 

Table 14   Hardware utilisations of developed and existing method used in similar FPGA technology 
(Spartan-3, Virtex-II) for WVSNs/WSNs. 

Designs Functions Slices 
Flip-
Flops 

4-Input 
LUTs 

Block 
RAMs 

Power 
(mW) 

Xilinx Virtex-II 

DWT CRS 
MISC 

Compression, 
Encryption, 

Error Correction 
142 92 225 2 N/A 

CRS MISC 
Encryption, 

Error Correction 
132 83 209 1 N/A 

RS MISC Error Correction 138 88 218 1 N/A 

LDPC [98] Error Correction 870 
Not 

Mentioned 
Not 

Mentioned 
19 

Not 
Mentioned 

Xilinx Spartan-3E 

DWT CRS 
MISC 

Compression, 
Encryption, 

Error Correction 
129 66 233 1 179.0 

CRS MISC 
Encryption, 

Error Correction 
120 56 216 1 178.9 

RS MISC Error Correction 124 61 221 1 178.9 

ECBC [21] 
Encryption, 

Error Correction 
1,691 

Not 
Mentioned 

Not 
Mentioned 

Not 
Mentioned 

Not 
Mentioned 

Xilinx Spartan-3L 

DWT Filter 
Module [149] 

Compression 1,458 806 2714 14 424.6 

CL-DCT [25] Compression 1,060 
Not 

Mentioned 
Not 

Mentioned 
Not 

Mentioned 
Not 

Mentioned 

RS LFSR [17] Error Correction 415 346 720 2 198.9 

RS MISC Error Correction 161 91 279 1 164.2 

AES 
MISC [148] 

Encryption 319 157 569 2 199.7 

CRS MISC 
Encryption, 

Error Correction 
155 87 269 1 167.3 

DWT 
CRS MISC 

Compression, 
Encryption, 

Error Correction 
144 94 248 2 167.3 

 

 



 

179 
 

4.3.2 DWT CRS MISC: Further Improvements 

For further improvements, in hardware utilisation and power consumption, the 

developed DWT CRS MISC architecture was also considered for Xilinx Spartan-6 

FPGA implementation. The hardware utilisation of the DWT CRS MISC architecture 

that was synthesized in Xilinx Spartan-6 FPGA, required a total of 66 Slices (i.e. 87 

Flip-Flops, 176 LUTs, 2 Block RAMs). Lower hardware utilisation (in terms number 

of Slices) was expected for the implementation of the MISC architecture is because 

each Slices in the Spartan-6 FPGA contains of 8 Flip-Flops and 4 Six-Input LUTs 

[150], which is more than the number of Flip-Flops and LUTs in each Slices for the 

Spartan-3L FPGA. The hardware utilisation for the developed DWT CRS MISC 

architecture to be implemented onto the Spartan-6 FPGA is shown in Table 15. 

Therefore, there is a huge reduction in hardware complexity if the developed DWT 

CRS MISC architecture to be implemented into the Spartan-6 FPGA. 

 In Table 16, the power consumption for the synthesised DWT CRS MISC 

architecture in two different type of FPGAs were estimated using the Xilinx XPower 

Analyzer 11.5. The total power consumption for MISC architecture in Spartan-3L 

FPGA was 167.29mW and Spartan-6 FPGA was 21.63mW. The differences in power 

consumption between these two technologies of FPGA is because that the Spartan-3L 

is 90nm FPGA [151] and the Spartan-6 is 45nm FPGA [152]. Since there is 

improvement on the technology of the FPGA, the Spartan-6 FPGA has 87.1% lower 

power consumption as compared to Spartan-3L FPGA [152]. Therefore, there is an 

great improvement in power consumption of the DWT CRS MISC architecture when 

it will be implemented onto the Spartan-6 FPGA. 

 

Table 15   Hardware utilisation of DWT CRS MISC architecture in Spartan-6 FPGA. 

Components Quantity Total Usage 

Slice 66 2,278 2.90% 

Flip-Flops 87 18,224 0.48% 

6-Input LUTs 176 9,112 1.93% 

- Logic 171 - - 

- Route-thru 5 - - 

- Memory 0 - - 

Bonded IOB 26 232 11.21% 

Block RAMs 2 32 6.25% 
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 In Table 17, it can be seen that there are at least 54.2% reduction in number of 

hardware utilisations when the developed RS MISC, CRS MISC and DWT CRS 

MISC architectures were synthesised into Spartan-6 FPGA. The great amount of 

reduction in hardware utilisations is because the Spartan-6 FPGA uses the 6-Input 

LUTs required less LUTs for the same implementations in Spartan-3L FPGA which 

uses the 4-Inpu LUTs [153]. 

 

Table 16   Xilinx XPower estimated power consumption of DWT CRS MISC architecture. 

 Power (W) 

 Spartan-3L Spartan-6 

Clocks 0.00100 0.00076 

Logics 0.00018 0.00007 

Signals 0.00031 0.00003 

IOs 0.02042 0.00007 

BRAMs 0.00013 0.00080 

Total Quiescent Power 0.14525 0.01989 

Total Dynamic Power 0.02204 0.00174 

Total Power 0.16729 0.02163 

 

Table 17   Hardware utilisations of developed and existing method in Spartan-6 FPGA for 
WVSNs/WSNs. 

Designs Functions Slices 
Flip-
Flops 

6-Input 
LUTs 

Block 
RAMs 

Power 
(mW) 

Xilinx Spartan-6 

Crypto-
Processor [117] 

Encryption 4,828 
Not 

Mentioned 
Not 

Mentioned 
19 17.0 

RS MISC Error Correction 60 82 167 1 17.4 

CRS MISC 
Encryption, 

Error Correction 
60 77 160 1 21.3 

DWT 
CRS MISC 

Compression, 
Encryption, 

Error Correction 
66 87 176 2 21.6 

 

 Table 17 shows the Crypto-Processor encryption required a total of 4,828 

Slices [117]. As for the developed DWT CRS MISC, it only takes 1.3670% hardware 

utilization of the Crypto-Processor. This is a huge reduction in hardware utilizations 

compared to the Crypto-Processor. As a result, the developed DWT CRS MISC 

architecture has a low hardware utilisations as compared to the different existing 
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techniques used in compression, encryption and error correction for WVSNs/WSNs. 

Meanwhile, the DWT CRS MISC has the capabilities in reducing large amount of 

image data, providing data security and data reliability combined together in a single 

architecture with low hardware utilisations. 

 

 

 

4.4 DWT RECONSTRUCTED IMAGE QUALITY 

 

In actual implementation, three Digi XBee RF transceivers were used to form a 

wireless communication network, with the ability to transmit data in between these 

transceivers. This simulated the environment of WVSNs that had a camera sensor 

node sending image data to the base-station (sink) through an intermediate node 

(router). The Digi XBee RF transceivers used has a typical transfer rate of 16kbps 

(2kBps) with power consumption of 50mW [154]. With these information, 

transmission time and energy required to transmit different amount of DWT 

compressed image data could be evaluated. In the meantime, simulations were 

performed in MATLAB environment to evaluate the quality of reconstructed image. 

This was done by performing a 3-level Lifting Scheme DWT Haar filtering onto the 

image ‘lena1.tif’ with size of 256 pixels x 256 pixels, shown in Figure 131(a). The 

image was decomposed into 3 different levels of subband DWT coefficients (LL3, 

LH3, HL3, HH3, LH2, HL2, HH2, LH1, HL1, HH1) and they were all arranged in the 

order as shown in Figure 131(b). The number of DWT coefficients transferred across 

the WVSNs to the base-station (sink) significantly affected the quality of 

reconstructed image. With more DWT coefficients received, the quality of 

reconstructed image was substantially improved (increased Peak Signal-to-Noise 

Ratio (PSNR) values). Table 18 shows the number of DWT coefficients sent with 

respect to the quality of reconstruct image, transmission time and energy. It can be 

seen that there is an increase in transmission time and energy consumption when more 

DWT coefficients were transmitted. 
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(a) Original ‘lena1.tif’ image. 

 

(b) DWT coefficients arrangement. 

Figure 131   DWT Haar on 'lena1.tif' image. 

 Transmitting all the DWT coefficients to the base-station allowed a lossless 

reconstruction of compressed image, which is similar to transmitting an 

uncompressed image. However, this required the largest amount of data (65,536 bytes) 

to be transferred across the wireless networks and consuming at least 1.6384 J of 

energy. This increased the power consumption of the transceiver and it was not 

recommended for WVSNs that operated on limited energy resources (such as battery 

powered). By considering the LL3 coefficients, the amount of data to be transmitted 

was the lowest (1,024Bytes) among all the scenarios in Table 18. The amount of LL3 

coefficients required to be transferred constituted only 1.563% of all the DWT 

coefficients. The energy required (0.0256J) to transmit LL3 coefficients was the 

lowest compared to other scenarios in Table 18. However, this produced low image 

quality (PSNR = 20.4009dB) and less information could be extracted from the 

reconstructed image. To achieve an acceptable image quality and low energy 

consumption, transmission of level 2 and level 3 DWT coefficients to the base-station 

were considered. For this case, it only consumed approximately 25% of the energy 

(0.4096 J) required to transmit all the DWT coefficients. As highlighted in Table 18, 

transmitting this amount of DWT coefficients still allowed sufficient information to 

be extracted from the reconstructed image (with image quality at 27.6737dB). In the 

meantime, there was a significant improvement in data transmission time between the 

node to base-station since less amount of image data are needed to be transferred. 
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Table 18   Image quality, transmission time and energy for different amount of DWT (Haar) 
coefficients transferred. 

DWT Coefficients 
PSNR 
(dB) 

Bytes 
Transferred

Time 
(s) 

Energy 
(J) 

LL3 20.4009 1,024 0.512 0.0256 

LL3 LH3 20.8603 2,048 1.024 0.0512 

LL3 LH3 HL3 22.9123 3,072 1.536 0.0768 

LL3 LH3 HL3 HH3 23.4419 4,096 2.048 0.1024 

LL3 LH3 HL3 HH3 LH2 24.1629 8,192 4.096 0.2048 

LL3 LH3 HL3 HH3 LH2 HL2 26.8969 12,288 6.144 0.3072 

LL3 LH3 HL3 HH3 LH2 HL2 
HH2 

27.6737 16,384 8.192 0.4096 

LL3 LH3 HL3 HH3 LH2 HL2 
HH2 LH1 

28.9856 32,768 16.384 0.8192 

LL3 LH3 HL3 HH3 LH2 HL2 
HH2 LH1 HL1 

37.1123 49,152 24.576 1.2288 

LL3 LH3 HL3 HH3 LH2 HL2 
HH2 LH1 HL1 HH1 

 65,536 32.768 1.6384 

 

 

4.5 ERRORS ON DWT COEFFICIENTS 

 

By introducing different number of errors into the DWT coefficients, the quality of 

the reconstructed image (measured in PSNR, dB) could be determined. This was done 

by finding the average image quality for 10 reconstructed image. Without CRS coding 

scheme protecting the DWT coefficients, the quality of the reconstructed image 

degraded if errors were to occur onto these DWT coefficients. Having no error 

occurred onto the DWT coefficients, the quality of the reproduced image was infinite 

since the reproduced image did not have any difference as compared to the original 

image. The quality (in PSNR) of the reconstructed image from the DWT coefficients 

with errors occurred into each packet of DWT coefficients, are shown in Figure 132(a) 

to Figure 132(d). From these figures, it can be seen that the quality of reconstructed 

image reduced as more errors occurred on each codeword. Table 19 shows the quality 

of reproduced image degraded as more errors were introduced into each packets 

(blocks) of data, each consisted of 16 DWT coefficients. For the case with 4 errors, 
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the reconstructed image with “Lena” inside was almost beyond recognition (PSNR = 

7.9531 dB), as compared to Figure 132(a). 

 

Table 19   Quality of 10 reconstructed image with errors on DWT coefficients. 

No 
Errors 

PSNR (dB) 

1 2 3 4 5 6 7 8 9 10 Avg. 

0            

1 13.8073 13.6610 13.7012 13.4123 13.5312 13.5479 13.3009 13.2482 13.7173 13.7697 13.5697

2 11.0146 10.7739 10.5853 10.8349 10.8505 10.6495 10.5056 10.8603 10.7916 10.7794 10.7646

3 8.9746 8.8661 8.9741 8.9879 9.0561 9.1719 9.0317 9.0551 9.0776 9.0570 9.0252 

4 7.8621 7.9643 7.8135 7.9449 8.1282 7.7630 8.0290 7.9857 8.0838 7.9562 7.9531 

 

 By introducing the CRS(20,16) coding scheme, the DWT coefficients were 

encoded to produce a codeword with 20 symbols, where each symbol was 8-bit. For 

up to 4 errors, the CRS(20,16) coding scheme was capable of recovering correct 

DWT coefficients for each codeword. As a result, high quality of reconstructed image 

was achievable, even there were 20% of errors on the encoded DWT coefficients. 

Figure 133 shows the quality of reconstructed image (PSNR = 44.3373 dB) from the 

DWT coefficients with 4 errors on each encoded codeword. The quality of the 

reconstructed image was not infinite is due to the fact that there was slight precision 

error while performing the conversion of DWT coefficients from double precision to 

unsigned integer in 8-bit (for example 8.5 might became 8.0) in the MATLAB 

environment. 

 

 
(a) One error occurred. 

 
(b) Two errors occurred. 
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(c) Three errors occurred. 

 
(d) Four errors occurred. 

Figure 132   Errors occurred on each packet of DWT coefficients. 

 
Figure 133   Reconstructed CRS encoded compressed image data with 4 errors on each packet. 

 

 

 

4.6 CRS CODING SCHEME CONFIGURATION 

 

An important question to consider is the security level of the selected CRS coding 

scheme. For different configuration of the CRS coding scheme, the coding scheme 

provides different specific level of security. The security level are determined by the 

number of trials that are required to be performed by the adversary to decode the 

encoded data. In Table 20, it shows the number of possible trials required for different 

configurations of the CRS coding scheme. From Table 20, Im is the total number of 

data used for encoding in bits, and Ik is the number of bits that are needed to generate 

the key, which is the generator matrix GSEC. I2m is the key, in number of bits, required 

to recover the encoded data using the CRS coding scheme. It is necessary to select a 
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particular configuration which has a large enough key space security. This is to 

prevent the adversary, having sufficient computational power, to recover the 

ciphertext (encrypted image data) that is intercepted during transmission. From Table 

20, it can be seen that for n = 20, L = 8 bits and m = 16, there are Im = 128 bits of data 

that will be encoded by using, Ik = 288 bits of key. The highlighted configuration in 

Table 20 is the selected CRS(20,16) coding scheme that are used in encoding the 

DWT coefficients. 

 

Table 20   Number of possible trials, P for different CRS coding scheme configurations. 

n m 
Im 

[bits] 
n + m 

lk 
[bits] 

r (n/m) L 2L 2m 
I2m 

[bits] 
Probability, P 

20 1 8 21 168 20.0000 8 256 2 16 65280 

20 2 16 22 176 10.0000 8 256 4 32 4195023360 

20 3 24 23 184 6.6667 8 256 6 48 2.6534x1014 

20 4 32 24 192 5.0000 8 256 8 64 1.6518x1019 

20 5 40 25 200 4.0000 8 256 10 80 1.0118x1024 

20 6 48 26 208 3.3333 8 256 12 96 6.0981x1028 

20 7 56 27 216 2.8571 8 256 14 112 3.6157x1033 

20 8 64 28 224 2.5000 8 256 16 128 2.1088x1038 

20 9 72 29 232 2.2222 8 256 18 144 1.2096x1043 

20 10 80 30 240 2.0000 8 256 20 160 6.8228x1047 

20 11 88 31 248 1.8182 8 256 22 176 3.7839x1052 

20 12 96 32 256 1.6667 8 256 24 192 2.0631x1057 

20 13 104 33 264 1.5385 8 256 26 208 1.1056x1062 

20 14 112 34 272 1.4286 8 256 28 224 5.8234x1066 

20 15 120 35 280 1.3333 8 256 30 240 3.0140x1071 

20 16 128 36 288 1.2500 8 256 32 256 1.5326x1076 

20 17 136 37 296 1.1765 8 256 34 272 7.6556x1080 

20 18 144 38 304 1.1111 8 256 36 288 3.7560x1085 

20 19 152 39 312 1.0526 8 256 38 304 1.8096x1090 

20 20 160 40 320 1.0000 8 256 40 320 8.5607x1094 

 

 Using the selected coding configuration, the adversary will require 

I2m = 256 bits of key to recover the encrypted data. The adversary would need to 

perform a total of P = 1.5326x1076 trials in order to decrypt the data. This coding 

configuration of the CRS has a similar key space security as that provided by AES 

encryption [155] with 128 bits of input data and 128 bits of key. Figure 134 shows 

that as the number of data to be encoded increases, the number of possible key 

combination (trials) also increases. This increases the security level of the encoded 
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(encrypted) data since the adversary needs to perform a large number of trials to 

decode (decrypt) the data. The selected CRS coding scheme has the similar security 

key space as the AES encryption scheme which considered as a standard use for 

encrypting data by the US National Institute of Standards and Technology (NIST) 

[58]. Therefore, this CRS(20,16) coding scheme is selected for use in the proposed 

system. In comparison with the original image, visual simulation results were also 

performed to further verify that the image data is well decorrelated, as shown in 

Figure 135(a) and Figure 135(b). 

 

 
Figure 134   Possible combination versus the number of data encoded. 

 
(a) Original ‘Lena.tif’ image before encoded. 

 
(b) Encoded Lena image. 

Figure 135   CRS coding scheme performed onto Lena image. 
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4.7 SUMMARY 

 

In this Chapter 4, the Behavioral and Post & Route simulations were performed onto 

the DWT CRS MISC architecture. From these simulations, the hardware time delays 

that occurred in the control signals combinational logic circuit and the operation of 

the programme instructions in the DWT CRS MISC architecture were determined. As 

a result, the correct operating frequency of the DWT CRS MISC architecture could be 

determined to meet the hardware time delays. Afterwards, the DWT CRS MISC 

architecture was then synthesised such that it would be implemented onto the FPGA. 

As compared with existing techniques (eg. ECBC), lower amount of hardware 

utilisation for the FPGA synthesised DWT CRS MISC architecture was achieved. The 

Lifting Scheme DWT Haar was used to reduce the large amount of image data such 

that less transmission of data was required. Instead of transmitting the full size image 

data, this would relatively reduce the amount of energy required for image data 

transmission. With the use of CRS coding scheme, the degradation in quality of 

reconstructed image could be avoid because the base station could rectify a few errors 

that occurred onto the compressed image data. Meanwhile, based on the study on 

security level of different CRS coding scheme, the selected CRS(20,16) coding 

scheme used in the MISC architecture offered a similar security protection level as 

compared to the AES encryption scheme.  
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CHAPTER 5 

HARDWARE IMPLEMENTATIONS 
 

 

The designed DWT CRS MISC architecture was integrated into the WVSNs to form a 

complete system. Before the DWT CRS MISC architecture was developed, a SPIHT 

MIPS processor was integrated with the CRS MISC architecture to reduce the image 

and encode (encrypt) the reduced image data. However, the SPIHT MIPS and CRS 

MISC integrations required large amount of hardware utilisation, which is 5,041 

Slices (3,060 Flip-Flops, 8,795 4-Input LUTs). Consequently, a DWT filter module 

was used to replace the SPIHT MIPS processor such there is a reduction in hardware 

utilisation and still capable of reducing the image data. However, the combined DWT 

filter module and CRS MISC architecture still requires a significant amount hardware 

utilisation, which is 2,552 Slices (1,440 Flip-Flops, 4,403 4-Input LUTs). As such, a 

single architecture DWT CRS MISC processor was developed that required lower 

amount of hardware utilisation as compared to the two previously developed system. 

Section 5.1 presents the developed system that used the CRS MISC architecture to 

perform a selectively Secure Erasure Code (SEC) onto the SPIHT coefficients, which 

is generated from the SPIHT MIPS. The developed system in Section 5.2 was to 

reduce the image data through the use of DWT filter module and encode (encrypt) the 

reduced data by the CRS MISC processor. Lastly, Section 5.3 presents the use of 

DWT CRS MISC architecture to perform DWT image compression and CRS 

encoding in a single architecture. 
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5.1 SELECTIVE SEC ON SPIHT COEFFICIENTS FOR 
WVSN 

 

The objectives of reducing the amount of data transmission across the WVSNs and to 

extend the battery lifespan of the sensor nodes, can be achieved by performing 

selective secure error correction on compressed coefficients for the WVSNs. By 

combining two different modules, where one performs data compression and another 

provides error protection on the data, the image data produced from the sensor nodes 

can be compressed and the mapping bits will be protected from errors occurring 

during transmission in the WVSNs. With low amount of image data transmitting 

across WVSNs, this decreases the transmission bandwidth thus reducing the power 

consumption of sensor nodes required in transmitting data. The use of FEC coding 

scheme provides less retransmission of errors occurred on the compress data thus 

reduce the power consume by sensor nodes in retransmission of correct data. 

 This Section 5.1 presents a system that use SPIHT MIPS processor [64] to 

reduced the image data and CRS MISC processor together to have both secure and 

reliable data transmission across the WVSNs. The CRS MISC processor performed 

the CRS coding scheme onto the reduced image data, which has the capabilities of 

recovering 4 lost packets from the remaining correctly received codeword. At the 

same time, these data were encrypted without exposing its actual data contents during 

transmission in the WVSNs. Similar key space security in comparison with the AES 

encryption, which is shown in Section 4.6, was selected for the CRS MISC 

configuration. Both the SPIHT MIPS processor and CRS MISC processor were 

implemented onto a Field Programmable Gate Array (FPGA) to demonstrate the 

feasibility in implementing a complete WVSN sensor node system. 

 

5.1.1 System Overview: Selective SEC on SPIHT Coefficients 

The developed system that performed selective Secure Erasure Code (SEC) for the 

SPIHT coefficients in WVSNs, consists of one module of 330 lines Charge Coupled 

Device (CCD) camera, memory buffer, SPIHT MIPS processor, CRS MISC processor, 

two Digi XBee ZB RF modules and a computer. Initially, the CCD camera captured 

one frame of image at the size of 128128  pixels. The captured image data were 

stored into the image memory buffer. Then the SPIHT MIPS processor [64] processed 
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these image pixels which were available in the image memory buffer. Later on, the 

image pixels undergone DWT decomposition and followed by the SPIHT encoding 

that produced many bit-streams of data. Later on, these streams of data were sorted 

into mapping bits and refinement bits that were stored into the mapping bits memory 

buffer and refinement bits memory buffer respective. 

 Since each fragments (symbols) in the CRS coding scheme is in one byte, the 

mapping bits were converted into mapping bytes. Once the conversion had been 

performed, the CRS(20,16) coding scheme was used to encode these mapping bytes 

by the CRS MISC processor. These encoded mapping bytes (bits) will be transmitted 

across the wireless channel in packets, as shown in Figure 136. These mapping bytes 

(bits) produced by SPIHT encoder do not have any tolerances for errors since the tree 

structure of the compressed image will be destroyed with incorrect values. In Figure 

137, the refinement bits will not be protected by the CRS coding scheme since the 

mapping bytes (bits) are important in reconstructing the images. Consequently, the 

refinement bits are arranged in packets with each consists of 100 bytes of refinement 

bits and 1 byte of packet header. 

 

 
Figure 136   CRS protected mapping bytes (bits) in packets for wireless transmission. 

 

 
Figure 137   Refinement bytes (bits) in packets for wireless transmission. 

 The codeword will be transmitted across the wireless network through the 

Digi XBee ZB RF modules to the sink (base-station) once a block of codeword was 

completely produced by the CRS MISC processor. The sink received the codeword 

and performed the CRS decoding to recover the mapping bytes. After which, the 

SPIHT decoder performed the reconstruction of original image once all the mapping 

bytes and refinement bytes were received. Both CRS and SPIHT decoding were 
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performed in MATLAB environment at the sink (base-station). The flow of the image 

data from the CCD camera through the Digi XBee RF modules to the sink is shown in 

Figure 138. 

 

 
Figure 138   Selective SEC coding on SPIHT coefficients in WVSNs. 

 The Digi XBee RF modules used were ZigBee network based which is 

considered as a low data rate communication and low cost wireless networking 

protocol. From the datasheet [154], the Digi XBee RF module have a data throughput 

of 21kbps operating at Industrial, Scientific and Medical (ISM) radio band frequency 

of 2.4GHz. The RS232 is not the limiting factor as the Digi XBee RF modules has a 

lower data throughput. As a result, the RS232 baudrate was set to 19,200bps such that 

to match the data throughput of the Digi XBee RF modules. 

 

5.1.2 SPHIT Reconstructed Image Quality 

The quality of the reconstructed images were compared by introducing errors into the 

SPIHT coefficients (mapping bytes and refinement bytes). This was to study the 

effect of errors in reconstructing the SPIHT compressed image. An image (Lena.tif) is 

used for this study and the SPIHT encoding was performed in MATLAB environment. 

In this study, the quality of reconstructed compressed image was measured, in terms 

of PSNR (dB), at certain of Bits Per Pixel (bpp). The SPIHT coefficients without error 

protection are arranged in packets with size of 20Bytes each, such that it is similar to 
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the codeword size produced by the CRS coding scheme. Then errors were introduced 

into each of these packets, either onto the mapping bytes or the refinement bytes. 

 For the case without errors on the SPIHT coefficients, the quality of the 

reconstructed image obtained after compression was 58.7053 dB. From Table 21, the 

quality of reconstructed compressed image dropped significantly once there were 

errors that occurred onto the mapping bytes. The reason is the reconstruction of 

original image is not possible when there is incorrect tree structure of the 

compressed image which is represented by these error mapping bytes (bits). The 

reconstruction of the original image is not possible at 0.1bpp, even for higher 

number of Bits Per Pixel (bpp). As a result, there is a minor variation on the 

reconstructed image quality (PSNR) for higher number of bpp. This can be seen 

that with only one error, the quality of reconstructed image dropped to 7.5827 dB, 

which is a significant reduction in the quality of reconstructed image. 

 

Table 21   Reconstructed image quality with errors on mapping bytes. 

bpp 
PSNR (dB) 

No Error 1 Error 2 Errors 3 Errors 4 Errors 

0.10 23.9789 7.5464 5.6559 2.8416 2.0719 

0.25 27.4265 7.5467 5.6837 2.8734 2.1238 

0.50 30.9458 7.5696 5.7104 2.9039 2.1505 

1.00 35.8657 7.5799 5.7170 2.9132 2.1619 

uncompress 58.7053 7.5827 5.7190 2.9151 2.1633 

 

Table 22   Reconstructed image quality with errors on refinement bytes. 

bpp 
PSNR (dB) 

No Error 1 Error 2 Errors 3 Errors 4 Errors 

0.10 23.9789 23.2945 22.7415 22.6651 21.3074 

0.25 27.4265 26.0182 25.0506 24.8359 22.8149 

0.50 30.9458 28.3284 26.8039 26.4262 23.7052 

1.00 35.8657 30.5488 28.2493 27.6683 24.2945 

uncompress 58.7053 32.4296 29.1939 28.3910 24.5908 

 

 Whereas for the refinement bytes, errors that occurred onto these SPIHT 

coefficients did not significantly affect the quality of compressed image. Table 22 

shows the quality of the reconstructed compressed image did not reduced significantly, 

as compared to the mapping bytes errors. The reason is the tree structure that is 
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represented by the mapping bytes (bits) did not have error in it and reconstruction of 

original image was possible. With a total of 4 errors occurred onto each packet of 

refinement bytes, the quality of reconstruct image was still 24.5908 dB. The 

reconstructed original image was still visible to the naked eye without noticing on the 

slightly reduced quality of the reconstructed image. 

 In comparison between both Figure 139 and Figure 140, the compressed 

image data that has 4 errors occurred onto each packet of the mapping bytes and 

refinement bytes respectively. It can be seen that the original image could not be 

reconstructed as these mapping bytes carries important information on the tree 

structure of the original image for SPIHT coding were incorrect. However, with 4 

errors only occurred onto the refinement bytes (bits), it did not affect the quality of 

reconstructed image since the tree structure was not affected. The refinement bytes 

(bits) were used to provide refinement on the reconstructed image such that to achieve 

higher image quality. Even without the refinement bytes (bits), the reconstruction of 

low quality original image is still possible to achieve. Both of these scenarios 

simulated the sensor nodes with errors occurred onto the compressed image data 

while they were transmitting the data across the wireless communication channel. 

Through the use of CRS coding scheme to encode the mapping bytes (bits), the 

original image was able to reconstruct back using the SPIHT coefficients with error 

protection. 

 

 
Figure 139   Reconstructed image with 4 errors on 

mapping bytes. 

 
Figure 140   Reconstructed image with 4 errors on 

refinement bytes. 

 Through the use of CRS coding scheme to encode the mapping bytes (bits), 

the original image was able to reconstruct back using the protected SPIHT 

coefficients. For the CRS(20,16) coding scheme, a maximum of 4 errors occurred in 

each packets of mapping bytes (bits), same quality of the reconstructed compressed 
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image was achievable, as shown in Figure 141. Nevertheless, the CRS coding scheme 

used could only protect a maximum of 4 errors occurred on each packets. This coding 

scheme will not be able to correct the incorrect SPIHT coefficients if there are more 

than 4 errors occurred on each packets of mapping bytes. Consequently, data transmit 

across a noisy wireless communication channel would then need a lower code rate 

CRS coding scheme. 

 

 
Figure 141   Reconstructed compress image without errors. 

 

5.1.3 Hardware Utilisations: Selective SEC on SPIHT Coefficients 

The proposed system was implemented onto a Celoxica RC203 board. The Celoxica 

RC203 board consists of a CCD camera, ZBT SRAM, Xilinx Virtex 2 FPGA, RS232 

communication port and etc. The implementation imitates the visual sensor node with 

both SPIHT MIPS processor and CRS MISC processor. Once the image captured by 

the visual sensor, it will be compressed by the SPIHT MIPS processor. Once the 

SPIHT coefficients are produced, the mapping bytes will be encoded using the 

CRS(20,16) coding scheme. The compressed image data were encoded by using the 

CRS(20,16) coding scheme which is performed by the CRS MISC processor. 

 For this error correction scheme, it could tolerate to a maximum of 4 errors on 

each codeword of data. At the sink, the CRS decoder could recover the correct data 

from the remaining correctly received encoded data. Thus this will reduce the rate of 

retransmission of data across the wireless network and decrease the power 

consumption required for data transmission. The hardware implementation required a 

total of 5017 flip flops with 82 block RAMs. Table 23 shows the hardware usage for 
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the implementation of both SPIHT MIPS processor and CRS MISC processor on 

WVSNs. For clarification, implemented visual sensor node is represented by a CCD 

camera, ZBT SRAM, Xilinx Virtex 2 FPGA and a Digi XBee ZB RF module. The 

sink (base-station) is represented by a Digi XBee ZB RF module and a computer. The 

usage of computer at base-station is to perform the CRS decoding once these encoded 

mapping bytes are received. In the later stage, reconstruction of the original image 

was performed from the decoded mapping bytes and refinement bytes. 

 

Table 23   Hardware utilisation of combined SPIHT MIPS and CRS MISC architecture. 

Components Quantity Total Usage 

Slices 5,041 14,336 1.08% 

Flip-Flops 3,060 28,672 0.35% 

4-Input LUTs 8,795 28,672 0.92% 

- Logic 7,586 - - 

- Route-thru 1,099 - - 

- Dual Port RAMs 64 - - 

- 16x1 ROMs 16 - - 

- Shift Registers 30 - - 

Bonded IOB 188 484 26.70% 

Block RAMs 82 96 6.25% 

GCLKs 2 16 25.00% 

 

 

 

5.2 LIFTING SCHEME DWT FILTER CRS MISC FOR 
WVSN 

 

This Section 5.2 presents a complete processing system that performs image data 

compression, encryption and correction for the WVSNs. In this system, the DWT 

filter module first decomposed the original image into DWT coefficients to reduce the 

size of image data. This decreased the network bandwidth thus reducing the power 

consumption of sensor nodes in transmitting the image data. Then the coefficients 

were encrypted using the Cauchy Reed Solomon, CRS (20, 16) coding scheme to 

ensure data security, which is mentioned in Section 2.4.3. The CRS was used because 

it is a Forward Error Correction coding scheme which allowed the received encoded 
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data to be corrected at the base-station (sink). By doing so, less retransmission was 

required to obtain the correct compressed data thus reducing the power consumption 

of sensor nodes. To perform data compression, encryption and error correction 

encoding in low complexity system, a CRS MISC architecture with a DWT filtering 

module was developed. The developed system is then implemented into a FPGA to 

demonstrate the feasibility of the proposed system in the WVSNs. 

 

5.2.1 System Overview: Lifting Scheme DWT Filter CRS MISC 

As shown in Figure 142, the proposed image processing system for the Wireless 

Visual Sensor Networks (WVSNs) consists of a CMOS camera, image memory buffer, 

a Discrete Wavelet Transform (DWT) filter module, a Cauchy Reed Solomon (CRS) 

Minimal Instruction Set Computer (MISC) processor and a Digi XBee RF module. 

The CMOS camera captures image with the size of 64 x 64 pixels and stores the 

image data into the image memory buffer. Then the DWT filter module processes the 

image data, producing DWT coefficients that stored into another memory buffer. 

Figure 142 shows how the captured image data are transmitted from the sensor nodes 

to the base-station. 

 

 
Figure 142   Proposed DWT module combined CRS MISC image processing system for WVSNs. 

 In order to protect these DWT coefficients from errors, the DWT coefficients 

are then encoded using the CRS (20,16) coding scheme. The CRS(20,16) coding 

scheme is capable of correcting up to 4 errors for each codeword. The reason for 

using the CRS (20,16) coding scheme is that it only adds a total of 4 redundant 
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symbols on each codeword. Nevertheless, this coding scheme can correct a few errors 

occurred on the codeword without the need of retransmitting the image data again. 

Consider the case without CRS coding, the produced DWT coefficients are arranged 

in packet form that is shown in Figure 143. Each of the packets consists of 4 bytes of 

Packet Header and 16 bytes of DWT coefficients. As for the proposed system, each 

packet consists of CRS encoded DWT coefficients and it is arranged with a 4 bytes of 

Packet Header and followed by the CRS encoded codeword (20 bytes), as shown in 

Figure 144. The method of packetizing the CRS encoded DWT coefficients, shown in 

Figure 144, is the actual method performed in the hardware implementations. 

 

 
Figure 143   Packet arrangements of DWT coefficients without CRS coding. 

 
Figure 144   Packet arrangements of CRS encoded DWT coefficients. 

 

5.2.2 Hardware Utilisations: Lifting Scheme DWT Filter CRS MISC 

For the proposed system, shown in Figure 142, a hardware implementation is 

performed to simulate the actual like operating environment of a sensor node for the 

WVSNs. The implementation is performed with the use of a Celoxica RC10 board 

that consists of both DWT filtering module and CRS MISC described in the FPGA. 

The available CMOS camera, RS232 serial port and Xilinx Spartan-3L XC3S1500 

FPGA are utilized in this implementation. With having both DWT module and CRS 

MISC are described, this occupies up to a total of 2,536 slices and 17 Block RAMs, as 

shown in Table 24. The Block RAMs constitutes the image memory buffer (stores 

captured images from CMOS camera) and DWT coefficients memory buffer (stored 

DWT coefficients produced by DWT module). 

 The hardware utilisation on the FPGA includes describing the control and 

operations for the CMOS camera and RS232 serial port. The RS232 serial port 
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available on the RC10 board is connected to the Digi XBee RF transceiver. The 

baudrate of RS232 was set to 19200bps such that it is compatible with the data 

transmission rate of Digi XBee RF transceiver module at 21kbps (without security) 

which is stated in the datasheet [154]. This allows the CRS encoded DWT coefficients 

to be transmitted across wireless communication channel towards the base-station. At 

the base-station, there is another Digi XBee RF transceiver that receives the 

transmitted data from sensor nodes. In Figure 145, the Digi XBee RF transceiver 

placed on the left is connected to the desktop that simulates as the base-station with 

unlimited energy constraints and resources. On the right side, it simulates the sensor 

node in WVSNs, with the integration of an onboard CMOS camera, memory buffer, 

DWT filter module, CRS MISC and Digi XBee RF transceiver. Figure 146 shows the 

reconstructed image (captured at sensor node) and the corresponding DWT 

coefficients decoded. 

 

Table 24   Hardware utilisation of the proposed DWT module and CRS MISC system for WVSNs. 

Components Quantity Total Usage 

Slices 2,552 13,312 1.08% 

Flip-Flops 1,440 26,624 0.35% 

4-Input LUTs 4,403 26,624 0.92% 

- Logic 3,388 - - 

- Route-thru 412 - - 

- Dual Port RAMs 60 - - 

- Shift Registers 543 - - 

Bonded IOB 35 221 26.70% 

Block RAMs 17 32 6.25% 

DCMs 2 8 25.00% 
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Figure 145   Single hop hardware simulation on the proposed system. 

 
Figure 146   Reconstructed original image captured at sensor node. 

 

 

 

5.3 DWT CRS MISC FOR WVSN 
 

In this Section 5.3, the developed new low complexity DWT CRS MISC architecture 

that performs data compression, data encryption and data correction in a single 

architecture was integrated into the WVSNs. With the CRS encoded data, the base-

station can correct a small number of errors that occurred onto the received image 

data and requires less retransmission of the data. A complete sensor node system with 

DWT CRS MISC architecture was developed and then implemented into a Field 

Programmable Gate Array (FPGA) to demonstrate the feasibility for use in the 

WVSNs. 
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5.3.1 System Overview: DWT CRS MISC 

The proposed system consists of a CMOS camera which captures image (64 x 64 

pixels) and stores the image data into the image memory buffer. Then it is followed 

by the DWT CRS MISC processor (mentioned in Chapter 3) performs DWT 

compression and CRS encoding in a single architecture. The reason to consider DWT 

Haar wavelet filtering method is the compression method used by Haar is less 

complex compared to other wavelet filtering methods [141]. The CRS coding scheme 

is chosen because it provides both data security and data reliability for the encoded 

data [20]. With data encoded, the base-station can correct a small amount of errors 

without the need to request for retransmission of data from the sensor nodes. At the 

same time, these CRS encoded data are also encrypted which prevents adversary from 

eavesdropping on the data. Therefore, the sensor node requires less amount of energy 

to perform data transmission and thus extending its operating lifespan. In Figure 147, 

it shows the proposed system integrated with DWT CRS MISC architecture in 

WVSNs. 

 

 
Figure 147   Proposed system with DWT CRS MISC architecture for WVSNs. 

 In the proposed system, the MISC processes an image part by part. It takes 4 

rows of image (64 x 4 pixels) to process at a particular time until the whole image is 

completely processed. This is to avoid large memory spaces needed to store and 

process the whole image (64 x 64 pixels) in the MISC architecture. The MISC 

processes and encodes each part of image data (64 x 4 pixels) to produce 4 CRS 

encoded codewords. After the data are encoded, a packetizer packetizes the encoded 
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data (codewords) by adding a Packet Header (4 bytes) to the front of each codewords, 

as shown in Figure 148. Once a packet of data is packetized, the data will be 

transmitted to the base-station through the Digi XBee RF transceiver modules. 

 

 
Figure 148   Transmission of packet for DWT CRS MISC processor encoded image data. 

 

5.3.2 Hardware Utilisations: DWT CRS MISC 

A hardware implementation for the proposed new DWT CRS MISC architecture is 

performed onto the FPGA, to simulate the actual like operating environment of a 

sensor node in WVSNs. For this reason, a Celoxica RC10 board (consists of CMOS 

camera, RS232 serial port and Xilinx Spartan-3L XC3S1500 FPGA) was utilized for 

such implementation. The hardware realization on the FPGA also included the 

hardware description of controls/operations for the CMOS camera, DWT CRS MISC 

architecture and RS232 serial port. A Digi XBee RF transceiver module was 

connected to the RS232 serial port such that it transmits the CRS encoded compressed 

image data to the base station. The baudrate of the RS232 was set to 19200bps such 

that the data sent out from the FPGA matched the data transmission rate of the Digi 

XBee RF transceiver modules. For this hardware simulation, the camera sensor node 

(end device) was placed at one end of the room which is shown in Figure 149. 
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Figure 149   Arrangements of sensor node, intermediate node and base station inside a room. 

 At the base station, the computer that was connected to another Digi XBee RF 

transceiver module performed CRS decoding on the data received from the sensor 

node. Once the CRS decoding process was completed, reconstruction of image was 

performed by using the obtained Level 2 DWT coefficients. As shown in Figure 149, 

a base station was placed at another end of room that received the data transmitted 

from the sensor node. An intermediate node was placed in between the sensor node 

(end device) and the base station (coordinator) such that it relay the transmitted data 

from sensor node to the base station. The actual hardware implementation for sensor 

node (end device), intermediate node (router) and base station (coordinator), is shown 

in Figure 150. 
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Table 25   Hardware utilisation of the proposed system with DWT CRS MISC for WVSNs 

Component Quantity Total Usage 

Slices 1,065 13,312 8.0% 

Flip-Flops 729 26,624 2.7% 

4 input LUTs 1,611 26,624 6.1% 

- Logic 1,421 - - 

- Route-thru 117 - - 

- Dual Port Rams 60 - - 

- Shift registers 13 - - 

Bonded IOB 35 221 15.8% 

Block RAMs 5 32 15.6% 

BUFGMUXs 5 8 62.5% 

DCMs 2 4 50.0% 

 

 At the base-station, a desktop computer is connected to Digi XBee RF 

transceiver to receive the transmitted encoded data. This simulates a base-station with 

unlimited energy constraints and resources. Once the base-station receives the 

transmitted data, it proceeds to decode the received data by recovering the DWT 

coefficients and then reconstruct the image. For this implementation, only the Level 2 

DWT coefficients (LL2, LH2, HL2, HH2) were encoded and transmitted to the base-

station. Consequently, there were less amount of image data (compared to full image 

data size) needed to be transferred across the wireless network thus reducing the 

power consumption of sensor node used in data transmission. Figure 151 shows the 

reconstructed image using only the Level 2 DWT coefficients. 

 

 
Figure 151   Reconstructed image with Level 2 DWT Coefficients. 
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5.4 SUMMARY 
 

Initially, the combined SPIHT MIPS processor and CRS MISC processor to form a 

sensor node image processing system was developed to achieve the following 

objectives, which are to compress the image data, provide security protection and data 

reliability for transmitting image data in the WVSNs. By referring to Table 26, the 

hardware implementation of the SPIHT MIPS and CRS MISC sensor node system 

required 5,036 Slices (3,058 Flip-Flops, 8,794 LUTs, 82 Block RAMs). 

 To further improve (less) on the hardware utilisations of developed sensor 

node system, the SPIHT MIPS was replaced by a DWT filter module to reduce the 

image data. This resulted in 49.3% reduction in number of Slices required as 

compared to the SPIHT MIPS for reducing the image data. For Xilinx Virtex-II FPGA, 

each Slices contains of 2 4-Input LUTs and 2 Flip-Flops [156]. Whereas, each Slices 

of the Xilinx Spartan-3L is made up of 2 4-Input LUTs and 2 Flip-Flops [151]. 

Therefore, the comparison using number of Slices can be made since both different 

technology of FPGAs have the same number of LUTs and Flip-Flops for one Slices. 

 Subsequently, a further 58.3% reduction in number of hardware utilisations (in 

terms of Slices) of the sensor node image processing system was achieved by 

removing the DWT filter module. Instead of using the DWT filter module, the 

developed DWT CRS MISC architecture was incorporated with the ability of 

performing a 2-D DWT image compression as well into the initially developed CRS 

MISC architecture. As a result, the developed DWT CRS MISC can perform both 

DWT image compression and CRS encoding by reusing the available hardware in the 

architecture. Table 26 shows the hardware utilisations of the developed sensor node 

image processing system in FPGAs for use in the WVSNs. 

 Besides, the estimated FPGA power consumption of the developed sensor 

node systems were determined using the Xilinx xPower Analyzer 11.5. The estimated 

power consumption of DWT filter module with CRS MISC sensor nodes system 

would be 552.0mW. Since there is a 58.3% reduction in hardware utilisations for the 

DWT CRS MISC, a 57.7% decrease in the estimated power consumption was 

expected. The power consumption for combined SPIHT MIPS and CRS MISC sensor 

node system was not able to be determined as software errors occurred while the 

system was analysed. Even different versions of the Xilinx xPower Analyzer (8.2, 9.2, 

10.1, 11.5) were tried but the software still encounters errors. However, it would be 
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expected to be high since there is large amount of Slices required for its 

implementation. 

 

Table 26   Hardware utilisations of the developed systems for WVSNs. 

System 
Design 

Slices Flip-Flops 
4-Input 
LUTs 

Block 
RAMs 

Power 
(mw) 

Xilinx Virtex-II 

SPIHT MIPS 
+ CRS MISC 

5,036 3,058 8,794 82 N/A 

Xilinx Spartan-3L 

DWT Filter + 
CRS MISC 

2,552 1,440 4,403 17 552.0 

DWT CRS 
MISC 

1,065 729 1,611 5 233.4 

 

 Therefore, a low complexity new DWT CRS MISC sensor node system was 

developed which reduces the image data, offers similar security protection level as 

compared to AES and provides data reliability that is offered by traditional Reed 

Solomon coding scheme. With the reduce number of required Slices, the power 

consumption of the developed system can be subsequently reduced. As compared to 

other existing system (ECBC, DWT module combined CRS MISC and SPIHT CRS 

MISC), this new low complexity DWT CRS MISC sensor node image processing 

system is much suitable to be used in the resource constraint WVSNs. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORKS 
 

 

In this research, several joint compression, encryption and forward error correction 

processing frameworks for use in WVSNs were presented. The presented processing 

frameworks have the capabilities to reduce large amount of image data, provide data 

security and reliable data transmission. The presented processing frameworks consist 

of two separate modules that were combined together to perform image compression 

and CRS encoding. Rather than using separate modules, a novel DWT CRS MISC 

architecture was developed which performs all the aforementioned capabilities in a 

single architecture. This would reduce the amount of hardware utilisations required to 

realize the processing framework that perform all these tasks. At the same time, the 

power consumption of the processing framework was also reduced when achieving 

less amount of hardware utilisations. The evidences on the improvement of hardware 

utilisations for using the DWT CRS MISC architecture as the processing framework 

are shown in the Section 5.4. 

 Behavioral and Post & Route simulations were performed onto the DWT CRS 

MISC architecture before the MISC architecture was implemented as the processing 

framework for WVSNs. From these simulations, the generated waveforms showed 

that the developed DWT CRS MISC architecture does operate and function according 

to the design specifications. Based on the generated Behavioral simulation waveforms, 

it was found that these waveforms for the control signals combinational logic circuit 

and the execution of programme instructions in DWT CRS MISC architecture do 

comply with the design specifications. Meanwhile, the Post & Route simulation 

waveforms provided the information on the hardware delay encountered in the DWT 

CRS MISC architecture. With the longest delay (32.732ns) determined, the operating 

frequency of the DWT CRS MISC architecture was set to operate at 24MHz 
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(41.667ns) such that it could cope with the hardware delays. Therefore, the DWT 

CRS MISC would require 0.1915s to completely process an image of size 64 pixels x 

64 pixels. 

 Simulation result also shows an acceptable quality of the reconstructed image 

with the selected number of DWT coefficients to be transmitted. Consequently, the 

new DWT CRS MISC reduces the image data, offers similar security protection level 

as compared to AES and provides data reliability that is offered by traditional Reed 

Solomon coding scheme. In comparison to other existing systems (ECBC, DWT 

module combined CRS MISC and SPIHT MIPS combined CRS MISC), this new low 

complexity DWT CRS MISC architecture is much suitable to be used as the joint 

schemes processing framework in the resource constraint WVSNs. 

 

 

 

6.1 FUTURE WORKS 
 

In future, actual hardware implementation of the developed novel DWT CRS MISC 

architecture can be performed onto the Xilinx Spartan-6 FPGA. This is to achieve an 

even lower hardware complexity and lower power consumption of the image 

processing framework for the resource constraint WVSNs. With the use of Spartan-6 

FPGA, the operating lifespan of the visual sensor nodes could be extended thus 

providing more surveillance information to the base station. 

 The developed novel image processing framework for WVSNs is considered 

to be in development stage and the actual Integrate Circuit (IC) chip for this 

processing framework was not developed. Consequently, further improvement in 

power consumption can be achieved when the developed image processing 

framework is implemented into Application Specific Integrated Circuits (ASIC). 

Further reduction in power consumption may be achieved as further optimisations 

will be made onto the integrated circuit of the image processing framework. 

 Another future work to consider is the development of decoder for use in the 

WVSNs. The decoder will be integrated with the intermediate nodes such that error 

correction can be performed if there is any errors occurred onto the transmitted data. 

This is to increase the data reliability in the intermediate nodes by reducing the 
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number errors occurred onto the transmitted image data before they are received at the 

base station. Therefore, the base station will be able to correct the number of errors 

that occurred in between the maximum allowable of errors that the code scheme can 

correct. This is considered as future work because the decoder requires a complex 

algorithm in determining the number of errors, error locations and the correct values 

to replace the errors. As such, these are a few future works that are recommended in 

the thesis to further improve image data transmission the resource constrained 

WVSNs. 
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A. APPENDICES 

A.1 DWT CRS MISC ARCHITECTURE IN VHDL 

A.1.1 Control Signals Combinational Circuit Testbench - tb_Control.vhd 

LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
USE ieee.std_logic_unsigned.all; 
USE ieee.numeric_std.ALL; 
  
ENTITY tb_Control IS 
END tb_Control; 
  
ARCHITECTURE behavior OF tb_Control IS  
  
    -- COMPONENT controls 
    PORT( 
         CLK : IN  std_logic; 
         N : IN  std_logic; 
         ALU_A : OUT  std_logic; 
         ALU_B0 : OUT  std_logic; 
         ALU_B1 : OUT  std_logic; 
         CIN : OUT  std_logic; 
         MAR_SEL : OUT  std_logic; 
         PC_WRITE : OUT  std_logic; 
         R_WRITE : OUT  std_logic; 
         Z_WRITE : OUT  std_logic; 
         N_WRITE : OUT  std_logic; 
         MAR_WRITE : OUT  std_logic; 
         MDR_WRITE : OUT  std_logic; 
         MEM_READ : OUT  std_logic; 
         MEM_WRITE : OUT  std_logic; 
         OP_OUT_SEL : OUT  std_logic; 
         OP0_WRITE : OUT  std_logic; 
         OP1_WRITE : OUT  std_logic; 
         OP_SEL : OUT  std_logic 
        ); 
    END COMPONENT; 
 
   --Inputs 
   signal tb_CLK : std_logic := '0'; 
   signal tb_N : std_logic := '0'; 
 
   --Outputs 
   signal tb_ALU_A : std_logic; 
   signal tb_ALU_B0 : std_logic; 
   signal tb_ALU_B1 : std_logic; 
   signal tb_CIN : std_logic; 
   signal tb_MAR_SEL : std_logic; 
   signal tb_PC_WRITE : std_logic; 
   signal tb_R_WRITE : std_logic; 
   signal tb_Z_WRITE : std_logic; 
   signal tb_N_WRITE : std_logic; 
   signal tb_MAR_WRITE : std_logic; 
   signal tb_MDR_WRITE : std_logic; 
   signal tb_MEM_READ : std_logic; 
   signal tb_MEM_WRITE : std_logic; 
   signal tb_OP_OUT_SEL : std_logic; 
   signal tb_OP0_WRITE : std_logic; 
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   signal tb_OP1_WRITE : std_logic; 
   signal tb_OP_SEL : std_logic; 
 
   -- Clock period definitions 
   constant CLK : time := 20 ns; 
  
BEGIN 
  
 -- Instantiate the Unit Under Test (UUT) 
   uut: controls PORT MAP ( 
          CLK => tb_CLK, 
          N => tb_N, 
          ALU_A => tb_ALU_A, 
          ALU_B0 => tb_ALU_B0, 
          ALU_B1 => tb_ALU_B1, 
          CIN => tb_CIN, 
          MAR_SEL => tb_MAR_SEL, 
          PC_WRITE => tb_PC_WRITE, 
          R_WRITE => tb_R_WRITE, 
          Z_WRITE => tb_Z_WRITE, 
          N_WRITE => tb_N_WRITE, 
          MAR_WRITE => tb_MAR_WRITE, 
          MDR_WRITE => tb_MDR_WRITE, 
          MEM_READ => tb_MEM_READ, 
          MEM_WRITE => tb_MEM_WRITE, 
          OP_OUT_SEL => tb_OP_OUT_SEL, 
          OP0_WRITE => tb_OP0_WRITE, 
          OP1_WRITE => tb_OP1_WRITE, 
          OP_SEL => tb_OP_SEL 
        ); 
 
   -- Clock process definitions 
   CLK_process :process 
   begin 
  tb_CLK <= '0'; 
  wait for CLK/2; 
  tb_CLK <= '1'; 
  wait for CLK/2; 
   end process; 
  
 
   -- Stimulus process 
   stim_proc: process 
   begin   
      -- hold reset state for 100 ms. 
      wait for CLK*5;  
  tb_N <= '0'; 
      wait for CLK; 
  tb_N <= '1'; 
      wait for CLK; 
  tb_N <= '0'; 
      wait; 
   end process; 
 
END; 
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A.1.2 Control Signals Combinational Circuit - controls.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity controls is 
 port( CLK : in std_logic; 
   N : in std_logic; 
   ALU_A : out std_logic; 
   ALU_B0 : out std_logic; 
   ALU_B1 : out std_logic; 
   CIN : out std_logic; 
   MAR_SEL : out std_logic; 
   PC_WRITE : out std_logic; 
   R_WRITE : out std_logic; 
   Z_WRITE : out std_logic; 
   N_WRITE : out std_logic; 
   MAR_WRITE : out std_logic; 
   MDR_WRITE : out std_logic; 
   MEM_READ : out std_logic; 
   MEM_WRITE : out std_logic; 
   OP_OUT_SEL : out std_logic; 
   OP0_WRITE : out std_logic; 
   OP1_WRITE : out std_logic; 
   OP_SEL : out std_logic); 
end controls; 
 
architecture Behavioral of controls is 
 
 signal iCount4 : std_logic_vector(3 downto 0) := X"8"; 
 
begin 
 
 -- 4 Bit Counter 
 process(CLK) 
 begin  
  
  if CLK'event and CLK = '1' then 
   if iCount4 = "1000" then 
    iCount4 <= (others=>'0'); 
   else 
    iCount4 <= iCount4 + 1; 
   end if; 
  end if; 
   
 end process; 
 
  
 -- Output control signals 
 ALU_A <= ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(0))) ) 
  OR ( (NOT(iCount4(2))) AND (NOT(iCount4(1))) AND (NOT(iCount4(0))) ); 
 ALU_B0 <= (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) AND (iCount4(0)); 
 ALU_B1 <= ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(0))) ) 
  OR ( (NOT(iCount4(2))) AND (NOT(iCount4(1))) AND (NOT(iCount4(0))) ); 
 CIN <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(1))) AND (iCount4(0)) ) 
  OR ( (iCount4(3)) AND (NOT(iCount4(2))) AND (NOT(iCount4(1))) 
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  AND (NOT(iCount4(0))) ); 
 MAR_SEL <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(1))) AND (iCount4(0)) ); 
 PC_WRITE <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (iCount4(1)) AND (iCount4(0)) AND N ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) AND (NOT(iCount4(1))) 
   AND (iCount4(0)) ) 
  OR ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) 
   AND (NOT(iCount4(0))) ) 
  OR ( (iCount4(3)) AND (NOT(iCount4(2))) AND (NOT(iCount4(1))) 
   AND (NOT(iCount4(0))) ); 
 R_WRITE <= ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) AND (iCount4(1)) 
  AND (NOT(iCount4(0))) ); 
 Z_WRITE <= ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) AND (NOT(iCount4(1))) 
  AND (NOT(iCount4(0))) ); 
 N_WRITE <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) AND (iCount4(0)) ); 
 MAR_WRITE <= ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) AND (iCount4(0)) ) 
  OR ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(0))) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(1))) AND (NOT(iCount4(0))) ); 
 MDR_WRITE <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) 
  AND (iCount4(0)) ); 
 MEM_READ <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) ) 
  OR ( (NOT(iCount4(3))) AND (iCount4(1)) AND (iCount4(0)) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(1))) AND (iCount4(0)) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) AND (iCount4(1)) 
   AND (NOT(iCount4(0))) ); 
 MEM_WRITE <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (iCount4(1)) 
  AND (NOT(iCount4(0))) ); 
 OP_OUT_SEL <= ( (NOT(iCount4(3))) AND (NOT(iCount4(1))) AND (NOT(iCount4(0))) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) ); 
 OP0_WRITE <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) 
  AND (NOT(iCount4(0))) ); 
 OP1_WRITE <= ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) AND (NOT(iCount4(1))) 
  AND (iCount4(0)) ); 
 OP_SEL <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) 
  AND (NOT(iCount4(0))) ); 
  
end Behavioral; 

 

 

A.1.3 DWT CRS MISC Architecture Testbench - tb_DWTCRSMISC.vhd 

LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
USE ieee.std_logic_unsigned.all; 
USE ieee.numeric_std.ALL; 
 
ENTITY tb_DWTCRSMISC_vhd IS 
END tb_DWTCRSMISC_vhd; 
 
ARCHITECTURE behavior OF tb_DWTCRSMISC_vhd IS  
 
 -- Component Declaration for the Unit Under Test (UUT) 
 COMPONENT DWTCRSMISC 
 PORT( 
  CLK : IN std_logic; 
  UP : IN std_logic; 
  DOWN : IN std_logic; 
  EnaRead : IN std_logic;           
  Seg0 : OUT std_logic_vector(6 downto 0); 
  Seg1 : OUT std_logic_vector(6 downto 0); 
  RamAdd : OUT std_logic_vector(7 downto 0) 
  ); 
 END COMPONENT; 
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 --Inputs 
 SIGNAL tb_CLK :  std_logic := '0'; 
 SIGNAL tb_UP :  std_logic := '0'; 
 SIGNAL tb_DOWN :  std_logic := '0'; 
 SIGNAL tb_EnaRead :  std_logic := '0'; 
 
 --Outputs 
 SIGNAL tb_Seg0 :  std_logic_vector(6 downto 0); 
 SIGNAL tb_Seg1 :  std_logic_vector(6 downto 0); 
 SIGNAL tb_RamAdd :  std_logic_vector(7 downto 0); 
  
 SIGNAL tb_CLK_State : std_logic := '0'; 
  
 CONSTANT period : time := 20ns; 
 
BEGIN 
 -- Instantiate the Unit Under Test (UUT) 
 uut: DWTCRSMISC PORT MAP( 
  Seg0 => tb_Seg0, 
  Seg1 => tb_Seg1, 
  RamAdd => tb_RamAdd, 
  CLK => tb_CLK, 
  UP => tb_UP, 
  DOWN => tb_DOWN, 
  EnaRead => tb_EnaRead 
 ); 
 
 -- Clock 
 PROCESS 
 BEGIN 
 
  tb_CLK <= '0'; 
  wait for period*5; 
  tb_CLK <= '0'; 
  wait for period/2; 
  -- Start Clock 0 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 1 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 2 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 3 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 



 

224 
 

  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 4 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 5 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 6 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 7 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 8 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 0 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 1 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
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  -- Start Clock 2 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 3 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 4 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 5 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 6 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 7 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 8 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 0 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
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  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 1 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 2 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 3 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 4 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 5 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 6 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 7 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
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  tb_CLK <= '0'; 
  -- Start Clock 8 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 0 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  -- Start Clock 1 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait for period/2; 
  tb_CLK <= '1'; 
  wait for period/2; 
  tb_CLK <= '0'; 
  wait; 
 
 END PROCESS; 
 
  
 PROCESS 
 BEGIN 
  
  tb_UP <= '0'; 
  tb_DOWN <= '0'; 
  tb_EnaRead <= '0'; 
  wait; 
  
 END PROCESS; 
 
END;  

 

 

A.1.4 Top Level DWT CRS MISC Architecture - DWTCRSMISC.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity DWTCRSMISC is 
    Port ( Seg0, Seg1 : out  STD_LOGIC_VECTOR (6 downto 0); 
           RamAdd : out  STD_LOGIC_VECTOR (7 downto 0); 
           CLK : in  STD_LOGIC; 
           UP : in  STD_LOGIC; 
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           DOWN : in  STD_LOGIC; 
     EnaRead : in STD_LOGIC); 
end DWTCRSMISC; 
 
architecture Behavioral of DWTCRSMISC is 
 
 -- Components 
 -- Block RAM 
 component memory 
    port ( 
    addra: IN std_logic_VECTOR(10 downto 0); 
    addrb: IN std_logic_VECTOR(10 downto 0); 
    clka: IN std_logic; 
    clkb: IN std_logic; 
    dina: IN std_logic_VECTOR(11 downto 0); 
    douta: OUT std_logic_VECTOR(11 downto 0); 
    doutb: OUT std_logic_VECTOR(11 downto 0); 
    ena: IN std_logic; 
    enb: IN std_logic; 
    wea: IN std_logic); 
 end component; 
  
 -- Controls 
 component controls 
  port( CLK : in std_logic; 
    N : in std_logic; 
    ALU_A : out std_logic; 
    ALU_B0 : out std_logic; 
    ALU_B1 : out std_logic; 
    CIN : out std_logic; 
    MAR_SEL : out std_logic; 
    PC_WRITE : out std_logic; 
    R_WRITE : out std_logic; 
    Z_WRITE : out std_logic; 
    N_WRITE : out std_logic; 
    MAR_WRITE : out std_logic; 
    MDR_WRITE : out std_logic; 
    MEM_READ : out std_logic; 
    MEM_WRITE : out std_logic; 
    OP_OUT_SEL : out std_logic; 
    OP0_WRITE : out std_logic; 
    OP1_WRITE : out std_logic; 
    OP_SEL : out std_logic); 
 end component; 
  
 -- MUX 
 -- MUX2-1 1-Bit 
 component MUX21 is 
   port ( A : in  STD_LOGIC_VECTOR (7 downto 0); 
      B : in  STD_LOGIC_VECTOR (7 downto 0); 
      SEL : in STD_LOGIC; 
      C : out  STD_LOGIC_VECTOR (7 downto 0)); 
 end component; 
 -- MUX2-1 2-Bit 
 component MUX22 is 
   port ( A : in  STD_LOGIC_VECTOR (1 downto 0); 
      B : in  STD_LOGIC_VECTOR (1 downto 0); 
      SEL : in STD_LOGIC; 
      C : out  STD_LOGIC_VECTOR (1 downto 0)); 
 end component; 
 -- MUX4-1 11-Bit 
 component MUX411 is 
   port ( A : in  STD_LOGIC_VECTOR (10 downto 0); 
      B : in  STD_LOGIC_VECTOR (10 downto 0); 
      C : in  STD_LOGIC_VECTOR (10 downto 0); 
      D : in  STD_LOGIC_VECTOR (10 downto 0); 
      E : out  STD_LOGIC_VECTOR (10 downto 0); 
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      SEL : in  STD_LOGIC_VECTOR (1 downto 0)); 
 end component; 
 -- MUX1-4 11-Bit 
 component MUX114 is 
   port ( A : in  STD_LOGIC_VECTOR (10 downto 0); 
      SEL : in  STD_LOGIC_VECTOR (1 downto 0); 
      B : out  STD_LOGIC_VECTOR (10 downto 0); 
      C : out  STD_LOGIC_VECTOR (10 downto 0); 
      D : out  STD_LOGIC_VECTOR (10 downto 0); 
      E : out  STD_LOGIC_VECTOR (10 downto 0)); 
 end component; 
 -- MUX1-2 1-Bit 
 component MUX11 is 
   port ( A : in  STD_LOGIC; 
      SEL : in  STD_LOGIC; 
      B : out  STD_LOGIC; 
      C : out  STD_LOGIC); 
 end component; 
 -- MUX2-1 11-Bit 
 component MUX211 is 
   port ( A : in  STD_LOGIC_VECTOR (10 downto 0); 
      B : in  STD_LOGIC_VECTOR (10 downto 0); 
      SEL : in  STD_LOGIC; 
      C : out  STD_LOGIC_VECTOR (10 downto 0)); 
 end component; 
 
 -- Registers 
 -- 11-Bit Register 
 component REG is 
   port ( A : in  STD_LOGIC_VECTOR (10 downto 0); 
      B : out  STD_LOGIC_VECTOR (10 downto 0); 
      CLK : in  STD_LOGIC; 
      ENA : in  STD_LOGIC); 
 end component; 
 -- 1-Bit Register 
 component REG1BIT is 
   Port ( A : in  STD_LOGIC; 
      B : out  STD_LOGIC; 
      CLK : in  STD_LOGIC; 
      ENA : in  STD_LOGIC); 
 end component; 
 -- 12-Bit Register 
 component REG12BIT is 
   Port ( A : in  STD_LOGIC_VECTOR (11 downto 0); 
      B : out  STD_LOGIC_VECTOR (11 downto 0); 
      CLK : in  STD_LOGIC; 
      ENA : in  STD_LOGIC); 
 end component; 
 -- PC Register 
 component REGPC is 
   port ( A : in  STD_LOGIC_VECTOR (10 downto 0); 
      B : out  STD_LOGIC_VECTOR (10 downto 0); 
      CLK : in  STD_LOGIC; 
      ENA : in  STD_LOGIC); 
 end component; 
  
 -- SBN 
 component SBN is 
   Port ( A : in  STD_LOGIC_VECTOR (10 downto 0); 
      B : in  STD_LOGIC_VECTOR (10 downto 0); 
      CIN : in  STD_LOGIC; 
      N : out  STD_LOGIC; 
      Z : out  STD_LOGIC; 
      O : out STD_LOGIC_VECTOR (10 downto 0)); 
 end component; 
  
 -- 11-Bit XOR 
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 component GF211Add is 
   Port ( a : in  STD_LOGIC_VECTOR (10 downto 0); 
      b : in  STD_LOGIC_VECTOR (10 downto 0); 
      c : out  STD_LOGIC_VECTOR (10 downto 0)); 
 end component; 
  
 -- 11-Bit To 8-Bit Conversion 
 component C11TO8 is 
   Port ( a : in  STD_LOGIC_VECTOR (10 downto 0); 
      b : in  STD_LOGIC_VECTOR (10 downto 0); 
      c : out  STD_LOGIC_VECTOR (10 downto 0)); 
 end component; 
  
 -- GF28 
 component GF28 is 
   Port ( a : in  STD_LOGIC_VECTOR (7 downto 0); 
      b : in  STD_LOGIC_VECTOR (7 downto 0); 
      c : out  STD_LOGIC_VECTOR (7 downto 0)); 
 end component; 
  
 -- D4to7 Conversion 
 component D4to7 is 
   Port ( Q : in  STD_LOGIC_VECTOR (3 downto 0); 
      Seg : out STD_LOGIC_VECTOR (6 downto 0)); 
 end component; 
  
 -- Signals 
 signal iCount1 : std_logic := '0'; 
 signal iClock2 : std_logic; 
 signal iCount23 : std_logic_vector(22 downto 0); 
 signal iClock23 : std_logic; 
 signal iRamAdd : std_logic_vector(10 downto 0); 
 signal iRamRead : std_logic_vector(11 downto 0); 
  
 -- Program Counter 
 signal iPC : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal PC : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal PC_Write : std_logic; 
 -- R Register 
 signal iR : std_logic_vector(10 downto 0); 
 signal R : std_logic_vector(10 downto 0); 
 signal R_Write : std_logic; 
   
 -- OPCODE 
 -- MUX 
 signal OP_SEL : std_logic; 
 -- OP0 Register 
 signal iOP0 : std_logic; 
 signal OP0_Write : std_logic; 
 -- OP1 Register 
 signal iOP1 : std_logic; 
 signal OP1_Write : std_logic; 
 -- OPCODE output 
 signal OPCODE : std_logic_vector(1 downto 0); 
 signal OP_OUT_SEL : std_logic; 
 signal oOPCODE : std_logic_vector(1 downto 0); 
   
 -- MEMORY 
 -- MDR register 
 signal iMDR : std_logic_vector(11 downto 0); 
 signal MDR : std_logic_vector(11 downto 0); 
 signal MDR_Write : std_logic; 
 -- MAR 
 signal iMAR : std_logic_vector(10 downto 0); 
 signal MAR : std_logic_vector(10 downto 0); 
 signal MAR_Write : std_logic; 
 signal MAR_SEL : std_logic; 
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 -- MEM Output 
 signal oMemory : std_logic_vector(11 downto 0); 
 -- MEM Controls 
 signal MEM_READ : std_logic; 
 signal MEM_WRITE : std_logic; 
 signal MEM_ENA : std_logic; 
 signal MEM_WEA : std_logic; 
  
 -- SBN/ALU Block 
 -- N register 
 signal i_N : std_logic; 
 signal N : std_logic; 
 signal N_Write : std_logic; 
 -- Z register 
 signal iZ : std_logic; 
 signal Z : std_logic; 
 signal Z_Write : std_logic; 
 -- ALU MUX 
 -- ALU MUX A 
 signal iMUXALUA0 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal iMUXALUA1 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal MUXALUA : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal MUXALUASEL : std_logic; 
 signal ALU_A : std_logic; 
 -- ALU MUX B 
 signal iMUXALUB0 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal iMUXALUB1 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal iMUXALUB2 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal iMUXALUB3 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal MUXALUB : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal MUXALUBSEL : std_logic_vector(1 downto 0); 
 signal ALU_B : std_logic_vector(1 downto 0); 
 -- INV 
 signal iINV : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal oINV : std_logic_vector(10 downto 0) := (others=>'0'); 
 -- CIN 
 signal CIN : std_logic; 
 -- Output 
 signal ADDER : std_logic_vector(10 downto 0) := (others=>'0'); 
   
 -- GF Block 
 signal iGFA : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal iGFB : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal iGF : std_logic_vector(10 downto 0) := (others=>'0'); 
  
 -- XOR Block 
 signal iXORA : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal iXORB : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal iXOR : std_logic_vector(10 downto 0) := (others=>'0'); 
  
 -- 11TO8 Block 
 signal i11TO8A : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal i11TO8B : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal i11TO8 : std_logic_vector(10 downto 0) := (others=>'0'); 
  
 -- Instruction MUX 
 -- MUX A 
 signal iMUXA : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal MUXA0 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal MUXA1 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal MUXA2 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal MUXA3 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal MUXA4 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal MUXASEL : std_logic_vector(1 downto 0); 
 -- MUX B 
 signal iMUXB : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal MUXB0 : std_logic_vector(10 downto 0) := (others=>'0'); 
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 signal MUXB1 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal MUXB2 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal MUXB3 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal MUXB4 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal MUXBSEL : std_logic_vector(1 downto 0); 
 -- MUX Out 
 signal MUXO : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal iMUXO0 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal iMUXO1 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal iMUXO2 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal iMUXO3 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal iMUXO4 : std_logic_vector(10 downto 0) := (others=>'0'); 
 signal MUXOSEL : std_logic_vector(1 downto 0); 
 
begin 
 -- Controls Block 
 Ctrl : controls 
   port map( 
     CLK => iClock2, 
     N => N, 
     ALU_A => ALU_A, 
     ALU_B0 => ALU_B(0), 
     ALU_B1 => ALU_B(1), 
     CIN => CIN, 
     MAR_SEL => MAR_SEL, 
     PC_WRITE => PC_Write, 
     R_WRITE => R_Write, 
     Z_WRITE => Z_Write, 
     N_WRITE => N_Write, 
     MAR_WRITE => MAR_Write, 
     MDR_WRITE => MDR_Write, 
     MEM_READ => MEM_READ, 
     MEM_WRITE => MEM_WRITE, 
     OP_OUT_SEL => OP_OUT_SEL, 
     OP0_WRITE => OP0_Write, 
     OP1_WRITE => OP1_Write, 
     OP_SEL => OP_SEL); 
   
 -- Registers 
 -- PC 
 PC_Reg : REGPC 
   port map( 
      A => iPC, 
      B => PC, 
      CLK => iClock2, 
      ENA => PC_Write); 
 iPC <= ADDER; 
       
 -- R 
 R_Reg : REG 
   port map( 
      A => iR, 
      B => R, 
      CLK => iClock2, 
      ENA => R_Write); 
 iR <= oMemory(10 downto 0); 
  
 -- Z 
 Z_Reg : REG1BIT 
   port map( 
      A => iZ, 
      B => Z, 
      CLK => iClock2, 
      ENA => Z_Write); 
  
 -- N 
 N_Reg : REG1BIT 
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   port map( 
      A => i_N, 
      B => N, 
      CLK => iClock2, 
      ENA => N_Write); 
  
 -- OPCODE 
 -- OPCODE1 
 OPCODE1_Reg : REG1BIT 
   port map( 
      A => iOP1, 
      B => OPCODE(1), 
      CLK => iClock2, 
      ENA => OP1_Write); 
  
 -- OPCODE0 
 OPCODE0_Reg : REG1BIT 
   port map( 
      A => iOP0, 
      B => OPCODE(0), 
      CLK => iClock2, 
      ENA => OP0_Write); 
  
 -- oMUXOP 
 oMUXOP : MUX22 
   port map ( 
      A => OPCODE, 
      B => "10", 
      SEL => OP_OUT_SEL, 
      C => oOPCODE); 
 
 -- MUXOP 
 MUXOP : MUX11 
   port map ( 
      A => oMemory(11), 
      SEL => OP_SEL, 
      B => iOP1, 
      C => iOP0); 
 
  
 -- MUXA 
 MUXA : MUX114 
  port map ( 
     A => iMUXA, 
     SEL => MUXASEL, 
     B => MUXA0, 
     C => MUXA1, 
     D => MUXA2, 
     E => MUXA3); 
 MUXASEL <= oOPCODE; 
 iMUXA <= oMemory(10 downto 0); 
 iGFA <= MUXA0; 
 iXORA <= MUXA1; 
 iMUXALUA0 <= MUXA2; 
 i11TO8A <= MUXA3; 
 
 -- MUXB 
 MUXB : MUX114 
  port map ( 
     A => iMUXB, 
     SEL => MUXBSEL, 
     B => MUXB0, 
     C => MUXB1, 
     D => MUXB2, 
     E => MUXB3); 
 MUXBSEL <= oOPCODE; 
 iMUXB <= R; 
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 iGFB <= MUXB0; 
 iXORB <= MUXB1; 
 iINV <= MUXB2; 
 i11TO8B <= MUXB3; 
  
 -- MUX OUT 
 MUXOUT : MUX411 
   port map ( 
      A => iMUXO0, 
      B => iMUXO1, 
      C => iMUXO2, 
      D => iMUXO3, 
      E => MUXO, 
      SEL => MUXOSEL); 
 MUXOSEL <= oOPCODE; 
 iMUXO0 <= iGF; 
 iMUXO1 <= iXOR; 
 iMUXO2 <= ADDER; 
 iMUXO3 <= i11TO8; 
 iMDR <= oMemory(11) & MUXO; 
 
 -- 11TO8 
 C11TO8BLOCK : C11TO8 
    port map ( 
       a =>i11TO8A, 
       b =>i11TO8B, 
       c =>i11TO8); 
 -- i11TO8(7 downto 0) <= i11TO8A(10) & i11TO8A(6 downto 0); 
 -- i11TO8(10 downto 8) <= "000"; 
   
 -- GF 
 GF28MULT : GF28  
   port map ( 
      a => iGFA(7 downto 0), 
      b => iGFB(7 downto 0), 
      c => iGF(7 downto 0)); 
 iGF(10 downto 8) <= (others=>'0'); 
  
 -- XOR 
 GF211XOR : GF211Add 
    port map ( 
       a =>iXORA, 
       b =>iXORB, 
       c =>iXOR); 
   
 -- SBN 
 SBN_BLOCK : SBN 
   port map ( 
      A => MUXALUA, 
      B => MUXALUB, 
      CIN => CIN, 
      N => i_N, 
      Z => iZ, 
      O => ADDER); 
 
 -- ALU_A MUX 
 MUX_ALU_A : MUX211 
   port map ( 
      A => iMUXALUA0, 
      B => iMUXALUA1, 
      SEL => MUXALUASEL, 
      C => MUXALUA); 
 MUXALUASEL <= ALU_A; 
 iMUXALUA1 <= PC; 
  
 -- ALU_B MUX 
 MUX_ALU_B : MUX411 
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   port map ( 
      A => iMUXALUB0, 
      B => iMUXALUB1, 
      C => iMUXALUB2, 
      D => iMUXALUB3, 
      E => MUXALUB, 
      SEL => MUXALUBSEL); 
 MUXALUBSEL <= ALU_B; 
 iMUXALUB0 <= PC; 
 iMUXALUB1 <= oINV; 
 iMUXALUB2 <= "00000000000"; 
 iMUXALUB3 <= "00000000000"; 
  
 -- INV 
 oINV <= NOT iINV; 
  
 -- MDR 
 MDR_Reg : REG12BIT 
   port map( 
      A => iMDR, 
      B => MDR, 
      CLK => iClock2, 
      ENA => MDR_Write); 
  
 -- MUX MAR 
 MUXMAR : MUX211 
   port map( 
      A => ADDER, 
      B => oMemory(10 downto 0), 
      SEL => MAR_SEL, 
      C => iMAR); 
  
 -- MAR 
 MAR_Reg : REG 
   port map( 
      A => iMAR, 
      B => MAR, 
      CLK => iClock2, 
      ENA => MAR_Write); 
 -- iMAR <= ADDER; 
  
 -- Block RAM 
 Block_RAM : memory 
        port map ( 
            addra => MAR, 
            addrb => iRamAdd, 
            clka => CLK, 
            clkb => CLK, 
            dina => MDR, 
            douta => oMemory, 
            doutb => iRamRead, 
            ena => MEM_ENA, 
            enb => EnaRead, 
            wea => MEM_WEA); 
 -- Memory Control 
 process(MEM_READ,MEM_WRITE,CLK) 
 begin 
  if MEM_WRITE = '1' then 
   MEM_ENA <= '1'; 
   MEM_WEA <= MEM_WRITE; 
  elsif MEM_READ = '1' then 
   MEM_ENA <= MEM_READ; 
   MEM_WEA <= '0'; 
  else 
   MEM_ENA <= MEM_READ; 
   MEM_WEA <= '0'; 
  end if; 
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 end process; 
  
 -- RAM Address 
 process(iClock23,UP,DOWN) 
 begin 
  
  if iClock23'event and iClock23 = '1' then 
   if UP = '1' then 
    iRamAdd <= iRamAdd + '1'; 
   elsif DOWN = '1' then 
    iRamAdd <= iRamAdd - '1'; 
   else 
    iRamAdd <= iRamAdd; 
   end if; 
  end if; 
  
 end process; 
  
 RamAdd <= iRamAdd(7 downto 0); 
 -- RamRead <= iRamRead(7 downto 0); 
  
 -- Seg0 
 Seg70 : D4to7 
   port map( 
      Q => iRamRead(3 downto 0), 
      Seg => Seg0); 
  
 -- Seg1 
 Seg71 : D4to7 
   port map( 
      Q => iRamRead(7 downto 4), 
      Seg => Seg1); 
  
 -- Clock24 
 process(CLK) 
 begin 
  
  if CLK'event and CLK = '1' then 
   iCount23 <= iCount23 + '1'; 
  end if; 
  
 end process; 
 -- Actual Implementation 
  iClock23 <= iCount23(22); 
 -- Simulation 
 -- PiClock24 <= CLK; 
  
 -- Clock2 
 process(CLK) 
 begin 
  
  if CLK'event and CLK = '1' then 
   if PC /= "11111111111" then 
    iCount1 <= NOT iCount1; 
   end if; 
  end if; 
  
 end process; 
 -- Actual Implementation 
  iClock2 <= iCount1; 
 -- Simulation 
 -- iClock2 <= CLK; 
 
end Behavioral; 
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A.1.5 11-Bit Programme Counter Register - REGPC.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity REGPC is 
    Port ( A : in  STD_LOGIC_VECTOR (10 downto 0); 
           B : out  STD_LOGIC_VECTOR (10 downto 0); 
           CLK : in  STD_LOGIC; 
           ENA : in  STD_LOGIC); 
end REGPC; 
 
architecture Behavioral of REGPC is 
 
begin 
  
 -- Register function 
 process(CLK) 
   
  -- Start of programme 
  -- 0x2AF, start at 0x2B0 
  variable sig_data : std_logic_vector (10 downto 0) := "01010101111"; 
  -- 0x2E8 For SBN waveform extraction 
  -- variable sig_data : std_logic_vector (10 downto 0) := "01011101000"; 
  -- 0x4E3 For XOR/11TO8/GF MULT waveform extraction 
  -- variable sig_data : std_logic_vector (10 downto 0) := "10011100011"; 
  -- Test Last Line 
  -- variable sig_data : std_logic_vector (10 downto 0) := "111011001"; 
   
 begin 
 
  if CLK'event and CLK = '1' then 
   if ENA = '1' then 
    sig_data := A; 
   end if; 
  else 
   sig_data := sig_data; 
  end if; 
   
  B <= sig_data; 
  
 end process; 
 
end Behavioral; 

 

 

A.1.6 11-Bit Register - REG.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
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--use UNISIM.VComponents.all; 
 
entity REG is 
    Port ( A : in  STD_LOGIC_VECTOR (10 downto 0); 
           B : out  STD_LOGIC_VECTOR (10 downto 0); 
           CLK : in  STD_LOGIC; 
           ENA : in  STD_LOGIC); 
end REG; 
 
architecture Behavioral of REG is 
 
begin 
 
 -- Register function 
 process(CLK) 
   
  variable sig_data : std_logic_vector (10 downto 0) := (others=>'0'); 
   
 begin 
  
  if CLK'event and CLK = '1' then 
   if ENA = '1' then 
    sig_data := A; 
   end if; 
  else 
   sig_data := sig_data; 
  end if; 
   
  B <= sig_data; 
  
 end process; 
 
end Behavioral; 

 

 

A.1.7 1-Bit Register - REG1BIT.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity REG1BIT is 
    Port ( A : in  STD_LOGIC; 
           B : out  STD_LOGIC; 
           CLK : in  STD_LOGIC; 
           ENA : in  STD_LOGIC); 
end REG1BIT; 
 
architecture Behavioral of REG1BIT is 
 
begin 
 
 -- Register function 
 process(CLK) 
   
  variable sig_data : std_logic := '0'; 
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 begin 
  
  if CLK'event and CLK = '1' then 
   if ENA = '1' then 
    sig_data := A; 
   end if; 
  else 
   sig_data := sig_data; 
  end if; 
   
  B <= sig_data; 
  
 end process; 
 
end Behavioral; 

 

 

A.1.8 2-Bit 2-To-1 Multiplexer - MUX22.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity MUX22 is 
    Port ( A : in  STD_LOGIC_VECTOR (1 downto 0); 
           B : in  STD_LOGIC_VECTOR (1 downto 0); 
     SEL : in STD_LOGIC; 
           C : out  STD_LOGIC_VECTOR (1 downto 0)); 
end MUX22; 
 
architecture Behavioral of MUX22 is 
 
begin 
 
 -- MUX2-1 2 bit 
 process(SEL,A,B) 
 begin 
  
  if SEL = '0' then 
   C <= A; 
  else 
   C <= B; 
  end if; 
  
 end process; 
 
end Behavioral; 
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A.1.9 1-Bit 1-To-2 Multiplexer - MUX11.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity MUX11 is 
    Port ( A : in  STD_LOGIC; 
           SEL : in  STD_LOGIC; 
           B : out  STD_LOGIC; 
           C : out  STD_LOGIC); 
end MUX11; 
 
architecture Behavioral of MUX11 is 
 
begin 
 
 -- MUX1-2 1-Bit 
 process(SEL,A) 
 begin 
  
  if SEL = '0' then 
   B <= A; 
   C <= '0'; 
  else 
   B <= '0'; 
   C <= A; 
  end if; 
  
 end process; 
 
end Behavioral; 

 

 

A.1.10 11-Bit 1-To-4 Multiplexer - MUX114.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity MUX114 is 
    Port ( A : in  STD_LOGIC_VECTOR (10 downto 0); 
           SEL : in  STD_LOGIC_VECTOR (1 downto 0); 
           B : out  STD_LOGIC_VECTOR (10 downto 0); 
           C : out  STD_LOGIC_VECTOR (10 downto 0); 
     D : out  STD_LOGIC_VECTOR (10 downto 0); 
           E : out  STD_LOGIC_VECTOR (10 downto 0)); 
end MUX114; 
 
architecture Behavioral of MUX114 is 
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begin 
 
 -- MUX1-4 11 bits 
 process(SEL,A) 
 begin 
  
  if SEL = "00" then 
   B <= A; 
   C <= "00000000000"; 
   D <= "00000000000"; 
   E <= "00000000000"; 
  elsif SEL = "01" then 
   B <= "00000000000"; 
   C <= A; 
   D <= "00000000000"; 
   E <= "00000000000"; 
  elsif SEL = "10" then 
   B <= "00000000000"; 
   C <= "00000000000"; 
   D <= A; 
   E <= "00000000000"; 
  elsif SEL = "11" then 
   B <= "00000000000"; 
   C <= "00000000000"; 
   D <= "00000000000"; 
   E <= A; 
  else 
   B <= "00000000000"; 
   C <= "00000000000"; 
   D <= "00000000000"; 
   E <= "00000000000"; 
  end if; 
  
 end process; 
 
end Behavioral; 

 

 

A.1.11 11-Bit 4-To-1 Multiplexer - MUX411.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity MUX411 is 
    Port ( A : in  STD_LOGIC_VECTOR (10 downto 0); 
           B : in  STD_LOGIC_VECTOR (10 downto 0); 
     C : in  STD_LOGIC_VECTOR (10 downto 0); 
     D : in  STD_LOGIC_VECTOR (10 downto 0); 
           E : out  STD_LOGIC_VECTOR (10 downto 0); 
           SEL : in  STD_LOGIC_VECTOR (1 downto 0)); 
end MUX411; 
 
architecture Behavioral of MUX411 is 
 
begin 
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 -- MUX4-1 11-bit 
 process(SEL,A,B,C,D) 
 begin 
  
  if SEL = "00" then 
   E <= A; 
  elsif SEL = "01" then 
   E <= B; 
  elsif SEL = "10" then 
   E <= C; 
  elsif SEL = "11" then 
   E <= D; 
  else 
   E <= "00000000000"; 
  end if; 
  
 end process; 
 
end Behavioral; 

 

 

A.1.12 Functional Block 11TO8 - C11TO8.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity C11TO8 is 
    Port ( a : in  STD_LOGIC_VECTOR (10 downto 0); 
           b : in  STD_LOGIC_VECTOR (10 downto 0); 
           c : out  STD_LOGIC_VECTOR (10 downto 0)); 
end C11TO8; 
 
architecture Behavioral of C11TO8 is 
 
 signal sig_output : std_logic_vector (10 downto 0) := (others=>'0'); 
 
begin 
 
 -- Conversion of 11-bit to 8-bit 
 sig_output(7 downto 0) <= a(10) & a(6 downto 0); 
 sig_output(10 downto 8) <= "000"; 
  
 -- output 
 c <= sig_output; 
 
end Behavioral; 

 

 

A.1.13 Functional Block GF(28) Multiplier - GF28.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
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use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity GF28 is 
    Port ( a : in  STD_LOGIC_VECTOR (7 downto 0); 
           b : in  STD_LOGIC_VECTOR (7 downto 0); 
           c : out  STD_LOGIC_VECTOR (7 downto 0)); 
end GF28; 
 
architecture Behavioral of GF28 is 
 
 signal output_i : std_logic_vector (7 downto 0) := (others=>'0'); 
 
begin 
 
 -- GF(2^8) Multiplier 
 -- bit 7 
 output_i(7) <= (a(7) AND b(0)) XOR (a(6) AND b(1)) XOR (a(5) AND b(2)) XOR (a(4) AND b(3)) 
  XOR (a(3) AND b(4)) XOR (a(2) AND b(5)) XOR (a(1) AND b(6)) XOR (a(0) AND b(7)) 
  XOR (a(7) AND b(6)) XOR (a(6) AND b(7)) XOR (a(7) AND b(5)) XOR (a(6) AND b(6)) 
  XOR (a(5) AND b(7)) XOR (a(7) AND b(4)) XOR (a(6) AND b(5)) XOR (a(5) AND b(6)) 
  XOR (a(4) AND b(7)); 
 -- bit 6 
 output_i(6) <= (a(6) AND b(0)) XOR (a(5) AND b(1)) XOR (a(4) AND b(2)) XOR (a(3) AND b(3)) 
  XOR (a(2) AND b(4)) XOR (a(1) AND b(5)) XOR (a(0) AND b(6)) XOR (a(7) AND b(5)) 
  XOR (a(6) AND b(6)) XOR (a(5) AND b(7)) XOR (a(7) AND b(4)) XOR (a(6) AND b(5)) 
  XOR (a(5) AND b(6)) XOR (a(4) AND b(7)) XOR (a(7) AND b(3)) XOR (a(6) AND b(4)) 
  XOR (a(5) AND b(5)) XOR (a(4) AND b(6)) XOR (a(3) AND b(7)); 
 -- bit 5 
 output_i(5) <= (a(5) AND b(0)) XOR (a(4) AND b(1)) XOR (a(3) AND b(2)) XOR (a(2) AND b(3)) 
  XOR (a(1) AND b(4)) XOR (a(0) AND b(5)) XOR (a(7) AND b(4)) XOR (a(6) AND b(5)) 
  XOR (a(5) AND b(6)) XOR (a(4) AND b(7)) XOR (a(7) AND b(3)) XOR (a(6) AND b(4)) 
  XOR (a(5) AND b(5)) XOR (a(4) AND b(6)) XOR (a(3) AND b(7)) XOR (a(7) AND b(2)) 
  XOR (a(6) AND b(3)) XOR (a(5) AND b(4)) XOR (a(4) AND b(5)) XOR (a(3) AND b(6)) 
  XOR (a(2) AND b(7)); 
 -- bit 4 
 output_i(4) <= (a(4) AND b(0)) XOR (a(3) AND b(1)) XOR (a(2) AND b(2)) XOR (a(1) AND b(3)) 
  XOR (a(0) AND b(4)) XOR (a(7) AND b(7)) XOR (a(7) AND b(3)) XOR (a(6) AND b(4)) 
  XOR (a(5) AND b(5)) XOR (a(4) AND b(6)) XOR (a(3) AND b(7)) XOR (a(7) AND b(2)) 
  XOR (a(6) AND b(3)) XOR (a(5) AND b(4)) XOR (a(4) AND b(5)) XOR (a(3) AND b(6)) 
  XOR (a(2) AND b(7)) XOR (a(7) AND b(1)) XOR (a(6) AND b(2)) XOR (a(5) AND b(3)) 
  XOR (a(4) AND b(4)) XOR (a(3) AND b(5)) XOR (a(2) AND b(6)) XOR (a(1) AND b(7)); 
 -- bit 3 
 output_i(3) <= (a(3) AND b(0)) XOR (a(2) AND b(1)) XOR (a(1) AND b(2)) XOR (a(0) AND b(3)) 
  XOR (a(7) AND b(5)) XOR (a(6) AND b(6)) XOR (a(5) AND b(7)) XOR (a(7) AND b(4)) 
  XOR (a(6) AND b(5)) XOR (a(5) AND b(6)) XOR (a(4) AND b(7)) XOR (a(7) AND b(2)) 
  XOR (a(6) AND b(3)) XOR (a(5) AND b(4)) XOR (a(4) AND b(5)) XOR (a(3) AND b(6)) 
  XOR (a(2) AND b(7)) XOR (a(7) AND b(1)) XOR (a(6) AND b(2)) XOR (a(5) AND b(3)) 
  XOR (a(4) AND b(4)) XOR (a(3) AND b(5)) XOR (a(2) AND b(6)) XOR (a(1) AND b(7)); 
 -- bit 2 
 output_i(2) <= (a(2) AND b(0)) XOR (a(1) AND b(1)) XOR (a(0) AND b(2)) XOR (a(7) AND b(6)) 
  XOR (a(6) AND b(7)) XOR (a(7) AND b(5)) XOR (a(6) AND b(6)) XOR (a(5) AND b(7)) 
  XOR (a(7) AND b(3)) XOR (a(6) AND b(4)) XOR (a(5) AND b(5)) XOR (a(4) AND b(6)) 
  XOR (a(3) AND b(7)) XOR (a(7) AND b(1)) XOR (a(6) AND b(2)) XOR (a(5) AND b(3)) 
  XOR (a(4) AND b(4)) XOR (a(3) AND b(5)) XOR (a(2) AND b(6)) XOR (a(1) AND b(7)); 
 -- bit 1 
 output_i(1) <= (a(1) AND b(0)) XOR (a(0) AND b(1)) XOR (a(7) AND b(7)) XOR (a(7) AND b(6)) 
  XOR (a(6) AND b(7)) XOR (a(7) AND b(2)) XOR (a(6) AND b(3)) XOR (a(5) AND b(4)) 
  XOR (a(4) AND b(5)) XOR (a(3) AND b(6)) XOR (a(2) AND b(7)); 
 -- bit 0 
 output_i(0) <= (a(0) AND b(0)) XOR (a(7) AND b(7)) XOR (a(7) AND b(6)) XOR (a(6) AND b(7)) 
  XOR (a(7) AND b(5)) XOR (a(6) AND b(6)) XOR (a(5) AND b(7)) XOR (a(7) AND b(1)) 
  XOR (a(6) AND b(2)) XOR (a(5) AND b(3)) XOR (a(4) AND b(4)) XOR (a(3) AND b(5)) 
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  XOR (a(2) AND b(6)) XOR (a(1) AND b(7)); 
 
 -- connect output to signal output_i 
 c <= output_i; 
  
end Behavioral; 

 

 

A.1.14 Functional Block 11-Bit XOR - GF211Add.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity GF211Add is 
    Port ( a : in  STD_LOGIC_VECTOR (10 downto 0); 
           b : in  STD_LOGIC_VECTOR (10 downto 0); 
           c : out  STD_LOGIC_VECTOR (10 downto 0)); 
end GF211Add; 
 
architecture Behavioral of GF211Add is 
 
 signal sig_output : std_logic_vector (10 downto 0) := (others=>'0'); 
 
begin 
 
 -- GF Addition / XOR 
 sig_output <= a XOR b; 
  
 -- output 
 c <= sig_output; 
 
end Behavioral; 

 

 

A.1.15 Functional Block SBN - SBN.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity SBN is 
    Port ( A : in  STD_LOGIC_VECTOR (10 downto 0); 
           B : in  STD_LOGIC_VECTOR (10 downto 0); 
           CIN : in  STD_LOGIC; 
           N : out  STD_LOGIC; 
           Z : out  STD_LOGIC; 
     O : out STD_LOGIC_VECTOR (10 downto 0)); 



 

245 
 

end SBN; 
 
architecture Behavioral of SBN is 
 
 signal sig_output : std_logic_vector (10 downto 0) := (others=>'0'); 
 
begin 
 
 sig_output <= A + B + CIN; 
  
 -- output zero, Z 
 process(sig_output) 
 begin 
  if sig_output = X"000" then 
   Z <= '1'; 
  else 
   Z <= '0'; 
  end if; 
 end process; 
  
 -- output negative, N 
 process(sig_output) 
 begin 
  if sig_output(8) = '1' then 
   N <= '1'; 
  else 
   N <= '0'; 
  end if; 
 end process; 
  
 -- output O 
 O <= sig_output; 
 
end Behavioral; 

 

 

A.1.16 11-Bit 2-To-1 Multiplexer - MUX211.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity MUX211 is 
    Port ( A : in  STD_LOGIC_VECTOR (10 downto 0); 
           B : in  STD_LOGIC_VECTOR (10 downto 0); 
           SEL : in  STD_LOGIC; 
           C : out  STD_LOGIC_VECTOR (10 downto 0)); 
end MUX211; 
 
architecture Behavioral of MUX211 is 
 
begin 
 
 -- MUX2-1 11 bit 
 process(SEL,A,B) 
 begin 
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  if SEL = '0' then 
   C <= A; 
  else 
   C <= B; 
  end if; 
   
 end process; 
 
end Behavioral; 

 

 

A.1.17 12-Bit Register - REG12BIT.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity REG12BIT is 
    Port ( A : in  STD_LOGIC_VECTOR (11 downto 0); 
           B : out  STD_LOGIC_VECTOR (11 downto 0); 
           CLK : in  STD_LOGIC; 
           ENA : in  STD_LOGIC); 
end REG12BIT; 
 
architecture Behavioral of REG12BIT is 
 
begin 
 
 -- Register function 
 process(CLK) 
   
  variable sig_data : std_logic_vector(11 downto 0) := (others=>'0'); 
   
 begin 
  
  if CLK'event and CLK = '1' then 
   if ENA = '1' then 
    sig_data := A; 
   end if; 
  else 
   sig_data := sig_data; 
  end if; 
   
  B <= sig_data; 
  
 end process; 
end Behavioral; 

 

 

A.1.18 LED 7-Segment Display - D4to7.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
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use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity D4to7 is 
    Port ( Q : in  STD_LOGIC_VECTOR (3 downto 0); 
           Seg : out STD_LOGIC_VECTOR (6 downto 0)); 
end D4to7; 
 
architecture Behavioral of D4to7 is 
 -- Segment encoding 
 --  a 
 --   --- 
 -- f|   |b 
 --   --- <- g 
 -- e|   |c 
 --   --- 
 --  d 
begin 
 -- Conditional signal assignmens 
 -- LED seg order = a,b,c,d,e,f,g = seg6, seg5, seg4, seg3, seg2, seg1, seg0 
 Seg<= "1111110" when q = "0000" else 
   "0110000" when q = "0001" else 
   "1101101" when q = "0010" else 
   "1111001" when q = "0011" else 
   "0110011" when q = "0100" else 
   "1011011" when q = "0101" else 
   "1011111" when q = "0110" else 
   "1110000" when q = "0111" else 
   "1111111" when q = "1000" else 
   "1111011" when q = "1001" else 
   "1110111" when q = "1010" else 
   "0011111" when q = "1011" else 
   "1001110" when q = "1100" else 
   "0111101" when q = "1101" else 
   "1001111" when q = "1110" else 
   "1000111" when q = "1111" else 
   "0000000"; 
 
end Behavioral; 

 

 

 

A.2 DWT CRS MISC PROCESSING SYSTEM IN 
HANDEL-C 

#define RC10_TARGET_CLOCK_RATE 25175000 
#include "rc10.hch" 
#include "stdlib.hch" 
 
#define RegWidth 11 
#define MemWidth 12 
#define DataWidth 8 
 
macro expr ClockRate = RC10_ACTUAL_CLOCK_RATE; 
 
// Image Data 
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static ram unsigned 6 data[4200] with {block = 1}; 
 
static ram unsigned MemWidth Memory[2048] = { 
//data 
//$zero, $one 
// 0x000 
0x000, 0x001, 
//$s0 - $s583 
//input data / image data, $s0 - $s255 
// 0x002 
0x034, 0x01A, 0x011, 0x02D, 0x039, 0x016, 0x024, 0x00E, 0x010, 0x019, 0x031, 0x029, 0x01F, 0x027, 0x039, 
0x005, 0x039, 0x03A, 0x002, 0x030, 
0x03D, 0x035, 0x01E, 0x03A, 0x033, 0x004, 0x018, 0x02E, 0x01B, 0x025, 0x03E, 0x010, 0x008, 0x032, 0x006, 
0x011, 0x023, 0x025, 0x000, 0x009, 
0x01B, 0x00F, 0x00F, 0x029, 0x01C, 0x00D, 0x01C, 0x033, 0x03A, 0x03D, 0x034, 0x02B, 0x008, 0x023, 0x015, 
0x034, 0x03A, 0x007, 0x019, 0x01C, 
0x013, 0x013, 0x007, 0x001, 0x028, 0x029, 0x02C, 0x029, 0x009, 0x03A, 0x00A, 0x022, 0x00B, 0x00B, 0x006, 
0x023, 0x020, 0x01E, 0x010, 0x03B, 
0x006, 0x002, 0x014, 0x00A, 0x010, 0x012, 0x032, 0x03F, 0x010, 0x00F, 0x008, 0x012, 0x020, 0x00E, 0x01A, 
0x02E, 0x011, 0x036, 0x03C, 0x007, 
0x035, 0x030, 0x013, 0x005, 0x009, 0x01A, 0x03C, 0x02F, 0x034, 0x036, 0x026, 0x01F, 0x023, 0x03B, 0x002, 
0x01F, 0x010, 0x030, 0x021, 0x01C, 
0x008, 0x003, 0x03D, 0x00C, 0x032, 0x00C, 0x010, 0x025, 0x03D, 0x02B, 0x01C, 0x03D, 0x034, 0x018, 0x00A, 
0x006, 0x037, 0x039, 0x024, 0x02B, 
0x029, 0x00E, 0x026, 0x00F, 0x03D, 0x030, 0x018, 0x015, 0x00F, 0x024, 0x026, 0x03D, 0x025, 0x03C, 0x003, 
0x00B, 0x018, 0x00A, 0x02D, 0x01D, 
0x00A, 0x02F, 0x030, 0x025, 0x03B, 0x004, 0x010, 0x000, 0x023, 0x01F, 0x00F, 0x017, 0x033, 0x00E, 0x00E, 
0x03D, 0x03E, 0x019, 0x032, 0x00E, 
0x016, 0x003, 0x029, 0x031, 0x009, 0x01F, 0x016, 0x028, 0x022, 0x01B, 0x007, 0x022, 0x03D, 0x029, 0x00B, 
0x030, 0x00C, 0x021, 0x02C, 0x034, 
0x036, 0x015, 0x034, 0x031, 0x016, 0x013, 0x012, 0x021, 0x01F, 0x00A, 0x01F, 0x010, 0x010, 0x031, 0x02F, 
0x037, 0x027, 0x039, 0x000, 0x005, 
0x03C, 0x03B, 0x014, 0x00E, 0x033, 0x02D, 0x01C, 0x020, 0x027, 0x03B, 0x01C, 0x005, 0x016, 0x017, 0x002, 
0x03B, 0x038, 0x01B, 0x01B, 0x01F, 
0x009, 0x002, 0x029, 0x02C, 0x01E, 0x008, 0x005, 0x019, 0x020, 0x007, 0x00A, 0x031, 0x023, 0x00B, 0x020, 
0x027, 
//generator matrix coefficients, $s256 - $s575 
0x07B, 0x053, 0x01E, 0x0A1, 0x062, 0x0D9, 0x026, 0x0F1, 0x0C7, 0x0AC, 0x0D5, 0x04F, 0x0CF, 0x066, 
0x005, 0x093, 0x0CF, 0x0AA, 0x062, 0x0F4, 
0x01E, 0x0B5, 0x008, 0x017, 0x02A, 0x083, 0x0A5, 0x0C0, 0x07B, 0x00F, 0x02C, 0x0A8, 0x055, 0x08B, 
0x0F3, 0x051, 0x0B3, 0x0C8, 0x069, 0x0A6, 
0x0E1, 0x00C, 0x0E6, 0x06F, 0x094, 0x0BF, 0x07A, 0x0B2, 0x057, 0x025, 0x0DF, 0x013, 0x0D8, 0x03B, 
0x0D3, 0x00C, 0x092, 0x0A6, 0x0DC, 0x088, 
0x014, 0x07D, 0x0CD, 0x0BC, 0x079, 0x036, 0x0B0, 0x045, 0x07A, 0x0B6, 0x014, 0x04A, 0x068, 0x038, 
0x0F5, 0x041, 0x0D3, 0x078, 0x0B3, 0x01D, 
0x073, 0x0B2, 0x0D0, 0x014, 0x0CE, 0x072, 0x045, 0x0CC, 0x07F, 0x07E, 0x0ED, 0x0E7, 0x013, 0x0FB, 
0x0B8, 0x08B, 0x09D, 0x015, 0x0D4, 0x048, 
0x0DB, 0x059, 0x0C7, 0x01A, 0x026, 0x033, 0x0E7, 0x0ED, 0x049, 0x0C2, 0x03E, 0x0FF, 0x0E1, 0x0AD, 
0x03A, 0x07A, 0x045, 0x0C9, 0x0CE, 0x05B, 
0x055, 0x090, 0x09E, 0x066, 0x0AE, 0x04F, 0x051, 0x05A, 0x0CD, 0x02B, 0x069, 0x092, 0x03D, 0x0F2, 0x0F3, 
0x0ED, 0x013, 0x0CB, 0x0CC, 0x01A, 
0x07F, 0x071, 0x057, 0x031, 0x072, 0x02C, 0x03F, 0x070, 0x024, 0x073, 0x0E4, 0x067, 0x0A4, 0x040, 0x074, 
0x022, 0x018, 0x09A, 0x0AA, 0x0B1,  
0x02F, 0x0C1, 0x0C7, 0x061, 0x02A, 0x046, 0x0D4, 0x06F, 0x01E, 0x088, 0x00F, 0x0A6, 0x06A, 0x0A5, 
0x011, 0x0BD, 0x0EB, 0x01D, 0x092, 0x069,  
0x0B8, 0x084, 0x051, 0x0FA, 0x0DF, 0x04F, 0x016, 0x0AC, 0x0C3, 0x090, 0x0CE, 0x036, 0x01C, 0x05C, 
0x038, 0x0DC, 0x071, 0x052, 0x05E, 0x07F,  
0x0CC, 0x0B0, 0x013, 0x049, 0x0ED, 0x03D, 0x095, 0x081, 0x075, 0x085, 0x098, 0x0A5, 0x027, 0x02E, 0x020, 
0x005, 0x019, 0x099, 0x0F4, 0x0F6,  
0x006, 0x061, 0x0F1, 0x096, 0x0B9, 0x08C, 0x09B, 0x00E, 0x03E, 0x09C, 0x0EA, 0x050, 0x05F, 0x0D5, 
0x0AC, 0x016, 0x0B1, 0x0D2, 0x0DB, 0x018,  
0x010, 0x06A, 0x070, 0x03F, 0x03B, 0x0D8, 0x093, 0x07C, 0x0FF, 0x0FD, 0x06C, 0x0E3, 0x0C1, 0x0E9, 
0x065, 0x026, 0x00F, 0x082, 0x017, 0x0B7, 
0x0F1, 0x037, 0x001, 0x062, 0x06B, 0x0E5, 0x02F, 0x0AE, 0x066, 0x0CF, 0x027, 0x0CA, 0x078, 0x06D, 
0x04A, 0x0E6, 0x00D, 0x058, 0x016, 0x0B0, 
0x07E, 0x07F, 0x051, 0x0EA, 0x0CB, 0x079, 0x09E, 0x06E, 0x051, 0x0E0, 0x0F6, 0x055, 0x068, 0x0B4, 
0x0EB, 0x0FC, 0x07A, 0x047, 0x078, 0x098, 
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0x09F, 0x0F5, 0x0E1, 0x0D6, 0x08E, 0x0C3, 0x0B5, 0x0A9, 0x0D9, 0x062, 0x0BC, 0x037, 0x08A, 0x056, 
0x0E8, 0x01F, 0x01D, 0x0BE, 0x04B, 0x0D3, 
//control values, $s576 - $s583 
0x002, 0x020, 0x004, 0x040, 0x010, 0x014, 0x053, 0x140, 
// empty data 
0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 
//temporary register, $t0 - $t24 
0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 
0x000, 0x000, 0x000, 0x000, 0x000, 
0x000, 0x000, 0x000, 0x000, 0x000, 
//empty data 
0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 
0x000, 0x000, 0x000, 0x000, 0x000, 
0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 
0x000, 0x000, 0x000, 0x000, 0x000, 
0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 
0x000, 0x000, 0x000, 0x000, 0x000, 
0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 
 
//program 
// Level 1 DWT 
//0x2B0 
0x255, 0xA55, 0x000, 0x256, 0xA56, 0x000, 0x25A, 0xA5A, 0x000, 0x25B, 0xA5B, 0x000, 0x801, 0x255, 
0x000, 0xA42, 0x256, 0x000, 
//0x2C2 
0xA44, 0x25A, 0x000, 0xA43, 0x25B, 0x000, 0x802, 0x003, 0x000, 0x257, 0xA57, 0x000, 0x258, 0xA58, 0x000, 
0x259, 0xA59, 0x000, 
//0x2D4 
0x800, 0x003, 0x018, 0x003, 0xA57, 0x000, 0xA42, 0x257, 0x006, 0xA55, 0x258, 0x000, 0x801, 0x259, 0x7F7, 
0x257, 0xA57, 0x000, 
//0x2E6 
0xA58, 0x257, 0x000, 0xA57, 0x002, 0x000, 0x801, 0x259, 0x00F, 0x803, 0x257, 0x000, 0xA42, 0x257, 0x006,  
0xA55, 0x258, 0x000, 
//0x2F8 
0x801, 0x259, 0x7F7, 0xA58, 0x002, 0x000, 0xA56, 0x2C8, 0x000, 0xA56, 0x2C9, 0x000, 0xA56, 0x2D5, 0x000, 
0xA56, 0x2D7, 0x000, 
//0x30A 
0xA56, 0x2EA, 0x000, 0xA56, 0x2EF, 0x000, 0xA56, 0x2FC, 0x000, 0xA55, 0x25B, 0x7B2, 0xA55, 0x25A, 
0x7AC, 0xA44, 0x25A, 0x000, 
//0x31C 
0xA45, 0x2C8, 0x000, 0xA45, 0x2C9, 0x000, 0xA45, 0x2D5, 0x000,  0xA45, 0x2D7, 0x000, 0xA45, 0x2EA, 
0x000, 0xA45, 0x2EF, 0x000, 
//0x32E 
0xA45, 0x2FC, 0x000, 0xA55, 0x25A, 0x7E8, 0xA42, 0x25A, 0x000, 0xA45, 0x25B, 0x000, 0x802, 0x042, 
0x000, 0x257, 0xA57, 0x000, 
//0x340 
0x258, 0xA58, 0x000, 0x259, 0xA59, 0x000, 0x800, 0x042, 0x018, 0x042, 0xA57, 0x000, 0xA42, 0x257, 0x006, 
0xA55, 0x258, 0x000, 
//0x352 
0x801, 0x259, 0x7F7, 0x257, 0xA57, 0x000, 0xA58, 0x257, 0x000, 0xA57, 0x002, 0x000, 0x801, 0x259, 0x00F, 
0x842, 0x257, 0x000, 
//0x364 
0xA42, 0x257, 0x006, 0xA55, 0x258, 0x000, 0x801, 0x259, 0x7F7, 0xA58, 0x002, 0x000, 0xA55, 0x33A, 0x000, 
0xA55, 0x33B, 0x000, 
//0x376 
0xA55, 0x347, 0x000, 0xA55, 0x349, 0x000, 0xA55, 0x35C, 0x000, 0xA55, 0x361, 0x000, 0xA55, 0x36E, 0x000, 
0xA55, 0x25B, 0x7B2, 
//0x388 
0xA45, 0x25B, 0x000, 0xA5B, 0x33A, 0x000, 0xA5B, 0x33B, 0x000, 0xA5B, 0x347, 0x000, 0xA5B, 0x349, 
0x000, 0xA5B, 0x35C, 0x000, 
//0x39A 
0xA5B, 0x361, 0x000, 0xA5B, 0x36E, 0x000, 0xA55, 0x25A, 0x797, 0xA44, 0x25A, 0x000, 0xA45, 0x33A, 
0x000, 0xA45, 0x33B, 0x000, 
//0x3AC 
0xA45, 0x347, 0x000, 0xA45, 0x349, 0x000, 0xA45, 0x35C, 0x000, 0xA45, 0x361, 0x000, 0xA45, 0x36E, 0x000, 
0xA55, 0x25A, 0x7E8, 
 



 

250 
 

// Level 2 DWT 
//0x3BE 
0x25B, 0xA5B, 0x000, 0x25C, 0xA5C, 0x000, 0x25D, 0xA5D, 0x000, 0xA45, 0x25D, 0x000, 0xA44, 0x25C, 
0x000, 0xA42, 0x25A, 0x000, 
//0x3D0 
0xA46, 0x25B, 0x000, 0x802, 0x004, 0x000, 0x257, 0xA57, 0x000, 0x258, 0xA58, 0x000, 0x259, 0xA59, 0x000, 
0x800, 0x004, 0x018, 
//0x3E2 
0x004, 0xA57, 0x000, 0xA42, 0x257, 0x006, 0xA55, 0x258, 0x000, 0x801, 0x259, 0x7F7, 0x257, 0xA57, 0x000, 
0xA58, 0x257, 0x000, 
//0x3F4 
0xA57, 0x002, 0x000, 0x801, 0x259, 0x00F, 0x804, 0x257, 0x000, 0xA42, 0x257, 0x006, 0xA55, 0x258, 0x000, 
0x801, 0x259, 0x7F7, 
//0x406 
0xA58, 0x002, 0x000, 0xA5C, 0x3D3, 0x000, 0xA5C, 0x3D4, 0x000, 0xA5C, 0x3E0, 0x000, 0xA5C, 0x3E2, 
0x000, 0xA5C, 0x3F5, 0x000, 
//0x418 
0xA5C, 0x3FA, 0x000, 0xA5C, 0x407, 0x000, 0xA55, 0x25B, 0x7B2, 0xA5D, 0x3D3, 0x000, 0xA5D, 0x3D4, 
0x000, 0xA5D, 0x3E0, 0x000, 
//0x42A 
0xA5D, 0x3E2, 0x000, 0xA5D, 0x3F5, 0x000, 0xA5D, 0x3FA, 0x000, 0xA5D, 0x407, 0x000, 0xA55, 0x25A, 
0x797, 0xA44, 0x25A, 0x000, 
//0x43C 
0xA45, 0x3D3, 0x000, 0xA45, 0x3D4, 0x000, 0xA45, 0x3E0, 0x000, 0xA45, 0x3E2, 0x000, 0xA45, 0x3F5, 
0x000, 0xA45, 0x3FA, 0x000, 
//0x44E 
0xA45, 0x407, 0x000, 0xA55, 0x25A, 0x7E8, 0xA43, 0x25B, 0x000, 0x802, 0x082, 0x000, 0x257, 0xA57, 0x000, 
0x258, 0xA58, 0x000, 
//0x460 
0x259, 0xA59, 0x000, 0x800, 0x082, 0x018, 0x082, 0xA57, 0x000, 0xA42, 0x257, 0x006, 0xA55, 0x258, 0x000, 
0x801, 0x259, 0x7F7, 
//0x472 
0x257, 0xA57, 0x000, 0xA58, 0x257, 0x000, 0xA57, 0x002, 0x000, 0x801, 0x259, 0x00F, 0x882, 0x257, 0x000, 
0xA42, 0x257, 0x006, 
//0x484 
0xA55, 0x258, 0x000, 0x801, 0x259, 0x7F7, 0xA58, 0x002, 0x000, 0xA56, 0x457, 0x000, 0xA56, 0x458, 0x000, 
0xA56, 0x464, 0x000, 
//0x496 
0xA56, 0x466, 0x000, 0xA56, 0x479, 0x000, 0xA56, 0x47E, 0x000, 0xA56, 0x48B, 0x000, 0xA55, 0x25B, 
0x7B2, 0xA45, 0x457, 0x000, 
//0x4A8 
0xA45, 0x458, 0x000, 0xA45, 0x464, 0x000, 0xA45, 0x466, 0x000, 0xA45, 0x479, 0x000, 0xA45, 0x47E, 0x000, 
0xA45, 0x48B, 0x000, 
 
// CRS Encoding 
//0x4BA 
0x25C, 0xA5C, 0x000, 0xA48, 0x25C, 0x000, 0x25D, 0xA5D, 0x000, 0xA55, 0x4C0, 0x000, 0xA55, 0x4C1, 
0x000, 0xA55, 0x25C, 0x7F4, 
//0x4CC 
0xA48, 0x4C0, 0x000, 0xA48, 0x4C1, 0x000, 0xA43, 0x25B, 0x000, 0xA42, 0x25A, 0x000, 0x259, 0xA59, 
0x000, 0xA45, 0x259, 0x000, 
//0x4DE 
0xA42, 0x25C, 0x000, 0xA47, 0x25D, 0x000, 0xA46, 0x25E, 0x000, 0x002, 0xA5F, 0x000, 0xA5F, 0xA5F, 
0x000, 0x102, 0x25F, 0x000, 
//0x4F0 
0x25F, 0xA60, 0x000, 0x25F, 0xA5F, 0x000, 0xA56, 0x4E7, 0x000, 0xA55, 0x4ED, 0x000, 0xA55, 0x25E, 
0x7E8, 0xA55, 0x4F1, 0x000, 
//0x502 
0xA43, 0x4E7, 0x000, 0xA55, 0x25D, 0x7DC, 0xA49, 0x4ED, 0x000, 0xA5B, 0x4E7, 0x000, 0xA55, 0x25C, 
0x7D0, 0xA59, 0x4E7, 0x000, 
//0x514 
0xA55, 0x25A, 0x7C7, 0xA44, 0x25C, 0x000, 0xA47, 0x4F1, 0x000, 0xA45, 0x4E7, 0x000, 0xA55, 0x25C, 
0x7F7, 0x801, 0x25C, 0x2D9, 
 
//0x526 
0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 
0x000, 0x000, 0x000 
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} with {block=1}; 
 
static macro proc RunDWTCRSURISC(); 
static macro proc Sleep (Milliseconds); 
 
void main(void) 
{ 
 // Signals 
 signal unsigned int 12 Sig_MemOutput_RS232; 
 
 // Camera outputs to FPGA 
 unsigned int 16 Pixel; 
 unsigned int 11 X; 
 unsigned int 11 Y; 
 
 // RS232 Data read and send 
 unsigned int 8 RS232SEND; 
 unsigned int 8 RS232READ; 
 
 unsigned int 13 t; 
 unsigned int 1 RUN_NEXT; 
 unsigned int 1 RUN; 
 unsigned int 9 sendpointer; 
 unsigned int 11 CRS_t; 
 unsigned int 8 WriteMem; 
 
 par 
 { 
  RC10CameraRun(OV9650_RGB565_QQVGA_LowLight, ClockRate); 
  RC10RS232Run(RC10RS232_19200Baud, RC10RS232ParityNone, 
    RC10RS232FlowControlNone, ClockRate); 
  
  seq 
  { 
   RC10CameraSetMode(OV9650_RGB565_QQVGA_LowLight); 
 
   while(1) 
   { 
    par{ 
     t = 1; 
     RUN_NEXT = 0; 
     RUN = 1; 
    } 
 
    do 
    { 
     RC10CameraReadRGB565(&X,&Y,&Pixel); 
    } while( !(X==159 && Y==119) ); 
 
    do 
    { 
     par 
     { 
      RC10CameraReadRGB565(&X,&Y,&Pixel); 
      if(Y<64) 
      { 
       if(X<64) 
       { 
        par 
        { 
         data[t] = Pixel[10:5]; 
         t = t + 1; 
        } 
       } 
       else 
        delay; 
      } 
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      else 
       delay; 
     } 
    } while( !(X==64 && Y==64) ); 
     
    t = 1; 
    //RC10RS232Write(0xFF); 
    while(RUN == 1) 
    { 
     par 
     { 
      CRS_t = 2; 
      sendpointer = 0; 
     } 
 
     while(sendpointer<256) 
     { 
      par 
      { 
       //Read Image Data 
       // increase to 8 bits 
       WriteMem = ( (unsigned 8) (0[1:0] @  
        data[t]) );  
 
       // Stop the DWT CRS 
       if( t==4096) 
       { 
        RUN = 0; 
       } 
       else 
        delay; 
      } 
     
      par 
      { 
       // Transfer data to DWT CRS MISC memory 
       // increase to 12 bits 
       Memory[CRS_t] = 0[3:0] @ WriteMem; 
       //RC10RS232Write(CRS_t[7:0]); 
 
       sendpointer++; 
       t++; 
       CRS_t++; 
 
      } 
 
     } 
    
 
     RunDWTCRSURISC(); 
 
     par{ 
      sendpointer = 0; 
      //CRS_t = 688; // program memory 
      //CRS_t = 0x002; // input data 
      CRS_t = 0x260; // output data 
     } 
 
     //while(CRS_t<1318) // program memory 
     //while(CRS_t<=257) // input data 
     while(CRS_t<=687) // output data 
     { 
      sendpointer = 0; 
 
      RC10RS232Write(0x52); //R 
              RC10RS232Write(0x41); //A 
              RC10RS232Write(0x57); //W 
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              RC10RS232Write(0x3A); //: 
 
      while(sendpointer<20) 
      { 
       par 
       { 
        Sig_MemOutput_RS232 =  
         Memory[CRS_t]; 
      
 RC10RS232Write(Sig_MemOutput_RS232[7:0]); 
        //RC10RS232Write(CRS_t[7:0]); 
 
        // Increase counter 
        CRS_t++; 
        sendpointer++; 
       } 
      } 
 
     } 
    } 
 
    while( RUN_NEXT!=1 ) 
    { 
     par 
     { 
      RC10RS232Read(&RS232READ); 
      RUN_NEXT = RS232READ[7] & RS232READ[6] & 
       RS232READ[5] & RS232READ[4] &  
       RS232READ[3] & RS232READ[2] &  
       RS232READ[1] & RS232READ[0]; 
     } 
    } 
   } 
  } 
 } 
} 
 
 
static macro proc RunDWTCRSURISC() 
{ 
 signal unsigned int RegWidth Sig_PC_Out; 
 signal unsigned int RegWidth Sig_R_Out; 
 signal unsigned int RegWidth Sig_R_Inv_In; 
 signal unsigned int RegWidth Sig_R_Inv; 
 signal unsigned int RegWidth Sig_Add_MEM; 
 signal unsigned int RegWidth Sig_Add_In1; 
 signal unsigned int RegWidth Sig_Add_In2; 
 signal unsigned int RegWidth Sig_Add_Out; 
 signal unsigned int RegWidth Sig_GF_In1; 
 signal unsigned int RegWidth Sig_GF_In2; 
 signal unsigned int RegWidth Sig_GF_Out; 
 signal unsigned int RegWidth Sig_XOR_In1; 
 signal unsigned int RegWidth Sig_XOR_In2; 
 signal unsigned int RegWidth Sig_XOR_Out; 
 signal unsigned int RegWidth Sig_MDR_In; 
 signal unsigned int RegWidth Sig_MAR_In; 
 signal unsigned int RegWidth Sig_MAR_Out; 
 signal unsigned int RegWidth Sig_11to8bit_In1; 
 signal unsigned int RegWidth Sig_11to8bit_In2; 
 signal unsigned int RegWidth Sig_11to8bit_Out; 
  
 signal unsigned int MemWidth Sig_MDR_Out; 
 signal unsigned int MemWidth Sig_MEM_Out; 
  
 signal unsigned int 2 Sig_OPCODE; 
 
 signal unsigned int 1 Sig_Add_N; 
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 signal unsigned int 1 Sig_Add_Z; 
 signal unsigned int 1 Sig_R_Write; 
 signal unsigned int 1 Sig_PC_Write; 
 signal unsigned int 1 Sig_OP0_Write; 
 signal unsigned int 1 Sig_OP1_Write; 
 signal unsigned int 1 Sig_OP_Sel; 
 signal unsigned int 1 Sig_OP0; 
 signal unsigned int 1 Sig_OP1; 
 signal unsigned int 1 Sig_OP_Out_Sel; 
 signal unsigned int 1 Sig_OP_VAR; 
 signal unsigned int 1 Sig_ALU_A; 
 signal unsigned int 1 Sig_ALU_B0; 
 signal unsigned int 1 Sig_ALU_B1; 
 signal unsigned int 1 Sig_CIN; 
 signal unsigned int 1 Sig_MAR_Sel; 
 signal unsigned int 1 Sig_MAR_Write; 
 signal unsigned int 1 Sig_MDR_Write; 
 signal unsigned int 1 Sig_MEM_Read; 
 signal unsigned int 1 Sig_MEM_Write; 
 signal unsigned int 1 Sig_N_Write; 
 signal unsigned int 1 Sig_Z_Write; 
 signal unsigned int 1 Sig_GF_0; 
 signal unsigned int 1 Sig_GF_1; 
 signal unsigned int 1 Sig_GF_2; 
 signal unsigned int 1 Sig_GF_3; 
 signal unsigned int 1 Sig_GF_4; 
 signal unsigned int 1 Sig_GF_5; 
 signal unsigned int 1 Sig_GF_6; 
 signal unsigned int 1 Sig_GF_7; 
  
 // Registers 
 unsigned int RegWidth R; 
 unsigned int RegWidth PC; 
 unsigned int RegWidth MAR; 
  
 unsigned int MemWidth MDR; 
 unsigned int MemWidth MEM_Out; 
  
 // Counter for each instructions 
 unsigned int 4 counter; 
 
 unsigned int 1 OPCODE0; 
 unsigned int 1 OPCODE1; 
 unsigned int 1 N; 
 unsigned int 1 Z; 
 unsigned int 1 RUN; 
 
 // Set initial value of registers 
 par 
 { 
  PC = 688; 
  counter = 0; 
  R = 0; 
  MDR = 0; 
  MAR = 0; 
  OPCODE0 = 0; 
  OPCODE1 = 0; 
  N = 0; 
  Z = 0; 
  MEM_Out = 0; 
  RUN = 1; 
 } 
 
 // architecture 
 while( RUN != 0 ) 
 { 
  par 
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  { 
   par 
   { 
    Sig_PC_Out = PC; 
    Sig_R_Out = R; 
    Sig_R_Inv = ~Sig_R_Inv_In; 
    Sig_MAR_Out = MAR; 
    Sig_MDR_Out = MDR; 
    Sig_OP_VAR = Sig_MEM_Out[11:11]; 
   } 
 
   // Program Counter 
   if(Sig_PC_Write == 1) 
    PC = Sig_Add_Out; 
   else 
    delay; 
 
   // R register 
   if(Sig_R_Write == 1) 
    R = Sig_MEM_Out[10:0]; 
   else 
    delay; 
 
   // OPCODE 
   par 
   { 
    // OPCODE0 register 
    if(Sig_OP0_Write == 1) 
     OPCODE0 = Sig_OP0; 
    else 
     delay; 
 
    // OPCODE1 register 
    if(Sig_OP1_Write == 1) 
     OPCODE1 = Sig_OP1; 
    else 
     delay; 
     
    // MUX OPCODE 
    if(Sig_OP_Sel == 0) 
     Sig_OP1 = Sig_MEM_Out[11:11]; 
    else 
     Sig_OP0 = Sig_MEM_Out[11:11]; 
 
    // MUX OPCODE Out 
    if(Sig_OP_Out_Sel == 1) 
     Sig_OPCODE = 2; 
    else 
     Sig_OPCODE = OPCODE1 @ OPCODE0; 
 
    // R register output MUX 
    if(Sig_OPCODE == 0) 
     Sig_GF_In2 = Sig_R_Out; 
    else if(Sig_OPCODE == 1) 
     Sig_XOR_In2 = Sig_R_Out; 
    else if(Sig_OPCODE == 2) 
     Sig_R_Inv_In = Sig_R_Out; 
    else 
     Sig_11to8bit_In2 = Sig_R_Out;   
  
 
    // MEM output MUX 
    if(Sig_OPCODE == 0) 
     Sig_GF_In1 = Sig_MEM_Out[10:0]; 
    else if(Sig_OPCODE == 1) 
     Sig_XOR_In1 = Sig_MEM_Out[10:0]; 
    else if(Sig_OPCODE == 2) 
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     Sig_Add_MEM = Sig_MEM_Out[10:0]; 
    else 
     Sig_11to8bit_In1 = Sig_MEM_Out[10:0]; 
     
    // MDR input MUX 
    if(Sig_OPCODE == 0) 
     Sig_MDR_In = Sig_GF_Out; 
    else if(Sig_OPCODE == 1) 
     Sig_MDR_In = Sig_XOR_Out; 
    else if(Sig_OPCODE == 2) 
     Sig_MDR_In = Sig_Add_Out; 
    else 
     Sig_MDR_In = Sig_11to8bit_Out; 
   } 
 
   // Adder 
   par 
   { 
    Sig_Add_Out = Sig_Add_In1 + Sig_Add_In2 + (0[9:0] @ Sig_CIN); 
 
    // Negative Flag 
    if(Sig_Add_Out[10:10] == 1) 
     Sig_Add_N = 1; 
    else 
     Sig_Add_N = 0; 
 
    // Zero Flag 
    if(Sig_Add_Out == 0) 
     Sig_Add_Z = 1; 
    else 
     Sig_Add_Z = 0; 
     
    // MUX ALU_B 
    if(Sig_ALU_B1 == 0 && Sig_ALU_B0 == 0) 
     Sig_Add_In2 = Sig_PC_Out; 
    else if(Sig_ALU_B1 == 0 && Sig_ALU_B0 == 1) 
     Sig_Add_In2 = Sig_R_Inv; 
    else 
     Sig_Add_In2 = 0; 
 
    // MUX ALU_A 
    if(Sig_ALU_A == 0) 
     Sig_Add_In1 = Sig_Add_MEM; 
    else 
     Sig_Add_In1 = Sig_PC_Out; 
   } 
 
   // N register 
   if(Sig_N_Write == 1) 
    N = Sig_Add_N; 
   else 
    delay; 
 
   // Z register 
   if(Sig_Z_Write == 1) 
    Z = Sig_Add_Z; 
   else 
    delay; 
 
   // MDR Register 
   if(Sig_MDR_Write == 1) 
    MDR = Sig_OP_VAR @ Sig_MDR_In; 
   else 
    delay; 
 
   // MAR Register 
   if(Sig_MAR_Write == 1) 
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    MAR = Sig_MAR_In; 
   else 
    delay; 
 
   // MAR MUX 
   if(Sig_MAR_Sel == 1) 
    Sig_MAR_In = Sig_MEM_Out[10:0]; 
   else 
    Sig_MAR_In = Sig_Add_Out; 
 
   // Memory 
   par 
   { 
    if(Sig_MEM_Read == 1) 
    { 
     par 
     { 
      Sig_MEM_Out = Memory[Sig_MAR_Out]; 
      MEM_Out = Sig_MEM_Out; 
     } 
    } 
    else if(Sig_MEM_Write == 1) 
     Memory[Sig_MAR_Out] = Sig_MDR_Out; 
    else 
     Sig_MEM_Out = MEM_Out; 
   } 
 
   // 11 to 8-bit Conversion 
   Sig_11to8bit_Out = 0[2:0] @ Sig_11to8bit_In1[10] @ Sig_11to8bit_In1[6:0]; 
 
   // XOR 
   Sig_XOR_Out = Sig_XOR_In1 ^ Sig_XOR_In2; 
 
   // GF Multiplier (Direct wire connections) 
   Sig_GF_0 = (Sig_GF_In1[0] & Sig_GF_In2[0]) 
    ^ (Sig_GF_In1[7] & Sig_GF_In2[7]) ^ (Sig_GF_In1[7] & Sig_GF_In2[6]) 
    ^ (Sig_GF_In1[6] & Sig_GF_In2[7]) ^ (Sig_GF_In1[7] & Sig_GF_In2[5]) 
    ^ (Sig_GF_In1[6] & Sig_GF_In2[6]) ^ (Sig_GF_In1[5] & Sig_GF_In2[7]) 
    ^ (Sig_GF_In1[7] & Sig_GF_In2[1]) ^ (Sig_GF_In1[6] & Sig_GF_In2[2]) 
    ^ (Sig_GF_In1[5] & Sig_GF_In2[3]) ^ (Sig_GF_In1[4] & Sig_GF_In2[4]) 
    ^ (Sig_GF_In1[3] & Sig_GF_In2[5]) ^ (Sig_GF_In1[2] & Sig_GF_In2[6]) 
    ^ (Sig_GF_In1[1] & Sig_GF_In2[7]); 
   Sig_GF_1 = (Sig_GF_In1[1] & Sig_GF_In2[0]) 
    ^ (Sig_GF_In1[0] & Sig_GF_In2[1]) ^ (Sig_GF_In1[7] & Sig_GF_In2[7]) 
    ^ (Sig_GF_In1[7] & Sig_GF_In2[6]) ^ (Sig_GF_In1[6] & Sig_GF_In2[7]) 
    ^ (Sig_GF_In1[7] & Sig_GF_In2[2]) ^ (Sig_GF_In1[6] & Sig_GF_In2[3]) 
    ^ (Sig_GF_In1[5] & Sig_GF_In2[4]) ^ (Sig_GF_In1[4] & Sig_GF_In2[5]) 
    ^ (Sig_GF_In1[3] & Sig_GF_In2[6]) ^ (Sig_GF_In1[2] & Sig_GF_In2[7]); 
   Sig_GF_2 = (Sig_GF_In1[2] & Sig_GF_In2[0]) 
    ^ (Sig_GF_In1[1] & Sig_GF_In2[1]) ^ (Sig_GF_In1[0] & Sig_GF_In2[2]) 
    ^ (Sig_GF_In1[7] & Sig_GF_In2[6]) ^ (Sig_GF_In1[6] & Sig_GF_In2[7]) 
    ^ (Sig_GF_In1[7] & Sig_GF_In2[5]) ^ (Sig_GF_In1[6] & Sig_GF_In2[6]) 
    ^ (Sig_GF_In1[5] & Sig_GF_In2[7]) ^ (Sig_GF_In1[7] & Sig_GF_In2[3]) 
    ^ (Sig_GF_In1[6] & Sig_GF_In2[4]) ^ (Sig_GF_In1[5] & Sig_GF_In2[5]) 
    ^ (Sig_GF_In1[4] & Sig_GF_In2[6]) ^ (Sig_GF_In1[3] & Sig_GF_In2[7]) 
    ^ (Sig_GF_In1[7] & Sig_GF_In2[1]) ^ (Sig_GF_In1[6] & Sig_GF_In2[2]) 
    ^ (Sig_GF_In1[5] & Sig_GF_In2[3]) ^ (Sig_GF_In1[4] & Sig_GF_In2[4]) 
    ^ (Sig_GF_In1[3] & Sig_GF_In2[5]) ^ (Sig_GF_In1[2] & Sig_GF_In2[6]) 
    ^ (Sig_GF_In1[1] & Sig_GF_In2[7]); 
   Sig_GF_3 = (Sig_GF_In1[3] & Sig_GF_In2[0]) 
    ^ (Sig_GF_In1[2] & Sig_GF_In2[1]) ^ (Sig_GF_In1[1] & Sig_GF_In2[2]) 
    ^ (Sig_GF_In1[0] & Sig_GF_In2[3]) ^ (Sig_GF_In1[7] & Sig_GF_In2[5]) 
    ^ (Sig_GF_In1[6] & Sig_GF_In2[6]) ^ (Sig_GF_In1[5] & Sig_GF_In2[7]) 
    ^ (Sig_GF_In1[7] & Sig_GF_In2[4]) ^ (Sig_GF_In1[6] & Sig_GF_In2[5]) 
    ^ (Sig_GF_In1[5] & Sig_GF_In2[6]) ^ (Sig_GF_In1[4] & Sig_GF_In2[7]) 
    ^ (Sig_GF_In1[7] & Sig_GF_In2[2]) ^ (Sig_GF_In1[6] & Sig_GF_In2[3]) 
    ^ (Sig_GF_In1[5] & Sig_GF_In2[4]) ^ (Sig_GF_In1[4] & Sig_GF_In2[5]) 
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    ^ (Sig_GF_In1[3] & Sig_GF_In2[6]) ^ (Sig_GF_In1[2] & Sig_GF_In2[7]) 
    ^ (Sig_GF_In1[7] & Sig_GF_In2[1]) ^ (Sig_GF_In1[6] & Sig_GF_In2[2]) 
    ^ (Sig_GF_In1[5] & Sig_GF_In2[3]) ^ (Sig_GF_In1[4] & Sig_GF_In2[4]) 
    ^ (Sig_GF_In1[3] & Sig_GF_In2[5]) ^ (Sig_GF_In1[2] & Sig_GF_In2[6]) 
    ^ (Sig_GF_In1[1] & Sig_GF_In2[7]); 
   Sig_GF_4 = (Sig_GF_In1[4] & Sig_GF_In2[0]) 
    ^ (Sig_GF_In1[3] & Sig_GF_In2[1]) ^ (Sig_GF_In1[2] & Sig_GF_In2[2]) 
    ^ (Sig_GF_In1[1] & Sig_GF_In2[3]) ^ (Sig_GF_In1[0] & Sig_GF_In2[4]) 
    ^ (Sig_GF_In1[7] & Sig_GF_In2[7]) ^ (Sig_GF_In1[7] & Sig_GF_In2[3]) 
    ^ (Sig_GF_In1[6] & Sig_GF_In2[4]) ^ (Sig_GF_In1[5] & Sig_GF_In2[5]) 
    ^ (Sig_GF_In1[4] & Sig_GF_In2[6]) ^ (Sig_GF_In1[3] & Sig_GF_In2[7]) 
    ^ (Sig_GF_In1[7] & Sig_GF_In2[2]) ^ (Sig_GF_In1[6] & Sig_GF_In2[3]) 
    ^ (Sig_GF_In1[5] & Sig_GF_In2[4]) ^ (Sig_GF_In1[4] & Sig_GF_In2[5]) 
    ^ (Sig_GF_In1[3] & Sig_GF_In2[6]) ^ (Sig_GF_In1[2] & Sig_GF_In2[7]) 
    ^ (Sig_GF_In1[7] & Sig_GF_In2[1]) ^ (Sig_GF_In1[6] & Sig_GF_In2[2]) 
    ^ (Sig_GF_In1[5] & Sig_GF_In2[3]) ^ (Sig_GF_In1[4] & Sig_GF_In2[4]) 
    ^ (Sig_GF_In1[3] & Sig_GF_In2[5]) ^ (Sig_GF_In1[2] & Sig_GF_In2[6]) 
    ^ (Sig_GF_In1[1] & Sig_GF_In2[7]); 
   Sig_GF_5 = (Sig_GF_In1[5] & Sig_GF_In2[0]) 
    ^ (Sig_GF_In1[4] & Sig_GF_In2[1]) ^ (Sig_GF_In1[3] & Sig_GF_In2[2]) 
    ^ (Sig_GF_In1[2] & Sig_GF_In2[3]) ^ (Sig_GF_In1[1] & Sig_GF_In2[4]) 
    ^ (Sig_GF_In1[0] & Sig_GF_In2[5]) ^ (Sig_GF_In1[7] & Sig_GF_In2[4]) 
    ^ (Sig_GF_In1[6] & Sig_GF_In2[5]) ^ (Sig_GF_In1[5] & Sig_GF_In2[6]) 
    ^ (Sig_GF_In1[4] & Sig_GF_In2[7]) ^ (Sig_GF_In1[7] & Sig_GF_In2[3]) 
    ^ (Sig_GF_In1[6] & Sig_GF_In2[4]) ^ (Sig_GF_In1[5] & Sig_GF_In2[5]) 
    ^ (Sig_GF_In1[4] & Sig_GF_In2[6]) ^ (Sig_GF_In1[3] & Sig_GF_In2[7]) 
    ^ (Sig_GF_In1[7] & Sig_GF_In2[2]) ^ (Sig_GF_In1[6] & Sig_GF_In2[3]) 
    ^ (Sig_GF_In1[5] & Sig_GF_In2[4]) ^ (Sig_GF_In1[4] & Sig_GF_In2[5]) 
    ^ (Sig_GF_In1[3] & Sig_GF_In2[6]) ^ (Sig_GF_In1[2] & Sig_GF_In2[7]); 
   Sig_GF_6 = (Sig_GF_In1[6] & Sig_GF_In2[0]) 
    ^ (Sig_GF_In1[5] & Sig_GF_In2[1]) ^ (Sig_GF_In1[4] & Sig_GF_In2[2]) 
    ^ (Sig_GF_In1[3] & Sig_GF_In2[3]) ^ (Sig_GF_In1[2] & Sig_GF_In2[4]) 
    ^ (Sig_GF_In1[1] & Sig_GF_In2[5]) ^ (Sig_GF_In1[0] & Sig_GF_In2[6]) 
    ^ (Sig_GF_In1[7] & Sig_GF_In2[5]) ^ (Sig_GF_In1[6] & Sig_GF_In2[6]) 
    ^ (Sig_GF_In1[5] & Sig_GF_In2[7]) ^ (Sig_GF_In1[7] & Sig_GF_In2[4]) 
    ^ (Sig_GF_In1[6] & Sig_GF_In2[5]) ^ (Sig_GF_In1[5] & Sig_GF_In2[6]) 
    ^ (Sig_GF_In1[4] & Sig_GF_In2[7]) ^ (Sig_GF_In1[7] & Sig_GF_In2[3]) 
    ^ (Sig_GF_In1[6] & Sig_GF_In2[4]) ^ (Sig_GF_In1[5] & Sig_GF_In2[5]) 
    ^ (Sig_GF_In1[4] & Sig_GF_In2[6]) ^ (Sig_GF_In1[3] & Sig_GF_In2[7]); 
   Sig_GF_7 = (Sig_GF_In1[7] & Sig_GF_In2[0]) 
    ^ (Sig_GF_In1[6] & Sig_GF_In2[1]) ^ (Sig_GF_In1[5] & Sig_GF_In2[2]) 
    ^ (Sig_GF_In1[4] & Sig_GF_In2[3]) ^ (Sig_GF_In1[3] & Sig_GF_In2[4]) 
    ^ (Sig_GF_In1[2] & Sig_GF_In2[5]) ^ (Sig_GF_In1[1] & Sig_GF_In2[6])
    ^ (Sig_GF_In1[0] & Sig_GF_In2[7]) ^ (Sig_GF_In1[7] & Sig_GF_In2[6]) 
    ^ (Sig_GF_In1[6] & Sig_GF_In2[7]) ^ (Sig_GF_In1[7] & Sig_GF_In2[5]) 
    ^ (Sig_GF_In1[6] & Sig_GF_In2[6]) ^ (Sig_GF_In1[5] & Sig_GF_In2[7]) 
    ^ (Sig_GF_In1[7] & Sig_GF_In2[4]) ^ (Sig_GF_In1[6] & Sig_GF_In2[5]) 
    ^ (Sig_GF_In1[5] & Sig_GF_In2[6]) ^ (Sig_GF_In1[4] & Sig_GF_In2[7]); 
   Sig_GF_Out = 0[2:0] @ Sig_GF_7 @ Sig_GF_6 @ Sig_GF_5 @ Sig_GF_4 
     @ Sig_GF_3 @ Sig_GF_2 @ Sig_GF_1 @ Sig_GF_0; 
 
   // Control Signal 
   par 
   { 
    // Clock counter 
    if(counter == 8) 
     counter = 0; 
    else 
     counter++; 
     
    //if (Sig_MAR_Out == 0x273) 
    // delay; 
    //else 
    // delay;     
 
 
    //if(PC >= 0x4E4) 
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    // delay; 
    //else 
    // delay;  
 
    // Run or stop 
    if(PC == 2047) 
     RUN = 0; 
    else 
     delay; 
 
    Sig_ALU_A = (~counter[3] & ~counter[2]) | (~counter[2] & ~counter[1] 
      & ~counter[0]) | (~counter[3] & ~counter[0]); 
    Sig_ALU_B1 = Sig_ALU_A; 
    Sig_ALU_B0 = (~counter[3] & counter[2] & ~counter[1] & counter[0]); 
    Sig_CIN = (~counter[3] & counter[2] & ~counter[1]) | (~counter[3] 
      & ~counter[1] & counter[0]) 
     | (counter[3] & ~counter[2] & ~counter[1] & ~counter[0]); 
    Sig_MAR_Sel = (~counter[3] & counter[2] & ~counter[1]) 
     | (~counter[3] & ~counter[1] & counter[0]); 
    Sig_PC_Write = (~counter[3] & counter[2] & counter[1] & counter[0] 
      & N) 
     | (~counter[3] & ~counter[2] & ~counter[1] & counter[0]) 
     | (~counter[3] & counter[2] & ~counter[1] & ~counter[0]) 
     | (counter[3] & ~counter[2] & ~counter[1] & ~counter[0]); 
    Sig_R_Write = (~counter[3] & ~counter[2] & counter[1] & ~counter[0]); 
    Sig_Z_Write = (~counter[3] & ~counter[2] & ~counter[1] & ~counter[0]); 
    Sig_N_Write = (~counter[3] & counter[2] & ~counter[1] & counter[0]); 
    Sig_MAR_Write = (~counter[3] & ~counter[2] & counter[0]) 
     | (~counter[3] & counter[2] & ~counter[0]) 
     | (~counter[3] & ~counter[1] & ~counter[0]); 
    Sig_MDR_Write = (~counter[3] & counter[2] & ~counter[1] 
      & counter[0]); 
    Sig_MEM_Read = (~counter[3] & counter[2] & ~counter[1]) 
     | (~counter[3] & counter[2] & counter[0]) 
     | (~counter[3] & ~counter[1] & counter[0]) 
     | (~counter[3] & ~counter[2] & counter[1] & ~counter[0]); 
    Sig_MEM_Write = (~counter[3] & counter[2] & counter[1] 
      & ~counter[0]); 
    Sig_OP1_Write = (~counter[3] & ~counter[2] & ~counter[1] 
      & counter[0]); 
    Sig_OP0_Write = (~counter[3] & counter[2] & ~counter[1] 
      & ~counter[0]); 
    Sig_OP_Sel = Sig_OP0_Write; 
    Sig_OP_Out_Sel = (~counter[3] & ~counter[2]) 
     | (~counter[3] & ~counter[1] & ~counter[0]); 
   } 
 
  } 
 } 
 
} 
 
 
static macro proc Sleep (Milliseconds) 
{ 
    macro expr Cycles = (ClockRate * Milliseconds) / 1000; 
    unsigned (log2ceil (Cycles)) Count; 
 
    Count = 0; 
    do 
    { 
        Count++; 
    } 
    while (Count != Cycles - 1); 
} 
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A.3 CRS MISC ARCHITECTURE IN VHDL 

A.3.1 Top Level CRS MISC Architecture - CRSMISC.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity CRSMISC is 
    Port ( Seg0, Seg1 : out  STD_LOGIC_VECTOR (6 downto 0); 
           RamAdd : out  STD_LOGIC_VECTOR (7 downto 0); 
           CLK : in  STD_LOGIC; 
           UP : in  STD_LOGIC; 
           DOWN : in  STD_LOGIC; 
     EnaRead : in STD_LOGIC); 
end CRSMISC; 
 
architecture Behavioral of CRSMISC is 
 
 -- Components 
 -- Block RAM 
 component memory 
    port ( 
    addra: IN std_logic_VECTOR(8 downto 0); 
    addrb: IN std_logic_VECTOR(8 downto 0); 
    clka: IN std_logic; 
    clkb: IN std_logic; 
    dina: IN std_logic_VECTOR(9 downto 0); 
    douta: OUT std_logic_VECTOR(9 downto 0); 
    doutb: OUT std_logic_VECTOR(9 downto 0); 
    ena: IN std_logic; 
    enb: IN std_logic; 
    wea: IN std_logic); 
 end component; 
  
 -- Controls 
 component controls 
  port( CLK : in std_logic; 
    N : in std_logic; 
    ALU_A : out std_logic; 
    ALU_B0 : out std_logic; 
    ALU_B1 : out std_logic; 
    CIN : out std_logic; 
    MAR_SEL : out std_logic; 
    PC_WRITE : out std_logic; 
    R_WRITE : out std_logic; 
    Z_WRITE : out std_logic; 
    N_WRITE : out std_logic; 
    MAR_WRITE : out std_logic; 
    MDR_WRITE : out std_logic; 
    MEM_READ : out std_logic; 
    MEM_WRITE : out std_logic; 
    OP_OUT_SEL : out std_logic; 
    OP0_WRITE : out std_logic; 
    OP1_WRITE : out std_logic; 
    OP_SEL : out std_logic); 
 end component; 
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 -- MUX 
 -- MUX2-1 1-Bit 
 component MUX21 is 
   port ( A : in  STD_LOGIC_VECTOR (7 downto 0); 
      B : in  STD_LOGIC_VECTOR (7 downto 0); 
      SEL : in STD_LOGIC; 
      C : out  STD_LOGIC_VECTOR (7 downto 0)); 
 end component; 
 -- MUX2-1 2-Bit 
 component MUX22 is 
   port ( A : in  STD_LOGIC_VECTOR (1 downto 0); 
      B : in  STD_LOGIC_VECTOR (1 downto 0); 
      SEL : in STD_LOGIC; 
      C : out  STD_LOGIC_VECTOR (1 downto 0)); 
 end component; 
 -- MUX4-1 9-Bit 
 component MUX49 is 
   port ( A : in  STD_LOGIC_VECTOR (8 downto 0); 
      B : in  STD_LOGIC_VECTOR (8 downto 0); 
      C : in  STD_LOGIC_VECTOR (8 downto 0); 
      D : out  STD_LOGIC_VECTOR (8 downto 0); 
      SEL : in  STD_LOGIC_VECTOR (1 downto 0)); 
 end component; 
 -- MUX1-4 9-Bit 
 component MUX94 is 
   port ( A : in  STD_LOGIC_VECTOR (8 downto 0); 
      SEL : in  STD_LOGIC_VECTOR (1 downto 0); 
      B : out  STD_LOGIC_VECTOR (8 downto 0); 
      C : out  STD_LOGIC_VECTOR (8 downto 0); 
      D : out  STD_LOGIC_VECTOR (8 downto 0)); 
 end component; 
 -- MUX1-2 1-Bit 
 component MUX11 is 
   port ( A : in  STD_LOGIC; 
      SEL : in  STD_LOGIC; 
      B : out  STD_LOGIC; 
      C : out  STD_LOGIC); 
 end component; 
 -- MUX2-1 9-Bit 
 component MUX29 is 
   port ( A : in  STD_LOGIC_VECTOR (8 downto 0); 
      B : in  STD_LOGIC_VECTOR (8 downto 0); 
      SEL : in  STD_LOGIC; 
      C : out  STD_LOGIC_VECTOR (8 downto 0)); 
 end component; 
 
 -- Registers 
 -- 8-Bit Register 
 component REG is 
   port ( A : in  STD_LOGIC_VECTOR (8 downto 0); 
      B : out  STD_LOGIC_VECTOR (8 downto 0); 
      CLK : in  STD_LOGIC; 
      ENA : in  STD_LOGIC); 
 end component; 
 -- 1-Bit Register 
 component REG1BIT is 
   Port ( A : in  STD_LOGIC; 
      B : out  STD_LOGIC; 
      CLK : in  STD_LOGIC; 
      ENA : in  STD_LOGIC); 
 end component; 
 -- 10-Bit Register 
 component REG10BIT is 
   Port ( A : in  STD_LOGIC_VECTOR (9 downto 0); 
      B : out  STD_LOGIC_VECTOR (9 downto 0); 
      CLK : in  STD_LOGIC; 
      ENA : in  STD_LOGIC); 
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 end component; 
 -- PC Register 
 component REGPC is 
   port ( A : in  STD_LOGIC_VECTOR (8 downto 0); 
      B : out  STD_LOGIC_VECTOR (8 downto 0); 
      CLK : in  STD_LOGIC; 
      ENA : in  STD_LOGIC); 
 end component; 
  
 -- SBN 
 component SBN is 
   Port ( A : in  STD_LOGIC_VECTOR (8 downto 0); 
      B : in  STD_LOGIC_VECTOR (8 downto 0); 
      CIN : in  STD_LOGIC; 
      N : out  STD_LOGIC; 
      Z : out  STD_LOGIC; 
      O : out STD_LOGIC_VECTOR (8 downto 0)); 
 end component; 
  
 -- 8-Bit XOR 
 component GF28Add is 
   Port ( a : in  STD_LOGIC_VECTOR (7 downto 0); 
      b : in  STD_LOGIC_VECTOR (7 downto 0); 
      c : out  STD_LOGIC_VECTOR (7 downto 0)); 
 end component; 
  
 -- GF28 
 component GF28 is 
   Port ( a : in  STD_LOGIC_VECTOR (7 downto 0); 
      b : in  STD_LOGIC_VECTOR (7 downto 0); 
      c : out  STD_LOGIC_VECTOR (7 downto 0)); 
 end component; 
  
 -- D4to7 Conversion 
 component D4to7 is 
   Port ( Q : in  STD_LOGIC_VECTOR (3 downto 0); 
      Seg : out STD_LOGIC_VECTOR (6 downto 0)); 
 end component; 
 
  
 -- Signals 
 signal iCount1 : std_logic := '0'; 
 signal iClock2 : std_logic; 
 signal iCount23 : std_logic_vector(22 downto 0); 
 signal iClock23 : std_logic; 
 signal iRamAdd : std_logic_vector(8 downto 0); 
 signal iRamRead : std_logic_vector(9 downto 0); 
  
 -- Program Counter 
 signal iPC : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal PC : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal PC_Write : std_logic; 
 -- R Register 
 signal iR : std_logic_vector(8 downto 0); 
 signal R : std_logic_vector(8 downto 0); 
 signal R_Write : std_logic; 
   
 -- OPCODE 
 -- MUX 
 signal OP_SEL : std_logic; 
 -- OP0 Register 
 signal iOP0 : std_logic; 
 signal OP0_Write : std_logic; 
 -- OP1 Register 
 signal iOP1 : std_logic; 
 signal OP1_Write : std_logic; 
 -- OPCODE output 
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 signal OPCODE : std_logic_vector(1 downto 0); 
 signal OP_OUT_SEL : std_logic; 
 signal oOPCODE : std_logic_vector(1 downto 0); 
   
 -- MEMORY 
 -- MDR register 
 signal iMDR : std_logic_vector(9 downto 0); 
 signal MDR : std_logic_vector(9 downto 0); 
 signal MDR_Write : std_logic; 
 -- MAR 
 signal iMAR : std_logic_vector(8 downto 0); 
 signal MAR : std_logic_vector(8 downto 0); 
 signal MAR_Write : std_logic; 
 signal MAR_SEL : std_logic; 
 -- MEM Output 
 signal oMemory : std_logic_vector(9 downto 0); 
 -- MEM Controls 
 signal MEM_READ : std_logic; 
 signal MEM_WRITE : std_logic; 
 signal MEM_ENA : std_logic; 
 signal MEM_WEA : std_logic; 
  
 -- SBN/ALU Block 
 -- N register 
 signal i_N : std_logic; 
 signal N : std_logic; 
 signal N_Write : std_logic; 
 -- Z register 
 signal iZ : std_logic; 
 signal Z : std_logic; 
 signal Z_Write : std_logic; 
 -- ALU MUX 
 -- ALU MUX A 
 signal iMUXALUA0 : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal iMUXALUA1 : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal MUXALUA : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal MUXALUASEL : std_logic; 
 signal ALU_A : std_logic; 
 -- ALU MUX B 
 signal iMUXALUB0 : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal iMUXALUB1 : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal iMUXALUB2 : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal MUXALUB : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal MUXALUBSEL : std_logic_vector(1 downto 0); 
 signal ALU_B : std_logic_vector(1 downto 0); 
 -- INV 
 signal iINV : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal oINV : std_logic_vector(8 downto 0) := (others=>'0'); 
 -- CIN 
 signal CIN : std_logic; 
 -- Output 
 signal ADDER : std_logic_vector(8 downto 0) := (others=>'0'); 
   
 -- GF Block 
 signal iGFA : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal iGFB : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal iGF : std_logic_vector(8 downto 0) := (others=>'0'); 
  
 -- XOR Block 
 signal iXORA : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal iXORB : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal iXOR : std_logic_vector(8 downto 0) := (others=>'0'); 
  
 -- Instruction MUX 
 -- MUX A 
 signal iMUXA : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal MUXA0 : std_logic_vector(8 downto 0) := (others=>'0'); 
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 signal MUXA1 : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal MUXA2 : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal MUXASEL : std_logic_vector(1 downto 0); 
 -- MUX B 
 signal iMUXB : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal MUXB0 : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal MUXB1 : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal MUXB2 : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal MUXBSEL : std_logic_vector(1 downto 0); 
 -- MUX Out 
 signal MUXO : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal iMUXO0 : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal iMUXO1 : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal iMUXO2 : std_logic_vector(8 downto 0) := (others=>'0'); 
 signal MUXOSEL : std_logic_vector(1 downto 0); 
 
begin 
 
 -- Controls Block 
 Ctrl : controls 
   port map( 
     CLK => iClock2, 
     N => N, 
     ALU_A => ALU_A, 
     ALU_B0 => ALU_B(0), 
     ALU_B1 => ALU_B(1), 
     CIN => CIN, 
     MAR_SEL => MAR_SEL, 
     PC_WRITE => PC_Write, 
     R_WRITE => R_Write, 
     Z_WRITE => Z_Write, 
     N_WRITE => N_Write, 
     MAR_WRITE => MAR_Write, 
     MDR_WRITE => MDR_Write, 
     MEM_READ => MEM_READ, 
     MEM_WRITE => MEM_WRITE, 
     OP_OUT_SEL => OP_OUT_SEL, 
     OP0_WRITE => OP0_Write, 
     OP1_WRITE => OP1_Write, 
     OP_SEL => OP_SEL); 
   
 -- Registers 
 -- PC 
 PC_Reg : REGPC 
   port map( 
      A => iPC, 
      B => PC, 
      CLK => iClock2, 
      ENA => PC_Write); 
 iPC <= ADDER; 
       
 -- R 
 R_Reg : REG 
   port map( 
      A => iR, 
      B => R, 
      CLK => iClock2, 
      ENA => R_Write); 
 iR <= oMemory(8 downto 0); 
  
 -- Z 
 Z_Reg : REG1BIT 
   port map( 
      A => iZ, 
      B => Z, 
      CLK => iClock2, 
      ENA => Z_Write); 
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 -- N 
 N_Reg : REG1BIT 
   port map( 
      A => i_N, 
      B => N, 
      CLK => iClock2, 
      ENA => N_Write); 
  
 -- OPCODE 
 -- OPCODE1 
 OPCODE1_Reg : REG1BIT 
   port map( 
      A => iOP1, 
      B => OPCODE(1), 
      CLK => iClock2, 
      ENA => OP1_Write); 
  
 -- OPCODE0 
 OPCODE0_Reg : REG1BIT 
   port map( 
      A => iOP0, 
      B => OPCODE(0), 
      CLK => iClock2, 
      ENA => OP0_Write); 
  
 -- oMUXOP 
 oMUXOP : MUX22 
   port map ( 
      A => OPCODE, 
      B => "10", 
      SEL => OP_OUT_SEL, 
      C => oOPCODE); 
 
 -- MUXOP 
 MUXOP : MUX11 
   port map ( 
      A => oMemory(9), 
      SEL => OP_SEL, 
      B => iOP1, 
      C => iOP0); 
 
  
 -- MUXA 
 MUXA : MUX94 
  port map ( 
     A => iMUXA, 
     SEL => MUXASEL, 
     B => MUXA0, 
     C => MUXA1, 
     D => MUXA2); 
 MUXASEL <= oOPCODE; 
 iMUXA <= oMemory(8 downto 0); 
 iGFA <= MUXA0; 
 iXORA <= MUXA1; 
 IMUXALUA0 <= MUXA2; 
 
 -- MUXB 
 MUXB : MUX94 
  port map ( 
     A => iMUXB, 
     SEL => MUXBSEL, 
     B => MUXB0, 
     C => MUXB1, 
     D => MUXB2); 
 MUXBSEL <= oOPCODE; 
 iMUXB <= R; 
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 iGFB <= MUXB0; 
 iXORB <= MUXB1; 
 iINV <= MUXB2; 
  
 -- MUX OUT 
 MUXOUT : MUX49 
   port map ( 
      A => iMUXO0, 
      B => iMUXO1, 
      C => iMUXO2, 
      D => MUXO, 
      SEL => MUXOSEL); 
 MUXOSEL <= oOPCODE; 
 iMUXO0 <= iGF; 
 iMUXO1 <= iXOR; 
 iMUXO2 <= ADDER; 
 iMDR <= oMemory(9) & MUXO; 
 
  
 -- GF 
 GF28MULT : GF28  
   port map ( 
      a => iGFA(7 downto 0), 
      b => iGFB(7 downto 0), 
      c => iGF(7 downto 0)); 
 iGF(8) <= '0'; 
  
 -- XOR 
 GF28XOR : GF28Add 
    port map ( 
       a =>iXORA(7 downto 0), 
       b =>iXORB(7 downto 0), 
       c =>iXOR(7 downto 0)); 
 iXOR(8) <= '0'; 
  
  
 -- SBN 
 SBN_BLOCK : SBN 
   port map ( 
      A => MUXALUA, 
      B => MUXALUB, 
      CIN => CIN, 
      N => i_N, 
      Z => iZ, 
      O => ADDER); 
 
 -- ALU_A MUX 
 MUX_ALU_A : MUX29 
   port map ( 
      A => iMUXALUA0, 
      B => iMUXALUA1, 
      SEL => MUXALUASEL, 
      C => MUXALUA); 
 MUXALUASEL <= ALU_A; 
 iMUXALUA1 <= PC; 
  
 -- ALU_B MUX 
 MUX_ALU_B : MUX49 
   port map ( 
      A => iMUXALUB0, 
      B => iMUXALUB1, 
      C => iMUXALUB2, 
      D => MUXALUB, 
      SEL => MUXALUBSEL); 
 MUXALUBSEL <= ALU_B; 
 iMUXALUB0 <= PC; 
 iMUXALUB1 <= oINV; 



 

267 
 

 iMUXALUB2 <= "000000000"; 
  
 -- INV 
 oINV <= NOT iINV; 
  
 -- MDR 
 MDR_Reg : REG10BIT 
   port map( 
      A => iMDR, 
      B => MDR, 
      CLK => iClock2, 
      ENA => MDR_Write); 
  
 -- MUX MAR 
 MUXMAR : MUX29 
   port map( 
      A => ADDER, 
      B => oMemory(8 downto 0), 
      SEL => MAR_SEL, 
      C => iMAR); 
  
 -- MAR 
 MAR_Reg : REG 
   port map( 
      A => iMAR, 
      B => MAR, 
      CLK => iClock2, 
      ENA => MAR_Write); 
 -- iMAR <= ADDER; 
  
 -- Block RAM 
 Block_RAM : memory 
        port map ( 
            addra => MAR, 
            addrb => iRamAdd, 
            clka => CLK, 
            clkb => CLK, 
            dina => MDR, 
            douta => oMemory, 
            doutb => iRamRead, 
            ena => MEM_ENA, 
            enb => EnaRead, 
            wea => MEM_WEA); 
 -- Memory Control 
 process(MEM_READ,MEM_WRITE,CLK) 
 begin 
  if MEM_WRITE = '1' then 
   MEM_ENA <= '1'; 
   MEM_WEA <= MEM_WRITE; 
  elsif MEM_READ = '1' then 
   MEM_ENA <= MEM_READ; 
   MEM_WEA <= '0'; 
  else 
   MEM_ENA <= MEM_READ; 
   MEM_WEA <= '0'; 
  end if; 
 end process; 
  
 -- RAM Address 
 process(iClock23,UP,DOWN) 
 begin 
  
  if iClock23'event and iClock23 = '1' then 
   if UP = '1' then 
    iRamAdd <= iRamAdd + '1'; 
   elsif DOWN = '1' then 
    iRamAdd <= iRamAdd - '1'; 
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   else 
    iRamAdd <= iRamAdd; 
   end if; 
  end if; 
  
 end process; 
  
 RamAdd <= iRamAdd(7 downto 0); 
 -- RamRead <= iRamRead(7 downto 0); 
  
 -- Seg0 
 Seg70 : D4to7 
   port map( 
      Q => iRamRead(3 downto 0), 
      Seg => Seg0); 
  
 -- Seg1 
 Seg71 : D4to7 
   port map( 
      Q => iRamRead(7 downto 4), 
      Seg => Seg1); 
  
 -- Clock24 
 process(CLK) 
 begin 
  
  if CLK'event and CLK = '1' then 
   iCount23 <= iCount23 + '1'; 
  end if; 
  
 end process; 
 -- Actual Implementation 
  iClock23 <= iCount23(22); 
 -- Simulation 
 -- PiClock24 <= CLK; 
  
 -- Clock2 
 process(CLK) 
 begin 
  
  if CLK'event and CLK = '1' then 
   if PC /= "111111111" then 
    iCount1 <= NOT iCount1; 
   end if; 
  end if; 
  
 end process; 
 -- Actual Implementation 
  iClock2 <= iCount1; 
 -- Simulation 
 -- iClock2 <= CLK; 
 
 
end Behavioral; 

 

 

A.3.2 Control Signals Combinational Circuit - controls.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
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---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity controls is 
 port( CLK : in std_logic; 
   N : in std_logic; 
   ALU_A : out std_logic; 
   ALU_B0 : out std_logic; 
   ALU_B1 : out std_logic; 
   CIN : out std_logic; 
   MAR_SEL : out std_logic; 
   PC_WRITE : out std_logic; 
   R_WRITE : out std_logic; 
   Z_WRITE : out std_logic; 
   N_WRITE : out std_logic; 
   MAR_WRITE : out std_logic; 
   MDR_WRITE : out std_logic; 
   MEM_READ : out std_logic; 
   MEM_WRITE : out std_logic; 
   OP_OUT_SEL : out std_logic; 
   OP0_WRITE : out std_logic; 
   OP1_WRITE : out std_logic; 
   OP_SEL : out std_logic); 
end controls; 
 
architecture Behavioral of controls is 
 
 signal iCount4 : std_logic_vector(3 downto 0) := X"8"; 
 
begin 
 
 -- 4 Bit Counter 
 process(CLK) 
 begin  
  
  if CLK'event and CLK = '1' then 
   if iCount4 = "1000" then 
    iCount4 <= (others=>'0'); 
   else 
    iCount4 <= iCount4 + 1; 
   end if; 
  end if; 
   
 end process; 
  
 -- Output control signals 
 ALU_A <= ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(0))) ) 
  OR ( (NOT(iCount4(2))) AND (NOT(iCount4(1))) AND (NOT(iCount4(0))) ); 
 ALU_B0 <= (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) AND (iCount4(0)); 
 ALU_B1 <= ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(0))) ) 
  OR ( (NOT(iCount4(2))) AND (NOT(iCount4(1))) AND (NOT(iCount4(0))) ); 
 CIN <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(1))) AND (iCount4(0)) ) 
  OR ( (iCount4(3)) AND (NOT(iCount4(2))) AND (NOT(iCount4(1))) AND 
   (NOT(iCount4(0))) ); 
 MAR_SEL <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(1))) AND (iCount4(0)) ); 
 PC_WRITE <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (iCount4(1)) AND (iCount4(0)) AND N ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) AND (NOT(iCount4(1))) 
   AND (iCount4(0)) ) 
  OR ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) 
   AND (NOT(iCount4(0))) ) 
  OR ( (iCount4(3)) AND (NOT(iCount4(2))) AND (NOT(iCount4(1))) 
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   AND (NOT(iCount4(0))) ); 
 R_WRITE <= ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) AND (iCount4(1)) 
   AND (NOT(iCount4(0))) ); 
 Z_WRITE <= ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) AND (NOT(iCount4(1))) 
   AND (NOT(iCount4(0))) ); 
 N_WRITE <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) AND (iCount4(0)) ); 
 MAR_WRITE <= ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) AND (iCount4(0)) ) 
  OR ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(0))) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(1))) AND (NOT(iCount4(0))) ); 
 MDR_WRITE <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) 
   AND (iCount4(0)) ); 
 MEM_READ <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) ) 
  OR ( (NOT(iCount4(3))) AND (iCount4(1)) AND (iCount4(0)) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(1))) AND (iCount4(0)) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) AND (iCount4(1)) 
   AND (NOT(iCount4(0))) ); 
 MEM_WRITE <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (iCount4(1)) 
   AND (NOT(iCount4(0))) ); 
 OP_OUT_SEL <= ( (NOT(iCount4(3))) AND (NOT(iCount4(1))) AND (NOT(iCount4(0))) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) ); 
 OP0_WRITE <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) 
   AND (NOT(iCount4(0))) ); 
 OP1_WRITE <= ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) AND (NOT(iCount4(1))) 
   AND (iCount4(0)) ); 
 OP_SEL <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) 
   AND (NOT(iCount4(0))) ); 
  
end Behavioral; 

 

 

A.3.3 9-Bit Programme Counter Register - REGPC.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity REGPC is 
    Port ( A : in  STD_LOGIC_VECTOR (8 downto 0); 
           B : out  STD_LOGIC_VECTOR (8 downto 0); 
           CLK : in  STD_LOGIC; 
           ENA : in  STD_LOGIC); 
end REGPC; 
 
architecture Behavioral of REGPC is 
 
begin 
  
 -- Register function 
 process(CLK) 
   
  -- Start of programme 
  variable sig_data : std_logic_vector (8 downto 0) := "101101111"; -- 0x16F 
  -- Test Last Line 
  -- variable sig_data : std_logic_vector (8 downto 0) := "111011001"; 
   
 begin 
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  if CLK'event and CLK = '1' then 
   if ENA = '1' then 
    sig_data := A; 
   end if; 
  else 
   sig_data := sig_data; 
  end if; 
   
  B <= sig_data; 
  
 end process; 
 
end Behavioral; 

 

 

A.3.4 9-Bit Register - REG.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity REG is 
    Port ( A : in  STD_LOGIC_VECTOR (8 downto 0); 
           B : out  STD_LOGIC_VECTOR (8 downto 0); 
           CLK : in  STD_LOGIC; 
           ENA : in  STD_LOGIC); 
end REG; 
 
architecture Behavioral of REG is 
 
begin 
 
 -- Register function 
 process(CLK) 
   
  variable sig_data : std_logic_vector (8 downto 0) := (others=>'0'); 
   
 begin 
  
  if CLK'event and CLK = '1' then 
   if ENA = '1' then 
    sig_data := A; 
   end if; 
  else 
   sig_data := sig_data; 
  end if; 
   
  B <= sig_data; 
  
 end process; 
 
end Behavioral; 
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A.3.5 1-Bit Register - REG1BIT.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity REG1BIT is 
    Port ( A : in  STD_LOGIC; 
           B : out  STD_LOGIC; 
           CLK : in  STD_LOGIC; 
           ENA : in  STD_LOGIC); 
end REG1BIT; 
 
architecture Behavioral of REG1BIT is 
 
begin 
 
 -- Register function 
 process(CLK) 
   
  variable sig_data : std_logic := '0'; 
   
 begin 
  
  if CLK'event and CLK = '1' then 
   if ENA = '1' then 
    sig_data := A; 
   end if; 
  else 
   sig_data := sig_data; 
  end if; 
   
  B <= sig_data; 
  
 end process; 
 
end Behavioral; 

 

 

A.3.6 2-Bit 2-To-1 Multiplexer - MUX22.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity MUX22 is 
    Port ( A : in  STD_LOGIC_VECTOR (1 downto 0); 
           B : in  STD_LOGIC_VECTOR (1 downto 0); 
     SEL : in STD_LOGIC; 
           C : out  STD_LOGIC_VECTOR (1 downto 0)); 
end MUX22; 
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architecture Behavioral of MUX22 is 
 
begin 
 
 -- MUX2-1 2 bit 
 process(SEL,A,B) 
 begin 
  
  if SEL = '0' then 
   C <= A; 
  else 
   C <= B; 
  end if; 
  
 end process; 
 
end Behavioral; 

 

 

A.3.7 1-Bit 1-To-2 Multiplexer - MUX11.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity MUX11 is 
    Port ( A : in  STD_LOGIC; 
           SEL : in  STD_LOGIC; 
           B : out  STD_LOGIC; 
           C : out  STD_LOGIC); 
end MUX11; 
 
architecture Behavioral of MUX11 is 
 
begin 
 
 -- MUX1-2 1-Bit 
 process(SEL,A) 
 begin 
  
  if SEL = '0' then 
   B <= A; 
   C <= '0'; 
  else 
   B <= '0'; 
   C <= A; 
  end if; 
  
 end process; 
 
end Behavioral; 
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A.3.8 9-Bit 1-To-3 Multiplexer - MUX94.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity MUX94 is 
    Port ( A : in  STD_LOGIC_VECTOR (8 downto 0); 
           SEL : in  STD_LOGIC_VECTOR (1 downto 0); 
           B : out  STD_LOGIC_VECTOR (8 downto 0); 
           C : out  STD_LOGIC_VECTOR (8 downto 0); 
           D : out  STD_LOGIC_VECTOR (8 downto 0)); 
end MUX94; 
 
architecture Behavioral of MUX94 is 
 
begin 
 
 -- MUX1-4 9 bits 
 process(SEL,A) 
 begin 
  
  if SEL = "00" then 
   B <= A; 
   C <= "000000000"; 
   D <= "000000000"; 
  elsif SEL = "01" then 
   B <= "000000000"; 
   C <= A; 
   D <= "000000000"; 
  elsif SEL = "10" then 
   B <= "000000000"; 
   C <= "000000000"; 
   D <= A; 
  else 
   B <= "000000000"; 
   C <= "000000000"; 
   D <= "000000000"; 
  end if; 
  
 end process; 
 
end Behavioral; 

 

 

A.3.9 9-Bit 3-To-1 Multiplexer - MUX49.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
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entity MUX49 is 
    Port ( A : in  STD_LOGIC_VECTOR (8 downto 0); 
           B : in  STD_LOGIC_VECTOR (8 downto 0); 
     C : in  STD_LOGIC_VECTOR (8 downto 0); 
           D : out  STD_LOGIC_VECTOR (8 downto 0); 
           SEL : in  STD_LOGIC_VECTOR (1 downto 0)); 
end MUX49; 
 
architecture Behavioral of MUX49 is 
 
begin 
 
 -- MUX4-1 9-bit 
 process(SEL,A,B,C) 
 begin 
  
  if SEL = "00" then 
   D <= A; 
  elsif SEL = "01" then 
   D <= B; 
  elsif SEL = "10" then 
   D <= C; 
  else 
   D <= "000000000"; 
  end if; 
  
 end process; 
 
end Behavioral; 

 

 

A.3.10 Functional Block GF(28) Multiplier - GF28.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity GF28 is 
    Port ( a : in  STD_LOGIC_VECTOR (7 downto 0); 
           b : in  STD_LOGIC_VECTOR (7 downto 0); 
           c : out  STD_LOGIC_VECTOR (7 downto 0)); 
end GF28; 
 
architecture Behavioral of GF28 is 
 
 signal output_i : std_logic_vector (7 downto 0) := (others=>'0'); 
 
begin 
 
 -- GF(2^8) Multiplier 
 -- bit 7 
 output_i(7) <= (a(7) AND b(0)) XOR (a(6) AND b(1)) XOR (a(5) AND b(2)) XOR (a(4) AND b(3))
  XOR (a(3) AND b(4)) XOR (a(2) AND b(5)) XOR (a(1) AND b(6)) XOR (a(0) AND b(7)) 
  XOR (a(7) AND b(6)) XOR (a(6) AND b(7)) XOR (a(7) AND b(5)) XOR (a(6) AND b(6)) 
  XOR (a(5) AND b(7)) XOR (a(7) AND b(4)) XOR (a(6) AND b(5)) XOR (a(5) AND b(6)) 
  XOR (a(4) AND b(7)); 
 -- bit 6 
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 output_i(6) <= (a(6) AND b(0)) XOR (a(5) AND b(1)) XOR (a(4) AND b(2)) XOR (a(3) AND b(3)) 
  XOR (a(2) AND b(4)) XOR (a(1) AND b(5)) XOR (a(0) AND b(6)) XOR (a(7) AND b(5)) 
  XOR (a(6) AND b(6)) XOR (a(5) AND b(7)) XOR (a(7) AND b(4)) XOR (a(6) AND b(5)) 
  XOR (a(5) AND b(6)) XOR (a(4) AND b(7)) XOR (a(7) AND b(3)) XOR (a(6) AND b(4)) 
  XOR (a(5) AND b(5)) XOR (a(4) AND b(6)) XOR (a(3) AND b(7)); 
 -- bit 5 
 output_i(5) <= (a(5) AND b(0)) XOR (a(4) AND b(1)) XOR (a(3) AND b(2)) XOR (a(2) AND b(3)) 
  XOR (a(1) AND b(4)) XOR (a(0) AND b(5)) XOR (a(7) AND b(4)) XOR (a(6) AND b(5)) 
  XOR (a(5) AND b(6)) XOR (a(4) AND b(7)) XOR (a(7) AND b(3)) XOR (a(6) AND b(4)) 
  XOR (a(5) AND b(5)) XOR (a(4) AND b(6)) XOR (a(3) AND b(7)) XOR (a(7) AND b(2)) 
  XOR (a(6) AND b(3)) XOR (a(5) AND b(4)) XOR (a(4) AND b(5)) XOR (a(3) AND b(6)) 
  XOR (a(2) AND b(7)); 
 -- bit 4 
 output_i(4) <= (a(4) AND b(0)) XOR (a(3) AND b(1)) XOR (a(2) AND b(2)) XOR (a(1) AND b(3)) 
  XOR (a(0) AND b(4)) XOR (a(7) AND b(7)) XOR (a(7) AND b(3)) XOR (a(6) AND b(4)) 
  XOR (a(5) AND b(5)) XOR (a(4) AND b(6)) XOR (a(3) AND b(7)) XOR (a(7) AND b(2)) 
  XOR (a(6) AND b(3)) XOR (a(5) AND b(4)) XOR (a(4) AND b(5)) XOR (a(3) AND b(6)) 
  XOR (a(2) AND b(7)) XOR (a(7) AND b(1)) XOR (a(6) AND b(2)) XOR (a(5) AND b(3)) 
  XOR (a(4) AND b(4)) XOR (a(3) AND b(5)) XOR (a(2) AND b(6)) XOR (a(1) AND b(7)); 
 -- bit 3 
 output_i(3) <= (a(3) AND b(0)) XOR (a(2) AND b(1)) XOR (a(1) AND b(2)) XOR (a(0) AND b(3)) 
  XOR (a(7) AND b(5)) XOR (a(6) AND b(6)) XOR (a(5) AND b(7)) XOR (a(7) AND b(4)) 
  XOR (a(6) AND b(5)) XOR (a(5) AND b(6)) XOR (a(4) AND b(7)) XOR (a(7) AND b(2)) 
  XOR (a(6) AND b(3)) XOR (a(5) AND b(4)) XOR (a(4) AND b(5)) XOR (a(3) AND b(6)) 
  XOR (a(2) AND b(7)) XOR (a(7) AND b(1)) XOR (a(6) AND b(2)) XOR (a(5) AND b(3)) 
  XOR (a(4) AND b(4)) XOR (a(3) AND b(5)) XOR (a(2) AND b(6)) XOR (a(1) AND b(7)); 
 -- bit 2 
 output_i(2) <= (a(2) AND b(0)) XOR (a(1) AND b(1)) XOR (a(0) AND b(2)) XOR (a(7) AND b(6)) 
  XOR (a(6) AND b(7)) XOR (a(7) AND b(5)) XOR (a(6) AND b(6)) XOR (a(5) AND b(7)) 
  XOR (a(7) AND b(3)) XOR (a(6) AND b(4)) XOR (a(5) AND b(5)) XOR (a(4) AND b(6)) 
  XOR (a(3) AND b(7)) XOR (a(7) AND b(1)) XOR (a(6) AND b(2)) XOR (a(5) AND b(3)) 
  XOR (a(4) AND b(4)) XOR (a(3) AND b(5)) XOR (a(2) AND b(6)) XOR (a(1) AND b(7)); 
 -- bit 1 
 output_i(1) <= (a(1) AND b(0)) XOR (a(0) AND b(1)) XOR (a(7) AND b(7)) XOR (a(7) AND b(6)) 
  XOR (a(6) AND b(7)) XOR (a(7) AND b(2)) XOR (a(6) AND b(3)) XOR (a(5) AND b(4)) 
  XOR (a(4) AND b(5)) XOR (a(3) AND b(6)) XOR (a(2) AND b(7)); 
 -- bit 0 
 output_i(0) <= (a(0) AND b(0)) XOR (a(7) AND b(7)) XOR (a(7) AND b(6)) XOR (a(6) AND b(7)) 
  XOR (a(7) AND b(5)) XOR (a(6) AND b(6)) XOR (a(5) AND b(7)) XOR (a(7) AND b(1)) 
  XOR (a(6) AND b(2)) XOR (a(5) AND b(3)) XOR (a(4) AND b(4)) XOR (a(3) AND b(5)) 
  XOR (a(2) AND b(6)) XOR (a(1) AND b(7)); 
 
 -- connect output to signal output_i 
 c <= output_i; 
  
end Behavioral; 

 

 

A.3.11 Functional Block 8-Bit XOR - GF28Add.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity GF28Add is 
    Port ( a : in  STD_LOGIC_VECTOR (7 downto 0); 
           b : in  STD_LOGIC_VECTOR (7 downto 0); 



 

277 
 

           c : out  STD_LOGIC_VECTOR (7 downto 0)); 
end GF28Add; 
 
architecture Behavioral of GF28Add is 
 
 signal sig_output : std_logic_vector (7 downto 0) := (others=>'0'); 
 
begin 
 
 -- GF Addition / XOR 
 sig_output <= a XOR b; 
  
 -- output 
 c <= sig_output; 
 
end Behavioral; 

 

 

A.3.12 Functional Block SBN - SBN.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity SBN is 
    Port ( A : in  STD_LOGIC_VECTOR (8 downto 0); 
           B : in  STD_LOGIC_VECTOR (8 downto 0); 
           CIN : in  STD_LOGIC; 
           N : out  STD_LOGIC; 
           Z : out  STD_LOGIC; 
     O : out STD_LOGIC_VECTOR (8 downto 0)); 
end SBN; 
 
architecture Behavioral of SBN is 
 
 signal sig_output : std_logic_vector (8 downto 0) := (others=>'0'); 
 
begin 
 
 sig_output <= A + B + CIN; 
  
 -- output zero, Z 
 process(sig_output) 
 begin 
  if sig_output = X"000" then 
   Z <= '1'; 
  else 
   Z <= '0'; 
  end if; 
 end process; 
  
 -- output negative, N 
 process(sig_output) 
 begin 
  if sig_output(8) = '1' then 
   N <= '1'; 
  else 
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   N <= '0'; 
  end if; 
 end process; 
  
 -- output O 
 O <= sig_output; 
 
end Behavioral; 

 

 

A.3.13 9-Bit 2-To-1 Multiplexer - MUX29.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity MUX29 is 
    Port ( A : in  STD_LOGIC_VECTOR (8 downto 0); 
           B : in  STD_LOGIC_VECTOR (8 downto 0); 
           SEL : in  STD_LOGIC; 
           C : out  STD_LOGIC_VECTOR (8 downto 0)); 
end MUX29; 
 
architecture Behavioral of MUX29 is 
 
begin 
 
 -- MUX2-1 8 bit 
 process(SEL,A,B) 
 begin 
  
  if SEL = '0' then 
   C <= A; 
  else 
   C <= B; 
  end if; 
   
 end process; 
 
end Behavioral; 

 

 

A.3.14 10-Bit Register - REG10BIT.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
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entity REG10BIT is 
    Port ( A : in  STD_LOGIC_VECTOR (9 downto 0); 
           B : out  STD_LOGIC_VECTOR (9 downto 0); 
           CLK : in  STD_LOGIC; 
           ENA : in  STD_LOGIC); 
end REG10BIT; 
 
architecture Behavioral of REG10BIT is 
 
begin 
 
 -- Register function 
 process(CLK) 
   
  variable sig_data : std_logic_vector(9 downto 0) := (others=>'0'); 
   
 begin 
  
  if CLK'event and CLK = '1' then 
   if ENA = '1' then 
    sig_data := A; 
   end if; 
  else 
   sig_data := sig_data; 
  end if; 
   
  B <= sig_data; 
  
 end process; 
 
end Behavioral; 

 

 

A.3.15 LED 7-Segment Display - D4to7.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity D4to7 is 
    Port ( Q : in  STD_LOGIC_VECTOR (3 downto 0); 
           Seg : out STD_LOGIC_VECTOR (6 downto 0)); 
end D4to7; 
 
architecture Behavioral of D4to7 is 
 -- Segment encoding 
 --  a 
 --   --- 
 -- f|   |b 
 --   --- <- g 
 -- e|   |c 
 --   --- 
 --  d 
begin 
 -- Conditional signal assignmens 
 -- LED seg order = a,b,c,d,e,f,g = seg6, seg5, seg4, seg3, seg2, seg1, seg0 
 Seg<= "1111110" when q = "0000" else 
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   "0110000" when q = "0001" else 
   "1101101" when q = "0010" else 
   "1111001" when q = "0011" else 
   "0110011" when q = "0100" else 
   "1011011" when q = "0101" else 
   "1011111" when q = "0110" else 
   "1110000" when q = "0111" else 
   "1111111" when q = "1000" else 
   "1111011" when q = "1001" else 
   "1110111" when q = "1010" else 
   "0011111" when q = "1011" else 
   "1001110" when q = "1100" else 
   "0111101" when q = "1101" else 
   "1001111" when q = "1110" else 
   "1000111" when q = "1111" else 
   "0000000"; 
 
end Behavioral; 

 

 

 

A.4 RS MISC ARCHITECTURE IN VHDL 

A.4.1 Top Level RS MISC Architecture - RSMISC.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity RSMISC is 
    Port ( Seg0, Seg1 : out  STD_LOGIC_VECTOR (6 downto 0); 
           RamAdd : out  STD_LOGIC_VECTOR (7 downto 0); 
           CLK : in  STD_LOGIC; 
           UP : in  STD_LOGIC; 
           DOWN : in  STD_LOGIC; 
     EnaRead : in STD_LOGIC); 
end RSMISC; 
 
architecture Behavioral of RSMISC is 
 
 -- Components 
 -- Block RAM 
 component memory 
    port ( 
    addra: IN std_logic_VECTOR(9 downto 0); 
    addrb: IN std_logic_VECTOR(9 downto 0); 
    clka: IN std_logic; 
    clkb: IN std_logic; 
    dina: IN std_logic_VECTOR(10 downto 0); 
    douta: OUT std_logic_VECTOR(10 downto 0); 
    doutb: OUT std_logic_VECTOR(10 downto 0); 
    ena: IN std_logic; 
    enb: IN std_logic; 
    wea: IN std_logic); 
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 end component; 
  
 -- Controls 
 component controls 
  port( CLK : in std_logic; 
    N : in std_logic; 
    ALU_A : out std_logic; 
    ALU_B0 : out std_logic; 
    ALU_B1 : out std_logic; 
    CIN : out std_logic; 
    MAR_SEL : out std_logic; 
    PC_WRITE : out std_logic; 
    R_WRITE : out std_logic; 
    Z_WRITE : out std_logic; 
    N_WRITE : out std_logic; 
    MAR_WRITE : out std_logic; 
    MDR_WRITE : out std_logic; 
    MEM_READ : out std_logic; 
    MEM_WRITE : out std_logic; 
    OP_OUT_SEL : out std_logic; 
    OP0_WRITE : out std_logic; 
    OP1_WRITE : out std_logic; 
    OP_SEL : out std_logic); 
 end component; 
  
 -- MUX 
 -- MUX2-1 1-Bit 
 component MUX21 is 
   port ( A : in  STD_LOGIC_VECTOR (7 downto 0); 
      B : in  STD_LOGIC_VECTOR (7 downto 0); 
      SEL : in STD_LOGIC; 
      C : out  STD_LOGIC_VECTOR (7 downto 0)); 
 end component; 
 -- MUX2-1 2-Bit 
 component MUX22 is 
   port ( A : in  STD_LOGIC_VECTOR (1 downto 0); 
      B : in  STD_LOGIC_VECTOR (1 downto 0); 
      SEL : in STD_LOGIC; 
      C : out  STD_LOGIC_VECTOR (1 downto 0)); 
 end component; 
 -- MUX4-1 10-Bit 
 component MUX410 is 
   port ( A : in  STD_LOGIC_VECTOR (9 downto 0); 
      B : in  STD_LOGIC_VECTOR (9 downto 0); 
      C : in  STD_LOGIC_VECTOR (9 downto 0); 
      D : out  STD_LOGIC_VECTOR (9 downto 0); 
      SEL : in  STD_LOGIC_VECTOR (1 downto 0)); 
 end component; 
 -- MUX1-4 10-Bit 
 component MUX104 is 
   port ( A : in  STD_LOGIC_VECTOR (9 downto 0); 
      SEL : in  STD_LOGIC_VECTOR (1 downto 0); 
      B : out  STD_LOGIC_VECTOR (9 downto 0); 
      C : out  STD_LOGIC_VECTOR (9 downto 0); 
      D : out  STD_LOGIC_VECTOR (9 downto 0)); 
 end component; 
 -- MUX1-2 1-Bit 
 component MUX11 is 
   port ( A : in  STD_LOGIC; 
      SEL : in  STD_LOGIC; 
      B : out  STD_LOGIC; 
      C : out  STD_LOGIC); 
 end component; 
 -- MUX2-1 10-Bit 
 component MUX210 is 
   port ( A : in  STD_LOGIC_VECTOR (9 downto 0); 
      B : in  STD_LOGIC_VECTOR (9 downto 0); 
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      SEL : in  STD_LOGIC; 
      C : out  STD_LOGIC_VECTOR (9 downto 0)); 
 end component; 
 
 -- Registers 
 -- 10-Bit Register 
 component REG is 
   port ( A : in  STD_LOGIC_VECTOR (9 downto 0); 
      B : out  STD_LOGIC_VECTOR (9 downto 0); 
      CLK : in  STD_LOGIC; 
      ENA : in  STD_LOGIC); 
 end component; 
 -- 1-Bit Register 
 component REG1BIT is 
   Port ( A : in  STD_LOGIC; 
      B : out  STD_LOGIC; 
      CLK : in  STD_LOGIC; 
      ENA : in  STD_LOGIC); 
 end component; 
 -- 11-Bit Register 
 component REG11BIT is 
   Port ( A : in  STD_LOGIC_VECTOR (10 downto 0); 
      B : out  STD_LOGIC_VECTOR (10 downto 0); 
      CLK : in  STD_LOGIC; 
      ENA : in  STD_LOGIC); 
 end component; 
 -- PC Register 
 component REGPC is 
   port ( A : in  STD_LOGIC_VECTOR (9 downto 0); 
      B : out  STD_LOGIC_VECTOR (9 downto 0); 
      CLK : in  STD_LOGIC; 
      ENA : in  STD_LOGIC); 
 end component; 
  
 -- SBN 
 component SBN is 
   Port ( A : in  STD_LOGIC_VECTOR (9 downto 0); 
      B : in  STD_LOGIC_VECTOR (9 downto 0); 
      CIN : in  STD_LOGIC; 
      N : out  STD_LOGIC; 
      Z : out  STD_LOGIC; 
      O : out STD_LOGIC_VECTOR (9 downto 0)); 
 end component; 
  
 -- 8-Bit XOR 
 component GF28Add is 
   Port ( a : in  STD_LOGIC_VECTOR (7 downto 0); 
      b : in  STD_LOGIC_VECTOR (7 downto 0); 
      c : out  STD_LOGIC_VECTOR (7 downto 0)); 
 end component; 
  
 -- GF28 
 component GF28 is 
   Port ( a : in  STD_LOGIC_VECTOR (7 downto 0); 
      b : in  STD_LOGIC_VECTOR (7 downto 0); 
      c : out  STD_LOGIC_VECTOR (7 downto 0)); 
 end component; 
  
 -- D4to7 Conversion 
 component D4to7 is 
   Port ( Q : in  STD_LOGIC_VECTOR (3 downto 0); 
      Seg : out STD_LOGIC_VECTOR (6 downto 0)); 
 end component; 
  
 -- Signals 
 signal iCount1 : std_logic := '0'; 
 signal iClock2 : std_logic; 
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 signal iCount23 : std_logic_vector(22 downto 0); 
 signal iClock23 : std_logic; 
 signal iRamAdd : std_logic_vector(9 downto 0); 
 signal iRamRead : std_logic_vector(10 downto 0); 
  
 -- Program Counter 
 signal iPC : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal PC : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal PC_Write : std_logic; 
 -- R Register 
 signal iR : std_logic_vector(9 downto 0); 
 signal R : std_logic_vector(9 downto 0); 
 signal R_Write : std_logic; 
   
 -- OPCODE 
 -- MUX 
 signal OP_SEL : std_logic; 
 -- OP0 Register 
 signal iOP0 : std_logic; 
 signal OP0_Write : std_logic; 
 -- OP1 Register 
 signal iOP1 : std_logic; 
 signal OP1_Write : std_logic; 
 -- OPCODE output 
 signal OPCODE : std_logic_vector(1 downto 0); 
 signal OP_OUT_SEL : std_logic; 
 signal oOPCODE : std_logic_vector(1 downto 0); 
   
 -- MEMORY 
 -- MDR register 
 signal iMDR : std_logic_vector(10 downto 0); 
 signal MDR : std_logic_vector(10 downto 0); 
 signal MDR_Write : std_logic; 
 -- MAR 
 signal iMAR : std_logic_vector(9 downto 0); 
 signal MAR : std_logic_vector(9 downto 0); 
 signal MAR_Write : std_logic; 
 signal MAR_SEL : std_logic; 
 -- MEM Output 
 signal oMemory : std_logic_vector(10 downto 0); 
 -- MEM Controls 
 signal MEM_READ : std_logic; 
 signal MEM_WRITE : std_logic; 
 signal MEM_ENA : std_logic; 
 signal MEM_WEA : std_logic; 
  
 -- SBN/ALU Block 
 -- N register 
 signal i_N : std_logic; 
 signal N : std_logic; 
 signal N_Write : std_logic; 
 -- Z register 
 signal iZ : std_logic; 
 signal Z : std_logic; 
 signal Z_Write : std_logic; 
 -- ALU MUX 
 -- ALU MUX A 
 signal iMUXALUA0 : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal iMUXALUA1 : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal MUXALUA : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal MUXALUASEL : std_logic; 
 signal ALU_A : std_logic; 
 -- ALU MUX B 
 signal iMUXALUB0 : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal iMUXALUB1 : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal iMUXALUB2 : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal MUXALUB : std_logic_vector(9 downto 0) := (others=>'0'); 
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 signal MUXALUBSEL : std_logic_vector(1 downto 0); 
 signal ALU_B : std_logic_vector(1 downto 0); 
 -- INV 
 signal iINV : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal oINV : std_logic_vector(9 downto 0) := (others=>'0'); 
 -- CIN 
 signal CIN : std_logic; 
 -- Output 
 signal ADDER : std_logic_vector(9 downto 0) := (others=>'0'); 
   
 -- GF Block 
 signal iGFA : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal iGFB : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal iGF : std_logic_vector(9 downto 0) := (others=>'0'); 
  
 -- XOR Block 
 signal iXORA : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal iXORB : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal iXOR : std_logic_vector(9 downto 0) := (others=>'0'); 
  
 -- Instruction MUX 
 -- MUX A 
 signal iMUXA : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal MUXA0 : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal MUXA1 : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal MUXA2 : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal MUXASEL : std_logic_vector(1 downto 0); 
 -- MUX B 
 signal iMUXB : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal MUXB0 : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal MUXB1 : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal MUXB2 : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal MUXBSEL : std_logic_vector(1 downto 0); 
 -- MUX Out 
 signal MUXO : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal iMUXO0 : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal iMUXO1 : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal iMUXO2 : std_logic_vector(9 downto 0) := (others=>'0'); 
 signal MUXOSEL : std_logic_vector(1 downto 0); 
 
begin 
 
 -- Controls Block 
 Ctrl : controls 
   port map( 
     CLK => iClock2, 
     N => N, 
     ALU_A => ALU_A, 
     ALU_B0 => ALU_B(0), 
     ALU_B1 => ALU_B(1), 
     CIN => CIN, 
     MAR_SEL => MAR_SEL, 
     PC_WRITE => PC_Write, 
     R_WRITE => R_Write, 
     Z_WRITE => Z_Write, 
     N_WRITE => N_Write, 
     MAR_WRITE => MAR_Write, 
     MDR_WRITE => MDR_Write, 
     MEM_READ => MEM_READ, 
     MEM_WRITE => MEM_WRITE, 
     OP_OUT_SEL => OP_OUT_SEL, 
     OP0_WRITE => OP0_Write, 
     OP1_WRITE => OP1_Write, 
     OP_SEL => OP_SEL); 
   
 -- Registers 
 -- PC 
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 PC_Reg : REGPC 
   port map( 
      A => iPC, 
      B => PC, 
      CLK => iClock2, 
      ENA => PC_Write); 
 iPC <= ADDER; 
       
 -- R 
 R_Reg : REG 
   port map( 
      A => iR, 
      B => R, 
      CLK => iClock2, 
      ENA => R_Write); 
 iR <= oMemory(9 downto 0); 
  
 -- Z 
 Z_Reg : REG1BIT 
   port map( 
      A => iZ, 
      B => Z, 
      CLK => iClock2, 
      ENA => Z_Write); 
  
 -- N 
 N_Reg : REG1BIT 
   port map( 
      A => i_N, 
      B => N, 
      CLK => iClock2, 
      ENA => N_Write); 
  
 -- OPCODE 
 -- OPCODE1 
 OPCODE1_Reg : REG1BIT 
   port map( 
      A => iOP1, 
      B => OPCODE(1), 
      CLK => iClock2, 
      ENA => OP1_Write); 
  
 -- OPCODE0 
 OPCODE0_Reg : REG1BIT 
   port map( 
      A => iOP0, 
      B => OPCODE(0), 
      CLK => iClock2, 
      ENA => OP0_Write); 
  
 -- oMUXOP 
 oMUXOP : MUX22 
   port map ( 
      A => OPCODE, 
      B => "10", 
      SEL => OP_OUT_SEL, 
      C => oOPCODE); 
 
 -- MUXOP 
 MUXOP : MUX11 
   port map ( 
      A => oMemory(10), 
      SEL => OP_SEL, 
      B => iOP1, 
      C => iOP0); 
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 -- MUXA 
 MUXA : MUX104 
  port map ( 
     A => iMUXA, 
     SEL => MUXASEL, 
     B => MUXA0, 
     C => MUXA1, 
     D => MUXA2); 
 MUXASEL <= oOPCODE; 
 iMUXA <= oMemory(9 downto 0); 
 iGFA <= MUXA0; 
 iXORA <= MUXA1; 
 IMUXALUA0 <= MUXA2; 
 
 -- MUXB 
 MUXB : MUX104 
  port map ( 
     A => iMUXB, 
     SEL => MUXBSEL, 
     B => MUXB0, 
     C => MUXB1, 
     D => MUXB2); 
 MUXBSEL <= oOPCODE; 
 iMUXB <= R; 
 iGFB <= MUXB0; 
 iXORB <= MUXB1; 
 iINV <= MUXB2; 
  
 -- MUX OUT 
 MUXOUT : MUX410 
   port map ( 
      A => iMUXO0, 
      B => iMUXO1, 
      C => iMUXO2, 
      D => MUXO, 
      SEL => MUXOSEL); 
 MUXOSEL <= oOPCODE; 
 iMUXO0 <= iGF; 
 iMUXO1 <= iXOR; 
 iMUXO2 <= ADDER; 
 iMDR <= oMemory(10) & MUXO; 
 
  
 -- GF 
 GF28MULT : GF28  
   port map ( 
      a => iGFA(7 downto 0), 
      b => iGFB(7 downto 0), 
      c => iGF(7 downto 0)); 
 iGF(9 downto 8) <= "00"; 
  
 -- XOR 
 GF28XOR : GF28Add 
    port map ( 
       a =>iXORA(7 downto 0), 
       b =>iXORB(7 downto 0), 
       c =>iXOR(7 downto 0)); 
 iXOR(9 downto 8) <= "00"; 
  
  
 -- SBN 
 SBN_BLOCK : SBN 
   port map ( 
      A => MUXALUA, 
      B => MUXALUB, 
      CIN => CIN, 
      N => i_N, 
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      Z => iZ, 
      O => ADDER); 
 
 -- ALU_A MUX 
 MUX_ALU_A : MUX210 
   port map ( 
      A => iMUXALUA0, 
      B => iMUXALUA1, 
      SEL => MUXALUASEL, 
      C => MUXALUA); 
 MUXALUASEL <= ALU_A; 
 iMUXALUA1 <= PC; 
  
 -- ALU_B MUX 
 MUX_ALU_B : MUX410 
   port map ( 
      A => iMUXALUB0, 
      B => iMUXALUB1, 
      C => iMUXALUB2, 
      D => MUXALUB, 
      SEL => MUXALUBSEL); 
 MUXALUBSEL <= ALU_B; 
 iMUXALUB0 <= PC; 
 iMUXALUB1 <= oINV; 
 iMUXALUB2 <= "0000000000"; 
  
 -- INV 
 oINV <= NOT iINV; 
  
 -- MDR 
 MDR_Reg : REG11BIT 
   port map( 
      A => iMDR, 
      B => MDR, 
      CLK => iClock2, 
      ENA => MDR_Write); 
  
 -- MUX MAR 
 MUXMAR : MUX210 
   port map( 
      A => ADDER, 
      B => oMemory(9 downto 0), 
      SEL => MAR_SEL, 
      C => iMAR); 
  
 -- MAR 
 MAR_Reg : REG 
   port map( 
      A => iMAR, 
      B => MAR, 
      CLK => iClock2, 
      ENA => MAR_Write); 
 -- iMAR <= ADDER; 
  
 -- Block RAM 
 Block_RAM : memory 
        port map ( 
            addra => MAR, 
            addrb => iRamAdd, 
            clka => CLK, 
            clkb => CLK, 
            dina => MDR, 
            douta => oMemory, 
            doutb => iRamRead, 
            ena => MEM_ENA, 
            enb => EnaRead, 
            wea => MEM_WEA); 
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 -- Memory Control 
 process(MEM_READ,MEM_WRITE,CLK) 
 begin 
  if MEM_WRITE = '1' then 
   MEM_ENA <= '1'; 
   MEM_WEA <= MEM_WRITE; 
  elsif MEM_READ = '1' then 
   MEM_ENA <= MEM_READ; 
   MEM_WEA <= '0'; 
  else 
   MEM_ENA <= MEM_READ; 
   MEM_WEA <= '0'; 
  end if; 
 end process; 
  
 -- RAM Address 
 process(iClock23,UP,DOWN) 
 begin 
  
  if iClock23'event and iClock23 = '1' then 
   if UP = '1' then 
    iRamAdd <= iRamAdd + '1'; 
   elsif DOWN = '1' then 
    iRamAdd <= iRamAdd - '1'; 
   else 
    iRamAdd <= iRamAdd; 
   end if; 
  end if; 
  
 end process; 
  
 RamAdd <= iRamAdd(7 downto 0); 
 -- RamRead <= iRamRead(7 downto 0); 
  
 -- Seg0 
 Seg70 : D4to7 
   port map( 
      Q => iRamRead(3 downto 0), 
      Seg => Seg0); 
  
 -- Seg1 
 Seg71 : D4to7 
   port map( 
      Q => iRamRead(7 downto 4), 
      Seg => Seg1); 
  
 -- Clock24 
 process(CLK) 
 begin 
  
  if CLK'event and CLK = '1' then 
   iCount23 <= iCount23 + '1'; 
  end if; 
  
 end process; 
 -- Actual Implementation 
  iClock23 <= iCount23(22); 
 -- Simulation 
 -- PiClock24 <= CLK; 
  
 -- Clock2 
 process(CLK) 
 begin 
  
  if CLK'event and CLK = '1' then 
   if PC /= "1111111111" then 
    iCount1 <= NOT iCount1; 
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   end if; 
  end if; 
  
 end process; 
 -- Actual Implementation 
  iClock2 <= iCount1; 
 -- Simulation 
 -- iClock2 <= CLK; 
 
 
end Behavioral; 

 

 

A.4.2 Control Signals Combinational Circuit - controls.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity controls is 
 port( CLK : in std_logic; 
   N : in std_logic; 
   ALU_A : out std_logic; 
   ALU_B0 : out std_logic; 
   ALU_B1 : out std_logic; 
   CIN : out std_logic; 
   MAR_SEL : out std_logic; 
   PC_WRITE : out std_logic; 
   R_WRITE : out std_logic; 
   Z_WRITE : out std_logic; 
   N_WRITE : out std_logic; 
   MAR_WRITE : out std_logic; 
   MDR_WRITE : out std_logic; 
   MEM_READ : out std_logic; 
   MEM_WRITE : out std_logic; 
   OP_OUT_SEL : out std_logic; 
   OP0_WRITE : out std_logic; 
   OP1_WRITE : out std_logic; 
   OP_SEL : out std_logic); 
end controls; 
 
architecture Behavioral of controls is 
 
 signal iCount4 : std_logic_vector(3 downto 0) := X"8"; 
 
begin 
 
 -- 4 Bit Counter 
 process(CLK) 
 begin  
  
  if CLK'event and CLK = '1' then 
   if iCount4 = "1000" then 
    iCount4 <= (others=>'0'); 
   else 
    iCount4 <= iCount4 + 1; 
   end if; 
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  end if; 
   
 end process; 
 
  
 -- Output control signals 
 ALU_A <= ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(0))) ) 
  OR ( (NOT(iCount4(2))) AND (NOT(iCount4(1))) AND (NOT(iCount4(0))) ); 
 ALU_B0 <= (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) AND (iCount4(0)); 
 ALU_B1 <= ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(0))) ) 
  OR ( (NOT(iCount4(2))) AND (NOT(iCount4(1))) AND (NOT(iCount4(0))) ); 
 CIN <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(1))) AND (iCount4(0)) ) 
  OR ( (iCount4(3)) AND (NOT(iCount4(2))) AND (NOT(iCount4(1))) 
   AND (NOT(iCount4(0))) ); 
 MAR_SEL <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(1))) AND (iCount4(0)) ); 
 PC_WRITE <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (iCount4(1)) AND (iCount4(0)) AND N ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) AND (NOT(iCount4(1))) 
   AND (iCount4(0)) ) 
  OR ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) 
   AND (NOT(iCount4(0))) ) 
  OR ( (iCount4(3)) AND (NOT(iCount4(2))) AND (NOT(iCount4(1))) 
   AND (NOT(iCount4(0))) ); 
 R_WRITE <= ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) AND (iCount4(1)) 
   AND (NOT(iCount4(0))) ); 
 Z_WRITE <= ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) AND (NOT(iCount4(1))) 
   AND (NOT(iCount4(0))) ); 
 N_WRITE <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) AND (iCount4(0)) ); 
 MAR_WRITE <= ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) AND (iCount4(0)) ) 
  OR ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(0))) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(1))) AND (NOT(iCount4(0))) ); 
 MDR_WRITE <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) 
   AND (iCount4(0)) ); 
 MEM_READ <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) ) 
  OR ( (NOT(iCount4(3))) AND (iCount4(1)) AND (iCount4(0)) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(1))) AND (iCount4(0)) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) AND (iCount4(1)) 
   AND (NOT(iCount4(0))) ); 
 MEM_WRITE <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (iCount4(1)) 
   AND (NOT(iCount4(0))) ); 
 OP_OUT_SEL <= ( (NOT(iCount4(3))) AND (NOT(iCount4(1))) AND (NOT(iCount4(0))) ) 
  OR ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) ); 
 OP0_WRITE <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) 
   AND (NOT(iCount4(0))) ); 
 OP1_WRITE <= ( (NOT(iCount4(3))) AND (NOT(iCount4(2))) AND (NOT(iCount4(1))) 
   AND (iCount4(0)) ); 
 OP_SEL <= ( (NOT(iCount4(3))) AND (iCount4(2)) AND (NOT(iCount4(1))) 
   AND (NOT(iCount4(0))) ); 
  
end Behavioral; 

 

 

A.4.3 9-Bit Programme Counter Register - REGPC.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
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---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity REGPC is 
    Port ( A : in  STD_LOGIC_VECTOR (9 downto 0); 
           B : out  STD_LOGIC_VECTOR (9 downto 0); 
           CLK : in  STD_LOGIC; 
           ENA : in  STD_LOGIC); 
end REGPC; 
 
architecture Behavioral of REGPC is 
 
begin 
  
 -- Register function 
 process(CLK) 
   
  -- Start of programme 
  -- program start at 0x200, put 0x1FF 
  variable sig_data : std_logic_vector (9 downto 0) := "0111111111";  
  -- Test Last Line 
  -- variable sig_data : std_logic_vector (9 downto 0) := "111011001"; 
   
 begin 
  
  if CLK'event and CLK = '1' then 
   if ENA = '1' then 
    sig_data := A; 
   end if; 
  else 
   sig_data := sig_data; 
  end if; 
   
  B <= sig_data; 
  
 end process; 
 
end Behavioral; 

 

 

A.4.4 9-Bit Register - REG.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity REG is 
    Port ( A : in  STD_LOGIC_VECTOR (9 downto 0); 
           B : out  STD_LOGIC_VECTOR (9 downto 0); 
           CLK : in  STD_LOGIC; 
           ENA : in  STD_LOGIC); 
end REG; 
 
architecture Behavioral of REG is 
 
begin 
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 -- Register function 
 process(CLK) 
   
  variable sig_data : std_logic_vector (9 downto 0) := (others=>'0'); 
   
 begin 
  
  if CLK'event and CLK = '1' then 
   if ENA = '1' then 
    sig_data := A; 
   end if; 
  else 
   sig_data := sig_data; 
  end if; 
   
  B <= sig_data; 
  
 end process; 
 
end Behavioral; 

 

 

A.4.5 1-Bit Register - REG1BIT.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity REG1BIT is 
    Port ( A : in  STD_LOGIC; 
           B : out  STD_LOGIC; 
           CLK : in  STD_LOGIC; 
           ENA : in  STD_LOGIC); 
end REG1BIT; 
 
architecture Behavioral of REG1BIT is 
 
begin 
 
 -- Register function 
 process(CLK) 
   
  variable sig_data : std_logic := '0'; 
   
 begin 
  
  if CLK'event and CLK = '1' then 
   if ENA = '1' then 
    sig_data := A; 
   end if; 
  else 
   sig_data := sig_data; 
  end if; 
   
  B <= sig_data; 
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 end process; 
 
end Behavioral; 

 

 

A.4.6 2-Bit 2-To-1 Multiplexer - MUX22.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity MUX22 is 
    Port ( A : in  STD_LOGIC_VECTOR (1 downto 0); 
           B : in  STD_LOGIC_VECTOR (1 downto 0); 
     SEL : in STD_LOGIC; 
           C : out  STD_LOGIC_VECTOR (1 downto 0)); 
end MUX22; 
 
architecture Behavioral of MUX22 is 
 
begin 
 
 -- MUX2-1 2 bit 
 process(SEL,A,B) 
 begin 
  
  if SEL = '0' then 
   C <= A; 
  else 
   C <= B; 
  end if; 
  
 end process; 
 
end Behavioral; 

 

 

A.4.7 1-Bit 1-To-2 Multiplexer - MUX11.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity MUX11 is 
    Port ( A : in  STD_LOGIC; 
           SEL : in  STD_LOGIC; 
           B : out  STD_LOGIC; 
           C : out  STD_LOGIC); 
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end MUX11; 
 
architecture Behavioral of MUX11 is 
 
begin 
 
 -- MUX1-2 1-Bit 
 process(SEL,A) 
 begin 
  
  if SEL = '0' then 
   B <= A; 
   C <= '0'; 
  else 
   B <= '0'; 
   C <= A; 
  end if; 
  
 end process; 
 
end Behavioral; 

 

 

A.4.8 10-Bit 1-To-3 Multiplexer - MUX104.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity MUX11 is 
    Port ( A : in  STD_LOGIC; 
           SEL : in  STD_LOGIC; 
           B : out  STD_LOGIC; 
           C : out  STD_LOGIC); 
end MUX11; 
 
architecture Behavioral of MUX11 is 
 
begin 
 
 -- MUX1-2 1-Bit 
 process(SEL,A) 
 begin 
  
  if SEL = '0' then 
   B <= A; 
   C <= '0'; 
  else 
   B <= '0'; 
   C <= A; 
  end if; 
  
 end process; 
 
end Behavioral; 
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A.4.9 10-Bit 3-To-1 Multiplexer - MUX410.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity MUX410 is 
    Port ( A : in  STD_LOGIC_VECTOR (9 downto 0); 
           B : in  STD_LOGIC_VECTOR (9 downto 0); 
     C : in  STD_LOGIC_VECTOR (9 downto 0); 
           D : out  STD_LOGIC_VECTOR (9 downto 0); 
           SEL : in  STD_LOGIC_VECTOR (1 downto 0)); 
end MUX410; 
 
architecture Behavioral of MUX410 is 
 
begin 
 
 -- MUX4-1 10-bit 
 process(SEL,A,B,C) 
 begin 
  
  if SEL = "00" then 
   D <= A; 
  elsif SEL = "01" then 
   D <= B; 
  elsif SEL = "10" then 
   D <= C; 
  else 
   D <= "0000000000"; 
  end if; 
  
 end process; 
 
end Behavioral; 

 

 

A.4.10 Functional Block GF(28) Multiplier - GF28.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity GF28 is 
    Port ( a : in  STD_LOGIC_VECTOR (7 downto 0); 
           b : in  STD_LOGIC_VECTOR (7 downto 0); 
           c : out  STD_LOGIC_VECTOR (7 downto 0)); 
end GF28; 
 
architecture Behavioral of GF28 is 
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 signal output_i : std_logic_vector (7 downto 0) := (others=>'0'); 
 
begin 
 
 -- GF(2^8) Multiplier 
 -- bit 7 
 output_i(7) <= (a(7) AND b(0)) XOR (a(6) AND b(1)) XOR (a(5) AND b(2)) XOR (a(4) AND b(3)) 
  XOR (a(3) AND b(4)) XOR (a(2) AND b(5)) XOR (a(1) AND b(6)) XOR (a(0) AND b(7)) 
  XOR (a(7) AND b(6)) XOR (a(6) AND b(7)) XOR (a(7) AND b(5)) XOR (a(6) AND b(6)) 
  XOR (a(5) AND b(7)) XOR (a(7) AND b(4)) XOR (a(6) AND b(5)) XOR (a(5) AND b(6)) 
  XOR (a(4) AND b(7)); 
 -- bit 6 
 output_i(6) <= (a(6) AND b(0)) XOR (a(5) AND b(1)) XOR (a(4) AND b(2)) XOR (a(3) AND b(3)) 
  XOR (a(2) AND b(4)) XOR (a(1) AND b(5)) XOR (a(0) AND b(6)) XOR (a(7) AND b(5)) 
  XOR (a(6) AND b(6)) XOR (a(5) AND b(7)) XOR (a(7) AND b(4)) XOR (a(6) AND b(5)) 
  XOR (a(5) AND b(6)) XOR (a(4) AND b(7)) XOR (a(7) AND b(3)) XOR (a(6) AND b(4)) 
  XOR (a(5) AND b(5)) XOR (a(4) AND b(6)) XOR (a(3) AND b(7)); 
 -- bit 5 
 output_i(5) <= (a(5) AND b(0)) XOR (a(4) AND b(1)) XOR (a(3) AND b(2)) XOR (a(2) AND b(3)) 
  XOR (a(1) AND b(4)) XOR (a(0) AND b(5)) XOR (a(7) AND b(4)) XOR (a(6) AND b(5)) 
  XOR (a(5) AND b(6)) XOR (a(4) AND b(7)) XOR (a(7) AND b(3)) XOR (a(6) AND b(4)) 
  XOR (a(5) AND b(5)) XOR (a(4) AND b(6)) XOR (a(3) AND b(7)) XOR (a(7) AND b(2)) 
  XOR (a(6) AND b(3)) XOR (a(5) AND b(4)) XOR (a(4) AND b(5)) XOR (a(3) AND b(6)) 
  XOR (a(2) AND b(7)); 
 -- bit 4 
 output_i(4) <= (a(4) AND b(0)) XOR (a(3) AND b(1)) XOR (a(2) AND b(2)) XOR (a(1) AND b(3)) 
  XOR (a(0) AND b(4)) XOR (a(7) AND b(7)) XOR (a(7) AND b(3)) XOR (a(6) AND b(4)) 
  XOR (a(5) AND b(5)) XOR (a(4) AND b(6)) XOR (a(3) AND b(7)) XOR (a(7) AND b(2)) 
  XOR (a(6) AND b(3)) XOR (a(5) AND b(4)) XOR (a(4) AND b(5)) XOR (a(3) AND b(6)) 
  XOR (a(2) AND b(7)) XOR (a(7) AND b(1)) XOR (a(6) AND b(2)) XOR (a(5) AND b(3)) 
  XOR (a(4) AND b(4)) XOR (a(3) AND b(5)) XOR (a(2) AND b(6)) XOR (a(1) AND b(7)); 
 -- bit 3 
 output_i(3) <= (a(3) AND b(0)) XOR (a(2) AND b(1)) XOR (a(1) AND b(2)) XOR (a(0) AND b(3)) 
  XOR (a(7) AND b(5)) XOR (a(6) AND b(6)) XOR (a(5) AND b(7)) XOR (a(7) AND b(4)) 
  XOR (a(6) AND b(5)) XOR (a(5) AND b(6)) XOR (a(4) AND b(7)) XOR (a(7) AND b(2)) 
  XOR (a(6) AND b(3)) XOR (a(5) AND b(4)) XOR (a(4) AND b(5)) XOR (a(3) AND b(6)) 
  XOR (a(2) AND b(7)) XOR (a(7) AND b(1)) XOR (a(6) AND b(2)) XOR (a(5) AND b(3)) 
  XOR (a(4) AND b(4)) XOR (a(3) AND b(5)) XOR (a(2) AND b(6)) XOR (a(1) AND b(7)); 
 -- bit 2 
 output_i(2) <= (a(2) AND b(0)) XOR (a(1) AND b(1)) XOR (a(0) AND b(2)) XOR (a(7) AND b(6)) 
  XOR (a(6) AND b(7)) XOR (a(7) AND b(5)) XOR (a(6) AND b(6)) XOR (a(5) AND b(7)) 
  XOR (a(7) AND b(3)) XOR (a(6) AND b(4)) XOR (a(5) AND b(5)) XOR (a(4) AND b(6)) 
  XOR (a(3) AND b(7)) XOR (a(7) AND b(1)) XOR (a(6) AND b(2)) XOR (a(5) AND b(3)) 
  XOR (a(4) AND b(4)) XOR (a(3) AND b(5)) XOR (a(2) AND b(6)) XOR (a(1) AND b(7)); 
 -- bit 1 
 output_i(1) <= (a(1) AND b(0)) XOR (a(0) AND b(1)) XOR (a(7) AND b(7)) XOR (a(7) AND b(6)) 
  XOR (a(6) AND b(7)) XOR (a(7) AND b(2)) XOR (a(6) AND b(3)) XOR (a(5) AND b(4)) 
  XOR (a(4) AND b(5)) XOR (a(3) AND b(6)) XOR (a(2) AND b(7)); 
 -- bit 0 
 output_i(0) <= (a(0) AND b(0)) XOR (a(7) AND b(7)) XOR (a(7) AND b(6)) XOR (a(6) AND b(7)) 
  XOR (a(7) AND b(5)) XOR (a(6) AND b(6)) XOR (a(5) AND b(7)) XOR (a(7) AND b(1)) 
  XOR (a(6) AND b(2)) XOR (a(5) AND b(3)) XOR (a(4) AND b(4)) XOR (a(3) AND b(5)) 
  XOR (a(2) AND b(6)) XOR (a(1) AND b(7)); 
  
 -- connect output to signal output_i 
 c <= output_i; 
  
end Behavioral; 
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A.4.11 Functional Block 8-Bit XOR - GF28Add.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity GF28Add is 
    Port ( a : in  STD_LOGIC_VECTOR (7 downto 0); 
           b : in  STD_LOGIC_VECTOR (7 downto 0); 
           c : out  STD_LOGIC_VECTOR (7 downto 0)); 
end GF28Add; 
 
architecture Behavioral of GF28Add is 
 
 signal sig_output : std_logic_vector (7 downto 0) := (others=>'0'); 
 
begin 
 
 -- GF Addition / XOR 
 sig_output <= a XOR b; 
  
 -- output 
 c <= sig_output; 
 
end Behavioral; 

 

 

A.4.12 Functional Block SBN - SBN.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity SBN is 
    Port ( A : in  STD_LOGIC_VECTOR (9 downto 0); 
           B : in  STD_LOGIC_VECTOR (9 downto 0); 
           CIN : in  STD_LOGIC; 
           N : out  STD_LOGIC; 
           Z : out  STD_LOGIC; 
     O : out STD_LOGIC_VECTOR (9 downto 0)); 
end SBN; 
 
architecture Behavioral of SBN is 
 
 signal sig_output : std_logic_vector (9 downto 0) := (others=>'0'); 
 
begin 
 
 sig_output <= A + B + CIN; 
  
 -- output zero, Z 
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 process(sig_output) 
 begin 
  if sig_output = X"000" then 
   Z <= '1'; 
  else 
   Z <= '0'; 
  end if; 
 end process; 
  
 -- output negative, N 
 process(sig_output) 
 begin 
  if sig_output(8) = '1' then 
   N <= '1'; 
  else 
   N <= '0'; 
  end if; 
 end process; 
  
 -- output O 
 O <= sig_output; 
 
end Behavioral; 

 

 

A.4.13 10-Bit 2-To-1 Multiplexer - MUX210.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity MUX210 is 
    Port ( A : in  STD_LOGIC_VECTOR (9 downto 0); 
           B : in  STD_LOGIC_VECTOR (9 downto 0); 
           SEL : in  STD_LOGIC; 
           C : out  STD_LOGIC_VECTOR (9 downto 0)); 
end MUX210; 
 
architecture Behavioral of MUX210 is 
 
begin 
 
 -- MUX2-1 10 bit 
 process(SEL,A,B) 
 begin 
  
  if SEL = '0' then 
   C <= A; 
  else 
   C <= B; 
  end if; 
   
 end process; 
 
end Behavioral; 
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A.4.14 11-Bit Register - REG11BIT.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity REG11BIT is 
    Port ( A : in  STD_LOGIC_VECTOR (10 downto 0); 
           B : out  STD_LOGIC_VECTOR (10 downto 0); 
           CLK : in  STD_LOGIC; 
           ENA : in  STD_LOGIC); 
end REG11BIT; 
 
architecture Behavioral of REG11BIT is 
 
begin 
 
 -- Register function 
 process(CLK) 
   
  variable sig_data : std_logic_vector(10 downto 0) := (others=>'0'); 
   
 begin 
  
  if CLK'event and CLK = '1' then 
   if ENA = '1' then 
    sig_data := A; 
   end if; 
  else 
   sig_data := sig_data; 
  end if; 
   
  B <= sig_data; 
  
 end process; 
 
end Behavioral; 

 

 

A.4.15 7-Segment LED Display - D4to7.vhd 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
---- Uncomment the following library declaration if instantiating 
---- any Xilinx primitives in this code. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity D4to7 is 
    Port ( Q : in  STD_LOGIC_VECTOR (3 downto 0); 
           Seg : out STD_LOGIC_VECTOR (6 downto 0)); 
end D4to7; 
 
architecture Behavioral of D4to7 is 
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 -- Segment encoding 
 --  a 
 --   --- 
 -- f|   |b 
 --   --- <- g 
 -- e|   |c 
 --   --- 
 --  d 
begin 
 -- Conditional signal assignmens 
 -- LED seg order = a,b,c,d,e,f,g = seg6, seg5, seg4, seg3, seg2, seg1, seg0 
 Seg<= "1111110" when q = "0000" else 
   "0110000" when q = "0001" else 
   "1101101" when q = "0010" else 
   "1111001" when q = "0011" else 
   "0110011" when q = "0100" else 
   "1011011" when q = "0101" else 
   "1011111" when q = "0110" else 
   "1110000" when q = "0111" else 
   "1111111" when q = "1000" else 
   "1111011" when q = "1001" else 
   "1110111" when q = "1010" else 
   "0011111" when q = "1011" else 
   "1001110" when q = "1100" else 
   "0111101" when q = "1101" else 
   "1001111" when q = "1110" else 
   "1000111" when q = "1111" else 
   "0000000"; 
 
end Behavioral; 

 

 


