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ABSTRACT 

Nasopharyngeal cancer lies in the upper part of throat behind the nose 

and near the base of the skull called the nasopharynx. It is more commonly 

diagnosed in parts of Asia, particularly in the southern China. Five local edible 

plants from different families; namely curry leaf (Murraya koenigii), temu 

kunci (Boesenbergia rotunda), spring onion leaf (Allium cepa), mushroom 

bean (Phaseolus vulgaris) and bunga kantan (Phaeomeria imperialis) were 

macerated to obtain methanol, ethyl acetate and hexane crude extracts. Each 

crude extract was tested against nasopharyngeal carcinoma (HK-1) and normal 

nasopharyngeal epithelial (NP-69) cell lines. All crude extracts from temu 

kunci (Boesenbergia rotunda) were found to contain flavonoids, alkaloids and 

polyphenols. Both methanolic and hexane crude extracts were found to exhibit 

cytotoxic effects against HK-1 cells but non-toxic against NP-69 cell line. Of 

all the bioactive compounds previously extracted from B. Rotunda, we have 

selected four commercially available flavonoids and polyphenols to narrow 

down our search to one potential anticancer agent. These compounds were 

tested against HK-1 and NP-69 cell lines for cytotoxicity and it was found that 

cardamonin exhibits highest cytotoxic effect against HK-1 cells with IC50 of 22 

µg/mL. 

Cardamonin, a naturally occurring chalcone from the rhizome of 

Boesenbergia rotunda (locally known as temu kunci) was found to induce 

apoptosis in human nasopharyngeal carcinoma (HK-1) cell line in vitro. It 

exhibits a significant cytotoxic effect against human nasopharyngeal carcinoma 

cell line without affecting normal immortalized nasopharyngeal epithelial cell 

line (NP-69) in MTT assay. Based on these results, HK-1 cell line was treated 
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with IC50 22 μg/mL in time-dependent manner 24, 48 and 72 hrs to further 

investigate the mechanisms of apoptosis. Apoptotic cells induced by 

cardamonin were illustrated by change in cellular morphology, increase in 

G2/M phase population and DNA fragmentation. Furthermore, up-regulation of 

caspase-3 and caspase-8 activities substantiated the induction of apoptosis 

through caspase-dependent pathway. Cardamonin leads to a decrease in 

overproduction of reactive oxygen species (ROS), disruption in mitochondrial 

membrane potential and drop in intracellular ATP level in HK-1 cells. Present 

study also revealed up-regulation of pro-apoptotic protein, Bax and apoptotic 

signalling factor, cytochrome c resulting in down-regulation of anti-apoptotic 

protein, Bcl-2. There was no fold change in caspase-9 gene expression level 

suggesting that HK-1 cellular apoptosis occurred independent of caspase-9. 

Activation of caspase-3 was directly regulated by caspase-8 and does not 

require caspase-9. Current findings on the mode of actions of cardamonin 

suggested its potential application as an anticancer agent against 

nasopharyngeal carcinoma. 
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1.0 Introduction 

The inexhaustible supplies of natural resources allow scientists to 

explore into the world of natural products. Approximately two third of 

Malaysia tropical land is covered with rainforest which hosts 14,500 plant 

species (Richmond and Simon, 2010). Plants have been used as traditional 

remedies for centuries and were believed to have various therapeutic effects 

(Dalziel, 1937). Medicinal plants are rich in secondary metabolites which were 

potential sources for drug discovery. It is believed that plant-derived active 

compounds such as polyphenols exhibit the ability to inhibit tumor growth 

(Park and Pezzuto, 2002). The discovery of drugs produced from plant 

bioactive compounds has given an alternative treatment to patients instead of 

synthetically developed drugs which could eventually cause side effects on 

patients (Lazarus et al., 2009). Therefore, the main aim of this study is to 

evaluate the potential of phytochemical compounds isolated from 5 local edible 

plants as a source of anticancer bioactive compounds and their effects against 

nasopharyngeal carcinoma.  

 

1.1 Phytochemical/secondary metabolite from edible plants as 

anticancer agent 

 Phytochemicals or secondary metabolites are organic compounds 

produced by plants in small quantity. The term “secondary” suggests that these 

metabolites do not directly influence normal development of plants. If these 

secondary metabolites are absent in plants, plants may still survive like they 
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normally do despite some may restrict some biological activities in plants. 

Phytochemicals are found mostly in plant-based food such as fruits and 

vegetables.  

Bioactive compounds are secondary metabolites that contribute greatly 

for protection to plants in response to environmental stress. Phenolic 

compound is one of the most prominent phytochemicals that was found to 

exhibit anticancer activity. Phytochemicals from plants act by stimulation of 

non-specific and specific immunity in our body (Madhuri and Govind, 2009).  

Phenolics and saponins are found most commonly as secondary 

metabolites or bioactive compounds in plants and have been proven to exhibit 

anticancer activity (Yu et al., 2009). For instance, the inner bark of Acacias 

produces tannins which are used to treat kidney diseases and malaria (Elhefian 

et al., 2012). More than 30 types of flavonoids were tested for cytotoxicity 

against colon cancer cell line and almost all were found to exhibit inhibition in 

cancer cell proliferation (Kuntz et al., 1999). Curcubitacin B, an oxygenated 

triterpenes was found to decrease cell viability of human hepatocellular 

carcinoma, Hep G2 through apoptosis (Zhang et al., 2009). Berberine isolated 

from Rhizoma coptidis is an isoquinoline alkaloid which kills cancer cells 

through cell cycle arrest (Sun et al., 2009). 

To develop a new antitumor agent from plant phytochemical requires 

long-term commitment. The process involves the discovery of potential natural 

products usually from plants, the screening process for cytotoxic activity, 

production and formulation of anticancer drug and finally clinical trials on 

animals and on human beings (Schwartsmann, 1988).   
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1.2 Selection of plants 

Edible plants have long been used as traditional remedies and their 

therapeutic effects in various ailments and diseases have been established many 

decades ago. Moreover, edible plants are safe, economical and easily available 

(Parul et al., 2012). Current research will focus on 5 edible plants from 

different families, namely; curry leaf (Murraya koenigii), temu kunci 

(Boesenbergia rotunda), spring onion leaf (Allium cepa), mushroom bean 

(Phaseolus vulgaris) and bunga kantan (Phaeomeria imperialis). These edible 

plants have been well researched for anticancer effect. In fact, most secondary 

metabolites have been isolated from these plants. However, lack of research of 

the plants mentioned above on nasopharyngeal carcinoma cells lead to an 

interest to study their anticancer effect. 

 

1.2.1 Curry leaf (Murraya koenigii) 

Curry leaf (Murraya koenigii) is a leafy vegetable which is used widely 

in Indian cuisine for aromatic flavouring (Figure 1). The plant originated from 

the Tarai region of Uttar Pradesh, India but has since been widely cultivated in 

the South East Asia. The shrub can grow as high as 2.5 meters in height and its 

leaf up to 30 cm long, each bearing an average of 24 leaflets (Parul et al., 

2012). Fresh leaves of Murraya koenigii have high volatile oil content. Gas 

chromatography-mass spectrometry analysis revealed 34 major constituents 

where 97.4% of essential oils were identified, namely alpha-pinene( (51.7%), 

sabinene (10.5%), beta-pinene (9.8%), beta-caryophyllene (5.5%), limonene 
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(5.4%), bornyl acetate (1.8%), terpinen-4-ol (1.3%), gamma-terpinene (1.2%) 

and alpha-humulene (1.2%) (Chowdhury et al., 2008).  

Curry leaf extracts possess various biological properties. Curry leaf 

extract was reported to lower the cholesterol level and blood glucose level in 

diabetic mice (Xie et al., 2006). Methanolic extracts of 21 curry leaf species 

were screened for antibacterial activity and S. epidermidis was significantly 

inhibited (Thomas et al., 1999). Carbazole alkaloids isolated using 

dichoromethane showed high antioxidant activity against 1,1-diphenyl-2-

picrylhydrazyl (DPPH) (Kureel et al., 1969). Alkaloids pyrafoline-D and 

murrafoline-I isolated from curry leaf showed a significant cytotoxic activity 

against human promyelocytic leukemia cells (HL-60) (Ito et al., 2006). Curry 

leaf is high in calcium which was traditionally used as a supplement to cope 

with calcium deficiency. Also, essential nutrients such as Vitamin A, Vitamin 

B, Vitamin C, Vitamin B2, calcium and iron were found in curry leaf (Parul et 

al., 2012). With present research and literature, the diversified chemical 

constituents of curry leaf have promising biological values and the potential of 

this plant has not been completely explored. Hence, current research focuses on 

cytotoxic effect of various extracts of curry leaf against nasopharyngeal 

carcinoma (HK-1) cells. 
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Figure 1: Curry leaf (Murraya koenigii) 

 

1.2.2 Temu kunci (Boesenbergia rotunda) 

Temu kunci is an edible plant belonging to the ginger family, 

Zingiberaceae (Figure 2). It grows in the region of South East Asia and India. 

It is commonly used as a food ingredient to promote flavor and appetite. In 

Indonesia, it is used as herb for post-natal women (Chaudhury and Rafei, 2001). 

It is a perennial plant which can grow up to 40 cm in height. The plant consists 

of long tubers sprout from its rhizome with each tuber having a diameter of 

approximately 1.5 cm (Sirirugsa, 1992).  

Over the years, researchers have discovered the potential and medicinal 

values of the plant. More than a hundred compounds were isolated and have 

shown positive results in various biological tests (Tan et al., 2012). Temu 
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kunci was reported to exhibit highest anticancer activity towards breast cancer 

cells (MCF-7) and colon cancer cells (HT-29) with low inhibitory 

concentrations (Kirana et al., 2007). Panduratin A isolated from temu kunci 

was found to decrease cell viability of prostate cancer cell lines (PC3 and 

DU145) in time- and dose-dependent manner (Yun et al., 2003). In another 

study on ovarian cancer cell (CaOV3) and breast cancer cell (MDA-MB-231), 

temu kunci was reported to possess anticancer effect against both cancerous 

cell lines (Jing et al., 2010). Rhizome of temu kunci was also reported to 

exhibit wound healing properties where extraction of rhizome using ethanol 

solvent sped wound and injury recovery (Mahmood et al., 2010). Based on 

previous reported bioactive compounds found in temu kunci, it has lead to our 

current study on its potential to exhibit anticancer effect against 

nasopharyngeal carcinoma cell (HK-1). 

 

 

 

 

 

 

 

Figure 2: Temu kunci (Boesenbergia rotunda) 
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1.2.3 Bunga kantan (Phaeomeria imperialis) 

Bunga kantan is an edible plant belonging to the ginger family, 

Zingiberaceae (Figure 3). The inflorescence of bunga kantan is widely used for 

culinary as food flavouring in laksa and often made into ulam among the 

Malay community in the South East Asia. The perennial plant is widely 

cultivated in Malaysia and Indonesia and can grow up to 4.7 m in height 

(Lachumy et al., 2010). The inflorescence cannot be eaten once it has bloomed, 

hence flower bud of bunga kantan is the key component that gives flavor, 

colour and aroma to local cuisines (Chan et al., 2007). 

Studies have reported that the flower shoots of the plant extracted from 

aqueous ethanol exhibit antimicrobial and antitumor activities (Murakami et al., 

2000) where as the dichloromethane and methanol extracts showed the 

presence of alpha-tocopherol in ferric thiocynate assay (FTC) (Habsah et al., 

2000). Ethanol extracts from flower shoots of bunga kantan revealed cytotoxic 

effect on glandular cervix cancer cells (HeLa) (Mackeen et al., 1997). 

Rhizomes of bunga kantan were extracted with ethyl acetate and the fraction 

was reported to exhibit cytotoxic effect on human breast cancer cell (MCF-7) 

and human T-lymphoblatoid (CEM-SS) cancer cell. 2 compounds were 

isolated from the fraction and they showed high inhibitory effect against the 2 

cell lines (Habsah et al., 2005). Acetone extracts from the leaves, stems, 

rhizomes and inflorescences of bunga kantan were tested and leaf extract was 

proven to inhibit proliferation of human colorectal cancer (HT-29) cell line 

(Chun et al., 2009). Hence, this plant was selected for current research to study 

the anticancer effect on nasopharyngeal carcinoma cancer (HK-1) cell line. 
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Figure 3: Bunga kantan (Phaeomeria imperialis) 

 

1.2.4 Spring onion leaf (Allium fistulosum) 

Spring onion leaf is an edible plant from the family of Amaryllidaceae 

(Figure 4). Spring onion consists of white bulb where straight and hollow 

leaves grow from. The plant can grow up to 40 cm high and have a stem 

thickness of 8-15 cm. It has been used in traditional Chinese cuisine for 

centuries in Asian countries like China and Japan. The leaves are edible and 

often added into salads for aroma and taste. The origin of the plant was 

believed to be from Siberia and Mongolia (Burt, 2007).  
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Although there is lack of research on anticancer activity of spring onion 

leaf, its genus Alliums has been proven to exhibit high therapeutic and 

medicinal values. Leaves of Allium sativum L., Allium cepa L., Allium vineale 

L., Allium fistulosum L., Allium nutans L., wild Allium flavum L. and Allium 

ursinum L. have been reported to exhibit high antioxidant activities (Stajner 

and Varga, 2003). Diallylsulfide (DAS) isolated from Alliums was tested for its 

antitumor properties on mouse skin carcinogenesis and showed inhibitory 

results (Singh and Shukla, 1998). Other allysulfides such as 1,2-

dimethylhydrazine has been proven to inhibit malignancies in gastrointestinal 

tract (Sumiyoshi and Wargovich, 1990).  Quercetin was isolated from Alliums 

and treated to mice with tumors derived from human pharyngeal squamous cell 

carcinoma in dose-dependent manner. A significant inhibition in tumor growth 

was observed (Castillo et al., 1989). Hence, Allium fistulosum was selected for 

current research to study its anticancer effect on nasopharyngeal carcinoma 

cancer (HK-1) cell line. 

 

 

 

 

 

Figure 4: Spring onion leaf (Allium fistulosum) 
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1.2.5 Pearl/Pink bean (Phaseolus vulgaris) 

Pearl/Pink bean is an edible legume belonging to the family of 

Fabaceae (Figure 5).  It is sometimes known as mushroom bean or cranberry 

bean and is used in making soup in China. Beans are removed from pods and a 

slight pinkish hue on beans’ surface will disappear once boiled. It gives a nutty 

flavouring to the soup and causes the soup to appear creamy.  

Beans have long been recognized for high protein content, current 

research however focus on flavonoid content in beans due to various biological 

activities of flavonoid compounds. Flavonoid glycosides content found in 

Italian bean (Phaseolus vulgaris L.) ecotypes were high (Dinelli et al., 2006). 

Most distributed flavonoids isolated from seed coats of beans are generally 

proanthocynidins and exhibit antioxidant activity (Beninger and Hosfield, 

2003). Phytohaemagglutinin, a type of lectin present in Phaseolus vulgaris was 

found to produce higher cytotoxic effect on human colon cancer cell CCL-

220/Colo320DM than in human normal colon cells (Heinrich et al., 2005). 

Legumes black and navy beans fed to tumor-induced rat were found to reduce 

total tumor incidence by 54% and 59% respectively (Hangen and Bennick, 

2002). Hence, Phaseolus vulgaris was selected for current research to study its 

anticancer effect on nasopharyngeal carcinoma cancer (HK-1) cell line. 
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Figure 5: Pearl/Pink bean (Phaseolus vulgaris) 

 

1.3  Understanding cancer  

Generally, cancer occurs when a group of normal cells proliferate 

abnormally at an uncontrollable rate. In due course, these cells intrude adjacent 

cells and eventually spread to other body organs via lymph vessels or 

bloodstream. The severity of the disease includes abnormally proliferated cells 

which can be malignant. Malignant is closely related with the term metastasis 

whereby abnormal cells start to proliferate by invading nearby cells and spread 

uncontrollably to other organs (Dollinger et al., 2002).  

 According to the World Health Organization (WHO), the world cancer 

rate can increase by 50% from current record to 15 million people in the year 

2020. It was observed that deaths from cancer alone have taken up 12% of 

worldwide disease-related deaths. WHO reported that cancer appears to be a 
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major health issues in developing countries where industrialization is the main 

focus for economic growth. Since the millennium has started, for women, 

breast cancer has topped second place followed by lung cancer (World Health 

Organization, 2003). In year 2014, 14 million new cancer cases were reported 

and this alarming number is expected to rise in the next 2 decades (World 

Health Organization, 2014). 

 The reasons for cancer development can be varied. WHO has grouped 

them into three categories of external agents, including physical carcinogens 

such as ultraviolet rays, chemical carcinogen such as arsenic in untreated 

drinking water and biological carcinogens such as viruses and bacteria 

infection. Risk factors for cancer increase with age and unhealthy diet as well 

as lack of physical exercise (World Health Organization, 2014).  

 It is important to maintain a balanced lifestyle to reduce the risk of 

cancer to a minimum level. For example, running has been proven to reduce 

the risk of liver and lung cancers by inducing certain antioxidant activity 

(Duncan et al., 1997).  

 

1.4 Cancer treatment 

 Treatments for cancer range from surgery to different kinds of therapies 

depending on the type of cancer, the location and size of the growth and the 

seriousness of the cancer in which is classified in stages. Surgery is done to 

completely remove cancerous tissues from patients. However, there are cases 
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when some cancerous cells remained at the growth site leading to risk of re-

occurrence of cancer (Harbeck et al., 2010). 

 Ongoing research is done to treat cancer and apart from the above 

approach, other methods such as using combination of various therapies. 

However, this combination may result in higher overall response rates to 

disease progression than the usage of a single therapy (Wardley, 2008). 

Usually, it involves the combination of traditional chemotherapeutics and 

targeted biological agents. For example, recently paclitaxel and bevacizumab 

(act as inhibitors) work synergistically and result in significant improvement in 

the survival of cancer patients (Gray et al., 2009).  

 

1.5 Nasopharyngeal carcinoma (NPC) cells 

In current research, we are interested in Nasopharyngeal cancer is 

cancer that lies in the upper part of throat behind the nose and near the base of 

the skull called the nasopharynx. It is fairly rare in most part of the world, 7 in 

every 1 million people in North America were diagnosed in the year 2012. 

However, nasopharyngeal cancer is more common in parts of Asia, particularly 

in the southern China. There are three types of nasopharyngeal carcinoma; 

namely keratinizing squamous cell carcinoma, non-keratinizing differentiated 

carcinoma and undifferentiated carcinoma. These are epithelial cells that made 

up the lining of nasopharynx and are defined as carcinoma when cancerous. 

Other types of cancers can occur in the nasopharynx region such as lymphomas 

and adenocarcinoma. Dietary habits and lifestyle may increase the risk of 
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nasopharyngeal carcinoma (NPC) incidence rate (American Cancer Society, 

2012). Infection of Epstein-Barr virus (EBV) may have cause the development 

of nasopharyngeal carcinoma. EBV-infected nasopharyngeal epithelial cells 

cause genetic alterations which will eventually transformed into cancerous 

cells (Tsao et al., 2012).  

Currently, NPC is treated by radiation and chemotherapy to remove 

tumor growth. Anticancer drugs such as paclitaxel and cetuximab have been 

working synergistically to enhance the antitumor effect in nasopharyngeal 

carcinoma cell lines which targets the over-expression of epidermal growth 

factor receptor (EGFR) (Sung et al., 2005). Several compounds isolated from 

plants displayed anticancer effect against NPC. Cucurbitacin I isolated from 

Iberis amara seeds was proven to inhibit cellular invasion and exhibit high 

chemopreventive potential in over expressed signal transducer and activator of 

transcription 3 (STAT 3) genes (Lui et al., 2009). Rhein isolated from rhizome 

of rhubarb was reported to induce apoptosis in NPC cells. Upon treatment with 

rhein, apoptosis-inducing factors which were observed through mitochondrial 

dependent pathways were detected (Lin et al., 2007). Cucurmin-treated NPC 

demonstrates apoptotic cell death mediated by overproduction of ROS, 

mitochondrial depolarization and caspase-3 dependent pathway (Kuo et al., 

2011). Several other bioactive compounds have been isolated from naturally 

occurring resources and proven to be potent anticancer agent against 

nasopharyngeal carcinoma.  

It is important to note that approximately 90% of cancers arise from 

epithelial cells which coat surfaces of colon, skin and nasopharynx. Hence, this 
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study is important to elucidate the cell death pathway of cancer that arose from 

epithelial cells. Normal cells and cancer cells are distinct in six different ways; 

one of them is abnormal and inaccurate cell death of cancer cells. Cellular 

death occurs at an abnormal rate compared to normal cells (Ravindran et al., 

2009). Hence, our research focuses on the discovery of a potential anticancer 

agent in triggering cancer cell death.  

 

1.6 Plant phytochemicals/secondary metabolites extraction 

 Essential secondary metabolites are removed through plant extractions. 

Secondary metabolites are removed from the plant tissue to its surrounding 

filled with organic solvent. This process is called maceration. After first 

maceration period, organic solvent containing extracted secondary metabolites 

is replaced with fresh medium (Mol et al., 1990). When secondary metabolites 

have diffused from the plant substances into their surrounding solvent, the 

solvent will become more concentrated and saturated; hence the saturated 

solvent is removed and replaced by a fresh solvent (Wall et al., 1996).  

The choice of solvent is crucial for extraction and factors influencing 

extraction were taken into consideration. For example, the solubility of target 

secondary metabolites is vital to ensure that all specific metabolites are 

extracted from plant during maceration. Other important factors such as how 

easy it is for the solvent to work with and the purity of end products are taken 

into consideration when choosing the right solvent (Wall et al., 1996).  To 

maximise the yield of compounds of interest, the principle of “like attracts 

like” is used. Maceration is a common method used to extract smaller amount 
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of constituents from plant materials. It functions to soak plant materials in 

solvent to soften the plant materials and separate the desired constituents. 

When the plant materials are completely exhausted or dried, the desired 

constituents in the solvent are ready for screening (Jones and Kinghorn, 2005).  

A specific extraction procedure is carried out to get more enriched 

fractions containing secondary metabolites. The procedure mainly uses the 

manipulation of compound’s polarity. In current research, methanol, ethyl 

acetate and hexane organic solvents were used to extract fractions containing 

polar, semi-polar and non-polar compounds respectively.  

 

1.7 Tetrazolium (MTT) assay for cellular viability  

  3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide 

(MTT) assay is a colorimetric assay to count viable cells and the reaction is 

based on the reduction of mitochondrial dehydrogenases. The reduced product 

is a water-insoluble blue formazan. Depending on how much uptake by viable 

cells, this blue formazan must be dissolved in order to be measured 

colorimetrically. There are several solvent to dissolve the blue formazan, 

however, DMSO is most suitable (Carmichael, 1987). The intracellular 

reduction of MTT ultimately indicates the estimation of viable cells after 

compound treatment.  

The formation of blue formazan product measured in absorbance unit is 

plotted against concentration (µg/mL) to obtain IC50, an inhibitory 

concentration that reduces cell viability to 50% compared to control group. A 
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compound is considered to exhibit cytotoxic potential when its IC50 value in 

the presence of tested compound is significantly less than that occurs in its 

absence (Mosmann, 1983). For cytotoxic activity of crude extracts, IC50 will be 

classified as low for IC50 > 200µg/mL, moderate for 100<IC50<200 and high 

for IC50 < 100µg/mL. 

 

1.8 Selection of isolated compounds from temu kunci (Boesebergia 

rotunda) 

Based on results from current studies, all crude extracts from temu 

kunci (Boesenbergia rotunda) were found to contain flavonoids, alkaloids and 

polyphenols. Both methanolic and hexane crude extracts were found to exhibit 

cytotoxic effects against HK-1 cells but non-toxic against normal 

nasopharyngeal epithelial (NP-69) cell line. Various active compounds have 

been isolated from B. Rotunda (Tan et al., 2012). Of all the bioactive 

compounds extracted from B. Rotunda, we have selected four commercially 

available flavonoids and polyphenols to narrow down our search to one 

potential anticancer agent. The screening for bioactive compounds is 

summarized in Figure 6.  

All four compounds are flavonoids; cardamonin and pinostrobin and 

polyphenols; naringin and hesperidin. These compounds were tested against 

HK-1 and NP-69 cell lines for cytotoxicity and it was found that cardamonin 

exhibits highest cytotoxic effect against HK-1 cells with IC50 of 22 µg/mL. 
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Therefore, further studies on mode of actions of cardamonin in triggering HK-1 

cell death will be conducted.  
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Figure 6: Summary of screening for bioactive compounds from five local edible plants. 
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1.9 Cardamonin 

From preliminary MTT assays results of four bioactive compounds, it 

was found that cardamonin exhibit highest cytotoxic effect against HK-1 cells. 

Hence, cardamonin will be selected for further investigations on how it triggers 

HK-1 cell death. 

Cardamonin was first extracted from cardamom spice and subsequently 

from other plants in Zingiberaceae family.  It is classified as chalcone in 

flavonoid family whereby it contains two phenyl rings and an aromatic ketone 

and enone that forms the central core (Figure 7). Electroanalytical 

methodology was developed to quantify the amount of cardamonin in 

cardamom (Carvalho et al., 2011). This naturally occurring chalcone has been 

known to display diverse biological activities such as anticancer and anti-

inflammatory activities (Chow et al., 2012). It was proven to repress nuclear 

factor (NF-κB) and its gene products, ICAM-1, COX-2 and VEGF were down-

regulated in human multiple myeloma cells, which cause malignancy of plasma 

cells in bone marrow (Qin et al., 2012). Cardamonin suppressed Wnt/β-catenin 

pathway by down regulation of intracellular β-catenin proteins. The 

degradation of proteins inhibits proliferation of several colon cancer cell lines 

in dose-dependent manner (Park S et al., 2013). Cardamonin displayed anti-

migration and anti-invasion properties against fibrosarcoma cell lines through 

suppression of transglutaminase 2 (Tgase-2) enzyme expressions (Park MK et 

al., 2013). In this research, the potential of cardamonin in the activation of 

apoptosis in HK-1 cells will be investigated. 
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Figure 7: Structure of cardamonin. 

 

1.10 Apoptosis 

Apoptosis is essential for development and maintenance of cell 

homeostasis. Elimination of wrongly divided cells and cells that are 

undergoing senescence is a natural defensive mechanism in any living 

organisms. Malfunction of cell death can lead to various implications such as 

cancer and neurodegenerative diseases.  It was initially assumed that 

programmed cell death was entirely controlled at nuclear level. However, it 

was later found that apoptosis occurs normally even in enucleated cells 

(Jacobson et al., 1994). This suggests that cell death can also be regulated at 

cytoplasmic level (Wang and Youle, 2009). The localization of Bcl-2 family 

proteins between cytosol and mitochondria was later proven to be associated 

with cell death. It was observed that cytochrome c was released from 

mitochondria into cytosol thus loss of function in the electron transport chain 

causing cell death signal to be activated (Krippner et al., 1996).  Cytochrome c 

in cytosol will then bind to apoptosis protease activating factor (Apaf-1) to 

induce apoptosome formation, leading to caspases activation which are cell 

death stimuli (Wang and Youle, 2009). In cancer cells, apoptotic signaling is 
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triggered in response to various conditions such as chemotherapeutic agents, 

UV radiation and DNA damage. Hence, in current research we investigate the 

role of caspases in mediating apoptosis in HK-1 cells. 

 

1.11 DNA fragmentation: Hallmark of cell death 

The characteristics of apoptotic cells are illustrated by nuclear envelope 

breakdown and chromatin condensation which lead to DNA fragmentation. 

Nuclear lamin B is degraded by proteolytic cleavage causing DNA to be 

digested to fragments. Proteins involved in regulation of DNA replication such 

as topoisomerases (enzymes that regulate winding of DNA), poly (ADP-ribose) 

polymerase (PARP) (enzymes involved in DNA repair and programmed cell 

death) and histone H1 (phosphorylates cyclin-dependenet kinase 1, CDK-1 

during mitosis) are cleaved into fragments (Krippner et al., 1996). Hence, 

malfunction of these vital proteins in regulation of DNA replication leads to 

DNA being fragmented.  In this study, fragmentations of DNA in NPC will be 

observed in a time-dependent manner after treatment with cardamonin.  

 

1.12 Caspase-activation: The initiation of mitochondrial-dependent 

apoptotic pathway 

Caspases (cysteine aspartate-specific proteins) play an important role in 

mediation of nuclear apoptosis. They are structurally related to cysteine 

proteases that cleave peptide bonds through specific protein sequence 

recognitions. The protease enzyme is mainly associated with formation of 

apoptotic bodies which occurs from a series of biological events that triggers 
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cell death (Porter and Jänicke, 1999). Caspases are synthesized as inactive pro-

caspases and regulated at post-translational level. Pro-caspases contains a pro-

domain, a small and a large subunit. There are two classes of caspases, the 

initiator caspase and effector caspase. Initiator caspase are further divided into 

two subclasses; a longer pro-domain called caspase activation and recruitment 

domains (CARDS) and the death effector domain (DED) which has small pro-

domain. Caspases that have CARDS are caspase-2 and caspase-9 whereas 

caspase-8 and caspase-10 contain DED. Effector caspases, on the other hand, 

are activated by initiator caspases to trigger cleavage of other substrates in 

apoptosis. Caspase-3, -6 and -7 belong to effector caspases family (Stennicke 

and Salvesen, 1998). In mammals, there are 14 caspases that have been 

identified to date and caspase-3 is highly associated with execution of cell 

death (Hu et al., 1998).  

Caspase-3 defective organisms are less likely to induce apoptosis 

although eventually typical signs of cell death do occur. Delay in cell death 

under deficiency of caspases significantly proved that caspases are important in 

the event to trigger apoptosis (Woo et al., 1998). Therefore, in this study, we 

hypothesized that cardamonin might induce cell death via up-regulation of 

caspases which subsequently induces apoptosis; thereby potentially 

demonstrating anticancer effect against nasopharyngeal carcinoma (HK-1) 

cells. 

 

1.13 Cell cycle analysis: Stages of arrest 

Flow cytometer is a fluorescence microscope equipped with a light 

source (UV or laser) which analyses moving particles in a liquid suspension. In 
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current research, we analyze moving cells stained with a propidium iodide (PI) 

fluorescent dye in a suspension buffer. 

Each signal generated will be displayed on a histogram plot to quantify 

number of cells at different stages (G0/G1, G1, S and G2/M) in cell cycle. 

Significant increase in cell number of a certain cell cycle checkpoint relative to 

its control group demonstrates cell cycle is arrested and hence cells do not 

survive. 

 

1.14 Overproduction of intracellular Reactive Oxygen Species (ROS): 

Promoter of cell death 

Reactive Oxygen Species (ROS) has long been associated with 

formation of cancer. It appears that oxidative stress can induce cancer by 

transforming cells to generate more ROS than normal cells do. High 

intracellular ROS level induces cell death and activates pro-apoptotic signaling. 

On the contrary, inhibition of ROS production by an antioxidant will protect 

tumor cells against apoptosis (Skrzypski et al., 2014). Despite some literature 

that report on overproduction of ROS leads to pro-apoptotic signaling in 

cancerous cells (Zhang et al., 2008),  reduction in ROS generation also 

mediates apoptosis in brain tumor cells (Lee et al., 2000).  

Cellular antioxidant activity can be evaluated using biological assay 

where its activity is measured in vitro. Cellular Antioxidant Activity (CAA) 

assay is a cell-based assay employed to measure antioxidant activity within a 

cell. A fluorogenic dye is used to quantify the reactive oxygen species (ROS) 

within the cell cytosol (Wolfe and Liu, 2007). 
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This method involves a fluorogenic probe dye 2’,7’-dichlorohydrofluorescin

diacetate (DCFA-DA) that is able to diffuse into cells. Esterases in cells 

deacetylate DCFA-DA (non-flourescent) to flourescent 2’,7’-

dichlorodihydrofluorescin (DCF). Cells will be incubated with cell-permeable 

DCFA-DA fluorescence probe and quercetin (antioxidant standard) or 

cardamonin followed by 2,2’-Azo-bis-amidinopropane (ABAP), a free radical 

initiator that initiates the generation of peroxyl radicals. The presence of ROS 

generated from cancerous cells leads to a rapid oxidation of DCFH to highly 

fluorescent 2’7’-dichlorodihydrofluorescein (DCF). An oxidized DCF 

produces fluorescence which can be measured and its fluorescence intensity is 

proportional to the level of oxidation. However, the presence of an antioxidant 

(quercetin or cardamonin) might quench these peroxyl radicals by preventing 

the generation of DCF (Figure 8). Therefore, CAA assay measures the ability 

of antioxidants to inhibit oxidation of DCFH to DCF. The conversion of non-

fluorescent DCFH to fluorescent DCF acts as an oxidative stress indicator. 

(Wolfe and Liu, 2007).  
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Figure 8: Principle of Cellular Antioxidant Activity (CAA) assay. 

 

CAA assay is greatly dependent on the properties of antioxidants and 

their interactions with cells. Antioxidant can react by inhibiting peroxyl radical 

chain on cell surface or react intracellularly. There are several advantages of 

CAA. It was chosen over other antioxidant assays such as Oxygen Radical 

Absorbance Capacity (ORAC), Total Radical Trapping Antioxidant Parameter 

(TRAP) and Ferric Reducing Ability of Plasma (FRAP) due to the limitations 

of these assays which they lack of representations of the complexity of 

biological system. In addition, the radical initiator, ABAP has a half-life of 

about 175 hrs and the rate is constant for the first few hours (Niki, 1990). 

Quercetin was employed as standard for CAA assay in current research 

because it is pure, relatively stable, easily obtainable and widely found in fruits 

and vegetables. Studies have proven that quercetin exhibit high CAA values 

compared to other phytochemicals (Wolfe and Liu, 2007). 
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Structural properties of flavonoids and other phytochemicals such as 

polarity also determine the interactions on the cell membrane (Oteiza et al., 

2005). It is proven previously that flavonoid such as quercetin contains 2,3-

double bond and 4-oxo group displayed high CAA (Wolfe and Liu, 2007). In 

this research, we propose that cardamonin (with antioxidant properties) will 

exhibit high CAA as it is a flavonoid which has an oxo- group and structurally 

similar to quercetin (Figure 9). However, in current research, cancer cell line 

will be employed to evaluate free radicals level using CAA assay. ROS are 

products of biological metabolism and generally there is an overproduction of 

ROS in cancerous cells. Under normal condition, depending on the level of 

ROS, it can be detrimental or favorable to cells (Circu and Aw, 2010). ROS 

may be an important chemical messenger in activating growth factor receptors 

which ensures cell survival (Huang et al., 1996). At the same time, ROS has 

been proven to regulate cell death through tumor necrosis factor (TNF) 

receptors family and mitochondria (Simon et al., 2000). Hence, in this study, it 

will be interesting to observe the regulation of ROS generated by HK-1 cancer 

cells in the presence of cardamonin; which may either demonstrates as a 

protective agent against HK-1 cell death or promote HK-1 cell apoptosis.  

                                    

 

 

Figure 9: Molecular structure of (A) Quercetin (B) Cardamonin 

 

A B 
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1.15 Bcl-2 family proteins: Mitochondrial-dependent cell death pathway 

regulators 

The family of B cell lymphoma-2 (Bcl-2) proteins play crucial role as 

regulators in apoptosis. These proteins control permeability of mitochondrial 

membrane to either trigger or inhibit apoptosis. The members of Bcl-2 proteins 

are divided into three groups depending on their homology and functions. 

Antiapoptotic proteins (Bcl-2 and Bcl-xL) contain four BH domains (BH1 to 

BH4) located in outer mitochondrial wall whereas proapoptotic proteins (Bax 

and Bak) possess three BH domains (BH1 to BH3) and reside in cytosol. The 

third group has only one BH3 domain and they are proapoptotic proteins (Bid, 

Bad and Bim) (Rong and Distelhorst, 2008). These three classes of proteins are 

able to form homo-oligomers or heterodimers in response to cell death 

signaling. The reorganization of proapoptotic proteins within cytosol is 

essential before proteins are being translocated across outer mitochondrial 

membrane (OMM) (Breckenridge and Xue, 2004). The permeability of 

mitochondrial membrane to allow protein translocation is greatly dependent on 

the activity of caspase. Caspase activation induces permeabilization of 

mitochondrial membrane to allow protein BID cleavage to an active fragment, 

tBID and thus being translocated to OMM. The initial signal triggered from 

caspase activation will be transmitted to release apoptogenic factors such as 

cytochrome c (Luo et al., 1998). These factors bind to apoptosis activating 

factor to form complex in order to activate the release of caspase-9 and hence 

stimulates apoptosis. Based on current findings, results demonstrate an up-
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regulation of caspase-3 and caspase-8 which substantiate future investigation 

on the regulation of Bcl-2 proteins. 

This research focuses on the identification of proteins that are being up- 

or down-regulated during apoptosis through mitochondrial-dependent pathway 

in nasopharyngeal carcinoma (HK-1) cells. In 1990, it was found that apoptosis 

occurred and regulated at mitochondrial level when Bcl-2 family proteins were 

localized in mitochondrial inner membrane in cancer cells (Hockenbery et al., 

1990). Mitochondria play important roles in activating apoptosis in mammalian 

cells as cell death is being regulated at cytosolic level (Wang and Youle. 2009). 

Studies have suggested that caspase-8 activation in cancerous cells leads to 

activation in mitochondrial dependent pathway through regulations of Bcl-2 

family proteins (Lin et al., 2010). We have proven the up-regulation of these 

caspases using Caspase-3 DEVD-R110 and Caspase-8 IETD-R110 

Fluorometric and Colorimetric Assay Kits in HK-1 cells being treated with 22 

μM of cardamonin. These findings substantiate the investigation on the 

regulations and localizations of Bcl-2 family proteins between the cytosol and 

mitochondria. 

Mitochondrial-dependent pathway commences following a signal at Fas 

ligand to trigger caspase-8 to cleave cytosolic Bid to truncated tBid active 

fragments in extrinsic pathway of apoptosis (Figure 10). Typically, apoptosis 

occurs through extrinsic or intrinsic pathway. In extrinsic pathway (receptor-

mediated), it involves extracellular binding of a ligand on transmembrane death 

receptors such as Fas receptor that activates death-inducing signaling complex 

(DISC) by recruiting Fas-associated death domain (FADD). Subsequently, 
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caspase-8 is activated which initiate the activation of caspase-3. This leads to 

cleavage of protein Bid, a mediator of mitochondrial damage. Bid is localized 

in cytosol while truncated Bid (tBid) translocate to mitochondria membrane. 

First, tBid induces clustering of mitochondria around the nuclei which then 

causes release of cytochrome c. This is followed by the collapse of 

mitochondrial membrane potential and cell shrinkage. Eventually, this leads to 

nuclear condensation and cell death (Li et al., 1998). On the other hand, an 

intrinsic pathway involves Bcl-2 family proteins on mitochondria to regulate 

the release of cytochrome c. A series of reaction will activate caspase-9 which 

in turn activates caspase-3 leading to apoptosis (Hengartner, 1997). Hence, 

caspases are considered as an early target of apoptosis. In order to evaluate 

expression level of protein associated with this cell death pathway, western 

blotting is conducted. 
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        (Tait and Green, 2010) 

Figure 10: Mitochondrial-dependent intrinsic and extrinsic apoptotic pathways. 
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1.16 Mitochondrial outer membrane (OMM) permeabilization: Cell 

death execution 

In healthy growing cells, it is important to maintain mitochondrial 

membrane potential as several key activities require this dynamic organelle for 

cell survival. Mitochondria function as energy production machinery as it is 

generally known, regulate translocations of specific proteins from 

mitochondrial inner membrane to outer membrane and play crucial role in 

deciding the life and death of a cell. Unfortunately cancer cells too can grow 

healthily like normal cells for survival and mitochondria function as usual to 

maintain regular activities of cancer cells. Hence, it is a long and never ending 

battle for scientist to discover ways to disrupt the usual biological activity in 

healthy cancer cells. 

During apoptosis, there are series of events that occur in mitochondria. 

Mitochondrial outer membrane permeabilization triggers the activation of 

caspase (death protease) which leads to apoptotic cell death. Activation of 

caspases requires translocation of pro-apoptotic proteins from cytosol to 

mitochondrial intermembrane space (IMS) following permeabilization of 

mitochondrial outer membrane. This translocation promotes the release of IMS 

proteins such as cytochrome c which then binds to apoptotic protease-

activating factor 1 (Apaf-1) (Figure 10). This induces oligomerization from 

both monomers forming a complex called apoptosome. Apoptosome recruits 

caspase-9 which in turn activates executioner caspase, caspase-3. This 

eventually leads to an irreversible cell death (Tait and Green, 2010). Here, we 

focus on the importance of mitochondrial outer membrane permeabilization in 

regulation of mitochondrial membrane potential and hence cellular apoptosis. 
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Recent findings demonstrate the importance of initial response which is 

loss of mitochondrial membrane potential to trigger cell death. Salinomycin 

isolated from Streptomyces albus has been proven to inhibit tumor growth and 

metastasis in vivo via loss of mitochondrial membrane potential (Kim et al., 

2011). Tualang honey induces apoptosis in several human breast and cervical 

cancer cell lines through disruption of mitochondrial membrane potential 

(Fauzi et al., 2011). A well-known food spice, cinnamon has been shown to 

induce loss of mitochondrial membrane potential in human cervical carcinoma 

and hence cellular apoptosis (Koppikar et al., 2010). 

There are several key features in disruption mitochondrial membrane 

potential which have been discovered previously. One of these features is 

opening of mitochondrial permeability transition pore (PTP) which is essential 

to allow exchange and movements of molecules. Mitochondrial PTP is a 

voltage-dependent mitochondrial channel that allows release of certain 

apoptogenic factors during apoptosis. PTP opening regulates calcium (Ca
2+

) 

ions efflux pathway across mitochondria inner membrane. PTP is formed from 

a complex of voltage-dependent anion channel (VDAC) with adenine 

nucleotide translocase and cyclophilin-D (CyP-D) (Crompton, 1999). When 

there is an unbalance charge between mitochondrial matrix and cytosol, PTP 

becomes more permeable to mitochondrial solutes with molecular weight of 

less than 1,500 kDa which describes the loss mitochondrial membrane 

potential (ΔΨm) (Velde et al., 2000). 

Opening of mitochondrial PTP causes more water and solutes (K
+
, 

Mg
2+

 and Ca
2+

) to draw into mitochondria and causes swelling of cells and 

therefore leads to cell death. A drop in mitochondrial membrane potential leads 
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to release of cytochrome c and at the same time rupture of outer membrane. As 

proposed by Ly et al., PTP opening is influenced by change in mitochondrial 

membrane potential (caused by Ca
2+ 

ions), pH of the mitochondrial matrix, 

actions of kinases and formation of Bax channel (Ly et al., 2003). Indeed 

opening of mitochondrial PTP is able to induce depolarization of mitochondrial 

membrane potential.  

Although there are several mechanisms on how mitochondrial outer 

membrane permeabilization occurs, the involvements of Bax and Bak (Bcl-2 

family proteins) are highly regarded in mitochondrial outer membrane 

permeabilization (Tait and Green, 2010). Kuwana et al. concluded that opening 

of mitochondrial PTP and outer membrane permeabilization only requires Bcl-

2 family proteins by regulating macromolecular efflux. Pro-apoptotic protein 

Bax in monomeric form is activated by Bid protein to stimulate channel 

opening for translocation of large mitochondrial proteins (Kuwana et al., 2002). 

Another member of pro-apoptotic proteins such as Bid that exists as an inactive 

form in cytosol translocates to mitochondria upon cleavage by caspase-8. The 

active form of Bid promotes the release of death-inducing factor, cytochrome c. 

It is also believed that high levels of cardiopilin in cleaved Bid provide a 

hydrophobic surface to mediate the insertion of activated Bid to membrane of 

mitochondria (Lutter et al., 2000).  

The ultimate goal for cellular apoptosis lies in collaboration between 

mitochondrial membrane and Bcl-2 family proteins. Bcl-2 family proteins play 

crucial roles in activation of mitochondrial outer membrane permeabilization. 

In fact, it is suggested that loss of mitochondrial membrane potential is an early 

requirement for cellular apoptosis (Petit et al., 1995). 
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Opening of mitochondrial PTP not only affects loss of mitochondrial 

membrane potential, it also causes depletion in ATP as mitochondria can no 

longer generate energy to sustain cellular activities. In fact, it is proposed that 

drop in ATP leads to accumulation of inorganic phosphates which is an ideal 

condition for mitochondrial PTP opening (Duchen, 2004). There is an 

alteration in energy supply during cancer cells growth and proliferation. Cancer 

cells are fast proliferating and as such there is an inadequate amount of oxygen 

supply causing a condition termed hypoxia. Under this condition, cancer cells 

up-regulate glycolytic pathway to compensate ATP production. (Gogvadze et 

al., 2008). The shift of glycolytic pathway consequently leads to resistance to 

cellular apoptosis which means it is less susceptible to mitochondrial outer 

membrane permeabilization. This condition is not favourable to cancer patients 

as cancer cells are able to proliferate uncontrollably and increase the possibility 

of metastasis.  

Hence, in current research we evaluate the potential of cardamonin to 

trigger opening of mitochondrial PTP leading to impairment in mitochondrial 

membrane, thus disruption of ATP production. A decrease in ATP generation 

affects the entire cellular functions of cancer cells. Both apoptotic events 

require tremendous assistance from Bcl-2 family proteins. An imbalance of 

Bcl-2 proteins determines the commencement of life or death of a cancer cell. 
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1.17 Malfunction of cell leads to drop in ATP synthesis: Will 

cardamonin affect ATP level in HK-1 cells? 

Loss of mitochondrial membrane potential will tremendously affect 

entire system of a cell. Mitochondrion acts as energy generator for cell to 

function regularly. Disruption in HK-1 cell mitochondrial membrane potential 

mediates apoptosis as cell is unable to function without ATP. Hence, we 

quantify amount of intracellular ATP in cardamonin-treated HK-1 cells and in 

control group. 

ATP/ADP assay kit was employed to measure levels of intracellular 

ATP and ADP levels in two steps. Firstly, assay buffer in the ATP reagent 

lyses cells to release ATP and ADP. Released ATP reacts immediately with 

substrate D-luciferin and oxidized to oxyluciferin and produces light 

(luminescence). This reaction is catalysed by luciferase enzyme and ATP-Mg
2+

 

as co-substrate. Light intensity generated is measured as the ATP concentration 

(RLU A).  

                                         Luciferase  

ATP + D-luciferin + O2                      Oxyluciferin + AMP + PPi + CO2 + light 

(Lundin, 2000) 

In second step, ADP is converted to ATP catalyzed by ADP enzyme (ATP 

synthase). Newly formed ATP reacts with D-luciferin from the first step. 

Luminescence reading was measured and intracellular ATP was quantified 

after 3 and 6 hrs of cardamonin treatment.  

Changes in intracellular ATP level was further analysed by 

interpretation of ADP/ATP ration. No significant increase in ADP levels with 
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an elevated ATP levels in cardamonin-treated cells in relative to control cells 

signify cells proliferation (ADP=, ATP↑). Decrease in ATP levels with an 

increase in ADP levels in treated cells compared to control group show cells 

are undergoing apoptosis (ADP↑, ATP↓). As for cells that are undergoing 

necrosis, it will result in a distinctly low ATP levels with a greatly increased 

ADP levels compared to control cells (ADP↑↑, ATP↓↓). 

 

1.18 Do apoptosis occur dependent or independent of caspase-9? : 

Relative quantification of gene expression level 

Caspase-9 is an initiator protein that contains caspase activation and 

recruitment domains (CARDS) that plays a crucial role during events of cell 

death (Stennicke and Salvesen, 1998). Upon release of cytochrome c in 

mitochondrial –dependent apoptotic pathway, apoptotic peptidase activating 

factor (Apaf-1) oligomerizes to recruit caspase-9 to form a large complex 

called apoptosome. Activated apoptosome cleaves and activates downstream 

effector caspase, caspase-3. Caspase-3 will then target key events in triggering 

cell death such as nuclear fragmentation (Allan and Clarke, 2009). Hence, 

caspase-9 plays an important role in cell death. There have been studies that 

showed that caspase-9 activation induces apoptosis in Jurkat cells but not 

caspase-2 or caspase-8 (Shelton et al., 2010). Promising data shown that 

caspase-9 is actively involved in remodelling of mitochondria and efficiently 

execute cellular apoptosis (Brentnall et al., 2013). Sanguinarine, an alkaloid 

induces apoptosis in human colon cancer cells via caspase-9-dependent 

pathway (Lee et al., 2012). 
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 However, several publications revealed that mitochondrial-dependent 

cell death pathway occurs independent of caspase-9 (Wu et al., 2011; Marsden 

et al., 2002; Ekert et al., 2002).  In fact, caspase-3, an executioner caspase was 

proven to be activated directly by caspase-8 and not caspase-9 during hydrogen 

peroxide (H2O2)-induced apoptosis in HeLa cells. Caspase-9 was activated 

alongside with caspase-3 but merely as a side effect and does not play 

significant role in cell death pathway (Wu et al., 2011).  

 

1.19 Objectives 

1) to macerate five local edible plants into three different crude extracts 

through sequential extraction; determine the presence of phytochemical in each 

crude extract; evaluate cytotoxic effect of various crude extracts against 

nasopharyngeal carcinoma (HK-1) cells and immortalized nasopharyngeal 

epithelial cells.  

 

Crude extracts with highest cytotoxic activity against HK-1 cells will be further 

investigated for actions of cell death. 

2) to evaluate cytotoxic effects of commercially available compounds isolated 

from methanol and hexane crude extracts of temu kunci (Boesebergia rotunda); 

namely cardamonin, hesperidin, narignin and pinostrobin against HK-1 and 

NP-69 cell lines; to validate preliminary cell death bioassays using cell 

exclusion assay, DNA fragmentation, cell cycle analysis, changes in cellular 
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morphology using fluorescence dyes; to quantify caspase activities in 

cardamonin-treated HK-1 cells. 

 

Caspase activation will lead to studies of cellular apoptosis through 

mitochondrial dependent pathway. 

 

3) to quantify level of intracellular reactive oxygen species (ROS); change in 

mitochondrial membrane potential (MMP); intracellular ATP/ADP level and 

expression level of mitochondrial-dependent apoptotic pathway associated 

protein; fold difference of caspase-9 gene expression level relative to reference 

gene in cardamonin-treated HK-1 cells. 

 

Current research will report on cytotoxic effect of various crude extracts of 

edible plants against nasopharyngeal carcinoma (HK-1) cells. Mode of actions 

of cardamonin via mitochondrial-dependent apoptotic pathway will be 

explored in search for a potential anticancer agent. 
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2.0 METHODOLOGY 

2.1 Materials 

 Human nasopharyngeal carcinoma (HK-1) and immortalized 

nasopharyngeal epithelial cell line (NP-69) cell lines were material transfer 

upon signing of collaboration with The University of Hong Kong through local 

collaboration with Institute of Medical Research (IMR) Malaysia. HK-1 was 

established from differentiated squamous carcinoma of nasopharynx of a 

Chinese male 17 ½ years after radiation therapy (Huang et al., 1980). 

Cell culture media RPMI 1640 containing L-glutamine, Keratinocyte-

SFM, Penicillin-Streptomycin, Fetal Bovine Serum, Trypsin-EDTA with 

phenol red, Bovine Pituitary Extract, EGF Recombinant Human, Phosphate 

Buffered Saline (PBS) pH 7.2 and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide), 250 bp DNA ladder, SYBR Safe DNA stain, 

ApoTarget Quick Apoptotic DNA Ladder Detection Kit, Tris-Borate-EDTA 

(TBE) buffer  were purchased from Gibco, Life Technologies, USA. Gallic 

acid, quercetin, iron (III) chloride, chemotherapy drug 5-fluorouracil, 

cardamonin ≥98% purity, pinostrobin ≥99% purity, naringin ≥95%, hesperidin 

≥80%, trypan blue and agarose were purchased from Sigma-Aldrich Co. (Saint 

Louis, Missouri, USA). Dimethyl sulfoxide (DMSO), sulphuric acid (H2SO4), 

sodium carbonate (Na2CO3), Folin Ciocalteu’s phenol reagent, methanol 

(MeOH), ethyl acetate (EtOAc), hexane, hydrochloric acid (HCl), ethanol 

(EtOH), acetic acid, glycerol, sodium hydroxide (NaOH), chloroform, 

Dragendorff’s reagent,  aluminuim trichloride (AlCl3) were purchased from 

Merck & Co., Inc. (Germany). 100% extra virgin olive oil (Filippo Berio) was 
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purchased from local supermarket. All chemicals were of analytical grade. 

Ethanol, acetone, methanol and dimethyl sulfoxide (DMSO) were obtained 

from RCI Labscan. Propidium iodide, acridine orange, Caspase-3 DEVD-R110 

Fluorometric and Colorimetric assay kit, Caspase-8 IETD-R110 Fluorometric 

and Colorimetric assay kit were purchased from Biotium Inc., Canada.  

For evaluation of ROS production: 2X DCFH-DA probe, free radical 

initiator, 50 mM quercetin as standard (OxiSelect Cellular Antioxidant Activity 

Assay Kit (Green Fluorescence), Cell Biolabs, Inc., USA) 

For protein extraction: PRO-PREP protein extraction kit (iNtRON 

Biotechnology, Inc.), protein markers, pre-stained, Ez-Run Rec Ladder (Fisher 

Scientific), PageRuler Unstained Protein Ladder (Thermo Scientific), 30% 

Acrylamide/Bis solution, 10X Tris/Glycine/SDS running buffer, 10X 

Tris/Glycine transfer buffer, Tetramethylethylenediamine (TEMED), 

ammonium persulfate (APS), Bio-Safe Coomassie Stain, 1X Bradford dye 

reagent (Bio-rad Laboratories). Trizma base, Tween20, sodium chloride, 2-

Mercaptoethanol, bromophenol blue sodium salt, bovine serum albumin (BSA) 

(Sigma Aldrich), TMB Membrane Peroxidase Substrate Ready-To-Use 

(Rockland Immunochemicals Inc.), Hybond ECL nitrocellulose blotting 

membrane (GE Healthcare and Life Sciences) and non-fat milk (Anlene). Anti-

Bcl-2, Anti- Bcl2-L1, Anti-Bax, Anti-Bad, Anti-cytochrome c primary 

antibodies and Goat Anti-Rabbit IgG peroxidase-conjugated secondary 

antibodies were purchased from Abgent, Inc..  

For mitochondrial assays: JC-1 Mitochondrial Membrane Potential 

Assay Kit and ADP/ATP Ratio Assay Kit were obtained from Abnova.   
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For real-time PCR: RNAqueous®-4PCR Total RNA Isolation Kit, 

SuperScript® III Platinum® SYBR® Green One-Step qRT-PCR Kit were 

purchased from Invitrogen, Life Technologies, USA. Homo caspase-9 forward 

(F) primer (5’ TGTCCTACTCTACTTTCCCAGGTTTT 3’), homo caspase-9 

reverse (R) primer (5’ GTGAGCCCACTGCTCAAAGAT 3’), GADPH 

forward (F) primer (5’ ACACCCACTCCTCCACCTTT 3’) and GADPH 

reverse (R) primer (5’ TAGCCAAATTCGTTGTCATACC) (Yu et al., 2010). 

 

2.2 Edible plant crude extracts 

Five edible local plants; curry leaf (Murraya koenigii), temu kunci 

(Boesenbergia rotunda), spring onion leaf (Allium cepa), mushroom bean 

(Phaseolus vulgaris) and bunga kantan (Phaeomeria imperialis) were 

purchased from a local market Pasar Tani Prima Saujana, Semenyih, Malaysia 

[Coordinate location Decimal Degree (DD) 3.010558, 101.808302)]. Plants 

were dried for 2 weeks in low humidity area to remove all moisture. Plants 

were then pulverized using a Philips food processor into powder and kept in an 

airtight bag. 20 g of dry mass of plant was weighed and placed in a 250 mL 

conical flask sealed with aluminium foil. 200 mL of hexane was added and 

macerated for 3 days to promote elution of non polar compounds from the 

plants into surrounding organic solvent. After 3 days, hexane was filtered 

through filter paper (BRAND) into a 250-mL round bottom flask for 

evaporation. The extract was concentrated using BUCHI rotavapor R-2100 at 

37°C at rotation speed of 3-4. Evaporated hexane was recycled for another 3 

days of maceration and this step was repeated twice. All successive extracts 



43 

 

were pooled and kept in the desiccators for 2 weeks until it is completely dried 

from organic solvent. After 2 weeks, extracts were sealed in a glass vial and 

kept in 2°C fridge until further analysis. 

To obtain semi polar and polar compounds, the procedure was repeated 

using ethyl acetate and methanol respectively. Sequential extraction was used 

by collecting bioactive compounds using organic solvent at increasing polarity. 

In methanol extraction, reddish brown solid was found and filtered using filter 

paper. Methanolic solid 1 was obtained.  

 

2.3 Total phenolic and flavonoid content determination 

2.3.1 Preparation of stock crude extracts 

 A total of 100 mg of dried sample was weighed and diluted in 1 mL of 

100% DMSO. Then, 4 µL was dissolved in 1 mL of methanol to make 400 

µg/mL stock crude extracts for total phenolic content determination and total 

flavonoid content determination assays.  

 

2.3.2 Total phenolic content determination by Folin-Ciocalteu assay 

A total of 100 µL of stock crude extract was placed in a test tube. Then, 

2 mL of 2% (w/v) sodium carbonate (Na2CO3) was added to test tube. Test 

tube was mixed vigorously using a vortex mixer. While mixing, 100 µL of 1:1 

dilution of Folin-Ciocalteu reagent was added and test tube was allowed to 

stand for a minimum of 30 mins at room temperature (not more than an hour). 
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The absorbance against blank (0 µL of the standard gallic acid standard 

solution) was determined at 750 nm using Thermo Scientific Varioskan Flash 

multimode plate reader.  Gallic acid with concentrations 25, 50, 100, 200 and 

400 µg/mL were used as standard for determination of total phenolic 

compounds in plant samples. Total phenolic content was expressed as mg 

gallic acid equivalents per g of sample. 

 

2.3.3 Total flavonoid content determination using Dowd method 

 A total of 100 µL of stock crude extract was placed in a test tube. 100 

µL of 2% (w/v) aluminium trichloride (AlCl3) was added to test tube and 

incubate for 10 mins in the dark at room temperature. The absorbance against 

prepared reagent blank (0 µL of the standard quercetin standard solution) was 

determined at 415 nm using Thermo Scientific Varioskan Flash multimode 

plate reader.  Quercetin with concentrations 25, 50, 100, 200 and 400 µg/mL 

were used as standard for determination of total flavonoid content in plant 

samples. Total flavonoid content was expressed as mg quercetin equivalents 

per g of sample.  

 

2.4 Phytochemical analysis 

2.4.1 Preparation of stock crude extracts 

A total of 0.01 g of dried extract was weighed and diluted in 1 mL of 

100% DMSO to make stock crude extracts with concentration of 0.01 g/mL. 
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2.4.2 Presence of tannins 

 A total of 1 mL of crude extract was stirred in 1 mL of distilled water. 

A few drops of 10% iron (III) chloride solution were added. Formation of 

green precipitate indicates presence of tannins. 

2.4.3 Presence of saponins 

About 2-3 drops of olive oil were added into 1 mL of crude extract and 

shaked vigorously (Emulsion test). Formation of stable emulsions indicates the 

presence of saponins. 

2.4.4 Presence of phlobatannins 

A total of 1 mL of crude extract was added to 1 mL of 1% hydrochloric 

acid (HCl) and mixture is boiled. Depositions of red precipitates indicate the 

presence of phlobatannins. 

2.4.5 Presence of flavonoids 

A total of 1 mL of crude extract was added into 1mL of 10% sodium 

hydroxide (NaOH) solution. Formation of yellow precipitates indicates 

presence of flavonoids.  

2.4.6 Presence of terpenoids 

A total of 1 mL of crude extract was added into 1 mL of chloroform 

and evaporated to dryness. Then, 1 mL of concentrated sulphuric acid (H2SO4) 

was added and heated for 2 mins. Greyish colour indicates the presence of 

terpenoids. 
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2.4.7 Presence of steroids 

A total of 1 mL of chloroform and 1 mL of concentrated sulphuric acid 

(H2SO4) were added into 1 mL of crude extract. Red coloration produced in 

lower chloroform layer indicates the presence of steroids. 

2.4.8 Presence of alkaloids 

A total of 1 mL of crude extract was stirred in 1 mL of 1% hydrochloric 

acid (HCl) on steam bath. A few drops of Dragendorff’s reagent were added. 

Turbidity in resulting precipitate indicates presence of alkaloids.  

2.4.9 Presence of glycosides 

A total of 1 mL of crude extract was added into 1 mL of chloroform. 

Then, 1 mL of sulphuric acid is added carefully and shaken gently.  Reddish 

brown colour indicates the presence of steroidal ring (glycone portion of 

glycoside).  

 

2.5 Cell culture 

2.5.1 Cell propagation and its maintenance 

 Human nasopharyngeal carcinoma (HK-1) cell line was maintained 

with 90% RPMI 1640 containing L-glutamine with 10% Foetal Bovine Serum 

(FBS) and 5% Penicillin-Streptomycin in a 75 cm² culture flask. The cells were 

incubated at 37°C in an incubator with 95% air humidity and 5% CO2 supply. 

Immortalized nasopharyngeal epithelial cell line (NP69) cell line was 

maintained with Keratinocyte-SFM containing 0.025% bovine pituitary extract, 
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0.014% recombinant epidermal growth factor (EGF) and 5% Penicillin-

Streptomycin. When the cells have reached 80-90% confluence, usually within 

3-4 days, sub-culturing was conducted to split cells into 2 flasks or to collect 

cells for storage in liquid nitrogen. Sub-culture can be done on the 5
th

 day of 

incubation. All cell works were conducted in Biohazard Cabinet Type II (Esco) 

to prevent contamination to the cells. 

 

2.5.2 Subculture  

 Both HK-1 and NP-69 cell lines are adherent-dependent cells and hence 

trypsinization was done to detach the cells from the culture flask’s bottom 

surface. First, growth media in the culture flask was removed and discarded. 

Then, the layer of cells was washed with 5 mL of phosphate buffered saline 

(PBS). PBS was removed and this step was repeated once. Then, 2 mL of 

trypsin-EDTA was added into the culture flask to remove any residues of 

serum which contain trypsin inhibitor. The cells were incubated in the 

incubator for 5 mins at 37ºC with 5% CO2. After incubation, the cells were 

observed under microscope to see if the cells have detached from the flask’s 

bottom surface. If the cells have detached, 4 mL of growth media was added to 

arrest trypsinization (1:2 trypsin to growth media ratio). For NP-69, 98% PBS 

and 2% fetal bovine serum (FBS) was added to deactivate the trypsin. The cells 

were then centrifuged for 5 mins at 1,800 rpm (Eppendorf 5810-R). 

Supernatant was discarded and cell pellet was re-suspended in 1mL CGM. 500 

µL of the cell suspension was transferred into a new culture flask. In the new 

culture flask, 9.5 mL of CGM was added to make up to final volume of 10 mL.  
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2.5.3 Cryopreservation 

 When cells have reached confluence of more than 80%, it can be 

cryopreserved and kept in liquid nitrogen. Cells were detached using PBS, 

trypsin-EDTA and growth media using the method mentioned in section 2.5.2. 

After trypsinization, the aliquot cell suspension was transferred into a 50-mL 

centrifuge tube. The aliquot cell suspension was then spun down at 1,800 rpm 

for 5 mins. Then, the supernatant was discarded. The cell pellet was re-

suspended with 1 mL of freezing media (90% FBS and 10% DMSO for HK-1 

cells and 75% FBS, 10% DMSO and 15% bovine pituitary extract for NP-69 

cells). Cryovial was stored in -80°C Heto Ultra Freezer UF 460 (Rich-Mond, 

UK) overnight before being transferred to liquid nitrogen tank for longer 

storage. 

 

2.5.4 Cell thawing 

 15 mL of growth media was added into a 75 cm² culture flask. The 

culture flask was allowed to stand upright. Then, a cryovial containing the 

required cell was removed from the liquid nitrogen tank and thawed in 37°C 

water bath by carefully swirling it in the water bath. Immediately after the cells 

in cryovial have thawed, the cell aliquot was transferred using micropipette 

into the culture flask. The culture flask was observed under an inverted 

microscope and incubated at 37°C in an incubator with 95% air humidity and 

under 5% CO2 supply. 
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2.6 Cytotoxic assay 

2.6.1 Stock sample preparation 

 Plant crude extracts were dissolved in 100% DMSO. However, toxicity 

of DMSO against cell lines is taken into consideration in stock preparation. 

Crude extracts were diluted in media at highest concentration of 0.1% DMSO. 

It has been previously tested that this concentration of DMSO did not reveal 

any significant effect on the proliferation of cells compared to their respective 

control (Kumi-Diaka et al., 2000).   

Except bunga kantan (which dissolved completely in growth media), 

other 4 plant crude extracts (crude methanolic, ethyl acetate and hexane 

extracts) and positive control 5-fluorouracil were dissolved in 100% DMSO to 

obtain stock crude extracts with concentration of 100 mg/mL. 2 µL of each 

stock crude extract was then dissolved in 1 mL of growth media to obtain 

concentration of 200 µg/mL. All crude extracts prepared were stored in -20°C 

freezer. 

 

2.6.2 Cell seeding 

When the cells were ready for seeding, the cells were harvested from 

culture flask and centrifuged at 1,800 rpm for 5 mins. After centrifugation, the 

supernatant was removed. The cell pellet was re-suspended with 1 mL of 

growth media. Then, the cell concentration in the 1 mL suspension was 

determined using standard tryphan blue cell counting technique 

(haemocytometer). 10 µL of cell suspension was mixed well with 10 µL of 

tryphan blue. Then, 10 µL from the mixture was transferred to haemocytometer. 
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Cells were counted using an inverted microscope and an average number of 

cells were determined. Then the cell concentration was obtained using the 

formula below:  

 

 

Then, the volume, V of cells suspension in 1 mL was calculated using the 

following formula: 

  

 

 

7 × 10
3 

cells per well were seeded into each well on a 96-well tissues 

culture plate.  The 96-well tissue culture plate was incubated at 37°C under 5% 

CO2 in a humidified atmosphere for 24 hrs to allow cell adherence.  

 

2.6.3 Treatment preparation and dilutions  

For sample dilution, each well from row B to G were filled with 100 µL 

of growth media. Then, 100 µL of sub-stock sample was transferred into row B. 

For 3 replicates, B1 to B4 were filled with crude methanolic extracts, B5 to B8 

were filled with crude ethyl acetate extract and B9 to B12 were filled with 

crude hexane extract. Next, two-fold dilution was carried out from row B to G 

and row H was the final waste. Row A was filled with 100 µL of 200 µg/mL 

Number of cells in 1 mL of stock = x cells/mL 

(x cells /mL) × Volume, V =   Number of cells/well × 100 µL of cells/well  

                                               × Total volume of cells for 96-well plate 

 

Average cell count =     Area A+B+C+D   ×  2  ×  10
4       

cells/mL 

                                                              4 

           =   x cells /mL 
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stock crude extract. The concentrations of each row of wells were shown in 

Appendix 7.3.1.  

After 24 hrs cells incubation, the spent medium was removed. The 

stock samples that underwent serial dilutions earlier in the sample plate were 

transferred into the 96-well culture plate. All samples from rows B to G of 

sample plate were transferred into row B to G of 96-well culture plate. For row 

A, 100 µL from the sub-stock with initial concentration of 200 µg/mL was 

transferred into each well. For row H, wells H1 to H3 were filled with growth 

media. Wells H1 to H3 were blank with untreated cells. The culture plate was 

incubated for another 24 and 48 hrs.  

 

2.6.4 Cell viability using MTT assay 

  After 24-hour incubation, an estimation of number of cells that are 

viable was determined relatively to the untreated cell population through MTT 

(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. The 

MTT is a water-soluble blue formazan that is readily taken up by viable cells 

and the action was due to reduction of mitochondrial dehydrogenases. DMSO 

is used to dissolve it for colorimetric measurement (Slater et al., 1963).  

 5 mg/mL MTT in sterile PBS pH 7.2 was prepared and for every 1 mL, 

10 mL of growth media were added. The spent media in the 96-well plate were 

removed. Each well was then filled with 110 µL of MTT solution. This was 

done in the dark (by turning off the light in the biosafety cabinet) because MTT 

is light sensitive. Then, the culture plate was incubated for 4 hrs at 37°C under 
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5% CO2 in a humidified atmosphere. After 4-hour incubation, 85 µL of the 

growth media and MTT were removed from each well. Then, 50 µL of 100% 

DMSO was added to dissolve the purple formazan salt.  The absorbance of 

each well was read at 540 nm using Thermo Scientific Varioskan Flash 

multimode plate reader. The percentage of cell viability was calculated using 

the following equation: 

  Cell viability (%)  =  Optical Density (OD)sample    ×   100% 
 

The concentration that produced 50% inhibition concentration (IC50) was 

determined from absorbance (OD) versus concentration curve. 

 5-fluorouracil (5-FU) is a chemopreventive drug used as a postitive 

control in comparison to all crude extracts in MTT assay. 5- fluorouracil has 

been previously proven to induce apoptosis in NPC (Qin et al., 2008).  

 

2.7 Cytotoxic effects of cardamonin, pinostrobin, naringin and 

hesperidin against HK-1 and NP-69 cell lines 

Nasopharyngeal carcinoma (HK-1) and immortalized epithelial 

nasopharyngeal (NP-69) cell lines were seeded in a 96-well plate at 1 × 10
4
 

cells per well. After 24 hrs, compound was dissolved in DMSO at various 

concentrations (0, 3.125, 6.25, 12.5, 25, 50, 100 and 200 µg/mL) before treated 

on the cells. After incubation times of 24, 48 and 72 hrs, 5 mg/ml MTT in 

sterile PBS pH 7.2 was added to each well and incubated for 4 hours at 37°C 

under 5% CO2 in a humidified atmosphere. After 4-h incubation, 100% DMSO 

was added to dissolve the purple formazan salt.  The absorbance of each well 

Optical Density (OD)control     



53 

 

was read at 540 nm using Thermo Scientific Varioskan Flash multimode plate 

reader. 50% inhibition concentration (IC50) was determined from absorbance 

(OD) versus concentration curve. Of all four compounds tested, cardamonin 

exhibits highest cytotoxic effect against HK-1 cells without affecting normal 

nasopharyngeal cells, NP-69. Hence, cardamonin will be selected for further 

biological assays to determine the mode of actions in HK-1 cell death. 

 

2.8 Viable cell count using trypan blue 

HK-1 cells were seeded on a 6-well plate at cell density 3× 10
5
 cells per 

well. Untreated cells and cells treated with IC50 22 μg/mL cardamonin (based 

on result from MTT assay) were incubated for 24, 48 and 72 hrs at 37°C under 

5% CO2. Cells were then spun down at 1,800 rpm for 5 mins and resuspended 

with 500 μL of PBS. To 500 μL of trypan blue, 500 μL of cell suspension were 

added. At microscope magnification of 100×, viable cells were counted at 

3,000 cells per chamber of haemocytometer. Non-viable cells were stained blue 

as viable cells will not take up trypan blue dye. Results were recorded in 

triplicates. 

 

2.9 Fluorescence assay- cellular morphology microscopic observation 

HK-1 cells were seeded on a chamber slide (Thermo Scientific Nunc 

Lab Tek II) at cell density of 6 × 10
4
 cells per chamber. Untreated cells and 

cells treated with 22 μg/mL cardamonin were incubated for 24 and 48 hrs at 

37°C under 5% CO2. After respective incubation hours, media were removed. 

Cells were washed with PBS twice. For cell fixation, 1 mL of 100% cold 

methanol was added and incubated in -20°C freezer for 10 mins. Methanol was 
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removed prior to addition of 1 mL of cold acetone for cell permeabilization and 

incubated for 1 min in -20°C freezer. Cells were washed twice with PBS. 10 

μg/mL of acridine orange (AO) and 10 μg/mL of propidium iodide (PI) were 

added to each chamber. Chamber slide was incubated at 37°C for 15 mins for 

staining. It was then observed under Fluoview 1000 laser scanning confocal 

microscope (Olympus IX 81 Motorized Inverted Microsope).   

 

2.10 DNA fragmentation assay 

HK-1 cells were seeded on a 6-well plate at cell density 1 × 10
5
 cells 

per well. Untreated cells and cells treated with 22 μg/mL cardamonin were 

incubated for 24, 48 and 72 hrs at 37°C under 5% CO2. Cells were then spun 

down at 1,800 rpm for 5 mins and washed twice with PBS. Then, ApoTarget 

Quick Apoptotic DNA Ladder Detection Kit (Invitrogen) was used for cell 

DNA extraction. Cells were first lysed using 35 μL of TE lysis buffer followed 

by 5 μL of Enzyme A and vortex gently. The lysate was then incubated in 37ºC 

water bath for 10 mins before adding 5 μL of Enzyme B. Lysate was then 

further incubated for another 30 mins at 50ºC. 5 μL of ammonium acetate 

solution and 100 μL of cold absolute ethanol were added to lysate and kept at -

20ºC for 10-15 mins to precipitate DNA. Supernatant was then discarded and 

0.5 mL of cold 70% ethanol was added to wash DNA pellet and re-centrifuged 

for 10 mins at 12,500 rpm. The DNA pellet was subsequently air-dried for 10 

mins at room temperature. Extracted DNA was suspended in 25 μL of sterile 

distilled water. A total of 5 μL of loading dye was added into the DNA sample 

and 20 μL of the sample was loaded on 1.2% agarose gel in TBE buffer stained 
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with SYBR safe. Electrophoresis was run at 70V for 1-2 hrs and visualized 

under UV light illuminator (ChemiDoc XRS system, BioRad).  

 

2.11 Cell cycle analysis 

Flow cytometer consists of three parts; first is fluidics part where cells 

in suspension pass through a needle using hydrodynamic focusing (Figure 

11A). Hydrodynamic focusing introduces each cell to a convergence point 

where each cell is line parallel to the sheath fluid filling the flow cell. Each of 

these cells carries a fluorophore, absorbs light from laser or UV and emits 

photons in range of wavelengths. This part is called optics. Two types of 

optical signals are generated and detected by a photomultiplier tube; namely 

fluorescence and scattered light. Both are separated using respective filters and 

directed to individual photomultiplier tube for measurement (Figure 11B). 

Forward scattered channel (FSC) detects size of a single cell whereas side 

scattered channel (SSC) detects granulity or internal complexity of a single cell. 

At the same time, fluorescent dye that stained cells emits different fluorescence 

intensities and these intensities will be received by its photomultiplier tube. 

Third part of flow cytometer is the electronics. Flourescence signal emitted 

from flourophore is converted from analog to digital in photomultiplier (Ochatt, 

2006). This will produce a one-parameter (in our research, we employed 

propidium iodide fluorescent dye to analyze cell cycle) or a two-parameter dot-

plot diagram. 

The amount of DNA content in each cell is directly proportional to the 

intensity of emission from flourophore. Each emission generates signal and 

represents one dot on dot-plot (FSC vs. SSC). In cell cycle G1 stage, cell will 
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contain DNA content of 2n (diploid) whereas DNA content in G2 phase after 

synthesis (S) phase is 4n. When cells are analyzed using flow cytometry, it is 

probable that 2 cells with 2 nuclei in G1 phase are clumped together. Hence, 

the signal generated will be the same as a single cell in G2 phase. However, 2 

cells clump will generate a peak signal with narrower width compared to a 

single cell in G2 phase where a sharp and higher peak will be displayed 

(Figure 11C). It is important to exclude these cells clump to prevent false 

positive results. This phenomenon is called doublet discrimination and can be 

prevented by gating the cells in FSC-SSC dot plot. Gating allows selection of 

cells of interest to be analyzed. Dead cells are often represented by lower 

forward scatter and higher side scatter than viable cells on dot plot. This allows 

a group of cells to be excluded from analysis and only cells that are gated will 

be included for analysis (Ormerod, 2008). 
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    (Robinson, 2006) 

Figure 11: (A) Each cell flows by hydrodynamic focusing manner. (B) Once 

excited by laser beam, each cell emits fluorescence and scattered light which 

will be separated by different filters. (C) Signals generated after cells are 

excited by laser. 2 cells clump together will cause false positive in DNA 

content cell cycle analysis. 

A 

C 

B 
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HK-1 cells were seeded on a 6-well plate at cell density 1 × 10
6
 cells 

per well. Untreated cells and cells treated with 22 μg/mL cardamonin were 

incubated for 12 and 24 hrs at 37ºC under 5% CO2. Cells were then spun down 

at 2,500 rpm for 5 mins and washed twice with PBS. Cell pellet was re-

suspended in 1 mL PBS and transferred to 15-mL centrifuge tube. Cells were 

allowed cool on ice for 10 mins. 3 mL of cold ethanol was added drop wise 

while gently shaking the tube. Cells were fixed in -20ºC overnight prior to cell 

cycle analysis. After fixation, cells were washed twice with PBS to remove 

ethanol. Cells were centrifuge at higher centrifugal force at 2,500 rpm as cells 

tend to be flocculent. 425 µL of PBS was added to cell pellet and mixed well 

before transferred to round bottom tube. 50 µL of RNase A solution (1 mg/mL) 

was added and incubate at 37ºC for 15 mins. Then, 25 µL of propidium iodide 

(PI) (1 mg/mL) was added to cells and left on ice in the dark for 10 mins prior 

to cell cycle analysis using CyAn™ ADP Analyzer flow cytometer (Beckman 

Coulter). The PI stained cells were analyzed using ModFit LT software for 

DNA cell cycle distribution and sub-G1 group as representative group of 

apoptosis.  

 

2.12 Caspase-3 and caspase-8 activity 

Caspase-3 and caspase-8 fluorometric assays were evaluated using 

Caspase-3 DEVD-R110 Fluorometric and Colorimetric Assay Kit and 

Caspase-8 IETD-R110 Fluorometric and Colorimetric Assay Kit (Biotium). 

HK-1 cells were seeded on a black 96-well plate at cell density 2 × 10
4
 cells 

per well. Untreated cells and cells treated with 22 μg/mL cardamonin were 

incubated for 24, 48 and 72 hrs at 37ºC under 5% CO2. Cells were then spun 
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down at 1,800 rpm for 5 mins. Culture medium was aspirated from each well 

and 50 μL of cell lysis buffer was added to each well. The 96-well plate was 

then incubated on ice for 10 mins before cell lysates were being transferred to 

microcentrifuge tubes. The tubes were centrifuged at 4ºC to pellet the insoluble 

cell debris. A total of 50 μL of Assay Buffer was added to each tube and mixed 

well. To verify that signal detected was due to caspase activity, an induced 

sample was added with 1 μL of enzyme inhibitor. All samples were then 

incubated at room temperature for 15 mins. Subsequently, 5 μL of 1mM 

enzyme substrate was added to each sample and mixed well. All samples were 

incubated at 37ºC for 2 hrs and fluorescence was measured at 470 nm 

excitation and 520 nm emission. A R110 reference standard was prepared to 

generate a standard curve to quantify the amount of caspase generated. 

 

2.13 Reactive Oxygen Species (ROS) production using Cellular 

Antioxidant Activity (CAA) assay 

1×10
4
 cells were seeded in a 96-well clear bottom black plate. After 24 

hrs, media were removed from all wells. Cells were washed gently with sterile 

phosphate buffered saline (PBS) for three times. 50 μL of 2’,7’-

dichlorohydrofluorescin diacetate (DCFH-DA) probe were added to each well. 

50 μL of quercetin standard and cardamonin (at various concentrations of 0, 

12.5, 25, 50, 100 and 200 μM) were added to respective wells in triplicates. 

The plate was incubated for 60 mins at 37ºC. After incubation, all solutions 

were carefully removed. Cells were washed gently with sterile PBS for three 

times. 100 μL of free radical initiator were added to each well. Immediately, 

fluorescence reading was taken using Thermo Scientific Varioskan Flash 
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multimode plate reader at 37ºC with excitation wavelength of 480 nm and 

emission wavelength of 530 nm. Fluorescence was read at five-minute interval 

for a total one hour. Using the data generated from fluorescence values, the 

area under the curve (AUC) were integrated versus time. AUC values were 

used to determine cellular antioxidant activity (CAA) according to the formula 

below: 

CAA units = 100 – [(AUCantioxidant / AUCcontrol) × 100] 

From CAA versus concentration curve, half maximal effective concentration 

(EC50) values were generated. All results were analyzed using Microsoft Excel 

2007. 

 

2.14 JC-1 Mitochondrial Membrane Potential Assay 

5×10
4
 cells per 100 μL were seeded in a 96-well clear bottom black 

microplate. After 24 hours, media were removed from all wells and treated 

with cardamonin (IC50 = 22 μg/mL). After 3 and 6 hrs of treatment, 10 μL of 

JC-1 staining solution was added to each well and gently mixed. Cells were 

incubated at 37ºC for 20 mins for staining. After incubation, the plate was 

centrifuged at 1,800 rpm at room temperature for 5 mins. Supernatant in each 

well was removed prior to addition of 200 μL of assay buffer. The plate was 

centrifuged at 1,800 rpm at room temperature for 5 mins. This washing step 

was repeated twice. Finally, 100 μL of assay buffer was added to each well. 

Fluorescence reading was taken using Thermo Scientific Varioskan Flash 

multimode plate reader with excitation wavelength of 485 nm and emission 

wavelength of 535 nm for JC-1 monomers (apoptotic or unhealthy cells) and 
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excitation wavelength of 560 nm and emission wavelength of 595 nm for J-

aggregate (healthy cells). The ratio of fluorescent intensity of J-aggregates to 

monomers is used as an indicator of cell health. 

Changes in mitochondrial membrane potential stained with JC-1 were 

analyzed using Fluoview 1000 laser scanning confocal microscope (Olympus 

IX 81 Motorized Inverted Microsope).  100 µL of JC-1 staining solution per 

mL of CGM was added to each chamber on chamber slide and incubated in the 

dark for 15 mins at 37ºC. JC-1 can selectively enter into mitochondria and 

forms J-aggregates in healthy cells with high mitochondrial membrane 

potential. J-aggregates will emit intense red fluorescence whereas in cells with 

low mitochondrial membrane potential, JC-1 remains as monomers and emit 

green fluorescence.  

 

2.15 ADP/ATP Ratio Assay  

1×10
4
 cells were seeded in a 96-well clear bottom white opaque 

microplate. After 24 hrs, media were removed from all wells and treated with 

cardamonin (IC50 = 22 μg/mL). All media were removed after 3 and 6 hours of 

exposure to cardamonin. 90 μL of ATP reagent (A pre-mixture of 95 μL of 

assay buffer, 1 μL of luciferin substrate, 1 μL of ATP-Mg
2+

 cosubstrate and 1 

μL of ATP enzyme) was added to each well and mixed by tapping the sides of 

the plate. After 1 min, luminescence (RLU A) was read using Thermo 

Scientific Varioskan Flash multimode plate reader. After 10 mins, 

luminescence was read again (RLU B). RLU B measures the background prior 

to ADP luminescence reading, also known as ATP residual signal. For ADP 

measurement, 5 μL of ADP reagent (A pre-mixture of 5 μL of sterile distilled 
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water and 1 μL of ADP enzyme) was added to each well and mixed well by 

tapping the sides of the plate. After 1 min, luminescence (RLU C) was read. 

ADP/ATP ratio of each sample was calculated using the formula below: 

ADP/ATP = RLU C – RLU B          

                       RLU A                    

 

 

2.16 Detection of mitochondrial-dependent pathway associated proteins 

using western blotting 

Western blot is a method to separate and identify protein of interest 

expressed in cells. Proteins extracted from tissues or cells are separated based 

on different molecular weight through gel electrophoresis (Sodium Dodecyl 

Sulfate Polyacrylamide Gel Electrophoresis, SDS-PAGE). Polyacrylamide gel 

is formed from polymerization of acrylamide and N,N-methylenebisacrylamide 

(Bis) which consists of a three dimensional networks of long hydrocarbon by 

crosslink of methylene groups. Separated proteins are then transferred to 

blotting membrane (nitrocellulose) where proteins retain the same arrangement 

(mirror image) of separation they had on gel. Then, the membrane is incubated 

with a generic protein (such as milk proteins) to bind non specific proteins on 

the nitrocellulose membrane. The membrane is incubated with antibody that 

binds specifically to protein of interest. This antibody is known as primary 

antibody. The membrane is washed to remove all unbound primary antibody 

prior to incubation with secondary antibody. Secondary antibody is labeled 

with a dye or an enzyme (usually horseradish peroxidase) which develop 

colour with substrate and can be directly viewed and scanned with a 

densitometer (Figure 12). Theoretically, antibodies specific to the protein of 
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interest should produce a single band and the thickness of the band is highly 

dependent on the amount of proteins present (Mahmood and Yang, 2012).  
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(Kurien and Scofield, 2006) 

Figure 12: The schemetic diagram above described the flow work of western 

blotting to detect protein being expressed. (A) Proteins extracted were 

separated using SDS-PAGE. Multiple bands can be viewed after proteins of 

different molecular weight migrate. (B) A mirror image of SDS-PAGE gel is 

being transferred to blotting membrane through electro blotting system. (C) 

Primary antibody binding to a specific band (known as antigen which can be a 

polypeptide or carbohydrate) on the blot. (D) Secondary antibody conjugated 

with horse radish peroxidase (HRP) binding to primary antibody. HRP (for 

amplification of signal detection) converts chromogenic subtrates (eg. 

3,3’,5,5’-Tetramethylbenzidine, TMB) into colored products. (E) Color of the 

specific band being developed and can be detected colorimetrically. 
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2.16.1 Preparation of cell lysate (proteins) from cardamonin-treated HK-1 

cells 

HK-1 cells were treated with 22 μg/mL of cardamonin at 24, 48 and 72 

hrs. Cells were harvested and centrifuged at 2,500 rpm for 5 mins. Cells were 

counted to approximately 5×10
6
 cells before being washed with PBS in a 1.5 

mL tube. Cell pellet was then re-suspended in 400 μL of PRO-PREP solution 

(volume differs depending on number of cells harvested). The cells are 

incubated in -20ºC freezer for 15 mins to induce cell lysis. After incubation, the 

cells were spun down at 13,000 rpm at 4ºC for 5 mins. The supernatant was 

transferred to a new 1.5 mL tube and labeled as cell lysate which contains 

highly purified proteins. Protein extraction was repeated for control and 3, 6, 9, 

12, 18 hrs exposure to cardamonin against HK-1 cell line to identify the 

expression of proteins an extended period of time. 

 

2.16.2 Protein concentration determination 

5 μL of protein sample or bovine serum albumin (BSA) protein 

standard was mixed well with 200 μL of 1X Bradford dye reagent in 96- 

microplate wells on plate shaker for 30 seconds. Plate is incubated for 10 mins 

at room temperature (RT). After incubation, absorbance is measured at 595 nm 

using Thermo Scientific Varioskan Flash multimode plate reader. A BSA 

standard curve was plotted to quantify the concentration of proteins in the 

extracted samples. Three repeats were measured for all samples and standard. 
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2.16.3 Gel electrophoresis for protein separation in 24, 48 and 72 hrs 

cardamonin-induced HK-1 cells 

11.9 μg of extracted protein samples (control and 22 μg/mL of 

cardamonin-treated HK-1 cells) (Appendices 7.10.2.2) were heated in 90ºC 

water bath for 10 mins to unfold and expose its long polypeptide chain. A total 

of 18 μL from each sample was loaded on 10-well gel casted with 4% of 

stacking gel and 12% of resolving gel. 6 μL of PageRuler unstained protein 

ladder was loaded as a reference to determine molecular weights of proteins. 

Gel electrophoresis was run at 120V for 1 hr 20 mins. Gel was carefully 

removed from casting plates and washed three times with distilled water. After 

washing, gel was left to shake overnight at 60 rpm in 30 mL of 1X Bio-Safe 

Coomassie Stain. Next day, Coomassie stain was replaced with destaining 

solution (67.5% distilled water, 25% methanol and 7.5% acetic acid) to destain 

Coomassie Stain and this step was repeated at least three times at 1 hr interval 

until protein bands are completely visible. Gel was washed with distilled water 

before being viewed using a GS-800 calibrated densitometer (Bio-Rad 

Laboratories).  

 

2.16.4 Gel electrophoresis for protein separation in 0 to 24 hrs 

cardamonin-induced HK-1 cells through optimization of resolving gel 

percentage  

Proteins were separated on polyacrylamide gel based on gel pore size 

by manipulation of cross linkage agent, Bis. The smaller the size of protein, the 
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higher the percentage of PAGE gel is used to retain protein. Because the 

molecular weight of proteins of interest varied, an optimization of gel 

percentage was conducted. Resolving gels were casted at four different 

percentages of Bis (Appendices 7.10.2.1). 30 μg of protein samples extracted 

from cardamonin-treated HK-1 cells at 0-24 hrs (Appendices 7.10.2.3) were 

heated at 90ºC for 10 mins and loaded on 8%, 10%, 12% and 15% resolving 

gels to separate proteins according to different molecular weight of proteins. 

Gel electrophoresis was run at 120V between 1 hr and 1hr 20 mins.  

 

2.16.5 Visualization of proteins in gel 

After gel electrophoresis, gel was carefully removed from casting plates 

and washed three times with distilled water. After washing, gel was left to 

shake overnight at 60 rpm in 30 mL of 1X Bio-Safe Coomassie Stain. Next day, 

Coomassie stain was replaced with destaining solution (67.5% distilled water, 

25% methanol and 7.5% acetic acid) to destain Coomassie Stain and this step 

was repeated at least three times at 1 hr interval until protein bands are 

completely visible. Gel was washed with distilled water before being viewed 

using a GS-800 calibrated densitometer (Bio-Rad Laboratories).  

 

2.16.6 Protein transfer (Electro blotting) 

Proteins were transferred from gel to blotting membrane (nitrocellulose) 

through wet transfer. In wet transfer, the gel and membrane are sandwiched 

between filter paper and blotting pad. The sandwich will then be submerged in 
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transfer buffer where an electrical field is applied to the system. Negatively-

charged proteins will travel towards anode, a positively-charged electrode until 

all proteins are being transferred onto the nitrocellulose membrane. Filter 

papers, blotting pads and nitrocellulose membrane were fully saturated in 

transfer buffer (10X Tris/Glycine) before being sandwiched in an arrangement 

shown in Figure 13. Before placing the last two blotting pads, a pipette was 

used to gently roll over the surface of the filter paper to ensure all air bubbles 

were removed. Sandwich was carefully placed into the blot module and 

positioned in the electro-blotting tank. Transfer buffer was fully filled into blot 

module and distilled water was filled into the gel tank to cool the electro-

blotting system. Electro-blotting was allowed to run at 25V for 80 mins (after 

at least three replicate of optimization). 

 

 

 

 

 

 

 

Figure 13: Electro blotting arrangement. 
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2.16.7 Blocking and Detection  

The membrane was soaked in Tris Buffered Saline (TBS) containing 

5% low fat milk (Anlene) and 1% Tween-20 (blocking buffer) overnight with 

agitation (60 rpm) at 4ºC. Primary antibody (1:1500 dilution) added in a fresh 

15 mL of blocking buffer was incubated with membrane for 2 hrs with 

agitation (60 rpm) at room temperature. Membrane was washed for three times 

with 5-minute intervals with 10 mL of TBS-Tween. A secondary antibody 

(1:1500 dilution) prepared in a fresh 15 mL blocking buffer was added to 

membrane and allowed agitation (60 rpm) for another 1 hr 30 mins at room 

temperature. Membrane was washed four times, three with TBS-Tween and 

finally with distilled water at 5-minute intervals. Lastly, membrane was washed 

with 1 mL of TMB Membrane Peroxidase Substrate Ready-To-Use (Rockland 

Immunochemicals Inc.) until protein bands were observed (usually 5-10 mins). 

Membrane was dried at room temperature before being viewed using GS-800 

calibrated densitometer (Bio-Rad Laboratories).  

 

2.16.8 Loading control 

Glyceraldehyde 3-phosphate dehydrogenase (GADPH) is an enzyme 

involved in glycolysis. It acts as a housekeeping protein and hence it was used 

as loading control to ensure uniform and equal loading efficiency of protein 

lysate. The membrane was blocked overnight in TBS-Tween containing 3% 

Bovine Serum Albumin (BSA). Membrane was then incubated with Anti-

GADPH primary antibody (1:6000 dilution) for 1 hr at room temperature with 
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agitation (60 rpm). Washing was done with TBS-Tween according to Method 

2.5.2. Secondary antibody, Rabbit Anti-Mouse (1:6000 dilution) was incubated 

for another hour before detection using GS-800 calibrated densitometer (Bio-

Rad Laboratories). Signal intensities were quantified using Quantity One 1-D 

Analysis software (Bio-Rad). 

 

2.17 Relative quantification of caspase-9 gene expression level using 

real-time PCR 

In current research, caspase-9 expression level will be evaluated using 

real time reverse transcriptase polymerase chain reaction (RT-PCR). PCR is a 

biochemical process using a relatively small quantity of starting material (short 

DNA sequences) to amplify specific DNA sequences of interest on a longer 

double-stranded DNA. Real-time PCR (qPCR) is used to quantify amount of 

amplified products (amplicons) by incorporation of a fluorescent reporter 

molecule. Real-time assay is the time point where first PCR product is detected 

during thermal cycling. Fluorescence intensity is proportional to each DNA 

molecule amplified. Amplification of a specific DNA sequence during PCR 

mimics the process of DNA replication. It requires thermophilic DNA 

polymerase and primers to synthesis new DNA copies (Bustin, 2005). In 

current research, qPCR is done in a single tube reaction using a thermal cycler 

machine for DNA synthesis. Ribonucleic acid (RNA) will be used as starting 

material to synthesis complementary DNA (cDNA). cDNA is synthesized 

using Invitrogen Superscript III reverse transcriptase enzyme (Life 
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Technologies). Target gene of interest on cDNA will be amplified in three 

steps.  

These 3 steps complete one PCR cycle whereby specific DNA sequence 

expressing gene of interest is amplified (Figure 14). Step 1 involves denaturing 

of double-stranded DNA at high temperature (95°C) to yield single-stranded 

DNA (Step 1: Denaturation). Single-stranded DNA containing base pairs is 

now exposed and ready for step 2. Step 2 involves attachment of primers to 

specific DNA sequence on single stranded DNA. Primers are oligonucleotides 

that are short, single-stranded and complementary to a defined sequence on 

each strand of double-stranded DNA. It allows DNA polymerase (Taq 

polymerase) to attach at its site to extend and replicate complementary strand 

(Step 2: Annealing). Final step of PCR cycle is extension of primers by adding 

deoxynucleotide triphosphates (dNTPs) specifically at the phosphate backbone 

(Elongation) (Mullis and Faloona, 1987).  

The fluorescence intensity emitted during qPCR is directly proportional 

to the amount of amplicons produced. In this research, SYBR Green I (Life 

Technologies) is used as a fluorescent dye that binds directly to double 

stranded DNA synthesized from each qPCR cycle. As amplicons are generated 

fluorescence intensity increases exponentially with each qPCR cycle. After a 

few initial qPCR cycles where baseline fluorescence are generated (threshold 

level), following cycles will generate fluorescence signal that crosses threshold 

level which is where true amplification is quantified (Figure 15). This is when 

reaction reaches exponential phase. Eventually when the fluorescence intensity 

saturates the detector of qPCR machine, amplicons become abundant and 
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reaches plateau phase. The cycle number at which reaction reaches exponential 

phase is termed threshold cycle (CT). CT represents the beginning of 

exponential phase where first significant fluorescent signal is taken into 

account for quantification (Fraga et al., 2008).  

CT value is important for relative quantification of gene expression level. 

In current research, we are interested in relative quantification of caspase-9 

gene expression level compared to level of expression in control group. In 

addition, we utilized a reference gene (GADPH) as a normalization of the 

assay. Fold difference expressed in relative level is obtained based on CT 

values. Non-template control will be used as negative control containing no 

RNA template (Livak and Schmittgen, 2001).  

Livak method is used for relative quantification of caspase-9 gene 

expression level.  It is also known as 2
-∆∆CT method where this equation is used 

for relative quantification. This method requires a target (caspase-9) and a 

reference gene (GADPH). Calculations of gene expression relative 

quantification require 3 steps. Step 1 is to normalize CT value of target gene to 

CT value of reference gene (∆CT). Step 2 involves normalization of ∆CT of test 

sample to ∆CT of control group (∆∆CT). In step 3, normalization of expression 

ratio based on ∆∆CT obtained in step 2 using formula 2
-∆∆CT 

derived by Livak 

and Schmittgen (Livak and Schmittgen, 2001). 

 Melting curve analysis will be run at the end of qPCR thermal 

cycles at 40
°
C for 1 min to determine the dissociation-characteristics of 

amplicons by increasing temperature to dissociate double-stranded DNA 

synthesized. Melting point of amplicon can be determined where 50% of the 
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DNA is denatured. The energy required to break hydrogen bonding between 

base pair of double-stranded DNA is dependent on their length, GC (guanine-

cytosine) content and complementary. Hence, melting point of amplicon is 

specific to the product of interest. It acts as a reference if amplicon is the 

product expressing gene of interest. In addition, pattern of melting curve can be 

used to determine purity of amplicons and the presence of primer-dimer effect 

(Ririe et al., 1997). qPCR product will be analyzed on agarose gel 

electrophoresis to estimate the length of the amplicons.   

 

 

Figure 14: Polymerase chain reaction (PCR) cycle. 
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Figure 15: Exponential curve of real-time PCR showing different phases.  

  

1×10
6
 HK-1 cells treated with cardamonin were harvested after 24 hrs of 

exposure. Cells were washed with PBS prior to total RNA extraction using 

RNAqueous®-4PCR Total RNA Isolation Kit (Invitrogen). 350 µL of 

lysis/binding buffer was added to cell pellet and vortex vigorously by pipetting 

until lysate is homogenous. 350 µL (equal volume) of 64% ethanol (EtOH) 

solution was added to the lysate and mixed gently by pipetting and inverting 

tube. Lysate/EtOH mixture was filtered through filter cartridge and collection 

tube by applying centrifugal force at 13,000 rpm for 1 min. Flow-through was 

discarded and filter cartridge was washed with 700 µL of wash solution #1 by 

centrifugation at 13,000 rpm for 1 min. Flow-through was discarded and 

washed with again with wash solution #2/3 by centrifugation at 13,000 rpm for 

1 min. This washing step was repeated once. Filter cartridge was placed on a 
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new collection tube. 60 µL of pre-heated (80ºC) elution solution was applied to 

the centre of filter cartridge and centrifuged at 13,000 rpm for 30 secs. 40 µL 

of elution solution was added to the filter cartridge and centrifuged again. Both 

eluted solutions contain RNA needed for real-time PCR. Next, 10 µL of DNase 

1 buffer and 1 µL of DNase 1 were added to the eluted RNA and incubated for 

30 mins at 37ºC to remove contaminating DNA.  Next, 11 µL of DNase 

inactivation reagent was added and incubated at room temperature for 2 mins 

by gently flicking the collection tube. This step is crucial to prevent DNase 1 

from degrading products (DNA) during PCR. Then, the tube was centrifuged at 

13,000 rpm for 1 min to pellet DNase inactivation reagent. The supernatant 

containing RNA was transferred to a new tube for storage.  

Purity and quantification of RNA was determined using UV absorbance. 

Aliquot of RNA was diluted in Tris-EDTA (TE) buffer at ratio 1:50 (2 µL of 

RNA aliquot to 100 µL of TE buffer).Absorbance was read at 260 nm and 280 

nm with TE buffer as blank using Thermo Scientific Varioskan Flash 

multimode plate reader. The concentration of RNA aliquot was quantified 

using the equation below: 

 

Since A260 of 1 is equivalent to 40 µg RNA/mL, 

Hence, A260 × dilution factor × 40 = µg RNA/mL 

Purity of eluted RNA is determined by ratio of A260/ A280 where it should fall 

in the range of 1.8-2.1. 

 Agarose gel electrophoresis was conducted to estimate the integrity and 

purity of total RNA extracted. Total RNA was separated on 1% agarose gel 

containing 1.5 µL SYBR Safe at 80V for 90 mins. Separated RNA molecules 
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were visualized under UV light illuminator (ChemiDoc XRS system, BioRad). 

28S and 18S ribosomal RNA bands should be observed with intensity of upper 

band is twice of the lower band.  

 To evaluate expression of caspase-9, quantitative RT-PCR was 

performed using Eco Real-Time PCR system (Illumina). Superscript III 

Platinum SYBR Green One-Step qRT-PCR kit (Invitrogen) combines 

proprietary Superscript III Reverse Transriptase (RT) and Platinum Taq DNA 

polymerase in a single enzyme mix together with SYBR Green I fluorescent 

dye. Hence, cDNA synthesis and PCR are performed in a single tube by using 

RNA as starting material. cDNA was synthesized in a single 20-µL reaction 

containing 0.4 µL of Superscript III RT/Platinum TaqMix, 10 µL of 2X SYBR 

Green Reaction Mix (containing 0.4 mM of each dNTP and 3.2 mM of 

MgSO4), 0.4 µL of 10 µM forward primer and reverse primer each and 1 ng/µL 

of RNA aliquot. Thermal cycling conditions were set for cDNA synthesis for 3 

mins hold at 50ºC, followed by 5 mins activation of DNA polymerase and 

denaturation at 90ºC. 40 cycles of annealing and amplification were performed 

at 95ºC for 15 secs and 60ºC for 30 secs respectively. The products were 

incubated for 1 min at 40ºC prior to melting curve analysis.  

 Amplicons were separated on a 2% agarose gel electrophoresis at 80V 

for 60 mins. Gel was visualized under UV light illuminator (ChemiDoc XRS 

system, BioRad). 

Specific primers used were: Homo caspase-9 forward (F) primer (5’ 

TGTCCTACTCTACTTTCCCAGGTTTT 3’), homo caspase-9 reverse (R)  

primer  (5’ GTGAGCCCACTGCTCAAAGAT 3’), GADPH forward (F) 
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primer (5’ ACACCCACTCCTCCACCTTT 3’) and GADPH reverse (R) 

primer (5’ TAGCCAAATTCGTTGTCATACC). 

 Eco Real-Time PCR system software v5.0 was employed for relative 

quantification to generate a real-time amplification plot based on the 

normalized fluorescence signal. Threshold cycle (CT); cycle number at which 

detectable signal is significant was used as a relative quantification to initial 

number of target copies in the starting material. GADPH was used as a 

reference gene to quantify the number of fold decrease or increase in caspase-9 

expression level.   

 

2.18 Statistical Analysis 

 The results of triplicate experiments were obtained and the values were 

presented in the form of mean ± standard deviation (S.D.). One-way analysis of 

variance (ANOVA)’s Dunnett’s Multiple Comparison Test and t-test were 

applied to analyze the difference from the respective controls for each 

experiment. All analyses were done using GraphPad Prism 5 software and 

Microsoft Excel 2007. The signal intensities of various protein bands were 

quantified using Quantity One 1-D Analysis Software (Bio-Rad Laboratories, 

Munich, Germany). 

 

 

 

 

 



78 

 

3.0 RESULTS 

3.1 Phytochemical analysis 

Methanolic crude extract of curry leaf (Murraya koenigii) revealed the 

presence tannins and flavonoids where as both ethyl acetate and hexane crude 

extracts of curry leaf (Murraya koenigii) showed the presence of alkaloids 

(Table 1). Steroids were also present in hexane crude extract of curry leaf 

(Murraya koenigii). 

As for temu kunci (Boesenbergia rotunda), all three crude extracts 

revealed the presence of flavonoids and alkaloids. Other phytochemicals were 

not present in these crude extracts. 

In spring onion leaf (Allium cepa), both methanolic and ethyl acetate 

crude extracts contained tannins where as hexane crude extract revealed the 

presence of flavonoids. Only methanolic crude extract of mushroom bean 

(Phaseolus vulgaris) gave positive results in phytochemical tests compared to 

the crude extracts of mushroom bean (Phaseolus vulgaris) with the presence of 

phlobatannins and steroids. 

All crude extracts of bunga kantan (Phaeomeria imperialis) revealed 

the presence of saponins. Methanolic solid (S1) contained phlobatannins where 

as alkaloids were present in ethyl acetate and hexane crude extracts of bunga 

kantan (Phaeomeria imperialis). Flavonoids were present in methanolic crude 

extract of bunga kantan (Phaeomeria imperialis). 

Glycosides and terpenoids were not present in all crude extracts. 

It is important to note that both flavonoid and alkaloid contribute 

greatly as backbone in development of anticancer drug. In current research, all 
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three crude extracts of temu kunci (Boesenbergia rotunda) revealed the 

presence of flavonoids and alkaloids which suggests further investigate on the 

roles of these phytochemicals in search for a single anticancer agent. 
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Table 1: Phytochemical constituents of various crude extracts of curry leaf (Murraya koenigii), temu kunci (Boesenbergia 

rotunda), spring onion leaf (Allium cepa), mushroom bean (Phaseolus vulgaris), bunga kantan (Phaeomeria imperialis). 

 

■ represents the presence of the constituent; - represents the absence of the constituent; M represents the methanolic crude extract; 

EA represents ethyl acetate crude extract; H represents hexane crude extract; S1 represents methanolic solid 1 

Phytochemical 

test 

Edible plant 

Curry leaf          

(Murraya koenigii) 

Temu kunci 

(Boesenbergia 

rotunda) 

Spring onion leaf 

(Allium cepa) 

Mushroom bean 

(Phaseolus vulgaris) 

Bunga kantan 

(Phaeomeria imperialis) 

M EA H M EA H M EA H M EA H    M    EA  H S1 

Tannins ■ ■ - - - - ■ ■ - - - - ■ - - - 

Saponins - - - - - - - - - - - - ■ ■ ■ ■ 

Phlobatannins - - - - - - - - - ■ - - - - - ■ 

Flavonoids ■ - - ■ ■ ■ - - ■ - - - ■ - - - 

Steroids - - ■ - - - - - - ■ - - - - - - 

Alkaloids - ■ ■ ■ ■ ■ - - - - - - ■ ■ - - 

Glycosides - - - - - - - - - - - - - - - - 

Terpenoids - - - - - - - - - - - - - - - - 
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3.2 Total phenolic content 

  

Both crude ethyl acetate of curry leaf (Murraya koenigii) and temu 

kunci (Boesenbergia rotunda) showed highest amount of phenolic content 

compared to other plant crude extracts with 86.15±2.156 mg gallic acid 

equivalents/g of sample and 113.9±0.7315 mg gallic equivalents/g of sample 

respectively (Figure 16). As for bunga kantan (Phaeomeria imperialis), crude 

methanolic extract showed highest phenolic content with 67.92±1.381 mg 

gallic acid equivalents/g of sample. All crude extracts of spring onion leaf 

(Allium cepa) and mushroom bean (Phaseolus vulgaris) were reported to 

exhibit low phenolic content.   
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Figure 16: Total phenolic content (mg gallic acid equivalents/g of sample) of various

crude extracts of curry leaf (Murraya koenigii), temu kunci (Boesenbergia rotunda),

spring onion leaf (Allium cepa), mushroom bean (Phaseolus vulgaris) and bunga kantan

(Phaeomeria imperialis). All values are ± S.D. of 3 independent experiments.
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3.3 Total flavonoid content 

 

Crude ethyl acetate of temu kunci (Boesenbergia rotunda) showed 

highest amount of flavonoid content compared to other plant crude extracts 

with 833.0±12.63 mg quercetin equivalents/g of sample (Figure 17). For curry 

leaf (Murraya koenigii), temu kunci (Boesenbergia rotunda) and spring onion 

leaf (Allium cepa), crude ethyl acetate extracts showed highest flavonoid 

content compared to methanolic and hexane crude extracts. All crude extracts 

of bunga kantan (Phaeomeria imperialis) and mushroom bean (Phaseolus 

vulgaris) were reported to exhibit low flavonoid content.   
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Figure 17: Total flavonoid content (mg quercetin equivalents/g of sample) of various

crude extracts of curry leaf (Murraya koenigii), temu kunci (Boesenbergia rotunda),

spring onion leaf (Allium cepa), mushroom bean (Phaseolus vulgaris) and bunga kantan

(Phaeomeria imperialis). All values are ± S.D. of 3 independent experiments.

Crude extracts

T
o

ta
l 

fl
a
v
o

n
o

id
 c

o
n

te
n

t

(m
g

 q
u

e
r
c
e
ti

n
 e

q
u

iv
a
le

n
ts

/g
 o

f 
sa

m
p

le
)



85 

 

3.4 Cytotoxic activity 

3.4.1 Effect of various crude extracts and positive control on HK-1 cell 

viability 

3.4.1.1 Effect of methanol crude extract of bunga kantan on HK-1 cell 

viability 

HK-1 cell line was treated with various concentrations of crude 

methanol extract of bunga kantan from 3.13 µg/mL to 200 µg/mL at 24 and 48 

hrs and cell viability was evaluated (Figure 18). Control group was not treated 

with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was high, ranging from 88.62±0.51% to 107.1±1.33%. None of 

the concentrations gave cell viability lower than 50%. At 48 hrs, none of the 

concentrations showed more than 50% cell inhibition with cell viability 

ranging from 61.85±3.12% to 96.90±1.20%. Extract concentrations of more 

than 50 µg/mL had significant (p<0.001) decrease in viable cells when 

compared to untreated control group. Thus, it can be concluded that crude 

methanolic extract of bunga kantan has low cytotoxic activity against HK-1  

cell line.       
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Figure 18 : Effect of methanol crude extract of bunga kantan on HK-1 cell

viability. Each bar represents the mean  standard deviation (S.D.) from 3
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3.4.1.2 Effect of ethyl acetate crude extract of bunga kantan on HK-1 cell 

viability 

 

HK-1 cell line was treated with various concentrations of crude ethyl 

acetate extract of bunga kantan from 3.13 µg/mL to 200 µg/mL at 24 and 48 

hrs and cell viability was evaluated (Figure 19). Control group was not treated 

with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was high, ranging from 91.25±4.06% to 123.80±2.13%. None of 

the concentrations gave cell viability lower than 50%. At 48 hrs, none of the 

concentrations showed more than 50% cell inhibition with cell viability 

ranging from 71.47±0.61% to 97.63±1.21%. Extract concentrations of 100 and 

200 µg/mL had significant (p<0.001) decrease in viable cells when compared 

to untreated control group. Thus, it can be concluded that crude ethyl acetate 

extract of bunga kantan has low cytotoxic activity against HK-1 cell line.    
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Figure 19: Effect of ethyl acetate crude extract of bunga kantan on HK-1

cell  viability. Each bar represents the mean  standard deviation (S.D.)
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indicate the statistical significant difference with respect to untreated
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3.4.1.3 Effect of hexane crude extract of bunga kantan on HK-1 cell 

viability 

 

HK-1 cell line was treated with various concentrations of crude hexane 

extract of bunga kantan from 3.13 µg/mL to 200 µg/mL at 24 and 48 hrs and 

cell viability was evaluated (Figure 20). Control group was not treated with the 

crude extract. At 24 hrs, the percentage of cell viability in each concentration 

was high, ranging from 74.27±2.51% to 105.3±1.42%. None of the 

concentrations gave cell viability lower than 50%. At 48 hrs, none of the 

concentrations showed more than 50% cell inhibition with cell viability 

ranging from 72.07±2.81% to 102.7±0.66%. Extract concentrations of 50 

µg/mL and above had significant (p<0.001) decrease in viable cells when 

compared to untreated control group. Thus, it can be concluded that crude 

hexane extract of bunga kantan has low cytotoxic activity against HK-1 cell 

line.   
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3.4.1.4 Effect of methanol solid 1 crude extract of bunga kantan on HK-1 

cell viability 

            

HK-1 cell line was treated with various concentrations of crude 

methanolic solid 1 extract of bunga kantan from 3.13 µg/mL to 200 µg/mL at 

24 and 48 hrs and cell viability was evaluated (Figure 21). Control group was 

not treated with the crude extract. At 24 hrs, the percentage of cell viability in 

each concentration was high, ranging from 90.69±1.28% to 108.4±0.78%. 

None of the concentrations gave cell viability lower than 50%. At 48 hrs, none 

of the concentrations showed more than 50% cell inhibition with cell viability 

ranging from 60.51±1.21% to 101.2±1.17%. Extract concentrations of 12.5 

µg/mL and above had significant (p<0.001) decrease in viable cells when 

compared to untreated control group. Thus, it can be concluded that crude 

methanolic solid 1 extract of bunga kantan has low cytotoxic activity against 

HK-1 cell line. 
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Figure 21: Effect of methanol solid 1 crude extract of bunga kantan on

HK-1 cell viability. Each bar represents the mean  standard deviation

(S.D.) from 3 independent experiments (n=3). ***P < 0.001 indicates

the statistical significant difference with respect to untreated control

group.
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3.4.1.5 Effect of methanol crude extract of curry leaf on HK-1 cell viability 

 

HK-1 cell line was treated with various concentrations of crude 

methanolic extract of curry leaf from 3.13 µg/mL to 200 µg/mL at 24 and 48 

hrs and cell viability was evaluated (Figure 22). Control group was not treated 

with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was moderate, ranging from 54.10±2.68% to 108.3±0.48%. 

Treatment with 200 µg/mL of extract showed that approximately half of the 

cell growth was inhibited. At 48 hrs, there was more than 50% growth 

inhibition with 39.65±0.78% cell viability.  Extract concentrations of 100 and 

200 µg/mL had significant (p<0.001) decrease in viable cells when compared 

to untreated control group. Thus, it can be concluded that crude methanolic 

extract of curry leaf has moderate cytotoxic activity against HK-1 cell line. 

 

 

         



94 

 

0

3.
12

5
6.

25
12

.5 25 50 10
0

20
0

0

50

100

150

24hrs

48hrs

*

***

***

***
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3.4.1.6 Effect of ethyl acetate crude extract of curry leaf on HK-1 cell 

viability 

 

HK-1 cell line was treated with various concentrations of crude ethyl 

acetate extract of curry leaf from 3.13 µg/mL to 200 µg/mL at 24 and 48 hrs 

and cell viability was evaluated (Figure 23). Control group was not treated 

with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was moderate, ranging from 59.46±0.40% to 108.3±1.24%. 

Treatment with 50 µg/mL of extract and above showed that about half of the 

cell growth was inhibited. At 48 hrs, slightly less than 50% growth inhibition 

was observed at concentration 25 µg/ml and above ranging from 55.15±0.84% 

to 60.63±0.65%. At 48 hrs, all concentrations had significant (p<0.001) 

decrease in viable cells when compared to untreated control group. Thus, it can 

be concluded that crude ethyl acetate extract of curry leaf has low cytotoxic 

activity against HK-1 cell line. 
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Figure 23: Effect of ethyl acetate crude extract of curry leaf on HK-1
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3.4.1.7 Effect of hexane crude extract of curry leaf on HK-1 cell viability 

 

HK-1 cell line was treated with various concentrations of crude hexane 

extract of curry leaf from 3.13 µg/mL to 200 µg/mL at 24 and 48 hrs and cell 

viability was evaluated (Figure 24). Control group was not treated with the 

crude extract. At 24 hrs, the percentage of cell viability in each concentration 

was moderate, ranging from 58.41±2.06% to 108.5±1.96%. Treatment with 

200 µg/mL of extract showed that about half of the cell growth was inhibited. 

At 48 hrs, there were more than 50% growth inhibition at concentrations 100 

and 200 µg/mL with 43.49±1.62% and 37.58±2.06% cell viability respectively. 

At 24 and 48 hrs, extract concentrations of 50 µg/mL and above had significant 

(p<0.001) decrease in viable cells when compared to untreated control group. 

Thus, it can be concluded that crude hexane extract of curry leaf has high 

cytotoxic activity against HK-1 cell line. 
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3.4.1.8Effect of methanol crude extract of temu kunci on HK-1 cell 

viability 

 

HK-1 cell line was treated with various concentrations of crude 

methanol extract of temu kunci from 3.13 µg/mL to 200 µg/mL at 24 and 48 

hrs and cell viability was evaluated (Figure 25). Control group was not treated 

with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was moderate, ranging from 53.63±1.24% to 106.3±3.93%. 

Treatment with 200 µg/mL of extract showed that about half of the cell growth 

was inhibited. At 48 hrs, there was more than 50% growth inhibition at 

concentrations 200 µg/mL with 38.21±1.79% cell viability. At 24 and 48 hrs, 

extract concentration of 200 µg/mL had significant (p<0.001) decrease in 

viable cells when compared to untreated control group. Thus, it can be 

concluded that crude methanolic extract of temu kunci has moderate cytotoxic 

activity against HK-1 cell line.
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Figure 25: Effect of methanol crude extract of temu kunci on HK-1 cell

viability. Each bar represents the mean  standard deviation (S.D.)
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3.4.1.9 Effect of ethyl acetate crude extract of temu kunci on HK-1 cell 

viability 

 

HK-1 cell line was treated with various concentrations of crude ethyl 

acetate extract of temu kunci from 3.13 µg/mL to 200 µg/mL at 24 and 48 hrs 

and cell viability was evaluated (Figure 26). Control group was not treated 

with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was moderate, ranging from 53.63±1.24% to 95.55±2.20%. 

Treatment with 200 µg/mL of extract showed that slightly less than half of the 

cell growth was inhibited with 53.63±1.24% cell viability. At 48 hrs, about 

50% growth inhibition was observed at concentrations 100 and 200 µg/mL 

with cell viability of 54.91±1.16% and 51.88±1.38% respectively. At 48 hrs, 

concentrations 25µg/ml and above had significant (p<0.001) decrease in viable 

cells when compared to untreated control group. Thus, it can be concluded that 

crude ethyl acetate extract of temu kunci has low cytotoxic activity against 

HK-1 cell line.   
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Figure 26: Effect of ethyl acetate crude extract of temu kunci on HK-1

cell  viability.Each bar represents the mean  standard deviation (S.D.)

from 3 independent experiments (n=3). ***P < 0.001, **P < 0.01 and *P

< 0.05 indicate the statistical significant difference with respect to

untreated control group.
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3.4.1.10 Effect of hexane crude extract of temu kunci on HK-1 cell 

viability 

 

HK-1 cell line was treated with various concentrations of crude hexane 

extract of temu kunci from 3.13 µg/mL to 200 µg/mL at 24 and 48 hrs and cell 

viability was evaluated (Figure 27). Control group was not treated with the 

crude extract. At 24 hrs, the percentage of cell viability in each concentration 

was moderate, ranging from 59.42±1.21% to 100.9±1.76%. At 48 hrs, there 

was more than 50% growth inhibition at concentrations 50 and 100 µg/mL 

with 41.97±0.49% and 37.30±0.57% cell viability respectively. At 24 and 48 

hrs, extract concentrations of 25 µg/mL and above had significant (p<0.001) 

decrease in viable cells when compared to untreated control group. Thus, it can 

be concluded that crude hexane extract of temu kunci has high cytotoxic 

activity against HK-1 cell line.
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3.4.1.11 Effect of methanol crude extract of spring onion leaf on HK-

1 cell viability 

 

HK-1 cell line was treated with various concentrations of crude 

methanol extract of spring onion leaf from 3.13 µg/mL to 200 µg/mL at 24 and 

48 hrs and cell viability was evaluated (Figure 28). Control group was not 

treated with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was high, ranging from 85.46±1.70% to 106.0±2.07%. None of 

concentrations gave cell viability lower than 50%. At 48 hrs, none of the 

concentrations showed more than 50% cell inhibition with cell viability 

ranging from 79.60±2.14% to 104.7±1.77%. Extract concentration of 200 

µg/mL had significant (p<0.001) decrease in viable cells when compared to 

untreated control group. Thus, it can be concluded that crude methanolic 

extract of spring onion has low cytotoxic activity against HK-1 cell line.  
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Figure 28: Effect of methanol crude extract of spring onion on HK-1 cell

viability. Each bar represents the mean  standard deviation (S.D.) from

3 independent experiments (n=3). ***P < 0.001 and **P < 0.01 indicate

the statistical significant difference with respect to untreated control

group.
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3.4.1.12 Effect of ethyl acetate crude extract of spring onion leaf on 

HK-1 cell viability 

 

HK-1 cell line was treated with various concentrations of crude ethyl 

acetate extract of spring onion from 3.13 µg/mL to 200 µg/mL at 24 and 48 hrs 

and cell viability was evaluated (Figure 29). Control group was not treated 

with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was moderate, ranging from 67.03±3.19% to 108.30±0.55%. 

None of the concentrations gave cell viability lower than 50%. At 48 hrs, none 

of the concentrations showed more than 50% cell inhibition with cell viability 

ranging from 58.02±2.39% to 95.65±1.44%. At 24 and 48 hrs, extract 

concentrations of 50 µg/mL and above had significant (p<0.001) decrease in 

viable cells when compared to untreated control group. Thus, it can be 

concluded that crude ethyl acetate extract of spring onion has low cytotoxic 

activity against HK-1 cell line.  
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Figure 29: Effect of ethyl acetate crude extract of spring onion on HK-1 cell  viability.

Each bar represents the mean  standard deviation (S.D.) from 3 independent

experiments (n=3). ***P < 0.001 and **P < 0.01  indicate the statistical significant

difference with respect to untreated control group.

g/mL

Ethyl acetate crude extract

C
e
ll
 v

ia
b

il
it

y
 (

%
)



109 

 

3.4.1.13 Effect of methanol crude extract of temu kunci on HK-1 cell 

viability 

 

HK-1 cell line was treated with various concentrations of crude hexane 

extract of spring onion leaf from 3.13 µg/mL to 200 µg/mL at 24 and 48 hrs 

and cell viability was evaluated (Figure 30). Control group was not treated 

with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was high, ranging from 95.43±0.61% to 106.3±3.25%. None of 

the concentrations gave cell viability lower than 50%. At 48 hrs, none of the 

concentrations showed more than 50% cell inhibition with cell viability 

ranging from 78.94±1.19% to 93.37±3.02%. Extract concentration of 200 

µg/mL had significant (p<0.001) decrease in viable cells when compared to 

untreated control group. Thus, it can be concluded that crude hexane extract of 

spring onion has low cytotoxic activity against HK-1 cell line. 
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Figure 30: Effect of hexane crude extract of spring onion on HK-1 cell  viability.

Each bar represents the mean  standard deviation (S.D. from 3

independent experiments (n=3). ***P < 0.001 and *P < 0.05   indicate the statistical

significant difference with respect to untreated control group.
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3.4.1.14 Effect of methanol crude extract of mushroom bean on HK-

1 cell viability 

 

HK-1 cell line was treated with various concentrations of crude 

methanolic extract of mushroom bean from 3.13 µg/mL to 200 µg/mL at 24 

and 48 hrs and cell viability was evaluated (Figure 31). Control group was not 

treated with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was high, ranging from 101.9±0.39% to 104.9±1.83%. None of 

the concentrations gave cell viability lower than 50%. At 48 hrs, none of the 

concentrations showed more than 50% cell inhibition with cell viability 

ranging from 73.81±1.26% to 100.6±1.88%. For 48 hrs treatment, extract 

concentrations of 25 µg/mL and above had significant (p<0.001) decrease in 

viable cells when compared to untreated control group. Thus, it can be 

concluded that crude methanolic extract of mushroom bean has low cytotoxic 

activity against HK-1 cell line.  
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Figure 31: Effect of methanol crude extract of mushroom bean on HK-1

cell  viability. Each bar represents the mean  standard deviation (S.D.)

from 3 independent experiments (n=3). ***P < 0.001 and **P < 0.01

indicate the statistical significant difference with respect to untreated

control group.
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3.4.1.15 Effect of ethyl acetate crude extract of mushroom bean on 

HK-1 cell viability 

 

HK-1 cell line was treated with various concentrations of crude ethyl 

acetate extract of mushroom bean from 3.13 µg/mL to 200 µg/mL at 24 and 48 

hrs and cell viability was evaluated (Figure 32). Control group was not treated 

with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was moderate, ranging from 77.69±0.02% to 93.49±1.58%. 

None of the concentrations gave cell viability lower than 50%. At 48 hrs, none 

of the concentrations showed more than 50% cell inhibition except at 200 

µg/mL almost half of the cell growth was inhibited with cell viability of 

52.98±1.29%. At 24 and 48 hrs, extract concentrations of 12.5 µg/ml and 

above had significant (p<0.001) decrease in viable cells when compared to 

untreated control group. Thus, it can be concluded that crude ethyl acetate 

extract of mushroom bean has low cytotoxic activity against HK-1 cell line.  
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Figure 32: Effect of ethyl acetate crude extract of mushroom bean on HK-1 cell

viability. Each bar represents the mean  standard deviation (S.D.) from 3

independent experiments (n=3). ***P < 0.001 and *P < 0.05 indicate the statistical

significant difference with respect to untreated control group.
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3.4.1.16 Effect of hexane crude extract of mushroom bean on HK-1 

cell viability 

 

HK-1 cell line was treated with various concentrations of crude hexane 

extract of mushroom bean from 3.13 µg/mL to 200 µg/mL at 24 and 48 hrs and 

cell viability was evaluated (Figure 33). Control group was not treated with the 

crude extract. At 24 hrs, the percentage of cell viability in each concentration 

was moderate, ranging from 83.66±0.21% to 108.5±2.63%. None of the 

concentrations gave cell viability lower than 50%. At 48 hrs, none of the 

concentrations showed more than 50% cell inhibition with cell viability 

ranging from 59.51±1.69% to 87.34±2.47%. At 48 hrs, extract concentrations 

of 6.25 µg/mL and above had significant (p<0.001) decrease in viable cells 

when compared to untreated control group. Thus, it can be concluded that 

crude hexane extract of mushroom bean has low cytotoxic activity against HK-

1 cell line.  
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3.4.1.17 Effect of 5-fluorouracil on HK-1 cell viability 

 

HK-1 cell line was treated with various concentrations of 5-fluorouracil 

from 3.13 µg/mL to 200 µg/mL and cell viability was evaluated (Figure 34). 

Control group was not treated with 5-fluorouracil. At 24 hrs, the percentage of 

cell viability in each concentration showed a constant decrease, ranging from 

41.47±1.87% to 67.24±2.86%. After 48 hrs, more than half of the cancer cells 

were inhibited by 5-fluorouracil at concentrations 12.5 µg/mL and more with 

cell viability ranging from 32.99±2.40% to 67.88±0.54%. The increase of 5-

fluorouracil concentrations against HK-1 cell line had significantly (p<0.001) 

decreased the cell viability when compared to untreated control group. It can 

be concluded chemopreventive drug 5-fluorouracil has high cytotoxic activity 

against HK-1 cell line.   
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Figure 34: Effect of 5-fluorouracil on HK-1 cell viability.  Each bar represents

the mean ± standard deviation (S.D.) from 3 independent experiments (n=3).

***P< 0.001 indicates the statistical significant difference with respect to

untreated control group.
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3.4.2 Effect of various crude extracts on NP-69 cell viability 

3.4.2.1 Effect of methanol crude extract of bunga kantan on NP-69 cell 

viability 

 

NP-69 cell line was treated with various concentrations of crude 

methanol extract of bunga kantan from 3.13 µg/mL to 200 µg/mL at 24 and 48 

hrs and the cell viability was evaluated (Figure 35). Control group was not 

treated with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was moderate, ranging from 59.66±0.44% to 102.2±1.36%. 

None of the concentrations gave cell viability lower than 50%. At 48 hrs, none 

of the concentrations showed more than 50% cell inhibition with cell viability 

ranging from 65.53±1.96% to 90.48±2.10%. Extract concentrations of more 

than 50 µg/mL had significant (p<0.001) decrease in viable cells when 

compared to untreated control group. Thus, it can be concluded that crude 

methanolic extract of bunga kantan has low cytotoxic activity against NP-69 

cell line.  
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Figure 35: Effect of methanol crude extract of bunga kantan on NP-69

cell  viability.Each bar represents the mean  standard deviation (S.D.)

from 3 independent experiments (n=3). ***P < 0.001, **P < 0.01 and *P

< 0.05 indicate the statistical significant difference with respect to

untreated control group.
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3.4.2.2 Effect of ethyl acetate crude extract of bunga kantan on NP-69 cell 

viability 

 

NP-69 cell line was treated with various concentrations of crude ethyl 

acetate extract of bunga kantan from 3.13 µg/mL to 200 µg/mL at 24 and 48 

hrs and the cell viability was evaluated (Figure 36). Control group was not 

treated with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was moderate, ranging from 59.98±1.19 % to 93.83±1.75%. 

None of the concentrations gave cell viability lower than 50%. At 48 hrs, none 

of the concentrations showed more than 50% cell inhibition with cell viability 

ranging from 55.12±1.48% to 94.92±2.51%. Extract concentrations of more 

than 50 µg/mL had significant (p<0.001) decrease in viable cells when 

compared to untreated control group. Thus, it can be concluded that crude ethyl 

acetate extract of bunga kantan has low cytotoxic activity against NP-69 cell 

line.  
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Figure 36: Effect of ethyl acetate crude extract of bunga kantan on NP-69

cell  viability. Each bar represents the mean  standard deviation (S.D.)

from 3 independent experiments (n=3). ***P < 0.001 and *P < 0.05

indicate the statistical significant difference with respect to untreated

control group.
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3.4.2.3 Effect of hexane crude extract of bunga kantan on NP-69 cell 

viability 

              

NP-69 cell line was treated with various concentrations of crude hexane 

extract of bunga kantan from 3.13 µg/mL to 200 µg/mL at 24 and 48 hrs and 

the cell viability was evaluated (Figure 37). Control group was not treated with 

the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was moderate, ranging from 59.26±0.97% to 96.73±2.53%. 

None of the concentrations gave cell viability lower than 50%. At 48 hrs, none 

of the concentrations showed more than 50% cell inhibition with cell viability 

ranging from 52.48±0.70% to 93.37±1.83%. Extract concentrations of more 

than 25 µg/mL had significant (p<0.001) decrease in viable cells when 

compared to untreated control group. Thus, it can be concluded that crude 

hexane extract of bunga kantan has low cytotoxic activity against NP-69 cell 

line. 
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Figure 37: Effect of hexane crude extract of bunga kantan on NP-69

cell  viability. Each bar represents the mean  standard deviation

(S.D.) from 3 independent experiments (n=3). ***P < 0.001, **P <

0.01 and *P < 0.05   indicate the statistical significant difference with

respect to untreated control group.
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3.4.2.4 Effect of methanol solid 1 crude extract of bunga kantan on NP-69 

cell viability 

 

NP-69 cell line was treated with various concentrations of crude 

methanolic solid 1 extract of bunga kantan from 3.13 µg/mL to 200 µg/mL at 

24 and 48 hrs and the cell viability was evaluated (Figure 38). Control group 

was not treated with the crude extract. At 24 hrs, the percentage of cell viability 

in each concentration was moderate, ranging from 61.93±0.22% to 

96.23±3.45%. None of the concentrations gave cell viability lower than 50%. 

At 48 hrs, none of the concentrations showed more than 50% cell inhibition 

with cell viability ranging from 55.62±1.91% to 88.89±1.99%. Extract 

concentrations of more than 6.25 µg/mL had significant (p<0.001) decrease in 

viable cells when compared to untreated control group. Thus, it can be 

concluded that crude methanolic solid 1 extract of bunga kantan has low 

cytotoxic activity against NP-69 cell line.  
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Figure 38: Effect of methanol solid 1 crude extract of bunga kantan on

NP-69 cell  viability. Each bar represents the mean  standard

deviation (S.D.)  from 3 independent experiments (n=3). ***P < 0.001

and **P < 0.01 indicate the statistical significant difference with

respect to untreated control group.

*** *** ***
*** *** ***

**
***

*** *** *** *** ***

C
e
ll
 v

ia
b

il
it

y
 (

%
)



127 

 

3.4.2.5 Effect of methanol crude extract of curry leaf on NP-69 cell 

viability 

 

NP-69 cell line was treated with various concentrations of crude 

methanolic extract of curry leaf from 3.13 µg/mL to 200 µg/mL at 24 and 48 

hrs and the cell viability was evaluated (Figure 39). Control group was not 

treated with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was moderate, ranging from 75.90±1.27% to 109.2±1.49%. 

None of the concentrations gave cell viability lower than 50%. At 48 hrs, none 

of the concentrations showed more than 50% cell inhibition with cell viability 

ranging from 55.90±0.80% to 104.7±1.25%. At 24 hrs, extract concentrations 

of 25 µg/mL and more had significant (p<0.001) decrease in viable cells when 

compared to untreated control group. Thus, it can be concluded that crude 

methanolic extract of curry leaf has low cytotoxic activity against NP-69 cell 

line.  
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Figure 39: Effect of methanol crude extract of curry leaf on NP-69 cell

viability. Each bar represents the mean  standard deviation (S.D.)

from 3 independent experiments (n=3). ***P < 0.001 and **P < 0.01

indicate the statistical significant difference with respect to untreated

control group.
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3.4.2.6 Effect of ethyl acetate crude extract of curry leaf on NP-69 cell 

viability 

 

NP-69 cell line was treated with various concentrations of crude ethyl 

acetate extract of curry leaf from 3.13 µg/mL to 200 µg/mL at 24 and 48 hrs 

and the cell viability was evaluated (Figure 40). Control group was not treated 

with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was moderate, ranging from 72.44±0.59% to 104.8±1.49%. 

None of the concentrations gave cell viability lower than 50%. At 48 hrs, none 

of the concentrations showed more than 50% cell inhibition with cell viability 

ranging from 51.46±0.53% to 104.5±1.20%. Extract concentrations of 25 

µg/mL and more had significant (p<0.001) decrease in viable cells when 

compared to untreated control group. Thus, it can be concluded that crude ethyl 

acetate extract of curry leaf has low cytotoxic activity against NP-69 cell line.  
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Figure 40: Effect of ethyl acetate crude extract of curry leaf on NP-69

cell  viability. Each bar represents the mean  standard deviation

(S.D.) from 3 independent experiments (n=3). ***P < 0.001 indicates

the statistical significant difference with respect to untreated control

group.

*********
***

*********

******

C
e
ll
 v

ia
b

il
it

y
 (

%
)



131 

 

3.4.2.7Effect of hexane crude extract of curry leaf on NP-69 cell viability 

 

NP-69 cell line was treated with various concentrations of crude hexane 

extract of curry leaf from 3.13 µg/mL to 200 µg/mL at 24 and 48 hrs and the 

cell viability was evaluated (Figure 41). Control group was not treated with the 

crude extract. At 24 hrs, the percentage of cell viability in each concentration 

was moderate, ranging from 63.76±1.82% to 107.3±0.50%. None of the 

concentrations gave cell viability lower than 50%. At 48 hrs, none of the 

concentrations showed more than 50% cell inhibition with cell viability 

ranging from 63.76±1.82% to 101.1±0.52%. Extract concentrations of 100 and 

200 µg/mL had significant (p<0.001) decrease in viable cells when compared 

to untreated control group. Thus, it can be concluded that crude hexane extract 

of curry leaf has low cytotoxic activity against NP-69 cell line. 
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Figure 41: Effect of hexane crude extract of curry leaf on NP-69 cell  viability.

Each bar represents the mean  standard deviation (S.D.) from 3

independent experiments (n=3). ***P < 0.001 **P < 0.01 and *P < 0.05

indicate the statistical significant difference with respect to untreated

control group.
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3.4.2.8 Effect of methanol crude extract of temu kunci on NP-69 cell 

viability 

 

NP-69 cell line was treated with various concentrations of crude 

methanolic extract of temu kunci from 3.13 µg/mL to 200 µg/mL at 24 and 48 

hrs and the cell viability was evaluated (Figure 42). Control group was not 

treated with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was moderate, ranging from 64.83±1.43% to 110.8±0.28%. 

None of the concentrations gave cell viability lower than 50%. At 48 hrs, none 

of the concentrations showed more than 50% cell inhibition with cell viability 

ranging from 61.37±2.16% to 100.7±1.04%. Extract concentrations of 25 

µg/mL and more had significant (p<0.001) decrease in viable cells when 

compared to untreated control group. Thus, it can be concluded that crude 

methanolic extract of curry leaf has low cytotoxic activity against NP-69 cell 

line. 
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Figure 42: Effect of methanol crude extract of temu kunci on NP-69

cell  viability. Each bar represents the mean  standard deviation

(S.D.) from 3 independent experiments (n=3). ***P < 0.001, **P <

0.01 and *P < 0.05 indicate the statistical significant difference with

respect to untreated control group.
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3.4.2.9Effect of ethyl acetate crude extract of temu kunci on NP-69 cell 

viability  

 

NP-69 cell line was treated with various concentrations of crude ethyl 

acetate extract of temu kunci from 3.13 µg/mL to 200 µg/mL at 24 and 48 hrs 

and the cell viability was evaluated (Figure 43). Control group was not treated 

with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was moderate, ranging from 70.40±1.25% to 108.6±1.72%. 

None of the concentrations gave cell viability lower than 50%. At 48 hrs, none 

of the concentrations showed more than 50% cell inhibition with cell viability 

ranging from 65.44±0.80% to 103.5±1.77%. Extract concentrations of 25 

µg/mL and more had significant (p<0.001) decrease in viable cells when 

compared to untreated control group. Thus, it can be concluded that crude ethyl 

acetate extract of curry leaf has low cytotoxic activity against NP-69 cell line. 
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Figure 43: Effect of ethyl acetate crude extract of temu kunci on NP-69 cell

viability. Each bar represents the mean  standard deviation (S.D.) from 3

independent experiments (n=3). ***P < 0.001 indicates the statistical significant

difference with respect to untreated control group.
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3.4.2.10Effect of hexane crude extract of temu kunci on NP-69 cell viability 

 

NP-69 cell line was treated with various concentrations of crude hexane 

extract of temu kunci from 3.13 µg/mL to 200 µg/mL at 24 and 48 hrs and the 

cell viability was evaluated (Figure 44). Control group was not treated with the 

crude extract. At 24 hrs, the percentage of cell viability in each concentration 

was moderate, ranging from 69.19±2.50% to 105.3±0.48%. None of the 

concentrations gave cell viability lower than 50%. At 48 hrs, none of the 

concentrations showed more than 50% cell inhibition with cell viability 

ranging from 61.75±1.69% to 94.43±0.17%. Extract concentrations of 25 

µg/mL and more had significant (p<0.001) decrease in viable cells when 

compared to untreated control group. Thus, it can be concluded that crude 

hexane extract of curry leaf has low cytotoxic activity against NP-69 cell line. 
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Figure 44: Effect of hexane crude extract of temu kunci on NP-69 cell

viability. Each bar represents the mean  standard deviation (S.D.)

from 3 independent experiments (n=3). ***P < 0.001 and **P < 0.01

indicate the statistical significant difference with respect to

untreated control group.
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3.4.2.11Effect of methanol crude extract of spring onion on NP-69 cell 

viability 

 

NP-69 cell line was treated with various concentrations of crude 

methanolic extract of spring onion leaf from 3.13 µg/mL to 200 µg/mL at 24 

and 48 hrs and the cell viability was evaluated (Figure 45). Control group was 

not treated with the crude extract. At 24 hrs, the percentage of cell viability in 

each concentration was moderate, ranging from 68.85±1.18% to 95.30±1.63%. 

None of the concentrations gave cell viability lower than 50%. At 48 hrs, none 

of the concentrations showed more than 50% cell inhibition with cell viability 

ranging from 68.75±2.14% to 90.44±1.47%. Extract concentrations of 6.25 

µg/mL and more had significant (p<0.001) decrease in viable cells when 

compared to untreated control group. Thus, it can be concluded that crude 

methanolic extract of spring onion leaf has low cytotoxic activity against NP-

69 cell line. 
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Figure 45: Effect of methanol crude extract of spring onion on NP-69

cell  viability. Each bar represents the mean  standard deviation (S.D.)

from 3 independent experiments (n=3). ***P < 0.001 and **P < 0.01

indicate the statistical significant difference with respect to untreated

control group.
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3.4.2.12Effect of ethyl acetate crude extract of spring onion on NP-69 cell 

viability 

 

NP-69 cell line was treated with various concentrations of crude ethyl 

acetate extract of spring onion leaf from 3.13 µg/mL to 200 µg/mL at 24 and 

48 hrs and the cell viability was evaluated (Figure 46). Control group was not 

treated with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was moderate, ranging from 60.85±2.26% to 119.2±2.49%. 

None of the concentrations gave cell viability lower than 50%. At 48 hrs, none 

of the concentrations showed more than 50% cell inhibition with cell viability 

ranging from 56.28±2.33% to 95.64±1.41%. Extract concentrations of 25 

µg/mL and more had significant (p<0.001) decrease in viable cells when 

compared to untreated control group. Thus, it can be concluded that crude ethyl 

acetate extract of spring onion leaf has low cytotoxic activity against NP-69 

cell line. 
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Figure 46: Effect of ethyl acetate crude extract of spring onion on NP-69 cell

viability. Each bar represents the mean  standard deviation (S.D.) from 3

independent experiments (n=3). ***P < 0.001 and **P < 0.01  indicate the

statistical significant difference with respect to untreated control group.
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3.4.2.13Effect of hexane crude extract of spring onion on NP-69 cell 

viability 

 

NP-69 cell line was treated with various concentrations of crude hexane 

extract of spring onion leaf from 3.13 µg/mL to 200 µg/mL at 24 and 48 hrs 

and the cell viability was evaluated (Figure 47). Control group was not treated 

with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was moderate, ranging from 54.50±0.34% to 114.4±1.68%. 

None of the concentrations gave cell viability lower than 50%. At 48 hrs, none 

of the concentrations showed more than 50% cell inhibition with cell viability 

ranging from 52.07±0.44% to 93.65±1.86%. Extract concentrations of 25 

µg/mL and more had significant (p<0.001) decrease in viable cells when 

compared to untreated control group. Thus, it can be concluded that crude 

hexane extract of spring onion leaf has low cytotoxic activity against NP-69 

cell line. 
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Figure 47: Effect of hexane crude extract of spring onion on NP-69 cell  viability.

Each bar represents the mean  standard deviation (S.D.) from 3 independent

experiments (n=3). ***P < 0.001, **P < 0.01 and *P < 0.05  indicate the statistical

significant difference with respect to untreated control group.
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3.4.2.14Effect of methanol crude extract of mushroom bean on NP-69 cell 

viability 

 

NP-69 cell line was treated with various concentrations of crude 

methanolic extract of mushroom bean from 3.13 µg/mL to 200 µg/mL at 24 

and 48 hrs and the cell viability was evaluated (Figure 48). Control group was 

not treated with the crude extract. At 24 hrs, the percentage of cell viability in 

each concentration was high, ranging from 82.25±2.53% to 117.0±0.75%. 

None of the concentrations gave cell viability lower than 50%. At 48 hrs, none 

of the concentrations showed more than 50% cell inhibition with cell viability 

ranging from 73.88±0.08% to 108.5±0.41%. Extract concentration of 200 

µg/mL had significant (p<0.001) decrease in viable cells when compared to 

untreated control group. Thus, it can be concluded that crude methanolic 

extract of mushroom bean has low cytotoxic activity against NP-69 cell line. 
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Figure 48: Effect of methanol crude extract of mushroom bean on NP-69

cell  viability. Each bar represents the mean  standard deviation (S.D.)

from 3 independent experiments (n=3). ***P < 0.001, P < 0.01 and *P <
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3.4.2.15Effect of ethyl acetate crude extract of mushroom bean on NP-69 

cell viability 

 

NP-69 cell line was treated with various concentrations of crude ethyl 

acetate extract of mushroom bean from 3.13 µg/mL to 200 µg/mL at 24 and 48 

hrs and the cell viability was evaluated (Figure 49). Control group was not 

treated with the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was high, ranging from 82.02±1.10% to 115.6±0.82%. None of 

the concentrations gave cell viability lower than 50%. At 48 hrs, none of the 

concentrations showed more than 50% cell inhibition with cell viability 

ranging from 70.74±0.30% to 107.3±0.41%. Extract concentrations of 100 and 

200 µg/mL had significant (p<0.001) decrease in viable cells when compared 

to untreated control group. Thus, it can be concluded that crude ethyl acetate 

extract of mushroom bean has low cytotoxic activity against NP-69 cell line. 
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Figure 49: Effect of ethyl acetate crude extract of mushroom bean on NP-69

cell  viability. Each bar represents the mean  standard deviation (S.D.) from

3 independent experiments (n=3). ***P < 0.001, **P < 0.01 and *P < 0.05

indicate the statistical significant difference with respect to untreated control

group.
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3.4.2.16Effect of hexane crude extract of mushroom bean on NP-69 cell 

viability 

 

NP-69 cell line was treated with various concentrations of crude hexane 

extract of mushroom bean from 3.13 µg/mL to 200 µg/mL at 24 and 48 hrs and 

the cell viability was evaluated (Figure 50). Control group was not treated with 

the crude extract. At 24 hrs, the percentage of cell viability in each 

concentration was high, ranging from 87.02±3.66% to 115.3±1.97%. None of 

the concentrations gave cell viability lower than 50%. At 48 hrs, none of the 

concentrations showed more than 50% cell inhibition with cell viability 

ranging from 81.77±1.55% to 108.9±0.20%. Extract concentration of 200 

µg/mL had significant (p<0.001) decrease in viable cells when compared to 

untreated control group. Thus, it can be concluded that crude hexane extract of 

mushroom bean has low cytotoxic activity against NP-69 cell line. 

     



150 

 

0

3.
12

5
6.

25
12

.5 25 50 10
0

20
0

0

50

100

150

24hrs

48hrs

g/mL

Hexane crude extract
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viability. Each bar represents the mean  standard deviation (S.D.) from 3
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group.
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3.4.3 IC50 (Concentration that produces 50% growth inhibition) values 

of cytotoxic activity. 

The results indicate IC50 values of methanolic, ethyl acetate and hexane 

crude extracts of curry leaf (Murraya koenigii), temu kunci (Boesenbergia 

rotunda), spring onion leaf (Allium cepa), mushroom bean (Phaseolus vulgaris) 

and bunga kantan (Phaeomeria imperialis) in HK-1 and NP-69 cell lines 

(Table 2). The IC50 values are inversely proportional to the cytotoxic activity 

which means lower IC50 value indicates a higher cytotoxic activity. For HK-1 

cell line, methanolic and hexane crude extracts of curry leaf (Murraya koenigii) 

showed IC50 values less than 200 µg/mL with IC50 values of 177.7±3.684 

µg/mL and 88.92±2.602 µg/mL respectively. Methanolic and hexane crude 

extracts of temu kunci (Boesenbergia rotunda) revealed more than 50% cells 

inhibition at concentrations of 138.6±8.805 µg/mL and 77.86±2.839 µg/mL 

respectively. These crude extracts showed higher IC50 values than positive 

control 5-fluorouracil at 19.43±1.598 µg/mL respectively after 48 hrs treatment. 

As for NP-69 cell line, all crude extracts showed weak cytotoxic 

activity with IC50 value of more than 200 µg/mL. All crude extracts did not 

exhibit cytotoxicity against immortalized nasopharyngeal epithelial (NP-69) 

cell line. 

Hexane crude extract of temu kunci (Boesenbergia rotunda) revealed 

lowest IC50 compared to all other extracts. Hence, hexane crude extract will be 

used as a reference for selection of isolated bioactive compounds published in 

previous literature. 
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Table 2: IC50 values of various crude extracts on HK-1 and NP-69 cell 

lines. 

 

 

 

 

M represents the methanolic crude extract; EA represents ethyl acetate crude 

extract; H represents hexane crude extract; S1 represents methanolic solid 1 

 

 

 

 

 

 

 

 

Edible plant Crude 

extract 

IC50 value (µg/mL) 

HK-1 NP-69 

24 hrs 48 hrs 24 hrs 48 hrs 

Bunga kantan 

(Phaeomeria 

imperialis) 

M >200 >200 >200 >200 

EA >200 >200 >200 >200 

H >200 >200 >200 >200 

S1  >200 >200 >200 >200 

Curry leaf     

(Murraya 

koenigii) 

M >200 177.7±3.684 >200 >200 

EA >200 >200 >200 >200 

H >200 88.92±2.602 >200 >200 

Temu kunci 

(Boesenbergia 

rotunda) 

M >200 138.6±8.805 >200 >200 

EA >200 >200 >200 >200 

H >200 77.86±2.839 >200 >200 

Spring Onion    

(Allium cepa) 

M >200 >200 >200 >200 

EA >200 >200 >200 >200 

H >200 >200 >200 >200 

Mushroom bean 

(Phaseolus 

vulgaris) 

M >200 >200 >200 >200 

EA >200 >200 >200 >200 

H >200 >200 >200 >200 
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3.5 Cytotoxic effects of cardamonin, pinostrobin, naringin and 

hesperidin against HK-1 and NP-69 cell lines 

With these valuable results, we then proceed to carry out the cytotoxic 

effects of compounds found in the crude extracts of temu kunci (Boesenbergia 

rotunda). Compounds were selected based on promising results published by 

previous research team as summarized in Figure 6. 

Four commercially available flavonoids (cardamonin and pinostrobin) 

and polyphenols (naringin and hesperidin) were tested against nasopharyngeal 

carcinoma, HK-1 and immortalized epithelial nasopharyngeal, NP-69 cell lines 

for 24, 48 and 72 hrs to evaluate their cytotoxic effects. Cardamonin was found 

to be cytotoxic against HK-1 cells at IC50 of 47 µg/mL after 48 hrs (Figure 51). 

After 72 hrs of exposure to cardamonin, IC50 was reduced to 22 µg/mL. This 

50% inhibitory concentration (IC50) will be used for all other bioassays in 

proposed mitochondrial-dependent cell death pathway. Hesperidin and naringin 

did not exhibit any cytotoxic effects against HK-1 cell line as all IC50 were 

recorded to be more than 200 µg/mL (Figure 52; Figure 53). As for 

pinostrobin, cytotoxic effect was observed after 72 hrs at IC50 of 38 µg/mL 

(Figure 54). IC50 values were recorded in Table 3.  
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Figure 51: Cytotoxic effect of various concentrations of cardamonin on HK-1 cell viability at 24, 48 and 72 hrs. Each point represents the mean 

± standard deviation (S.D.) from 3 independent experiments (n=3). ***P < 0.001, **P < 0.05 and *P < 0.01 indicate the statistical significant 

difference with respect to untreated control group. 
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Figure 52: Cytotoxic effect of various concentrations of hesperidin on HK-1 cell viability at 24, 48 and 72 hrs. Each point represents 

the mean ± standard deviation (S.D.) from 3 independent experiments (n=3). ***P < 0.001 and *P < 0.01 indicate the statistical 

significant difference with respect to untreated control group. 
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Figure 53: Cytotoxic effect of various concentrations of naringin on HK-1 cell viability at 24, 48 and 72 hrs. Each point represents the 

mean ± standard deviation (S.D.) from 3 independent experiments (n=3). ***P < 0.001 indicates the statistical significant difference with 

respect to untreated control group. 
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Figure 54: Cytotoxic effect of various concentrations of pinostrobin on HK-1 cell viability at 24, 48 and 72 hrs. Each point represents the 

mean ± standard deviation (S.D.) from 3 independent experiments (n=3). ***P < 0.001 and **P < 0.05  indicate the statistical significant 

difference with respect to untreated control group. 
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Table 3: IC50 values for all four commercially available flavonoids and 

polyphenols tested against HK-1 cells. All values were generated from three 

independent experiments (n=3). 

 

Tested compound 

IC50 values (µg/mL) 

Duration of treatment 

(hrs) 

24 48 72 

Cardamonin (Flavonoid) 

 

 

>200 

 

47±2.65 

 

22±0.71 

Hesperidin (Polyphenol) 

 

 

 

>200 

 

 

>200 

 

 

>200 

 

Naringin (Polyphenol) 

 

 

 

 

>200 

 

 

 

>200 

 

 

 

>200 

 

 

Pinostrobin (Flavonoid) 

 

 

 

 

 

>200 

 

 

 

 

>200 

 

 

 

 

38±6.08 
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3.6 Cardamonin induces cell death and decreases cell viability in HK-1 

cells 

 

HK-1 and NP-69 cells were treated with various concentrations (0, 

3.125, 6.25, 12.5, 25, 50, 100 and 200 μg/mL) of cardamonin. MTT assay was 

conducted to evaluate percentage (%) of viable cells in time- and dose-

dependent manner (Figure 51; Figure 56). The results demonstrated that as the 

concentration of cardamonin increases, cell viability of HK-1 cells decreases. 

A time-dependent cytotoxic effect of cardamonin against HK-1 cell line was 

also conducted. At 72 hrs, it was found that 50% of HK-1 cell proliferation was 

inhibited at 22 μg/mL. Cardamonin concentrations of 12.5 µg/mL and above 

had significant (p<0.001) decrease in viable cells when compared to untreated 

control group for up to 72 hrs. Cardamonin-treated NP-69 cells was not 

affected after 24 and 48 hrs. Neverthesless, at 72 hrs, there was a moderate 

cytotoxic activity against NP-69 cells. To further confirm the occurrence of cell 

death, a simple test using trypan blue stain was employed (Figure 55). 

Unstained viable cells were counted using haemocytometer. After 24 hrs 

exposed to cardamonin, more than half of the cell population has decreased. 

More than 4-fold decrease in viable cell count was observed after 72 hrs of 

cardamonin treatment. At all tested time point, there was a significant decrease 

(P <0.001) in viable cell count. Hence, this concentration was used to conduct 

other assays.  
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Figure 55: Cell viability after 24, 48 and 72 hrs treatment with 22 µg/mL of 

cardamonin. Each bar represents the mean ± standard deviation (S.D.) from 

three independent experiments (n=3). *** P < 0.001 indicates the statistical 

significant difference with respect to untreated control group. 
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Figure 56: Cytotoxic effect of various concentrations of cardamonin against NP-69 cell line after 24, 48 and 72 hrs. IC50 at 72 hrs was found at 

112.5 µg/mL of cardamonin. Each point represents the mean ± standard deviation (S.D.) from three independent experiments (n=3). ***P < 

0.001, **P < 0.05 and *P < 0.01 indicate the statistical significant difference with respect to untreated control group. 
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3.7 Cardamonin induces morphological changes in HK-1 cells 

 

HK-1 cells were treated with increasing concentration at 72 hrs to view 

the morphological changes using inverted microscope (×100). At cardamonin-

induced concentration of 12.5 μg/mL, HK-1 cells detached from flask and 

formed clumps of cells floating in medium. Also, detached cells had uneven 

shape and unable to maintain their intact membranes. When cells were exposed 

to cardamonin for more than 25 μg/mL, large number of cells was observed in 

suspension which substantiates the indication of pyknosis (Figure 57A). 

Similar morphological changes were observed in HK-1 cells at 18 hrs of 

exposure to IC50 22 μg/mL cardamonin (Figure 57B). 
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B 

Figure 57: (A) Cardamonin induces HK-1 cellular apoptosis at 72 hrs in dose-

dependent manner. Changes in cell morphology were examined by light 

inverted microscope (×100). (B) HK-1 cells treated with IC50 of 22 µg/mL and 

cell morphological changes were examined (×200) in time-dependent manner. 

Cell shrinkage and plasma membrane blebbing (indicated by red arrows) were 

observed after 18 hrs of treatment. 
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3.8 Cardamonin induces apoptosis in HK-1 cells stained with 

fluorescence dyes 

HK-1 cells treated with 22 μg/mL of cardamonin at 24 and 48 hrs were 

stained with two DNA-binding dyes; acridine orange (AO) and propidium 

iodide (PI) to identify stages of apoptosis occurring in time-dependent manner 

(Figure 58). Acridine orange is able to pass through plasma membrane of 

viable cells and cells that are undergoing early apoptosis and stain DNA. 

Ciapetti et al. (2002) identified that viable cells with intact nucleus emit green 

fluorescence whereas cells undergoing early apoptosis appear dense green with 

chromatin condensation in the nucleus upon excitation of acridine orange. 

Cells stained with propidium iodide emit dense orange fluorescence with 

chromatin condensation. These cells are in their late apoptosis stage whereas 

secondary necrosis cells appear orange with intact nucleus when cells are 

stained with propidium iodide (Ciapetti et al., 2002). From our results, HK-1 

cells showed strong emission of green flouresence in untreated cells but when 

exposed to cardamonin for 24 hrs, cells emit orange red fluorescence more 

densely at the centre of the cells indicating late apoptosis. More dead cells were 

stained with PI after 48 hrs of cardamonin treatment emitting red fluorescence 

as shown in Figure 58(B). 
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Figure 58: HK-1 cells stained with acridine orange and propidium iodide 

fluorescence dyes showed green and orange fluorescence in untreated cells and 

cells treated with 22 μg/mL cardamonin at 24 and 48 hrs. Cell-permeable 

acridine orange stained untreated HK-1 cells and emits green flourescence (A). 

After 24 hrs exposure to cardamonin, propidium iodide stained DNA to emit 

red fluorescence (B & C) in apoptotic cells. Dense orange areas of DNA 

chromatin condensation can be observed in late apoptotic cells after 48 hrs of 

cardamonin exposure (D). A clump of HK-1 cells undergoing late apoptosis 

was observed in an enlarged view (E). Arrows in white indicate cells are 

undergoing apoptosis with uneven shape and no intact nucleus. All cells were 

observed using laser confocal microscope (×400).  
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3.9 Cardamonin induces apoptosis leading to DNA fragmentation 

 

DNA from untreated and treated HK-1 cells were extracted at 24, 48 

and 72 hrs and run on agarose gel for DNA separation (Figure 59). Nuclear 

fragmentation was observed in treated HK-1 cells. In untreated HK-1 cells, 

most DNAs were still intact with high molecular weight DNA strands being 

trapped on the gel. Cardamonin-treated cells showed DNA smearing with 

fragments mostly at 250-1000 base pairs at 48 and 72 hrs suggesting the 

occurrence of apoptosis. DNA sample from 5-fluorouracil-treated (positive 

control) showed DNA fragmentation after 24 hrs. 

 

 

 

 

 

 

 

 

 

 

Figure 59: DNA fragmentation of HK-1 cells when untreated, treated with 19 

μg/mL of anticancer drug, 5-fluorouracil (5-FU) and 22 μg/mL of cardamonin 

at 24, 48 and 72 hrs. DNA agarose gel electrophoresis was performed at 70V 

for 1-2 hrs. 
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3.10 Cell cycle analysis: Cardamonin induces cell cycle arrest at G2/M 

phase and Sub-G1 (apoptotic) phase 

In cell cycle, there are three checkpoints to monitor cell division. 

Checkpoints at different stages in cell cycle prevent complications before cell 

enters mitosis. Hence, cell cycle analysis examines population of cells at 

different phases by their DNA content; these phases are Sub-G1, G0/G1, S and 

G2/M. Sub-G1 represents Gap 0 resting phase (quiescent). Gap 0/Gap 1 

(G0/G1) phase is when cell increase in size ready for DNA synthesis. DNA 

replication occurs in synthesis (S) phase. Gap 2/Mitosis (G2/M) phase prepares 

cell to enter mitosis and divide.  Cells at G0/G1 phase are diploid, having DNA 

content of 2n where as cells within G2/M phase contain DNA content 4n. In S 

phase, DNA content is between 2n and 4n as cells are undergoing DNA 

replication. Apoptotic cells contain DNA content of less than 2n which can be 

observed in Sub-G1 phase. The difference in DNA content allows propidium 

iodide, a DNA-binding fluorescent dye to emit different intensities which will 

be quantified using flow cytometry. 

 

In current results, cardamonin induces cell cycle arrest at G2/M and 

Sub-G1 phase (apoptotic cells) (Figure 60). It was found that cardamonin-

treated HK-1 cells after 12 hrs resulted in higher number of cells in G2/M 

phase (49.57%) compared to control group (3.58%) (Figure 61). Concurrently, 

cell population in G0/G1 phase after 12 hrs exposure to cardamonin showed a 

decrease (11.20%) in respect with control group (70.41%). An increase in 

apoptotic cells (Sub-G1 phase) was found after 12 hrs incubation with 
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cardamonin. More than 36% HK-1 cells were accumulated in Sub-G1 phase 

compared to control group (2.64%). 

 

 

 

 

 

 

 

 

Figure 60: Effects of cardamonin on cell cycle phase distribution in HK-1 

cells at 12 (B) and 24 (C) hrs. HK-1 cells untreated (A) and treated with 

cardamonin at respective hours were stained with propidium iodide (PI) prior 

to flow cytometry analysis. Histograms indicate HK-1 cells distribution 

according to DNA content at different cell cycle checkpoints. 
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Figure 61: Cardamonin induces cell cycle arrest at G2/M phase and sub-G1 

(apoptosis) in HK-1 cells at 12 and 24 hrs. Cell cycle distribution was 

examined using flow cytometry. Each stacked bar expresses percentage of 

total number of cells at different phase in cell cycle.  
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3.11 Cardamonin induces up-regulation of both caspase-3 and caspase-8 

in HK-1 cells 

3.11.1 Cardamonin induces up-regulation of caspase-3  

 

HK-1 cells were treated with and without 22 μg/mL of cardamonin for 

24, 48 and 72 hrs. Cardamonin has significantly enhanced the activity of 

caspase-3 in HK-1 cells compared to untreated cells within 24 hrs (Figure 

62A). There was a slight decrease in caspase-3 activity at 48 hrs exposure but 

increased in the next 24 hrs. To verify that the fluorescence signal was due to 

the action of caspase-3, a treated set of experiments were conducted as 

negative control. Cells were treated with cardamonin but a caspase-inhibitor 

was added to inhibit actions of caspase. Negative control was used to verify 

signal recorded was captured from caspase activity and not due to other 

fluorescence signal. 

 

3.11.2 Cardamonin induces up-regulation of caspase-8  

 

HK-1 cells were treated with and without 22 μg/mL of cardamonin for 

24, 48 and 72 hrs. Cardamonin has significantly enhanced the activity of 

caspase-8 in HK-1 cells compared to untreated cells within 24 hrs (Figure 

62B). At 24 hrs after treatment, there was relatively high caspase-8 activity 

detected. Caspase-8 activity decreased at 48 hrs but in the next 24hrs, there was 

a slight increase. To verify that the fluorescence signal was due to the action of 

caspase-8, a treated set of experiments were conducted as negative control.  
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Figure 62: (A) Caspase-3 activity in HK-1 cells when untreated, treated with 

22 μg/mL of cardamonin and treated with 22 μg/mL of cardamonin then 

caspase-3 inhibitor at 24, 48 and 72 hrs. (B) Caspase-8 activity of HK-1 cells 

when untreated, treated with 22 μg/mL of cardamonin and treated with 22 

μg/mL of cardamonin then caspase-8 inhibitor at 24, 48 and 72 hrs. Each bar 

represents mean ± standard deviation (S.D.) from three independent 

experiments (n=3). ***P < 0.001 and *P < 0.05 indicate the statistical 

significant difference with respect to untreated control group. 
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3.12 Cardamonin decreases intracellular ROS production and ROS 

does not contribute to HK-1 cell death 

Cardamonin decreases ROS production in HK-1 cells. HK-1 cells were 

exposed to cardamonin at increasing concentration of 12.5, 25, 50, 100 and 200 

μM (Figure 63). Increasing concentrations were chosen to observe the trend of 

radical scavenging activity with highest concentration at 200 µM similar to 

MTT assay. µg/mL was converted to µM to calculate CAA and EC50. 

Quercetin was used as a standard in a similar experimental set up (Figure 64). 

HK-1 cells not treated with cardamonin (at 0 μM) emit highest DCF 

fluorescence reading within one hour. 

HK-1 cells exposed to higher concentrations of cardamonin displayed 

lower fluorescent intensity due to the action of cardamonin as a natural 

antioxidant agent to quench ROS within the cells. This result is substantiated 

by an increase in CAA as the concentration of cardamonin increases (Figure 

65). Cardamonin was found to be effectively inhibiting radical-induced DCFH 

oxidation at 79.73 μM (Table 4). However, the rate of CAA declines at 

increasing dosage of cardamonin (Table 5). This suggests that cardamonin at 

lower concentrations may act as an antioxidant to quench increasing level of 

ROS generated by HK-1 cells. However, as its concentration increases, CAA 

rate declined.  
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Figure 63: Cellular Antioxidant Activity of Cardamonin in HK-1 cells. 

 

 

Figure 64: Cellular Antioxidant Activity of Quercetin in HK-1 cells. 
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Figure 65: Dose-response curve of Quercetin standard and Cardamonin in HK-

1 cells. Each concentration was presented as mean ± standard deviation (S.D.). 
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Table 4: EC50 values from dose-response curve. 

Standard/Sample EC50 (μM) 

Quercetin 89.27 

Cardamonin 79.73 

 

 

 

Table 5: Rate of Cellular Antioxidant Activity of Quercetin and 

Cardamonin in HK-1 cells 

Concentration (µM) 

 

Rate of Cellular Antioxidant Activity 

(CAA unit per μM) 

Quercetin Cardamonin 

12.5 0.0000 0.0000 

25 0.89466 0.7948 

50 0.4504 0.4096 

100 0.2311 0.2131 

200 0.1185 0.1145 
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3.13 Cardamonin induces loss of mitochondrial membrane potential in 

HK-1 cells 

It was previously reported that curcumin and aloe-emoidin induce loss 

of mitochondrial membrane potential in nasopharyngeal carcinoma cells (Kuo 

et al., 2011; Lin et al., 2010). Hence, to examine whether cardamonin 

demonstrates similar activity as these natural compounds, we utilize a 

cytofluorimetric dye called JC-1 (5,5’,6,6’-tetrachloro-1,1’,3,3’-

tetraethylbenzimi-dazolylcarbocyanine iodide) to study the behavior of 

mitochondria membrane potential in HK-1 cells. HK-1 cells were treated with 

IC50 of 22 μg/mL and fluorescence readings were taken after 3 and 6 hrs 

(Figure 66). A significant increase in mitochondrial membrane potential in 

HK-1 cells was observed after 3 hrs. Mitochondrial membrane potential 

increased five-fold compared to untreated control but decreased approximately 

three-fold after 6 hrs exposure to cardamonin.  

HK-1 cells treated and untreated with cardamonin were stained with 

JC-1 solution and changes in mitochondrial membrane potential after 3 and 6 

hrs were visualized using Fluoview 1000 laser scanning confocal microscope 

(Olympus IX 81 Motorized Inverted Microsope). It was observed that 

untreated cells after 3 hrs (Figure 67) and 6 hrs (Figure 68) showed strong J-

aggregates and emit strong red fluorescence. However, in cardamonin-treated 

HK-1 cells, most of the cells observed were emitting green fluorescence 

indicating low mitochondrial membrane potential after 3 hrs (Figure 69) and 6 

hrs (Figure 70).  
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Figure 66: Effect of cardamonin on mitochondrial membrane potential in HK-

1 cells after 3 and 6 hrs. Each bar represents mean ± standard deviation (S.D.) 

from there independent experiments  

(n=3). ***P<0.001 indicates the statistical significant difference with respect to 

untreated control group. 
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Figure 67: Mitochondrial membrane potential in HK-1 cells (control group) 

after 3 hrs (Fluoview 1000 laser scanning confocal microscope, Olympus IX 81 

Motorized Inverted Microsope, ×400). Untreated cells showing strong J-

aggregation and emits red fluorescence (indicated by white arrows). Single 

slices (red and green flourescence) were stacked to obtain the final image. 
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Figure 68: Mitochondrial membrane potential in HK-1 cells (control group) 

after 6 hrs (Fluoview 1000 laser scanning confocal microscope, Olympus IX 81 

Motorized Inverted Microsope, ×400). Untreated cells showing strong J-

aggregation and emits red fluorescence (indicated by white arrows). Single 

slices (red and green flourescence) were stacked to obtain the final image. 

CONTROL 
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Figure 69: Effect of cardamonin on mitochondrial membrane potential in HK-

1 cells after 3 hrs (Fluoview 1000 laser scanning confocal microscope, 

Olympus IX 81 Motorized Inverted Microsope, ×400). Untreated cells showing 

strong J-aggregation and emits red fluorescence (indicated by white arrows). 

Single slices (red and green flourescence) were stacked to obtain the final 

image. 

CARDAMONIN

TREATED 

3 hrs 



181 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 70: Effect of cardamonin on mitochondrial membrane potential in HK-

1 cells after 6 hrs (Fluoview 1000 laser scanning confocal microscope, 

Olympus IX 81 Motorized Inverted Microsope, ×400). Untreated cells showing 

strong J-aggregation and emits red fluorescence (indicated by white arrows). 

Single slices (red and green flourescence) were stacked to obtain the final 

image. 
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3.14 Cardamonin decreases intracellular ATP levels in HK-1 cells 

Cardamonin induces loss of membrane potential in our previous finding 

and hence we evaluate the level of intracellular ATP in HK-1 cells after 

treatment with cardamonin. In current research, an increase in intracellular 

ATP levels in control groups showed proliferating HK-1 cells.  However, in 

cardamonin treated HK-1 cells, ATP levels decreased after 3 and 6 hrs was 

observed (Figure 71A). 

Changes in intracellular ATP level was further analysed by 

interpretation of ADP/ATP ratio. No significant increase in ADP levels with an 

elevated ATP levels in cardamonin treated cells in relative to control cells 

signify cells proliferation (ADP=, ATP↑). After 6 hrs of exposure to 

cardamonin, it was observed that ADP/ATP ratio increased in comparison to 

control HK-1 cells (Figure 71B). 
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Figure 71: Effect of cardamonin on intracellular ATP levels (A) and 

ADP/ATP ratio (B) in HK-1 cells after 3 and 6 hrs. Each bar represents 

mean ± standard deviation (S.D.) from there independent experiments 

(n=3). 

 



184 

 

3.15 Cardamonin induces cell death via activations of mitochondrial-

dependent pathway associated proteins 

3.15.1 Protein separation using gel electrophoresis for 24, 48 and 72 hrs. 

Proteins were extracted from HK-1 cells after exposure to cardamonin 

for 24, 48 and 72 hrs. Protein lysates from untreated control and treated HK-1 

cells were separated using SDS-PAGE (Figure 72). Proteins were separated 

according to different molecular mass indicated by protein ladder. Proteins on 

gel were transferred to nitrocellulose membrane using electro blotting to 

determine expression levels of protein of interest. 

 

 

 

 

 

 

 

 

Figure 72: Protein lysates extracted from HK-1 cells treated with cardamonin 

at 24, 48 and 72 hrs were separated on 4% stacking gel and 12% resolving gel. 

Gel electrophoresis was run at 120V for 1 hr 15 mins. 
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3.15.2 Up-regulation of Bcl2-L1 anti-apoptotic protein level after 24 hrs 

cardamonin treatment 

Electro blotting was initially conducted on detection of Bcl2-L1 anti-

apoptotic protein using cell lysates from 24, 48 and 72 hrs cardamonin-induced 

HK-1 cells. Protein bands were observed at only 24 hrs (Figure 73). 

Mitochondrial dependent apoptotic pathway associated proteins will be 

investigated within 24 hrs as actions of Bcl2-L1 proteins were most active in 

the first 24 hrs of cardamonin treatment. The levels of all proteins of interest 

were observed in time-dependent manner at 3, 6, 9, 12, 18 and 24 hrs in 

cardamonin-treated HK-1 cells. Intensities of all protein bands were quantified 

using Quantity One 1-D Analysis Software to observe the expression of protein 

level with respect to control. 

 

 

 

 

 

 

 

 

 

Figure 73: Bcl2-L1 protein expression for 24, 48 and 72 hrs in cardamonin-

induced HK-1 cells. Expected molecular size: Approximately 26 kDa. 
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3.15.3 Protein separation using gel electrophoresis for untreated control 

and 3-24 hrs cardamonin-treated HK-1 cells 

Proteins were extracted from HK-1 cells after exposure to cardamonin 

for 3, 6, 9, 12, 18 and 24 hrs. Protein lysates from untreated control and treated 

HK-1 cells were separated using SDS-PAGE (Figure 74). Proteins were 

separated according to different molecular mass indicated by protein ladder. 

Proteins on gel were transferred to nitrocellulose membrane using electro 

blotting to determine expression levels of protein of interest. 

 

 

 

 

 

 

 

 

 

Figure 74: Protein lysates extracted from HK-1 cells treated with cardamonin 

at 3, 6, 9, 12, 18 and 24 hrs were separated on 4% stacking gel and 12% 

resolving gel. Gel electrophoresis was run at 120V for 1 hr 15 mins. 
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3.15.4 Changes in mitochondrial-dependent pathway associated protein 

expression levels 

Proteins extracted from cardamonin-treated HK-1 cells at 3, 6, 9, 12, 18, 

24 hrs and untreated control were separated on SDS-PAGE gel and blotted 

onto nitrocellulose membrane for detection of proteins associated with 

mitochondrial dependent pathway and their expression levels. Effect of 

mitochondrial-dependent pathway associated proteins expression levels were 

summarized in Figure 75 (Appendix 7.10.3). A significant decrease in Bcl-2 

proteins was observed after 6 hrs of cardamonin exposure (Figure 76) where as 

cytochrome c level was highest at 6 hrs of cardamonin exposure (Figure 79). 

Approximately 12% decrease in Bcl-2 protein expression level was observed 

after 9 hrs of cardamonin exposure. Bcl-2 protein prevents the occurrence of 

apoptosis by inhibiting high release of cytochrome c between 3 to 6 hrs. 

However, as Bcl-2 proteins decreases, an increase in cytochrome c was 

observed at 6
th

 hour. 

Our findings showed that there was no siginificant change in Bcl2-L1 

(also known as Bcl2-XL) anti-apoptotic protein level (Figure 77). Bad pro-

apoptotic protein was not detected within 24 hrs of cardamonin exposure. A 

significant increase in Bax pro-apoptotic protein expression level was observed 

between 3 to 9 hrs of cardamonin exposure (Figure 78). More than 25% 

increase in Bax proteins within first 9 hrs after treatment with cardamonin. 
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Figure 75: Changes in mitochondrial dependent pathway-associated protein 

expression levels were analyzed qualitatively by Western blotting. HK-1 cells 

were treated with 22 μM of cardamonin for 3, 6, 9, 12, 18, 24 hrs and control 

was not treated. The levels of apoptosis-associated protein expressions; Bcl2-

L1, cytochrome c, Bcl-2, Bad and Bax were analyzed using specific antibodies 

and GADPH was used as internal control for sample loading.  
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Figure 76: Effect of cardamonin on Bcl-2 protein expression level in time-

dependent manner. Each bar represents the mean ± standard deviation (S.D.) 

derived from three replicates reading. ***P<0.001 and **P<0.01 indicate the 

statistical significant difference with respect to control. 

 

 

 

 

 

 

Figure 77: Effect of cardamonin on Bcl2-L1 protein expression level in time-

dependent manner. Each bar represents the mean ± standard deviation (S.D.) 

derived from three replicates reading.  
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Figure 78: Effect of cardamonin on Bax protein expression level in time-

dependent manner. Each bar represents the mean ± standard deviation (S.D.) 

derived from three replicates reading. ***P<0.001 and **P<0.01 indicate the 

statistical significant difference with respect to control. 

 

 

 

 

 

 

Figure 79: Effect of cardamonin on cytochrome c protein expression level in 

time-dependent manner. Each bar represents the mean ± standard deviation 

(S.D.) derived from three replicates reading. ***P<0.001 and **P<0.05 

indicate the statistical significant difference with respect to control. 
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3.16 Mitochondrial-dependent apoptotic pathway occurs independent of 

caspase-9 

Total RNA was extracted from 24 hrs cardamonin-treated and non-

treated HK-1 cells. Separation on agarose gel showed two distinct bands with 

detection of ribosomal RNA (more than 80% mammalian cells has ribosomal 

RNA) with 28S rRNA has twice the intensity and molecular mass of 18S 

rRNA (Appendix 7.11.2). RNA was quantified (Appendix 7.11.1) and used as 

starting material for relative quantification of gene expression level of caspase-

9 using real time RT-PCR. Gene expression level of caspase-9 was measured 

in cardamonin-treated sample relative to control group. In addition, gene 

expression level of caspase-9 was normalized to the gene expression of a 

reference housekeeping gene, GADPH based on CT values obtained in real 

time RT-PCR (Table 6). Relative quantification (RQ) was obtained and 

expressed as fold difference in respective to reference gene. Livak method was 

employed to quantify the fold change (Appendix 7.11.17) and based on current 

results, it has been found that the normalized gene expression ratio is 1.04 

(Table 7). There was no change in gene expression level after HK-1 cells were 

treated with cardamonin after 24 hrs. Caspase-9 is not involved in cardamonin-

induced HK-1 cell death. 

After 40 cycles of gene amplifications, melting curve analysis was run 

to assess the dissociation characteristics of double stranded DNA amplicons. 

Melting temperature of amplicons expressing caspase-9 in both control and 

cardamonin-treated groups was recorded at 82.9
0
C. As for amplified products 
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expressing GADPH housekeeping gene, melting temperature were 83.2
0
C and 

82.6
0
C in control and cardamonin-treated group respectively (Table 7).  

Based on the amplification plot (Appendices 7.11.6 and 7.11.7), in 

non-template control (NTC) of GADPH gene amplification, we observed an 

amplification primer after cycle 33. As NTC does not contain RNA template, 

amplification should not occur. We hypothesized that this amplification was 

due to primer-dimer effect. Melting curve analysis revealed that this 

amplification contributes to a peak with meting temperature of lower than true 

amplicons (Appendices 7.11.10 and 7.11.11) which further confirm the 

occurrence of primer-dimer effect. 

Amplicons were separated on agarose gel electrophoresis to determine 

the molecular mass of amplicons. It was found that both amplicons responsible 

for caspase-9 and GADPH were located at approximately 125 bp and 100 bp 

(Appendix 7.11.16).   
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Table 6: Threshold cycle (CT) values of caspase-9 and GADPH in control 

and cardamonin-treated groups. 

 

 Threshold cycle (CT) values 

Gene of interest 

(Caspase-9) 

Reference gene 

 (GADPH) 

Control  25.75 ± 0.15 14.33 ± 0.40 

Cardamonin treated 26.66 ± 0.55 15.18 ± 0.57 

 

Table 7: Normalized gene expression ratio and melting temperature of 

caspase-9 and GADPH in control and cardamonin-treated groups. 

 

 Normalized 

gene expression 

ratio 

Melting temperature (
0
C) 

Gene of interest 

(Caspase-9) 

Reference gene 

(GADPH) 

Control  - 82.9 83.2 

Cardamonin 

treated 

1.04 82.9 82.6 
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4.0 DISCUSSION 

Nasopharyngeal carcinoma (NPC) has long been associated with high 

occurrence rate in Chinese nationality and some who are of Asian ancestry. 

Compared to other types of cancers, NPC is considered rare but it has been 

affecting certain ethnic in Southern China for decades. Besides ethnic 

background, NPC also arises due to dietary habits such as high consumption of 

alcohol and salted food (Ning et al., 1990). Since NPC is largely affected by 

dietary habits, we propose to explore the possibility of utilizing plant herbal 

sources as a potential approach in search for an anticancer agent. Hence, we 

begin with selection of several edible plants from different families that have 

been previously explored as potential and effective anticancer source. Five 

selected edible plants from different families, namely curry leaf (Murraya 

koenigii), temu kunci (Boesenbergia rotunda), spring onion leaf (Allium cepa), 

mushroom bean (Phaseolus vulgaris) and bunga kantan (Phaeomeria 

imperialis) were dried and macerated using three different solvents to extract 

compounds of different polarities. Various crude extracts obtained were 

qualitatively screened for presence of phytochemicals and evaluated for 

cytotoxic effect against NPC (HK-1) and normal immortalized nasopharyngeal 

epithelial (NP-69) cell lines. 

Total phenolic contents of various crude extracts were determined using 

Folin-Ciocalteu’s method. The Folin Ciocalteu’s reagent was introduced by 

Otto Folin and Vintila Ciocalteu and has been used by many researchers to 

detect the presence of phenolic compounds. The reagent will react with phenols 

forming chromogens that can be detected spectrophotometrically. Colour is 
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developed due to the transfer of electrons at basic pH to reduce the 

phosphomolybdic/ phosphotungstic acid complexes. This will form the 

chromogen in which the metal ion in it will have a lower valence. Initially 

yellow in colour, the chromogen formed a blue coloured molybdenum oxide 

and measured at maximum absorbance 750 nm, at visible region of 

electromagnetic spectrum (Singleton et al., 1974). 

From the results, it was observed that methanolic crude extract of bunga 

kantan (Phaemeria imperialis) has highest content of phenolic compounds 

compared to other crude extracts of bunga kantan (Phaemeria imperialis) 

(Figure 16). Bunga kantan (Phaemeria imperialis) inflorescence was 

previously extracted using 50% methanol and reported to contain high total 

phenols content compared to 100% acetone (Wijekoon et al., 2011). Flowers of 

bunga kantan (Phaemeria imperialis) have been reported to contain higher 

phenolic content when extracted with ethanol compared to with acetone (Chun 

et al., 2009). In other research, ethyl acetate extract revealed very significant 

inhibitory effect against human T-4 lymphoblastoid (CEM-SS) and human 

breast cancer (MCF-7) cell lines (Habsah et al., 2005). In most of the 

traditional Chinese medicinal plants, high phenolics content was associated 

with high anticancer and antioxidant activities. (Cai et al., 2003). High amount 

of phenolic compounds were isolated from Garcinia mangostana fruit pericarp 

and positive results were obtained in anticancer testing (Yu et al., 2009). 

Researchers discovered there was high amount of phenolic in extra virgin olive 

oil which resulted in high antiproliferative and anticancer activities (García-

Villalba et al., 2010). In recent years, research focus on the goodness and 
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astonishing function of food in protecting body health because food is the 

safest source of remedy against disease. 

However, there was no significant correlation between total phenolic 

content of methanolic crude extract of bunga kantan (Phaemeria imperialis) 

and its cytotoxic activity. Methanolic crude extract of bunga kantan 

(Phaemeria imperialis) did not inhibit HK-1 cell proliferation. Total phenolic 

content in ethyl acetate crude extract of temu kunci (Boesenbergia rotunda) 

was reported to be highest followed by ethyl acetate crude extract of curry leaf 

(Murraya koenigii). There were no significant correlations between total 

phenolic content of ethyl acetate crude extracts of curry leaf (Murraya koenigii) 

and temu kunci (Boesenbergia rotunda) and cytotoxic activity against HK-1 

cell line. It may suggest that phenolics compounds present did not contribute to 

inhibitory effect against HK-1 cell line. 

 From the phytochemical tests, it was revealed that saponins were found 

in all crude extracts of bunga kantan (Phaemeria imperialis) (Table 1). 

Similarly, 80% methanol was used for extraction of flower of bunga kantan 

(Phaemeria imperialis) and phytochemical screening revealed the presence of 

saponins (Lachumy et al., 2010). Saponins are responsible for some anticancer 

activities using crude extracts from therapeutic plants. The increase in 

composition of saponins in root of Panax notoginseng resulted in 

antiproliferative effect against cancer cells when it undergoes steaming at 

different times and temperatures (Sun et al., 2010). Overall functions of 

saponins include anti-inflammatory activity, antifungal activity, antibacterial 

activity, antiparasitic activity, antiviral activity and antitumor activity (Sparg et 
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al., 2004). The main component of Chinese traditional medicine Pari 

polyphylla, the Rhizoma Paridis Saponins (RPS) has demonstrated the effect to 

induce apoptosis and inhibit metastasis in mouse lung (Man et al., 2009). 

However, the presence of saponins has no correlation with cytotoxic activity 

against HK-1 cell line as all crude extracts of bunga kantan (Phaemeria 

imperialis) did not exhibit cytotoxic effect against HK-1 cell line although 

saponins were present in all crude extracts. 

Phytochemical analyses revealed that flavonoids and alkaloids were 

present in all crude extracts of temu kunci (Boesenbergia rotunda). Total 

flavonoid content was determined using Dowd method (Figure 80). 

Aluminium chloride was used to form acid stable complexes with C-4 keto 

group and either C-3 or C-5 hydroxyl groups of flavonoids.  

 

 

 

 

 

Quercetin was used as a standard in current research and it formed complexes 

with ortho-dihydroxyl groups at maximum absorbance of 415nm (Chang et al., 

2002). From current results, ethyl acetate crude extract of temu kunci 

(Boesenbergia rotunda) was found to contain highest amount of flavonoid with 

833.0±12.63 mg of quercetin equivalents in 1 g of sample. However, there was 

no correlation between total flavonoid content and cytotoxic activity. 

Figure 80: Dowd method 

AlCl3 
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Methanolic and hexane crude extracts of temu kunci (Boesenbergia rotunda) 

revealed more than 50% cell growth inhibition against HK-1 cell line but ethyl 

acetate crude extract of temu kunci (Boesenbergia rotunda) was found to 

contain highest content of flavonoids. However, total flavonoid content of 

methanolic and hexane crude extracts were relatively high with 269±6.960 mg 

of quercetin equivalents in 1 g of sample and 243.7±4.330 mg of quercetin 

equivalents in 1 g of sample respectively. This suggests that cytotoxic effect 

against HK-1 cell line may be from the action of flavonoids present in both 

crude extracts.  

Both methanolic crude extracts of spring onion leaf (Allium cepa) and 

mushroom bean (Phaseolus vulgaris) revealed the presence of tannins and 

phlobatannins but there were no correlations with cytotoxic effects against HK-

1 cell line. 

 Cytotoxic activities of various crude extracts were tested using MTT 

assay to determine inhibitory concentration (IC50) of each crude extract against 

human nasopharyngeal carcinoma (HK-1) and immortalized nasopharyngeal 

epithelial cell line (NP-69) cell lines. MTT assay was conducted to measure 

cell viabilities after treated with various crude extracts at different 

concentrations and time point. Methanolic and hexane crude extracts of curry 

leaf (Murraya koenigii) showed IC50 values of 177.7±3.684 µg/mL and 

88.92±2.602 µg/mL respectively compared to positive control 5-fluorouracil 

with IC50 value of 42.25±2.246 µg/mL (Figures 22; 24; 34). Simultaneously, 

methanolic and hexane crude extracts of curry leaf (Murraya koenigii) showed 

a low cytotoxic activity against NP-69 cell line with IC50 value of more than 
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200 µg/mL (Figures 39; 41). This suggests that both methanolic and hexane 

crude extracts of curry leaf (Murraya koenigii) have significantly inhibited 

growth of HK-1 cell line.  

It has been previously reported that alkaloids isolated from curry leaf 

displayed anticancer effect. Koenoline (Figure 81A), a carbazole alkaloid 

isolated from root bark of curry leaf (Murraya koenigii) using chloroform was 

found to exhibit cytotoxic effect against human malignant KB cell line (Fiebig 

et al., 1985). Methyl group introduced at various positions on the aromatic ring 

in koenoline is able to bind to DNA by bis-intercalation and activates DNA 

repair processes. The structure is similar to ditercalinium (Figure 81B), a 

synthetic nucleic acid binder which acts as an anticancer drug (Léon et al., 

1987).  

 

               

 

 

 

 

 

 

Figure 81: (A) Structure of koenoline. (B) Structure of ditercalinium. 

A B 
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In another study, isolation of curry leaf (Murraya koenigii) in methanolic and 

ethyl acetate extracts yield 2 new alkaloids and 12 existing carbazole alkaloids. 

Mahanimbicine (Figure 82A) and murrayamine-E (Figure 82B) have 

significantly exhibited cytotoxic affect against B16 melanoma 4A5 cell line. 4-

hydroxycarbazole showed moderate cytotoxic activity. The presence of 

hydroxyl and terpenyl groups may contribute to inhibitory effect against 

melanogenesis. (Nakamura et al., 2013). Hydro-methanolic extract of curry 

leaf (Murraya koenigii) has successfully induced cell death in two cancer cell 

lines, MCF-7 and MDA-MB-231. This study suggests the presence of bioactive 

compound in curry leaf (Murraya koenigii) that may be a source of proteasome 

inhibitor that leads to cancer cell apoptosis (Noolu et al., 2013). Three out of 

ten carbazole alkaloids isolated from curry leaf (Murraya koenigii) isolated 

using acetone solvent were shown to induce apoptosis in human promyelocytic 

leukemia (HL-60) cell line through caspase-9/caspase-3 pathway. Mahanine 

(Figure 82C), pyrayafoline (Figure 82D) and murrafoline (Figure 82E) were 

able to induce loss of mitochondrial membrane potential of HL-60 cells (Ito et 

al., 2006). 
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Figure 82: (A) Structure of mahanimbicine. (B) Structure of murrayamine. (C) 

Structure of mahanine. (D) Structure of pyrayafoline. (E) Structure of 

murrafoline. 
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From these results, it was found that there was no significant correlation 

between the phenolic content and the cytotoxic activities of cell lines. Although 

ethyl acetate crude extracts of curry leaf (Murraya koenigii) and temu kunci 

(Boesenbergia rotunda) showed higher total phenolic compounds, they 

resulted in lower cytotoxic activities compared to methanolic and hexane crude 

extracts of curry leaf (Murraya koenigii) and temu kunci (Boesenbergia 

rotunda).  

Few assumptions can be made from the results. First, there may be an 

overestimation of phenolics content in the crude extracts. The Folin-Ciocalteu 

assay conducted on samples may have several external effects. The colour 

formation during the assay was based on chemical reduction of the reagent. 

During the reaction, interference from other compounds present in crude 

extracts such as sugar might lead to a higher absorbance reading than what 

should be recorded (Singleton and Rossi, 1965). Besides that, Folin-Ciocalteu 

assay is only able to detect all compounds that have phenol as functional group. 

When comparing the data with a single standard, it is can be misleading as the 

compounds analyzed might not be the phenolic compounds that contribute to 

cytotoxic activity against cancerous cell line (Waterhouse, 2002).  

 Methanolic and hexane crude extracts of temu kunci (Boesenbergia 

rotunda) showed IC50 values of 138.6±8.805 µg/mL and 77.86±2.839 µg/mL 

respectively compared to positive control 5-fluorouracil with IC50 value of 

42.25±2.246 µg/mL (Figures 25; 27; 34). Simultaneously, methanolic and 

hexane crude extracts of temu kunci (Boesenbergia rotunda) showed low 

cytotoxic activity against NP-69 cell line with IC50 value of more than 200 

µg/mL (Figures 42; 44). This suggests that both methanolic and hexane crude 
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extracts of temu kunci (Boesenbergia rotunda) too have significantly inhibited 

growth of HK-1 cell line although both IC50 were higher than positive control 

5-fluorouracil with IC50 value of 42.25±2.246 µg/mL. IC50 value of methanolic 

crude extract of temu kunci (Boesenbergia rotunda) was approximately three-

fold higher than IC50 value of hexane crude extract of temu kunci 

(Boesenbergia rotunda). Phytochemicals in hexane crude extract of temu kunci 

(Boesenbergia rotunda) may potentially exert greater cytotoxic effect against 

HK-1 cells compared to methanolic crude extract of temu kunci (Boesenbergia 

rotunda). 

Several literatures have been previously published on the discovery of 

temu kunci (Boesenbergia rotunda) in inhibition of cancer cell growth. 

Rhizomes of temu kunci (Boesenbergia rotunda) were extracted using 

methanol and four new prenylcalcones and four new prenylflavanones were 

isolated. All eight constituents have revealed inhibitory effect against tumor 

necrosis factor-α (TNF-α)-induced in murine aneuploid fibrosarcoma (L929) 

cells (Morikawa et al., 2008). Synthetic methoxy-chalcone and fluoro-chalcone 

derivatives such as 4-trifluoromethyl-2′-methoxychalcone and 3-

trifluoromethyl-2′,4′-dimethoxychalcone have been reported to induce 

apoptosis in human melanoma (A375) cell line. Methoxy and trifluoromethyl 

groups in the chalcone skeleton may contribute to the inhibitory effect (Henmi 

et al., 2009). Synthetically derived 4′-chloroflavanone showed a significant 

inhibitory effect against human breast cancer cells compared to treatment with 

flavanone. Halogenated flavanone was proved to be more potent at causing 

cytotoxic effect compared to just flavanone (Choi et al., 2010). Hence, we are 
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interested to investigate if crude extracts of temu kunci (Boesenbergia rotunda) 

will demonstrate similar cytotoxic effect against HK-1 cells. 

To conclude first part of this research, phytochemical analyses revealed 

the presence of flavonoid and alkaloids in all crude extracts of temu kunci 

(Boesenbergia rotunda) and curry leaf (Murraya koenigii). Methanol and 

hexane crude extracts of curry leaf (Murraya koenigii) and temu kunci 

(Boesenbergia rotunda) showed higher IC50 values (164.55 and 88.91µg/mL 

respectively for curry leaf and 138.48 and 78.48 µg/ml respectively for temu 

kunci) relative to positive control 5-fluorouracil (42.67 µg/mL) against HK-1 

cell line. All plant crude extracts showed weak cytotoxic activity with IC50 

value of more than 200 µg/ml against NP-69 cell line. Hence, the results of 

present study indicate that methanol and hexane crude extracts of temu kunci 

(Boesenbergia rotunda) and curry leaf (Murraya koenigii) contained potential 

bioactive compounds that can be further investigated for anticancer activity.  

Based on preliminary cytotoxic tests using crude extracts macerated 

from temu kunci (Boesenbergia rotunda), methanol and hexane crude extracts 

were shown to display cytotoxic effect against HK-1 cells. Hence, four 

commercially available flavonoids and polyphenols were selected. Naringin 

and hesperidin are polyphenols that were previously isolated using methanol 

solvent (Jing et al., 2010) similar to our current result using methanol crude 

extract from temu kunci (Boesenbergia rotunda). Cardamonin and pinostrobin 

are flavonoids that were previously isolated using hexane solvent (Ching et al., 

2007). Similarly, hexane crude extract exhibit cytotoxic effect against HK-1 

cell line in current result. Hence, all four compounds were tested against HK-1 

and NP-69 cell lines. Among all four tested compounds, cardamonin displayed 
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highest cytotoxic effect against HK-1 cells without affecting normal NP-69 cell 

line.  

Further tests were conducted to observe and quantify HK-1 cell death. 

The hallmark of apoptosis is defined by Kerr et al. as cell morphology 

alteration which includes cell shrinkage, chromatin condensation, plasma 

membrane blebbing (irregular in shape) and eventually apoptotic body 

formation (Kerr et al., 1972). These morphology changes differ from necrosis, 

which is characterized by membrane disruption and cell swelling (Edinger and 

Thompson, 1972). Cardamonin triggers HK-1 cell morphological change and 

caused uneven shape in HK-1 cells under light microscopic observation 

(Figure 57). More than half of the cells were stained with trypan blue (only 

stained dead cells) after 24 hrs treated with cardamonin (Figure 55). These 

non-viable cells have greater affinity to take up trypan blue dye.  

Acridine Orange (AO) and propidium iodide (PI) fluorescent dyes were 

utilized to observe stages of apoptosis in HK-1 cells viewed under fluorescence 

microscope. AO is able to permeate cells and bind to their DNA forming 

complex. A molecule of AO intercalates three base pairs of double stranded 

DNA and emits green fluorescence (Zbigniew, 1990). In current observations, 

most HK-1 cells stained were emitting green fluorescence more densely in the 

centre, in the area of chromatin (Figure 58). This suggests that most cells were 

undergoing early apoptosis. In addition, cell-impermeable propidium iodide (PI) 

fluorescent dye stained HK-1 cells that are undergoing late apoptosis with 

exposed DNA due to ruptured membrane. Most cells emit red orange 

fluorescence and formed clumps.  
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Since early apoptosis was proven to occur within first 24 hrs, we further 

investigate cell cycle arrest within 24 hrs of cardamonin treatment. HK-1 cell 

cycle was arrested at G2/M phase after 12 hrs of cardamonin treatment (Figure 

61). Number of cells in G2/M phase was recorded at least 19-fold increase 

compared to G2/M phase in control group. Similarly, aloe-emodin was 

previously reported to induce apoptosis in NPC by arresting G2/M phase in cell 

cycle (Lin et al., 2010). Curcumin was also reported to induce apoptosis in 

NPC by arresting G2/M phase after 6 hrs of treatment (Kuo et al., 2011).  

As discussed earlier, caspases play important roles in the activation of 

apoptosis and hence the activity of caspase-3 and caspase-8 were studied. 

Caspase activity is greatly dependent on time of exposure of an apoptosis-

inducing agent. A Rhodamine-linked peptide was used as a substrate to 

measure caspase activity upon induction of apoptosis. The rhodamine-linked 

peptide is a fluorogenic substrate that contains two DEVD tetrapeptides, (Ac-

DEVD)2-R110. Caspase-3 present in in vitro experiment will cleave the first 

DEVD peptide at recognition site DEVD where cleavage occurs at second D, 

the aspartic acid. This will form an intermediate monopeptide which only emit 

about 10% of the fluorescence (Hug et al., 1999). Successive cleavage of the 

monopeptide by caspase-3 releases a greater green fluorescence dye. In short, 

Bis-substituted peptide derivatives of rhodamine 110 was cleaved 

intracellularly by activated caspase into mono-substituted rhodamine 110 

(which emits green fluorescence) and a free rhodamine 110 molecule. This 

green fluorescence is measured under fluorescence excitation of 470 nm (Rothe 

et al., 1992). As for caspase-8, the flourogenic substrate contains two IETD 
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tetrapeptides, (Ac-IETD)2-R110 which targets the cleavage at recognition site 

IETD. 

Current results revealed that after 24 hrs treated with cardamonin, 

caspase activity was greatly amplified in HK-1 cells. More than 18% increase 

in caspase-3 activity was recorded for the first 24 hrs in cardamonin-treated 

HK-1 cells (Figure 62). At the same time, about 26% increase in caspase-8 

activity. However, both caspase-3 and -8 activities decreased after 24 hrs of 

treatment. It was previously found that in Jurkat cells, caspase-8 activity was 

optimum only after 3 hrs of drug treatment while caspase-3 activity peaked at 

7
th

 hour (Farhan et al., 2004). This aptly explained caspase-8 activity was 

relatively higher than caspase-3 in current findings. An increase in caspase-3 

activity triggers DNA fragmentation which is an indication of apoptosis as 

reported by Jänicke et al. (Jänicke et al., 1998). In current findings, DNA 

samples extracted from cardamonin-treated HK-1 cells were found to be 

fragmented. It has been previously reported that caspase-3 is indeed required 

for DNA fragmentation leading to morphological changes in cancer cells. DNA 

is being fragmented at internucleosomal linker sites because these sites are 

easily accessible by Caspase-Activated DNase (CAD) enzyme. CAD forms a 

complex with an inhibitor, the Inhibitor of Caspase-Activated DNase (ICAD) 

which inactivates CAD. Caspase-3 cleaves the complex and leaving CAD to be 

in active form and hence degrades nuclear DNA (Enari et al., 1998). Therefore, 

caspase plays a crucial role in DNA fragmentation. To further prove that 

caspase-3 is essential for DNA fragmentation, deletion of 47-base pair within 

axon 5 of CASP-3 gene in breast carcinoma cell line was proven to induce cell 

death but no DNA fragmentation and cell shrinkage were observed (Jänicke et 
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al., 1998). It can be concluded that the up-regulation of caspase has greatly 

contributed to the distinct morphological changes in HK-1 cells i.e. DNA 

fragmentation. 

Studies have suggested that caspase-8 mediates apoptosis in NPC 

which leads to activation of mitochondrial-dependent pathway through 

regulations of Bcl-2 family proteins (Lin et al., 2010). Cardamonin has been 

proven to trigger apoptosis through caspase-activation in nasopharyngeal 

carcinoma (HK-1) cells. Thus, based on current findings, we study regulation 

of Bcl-2 family proteins in mitochondrial-dependent cell death pathway to 

discover mode of actions of cardamonin in affecting basic functions of 

mitochondria. 

Regulation of pro-apoptotic and anti-apoptotic proteins belonging to 

Bcl-2 family has great influence in triggering cell death by promoting the cell’s 

susceptibility to apoptotic stimuli (Wang and Youle, 2009). In our study, we 

treated nasopharyngeal carcinoma cell line, HK-1 with 22 μg/mL of 

cardamonin in time-dependent manner (24, 48 and 72 hrs). Cell lysates 

containing proteins extracted from HK-1 cells treated with cardamonin at 24, 

48 and 72 hrs were separated on 4% stacking and 12% resolving Tris-HCl 

SDS-PAGE gel. Gel was then blotted onto a nitrocellulose membrane for Bcl2-

L1 protein detection. Level of Bcl2-L1 protein expression was initially 

investigated in 24, 48 and 72 hrs cardamonin-treated HK-1 cells (Figure 73). It 

was found that protein bands were detected only within 24 hrs of treatment 

with cardamonin. It can be deduced that mode of actions of Bcl2-L1 proteins 

were most effective within 24 hrs after treated with cardamonin. Lin et al. 

reported an up-regulation of Bcl-2 protein in nasopharyngeal carcinoma cells 
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treated with aloe-emodin was observed from 0 to 24 hrs. However, after 24 hrs, 

a sharp decrease of Bcl-2 protein expression was observed (Lin et al., 2010). 

Hence, expression levels of all other proteins associated with mitochondrial 

dependent pathway were investigated from 0 to 24 hrs in cardamonin-induced 

HK-1 cells.  

Bcl-2 proteins showed significant decrease after 6 hrs of cardamonin 

exposure whereas cytochrome c level (5% increased compared to control group) 

was highest at 6 hrs of cardamonin exposure (Figure 75). Recent report 

showed that down-regulation of Bcl-2 proteins level permits release of 

cytochrome c into cytosol in curcumin-treated human nasopharyngeal 

carcinoma cells (Kuo et al., 2011). Hence, drop in Bcl-2 proteins may assist in 

release of cytochrome c in HK-1 cells. Bad pro-apoptotic protein was not 

detected within 24 hrs of cardamonin exposure. This suggests that Bad pro-

apoptotic was not involved in regulation of mitochondrial cell-death pathway. 

Previous literature suggested that this BH3-only member protein of Bcl-2 

family may act as a sensitizer that binds to only pro-survival proteins to 

activate cell death (Willis and Adams, 2005).  Hence, Bad protein was not 

entirely required for activation of mitochondrial-dependent apoptotic pathway. 

Bax pro-apoptotic protein expression level increased after 9 hrs (10% 

increased compared to control group) treated with cardamonin (Figure 78). 

Previous study showed that when Bcl-XL, an anti-apoptotic protein expression 

level decreases as Bax pro-apoptotic protein expression level increases, this 

regulation of Bcl-2 family proteins promote the release of cytochrome c and 

led to an up-regulation of caspase-3 thus triggered apoptosis in nasopharyngeal 
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carcinoma cell lines (NPC-TW039 and NPC-TW076) treated with bioactive 

compound isolated from rhizomes of Rheum palmatum (Lin et al., 2010). Kuo 

et al. reported that when NPC-TW076 was exposed to a potent anticancer 

agent, curcumin in time-dependent manner, cell death pathway was activated. 

An up-regulation of Bax protein level accompanied by down-regulation of Bcl-

2 protein level led to malfunction of mitochondria and subsequently triggered 

an activation of caspase-3 leading to cell death (Kuo et al., 2011). Bax 

undergoes homodimerization and translocates from cytosol to mitochondria 

causing a stimulated death in cell to be activated. Under circumstances where 

Bcl-2 is present, cells are protected by blocking the translocation of Bax pro-

apoptotic proteins (Gross et al., 1998). Similarly, current results increase in 

Bax pro-apoptotic protein showed that it greatly contributes to cellular 

apoptosis in HK-1 cells.  

 To conclude second part of the research, Bcl-2 family proteins function 

as regulators that work collaboratively in execution of cell death. This study 

demonstrates that mitochondrial cell-death pathway was triggered through an 

increase in Bax pro-apoptotic proteins by inhibiting Bcl-2 anti-apoptotic 

proteins to release death stimuli (proven by an increase in cytochrome c 

expression level).  

We next explore changes of mitochondrial membrane potential and 

how it affects generation of ATP followed by gene expression level of caspase-

9 in cardamonin-treated HK-1 cells. The permeability of mitochondrial 

membrane to allow protein translocation is greatly dependent on the activity of 

caspase. Caspase activation induces permeabilization of mitochondrial 
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membrane to allow protein BID cleavage to an active fragment, tBID and thus 

being translocated to OMM. The initial signal triggered from caspase 

activation will be transmitted to release apoptogenic factors such as 

cytochrome c (Luo et al., 1998). These factors bind to apoptosis activating 

factor to form complex in order to activate the release of caspase-9 and hence 

stimulates apoptosis.  

Earlier results suggest that caspase-8 activity was significantly 

amplified in HK-1 cells within first 24 hrs after treated with cardamonin. 

Caspase-8 cleavage leads to translocation of Bid (pro-apoptotic protein) to 

membrane of mitochondria. This causes recruitment of another pro-apoptotic 

protein, Bax to stimulate opening of mitochondrial PTP. Hence, we evaluate 

mitochondrial membrane potential (ΔΨm) after exposure to cardamonin in 

time-dependent manner. Cardamonin induces loss of mitochondrial membrane 

potential in HK-1 cells after 6 hrs of treatment (Figure 66). Loss of 

mitochondrial membrane potential is an initial requirement for cellular 

apoptosis.  

Gottlieb et al., proposed that ROS scavengers may delay mitochondrial 

depolarization and cell death. Hence, we hypothesize that cardamonin acts as 

an antioxidant (as proven earlier) which delayed cell death. This may explain 

the initial increase of MMP at 3 hrs (Gottlieb et al., 2000). Since cardamonin 

induces loss in mithondrial membrane potential within first 6 hrs 

(approximately three-fold compared to control group), we decided to look into 

changes in intracellular ATP and ADP levels within the same duration.  
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It was found that intracellular ATP levels decreased approximately 10% 

after 3 hrs and 20% after 6 hrs of exposure to cardamonin (Figure 71). 

Increase in intracellular ADP/ATP ratio was detected after 6 hrs of treatment 

with cardamonin. These suggest that intracellular ATP level decreases 

concurrently as mitochondrial membrane potential drops. ADP/ATP level 

increase was only observed at 6 hrs and not at 3 hrs. This situation may be 

similar to MMP drop. At initial stage (first 3 hrs), MMP was found to increase 

hence ADP/ATP level did not show any significant changes. ADP/ATP ratio 

only increase at 6 hrs where concurrently MMP decreased. 

These results showed that cardamonin induces cellular apoptosis in 

HK-1 cells by disruption of mitochondrial membrane potential which is a 

preliminary condition of cell death via mitochondrial-dependent apoptotic 

pathway. Loss in mitochondrial membrane potential within the few hours of 

cardamonin exposure was further justified by decline in intracellular ATP 

levels in HK-1 cells. Recent study reported that capsaicin isolated from chilli 

pepper causes disruption in mitochondrial membrane potential which leads to 

inhibition of ATP synthesis in tumor cells (Skrzypski et al., 2014). 

ROS has long been associated with cancer because cancer cells are 

transformed cells and tend to generate more ROS for cell proliferation 

(Schumacker, 2006). Cancer cells normally overproduce ROS compared to 

normal cells (Szatrowski and Nathan, 1991). In current research, Cellular 

Antioxidant Activity (CAA) assay was conducted to determine antioxidant 

properties of cardamonin against HK-1 cells. Fluorescence intensity measured 

is directly proportional to ROS levels within the cell cytosol. A decrease in 
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fluorescence intensity in all cardamonin concentrations showed an inhibition of 

ROS production within 1 hr in HK-1 cells (Figure 63). This may be due to the 

action of cardamonin as an antioxidant to scavenge and quench ROS. This 

shows that cardamonin reduces ROS production and does not contribute to 

HK-1 cell death. In fact, it demonstrates an antioxidant property that protect 

HK-1 cells against overproduction of ROS and hence apoptosis. Similarly, 

Skrzypski et al. proposed that capsaicin from chili pepper reduces ROS 

generation and was not responsible to induce cytotoxicity in tumor cells 

(Skrzypski et al., 2014). Hence, cardamonin did not contribute to cell death 

pathway in HK-1 cells. 

It is also important to note that in untreated HK-1 cells (control group) 

ROS production level is relatively high. Mitochondrion is extensively studied 

and proven to be a major intracellular source of ROS. ROS production is due to 

partial inhibition of mitochondrial respiratory chain which leads to cell death 

(Fleury et al, 2002).  Mutation of genes encoding components in mitochondrial 

electron transport chain (ETC) increase ROS generation. Impairment in ETC 

causes an accumulation of electrons which will be captured by oxygen and 

hence formation of superoxide, a type of radical. It has been previously 

demonstrated that mitochondria play important roles in induction of apoptosis 

(Wallace, 2005). In fact, ROS play important role in oxidation of mitochondrial 

pores and disrupts its membrane potential to aid the release of apoptotic signal, 

cytochrome c (Zorov et al., 2006). There is a crucial relationship between ROS 

and mitochondria in activation of cellular apoptosis. However, cardamonin did 

not induce overproduction of ROS to trigger apoptosis in HK-1 cells; instead it 

reduces ROS level in HK-1 cells (antioxidant properties). Decrease in ROS 
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level did not lead to any significant difference in activation of cellular 

apoptosis in HK-1 cells. 

Gene expression level of caspase-9, a final protein required before 

cleavage of apoptotic substrates, which is necessary to trigger apoptotic signal 

for permenant cell death was relatively quantified using real-time PCR.  Based 

on current finding, there was no fold change of caspase-9 gene expression level 

relative to control group (Table 7). Despite recent evidences that prove 

caspase-9 is an important initiator to activate caspase-3 to trigger cell death 

(Yu et al., 2010; Jen et al., 2008; Bretnall et al., 2013), our results proved 

otherwise. Upon release of cytochrome c, caspase-9 form an apoptosome with 

apoptotic peptidase activating factor (Apaf-1) to activate caspase-3. However, 

it was found that after 24 hrs of treatment with cardamonin, gene expression 

level of caspase-9 did not show an increase compared to control group. 

Although apoptotic-inducing factor, cytochrome c was shown to release from 

mitochondria in previous result, it did not function to induce caspase-9 to form 

apoptosome. Hence, caspase-9 was not involved in triggering HK-1 cell death. 

Instead, HK-1 cellular apoptosis was induced by the actions of caspase-3 and 

caspase-8.  

Several literatures reported that caspase-9 was not required in some 

cellular apoptosis. Apoptotic death of platelets and megakaryocytes were 

shown to be independent of caspase-9. Caspase-9 deficient fetal liver cells in 

mice revealed that platelets and megakaryocytes still possess apoptotic 

functions (White et al., 2012). Ekert et al., reported that Apaf-1 and caspase-9 

are not required for apoptosis in drug-treated cells (Ekert et al., 2004). In 
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hydrogen peroxide (H2O2)-induced apoptosis HeLa cells, caspase-3 was found 

to be activated by caspase-8 instead of caspase-9 in mitochondrial-dependent 

pathway (Wu et al., 2011). Similarly, cardamonin triggers apoptosis in HK-1 

cells mediated by caspase-8 that activates caspase-3 directly. A summary of 

how cardamonin triggers apoptosis via activation of mitochondrial-dependent 

pathway mediated by caspase-8 (                    ) that directly activates caspase-3 

is illustrated in Figure 83. Time frame of caspase and mitochondrial activities 

are summarized in Figure 84. 
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 Figure 83: This diagram illustrates mode of actions of cardamonin in activation of mitochondrial-dependent pathway 

mediated by caspase-8 against nasopharyngeal carcinoma (HK-1) cells. 
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Figure 84: Time Frame of HK-1 cell death.
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It is interesting to note that cardamonin belonging to the flavonoid family, or more 

precisely chalcone (class classification in flavonoid family) contributes to the 

anticancer effect in NPC. As mentioned earlier, cardamonin contains two aromatic 

rings connected by an α,β-unsaturated carbonyl group (Figure 7). It was proven 

that this carbonyl group in chalcone plays an important role in various biological 

activities (Sahu et al., 2012).  Chalcone derivatives such as boronic chalcone 

exhibits potent anticancer activity which was associated with accumulation of p53 

proteins, a tumor suppressor protein (Achanta et al., 2006). Synthesis of 

methoxychalcone through Claisen-Schmidt condensation reaction revealed 

promising results as an anticancer agent (Babasaheb et al., 2009). Chun and the 

team substituted both electron withdrawing and electron-donating groups to 

structure of chalcones which showed selective anticancer activities against TRAIL 

resistant cancer cells. Among the synthesized compounds, chalcone containing an 

amino group (-NH2) on the aromatic ring was found to be most potent against 

cancer cells (Chun et al., 2014). Hence, we are interested to further explore the 

effects of addition of functional groups to cardamonin and how it affects and 

further enhance cellular death in NPC. We have so far concluded the effect of 

cardamonin against NPC through mitochondrial-dependent pathway where 

cardamonin affects cell death within the cell. The actions of cellular apoptotic 

pathway occur in cytoplasm whereby initial apoptotic signal is triggered through 

cell surface receptor. For future work, we would propose the study of cell surface 

receptor as a target for cardamonin and its synthesized compounds to induce cell 

death. Future work will be further explained in next chapter. 
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5.0 CONCLUSION AND PROPOSED FUTURE STUDIES 

 

 In conclusion, these studies demonstrates mode of actions of cardamonin-

induced apoptosis in HK-1 cells mediated by caspase-8 activation and 

subsequently leads to cell death via mitochondrial-dependent apoptotic pathway in 

vitro. Cardamonin triggers nasopharyngeal carcinoma (NPC HK-1) cell death 

characterized by cell morphological changes, DNA fragmentation, activation of 

caspase-3 activity and G2/M phase arrest. In addition, cardamonin-induced 

apoptosis causes loss of mitochondrial membrane potential within 6 hrs and 

concurrently, intracellular ATP was reported to be low. Regulation of 

mitochondrial-dependent apoptotic pathway associated protein levels were 

detected using immunoblotting. Pro-apoptotic protein, Bax was up-regulated and 

anti-apoptotic protein, Bcl-2 was down-regulated leading to release of apopototic 

signalling factor, cytochrome c. Real-time polymerase chain reaction (qPCR) of 

gene expression level of caspase-9 showed no fold change. Caspase-3 was 

activated by caspase-8 and did not require caspase-9 to induce HK-1 cell death. 

Taken together, these results indicate that cardamonin plays a critical role as a 

potential anticancer agent against NPC cells.  

 Future studies are required to test effect of cardamonin in vivo. We 

proposed further investigation on animal testing to observe the overall effects of 

cardamonin on living organism as a whole. NPC-induced animals can be tested 

based on oral intake of cardamonin and its effect on NPC tumor size. As 

cardamonin is originally isolated from edible plant Boesenbergia rotunda, it is safe 
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for animal consumption. Furthermore, current results obtained can be validated 

using animal testing.  We hypothesized that deletion of pro-apoptotic genes such 

as caspase-3 and caspase-8 will lead to normal proliferation of NPC cells in animal 

and hence tumor formation. Other cell death pathways can be studied on larger 

biological organism before it is suitable to be tested for clinical trials and develop 

into an anticancer drug. Development of an anticancer drug may take more than a 

decade because drug development serves purpose to alleviate risk of death and 

promote recovery and thus clinical trials must be done comprehensively. Tests and 

trials on biological organisms are conducted to a greater extent to ensure efficiency 

and efficacy of a tested anticancer drug. Current preliminary findings represent 

initial breakthrough that may contribute to the wellbeing of mankind in future.  

 Concurrently, we propose the addition of functional groups to cardamonin 

to enhance the anticancer effect against NPC. A few novel derivatives of flavones 

with substitution of chloro, isopropyl, nitro and methoxy groups were found to be 

effective against gastric cancer cells (Liu et al., 2010). Addition of aromatic amino 

moiety and imidazole ring enhance cytotoxicities in breast cancer cells (Singh et 

al., 2014). Hence, it is worth to note that modifications on cardamonin at different 

positions may contribute to greater anticancer effects against NPC (Figure 85). 

Cardamonin acts as an important scaffold which may lead to a significant 

discovery of a potent compound to induce apoptosis in NPC. Table 8 proposed 

addition of functional groups on cardamonin to study the structure activity 

relationship in anticancer activity. These additions of functional groups have been 

previously proven to be effective against NPC. 
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Figure 85: Addition of functional groups on chalcone enchances anticancer  

activities. 

 

Furthermore, cardamonin contains a α,β-unsaturated carbonyl group which allow 

the alkene group to be substituted . It is known as Michael acceptor which readily 

acts as an electrophile for substitution. Michael reaction provides a platform for 

synthesis of Pan-Assay Interference Compounds (PAINS) which can be tested for 

a range of bioassays targeting different diseases. 
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Table 8: Proposed addition of functional groups on cardamonin. 

Addition of 

functional 

group 

Justifications 

Pyrimidinyl 

group 

 

(Jin et al., 2013) 

Compound 3 (pyrimidinyl group) is synthesized from 4,6-

dimethoxy-2-(methylsulfonyl)pyrimidine (1) and starting 

material 3-substituted-4-hydroxybenzaldehyde (2) in the 

presence of potassium carbonate, K2CO3 in DMF. Then, 

chalcone derivatives (5a-5k) are prepared from substituted 

acetophenone (4) and compound 3 using a catalytic amount of 

potassium hydroxide, KOH in ethanol.  Jin et al. has proven 

compound 5g is most effective against NPC (CNE-2) cells at 

IC50 of 14.0µM. 



223 

 

 

Furthermore, we believe the first target of cardamonin on NPC is on cell 

surface receptor. In fact, mitochondrial-dependent pathway is a death receptor 

signalling pathway. By understanding the molecular events that occurs in 

mitochondria and cytoplasm which we have proven in this research, we 

hypothesize the action was triggered by a receptor called Fas. The Fas 

receptor/ligand system is the regulator of mitochondrial cell death pathway.  

 For decades, cell surface receptors have been a target for cancer cells. 

Anticancer drugs going through clinical trials targeting receptors overexpressing in 

cancer cells have been showing positive results. There are a few examples of drugs 

targeting NPC. Xie and team investigated the expression of folate receptor on head 

and neck squamous carcinoma tissue samples and found that folate receptor 

mediates endocytosis through folate-conjugated anticancer nanomedicines. This 

Methoxy 

group 

(electron 

donating) 

Mai et al. (2014) has proven high cytotoxicity against NPC 

(CNE-1) cells with 2 methoxy groups added to ring A of 

chalcone (positions R4 and R6 below). We propose the addition 

of methoxy group to Ring B, position 3. The reaction uses  2,4-

dihdroxyacetophenone as starting material to react with 

dimethyl sulphate (methylation) to produce cardamonin with an 

addition of methoxy group at Ring B, position 3. 

 

 

(Mai et al., 2014) 
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discovery was proven to reduce the severe side effects in patients undergoing 

chemotherapy because this study provide targeted drug delivery with the help of 

this cell surface receptor (Xie et al., 2013). It was found tha epidermal growth 

factor receptor (EGFR) was overexpressed in NPC. The overexpression of EGFR 

was shown to be the main cause that leads to tumor formation. Nimotuzumab, a 

genetically engineered humanized monoclonal antibody that recognizes epitope in 

EGFR was proven to promote anticancer effect in patients undergoing 

radiotherapy (Gondhowiardjo et al., 2009). Vascular endothelial growth factor 

(VEGF)/VEGF receptor is a potential target as VEGF is overexpressed on NPC. 

Sorafenib combined with cisplatin and 5-fluorouracil was tested in Phase II study 

showed positive results with tolerable recurrent rate of metastatic NPC (Xue et al., 

2012). Other anticancer drug such as AKT inhibitor MK-2206 has downregulated 

the overexpression of AKT (protein kinase B) on NPC cell surface and hence 

inhibits AKT signalling in NPC cell lines. PI3K/AKT/mTOR intracellular 

signalling pathway is important to regulate cell cycle. Hence, the disruption of this 

pathway is an important target for cellular apoptosis in NPC (Ma et al., 2012). 

 In 1999, Tsai and team conducted a biopsy on NPC patients and found that 

there is an overexpression of Fas ligand proteins detected exclusively on the cell 

surface of NPC (Tsai et al., 1999). Overexpression of Fas ligand in tumor triggers 

apoptosis of lymphocytes (because Fas ligand binds to Fas receptor on 

lymphocytes) and hence tumor may escape the naturally occurring immune 

response termed “tumor counterattack” (Igney and Krammer, 2005).   
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 Fas (CD95/APO-1) receptor is s cell surface protein belonging to the 

family of tumor necrosis factor (TNF) receptor (Figure 86). Fas ligand (Fas 

L/CD178) is a membrane protein that binds to Fas receptor to induce apoptosis. 

When Fas L binds to Fas receptor, a death-inducing signalling complex (DISC) is 

formed and this receptor complex is internalized into cell. This receptor complex 

consists on a death domain. This death domain will then bind to another death 

domain of Fas-associated death domain (FADD).   On FADD, there is a death 

effector domain (DED) its amino terminus which will bind to DED of initiator, 

caspase-8. Caspase-8 is responsible to initiate a series of apoptotic cascade 

reactions. The activity of caspase-8 and other caspases were investigated in this 

research. The results showed an increase in caspase-8 activity which further 

substantiates our study on how cardamonin signal the Fas/Fas L system to initiate 

apoptosis. 
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(Igney and Krammer, 2005) 

Figure 86: Apoptosis signalling via Fas/Fas L system 

Hence, we hypothesize that cardamonin induces the activation of Fas/Fas L system 

on NPC cell surface thus triggering apoptosis of NPC.  
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7.0 APPENDICES 

7.1  Total phenolic content of various crude extracts determined by Folin-
Ciocalteu’s assay 

Crude extract 

of inflorescence 

of bunga kantan 

Total phenolic content (mg gallic acid equivalents/g of 

sample) 

Independent experiment Average Standard 

deviation 1 2 3 

Methanolic 69.01 69.58 65.18 67.92 2.39 

Ethyl acetate 11.21 8.43 8.28 9.31 1.65 

Hexane 9.42 11.11 10.51 10.35 0.86 

Methanolic 

solid 1 
17.96 16.38 17.52 17.29 0.81 

Methanolic 

solid 2 
17.96 16.38 17.52 21.53 1.73 

 

Crude 

extract of 

curry leaf 

Total phenolic content (mg gallic acid equivalents/g of sample) 

Independent experiment Average Standard 

deviation 1 2 3 

Methanolic 63.93 63.00 68.17 65.03 2.75 

Ethyl acetate 87.74 88.82 81.88 86.15 3.73 

Hexane 49.24 46.09 42.80 46.04 3.22 

 

Crude 

extract of 

temu kunci 

Total phenolic content (mg gallic acid equivalents/g of sample) 

Independent experiment Average Standard 

deviation 1 2 3 

Methanolic 98.43 99.12 99.10 98.88 0.40 

Ethyl 

acetate 
115.06 112.56 114.17 113.90 1.27 

Hexane 48.35 48.33 43.90 46.86 2.57 
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Crude 

extract of 

mushroom 

bean 

Total phenolic content (mg gallic acid equivalents/g of sample) 

Independent experiment Average Standard 

deviation 1 2 3 

Methanolic 13.96 14.39 12.95 13.77 0.74 

Ethyl acetate 20.06 19.36 18.87 19.43 0.60 

Hexane 11.70 11.66 10.35 11.24 0.76 

 

Crude 

extract of 

spring onion 

leaf 

Total phenolic content (mg gallic acid equivalents/g of sample) 

Independent experiment Average Standard 

deviation 1 2 3 

Methanolic 28.30 29.92 29.65 29.29 0.87 

Ethyl acetate 20.44 20.24 21.35 20.68 0.59 

Hexane 11.75 10.32 13.78 11.95 1.74 
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7.2 Total flavonoid content of various crude extracts using Dowd method 

Crude extract 

of 

inflorescence 

of bunga 

kantan 

Total flavonoid content (mg quercetin equivalents/g of 

sample) 

Independent experiment Average Standard 

deviation 1 2 3 

Methanolic 66.74 67.71 69.06 67.84 1.16 

Ethyl acetate 33.34 37.97 36.86 36.06 2.41 

Hexane 34.16 36.32 38.13 36.20 1.99 

Methanolic 

solid 1 
34.71 35.93 38.64 36.43 2.01 

Methanolic 

solid 2 
35.87 38.42 36.29 36.86 1.37 

 

Crude 

extract of 

curry leaf 

Total flavonoid content (mg quercetin equivalents/g of sample) 

Independent experiment Average Standard 

deviation 1 2 3 

Methanolic 164.73 163.81 177.16 168.60 7.46 

Ethyl 

acetate 
211.56 229.29 230.72 223.90 10.68 

Hexane 78.43 78.22 68.44 75.03 5.71 

 

Crude 

extract of 

temu kunci 

Total flavonoid content (mg quercetin equivalents/g of sample) 

Independent experiment Average Standard 

deviation 1 2 3 

Methanolic 262.50 276.42 269.75 269.60 6.96 

Ethyl 

acetate 
807.80 847.21 843.93 833.00 21.87 

Hexane 246.81 245.55 238.76 243.70 4.33 
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Crude 

extract of 

mushroom 

bean 

Total flavonoid content (mg quercetin equivalents/g of sample) 

Independent experiment Average Standard 

deviation 1 2 3 

Methanolic 29.81 30.79 30.23 30.28 0.49 

Ethyl acetate 33.90 33.95 34.64 34.17 0.42 

Hexane 29.40 29.24 29.55 29.40 0.15 

 

Crude 

extract of 

spring 

onion leaf 

Total flavonoid content (mg quercetin equivalents/g of sample) 

Independent experiment Average Standard 

deviation 1 2 3 

Methanolic 202.31 206.34 206.78 205.10 2.46 

Ethyl 

acetate 
349.92 346.72 334.18 343.60 8.32 

Hexane 139.98 139.31 134.39 137.90 3.06 
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7.3 Cell viability of HK-1 and NP-69 cell lines  

7.3.1 Template for cell treatment 

Well/Row 1 2 3 4 5 6 7 8 9 10 11 12 

A crude 
methanolic 

extract 

(200 µg/ml) 

crude ethyl 
acetate extract 

(200 µg/ml) 

crude hexane 
extract 

(200 µg/ml) 

Positive control 

5-fluorouracil 

(200 µg/ml) 

B 100 µg/ml 100 µg/ml 100 µg/ml 100 µg/ml 

C 50 µg/ml 50 µg/ml 50 µg/ml 50 µg/ml 

D 25 µg/ml 25 µg/ml 25 µg/ml 25 µg/ml 

E 12.5 µg/ml 12.5 µg/ml 12.5 µg/ml 12.5 µg/ml 

F 6.25 µg/ml 6.25 µg/ml 6.25 µg/ml 6.25 µg/ml 

G 3.13 µg/ml 3.13 µg/ml 3.13 µg/ml 3.13 µg/ml 

H Control: growth 

media only 

 

 

7.3.2 Data of percentage of cell viability of HK-1 cells treated with crude 

methanolic extract of bunga kantan after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 100.698100 100.354500 98.947360 98.16 0.9276 

3.125 107.080700 109.728600 104.815500 100.9 2.459 

6.25 101.783400 106.270900 101.203400 99.94 2.773 

12.5 105.133100 106.654200 109.652800 107.1 2.300 

25 94.120740 93.556430 97.612390 95.10 2.197 

50 95.124900 95.564020 96.336700 95.68 0.6135 

100 87.738600 88.625690 89.496470 88.62 0.8789 

200 88.119080 87.567920 92.070100 89.25 2.456 
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7.3.3 Data of percentage of cell viability of HK-1 cells treated with crude 

ethyl acetate extract of bunga kantan after 24 hrs treatment 

Concentratio

n of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 100.6981 100.3545 98.9474 100.0 0.9276 

3.125 125.1331 126.6545 119.6528 123.8 3.683 

6.25 116.6174 120.2757 106.3825 114.4 7.201 

12.5 105.4944 113.0437 138.1140 118.9 17.08 

25 127.5234 111.1021 104.3285 114.3 11.93 

50 98.7717 102.0805 93.2561 98.04 4.458 

100 81.8966 107.0691 89.3223 92.76 12.93 

200 98.1219 91.5692 84.0721 91.25 7.030 

7.3.4 Data of percentage of cell viability of HK-1 cells treated with crude 

hexane extract of bunga kantan after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 100.698100 100.354500 98.947360 100.0 0.9276 

3.125 106.729500 102.512300 106.798200 105.3 2.455 

6.25 101.221800 109.568000 102.024100 104.0 4.605 

12.5 101.646100 108.810700 102.146900 104.2 4.000 

25 95.552600 99.915720 92.237620 95.90 3.851 

50 90.976780 90.719420 87.149870 89.62 2.139 

100 87.844690 83.570880 78.881200 83.43 4.483 

200 76.358610 77.191090 69.268280 74.27 4.354 

7.3.5 Data of percentage of cell viability of HK-1 cells treated with crude 

methanolic solid 1 extract of bunga kantan after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 100.698100 100.354500 98.947360 100.0 0.9276 

3.125 108.906200 106.855100 109.398300 108.4 1.349 

6.25 101.770800 102.541100 103.532500 102.6 0.8832 

12.5 107.478400 101.656300 99.432880 102.9 4.155 

25 96.754240 95.269500 107.382300 99.80 6.607 

50 94.527650 102.141500 98.426410 98.37 3.807 

100 92.593610 91.841140 90.880910 91.77 0.8584 

200 91.182970 88.265010 92.608920 90.69 2.214 
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7.3.6 Data of percentage of cell viability of HK-1 cells treated with crude 

methanolic extract of bunga kantan after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 103.418800 97.062830 99.518340 100.0 3.205 

3.125 99.209830 95.166890 96.334050 96.90 2.081 

6.25 92.169980 95.403790 93.983210 93.85 1.621 

12.5 90.495900 92.723970 95.805950 93.01 2.666 

25 88.067930 89.367310 94.612820 90.68 3.465 

50 77.849140 74.190030 87.808220 79.95 7.048 

100 66.122890 73.713880 74.927310 71.59 4.772 

200 55.623760 65.357670 64.573870 61.85 5.408 
 

7.3.7 Data of percentage of cell viability of HK-1 cells treated with crude 

ethyl acetate extract of bunga kantan after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 103.418800 97.062830 99.518340 100.0 3.205 

3.125 99.840470 95.680030 97.358040 97.63 2.093 

6.25 96.333260 99.131990 93.654780 96.37 2.739 

12.5 94.823750 98.479400 90.982280 94.76 3.749 

25 95.490360 95.421100 89.480640 93.46 3.450 

50 98.006470 87.841270 94.926850 93.59 5.212 

100 79.642850 72.508870 79.320880 77.16 4.029 

200 70.310480 71.716660 72.393340 71.47 1.063 

7.3.8 Data of percentage of cell viability of HK-1 cells treated with crude 

hexane extract of bunga kantan after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 103.418800 97.062830 99.518340 100.0 3.205 

3.125 101.346600 103.463800 103.151800 102.7 1.143 

6.25 100.115700 94.853650 99.990720 98.32 3.003 

12.5 94.049320 89.934440 92.089710 92.02 2.058 

25 92.932530 90.907520 87.934140 90.59 2.514 

50 81.296520 84.797470 79.651990 81.92 2.628 

100 75.843890 73.240570 81.471890 76.85 4.207 

200 70.330310 77.575650 68.306400 72.07 4.874 
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7.3.9 Data of percentage of cell viability of HK-1 cells treated with crude 

methanolic solid 1 extract of bunga kantan after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 103.418800 97.062830 99.518340 100.0 3.205 

3.125 101.533400 103.115800 95.243000 99.96 4.164 

6.25 98.842290 102.479900 102.195800 101.2 2.023 

12.5 73.711500 74.567280 76.310940 74.86 1.325 

25 74.566310 76.426050 70.204940 73.73 3.193 

50 74.578710 70.785450 77.392200 74.25 3.315 

100 70.765850 74.680900 70.667320 72.04 2.289 

200 58.474830 60.382810 62.662270 60.51 2.096 
 

7.3.10 Data of percentage of cell viability of HK-1 cells treated with crude 

methanolic extract of curry leaf after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 100.203400 101.433400 98.363250 100.0 1.545 

3.125 101.051400 108.945600 102.509600 104.2 4.201 

6.25 107.450800 109.113500 108.386700 108.3 0.8335 

12.5 103.327900 106.885800 109.688100 106.6 3.188 

25 105.095200 108.234900 102.147100 105.2 3.044 

50 104.338000 106.741900 100.376600 103.8 3.214 

100 78.720830 86.772250 87.283360 84.26 4.803 

200 48.835800 57.592390 55.875800 54.10 4.640 
 

7.3.11 Data of percentage of cell viability of HK-1 cells treated with crude 

ethyl acetate extract of curry leaf after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 103.265300 92.500730 104.233900 100.0 6.513 

3.125 105.424700 102.856800 106.218700 104.8 1.757 

6.25 109.623600 109.523200 105.859900 108.3 2.145 

12.5 108.704100 107.859300 103.979000 106.8 2.520 

25 92.290510 89.188000 97.282630 92.92 4.084 

50 61.216550 59.140950 66.209430 62.19 3.633 

100 60.213580 60.488510 57.988810 59.56 1.371 

200 59.047640 59.085820 60.256470 59.46 0.6872 
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7.3.12 Data of percentage of cell viability of HK-1 cells treated with crude 

hexane extract of curry leaf after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 95.657310 98.329020 106.013700 100.0 5.377 

3.125 104.741100 109.466100 111.307200 108.5 3.387 

6.25 106.814800 106.830800 99.866590 104.5 4.016 

12.5 98.148330 97.707940 96.688200 97.51 0.7490 

25 99.815430 96.900830 96.781990 97.83 1.718 

50 76.174260 70.293200 74.386100 73.62 3.015 

100 66.891380 62.005260 66.924950 65.27 2.831 

200 60.718290 54.306270 60.200900 58.41 3.562 

7.3.13 Data of percentage of cell viability of HK-1 cells treated with crude 

methanolic extract of curry leaf after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 99.337080 105.371500 95.291430 100.0 5.073 

3.125 101.364700 104.326100 101.871800 102.5 1.584 

6.25 108.786000 104.759500 100.387500 104.6 4.200 

12.5 106.214100 102.458500 100.218100 103.0 3.030 

25 102.021700 101.995300 101.666500 101.9 0.1979 

50 93.833700 99.556510 96.199710 96.53 2.876 

100 69.427860 69.967080 67.108100 68.83 1.519 

200 38.103710 40.526710 40.325230 39.65 1.345 

7.3.14 Data of percentage of cell viability of HK-1 cells treated with crude 

ethyl acetate extract of curry leaf after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 97.212650 104.409800 98.377550 100.0 3.863 

3.125 80.505110 71.650540 76.683800 76.28 4.441 

6.25 79.509930 74.537740 70.946810 75.00 4.300 

12.5 71.945990 76.117200 78.167470 75.41 3.170 

25 61.315880 61.237590 59.336270 60.63 1.121 

50 58.362790 55.616910 54.844470 56.27 1.849 

100 55.157630 53.701610 56.603580 55.15 1.451 

200 53.116540 57.153370 57.199790 55.82 2.344 
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7.3.15 Data of percentage of cell viability of HK-1 cells treated with crude 

hexane extract of curry leaf after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 96.688740 99.959010 103.352200 100.0 3.332 

3.125 102.714400 103.193800 104.565300 103.5 0.9606 

6.25 97.060590 99.259650 101.118800 99.15 2.031 

12.5 86.585790 90.310180 92.653410 89.85 3.060 

25 89.598050 83.831140 79.878990 84.44 4.888 

50 69.707030 72.709210 76.141730 72.85 3.220 

100 43.034620 40.946610 46.492460 43.49 2.801 

200 41.540180 36.628090 34.585640 37.58 3.575 

7.3.16 Data of percentage of cell viability of HK-1 cells treated with crude 

methanolic extract of temu kunci after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 100.203400 101.433400 98.363250 100.0 1.545 

3.125 111.313500 98.541310 108.985000 106.3 6.802 

6.25 107.526200 103.421700 103.415500 104.8 2.372 

12.5 98.306900 94.991700 104.660400 99.32 4.913 

25 92.367040 90.063320 95.990500 92.81 2.988 

50 85.570850 90.691570 95.646320 90.64 5.038 

100 70.821880 71.573000 78.250460 73.55 4.089 

200 56.105050 52.224860 52.560390 53.63 2.150 
 

7.3.17 Data of percentage of cell viability of HK-1 cells treated with crude 

ethyl acetate extract of temu kunci after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 103.265300 92.500730 104.233900 100.0 6.513 

3.125 96.780800 98.579860 91.274700 95.55 3.806 

6.25 87.167900 94.931300 97.557750 93.22 5.402 

12.5 86.092230 89.822100 93.202200 89.71 3.556 

25 86.938500 89.422440 87.361900 87.91 1.329 

50 81.173360 86.421840 88.794270 85.40 3.900 

100 61.679650 65.956390 63.535390 63.72 2.145 

200 55.939460 59.929790 55.281590 53.63 2.150 
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7.3.18 Data of percentage of cell viability of HK-1 cells treated with crude 

hexane extract of temu kunci after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 95.657310 98.329020 106.013700 100.0 5.377 

3.125 97.858060 100.866700 103.961200 100.9 3.052 

6.25 93.466380 94.946630 101.164000 96.53 4.085 

12.5 90.607840 96.753110 91.686380 93.02 3.281 

25 85.454570 85.314610 80.237050 83.67 2.973 

50 64.691290 74.313230 75.415530 71.47 5.899 

100 62.449550 64.940300 61.056450 62.82 1.968 

200 59.641330 61.404830 57.220490 59.42 2.101 

7.3.19 Data of percentage of cell viability of HK-1 cells treated with crude 

methanolic extract of temu kunci after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 99.337080 105.371500 95.291430 100.0 5.073 

3.125 103.938600 103.704100 107.070300 104.9 1.879 

6.25 93.404010 104.748500 104.387500 100.8 6.448 

12.5 89.829960 85.866320 99.412770 91.70 6.965 

25 91.949390 84.016400 92.376800 89.45 4.708 

50 85.397510 79.980070 85.876930 83.75 3.275 

100 58.403580 59.528240 54.163700 57.37 2.829 

200 39.212990 40.689170 34.734150 38.21 3.101 

7.3.20 Data of percentage of cell viability of HK-1 cells treated with crude 

ethyl acetate extract of temu kunci after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 97.212650 104.409800 98.377550 100.0 3.863 

3.125 93.953920 90.293000 88.967370 91.07 2.583 

6.25 91.091430 91.697420 93.784940 92.19 1.413 

12.5 90.524450 83.762070 88.490510 87.59 3.470 

25 82.262160 86.119010 80.167450 82.85 3.019 

50 76.340690 77.764810 77.223680 77.11 0.7189 

100 56.778240 52.771330 55.174540 54.91 2.017 

200 52.665380 53.784690 49.194560 51.88 2.393 
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7.3.21 Data of percentage of cell viability of HK-1 cells treated with crude 

hexane extract of temu kunci after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 96.688740 99.959010 103.352200 100.0 3.332 

3.125 92.857320 99.769870 95.121090 95.92 3.524 

6.25 93.359890 99.636360 96.671420 96.56 3.140 

12.5 83.401470 80.548810 82.479620 82.14 1.456 

25 65.692040 61.177890 66.763920 64.54 2.965 

50 65.042880 59.555130 57.251920 60.62 4.002 

100 42.572090 40.993650 42.356800 41.97 0.856 

200 36.158800 37.941650 37.807300 37.30 0.9928 

7.3.22 Data of percentage of cell viability of HK-1 cells treated with crude 

methanolic extract of spring onion leaf after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 100.203400 101.433400 98.363250 100.0 1.545 

3.125 106.579700 102.163700 109.277500 106.0 3.591 

6.25 105.840800 101.699300 103.176500 103.6 2.099 

12.5 104.160000 105.683500 101.963900 103.9 1.870 

25 101.140600 108.735800 102.648500 104.2 4.021 

50 106.423600 100.688300 103.935800 103.7 2.876 

100 109.197900 101.468200 100.707000 103.8 4.698 

200 82.259040 88.062810 86.049610 85.46 2.947 

 

7.3.23 Data of percentage of cell viability of HK-1 cells treated with crude 

ethyl acetate extract of spring onion leaf after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 103.265300 92.500730 104.233900 100.0 6.513 

3.125 108.021400 109.305900 107.433900 108.3 0.9574 

6.25 103.739900 100.013600 106.276200 103.3 3.150 

12.5 107.323700 105.689700 102.027300 105.0 2.712 

25 82.462600 83.034260 87.263700 84.25 2.623 

50 74.156850 86.240250 83.820720 81.41 6.393 

100 75.601730 86.554770 81.141000 81.10 5.477 

200 65.969150 62.115190 73.001480 67.03 5.520 
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7.3.24 Data of percentage of cell viability of HK-1 cells treated with crude 

hexane extract of spring onion leaf after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 95.657310 98.329020 106.013700 100.0 5.377 

3.125 112.762800 102.378500 103.815400 106.3 5.627 

6.25 110.152700 100.235500 106.489700 105.6 5.015 

12.5 101.825600 105.552200 107.471000 104.9 2.871 

25 103.068400 100.535000 107.519100 103.7 3.536 

50 100.930500 102.286900 100.876600 101.4 0.7991 

100 99.470500 105.660300 98.846640 101.3 3.767 

200 95.874280 94.213970 96.199200 95.43 1.065 

7.3.25 Data of percentage of cell viability of HK-1 cells treated with crude 

methanolic extract of spring onion leaf after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 99.337080 105.371500 95.291430 100.0 5.073 

3.125 102.138300 108.971700 102.653100 104.6 3.805 

6.25 101.899600 102.698000 104.085300 102.9 1.106 

12.5 105.793000 107.144300 101.279900 104.7 3.071 

25 105.832900 101.471600 103.958500 103.8 2.188 

50 93.031580 104.963300 103.186100 100.4 6.437 

100 87.039970 84.596370 88.034760 86.56 1.769 

200 81.458780 75.398410 82.130790 79.60 3.708 

 

7.3.26 Data of percentage of cell viability of HK-1 cells treated with crude 

ethyl acetate extract of spring onion leaf after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 97.212650 104.409800 98.377550 100.0 3.863 

3.125 94.309130 97.734110 91.388850 94.48 3.176 

6.25 93.189990 95.582660 98.180950 95.65 2.496 

12.5 92.793170 93.035480 89.107520 91.65 2.201 

25 79.121030 80.771200 81.012970 80.30 1.030 

50 72.729570 76.685950 74.238660 74.55 1.997 

100 67.800700 65.746190 68.250310 67.27 1.335 

200 59.074310 61.533410 53.445950 58.02 4.146 
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7.3.27 Data of percentage of cell viability of HK-1 cells treated with crude 

hexane extract of spring onion leaf after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 96.688740 99.959010 103.352200 100.0 3.332 

3.125 98.364700 87.933250 93.823900 93.37 5.230 

6.25 91.182980 91.502960 91.739620 91.48 0.2794 

12.5 89.647000 85.262470 83.823440 86.24 3.033 

25 81.433280 85.217770 79.239430 81.96 3.024 

50 80.139940 84.763390 88.781230 84.56 4.324 

100 81.675250 79.658640 75.654590 79.00 3.065 

200 77.058840 78.625690 81.126560 78.94 2.052 

7.3.28 Data of percentage of cell viability of HK-1 cells treated with crude 

methanolic extract of pink/mushroom bean after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 100.203400 101.433400 98.363250 100.0 1.545 

3.125 108.181200 103.029500 101.493300 104.2 3.503 

6.25 101.414700 107.976500 104.809800 104.7 3.282 

12.5 107.296900 105.030400 102.062300 104.8 2.625 

25 101.568300 102.645000 109.201900 104.5 4.132 

50 101.392500 102.672000 101.687900 101.9 0.6699 

100 101.819800 104.864600 108.156000 104.9 3.169 

200 104.174000 102.972600 102.769000 103.3 0.7593 

7.3.29 Data of percentage of cell viability of HK-1 cells treated with crude 

ethyl acetate extract of pink/mushroom bean after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 103.265300 92.500730 104.233900 100.0 6.513 

3.125 91.404000 91.191400 89.306900 90.63 1.154 

6.25 95.718030 94.296990 90.442920 93.49 2.729 

12.5 83.481980 80.330000 86.167250 83.33 2.922 

25 85.592830 82.868880 78.948010 82.47 3.340 

50 83.155600 73.431530 81.239040 79.28 5.151 

100 79.752960 79.544480 80.503240 79.93 0.5043 

200 77.681820 77.733030 77.668910 77.69 0.03391 
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7.3.30 Data of percentage of cell viability of HK-1 cells treated with crude 

hexane extract of pink/mushroom bean after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 95.657310 98.329020 106.013700 100.0 5.377 

3.125 103.952200 113.050800 108.365200 108.5 4.550 

6.25 109.714100 108.154100 103.972000 107.3 2.969 

12.5 103.964500 99.306280 102.189000 101.8 2.351 

25 103.299400 102.984100 102.442900 102.9 0.4332 

50 99.299680 92.465370 93.708340 95.16 3.640 

100 88.682650 92.056070 92.070100 90.94 1.952 

200 83.458380 84.070760 83.452120 83.66 0.3554 

7.3.31 Data of percentage of cell viability of HK-1 cells treated with crude 

methanolic extract of pink/mushroom bean after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 99.337080 105.371500 95.291430 100.0 5.073 

3.125 102.958400 96.884960 101.984300 100.6 3.262 

6.25 97.617570 97.484330 91.021330 95.37 3.770 

12.5 97.302310 93.520810 90.349560 93.72 3.481 

25 83.647230 88.982990 83.382770 85.34 3.160 

50 85.604140 84.276940 80.333400 83.40 2.741 

100 79.542380 78.302730 74.079210 77.31 2.864 

200 72.146150 76.268390 73.004460 73.81 2.175 

 

7.3.32 Data of percentage of cell viability of HK-1 cells treated with crude 

ethyl acetate extract of pink/mushroom bean after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 97.212650 104.409800 98.377550 100.0 3.863 

3.125 84.824690 90.832920 81.682280 85.78 4.650 

6.25 81.334040 81.675240 84.762520 82.59 1.889 

12.5 70.273290 68.282100 67.903030 68.82 1.273 

25 68.831250 64.577050 68.325930 67.24 2.324 

50 65.695870 64.047830 65.576040 65.11 0.9189 

100 65.248410 60.239840 61.163850 62.22 2.665 

200 50.523030 54.867250 53.543650 52.98 2.227 
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7.3.33 Data of percentage of cell viability of HK-1 cells treated with crude 

hexane extract of pink/mushroom bean after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 96.688740 99.959010 103.352200 100.0 3.332 

3.125 86.500760 91.966090 83.542230 87.34 4.274 

6.25 88.268890 76.617460 82.155890 82.35 5.828 

12.5 79.956070 83.859950 79.201320 81.01 2.500 

25 73.338550 81.723180 79.997990 78.35 4.428 

50 78.924610 83.459580 75.500180 79.29 3.993 

100 76.085620 66.399470 67.215610 69.90 5.372 

200 60.093520 62.108880 56.337180 59.51 2.929 

7.3.34 Data of percentage of cell viability of HK-1 cells treated with 5-

fluorouracil after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 100.668100 100.257100 99.074760 100.0 0.8272 

3.125 87.280600 84.193740 85.310190 85.59 1.563 

6.25 81.037860 80.218400 80.143840 80.47 0.4960 

12.5 79.328080 75.430370 80.914020 78.56 2.822 

25 69.443340 69.179630 72.899890 70.51 2.076 

50 66.296710 64.373120 63.416250 64.70 1.467 

100 59.164820 62.994810 63.442130 61.87 2.351 

200 55.890710 56.495950 55.660580 56.02 0.4315 

7.3.35 Data of percentage of cell viability of HK-1 cells treated with 5-

fluorouracil after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 97.844130 100.877100 101.278800 100.0 1.878 

3.125 67.026180 73.597990 63.359720 67.99 5.187 

6.25 64.465180 61.917730 61.844270 62.74 1.492 

12.5 53.380890 60.754960 57.986630 57.37 3.725 

25 54.665040 53.804950 51.944520 53.47 1.391 

50 48.406370 49.110650 48.161470 48.56 0.4928 

100 47.707780 48.765880 47.645580 48.04 0.6296 

200 47.706730 44.444120 46.150030 46.10 1.632 
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7.3.36 Data of percentage of cell viability of NP-69 cells treated with crude 

methanolic extract of bunga kantan after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 95.035110 108.562900 96.402000 100.0 7.447 

3.125 103.957600 103.100800 99.517200 102.2 2.356 

6.25 91.256160 95.769710 98.807720 95.28 3.800 

12.5 98.757450 98.031930 90.371290 95.72 4.646 

25 89.797930 88.794690 83.781900 87.46 3.223 

50 83.225070 78.779820 82.837500 81.61 2.462 

100 73.650860 78.746540 76.467600 76.29 2.553 

200 64.566910 62.709100 69.306680 65.53 3.402 

7.3.37 Data of percentage of cell viability of NP-69 cells treated with crude 

ethyl acetate extract of bunga kantan after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 96.747740 106.814400 96.437870 100.0 5.903 

3.125 94.432530 87.292400 89.717090 90.48 3.631 

6.25 85.439060 88.333510 95.317570 89.70 5.078 

12.5 88.521110 89.545240 83.138120 87.07 3.442 

25 86.724160 82.313280 87.346460 85.46 2.744 

50 79.323360 80.025340 80.861100 80.07 0.7698 

100 72.608510 79.421350 71.142360 74.39 4.418 

200 59.835510 60.310670 58.834700 59.66 0.7534 

7.3.38 Data of percentage of cell viability of NP-69 cells treated with crude 

hexane extract of bunga kantan after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 95.035110 108.562900 95.035110 99.54 7.810 

3.125 92.519580 93.648670 95.198040 93.79 1.345 

6.25 93.066840 92.857890 94.491230 93.47 0.8889 

12.5 91.400090 92.857890 97.236820 93.83 3.038 

25 89.756540 89.717150 89.756540 89.74 0.02274 

50 75.133230 74.491230 75.133230 74.92 0.3707 

100 66.949390 69.910410 66.949390 67.94 1.710 

200 60.401640 61.794860 57.746010 59.98 2.057 
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7.3.39 Data of percentage of cell viability of NP-69 cells treated with crude 

methanolic extract of bunga kantan after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 96.747740 106.814400 96.437870 100.0 5.903 

3.125 92.229270 99.939820 92.586940 94.92 4.352 

6.25 96.640150 91.591610 96.329060 94.85 2.829 

12.5 87.498200 89.917190 88.591350 88.67 1.211 

25 81.656880 82.168870 77.832440 80.55 2.370 

50 73.712670 74.125770 74.832030 74.22 0.566 

100 67.149730 67.670010 69.244320 68.02 1.091 

200 53.643940 58.084850 53.643940 55.12 2.564 

7.3.40 Data of percentage of cell viability of NP-69 cells treated with crude 

ethyl acetate extract of bunga kantan after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 95.035110 108.562900 96.402000 100.0 7.447 

3.125 92.432880 96.578550 101.176900 96.73 4.374 

6.25 89.750940 91.520250 87.016620 89.43 2.269 

12.5 80.738720 82.813190 80.553300 81.37 1.255 

25 78.962860 78.059520 82.512570 79.84 2.354 

50 66.797970 69.195020 74.241080 70.08 3.799 

100 62.725050 62.611540 62.564550 62.63 0.08252 

200 60.945970 59.251980 57.576740 59.26 1.685 

7.3.41 Data of percentage of cell viability of NP-69 cells treated with crude 

hexane extract of bunga kantan after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 96.747740 106.814400 96.437870 100.0 5.903 

3.125 95.395000 89.714370 95.003220 93.37 3.173 

6.25 92.740590 85.515410 90.172040 89.48 3.663 

12.5 85.842190 89.340530 87.245800 87.48 1.761 

25 79.895100 84.727230 78.137950 80.92 3.412 

50 72.694650 74.631880 70.838050 72.72 1.897 

100 69.034580 65.119130 56.297490 63.48 6.524 

200 51.852040 51.712270 53.873440 52.48 1.209 
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7.3.42 Data of percentage of cell viability of NP-69 cells treated with crude 

methanolic solid 1 extract of bunga kantan after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 105.175300 95.524960 99.299740 100.0 4.863 

3.125 97.057740 89.880200 101.752800 96.23 5.979 

6.25 81.442050 83.299180 85.954030 83.57 2.268 

12.5 72.531380 72.906940 74.834560 73.42 1.236 

25 69.259670 68.009020 70.650250 69.31 1.321 

50 65.503970 68.386330 67.910600 67.27 1.545 

100 67.248250 66.312190 63.227240 65.60 2.104 

200 61.821120 61.611100 62.363940 61.93 0.3885 

7.3.43 Data of percentage of cell viability of NP-69 cells treated with crude 

methanolic solid 1 extract of bunga kantan after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 96.747740 106.814400 96.437870 100.0 5.903 

3.125 92.367150 88.832880 85.468130 88.89 3.450 

6.25 84.158450 82.492450 83.684490 83.45 0.8584 

12.5 85.285420 77.349100 81.982220 81.54 3.987 

25 75.930060 81.519530 81.443460 79.63 3.205 

50 75.820570 75.768140 75.384780 75.66 0.2379 

100 69.436950 70.256230 73.040640 70.91 1.889 

200 56.585240 58.336390 51.932800 55.62 3.310 

7.3.44 Data of percentage of cell viability of NP-69 cells treated with crude 

methanolic extract of curry leaf after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 105.175300 95.524960 99.299740 100.0 4.863 

3.125 106.173600 110.783200 110.493900 109.2 2.582 

6.25 106.920200 104.675600 103.178100 104.9 1.883 

12.5 102.459700 108.650000 104.433700 105.2 3.162 

25 100.359900 102.290000 104.695000 102.4 2.172 

50 103.795000 101.306100 100.929900 102.0 1.557 

100 96.685870 97.126080 97.784320 97.20 0.5528 

200 75.629020 73.841500 78.223560 75.90 2.203 
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7.3.45 Data of percentage of cell viability of NP-69 cells treated with crude 

methanolic extract of curry leaf after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 98.234020 106.717500 95.048530 100.0 6.032 

3.125 104.076400 102.977100 107.142800 104.7 2.159 

6.25 102.105500 104.512000 100.524700 102.4 2.008 

12.5 96.591530 95.760580 91.393910 94.58 2.792 

25 89.952100 89.740810 90.009750 89.90 0.1416 

50 84.278210 84.215630 80.074940 82.86 2.409 

100 72.374510 73.290860 72.493450 72.72 0.4983 

200 54.476640 57.261150 55.973100 55.90 1.394 

7.3.46 Data of percentage of cell viability of NP-69 cells treated with crude 

ethyl acetate extract of curry leaf after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 105.175300 95.524960 99.299740 100.0 4.863 

3.125 104.484800 100.247400 109.621700 104.8 4.694 

6.25 102.008500 100.169100 99.510220 100.6 1.295 

12.5 96.546280 94.643450 89.544730 93.58 3.620 

25 85.517170 88.609760 87.236290 87.12 1.550 

50 77.830040 80.042630 80.075840 79.32 1.287 

100 74.266240 77.986500 75.141490 75.80 1.945 

200 72.705220 71.313200 73.289220 72.44 1.015 

7.3.47 Data of percentage of cell viability of NP-69 cells treated with crude 

ethyl acetate extract of curry leaf after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 98.234020 106.717500 95.048530 100.0 6.032 

3.125 102.496500 104.422300 106.645000 104.5 2.076 

6.25 93.565300 94.101200 98.751240 95.47 2.852 

12.5 87.021450 87.900080 88.732850 87.88 0.8558 

25 83.590740 83.166160 81.880210 82.88 0.8907 

50 54.782880 53.164920 53.318360 53.76 0.8931 

100 52.894900 54.167090 51.155650 52.74 1.512 

200 50.956450 52.529730 50.896450 51.46 0.9261 
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7.3.48 Data of percentage of cell viability of NP-69 cells treated with crude 

hexane extract of curry leaf after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 105.175300 95.524960 99.299740 100.0 6.032 

3.125 107.625900 108.003900 106.351600 107.3 0.8657 

6.25 105.999800 102.517400 103.450200 104.0 1.803 

12.5 102.752200 100.786500 101.114400 101.6 1.053 

25 101.001000 101.740700 101.093100 101.3 0.4031 

50 102.402000 98.917630 97.713950 99.68 2.435 

100 86.548570 89.497640 86.059750 87.37 1.860 

200 83.020600 83.284450 84.044720 63.76 3.146 

7.3.49 Data of percentage of cell viability of NP-69 cells treated with crude 

hexane extract of curry leaf after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 98.234020 106.717500 95.048530 100.0 6.032 

3.125 101.093900 101.992600 100.177500 101.1 0.9076 

6.25 86.119350 94.119580 91.952800 90.73 4.138 

12.5 88.479120 85.556610 80.288700 84.77 4.151 

25 80.705410 77.334580 79.000010 79.01 1.685 

50 75.671620 78.695200 74.347140 76.24 2.229 

100 66.736080 62.786750 65.326200 64.95 2.001 

200 67.083990 63.374470 60.828100 63.76 3.146 

7.3.50 Data of percentage of cell viability of NP-69 cells treated with crude 

methanolic extract of temu kunci after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 99.089240 102.390200 98.520550 100.0 2.089 

3.125 110.557900 111.307200 110.411500 110.8 0.4805 

6.25 105.656300 106.680200 108.157300 106.8 1.257 

12.5 95.981610 93.043890 93.962630 94.33 1.503 

25 83.630200 89.616550 84.869680 86.04 3.160 

50 78.745230 76.302410 78.124790 77.72 1.270 

100 68.756040 69.348200 72.094300 70.07 1.781 

200 62.181360 65.242080 67.068230 64.83 2.469 
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7.3.51 Data of percentage of cell viability of NP-69 cells treated with crude 

methanolic extract of temu kunci after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 102.818100 99.647240 97.534680 100.0 2.659 

3.125 102.766800 99.413530 99.921480 100.7 1.807 

6.25 96.431850 97.759370 96.384170 96.86 0.7806 

12.5 92.820510 90.104050 94.817930 92.58 2.366 

25 82.578910 80.495570 75.692320 79.59 3.532 

50 73.238790 73.740590 72.619860 73.20 0.5614 

100 69.926900 69.997150 66.110730 68.68 2.224 

200 63.974670 57.075380 63.052250 61.37 3.746 

7.3.52 Data of percentage of cell viability of NP-69 cells treated with crude 

ethyl acetate extract of temu kunci after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 99.089240 102.390200 98.520550 100.0 2.089 

3.125 105.200200 110.456500 110.252500 108.6 2.978 

6.25 96.742890 96.160770 96.112790 96.34 0.3508 

12.5 94.671600 92.702700 90.664250 92.68 2.004 

25 81.643060 82.789580 82.410940 82.28 0.5842 

50 77.819630 79.134120 80.227910 79.06 1.206 

100 73.031000 72.936630 71.385290 72.45 0.9241 

200 72.811610 69.737140 68.640190 70.40 2.162 

7.3.53 Data of percentage of cell viability of NP-69 cells treated with crude 

ethyl acetate extract of temu kunci after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 102.818100 99.647240 97.534680 100.0 2.659 

3.125 104.569200 100.062100 105.899000 103.5 3.059 

6.25 96.161060 94.758570 95.481530 95.47 0.7014 

12.5 83.564020 87.447740 88.284490 86.43 2.5190 

25 77.486960 81.021840 76.476520 78.33 2.387 

50 75.742020 75.861970 76.848560 76.15 0.6072 

100 70.330180 68.845310 66.487870 68.55 1.938 

200 66.310740 63.853080 66.163970 65.44 1.379 
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7.3.54 Data of percentage of cell viability of NP-69 cells treated with crude 

hexane extract of temu kunci after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 99.089240 102.390200 98.520550 100.0 2.089 

3.125 105.005100 104.609800 106.216000 105.3 0.8369 

6.25 105.098400 104.842500 103.105100 104.3 1.085 

12.5 95.461110 102.516400 96.132320 98.04 3.894 

25 85.299240 80.861410 91.408310 85.86 5.295 

50 77.708310 74.913000 78.843390 77.15 2.023 

100 74.268870 72.429970 66.770220 71.16 3.908 

200 72.685740 64.360220 70.528210 69.19 4.321 

7.3.55 Data of percentage of cell viability of NP-69 cells treated with crude 

hexane extract of temu kunci after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 102.818100 99.647240 97.534680 100.0 2.659 

3.125 94.290370 94.766240 94.232660 94.43 0.2928 

6.25 92.286100 88.980470 90.568470 90.61 1.653 

12.5 91.209170 91.199710 86.372990 89.59 2.789 

25 81.128960 73.566730 73.094300 75.93 4.509 

50 73.741580 70.140980 78.298370 74.06 4.088 

100 64.496120 64.234720 68.621350 65.78 2.461 

200 58.370030 63.385540 63.491060 61.75 2.927 

7.3.56 Data of percentage of cell viability of NP-69 cells treated with crude 

methanolic extract of spring onion leaf after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 106.901100 98.959910 104.139000 103.3 4.031 

3.125 95.717800 92.298260 97.896680 95.30 2.822 

6.25 87.884820 90.535290 88.975500 89.13 1.332 

12.5 84.138380 86.620170 87.213640 85.99 1.631 

25 81.894400 85.953770 83.069920 83.64 2.089 

50 78.956770 80.309810 76.144000 78.47 2.125 

100 72.145640 73.463450 76.192490 73.93 2.064 

200 68.437510 67.048370 71.077180 68.85 2.046 
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7.3.57 Data of percentage of cell viability of NP-69 cells treated with crude 

methanolic extract of spring onion leaf after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 95.345170 104.102600 100.552300 100.0 4.405 

3.125 93.362340 89.226640 88.722430 90.44 2.546 

6.25 88.037050 86.543170 86.834140 87.14 0.792 

12.5 84.369350 83.613490 82.848440 83.61 0.7605 

25 83.945960 80.407710 82.328460 82.23 1.771 

50 76.300960 77.198560 76.451880 76.65 0.4806 

100 77.856140 74.745800 75.514980 76.04 1.620 

200 71.236110 70.521510 64.504620 68.75 3.697 

7.3.58 Data of percentage of cell viability of NP-69 cells treated with crude 

ethyl acetate extract of spring onion leaf after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 106.901100 101.236900 104.139000 104.1 2.832 

3.125 114.216200 121.635300 121.734000 119.2 4.312 

6.25 114.581300 114.963200 101.977900 110.5 7.389 

12.5 96.607350 100.791500 97.349240 98.25 2.233 

25 95.472470 87.526330 89.432820 90.81 4.148 

50 83.164210 84.584160 85.917920 84.56 1.377 

100 78.208850 76.476210 77.692860 77.46 0.8896 

200 60.999270 64.676340 56.868200 60.85 3.906 

7.3.59 Data of percentage of cell viability of NP-69 cells treated with crude 

ethyl acetate extract of spring onion leaf after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 95.345170 104.102600 100.552300 100.0 4.405 

3.125 96.482900 92.886590 97.561160 95.64 2.448 

6.25 88.226630 91.330510 87.742460 89.10 1.947 

12.5 79.843490 79.486960 74.391720 77.91 3.050 

25 74.400510 71.303750 71.822830 72.51 1.659 

50 68.708080 69.999840 70.631420 69.78 0.9804 

100 59.587710 65.374150 58.098490 61.02 3.844 

200 60.170150 56.566590 52.115230 56.28 4.035 
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7.3.60 Data of percentage of cell viability of NP-69 cells treated with crude 

hexane extract of spring onion leaf after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 106.901100 101.236900 104.139000 104.1 2.832 

3.125 117.630000 111.956900 113.645400 114.4 2.913 

6.25 106.725500 104.529800 101.575200 104.3 2.584 

12.5 90.095410 98.473560 94.875190 94.48 4.203 

25 86.000180 82.585220 89.636860 86.07 3.526 

50 76.245830 76.978580 81.856960 78.36 3.050 

100 56.088240 59.611360 57.395130 57.70 1.781 

200 54.999650 54.668170 53.840950 54.50 0.5968 

7.3.61 Data of percentage of cell viability of NP-69 cells treated with crude 

hexane extract of spring onion leaf after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 95.345170 104.102600 100.552300 100.0 4.405 

3.125 94.160490 90.201180 96.578610 93.65 3.220 

6.25 75.863230 78.411690 83.241440 79.17 3.747 

12.5 63.447060 67.467030 66.220540 65.71 2.058 

25 62.026120 60.390380 60.688720 61.04 0.8711 

50 59.938940 58.852150 57.622860 58.80 1.159 

100 55.378560 55.393680 56.259330 55.68 0.5042 

200 51.414710 52.905740 51.877540 52.07 0.7632 

7.3.62 Data of percentage of cell viability of NP-69 cells treated with crude 

methanolic extract of mushroom bean after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 96.868310 101.235000 101.896700 100.0 2.732 

3.125 115.597900 117.304900 118.153600 117.0 1.302 

6.25 113.346600 112.588800 112.960900 113.0 0.3789 

12.5 107.644900 106.328700 105.578100 106.5 1.046 

25 101.217100 101.010200 102.296200 101.5 0.6905 

50 102.001100 92.205440 94.429340 96.21 5.135 

100 90.164960 90.149730 86.221240 88.85 2.273 

200 85.863140 83.505400 77.387840 82.25 4.374 
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7.3.63 Data of percentage of cell viability of NP-69 cells treated with crude 

methanolic extract of mushroom bean after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 94.696970 107.489700 97.813320 100.0 6.671 

3.125 107.695200 109.086300 108.598000 108.5 0.7058 

6.25 104.125000 102.475100 103.379500 103.3 0.8262 

12.5 100.609700 102.222100 98.086200 100.3 2.085 

25 94.103750 90.568830 92.921150 92.53 1.799 

50 96.589260 95.206620 92.076360 94.62 2.312 

100 91.485190 93.897340 90.400820 91.93 1.790 

200 73.876300 74.015800 73.741590 73.88 0.1371 

7.3.64 Data of percentage of cell viability of NP-69 cells treated with crude 

ethyl acetate extract of mushroom bean after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 96.868310 101.235000 101.896700 100.0 2.732 

3.125 115.597900 117.304900 118.153600 115.6 1.425 

6.25 113.346600 112.588800 112.960900 113.4 0.9787 

12.5 107.644900 106.328700 105.578100 105.6 3.354 

25 101.217100 101.010200 102.296200 103.3 0.1183 

50 102.001100 92.205440 94.429340 97.85 5.646 

100 90.164960 90.149730 86.221240 88.68 1.464 

200 85.863140 83.505400 77.387840 82.02 1.896 

7.3.65 Data of percentage of cell viability of NP-69 cells treated with crude 

ethyl acetate extract of mushroom bean after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 94.696970 107.489700 97.813320 100.0 6.671 

3.125 107.701800 107.708000 106.480200 107.3 0.7071 

6.25 107.019900 104.644500 104.431600 105.4 1.437 

12.5 102.809200 101.374100 101.306700 101.8 0.8487 

25 99.397260 100.643000 104.716800 101.6 2.782 

50 87.528260 90.274270 88.847880 88.88 1.373 

100 85.040080 87.196240 89.953420 87.40 2.463 

200 70.149650 71.113010 70.969560 70.74 0.5198 
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7.3.66 Data of percentage of cell viability of NP-69 cells treated with crude 

hexane extract of mushroom bean after 24 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 96.868310 101.235000 101.896700 100.0 2.732 

3.125 114.068900 112.647000 119.133800 115.3 3.410 

6.25 106.244500 113.239800 109.496300 109.7 3.501 

12.5 106.210400 106.364900 98.514440 103.7 4.489 

25 102.141200 104.203100 103.951700 103.4 1.125 

50 103.300500 102.161100 104.207300 103.2 1.025 

100 97.261470 96.220650 98.107470 97.20 0.9451 

200 80.031800 92.402740 88.624180 87.02 6.340 

7.3.67 Data of percentage of cell viability of NP-69 cells treated with crude 

hexane extract of mushroom bean after 48 hrs treatment 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 94.696970 107.489700 97.813320 100.0 6.671 

3.125 108.972000 109.166300 108.504200 108.9 0.3403 

6.25 104.607400 104.278100 107.757500 105.5 1.921 

12.5 101.633100 104.186300 99.210880 101.7 2.488 

25 97.157590 95.716020 98.132250 97.00 1.216 

50 91.839710 92.630670 94.207600 92.89 1.205 

100 89.616760 86.026470 82.275450 85.97 3.671 

200 79.021710 84.388050 81.896680 81.77 2.685 
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7.4 Cytotoxic effects of cardamonin, pinostrobin, naringin and hesperidin 

against HK-1 and NP-69 cell lines 

7.4.1 Data of percentage of cell viability of HK-1 cells treated with 

cardamonin after 24 hrs 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 101.465400 101.949200 99.605630 100.00 7.595 

3.125 99.439900 99.999220 90.560840 99.39 5.676 

6.25 95.750010 95.297180 89.577260 95.48 1.222 

12.5 88.250750 86.283570 85.909470 83.45 4.482 

25 83.954770 83.780960 79.695420 74.48 0.9431 

50 77.013940 75.858340 73.201960 71.08 0.7886 

100 71.590880 69.890340 65.212850 69.30 1.192 

200 60.201160 59.247430 64.935000 62.45 1.695 

 

7.4.2 Data of percentage of cell viability of HK-1 cells treated with 

cardamonin after 48 hrs 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 101.792400 103.619700 94.587920 100.00 4.775 

3.125 101.361700 100.269400 97.466150 99.700 2.009 

6.25 82.112770 89.626990 81.650430 84.46 4.478 

12.5 76.219860 75.729800 75.366100 75.77 0.4284 

25 74.798780 71.936570 70.802510 72.51 2.059 

50 69.888160 67.274980 67.911680 68.36 1.363 

100 66.311650 65.151400 61.324350 64.26 2.610 

200 61.311030 53.478550 56.400180 57.06 3.958 
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7.4.3 Data of percentage of cell viability of HK-1 cells treated with 

cardamonin after 72 hrs 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 102.435000 101.243500 96.321530 100.00 3.241 

3.125 97.328320 91.187230 89.792300 92.77 4.009 

6.25 84.774260 78.232330 79.851680 80.95 3.407 

12.5 66.494430 62.121980 64.578940 64.40 2.192 

25 46.458730 45.063420 45.150290 45.56 0.7817 

50 41.685870 43.894750 43.537760 43.04 1.186 

100 40.722510 40.760480 40.583290 40.69 0.09329 

200 38.539410 37.348720 38.962270 38.28 0.8367 

7.4.4 Data of percentage of cell viability of HK-1 cells treated with 

hesperidin after 24 hrs 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 91.383580 102.892000 105.724400 100.00 7.595 

3.125 104.075700 105.348800 100.466300 103.30 2.533 

6.25 101.499100 99.241220 104.804000 101.80 2.798 

12.5 93.696500 89.564350 89.599430 90.95 2.376 

25 77.862990 82.666820 83.988530 81.51 3.224 

50 70.183870 73.724370 77.943610 73.95 3.885 

100 71.777130 71.479950 68.317020 70.52 1.918 

200 59.279470 66.972360 68.299720 64.85 4.870 

 

7.4.5 Data of percentage of cell viability of HK-1 cells treated with 

hesperidin after 48 hrs 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 101.792400 103.619700 94.587920 100.00 4.775 

3.125 92.297520 93.925590 93.369380 93.20 0.8275 

6.25 88.638530 89.221150 87.017990 88.29 1.142 

12.5 87.939630 84.408050 85.342540 85.90 1.830 

25 78.096990 77.193920 73.778300 76.36 2.278 

50 72.622770 73.011510 71.680740 72.44 0.6843 

100 65.198430 63.260640 61.489400 63.32 1.855 

200 60.665060 57.087960 60.284800 59.35 1.965 
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7.4.6 Data of percentage of cell viability of HK-1 cells treated with 

hesperidin after 72 hrs 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 99.927760 101.691700 98.380540 100.00 1.657 

3.125 86.164940 81.377610 80.373010 82.64 3.095 

6.25 79.363820 80.183430 70.787350 76.78 5.204 

12.5 70.541390 67.697440 65.744890 67.99 2.412 

25 61.605410 60.230390 63.585290 61.81 1.687 

50 59.382590 56.718010 56.488480 57.53 1.609 

100 55.333740 55.950370 55.520550 55.60 0.3162 

200 54.323350 54.774100 52.853810 53.98 1.004 

7.4.7 Data of percentage of cell viability of HK-1 cells treated with naringin 

after 24 hrs 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 91.3836 102.8920 105.7244 100.0000 7.5950 

3.125 102.0131 98.9054 96.5334 99.1500 2.7480 

6.25 97.5746 94.3390 95.4128 95.7800 1.6480 

12.5 97.8711 96.9546 97.6168 97.4800 0.4731 

25 92.9589 88.1631 95.4692 92.2000 3.7120 

50 86.5817 87.8366 84.4347 86.2800 1.7200 

100 84.0827 84.9274 84.0664 84.3600 0.4925 

200 74.5799 71.4571 70.1332 72.0600 2.2830 

7.4.8 Data of percentage of cell viability of HK-1 cells treated with naringin 

after 48 hrs 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 101.792400 103.619700 94.587920 100.00 4.775 

3.125 92.052660 89.847530 88.904010 90.27 1.616 

6.25 82.922560 85.483050 86.499540 84.97 1.843 

12.5 81.679160 81.171020 78.923080 80.59 1.467 

25 78.542430 75.811450 74.861110 76.40 1.911 

50 70.555210 71.624180 63.712590 68.63 4.293 

100 62.321850 60.787250 60.307270 61.14 1.052 

200 55.013370 58.771980 56.001730 56.60 1.948 
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7.4.9 Data of percentage of cell viability of HK-1 cells treated with naringin 

after 72 hrs 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 99.927760 101.691700 98.380540 100.00 1.657 

3.125 79.704400 73.201900 84.165510 79.02 5.513 

6.25 59.827980 66.049320 65.663250 63.85 3.486 

12.5 56.050180 56.357460 54.827120 55.74 0.8095 

25 53.448730 54.456790 50.791590 52.90 1.893 

50 48.292370 47.738870 47.556470 47.86 0.3832 

100 47.001160 45.358300 45.636520 46.00 0.8793 

200 42.958890 44.140870 39.486540 42.20 2.419 

7.4.10 Data of percentage of cell viability of HK-1 cells treated with 

pinostrobin after 24 hrs 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 99.725450 98.666210 101.608300 100.00 1.490 

3.125 102.608700 103.720200 102.474100 102.90 0.6839 

6.25 102.029000 100.661300 100.646600 101.10 0.7939 

12.5 101.311000 98.951290 98.469720 99.58 1.521 

25 98.509330 97.898860 98.679760 98.36 0.4106 

50 95.904210 93.121670 92.355640 93.79 1.867 

100 91.428710 91.266060 90.625950 91.11 0.4244 

200 77.667700 87.233380 76.386350 80.43 5.927 

7.4.11 Data of percentage of cell viability of HK-1 cells treated with 

pinostrobin after 48 hrs 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 107.217600 92.236280 100.546200 100.00 7.506 

3.125 94.591670 93.583430 93.008070 93.73 0.8016 

6.25 92.099700 92.047020 92.274580 92.14 0.1191 

12.5 92.085690 92.265430 92.124080 92.16 0.09465 

25 92.264570 92.174290 92.268880 92.24 0.05341 

50 89.723520 92.549500 89.677390 90.65 1.645 

100 81.124150 85.079900 85.618620 83.94 2.454 

200 78.726420 79.191580 80.674780 79.53 1.018 
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7.4.12 Data of percentage of cell viability of HK-1 cells treated with 

pinostrobin after 72 hrs 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 94.806620 105.152700 100.040700 100.00 5.173 

3.125 82.442460 79.916760 82.780560 81.71 1.565 

6.25 80.874240 81.368290 96.054600 86.10 8.625 

12.5 79.057850 76.430810 76.337260 77.28 1.544 

25 73.426040 74.826380 68.987290 72.41 3.048 

50 62.990520 67.360470 59.231660 63.19 4.068 

100 59.333210 56.857120 57.364950 57.85 1.308 

200 51.125180 53.340410 51.363650 51.94 1.216 

  

7.4.13 Data of percentage of cell viability of NP-69 cells treated with 

cardamonin after 24 hrs 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 100 100 100 100 0 

3.125 97.02695 85.65822 88.84946 90.51 5.863781 

6.25 92.71696 81.86715 88.22995 87.60 5.451867 

12.5 97.02237 80.09089 85.58076 87.56 8.638324 

25 93.5197 80.5188 81.55192 85.20 7.226322 

50 87.99029 76.95765 81.51631 82.15 5.54396 

100 82.91548 74.04356 78.29587 78.42 4.437228 

200 80.87916 67.59474 71.07999 73.18 6.887749 

7.4.14 Data of percentage of cell viability of NP-69 cells treated with 

cardamonin after 48 hrs 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 100 100 100 100 0 

3.125 73.22404 70 75.86207 73.03 2.935912 

6.25 91.25683 70.95238 76.84729 79.69 10.44554 

12.5 66.66667 59.52381 64.53202 63.57 3.666499 

25 75.40984 67.61905 80.29557 74.44 6.393498 

50 79.78142 79.52381 79.80296 79.70 0.155322 

100 59.01639 51.90476 44.82759 51.92 7.094411 

200 40.98361 33.80952 34.97537 36.59 3.849796 
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7.4.15 Data of percentage of cell viability of NP-69 cells treated with 

cardamonin after 72 hrs 

Concentration 

of extract 

(µg/ml) 

Percentage (%) of cell viability 

Independent experiment Average Standard 

deviation 1 2 3 

0 100 100 100 100 0 

3.125 76.8575 72.94142 80.53206 76.78 3.795962 

6.25 80.38062 76.03499 81.35333 79.26 2.831825 

12.5 77.52697 75.19774 78.78075 77.17 1.818209 

25 76.86992 72.99239 78.3463 76.07 2.765238 

50 73.96692 73.08547 70.28442 72.45 1.922828 

100 66.20424 67.12157 70.61863 67.98 2.329441 

200 68.29393 67.25746 68.40048 67.98 0.631416 

 

7.4.16 Trypan blue cell counting  

Duration of cardamonin 

exposure (hrs) 

Average cell counting 

(cells) 

Standard deviation 

(cells) 

Control  3637500 735590 

24 1622500 256207 

48 640600 52482 

72 498572 56769 

 

7.5 Cell cycle analysis 

Cell cycle phase Control 12 hrs 24 hrs 

Sub-G1  2.64 36.91 35.16 

G0/G1 70.41 11.20 47.35 

S 26.01 39.23 42.56 

G2/M 3.58 49.57 10.09 
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7.5.1 Histogram and forward scatter (FS) and side scatter (SS) dot plot of 

control group 
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S 

G2/M 
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7.5.2 Histogram and forward scatter (FS) and side scatter (SS) dot plot of 

cardamonin treated at 12 hrs 
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7.5.3 Histogram and forward scatter (FS) and side scatter (SS) dot plot of 

cardamonin treated at 24 hrs 
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7.6 Caspase-3, -8 assays  

7.6.1 R110 standard curve 

 

7.6.2 Caspase-3 assay 

7.6.2.1 Cardamonin-treated HK-1 cells at 24, 48 and 72 hrs 

Time of 

cardamonin 

exposure 

(hrs) 

Absorbance at 520 nm Average Standard 

deviation 
1 2 3 4 5 6 

24 0.386 0.341 0.320 0.330 0.394 0.398 0.361 0.035 

48 0.263 0.289 0.267 0.256 0.245 0.268 0.265 0.015 

72 0.244 0.227 0.321 0.317 0.184 0.291 0.264 0.055 
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7.6.2.2 Untreated HK-1 cells at 24, 48 and 72 hrs 

Time of 

cardamonin 

exposure 

(hrs) 

Absorbance at 520 nm Average Standard 

deviation 
1 2 3 4 5 6 

24 0.311 0.274 0.298 0.283 0.257 0.292 0.286 0.019 

48 0.345 0.299 0.329 0.327 0.291 0.696 0.381 0.156 

72 0.293 0.271 0.275 0.290 0.254 0.250 0.272 0.018 

 

7.6.2.3 Cardamonin treated HK-cells with inhibitor at 24, 48 and 72 hrs 

 

 

7.6.3 Caspase-8 assay 

7.6.3.1 Cardamonin treated HK-1 cells at 24, 48 and 72 hrs 

Time of 

cardamonin 

exposure 

(hrs) 

Absorbance at 520 nm Average Standard 

deviation 
1 2 3 4 5 6 

24 0.311 0.315 0.310 0.568 0.549 0.541 0.432 0.121 

48 0.347 0.285 0.326 0.361 0.572 0.341 0.372 0.093 

72 0.353 0.358 0.369 0.419 0.341 0.340 0.363 0.027 

 

 

Time of 

cardamonin 

exposure 

(hrs) 

Absorbance at 520 nm Average Standard 

deviation 
1 2 3 4 5 6 

24 0.328 0.296 0.436 0.353 0.317 0.331 0.343 0.049 

48 0.306 0.295 0.282 0.293 0.263 0.258 0.283 0.019 

72 0.320 0.272 0.266 0.244 0.276 0.262 0.273 0.025 
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7.6.3.2 Untreated HK-1 cells at 24, 48 and 72 hrs 

 

Time of 

cardamonin 

exposure 

(hrs) 

Absorbance at 520 nm Average Standard 

deviation 
1 2 3 4 5 6 

24 0.336 0.329 0.316 0.350 0.543 0.596 0.412 0.113 

48 0.336 0.336 0.327 0.360 0.287 0.312 0.326 0.023 

72 0.333 0.349 0.357 0.342 0.331 0.333 0.341 0.010 

 

7.6.3.3 Cardamonin treated HK-cells with inhibitor at 24, 48 and 72 hrs 

 

Time of 

cardamonin 

exposure 

(hrs) 

Absorbance at 520 nm Average Standard 

deviation 
1 2 3 4 5 6 

24 0.434 0.320 0.381 0.399 0.363 0.370 0.378 0.035 

48 0.433 0.298 0.399 0.537 0.300 0.630 0.433 0.120 

72 0.391 0.465 0.405 0.417 0.427 0.339 0.407 0.038 

 

7.7 Cellular Antioxidant Activity (CAA) assay 

7.7.1 Preparation of quercetin standard from 200 μM stock 

Standard 

tubes 

Quercetin 

(μL) 

Media (μL) Total volume 

(μL) 

Quercetin 

(μM) 

1 0.8 199.2 200 200 

2 100 from (1) 100 100 100 

3 100 from (2) 100 100 50 

4 100 from (3) 100 100 25 

5 100 from (4) 100 100 12.5 

6 0 100 100 0 
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7.7.2 Preparation of cardamonin from 200 μM stock 

Standard 

tubes 

Cardamonin 

(μL) 

Media 

(μL) 

Total volume 

(μL) 

Quercetin 

(μM) 

1 100 from stock 

of 200 μg/mL 

100 200 200 

2 100 from (1) 100 100 100 

3 100 from (2) 100 100 50 

4 100 from (3) 100 100 25 

5 100 from (4) 100 100 12.5 

6 0 100 100 0 

 

7.7.3 CAA assay at various concentrations of cardamonin-treated HK-1 

cells 

 

 

 

Concentration Time 

(mins) 

   Standard 

deviation 

Average Area 

Under 

Curve 

(AUC) 

200 μM 0 0.194 0.249 0.266 0.038 0.236 1.180 

 

5 0.197 0.248 0.263 0.034 0.236 1.188 

 

10 0.200 0.252 0.265 0.034 0.239 1.211 

 

15 0.204 0.260 0.271 0.036 0.245 1.234 

 

20 0.209 0.263 0.273 0.035 0.248 1.251 

 

25 0.209 0.268 0.278 0.037 0.252 1.270 

 

30 0.211 0.274 0.283 0.039 0.256 1.290 

 

35 0.216 0.278 0.286 0.038 0.260 1.311 

 

40 0.219 0.283 0.291 0.039 0.264 1.331 

 

45 0.222 0.289 0.294 0.040 0.268 1.351 

 

50 0.226 0.293 0.297 0.040 0.272 1.366 

 

55 0.227 0.294 0.302 0.041 0.274   

      

SUM 13.981 
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Concentration Time 

(mins) 

      Standard 

deviation 

Average Area 

Under 

Curve 

(AUC) 

100 μM 0 0.307 0.286 0.282 0.014 0.291 1.460 

  5 0.308 0.285 0.284 0.013 0.292 1.466 

  10 0.308 0.286 0.287 0.013 0.294 1.478 

  15 0.312 0.290 0.289 0.013 0.297 1.493 

  20 0.314 0.292 0.295 0.012 0.300 1.512 

  25 0.318 0.297 0.299 0.011 0.305 1.533 

  30 0.323 0.300 0.303 0.012 0.308 1.556 

  35 0.327 0.306 0.308 0.012 0.314 1.575 

  40 0.330 0.309 0.310 0.012 0.316 1.584 

  45 0.330 0.310 0.312 0.011 0.317 1.590 

  50 0.331 0.312 0.314 0.010 0.319 1.598 

  55 0.332 0.313 0.316 0.010 0.320   

            SUM 16.844 

 

Concentration Time 

(mins) 

      Standard 

deviation 

Average Area 

Under 

Curve 

(AUC) 

50 μM 0 0.323 0.255 0.286 0.034 0.288 1.442 

  5 0.325 0.255 0.287 0.035 0.289 1.444 

  10 0.324 0.256 0.287 0.034 0.289 1.448 

  15 0.324 0.257 0.290 0.034 0.290 1.454 

  20 0.326 0.258 0.290 0.034 0.291 1.460 

  25 0.326 0.259 0.294 0.034 0.293 1.476 

  30 0.331 0.262 0.299 0.035 0.297 1.488 

  35 0.329 0.265 0.300 0.032 0.298 1.499 

  40 0.334 0.269 0.303 0.033 0.302 1.506 

  45 0.331 0.270 0.302 0.031 0.301 1.508 

  50 0.332 0.271 0.303 0.030 0.302 1.516 

  55 0.333 0.274 0.305 0.029 0.304   

            SUM 16.241 
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Concentration Time 

(mins) 

      Standard 

deviation 

Average Area 

Under 

Curve 

(AUC) 

25 μM 0 0.290 0.257 0.273 0.017 0.273 1.368 

  5 0.290 0.257 0.275 0.017 0.274 1.378 

  10 0.292 0.260 0.278 0.017 0.277 1.390 

  15 0.295 0.262 0.280 0.017 0.279 1.403 

  20 0.299 0.264 0.283 0.018 0.282 1.421 

  25 0.302 0.270 0.288 0.016 0.287 1.439 

  30 0.304 0.273 0.290 0.016 0.289 1.446 

  35 0.302 0.275 0.291 0.014 0.289 1.453 

  40 0.306 0.276 0.293 0.015 0.292 1.463 

  45 0.306 0.280 0.295 0.013 0.294 1.474 

  50 0.308 0.281 0.299 0.014 0.296 1.483 

  55 0.310 0.283 0.298 0.013 0.297   

            SUM 15.717 

 

Concentration Time 

(mins) 

      Standard 

deviation 

Average Area 

Under 

Curve 

(AUC) 

12.5 μM 0 0.320 0.281 0.274 0.025 0.292 1.456 

  5 0.321 0.278 0.273 0.027 0.291 1.449 

  10 0.320 0.274 0.274 0.026 0.289 1.452 

  15 0.323 0.275 0.277 0.027 0.292 1.473 

  20 0.330 0.276 0.287 0.029 0.297 1.494 

  25 0.332 0.281 0.288 0.028 0.300 1.506 

  30 0.336 0.284 0.286 0.029 0.302 1.513 

  35 0.335 0.287 0.287 0.027 0.303 1.519 

  40 0.336 0.287 0.290 0.027 0.304 1.525 

  45 0.338 0.288 0.292 0.028 0.306 1.537 

  50 0.338 0.293 0.295 0.025 0.309 1.545 

  55 0.341 0.292 0.295 0.027 0.309   

            SUM 16.47 
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Concentration Time 

(mins) 

      Standard 

deviation 

Average Area 

Under 

Curve 

(AUC) 

0 μM 0 0.279 0.270 0.273 0.005 0.274 1.372 

  5 0.280 0.272 0.272 0.005 0.275 1.383 

  10 0.286 0.274 0.275 0.007 0.278 1.394 

  15 0.285 0.276 0.277 0.005 0.279 1.406 

  20 0.290 0.279 0.281 0.006 0.283 1.438 

  25 0.302 0.284 0.289 0.010 0.292 1.461 

  30 0.302 0.285 0.290 0.009 0.292 1.474 

  35 0.307 0.290 0.294 0.009 0.297 1.491 

  40 0.312 0.291 0.294 0.011 0.299 1.497 

  45 0.311 0.294 0.293 0.010 0.300 1.503 

  50 0.311 0.297 0.297 0.008 0.301 1.513 

  55 0.313 0.298 0.301 0.008 0.304   

            SUM 15.93 

 

7.7.4 CAA assay at various concentrations of quercetin in HK-1 cells 

 

Concentration Time 

(mins) 

      Standard 

deviation 

Average Area 

Under 

Curve 

(AUC) 

200 μM 0 0.1938 0.2489 0.2656 0.0376 0.2361 1.1800 

  5 0.1972 0.2479 0.2627 0.0344 0.2359 1.1878 

  10 0.2004 0.2517 0.2654 0.0343 0.2392 1.2106 

  15 0.2045 0.2598 0.2709 0.0356 0.2451 1.2335 

  20 0.2087 0.2630 0.2733 0.0348 0.2483 1.2507 

  25 0.2095 0.2679 0.2784 0.0372 0.2520 1.2696 

  30 0.2108 0.2740 0.2828 0.0393 0.2559 1.2902 

  35 0.2163 0.2780 0.2864 0.0383 0.2602 1.3108 

  40 0.2187 0.2830 0.2906 0.0395 0.2641 1.3307 

  45 0.2217 0.2886 0.2942 0.0403 0.2682 1.3508 

  50 0.2262 0.2929 0.2974 0.0399 0.2722 1.3665 

  55 0.2275 0.2941 0.3017 0.0409 0.2744   

            SUM 13.981 
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Concentration Time 

(mins) 

      Standard 

deviation 

Average Area 

Under 

Curve 

(AUC) 

100 μM 0 0.2207 0.2415 0.2886 0.0348 0.2502 1.2480 

  5 0.2185 0.2429 0.2854 0.0338 0.2490 1.2479 

  10 0.2218 0.2429 0.2859 0.0326 0.2502 1.2620 

  15 0.2286 0.2468 0.2884 0.0306 0.2546 1.2806 

  20 0.2303 0.2518 0.2907 0.0306 0.2576 1.2989 

  25 0.2366 0.2547 0.2944 0.0296 0.2619 1.3226 

  30 0.2415 0.2603 0.2996 0.0296 0.2671 1.3408 

  35 0.2436 0.2616 0.3024 0.0301 0.2692 1.3545 

  40 0.2485 0.2648 0.3046 0.0288 0.2726 1.3719 

  45 0.2525 0.2681 0.3078 0.0285 0.2761 1.3863 

  50 0.2535 0.2711 0.3105 0.0292 0.2784 1.3934 

  55 0.2535 0.2723 0.3111 0.0294 0.2789 1.2480 

            SUM 13.981 

 

 

 

Concentration Time 

(mins) 

      Standard 

deviation 

Average Area 

Under 

Curve 

(AUC) 

50 μM 0 0.230 0.270 0.285 0.029 0.262 1.308 

  5 0.232 0.270 0.283 0.026 0.262 1.317 

  10 0.239 0.273 0.284 0.023 0.265 1.340 

  15 0.247 0.275 0.290 0.022 0.271 1.366 

  20 0.252 0.282 0.293 0.021 0.276 1.387 

  25 0.259 0.282 0.295 0.018 0.279 1.409 

  30 0.265 0.287 0.302 0.019 0.285 1.433 

  35 0.271 0.291 0.305 0.017 0.289 1.449 

  40 0.271 0.294 0.307 0.018 0.291 1.462 

  45 0.277 0.296 0.309 0.016 0.294 1.480 

  50 0.282 0.298 0.313 0.016 0.298 1.498 

  55 0.287 0.303 0.315 0.014 0.301   

            SUM 15.45 
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Concentration Time 

(mins) 

      Standard 

deviation 

Average Area 

Under 

Curve 

(AUC) 

25 μM 0 0.229 0.258 0.288 0.029 0.259 1.292 

  5 0.230 0.260 0.284 0.027 0.258 1.305 

  10 0.241 0.263 0.287 0.023 0.264 1.338 

  15 0.253 0.269 0.292 0.020 0.271 1.365 

  20 0.257 0.273 0.293 0.018 0.275 1.386 

  25 0.267 0.276 0.296 0.015 0.280 1.412 

  30 0.271 0.283 0.301 0.015 0.285 1.431 

  35 0.274 0.285 0.304 0.015 0.288 1.446 

  40 0.279 0.288 0.305 0.013 0.291 1.459 

  45 0.282 0.290 0.308 0.013 0.293 1.472 

  50 0.283 0.292 0.311 0.014 0.296 1.484 

  55 0.288 0.292 0.313 0.013 0.298   

            SUM 15.390 

 

 

Concentration Time 

(mins) 

      Standard 

deviation 

Average Area 

Under 

Curve 

(AUC) 

12.5 μM 0 0.235 0.303 0.274 0.034 0.271 1.348 

  5 0.236 0.297 0.273 0.031 0.269 1.349 

  10 0.240 0.296 0.277 0.029 0.271 1.366 

  15 0.250 0.296 0.280 0.023 0.275 1.393 

  20 0.262 0.298 0.286 0.018 0.282 1.426 

  25 0.272 0.300 0.294 0.015 0.289 1.458 

  30 0.279 0.305 0.299 0.014 0.294 1.478 

  35 0.283 0.304 0.302 0.011 0.297 1.488 

  40 0.284 0.307 0.304 0.013 0.298 1.498 

  45 0.286 0.307 0.309 0.013 0.301 1.511 

  50 0.293 0.308 0.310 0.009 0.304 1.521 

  55 0.292 0.311 0.311 0.011 0.305   

            SUM 15.835 
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Concentration Time 

(mins) 

      Standard 

deviation 

Average Area 

Under 

Curve 

(AUC) 

0 μM 0 0.254 0.280 0.290 0.019 0.275 1.384 

  5 0.258 0.282 0.296 0.019 0.279 1.399 

  10 0.265 0.285 0.294 0.015 0.281 1.414 

  15 0.271 0.289 0.293 0.012 0.284 1.437 

  20 0.276 0.295 0.300 0.012 0.290 1.465 

  25 0.283 0.299 0.304 0.011 0.295 1.494 

  30 0.293 0.302 0.311 0.009 0.302 1.519 

  35 0.297 0.304 0.315 0.009 0.305 1.530 

  40 0.299 0.307 0.315 0.008 0.307 1.541 

  45 0.300 0.310 0.319 0.010 0.310 1.553 

  50 0.300 0.314 0.320 0.010 0.311 1.558 

  55 0.303 0.314 0.318 0.008 0.312   

            SUM 16.293 
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7.8   Effect of cardamonin on mitochondrial membrane potential in HK-1 

cells after 3 and 6 hrs 

 

Samples Duration of 

cardamonin 

exposure 

(hrs) 

Flourescence 

reading at 485 

nm 

Flourescence 

reading at 560 

nm 

Ratio  

560 nm /485 nm 

% of 

control 

Untreated 

control 

3 0.059227± 

0.005389 

0.278195± 

0.081025 

1.10682± 

0.148342 

100 

 

6 0.050754± 

0.013586 

0.059836± 

0.027081 

1.14916± 

0.402461 

100 

Cardamonin 

treated 

3 0.067426± 

0.003797 

0.364667± 

0.064949 

5.609259± 

0.941652 

504.9223 

 

6 0.171128± 

0.048942 

0.060081± 

0.008766 

0.36979± 

0.095027 

35.96097 

 

7.9 Effect of cardamonin on intracellular ATP levels in HK-1 cells after 3 

and 6 hrs. 

Samples Duration of 

cardamonin 

exposure (hrs) 

Luminescence 

reading,  

RLU A (ATP) 

Luminescence 

reading,  

RLU B  

Luminescence 

reading,  

RLU C 

Untreated 

control 

3 3919046±631267 

 

2404952±230937 

 

3231680±309107 

 

6 3275975±208919 2781937±171596 3507114±261535 

 

Cardamonin 

treated 

3 4346178±467888 2339151±278621 

 

3174060±359681 

 

6 3268287±259727 

 

2839610±248247 

 

3601191±289253 

 

7.9.1 ADP/ATP ratio 

Samples Duration of cardamonin 

exposure (hrs) 

RLU C- 

RLU B (ADP) 

ADP/ATP ratio 

Untreated control 3 826728±93944.3 

 

0.21403±0.02923 

6 696522±82482.5 

 

0.20894±0.01813 

 

Cardamonin treated 3 834909±91360.5 

 

0.20264±0.0202 

 

6 729024±105944 

 

0.22412±0.03811 
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7.10   Western blotting  

 

7.10.1 Protein quantification 

7.10.1.1 BSA standard curve 

Tube # Concentration 

of BSA 

(μg/mL) 

Volume of 

diluent (dH20) 

(μL) 

Volume of 

standard  

(μL) 

Source of 

standard 

1 2000 0 20 2 mg/ml stock 

2 1500 10 30 2 mg/ml stock 

3 1000 20 20 2 mg/ml stock 

4 750 20 20 Tube 2 

5 500 20 20 Tube 3 

6 250 20 20 Tube 5 

7 125 20 20 Tube 6 

8 (blank) 0 20 0 - 
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7.10.2 Gel electrophoresis (SDS-PAGE) 

 

7.10.2.1 Preparing gels at different resolving gel percentage 

 

Constituents 4% stacking gel 

(make 5mL) 

8% resolving gel 

(make 6 mL) 

12% resolving gel 

(make 6 mL) 

30% Bis acrylamide 0.66 mL 1.5 2.4 mL 

0.5M Tris-HCl pH 

8.8 

1.26 mL - - 

1.5M Tris-HCl pH 

6.8 

- 1.4 mL 1.4 mL 

10% SDS 50 μL 150 μL 150 μL 

dH2O 3 mL 1.4 mL 2.0 mL 

TEMED 5 μL 7.5 μL 7.5 μL 

10% APS 25 μL 75 μL 75 μL 

 

7.10.2.2 Separation of proteins on gel electrophoresis for 24, 48 and 72 

hrs. 

 

Tubes  Amount of 

protein 

(mg/ml) 

Volume for 

11.9 μg (μL) 

Top up 

volume 

(μL) 

Volume of 

7X loading 

dye (μL) 

Total 

volume 

(μL) 

Control (24 hrs) 774.8 15.4 2.6 3 18 

Treated  (24 hrs) 754.3 15.8 2.2 3 18 

Control (48 hrs) 1787.6 6.7 11.3 3 18 

Treated (48 hrs) 1540.6 7.7 10.3 3 18 

Control (72 hrs) 668.3 17.8 0.2 3 18 

Treated (72 hrs) 1449.6 8.2 9.8 3 18 

 

 

 

 

Constituents 4% stacking gel 

(make 5mL) 

10% resolving gel 

(make 6 mL) 

15% resolving gel 

(make 6 mL) 

30% Bis acrylamide 0.66 mL 1.98 3.0 mL 

0.5M Tris-HCl pH 

8.8 

1.26 mL - - 

1.5M Tris-HCl pH 

6.8 

- 1.4 mL 1.4 mL 

10% SDS 50 μL 150 μL 150 μL 

dH2O 3 mL 2.5 mL 1.4 mL 

TEMED 5 μL 7.5 μL 7.5 μL 

10% APS 25 μL 75 μL 75 μL 
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7.10.2.3 Separation of proteins on gel electrophoresis 0-24 hrs 

 

Duration of 

exposure (hrs)  

Amount of 

protein 

(mg/ml) 

Volume 

for 30 μg 

(μL) 

Top up 

volume 

(μL) 

Volume of 

5X loading 

dye (μL) 

Total volume 

(μL) 

0 2855.7 10.5 1.5 3 15 

3 2901.5 10.3 1.7 3 15 

6 2970.3 10.1 1.9 3 15 

9 2754.0 10.9 1.1 3 15 

12 2326.6 12.9 0 3 15 

18 2413.2 12.4 0 3 15 

24 2389.2 12.6 0 3 15 

 

 

 

7.10.3 Electro blotting 

7.10.3.1 Bcl2-L1 protein expression in 0-24hrs cardamonin-induced 

HK-1 cells 

 

 

 

 

 

 

 

 

 

 

Expected molecular size: Approximately 26kDa. 
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7.10.3.2 Cytochrome c protein expression in 0-24hrs cardamonin-

induced HK-1 cells 

 

 

 

 

 

 

 

 

 

Expected molecular size: Approximately 12 kDa. 

7.10.3.3 Bcl-2 protein expression in 0-24hrs cardamonin-induced HK-1 

cells  

 

 

 

 

 

 

 

 

 

 

Expected molecular size: Approximately 26 kDa 
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7.10.3.4 Bad protein expression in 0-24hrs cardamonin-induced HK-1 

cells 

 

 

 

 

 

 

 

 

 

Expected molecular size: Approximately 19 kDa. 

7.10.3.5 Bax protein expression in 0-24hrs cardamonin-induced HK-1 

cells 

 

 

 

 

 

 

 

 

Expected molecular size: Approximately 21 kDa. 
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7.10.3.6 GADPH (as loading control) protein expression in 0-24 hrs 

cardamonin-induced HK-1 cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Expected molecular size: Approximately 37 kDa 

 

7.10.4 Quantification of protein bands intensities 

 

 

7.10.4.1 Bcl2-L1 protein expression level 

 

Cardamonin 

exposure 

(hrs) 1st read 

2nd 

read 

3rd 

read 

Average 

intensity % of control 

Standard 

Deviation 

- 120.48 113.97 114.88 116.44 100 3.525 

3 112.50 110.86 111.21 111.52 95.77 0.8637 

6 120.95 118.8 115.76 118.50 101.77 2.608 

9 116.95 120.15 117.12 118.073 101.40 1.800 

12 118.84 115.86 116.32 117.01 100.48 6.842 

18 121.60 110.17 109.37 113.71 97.66 1.604 

24 110.99 108.33 109.88 109.73 94.24 1.336 
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7.10.4.2 Cytochrome c protein expression level 

 

Cardamonin 

exposure (hrs) 

1st 

read 

2nd 

read 

3rd 

read 

Average 

intensity % of control 

Standard 

Deviation 

- 139.38 134.73 133.80 135.97 100 2.990 

3 136.17 130.30 134.03 133.50 98.18 2.971 

6 142.66 141.61 146.05 143.44 105.49 2.320 

9 137.60 136.44 133.92 135.99 100.01 1.881 

12 127.37 125.26 125.64 126.09 92.73 1.125 

18 119.46 118.56 116.74 118.25 86.97 1.386 

24 106.30 105.47 106.83 106.20 78.11 0.6855 

 

 

7.10.4.3 Bcl-2 protein expression level 

 

Cardamonin 

exposure (hrs) 1st read 

2nd 

read 

3rd 

read 

Average 

intensity 

% of 

control 

Standard 

Deviation 

- 164.50 155.68 162.59 160.92 100 4.640 

3 154.33 151.17 158.52 154.67 96.12 3.687 

6 150.60 152.33 158.06 153.66 95.49 3.905 

9 139.56 137.96 149.58 142.37 88.47 6.298 

12 139.40 142.36 152.58 144.78 89.97 6.915 

18 114.35 116.19 128.48 119.67 74.37 7.682 

24 112.71 115.03 119.43 115.72 71.91 3.413 

 

7.10.4.4 Bax protein expression level 

 

Cardamonin 

exposure 

(hrs) 1st read 

2nd 

read 

3rd 

read 

Average 

intensity 

% of 

control 

Standard 

Deviation 

- 70.92 77.72 73.82 74.15 100 3.412 

3 55.65 55.47 56.78 55.97 75.47 0.7101 

6 66.53 65.29 66.01 65.94 88.93 0.6227 

9 81.14 81.15 84.45 82.25 110.91 1.908 

12 64.95 67.27 70.93 67.72 91.32 3.015 

18 64.18 65.67 68.14 66.00 89.00 2.000 

24 62.96 64.50 62.21 63.22 85.26 1.167 
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7.11   Relative quantification of caspase-9 gene expression level using real-

time PCR 

7.11.1 Total RNA extraction from HK-1 cells 

 Absorbance, A260 Minus 

blank 

[RNA] 

(µg/mL) 1 2 Average 

Blank(TE buffer) 4.297 4.306 4.302 - - 

Control 4.319 4.349 4.334 0.033 66.61 

Cardamonin-treated 4.341 4.301 4.321 0.020 40.42 

 

7.11.2 Gel electrophoresis for total RNA extraction in HK-1 cells after 24 hrs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control 
Cardamonin 

treated 

1000 bp 

2500 bp 
28S 

rRNA 

18S 

rRNA 
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7.11.3   Mix preparation 

 

 

Caspase-9 (Gene of interest) 

Components Volume (µL) for single tube reaction 

Control Cardamonin 

treated 

Non template 

control (NTC) 

Superscript
® 

III 

RT/Platinum Taq 

Mix 

0.4 0.4 0.4 

2X SYBR Green 

Reaction Mix 

10 10 10 

Forward primer 

 (10 µM) 

0.4 0.4 0.4 

Reverse primer 

 (10 µM) 

0.4 0.4 0.4 

RNA template 

(1 ng/µL) 

0.3 0.5 0 

DEPC-treated water 8.5 8.3 8.8 

Total 20 20 20 

 

 

GADPH (Reference gene) 

Components Volume (µL) for single tube reaction 

Control Cardamonin 

treated 

Non template 

control (NTC) 

Superscript
® 

III 

RT/Platinum Taq 

Mix 

0.4 0.4 0.4 

2X SYBR Green 

Reaction Mix 

10 10 10 

Forward primer 

 (10 µM) 

0.4 0.4 0.4 

Reverse primer 

 (10 µM) 

0.4 0.4 0.4 

RNA template 

(1 ng/µL) 

0.3 0.5 0 

DEPC-treated water 8.5 8.3 8.8 

Total 20 20 20 
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7.11.4   Amplication plot in control and cardamonin-treated HK-1 cells (by 

assay) 

 

 

7.11.5   Amplication plot in control and cardamonin-treated HK-1 cells (by 

assay repeats) 

 

 

 

 

7.11.6   Amplication plot in control and cardamonin-treated HK-1 cells (by 

sample) 
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7.11.7   Amplication plot in control and cardamonin-treated HK-1 cells (by 

sample repeats) 

 

 

 

7.11.8   Derivative melt in control and cardamonin-treated HK-1 cells (by 

assay) 
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7.11.9   Derivative melt in control and cardamonin-treated HK-1 cells (by 

assay repeats) 

 

 

7.11.10   Derivative melt in control and cardamonin-treated HK-1 cells (by 

sample) 
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7.11.11   Derivative melt in control and cardamonin-treated HK-1 cells (by 

sample repeats) 

 

 

 

 

7.11.12   Component melt in control and cardamonin-treated HK-1 cells (by 

assay) 
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7.11.13   Component melt in control and cardamonin-treated HK-1 cells (by 

assay repeats) 

 

 

7.11.14   Component melt in control and cardamonin-treated HK-1 cells (by 

sample) 
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7.11.15   Component melt in control and cardamonin-treated HK-1 cells (by 

sample repeats) 
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7.11.16   Gel electrophoresis of amplicons 
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7.11.17   Relative quantification using Livak method  

 

 

Using Livak method to quantify fold increase of caspase-9 gene expression, 

 

Step 1: Normalize CT (GOI) to CT (reference gene) 

 

∆CT (control) = ∆CT (GOIcontrol) - ∆CT (reference genecontrol) 

                       = 14.33 – 25.75 

                       = -11.42 

 

∆CT (cardamonin treated) = ∆CT (GOIcardamonin treated) - ∆CT (reference genecardamonin 

treated) 

                                           = 15.84 – 26.66 

                                           = -11.48 

 

Step 2: Normalize ∆CT of cardamonin treated group to control group 

 

∆∆CT = ∆CT (cardamonin treated) - ∆CT (control) 

          = (-11.48) – (-11.42) 

          = -0.06 

 

Step 3: Calculate expression ratio/fold difference 

 

Normalized expression ratio = 2
-∆∆C

T 

                                                                     = 2
-(-0.06)

 

                                              = +1.04  (positive indicates increase in fold  

                                                              whereas negative value indicates                

                                                              decrease in expression ratio) 
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