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Abstract

Cochlear implants stimulate the spiral ganglion cells (SGCs) with trains of charge-

balanced current pulses. How the SGCs respond has often been studied with the

leaky integrate-and-fire (LIF) model. However, while the LIF model partially repro-

duces how SGCs respond to monophasic pulses, which are not charge balanced, it

does not reproduce how the opposite-polarity phases of charge-balanced pulses inter-

act to reduce their efficacy, and nor does it reproduce the temporal distributions of

the evoked spikes, or how they depend on the strength of the stimulus. To address

these limitations, I extended the LIF model by adding an initiation period to spik-

ing, delaying spike emission by a stochastic, stimulus-dependent duration, so that the

temporal distribution of the model reproduces that of the SGC. During its initiation,

a spike may be cancelled by anodic current, thus allowing opposite-polarity phases to

interact, reducing the stimulus’s efficacy in a way that reproduces how the thresholds

of SGCs depend on the delay between the phases of cathodic-leading biphasic pulses.

A spike may only be cancelled by anodic current after it has been initiated by

cathodic current, and thus, cancellation only occurs in response to pulses in which

a cathodic phase precedes an anodic phase. Reversing the phase order of a pulse

therefore changes how the phases interact. To investigate whether phase order has a

similar effect in the real neuron, I analysed the phase plane of a biophysical point-

neuron model and found that the qualitative description of excitation depends on

phase order in a way that is consistent with the theory of spike cancellation. That the

phase order of a biphasic pulse affects how excitation occurs has direct consequences

for cochlear implant coding strategies, as it affects whether the interactions between

consecutive biphasic pulses are facilitatory or inhibitory.
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Chapter 1

Introduction

In normal hearing, acoustic signals are transduced to electro-chemical activity by inner

hair cells in the cochlea, which are then linked to the brain via the auditory nerve.

If the inner hair cells become damaged, then the transduction of acoustic signals to

electro-chemical activity cannot occur and deafness results. It is possible to treat this

form of deafness by stimulating the auditory nerve with electrical current, bypassing

the need for inner hair cells. Cochlear implants are clinical devices that have been

used to treat deafness by these means since the 1970s.

Cochlear implants have been remarkably successful in treating profound deafness to

the extent that many otherwise deaf individuals are able to understand speech without

the use of lipreading or other visual cues. However, despite their success, cochlear

implants are not able to transduce the acoustic signal as effectively as the inner hair

cells do in normal hearing. Among other limitations, the temporal structure of the

acoustic signal is to some extent distorted in the transduction with cochlear implants.

This affects how cochlear implant recipients perceive sounds and is detrimental to

their ability to understand speech, especially in the presence of background noise or

reverberations.

It may be possible to overcome this limitation in cochlear implants by changing

how they transduce the acoustic signal to electrical current, so that the auditory

nerve’s response closer mimics that in normal hearing. To achieve this, we must first

understand how the auditory nerve responds to a given electrical stimulus, and then

understand how to generate the stimulus that evokes the response we desire. This

thesis is concerned with the former of these two problems.

This thesis presents a phenomenological model of how an individual fibre of the

auditory nerve responds to stimulation. As a phenomenological model, the statistics
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of the fibre’s response and how they depend on the electrical stimulus are reproduced

without reproducing the underlying biophysics. A primary contribution of the model

is in phenomenologically describing how the fibre responds to a biphasic pulse. Addi-

tionally, the thesis provides an in-depth analysis of the biophysics behind excitation

with biphasic pulses, drawing comparisons to the model and making a contribution to

our understanding of how biphasic pulses excite the neuron.

1.1 Physiology of the peripheral auditory system

The peripheral auditory system is responsible for detecting sound and encoding it in

a way that can be transmitted to and understood by the auditory cortex, the part

of the brain responsible for processing auditory information. The peripheral auditory

system consists of the outer ear, the middle ear, and the inner ear. The outer ear

collects sound and channels it to the middle ear. It provides a gain in sound intensity

by focusing acoustic energy from the larger area of the pinna (the visible portion of

the ear that is external to the head) to the smaller area of the tympanic membrane (a

barrier separating the outer ear from the middle ear), similar to how a horn intensifies

sound (Stinson, 1985; Rabbitt and Holmes, 1988). The middle ear provides mechanical

impedance matching between the low impedance tympanic membrane and the high

impedance inner ear (Pickles, 2012; Moore, 2012). The inner ear is a bony labyrinth

that forms the cochlea, a fluid filled, bone formed, channel that spirals around a

central axis, visually resembling the shape of a snail’s shell. This channel is divided

by Reissner’s membrane and the basilar membrane into three longitudinal chambers,

forming the scala vestibuli, the scala media, and the scala tympani.

Conceptually, the cochlea starts at its base and concludes at its apex, the tip of

the conical spiral that it forms. There are two membrane-covered windows at the base

of the cochlea, the oval window, which opens onto the scala vestibuli, and the round

window, which opens onto the scala tympani. An opening in the basilar membrane is

situated at the apex of the cochlea, allowing fluid to flow between the scala vestibuli

and the scala tympani. In this way, a displacement of fluid may be caused by depressing

the oval window, causing bulging at the round window to relieve the resulting pressure.

Acoustic vibrations are transmitted to the cochlea via the oval window by the mid-

dle ear. The vibrations at the oval window are transmitted to the fluid that fills the

scala vestibuli and scala tympani, ultimately causing vibrations in the basilar mem-

brane. Due to longitudinally changing stiffness and mass of the basilar membrane,

the frequency at which the basilar membrane most easily vibrates varies along its
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Figure 1.1: Anatomy of the cochlea (diagram A), with a cross-section revealing

the division of the cochlea into three longitudinal chambers (diagram B). Figure

reproduced from Patton and Thibodeau (2016) with permission from the publisher.

length, with positions closer to the apex favouring lower frequency vibration. There-

fore, the cochlea performs the function of a mechanical spectrum analyser, with the

basilar membrane vibrating with greatest amplitude at positions corresponding to the

spectral peaks of the acoustic sound. The frequency that causes the greatest am-

plitude of vibration at a particular position along the basilar membrane is referred

to as that position’s characteristic frequency. The mapping between cochlear position

and characteristic frequency is approximately exponential, with linear increases in dis-

tance from the apex corresponding to exponential increases in characteristic frequency

(Greenwood, 1990; Robles and Ruggero, 2001).

Resting on the basilar membrane—within the scala media—is the Organ of Corti,

a structure that is populated by receptor cells. These receptor cells may be divided

into two groups, inner hair cells (IHCs) and outer hair cells (OHCs). The IHCs act to

transduce the mechanical vibrations of the cochlea to neural activity in the auditory

nerve. The OHCs are believed to act to amplify the response of the basilar membrane

to quiet sounds and to enhance its frequency selectivity (Moore, 2012; Pickles, 2012;

Moore, 2014), although the biophysics underlying how they perform these roles is still

a subject of debate (Ashmore, 2008; Hudspeth, 2008). Both the IHCs and the OHCs

are evenly distributed along the length of the cochlea, from base to apex.

The IHCs and OHCs communicate auditory information to the cochlear nucleus
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of the brainstem via the spiral ganglion cells (SGCs), neurons that are either afferent,

transmitting information to the brain, or efferent, transmitting information from the

brain. In humans, „30,000 of the SGCs are afferent (Moore, 2012; Harrison and Howe,

1974) and „1,600 are efferent (Gelfand, 2009). Each afferent SGC may be classified as

being either type I, innervating a single IHC (Fuchs et al., 2003), or type II, innervating

several OHCs (Pickles, 2012). The vast majority—90 to 95%—are type I (Spoendlin,

1985; Gelfand, 2009).

The human cochlea has „3,500 IHCs (Wright et al., 1986), each of which forms a

synapse to „10 type I SGCs (Spoendlin, 1970), providing redundancy that facilitates

reliable transmission of information from the IHC to the cochlear nucleus (Faisal et al.,

2008). From the cochlear nucleus, the auditory information is distributed to the higher

levels of the auditory system.

A SGC consists of a cell body, dendrite, and axon. The dendrite and axon form

cable-like protrusions from the cell body. The cell body is located in the modulus—

the central axis of the cochlea—close to the IHC that it innervates by its dendrite.

The axon follows the modulus out of the cochlea, where it and the other SGC axons

collectively form the auditory nerve. As it is the type I SGCs that convey auditory in-

formation to the brain (Moore, 2014), all subsequent references to SGCs will implicitly

refer to the type I SGCs.

1.2 The neural coding of sound

Neurons communicate by means of action potentials, brief spikes of electrical activity

that are conducted by the axon. An individual neuron has an electrical potential that

may vary along its length. The electrical potential of the neuron may be affected

by synaptic or electric stimulation. An action potential is evoked if this potential is

driven sufficiently high. The action potential does not in itself encode any information:

once initiated, its amplitude and duration do not depend on the stimulus by which

it was evoked. As such, neural activity may be abstracted to a sequence of discrete

dimensionless spikes occurring in time. After a neuron fires (i.e., emits a spike), it

cannot fire again for some fixed period of time (the absolute refractory period), after

which firing may resume, but with increased threshold (the relative refractory period).

Greater detail on the biophysics of the neuron and the electrochemical basis of the

action potential will be given in section 2.1.

A SGC is synaptically stimulated by the IHC that it innervates, which in turn

is stimulated by local displacements of the basilar membrane. Hence, each SGC is
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associated with a particular frequency due to the frequency discrimination properties

of the cochlea. This is known as place coding, and is one way in which frequency

information is conveyed to the brain.

When continuously stimulated, a SGC will elicit a series of spikes. The spiking

output of a neuron is quantified by is firing rate, the number of spikes it elicits per

second. The firing rate of a SGC is related to the intensity of the acoustic stimulus.

Within a SGC’s dynamic range, increasing the stimulus level increases the firing rate,

until the stimulus level increases beyond the dynamic range, after which the firing rate

saturates at its asymptote. As the stimulus level decreases below the dynamic range,

the SGC continues to fire sporadically at its spontaneous rate. The dynamic range of

a SGC is centred around its threshold, which I1 define as the stimulus level at which

the firing rate is halfway between its minimum and maximum asymptotes.

Threshold varies between SGCs, with thresholds occupying a range of„60 dB. Each

individual SGC has a dynamic range of about „25 dB. The wide range of thresholds

allows a population of SGCs to encode the intensity of sounds over a much larger range

than is possible by any cell individually.

When stimulated with a sinusoidal acoustic stimulus at frequencies of up to „5,000

Hz, it has been found that the spiking activity of the SGCs correlates with the positive

phase of the stimulus. This is known as phase locking. An individual SGC may not

necessarily elicit a spike to every positive phase of the stimulus. Instead, spiking to

every phase is achieved because of the large number of responding neurons.

Phase locking is unable to occur at frequencies above „3,500 Hz in guinea pigs

(Palmer and Russell, 1986) and „5,000 Hz in cats (Johnson, 1980); data from humans

is not available, although it is commonly assumed to occur up to „5,000 Hz (Joris

and Verschooten, 2013). The inability of the auditory nerve to produce phase locking

at higher frequencies is not due to the saturation of the firing rates of the individual

SGCs, as might be presumed, but is due to the temporal variability of the individual

spikes (Anderson et al., 1971) and the time it takes the IHCs to return to baseline

activity following stimulation by the excitatory phase of the stimulus (Palmer and

Russell, 1986; Grothe et al., 2010). At low frequencies (i.e., frequencies below the

cutoff above which phase locking does not occur), phase locking plays an important

role in the perception of sound, influencing the perception of pitch and providing

temporal cues that allow for sound localisation.

Pitch is a perceived attribute of a sound that allows sounds to be rated on a scale

1Individual researchers use different definitions; I use this definition as it is more consistent with
the definition of threshold normally used in electrophysiology.
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Figure 1.2: Depiction of the decomposition of a narrow-band signal xptq (plot A,

grey line) into its upper and lower envelopes (plot A, black lines), and its TFS

(plot B). If the upper envelope is denoted xenvptq and the TFS is denoted xTFSptq,

then xptq “ xenvptqxTFSptq.

from low to high, unrelated to their perceived loudness (Plack and Oxenham, 2005a).

Pitch is closely related to the frequency of a sound, although—especially for sounds

with complex waveforms—the two are not equivalent. Phase locking is hypothesised

to contribute to our perception of pitch by producing spiking activity whereby the

intervals between spikes are distributed around integer multiples of the period of the

stimulus (Plack and Oxenham, 2005b).

Sound localisation occurs by various means (for reviews, see Fay and Popper, 2005;

Moore, 2014). A key cue in localising broad-spectrum sounds (including speech; Smith

et al., 2002; Wightman and Kistler, 1992) is the interaural time difference (Wightman

and Kistler, 1992), which is the difference in the time it takes the sound to arrive at the

two ears. A narrow-band signal may be viewed as a rapidly-oscillating carrier (known
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as the temporal fine structure, or TFS) that is modulated by a slow-varying envelope,

as depicted in Figure 1.2. At a given position along the length of the cochlea, the local

vibrations of the basilar membrane form a narrow-band signal, and, at low frequencies

(frequencies less that „1500 Hz; Zwislocki and Feldman, 1956), the central auditory

system derives the interaural time difference (ITD) on the basis of the TFS of these

vibrations (although how it does this in humans is disputed; Grothe et al., 2010; Joris

and Yin, 2007; Ashida and Carr, 2011; McAlpine and Grothe, 2003).

1.3 Cochlear implants

Pathology of the inner hair cells prevents vibrations in the cochlea from being trans-

duced into neuronal activity in the auditory nerve, resulting in hearing loss or profound

deafness. Such sensorineural hearing loss may be treated by a cochlear implant. A

cochlear implant is an electronic device that works by stimulating the auditory nerve

with electrical currents delivered by electrodes inserted within the cochlea. The au-

ditory nerve responds to the electrical stimulation with action potentials, and so the

cochlear implant is able to perform the role of the inner hair cells in transducing

acoustic vibrations to neuronal activity.

A cochlear implant consists of three main components: an external unit housing

a speech processor, batteries and microphone, an implanted electrode array, and a

transcutaneous link. The speech processor transduces acoustic sound received by the

microphone to electrical stimulation delivered by the electrode array. The transcuta-

neous link uses electromagnetic induction so that the speech processor may power and

communicate with the electrode array.

The electrode array is a long, thin tube that houses between 8 and 22 (depending on

the device) electrodes that are equally spaced longitudinally. It is surgically implanted

into the scala tympani of the cochlea by threading it through the round window or

a cochleostomy (Wysocki and Skarzyński, 1997; Briggs et al., 2005). By using an

array of spatially separated electrodes, the electrical stimulation may be delivered to

spatially targeted groups of nerve fibres, allowing the cochlear implant to make use of

the place coding that is present in normal hearing.

1.4 Stimulation strategy

The algorithm used by the cochlear implant’s speech processor to map an acoustic

signal to an electrical current signal is referred to as the stimulation strategy (or
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the coding strategy). For the recipient of a cochlear implant to be able to perceive

sound, the stimulation strategy must evoke spiking activity in the auditory nerve

that somehow encodes the information present in the acoustic waveform, normally by

mimicking the activity that would have been evoked in normal hearing.

The earliest commercially successful cochlear implants were developed in the 1970s

and stimulated the auditory nerve by means of a single electrode implanted within the

cochlea (Loizou, 1998; Rubinstein, 2004). The two most widely used single-channel

implants were the House/3M device and the Vienna/3M device. The House/3M device

band-pass filtered the acoustic signal to preserve frequencies in the 340-2700 Hz range,

and used this band-passed signal to amplitude-modulate a 16 kHz sinusoid. The

modulated signal was amplified and delivered to the electrode (Fretz and Fravel, 1985).

While patients reported a perception of sound, they had very little perception of

temporal information, perceiving only the envelope of the acoustic waveform (Loizou,

1998). Further, sounds at levels greater than „70 dB SPL were distorted due to

them saturating the gain of the amplifier, resulting in amplitude clipping. To address

these shortcomings, the Vienna/3M device used automatic gain control to prevent

amplitude clipping, and delivered the signal unmodulated to prevent loss of temporal

information. Further, it applied frequency equalisation to maintain equal loudness

across frequencies. Without such equalisation, high frequency sounds would be less

perceivable than low frequency sounds due to high frequency electrical stimulation

being less efficient at evoking spiking activity in the nerve (Shannon, 1993, 1983).

Despite the Vienna/3M device stimulating with only a single channel and therefore

not utilising the place cues that are present in normal hearing, recipients of the device

were able to achieve moderate speech understanding without the aid of lip reading,

scoring as high as 86% in word recognition tests (Tyler, 1988). This suggests that

some temporal information is available to the recipient by means of rate encoding

(Rosen, 1992), as has been verified by various studies investigating the effect of pulse

rate on perceived pitch (Townshend et al., 1987; Tong and Clark, 1985; Macherey et al.,

2011; Kong et al., 2009; Kong and Carlyon, 2010; Fearn and Wolfe, 2000). However,

while these studies have found that pitch is related to pulse rate, increasing the pulse

rate was only found to produce higher pitches within a very narrow range of rates

(between „100 and „300 pulses per second), limiting the extent of pitch information

that may be conveyed by the pulse rate. To provide greater pitch information, cochlear

implants were engineered to convey pitch by means of place cues, instead of relying

solely on rate cues. The electrode array of a multi-electrode cochlear implant provides
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Figure 1.3: Block diagram representation of the CIS stimulation strategy. The input

from the microphone is first amplified, and then processed by a collection of parallel

pathways. Each pathway band-pass filters the signal, extracts the envelope (by means

of first half-wave rectifying and then low-pass filtering the signal; see Rangayyan,

2015), compresses the amplitude (via a non-linear map), modulates by a periodic

pulse-train waveform, and then delivers the resulting signal to an individual electrode.

The pass-bands of the filters are consecutive across pathways so that the centre-band

frequency decreases with advancing electrode position, and the modulating waveforms

are identical, but phase-offset so that no two are non-zero at the same time. Diagram

derived from the description of the CIS strategy in Wilson et al. (1991).

the means to deliver electrical stimulation to a specific site along the length of the

cochlea, thus predominantly evoking activity in the SGCs innervating that location.

Early multi-electrode cochlear implants delivered continuous analogue signals to

each electrode independently. This had the problem that the electromagnetic fields

generated by the multiple electrodes would interact with one another (i.e., by summa-

tion of the individual fields; see White et al., 1984) in a way that was detrimental to

sound perception (Favre and Pelizzone, 1993). This problem was addressed by the CIS

strategy (Wilson et al., 1991), which rapidly interleaves the delivery of current between

electrodes so that no two electrodes are ever simultaneously active. A block diagram

of the CIS strategy is shown in Figure 1.3. The acoustic signal is decomposed into n

spectrally-adjacent channels by means of a bank of band-pass filters. Each channel is

associated with an individual electrode so that higher channels are perceived to have
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higher pitches (normally by associating higher channels with more basal electrodes).

The envelopes of each channel are extracted, compressed, and modulated by periodic

biphasic pulse trains. The resulting amplitude-modulated pulse trains are then deliv-

ered to the electrodes. By taking the envelope of each channel, the strategy tracks

the intensity of each channel through time. Compressing the envelope (by means of a

non-linear map) matches the dynamic range of the microphone to the dynamic range

of the auditory nerve, ensuring that quiet sounds are audible and that loud sounds are

not overstimulating. By making the modulating pulse trains mutually out of phase,

the strategy ensures that no two electrodes are simultaneously active, thereby avoiding

the aforementioned problems of interacting electromagnetic fields.

The development of the CIS strategy dramatically improved the speech under-

standing ability of cochlear implant recipients (Wilson et al., 1991, 1992; Wilson, 2013,

2015). However, despite its success, the strategy has a substantial limitation: the TFS

of the acoustic waveform is not encoded in the pulse train stimulus, and so the only

temporal information provided by the strategy arises from the fluctuating amplitude

of the envelope. ITD cues derived from the TFS are very important in spatial hear-

ing (Dietz et al., 2013; Drennan et al., 2007; Majdak et al., 2006; Smith et al., 2002;

Wightman and Kistler, 1992) and for understanding speech in noise (Nie et al., 2005;

Zeng et al., 2005), and so bilaterally-implanted cochlear implant recipients are disad-

vantaged in not having these cues available. It has been shown that cochlear implants

recipients are able to localise sounds when provided with the TFS at pulse rates of

up to 800 pps (Majdak et al., 2006; Laback et al., 2005), and it is widely anticipated

that bilateral cochlear implant recipients would benefit if stimulation strategies were

to encode the TFS in the stimulating pulse train (e.g., Drennan et al., 2007; Majdak

et al., 2006; Litvak et al., 2003a).

1.5 Computational modelling

While designing a stimulation strategy, it is necessary to consider whether the infor-

mation encoded by the pulse train will survive the transduction of the electrode-neural

interface and continue to be encoded by the spiking activity of the auditory nerve. To

do this requires recording from a large number of the individual fibres of the auditory

nerve during electrical stimulation. Recording from individual fibres is an invasive

procedure that cannot be done in human cochlear implant recipients. While it is pos-

sible to record from individual fibres in animal models, there are many difficulties that

make it infeasible to record from a large number of fibres. Therefore, computational
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models provide an attractive alternative as recordings may be taken at a scale and

level of automation that is not achievable in animal models.

Broadly speaking, there are two methods by which to computationally model how

electrical stimulation elicits spiking activity in an auditory nerve fibre. One method

is to describe mathematically the biophysical processes of the fibre and how they are

affected by the application of electrical current, resulting in a biophysical model. The

other method is to view the fibre as a system that transforms an input (a current

signal) to an output (a spike train), and to derive a system of equations that is able to

mimic how the output of the fibre relates to its input, resulting in a phenomenological

model.

Both biophysical and phenomenological approaches have been used extensively in

the context of cochlear implants. Since the publication of the Hodgkin-Huxley (HH)

model of the electrically-stimulated neural membrane in 1952, biophysical models have

been able to reproduce many aspects of how neurons respond to electrical currents.

However, biophysical models are computationally demanding and have many parame-

ters. Phenomenological models, by contrast, tend to be less computationally demand-

ing and have fewer parameters. While simulating an individual nerve fibre with a

biophysical model requires only modest computational demands by today’s standards,

simulating a whole population of fibres remains a huge computational undertaking.

Further, there has been no methodology published by which to systematically de-

rive the parameters of a biophysical model so as to reproduce electrophysiological

data. This is especially troublesome when deriving the parameters for a population

of fibres so as to reproduce the variability in behaviour that is observed empirically

(Miller et al., 1999c) across fibres. There is therefore a strong motivation to de-

velop phenomenological models that are less computationally demanding and easier

to parametrise en masse. Developing such a phenomenological model has been a large

focus in this PhD.

The model presented in this thesis (Chapter 5) has been developed specifically

to reproduce the temporal stochasticity of the auditory nerve fibre while responding

realistically to not only monophasic pulses, but also biphasic pulses, while still being

computationally efficient to parametrise. Given that the model is intended to be used

in the development of TFS-encoding stimulation strategies, it is necessary that the

model reproduces the temporal properties of the auditory nerve fibre’s response. In

particular, when an auditory nerve fibre is stimulated into evoking an action potential,

the action potential does not occur immediately, but occurs with a certain degree of
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temporal variability (Shepherd and Javel, 1999; Miller et al., 1999b). If this variability

is not reproduced by the model, then simulations of a strategy may either over- or

under- estimate the ability of the nerve to encode temporal information in its spiking

activity. Further, some degree of temporal variability may in fact be beneficial to the

encoding of information in the nerve by mutually desynchronising the individual fibres

from which the nerve is comprised. This is as desynchronised fibres are thought to

better transmit information about the stimulus (Rubinstein et al., 1999; Litvak et al.,

2003c; Stocks et al., 2002; Morse and Evans, 1996). Recent studies have attempted

to facilitate and exploit this (Rubinstein et al., 1999; Litvak et al., 2003c,a,b; Litvak,

2002; Hong et al., 2003), and so if the model is to be useful in simulating the nerve’s

response to such strategies, it must clearly reproduce the temporal variability on which

the strategies rely. As well as reproducing the temporal variability of the fibre’s re-

sponse, it is necessary to reproduce how the fibre responds to the biphasic pulses used

by the majority of cochlear implants. Responding to biphasic pulses realistically com-

plicates the design of phenomenological models, and so many previous studies (e.g.,

Bruce et al., 1999b,a; Hamacher, 2004; Fredelake and Hohmann, 2012) have chosen

to approximate biphasic pulses by simpler monophasic pulses. However, while mak-

ing such an approximation may be reasonable in some circumstances (such as when

responding to pulses in isolation or in low-rate trains, where temporally-neighbouring

pulses do not interact), failing to reproduce the interactions that underpin how the

nerve fibre responds to biphasic pulses limits the applicability of the model in other

circumstances (such as when responding to trains of alternating-polarity monopha-

sic pulses, where inter-pulse interactions make the sequence of alternating-polarity

monophasic pulses indistinguishable from a sequence of biphasic pulses). By repro-

ducing the temporal variability with which auditory nerve fibres respond to electrical

stimulation while simultaneously reproducing the inter-pulse interactions that occur

during biphasic stimulation and complex monophasic stimulation, the model presented

in this thesis contributes a useful tool for developing novel stimulation strategies to

better encode temporal information in the nerve’s spiking activity.

1.6 Thesis overview

The novel results of this thesis are described in chapters 3, 4, 5, and 6. Chapter 2

provides an introduction to, and literature review on, the concepts that are relevant

to the remainder of the thesis. It introduces the neuron, the biophysical basis of

the action potential, how the neuron responds to electrical stimulation, and how the
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neuron is modelled, both biophysically and phenomenologically.

Chapter 3 qualitatively describes how stimulation with monophasic and biphasic

pulses evoke excitation in a simplified (reduced) biophysical model of the membrane.

Understanding at a qualitative level how different pulse shapes evoke excitation in

a biophysical model may provide us with a better understanding of how excitation

should be modelled phenomenologically. The descriptions of the chapter are derived

by analysing the phase plane of the simplified biophysical model, and investigating how

stimulation by different pulse shapes gives rise to different phase paths. Chapter 4

investigates how the previous analysis is affected by the stochasticity that is present in

the real neuron. It further quantifies how stochasticity differently affects the responses

to different pulse shapes by means of a novel analysis.

Chapter 5 describes the phenomenological model that I developed as part of the

PhD. It is split into three sections, each describing a self-contained model that is

iteratively improved across sections.

Chapter 6 investigates a theme that has been recurrent throughout the thesis,

which is that the nature of excitation under biphasic stimulation seems to depend

upon the order in which the opposite-polarity phases of the stimulus are delivered,

both in the phenomenological model of Chapter 5, and in the analyses of Chapters 3

and 4. In the chapter, it is shown that when the cathodic phase leads, thresholds may

be predicted on the basis of “spike cancellation”, and when the anodic phase leads,

thresholds may be predicted on the basis of leaky integration and accommodation.

The chapter also considers the implications of these different modes of excitation in

the context of pulse trains, showing that the phase order of the pulses affects how

consecutive pulses interact.

Chapter 7 discusses the main results of this thesis and compares them and the

methodology to those of previous studies, while also discussing the limitations of point

models and suggesting how they might be overcome. Finally, it describes the next steps

that should be undertaken in order to extend the phenomenological model of Chapter

5 so as to be able to simulate the responses of the SGCs under cochlear implant

stimulation.
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Chapter 2

Background

In order to develop the phenomenological model of chapter 5, I found it necessary to

first obtain an understanding of the electrical properties of the neuron. This chapter

provides an overview of the electrical properties of the neuron, describing their bio-

physical underpinnings and how they give rise to the excitability of the neural mem-

brane. Further, it describes how extracellular currents affect the neuron, and how

the response of the neuron depends on the stimulus in pulsatile stimulation. These

factors will be referred back to throughout the thesis and play an important role in

the context of cochlear implants, which stimulate the SGCs with interleaved pulses

delivered by extracellular electrodes. Finally, this chapter provides an overview of

previous phenomenological models of electrical stimulation, with a particular focus on

those that have previously been used in the context of cochlear implants.

2.1 Biophysics of the neuron

The neuron is an excitable cell, which is to say that it may be stimulated into emit-

ting action potentials. The space inside the neuron, the intracellular space, is sepa-

rated from its surrounding environment, the extracellular space, by the cell membrane.

Across the membrane is an electrical potential difference, the membrane potential.

This potential difference arises due to differing ionic concentrations in the solutions

that occupy the intra- and extracellular spaces. Perforating the membrane are pores

through which ions may flow. These ion channels are selective, giving passage to only

specific ionic species. There are many different families of ion channel, characterised

by which ionic species they allow passage. Those most relevant to the shape of the

action potential are the sodium and potassium families.
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Due to diffusion, individual ions from a given species tend to move from regions

where they exist in high concentration to regions where they exist in lower concen-

trations. That is, ionic species tend to move down their concentration gradient, as

described by Fick’s first law (see, e.g., Cotterill, 2003, chapter 5). As ions possess elec-

trical charge, a net flux of ions corresponds to a flow of electrical charge, i.e., current,

and so an ionic concentration gradient leads to an electromotive force.

2.1.1 The membrane as an electrical circuit

The electrical properties of a patch of neural membrane may be well approximated by

an electrical circuit. The electrical properties of any given family of ion-channel are

equivalent to those of a voltage source in series with a resistor. The conductivity of the

resistor is related to the permeability of the membrane to the admitted ionic species,

and the electromotive force of the voltage source is equal to the Nernst potential of

the species, which is related to the concentration gradient of the species by

E9
1

q
log

rextracellular concentrations

rintracellular concentrations
,

where q is the valence of the species (see, e.g., Hille and Catterall, 2012; Aidley,

1998). The membrane is a separator of electrical charge, and so also has the electrical

properties of a capacitor. Combined, the electrical properties of the membrane may

be well-represented by a series of resistor-batter pathways in parallel with a capacitor,

as shown by the circuit diagram in Figure 2.1. The circuit is that famously proposed

to describe the membrane of the squid giant axon by Hodgkin and Huxley (1952). It

includes pathways representing the sodium and potassium families of ion channel, as

well as a third, leakage, pathway that approximates the permeability of the membrane

to all other ionic species (later shown to be largely due to chloride ions; see Schiff,

2012, and Sterratt et al., 2011). The leakage pathway has a constant conductance gL,

where-as the sodium and potassium pathways have variable conductances given by

gNa “ ḡNam
3h

and

gK “ ḡKn
4
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Figure 2.1: The equivalent electrical circuit of the Hodgkin-Huxley model of a patch

of membrane.

respectively, where ḡNa and ḡK are constants,

dx

dt
“ αxpV ptqq ¨ p1´ xq ´ βxpV ptqq ¨ x (2.1)

for each x P tm,n, hu, and V is the time-varying membrane potential, given by the

potential difference across the capacitor. The variables m, n, and h are gating variables

(also known as activation variables in the case of m and n, and inactivation variables

in the case of h); they describe the states of individual subunits of the sodium and

potassium ion channels. Each subunit may either be open or closed, independent to

the state of other subunits. The probability of a given subunit being open is given by

its respective gating variable. A sodium ion channel consists of four subunits. It is

itself open only if its three activation subunits—each governed by the gating variable

m—and its single deactivation subunit—governed by the gating variable h—are all

open. It thus has probability m3h of being open. The potassium ion channel has

four subunits—each governed by the gating variable n—that must all be open for the

channel to be open. It thus has probability n4 of being open.

The gating variable of subunit type x is due to the rate at which closed subunits

become open (given by αx), and the rate at which open subunits become closed (given

by βx):

closed
αx
é
βx

open.

The transition rates αx and βx depend on the membrane potential so that if the

membrane potential is held fixed at some arbitrary value V “ v, then the gating

21



x Ex (mV) ḡx (mS ¨ cm´2)

K -12 36

Na 115 120

L 10.6 0.3

x αxpvq βxpvq

n 0.01p10´vq
exppr10´vs{10q´1 0.125 expp´v{80q

m 0.1p25´vq
exppr25´vs{10q´1 4 expp´v{18q

h 0.07 expp´v{20q 1
exppr30´vs{10q`1

C 1 uF ¨ cm2

Table 2.1: Parameters of the Hodgkin and Huxley (1952) model. The voltages have

been shifted relative to their physiological values by a constant amount so that the

model has a resting potential of 0 mV. The Nernst potentials of the individual ionic

species (Ex) are thus relative to the resting potential.

variable x will approach a steady state x8pvq with time constant τxpvq, where

x8pvq “
αxpvq

αxpvq ` βxpvq

and

τxpvq “
1

αxpvq ` βxpvq
.

With these definitions, (2.1) may be rewritten as

dx

dt
“
x8pvq ´ x

τxpvq
. (2.2)

This latter definition tends to offer a more intuitive understanding of how the gating

variables develop over time.

The total current flowing inwards through the membrane is denoted by I. By

Kirchhoff’s current law, this must equal the sum of the inwards currents of the indi-

vidual pathways, IC, INa, IK, and IL, so that

I “ IC ` INa ` IK ` IL. (2.3)

From Ohm’s law, we have Ix “ gxpV ´ Exq for each x P tNa,K,Lu, where Ex is the

Nernst potential of the given ionic species. Further, from the current-voltage law of
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capacitors, we have IC “ C dV
dt , where C is the membrane capacitance. Rearranging

and expanding (2.3) gives

C
dV

dt
“ I ´ ḡNam

3hpV ´ ENaq ´ ḡKn
4pV ´ EKq ´ gLpV ´ ELq, (2.4)

which describes the time course of the membrane potential V ptq in relation to an

applied current Iptq, thus completing the description of the Hodgkin-Huxley (HH)

model. A full list of parameters, including the equations that govern the transition

rates, is given in Table 2.1.

2.1.2 Membrane stochasticity

The dynamics of the HH model are deterministic, which is to say that the dynamics

of the model at a given moment in time are entirely determinable from the model’s

parameters and the state of the model at that moment (i.e., as given by the values of

V , m, h, and n at that moment). Consequently, the model responds identically across

multiple trials to the same stimulus, provided that the model variables are identically

initiated in each trial: if excitation occurs, it will occur in all trials, with exactly the

same latency in each. This is in contrast to in the real neuron, where multiple trials

of the same stimulus will not necessarily result in consistent excitation, and when

excitation does occur, it will occur with different latencies across different trials (as

will be discussed in section 2.3).

The stochasticity of the real neuron arises due to the compounded effects of many

sources of noise. The most significant sources of noise arise from synaptic processes

(known as synaptic noise; Calvin and Stevens, 1968) and from stochastic opening and

closing of individual ion channels (known as channel noise; White et al., 1998). As

the SGCs of a deaf cochlea tend not to receive synaptic input, channel noise has been

theorised to be the dominant source of noise in the SGCs of cochlear implant recipients

(Bruce, 2009; Matsuoka et al., 2001; Rubinstein et al., 1999), and so it has become

standard practice for computer models of the electrically stimulated auditory nerve

to assume a complete absence of synaptic activity, with stochasticity arising only by

means of channel noise (e.g., Imennov and Rubinstein, 2009; Mino et al., 2004; Mino

and Rubinstein, 2006; Woo et al., 2009, 2010).

Various methods have been proposed for introducing channel noise to the HH

model. The simplest has been to add current noise to the membrane equation, so
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that (2.4) becomes

C
dV

dt
“ I ´ ḡNam

3hpV ´ ENaq ´ ḡKn
4pV ´ EKq ´ gLpV ´ ELq ` ξV ptq, (2.5)

where ξV is a Gaussian white noise process (Finke et al., 2008; Goldwyn and Shea-

Brown, 2011). Models that utilise current noise are empirically, rather than theoreti-

cally, motivated: they do not represent mathematical formulations of our understand-

ing of ion channel kinetics, but for many practical purposes, they produce similar

behaviour to models that do (Finke et al., 2008; Huber and Braun, 2007; Rowat,

2007). To implement channel noise with a biophysical level of detail, we should re-

produce how the stochastic openings and closings of individual ion channels result in

conductance noise—that is, stochastic fluctuations in the conductance of the mem-

brane. To produce conductance noise, we may model each individual ion channel as a

continuous-time Markov process that transitions between states at rates derived from

the gating variables of the HH model (e.g., see Clay and DeFelice, 1983; DeFelice and

Isaac, 1993; Mino et al., 2002, 2004). Each state of a given channel may be inter-

preted as representing a particular configuration of the channel’s subunits, with one

state representing the channel when it is open, and the others representing the various

configurations in which the channel is closed.1 If we write mxhy to denote the state of

a sodium ion channel that has x open m-class subunits and y open h-class subunits,

then m3h1 denotes the open state of a sodium ion channel, and the kinetic scheme is

given by

rm0h1s
3αm
é
βm

rm1h1s
2αm
é

2βm

rm2h1s
αm
é

3βm

rm3h1s

αhêβh αhêβh αhêβh αhêβh

rm0h0s
3αm
é
βm

rm1h0s
2αm
é

2βm

rm2h0s
αm
é

3βm

rm3h0s

.

Similarly, if we write nx to denote the state of a potassium ion channel that has x

open subunits, then n4 denotes the open state of a potassium ion channel, and the

1When enumerating the states of a given channel, it is convenient (although not necessary) to
collapse all identical states to a single state. Two states are identical if they only differ in which
subunits within each class are open/closed. For example, a sodium channel has three m-class subunits
and one h-class subunit, and thus there are three ways in which a single m-class subunit could be
open while the h-class subunit is closed. These three ways may be encapsulated by a single state, in
which case the in-going and out-going transition rates of should both be multiplied by three. In the
case of the sodium ion channel, there are 8 states, consisting of one open state (representing the case
when all subunits are open) and 7 closed states (representing the various configurations where any
individual subunit is close). Similarly, in the case of the potassium ion channel, there are 4 states,
consisting of one open state and 3 closed states.
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kinetic scheme is given by

rn0s
4αn
é
βn

rn1s
3αn
é
2βn

rn2s
2αn
é
3βn

rn3s
αn
é
4βn

rn4s .

When an ion channel assumes any given state, the delay before it transitions to

its next state has an exponential distribution with rate constant given by the sum of

the out-going transition rates. The conductance of the membrane at a given moment

in time is given by the sum of the conductances of the open channels2, and so (2.4)

becomes

C
dV

dt
“ I ´ γNaNNaptqpV ´ ENaq ´ γKNKptqpV ´ EKq ´ gLpV ´ ELq, (2.6)

where γNa is the conductance of a single open sodium ion channel, NNaptq is the num-

ber of open sodium ion channels at time t, and γK and NKptq are similarly defined

for the potassium ion channels. As the number of modelled ion channels tends to

infinity, γNaNNaptq tends to ḡNam
3h and γKNKptq tends to ḡKn

4, and so the original

HH equations emerge. In the most straightforward implementation, every individual

ion channel in the modelled patch of membrane is simulated by a dedicated Markov

process, and Nxptq simply counts the number of x-family ion channels that are open

at time t (for x P tNa,Ku). Such an implementation is exceedingly computationally

demanding, however, and so various methods have been proposed to make channel

noise models more efficient. Some of these methods are exact algorithms for imple-

menting the Markov scheme without the need for individually simulating each ion

channel (e.g., Chow and White, 1996; Faisal and Laughlin, 2007; Skaugen and Walløe,

1979), while others are approximations that are more computationally efficient, but

are not mathematically equivalent to the original Markov scheme (e.g., Fox, 1997; Fox

and Lu, 1994).

A common method of efficiently approximating the Markov scheme, first described

by Fox and Lu (1994), is to introduce stochasticity to the individual gating variables,

replacing (2.1) with

dx

dt
“ αxpV ptqq ¨ p1´ xq ´ βxpV ptqq ¨ x` ξxptq, (2.7)

2It is generally assumed that the leakage channels are always open and do not have gating kinetics,
and that channels in a closed state are non-conducting.
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for x P tm,n, hu, where ξxptq is a Gaussian process with

E rξxptqs “ 0

and

E rξxptqξxpt
1qs “

αxp1´ xq ` βxx

N̄X
δpt´ t1q,

where X is Na when x P tm,hu, or K when x P tnu, and N̄X is the total number of

X-family ion channels. In the original paper by Fox and Lu, the dynamics of V are

then described by the the membrane equation of the HH model (Equation 2.4). More

recently, other investigators (e.g., Mino et al., 2002; Bruce, 2007; Huang et al., 2013)

have chosen to instead describe the dynamics of V by means of (2.6), using m, n, and

h to estimate NNaptq and NKptq, with

NNaptq “ rndpN̄Nam
3hq

and

NKptq “ rndpN̄Kn
4q,

where rndpzq rounds z, either downwards (as in Mino et al., 2002), or towards the

nearest integer (as first advocated by Bruce, 2007, and later expanded on by Huang

et al., 2013). The purpose of the rounding is to better reproduced how changes in con-

ductance occur at discrete steps due to the opening and closing of individual channels,

noting that without rounding, the conductance would fluctuate smoothly.

2.1.3 The action potential

The dynamics of the gating variables depend upon the membrane potential, as shown

in Figure 2.2, which plots the steady state x8 and time constant τx of each gating

variable x P tn,m, hu as a function of membrane potential V . Coupled with knowl-

edge of the Nernst potentials of each ionic species (given in Table 2.1), a qualitative

understanding of the action potential may be obtained. At rest (V “ 0 mV), almost

all of the sodium ion channels are closed (see curve for m3
8 near V “ 0 mV), and

most of the potassium ion channels are closed (see curve for n4
8 near V0 mV). As V is

raised, m reacts quickly (much quicker than the other gating variables due to its much

smaller time constant), resulting in inwards current through the sodium pathway. In-

wards current leads to an increase in V , which in turn leads to more sodium current;

this positive feedback is responsible for the formation of the action potential. Over
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Figure 2.2: Asymptotic values (plot A) and time constants (plot B; ordinate units

in ms) of the gating variables of the Hodgkin and Huxley model. The model is

parametrised such that the resting potential is 0 mV (see table 2.1).



a short period of time, the sodium current will drive V towards ENa (115 mV above

resting potential). This increase in V slowly leads to an increase in n and a decrease

in h (slowly because of the much longer time constants of n and h compared to m). A

decrease in h biophysically corresponds to the inactivation of the sodium ion channels,

which eventually abolishes the inwards sodium current. An increase in n leads to an

outwards flow of potassium current, which drives V towards EK (12 mV below resting

potential). During this time, all the gating variables (n, m, and h) are driven towards

(or slightly beyond) their resting values by V , and the system eventually returns to

its resting equilibrium.

To summarise, the initial rise in membrane potential during an action potential is

due to the rapidly responding sodium ion channels (m). The duration of the action

potential is made finite by the inactivation of the sodium ion channels (h). The mem-

brane potential is then driven slightly below its resting value by the slow responding

potassium ion channels (n).

2.1.4 The neuron as an electrical circuit

The HH equations describe the time course of the potential difference across a patch

of membrane that is at equipotential. However, the electrical potential of the neuron

varies not only with time, but also with space, with potential gradients existing along

the neuron’s length. To reproduce the effects of space, a multicompartment model dis-

cretises the neuron along its length, producing multiple segments (or compartments),

each of which is assumed to be at equipotential. Neighbouring compartments are con-

nected at their intracellular nodes (i.e., the node labelled “Inside” in Figure 2.1) with

a resistance that represents the longitudinal resistance of the intracellular medium.

Each compartment may have different dynamics and parametrisations, reflecting the

different behaviours of the dendrites, the axon, and the soma.

A multicompartment model of a morphologically-simplified SGC is depicted in

Figure 2.3. Parts of the cell are covered by myelin, an electrical insulator. These

parts are normally assumed to be passive, having only a leak resistance and no ac-

tive (i.e., voltage-dependent) dynamics. The axon is mostly myelinated, but spatially

distributed nodes of Ranvier are unmyelinated, having active dynamics, and are re-

sponsible for maintaining the amplitude of the action potential as it propagates along

the length of the axon. In some species (e.g., cat), the soma is myelinated, while in

others (e.g., man), it is not. The model discretises the neuron into multiple segments,

each representing either the soma, a node of Ranvier, or a myelinated internodal seg-
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Figure 2.3: Simplified morphology of a spiral ganglion cell (top diagram) with corre-

sponding electrical circuits (bottom diagram) that form the basis of a multicompart-

ment model. Myelinated internodal segments are modelled with passive circuits and

the nodes of Ranvier are modelled with Hodgkin and Huxley equations. An electri-

cal field model (not depicted) provides the extracellular potentials labelled Efieldpxiq.

Whether or not the soma is myelinated, and the number of peripheral nodes, depends

on species. Based on diagrams and descriptions from Imennov and Rubinstein (2009)

and Brown and Hamann (2014).



ment. Each segment is typically assumed to be at equipotential, and thus, is modelled

as a single compartment (Rattay et al., 2001b).

2.1.5 The membrane in different species

Since Hodgkin and Huxley published their equations of the squid giant axon mem-

brane, other investigators have used similar methodologies to find equations that de-

scribe the membranes of other nerves in other species. Most notably, Frankenhaeuser

and Huxley (1964) published a model of toad Xenopus laevis nerve membrane (the

Frankenhaeuser-Huxley (FH) equations), Chiu et al. (1979) published a model for rab-

bit sciatic nerve membrane (the Chiu-Ritchie-Rogart-Stagg-Sweeney (CRRSS) equa-

tions), and Schwarz and Eikhof (1987) published a model for rat myelinated membrane

(the Schwarz-Eikhof (SE) equations). They have all been used extensively to model

the mammalian SGC in the context of cochlear implants. Various studies have found

the HH equations favourable for this purpose (Motz and Rattay, 1986; Rattay and

Aberham, 1993; Rattay, 1990; Rattay et al., 2001b; Smit et al., 2008; Cartee, 2000),

despite them not exhibiting the adaptation and long-term accommodation phenom-

ena that occur in the SGC (Negm and Bruce, 2008). As these phenomena are not

investigated in this thesis,3 the HH equations will be used in later chapters to model

the SGC membrane.

2.2 Electrical stimulation of the neuron

In order to develop a phenomenological model of electrical stimulation, it is useful

to first have a qualitative understanding of how stimulation affects the neuron. The

previous chapter described the active dynamics of the membrane; that is, the voltage-

dependence of the ion channels. These active dynamics are intuitively difficult to

understand. While the membrane potential is sufficiently close to its resting value,

these dynamics are sluggish, and so, for short time-durations, the ion channels may

be considered passive.

2.2.1 Passive behaviour of the membrane

While the membrane is passive, the gating variables m, n, and h do not deviate

from their resting values. The ordinary differential equation (ODE) governing the

3Chapter 6 does investigate how accommodation affects the membrane’s response to biphasic cur-
rent pulses, however this is over very short durations and is distinct to the long-term accommodation
mentioned above.
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Figure 2.4: The equivalent electrical circuit of a patch of passive membrane. The three

resistor-battery pathways of the HH model (see Figure 2.1) have been collapsed to a

single pathway with resistance R and electromotive force V8 by assuming that the

conductances of the HH resistors are constant.

membrane potential in the HH model (2.4) may then be rewritten as

C
dV

dt
“ I `

1

R
pV8 ´ V q, (2.8)

where

R “
1

gNam3h` gKn4 ` gL

gives the membrane resistance at rest and

V8 “ RpgNam
3hENa ` gKn

4EK ` gLELq

gives the membrane potential at rest. The equivalent electrical circuit of a patch of

passive membrane is shown in Figure 2.4; its single resistor-battery pathway is equiva-

lent to the three resistor-battery pathways of the HH model when their conductances

are held constant. It is convenient to rewrite (2.8) in terms of τ “ RC, referred to as

the membrane time constant, so that

τ
dV

dt
“ RI ` V8 ´ V. (2.9)
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The passive membrane may thus be considered a linear time-invariant filter with time

constant τ . The linearity of (2.9) allows for easy analysis; if I is time-variant, then

V ptq “
1

C

ż t

0

Ipsq expp´
t´ s

τ
q ds` V8 ` pV p0q ´ V8qe

´t{τ , (2.10)

and if I is time-invariant, then this reduces to

V ptq “ RIp1´ e´t{τ q ` V8 ` pV p0q ´ V8qe
´t{τ . (2.11)

It has widely been assumed that the membrane is passive until a discrete moment

of excitation (see, e.g., Levitan et al., 2015; Dayan and Abbott, 2001; Reilly et al.,

1985). Under this assumption, the previous equations describe the time-course of

the membrane potential up until the moment of excitation, thus providing a very

convenient framework under which to analyse how the membrane responds to simple

electrical stimulation. This framework forms the basis for many phenomenological

models, including the novel model presented in the next chapter.

2.2.2 Excitation of the membrane

The electrical stimulation of the membrane produces a driving force on the membrane

potential, with cathodic current driving the potential to higher values (depolarising

the membrane) and anodic current driving the potential to lower values (hyperpolar-

ising the membrane). It is common to take the simplified view that the membrane

produces an action potential when its potential exceeds a threshold potential (e.g., see

Reilly et al., 1985). However, even under this simplification, the threshold potential

is non-linearly affected by changes in membrane potential. Following a depolarisa-

tion, the threshold potential is increased, while following a hyperpolarisation, it is

decreased. This phenomenon is known as accommodation and occurs due to voltage-

induced changes in the activation of the potassium ion channels and the inactivation

of the sodium ion channels (Fitzhugh, 1961; Frankenhaeuser and Vallbo, 1965; Noble

and Stein, 1966; Vallbo, 1964; Bergman and Stampfli, 1966).

A model of accommodation

A simplified but influential model of excitation and accommodation was proposed by

Hill (1936a), who assumed that the membrane will always “accommodate” with time

constant λ to changes in potential so that the threshold potential will always be some

fixed amount above the membrane potential as the membrane becomes fully accom-
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modated (i.e., as the threshold potential reaches an asymptote after the membrane

potential has been held fixed for an arbitrarily long period of time). Formally, he

proposed that the threshold potential U is related to the membrane potential V by

the differential equation

λ
dU

dt
“ V ´ V8 ` U8 ´ U,

where V8 and U8 represent the resting values of the membrane and threshold poten-

tials, respectively4. Under Hill’s theory, excitation occurs if the membrane potential

and threshold potential ever intersect. He notes that the time constant λ of accommo-

dation is considerably larger (10 to 200 times) than the membrane time constant τ ,

and so the membrane potential reacts to stimulation much faster than the threshold

potential reacts to deviations in membrane potential. While Hill’s theory does not

describe the biophysical processes underpinning accommodation, it provides a useful

and intuitive description of accommodation, and describes how the threshold poten-

tial is intrinsically related to the membrane potential. Hill’s model has been used

as a basis for modern phenomenological models of electrical stimulation that exhibit

accommodative behaviour (see, for example, Mihalas and Niebur, 2009; Dodla et al.,

2006).

2.2.3 Extracellular stimulation of the neuron

In the extracellular stimulation of a neuron, the stimulus affects the neuron by creat-

ing an extracellular potential gradient that drives longitudinal intracellular currents

(Ranck Jr, 1975). Current flows in through the membrane at nodes with higher extra-

cellular potentials and out through nodes with lower extracellular potentials, depolar-

ising the membrane at the points of inwards flow and hyperpolarising it at the points

of outwards flow. Therefore, a stimulus of given polarity simultaneously depolarises

and hyperpolarises the neuron at different points along the neuron’s length. The di-

rection and magnitude of the membrane current at a given point in an unmyelinated

neuron has been related to the second spatial derivative of the extracellular potential

by Rattay (1986, 1987, 1989). Rattay (1986) defined the activating function as

funmyl “
d2Ve
dx2

,

4In Hill’s paper, the terms V ´ V8 and U8 ´ U contribute with different time constants so that
dU{dt “ pV ´ V8q{β ` pU8 ´ Uq{λ, but the paper then assumes that β “ λ. If β{λ ‰ 1, then the
change in membrane potential required for excitation when the membrane is fully accommodated is
different to the change in membrane potential required when the membrane is at rest.
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where Vepxq is the extracellular potential at point x along the length of the neuron.

Rattay theorised that the neuron will be depolarised where the activating function is

positive, and hyperpolarised where it is negative. In the case of a myelinated neuron,

the activating function is defined as the difference quotient

fmyl “
∆2Ve
∆x2

,

where ∆x is segment length of the axon (i.e., the combined length of an internode

and node; Rattay, 1986). The myelinated activating function converges towards

the unmyelinated function as the distance between the stimulating electrode and the

neuron is increased, with close convergence occurring at distances above ∆x (Rattay,

1986).

Figure 2.5 plots the activating functions of idealised (straight, infinitely long, and

morphologically uniform) myelinated and unmyelinated axons stimulated by an ex-

tracellular electrode under idealised conditions (infinite, isotropic, and homogeneous

extracellular space). In both the myelinated and unmyelinated axons, cathodic cur-

rent depolarises the axon at regions proximal to the electrode, while simultaneously

hyperpolarising the axon at regions distal to the electrode. The depolarised region

experiences greater driving force than the flanking hyperpolarised regions, and so the

action potential is expected to be initiated at the point (unmyelinated axon) or node

of Ranvier (myelinated axon) that is closest to the stimulating electrode. Inverting

the polarity of the delivered current inverts the sign of the activating function, and

so under anodic current hyperpolarises the axon at regions proximal to the electrode

while depolarising the axon at regions distal to the electrode.

It is tempting to use the activating function to predict the magnitude of depolari-

sation or hyperpolarisation at a given node of Ranvier, and it has been used for this

purpose in various studies of extracellular stimulation (Altman and Plonsey, 1990;

Ferguson et al., 1987; Rattay, 1988, 1989, 1990; Meier et al., 1992). However, one

must exercise caution in doing so, for the activating function comes with a caveat:

beyond the insulating effects of the myelin, it does not take into account the electrical

properties of the neuron itself, or how they change during stimulation. This caveat

becomes particularly important near the soma, as it has a much larger capacitance

than the nodes of Ranvier due to its much larger diameter. Given its high capacitance,

the soma is less affected by a given amount of charge flowing through its membrane

than a node of Ranvier would be, and thus, even when the activating function has a

large magnitude near the soma, the soma may be less affected by the extracellular field
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Figure 2.5: The extracellular potential distribution (plot A) and activating function

(plots B and C) of unmyelinated (solid lines, plots B and C) and myelinated

(open circles, plots B and C) axons stimulated by cathodic current at two differ-

ent electrode-axon distances (plot A, bottom line, and plot B: 115 µm; plot A,

top line, and plot C: 231 µm). In the case of the myelinated axon, the activating

function is only defined at the nodes of Ranvier (indicated by the open circles), which

are spaced at 231 µm intervals (values for a cat SGC; Imennov and Rubinstein, 2009).

In all conditions, the axon lies straight in the extracellular medium, which is assumed

to be infinite, isotropic and homogeneous. Moving the axon further from the stimulat-

ing electrode widens the region of depolarisation (inferred from where the activating

function is positive).



than nodes of Ranvier at locations with lower magnitude (Rattay et al., 2001b). This

effect of the soma’s large capacitance extends to the nodes close to it (Rattay, 1998,

1999; Rattay et al., 2001b). Rattay (1998) extended the activating function to account

for the varying morphology along the neuron’s length, giving rise to the generalised

definition

fgenpnq “

„

Ve,n´1 ´ Ve,n
Rn´1{2`Rn{2

`
Ve,n`1 ´ Ve,n
Rn`1{2`Rn{2

` ...



{Cm,n,

where Ve,n is the extracellular potential at the n-th compartment and Rn and Cm,n

are the resistance and capacitance of the membrane of the n-th compartment (i.e.,

node of Ranvier or soma), respectively. This generalised definition, however, only

partially addresses the complexities of the varying membrane capacitance along the

neuron. While the generalised activating function at compartment n is normalised

by the capacitance of compartment n, it does not take into account the capacitances

of neighbouring compartments. This leads to sharp spikes in the activating function

near the soma that do not reflect the membrane potentials observed during stimulation

(Rattay, 1998, 1999).

To address the limitations of the activating function, Warman et al. (1992) devel-

oped the related total equivalent driving function, which takes into account the passive

electrical properties of the neuron and provides a more accurate estimate of how ex-

tracellular stimulation affects the membrane potential at different points along the

neuron’s length. Warman et al. (1992) proposed that two factors affect the membrane

potential of the neuron at a given point: the flow of current through the membrane,

and also the flow of current along the axon, representing a redistribution of charge. The

latter factor has an increased influence with increasing stimulation duration (Warman

et al., 1991, 1992).

The longitudinal currents factored by the total equivalent driving function are a

consequence of a non-uniform distribution of charge along the length of the axon, and

as such, they do not occur when the membrane is at equipotential, as is assumed to be

the case in point-neuron models (such as the HH equations or the resistor-capacitor

(RC) circuit model). The redistribution of charge results in membrane currents during

and immediately following stimulation (see, for example, McNeal, 1976) that would

not occur in space-clamped stimulation. These currents effectively decrease the time

constant of the membrane compared to its physiologically-derived value (i.e., as the

product of the membrane’s resistance and capacitance; Rattay et al., 2012). The ef-

fects of the longitudinal currents do, however, decrease as the distance between the
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stimulating electrode and the neuron increases (Rattay et al., 2012). Therefore, point-

neuron models may still be used to model the electrical properties of the membrane at

a particular node of Ranvier, but only with caution and with the assumption of a suit-

ably large electrode-neuron distance. Further, the time constant that best represents

the electrical properties of the membrane in a point model may be smaller than the

physiologically-derived time constant, and so point-model results should not be used

to infer physiological parameters, and vice versa. Nevertheless, many studies have

found that point-neuron models are useful in interpreting electrophysiological data in

extracellular stimulation (Butikofer and Lawrence, 1978; Dean and Lawrence, 1985).

Modes of excitation

Inwards current depolarises the membrane, causing excitation by driving the mem-

brane potential above the threshold potential. Excitation by this means is referred

to as make excitation (e.g., see Matthews, 1978), and is either initiated by cathodic

current depolarising the axon proximal to the electrode (cathodic make excitation),

or by anodic current depolarising the axon distal to the electrode (anodic make ex-

citation). Excitation may also occur after the cessation of outwards current, which

hyperpolarises the membrane. The membrane accommodates to the hyperpolarisation

with a reduction in the threshold potential. After the cessation of the stimulus, the

recovery of the membrane potential occurs faster than the recovery of the threshold

potential, and so, if the membrane was sufficiently hyperpolarised before the stimu-

lus’s cessation, then the membrane potential will cross the threshold potential as both

recover to their resting values (Hill, 1936a). Excitation by this means is referred to as

break excitation (e.g., see Matthews, 1978), and requires current levels considerably

greater than for make excitation (Ooyama and Wright, 1961).

2.3 Response properties of the auditory nerve fibres

Cochlear implants stimulate the SGCs with trains of discrete current pulses. Each

individual pulse has the potential to evoke an action potential, or to interact with

temporally neighbouring pulses, either increasing or decreasing their efficacy. This

section introduces the response properties of individual pulses; that is, how the vari-

ables of an individual pulse (amplitude, duration, and so forth) affect the pulse’s

efficacy in evoking an action potential, and the temporal distribution of the action

potential if evoked.
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Figure 2.6: The input-output function of a cat SGC (open circles; data from Miller

et al., 1999b). Also plotted is a Gaussian CDF that has been fitted to the data (solid

line).

2.3.1 Monophasic stimulation

The simplest current pulse is the monophasic pulse, which delivers some amount of

charge Q over some duration d by delivering a constant current Q{d over the entirety

of its duration.

The input-output function

The input-output function of a neuron relates the level of a stimulus pulse to its firing

efficiency, the probability of it evoking an action potential in the neuron. It has been

found that the input-output functions of nerves (including the SGCs; Dynes, 1996)

stimulated by monophasic current pulses are well approximated by the cumulative

distribution function (CDF) of the Gaussian distribution (Verveen, 1960, 1961), so

that firing efficiency FE is related to current level l by the equation

FEplq “ Φ

ˆ

l ´m

s

˙

, (2.12)

where Φ is the Gaussian CDF and m and s are the mean and standard deviation

of the input-output function, respectively. The threshold level of a pulse is defined

as the current level at which it evokes an action potential with probability 0.5, and

is thus given by the parameter m of the Gaussian-fitted input-output function. The

dynamic range is a measure of the range of current levels that cause an increase in
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firing efficiency. It is convenient to quantify the dynamic range as the ratio of the

standard deviation and the mean (Verveen, 1961), giving relative spread (RS),

RS “
s

m
.

The input-output function of a cat SGC is plotted in Figure 2.6, using data from Miller

et al. (1999b).

The strength-duration function

The threshold level of a monophasic pulse depends on its duration, with greater du-

rations incurring lower thresholds. The strength-duration function relates stimulus

duration to threshold level and is often summarised by two measures: rheobase and

chronaxie. As the stimulus duration increases, the threshold level reaches an asymp-

totic value—the rheobase. The stimulus duration that has a threshold level of twice

the rheobase is the chronaxie. Measures of the chronaxies and strength-duration func-

tions of cat SGCs were made by van den Honert and Stypulkowski (1984). They found

that the threshold level Ithr, when measured in amperes, was well predicted by the

equation

Ithr “
I8thr

1´ exp p´kdq
, (2.13)

where d is the pulse duration in seconds, I8thr is the rheobase in amperes, and logp2q{k is

the chronaxie. The mean chronaxie was found to be 247 µs (44 µs standard deviation).

Equation 2.13 was first proposed by Lapicque (1907) and has since been found to

accurately fit strength-duration data from a wide variety of neurons (e.g., Lapicque,

1907; Hill, 1936b; Dean and Lawrence, 1985; Panizza et al., 1994; Mogyoros et al.,

1996). The strength-duration function of a cat SGC, and its fit by (2.13), is plotted

in Figure 2.7, using data from van den Honert and Stypulkowski (1984).

The strength-duration function and chronaxie are affected by the longitudinal re-

distribution of charge that occurs during point stimulation of the axon (see section

2.2.3), with the resulting longitudinal currents tending to decrease the chronaxie (Rat-

tay et al., 2012; Rubinstein and Spelman, 1988; Jack et al., 1975; Cooley and Dodge Jr,

1966; Noble and Stein, 1966). The distance of the stimulating electrode from the neu-

ron thus also affects the chronaxie (i.e., because the longitudinal currents are less

pronounced at larger electrode-neuron distances), with smaller electrode-neuron dis-

tances resulting in shorter chronaxies (Rattay et al., 2012).
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Figure 2.7: The strength-duration function of a cat SGC (open circles; data from

van den Honert and Stypulkowski, 1984). Also plotted is a line of best fit having the

form of equation 2.13 (solid line).

Threshold during the refractory period

The delivery of a suprathreshold pulse (i.e., a pulse that evokes an action potential)

affects how the neuron responds to subsequent pulses. This suprathreshold interpulse

interaction may be investigated via a conditioner-probe paradigm, whereby the neuron

is stimulated by a suprathreshold conditioner pulse, and then, following a controlled

delay, the threshold of a subsequent probe pulse is measured (Miller et al., 2001a).

After the action potential evoked by the conditioner, the threshold of the probe pulse

follows a predictable time-course. For the duration of the absolute refractory period,

tabs, the neuron cannot emit another action potential, and so the probe’s threshold

may considered to be 8. From time t “ tabs and onwards, the threshold decays

back to its resting value. When both the conditioner and the probe are cathodic, the

time-course of the probe’s threshold Ithr (measured in amperes) in cat SGCs has been

described by Miller et al. (2001a) by

Ithrptq “

$

’

&

’

%

8 if t ă tabs

I8thr

1´ exp p´pt´ tabsq{τthrq
otherwise,

(2.14)

where t is the time of the probe pulse’s delivery relative to the time of the spike evoked

by the conditioner, τthr is a parameter, and I8thr is the threshold of the probe in the

absence of the conditioner. The average duration of the absolute refractory period tabs

was found to be 332 µs (97.9 µs standard deviation), and the average time constant
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Figure 2.8: Threshold during the refractory period in a SGC of an adult cat (open

circles; data from Dynes, 1996). A cathodic probe pulse (100 µs duration) was deliv-

ered at varying intervals following a supra-threshold cathodic conditioner pulse (100

µs duration). Thresholds are normalised with respect to the resting threshold. Also

plotted is the line of best fit having the form of equation 2.14 (solid line).

τthr was found to be 411 µs (226 µs standard deviation). The dependence of threshold

on time during the refractory period of a cat SGC, and its fit by (2.14), is plotted in

figure 2.8.

Subthreshold stimulation and temporal integration

While the delivery of a suprathreshold pulse affects how the neuron responds to sub-

sequent pulses, so too does the delivery of a subthreshold pulse (i.e., a pulse that does

not evoke an action potential). The conditioner-probe paradigm may be re-applied

to investigate subthreshold interpulse interactions by reducing the amplitude of the

conditioner pulse to some arbitrary subthreshold level and ignoring any trials wherein

a spike is evoked before the delivery of the probe pulse. Under this paradigm, Dynes

(1996) found that a cathodic conditioner (100 µs duration) initially reduces the thresh-

old of a cathodic probe (100 µs duration) in cat SGCs by „8 dB, but, after the delay

between the conditioner and probe increases beyond 0.5 ms, the threshold of the probe

becomes increased, peaking at „0.8 dB above the resting threshold at a delay of „2 ms

(Figure 2.9). The increase in threshold is presumably due to the threshold potential

of the membrane increasing as it accommodates to the depolarisation incurred by the

conditioner (see section 2.2.2). In a related study, Cartee et al. (2000) investigated how
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Figure 2.9: Effect of a cathodic subthreshold conditioner (100 µs duration, 2 dB below

threshold) on a following cathodic probe’s threshold (100 µs) in a cat SGC (empirical

data from Dynes, 1996). When the probe immediately follows after the conditioner,

its threshold is reduced. However, at delays between „0.5 and „3.5 ms, the probe’s

threshold is increased.

the threshold of two consecutively-delivered cathodic pulses depends on their temporal

separation. In this study, the threshold level denotes the amplitude that both pulses

must take for an action potential to be evoked with 0.5 probability. Their results for a

single cat SGC are plotted in figure 2.10. It was found that the threshold levels of cat

SGCs were initially halved at no separation, and that they increased with increasing

separation. The time-course of the threshold Ithr of a given SGC were fit by

Ithrptq “ I8thrp1´
1

2
expp´t{τsumqq, (2.15)

where t is the separation of the pulses in seconds, I8thr is the threshold of an individual

pulse delivered in isolation, and τsum “ 147 µs is a parameter.

Spike latency

The latency of a SGC’s response to a stimulus pulse is defined as the delay between the

onset of the pulse and the observation of the action potential by the recording electrode.

It is stimulus-dependent and stochastic in nature. The jitter of the response is defined

as the standard deviation of the latency. Miller et al. (1999b) recorded the mean

latency and jitter of spikes evoked by monophasic stimulation of a cat SGC (Figure

2.11). The stimulus, a cathodic monophasic pulse of 40 µs duration, was delivered at
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Figure 2.10: Summation thresholds for a single cat SGC (open circles; data from

Cartee et al., 2000). Also plotted is the line resulting from fitting equation 2.15 to the

data (solid line).

varying current levels across the dynamic range of the neuron. Both the mean latency

and jitter decreased with increasing stimulus level. The mean latency fell from 794

µs, when delivered at a level sufficient to evoke spiking „5% of the time, to 356 µs (a

reduction of 55%), when delivered at a level sufficient to evoke spiking „95% of the

time. The jitter fell from 135 µs to 40 µs (across the same range of stimulus levels), a

reduction of 70%. Neither the mean latency nor the jitter show signs of having reached

their asymptotic minimum values at the highest current level tested, and so increasing

current levels beyond the dynamic range presumably continues to drive forward the

time of spiking while simultaneously decreasing the spike’s temporal variability.

As presently defined, the latency includes not just the time it takes the action

potential to be generated, but also the time it takes to be conducted to a more central

location. This is the most clinically relevant definition of latency as the action poten-

tial must be conducted to the brainstem in cochlear implant recipients. However, it is

nevertheless useful to study the latency and jitter under space-clamped conditions (in

which the intracellular space is kept at equipotential by shorting it with an uninsu-

lated wire), where only the time for the action potential to be generated contributes

to the latency. In space-clamped conditions, both the latency and the jitter values are

smaller (Mino et al., 2004), though they are both similarly affected by stimulus cur-

rent, with greater current levels decreasing both latency and jitter (Rubinstein, 1995;
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Figure 2.11: The dependency of mean latency (plot A) and jitter (plot B) on the

level of a cathodic pulse (40 µs duration). Increasing the stimulus level decreases both

the latency and the temporal variability of the action potential. Data are from a single

cat SGC (Miller et al., 1999b).



Mino et al., 2002)5. The temporal distribution of spiking in space-clamped conditions

resembles a slightly skewed Gamma distribution (e.g., see distributions in Rubinstein,

1995; van den Honert and Stypulkowski, 1987). The temporal distribution from in-

vivo preparations have similar shapes in some units (e.g., see Javel and Shepherd,

2000), while other units show bimodal distributions due to the site of action potential

initiation alternating between pre- and post-somatic locations (Miller et al., 1999b;

Woo et al., 2010; Rattay et al., 2001b; Javel and Shepherd, 2000).

Pulse polarity in monophasic stimulation

Both cathodic and anodic monophasic pulses are able to evoke spiking in the SGCs

under monopolar electrode configurations (Miller et al., 1998; Undurraga et al., 2013).

Surprisingly, however, cathodic pulses do not necessarily have lower thresholds. The

cathodic/anodic threshold ratio varies with species, subject, electrode configuration,

and pulse duration (Hanekom, 2001; Reilly et al., 1985; Rattay et al., 2001a; Miller

et al., 1998; Rubinstein, 1993). In general, cathodic pulses have lower threshold in cats

(Miller et al., 1998), whereas anodic pulses have lower thresholds in humans (Macherey

et al., 2008; Undurraga et al., 2013) and guinea pigs (Miller et al., 1998). Various stud-

ies have sought to explain the cause of this discrepancy between species (Undurraga

et al., 2013; Bahmer and Baumann, 2013; Potrusil et al., 2012; Rattay et al., 2001a).

Rattay et al. (2001b,a) has been able to reproduce the polarity preferences of cat and

man in a computer model by taking into account the differences between species in

myelination and nodal/somatic location; it was found that degeneration of the periph-

eral processes that occurs in humans plays a role for the human preference of anodic

stimulation. This study also predicts that, regardless of polarity, monophasic pulses of

clinically-relevant durations (i.e., short durations up to „100 µs) evoke spiking in the

SGCs by means of make excitation (i.e., either cathodic make or anodic make), and

not break excitation (inferred from Rattay et al., 2001a, as excitation occurs during,

not after, stimulation).

2.3.2 Biphasic stimulation

A biphasic pulse is comprised from two opposite-polarity monophasic pulses of a given

phase duration that are separated in time by a delay, the interphase gap (IPG). The

phase order (or polarity order) of a biphasic pulse refers to the order in which its

5Both the cited studies used computer models of space-clamped conditions; I was unable to find
any suitable studies that used in-vivo preparations.
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opposite-polarity phases are delivered. A pulse in which the leading phase is cathodic

is referred to as a cathodic-leading biphasic pulse (CL-BP), and a pulse in which the

leading phase is anodic is referred to as an anodic-leading biphasic pulse (AL-BP).

A pulse is charge balanced if its phase cancel one another so that the total charge

delivered by the pulse is zero. Cochlear implants use trains of charge-balanced pulses

(with biphasic pulses being used most commonly) to avoid delivering a net flow of

current, which would result in harmful chemical reactions occurring at the surfaces of

the electrodes (Brummer and Turner, 1977). Other than where explicitly described,

all the biphasic pulses considered in this thesis are charge balanced.

It is common to compare the response properties of a biphasic pulse against those

of an equivalent monophasic pulse; that is, a monophasic pulse that has a duration

equal to the individual phases of the given biphasic pulse. In this thesis, the equivalent

monophasic pulse is always assumed to be cathodic, regardless of the polarity order

of the biphasic pulse.

Threshold and relative spread

The threshold of a biphasic pulse is higher than that of an equivalent monophasic

pulse (Gorman and Mortimer, 1983; Miller et al., 2001b; Shepherd and Javel, 1999;

van den Honert and Mortimer, 1979). The RS of a CL-BP6 is similar (mean biphasic

RS=0.0405; mean monophasic RS=0.0480, n=22), though slightly less (t(21) = 2.41,

p = 0.025; paired-comparison t-test), to that of a monophasic pulse (Miller et al.,

2001b).

Effect of phase duration

The strength-duration function of a biphasic pulse relates threshold to phase dura-

tion. It has been theorised by Reilly et al. (1985) that the biphasic strength-duration

function shall approximate the monophasic strength-duration function at large dura-

tions (relative to the membrane time constant), and that at short durations, biphasic

thresholds shall be higher due to the loss in efficiency incurred by charge reversal. Us-

ing a biophysically-detailed computer model, they predicted that a cathodic-leading

biphasic shall be most efficient at evoking excitation at 100 µs/phase, theorising that

longer durations will be inefficient due to the leaky properties of the membrane, and

6To the best of my knowledge, no published studies have compared the RSs of an AL-BPs to
that of a monophasic pulse. Various studies (e.g., Shepherd and Javel, 1999; Shepherd et al., 2001;
Javel et al., 1987; Javel and Shepherd, 2000) have reported the RS of biphasic pulses of both polarity
orders when delivered by bipolar electrodes, but bipolar stimulation incurs confounding effects that
are beyond the scope of this thesis.

46



0 200 400 600 800 1000

Duration (µs/phase)

0

10

20

30

40

50

T
hr

es
ho

ld
(d

B
re

rh
eo

ba
se

)

Figure 2.12: Comparison of monophasic (open triangles) and biphasic (cathodic-

phase leading; open circles) strength-duration functions, both obtained from a

biophysically-detailed computational model by Reilly et al. (1985). At long durations,

the biphasic strength-duration function approximates its monophasic counterpart. At

short durations (relative to the membrane time constant), the biphasic function is

elevated.

shorter durations will be inefficient due to the reversal of charge. These predictions

were consistent with data obtained from the SGC of a squirrel monkey by Parkins

and Colombo (1987), who found that biphasic stimulation to be most efficient at

100 µs/phase. Figure 2.12 compares the monophasic and biphasic strength-duration

functions obtained by Reilly et al. (1985). Psychophysical results7 suggest that the

dependence of threshold on phase duration is similar, regardless of phase order (Coste

and Pfingst, 1996).

Effect of interphase gap

The elevation in the threshold of a biphasic pulse relative to that of a monophasic

pulse may be reduced by increasing the IPG of the biphasic pulse (Butikofer and

Lawrence, 1978; van den Honert and Mortimer, 1979; Gorman and Mortimer, 1983;

Shepherd and Javel, 1999; McKay and Henshall, 2003; Carlyon et al., 2005; Prado-

7To the best of my knowledge, there has been no published study that compares the strength-
duration functions of cathodic-leading and anodic-leading biphasic pulses delivered via a monopolar
electrode. This is despite the large number of studies investigating biphasic strength-duration func-
tions (e.g., Smith and Finley, 1997; Miller et al., 1999a; Moon et al., 1993; Abbas and Brown, 1991;
Shepherd et al., 2001; Pfingst et al., 1991; Coste and Pfingst, 1996), all of which either use bipolar
electrode configurations, or do not investigate the effect of phase order, either only investigating the
strength-duration function when the anodic phase leads (as reported in the main text), or compound-
ing together the results of both phase orders.
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Figure 2.13: The dependence of threshold on IPG in cathodic-leading biphasic stimu-

lation (100 µs/phase) of a single cat SGC. Increasing the IPG decreases the threshold,

with the threshold reaching a steady state after an IPG of „200 µs. Data taken from

Shepherd and Javel (1999).

Guitierrez et al., 2006; Cappaert et al., 2013; Ramekers et al., 2014; Weitz et al., 2011,

2014), as shown in Figure 2.13. As the IPG is increased beyond „100 to „200 µs, the

threshold becomes approximately equal to the (cathodic) monophasic threshold. The

effect of the IPG on the threshold is empirically similar, regardless of which order the

opposite-polarity phases of the pulse are delivered (Shepherd and Javel, 1999).

Effect of phase order

Whether the phase order of a biphasic pulse affects how it excites the neuron has

been investigated in a number of studies (e.g., Coste and Pfingst, 1996; Miller et al.,

1997; Shepherd and Javel, 1999; Game et al., 1989; Ramekers et al., 2014). In most

studies of extracellular stimulation, the phase order has been found to have only

a small (ă„2 dB) to negligible effect on the threshold of a biphasic pulse (Girvin

et al., 1982; Coste and Pfingst, 1996; Shepherd and Javel, 1999), especially at longer

phase durations (Colombo and Parkins, 1987). In order to ascertain which phase is

responsible for excitation, the timing of the action potential has been correlated to the

timing of each phase’s delivery. Shepherd and Javel (1999) stimulated the SGCs of

deafened cats with AL-BPs and found that the latencies of the evoked action potentials

were affected by IPG, with increases in IPG corresponding to approximately equal

increases in latency. The correlation in the time of trailing-phase delivery and evoked
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spiking was hypothesised to imply that the trailing (cathodic) phase was responsible for

evoking the spikes. Ramekers et al. (2014) applied a similar methodology to deafened

guinea pigs using CL-BPs. In this study, IPG was found to have negligible effect on

the time of spiking (as measured by the latency of the electrically-evoked compound

action potential (ECAP)). It was therefore hypothesised that the leading, temporally-

stationary cathodic phase was responsible for evoking spiking. From these studies (and

others, e.g., Grumet, 1999; Game et al., 1989; Hartmann et al., 1984), it would appear

that the cathodic phase is responsible for evoking spiking in biphasic stimulation,

regardless of the phase order. However, the polarity of the evoking phase has been

found to change due to hearing status (i.e., deafened/undeafened), presumably due to

a change in the site of action potential initiation (Ramekers et al., 2014).

Effects of cathodic-phase amplitude (cathodic-leading stimulation)

When the cathodic phase leads in a biphasic pulse, increasing its amplitude increases

the likeliness of the pulse exciting the membrane. This increased excitability may

be countered by increasing the amplitude of the opposing, anodic phase. This has

been quantified by van den Honert and Mortimer (1979), who measured for various

cathodic levels, the anodic level (or anodic threshold) required to reduce to 0.5 the

probability of a CL-BP evoking excitation. Their results, reproduced in Figure 2.14,

show that linear increases in cathodic level require exponential increases in anodic

level to maintain the 0.5 firing probability of the stimulus.
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Figure 2.14: Plots showing the relationship between abolition threshold and cathodic

level under cathodic-leading biphasic stimulation of isolated nodes of Ranvier from the

Xenopus Laevis sciatic nerve at various IPGs. In all cases, a 50 µs/phase duration was

used. The ordinate and abscissa magnitudes are given in percentages of the threshold

of a 50 µs cathodic monophasic pulse. A linear increase in the amplitude of the

leading, cathodic phase of a CL-BP requires an exponential increase in the amplitude

of the trailing, anodic phase in order to maintain threshold level. Figure reproduced

from van den Honert and Mortimer (1979) with permission from the publisher.



2.4 Phenomenological models of electrical stimula-

tion

Phenomenological models aim to have a reduced parameter-space and computational

demand compared to biophysical models while simultaneously reproducing the re-

sponse properties of the neuron. Many methodologies have been applied in an effort

to achieve this. One approach that is common in a large number of these is to model a

single patch of membrane (or a single node of Ranvier) instead of modelling the entire

neuron. Such a model, referred to as a point-neuron model, is implicitly grounded

on the assumption that a single node is responsible for the initiation of all action

potentials. It has already been shown when discussing the activating function that

the driving force of electrical stimulation is greatest (under simplifying conditions) at

the node closest to the electrode, and so the assumption has some degree of biophys-

ical grounding and eliminates the need for morphological parameters while reducing

computational demand by limiting the scope of the simulation. Another common ap-

proach is to assume that the membrane is passive until a discrete moment of spiking,

allowing the non-linear equations of, e.g., the HH model to be replaced with the much

simpler equations of the passive membrane. This approach essentially defines the leaky

integrate-and-fire (LIF) neuron, discussed next, which has long provided a de facto

standard against which other phenomenological models are compared.

2.4.1 The leaky integrate-and-fire neuron

The LIF neuron, first introduced by Lapicque (1907), has a single dimension, the time-

variant membrane potential V , which is related to a stimulus signal I by the linear

differential equation

τ
dV

dt
“ RIptq ´ V8 ´ V, (2.16)

where τ , R, and V8 are parameters. The model spikes when the membrane potential

crosses a threshold potential θ from below, an event that will subsequently be referred

to as threshold crossing. Following spiking, the membrane potential is reset to some

predefined value, Vreset, and the process continues.

The equation governing V in the LIF neuron is equal to (2.9), which describes

the time-course of the membrane potential in the passive neuron. The LIF neuron

is therefore implicitly assuming that the neural membrane is passive until a discrete

moment of spiking. The five parameters (τ , R, V8, θ, and Vreset) of the LIF neuron

may be reduced to only three (τ , θ, and Vreset) without loss of generality by arbitrarily
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setting R to 1 Ω and V8 to 0 V. It is common to add a noise signal to the stimulus

signal I so as to reproduce the stochastic properties of the neuron (see, e.g., Plesser

and Gerstner, 2000).

The LIF neuron has been used extensively to model how the SGCs respond to elec-

trical stimulation by cochlear implants (see, e.g., Stocks et al., 2002; Chen and Zhang,

2006, 2007; Fredelake and Hohmann, 2012; Hamacher, 2004; Macherey et al., 2007).

Despite its simplicity, it is able to reproduce both the input-output and strength-

duration functions of arbitrary neurons (details given in next chapter). As such, it

provides a convenient framework upon which to ground more complex models.

2.4.2 The spike response model

The LIF neuron is commonly extended so as to reproduce the refractoriness that fol-

lows spiking. One such extension is the spike response model (SRM), first introduced

by Gerstner (1991, 1995) and Gerstner and van Hemmen (1992). Like the LIF neu-

ron, the SRM has a variable representing the time-course of the membrane potential,

defined as

Vκηpt;S, Iq “

ż t

0

ηpsqSpt´ sq ds`

ż t

0

κpsqIpt´ sq ds` V8,

where S is the train of previous spikes (defined as Sptq “
ř

s δpt´ sq, where each

s is a time of previous spiking and δ is the Dirac delta function), I is the stimulus

current signal, and κ and η are parameters; κ is a kernel function that represents the

response of the membrane to instantaneous stimulation, and η is a kernel function

that represents the shape of the action potential. Like the LIF neuron, spiking occurs

in the SRM model when the membrane potential exceeds a threshold potential θ.

However, in the SRM model, the threshold potential is time-variant, depending on

spiking history, with

θϑpt;Sq “ θ0 `

ż t

0

ϑpsqSpt´ sq ds,

where ϑ is a kernel function that describes how spiking affects threshold. Refractoriness

is implemented by selecting ϑ so as to increase the threshold after spiking. Adaptation

may occur due to the cumulative effects of ϑ on the threshold after a series of spikes.
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The LIF neuron is a special case of the SRM, with

ηpsq “ Vreset expp´s{τqHpsq

ϑpsq “ 0

κpsq “
1

C
expp´s{τq,

where H is the Heaviside step function (defined as Hpsq “ 1 if s ą 0, and otherwise

Hpsq “ 0), and C and τ are equal to their definitions in the LIF neuron (Kistler et al.,

1997). Parametrisations that outperform the LIF neuron may be found via numerical

optimisation, requiring only a current signal I and corresponding spike train S as

input (Kistler et al., 1997; Jolivet et al., 2006).

2.4.3 Generalised linear models

The SRM improves the LIF neuron by the allowing adaptive and refractory properties

of the neuron to be reproduced. However, like the LIF neuron, it is a deterministic

model and does not reproduce the stochasticity of the real neuron. To introduce

stochasticity to the SRM, it is useful to turn to the statistical framework of generalised

linear models. In a generalised linear model (GLM), a response variable is fitted by an

arbitrary link function applied to a linear combination of a set of predictor variables

(Nelder and Wedderburn, 1972). Expressing a model as a GLM is useful because

standardised mechanisms have been developed by which to fit a GLM to a given set

of data by means of maximum likelihood estimation (Nelder and Wedderburn, 1972;

McCullagh and Nelder, 1989). For this reason, GLMs have found much popularity

in the context of phenomenological modelling of neurons (e.g., Truccolo et al., 2005;

Gerstner et al., 2014; Naud and Gerstner, 2012; Koyama and Kass, 2008; Koyama

et al., 2010; Paninski et al., 2004; Mensi et al., 2011; Gerwinn et al., 2010; Goldwyn

et al., 2012; Jolivet et al., 2004).

A GLM is characterised by its conditional intensity function, λpt|S, Iq, which relates

to the instantaneous probability of the model spiking given the stimulus signal I and

spiking history S. The instantaneous intensity function of a GLM must be defined in

terms of the link function applied to a linear combination of discrete samples of I and

S. For instance, to formulate the SRM as a GLM, we define the conditional intensity

function as

λκηϑpt;S, Iq “ fpVκηpt|S, Iq ´ θϑpt;Sqq,
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noting that the link function f may be non-linear and that both Vκη and θϑ are linear

functions with respect to I and S, which are both discretised so as to produce a finite

parameter-space. The link function determines the stochastic nature of the threshold.

It has been found that using fpuq “ α exppβuq, where α and β are parameters, provides

a good fit to neural data (Paninski et al., 2004; Gerstner et al., 2014).

The model is readily fitted to the training data tS, Iu (where S in this case is

the spike train response of a target neuron to the stimulus signal I, rather than the

previous spiking of the GLM) by choosing kernels κ, η, and θ so as to maximise

logLκηϑptS, Iuq “ ´

ż T

0

λκηϑps|S, Iq ds`
n
ÿ

i“1

log λκηϑpti|S, Iq,

where t1..n are the times of the spikes in S and r0, T s is the interval over which the

target neuron’s spiking activity was observed. The function Lκηϑ is the model’s likeli-

hood function; it describes the probability of observing the spike train S in response to

the stimulus I given the parameters tκ, η, ϑu. Providing that the link function satis-

fies some convexity constraints, convergence to an optimal parametrisation is ensured

when using the method of maximum likelihood (Paninski et al., 2004).

Unfortunately, not all spiking models may be formulated in the framework of

GLMs. The adaptive exponential integrate-and-fire neuron, for instance, has non-

linear membrane dynamics, and so the conditional intensity function cannot be rep-

resented as a linear combination of predictor variables. However, the model can nev-

ertheless be well-approximated by a GLM (Mensi et al., 2011). In some specific cases

where a model cannot be formulated as a GLM, it may instead be formulated as a

generalised additive model (GAM). GAMs are related to GLMs, but allow the predic-

tor variables to be individually transformed by a non-linear function, providing the

function satisfies various smoothness constraints. As with GLMs, standard numerical

methods exist for optimising the parameters of a GAM (Hastie and Tibshirani, 1987,

1990). GAMs have been applied to spiking models by Koyama et al. (2010).

2.4.4 Point process models

A point process model is a stochastic model that is entirely defined by a conditional

intensity function (Daley and Vere-Jones, 2003). The GLM discussed previously is,

in fact, just a point process model with constraints placed on its conditional intensity

function. In a point process model, the probability that the model will spike in the

interval rt, t`∆ts, ∆t Ñ 0, may be expressed in terms of its conditional intensity
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function λpt|S, Iq as ∆tλpt|S, Iq. The probability that the model will emit a spike in

the arbitrary interval rt1, t2s is given by its lifetime distribution function

Lpt1, t2|S, Iq “ 1´ expp´Λpt1, t2|S, Iqq,

where Λ is the integrated intensity function,

Λpt1, t2|S, Iq “

ż t2

t1

λps|S, Iqds.

These three functions, the conditional intensity function, the lifetime distribution func-

tion, and the integrated intensity function, may be used to analyse the response prop-

erties of a point process model. Goldwyn et al. (2012) have shown that it is possible

to define the conditional intensity function in such a way that the parameters of the

model conveniently cancel when analysing particular response properties, leaving only

a single free parameter that directly controls the given property. This elegant formu-

lation forgoes the need for the numerical techniques of the GLMs, as the parameters

of the model may be derived analytically from the response properties that should be

reproduced.

The conditional intensity function of Goldwyn’s model is defined as

λpt|S, Iq “ rJ ˚ fpκ`S ˚ I
` ` κ´S ˚ I

´qsptq,

where I` is I when I is positive and 0 otherwise, I´ is I when I is negative and 0

otherwise, J is a constant kernel function, and f , κ`, and κ´ are kernel functions

that non-linearly depend on the time of the most recent spike. Both κ` and κ´

are exponential decays of equal time constants, but κ´ may be scaled so as to vary

the contribution of the negative charge delivered by the stimulus. The expression

κ`S ˚ I
` ` κ´S ˚ I

´ may be interpreted as a membrane potential. The non-linear

function f transforms the membrane potential to a time-varying spiking rate and is

defined as fpxq “ xα if x ą 0 and 0 otherwise, where α is a parameter. The kernel

function J is an exponential decay of parametrisable time constant that temporally

smears the intensity function without changing its integral (i.e., so that the total

probability of spiking over all time is unaffected by convolution with J); it thereby

acts to introduce temporal stochasticity to spiking without affecting the non-temporal

response properties of the model.

While Goldwyn’s model is related to previous point process models of spiking
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activity (e.g., Miller and Mark, 1992; Litvak et al., 2003b; Plourde et al., 2011; Truccolo

et al., 2005), it differs in how it is parametrised. Goldwyn’s model may be uniquely

parametrised to reproduce a given jitter, threshold, RS, chronaxie, and summation

time constant (the latter of which relates how a threshold of a pulse is affected by

a preceding pulse; Cartee et al., 2006). Further, the model may be parametrised to

reproduce how the threshold and relative spread change following spiking. Given that

the model may be parametrised to reproduce such a rich set of response properties, it

is remarkable that each parameter may be fitted either analytically or via numerical

optimisation in a single dimension.

2.4.5 Models of extracellular stimulation

The models discussed above have not included any parameters describing the mor-

phology of the neuron or the interactions between consecutive nodes of Ranvier. This

is despite both having the potential to affect how the neuron responds to stimulation

(see section 2.2.3). The limitations of not including such parameters may depend

on the distance of the stimulating electrode from the neuron being modelled (i.e.,

the electrode-neuron distance). It has been found that at large electrode-neuron dis-

tances, the strength-duration function of a biophysical multi-compartment model is

well approximated by that of the LIF neuron, but that this breaks down at smaller

electrode-neuron distances (Reilly et al., 1985). In an effort to avoid the need for a

full multi-compartment model in order to predict the time-course of the membrane

potential, Robert (2006) proposed a modified single compartment model that approx-

imates the neighbouring compartments by voltage sources. The driving forces of the

neighbouring compartments are approximated as a fraction of the intracellular poten-

tial of the modelled compartment. This fraction is a model parameter, empirically

derived from the steady state solution of a multi-compartment model, and does not

change throughout the simulation. Robert found that using this first-order approxi-

mation of the effects of neighbouring compartments resulted in better predictions than

simply reducing the number of compartments in a multi-compartment model. Other

investigators have taken different approaches in solving the same problem. McNeal

(1976) proposed the use of a morphologically-detailed model of the axon, but limits the

computationally-expensive non-linear descriptions of the membrane dynamics to the

single node closest to the stimulating electrode, with the dynamics of all other nodes

being approximated by more tractable linear equations. Plonsey and Barr (Plonsey

and Barr, 1995,2000; Barr and Plonsey, 1995) found that the entire axon may be
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considered passive (i.e., approximated with linear equations) for much of the dura-

tion („0.2 τ , where τ is the membrane time constant) of a stimulus without adversely

affecting the time-course of the membrane potential along the axon’s length. Their

model allows for the possibility of selectively employing the more computationally-

demanding non-linear equations only when it is known that they are needed, and

otherwise employing the much less demanding linear equations.
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Chapter 3

Qualitative descriptions of

excitation by pulsatile

stimulation

The novel phenomenological model that will be presented in Chapter 5 was designed

to reproduce how the threshold of a cathodic pulse is increased by the addition of a

trailing anodic pulse. This chapter analyses excitation under various pulse shapes,

providing a biophysical basis on which to interpret the phenomenological model. Ex-

citation is analysed from the point of view of a reduced variant of the Hodgkin-Huxley

(HH) model by means of phase plane analysis (described later; for more details, see,

e.g., Izhikevich, 2007). The choice of the HH model was motivated by its simplicity

and its well-accepted track record in reproducing how spiral ganglion cells (SGCs)

respond to electrical stimulation (see section 2.1.5).

3.1 Background

3.1.1 The time-scaled Hodgkin-Huxley model

The parameters of the HH model that were given in table 2.1 were fitted to data

from a squid giant axon stimulated at room temperature. This preparation has slower

dynamics than a SGC stimulated in vivo, and so the parameters of the model must

be temperature adjusted. This is generally done by applying a constant coefficient k

to the right hand side of (2.1) (Sterratt et al., 2011), with k “ 12 having been used
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to reproduce data from mammalian SGCs stimulated in vivo (Rattay et al., 2001b).

However, while this parametrisation produced realistic thresholds and latencies for

monophasic and biphasic stimulation, it produced an unrealistic chronaxie of 752 µs,

which is considerably larger than the 247 µs (44 µs standard deviation) that is typical

of a SGC (van den Honert and Stypulkowski, 1984). To address this, a time-scaling

methodology was used instead, where a constant coefficient k “ 1{9.05 was applied to

the left hand side of (2.4), producing realistic thresholds and latencies under monopha-

sic and biphasic stimulation, as well as a realistic chronaxie of 195 µs. The practice

of scaling time to make a biophysical model behave like a SGC has previously been

published by O’Gorman et al. (2009, 2013).

3.1.2 The reduced HH model

The HH model is a system of ordinary differential equations (ODEs). The system

has four dimensions, corresponding to the variables V , m, h, and n. The state of the

system at any point in time is therefore given by the values of these four variables.

During the initiation of an action potential, the variables V and m change rapidly

with time, while the variables h and n do not change appreciably until after the action

potential has developed to such an extent that it cannot possibly be averted. Thus,

during an action potential’s formation, the h and n variables may be held fixed without

affecting the model’s dynamics. Reformulating the HH model with h and n held at

their resting values results in the pV,mq-reduced HH model (henceforth referred to as

the reduced HH model). This model has only two dimensions, compared to the four

of the HH model, yet will respond similarly to a brief stimulus, up until the point

at which the action potential becomes well developed (i.e., after which excitation is

inevitable). The reduced HH model was pioneered by Fitzhugh (1960, 1961) as a

method of understanding the processes behind excitation in the neuron.

3.1.3 Phase plane analysis

The state of the reduced HH model at any moment in time may be represented as a

point (the phase point) in a two-dimensional space (the phase plane). In the absence

of externally applied current, the phase point of the model will follow a trajectory (the

phase path) determined by its governing system of ODEs. Externally applied currents

affect the phase path by acting on the V dimension, as determined by equation (2.4).

Associated with each variable of the model is a nullcline. The x-nullcline is a

manifold containing all the points that satisfy the equation dx
dt “ 0. The nullclines
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intersect at points of equilibrium, or nodes. The V and m nullclines of the reduced HH

model intersect to give three nodes: the resting node, the saddle node, and the excited

node. The resting and excited nodes are stable, which is to say that the phase point is

attracted to them while in their vicinity. The saddle node is unstable, which is to say

that the phase point is repelled from it. The resting and excited nodes have associated

with them stable manifolds. The stable manifold of a node is a set of points that will

converge in forward time to it. The saddle node has not only a stable manifold, but

also an unstable manifold, which is a set of points that will converge in negative time

to it.

A separatrix, defined as the stable manifold of the saddle node, divides the phase

plane of the reduced HH model into two domains, the subthreshold domain, which

contains the resting node, and the subthreshold domain, which contains the excited

node. In the absence of externally applied current, the phase point will converge to the

stable node of its containing domain, and thus, the firing outcome of a stimulus may

be predicted on the basis of which domain contains the phase point at the moment of

the stimulus’s cessation. Regardless of which node (resting or excited) the phase point

converges to, it will approach it via the node’s stable manifold. The stable manifolds

of the resting and excited nodes thus help us understand the dynamics of the system,

as all phase paths will eventually converge upon them during their trajectory towards

equilibrium.

The phase plane of the reduced HH model is shown in figures 3.1A and 3.1B.

In both figures, a solid black line denotes the stable manifolds of the resting and

excited nodes, a bold dashed line denotes the separatrix, dotted lines the V and m

manifolds, and filled circles denote the resting (a), saddle (b), and excited nodes (c).

Figure 3.1B shows the detail of the phase plane around the separatrix. Example phase

trajectories are plotted (grey lines) to show the dynamics of the system in the absence

of externally-applied current.

All the phase paths that approach the resting node a of the reduced HH model

via the proximity of the saddle node b pass through a region enclosed by the V and

m nullclines. Once the phase point enters this region, or well, it cannot escape, other

than by external application of current. The well of the reduced HH model is very

narrow, and so the phase point, once in the well, is never far from the V and m

nullclines. While the phase point is close (in the x dimension) to the x-nullcline, its

dynamics are slow in the x dimension. Thus, once the phase point enters the narrow

well of the reduced HH model, its dynamics shall tend to be slow compared to prior
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Figure 3.1: The phase plane of the pV,mq-reduced HH model (h and n held at resting

values). Plot A shows the resting (a) and excited (c) nodes; plot B shows the detail

at the bifurcation. The separatrix (bold dashed line) divides the phase plane into

subthreshold (containing point a) and suprathreshold (containing point c) domains.

Note that the nodes (points of equilibrium, filled circles) are located at the points

the nullclines (dotted lines) intersect, and that all example phase paths (grey lines)

are repelled by the separatrix as they approach the saddle node (b), converging upon

a stable node via its stable manifold (solid black line).



of entering.

3.1.4 Short duration current pulses

A current pulse may be quantified by its duration and charge. Because the membrane

is leaky, increasing the duration of a pulse reduces its efficacy in depolarising the

membrane, and so to achieve the same depolarisation, a long-duration pulse must

deliver more charge. This may be seen by plotting the charge-duration function,

which relates the duration of a pulse to the amount of charge that it must deliver in

order to just cause excitation (i.e., the threshold charge). Figure 3.2 (black line) plots

the charge-duration curve of the reduced HH model. While the duration is small in

relation to the time-constant τ of the model (τ “ RC “ 162 µs, where R is the resting

membrane resistance, see 2.2.1), there is no appreciable change in threshold charge.

At durations above „ τ , the threshold charge increases with increasing duration. For

comparison, the charge-duration curves of the full HH equations (grey line), the leaky

integrate-and-fire (LIF) neuron (grey dashed line), and a perfect-integrator neuron

(i.e., the LIF neuron with an infinite time-constant; black dashed line) are also plotted;

these curves will be further commented on in Section 3.3.1.

Because the threshold charge does not depend on the duration of the pulse at the

short durations that are relevant to cochlear implants, a current pulse may be well-

approximated by an instantaneous injection of charge. Such an approximation has a

simplifying effect on the qualitative analysis of excitation, as an instantaneous cur-

rent pulse manifests as a horizontal displacement in the pV,mq phase-plane, with the

magnitude of the displacement dependent only on the charge delivered by the pulse,

and not the location of the phase point at the time of the pulse’s delivery. Therefore,

throughout the reminder of this chapter (and, when convenient, throughout the re-

mainder of this thesis), monophasic pulses have been approximated by instantaneous

injections of charge, and biphasic pulses have been approximated by two instantaneous

injections of opposite-polarity charge, separated in time by a delay that represents the

interphase gap (IPG).
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Figure 3.2: Charge-duration functions of the reduced HH model (black line), the HH

model (grey line), the LIF neuron (parametrised to have the same threshold charge

at instantaneous durations as the reduced HH model; grey dashed line), and the

perfect-integrator neuron (i.e., the LIF neuron with an infinite time-constant; black

dashed line). The LIF neuron has been parametrised to have the same time-constant

τ “ 162 µs as the reduced and full HH models (their time constants taken as τ “ RC,

where R is their membrane resistances at rest). In all models, the threshold-charge

(i.e., the minimum amount of charge needed for a cathodic pulse of the given duration

to evoke excitation) does not depend on duration when the duration is small relative

to the time-constant τ . At durations around and above τ , increasing the duration

increases the threshold charge in all models other than in the perfect integrator neuron

(for which τ “ 8). In the perfect integrator neuron, the threshold charge is constant

throughout all durations. At short durations relative to the membrane time-constant

τ , a pulse of given charge may be approximated by an instantaneous injection of equal

charge.



3.2 Phase plane portraits of excitation

3.2.1 Excitation by a cathodic pulse

A cathodic pulse provides the most direct way to excite the membrane. The delivery

of a cathodic pulse drives the phase point to higher values in the V dimension of

the reduced HH model. If the pulse is delivered at a level above threshold, then the

phase point will be driven across the separatrix and into the suprathreshold domain,

resulting in eventual excitation. Figure 3.3 plots the phase paths taken by the reduced

HH model when stimulated by an instantaneous cathodic injection of charge. Because

the stimulus is of instantaneous duration, its delivery causes a horizontal displacement

of the phase point, moving it from the resting node (point a) towards (and possibly

beyond) the separatrix. Subsequently, the phase point traverses a trajectory that is

approximately parallel to the separatrix, until approaching the unstable manifold of

the saddle node (solid lines, arrows pointing towards b), at which point it is repelled

from the saddle node (point b) towards either the resting node or the excited node

(point c, not shown; see Figure 3.1A). Regardless of which node the phase point

converges upon, it reaches it via the unstable manifold of the saddle node.

A cathodic injection of threshold charge will move the phase point so that it lies

upon the separatrix at point d. In this case (and this case only), the system will

reach an unstable equilibrium at the saddle node, leaving the system poised between

returning to rest and reaching excitation. Any lesser charge would have cause the phase

point to return to the resting node, and any greater charge would have displaced it

across the separatrix, causing it to converge upon the excited node. This mode of

excitation, whereby the membrane is excited by means of a depolarisation, is referred

to as make excitation (see Section 2.2.3).

3.2.2 Excitation by an anodic pulse

An anodic pulse excites the membrane in a way that is very different to a cathodic

pulse. As shown in the previous section, a cathodic pulse evokes excitation by moving

the phase point to higher values in the V dimension so that it crosses the separatrix

into the suprathreshold domain. An anodic pulse, however, moves the phase point to

lower values in the V dimension, moving it further from the separatrix, apparently

reducing the excitability of the system. Indeed, in the reduced HH model, an anodic

pulse is incapable of evoking excitation, and the system will return to resting after the

pulse’s cessation. However, in the original equations, where the n and h variables are
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Figure 3.3: Phase paths of the reduced HH model stimulated by instantaneous cathodic

injections of charge at various levels (grey lines). Grey arrows mark the position

and trajectory of the phase point 10 µs after the charge injection; small grey circles

mark the position 80 µs after. Solid lines denote the stable manifold of the resting

node (point a; manifold arrows point towards a) and the unstable manifold of the

saddle node (point b; manifold arrows point away from b). Note that the unstable

manifold of the saddle node partially overlaps with the stable manifold of the resting

node (segment ab). The charge injection moves the phase point from the resting

node towards (and possibly beyond) the separatrix. All phase paths that do not cross

the separatrix (i.e., resulting from a subthreshold injection of charge) converge upon

the resting node. Phase paths that do cross the separatrix (i.e., resulting from a

suprathreshold injection of charge) converge upon the excited node (not shown, see

Figure 3.1A). The rate at which the phase point advances its trajectory is seen to

increase with increasing initial displacement (compare grey arrow positions).



not held fixed, an anodic pulse is able to evoke excitation by affecting the V -nullcline

so that it no longer intersects with the m-nullcline, thus removing the resting and

saddle equilibria, leaving the excited node as the sole attractor of the system. This

behaviour is shown in Figure 3.4, which plots the V and m dimensions of the phase

path of the HH model stimulated by an instantaneous anodic pulse. To show the effect

of the evolving values of n and h on the model’s dynamics, the V -nullcline has been

plotted with respect to the values of n and h at times t “ 0, 50, and 100 µs.1 As

time increases, the V -nullcline moves downwards and rightwards, initially moving the

resting and saddle nodes towards one another at very small values of t (t À 8 µs),

until at t « 8 µs, the m and V nullclines cease intersecting, at which point the resting

and saddle nodes—as well as the nullcline—vanish, and the phase point is attracted

towards the remaining stable node, the excited node (not shown; see node c in Figure

3.1A). It should be mentioned as a footnote that, as the system is governed by the

full HH equations and not their pV,mq-reduced form, the phase point does not reach

equilibrium at the excited node, but instead returns to rest via a large upwards loop

that represents the action potential; the downwards sweep of this loop is partially

visible in the figure, although the simulation ends before it converges upon the resting

node.

In excitation by means of an anodic pulse, the driving (hyperpolarising) force of

the applied anodic current tends to overpower the dynamics of the phase point, so

that excitation only occurs after the current’s cessation. Presumably for this reason,

this mode of excitation is referred to as break excitation (see Section 2.2.3).

3.2.3 Excitation by a cathodic-leading biphasic pulse

When the reduced HH model is stimulated with a CL-BP, the cathodic phase initially

drives the phase point to higher values in the V dimension, and then, after the delay

of the IPG, the anodic phase drives the phase point back towards lower values of V .

If the pulse is charge balanced and each phase is of vanishingly-small duration, then

both phases shall have an equal but opposite effect in the V dimension. Thus, if

the phases are delivered one immediately after the other (i.e., with zero IPG), then

they should exactly cancel and excitation should not occur. However, if a delay—the

IPG—separates the two phases, then the neuron has time to react to the cathodic

phase, moving the phase point before the onset of the anodic phase. If the cathodic

phase delivered sufficient charge to drive the phase point beyond the separatrix, then

1Formally, I define the V -nullcline at time t “ s as the set of points
tpV,mq | V,m P R, fpV,m, nptq, hptqq “ 0u, where dV

dt
“ fpV,m, n, hq.
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Figure 3.4: Plot showing the pV,mq-projection of the phase path of the HH model

stimulated by an anodic pulse of near-instantaneous duration (solid grey line). Also

plotted is the separatrix with respect to the values of n and h at rest (thick dashed

lines), and V -nullclines (dotted lines) projected to the pV,mq-space with respect to

the values of n and h at times t “ 0, 50, and 100 µs. Each 50 µs increase in time

resulted in a rightwards-downwards shift in the nullcline. Excitation occurs by the

vanishing of the separatrix and saddle node after a short delay (ă 50 µs) due to the

changing values of the n and h variables.
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Figure 3.5: The phase plane of the pV,mq-reduced HH model stimulated by a CL-

BP. Each phase is of instantaneous duration and the IPG is arbitrarily set to 300 µs,

with similar qualitative trends occurring at all IPGs. Three trajectories are plotted

(solid grey lines), corresponding to levels of 95%, 100%, and 105% threshold. Even

though the 95%-level will not cause excitation, it drives the phase point into the

suprathreshold domain briefly, before returning it to the subthreshold domain. The

neuron may briefly become suprathreshold when responding to a subthreshold CL-BP.



the phase point will begin the trajectory towards excitation during the IPG, moving it

away from the separatrix. At the end of the IPG, the anodic phase will drive the phase

point back in the direction of the separatrix. If the IPG was made long enough, then

the phase point will have advanced too far for the anodic phase to drive it back across

the separatrix, and the phase point will instead remain within the suprathreshold

domain and excitation will thus occur. Conversely, if the IPG was made short enough,

then the phase point will be sufficiently close to the separatrix at the time of anodic-

phase onset that it will be driven back across the separatrix and into the subthreshold

domain, and thus, excitation will not occur.

The discussed behaviour is demonstrated in Figure 3.5, which plots the phase paths

of the reduced HH model’s response to a charge balanced CL-BP of 300 µs IPG and

vanishingly small phase duration. If the stimulus is delivered at threshold level, then

the phase point follows the path aegh, with the phase point moving from the resting

node to the suprathreshold domain during the cathodic phase (ae), and then following

a trajectory towards excitation during the interphase gap (eg), and then moving back

towards the separatrix during the anodic phase (gh). At the moment of stimulus

cessation, the phase point lies on the separatrix, at h. As such, the system will reach

an unstable equilibrium at the saddle node (b).

Delivered at levels just above (1.05x) and just below (0.95x) threshold, the same

stimulus will result in the phase paths a-e-g-h- and a+e+g+h+. Both phase paths

are similar to aegh, though the location of the phase point at stimulus cessation

differs, lying either within the subthreshold domain (path a-e-g-h-), or within the

suprathreshold domain (path a+e+g+h+). All three phase paths converge upon a

common trajectory during the IPG: they all follow the unstable manifold of the saddle

node towards the excited node. However, by the time of the onset of the anodic phase,

the phase paths corresponding to higher stimulus levels have traversed further along

this trajectory (e.g., comparing g+ to g-), and as such, are further from the separatrix

and require more anodic charge to return them to the subthreshold domain. It is due

to the difference in the speed at which the phase points advance during the IPG that

causes the phase path a+e+g+h+ to be suprathreshold while the phase path a-e-g-h-

is subthreshold.

3.2.4 Excitation by an anodic-leading biphasic pulse

When the reduced HH model is stimulated with an anodic-leading biphasic pulse

(AL-BP), the anodic phase initially drives the phase point to lower values in the V
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Figure 3.6: The phase plane of the pV,mq-reduced HH model stimulated by a AL-BP.

Each phase is of instantaneous duration and the IPG is arbitrarily set to 100 µs, with

similar qualitative trends occurring at all IPGs. Three trajectories are plotted (solid

grey lines), corresponding to levels of 95%, 100%, and 105% threshold. The phase

point does not cross the separatrix into the suprathreshold domain, other than when

the stimulus is suprathreshold.

dimension, and then, after the delay of the IPG, the cathodic phase drives the phase

point back towards higher values of V . As in the case of a CL-BP, if the pulse is charge

balanced and each phase is of vanishingly-small duration, then both phases shall have

equal and opposite effect in the V dimension, exactly cancelling one another if not

separated by a delay. It is therefore how the system reacts during this delay—the

IPG—that allows the pulse to evoke excitation. At all stimulus levels, the phase point

is attracted to the resting node (via its stable manifold) during the IPG. At higher

stimulus levels, this attraction is stronger (i.e., the phase node traverses its given

trajectory faster), and so, upon the end of the IPG, this brings the phase point closer

to the resting node (and thus, the separatrix) relative to its initial displacement.
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Figure 3.6 plots the phase paths of the reduced HH model when stimulated by

an AL-BP of 100 µs IPG and instantaneous phase duration. Three phase paths are

plotted (ai-j-k-, aijk, and ai+j+k+), each corresponding to a different stimulus level

(0.95x threshold, 1x, and 1.05x, respectively). At all stimulus levels, the phase point is

displaced to lower values of V during the anodic phase of the stimulus (path ai), and

is then attracted to the stable manifold of a during the IPG (path ij), and is finally

displaced to higher values of V by the cathodic phase (path jk). At exactly threshold

level, the phase point lies on the separatrix at the end of the stimulus (point k). At

higher levels, it lies in the suprathreshold domain upon stimulus cessation (e.g., point

k+), and at lower levers, it lies in the subthreshold domain (e.g., point k-).

The phase path resulting from stimulation by an AL-BP only crosses the separatrix

if the stimulus is suprathreshold. This is in stark contrast to the case of stimulation by

a CL-BP, wherein subthreshold stimuli may cause the phase point to briefly occupy

the suprathreshold domain.

3.3 Analysis

3.3.1 Relation to the LIF neuron

An analysis of the phase plane of the reduced HH model is able to contribute to our

understanding of the LIF neuron. The phase space of the LIF neuron has a single

dimension, V , the dynamics of which are equivalent to those of the V dimension of

the HH model when the m, h, and n variables of the latter are held at their resting

values and V is less than the threshold potential θ of the former (see Section 2.4.1).

The phase point of the reduced HH model thus behaves identically in the V dimension

to that of the LIF neuron when m “ m8 and V ă θ, where m8 is the resting value

of m. With this in mind, we may “lift” the phase space of the LIF neuron on to the

pV,mq phase plane of the reduced HH model, as shown in Figure 3.7. The resting

nodes of both models overlap (at a) and the lifted phase space crosses the separatrix

of the reduced HH model at V “ θ. While the phase points of both models occupy

a common position close to the LIF neuron’s phase space, their dynamics are similar

in the V dimension. However, we may see from the example phase trajectories (grey

lines) of the Figure that the phase point of the reduced HH model will rapidly move

away from the LIF neuron’s phase space. This has two effects: it affects the dynamics

of the phase point in the V dimension, and it affects the distance of the phase point

from the separatrix.
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Figure 3.7: The phase space of the LIF neuron (horizontal bold black line passing

through a) “lifted” to the pV,mq phase plane of the reduced HH model. The phase

point of the LIF neuron may not leave the lifted phase space and is attracted directly

towards the resting node (point a). The phase point of the reduced HH model, by

contrast, diverges from the lifted phase space, as demonstrated by example phase paths

(grey lines). Also plotted are the separatrix of the reduced HH model (dashed line),

the V and m nullclines (dotted lines), and the stable manifolds (black lines) of the

resting and excited nodes.



As the phase point of either model moves closer to the V -nullcline, the V dimension

becomes less attracted to the resting node (point a in the figure). In the LIF neuron,

this occurs only as the phase point moves horizontally towards a. However, in the

reduced HH model, this occurs in two dimensions simultaneously, and further, we may

see that it occurs more rapidly in the m dimension than in the V dimension, given

that the phase paths go upwards/downwards towards the V -nullcline more than they

move leftwards/rightwards towards a. Therefore, after an instantaneous departure

from resting, the phase point will return to its resting value in the V dimension

considerably faster in the LIF neuron than in the reduced HH model.

After an instantaneous subthreshold departure from resting, the phase point of the

reduced HH model follows a trajectory towards the stable manifold of the resting node.

Until adjoining the stable manifold, this trajectory is approximately parallel to the

separatrix (compare the grey lines in the Figure to the dashed line of the separatrix).

While the trajectory is parallel to the separatrix, the amount of charge needed for an

instantaneous cathodic pulse to move the phase point beyond the separatrix does not

change (recalling that instantaneous charge injections cause horizontal displacements

of magnitude proportional to the charge and invariant to the location of the phase

point). Therefore, following a just-below threshold depolarisation, the reduced HH

model will remain just-below threshold for the duration of time it takes the phase

point to approach the stable manifold. After this time, the phase point is very close

to both the V and m nullclines, and so while the phase point now moves away from

the separatrix, it does so very slowly. This is compared to the phase point of the

LIF neuron, which directly returns to resting following a subthreshold depolarisation,

immediately following a trajectory that moves it away from the separatrix.

This qualitative analysis of the phase spaces of the reduced HH model and the LIF

neuron has shown that the reduced HH model (and by extension, the HH model and

the real neuron) will remain just-below threshold for considerably longer than the LIF

neuron, following a depolarising pulse. To demonstrate that this is true, Figure 3.8

plots the time-course of V following an instantaneous subthreshold depolarisation in

both the reduced HH model and the LIF neuron (black lines). Consistent with the

analysis, both models react similarly immediately after the depolarisation, for „20 µs

while their phase points are still close together in the phase plane, but beyond „20 µs

the curves of the two models diverge, with that of the LIF neuron returning to rest

at a much faster rate than that of the reduced HH model. The Figure also plots the

thresholds of the two models, defined as the difference in the V dimension between the
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Figure 3.8: Time-course of V (black lines) after an instantaneous depolarisation in

the reduced HH model and the LIF neuron. The stimulus level is 0.9x threshold in

both models. The curves of both models follow similar trajectories during the first

„20 µs, after which they diverge, with the reduced HH model returning to the resting

potential much slower than the LIF neuron. Also plotted are the threshold potentials

of both models (grey dashed lines), defined as the difference in the V dimension

between the phase point and the separatrix. The threshold of the LIF neuron does

not vary with time, whereas the threshold of the reduced HH model initially follows a

trajectory roughly parallel to that of V , and then slowly begins to diverge at „400 µs.

The reduced HH model continues to be near-threshold for the duration of the plot, being

at 0.6 x threshold after 1 ms, whereas the LIF neuron rapidly diverges from threshold,

reaching 0.6 x threshold after only 67 µs.



phase point and the separatrix (grey dashed lines). Consistent with the analysis, the

threshold of the reduced HH model follows a trajectory that is approximately parallel

to that of the V curve, diverging slowly after „400 µs. The reduced HH model

continues to be near threshold for the duration of the plot, being at 0.6x threshold

after 1 ms. The LIF neuron, however, rapidly diverges from threshold, reaching 0.6x

threshold after only 67 µs. Subthreshold facilitation is thus predicted to occur for

much longer durations in the reduced HH model than in the LIF neuron.

3.3.2 Effect of the h and n dimensions

The qualitative descriptions of excitation given in this section have been written from

the point of view of the reduced HH model, with the working hypothesis that they

will also apply to the full HH model. However, the dynamics of the HH model are

affected by the h and n dimensions in a way that is not reproduced by the reduced

HH model. The saddle node of the HH model, projected to the pV,mq plane, is af-

fected by a constant rightwards-upwards drift while the membrane is depolarised, and

a leftwards-downwards drift while it is hyperpolarised (in both cases, moving along the

path of the m-nullcline). These movements of the saddle node are responsible for the

accommodation phenomenon discussed in section 2.2.2. The dynamics of the phase

point are relatively unaffected while the phase point is not in the saddle node’s vicin-

ity. However, as the phase point approaches the saddle node, its behaviour becomes

complex as it is repelled by a continually moving point. The phase point’s trajectory

may be abruptly reversed if the saddle node passes it while traversing a similar tra-

jectory. This occurs during just-subthreshold cathodic stimulation as the trajectory

of the saddle node (i.e., the m-nullcline) is initially very similar to the trajectory of

the phase path; see Figure 3.9 and its caption.

In the qualitative descriptions given in this chapter, I did not attempted to include

the complex effects of the saddle node’s dynamics, for doing so would have made

them prohibitively complicated, defying the aim of providing intuitive descriptions of

excitation. Instead, I believe it is most useful to form hypotheses in the intuitively-

understandable context of the reduced HH model, and then verify that they continue to

apply in the context of the full HH model. In some cases (as was seen in the description

of excitation by an anodic pulse), the differing behaviour of the full model entirely

changes the qualitative description of excitation. However, in other cases (as was seen

in the case of an AL-BP), moving to the full model only adds an additional process

to the qualitative description. Curiously, the description of excitation by means of a
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Figure 3.9: Development of the pV,mq-projected phase path (grey line) of the HH

model stimulated by a just-subthreshold (0.95x threshold) cathodic pulse of instanta-

neous duration. A snapshot of the pV,mq-projected phase plane is plotted in different

panes at 44 µs time increments, from 0 to 352 µs. The V -nullcline is plotted (mobile

dashed line) at each time step (see footnote 1) and the point at which it intersects

with the m-nullcline (static dashed line) to form the saddle node is marked (black

filled circle). The position of the phase point at each time step is also marked (filled

grey circle). Until t « 220 µs, it appears as though the stimulus is suprathreshold,

with the phase point being repelled by the saddle node towards higher values in the

V and m dimensions. However, the saddle node is itself continually drifting towards

higher values in the V and m dimensions due to the changing values of the n and h

variables, and at t « 220 it overtakes the phase point, causing an abrupt reversal of

the phase point’s trajectory. With the n and h dimensions held constant (as is the

case in the reduced HH model), the same stimulus would have resulted in excitation.
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Figure 3.10: Suprathreshold (plot A; 1.01x threshold) and subthreshold (plot B;

0.9x threshold) pV,mq-projected phase paths of the full HH model stimulated with a

cathodic pulse (black lines), a CL-BP (dashed lines), and an AL-BP (grey lines).

In all cases, the initial position of the phase point is set to the resting node of the

HH model (black filled circle). To allow a comparison of the rates at which the

different phase paths are traversed, the positions of the phase point at time t “ 525

µs are marked (see legend; plot A only). To understand how the phase paths of the

reduced HH model compare against those of the full HH model, these phase paths

may be compared against those from figures 3.3, 3.4, and 3.5. In all cases, the phase

paths of the reduced HH model are qualitatively similar to those of the HH model. (See

main text for discussion of minor differences.)



CL-BP, which is perhaps the most complex of the four descriptions, is the description

that is least affected by moving from the reduced HH model to the full HH model. This

is because the phase path resulting from delivery of a CL-BP does not ever approach

the vicinity of the saddle node (other than in the case of large IPGs, or when delivered

at precisely threshold level), and so it is relatively insensitive to the saddle node’s

dynamics. For reference, I provide Figure 3.10, which plots the pV,mq-projected phase

paths of the full HH model stimulated with a cathodic pulse, a CL-BP, and an AL-BP.

For each pulse shape, a phase path has been plotted for when the pulse is delivered at a

suprathreshold level (plot A), and for when it is delivered at a subthreshold level (plot

B). Comparing these phase paths with their counterparts in the reduced HH model,

we see that they are qualitatively similar in the case of suprathreshold delivery. In

the case of subthreshold deliver, the phase paths resulting from cathodic stimulation

and anodic-leading biphasic stimulation both briefly sway towards excitation before

returning to the resting node. This only occurs in the full equations and is due to

the dynamics of the saddle node previously discussed. The subthreshold phase paths

resulting from cathodic-leading biphasic stimulation are qualitatively similar in both

models. In all phase paths, however, their are quantitative differences: the phase

paths of the full equations stretch to greater values in the V dimension. This is due

to threshold differences due to the saddle node dynamics rendering excitation harder.

To demonstrate that these quantitative differences do not affect the phenomenological

trends of how the threshold depends on the stimulus, I have compared the threshold-

IPG curves resulting from cathodic-leading and anodic-leading biphasic stimulation

in the full and reduced equations (Figure 3.11). While the curves are offset between

models by „1 to „4 dB, both models show similar trends in threshold with respect to

IPG under both polarity orders, with thresholds monotonically decreasing from „22

dB (˘5 dB) to „0 dB (˘3 dB). Given the similarity of the curves, holding the n and h

dimensions of the HH model at their resting values does not prevent the reduced HH

model from providing a useful platform for analysing excitation by means of biphasic

stimulation.
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Figure 3.11: Threshold-IPG curves of the reduced HH model (grey lines) and the HH

model (black lines) under cathodic-leading (plot A) and anodic-leading (plot B)

biphasic stimulation. Thresholds are given in dB relative to the monophasic threshold

of the HH model. The phase durations are instantaneous in both polarity orders. The

threshold-IPG curves of the reduced HH model are qualitatively similar to those of the

full HH model for stimulation with both polarity orders at IPGs less than 250 µs.



Chapter 4

Stochasticity and excitation

The dynamics of the phase point in the reduced HH model are deterministic. This

chapter uses the model of Fox and Lu (1994) to explore how the stochasticity that is

present in the real neuron affects the qualitative descriptions of excitation that were

given in the previous chapter.

4.1 Background

4.1.1 Stochastic model

The implementation of the Fox and Lu model used throughout this chapter, henceforth

referred to as the stochastic HH model1, is due to Goldwyn and Shea-Brown (2011).

It uses the Euler-Maruyama method (described in Higham, 2001) coupled with the

forward Euler method (described in Ascher and Petzold, 1998) to numerically simulate

(2.7) and (2.4), respectively, using a 1 µs time step. The values of m, n, and h are not

rounded as described in Section 2.1.2, but are reset to 0 or 1 if they diffuse outside

the r0, 1s interval. The model uses channel densities of 60 µm´2 and 18 µm´2 for the

sodium and potassium families, respectively, with the number of channels determined

by a free variable A that describes the area of the patch of membrane under study

(i.e., so that N̄X “ AdX , where N̄X is the number of X-family channels and dX is

the channel density of the X-family). The area was chosen so that the relative spread

(monophasic cathodic probe pulse, 39 µs duration) of the model was „0.08, similar

to that of a typical SGC (Miller et al., 1999c). The time-scaling scheme described in

Section 3.1.1 was applied.

1Available via ModelDB (http://senselab.med.yale.edu/modeldb) under accession number 138950.
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4.1.2 Validation of stochastic model

While the Fox and Lu model has been used extensively as a biophysical model of the

stochastic membrane (e.g., De Vries and Sherman, 2000; Schmid et al., 2001; Shuai

and Jung, 2002; Casado, 2003; Rowat and Elson, 2004; Wang et al., 2004; Ozer and

Ekmekci, 2005; Saarinen et al., 2008; Finke et al., 2008; Cudmore et al., 2010; Sato

et al., 2010), it is nevertheless prudent to show that it responds to the cathodic-leading

biphasic pulses that are of most interest to this thesis similarly to the real neuron.

With that in mind, this section reproduces the methodology of van den Honert and

Mortimer (1979), described previously in section 2.3.2, and compares the results of

the stochastic HH model against those of the original study.

Figure 4.1 plots the voltage time-courses of a single node of Ranvier’s response to

stimulation by various pulse shapes. Plot A shows the responses of the membrane

to a single cathodic pulse delivered at various amplitudes. It shows that when deliv-

ered above a threshold amplitude, excitation is reliably achieved. Plot B shows the

responses of the membrane to an above-threshold cathodic pulse followed immediately

by an anodic pulse. As the leading cathodic pulse is above threshold, an action poten-

tial would reliably occur in the absence of the anodic pulse. However, when the anodic

pulse is delivered at a sufficiently large amplitude, excitation is averted. Plot C shows

that if delivery of the anodic pulse is sufficiently delayed, then excitation may again

be achieved. Figure 4.2 shows the results of an identical methodology when applied

to the stochastic HH model. All of the discussed trends are qualitatively reproduced

by the stochastic model.

Van den Honert and Mortimer quantified the ability for an anodic pulse to abolish

an action potential by measuring the abolition threshold, the level with which the

anodic pulse must be delivered for an action potential to be just averted. The abolition

threshold depends on the cathodic level, the level at which the leading cathodic pulse

is delivered. This is shown in Figure 4.3A, which plots how the abolition threshold

depends on cathodic level for various delays between the cathodic and anodic pulses.

It shows that a linear increase in cathodic level results in an exponential increase

in abolition threshold. Figure 4.3B summarises this by showing how the thresholds

of the stimulus depend on the delay between the two pulses (the IPG) when the

stimulus is symmetric (charge balanced). It shows that an increasing in delay leads to

a decrease in threshold. Figure 4.4 shows that the stochastic model reproduces both

the exponential dependence of abolition threshold on cathodic level, and the decrease

in symmetric biphasic threshold with increasing IPG.
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Figure 4.1: Voltage time-courses of a single node of Ranvier’s response to stimulation

by various pulse shapes. Plot a: responses to a cathodic monophasic pulse of 50 µs

duration delivered at various levels. Plot b: responses to an above-threshold cathodic

pulse (50 µs duration) immediately followed by an anodic pulse of varying level (50 µs

duration). Plot c: responses to an above-threshold cathodic pulse (50 µs duration)

followed at various intervals by a fixed-amplitude anodic pulse (50 µs duration). Fig-

ure reproduced from van den Honert and Mortimer (1979) with permission from the

publisher.
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Figure 4.2: Demonstration that the stochastic HH model reproduces the trends of

the membrane shown in Figure 4.1. Plot A: responses of the stochastic HH model

to a cathodic monophasic pulse of 50 µs duration delivered at various levels. Plot

B: responses of the stochastic HH model to an above-threshold cathodic pulse (50 µs

duration) immediately followed by an anodic pulse of varying level (50 µs duration).

Plot C: responses of the stochastic HH model to an above-threshold cathodic pulse

(50 µs duration) followed at various intervals by a fixed-amplitude anodic pulse (50 µs

duration). For all paradigms, the traits exhibited by the stochastic HH model reproduce

those empirically observed by van den Honert and Mortimer (1979).
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Figure 4.3: The relationship between abolition threshold and cathodic level under

cathodic-leading biphasic stimulation at various IPGs (plot A). The data from which

the curves A, B, and C were fit were shown earlier in Figure 2.14. The intersections

of the line X=Y and the curves A, B, and C mark the points at which the stimulus

is symmetric and charge balanced. The stimulus levels at these points are plotted

against their respective IPGs in plot B (where an infinite IPG corresponds to a

cathodic monophasic pulse). Note that all curves in plot A should have an abolition

threshold of 0% at a cathodic level of 100%, by definition (as when the cathodic level is

100% of the threshold, the stimulus is already at threshold in the absence of subsequent

anodic stimulation). The considerable deviation from this in curve C is possibly due to

deterioration of the units with time, noting that very few units survived long enough

to contribute to curve C (van den Honert and Mortimer, 1979). Figure reproduced

from van den Honert and Mortimer (1979) with permission from the publisher.
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Figure 4.4: Demonstration that the stochastic HH model reproduces the trends of

the membrane shown in Figure 4.3. Plot A: The dependence of anodic threshold

on cathodic level in cathodic-leading biphasic stimulation (50 µs/phase duration) at

three IPGs. Each curve corresponds to a different IPG, as labelled. The intersections

of the line X=Y and the curves mark the points at which the stimulus is symmetric

and charge balanced. The stimulus levels at these points are plotted against their

respective IPGs in plot B. In both plots, the trends empirically observed by van den

Honert and Mortimer are reproduced by the stochastic HH model.



4.1.3 Phase paths of the stochastic HH model

As in the original, deterministic, HH model, the phase paths of the stochastic HH

model may be projected to the pV,mq space. Unlike the HH model, the trajectory of

the stochastic HH model is not deterministic, and so repeated executions (or trials) of

the model will produce different phase paths, even if the initial states are identical. To

qualitatively understand the behaviour of the stochastic HH model, the phase paths of

a large number of trials may be projected, providing an estimate of the distribution of

phase paths. The model is most likely to behave as in a phase path from the centre of

the distribution, but in some trials, it will behave differently, taking on the behaviour

of an outlier phase path. As an example, see Figure 4.5, which shows the pV,mq-

projections of the phase paths resulting from 1000 trials of stimulating the model with

a cathodic pulse; also plotted is the deterministic phase path.

As in the HH model, the phase point of the stochastic HH model is attracted to

the resting node. However, unlike in the HH model, the phase point of the stochastic

HH model does not converge upon it, for when the phase point is in the proximity of

a stable node, the non-deterministic term of (2.7) dominates its dynamics, preventing

convergence. Therefore, the “resting state” of the stochastic HH model is a random

variable that is centred on the resting node of the HH model. While this stochasticity

of the resting state affects the phase path of any given trial of the stochastic HH model,

it does so in a way that can be equally reproduced in the HH model by initiating the

system to the same random variable, and as such, it does not alter the way by which

excitation is achieved compared to how it is achieved in the HH model. Therefore,

throughout this chapter, the phase point of the stochastic HH model is explicitly set

to the resting node of the HH model so that only the phenomena that is unique to the

stochastic HH model are investigated. Analysing the effect of the stochastic resting

state is then akin to analysing the behaviour of the non-resting deterministic model

(e.g., as occurs following conditioning stimulation), which I did not investigate in this

thesis.

4.2 Phase plane portraits of excitation

4.2.1 Excitation by a cathodic pulse

The pV,mq-projected phase paths resulting from repeated trials of delivery of a ca-

thodic pulse (threshold level, 20 µs duration) to the stochastic HH model (initial state

at pulse onset set to resting state of the HH model) are shown in Figure 4.5. Plot A
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shows those phase paths that resulted in excitation (the excited phase paths) and plot

B shows those that did not (the unexcited phase paths). For comparison, the deter-

ministic phase paths of the HH model responding to the same stimulus (delivered at

levels just-above and just-below threshold) are also shown (black line and dashed line,

respectively). The Figure only shows the phase paths in the vicinity of the bifurca-

tion between the excited and unexcited phase paths; for reference, Figure 4.6 re-plots

the phase paths to show the full upwards-sweep of the action potential in the case of

excitation.
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Figure 4.5: The pV,mq-projected phase paths of the stochastic HH model resulting

from 100 trials of stimulation by a cathodic monophasic pulse (20 µs duration) de-

livered at threshold level (grey lines). Upon the onset of the stimulus, the phase

point is positioned at the resting node of the HH model (black circle). For reference,

trajectories of the HH model are plotted when stimulated at levels just-above- (1.05x;

solid black line) and just-below- (0.95x; dashed black line) threshold. Plot A:

Just the trials in which an action potential occurred (manifesting as an upwards loop

in the phase path); plot B: just the trials in which an action potential did not occur.

Arrows mark the forward progression of time.



0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

m

A

Stochastic path
Just above threshold path (deterministic)
Just below threshold path (deterministic)
Resting state

0 20 40 60 80 100

V

0.0

0.2

0.4

0.6

0.8

1.0

m

B

Figure 4.6: As in Figure 4.5, with the same phase paths plotted on a different scale so

as to show the full upwards loop of the action potential.



The phase paths of the stochastic HH model are both qualitatively and quantita-

tively similar to those of the HH model. Qualitatively, the phase point is displaced to

higher values in the V dimension by the pulse’s delivery (remaining relatively static

in the m dimension). Following the pulse’s cessation, the phase point traverses a tra-

jectory approximately parallel to the separatrix of the reduced HH model (not shown;

see Figure 3.3) until approaching the location of the saddle node in the reduced HH

model (not shown; see Figure 3.3), at which point it is repelled and follows an upwards-

rightwards trajectory. During this trajectory, bifurcation occurs in the deterministic

equations due to the saddle node overtaking the slower phase point of the subthreshold

path while being outpaced by the faster phase point of the suprathreshold path (see

Section 3.3.2). In the excited paths (plot A), the phase point continues the upwards-

rightwards trajectory of the action potential and excitation occurs. In the unexcited

paths (plot B), the phase point’s trajectory is reversed and it returns to the vicinity

of the resting node. Quantitatively, the phase paths do not diverge widely from the

their equivalent deterministic phase path, and the divergence that does occur occurs

around and after the point of bifurcation, considerably after the pulse’s cessation.

4.2.2 Excitation by an anodic pulse

The pV,mq-projected phase paths resulting from repeated trials of delivery of an anodic

pulse (threshold level, 20 µs duration) to the stochastic HH model (initial state at

pulse onset set to resting state of the HH model) are shown in Figure 4.7. The phase

paths are qualitatively similar to their deterministic counterparts: the pulse’s delivery

displaces the phase point to lower values in the V dimension without a large immediate

effect in the m dimension. Following the pulse’s cessation, all phase points follow a

common trajectory towards excitation as both the resting and saddle nodes disappear

(not shown; see Section 3.3.2). Both nodes re-appear behind (i.e., at lower values in

the V and m dimensions) the phase point after „830 µs and the saddle node advances

on the phase point, following the trajectory of the m-nullcline. The rate at which

the phase point advances towards excitation varies between trials due to stochasticity;

bifurcation occurs in those trials where the saddle node outpaces (and overtakes) the

phase point, resulting in the phase point abruptly changing its trajectory and returning

to rest.
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Figure 4.7: The pV,mq-projected phase paths of the stochastic HH model resulting

from 100 trials of stimulation by an anodic pulse (20 µs duration) delivered at threshold

level (grey lines). Upon the onset of the stimulus, the phase point is positioned at

the resting node of the HH model (black circle). For reference, trajectories of the HH

model are plotted when stimulated at levels just-above- (1.05x; solid black line) and

just-below- (0.95x; dashed black line) threshold. Plot A: Just the trials in which

an action potential occurred (manifesting as an upwards loop in the phase path); plot

B: just the trials in which an action potential did not occur. Arrows mark the forward

progression of time.
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Figure 4.8: The pV,mq-projected phase paths of the stochastic HH model resulting

from 100 trials of stimulation by a CL-BP (20 µs/phase duration; 100 µs IPG) delivered

at threshold level (grey lines). Upon the onset of the stimulus, the phase point

is positioned at the resting node of the HH model (black circle). For reference,

trajectories of the HH model are plotted when stimulated at levels just-above- (1.05x;

solid black line) and just-below- (0.95x; dashed black line) threshold. Plot A:

Just the trials in which an action potential occurred (manifesting as an upwards loop

in the phase path); plot B: just the trials in which an action potential did not occur.

Arrows mark the forward progression of time.



4.2.3 Excitation by a cathodic-leading biphasic pulse

The pV,mq-projected phase paths resulting from repeated trials of delivery of a CL-BP

(threshold level, 20 µs/phase duration, 100 µs IPG) to the stochastic HH model (initial

state at pulse onset set to resting state of the HH model) are shown in Figure 4.8. The

phase paths are qualitatively similar to their deterministic counterparts: the cathodic

phase of the pulse displaces the phase point to higher values in the V dimension

without a large immediate effect in the m dimension, and then during the delay of

the IPG, the phase point follows a trajectory as though towards excitation, and then

the delivery of the anodic phase displaces the phase point to lower values in the V

dimension without having a large immediate effect in the m dimension. Following the

pulse’s cessation, the phase point approaches the dynamic saddle node (not shown) via

a trajectory approximately parallel to the separatrix (not shown), and is then repelled

from the saddle node towards either the resting node or the excited node.

In all trials, the phase point follows a common trajectory (approximately the unsta-

ble manifold of the saddle node) towards excitation, up until the onset of the anodic

phase. Prior to the anodic phase, there is very little across-trial variability in the

phase paths—they all overlap closely to form a tight bundle. However, at the moment

of anodic-phase onset, the phase points of different trials occupy different positions

along the length of the bundle (small grey squares), indicating that some phase points

traversed the common trajectory faster than others, and so the stochasticity of the

system manifests in stochasticity in traversal speed. The delivery of the anodic phase

shifts all the phase points towards lower values in the V dimension, resulting in a final

spread of phase points, centred on the separatrix (not shown), with the main axis of the

spread approximately perpendicular to the separatrix. Only the very few phase points

near the centre of the spread are close to the separatrix upon the pulse’s cessation,

and it is only these few that have the potential to diffuse (i.e., due to stochasticity)

across the separatrix, changing the firing outcome of the trial. For the majority of the

trials, the phase point is so far from the separatrix upon the pulse’s cessation that the

probability of the phase point crossing the separatrix is vanishingly small. As such, we

may expect the stochasticity of the system to only affect the firing outcome following

delivery of a CL-BP during the pulse’s delivery, and not after.

4.2.4 Excitation by an anodic-leading biphasic pulse

The pV,mq-projected phase paths resulting from repeated trials of delivery of a AL-

BP (threshold level, 20 µs/phase duration, 100 µs IPG) to the stochastic HH model
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Figure 4.9: The pV,mq-projected phase paths of the stochastic HH model resulting

from 100 trials of stimulation by an AL-BP (20 µs/phase duration; 100 µs IPG) de-

livered at threshold level (grey lines). Upon the onset of the stimulus, the phase

point is positioned at the resting node of the HH model (black circle). For reference,

trajectories of the HH model are plotted when stimulated at levels just-above- (1.05x;

solid black line) and just-below- (0.95x; dashed black line) threshold. Plot A:

Just the trials in which an action potential occurred (manifesting as an upwards loop

in the phase path); plot B: just the trials in which an action potential did not occur.

Arrows mark the forward progression of time.



(initial state at pulse onset set to resting state of the HH model) are shown in Figure

4.9. The phase paths are qualitatively similar to their deterministic counterparts. The

delivery of the initial anodic phase moves the phase point to lower values in the V

dimension without a large immediate effect in the m dimension. During the IPG,

the phase point traverses a trajectory towards the resting node until being displaced

towards higher values in the V dimension by the delivery of the cathodic phase. In

all trials, the delivery of the cathodic phase moves the phase point well beyond the

separatrix of the reduced HH model (not shown), so that the phase point follows a

trajectory towards excitation. However, the saddle node does not remain static and

advances along a similar trajectory (see Section 3.3.2), in some cases outpacing and

overtaking the phase point. In these cases, excitation does not occur.

During the pulse’s delivery, the phase points of the different trials follow qualita-

tively similar trajectories. However, the rates at which they traverse their trajectories

varies between trials due to stochasticity. This results in considerable spatial variabil-

ity of the phase points in the pV,mq plane upon the pulse’s cessation, with some phase

points positioned close to the separatrix of the reduced HH model. As the separatrix

advances in time as the membrane is depolarised, it seems possible that some phase

points may reside within the subthreshold side of the moving-separatrix by the time

the phase point approaches the saddle node. If this were to occur, it would change the

qualitative nature of excitation: the “race” between the saddle node and the phase

point would not occur. To this end, I analysed to which side of the saddle node the

phase points lay upon advancing beyond the saddle node in the m dimension. I found

that in all trials, the phase point did advance beyond the saddle node in the m dimen-

sion, and that in all cases, it did so from higher values in the V dimension. Thus, the

“race” between the saddle node and the phase point occurs in all 100 cases analysed.

The response of the stochastic HH model to a AL-BP is qualitatively similar to

the response to a cathodic pulse. The longer duration of the AL-BP means that the

position of the phase point upon pulse cessation has greater variability in the biphasic

pulse compared to the monophasic pulse, but, as shown in the previous paragraph,

this variability does not qualitatively affect how the model responds. We may thus

hypothesise that the interactions between neighbouring AL-BPs will be similar to the

interactions between neighbouring cathodic pulses, and in particular, we may expect

to see the same temporal facilitation that occurs in monophasic stimulation. This will

be investigated in the next chapter.
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4.3 Analysis

4.3.1 Quantifying the effect of stochasticity

One motivation in investigating the responses of the stochastic HH model was to

support my view that the phase order of a biphasic pulse fundamentally changes how

the pulse excites the membrane. The stochastic model can support this view if how

its responses differ from those of the HH model depends on phase order.

Suppose that part-way through a simulation with the stochastic HH model, one

replaces the stochastic equations of the stochastic HH model with the deterministic

equations of the original HH model.2 Continuing the simulation with the original

equations may then be used to predict whether or not excitation would have occurred

under the stochastic equations. The accuracy of such a prediction depends on the

time at which the equations were switched (which I shall refer to as the time at which

the prediction was made). The earlier the prediction was made, the more likely it was

that the phase path of the stochastic HH model would have diverged from that of

the deterministic HH model, leading to an erroneous prediction. A particular epoch

of importance is the moment of stimulus cessation. If stochasticity only affects the

response of the stochastic HH model during a given pulse, then we would expect the

firing outcome to be predictable at the time of the pulse’s cessation. Alternatively,

if stochasticity continues to affect how the response of the stochastic model after

the pulse’s delivery, then we would expect the firing outcome of the model to be

unpredictable (or poorly predictable) at the time of the pulse’s cessation. If different

pulse shapes evoke excitation in a similar way, then we would expect predictions made

upon stimulus cessation to be similar regardless of pulse shape. With this in mind,

the firing outcomes across 1000 trials of the stochastic HH model were predicted at

the moment of stimulus cessation when stimulated by monophasic and biphasic pulses.

For each stimulus, the number nTP of correct predictions of excitation (true positives),

the number nTN of correct predictions of non-excitation (true negatives), the number

nFP of incorrect predictions of excitation (false positives), and the number nFN of

incorrect predictions of non-excitation (false negatives), were recorded, and from these,

the prediction accuracy

A “
nTP ` nTN

nTP ` nTN ` nFP ` nFN

2In other words, taking a snapshot of the position of the pV,m, n, hq-projected phase point of the
stochastic model at the given moment t in time, and placing the phase point of the HH model at this
position and stimulating the latter with the remaining stimulus signal from time t onwards.
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was derived (Table 4.1). In the case of cathodic-leading biphasic stimulation, stochas-

ticity had almost no effect on firing outcome after the pulse’s delivery. In the cases

of both anodic-leading stimulation and cathodic monophasic stimulation, stochastic-

ity had an effect both during and after the pulse’s delivery. In the case of anodic

monophasic stimulation, stochasticity had almost no effect after the pulse’s deliv-

ery. These results suggest that an AL-BP evokes excitation similarly to a cathodic

monophasic pulse in the stochastic model, and that this is different to how a CL-BP

evokes excitation, consistent with the hypothesis of this thesis that phase order of a

biphasic pulse changes how the pulse excites the membrane.

4.3.2 Firing outcome to a cathodic-leading biphasic pulse may

be predicted at pulse cessation

When the neuron is stimulated with a monophasic pulse, stochasticity continues to

affect whether excitation occurs after the pulse’s cessation. To determine whether the

same is true when the neuron is stimulated with a CL-BP, the firing outcome of the

stochastic HH model was predicted, across multiple trials, at the moment of a CL-BP’s

cessation. From these predictions, an input-output function was derived (the predicted

input-output function) and compared against an input-output function derived from

the actual firing outcomes (the actual input-output function). If stochasticity continues

to affect excitation for some time after the cessation of the stimulus, then the relative

spread (RS) of the actual input-output function should be greater than that of the

predicted input-output function. If it does not, then the two input-output functions

should precisely overlap. The difference in the RSs of the two input-output functions

may thus be used to quantify the extent that stochasticity affects excitation following

stimulus cessation.

The firing outcome was predicted based on the location of the phase point at the

moment of the stimulus’s cessation (in the example phase paths shown in Figure 3.5,

this corresponds to the points h-, h, and h+). Excitation was predicted to occur

if—and only if—the phase point exceeded threshold values in both the V and m

dimensions. These threshold values were derived from the location that the phase

point would occupy at the moment of stimulus cessation if stochasticity were removed

from the model and the CL-BP were delivered at threshold level. This point is shown

in Figure 4.8, plots A and B, as a filled black square (the phase path on which the

square lies resulted from stimulation with CL-BP delivered at a level infinitesimally

above threshold level; the square marks the phase point at the moment of stimulus
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Stimulus nTP nTN nFP nFN nE Accuracy

A-MP 0 514 0 486 486 0.514

*A-MP 0 514 0 486 486 0.514

C-MP 244 370 123 263 386 0.614

AC-BP 284 408 96 212 308 0.692

*C-MP 439 436 57 68 125 0.875

CA-BP 486 484 9 21 30 0.97

Table 4.1: Quantifying how the effect of stochasticity depends on the stimulus in the

stochastic HH model. Four pulse shapes were investigated, a cathodic monophasic

pulse (abbreviated C-MP; 20 µs duration), an anodic monophasic pulse (abbreviated

A-MP; 20 µs duration), a CL-BP (20 µs/phase duration, 100 µs IPG), and an AL-BP

(20 µs/phase duration, 100 µs IPG). For a given stimulus, the firing outcome of the

stochastic model was predicted at the moment of the stimulus’s cessation across 1000

trials to the stimulus. For each pulse shape, the prediction accuracy was obtained

from the number of true positives (nTP), true negatives (nTN), false positives (nFP),

and false negatives (nFN); see main text for formula. An extra column reports nE “

nFP`nFN, the total number of erroneous predictions. As the time of stimulus cessation

is earlier for the monophasic pulses, second predictions were made for them (rows

marked by an asterisk) at the time t “ 140 µs, equal to the time of stimulus cessation

in the biphasic pulses. In the case of the CL-BP, stochasticity had almost no effect

on firing outcome after the pulse’s delivery. In the cases of the AL-BP and the C-

MP, stochasticity had an effect both during and after the pulse’s delivery. In the case

of the A-MP, stochasticity had almost no effect after the pulse’s delivery. Note that

an accuracy of 0.5 implies that the firing outcome of the stochastic model cannot be

predicted from the firing outcome of the HH model. An accuracy below 0.5 would

imply an inverse correlation, which is not expected.
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Figure 4.10: Plot A: stimulus is a cathodic monophasic pulse (20µs duration). Plot B:

stimulus is a CL-BP (20µs/phase duration, 100 µs IPG).



cessation).

The stochastic HH model was stimulated with a CL-BP of 20 µs/phase duration

and 100 µs IPG. The stimulus was delivered at 20 levels, spanning the model’s dynamic

range. At each level, 7,500 trials were performed. For each trial, the predicted and

actual firing outcomes were noted and used to infer the predicted and actual input-

output functions, respectively, which are plotted in Figure 4.10, plot B. They overlap

almost precisely, having RSs of 0.042 and 0.045, respectively, and thus, excitation

can be accurately predicted immediately upon the cessation of the CL-BP. This is in

stark contrast to the case of stimulation by a monophasic pulse. To illustrate this,

the same methodology was carried out using a cathodic pulse, making predictions

at the moment of the pulse’s cessation and deriving input-output functions from the

predictions and the actual firing outcomes. These are plotted in Figure 4.10, plot A.

Here, the RS of the actual input-output function is over twice that of the predicted

input-output function (0.079 vs 0.035).

To summarise, when the stochastic HH model is stimulated with a monophasic

pulse, stochasticity continues to affect the firing outcome of the model for some time

after the pulse’s cessation. However, when stimulated with a CL-BP, the firing out-

come is already determined by the time of the pulse’s cessation.

4.3.3 Related work

As it has thus far been described, whether excitation occurs depends only on whether

the stimulus drives the phase point beyond the separatrix and into the suprathreshold

domain of the phase plane. Unless driven by externally applied current, the phase point

will never cross the separatrix. In the presence of stochasticity, however, Brownian

motion in the V and m dimensions can cause the phase point to straddle the separatrix

until the saddle node is approached, at which point the phase point is repelled towards

either rest or excitation. Figure 4.5 plots the pV,mq-projected phase paths of trials

in which the stochastic HH model is stimulated with a 20 µs cathodic pulse. Clear

from the Figure is that the phase plane of the stochastic HH model cannot be divided

into subthreshold and suprathreshold domains, as was done in the reduced HH model.

If one were to attempt to do so, one would find that the phase point drifts between

domains due to stochasticity. This is quantified in Figure 4.10, plot A, which plots the

input-output function of the stochastic HH model and the input-output function that

would be expected if excitation could be predicted from the phase point’s location

at the moment of stimulus cessation (see Figure caption for methodology). The RS
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of the actual input-output function is over twice that predicted, indicating that the

predictions underestimate the of stochasticity of the response. The reason that the

predictions have a non-zero RS is that the phase point is affected by stochasticity

during the pulse’s delivery (recalling that the predictions were based on the location

of the phase point at the moment of pulse cessation).

Figure 4.10 shows that the predictions of excitation in the stochastic HH model

become more reliable as the stimulus level moves further away from the threshold level

(either by increasing or decreasing the stimulus level). This is because the probability

of the phase point crossing the separatrix due to random perturbation decreases as its

distance from the separatrix increases. It would be useful to formalise this by deriving

the probability of excitation occurring, given the location of the phase point at a given

moment in time. With this in mind, Lecar and Nossal (1971), analysed linearised the

HH equations.

A system of nonlinear ODEs, such as is the HH model, can be linearised around a

point, x, on the phase plane. While the phase point is close to x, the linearised system

behaves like the original. The motivation for performing such a transformation is

that the linear system can be solved analytically (i.e., without numerical integration).

Lecar and Nossal linearised the pV,mq-reduced HH model around the saddle point.

By doing so, they were able to analytically describe the effect of the Brownian motion

in the V and m dimensions. From this, they were able to derive a probability density

function (PDF) of the phase point’s location after some elapsed period of time. By

taking the PDF of the phase point’s location an infinite time after stimulus cessation,

they were able to determine the probability of excitation. Their analysis provided an

important mathematical link between the biophysical variables of the HH model and

the input-output function.

101



Chapter 5

A novel phenomenological

model of electrical stimulation

When stimulated with an electrical current pulse, the SGC may elicit an action poten-

tial after a stochastic delay. The shape of the stimulating pulse affects the probability

of the SGC eliciting an action potential in response to it, and the temporal distribution

of the action potential, if elicited. Further, temporally-separated pulses may interact

within short time windows, blurring the distinction between individual pulses. To be

useful, a model of the electrically stimulated SGC must thus be capable of realistically

responding to a stimulus pulse of complex and arbitrary shape. One method by which

to achieve this is to directly model the biophysics of the neuron. Biophysical models

have been developed which are successful in reproducing the response characteristics of

the ANF (e.g., Cartee, 2000; Negm and Bruce, 2008; Rattay et al., 2001a; Rubinstein,

1995; Woo et al., 2010). However, while these models have previously been used to

study the responses of large populations of SGCs (e.g., Imennov and Rubinstein, 2009),

they are difficult to use: the parameter-space of a biophysical model is vast and the

individual parameters affect the response of the neuron in complex ways. There has

been no procedure published for systematically parametrisation a biophysical model

to reproduce a desired set of response statistics.

Phenomenological models provide an alternative to biophysical models. Phenomeno-

logical models reproduce only the statistics of the response, without explicitly mod-

elling the biophysics of the SGC. By doing so, the parameter-space is reduced and it is

possible to directly and independently control individual response characteristics via

the model parameters. Phenomenological models have previously been used to model
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the electrically stimulated SGC (e.g., Carlyon et al., 2005; Chen and Zhang, 2007;

Chen, 2012; Cohen, 2009a,b,c,d,e; Goldwyn et al., 2012; Hamacher, 2004; Macherey

et al., 2007). However, none have simultaneously reproduced how the shape of a

stimulus pulse affects both the probability of it evoking an action potential and the

temporal distribution that the action potential takes if evoked.

A key focus of my PhD has been to develop a model capable of reproducing the

statistics of the SGC’s response to both monophasic and CL-BPs. The model that

I developed, presented in this chapter, is the first phenomenological model that has

been shown to reproduce the effect on threshold of the trailing anodic phase of a

CL-BP. The standard phenomenological model, the stochastic leaky integrate-and-fire

(SLIF) neuron, discretises the action potential as a single moment of spiking. In my

model, the membrane potential of the SGC is modelled by processing the stimulus

current with a leaky integrator. As in the SLIF neuron, excitation occurs when the

membrane potential exceeds a stochastic threshold. Unlike the SLIF neuron, there

exists a delay between the moment at which the membrane potential exceeds the

threshold and the moment at which the resulting spike is emitted. This emulates the

delay in the generation of the action potential that is present in the SGC. Further,

inspired by empirical observations, the spike is allowed to be cancelled if sufficient

anodic stimulation occurs before the spike is emitted. By doing so, the model is

able to reproduce the effect of the interphase gap on the probability of a CL-BP

evoking an action potential in the SGC. The description of the model is split into three

sections. First, I introduce the existing SLIF neuron, describing its parametrisation

and summarising its capabilities and limitations (section 5.1). I then extend the SLIF

neuron to introduce a delay between the moment at which the membrane potential

exceeds the threshold and the moment at which the resulting spike is elicited. This

forms a self-contained model in itself, reproducing temporal properties of the SGC’s

response to a monophasic stimulus (Section 5.2). Finally, I further extend the model

so that a spiking may be cancelled by anodic current, comparing its results against

those from cat SGCs (section 5.3).

5.1 The stochastic leaky integrate and fire neuron

The stochastic leaky integrate-and-fire (SLIF) neuron provides a simple model of the

electrically stimulated neuron. The model is identical to the LIF model, other than

that the threshold potential θ is a normally-distributed random variable instead of a

constant.
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5.1.1 Model description

The stimulus signal Iptq is processed by a leaky integrator to give V ptq, which may

be interpreted as the membrane potential of the model neuron at time t (Abbott and

Kepler, 1990; Gerstner, 1995). The stimulus signal and the membrane potential are

related by the ordinary differential equation

τ
dV

dt
“ ´RI ´ V, (5.1)

where τ is the time constant of the neural membrane and R is its resistance, arbitrarily

assumed to be 1 Ω. A spike is generated at the moment V ptq first exceeds a threshold

value θ, an event that referred to as threshold crossing. Throughout this section, I

use t0 to denote the time of threshold crossing. In order to reproduce the stochastic

properties of excitation, θ is a normally-distributed random variable with mean µ and

standard deviation σ. The outcome of θ is time-invariant and does not change other

when explicitly reset (i.e., so that θ is a single, scalar value, rather than a time-varying

signal).

5.1.2 Model response properties

The SLIF neuron has three parameters: µ, σ, and τ . This section shows how these

can be uniquely determined so that the model reproduces data from cat SGCs.

Excitation

To be consistent with extracellular stimulation, V is defined in (5.1) so that cathodic

current (corresponding to negative values of I) is depolarising, driving V towards or

above threshold. The SLIF neuron does not model the depolarising effects of anodic

current on the nodes with negative activating function values, and thus, anodic current

can not cause excitation in the SLIF neuron.

Input-output function

The probability of a stimulus evoking a spiking in the SLIF neuron is given by the

probability of V exceeding θ. Let vptq equal the value of V at time t in the case of

I “ ´1 A. Because (5.1) is linear, Lvptq is then the value of V at time t in the case

of I “ ´L A. Solving (5.1) for V with I “ ´1 A and R “ 1 Ω, we have

vptq “ 1´ e´ϕ{τ .
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We may now express the probability Prpspiking|L,ϕq of a cathodic, monophasic stim-

ulus of level L and duration ϕ evoking a spiking in the SLIF neuron as

Prpspiking|L,ϕq “ PrpV exceeds θq

“ PrpLvpϕq ą θq as θ is time-invariant

“ FθpLvpϕqq, (5.2)

where Fθ is the cumulative distribution function of θ. As θ is normally-distributed

with mean µ and standard deviation σ, we have

Fθpxq “ Φ

ˆ

x´ µ

σ

˙

,

and so

Prpspiking|L,ϕq “ Φ

ˆ

Lvpϕq ´ µ

σ

˙

, (5.3)

which may be re-arranged to have the same as (2.12), which described the input-output

functions of cat SGCs (Section 2.3.1). Collating the two, we have

Φ

ˆ

L´m

s

˙

“ Φ

ˆ

L´ µ{vpϕq

σ{vpϕq

˙

,

and thus,

m “
µ

vpϕq
(5.4)

and

s “
σ

vpϕq
, (5.5)

where m and s are as defined in section 2.3.1. Inverting (5.4) and (5.5) gives the model

parameters µ and σ in terms of the empirically-derived values m and s.

To summarise, the input-output function of the SLIF neuron has the form of the

cumulative distribution function (CDF) of the Gaussian distribution, which has previ-

ously been shown to describe the input-output functions of SGCs (see Section 2.3.1).

The SLIF neuron may thus be parametrised to reproduce a given SGC’s input-output

function. Given the mean and standard deviation of this function (or equivalently, the

threshold level and RS), the model parameters that will reproduce it may be derived

analytically.
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Strength-duration function

The strength-duration function relates pulse duration to threshold level. The threshold

level is defined as the stimulus level that evokes spiking with probability 0.5. Thus, if

L is the threshold level of a monophasic pulse of duration ϕ, then from (5.3) we have

Prpspiking|L,ϕq “ 0.5 “ Φ

ˆ

Lvpϕq ´ µ

σ

˙

,

from which we obtain

Lvpϕq “ µ.

Rearranging and expanding vpϕq, we have

L “
µ

1´ expp´ϕ{τq
, (5.6)

which is of the same form as (2.13), which describes the strength-duration functions

of cat SGCs (see section 2.3.1).1 Collating the two equations, (5.6) and (2.13), gives

µ

1´ expp´ϕ{τq
“

I8thr

1´ exp pkϕq
,

and so we find that µ “ I8thr and 1{τ “ k, giving an alternative parametrisation of

model parameter µ in terms of the empirically-observed rheobase, and giving model

parameter τ in terms of the empirical parameter k. Recalling from Section 2.3.1 that

the empirically observed chronaxie is given by chronaxie “ logp2q{k, we have

τ “
chronaxie

logp2q
.

To summarise, the strength-duration function of the SLIF neuron has the same

form as those of SGCs, and further, the model parameter τ may be derived analytically

from the chronaxie of a given SGC so that the model reproduces the SGC’s input-

output function.

Temporal response properties

Figure 5.1 plots mean latency and jitter of a cat SGC’s response to a brief (40 µs)

monophasic stimulus (Miller et al., 1999b). Increasing stimulus level reduces both the

mean latency and the jitter of the response. Also plotted is the mean latency and jitter

1The derivation of the strength-duration function of the passive membrane has previously been
given (via different means) in chapter 3 of Tuckwell (1988).
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Figure 5.1: The SLIF neuron does not reproduce the temporal response statistics of

the ANF or their dependence on stimulus level. Plotted are the mean latency (plot

A) and jitter (plot B) of the responses to a monophasic stimulus (40 µs duration)

for the SLIF neuron (solid lines) and a cat ANF (Miller et al. 1999; open circles).

The stimulus levels span the dynamic range of the ANF. Note the change in ordinate

scale.



of the SLIF neuron under identical conditions. The SLIF neuron lacks the extent of

temporal stochasticity that is observed in the SGC (jitter at threshold level is 1 µs for

the model and 112 µs for the SGC). Further, the mean latency is under-predicted by

the SLIF neuron (latency at threshold level is 38 µs for the model and 681 µs for the

SGC) and does not show the dependence on stimulus level that is seen in the SGC. It

is not possible to parametrise the SLIF neuron to reproduce these temporal response

properties whilst simultaneously maintaining the input-output and strength-duration

functions that have already been fitted to data from cat SGCs. These failings of the

SLIF neuron have been noted previously (Fredelake and Hohmann, 2012; Goldwyn

et al., 2012; Hamacher, 2004) and are addressed by my extension to the SLIF neuron

in section 5.2.

Biphasic response properties

The threshold level of a cathodic pulse is elevated by the inclusion of a trailing anodic

phase, transforming it into a CL-BP (Gorman and Mortimer, 1983; Miller et al., 2001b;

Shepherd and Javel, 1999). As the IPG is increased, the threshold level tends towards

that of the cathodic phase alone, reaching its asymptote after „250 µs (Shepherd and

Javel, 1999). The SLIF neuron is fundamentally unable to reproduce this increase

in threshold level associated with cathodic-leading biphasic stimulation. A threshold

crossing, if one occurs, will always occur during the excitatory, cathodic current. If the

threshold crossing occurs, then it cannot be undone by the trailing, anodic phase. If

a threshold crossing does not occur during the leading cathodic phase, then it cannot

occur during the trailing anodic phase. Thus, any trailing, anodic current present in

a stimulus has no effect on the threshold level of that stimulus in the SLIF neuron.

Summary

This section has introduced the SLIF neuron and shown that it may be analytically

parametrised to reproduce the strength-duration and input-output functions of an

arbitrary SGC’s response to a monophasic stimulus. The ease with which these im-

portant response statistics may be fitted to data makes the SLIF neuron an attractive

candidate for modelling the response of the electrically stimulated SGC. However, this

section has also shown that the latency distribution of the SLIF neuron does not re-

produce that of the SGC and that the SLIF neuron is unable to respond to a CL-BP

in a way that mimics the SGC.
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5.2 The temporal leaky integrate-and-fire neuron

In this section, the SLIF neuron is extended to reproduce the temporal properties of the

SGC’s response to a monophasic stimulus. This is done by introducing a stochastic

delay between the time of threshold crossing and the time of spiking. The delay

has no effect on the probability of the neuron responding to a stimulus, which is

unchanged from that of the SLIF neuron. As such, the input-output and strength-

duration functions of the SLIF neuron are preserved. I refer to the resulting model as

the temporal leaky integrate-and-fire (TLIF) neuron.

5.2.1 Model assumptions

The TLIF neuron makes a number of assumptions regarding how the SGC responds to

the stimulus. These are discussed here, prior to providing a description of the model.

Predicting the latency distribution from the firing probability

The TLIF neuron assumes that the latency distribution of the ANF’s response to a

stimulus is well predicted by the probability of the stimulus evoking a spike. The

latency distribution of the spike, if evoked, is assumed to be well approximated by a

Gaussian distribution.

The action potential initiation period

When a neuron is depolarised sufficiently to evoke an action potential, a delay occurs

between the membrane being depolarised by the stimulus and the action potential

being generated. During this delay, further stimulation can continue to affect the

time at which the action potential is generated (Miller et al., 2001b; van den Honert

and Mortimer, 1979). I refer to this delay as the action potential initiation period

and assume that its duration is stochastic and stimulus-dependent, with its variability

equal to the variability of the spike timing that is observed by the recording electrode.

Previous threshold crossings

As in the SLIF neuron, the time of threshold crossing in the temporal leaky integrate-

and-fire (TLIF) neuron is given by t0. It is assumed that t0 is the earliest threshold

crossing, and so there exists no s ă t0 for which V psq ą θ. This assumption does

not prevent the model from being able to recover following a threshold crossing, see

section 5.5.5.

109



5.2.2 Model description

Biophysically, the generation of an action potential is a continuous process occurring

over a time course of hundreds of microseconds. Stimulation occurring during this

time can continue to affect the latency distribution of the response (van den Honert

and Mortimer, 1979). In the SLIF neuron, however, the action potential is considered

a discrete moment of threshold crossing after which further stimulation has no effect.

To allow the stimulus to continue to affect the latency distribution of the response

after a threshold crossing, the action potential is discretised into three epochs. The

first epoch, modelled by the variable t0 (defined previously), is the moment at which

the stimulus depolarises the ANF sufficiently for an action potential to be generated

in the absence of further stimulation. It signifies the start of the action potential

initiation period. The second epoch, modelled by the variable t1, is the moment at

which the action potential is irrevocably generated and cannot be influenced by further

stimulation. It signifies the end of the action potential initiation period, which is thus

modelled by the interval rt0, t1s. After its initial generation, the action potential is

conducted centrally by the axon until it is observed by the recording electrode, an

event I refer to as action potential observation. The third epoch, modelled by the

variable tspk, is the moment of action potential observation.

As defined in Section 5.1.1, the variable t0 is the time at which a threshold crossing

occurs. Upon a threshold crossing occurring in the TLIF neuron, a value is generated

for the variable t1 such that the duration of the delay between t0 and t1 is exponentially

distributed with a stimulus-dependent variance. A value is then generated for the

variable tspk so that the duration of the delay between t0 and tspk has a normal

distribution with a stimulus-dependent mean and variance. The variance is the same

as for t1, though the mean is considerably larger so as to emulate the effects of axonal

conductance on latency.

The dependence of the delays t1 ´ t0 and tspk ´ t0 on the stimulus are achieved

by use of two empirically-derived functions: lat and jit, both of which are plotted

in Figure 5.2. The function latppq predicts the mean delay between the start of the

action potential initiation period and the moment of action potential observation in

the ANF stimulated so as to evoke an action potential with probability p. The function

jitppq is similar, but predicts the standard deviation of the action potential initiation

period. Both functions are empirically derived. The probability p on which both

functions depend is the a-priori probability of V exceeding θ during the associated

action potential initiation period, rt0, t1s. In this way, continued stimulation during
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Figure 5.2: Parametrisation of the lat and jit functions (see text) from empirical data.

The lat function (plat A, solid line) is parametrised to the mean latency of an

ANF’s response to a 40 µs monophasic pulse (plot A, open circles; Miller et al.,

1999b). The jit function (plot B, solid line) is parametrised to the jitter of the same

responses (plot B, open circles). The action potential initiation period is assumed

to begin at the time of stimulus cessation, and so lat is chosen to under-predict the

data by 40 µs. To better show the fit to data, lat`40 µs (dashed line, plot A) is

also plotted.



the action potential initiation period may shorten it, bringing forward the time of

spiking. The next section will show how p is derived.

Probability of V exceeding θ during the interval rt0, t1s

The a-priori probability of V exceeding θ during the associated action potential initia-

tion period rt0, t1s is given by PrpV ptq ą θq, where t is the time at which V is maximal

within rt0, t1s. Because the lower bound of this interval, t0, is the time of threshold

crossing, it must be the case that t ě t0 (otherwise a threshold crossing would have

already occurred before time t0, contradicting the assumption of the model that t0 is

the earliest threshold crossing). Therefore, the lower bound of the interval rt0, t1s is

redundant and the a-priori probability of V exceeding θ during rt0, t1s is equal to the

a-priori probability of it exceeding θ during r0, t1s. With this in mind, the a-priori

probability of V exceeding θ during the action potential initiation period rt0, t1s will

henceforth be denoted by PTLIFpt1q, with

PTLIFptq “ Φ

ˆ

V psq ´ µ

σ

˙

,

where

s “ arg max
xPr0,ts

rV pxqs

and Φ is the CDF of the Gaussian distribution.

Generation of t1

The variable t1 models the time at which the action potential initiation period ends.

Here it is described how the TLIF neuron generates a value for t1 such that the delay

between t0 and t1 has an exponential distribution with a standard deviation that

approximates the jitter of the ANF’s response to the same stimulus. The algorithm

maintains causality so that at simulation time t, the model only has access to the

membrane potential up until time t.

From the time of threshold crossing onwards, the TLIF neuron generates time-

varying estimates of t1. Let Y be an exponentially-distributed (unit rate constant)

random variable. The estimate of t1 made at simulation time t is referred to as t̂1ptq

and is given by

t̂1ptq “ t0 ` Y jitpPTLIFptqq. (5.7)

The final value for t1 is the time at which t first reaches or exceeds t̂1, at which point
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the action potential initiation period has already come to an end and so its end time

is no longer in flux. The time t1 is thus a fixed point of t̂1; that is,

t̂1pt1q “ t1. (5.8)

Because jitpPTLIFptqq is non-negative and increases monotonically with t, the function

t̂1 has a single, unique, fixed point that may be found by finding the root of

gpxq “ t̂1pxq ´ x.

Given that both jit and Y are non-negative, t̂1pxq must be greater or equal to t0, and

so gpt0q must be greater or equal to 0. Further, given that jit is always finite, there

must exist some finite x " t0 for which gpxq ă 0. We may efficiently find such an x

by iterating through successive values of i P Z` until we find an i for which gpt i0q ă 0.

We thus have an interval rt0, t
i
0s whereat opposite ends g has opposite signs, and so,

by Bolzano’s theorem (Estep, 2006, chapter 32), the interval must contain the root of

g, and thus, the fixed point of t̂1. The bisection method (see, for example, Quarteroni

et al., 2010, chapter 6) may then be used to find this root, providing the value for t1.

The definition of t̂1 and the significance of its fixed point may be more read-

ily explained by means of a diagram. We first note that the term Y jitpPTLIFptqq

from (5.7) results in an exponentially-distributed random variable with rate constant

λ “ jit´1pPTLIFptqq, and that this may be equivalently expressed as

Y jitpPTLIFptqq “ F´1pY 1; jit´1pPTLIFptqqq,

where Y 1 is a uniformly distributed random variable in the interval p0, 1q, and

F´1pp;λq “ ´λ´1 logp1´ pq

is the quantile function2 of the exponential distribution with rate constant λ. We may

then rewrite (5.7) as

t̂1ptq “ t0 ` F
´1pY 1; jit´1pPTLIFptqqq,

and so

Y 1 “ F pt̂1ptq ´ t0; jit´1pPTLIFptqqq, (5.9)

2The quantile function is the inverse of the cumulative distribution function, so that if p “ F px;λq,
then x “ F´1pp;λq.
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Figure 5.3: Visualising the generation of t1. A timeline shows the progression of time,

with epochs marked in 5 µs increments from time t0 to time t0 ` 25 µs. Overlaid

above the timeline is a plot that has its abscissa calibrated with the timeline, so that

the plot’s origin corresponds to the time t0. Each curve in the plot is a CDF related

to an epoch from the timeline, as described by equation 5.9, so that the epoch with

time t has a curve corresponding to the CDF of the exponential distribution with rate

constant λ “ jit´1pPTLIFptqq. A horizontal grey line indicates an example outcome of

Y 1. For a given epoch of time t, the point (projected to the timeline) at which the grey

line intersects the epoch’s CDF gives t̂1ptq. This relationship between epoch, point

of intersection, and t̂1 is made explicit by arrows at the bottom of the figure, each of

which points from a time t to the time t̂1ptq. The arrows corresponding to the five

earliest epochs all point rightwards, to the future. The arrow of the sixth epoch points

unto itself, marking the fixed point of t̂1, and thus t1.



where F px;λq “ 1´ e´λx is the cumulative distribution function (CDF) of the ex-

ponential distribution with rate constant λ. When expressed in this form, we may

visualise t̂1ptq as the abscissa of the point at which the rightwards-shifted CDF of an

exponential distribution of rate constant λ “ jit´1pPTLIFptqq is equal to Y 1, as illus-

trated in figure 5.3. As time t increases, the rate constant of the exponential distribu-

tion may change while the outcome of Y 1 remains constant, and so the changing rate

constant has the effect of horizontally sliding the point at which the CDF equals Y 1.

Initially (i.e., at the moment t0 of threshold crossing), this point of intersection is in

the future (i.e., t̂1ptq ą t, where t “ t0). However, as time advances, t shall eventually

overtake t̂1ptq, either by the forward-progression of t, or by the backwards-sliding of

the point of intersection. The moment at which this happens is a fixed point of t̂1,

and is thus, by (5.8), the moment t1 at which the action potential initiation period

ends.

Empirically, when responding to a single, brief (ă„100 ms) stimulus delivered at

a level sufficient to evoke a response with probability p, the TLIF neuron generates

values of t1 with a standard deviation close to jitppq, while also ensuring that any

stimulus current occurring after t1 has no effect on the value of t1.

Generation of tspk

After the action potential initiation period ends at time t1, the TLIF neuron gen-

erates tspk, modelling the time of action potential observation, taking into account

the delay associated with axonal conductance. The time tspk is generated so that,

across repeated trials to the same stimulus, the delay between t0 and tspk is normally

distributed with mean and standard deviation given by latppq and jitppq, respectively,

where p is the probability that the membrane potential exceeds threshold during the

interval rt0, t1s. Formally,

tspk “ t0 `X jitppq ` latppq, (5.10)

where p “ PTLIFpt1q and X is a standard normal random variable.

Relationships between model variables

To summarise the flow of information in the TLIF neuron, Figure 5.4 shows how the

different model parameters, variables, and functions are related to one another. The

input to the model is the current signal I and the final output is the time of action
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Figure 5.4: Data dependency in the TLIF neuron. The entities are the functions,

variables, and parameters of the model. Each entity points to those on which its

value depends. Boxed entities with sharp edges are model variables and boxed entities

with rounded edges are functions. The unboxed entities X, Y , and Z are random

variables. The other unboxed entities are model parameters. The random variables X

and Z have standard normal distributions. The random variable Y has an exponential

distribution.

potential observation, tspk.

Model response properties

The TLIF neuron responds to a stimulus with the same probability as the SLIF neuron:

upon a threshold crossing, both models are guaranteed to emit a spike. Thus, the

input-output and strength-duration functions of the SLIF neuron are preserved in

the TLIF neuron, without the need to change any of the SLIF neuron’s parameters.

However, the time tspk of the spiking in the TLIF neuron is changed so as to better

reflect the latencies observed empirically in the ANF.
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Figure 5.5: The TLIF neuron reproduces the temporal response statistics of the ANF

and their dependence on stimulus level. Plotted are the mean latency (solid line, plot

A) and jitter (solid line, plot B) of the TLIF neuron’s responses to a monophasic

stimulus (40 µs duration) delivered at levels spanning the neuron’s dynamic range.

The mean latency and jitter data used in Figure 5.1 are also plotted (open circles;

Miller et al., 1999b).



Miller et al. (1999b) recorded the mean latency and jitter of the responses of an

ANF to a monophasic stimulus presented at a range of stimulus levels spanning the

dynamic range of the ANF. Their results are plotted in Figure 5.5, along with the cor-

responding results from the TLIF neuron. The TLIF neuron is able to quantitatively

reproduce the mean latency and jitter of the ANF at all stimulus levels. Regardless

of stimulus level, the latency distribution of the TLIF neuron is well approximated

by a Gaussian distribution, a close approximation to that of the cat ANF (Javel and

Shepherd, 2000).

5.2.3 Summary

This section has described how I extended the SLIF neuron so as to model the action

potential initiation period of the ANF, resulting in the TLIF neuron. Stimulus current

occurring during the action potential initiation period continues to affect the latency

of the spike, although the spike’s probability is unaffected. The TLIF neuron predicts

the latency distribution with which the ANF would have responded to the stimulus by

using the probability that the membrane potential exceeds threshold during the action

potential initiation period. By doing so, the TLIF neuron is able to quantitatively

reproduce the mean and standard deviation of the latency of the ANF’s response to a

monophasic stimulus, and the dependence of both on stimulus level.

5.3 Biphasic leaky integrate-and-fire neuron

A subthreshold CL-BP may produce an almost arbitrarily-large transient depolari-

sation of the membrane that does not result in spiking, despite the depolarisation

exceeding the threshold above which excitation would have occurred in monophasic

stimulation (Dean and Lawrence, 1983; Reilly et al., 1985). If the membrane is mod-

elled by the SLIF neuron, then this transient depolarisation shall immediately cause a

threshold crossing, and thus a spike shall be emitted before the anodic phase may have

any effect. For this reason, the SLIF neuron is unable to reproduce how the thresholds

of CL-BPs are increased relative to monophasic thresholds, or how the magnitude of

the threshold increase depends on the IPG of the stimulus. In the TLIF neuron, a

delay occurs between threshold crossing and spiking, modelling the action potential

initiation period of the membrane. During this delay, continued stimulation may affect

the timing of the spike, but not the probability that the spike will eventual occur, and

so the TLIF neuron suffers the same shortcoming in responding to a CL-BP as the
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SLIF neuron. In this section, the model is further extended so as to reproduce the

effect of the anodic current on the probability of a spike being generated. By doing

so, the model is able to reproduce the statistics of the SGC’s response to a CL-BP,

without affecting how it responds to monophasic stimuli. I will refer to the final model

as the biphasic leaky integrate-and-fire (BLIF) neuron.

5.3.1 Model assumptions

The biphasic leaky integrate-and-fire (BLIF) neuron makes the same assumptions

as those made by the TLIF neuron. Further, the BLIF neuron is grounded on the

assumption that spiking may be cancelled by anodic current at any time during the

action potential initiation period, defined by the interval rt0, t1s. The ability for anodic

currents to abolish an action potential that would have otherwise been generated has

been observed experimentally in animal preparations (Tasaki, 1956; van den Honert

and Mortimer, 1979; Weitz et al., 2011).

5.3.2 Model description

The BLIF neuron is similar to the TLIF neuron: the time course of the action potential

is modelled by the same three variables: t0, t1, and tspk. The equations used to

generate the values of t1 and tspk are parallels to those used by the TLIF neuron. The

BLIF neuron differs from the TLIF neuron in that a spike may be cancelled after a

threshold crossing occurs. A spike is cancelled if sufficient anodic charge is delivered

during its associated action potential initiation period.

Generation of t1

The method by which the BLIF neuron generates the time t1 is similar to that of

the TLIF neuron. However, in the BLIF neuron, it becomes useful to set a minimum

possible duration for the action potential initiation period. To do so, a new model

parameter is introduced: ϕ. The time t1 is now given by

t1 “ maxpϕ, tq, (5.11)

where t is such that t̂1ptq “ t and t̂1 is as defined previous. Increasing has the effect

of decreasing the probability of a CL-BP evoking a spike.
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Spike cancellation

Given that a threshold crossing occurred at time t0 and the corresponding action

potential initiation period ends at time t1, the impending spike is cancelled if

ż t

t0

Ipsq ds ą 0, for any t P rt0, t1s.

That is, a spike is cancelled if the total charge delivered during the action potential

initiation period ever becomes positive (anodic). In the event of spike cancellation, the

model terminates as though no threshold crossing occurred (recovery following spike

cancellation is discussed in section 5.5.5).

Probability of spiking in the BLIF neuron

As in the TLIF neuron, the BLIF neuron must predict the probability of the stimulus

evoking an action potential in the real ANF to infer the latency distribution with

which to respond. In the BLIF neuron, this is given by PBLIFpt1q, the probability

that the membrane potential exceeds threshold during the interval rt0, t1s and that

the resulting spike is not subsequently cancelled.

Let TQ0
ptq denote the time at which the charge delivered by the stimulus since

time t first becomes positive (anodic), defined as the smallest value of s for which
şs

t
Ipuq du ă 0, or8 if no such value for s exists. Given that a threshold crossing occurs

at time t0, the associated spike will be cancelled if TQ0pt0q ă t1. If Pt1pt; t0q denotes

the probability that t1 occurs before time t, given the time of threshold crossing t0,

then the probability of spike survival (i.e., no cancellation) is given by Pt1pTQ0pt0q; t0q.

In a single simulation, t0 has a fixed value. However, across repeated simulations to

the same stimulus, t0 has a degree of variability which affects the probability of spike

cancellation. Therefore, the probability derived by Pt1 must be integrated across time

to account for the variability of t0. Formally,

PBLIFptq “

ż t

0

P 1TLIFpsqPt1pTQ0
psq; sq ds, (5.12)

where P 1TLIF denotes the derivative of PTLIF. The general definition of Pt1 is given by

Pt1pt; t0q “

ż t

t0

λpsq expppt0 ´ sqλpsqq ds`

ż t

t0

λ1psqps´ t0q expppt0 ´ sqλpsqq ds,

where λpsq “ 1{ jitpsq and λ1 is the derivative of λ. For computational efficiency, it is

beneficial to find a closed form expression for Pt1 . This is made possible by noting that
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λ is monotonically increasing, which allows for the simpler, computationally efficient

formulation,

Pt1pt; sq “

$

’

’

’

&

’

’

’

%

1´ exp

¨

˝´
t´ s´ ϕ

jitpPTLIFptqq

˛

‚, t ě s` ϕ

0, t ă s` ϕ.

Generation of tspk

The time tspk at which the spike is observed by the recording electrode in the BLIF

neuron is given by

tspk “ t0 `X jitppq ` latppq, (5.13)

where p “ PBLIFpt1q and X is a random variable with a standard (unit variance,

zero mean) normal distribution. The definition of tspk given by (5.13) is identical to

the corresponding equation (5.10) in the TLIF neuron, but with the function PTLIF

replaced by the function PBLIF.

Relationships between model variables

Figure 5.6 summarises the flow of information in the BLIF neuron. As in the TLIF

neuron, the input to the model is the current signal I. However, unlike the TLIF neu-

ron, the BLIF neuron has two outputs: the decision as to whether or not cancellation

occurs and the time of action potential observation, tspk. In the case of cancellation,

no value is generated for tspk.

The relationship between V ptq and the stimulus current signal Iptq, the random

variable θ, the time t0 of threshold crossing, the time TQ0
pt0q at which the charge

injected since t0 first becomes negative, and spike cancellation, is visualised in Figure

5.7. The figure shows how there exists an interval, rt0, TQ0
pt0qs, during which t1 must

lie if the spike resulting from a threshold crossing at time t0 is not to be cancelled,

and that the duration of this interval depends on the stimulus signal Iptq.

5.3.3 Model response properties

In the absence of anodic current, the probability of a stimulus evoking a spike in the

BLIF neuron is unchanged from that in the TLIF neuron (without any anodic current,

there is no possibility of a spike being cancelled). Similarly, the latency distribution of

the BLIF neuron’s response to a monophasic stimulus is negligibly different to that of

the TLIF neuron’s. Therefore, with the exception of ϕ, which is specific to the BLIF
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Figure 5.6: Data dependency in the BLIF neuron. The notation is as in Figure 5.4.

Entities which are present in the BLIF neuron but not the TLIF neuron are shaded

grey. If the impending spike is to be cancelled, then no value is generated for tspk.

Comparing this diagram of the BLIF neuron against that of the TLIF neuron in Figure

5.4 demonstrates the similarities between the two models.



123

θ
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V(t)

I(t)

t0 TQ0
(t0)

Spike Emitted
Spike Cancelled

Figure 5.7: Visualising the relationship between threshold crossing, charge injection,

and spike cancellation in the BLIF neuron. The BLIF neuron is stimulated by a

stimulus signal Iptq and the resulting time-course of V ptq is plotted. The distribution of

the random variable θ is shown (opposing vertical arrows labelled θ), and an example

outcome is shown (horizontal grey line). The point t0 of threshold crossing is indicated

(leftmost vertical dash-dotted line), as is the point TQ0
pt0q at which the stimulus charge

delivered since t0 first falls below zero (rightmost vertical dash-dotted line). If t1 lies

within the shaded box on the timeline (labelled “Spike Emitted”), then a spike shall

be emitted. However, if t1 lies at some point later, then the impending spike shall be

cancelled (i.e., not emitted). The shaded regions in the stimulus waveform indicated

areas of equal but opposite charge.



neuron, the parametrisation of the BLIF neuron remains as it was in the TLIF neuron

and the BLIF neuron preserves the fitting of the input-output, strength-duration,

latency-level, and jitter-level functions, in all cases reproducing empirically-derived

data from cat SGCs.

Monophasic response latency

If the stimulus signal I contains only excitatory, cathodic current and ϕ “ 0, then the

equations defining t1 and tspk in the BLIF neuron become equivalent to those in the

TLIF neuron. In the case of t1, this is a trivial consequence of (5.11). In the case

of tspk, the definitions in the TLIF and BLIF neurons—given by (5.10) and (5.13),

respectively—are equivalent if PBLIF “ PTLIF. If I is a monophasic stimulus, then

TQ0
ptq “ 8 for all t, and so Pt1pTQ0

ptq; tq “ 1 for all t. Equation (5.12) thus becomes

PBLIFptq “

ż t

0

P 1TLIFpsq ds “ PTLIFptq,

and so the definitions of tspk in the TLIF and BLIF neurons are equivalent if I is a

monophasic stimulus.

Effect of ϕ on the latency distribution of the response to a monophasic

stimulus

This section demonstrates that even when ϕ ą 0, its effect on the final latency dis-

tribution (i.e., the distribution of tspk) is negligible. The latency of the response of

the BLIF neuron to a monophasic stimulus of 40 µs duration was compared across

two values of ϕ, one arbitrarily small (ϕ “ 1 µs, resulting in a monophasic/biphasic

threshold difference of 0.95 dB) and one arbitrarily large (ϕ “ 60 µs, resulting in a

monophasic/biphasic threshold difference of 11.7 dB). For both values of ϕ, the mean

latency and jitter were recorded across 5 stimulus levels, evoking spikes with probabil-

ities between 0.05 and 0.95. The differences in mean latency and jitter across values

of ϕ were noted for each stimulus level. The maximum difference in mean latency

was 3.3 µs (2.6 x standard error) and the maximum difference in jitter was 1.5 µs (1.4

x standard error). It may therefore be concluded that the effect of ϕ on the latency

distribution of the response is negligible for values of ϕ within the range tested. Values

beyond this range result in unrealistic monophasic/biphasic threshold differences, and

so need not be considered.
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Figure 5.8: Plot showing how the threshold of a CL-BP depends on the model param-

eter ϕ in the BLIF neuron. The ordinate is given in dB relative to the threshold of a

monophasic stimulus of 40 µs duration. The curve is generated for a biphasic stimulus

of 40 µs/phase duration and 0 µs IPG.

Effect of ϕ on biphasic threshold

In the ANF, the threshold of a CL-BP is elevated relative to that of an equivalent

monophasic stimulus (Miller et al., 2001b; Shepherd and Javel, 1999). Increasing the

ϕ parameter of the BLIF neuron increases the thresholds of CL-BPs, while leaving

the thresholds of monophasic pulses unchanged. Figure 5.8 quantifies the effect of ϕ

on the biphasic/monophasic threshold difference. To understand why ϕ affects the

threshold of a biphasic stimulus, note that a spike is cancelled if t1 ą TQ0
pt0q. The

effect of ϕ is to ensure that t1 is greater than t0`ϕ, and so increasing ϕ increases the

probability that t1 ą TQ0
pt0q, thus increasing the probability of spike cancellation.

Biphasic input-output function

Figure 5.9 plots input-output functions of the BLIF neuron and a cat ANF (Shepherd

and Javel, 1999) in response to a CL-BP presented at various IPGs. In both the model

and the ANF, increasing the IPG of the stimulus has the effect of shifting the entire

curve towards lower thresholds. The model parameter ϕ was chosen so as to make the

curves of the model and the data overlap at their means when the IPG is 0.

The input-output functions shown in Figure 5.9 are summarised in Figure 5.10 by

plotting the threshold (Figure 5.10A) and RS (Figure 5.10B) with respect to IPG. The
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Figure 5.9: Input-output functions for the BLIF neuron (plot A) and a cat ANF

(plot B; Shepherd and Javel, 1999), both stimulated with a CL-BP of 100 µs/phase

duration at various IPGs (dotted line: 200 µs; dash-dotted line: 80 µs; dashed

line: 20 µs; solid line: 0 µs). The means of the input-output functions of the cat

ANF are well predicted by the BLIF neuron (see Figure 5.10A), although the slopes

are steeper in the BLIF neuron than in the cat ANF (see Figure 5.10B). Stimulus levels

are given in dB relative to the threshold of a 100 µs duration monophasic stimulus

(the threshold for the ANF is projected from the available data; see Figure 5.10A).



thresholds of the ANF are quantitatively predicted by the model at all IPGs. The RS

of the model approaches its monophasic value of 5% as the IPG increases beyond „100

µs. However, the ANF has an average RS of 7%, with no apparent dependence on IPG.

This is in part because the monophasic RS of the model was chosen to reproduce data

from a different neuron to that being compared presently (to the best of my knowledge,

no study has been published that contains all the data necessary to parametrise the

model using results from only a single neuron). To show that the BLIF neuron can

exhibit larger values of RS, it was re-parametrised (by changing σ) to respond to a

monophasic stimulus with a RS of 7%. The biphasic input-output functions resulting

from this new parametrisation are summarised by the dashed lines figures 5.10A and

5.10B. Changing σ did not affect the monophasic strength-duration function of the

model, or the mean latency or jitter of the model’s response to a monophasic stimulus.

Regardless of the monophasic RS, the model shows a dip in RS at short IPGs (ă „100

µs), a trend that is not present in the ANF. At its peak deviation, the RS of the model

is 4/10-ths that of the mean RS of the data.

A caveat in using the data from Shepherd and Javel (1999) is that they were

obtained with a bipolar electrode, and thus, there is no clear definition as to which

polarity of current is anodic and which is cathodic. The model presented here is

a point-neuron model that is excited only by cathodic current. The present data

was used due to lack of availability of other monopolar ANF data investigating the

effect of the IPG on the threshold of a CL-BP. To justify my use of the bipolar

data by noting that Shepherd and Javel report that both polarity orders produced

similar results with negligible (0.2 dB) changes in threshold. Further, the trends in

the data are comparable to those from other studies of single neurons (from animal

preparations and computer models) that used monopolar cathodic-leading biphasic

stimulation (Gorman and Mortimer, 1983; Hofmann et al., 2011; van den Honert and

Mortimer, 1979; Weitz et al., 2011, 2014).

Pseudo-monophasic threshold

The opposite-polarity phases of a biphasic pulse need not have equal duration for the

pulse to be charge balanced. A pseudo-monophasic stimulus has been proposed for

use by cochlear implants (e.g., Van Wieringen et al., 2008), where the duration of one

phase, typically the second, is extended relative to that of the other. The amplitude

of the extended phase is reduced to maintain charge balance. Figure 5.11A plots the

threshold of the BLIF neuron in response to a cathodic-leading pseudo-monophasic
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Figure 5.10: Plots showing how the threshold (plot A) and RS (plot B) of the BLIF

neuron (solid lines) and a cat ANF (open circles; Shepherd and Javel, 1999) depend

on the IPG of a CL-BP (100 µs/phase duration). Also plotted are the results after re-

parametrising the model to have a monophasic RS of 7% (dashed line) by using σ =

7.315 µV. Note that the cat ANF is stimulated with a bipolar electrode configuration

(see text for discussion).



stimulus of varying anodic-phase duration (APD, varying from 40 to 500 µs). The

BLIF neuron quantitatively predicts data from a cat ANF (Miller et al., 2001b) at

short APDs. However, as the APD increases beyond „200 µs, the BLIF neuron over-

predicts threshold by a maximum of 0.47 dB (APD=748 µs). This over-prediction is

small when compared to the 5 dB range in the threshold data. The threshold of the

BLIF neuron also returns to its monophasic value, however the convergence becomes

much slower than in the ANF once the APD exceeds „200 µs. At an APD of 5 ms,

the BLIF neuron’s threshold is 0.24 dB from its monophasic value.

Biphasic strength-duration function

The threshold of a biphasic stimulus also depends upon its overall duration; increas-

ing its duration—by equally increasing the duration of both its phases—decreases its

threshold. Figure 5.11B plots the strength-duration functions of the BLIF neuron and

a cat ANF (Shepherd et al., 2001), each using a CL-BP as the stimulus. The BLIF

neuron predicts the trend that increasing the phase duration decreases the threshold,

although it does not quantitatively predict the data, differing with a root-mean-square

deviation of 2.5 dB. This value is small in comparison to the range in the threshold

data (21.5 dB).

Temporal response statistics

The latency distribution of the ANF’s response to a biphasic stimulus depends on

stimulus level, with higher levels incurring less jitter (Javel and Shepherd, 2000). An

underlying assumption of the TLIF neuron is that the latency distribution of the

response is well predicted by the firing probability alone, regardless of the shape of

the current pulse waveform. Figure 5.12 shows that the temporal statistics (mean

latency, Figure 5.12A, and jitter, Figure 5.12B) of the BLIF neuron’s response to

a monophasic stimulus and CL-BPs of arbitrary shape are well predicted by firing

probability, consistent with the assumption of the TLIF neuron.

5.3.4 Summary

The BLIF neuron responds to a CL-BP with an increased threshold relative to that

of a monophasic pulse. The extent of this increase in threshold can be controlled by

setting the ϕ parameter of the model. The effect of ϕ on the monophasic response

statistics is negligible. The BLIF neuron quantitatively predicts the thresholds of a

cat ANF responding to a biphasic stimulus across a range of IPGs between 0 and 200
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Figure 5.11: The dependence of threshold on phase duration under cathodic-leading

biphasic stimulation. Plot A: the effect on threshold of increasing the anodic-phase

duration in the BLIF neuron (solid line) and an ANF (open circles; Miller et al.,

2001b). The stimulus is an asymmetric, CL-BP (40 µs leading-phase duration) of

varying anodic-phase duration. The amplitude of the anodic phase is adjusted to

maintain charge balance. Plot B: strength-duration functions of the BLIF neuron

(solid line) and a cat ANF (open circles; Shepherd et al., 2001) when stimulated

with a symmetric CL-BP (0 s IPG).
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Figure 5.12: The temporal response statistics of the BLIF neuron are well predicted

by firing probability, regardless of the stimulus pulse shape. Plotted are the mean

latency (plot A) and jitter (plot B) of the BLIF neuron’s response to a CL-BP of

various configurations (solid lines: 40 µs/phase duration, 0 µs IPG; dashed lines:

20 µs/phase duration, 50 µs IPG; dash-dotted lines: 80 µs/phase duration, 40 µs

IPG) and a monophasic stimulus (40 µs duration; dotted lines). Also plotted are

the monophasic data (40 µs pulse duration) with which the model was parametrised

(open circles; Miller et al., 1999b).



µs. The BLIF neuron correctly predicts that the threshold approaches its asymptote

as the IPG extends beyond „200 µs. Also predicted is the effect on threshold of

increasing the duration of both phases of a CL-BP. Further, the effect on threshold

of increasing the duration of only the second phase (while adjusting its amplitude to

maintain charge balance) is also predicted at durations below „200 µs.

Consistent with the assumptions of the TLIF neuron, the latency distribution of

the BLIF neuron’s response to a stimulus is well predicted by the probability of the

stimulus evoking a spike, regardless of its shape. If the stimulus is monophasic, then

the BLIF neuron maintains the input-output and strength-duration functions of the

SLIF neuron.

5.4 Summary of model parameters and variables

The parametrisation of the SLIF, TLIF, and BLIF neurons is summarised in the tables

below. Other than as specified in Figure 5.10, the given values were used to generate

all the figures in this paper. The variables of the models are also summarised.

Parameters common to all models

Parameter Value Notes

µ 104.5 µV
Mean of θ. Parametrised to reproduce cat ANF data

from Miller et al. (1999b).

σ 4.595 µV
Stardand deviation of θ. Parametrised to reproduce

cat ANF data from Miller et al. (1999b).

τ 248.4 µs

Membrane time constant. Parametrised to reproduce

cat ANF data from van den Honert and Stypulkowski

(1984).
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Parameters common to the TLIF and BLIF neurons

Parameter Value Notes

lat

α1 “ 109 µV

α2 “ 5.14 µV

α3 “ 368 µs

α4 “ 472 µs

Mean delay between the start of the action potential

initiation period and spike observation, predicted from

firing probability p as

latppq “
α3

1` exppα-1
2 pµ` σΦ-1ppq ´ α1qq

` α4,

where Φ-1 is the quantile function of the standard nor-

mal distribution (see Figure 5.2A). Parametrised to

reproduced cat ANF data from Miller et al. (1999b).

jit

α1 “ 109 µV

α2 “ 3.24 µV

α3 “ 136 µs

Standard deviation of the duration of the action po-

tential initiation period, predicted from firing proba-

bility p as

jitppq “
α3

1` exppα-1
2 pµ` σΦ-1ppq ´ α1qq

where Φ-1 is the quantile function of the standard nor-

mal distribution (see Figure 5.2B. Parametrised to re-

produced cat ANF data from Miller et al. (1999b).

Parameters unique to the BLIF neuron

Parameter Value Notes

ϕ 37.81 µs

The minimum delay between t0 and t1. Parametrised

to reproduce cat ANF data from Shepherd and Javel

(1999).
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Variables

Variable Notes

V Membrane potential.

θ
Normally-distributed threshold potential against

which V is compared.

t0
Time of threshold crossing. The time at which the

action potential initiation period begins.

t1
The time at which the action potential initiation pe-

riod ends.

tspk The time of action potential observation.

5.5 Discussion

In this chapter, I have described two novel models, the TLIF and BLIF neurons,

both of which extend the SLIF neuron. The TLIF neuron extends the SLIF neuron

to reproduce the temporal statistics of the ANF’s response to a monophasic stimulus.

The BLIF neuron extends the TLIF neuron to realistically reproduce how the threshold

of its response to a monophasic stimulus is affected by the introduction of a trailing,

anodic phase. An important property of both the TLIF and the BLIF neurons is that

they do not affect the already-fitted response statistics of the models that they extend.

Thus, the TLIF neuron maintains the input-output and strength duration functions

of the SLIF neuron, and the BLIF neuron responds to a monophasic stimulus with

the same latency distribution and firing probability as the TLIF neuron. Further, the

response of the BLIF neuron to a biphasic stimulus has the same latency distribution as

that of the TLIF neuron’s response to a monophasic stimulus of equal firing probability.

These properties of the TLIF and BLIF neurons makes them simple to parametrise so

as to reproduce ANF data.

5.5.1 Relating the BLIF neuron to the pV,mq-reduced HH model

The spike cancellation of the BLIF neuron can be compared against the behaviour

of the pV,mq-reduced HH model (henceforth referred to as the reduced HH model for

brevity). The analysis in Section 3.3.1 showed that, after an instantaneous depolari-
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Figure 5.13: The time-course of the cancellation charge Qcncl following an instanta-

neous injection of cathodic charge that moves the phase point of the reduced HH model

from the resting node to beyond the separatrix. Curves for three different charge lev-

els (1.05x, 1.25x, and 1.5x threshold charge) are plotted (black lines). Also plotted

(grey lines) are the time-courses of the cancellation charge in the BLIF neuron under

identical conditions. The point at which the cancellation charge becomes infinite in the

BLIF neuron is stochastic; mean values are used. The BLIF neuron is parametrised

so as to produce similar mean latencies to those of the reduced HH model.



sation, the distance of the phase point from the separatrix in the reduced HH model

remains approximately constant for an extended period of time. The analysis focused

on the case where the instantaneous depolarisation was subthreshold, so that it could

be compared against a similar analysis of the LIF neuron. However, the same qual-

itative behaviour also occurs following suprathreshold depolarisations: regardless of

whether the phase point is subthreshold or suprathreshold following an instantaneous

depolarisation, the phase point follows a trajectory approximately parallel to the sep-

aratrix until reaching the vicinity of the V and m nullclines (see Figure 3.1), and

thus the phase point stays close to the separatrix for a prolonged time following the

charge injection. To formalise this, let us refer to the amount of anodic charge that

will move the phase point from the suprathreshold region back to the separatrix as

the cancellation charge, or Qcncl (we shall assume that the charge is delivered in a

short enough period of time to be considered instantaneous), and let us suppose that

an instantaneous cathodic injection of Qthr charge is needed to move the phase point

from resting to the separatrix. Then, immediately following an instantaneous injection

of Qstim cathodic charge, we have

Qcncl “ Qstim ´Qthr. (5.14)

As time progresses, the cancellation charge Qcncl increases, as shown in Figure 5.13

(black lines), however, as predicted, this increase in Qcncl occurs slowly, taking 197,

249, and 314 µs to double in value after an instantaneous injection of 1.05x, 1.25x,

and 1.5x threshold charge, respectively.

The BLIF neuron also has a cancellation charge. In the BLIF neuron, a spike is

cancelled if the charge injected since threshold crossing falls below zero before the end

of the action potential initiation period at time t1. Therefore, the cancellation charge

of the BLIF neuron is as in (5.14). Unlike in the reduced HH model, the cancellation

charge of the BLIF neuron does not vary with time, but cancellation can only occur

during the action potential initiation period. This may equivalently be understood

to mean that after the end of the action potential initiation period, the cancellation

charge of the BLIF neuron becomes infinite. The BLIF neuron is thus approximating

the cancellation-charge curve of the reduced HH model (black lines in Figure 5.13)

with two straight-line segments (grey lines).

The slow growth of the cancellation charge in the reduced HH model leaves it

vulnerable during the early stages of excitation, with anodic stimulation easily able

to abolish the excitation process. This initial vulnerability in excitation has previ-
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ously been observed in real neurons by van den Honert and Mortimer (1979), who

described a “vulnerable period” of approximately 100 µs during which an impending

action potential could be abolished prior to its occurrence by anodic stimulation. The

vulnerable period has since been used in other electrophysiological studies to explain

why biphasic pulses are less efficient in exciting the neuron compared to monophasic

pulses (Shepherd and Javel, 1999; Middlebrooks, 2004; Rubinstein et al., 2001; McKay

and Henshall, 2003).

5.5.2 Latency distribution’s dependence on firing probability

The assumption underlying both the TLIF and BLIF neurons is that the mean latency

distribution of the response to a stimulus is well predicted by probability of that

stimulus evoking an action potential. If this assumption is correct, then the latency

and jitter of the responses to two distinct stimuli should be the same, provided the

stimuli are all presented at threshold level. To assess the validity of this assumption, I

compared the mean latency and jitter of cat ANF responses Miller et al. (2001b) to a

monophasic and a cathodic-leading biphasic stimulus. The across-fibre average of the

mean latency of the response to the biphasic stimulus was 88% that of the response to

the monophasic stimulus; that the biphasic stimulus evoked shorter latencies than the

monophasic stimulus was statistically significant (p ă 0.05). The was no statistically

significant difference in the jitter of the monophasic and biphasic responses. The

difference in threshold of the monophasic stimulus and the biphasic stimulus was 4

dB, or 3.5 times the monophasic dynamic range (measured as the increase in stimulus

level required to increase the probability of firing from 10% to 90%).

From this analysis, the assumption that the latency distribution depends only on

the firing probability of a stimulus, and not its shape, is only partially valid. While

the variance of the distribution appears unaffected by pulse shape, its mean is shifted

when moving from a monophasic stimulus to a biphasic stimulus. However, the extent

of the shift, while statistically significant, is small enough for the assumption to be a

useful approximation of reality.

5.5.3 Comparison to previous models

The TLIF and BLIF neurons are extensions to the well-studied leaky integrate and fire

(LIF) neuron, which has formed the basis of many models of the electrically stimulated

ANF (e.g., Chen and Zhang, 2007; Chen, 2012; Goldwyn et al., 2012; Hamacher, 2004;

Stocks et al., 2002). Of these models, only the Hamacher model reproduces both the
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mean latency and jitter of the ANF’s response, and their dependence on stimulus level.

However, in the Hamacher model, the stimulus is half-wave rectified (Fredelake and

Hohmann, 2012), and thus, the model cannot reproduce the effect of the anodic phase

on the threshold of a CL-BP.

The TLIF neuron bears similarities to the Hamacher model. Both models use

the probability of a spike being emitted to derive a latency distribution with which

to respond. However, the TLIF neuron and the Hamacher model differ in how they

predict that probability. The TLIF neuron uses the probability of the membrane po-

tential exceeding threshold at any time during the action potential initiation period.

The Hamacher model, however, uses the membrane potential at the single, discrete

moment of pulse cessation. This is problem if a pulse is delivered in the time between

threshold crossing and spike emission (i.e., during what I refer to as “the action poten-

tial initiation period” in my model), as the time of spike emission will not be affected

by this further stimulation. For this reason, I was motivated to develop a model which

would allow the timing of a spike to be continuously affected by stimulation, up until

the moment it is emitted.

The Goldwyn model (already discussed in section 2.4.4) may be parametrised to

quantitatively reproduce the response statistics of a biphasic stimulus of arbitrary

shape. However, from empirical analysis, I found that once the model has been

parametrised so as to reproduce the threshold of a given CL-BP, changing the IPG of

the pulse has little effect on its threshold, other than at very short values (ă„30 µs).

This is in contrast to the ANF, which is sensitive to changes in IPG up to „250 µs—a

trend that the BLIF neuron is able to reproduce.

5.5.4 Current integration

The BLIF neuron is based on the assumption that a delay exists between the initial

depolarisation of the ANF and the moment at which the action potential is generated.

During this delay, it is assumed that the action potential may be cancelled by anodic

current. By this means, the biphasic threshold is increased relative to the monophasic

threshold. This assumption is consistent with a study by van den Honert and Mor-

timer (1979), who propose that there exists a delay, the vulnerable period, between the

depolarisation of the neural membrane and the opening of the sodium ion channels.

During the vulnerable period, the activation of the sodium ion channels may be pre-

vented by anodic current, resulting in the abolishment of the action potential. This

view has been reaffirmed with reference to the cat ANF by Miller et al. (2001b), who
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propose that the continued integration of the current during the vulnerable period

results in the increased threshold of biphasic stimuli. This is consistent with the BLIF

neuron integrating the stimulus current during the action potential initiation period

and cancelling the spike if the net charge is negative.

5.5.5 Recovery after spiking and cancellation

In this chapter, I have only considered the response of the neuron to a single, brief,

stimulus pulse. However, for the presented models to be useful, they must be capable

of responding to trains of pulses, such as those generated by cochlear implants. In

this section, I very briefly sketch how both the TLIF and BLIF neurons might be

reformulated so as to recover after threshold crossing or spike cancellation. However,

a full implementation of recovery has been beyond the scope of my PhD.

Recovery after a spiking at time t may be implemented by terminating the existing

simulation and initiating a new simulation with a truncated stimulus signal, I 1, where

I 1psq “

$

’

&

’

%

Ipsq if s ě t

0 if s ă t.

To implement refractoriness, the threshold potential θ of the model may be scaled by

a function of the time since last spiking, as previously described by Goldwyn et al.

(2012) and Hamacher (2004).

Truncating the stimulus signal may also be used to recover from spike cancellation,

so that upon cancellation, the model is re-run with the truncated and modified signal

I 1, where

I 1psq “

$

’

&

’

%

Ipsq ` Cpθ ´ V qδps´ tq if s ě t

0 if s ă t,

where δ is the Dirac delta function and θ is the new (i.e., after the re-run) realisation

of the threshold potential θ. The extra term added to the original stimulus signal

I causes V to be exactly equal to θ at the moment after spike cancellation. This

term is added under the assumption that it requires only an infinitely small amount

of cathodic current to initiate an action potential immediately after cancellation.

139



Chapter 6

Effects of phase order in

biphasic stimulation

Chapters 3 and 4 analysed how different pulse shapes in monophasic and biphasic stim-

ulation affect the excitation process in the HH model and its stochastic and reduced

derivatives. It was found that the phase order of a biphasic stimulus affected the quali-

tative description of excitation arising from analysis of the pV,mq phase paths in these

models. This result motivated further investigation into the effect of phase order. This

chapter presents two distinct theories of how excitation occurs under biphasic stimu-

lation, each theory relating to stimulation by a single phase order. These theories are

then tested in their ability to predict excitation in the context of the HH model and

its stochastic derivative. The chapter closes by showing that phase order affects the

interactions between consecutive biphasic in pulse train stimulation. This has direct

relevance to cochlear implants, the vast majority of which use trains of biphasic pulses

to stimulate the SGCs.

6.1 Threshold and accommodation

To investigate whether the threshold level of a biphasic pulse is affected by the phase

order of the pulse, the HH model was stimulated with individual biphasic pulses of both

polarity orders at various IPGs. The threshold-IPG curves of anodic- and cathodic-

leading biphasic stimulation are plotted in figures 6.1A and 6.1B, respectively (solid

lines). Both curves are qualitatively similar at low IPGs, where the threshold is initially

elevated by about 10 dB relative to its monophasic value when the IPG is 0 µs, and
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decays approximately exponentially thereafter with increasing IPG. In the case of

cathodic-leading stimulation, the threshold decays to its monophasic value, reaching

a steady state as the IPG increases beyond „350 µs. In the case of anodic-leading

stimulation, however, the threshold falls below its monophasic value at an IPG of

„200 µs, reaching a minimum value of 3 dB below its monophasic value at 500 µs (the

greatest IPG for which thresholds were measured).

That the threshold level of an AL-BP may fall below the monophasic threshold

seems surprising, given that the two phases act against one another in their effect on

the membrane potential. I hypothesised that this occurs due to the accommodative

behaviour of the membrane, which is due to the h and n variables in the HH model

(see Section 2.2.2). This is as the threshold potential of the membrane is affected

by the membrane’s potential, with hyperpolarisations acting to reduce it, and so the

leading, hyperpolarising phase of an AL-BP may therefore be expected to reduce the

membrane’s threshold potential prior to the onset of the cathodic phase, which then

has to depolarise the membrane less in order to evoke excitation. To test this hypoth-

esis, the threshold-IPG curves of anodic- and cathodic-leading biphasic stimulation in

the pV,mq-reduced HH model (section 3.1.2) were obtained (dashed lines, figures 6.1A

and 6.1B, respectively) and compared against those of the HH model. As the reduced

HH model holds the h and n variables fixed, it may be used to explore excitation in

the absence of accommodation. Consistent with the hypothesis, the (anodic-leading)

thresholds of the reduced HH model do not fall below the model’s monophasic thresh-

old.

Accommodation has a different effect when the cathodic phase leads. When accom-

modation is present, the decay of the threshold to its monophasic value with increasing

IPG occurs at a faster rate than when accommodation is removed. This is because

accommodation brings forward the time of the action potential, even in the simplest

case of an instantaneous delivery of cathodic charge. When instantaneously depo-

larised, the membrane continues to ’accommodate’ to the depolarisation, even while

the depolarisation becomes self-sustaining, potentially undoing what would have oth-

erwise resulted in an action potential (this may be viewed in terms of the dynamic

saddle node, discussed in section 3.3.2). For a given stimulus to overcome these effects

of accommodation, it must be delivered at a higher level than would be required in

the absence of accommodation. By delivering a stimulus at a higher level, the rate

at which sodium activation occurs is increased, and so the action potential is brought

forward in time. In the case of a CL-BP, this means that the state of sodium ac-
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Figure 6.1: Biphasic threshold-IPG curves of the HH model (solid lines) and the

reduced HH model (dashed lines) when the anodic phase is leading (plot A) and

when the cathodic phase is leading (plot B). In all cases, the phase duration of the

stimulus is 40 µs/phase. The ordinate units of a given curve are decibels relative to

the monophasic threshold (cathodic current, 40 µs pulse duration) of the model from

which the curve was obtained. At all IPGs, the threshold of a CL-BP is greater than

that of an equivalent monophasic pulse. At IPGs below „200 µs, the threshold of an

AL-BP is also greater than that of an equivalent monophasic pulse, although at IPGs

above „200 µs, it is less, but only in the HH model, consistent with the hypothesis that

the reduction of threshold below the monophasic value is due to the accommodative

behaviour that occurs in the HH model but not in the reduced HH model.
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Figure 6.2: Biphasic latency-IPG curves of the HH model (solid lines) and the re-

duced HH model (dashed lines) when the anodic phase is leading (plot A) and when

the cathodic phase is leading (plot B). In all cases, the phase duration of the stimulus

is 40 µs/phase. The latency is defined as the time since stimulus onset at which the

m variable of the model exceeded 0.5 (arbitrarily chosen as a value exceeded in both

models only during excitation). Regardless of phase order, the latency of a given pulse

is lower in the HH model, consistent with the hypothesis that accommodation lowers

latency.



tivation is more developed at the time of the trailing anodic phase’s delivery when

the pulse is delivered at threshold level in the presence of accommodation, compared

to when delivered at threshold level in the absence of accommodation. As the pre-

vious section demonstrated, bringing forward the time of sodium activation is the

mechanism by which increasing the level of a CL-BP increases its ability to evoke ex-

citation. Therefore, since accommodation has the same effect (i.e., in bringing forward

the time of sodium activation), the level of a given pulse may be reduced while still

being sufficient to evoke excitation, if accommodation is present. To demonstrate that

accommodation brings forward the time of the action potential, the latencies of just-

above threshold pulses in the HH and reduced HH models are plotted in figures 6.2A

and 6.2B, respectively. In both cases, the latency of the reduced HH model is „400

to „600 µs greater than the latency of the HH model for IPGs in the range of 0 to

500 µs. To demonstrate that accommodation increases the threshold of short-duration

monophasic pulses, Figure 6.3 plots the thresholds of monophasic pulses in the HH

and reduced HH models. It also re-plots the threshold-IPG curves of figures 6.1A and

6.1B, expressing the thresholds of both models as decibels relative to the monophasic

threshold of the HH model (noting that previously the thresholds of each model were

plotted in decibels relative to the respective model’s own monophasic threshold). It

shows that in all cases, the threshold of a given pulse is higher in the HH model than

in the reduced HH model.

6.1.1 Leaky integration with an accommodation process qual-

itatively reproduces trends in threshold under anodic-

leading biphasic stimulation

The previous section revealed an interesting phenomenon in the HH model: for a range

of IPGs (starting at 200 µs; the upper limit was not investigated), the threshold of

an AL-BP is lower than the threshold of an equivalent1 cathodic monophasic pulse.

This phenomenon is not reproduced by the LIF or BLIF neurons, nor is it reproduced

by other notable phenomenological models, including those of Bruce et al. (1999b),

Hamacher (2004), and Goldwyn et al. (2012). This section investigates whether adding

a simple accommodative process to the LIF neuron renders it capable of producing

the same phenomenon of the threshold of an AL-BP falling below the monophasic

threshold at an IPG of „200 µs.

1That is, so that the duration of the cathodic monophasic pulse is equal to the duration of the
cathodic phase of the AL-BP.
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Figure 6.3: Biphasic threshold-IPG curves (40 µs/phase) of the HH model (grey

coloured lines) and the reduced HH model (black line coloured lines) when the

anodic phase is leading (dash styled lines) and when the cathodic phase is lead-

ing (solid styled lines). Data is re-plotted from 6.1, but with different ordinate

units (decibels relative to the threshold of a 40 µs cathodic pulse in the HH model).

Monophasic thresholds (40 µs duration, cathodic current) of both models are also

plotted (dash-dotted lines). For any given pulse, the threshold is higher in the HH

model than in the reduced HH model.



The Hill model is equivalent to a LIF neuron with a dynamic, accommodating

threshold. It represents perhaps the simplest accommodating spiking-neuron model,

and the dynamics of its dynamic threshold may be incorporated into other more com-

plex models, including the BLIF neuron. The model itself is described fully in Section

2.2.2. To test whether the Hill model reproduces the reduced-threshold phenomenon

observed in the HH model, the anodic-leading threshold-IPG curves of the two models

were compared. Further, to investigate how the simplified spiking dynamics of the LIF

neuron affects how it responds to AL-BPs, its threshold-IPG curves were compared

against those of the pV,mq-reduced HH model (section 3.1.2; for brevity, henceforth

referred to as the reduced model). The reduced model does not accommodate to depo-

larisations, and so if the thresholds of the LIF neuron differ from those of the reduced

model, then it is due to the LIF neuron’s simplified spiking dynamics rather than due

to its lack of an accommodative process.

The results are shown in Figures 6.4A and 6.4B (plots A and B are identical other

than for the stimulus having different phase durations; see caption). The Hill model

qualitatively reproduced the curves of the HH model at both phase durations, with the

curves of both models following an exponential-like decay of threshold with increasing

IPG up to values of „500 µs, each crossing below the monophasic threshold at similar

IPGs („200 µs for a phase duration of 40 µs; „125 µs for a phase duration of 100 µs).

The thresholds of the Hill model (measured in dB relative to the monophasic threshold)

are all within 27% of those of the HH model, and, for each phase duration, the IPG at

which the threshold first becomes less than the monophasic threshold is within 20 µs

of that of the HH model. The curves of the LIF neuron qualitatively reproduced the

curves of the reduced model, reproducing the exponential-like decay of the threshold

to its monophasic value with increasing IPG. However, the curves of the LIF neuron

approach the monophasic threshold faster, reaching a steady state at an IPG of „500

µs for both phase durations, whereat the thresholds of the reduced model were still

„2.5 dB above the monophasic value at an IPG of 500 µs, reduced from „17 dB (40

µs/phase duration) and „12 dB (100 µs/phase duration) at an IPG of 0 µs. This

disparity occurs because hyperpolarisations in the reduced HH model act to decrease

m, leading to less depolarising sodium current and a slightly increased membrane time

constant, which together amplify and prolong the effect of the leading phase of the

AL-BP. These effects are not encapsulated or approximated by the dynamic threshold

of the Hill model, and so the use of the dynamic threshold is very much empirically

motivated rather than theoretically driven.
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Figure 6.4: How the threshold of an AL-BP (plot A: 40 µs/phase duration; plot B:

100 µs/phase duration) depends on IPG (in the range of 0 to 500 µs) in the HH model

(M), the reduced HH model (O), the LIF neuron (solid black line), and the Hill

model (dashed black line). The parameters of the models do not change between

plots.



This section has shown that leaky integration combined with an accommodation

process (i.e., as in the Hill model) is able to qualitatively reproduce how the threshold

of an AL-BP depends on the pulse’s phase duration and IPG, in particular, so as

to reproduce the phenomenon of the AL-BP threshold falling below the monophasic

threshold at an IPG of „200 µs. Extending the BLIF neuron so as to include an

accommodative process should enable it to realistically respond to biphasic pulses of

arbitrary shape and phase order. Demonstrating that an accommodative process is

necessary for a phenomenological model to realistically respond to AL-BPs is a con-

tribution that may have impact on existing phenomenological models that have been

developed in the context of biphasic stimulation, but that do not have accommodative

processes (e.g., Goldwyn et al., 2012; Hamacher, 2004).

6.2 Spike cancellation explains threshold when ca-

thodic phase leads

In the BLIF neuron, there are two orthogonal sources of stochasticity. The random

variable θ provides the stochastic threshold that must be exceeded by V if excitation

is to occur, and the random variable Y is the source of the temporal stochasticity of

the action potential initiation period. When stimulated by a monophasic pulse, the

probability of spiking is related only to the probability of the V variable exceeding a

threshold, and is unrelated to the temporal stochasticity of the resulting spike that is

due to Y . However, when stimulated by a near-threshold or suprathreshold CL-BP,

the probability of the V variable exceeding threshold (which is almost exactly 1) has

negligible effect on the probability of spiking, which is instead related to the probability

of a spike being emitted prior to being cancelled by anodic current, which itself is

related to Y , the delay between threshold crossing and spike emission.. The BLIF

neuron thus predicts that excitability and temporal responsiveness are intrinsically

interlinked in the case of cathodic-leading biphasic stimulation. To access the validity

of this prediction, the firing outcomes of repeated trials of the stochastic HH model

stimulated by a CL-BP were predicted on the basis of the time it took the phase point of

a given trial to reach an arbitrary benchmark state (chosen as the time at which m first

exceeds 0.085, a state that is achieved by all trials, including those wherein excitation

does not occur). An input-output function was derived from these predictions (by

means of maximum likelihood estimation of the parameters m and s of equation 2.12)

and compared against the input-output function similarly derived from the actual
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Figure 6.5: The firing outcome of a trial of the stochastic HH model is well predicted

by the time it takes the model to reach an arbitrary, predefined, sub-threshold state

(the benchmark state). The stochastic HH model was stimulated with a CL-BP (20

µs/phase duration; various IPGs) at various stimulus levels. For each trial, the time

at which the model reached the benchmark state (time-to-reach-benchmark-state) was

plotted (left column) against the membrane potential at the time of the leading

phase’s cessation (voltage@leading-phase-cessation). Each trial’s firing outcome was

predicted on the basis of its voltage@leading-phase-cessation (voltage-based prediction)

and its time-to-reach-benchmark-state (time-based prediction). From these predictions

and the actual firing outcomes (indicated by filled circles in the left column; grey

circles: trials in which no action potential was elicited; white circles: trials in which

an action potential was elicited), three input-output functions were derived and their

RSs found (right column). This paradigm was repeated four times at different IPGs

(0, 25, 50, and 100 µs; rows). The mean absolute difference in the RS derived from

the voltage-based predictions and the actual firing outcomes was 0.027 (98% of the

RS). The mean absolute difference in the RS derived from the time-based predictions

and the actual firing outcomes was 0.005 (17% of the RS).



firing outcomes (Figure 6.5). The methodology was repeated at four different IPGs:

0, 25, 50, and 100 µs. At each IPG, the empirically-derived input-output function was

closely approximated by the predicted input-output function, with the mean absolute

difference between the two equal to 0.0055, or 20% of the mean empirical relative

spread of 0.02775. These results are consistent with the theory of the BLIF neuron

that the temporal responsiveness of the membrane affects whether a CL-BP will excite

the membrane.

The time that it takes the phase point to reach the benchmark state is related

to the voltage at the cessation of the leading phase of the CL-BP (Figure 6.6A). It

seems reasonable to question, then, whether time taken to reach benchmark state is

really the predictor variable, and whether voltage at leading-phase cessation would

not better (or equally) predict the firing outcome. To providing supporting evidence

that it is the time, and not the voltage, that is the predictor, input-output functions

were derived from predictions made on the basis of the voltage at the leading phase’s

cessation (Figure 6.5, right column, dashed lines). In all cases, the voltage-derived

input-output functions under-predicted the relative spread by an order of magnitude

(with the average voltage-derived relative spread being 0.001, compared to the average

empirically-derived relative spread of 0.02775).

The time-threshold is the time below which the time to reach benchmark state must

be in order for a spike to be predicted in the methodology above. It is not an inherent

property of the membrane, and varies with the IPG of the stimulus (as demonstrated

in Figure 6.6A). In the BLIF neuron, the variable TQ0
is the time before which a spike

must be emitted in order for it not to be cancelled. Figure 6.6B shows that, when both

the time-threshold and TQ0 are normalised with respect to their values at an IPG of

500 µs, the time-threshold is well predicted by TQ0 , suggesting that the BLIF neuron

is able to capture and reproduce the way in which the excitability of the stochastic

HH model is related to the temporal properties of excitation.
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Figure 6.6: Plot A replots data (filled circles) from the left column of Figure 6.5 that

relates time-to-reach-benchmark-state to voltage@leading-phase-cessation in a single

plot. The data are well fit by a single exponential function of the form α expp´v{κq`β

(solid line). Plot B compares the time-threshold (see Figure 6.5) of the stochastic

HH model against TQ0
, the time before which a spike must be emitted in the BLIF

neuron in order for it not to be cancelled. When both the time-threshold and TQ0
are

normalised with respect to their values at an IPG of 500 µs, the time-threshold is well

predicted by TQ0 .



6.3 Interactions between consecutive pulses

In an entirely passive membrane stimulated by a symmetric biphasic pulse, the charge

delivered by the trailing phase removes the opposite-polarity charge delivered by the

leading phase. As there is a delay between the two phases, some of the charge de-

livered by the leading phase leaks prior to the delivery of opposite-polarity charge by

the trailing phase. Therefore, the trailing phase leaves a residue charge, and so if the

trailing phase is hyperpolarising, then the membrane will be hyperpolarised following

the delivery of the biphasic pulse, and vice-versa if the trailing phase is depolaris-

ing. Thus, in a train of AL-BPs, the interactions between pulses facilitate excitation,

whereas in a train of CL-BPs, the interactions between pulses inhibit excitation. This

mechanism has previously been proposed to explain thresholds in the SGCs (Miller

et al., 1997; Eddington et al., 1994). The real membrane, however, is not passive, and

so we may expect the active dynamics of not just the m dimension, but also the n and

h dimensions, to affect how the membrane responds to a pulse train. To investigate the

effect of these dimensions, the phase paths of the HH under two different stimulus con-

ditions (cathodic-leading stimulation and anodic-leading stimulation) were projected

to the pV,mq plane. In both conditions, the model was stimulated when at rest by

a pair of biphasic pulses, each of 40 µs/phase duration and 0 µs IPG, separated by

an interpulse interval of 500 µs. Both pulses were of an equal amplitude that was

chosen to be the smallest amplitude at which an action potential was not generated.

In the cathodic-leading condition, both pulses were CL-BPs, and in the anodic-leading

condition, both pulses were AL-BPs. In the analysis below, the times t1, t2, and t3,

shall refer to the time of the first pulse’s cessation, the second pulse’s onset, and the

second pulse’s cessation, respectively.

Cathodic-leading biphasic stimulation

Let us consider first the case of the CL-BP-pair (Figure 6.7). The leading phase of

the first pulse moves the phase point from its resting position at a to a higher value

in the V dimension without a large effect in the m dimension. During the IPG, the

phase point advances to higher values in the V and m dimensions. The trailing phase

of the first pulse then moves the phase point to lower values in the V dimension. At

the end of the first pulse (time t1), the phase point is at the position marked by t1.

Throughout the pulse’s delivery, the V -nullcline moved upwards, moving the resting

node downwards and leftwards while simultaneously moving the saddle node upwards

and rightwards (compare the resting V -nullcline, labelled “V-n@ rest”, with the V -
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Figure 6.7: Phase path of the HH model stimulated by a pair of CL-BPs (40 µs/phase

duration, 100 µs IPG) projected to the pV,mq phase plane (grey line). The second

pulse is delivered 500 µs after the first, and both pulses are delivered at an equal

level, chosen as the greatest level that does not result in excitation. Also plotted are

the m-nullcline (dotted line labelled “m-nullcline”), the resting V -nullcline (dotted

lines labelled “V-n@ rest”), the V -nullcline at times t1..3 (dotted lines labelled “V-

n@ t1..3”; t1 “ 180 µs, t2 “ 230 µs, t3 “ 410 µs), the resting node (a), the saddle

node (b), the locations of the phase point at the moments of each phase’s onset/offset

(black triangles), and the resting separatrix (dashed line). At the end of the first

CL-BP (labelled t1), the system is close to excitation; at the end of the second CL-BP

(labelled t3), the system is far from excitation.



nullcline at the time of the first pulse’s cessation, labelled “V-n@ t1”, and note the

moving points of intersection between the V and m nullclines). The movement of the

V -nullcline renders the model less excitable by moving the resting and saddle nodes

away from one-another. It also increases the width of the well (the region enclosed by

the nullclines; see Section 3.1.3), increasing the rate at which the phase point traverses

the trajectory towards the resting node and away from the saddle node. By the time

of the second pulse’s onset at time t2, the phase point is considerably downwards and

leftwards of its initial resting position (a). Because of the advanced saddle node, the

leading phase of the second pulse is insufficient to cause a self-sustained increase in

V ; after the phase’s cessation, the phase point does advance to higher values in the m

dimension, but only to lower values in the V dimension. Following the cessation of the

second pulse, the phase point rapidly converges upon a point that is downwards and

leftwards in comparison to the initial resting position (a). Over the course of 1 to 2

ms, the V -nullcline returns to its resting position and the phase point again converges

upon the resting node at a.

The tangible qualitative feature of the analyses is that the second pulse was far

less able to excite the model than the first pulse. It may thus be concluded that the

interactions between consecutive CL-BPs inhibit excitation at the inter-pulse interval

of 500 µs that was used here. If the second pulse were delivered sufficiently early

during the downwards-leftwards sweep of the phase point from t1, then the leading

phase of the second pulse would restore the phase point to a position far beyond the

saddle node in both the V and m dimensions, and so the interactions between pulses

would facilitate excitation instead of inhibiting it; I have not investigated how short

an inter-pulse interval would be necessary for this to occur.

To assess the validity of the hypothesis that the interactions between consecutive

CL-BPs are inhibitory, the stochastic HH model was stimulated with a train of 5 CL-

BPs delivered at a rate of 1,000 pulses per second (pps) and the cumulative spike count

with respect to time was observed across 100 trials (Figure 6.8). All the pulses in the

train have equal amplitude, phase duration (40 µs), and IPG (0 µs). Two different

amplitudes were used, individual threshold level (L1) and compound threshold level

(L2). The individual threshold is the level at which any of the individual pulses would

evoke excitation with probability 0.5 when delivered in isolation. The compound

threshold is the level at which the entire train evokes excitation (at any time) with

probability 0.5. To avoid the confounding effects of refractoriness, once an action

potential has been evoked in a given trial, the membrane potential is held at `8 for
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Figure 6.8: Responses of the HH neuron to trains of CL-BPs. The stimulus wave-

form (black lines, plot A) was delivered at two different levels, L1 and L2 (grey

dotted lines, plot A; note, they are too closely-spaced to be distinguishable from

one-another). L1 is the level at which a single pulse from the train will evoke spiking

with probability 0.5 if delivered in isolation. L2 is the level at which the entire train

will evoke spiking with probability 0.5. The membrane potential is plotted across

multiple trials in plot B (stimulus level = L1) and plot C (stimulus level = L2). The

cumulative spike count across multiple trials (normalised by the number of trials) is

plotted (plot D) for both conditions (stimulus levels L1 and L2, corresponding to the

upper and lower lines, respectively). Most spiking is in response to the first pulse.

Temporal facilitation between pulses is weak.



the remainder of the trial, so that a given trial cannot contribute more than a single

action potential. If there were no interactions between pulses, then when the train is

delivered at individual threshold level, we would expect each pulse to excite 50% of

the unexcited trials, as shown by the dotted line in plot D. By the end of the 5 pulses,

we would expect 97% of the trials to have been excited. However, what we instead

see is that the first pulse evokes excitation in 50% of the trials, but the subsequent

pulses have almost no effect, with only „60% of the trials being excited by the train’s

cessation. This demonstrates that the interactions between the consecutive pulses

cause each pulse (other than the first) to be less efficient in exciting the membrane

than had it been delivered in isolation, consistent with the hypothesis from the above

analysis.

Anodic-leading biphasic stimulation

Let us now consider the case of the AL-BP-pair (Figure 6.9). The leading phase of the

first pulse moves the phase point from its resting position at a to a lower value in the

V dimension, without a large effect in the m dimension. During the IPG, the phase

point advances to lower values in m and higher values in V . The trailing phase of the

first pulse then moves the phase point to higher values in V . At the time t1 of the

first pulse’s cessation, the phase point is at the position marked by t1. Throughout

the pulse’s delivery, the V -nullcline moves downwards (compare the V -nullcline at

its resting position, labelled “V-n@ rest, to its position at time t1, labelled “V-n@

t1”), causing the resting and saddle nodes to vanish: the only point at which the

V - and m- nullclines intersect at the moment of the first pulse’s cessation is at the

excited node at very high values in the V and m dimensions (not shown). The phase

point is thus attracted towards excitation after the first pulse’s cessation, although

the saddle node reappears at some point prior to the second pulse’s onset, preventing

excitation from being achieved (note that the V -nullcline at the time of the second

pulse’s onset, labelled “V-n@ t2”, intersects the m-nullcline, causing the reappearance

of the resting and saddle nodes). At the time t2 of the second pulse’s onset, the phase

point occupies a position just below and left of the saddle node (which has moved

upwards and rightwards of its initial position at b). The second pulse’s delivery

affects the phase point in a similar way to the first, although, due to the movement of

the V -nullclines, the phase point advances towards excitation less during the IPG of

the second pulse than it did during the IPG of the first pulse. Upon cessation of the

second pulse, the phase point is slightly advanced in both the V and m dimensions
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Figure 6.9: As in Figure 6.7, but with the two CL-BPs replaced by two AL-BPs of

equal phase duration (40 µs/phase) and IPG (100 µs). At the end of the first AL-BP

(labelled t1), the system is close to excitation; at the end of the second AL-BP (labelled

t3), the system is similarly close to excitation.



compared to its position at the end of the first pulse. It is not clear from the projected

phase paths whether the system is closer to excitation following the second pulse or the

first, however it is clear that the system is qualitatively close to excitation following

the cessation of both pulses. This may be compared to the case of cathodic-leading

stimulation, wherein the system was almost excited by the first pulse, but following

the second pulse, the system was clearly far from excitation.

To assess whether or not the stochastic HH model becomes more or less excitable

following the delivery of an AL-BP, the methodology of Figure 6.8 was repeated using

AL-BPs (Figure 6.10; all other parameters remain equal). In the case of individual

threshold level stimulation, the delivery of the first pulse causes excitation in „52% of

the trials, the third in „14% of the trials, and the fourth in „33%; the other pulses do

not themselves cause excitation in a significant number of trials. Represented as per-

centages in terms of the number of trials unexcited by previous pulses, these figures

become „52%, „29%, and 100%, respectively. If no interactions occurred between

pulses, we would expect each pulse to evoke excitation in 50% of the trials unexcited

by previous pulses. It thus seems that the first pulse inhibits the response to the

second pulse, that the second pulse partially inhibits the response to the third, but

that the third facilitates the response to the fourth. It would therefore seem like the

interactions are more complex than a given AL-BP pulse simply inhibiting or facil-

itating subsequent pulses. These interactions may potentially be explained in terms

of probability. If we suppose that each trial has a bias towards or against excitation,

then those trials that are biased towards excitation shall most likely be excited by

the first pulse, leaving mostly the trials biased against excitation for the second and

subsequent pulses. The bias of a given trial changes with time, potentially explaining

why the third pulse evoked excitation in more trials than the second pulse. Regardless

of the mechanisms behind the interactions between AL-BPs, the fact excitation occurs

in all 100 trials prior to the delivery of the fifth pulse indicates that the interactions

between AL-BPs facilitate excitation, as the probability of this (100% excitation prior

to the delivery of the fifth pulse in 100 trials) occurring by chance if there were no

interactions between pulses is very small (p “ 0.0016). This conclusion is consistent

with the results of delivering both pulses at compound threshold level, where each

pulse was individually unable to evoke excitation, yet the train of five pulses evoked

excitation in „50% of the trials. Clearly, then, at this level, the individual pulses were

in some way facilitating one another so as to achieve greater efficiency than would be

possible individually.
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Figure 6.10: As in Figure 6.8, but the stimuli are trains of AL-BPs. The cumulative

spike count of trials delivered at stimulus level L1 (plot D, top line), shows that

temporal facilitation occurs between pulses: the fourth pulse evokes spiking in 100%

of the trials where spiking had not yet occurred; if there were no temporal facilitation

then the fourth pulse would only evoke spiking in 50% of those trials. At level L2, the

first three pulses are subthreshold and almost all spiking is in response to the fourth

pulse.



6.4 Discussion

This chapter has investigated how the responses of the HH model and its stochastic

derivative are affected by the order in which the opposite polarity phases of a biphasic

stimulus are delivered. Because the HH model has been widely accepted as a good

model of the SGCs (Section 2.1.5), it is presumed that the SGCs shall be similarly

affected by phase order, although this has not been demonstrated due to difficulties

in comparing the results of this chapter against electrophysiological data.

The HH model (and its stochastic derivative) simulates a patch of membrane that

is at equipotential. As such, the results of this chapter do not necessarily describe

how the response of a whole neuron is affected by phase order (given that the neuron

is not at equipotential), but instead describe how a single patch of membrane, or

node or Ranvier (which is widely assumed to be at equipotential; e.g., see Ermentrout

and Terman, 2010, chapter 6; Keener and Sneyd, 2010, chapter 6; Bressloff, 2013,

chapter 2), is affected by phase order. The results of this chapter may therefore only

be compared against electrophysiological data obtained from a membrane that is at

equipotential, either by means of shorting the intracellular space (i.e., as done in space-

clamped preparations), or by recording from only a single node of Ranvier. So far as

I am aware, no space-clamp or single-node experiments have been conducted in SGCs

due to practical difficulties arising from their small diameters, and so the results of this

chapter cannot be directly compared against data from existing electrophysiological

studies of SGCs.

A full biophysical model of the neuron, coupled with an electric field model of the

cochlea, may potentially be used to circumvent the practical difficulties of obtaining

the electrophysiological data that is necessary in order to verify the results of this

chapter. The biophysical model of the neuron would allow the responses of a single

node to be targeted, providing data against which the results of this chapter may be

compared. The biophysical model itself must then be verified, but in this case, the

responses of the model may be directly compared against the responses of SGCs.
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Chapter 7

Discussion

In this thesis, I developed a novel phenomenological model of the electrical stim-

ulation of the SGC, I investigated how monophasic and biphasic pulses excite the

membrane in the HH model and its reduced and stochastic variants, and I developed

novel methodologies in order to interpret and analyse the effects of the phase order

of biphasic pulses. Further, in the cases where existing methodologies were applied

(e.g., phase plane analysis), they were applied in contexts where they have not been

previously (e.g., in understanding the effects of phase order in biphasic stimulation),

and they have led to novel results (e.g., spike cancellation in the BLIF neuron). A

main contribution of the thesis has been to investigate how anodic current may cancel

an impending action potential in the HH model (referred to as spike cancellation), and

to phenomenologically reproduce with the BLIF neuron how this affects the thresholds

of CL-BPs.

7.1 Related work

7.1.1 Spike cancellation in the literature

The concept of spike cancellation has played a central role in this thesis, providing the

underlying theory upon which the BLIF neuron was built, and motivating the analyses

of chapters 3, 4, and 6. However, the concept of spike cancellation is not in itself

novel, having previously been observed by van den Honert and Mortimer (1979), who

described a “vulnerable period” of approximately 100 µs during which an impending

action potential could be abolished by anodic stimulation. The vulnerable period has

since been used in other electrophysiological studies to explain why biphasic pulses

161



are less efficient in exciting the neuron compared to monophasic pulses (Shepherd and

Javel, 1999; Middlebrooks, 2004; Rubinstein et al., 2001; McKay and Henshall, 2003).

In this section, I describe how the methodology and results of this thesis relate to

those of previous studies that have also investigated spike cancellation.

The abolishing of the action potential

In their study, van den Honert and Mortimer offered an informal explanation of the

vulnerable period, postulating that, following suprathreshold stimulation, a slow “re-

generative process” (described as the opening of the sodium ion channels) is responsible

for reversing the passive repolarisation of the membrane, maintaining a self-sustaining

depolarisation (i.e., an action potential). They further say that under cathodic-leading

biphasic stimulation, the anodic phase of the stimulus accelerates the passive repolar-

isation and abolishes the action potential. An “abolition threshold” was hypothesised

to exist, defined as the current level required in order for a trailing anodic pulse to abol-

ish the action potential evoked by a leading cathodic pulse of fixed amplitude. The

dependence of the abolition threshold on stimulus parameters (namely, the current

level of the cathodic pulse and the delay between the cathodic and anodic pulses) was

investigated by means of the Frankenhaeuser and Huxley (1964) membrane equations.

However, no theoretical explanation for the existence of the abolition threshold was

given in terms of these equations. In this thesis, I have related the abolition threshold

to the speed of the phase point (section 6.2), as well as the latency of the action poten-

tial (Chapter 5). I have also described the underlying cause of the vulnerable period

in terms of the separatrix and the V and m dimensions of the HH model, instead of

attributing it only to a “regenerative process” and “passive repolarisation”. Further,

I have quantified how the n and h variables of the HH model affect action potential

abolition (by comparing the thresholds of CL-BPs in the reduced HH with those of

the original HH model; section 6.1), and have described why they do not have a large

effect on the qualitative dependency of a CL-BP’s threshold on its IPG (section 3.3.2).

The activation time of the membrane

Rubinstein et al. (2001) published a related study that investigated the response of

the membrane to CL-BPs, with the aim of relating biphasic thresholds to those of

monophasic pulses. In the study, it is hypothesised that for a CL-BP to excite the

membrane, it must drive the membrane above a threshold potential θ at least tact
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seconds prior to the pulse’s cessation, where the θ is defined as

θ “ IRp1´ expp´ϕ{τqq,

where I is the threshold level of a monophasic pulse of ϕ seconds duration, R is the

membrane resistance, and τ is the membrane time constant. The study refers to tact

as the “activation time”, and describes it as “the time required by the membrane to

achieve an irreversible action potential trajectory prior to the phase reversal of the

biphasic pulse.” It takes values between „8 to „23 µs, depending on the membrane

time constant, the phase duration of the CL-BP, the monophasic/biphasic threshold

ratio, and, presumably the IPG, although the effects of the IPG were not investigated.

The study relates the activation time to the vulnerable period of van den Honert and

Mortimer.

While Rubinstein et al.’s concept of the activation time is related to the concept of

spike cancellation in the BLIF neuron, the two are not equivalent. In particular, given

that the activation time depends on the stimulus, it can not be incorporated into a

phenomenological model as a parameter. By comparison, the spike cancellation of the

BLIF neuron does not make any assumptions about the shape stimulus, and is defined

in terms of constant parameters that do not depend on the stimulus. Further, the

spike cancellation of the BLIF neuron only affects how the model responds to CL-BPs,

having exactly no effect on how the model responds to AL-BPs. In stark comparison,

Rubinstein et al. state that, regarding their analysis by means of the activation time,

“there is no obvious reason why a similar analysis should not be applicable to anodal

and anodal-first stimuli as long as latency shifts associated with level are properly

interpreted.” All of the results of this thesis point towards the membrane responding

very differently to cathodic-leading and anodic-leading biphasic stimulation. It is clear

that Rubinstein et al. were not aware of the disparities between cathodic-leading and

anodic-leading biphasic stimulation that have been proposed by this thesis, suggesting

that this thesis contributes substantially to our understanding of biphasic stimulation.

7.1.2 Use of phase plane analysis to understand excitation

In Chapters 3 and 4, I investigated how monophasic and biphasic pulses excite the

membrane by analysing the pV,mq-projected phase paths of the HH model and its

stochastic derivative. Previously, phase plane analysis has been used to analyse how

cathodic monophasic pulses excite the membrane (Fitzhugh, 1960, 1961, 1969; Lecar
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and Nossal, 1971). I have extended this methodology in the context of biphasic stim-

ulation, and have produced novel results relating to the importance of phase order.

Further, I use a novel methodology in interpreting the pV,mq-projected phase paths of

the stochastic HH model to quantify how (or when) stochasticity affects the model’s

response (section 4.3.1), and demonstrate that this differs between cathodic-leading

and anodic-leading biphasic stimulation. Further, while the fact that the saddle node

of the HH model is not static when projected to the pV,mq plane has been noted previ-

ously by Fitzhugh (1969), I have illustrated its trajectory (section 3.3.2) and discussed

throughout the thesis how it affects the responses of the model under stimulation by

different pulse shapes.

7.1.3 The Rinzel reduction of the Hodgkin Huxley model

In Chapter 3, excitation was analysed from the point of view of the phase plane of

the pV,mq-reduced HH model. This model holds the h and n variables of the HH

model fixed at their resting values under the assumption that neither variable changes

enough during the initial formation of the action potential to influence whether or

not excitation occurs. The analyses of the chapter were motivated by a desire to

find a biophysical interpretation of the spike cancellation strategy of the BLIF neuron

in the context of cathodic-leading biphasic stimulation. In cathodic-leading biphasic

stimulation, changes in h and n do not qualitatively change how the stimulus threshold

level depends on IPG in the HH model (as evident by Figure 6.1B). However, in anodic-

leading biphasic stimulation, changes in h and n do lead to a qualitative difference in

behaviour: the biphasic threshold level in the HH model falls below the monophasic

threshold level as the IPG is increased beyond „200 µs (40 µs/phase duration; see

Figure 6.1A) due to the leading anodic phase inducing a decrease in h and n, rendering

the membrane more excitable at the time of the trailing cathodic phase. Therefore,

especially when analysing the response to anodic-leading biphasic stimulation, it would

have been beneficial to use an alternative reduction of the HH model—one capable of

reproducing the effects of changes in h and n, as well as V and m. One such model

has been published by Rinzel (1985).

Rinzel’s model reduces the four variables of the HH model to two variables, V and

W . It does so by assuming that m is instantaneously affected by V (thereby removing

m and replacing it with m8pV q) and merging the h and n variables into a single

variable, W , with
dW

dt
“
φpW8pV q ´W q

τW pV q
,
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where φ is the temperature correction factor of the HH model,

W8pV q “ S
n8pV q ` Sp1´ h8pV qq

1` S2

τW pV q “ 5 expp´pV ` 10q2{552q ` 1

S “
1´ h0

n0
,

and h0 and n0 are the resting values of h and n in the HH model, respectively. The

merging of h and n into a single variable was justified by noting that the ph, nq-

projected phase point of the HH model follows an almost linear trajectory during an

action potential (Fitzhugh, 1961), which Rinzel approximated by the line h` Sn “ 1,

with the constant S as previously defined, and so one variable (h or n) may be ap-

proximated given the other. The dynamics of V are then defined by making the

substitutions

mÐ m8pV q

hÐ 1´W

nÐW {S

in (2.4), which described the dynamics of V in the HH model, resulting in

C
dV

dt
“ I ´ ḡNam

3
8pV qp1´W qpV ´ENaq´ ḡKpW {Sq

4pV ´EKq´ gLpV ´ELq. (7.1)

The phase space of the Rinzel model is shown in Figure 7.1. The phase point is

attracted in the W dimension to the W nullcline. When the phase point lies below the

V nullcline, it is attracted rightwards in the V dimension, and when it lies above, it is

attracted leftwards. The figure shows the trajectory of a quasi-threshold, which passes

underneath the resting node from the left before sweeping upwards to closely adjoin

the V nullcline. The quasi-threshold does not lead to a saddle node, but leads directly

to the resting node, and so even if the phase point is placed precisely on the quasi-

threshold, the system shall return to rest.1 If the phase point lies below/rightwards

of the quasi-threshold, then an action potential shall result, with the phase point first

sweeping rightwards and then returning to rest via an anti-clockwise arc.

Like in the pV,mq-reduced HH model, an instantaneous injection of charge displaces

1Which is in contrast to in the pV,mq-reduce HH model, wherein placing the phase point on the
separatrix results in the system reaching an unstable equilibrium at the saddle node, poised between
becoming excited and returning to rest.
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Figure 7.1: Phase plane of the Rinzel model, showing the stable resting node (filled

black circle), the W and V nullclines (bold grey lines), the quasi-threshold (bold

black line), and several example trajectories (thin black lines). All the plotted

trajectories have an anti-clockwise direction. Numerical integration performed using

the Runge-Kutta method with a time step of 10 µs.

the phase point horizontally in the pV,W q phase plane of the Rinzel model. The

delivery of a charge-balanced CL-BP of infinitesimal duration per phase displaces the

phase point first rightwards, due to the delivery of the leading cathodic phase, and then

an equal amount leftwards, due to the delivery of the trailing anodic phase. During the

interval between the two phases (the IPG), the phase point drifts, as determined by

the dynamics of V and W . For an action potential to be evoked, this drift must move

the phase point so far rightwards that it remains to the right of the quasi-threshold

following the leftwards displacement of the trailing anodic phase.

If a CL-BP is delivered at such a level that the cathodic phase leaves the phase point

exactly on the quasi-threshold, then the phase point shall traverse the quasi-threshold

upwards and rightwards during the IPG. It then requires only an infinitesimal amount

of trailing anodic charge to return the phase point to the left of the quasi-threshold,

resulting in no action potential being emitted. This is similar to the case with the

pV,mq-reduced HH model, in which the phase point would traverse the separatrix if
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left upon it by the cathodic phase.2 However, as the phase point advances further

rightwards beyond the quasi-threshold (as occurs if the cathodic phase delivers „6 dB

more charge than would be needed to displace the phase point from resting to quasi-

threshold), its drift becomes increasingly rightwards (as evident from the example

phase paths in Figure 7.1), with any upwards drift producing only negligible change in

the distance of the phase point from the quasi-threshold. In such cases, the dynamics

of W have negligible effect on whether or not an action potential will be initiated,

and so need not be modelled when analysing only excitation. The time constant of m,

however, increases with increasing V (up until V “„26 mV), and so the approximation

of m by m8pV q, taken by the Rinzel model, becomes less accurate when the phase

point is to the right of the quasi-threshold.

A charge-balanced CL-BP of short (ă„200 µs) duration has a threshold level

high enough that, when delivered at threshold level, the cathodic phase will displace

the resting phase point well into the territory whereat changes in W have negligible

effect on action potential initiation and m has a longer time constant. Further, at

such short durations, the time constant of m is no longer negligible compared to the

duration of the stimulus, and so accurately modelling the dynamics of m becomes

more important, given that the different phases of the stimulus have very different

effects on m. This suggests that the pV,mq-reduced model may offer insights not

available with the Rinzel model when analysing excitation by short-duration CL-BPs.

Conversely, though, the Rinzel model demonstrates that changes in n and h do affect

excitability when the phase point lingers near the quasi-threshold during the IPG, as

occurs during threshold-level stimulation by long-duration (ą„200 µs) CL-BPs, due

to their decreased thresholds.

The delivery of a charge-balanced AL-BP of infinitesimal duration per phase dis-

places the phase point of the Rinzel model first leftwards, due to the delivering of

the leading anodic phase, and then an equal amount rightwards, due to the delivery

of the trailing cathodic phase. During the IPG, the phase point drifts downwards

and rightwards. Excitation may occur by either of two means: the leading anodic

phase may displace the phase point to beneath the quasi-threshold (noting that the

quasi-threshold forms a ‘u’-like shape that contains the resting node; a leftwards dis-

placement may cause the resting phase point to breach the ‘u’), or the phase point

may drift downwards/rightwards so far during the IPG that the delivery of the trailing

2Although, how the phase point departs from its quasi-threshold/separatrix traversal differs be-
tween models. In the pV,mq-reduced model, the phase point traverses the separatrix until it is
deflected by the saddle node. In the Rinzel model, the quasi-threshold becomes increasingly more
repulsive to the phase point the further upwards/rightwards it is traversed.
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cathodic phase displaces the phase point beyond the quasi-threshold. In the former

case, excitation occurs by means of anodic break, without the need for the cathodic

phase at all—indeed, it is interesting to note that within a narrow range of stimulus

levels, the delivery of the cathodic phase may abolish anodic break excitation by re-

establishing the phase point within the ‘u’ of the quasi-threshold. In either case, the

downwards motion of the phase point during the IPG has a large effect on whether

or not an action potential is evoked, and so the Rinzel model proves very useful in

analysing excitation by means of anodic-leading biphasic stimulation.

To conclude, Rinzel’s reduction of the HH model provides an alternative frame-

work with which to analyse excitation. It is very well suited to analysing excitation

by means of anodic-leading biphasic stimulation, wherein changes in W have a strong

influence on whether or not excitation occurs. It is potentially also useful in analysing

excitation by means of long-duration cathodic-leading biphasic stimulation, wherein

changes in W may also influence excitation, although to a lesser effect. However, it

does not appear to be as well suited as the pV,mq-reduced HH model in analysing exci-

tation by means of short-duration (ă„200 µs) cathodic-leading biphasic stimulation,

wherein changes in W have much less influence on excitation. It is without doubt that

further analysis with the Rinzel model would compliment the analyses of this thesis, es-

pecially in understanding excitation by means of anodic-leading biphasic stimulation.

However, given that the primary motivation of the analyses of this thesis has been to

provide a biophysical interpretation of the spike cancellation of the BLIF neuron (not-

ing that spike cancellation in the BLIF neuron occurs primarily under short-duration

cathodic-leading biphasic stimulation), the choice of the pV,mq-reduced HH model

seems justified.

7.2 Limitations of point models

The novel phenomenological model developed in this thesis, the BLIF neuron, is a

point model, and as such, in common with all other point models, it only reproduces

how a single node of Ranvier (or, equivalently, a single patch of membrane that is

small enough to be at equipotential) responds to stimulation. However, in extracel-

lular stimulation, the response of the neuron is not determined by a single node, but

rather by the potentially large collection of nodes that are simultaneously stimulated

(see section 2.2.3). This section discusses the caveats of applying the results of any

point model (including the BLIF neuron) in the context of extracellular stimulation.

Suggestions as to how these caveats may be addressed will be given in the next section.
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Internodal stochastic independence

When stimulated by an electrode of a cochlear implant, a single SGC is simultaneously

affected by the stimulus at its multiple nodes of Ranvier (see section 2.2.3). The SGC

as a whole shall be excited if any of its individual nodes are excited. As the individual

nodes are, at least to some extent, stochastically independent, the probability of any

node being excited by a given stimulus is greater than the probability of a single, given

node being excited by the same stimulus. Therefore, if a SGC is stimulated at a level

that evokes an action potential with some probability p, then the probability of a given

node initiating the action potential shall be less than p. If the distance between the

electrode and axon is increased while simultaneously adjusting the stimulus level so as

to continue to evoke an action potential with fixed probability p, then the probability

of a given node initiating the action potential shall decrease due to more nodes being

driven by the stimulus at larger electrode-axon distances. By these means, in a theo-

retical axon with a large number of nodes, the probability of a given node responding

to a threshold-level stimulus may be made arbitrarily small. Even in a real axon with

a finite number of nodes, the difference between the total firing probability and the

per-nodal firing probability is considerable. In a biophysically-detailed model of a cat

SGC stimulated by an electrode positioned 7 mm from it, the overall firing probability

of the cell was 0.751, yet the greatest probability of a given node initiating the action

potential was only 0.249 (Mino et al., 2004). Because firing probability is related to

temporal variability, decreasing the probability of a given node initiating the action

potential causes an increase in that node’s temporal variability. In this way, the rela-

tion between the firing probability and the temporal variability of a SGC depend on

the geometry of the cell in a way that cannot be reproduced by a point model. These

results are due to Mino et al. (2004), who stimulated a stochastic HH model of the

axon with a single cathodic pulse and varied the distance of the electrode from the

axon while maintaining a fixed firing probability. They concluded that the increased

temporal variability at increased electrode-axon distances was due to each individual

node being driven to lower firing probabilities at greater electrode-axon distances as

the stimulus recruited more nodes.

Changing latencies with increased nodal recruitment

The number of nodes that are excited by the stimulus depends on the stimulus level.

At greater levels, current spread results in the stimulus being able to excite more

central nodes (Woo et al., 2010; Rattay et al., 2001b). Action potentials evoked by
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these nodes have fewer subsequent nodes through which to propagate, and as such,

these action potentials have lower latencies. This results in discrete jumps in latency

as the stimulus level is increased (Miller et al., 1999b, 2003; Javel et al., 1987; Javel,

1990). At the thresholds between these jumps, the latency distribution may have

two or more peaks, with the most dramatic bimodal distributions occurring when the

neighbouring nodes occur on opposing sides of the soma (Stypulkowski and van den

Honert, 1984; Miller et al., 1999b).

Peak splitting

When the neuron is stimulated by a monophasic stimulus delivered via an extracellular

electrode, the neuron is simultaneously depolarised and hyperpolarised at different

points along its length. Because of the radically lower threshold of make excitation

compared to break excitation (see Section 2.2.3), the action potential will normally

only be initiated at a depolarised node. However, if the stimulus is a charge balanced

pulse (e.g., a biphasic pulse) instead of a monophasic pulse, then every point along the

neuron shall be depolarised by one of the pulse’s phases, and so the action potential

may potentially be initiated by any node. The specific node that initiates the action

potential may vary stochastically between trials to the same stimulus, manifesting as

multiple peaks in the distribution of spike timing due to the differing number of nodes

through which the action potential must propagate prior to arrival at a more central

site (Shepherd and Javel, 1999; Javel et al., 1987; Javel and Shepherd, 2000; van den

Honert and Stypulkowski, 1987; Miller et al., 1999b). The relative contributions of

the various peaks depend on the stimulus level; at higher levels, the earlier peak

(corresponding to action potential initiation by more central nodes) shall dominate,

where-as at lower levels, the later peaks shall dominate. This phenomenon has been

termed peak splitting by Shepherd and Javel (1999).

Action potentials are always initiated by make-excitation

Chapters 3 and 4 demonstrated that a cathodic pulse excites the membrane in a very

different way to an anodic pulse, illustrating the difference between make-excitation

(in the case of the cathodic pulse) and break-excitation (in the case of the anodic

pulse). However, in extracellular stimulation, an anodic pulse does not necessarily

evoke an action potential via break-excitation, for make-excitation may also occur

due to the pulse depolarising the neuron at the positions along where the activating

function is negative (i.e., where the membrane is depolarised by anodic current; see
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section 2.2.3). Indeed, it seems likely that break-excitation does not occur at all in

extracellular stimulation because of its very high threshold („9.1 dB relative to make

excitation, in the stochastic HH model). Data from a modelling study by Rattay

et al. (2001a) supports this hypothesis. In the study, a biophysically-detailed model

of the human cochlea was stimulated with anodic and cathodic monophasic pulses of

equal duration. Changing the pulse polarity change the node that was responsible

for initiating the action potential, suggesting that, regardless of the pulse’s polarity,

the action potential was initiated via the make-excitation at whichever node became

most depolarised. That the node responsible for initiating the action potential is

different in anodic and cathodic extracellular stimulation has also been reported in

electrophysiological studies of the cat SGCs (Miller et al., 1998, 1999b). It has the

effect of lowering the threshold of anodic stimulation by allowing the neuron to respond

by make-excitation instead of break-excitation, which has a much higher threshold.

This is reflected in Rattay et al.’s study, where the threshold of the anodic pulse was,

averaged across distinct fibres, 0.082 dB less than the threshold of the cathodic pulse

of equal duration.

Biphasic pulses

In extracellular stimulation, a biphasic pulse of either phase-order affects the neu-

ron by hyperpolarising-and-then-depolarising the membrane at some points along its

length, while simultaneously depolarising-and-then-hyperpolarising the membrane at

other points. This is in contrast to in space-clamped conditions (i.e., where the

membrane is at equipotential, as in the HH model or a point model), where a bipha-

sic pulse either depolarises-and-then-hyperpolarises the membrane (in the case of a

CL-BP), or hyperpolarises-and-then-depolarises the membrane (in the case of an AL-

BP). The effect, then, of reversing the phase order of a biphasic pulse is different

in space-clamped conditions and extracellular stimulation. In space-clamped con-

ditions, reversing the phase order shall change the order in which the membrane

was depolarised/hyperpolarised. In extracellular stimulation, reversing the phase

order of the pulse may change the order in which the initiating node was depo-

larised/hyperpolarised, or, alternatively, it may change which node initiates the action

potential (Coste and Pfingst, 1996; Parkins, 1989), so that the initiating node is depo-

larised/hyperpolarised in the same order regardless of the phase order of the stimulus.

This may explain why the behaviour of the extracellularly-stimulated SGC appears

to be relatively insensitive to phase order under biphasic stimulation (Shepherd and
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Javel, 1999; Macherey et al., 2006), as the change in threshold due to a change in

initiation node may be less than the change in threshold due to a change in depolari-

sation/hyperpolarisation order.

Neuron geometry and the extracellular field

How a neuron responds to extracellular stimulation is largely affected by its geometry

and the electrical properties of the extracellular medium (Grill Jr, 1999; Rattay et al.,

2001a; Loeb et al., 1983). Changing either the geometry of the neuron (for instance,

to model the curvature of the SGCs as they exit the modulus of the cochlea), or the

electrical field generated by the stimulating electrode (for instance, to model the effects

that the different structures of the cochlea have on the generated field), may have a

profound effect on the excitation pattern of the neuron (i.e., which nodes initiate

the action potentials). From the previous discussions of this section, it is clear that

changing which and how many nodes may potentially initiate action potentials shall

change the probability of spiking, the temporal distribution of spiking, and how this

distribution is affected by changes in the current level of the stimulus.

Concluding remarks

In the extracellular stimulation of a neuron, the geometry and morphology of the neu-

ron interact with the electrical field generated by the stimulating electrode to produce

a complex set of phenomena that cannot be reproduced by point models, including the

BLIF neuron. Given that cochlear implants stimulate the SGCs by means of extracel-

lular electrodes, this potentially limits the applicability of point models in reproducing

the spiking activity of the SGCs in cochlear implant stimulation. Despite this, point

models have been used extensively by previous studies to reproduce spiking activity

in cochlear implant stimulation (e.g., Goldwyn et al., 2012; Bruce et al., 1999a,b,c;

Chen and Zhang, 2007; Chen, 2012; Dynes, 1996; Motz and Rattay, 1986; Morse and

Evans, 1999; Fredelake and Hohmann, 2012; Hamacher, 2004). The next section will

suggest how a point model may be extended in order to reproduce the complexities of

extracellular stimulation.

7.3 Alternatives to point models

The phenomena described in the previous section occur because, in extracellular stim-

ulation, a stimulus may evoke an action potential at any one of many nodes, and the
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effect of the stimulus on the membrane potential may vary between nodes, as described

by the activating function. The varying effect of the stimulus on each node is typically

reproduced by means of a biophysical model of the neuron coupled with an electric

field model of the cochlea (e.g., Rattay et al., 2001b,a; Briaire and Frijns, 2000; Smit

et al., 2010). However, these effects vary between subjects due to changes in cochlear

morphology (Whiten, 2007), neural pathology (i.e., due to degeneration of the pe-

ripheral process, common in cochlear implant recipients; Hardie and Shepherd, 1999;

Nadol Jr et al., 1989; Teoh et al., 2004; Micco and Richter, 2006; Whiten, 2007; Fayad

and Linthicum, 2006), and electrode location (Kang et al., 2015; Briaire and Frijns,

2006; Shepherd et al., 1993; Whiten, 2007; Woo et al., 2010). Clearly, then, modelling

precisely how the stimulus affects each node is overfitting the model to a particular

subject. If the model is to facilitate the development of cochlear implant stimulation

algorithms, then it should model only what is common across the majority of subjects,

as reproducing effects which vary between subjects shall only lead to confusion in the

interpretation of the model results. It is difficult to disentangle a biophysical model

from the individual subjects from which it was morphological parametrised, and so to

reproduce only the trends that are common among the majority of subjects, a phe-

nomenological approach is well motivated. Such a phenomenological approach might

simulate each node with an individual point model (such as the BLIF neuron), scaling

the input to each by an amount related to the value of the activating function at the

given node, and delaying the spiking output of each model to reproduce the delay

incurred by the central-propagation of the action potential from the given node. The

resulting model could be termed a multipoint model.

The methodology of linking two or more point models in a phenomenological model

of the neuron has been well applied in the context of synaptic stimulation (Clopath

et al., 2007; Kellems et al., 2010; Lánskỳ and Rodriguez, 1999b; Lánskỳ and Rospars,

1994; Lánskỳ and Rodriguez, 1999a; Rodriguez and Lánskỳ, 2000; Maršálek, 1999).

The earliest example is the two-point model, proposed by Kohn (1989), where the

passive properties of the dendrite are modelled separately to the spiking properties of

the soma, and the two compartments linked via their membrane potentials. However,

despite the prevalence of multipoint modelling in synaptic stimulation, multipoint

modelling does not seem to have been applied in the context of extracellular electrical

stimulation.3

3A recent exception to this is an unpublished study by Joshi et al. (2015), that feeds a stimulus
signal and an inverted copy of the signal to two independent exponential integrate-and-fire neurons
and sums their outputs.
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7.4 Summary and future directions

The aim of this thesis has been to develop a phenomenological model capable of

reproducing how SGCs responds to stimulation by a cochlear implant. The novel

BLIF neuron (chapter 5) goes a long way towards accomplishing this: it reproduces

the temporal distribution of spiking and how it is affected by stimulus parameters, and

it reproduces how anodic current may raise the threshold of a cathodic pulse, even

when delivered after the cathodic pulse, making it suitable for simulating responses

to CL-BPs. However, the BLIF neuron does not form a complete model in itself,

given that it does not recover following spiking or spike cancellation, and it does not

reproduce the complexities of extracellular stimulation (discussed in section 7.2). A

methodology by which to implement recovery following spiking and spike cancellation

has already been proposed in Section 5.5.5, and similarly, a methodology by which a

point model (such as the BLIF neuron) may be extended to reproduce the phenomena

arising from extracellular stimulation has already been proposed in section 7.3. Thus,

while this thesis has not presented a full phenomenological model of extracellular

stimulation, it does outline how the BLIF neuron may be extended in order to achieve

this goal.

As well as the contribution of the BLIF neuron itself, this thesis has contributed to

the understanding of how different pulse shapes excite the membrane, particularly in

the case of biphasic pulses. Chapters 3 and 4 provided novel qualitative descriptions

of excitation under biphasic stimulation, making it very clear that the way by which

excitation is achieved differs markedly between cathodic-leading and anodic-leading

stimulation, consistent with the theory of the BLIF neuron. The effect of phase order

on excitation was further analysed in chapter 6, which demonstrated quantitatively

that the phase order of a biphasic stimulus affects its threshold level in the HH model

(and its stochastic derivative). The chapter proposed that the thresholds may be

explained by leaky integration and accommodation when the anodic phase is leading,

and spike cancellation when the cathodic phase is leading. Analyses of the responses

of the HH model (and its stochastic derivative) supported these theories. Finally, to

demonstrate the importance of the different ways by which excitation occurs, Chapter

6 demonstrates that phase order affects how consecutive biphasic pulses interact with

one another in the stochastic HH model. When the cathodic phase leads, it was

shown that a leading pulse inhibits the membrane’s response to a trailing pulse. When

the anodic phase leads, it was shown that a leading pulse facilitates the membrane’s

response to a trailing pulse. These results are important in the context of cochlear
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implants, which stimulate the SGCs by means of high-rate trains of biphasic pulses.
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Mainz Verlag, Germany.

Hanekom, T. (2001). Three-dimensional spiraling finite element model of the electri-

cally stimulated cochlea. Ear and Hearing, 22(4):300–315.

Hardie, N. A. and Shepherd, R. K. (1999). Sensorineural hearing loss during de-

velopment: morphological and physiological response of the cochlea and auditory

brainstem. Hearing Research, 128(1):147–165.

Harrison, J. M. and Howe, M. E. (1974). Anatomy of the afferent auditory nervous

system of mammals. In Keidel, W. D. and Neff, W. D., editors, Auditory System:

Anatomy Physiology (Ear), pages 283–336. Springer, Berlin, Heidelberg, Germany.

Hartmann, R., Topp, G., and Klinke, R. (1984). Discharge patterns of cat primary au-

ditory fibers with electrical stimulation of the cochlea. Hearing Research, 13(1):47–

62.

Hastie, T. and Tibshirani, R. (1987). Generalized additive models: some applications.

Journal of the American Statistical Association, 82(398):371–386.

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models, volume 43.

CRC Press, Boca Raton, Florida, USA.

Higham, D. J. (2001). An algorithmic introduction to numerical simulation of stochas-

tic differential equations. SIAM Review, 43(3):525–546.

Hill, A. (1936a). Excitation and accommodation in nerve. Proceedings of the Royal

Society of London. Series B, Biological Sciences, 119(814):305–355.

Hill, A. (1936b). The strength-duration relation for electric excitation of medullated

nerve. Proceedings of the Royal Society of London. Series B, Biological Sciences,

119(815):440–453.

185



Hille, B. and Catterall, W. (2012). Electrical excitability and ion channels. In Siegel,

G., Agranoff, R., and Molinoff, P., editors, Basic Neurochemistry: Molecular, Cel-

lular and Medical Aspects, pages 63–80. Raven Press, New York, USA.

Hodgkin, A. and Huxley, A. (1952). A quantitative description of membrane current

and its application to conduction and excitation in nerve. Bulletin of Mathematical

Biology, 52(1):25–71.

Hofmann, L., Ebert, M., Tass, P. A., and Hauptmann, C. (2011). Modified pulse

shapes for effective neural stimulation. Frontiers in Neuroengineering, 4(9). DOI:

10.3389/fneng.2011.00009.

Hong, R., Rubinstein, J., Wehner, D., and Horn, D. (2003). Dynamic range enhance-

ment for cochlear implants. Otology & Neurotology, 24(4):590.
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