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Abstract

As projections of future climate raise concerns over water availability
and extreme hydrological events, global hydrology models are
increasingly being employed to better understand our global water
resources and how they may be affected by climate change. Being a
relatively recent development in hydrological science, global hydrology
modelling has not yet undergone the same level of assessment and
evaluation as catchment scale hydrology modelling. Until now, global
hydrology models have presented just one deterministic model output
for use in scientific research. Multi-model ensembles have compared
these outputs for different global models, but the uncertainties within

individual models have yet to be understood.

This study demonstrates a rigorous uncertainty investigation of the 123
parameters within the Mac-PDM global hydrology model over 21 global
river catchments. Mac-PDM was selected for its relative simplicity
amongst global hydrology models, and its suitability for application
using high performance computer clusters. A new version of the model,
Mac-PDM.14 is provided, with updated soil and vegetation
classifications. This model is then subjected to a 100,000 parameter
realisation Generalised Likelihood Uncertainty Estimation (GLUE)
experiment, requiring 40 days of high performance computing time, and
outputting over 2Tb of data. The top performing model parameterisation
from this experiment provides an annual average error of 47% when
compared to observed records, a 45% improvement over the previous
version of the model, Mac-PDM.09. The soil parameters (field and
saturation capacity) are shown to be the most sensitive parameters in
the model. Given the computational expense of such an experiment,
smaller sample sizes of parameter realisations are explored. Whilst the
top performing parameterisation in a sample size as small as 1,000 can

perform almost as well as that from 100,000 parameterisations, the



il
number of good parameterisations is fewer, and the range of model

uncertainty may therefore be significantly underestimated.

Mac-PDM.14 is shown to have a lower mean absolute relative error
than all models involved in both the Water and Global Change
(WATCH) project and the Inter-Sectoral Impacts Model Intercomparison
Project (ISI-MIP). Parameter uncertainty is compared to model
uncertainty, and the uncertainty range between the models within the
WATCH and ISI-MIP projects is comparable to the parameter
uncertainty within Mac-PDM.14. Catchment specific calibrations of the
global hydrology model are explored, and it is demonstrated that the
model performance is improved by 22 to 92%, for the Niger and the
Yangtze respectively, with catchment specific parameter values over a
global calibration. Approximate Bayesian Rejection is applied to explore
the catchment specific parameter values that result in good parameter
performance. Few trends can be identified from this analysis, which
suggests that Mac-PDM may be over-parameterised. Catchment
specific calibrations in both high latitude and arid to semi-arid regions
show significant improvement over global calibration, which indicate a
deficiency in model structure; the addition of a glacier component to
Mac-PDM is recommended. Model calibrations are validated using the
ISI-MIP forcing dataset, and the best model performance gives an error
of 44%. This is a betterment on the performance with the WATCH
forcing data used in calibration, and so implies that models not need to

be recalibrated every time new forcing datasets are employed.

This research highlights that the performance of global hydrology
models can be significantly improved by running a parameter
uncertainty assessment, and that in catchment scale studies, catchment
specific calibration should be carefully considered. Furthermore, the
uncertainty within individual global hydrology models is an important
consideration that should not be overlooked as these models are

increasingly included in ensembles and interdisciplinary studies.
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Chapter One:

Global Hydrology Modelling

and Uncertainty



Global Hydrology Modelling and Uncertainty

1.1 Introduction

Global Hydrology Models (GHMs) can help us understand the global
hydrological cycle, and the ways in which it might be altered by climate
change. The hydrological cycle is complex, made up of processes that
drive the hydrosphere within the atmosphere, biosphere and
lithosphere. These processes include precipitation, runoff,
condensation, infiltration, interception, evaporation, transpiration,
evapotranspiration, and groundwater flow. Studying the hydrological
cycle is very difficult due to issues of both temporal and spatial scale. In
addition, there are limitations in hydrological measurement techniques
(Beven, 2012). Thus, models are required to provide a means of

quantitative prediction that is required for decision making.

Hydrology models seek to describe the processes of the hydrological
cycle as well as stores of water within the hydrological cycle. Dingman
(2002) defines three types of model: “Physical Models” — which are
tangible constructed representations of a portion of the natural world;
“Analog Models” — which use observations of one process to simulate a
physically analogous natural process. For example, the flow of
electricity given by Ohm’s Law is directly analogous to Darcy’s Law of
groundwater flow; and “Mathematical Models” — which are explicit
sequential sets of equations and logical steps that convert numerical
inputs, representing flow rates or states of storage, to numerical
outputs, representing other flow rates of storage states. Dooge (1986)
aptly refers to models, specifically simulation models, as a
representation of a portion of the natural or human constructed world,
“which is simpler than the prototype system and which can reproduce

some but not all of the characteristics thereof.”

Many modelling studies are carried out purely for research purposes, in
order to gain better understanding of hydrological processes. It is
through discrepancies in model output with observed data that model

revisions are made, and hydrological understanding progresses.
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However, the ultimate aim of hydrological modelling is to help inform
decisions in water resource management, and to forecast and manage
extreme events. This chapter will briefly review the history of
hydrological science, and the development and progression of
hydrology models. It will then introduce the issue of uncertainty, and
how this influences modelling studies. Some examples of previous work
that investigated uncertainties in hydrology modelling will be reviewed,
before the research questions for this thesis are presented at the end

the chapter.

1.2 Rainfall-Runoff Modelling

Hydrology models are often referred to as ‘Rainfall-Runoff’ models,
since they use precipitation data to estimate runoff or river discharge.
They vary hugely in complexity, from simple equations used to predict a
single hydrograph peak, to extensive computer coded programs made
up of suites of equations to describe sequences of hydrological
processes. There are two broad categories of hydrological model: the
simple “empirical” or “black box” models, those that seek to verify
observations using past data, without much concern to the processes
within the model; and the more complex “conceptual” or “physically-
based” models which represent individual hydrological processes in
series’ of governing equations in an attempt to represent natural
behaviour as we understand it. Both of these categories fall under the
classification of “deterministic’ models. Deterministic models are those
which produce a fixed output, given a specific set of inputs, and have no
random element to them. The converse of a deterministic model is a
“stochastic” model, which does contain an element of randomness (e.g.
when disaggregating precipitation data to a finer temporal resolution).
Stochastic models may produce slightly different outputs even if the
inputs are kept exactly the same. Many essentially deterministic models

contain small stochastic subroutines such as this.
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Most models use “variables” and “parameters” to drive them. Models
seek to define a relationship between entities that are of interest. These
entities are variables. Variables are generally time varying, and may be
a model input, output, or the result of an equation that changes
continuously over time. In rainfall runoff models, rainfall and runoff are
variables, as is potential evapotranspiration which is the result of
several process equations. Parameters however, are usually constants.
They are values that are required within equations of the model in order
to derive the relationships between variables. They are sometimes,
physically meaningful, but also sometimes statistical scaling factors that
do not have a tangible meaning. In rainfall runoff models, parameters
may represent factors such as the height of a specific vegetation type,

or the temperature at which snow begins to melt.

1.3 Hydrology Modelling: A Historic Review

A diagrammatic representation of the history of hydrology modelling,
and the introduction of global hydrology models is shown in Figure 1.1.
The origins of hydrological modelling can be traced back to the work of
Mulvany (1851). Thomas James Mulvany developed the ‘rational
method’, a simple equation which was used to predict the peak of a
hydrograph. This was followed by the ‘event model’ by Edouard
Imbeaux (1892) which was perhaps the first attempt to produce a
distributed hydrological model. Imbeaux divided the Durance River in
France into zones, and then estimated the travel time for the runoff from
each zone to the outlet to produce a prediction of the hydrograph. This
time-area concept was advanced in 1932 by Sherman who developed
the “unitgraph”, which later became the ‘unit hydrograph’ (Sherman,

1949), and is still popular today.

The unit hydrograph is a simple method that does not require the
division of the catchment into different time increments, but instead
uses a transfer function to relate effective rainfall to total catchment

runoff response in a unit of time.
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However, the unit hydrograph method had a problem of linearity, as
routing rainfall is a nonlinear problem that is influenced by rainfall
intensity, soil properties, and antecedent conditions (Beven, 2012). Just
a year after Sherman’s paper, Robert Horton published a paper that
went some way toward tackling this problem, which is still an issue in
today’s models. Horton (1933) developed a theory of infiltration to
estimate rainfall excess and improve hydrograph separation techniques
(Singh and Woolhiser, 2002). Horton’s work on infiltration was preceded
by the very well-known and still popular formula of Green and Ampt
(1911). Horton is most famous for his final paper in 1945, which built
upon his concept of infiltration excess overland flow, now known as

“Hortonian overland flow” (Horton, 1945).

Alongside these works, Fair and Hatch (1933) developed a relationship
to describe the permeability of soil, and Theis (1935) related heat-flow
equations to groundwater problems (Kasenow, 2001). Theis’ paper
became the foundations of groundwater hydrology. Evapotranspiration
was tackled by two equally popular papers by Thornthwaite (1948) and
Penman (1948). Penman’s work continued to develop the combined
Penman-Monteith equation (Penman, 1956, Monteith, 1965, Allen et al.,
1998), the modification of which is one of the two most popular potential
evapotranspiration equations used in models today. The other is the
simpler Priestley-Taylor equation (Priestley and Taylor, 1972) which
requires less observational data. The mid-1950’s saw some significant
advances in hydrological research. The mathematicians Lighthill and
Whitham (1955) established kinematic wave theory for flow routing in
long rivers. Also applicable to traffic on long roads, this theory is a
foundational mathematical development and is now a standard tool for
modelling overland flow and other hydrologic processes (Singh and
Woolhiser, 2002). Nash (1957) proposed the “instantaneous unit
hydrograph” and Dooge (1959) developed the “generalized unit
hydrograph”. In 1965, Amerman introduced the “Unit Source Area”

concept. This conceptual model categorises similar areas of a
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catchment, by overlaying spatial databases in Geographic Information
Systems (GIS), and assumes that if they are sufficiently alike, that they
will respond in a similar manner. “Unit Source Areas” are now referred
to as “Hydrologic Response Units” (HRUs), and are used in the popular
catchment model SWAT (Spruill et al., 2000). Also in 1965, Dawdy and
O’Donnell introduced model parameter optimisation in the need to
progress away from trial and error approaches (Todini, 2007), this was

a major advance in model assessment techniques.

1966 saw the arrival of the first model that attempted to simulate the
hydrological cycle holistically; it was the Stanford Watershed Model
(SWM), and is documented in Crawford and Linsley (1966). This was
closely followed by the semi-distributed “tank” models by Sugawara
(1967), and the work of Freeze and Harlan (1969) who conceived a
three dimensional catchment model, which included all of the key
hydrological processes such as precipitation, surface runoff, channel
flow and their interactions with groundwater, evaporation, transpiration
and more. This model was beyond the computational capabilities of the
time, but became the foundations of the Systeme Hydrologique
Europeen (SHE) model (Abbott et al., 1986).

The late 1960’s marked the beginning of a series of important advances
in data measurement techniques and database releases. Tracers were
first used to improve understanding of rainfall runoff processes by
Pinder and Jones (1969). LANDSAT-1, the first civilian satellite to
conduct scientific and exploratory studies of the Earth’s surface, was
launched in 1972, and the FAO-UNESCO digital soil map of the world
was released in 1974. The first 1-degree resolution land cover map was
not released until 1994 however (the AVHRR Global Land Cover
Dataset). The GRACE twin satellites were launched in 2002; this project
uses gravity measurements to derive several indicators of hydrological

mass balance, and has proven very valuable to hydrological research.
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Research interest in catchment modelling increased dramatically in the
1980s, after TOPMODEL was released by Beven and Kirkby (1979).
The SHE (Abbott et al., 1986), IHDM (Calver et al., 1995) and ARNO
(Todini, 1996) models which were released throughout the 1980’s and
1990’s, are also popular catchment models, but have been significantly
revised since their initial development. Rapid advances in
computational power have allowed for the development from small
scale catchment hydrology models to regional and global models to
become possible. Vorésmarty et al. (1989) developed the first
conceptually based macro-scale model. Many Global Hydrology Models
(GHMSs) have been developed since then including VIC (Wood et al.,
1992), Xinanjiang (Zhao and Liu, 1992), GWAVA (Meigh et al., 1999),
WaterGAP (Doll et al., 1999), MacPDM (Arnell, 1999) and DBH (Tang,
2006).

1.4 Global Hydrology Models: A Comparison and Critique

Interest in global and macro-scale hydrology modelling has increased
substantially since the first macro-scale Water Balance Model (WBM)
was proposed by Vordsmarty et al. (1989). The increase in published
works on global or macro-scale hydrology models is presented in Figure
1.2. Currently, there are 8 popular GHMs in hydrological research, as
detailed in Table 1.1. In this section, each of the 8 hydrological models
will be briefly introduced and their similarities and differences
discussed. Land surface models (LSMs) and coupled biosphere-
hydrology models will also be mentioned, though they are not an

essential component of this review.

There are several distinguishing features of GHMs, which are outlined
in Table 1.1. These include: the soil moisture, evaporation and
snowmelt scheme that they use; whether they model both water and
energy balance; whether they consider anthropogenic factors, or

whether they model “naturalised flows” (flows not including abstractions,
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reservoir implications etc.); their routing method, if any; and the spatial
and temporal resolution on which they operate.

GHMs model continental scale river basins and most operate on a 0.5
by 0.5 degree longitude-latitude grid scale at a (quasi-) daily time step.
Global hydrology models are driven by General Circulation Models’
(global climate models or GCMs) output data that provides estimates of
variables such as precipitation, temperature, relative humidity and wind
speed. Since land surface is very important in the behaviour of the
hydrological cycle, gridded data on vegetation cover and soil types are
often also required. Model outputs vary depending on the model’s
objective and most models output a variety of hydrological indicators.
All hydrological models output either runoff or river discharge but
additional outputs depend on the model; for example, Mac-PDM.09
outputs purely hydrological data, including extreme flow values and flow
duration curve statistics, whilst WaterGAP outputs more socially driven
information such as water availability, water withdrawals and water

exploitation index.

Number of Papers on Global or Macroscale
Hydrology Modelling

300
250
200
150
100
50
I I I

Figure 1.2 Number of papers published each year since 1989 under the
search term “Global hydrology” OR “Macroscale hydrology” AND model* in
Google Scholar. Search performed on 23™January 2016.
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1.41 WBM and WBMpuus

The Water Balance Model (WBM) was one of the first examples of a
global hydrology model that existed separately to a GCM. First
developed by Vérosmarty et al. (1989), WBM was designed as part of a
global biogeochemistry study, and consisted of a water balance and
water transport model. WBM originally operated on a 0.5° grid cell size,
and used precipitation, temperature, potential evapotranspiration (PET),
vegetation, soil and elevation data to predict soil moisture,
evapotranspiration and runoff. WBM calculates soil moisture in a bucket
scheme. During wet months, soil moisture can increase up to a
maximum field capacity determined by the soil texture and rooting
depth. During dry periods, soil water stocks are depleted according to a
soil moisture retention function. For each wet month, soil moisture is
calculated by incrementing antecedent values by the excess of
available water over PET. This recharge may or may not be sufficient to
bring the soil to field capacity at the end of the following wet season
(Vorésmarty et al., 1989). Whenever field capacity is reached, excess
water is transferred to subsurface pools, and runoff is generated as a
linear function of the existing pool size (Vorésmarty et al., 1989).
Vorésmarty et al. (1998) conducted an investigation into the potential
evaporation functions used by the model, comparing 11 methods to
determine their impact on predictions made by the global model. They
determined that the simple empirical Hamon method was appropriate,

whereas Thornthwaite had been used previously.

WBM has been developed into WBMpius (V6rosmarty et al., 1998,
Rawlins et al., 2003, Federer et al., 2003) and is described in Wisser et
al. (2010). WBMpus is a fully coupled water balance and transport model
that simulates the vertical water exchange between the land surface
and the atmosphere, and the horizontal water transport along a
prescribed river network (Wisser et al., 2010). WBMopius can operate on

a finer spatial resolution of 30 x 30 min (longitude x latitude), a daily
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time step, and routes the runoff using the Muskingham-Cunge flood
routing scheme. Compared to previous versions of WBM, WBMpius
includes modules that explicitly account for human activities such as
irrigation water abstractions and reservoir operation that directly affect
the water cycle process (Wisser et al., 2010). Ddll et al. (2003) criticised
the WBM model for the use of a correction factor in model validation,
rather than parameter calibration. Fekete et al. (2004) suggest that
WBM does not perform well in water-stressed semi-arid regions, where
there is significant sensitivity of runoff to precipitation, and the

processes are highly non-linear.

1.4.2 HO8

HO8 (Hanasaki et al., 2008a) is another model that uses a bucket soill
moisture scheme, though in this case it is enhanced to a ‘leaky bucket’,
where soil moisture can drain continuously, not just when the soil is at
field capacity. The HO8 leaky bucket is 15cm deep, uniformly across all
vegetation and soil types. HO8 was developed with the primary purpose
to assess global water availability and use at a sub-annual timescale,
thus HO8 simulates both natural hydrological processes and major
human activities related to water use. It consists of six sub models: land
surface hydrology, river routing, crop growth, reservoir operation, water
withdrawal, and environmental flow requirement (Chen et al., 2011).
HO8 is one of the few GHMSs that simulates both energy and water
balance on the land surface. Runoff is routed using the Total Runoff
Integrating Pathways (TRIP) model, which provides a digital river map
formed from flow direction. HO8 includes a comprehensive crop module,
which is similar to the Soil Water Integrated Model (SWIM), and
simulates over 50 crop types. This model also simulates the operation
of 452 reservoirs, totalling 4140km?3, each of which is ascribed its own
operating rules which influences streamflow simulation. Environmental
flow requirement is simulated in HO8 as well as anthropogenic water

withdrawal.
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Hanasaki et al. (2008b) successfully applied the HO8 model in a global
water resources assessment. The model performed well in estimating
the crop calendar and irrigation withdrawal and it highlighted regions of
water stress that have been previously undetected. However, the
original model assumes that water is only withdrawn from channels,
excluding the significant abstractions from groundwater, lakes, ponds
and glacial meltwater. Reservoirs smaller than 10° m® were also
excluded from the model. Hanasaki et al. (2010) enhanced the model in
order to estimate global virtual water flow. These changes included
changing the spatial resolution from 1° to 0.5° longitude latitude, adding
medium sized reservoirs (3x10° to 1x10° m3), and adding a conceptual
water source, to represent deep groundwater, lakes, glaciers, water
diversion and desalinization. This conceptual store (referred to as
NNBW — non-local, non-renewable blue water) is however limitless, as
the capacity of these sources is unknown, and is assumed to be
available at all times in all places worldwide. This is unrealistic, but the
process allowed for the comparison of geographical distribution of
NNBW with estimated groundwater exploitation reports (Postel, 1999)
for qualitative assessment and with aquifer withdrawal in the USA
(Maupin and Barber, 2005) for quantitative assessment, which showed

good results.

1.4.3 WaterGAP

The Water — Global Assessment and Prognosis (WaterGAP) model,
sometimes referred to as the WaterGAP Global Hydrology Model
(WGHM), is a water availability model that preceded HO8. It was the
first global model to compute both water use and availability on a basin
scale (Alcamo et al., 2000), and the original model (WaterGAP1.0) is
presented in Alcamo et al. (1997). The model takes into account basic
socio-economic factors that lead to domestic, industrial and agricultural
water use, and physical and climate factors that lead to river runoff and

groundwater recharge (Alcamo et al., 1997). WaterGAP 1.0 was quickly
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developed into WaterGAP 2.0 (Alcamo et al., 2000, Doll et al., 2003),
WaterGAP 2.1 (Alcamo et al., 2003), and to the most recent WaterGAP
2.2 (Muller Schmied et al., 2014). These revisions are mostly
synonymous with those of HO8, and included algorithms of reservoir
operation, groundwater recharge optimization, a variable flow velocity
algorithm and consideration of the sources of water abstraction. Werth
et al. (2009) also integrated water storage variation data from the

GRACE satellite mission to reduce error in WaterGAP.

WaterGAP 2 consists of a global hydrology model and a global water
use model which are linked in order to compute water stress indicators
and to calculate the reduction of river discharge due to consumptive
water use (Doll et al., 2003). The model operates on a 0.5° x 0.5° grid,
forming 66896 cells worldwide, excluding Antarctica. Similarly to HO8,
runoff is routed using a global drainage direction map (DDM30). Soil
moisture is modelled, taking into account the water content of the soll
within the effective root zone, the effective precipitation, the actual
evapotranspiration and the runoff from the land surface (Ddll et al.,
2003). Runoff is computed as a function of effective precipitation, and a
calibrated runoff factor, which follows the approach of Bergstrom (1995)
from the HBV model. With this approach, runoff increases with

increasing soil wetness.

The water use part of the WaterGAP 2 model is divided into three
sectors: domestic, industry and agriculture. The domestic and industry
sectors take into account the effect of structural and technological
changes on water use as a country develops, and the agricultural sector
accounts for the effect of climate on irrigation water requirements
(Alcamo et al., 2003). Alcamo et al. (1997) stated that despite
calibration and testing against existing data, WaterGAP1.0 contains
many limitations and so should only be used for the consideration of
global scale trends, and not for individual watersheds. Whilst the model

has progressed significantly since its initial development, WaterGAP 2
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still needs work to improve its approach. WaterGAP 2 may be used to
compare basins with catchment scale indicators such as total water
withdrawals and total water availability. However, the reliability of
modelled monthly flows needs to be improved to estimate critical high

and low flow conditions (Alcamo et al., 2003).

144 GWAVA

GWAVA (the Global Water Availability Assessment model) is a third
global hydrology model that is focused upon water use and availability,
though it is used for prediction of water resources scarcity at continental
and global scales (Dumont et al., 2010). Developed by Meigh et al.
(1999), it applies monthly rainfall data to a probability distributed rainfall-
runoff model (PDM, (Moore, 1985)) to generate monthly river flows and
water availability statistics. The PDM model is utilised by many global
hydrology models, as it allows a spatially variable distribution of soil
moisture capacity described by a statistical probability distribution. This
allows runoff to be generated in more than one part of a catchment, or
grid cell, at any one time, rather than delaying runoff until the entire cell
is saturated. This method is popular, as it enhances runoff production
simulation without the requirement of additional data. However, the
spatial allocation of soil moisture storage capacity is not influenced by
vegetation or soil type. The PDM is described in detail in Moore (2007),

and is also presented in Chapter 2 of this thesis.

Monthly water demands are estimated in GWAVA using population and
per capita consumption data, combined with industrial and agricultural
water requirements (Wallace and Gregory, 2002). GWAVA produces a
water scarcity index, which is normalised to present -1 as little to no
water to meet demands up to +1, representing more than sufficient
water to meet demands. GWAVA takes groundwater into account as a
water supply, and estimates groundwater availability as either a
seasonally variable recharge or an aquifer yield (Wallace and Gregory,

2002). The model has been improved by Folwell and Farquharson
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(2006) and Fung et al. (2006), and has been developed several times to
include a water quality module (Dumont et al., 2010), a pollutant
concentration module (Dumont et al., 2012). GWAVA has been applied
to Eastern and Southern Africa, West Africa, the Caspian Sea Basin,
South America, and the Ganges-Brahmaputra basin, and is currently
being applied on a continental scale in Europe as well as globally (CEH,
2014).

1.45 Mac-PDM

The Macro-Scale — Probability Distributed Model (Mac-PDM) is a
probability distributed model, as in GWAVA, that is designed to simulate
the land surface hydrological dynamics of continental scale river basins
with a daily water balance approach (Cloke and Hannah, 2011). It was
first developed by Arnell (1999) as a simple macro-scale hydrological
model which could be applied repeatedly over a large geographic
domain without the need for calibration at the catchment scale. The
model was significantly revised by Gosling and Arnell (2011) to produce
the Mac-PDM.09 version of the model. These revisions included:

a) the ability to calculate average hydrological output from n model
repetitions when forced with monthly data in order to account for
model stochasticity;

b) the ability to read observed values of the coefficient of variation of
daily rainfall, which was previously set as a constant 1.5, and;

c) the ability to read in daily climate data, rather than being forced by

monthly data.

Mac-PDM.09 operates on a 0.5° x 0.5° grid and does not attempt to
route runoff into channels. It therefore models runoff from two sources,
quickflow and slowflow, in mm/day on the earth’s surface, which if
necessary can be converted runoff to catchment-wide discharge values
for a given upstream contributing area. Mac-PDM also omits
anthropogenic influences on hydrology, thus modelling ‘naturalised’

flows, that do not take account of water abstractions or reservoir
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operational influences. The model uses gridded data for soil types and
land cover classifications, and calculates evapotranspiration using the

Penman-Monteith equation.

Despite the lack of anthropogenic consideration in Mac-PDM, the model
has been applied in many studies of water availability (e.g. Fung et al.,
2011) and water stress (e.g. New et al., 2011) which have used external
calculations of water requirements and compared them to Mac-PDM
runoff outputs. Mac-PDM has the advantage that it is a relatively simple
model, and can therefore be used when running large ensembles of
climate scenarios, such as those undertaken by Gosling et al. (2010)
and Arnell and Gosling (2014).

1.46 MPI-HM

The Max-Planck Institute Hydrological discharge Model (MPI-HM) is
another relatively simple macro-scale hydrology model. It consists of
the simplified land surface (SL) scheme (Hagemann and Gates, 2003),
which computes vertical water fluxes, and the hydrological discharge
(HD) model (Hagemann and Gates, 2001), that globally simulates the
lateral freshwater fluxes at the land surface (Chen et al., 2011). MPI-HM
was developed by Hagemann and Dumenil (1997) in order to improve
the hydrological balance module of the MPI ECHAM4 GCM. Several
approaches to model structure for the HD model were explored by
Hagemann and Dumenil (1997), the result of which was a three
component model that uses runoff, drainage and grid cell inflow as
inputs, to produce overland flow, baseflow and riverflow respectively.
The sum of these three processes gives the outflow of the cell, which is
routed using topography to create a flow direction map. The SL scheme
is used to produce the inputs for the HD model, which comprises the
main components of the hydrological cycle, including: separation of
precipitation into rain and snow; snowmelt using the degree-day

formula; potential evapotranspiration using the Thornthwaite formula;
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and evapotranspiration, runoff, infiltration and drainage according to the
ECHAM models (Hagemann and Gates, 2001).

Hagemann and Gates (2003) updated MPI-HM by developing an
Improved Arno (IA) scheme to simulate soil moisture capacity. The
original Arno scheme is very similar to the PDM, both of which assume
that the soil water capacity distribution within the grid cell starts at zero

and follows a continuous distribution defined by:

s_q (1" Y

-1 (1 ngaxj (E1.1)
where s/Sis the percentage of the grid cell area .Sin which the soil
water capacity is less than or equal to an assigned value Ws Wsmax iS
the mean soil water capacity of a model grid cell. The parameter b

defines the shape of the soil water capacity distribution curve.

The Improved Arno scheme adjusts this equation by allowing the
specification of a minimum local (subgrid) soil water capacity Wmi that
is not necessarily zero. Wnaxis the maximum local soil water capacity,
and Wac is the subgrid water content that corresponds to the fractional
saturation of s/5 of the grid cell, so that:

= Wmax ™ "act b
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The Improved Arno scheme also allows the b parameter to be modified
by an orographic shape parameter to account for the fact that on steep

terrain, the probability of soil water capacities reaching saturation is

higher (Hagemann and Gates, 2003).

147 PCR-GLOBWB

The PCRaster Global Water Balance Model (PCR-GLOBWB) also uses
the Improved Arno scheme for soil moisture calculation. PCRaster

(Wesseling et al., 1996) is the dynamic scripting language that the
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model is coded in; it uses spatio-temporal operators with intrinsic
functionality for constructing spatio-temporal models, and enables
efficient manipulation of raster-based maps. Van Beek and Bierkens
(2008) present the general outline of the model. Operating on a 0.5° x
0.5° grid scale, and daily time step, PCR-GLOBWAB consists of two
vertically stacked soil layers and an underlying groundwater layer, with
subgrid parameterisation used to represent tall and short vegetation,
surface water and the 1A soil moisture scheme. Runoff is routed using
kinematic wave theory, and the drainage network is taken from the
drainage direction map DDM30 (Sperna Weiland et al., 2010). The
model also calculates interception and snow storage (Wada et al.,
2011).

Like Mac-PDM, PCR-GLOBWRB calculates naturalised flows, and does
not consider anthropogenic water use, however van Beek et al. (2011)
adapted the model to include a surface water energy balance and
reservoir operation scheme to calculate green and blue water
availability. In part 2 of the same study, Wada et al. (2011) assessed
global water stress at the monthly time scale. Wada et al. (2010) also
used PCR-GLOBWAB alongside the Global Groundwater Information
System (GGIS) to estimate global depletion of groundwater resources.
Gruber et al. (2011) added four regions with significant glacier mass to
the model, in addition to the land masses of Greenland and Antarctica
in a fluid mass motion experiment. Sperna Weiland et al. (2012) used
PCR-GLOBWRB to make a thorough global assessment of the effects of
climate change on hydrological regimes and their associated
uncertainties. Sperna Weiland et al. (2010), in their study on the
usefulness of data from GCMs for hydrological studies, discovered that
PCR-GLOBWB showed good results in comparison with observed river
discharge data, however it performed less well in arid and mountainous

areas.
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148 VIC

The Variable Infiltration Capacity (VIC) model is perhaps the best
known model in this review selection; however both VIC and HO8 are
technically Land Surface Models (LSM) rather than GHMs. Land
surface models, which can be coupled to atmospheric models, tend to
describe the vertical exchanges of heat, water and sometimes carbon in
considerable details. GHMs however are traditionally more focused on
water resources and lateral transfer of water (Haddeland et al., 2011).
VIC has been extensively used for hydrological modelling, and has
been included in the Water and Global Change (WATCH) project Water
Model Intercomparison Project, as well as the Inter-Sectoral Impacts
Model Intercomparison Project (discussed in section 1.6). VIC, originally
developed by Liang et al. (1994), is a semi-distributed macro-scale
model that balances both the water and surface energy budgets within
a grid cell using a hybrid of physically based and conceptual
components (Trambauer et al., 2013). VIC simulates sub-grid spatial
variability in precipitation, land surface vegetation classes and soll

infiltration capacity statistically (Nijssen et al., 2001b).

It has developed from a single layer, to a three or more soil layer model
and has undergone several updates (Cherkauer et al., 2003, Bowling et
al., 2004, Bowling and Lettenmaier, 2010). VIC been adapted to allow
representation of water management effects (Haddeland et al., 2007,
Haddeland et al., 2006a, Haddeland et al., 2006b, Zhao et al., 2013)
including reservoir operation and irrigation diversions and return flows
(Gao et al., 2010). The model can be run as either a water balance or a
water and energy balance model, depending on the users’ purpose.
Running as just a water balance model simplifies the model and saves
on computational expense. It uses the Penman-Monteith method of
evapotranspiration calculation and the variable infiltration curve to
account for the spatial heterogeneity of runoff generation, which follows

the Arno conceptualisation (Gao et al., 2010). The runoff from each cell
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is combined using a routing scheme to produce daily and accumulated
monthly flows at selected points. The routing model allows for the
explicit representation of reservoirs (Trambauer et al., 2013). Mishra et
al. (2010) demonstrated that major historical drought events were
successfully identified and reconstructed using VIC model simulations.
Shrestha et al. (2013) showed that the VIC model performs well when
run with observed climate data, however when driven with GCM-derived
data, monthly maximum and minimum flow indicators showed
significant differences with observed values, which raises a question on
the capability of the model to predict extreme hydrological behaviour in
the future.

1.4.9 Other Models

There are several other LSMs that have been applied in global
hydrological research, including MATSIRO (Takata et al., 2003, Koirala
et al., 2010), HTESSEL (Balsamo et al., 2009), ORCHIDEE (de Rosnay
and Polcher, 1998), and JULES (Cox et al., 1999, Essery et al., 2003).
All four of these models, along with VIC, have been included in the
multi-model ensemble of Water and Global Change (WATCH) project
(Haddeland et al., 2011), and all except HTESSEL have been used in
the ISI-MIP fast track research project (Warszawski et al., 2014) (see
section 1.7). Independently, MATSIRO has been applied in projecting
global flood and drought risk with climate change (Hirabayashi et al.,
2008), HTESSEL has been developed into a global flood alert system
(Burek et al., 2012), and ORCHIDEE has been applied to simulate
discharge in the Amazon (Guimberteau et al., 2012) and infiltration
processes in west Africa (d'Orgeval et al., 2008). There are also
coupled biosphere-hydrological models such as DBH, and WEB-DHM.
Both DBH and WEB-DHM fully couple the biosphere scheme SiB2 with
geomorphology based hydrological models (Wang et al., 2009b, Tang
et al., 2007, Wang et al., 2009a).
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Each of these different GHMs, as has been discussed, have different
model structures, and so will output slightly different estimates of runoff
or discharge from their simulations. This is due to the inherent
uncertainty in hydrological modelling. All models - be they climate
models, hydrological models or even economic models - are merely a
set of equations attempting to express the behaviour and dynamics of
the system under investigation. Therefore, as models are a
manifestation of the authors understanding of this system, they are

subject to errors, assumptions and uncertainties.

1.5 Uncertainty and its Origins

The word “uncertainty” is closely coupled with such negative terms as
doubt, dubiety, scepticism, suspicion, mistrust and inconsistency
(Kundzewicz, 1995). However, uncertainties are an important aspect of
science, and needn’t be addressed with such negativity. Investigating,
quantifying and presenting uncertainties can drastically improve our
understanding of global change and can help relieve some of the

scepticism surrounding modelling studies.

Firstly, an understanding of the origins of uncertainties is necessary.
Figure 1.3 shows one classification of the differing types of uncertainty.
According to Smith and Stern (2011), there are at least four varieties of

uncertainty in studies of the impacts of global change:

Imprecision — or statistical uncertainty, is related to outcomes which
we do not know precisely, but for which we believe robust, decision

relevant probability statements can be provided;

Ambiguity — recognised ignorance, or scenario uncertainty, is related
to outcomes for which we are not in a position to make probability

statements;
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Intractability — is related to computations known to be relevant to an
outcome, but lying beyond the current mathematical or computational

capacity to formulate or to execute faithfully;

Indeterminacy — is related to quantities relevant to policy-making for
which no precise value exists. This applies, for instance, with respect to
a model parameter that does not correspond to an actual physical
guantity. It can also arise from the honest diversity of views among
people, regarding the desirability of obtaining or avoiding a given

outcome.

Imprecision is a challenge in communication. Science aims to quantify
imprecision and reduce ambiguity, but there is not always a clear
division between the two. Intractability makes reducing ambiguity
difficult from technological constraints, and sadly indeterminacy involves

seeking an answer that does not really exist.

In modelling studies, the origins of uncertainties can be visualised using
the structure of a tree, with a dense network of roots and a broad

canopy of leaves (see Figure 1.4). The roots of the tree represent all of

~

the uncertain aspects that the modeller feeds into the model.
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Figure 1.3 A classification of types of uncertainty. After Loucks et al. (2005).
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Figure 1.4 ‘The Modelling Tree’. A representation of the uncertainties within
a single hydrological model.

In hydrology models, these things include the equations that govern the
model (for example using the Penman-Monteith or the Priestley-Taylor
potential evapotranspiration equations); the soil and vegetation maps;
the values of parameters, such as vegetation height and field capacity;
the choice of the climate model for input data; and, the climate scenario
when projecting future change. Input data is a significant source of
uncertainty, as different values for precipitation data and other
climatological inputs will significantly impact the resultant runoff
simulations. Input data for the past and present is referred to as “forcing

data” and can be developed from observed records, individual climate
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models, or ensemble climate model averages. Input data for climate

projections is known as “driving data”.

All the uncertain aspects are fed into the model, are processed, and
lead to a variation of model outputs. Each different decision made at the
roots of the model tree will impact the output leading to a different
result, and there are, therefore, a huge number of potential model

“realisations” represented by the leaves of the tree.

As previously discussed, uncertainty has often been seen in a negative
light (e.g. Pappenberger and Beven, 2006). In response to this, Juston
et al. (2013) give seven reasons to be positive about uncertainty in
hydrological modelling: 1- we learn about data, 2 - we learn about
models, 3 - we produce more reliable and robust predictions, 4 - we
learn about the value of additional data, 5 - we can engender trust by
recognising and communicating uncertainties, 6 - we deepen academic

understanding, and 7 - uncertainty estimation is getting easier.

1.6 Uncertainty Analyses in Hydrology Models

Recently, investigating the uncertainty in global hydrology models has
received a lot of attention. To some extent, each of the sources of
uncertainty discussed in section 1.5 has been considered in previous
studies. However, research has largely focussed upon the model
structure (structural uncertainty), which is addressed by comparing one
model with another. Returning to the tree analogy, each tree represents
a single hydrology model and the uncertainties within that model. In
global hydrology research, as discussed in section 1.4, there are many
models available, so there are many trees. This indicates the scale of
the issue of uncertainty in global hydrology modelling; the potential
number of model outputs is as broad as the number of leaves in a forest

full of trees.

This section will review previous research on the uncertainties in global

hydrology models. Starting with the work that has been done on multi-
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model intercomparison projects (MIPs), this review will then go on to
outline previous efforts of global hydrology model sensitivity analysis

and parameter estimation experiments.

1.6.1 Multi-Model Ensembles and Model Intercomparison Projects

Studies investigating model structural uncertainty look at comparing
different hydrology models with each other and often form a multi-model
ensemble (MME). Multi-model intercomparison is a concept that has
been implemented in climate science since 1990 when the Atmospheric
Model Intercomparison Project (AMIP) was undertaken in order to
provide a standard experimental protocol for atmospheric general
circulation models. A framework was put forward for model diagnosis,
validation and intercomparison (Tebaldi and Knutti, 2007). This was
followed by the Coupled Model Intercomparison Project (CMIP, Meehl
et al. (2000)), which has recently completed its 5th phase (CMIP5) with
the World Climate Research Programme (Taylor et al., 2011). One
example of a pioneering climate model ensemble project is that of
climateprediction.net which was launched in 2003, and uses the idle
computer power of participating members of the public to run
ensembles of thousands of climate models with perturbed physics
(adjusted parameters). Using this method, climateprediction.net have
completed many projects, such as the BBC climate change project
(Frame et al., 2009), and have many ongoing projects such as
“‘weather@home”, which will focus on how climate change may affect
weather and the likelihood of extreme weather events. Other examples
of climate MIPs are the EU ENSEMBLES project (of 2004-2009), and
the ongoing QUMP (Quantifying Uncertainty in Model Predictions)
which is run by the UK Met Office.

In the field of hydrology, the Hydrologic Ensemble Prediction
Experiment (HEPEX) was launched in 2004 in order to explore a range
of issues with hydrologic model uncertainty, including: sources of

hydrological prediction errors; coupling meteorological model
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ensembles with hydrology model ensembles; community use of
ensemble forecasts; and how best to use ensembles as a decision
making tool (Schaake et al., 2007). The same year, the Distributed
Model Intercomparison Project was formulated to compare distributed
models among themselves, and also to a lumped model (Smith et al.,
2004). DMIP was run for the US, and included twelve catchment scale
models, including VIC, SWAT and WATFLOOD. The project protocol
specified three river catchments (the EIK, lllinois and Blue Rivers),
provided the forcing data, catchment data (e.g. topography, soil texture
and vegetation data), gauge data, and outlined the analysis strategy.
The results of the project are published in a special edition of the
Journal of Hydrology (vol. 298). One of the key findings was that factors
such as model formulation, parameterization, and the skill of the
modeller can have a bigger impact on simulation accuracy than whether
or not the model was lumped or distributed (Reed et al., 2004). They
also found that on average, calibrated models outperformed
uncalibrated models during both the calibration and validation periods,
and that defining reasonable parameters a priori from the physical
characteristics of a watershed is more difficult than defining reasonable
parameters for a conceptual lumped model through calibration (Reed et
al., 2004). Finally, they found that models that combine techniques of
conceptual rainfall-runoff and physically based distributed routing
consistently showed the best performance.

More recently, Phase 2 of the Distributed Model Intercomparison
Project (DMIP2) was completed. This project focused on the Oklahoma
region and included 16 models: 14 distributed and 2 lumped. The two
lumped models were used to define a robust benchmark for evaluating
the improvement of distributed models compared to the lumped models
(Smith et al., 2012a). The results of this experiment showed that
distributed models can account for spatial variability in basin features
and precipitation, while successfully preserving the water balance. They

also found that the data used in calibrating the models must be
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stationary and unbiased, and in general, distributed models provided an
improvement on hydrograph simulations compared to lumped models
(Smith et al., 2012hb).

The DMIP studies evaluated model performance in comparison with
observed data, and did not evaluate the deviations of model simulations
with climate change projections. Velazquez et al. (2013) carried out
such an investigation on four catchment models in two humid, mid-
latitude catchments in Québec and Bavaria. Their results showed that
the choice of hydrological model strongly influenced the response of
hydrological indicators to climate change, especially in the case of low
flows, whereas high flows showed less sensitivity to model choice. The
choice of models was deliberately broad, ranging from conceptual and
lumped to process-based and fully distributed, however a small sample
of 4 models does not encompass the broad range of model structures in
existence. Najafi et al. (2011) conducted a similar experiment,
comparing three lumped and one distributed model, however they also
investigated the uncertainty derived from the choice of climate model
used for input data to drive the hydrological model. They found that the
uncertainty derived from the choice of hydrology model was much
smaller than that derived from the choice of climate model, except
during the dry season, and concluded that the choice of hydrology
model is important when assessing the impact of climate change on

hydrology.

Gosling et al. (2011) conducted a comparative analysis of one global
and six catchments scale hydrological models, for six catchments
across the world. They used the models to project the impacts of
climate change on annual average runoff, and extreme flows with seven
different GCM inputs. In this study, each catchment model was used to
simulate one of the six catchments, whilst the global scale model was
used to model all catchments, and was compared to each catchment

model individually. The results from this study agree with those of Najafi
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et al. (2011) in that the differences in projected changes of mean annual
runoff, as well as extreme high and low flow indicators between the
global and catchment models, were generally relatively small in

comparison to the range of projections across different GCMs.

The Water and Global Change (WATCH) - Water Model
Intercomparison Project (WaterMIP) was a very comprehensive
intercomparison project, and was the first international project to
develop a multi-model ensemble for global hydrology models. It was
coordinated by the Natural Environment Research Council - Centre for
Ecology and Hydrology in the UK. Being either semi-or fully distributed
across the globe, GHMs require significant computational resources,
and so comparison of such models has not been feasible until recently.
WaterMIP included 11 global models: 6 Land Surface Models and 5
Global Hydrology Models, which was later extended to 13 models. As
part of the project WATCH released a forcing data set for the period
1901-2001, and a driving data set for the years 2001-2100. All data and
modelling for the project was done on a 0.5° x 0.5° grid scale. The
WATCH project consisted of a thorough analysis of global water
availability, made up of many individual research projects that ranged
from estimating water use in energy and manufacturing (Vol3 and
Florke, 2010), to investigating the processes that impact runoff
generation in Northern Latitudes (Blyth, 2009).

One aspect of the WATCH project was to perform an intercomparison

between the models.

Figure 1.5 shows the range of thirteen model outputs for six major river
basins when simulating past runoff for the years 1985-1999. These
graphs show that between models, runoff simulations can vary quite
significantly and that there is more uncertainty in some catchments than
in others. For example, the Brahmaputra River shows quite a small
deviation about the ensemble mean, but the Murray-Darling

demonstrates a wide range between the model simulations. In absolute
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terms, the range of the Murray-Darling is smaller than that of other
catchments, as it is a low flow catchment, but in percentage terms it
shows significant uncertainty. These graphs also highlight that the
range between models tends to be bigger during months of high flow,
especially in very strongly seasonal catchments. Harding and Warnaas
(2011) explain that interestingly, the two different types of models
(GHMs and LSMs) did not group together in over-estimation and
underestimation, except in areas where snow is a major influence.
Haddeland et al. (2011) compared the models on an annual timescale
with observed records, and showed that most models overestimate
runoff in semiarid and arid basins. This can in part be explained by
water abstractions in these areas, since the models were all set to
simulate naturalised flows for this comparison project, but the
overestimation could also be explained by the lack of the models’
consideration of transmission loss along river channels and re-

infiltration and subsequent evaporation of surface runoff.
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Figure 1.5 Multi-model total runoff monthly mean in mm per day for six of the
world’s major river basins for the period1985-1999. The shaded area
represents the range of the thirteen models. The continuous blue line is the
ensemble mean (Harding and Warnaas, 2011).
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The global average runoff fractions of HTESSEL, JULES and MATSIRO
were all lower than the other models, and GWAVA, LPJmL and
MacPDM gave similar results, which were slightly higher than the
others. Globally ORCHIDEE predicts the highest runoff fraction, and
HO8 and VIC are closest to the GHMs out of all of the LSMs.

WATCH also projected future global hydrology and assessed available
water resources. One of their key findings was the map displayed in
Figure 1.6. This map was an amalgamation of results from eight GHMs
and 3 GCMs, and shows the projected changes in available water
resources for the years 2071-2100 compared to 1971-2000. The map
shows that Europe is the largest area projected to experience the
largest proportional decline in water resources this century. The Murray-
Darling catchment in Australia, as well as the Okavango in Africa and

the Pearl River in China will also have their water supply halved by

2071-2100. The Mississippi will also see a significant decrease.

+50% +20% +10% +5% -5% -10% -20% -50%

Figure 1.6 Changes (2071-2100 compared to 1971-2000) in available water
resources projected by an ensemble of eight global hydrology models using
data from three global climate models. The available water resources were
derived by taking into account the total runoff for selected large-scale river
basins minus an estimate of the environmental flow requirements in the
respective basins. Taken from (Harding and Warnaas, 2011)
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Many catchments are expected to have increased water supply, with
the largest increases (>50%) in the high latitudes. South America,
central Africa and all Russian catchments will have increased water
supply. These are just a few of the research findings of the WATCH
project.

WATCH ended in 2011 and soon afterwards, the Inter-Sectoral Impacts
Model Intercomparison Project (ISI-MIP), which is coordinated by the
Potsdam Institute for Climate Impact Research (PIK), began in 2012
with a one year fast-track project. The second phase, ISI-MIP2, was
launched in May 2013 and is planned to last 4 years. The Fast Track
(FT) project has contributed outcomes to the IPCC’s Fifth Assessment
Report (AR5), and results have been published in a special edition of
PNAS (Vol. 111, issue 9, 2014). The ISI-MIP FT brought together 28
global impacts models from five different sectors: water, biomes,
agriculture, health (malaria) and coastal infrastructure. The 12
hydrology models included in the study were: LPJmL, JULES, VIC,
HO8, WaterGAP, Mac-PDM.09, WBM, MPI-HM, PCR-GLOBWB,
MATSIRO, DBH and ORCHIDEE (Warszawski et al., 2014). Much of
the framework for ISI-MIP FT was already in place due to the WaterMIP
project, which allowed for the speed of the one year project. Climate
data made use of the CMIP5 GCMs, and covered the years 1960-2099

at 0.5° x 0.5° spatial resolution.

Prudhomme et al. (2014) investigated the uncertainties in hydrological
drought projections for the 21st century. In the context of drought, their
results contradict those of Gosling et al. (2011) and Najafi et al. (2011),
as they determined that the uncertainty due to GHM choice is greater
than that for global climate models, and that the different
representations of terrestrial water cycle processes in GHMs are
responsible for much larger uncertainty in response of hydrological
drought to climate change than previously thought. The JULES model,

which is the only model that accounts for the dynamic response of
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plants to CO2 and climate, and so allows vegetation to grow in
response to its environment, simulates little or no increase in drought
frequency, whereas other models showed maximum drought severities

up to and exceeding a 40% change in regional deficit index.

Figure 1.7 shows the change in Regional Deficit Index (% of area under
drought conditions) from 7 GHMs and 5 GCMs for 17 regions across
the world for 2070-2099 compared to 1976-2005. This figure shows that
average changes vary between no change (Eastern Africa) and 28%
increase (central Europe) with five regions projected to experience at
least a 20% increase in Regional Deficit Index: South and Meso-
America, Caribbean, and Central and Western Europe. The greatest
uncertainty is in Eastern Europe, South and Southeast Asia and
Eastern Africa). Figure 1.7 highlights the discrepancy between JULES
and the other GHMs. Schewe et al. (2014) used an ensemble of 11
GHMs to assess water scarcity under climate change. They found that
both GHMs and GCMs contributed to uncertainty in the ensemble
projections, and that GHM uncertainty is particularly high in regions

affected by declining water resources.

Figure 1.8 shows two maps which present the uncertainties in the study
performed by Schewe et al. (2014). The top map shows the change in
annual mean discharge at 2°C, and the darker the colour, the better the
agreement among models. This shows that there is high confidence
that there will be a significant reduction in discharge across the
Mediterranean, and in southern America. On the other hand there is
good agreement that there will be substantial increases in discharge in
the high latitudes, in India and Bangladesh, and also across Ethiopia,
Somalia and Kenya. The bottom map shows the ratio of GCM variance
to total variance, so areas with high values (in blue), show where the
GCM variance was higher than the GHM variance, whilst areas in red
show where GHM variance was higher.
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Figure 1.7 Mean percentage changes in regional deficit index (RDI) between
30 year simulations of reference (1976-2005) and future (2070-2099) under
RCP8.5 for 17 world regions. Values are averaged over all of the MME
members (All), by GCMs (central block) and by GHMs (bottom block). Taken
from Prudhomme et al. (2014) Regions read: North, Meso and South America
(NAm, MAm, SAm), Caribbean (Car), Western, Central and Eastern Europe (WEu,
CEu, EEu), Central, East, South and Southeast Asia (CAs, EAs, SAs, SEAS),
Australia and New Zealand (ANZ), Western, Central, Southern and Eastern Africa
(WATf, CAf, EAf, SAf) and Western Indian Ocean (WIO).

The fact that the bottom map is predominantly blue indicates that on the
whole, the variance in the GCMs outweighs that of the GHMs, but there
are distinct regions where GHM uncertainty is high, which seem to be
mostly in the tropics. These results, along with those of Prudhomme et
al. (2014) suggest that for annual mean discharge, GHM uncertainty is
generally smaller than GCM uncertainty, however for drought
prediction, the choice of hydrology model plays a larger role in the
model result.

Studies such as this give us information about the confidence we can
place on models; however, in many cases, these comparisons are
being made before the uncertainties within one model have been
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thoroughly assessed. In the concept of the tree, MMES compare one
tree with another, but this is done by just plucking one leaf per tree and
comparing them. The following subsection outlines current research
progress in assessing the uncertainties within single models, the

concept of comparing several leaves from the same tree.
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Figure 1.8 Relative change in annual discharge at 2°C compared with present
day, under RCP8.5. Upper: Colour hues show the multimodel mean change
and saturation shows the agreement on the sign of change across all GHM-
GCM combinations (% of models agreeing on sign of change). Lower: Ratio of
GCM variance to total variance; in red areas, GHM variance predominates, in
blue areas GCM variable predominates. GHM variance was computed across
all GHMs for each GCM individually, and then averaged over all GCMs; vice
versa for GCM variance. Greenland has been masked. Taken from Schewe et
al. (2014).
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1.6.2 Single Model Uncertainty Estimation

As shown in Figure 1.4, there is significant uncertainty within each
individual model. A few studies have attempted to address these
uncertainties, though due to the computational requirements of such
investigations most have been fairly basic. The advantage of MIPs,
such as those that have been discussed, is that different GHMs are
developed and run at different institutions, thus spreading the
computational load. The most common method of assessing the
uncertainties within a model is to run the model with many different set
ups, e.g. using different equation settings, or with different model
parameter values, which places significant demand on the
researcher/research group and the computational facilities available to

them.
Beven (2012) outlines the steps in developing a hydrological model as:

1. The Perceptual Model: Deciding on the processes

2. The Conceptual Model: Deciding on the equations

3. The Procedural Model: Getting the code to run on a computer
4. Model Calibration: Determining values for the parameters

5. Model Validation: Confirming applicability and accuracy

Steps 2 and 4 are significant sources of uncertainty. Deciding upon the
eguations to use in the model is often a subjective preference, but can
be influenced by the amount of the data required. For example, the
Penman-Monteith method of evapotranspiration calculation requires
many more observed variables than the simpler Priestley-Taylor
method. Since the availability of such data sets is becoming more easily
accessible, the Penman-Monteith method is currently the more popular
of the two in GHMs (see Table 1.1), but many catchment and global

scale models still employ the Priestley-Taylor method.

Obtaining values for model parameters is mostly achieved using

observed data sets. This is applicable to soil and vegetation
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parameters, such as vegetation height and hydraulic conductivity.
However, the spatial distribution of models, particularly for global
hydrology models, requires that observations represent large areas.
Therefore, parameter estimation often requires generalisation of
observed values to the model’s spatial scale. Even then it is of course
Impossible to measure parameter values for every grid square across
the catchment, or even the globe, so parameters are ascribed to certain
vegetation or soil classifications. The issue with this is that the modeller
is then assuming that these classifications are consistent regardless of
spatial location, in GHMs for example, crops in eastern Asia have the
same physical properties (height, leaf area index, stomatal conductance

etc.) as crops in the USA.

On top of this, many models contain parameters that do not have a
physical meaning, such as the spatial variability of soil moisture
capacity parameter (b, in equation 1.1), and so cannot be estimated
using observed data. In this situation, parameter values may be taken
from the literature, where other models may have used the same
equations, or they may be estimated and then optimised. Optimisation
is a method of model calibration. Calibration usually requires
observations of the catchment response; the modeller will run repeated
simulations of the model, adjusting the values of the parameters
between each run and compare the results with the observed record.
The modeller may do this manually, or may use a computerised
algorithm until some ‘best fit' parameter set has been discovered
(Beven, 2012). This process can vary significantly in complexity, from a
few parameters varied individually in tens of adjustments, to all
parameters varied simultaneously in hundreds or thousands of
adjustment sets (known as “model realisations”). Varying parameters in
this way not only provides an optimum set (or several sets) of
parameter values, but also provides an indication of the uncertainties in
the choice of parameter values, as different sets of parameter values

may produce similarly ‘good’ simulations when compared to
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observations. This concept is known as “equifinality” (Beven, 2006a),

and will be discussed further in Chapter 3.

In catchment hydrology, investigations into single model uncertainty
have been fairly advanced and thorough. Catchment models have
several advantages over global models that have enabled such rigorous
analysis: they are usually quicker to run, and have smaller input and
output files than global models; they cover a smaller spatial domain, so
are likely to have fewer land cover classes and soil classifications to
parameterise; and catchment modelling is in a more advanced stage of
research than global hydrology modelling, due to its earlier introduction.
Nevertheless, global hydrology models have been subjected to a range

of calibration assessments and uncertainty analyses.

In 1998, Vorosmarty et al. investigated the impact of different potential
evaporation (PE) functions on the Water Balance Model (WBM). They
applied 11 different methods to simulate the annual streamflow for 679
gauged watersheds in the United States. The 11 methods covered both
reference surface (e.g. Thornthwaite, Penman, and Hamon), and
surface cover dependent (e.g. Priestley-Taylor and McNaughton and
Black) algorithms. They found that for reference surface methods,
simulated PE varied from approximately -100 to +100 mm yr, whilst for
surface cover dependent methods the range was much smaller (-50 to
+50 mm yrt). Among individual methods, they found that by using
different PE estimation methods, PE estimates can differ by hundreds
of millimetres, with the largest differences seen in hotter, drier climates
where PE is the highest. Vérosmarty et al. (1998) concluded that for
contemporary climates, the Hamon method gives good results, however
for climate change projections, the more theoretical surface cover
dependent methods are more suited than the reference surface

methods.

Gosling and Arnell (2011) also investigated the impact of potential
evaporation method, along with parameter adjustments for the



Global Hydrology Modelling and Uncertainty 39

parameters b and FCin the GHM Mac-PDM.09. As previously
discussed, the b parameter defines the degree of variability in soll
moisture capacity across the grid cell. FCrepresents the field capacity
of each vegetation type, which is determined from the soil texture.
Gosling and Arnell (2011) used just two PE methods, Priestley-Taylor
(PT) and the Penman-Monteith (PM), and a low and a high value for
each of the parameters such that 4 ranged from 0.3 to 0.8 (original
value 0.5) and FCranged from 1.2 to 0.8 (original value 1). They
simulated 14 parameter perturbations. They found that of the three
parameters investigated, simulated runoff was least sensitive to FC, with
a less than 20% change. Runoff is slightly more sensitive to b, with the
biggest effects in catchments with low runoff. By far the greatest
influence on runoff was with the change in PE method. In dry regions,
the PT method produced positive runoff anomalies of around 20-60%
relative to the PM method, with the reverse trend in wet regions. This is
not surprising given that the two methods include different
meteorological variables, and that humidity is not present in the PT
method (Gosling and Arnell, 2011).

The b parameter is also investigated in the calibration of the
WaterGAP2 model by Alcamo et al. (2003), though in this study, the
parameter is referred to as y. Alcamo et al. (2003) attempted to
calibrate the model to discharge stations at 724 locations across the
globe for the years 1980-2010 (depending on data availability), by
varying the b parameter. The aim was to limit the difference between
the modelled and measured long-term average discharge over the
calibration period to 1%. They found that by varying the b parameter
between 0.3 and 3 (their estimate of the physically plausible range), a
1% difference was only achieved in 385 of the basins. In 201 of the
basins, which were mostly snow-dominated areas, the model
underestimated the discharge, perhaps due to measurement errors in
the amount of snow, and in the other 138 basins, the model

overestimated the discharge, due to transmission loss, and evaporation
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from ponds. These errors were corrected using runoff coefficients using

a multiple linear regression approach.

The variable infiltration parameter in VIC was targeted for calibration by
Nijssen et al. (2001b), along with other soil hydrological properties of
the depth of the second soil layer, the saturated hydraulic conductivities
and the exponents for the unsaturated hydraulic conductivity in the first
and second layers. Nijssen et al. (2001b) manually calibrated the model
using five climatic zones and nine basins to match the total annual flow
volume and the shape of the mean monthly hydrograph. The infiltration
parameter and the depth of the second soil layer were ascribed a
uniform value for all grid cells in a given climate zone. The remaining
parameters were changed from their original spatially varying values

using a regionally uniform multiplier.

They found that the infiltration parameter tended to be smallest in the
arid climates, in an effort to reduce runoff production, and that the soll
layer depth was smallest in the arctic. Nijssen et al. (2001b) then
transferred the calibrated parameters to thirteen further basins, using
the parameters for each cell from the relevant climatic zone calibration.
This process was found to improve the simulated flow in six basins,
gave little or no change in three basins, and resulted in worse
simulations in four basins. Three of the four poorly modelled
catchments were in the western Russian Arctic (Ob, Pechora and
Severnaya Dvina), and had considerably higher precipitation than the
basin immediately to the east (Yenisei), which was in the original 9, so
they were recalibrated during the second round using an additional set
of parameters. Once applied globally, the parameterisation led to an
increase in global annual runoff of 9.4% and a reduction in

evapotranspiration of 5%.

WaterGAP2 was again assessed by Muller Schmied et al. (2014) in an
investigation into a variety of sources of uncertainty. Muller Schmied et

al. (2014) considered five major sources of uncertainty: climate forcing,
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land cover input, model structure, consideration of human water use
and calibration (or no calibration). They developed a single variant of
the WaterGAP2.2 model in each case, to investigate the sensitivity of
the water fluxes and water storage variations of the variants compared
to the standard version of the model. In the climate variant, the monthly
dataset was adjusted from the standard WATCH forcing dataset was
swapped for the CRU TS 3.2 with GPCC v6 monthly precipitation totals.
In the land cover variant, the MODIS land cover data was swapped for
the GLCC and CORINE datasets. Structural adjustments involved
removing the various model improvements that have been implemented
in the past decade, including the reservoir operation algorithm of Déll et
al. (2009), and the variable flow velocity algorithm of Verzano et al.
(2012). The no-calibration version of the model was an uncalibrated
simulation with the standard version of WaterGAP 2.2. The calibration
approach involved again adjusting the runoff coefficient (4/y), within the
limits of 0.1 and 5.0, and if necessary two additional correction factors.
The no human water use variant reflected naturalised water flows and

storages without the impact of human water use.

They found that the calibration of the model to 1319 gauging stations
had the highest effect on the modelled water fluxes and led to the best
fit of the modelled monthly and seasonal river discharge to the
observed record. Adjusting the climate forcing had the second highest
effect, and was stronger than that of alternative land cover inputs. The
adjustments to the model structure showed that the modern version of
the model has an improved fit to observed discharge. The structure
affected globally averaged fluxes and storage values but the
contribution of change is from a small number of grid cells. Human
water use proved important for the global water storage trend, but the

impacts on water fluxes were localised to areas of high water use.

A much more comprehensive approach was adopted by Wisser et al.
(2010) in an assessment of the water balance model (WBM). Wisser et
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al. (2010) carried out a Generalised Likelihood Uncertainty Estimation
(GLUE, see (Beven and Binley (1992), Freer et al. (1996))) experiment
which aimed to assess the impact of variations in model parameters on
simulated discharge by randomly sampling the parameters within a
predefined range, and by then running a large number of model
simulations with different parameter sets. They applied this method to
the Mississippi and Danube catchment for three model parameters, and
found that the y parameter, that determines the fraction of excess
rainfall that fills a runoff detention pool or that becomes runoff instantly,
was the most sensitive parameter, along with SF, that partitions
precipitation to rainfall and snowfall. However, they concluded that the
impact of variations in y, SFand £ (that controls the outflow from the

runoff pool) on annual values of predicted discharge were minimal.

Sperna Weiland (2011) carried out a similar investigation on the PCR-
GLOBWB model. Their experiment included 10 model parameters and
used a Latin Hypercube Sampling method (see Chapter 3) to sample
250 model realisations. Sperna Weiland (2011) eliminated 95% of these
250 realisations, to leave the 12 remaining best parameter
combinations for each of 5 river catchments (Amazon, MacKenzie,
Mekong, Murray and Rhine). They did not investigate the sensitivities of
individual model parameters in detail, and do not present the parameter
values that produce the “best” model simulations when compared to
observations. However, they determined that for all catchments except
for the Amazon, the uncertainty ranges of the LHS ensemble enveloped

the measured discharge data.

These papers reveal that most of the calibration and parameter
uncertainty experiments carried out on global hydrology models have
been focused on the potential evaporation method and the soil moisture
storage capacity parameter. Perhaps due to computational constraints,
in depth sensitivity and uncertainty analyses have yet to be carried out

on global hydrology models. This should ideally be addressed before



Global Hydrology Modelling and Uncertainty 43

GHMs are used in model intercomparison projects, as it seems
premature to investigate the uncertainties derived from differing models
before the uncertainties within a single model have been thoroughly
examined. In the analogy of the tree, you want to be sure that you have
plucked a leaf that is representative of that tree’s canopy (see Figure

1.9), before you compare it with leaves from other trees.

Figure 1.9 Two leaves plucked from the same fig tree. Image posted by
Encanto Farms Nursery on the figs4funforum.websitetoolbox.com, permission
granted.

1.7 GHM Uncertainty in Policy Documents

Presenting uncertainty is very challenging, and in the context of policy
documents where confidence in research findings is required for
decision making, diagrams, graphs and language must be considered
very carefully. The Intergovernmental Panel on Climate Change (IPCC)
have been leaders in the challenge of uncertainty presentation.

They have been both praised and criticised for their use of verbal
probability labels, such as Likely (66-100%), and Extremely Likely (95-
100%) in their reports (e.g. Budescu et al., 2009). In hydrology
projections, the IPCC have used novel mapping methods to display the
agreement between multi-model ensembles. In the fourth assessment
report (4AR) (IPCC, 2007), runoff maps were displayed with stippling in

the regions where 80% of models agreed on the sign of change. Whilst
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this method was quite easy to interpret, it only allowed for one distinct
level of certainty to be displayed with a stipple/no stipple divide.

In the more recent fifth assessment report (5AR) (IPCC, 2014), the map
presented by Schewe et al. (2014) (shown in the upper map of

Figure 1.8) is reproduced. This map uses the colour scheme of Kaye et
al. (2012), who recognised the need for care when producing bivariate
maps, as they can be very difficult to interpret. This scheme uses both
colour and saturation very effectively to display the pattern of change as
well as grades of (un)certainty associated with the data. The IPCC 5AR
mentions that GCM uncertainty, and scenario uncertainty, is generally
higher than that of hydrology model uncertainty and hydrology model
parameter uncertainty, however they refer to catchment hydrology
models, and do not mention the uncertainties in GHMs. Similarly the
IPCC Special Report on Extreme Events (SREX) (IPCC, 2012)
discusses the uncertainties derived from hydrological model choice, but

does not mention parameter uncertainty.

In the WATCH project, multi-model ensembles are well addressed, and
are presented in the Outreach Report (Harding and Warnaas, 2011).
The graphs shown in Figure 1.5 are taken from the Outreach Report,
and they clearly demonstrate the range of model outputs that can be
achieved from a multi-model ensemble. However, the spatial
distribution of this uncertainty is not demonstrated, and further maps of
water resources do no give uncertainty bounds. The Outreach Report
states that “we must appreciate the uncertainty in model projections and
we must maintain a culture of on-going model improvement”, and that
“recognising potential [of the WaterMIP project] to improve models, to
quantify uncertainty within them, and to provide a valuable framework
for future global water-cycle work, [WaterMIP] quickly became a major
output of WATCH”. However, the quantification of uncertainties is
severely lacking in the Outreach Report, so decision makers would be
required to sift through the projects archive of technical reports and
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resultant peer reviewed journal articles. As with the IPCC reports,
parameter uncertainties are not discussed in detail by the WATCH

literature.

Another example of the use of hydrology models for policy is the AVOID
project which sought to provide scientifically robust, policy-relevant
answers to questions directly related to the UN Framework Convention
on Climate Change (UNFCC) to “prevent dangerous anthropogenic
interference with the climate system” (AVOID, 2014). The outputs from
this project are divided into: Flyers and Presentations; Papers; Reports;
and Media Kit. The Media Kit (which is aimed at journalists) does not
mention uncertainty. Uncertainty in climate models is considered in the
longer reports, but hydrology model uncertainty is not mentioned. For
example, in the report on the implications of climate policy for avoided
impacts on water and food security (Arnell et al., 2010), only one GHM
was applied (Mac-PDM.09) and the parameter and structural
uncertainties within the GHM are not discussed. By contrast, 21 GCMs
were applied in this study, with the results from each GCM examined in

detail.

Presenting uncertainties is quite a challenge. Policy makers have
previously been presented with the results from one calibration of a
hydrology model, or perhaps a range of up to a dozen models, as part
of a multi-model ensemble. Further information on uncertainty
estimation can sometimes be found deeper in the project literature, but
it is not easy to come by. Parameter uncertainty experiments can
contain several hundred or even several thousand model realisations,
so choosing which models to present, and how to present them, is an
important aspect of uncertainty studies. Presentation of perturbed
parameter ensembles could be displayed in many ways including as a
mean, a probability statement, or a total range. Appropriate
representation of uncertainties is essential to maintain the usefulness of

models and not induce doubit.
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1.8 Summary

Hydrology modelling is an important means of understanding the
hydrological cycle, and dates back to Mulvany’s first attempt to predict
the peak of a hydrograph in 1850. However, holistic catchment
modelling was first introduced in the 1960’s and several models quickly
developed with advances in computational capabilities. Global
hydrology modelling is especially computationally demanding, and did
not take off until the 1990’s. There are currently 8 commonly used
global hydrology models, which vary quite significantly in structure and
ultimate purpose. Being such a recent area of research, global
hydrology modelling remains a very uncertain science. Studies to
compare different GHMs have been undertaken in the past few years,
but investigation into the uncertainties inherent within one global
hydrology model has been neglected. Assessments of a full range of
model parameters, including land cover and soil parameters have yet to

be done.

1.9 Research Questions

The aim of this thesis is to address the issue of uncertainties within a

global hydrology model by analysing parameter uncertainties.
Based upon this aim, three research questions have been developed:

Research Question 1: How can uncertainties within global

hydrology models be assessed and quantified?

As previously discussed, this is a significant research gap in global
hydrological science. Whilst common in smaller scale catchment
models, uncertainty analysis in global models has been largely
neglected. As such, this is the primary research question for this thesis.
Uncertainty experiments are computationally demanding and so the
feasibility of conducting such experiments as part of the calibration

process is an important consideration. Different methods of uncertainty
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estimation will be evaluated, and techniques to increase the efficiency
of these methods will also be examined.

Research Question 2: What is the feasibility of including rigorous
uncertainty estimation experiments in the global hydrology model

calibration process?

Uncertainty experiments are notoriously computationally demanding.
Whilst in an ideal world, all models would be thoroughly assessed and
carefully calibrated before their publication, this may not be feasible.
Currently, global hydrology models undergo basic calibration
procedures and are then released for use in research. Following the
findings of the first research question, which will demonstrate the
methods that are available, this research will investigate the potential of
applying such techniques to other models in order to determine the
overall feasibility of uncertainty estimation experiments in the field of

global hydrological research.

Research Question 3: To what extent are “global” hydrology

models fit for purpose?

This research question seeks to use the findings of the first research
question to query whether global hydrology models are being used in
an appropriate way. Further questions that will help answer this include:

a. How can models be evaluated and validated?
b. How do global hydrology models perform in a catchment context?

c. Are the uncertainties in global hydrology models acceptable?
Ultimately, models may be highly uncertain, but they can still be useful.

1.10 Thesis Structure

This thesis is made up of five empirical chapters, followed by a

discussion and a conclusion, as follows:
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Chapter 2 - gives an in depth description of the chosen model, Mac-
PDM.09. This chapter also introduces the study catchments and details
work done updating the vegetation and soil maps used by the model.
Chapter 3 - explores methods for assessing uncertainties in modelling
studies, and more specifically parameter estimation.

Chapter 4 — presents the results of a Generalised Likelihood
Uncertainty Estimation experiment for Mac-PDM.09.

Chapter 5 - investigates the potential for using global hydrology models
as catchment models.

Chapter 6 - applies the results from this experiment to an alternative
input data set as a validation exercise, and then discusses the results
from Chapters 4, 5 and 6 in the context of one other.

Chapter 7 - discusses some of the issues involved in global hydrology
modelling and highlights some potential future research, including
sensitivity analysis and the presentation of uncertainty to policy makers.

Chapter 8 - reviews and conclude this thesis.



Chapter Two:

The Macro-Scale—Probability-
Distributed Moisture Model .09
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2.1 Introduction

A global, or macro-scale, hydrology model (GHM) is capable of
simulating the hydrology of the world without the constraints of
catchment boundaries, and they are commonly applied on a gridded
basis. In order to investigate the parametric uncertainties inherent in the
field of global hydrological research, a GHM must first be selected for
analysis. As discussed in Chapter 1, previous work has explored the
uncertainties derived from different models, yet the uncertainties within
one model have yet to be determined. Therefore, one model, Mac-
PDM.09, has been selected for interrogation in these experiments. This
chapter justifies the choice of the Mac-PDM.09 model over the other
popular models available (see Table 1.1) and details on the model’s
structure and parameters are provided. Updates to the soil and
vegetation maps, which constitute a new version of Mac-PDM (Mac-
PDM.14), are described here. The study catchments that were
investigated throughout this study are presented and the collection of
both climatological data for model inputs and river discharge data for

model validation is also reviewed in this chapter.

2.2 The Mac-PDM.09 Model

The Macro-scale—Probability-Distributed Moisture model (Mac-PDM)
was chosen for this study. First developed by Arnell (1999), MacPDM
was based upon the Probability Distributed Model (PDM) of Moore
(1985). Since 1999, a revised version of Mac-PDM was presented by
Arnell (2003), before the current version (Mac-PDM.09) was published
by Gosling and Arnell (2011).

In comparison with many of the other global hydrology models
available, Mac-PDM.Q9 is a relatively simple model, which makes it
ideal for the uncertainty analyses in this study. Mac-PDM.09 focuses on
natural hydrological processes and does not account for anthropogenic
influences on global hydrology, or attempt to estimate water scarcity:
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this limitation is discussed later (see Chapter 4.4). A full description of
the model is given here, followed by a discussion of some of its
limitations. The use of Mac-PDM.09 for this study is then justified.

Written in the FORTRAN programming language, Mac-PDM.09 runs on
a daily time-step using either monthly or daily climate data (for monthly
data Mac-PDM.09 disaggregates some variables to a daily time-step
using a stochastic weather generator) (Gosling and Arnell, 2011). Daily
input data has been applied throughout this study. The model is
capable of using climate data from a variety of sources by employing
the appropriate sub-routine on the start-up of the model. The climate
input variables required are: precipitation; number of wet days (for
monthly input data); temperature; relative humidity or vapour pressure;
net radiation (or cloud cover); and wind speed. Soil and vegetation data
are also required in the form of spatial gridded data. The model can run
on a range of resolutions from 10 x 10 min to 2° x 2°; in this study it has
been run on a grid of 0.5° by 0.5°, totalling 67420 cells of land globally.

The basic structure of the Mac-PDM.09 model is shown in Figure 2.1,
and, like all other water balance models, can be described with the

following equation:

St — Pt _AEt — Dt — Qt + St—l (E2.1)

Where P:, AE:, Dt and Q: are precipitation, actual evaporation, delayed
runoff and direct runoff during time interval t, respectively, and St.1 and
St are storage in the soll, lakes and wetlands at the beginning and end
of the time interval (Arnell, 1999).

The following description of the components of the Mac-PDM.09 model
is largely based upon that given by Gosling and Arnell (2011), with
further information on the PDM soil moisture storage as described in
Moore (2007).
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Figure 2.1 Schematic of the Mac-PDM.09 global hydrology model. Arrows
represent hydrological process equations. Black arrows indicate the routes of
water to produce runoff.

A list of the parameters used by Mac-PDM.09 is displayed in Table 2.1.
Explanation of the use of these parameters by the model is integrated

into the model description below.

2.2.1 Precipitation and Snowmelt

Below a certain temperature threshold (thresh, held at 0°C in this study)
precipitation falls as snow, and snow that is stored on the land’s surface
begins to melt. Once snow begins to melt, it does so at a constant rate
per degree per day, as defined by the model parameter xmelt. When
downscaling monthly precipitation to daily precipitation, the parameters
CVrain (coefficient of variation of daily rainfall), and SDtemp (standard
deviation of daily temperature from the mean) are used. Mac-PDM.09
does not include a glacier component, nor the effect of the seasonal
freezing and melting of permafrost. The model assumes that input
precipitation is evenly distributed across each cell, the limitations of this

are discussed later in this section.
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Table 2.1 Table of Mac-PDM.09 Model Parameters

Parameter Category Brief Description

b Control  Soil Moisture Capacity Variability

0 (delta) Control Interception Parameter

grout Control  Groundwater Routing Parameter
Srout Control Surface Routing Parameter
fact Control Field and Saturation Capacity Scaling Factor
thresh Control Temperature Threshold for Snowfall and Snowmelt
xmelt Control Snow Melt Rate (mm/day/°C)
fepe Soil Soil Field Capacity (%vol)
satpc Soil Soil Saturation Capacity (%vol)
rootg Veg. Root Depth (m)
Isc Veg. Leaf Stomatal Resistance
capg (v) Veg. Interception Parameter
(max daily interception loss)
rlai Veg. Leaf Area Index
hc Veg. Vegetation Height (m)
percov Veg. Percent Cover (%)

2.2.2 Land Cover, Interception and Evaporation

In this study, Mac-PDM.09 uses 15 land cover classifications, which are
used to define several parameters for the model. Vegetation type
defines the amount of precipitation that is intercepted, as well as the
potential evaporation rates, and the soil moisture storage capacity.

Interception is defined using the following equation from Calder (1990):

I =y[1— exp(—6P)] (E2.2)

where: /is the amount of precipitation intercepted, Pis precipitation,

and yand ¢ are the parameters capgand & (delta) respectively.
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The delta parameter is a constant value across the globe, whilst capg
varies with land cover classification. Potential evapotranspiration is
calculated using the Penman-Monteith method (Monteith, 1965), which
requires two further calculations as inputs, alongside the leaf stomatal
resistance (rsc) parameter. Firstly, the vegetation height (4c) parameter
is used to calculate aerodynamic resistance (rz) (see Allen, 2005 p.

181) for each vegetation type by:

Ty = 2 (E2.3)

where: z; and zrare the height above the ground surface (m) for the
wind speed measurement and the air temperature measurement
respectively (2m is used for both in this study), zom is the roughness
length (m) governing the transfer of momentum from the surface
(0.123*Acin this study), zox is an assumed roughness length (m)
governing the transfer of sensible heat from the surface (1/10*zom in
this study), dis the zero plane displacement (m) of the logarithmic wind
profile (height at which wind speed becomes near zero in the vegetation
canopy, (2/3*hchere), kis the von-Karman constant (0.41)

(dimensionless) and u-is the wind speed measurement at the z, height.

The rlai(leaf area index) and rsc (leaf stomatal resistance) parameters
are used to calculate the integrated canopy surface resistance (rs), or
bulk resistance, for each vegetation type. This equation calculates leaf
surface resistance and upscales it to canopy resistance. The equation
for this is based upon the work of Grant (1975) and is given as:

— = + (E2.4)

Ts TSsC 100

where Kis a radiation coefficient of 0.70.
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The aerodynamic and canopy surface resistance values are then used
in the Penman-Monteith equation to calculate potential

evapotranspiration (mm/day) as:

PE =

1000 [AR,+86.4 pg cp (es—e) [ 14
(E2.5)

Apy, Ay (1475 [ 1g]

where: Ry is the net radiation (MJ/m?/day), y is the psychometric
constant (0.66 hPa/°C), eis the vapour pressure (hPa), esis the
saturation vapour pressure (hPa), r2 is aerodynamic resistance (s/m), rs
is the canopy resistance (s/m), pa is the density of air (kg/m?3), ¢ is the
specific heat capacity of air (1.013 kJ/kg/°C), A represents the slope of
the saturation vapour pressure temperature relationship, A is the latent
heat of vaporisation (MJ/kg), and pw is the density of water
(1000km/m3).

Whilst this study uses the Penman-Monteith equation, the model has
the capability of running with the Priestley-Taylor method (Priestley and
Taylor, 1972). Mac-PDM.09 divides vegetation into ‘grass’ and ‘not
grass’. For each ‘not grass’ land cover type, Mac-PDM.09 is ascribed a
percentage of grass per cell (as per the model parameter percov), the
remainder is taken up by the vegetation type itself. Again, the limitations
of this will be discussed towards the end of this section.

2.2.3 Runoff Generation

Water that is not intercepted reaches the ground. If the soil is saturated,
‘quickflow’ is generated (surface runoff, but not necessarily overland
flow), if not, water is infiltrated into the soil. Water leaves the soil either
by evaporation or by drainage to groundwater and ‘slowflow’ (baseflow
runoff generation). Actual evaporation is calculated as a linear function
of potential evaporation and the soil moisture content, using the soil
parameters satpc(saturation capacity) and fcpc (field capacity).

Absolute soil moisture capacity is calculated by multiplying the
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percentage values of fcpcand satpc by the rooting depth (rootg). The
value of rootg over lithosols or organic soils is set to 0.1m. The fact
parameter is used as a multiplication factor for modifying the modelled
field capacity and saturation capacity. It is applied to calculate field and
saturation capacity under grass and vegetation from the fcpc satpc, and

rootg inputs.

The soil moisture storage capacity is a very important part of the Mac-
PDM model, and is based upon the PDM model of Moore (1985). The
PDM dictates that the soil moisture storage capacity varies statistically
across each cell, so that a variable proportion of the cell area is
saturated at any given time, and ‘quickflow’ is generated from this part
of the cell. This means that runoff can be generated from at least a part
of the cell at almost any time, unlike other water balance models that
require the entire catchment to be saturated before runoff is generated.
Mac-PDM.09 therefore generates runoff more rapidly in response to
smaller precipitation events (Gosling and Arnell, 2011), as is
demonstrated in Figure 2.2.

Figure 2.2(a) depicts a model using a single storage tank of capacity ¢/,
which takes in precipitation, 2, and loses water by evaporation, E. This
store fills and spills, generating runoff, g’, or empties and ceases to lose
water by evaporation (Moore, 2007). Mac-PDM.09 allows the storage
capacity to vary across a cell, so at any point ¢ can be considered as a
random variate with the probability density function f{c), and that the
proportion of the cell with depths in the range (¢ ¢ + dc) is f(c)dc. If all
of these stores were arranged in order of depth, with their open tops
arranged at the same height, they would form a wedge shaped diagram
as shown in Figure 2.2(b). In Figures 2.2(b) and 2.2(c) ¢*depicts the

water content of the store.
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If precipitation fell at a net rate of Pfor a unit duration, on an initially dry
cell, then stores will fill to a depth of 7, unless they are of a lesser depth
than P, in which case they would produce runoff during the interval of
precipitation. Stores of the same depth as Pwould begin producing
runoff at the end of the interval, so that the upper triangular area in
Figure 2.2(c) denotes the depth produced from stores of a different
depth over the unit interval (Moore, 2007). There is not necessarily the
same number of stores of different depths, so actual runoff is calculated
by weighting the depth produced by a store of a given depth by the
frequency of its occurrence, as expressed by f{c). Moore (2007)
conducted trials on 5 different distributions for storage capacity (Pareto,
rectangular, triangular, exponential, and lognormal), and decided upon
the Pareto distribution of storage capacity which is now most widely
used in applications of the PDM model. The Pareto distribution is
employed in Mac-PDM.09, with the distribution function and probability

density function as presented in equations 2.6 and 2.7.

c b
F(c)=1-— (1— — 0<c<c,. (E26)
b—1
flc) = dzgﬂ — C:M (1 — Cr.:ax) 0<c<e,. (E2.7)

where F(c) is the proportion of the catchment with storage capacity less
than ¢, cmax is the maximum storage capacity in the catchment, and 5
defines the degree of spatial variability. These functions are shown in
Figure 2.3.

2.2.4 Runoff Routing

Mac-PDM.09 does not route runoff between cells, but, as previously
mentioned, runoff is made from two sources, ‘quickflow’, and ‘slowflow’
(‘baseflow’). The quickflow (surface runoff) is routed through a cascade
of two linear reservoirs to represent the delay and dispersion of runoff

as it travels across the cell.
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For each reservoir, the outflow gs is the product of the surface water

routing (Sru) parameter and the surface storage, Ss;

s = S’rout X Ss (E2.8)

The baseflow is calculated using the groundwater routing parameter
(grout) and groundwater storage using equation 2.9, which is derived
from the non-linear storage form of the momentum equation given in
Moore (2007):

gsta’r)E

bflow = grout X ( o0

(E2.9)
Although the model runs at a daily time step, the routing parameters
represent ‘typical’ rather than locally realistic hydraulic and
geomorphological condition. Therefore, simulated daily runoff is very
‘indicative’ and monthly runoff is a more credible output (Gosling and

Arnell, 2011). Monthly simulated runoff is used throughout this study.

2.2.5 Model Outputs

Mac-PDM.09 outputs a range of hydrological indicators, and these
outputs depend on the temporal scale defined by the user. In this study,
the “summary mode” was used, which outputs a table of 36 indicators
for each grid cell. These include: average annual runoff, annual actual
and potential evapotranspiration, annual rainfall and snowfall, average
monthly runoff for January-December, the coefficient of variation (CV)
of annual runoff , the mean and CV of maximum monthly and daily
runoff, parameters of a GEV (generalized extreme value) distribution
fitted by L-moments to average annual maximum monthly and daily
runoff, and Q5, Q10, Q50, Q90 and Q95 (the flow exceeded 5, 10, 50,
90 and 95% of the time: Q5 is extreme high flow, and Q95 is extreme
low flow). Each line of the model output, which describes a particular

grid cell, is given a grid code. A separate text file then gives the
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longitudinal and latitudinal location of each cell to enable the mapping of
outputs, and further regional or catchment scale analysis.

2.2.6 Potential Limitations of the Mac-PDM.09 Model

There are several assumptions and methodological choices in the Mac-
PDM.09 model that could potentially impact model output and introduce
structural uncertainty to this study. A few of these, which will be
discussed in turn here, are: the uniform distribution of precipitation
across each cell; the uniform distribution of the delta parameter across
the globe; the distribution of vegetation across each cell; the choice of
the Penman-Monteith evapotranspiration equation; and the lack of a

glacier component in the model.

It is unrealistic to have precipitation evenly distributed across a 0.5° x
0.5° area. Precipitation is more likely to be concentrated around areas
of high relief, which during periods of snow cover could result in an
influence on the time lag of snowmelt, which could also then influence
the model output. The spatial distribution of precipitation in general
though is unlikely to have a large influence of model output in this study
for two reasons: because the model does not route runoff between cells
(as will be discussed later in this section), and because the monthly
runoff output is used in this study. There is the potential of slight under
or over-catch of precipitation due to the extrapolation of catchment
boundaries over a 0.5° x 0.5° grid, particularly if cells only part contain
the catchment, as these are the areas with highest relief. However, the
inclusion of cells with areas slightly outside of the catchments is likely to
be balanced with the exclusion of cells with areas slightly inside the
boundary. Precipitation distribution across each cell could be integrated
into the model by assigning a distribution according to a Digital Terrain

Model, but this would require significant revision of the model code.

In Mac-PDM.09, the delta parameter of interception is uniform across

the globe whilst capg varies by vegetation type. The equation for
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interception used is given in Equation 2.2. as: / = y/1-exp(-6P)], where y
and ¢ are the interception parameters capgand delta respectively and P
Is precipitation. The capg parameter is described as the maximum daily
interception loss, whilst the remainder of the equation, within the square
brackets, is described by Calder (1999) as the fraction of the day for
which canopies remain wet during and following rainfall (the wet day
fraction). Whilst in a physical sense, one might expect the wet day
fraction to vary by vegetation type, this equation (with § being constant
across the globe) describes it as being dependent on precipitation. As
the wet day fraction is multiplied by capg (), the interception equation
as a whole varies by vegetation type, so we would expect there to be
little detriment to the model output from keeping & constant across all
vegetation types. If the wet day fraction were to be a factor in the model
without the association to the maximum daily interception loss, it might
be worth investigating varying J by vegetation type, but this is not
presently the case in Mac-PDM.09.

The inclusion of the percov parameter, which describes the percentage
grass in each cell, allows the model to have some variation in land
cover across each cell. However, this is limiting in three ways: (1) there
is only the option to have two land cover types in each cell (the
specified vegetation type and grass); (2) there is only the option to have
grass as the secondary land cover type; (3) the percentage cover of
grass is not uniform across the globe, but it is uniform across each land
cover type. Mac-PDM.09 accounts for combination vegetation types
such as mixed forests, and wooded grasslands, which somewhat
reduces the concern of only grass being available as a secondary land
cover type. The uniformity of grass percentage across each vegetation
type is rather unrealistic though, as not all areas of urban cover, for
example, will have the same fraction of grass cover. A gridded map of
grass percentage could be implemented to improve this aspect of the
model, but this would again require significant alteration to the model,
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as well as remote sensing work likely to introduce subjectivity. It is not
known whether this would improve the model output.

The Priestley-Taylor and the Penman-Monteith equations for Potential
Evapotranspiration (PET) are both available for use in the Mac-PDM.09
model code. Gosling and Arnell (2011) demonstrated the significant
differences in model output depending on which equation was
employed, especially in humid areas. The Priestley-Taylor equation is a
simpler method that requires fewer input variables. However, the
Priestley-Taylor equation does not include air humidity, and is a less
physically meaningful method, that requires an additional model
parameter. Priestley-Taylor is often applied when the necessary input
data is not available for the Penman-Monteith method. In this study, the
EU-WATCH project input data is used (as described in section 2.5 of
this chapter), which provides all the necessary inputs for the Penman-
Monteith equation. Therefore, the Penman-Monteith equation was used
in this study, which also enabled the comparison of the model outputs
throughout this study, with the results of Mac-PDM.09 runs from the
WATCH and the ISI-MIP projects. Since the Mac-PDM.09 model is
adjusted in this study, both through mapping changes and the
calibration from the uncertainty analysis to produce Mac-PDM.14,
changing the PET method as well would confound the results of a

comparative study with the original version of the model (Mac-PDM.09).

The lack of a glacier component in Mac-PDM is a significant limitation of
the model, especially in the global ‘water towers’ of the Himalayas and
the Rocky mountains. In catchments that drain these areas, Mac-PDM
is likely to underestimate runoff, and will simulate seasonal peak flows
too early due to a lack of the delay in runoff caused by the locking up of
precipitation in ice and snowpack. This limitation of the model is

discussed further throughout this thesis.



The Macro-Scale—-Probability-Distributed Moisture Model .09 63

2.2.7 Justification for the use of Mac-PDM in this Study

The experiment that forms the foundation of this study (see chapter 3)
involves running a large ensemble comprised of members with different
but plausible model parameterisations. The model has many
advantages that make it ideal for this study, including: the ease of
parameter perturbations; appropriate model outputs (notably the ability
to output summary data: 30 year averaged monthly data rather than full
time series data which requires substantial disk storage); its ability to be
run quickly and efficiently; and its previous use in multi-model
ensembles (Ludwig and Voss, 2009, Warszawski et al., 2014). When
running Mac-PDM, the model parameters (which are detailed in Table
2.1) are described in three text files: the control file, the soil texture
parameter file and the vegetation parameter file. This allows for easy
alteration to the parameters and ensembles can be carried out using
multiple versions of these text files, without needing to adjust the model
code itself. The files are small in size (1KB for control and soil and 2KB
for vegetation), which means that each parameterisation requires only
4KB of disk space for the variable input files. The following files can
remain the same for each run: the climate forcing data which is 64GB,
the 183KB model code, the 2.65MB files to read’ file (which lists the
climate input files), and the 3.08MB cell properties file (which assigns
each grid cell across the globe a cell ID, a soil and vegetation type, and
gives the area of the cell, since 0.5° x 0.5° cells are not the same size
on the equator as at the poles). The model code was investigated for
any additional parameters that may have been “hard-coded” into the

model itself, but no physically meaningful extra parameters were found.

Outputs from Mac-PDM include global runoff average annual runoff,
monthly average runoff and extreme flow indicators. In summary mode,
each output file holds 21.99 MB of data, which is a manageable size for
running a large ensemble, comprised of several thousand members.

The output format is .txt which allows for easy analysis using software
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such as Excel, MATLAB and ArcGlIS. The Mac-PDM.09 model has
previously been modified by Gosling et al. (2010) to facilitate its running
on a campus grid. In this study, Mac-PDM.09 was run on a Condor
system, which enables the use of idle computers across a campus or
workplace to run model realisations. Since the climate data uses vast
amounts of disk space (in this case the ClimGen data used which was
20GB; see section 2.5 for a description of climate forcing datasets
including ClimGen), Gosling et al. (2010) developed the model to call
the bytes of data that were required from the main server, using the
files to read’ file previously mentioned, rather than transfer the entire
dataset to each processor at the start of a model run. This capability
has allowed the model to be run in ensembles in several locations, such
as at Oxford University by Fung et al. (2011), and at the University of
Reading and the University of Nottingham for the WATCH (Ludwig and
Voss, 2009) and ISI-MIP (Warszawski et al., 2014) projects.

The inclusion of Mac-PDM.09 in the WATCH and ISI-MIP projects will
allow the results of this study to be compared to the results of these
projects. This means that it will be possible to compare the uncertainties
within a model with the uncertainties between models. The WATCH
ensemble will be a fair comparison as the models were run with the
same climate data as was used in this study (see section 2.5). These
factors demonstrate that Mac-PDM is an appropriate model for use in
this research. However, previous applications of the model have used
out of date land cover classification maps (deFries et al., 1998, based
upon AVHRR satellite data, 1984), and a 5 class soil texture map from
FAO (1995). It was decided that these maps should be updated to a
more recent land cover map, and the more detailed, and commonly
used 12 class soil texture classification, in order to produce a new
version of the model, Mac-PDM.14.
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2.3 Mapping
2.3.1 Soil Texture Mapping

Solil texture is the relative content of sand, silt and clay in the soil (see
Figure 2.4). It is important in hydrology modelling as it influences the
amount of water and air that the soil holds, and the rate at which water
can enter and move through it (FAO, 2014b). Mac-PDM.09 originally
used a soil texture classification from the FAO (1995), which consisted
of 5 soil texture classifications: sand, sandy loam, silt loam, clay loam,
and clay and a sixth classification, lithosols. A map of this soil texture

classification across the globe is shown in Figure 2.5.

The USDA Soil Conservation Service (1987) classification is the most
commonly used in hydrology, and contains 12 textural classifications:
sand, loamy sand, sandy loam, loam, silt loam, silt, sandy clay loam,
clay loam, silty clay loam, sandy clay, silty clay, and clay. The relative
proportions of sand silt and clay in each of these classifications is
indicated in Figure 2.4. The FAO Digital Soil Map of the World (DSMW)
remains an up to date resource, as despite its original publication in
1974, it has undergone several updates, the last of which was in
2007.The texture classification used in this study was defined using the
FAO DSMW dominant soil unit map and database. The database
contained a percentage sand, silt and clay measurement for each of the
117 soil units. These were then correlated to the USDA soil texture
classifications (specified in Table 2.2), and graphically presented in
Figure 2.4) to produce the updated map shown in Figure 2.6.

For 10 cases out of 117, the percentages could not be classified
according to these criteria, so the nearest fit was ascribed. For 12 cases
of the 117, percentage silt, sand and clay measurements were not
given, in these cases the dominant soil texture for that major group was

ascribed.
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Figure 2.4 Soil texture classification triangle. Taken from Soil Information for
Environmental Modeling and Ecosystem Management (2014) website.

Table 2.2 Soil texture classification table. Figures taken from FAO (2014b)
website.

Soil Texture % Sand % Silt % Clay
Sand 86-100 0-14 0-10
Loamy Sand 70-86 0-30 0-15
Sandy Loam 50-70 0-50 0-20
Loam 23-52 28-50 7-27
Silt Loam 20-50 74-88 0-27
Silt 0-20 88-100 0-12
Clay Loam 20-45 15-52 27-40
Sandy Clay Loam 45-80 0-28 20-35
Silty Clay Loam 0-20 40-73 27-40
Sandy Clay 45-60 0-20 35-55
Silty Clay 0-20 40-60 40-60

Clay 0-45 0-40 40-100
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Figure 2.5 Previous Mac-PDM.09 soil texture classification
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Figure 2.6 Updated Mac-PDM.09 soil texture classification

The classifications “Lithosols” and “Rock Debris” were ascribed the
classification “Lithosols” (a 13™ classification category) and the
Histosols group were given their own classification “Histosols” (a 14™
classification category). Glaciers, Salt Flats, Water Bodies and No Data
were all given a “No Data” (0) value. Lithosols represent incredibly
shallow soils or rocky areas, whilst histosols represent organic material,
such as peat. Lithosols and histosols were included in the previous
classification for Mac-PDM.09; however histosols were not actually
present on the gridded map data.
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The most noticeable difference between the previous soil texture map
and the updated map in Figure 2.5 and Figure 2.6 respectively is the

replacement of the silt loam classification. Interestingly, in the updated
map silt loam does not appear at all, but is instead commonly replaced

with clay, loam and also sandy loam.

The areas of lithosols remain the same, and histosols are introduced
into areas of Canada and central Russia. Several large areas of clay
are removed from Brazil and China, though clay is introduced to central
Africa and Alaska. Areas of sand texture remain largely the same,
though some are reclassified as loamy sand. Clay loam areas are
reduced in size, and the large area over Burma is reclassified as sandy
clay loam. Sandy clay loam is also introduced to large areas of the
United States and Indonesia. Silt covers only minor areas of northern
Russia. This update of the soil texture classification provides a much
more diverse and realistic representation of global soils than applied in
previous versions of the model (Gosling and Arnell, 2011, Fung et al.,
2011, Hagemann et al., 2013).

2.3.2 Land Cover Mapping

Updating the land cover classification map was also a priority for Mac-
PDM.09, since previous applications of the model have used the
AVHRR satellite data from 1984, which is now more than 30 years out
of date. Satellite data from AVHRR, MODIS, and many more have been
used to develop several global land cover classification products which
are detailed in Table 2.3. This table presents 7 readily available
products, the last of which was not released in time for this research,
but which demonstrates the continual advancement of land cover

products.
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Table 2.3 Details of available global land cover products

Satellite Date of # of
Name Developer Reference
Data Imagery Classes
GLCF Global Land Cover deFries et al.
(AVHRR) Facility AVHRR 1981-1994 14 (1998)
GLCF Global Land Cover Channan et al.
(MODIS) Facility MODIS 2001-2012 7 (2014)
United States Loveland et al.
GLCC Geological Survey AVHRR 1992-1993 25 (2000)
European .
GLC2000 Commission Joint ~ SPOT4 2000 5,  Bartholoméand
Belward (2005)
Research Centre
International Steering _
. MODIS Tateishi et al.
GLCNMO Committee for Global (TERRA) 2003 20 (2008)
Mapping
GlobCover European Space ENVISAT 2009 29 Arino et al.
2009 Agency (MERIS) (2010)
GLC- Food and Agriculture . Latham et al.
SHARE Organisation Composite 2014 12 (2014)

Mac-PDM.09 used the classification from deFries et al. (1998) which
consists of 14 land cover types: evergreen needle-leaf forests,
evergreen broadleaf forests, deciduous needle-leaf, deciduous
broadleaf forests, mixed forests, woodlands, wooded
grasslands/shrublands, closed bushlands/shrublands, open shrublands,
grassland, cropland, bare, mosses/lichens and water/ice. A map of this
classification is shown in Figure 2.7. Upon investigation of current
global land cover classifications, it became clear that the Mac-PDM.09
classification was lacking a few important land cover types: notably,
artificial/urban areas and land that is permanently or regularly flooded.
Mac-PDM.09 also lacks combination land covers that consist of more
than one vegetation type (mosaics). GlobCover2009 presented the
most appropriate and up-to-date land cover product available; however
its classification system is over-complex for the parameterisation of a
global hydrology model, and does not differentiate between open
needle-leaved deciduous and open needle-leaved evergreen forest.
Therefore, a new land cover classification was defined in order to keep
the number of classification types to a minimum, whilst including

important up-to-date information.
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The list of new classification land cover types is given in Table 2.4. This
table shows the previous AVHRR Mac-PDM.09 land cover classification
and the GlobCover2009 classification, alongside the new classification
system. The table demonstrates the combination of GlobCover2009
classifications to fit the new scheme, for example “irrigated cropland”,
and “rain-fed cropland” were combined to develop an overall “cropland”

classification.

As can be seen in this table, the “open needle-leaved deciduous or
evergreen forest” (value 90) classification of GlobCover2009 needed to
be divided into “Deciduous Needle-leaf Forest” and “Evergreen Needle-
leaf Forest”, and this was done using the Global Land Cover 2000
dataset. However, a few of the cells with a value of 90 in
GlobCover2009 had ambiguous classifications in GLC2000
(herbaceous cover, tree cover — burnt, and mosaic: cropland/tree
cover/other natural vegetation). These cells were then referred back to

the original Mac-PDM.09 land cover.

Again a few cells were classified as the ambiguous covers from Mac-
PDM.09, woodland and mosses/lichens, and so were given the mosaic:
trees/vegetation and sparse vegetation classifications respectively. The
results of this updated classification system are displayed in Figure 2.8
(with the original classification shown in Figure 2.7). It is apparent from
these maps that the classifications are more fragmented across the
globe: in the previous map, there are distinct boundaries between land
cover types, and whilst some are still evident in the new classification,
there are generally more graded boundaries between types, with cell
scattering of different types within areas with a dominant land cover.
The removal of the “bushland” land cover classification is a distinct
change; the large areas over Australia and South Africa are replaced

with “Sparse Vegetation” and “Grassland”.
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Figure 2.7 Previous Mac-PDM.09 land cover classification
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Figure 2.8 Updated Mac-PDM.09 land cover classification

There is a general reduction of grassland across the globe, especially
across Central Asia, which is classified as sparse vegetation or bare in
the new land cover classification. The Congo rainforest is significantly
smaller, which may be in part due to deforestation between 1984 and
2009. Deforestation may be assumed due to the division of evergreen
forest into eastern and western blocks by a band of cropland/vegetation
mosaic; however, some of the evergreen forest reduction may be
attributed to a reclassification of forest type to deciduous forests. India
shows a distinct change from woodland/grassland to cropland and the
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Middle East (excluding Saudi Arabia) sees a change from shrubland to
sparse vegetation or bare. The forests of the Russian Arctic extend
further north in the new land cover classification. Other than these
distinct changes, which are mostly a result of the reclassification of
vegetation schemes, the land covers are predominantly alike between
maps. As previously mentioned though, fragmentation of the land cover
types is apparent, especially the northerly bands of evergreen needle-
leaf forest. The cropland of the USA is also interspersed with shrubland
and grassland. This fragmentation of land cover types across the globe

Is more indicative of true global land cover at a 0.5° x 0.5° resolution.

A simulation experiment was conducted in order to compare outputs
from the model using the new soil and vegetation maps with the original
maps. As the model was not re-calibrated after the maps were
changed, this experiment was primarily to check the model still yielded
sensible outputs. The values used for the soil parameters are given in
Table 2.5 and the land cover parameters are given in Table 2.6. Where
the new classifications coincided with the original classifications, the
parameter values were taken from the original input files (Arnell, 1999).
The one exception to this was the sand parameters, which were
matched to the source used to define the new soil classifications, taken
from Saxton and Rawls (2006). For the vegetation parameters, those
classifications that were retained from the Mac-PDM.09 classifications,
were ascribed parameter values from the original input files, taken from
Wilson and Henderson-Sellers (1985). Parameter values for the
“Mosaic: trees/vegetation” classification were also available from this
source. The other classifications were extrapolated from existing
parameter values, taking physical meaning into consideration. For
example, “artificial areas” was set to the same values as “bare”, except
for the percov parameter (percentage grass in each cell), which was set
a little higher to account for parks and gardens. The “broadleaf regularly
or permanently flooded” classification was given parameter values

between “evergreen broadleaf” and “deciduous broadleaf”.
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Table 2.5 Parameter values used for soil classifications in simulation

experiment run. Italicised round brackets indicate new values not from the
original model documentation. Square brackets indicate original values that

were not used.

Soil Classification

Type/Parameter fepe satpc
Sand 10.0 [13.1] 46.0 [35.5]
Loamy Sand (12.0) (46.0)
Sandy Loam 20.0 41.3
Loam (28.0) (46.0)
Silt Loam 29.4 46.8
Silt (30) (48.0)
Clay Loam 33.1 50.4
Sandy Clay Loam (27.0) (43.0)
Silty Clay Loam (38.0) (51.0)
Sandy Clay (36.0) (44.0)
Silty Clay (14.0) (52.0)
Clay 48.3 54.4
Lithosols 27.0 50.0
Histosols 50.0 100.0

Table 2.6 Parameter values used for land cover classifications in simulation
experiment run. Italicised round brackets indicate new values not from the

original model documentation.

Land Cover Classification

Type/Parameter rootg  rsc  capg  rlai hc  percov
Evergreen Needle-leaf 0.9 85 1.2 6 19.1 80
Evergreen Broadleaf 15 130 0.7 9 29.4 90
Deciduous Needle-leaf 0.9 85 1.0 4 10.0 80
Deciduous Broadleaf 1.2 100 0.6 5 14.9 80
Mixed Forest 1.1 100 0.8 6 18.0 80
Mosaic: (2.1) (100) (0.8) (6) (18.0) (25)
Trees/Vegetation

Mosaic: Cropland/ (0.9) (90) (0.6) (4) (7.0) (15)
Vegetation

Shrubland 0.6 80 1.0 2 1.4 25
Grassland 0.6 70 0.1 3 0.6 0
Cropland 1.2 100 0.6 5 14.9 10
Sparse Vegetation (0.2) (100) (0.2) D (0.2) (90)
Bare 0.1 100 0.0 0 0.0 90
Broadleaf Regularly or (1.3) (110) (0.6) (7 (22.0) (85)
Permanently Flooded

Vegetation Regularly (0.6) (90) (0.8) (4) (5.0) (15)
Flooded

Artificial Areas (0.1) (100) (0.0) (0) (0.0) (95)
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The results of the comparison between model runs with the new and old
soil and vegetation maps are presented in Figure 2.9. The main areas
of difference are, unsurprisingly, some of the areas that have
undergone the most dramatic changes in land cover classification. The
areas that have seen the most significant increases in annual average
runoff, of up to 13.5%, are Australia and Central Asia (Kazakhstan and
Mongolia). In Central Asia this change was from grassland to sparse
vegetation and bare, and in Australia the change was from bushland
and shrubland to sparse vegetation and bare. Sparse vegetation and
bare soils have less capacity to hold water than grassland, bushland
and shrubland due to the lack of vegetation, and infiltration is less likely
to occur, thus resulting in Hortonian overland flow. The lack of
vegetation will also reduce interception. These physical factors

contribute to the increase in runoff that can be seen in these areas.

There is also a band of slightly reduced runoff along the southern
Sahara desert, where the land classification was altered from bare to
grassland. This land cover change would increase the soil moisture
storage capacity, increase infiltration, and increase interception, thus
reducing runoff. The attribution of these results to physical processes
provides confidence that the updated maps are performing well with the
Mac-PDM model, and can now be used for an uncertainty assessment.
This uncertainty analysis will, as an integral part of the process,
investigate the appropriate parameter values of the newly classified
land cover and soil types, it will also act to calibrate the model to the
new land cover and soil texture classifications. This mapping work has

produced a new version of the model: Mac-PDM.14.

2.4 Study Catchments

Since this research focuses on global hydrology, study catchments are

required in order to validate the model against observed discharge data.
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Figure 2.9 Percentage change in average annual runoff between runs using
the original model maps and the updated maps for this study.

21 of the world’s largest and most significant rivers were selected for
investigation; the locations of these catchments is shown in Figure 2.10
and Table 2.7 gives descriptive statistics for each of the catchments.
These study catchments were selected in order to represent the

diversity of hydrological regimes across the globe.

Many factors were considered including catchment size, river length,
discharge, rainfall and the location of the river outlet. The Amazon River
has the largest catchment in the world at 6,869,000km? (Barthem et al.,
2004), and has the highest average discharge of 220,800m?/s. The
River Nile is the longest river at 6,825km. The Danube flows through 19
countries, which makes it a significant management challenge. The
Kolyma and the Amu Darya rivers are particularly dry in terms of
simulated rainfall. The Murray Darling, despite its size has a very low
river discharge. The Okavango has the lowest discharge of the selected
catchments, but was chosen due to it being a large endorheic river
basin (it does not flow out to the sea, but instead flows into the
swampland of the Moremi Game Reserve. The Lena is the most
northerly catchment which represents a snowmelt driven catchment,

and the Murray Darling the most southerly.
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The catchments were chosen in order to cover the globe as wholly as
possible, including catchments from all continents, and all climates. The
catchments’ diversity across climatic types is shown in Figure 2.11. This
figure shows that across the catchments, nearly all of the global climate
classifications are included in this study. The Amazon, Congo and the
Mekong rivers are “Tropical Humid”. The Nile, Niger, Okavango and
Euphrates rivers cover the “Dry Desert” and “Dry Steppe” environments.
“Cool Humid” climates are represented by the Ob, Yenisey, Lena,
Kolyma and Yukon catchments, and the Ganges, Brahmaputra, Yellow
and Yangtze rivers are “Warm Humid”. Since the model does not have
a glacier component, the polar climates have not been considered in
this study.

Several other global hydrology modelling studies have focussed on sets
of catchments, and the majority of these have several catchments in
common with those chosen in this study. Gosling et al. (2011)
compared Mac-PDM.09 with catchment models for the Liard, Mekong,
Okavango, Rio Grande, Xiangxi and Harper’s Brook catchments.
Kavetski et al. (2006) studied uncertainty in the VIC model over the
Potomac and French Broad river catchments. Hagemann et al. (2011)
looked at bias correction on the MPI-HM and LPJmI models over the
Mississippi, Amazon, Parana, Congo, Nile, Ganges, Brahmaputra,
Murray, Yangtze, Amur, Danube, Baltic Sea, Kolyma, Ob, Lena,
Yenisey, MacKenzie and Volga catchments. Sperna Weiland et al.
(2010) applied the PCR-GLOBWB model to the Amazon, Brahmaputra,
Congo, Danube, Ganges, Indus, Lena, Mackenzie, Mekong and
Mississippi catchments. One final example is Ddll et al. (2003), who
mostly focussed on smaller catchments, but also included the Yenisey,
Danube, Okavango and Mekong in their selection of 17 catchments
when tuning and validating the WaterGAP model. This demonstrates
that this selection of catchments is appropriate for global hydrology
modelling, and should provide an adequate range of catchment

behaviours for model testing.
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2.5 Data Collection

This study seeks to assess the impacts of parameter uncertainty on
model output; however both input data and validation data are also
significant sources of uncertainty. Whilst this study will not go into detail
on the uncertainties derived from these data sets, effort has been made
to choose the best available data for use in this experiment.

2.5.1 Climate Forcing Data

Mac-PDM.09 has previously been applied using a variety of climate
inputs or “forcing data”. It has the capability of running using ClimGen,
NCC, ClimatePrediction, CIAS, and WATCH data, as well as single
catchment or multiple catchment data. NCC (Ngo-Duc et al., 2005) was
developed for use by Land Surface Models (LSMs) in 2005 and covers
the 53 year time period 1948-2001. The dataset is 6 hourly and 1° x 1°.
It is based upon both the reanalysis products of NCEP/NCAR and the
Climate Research Unit (CRU) observational data. ClimGen was
developed by Tim Osborn of the Climate Research Unit and Tim
Mitchell of the Tyndall Centre for Climate Change Research at the
University of East Anglia (Osborne, 2009). This dataset uses pattern-
scaling to generate monthly climate information based on climatological
observations and outputs from GCM simulations. The forcing dataset
covers the period 1961-1990, at a 0.5° x 0.5° resolution (Mitchell et al.,
2004). The Climate Integrated Assessment System (CIAS) is a multi-
institution modular and flexible integrated assessment system for
modelling climate change (Warren et al., 2008). CIAS was developed
with impacts models in mind, and the development of the system
included assessing the ability of model outputs to be applied as inputs
for impacts models. CIAS used the simple climate module, MAGICC,
with the climate scenario downscaling module, DSM. The climate data
developed is largely based upon the ClimGen data, and covers the time
period 1901-2001 at 0.5° x 0.5°.
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The WATCH forcing data was chosen for use in this study for several
reasons. Firstly, Mac-PDM.09 was one of the models that took part in
the WATCH project, so the model had a coded option for the WATCH
input file format. The participation of Mac-PDM.09 in this project, and
running the uncertainty assessment using the same data will allow the
uncertainties of the parameter assessment to be compared to the
model structural uncertainty derived from using different hydrology
models. If a different climate input dataset were used, then this would
contribute additional uncertainty and not allow for a fair comparison.
Even with these reasons aside, the WATCH forcing data is an
exceptional dataset, derived from the ERA-40 reanalysis project with
sequential interpolation to a resolution of 0.5° x 0.5°, elevation
corrections and monthly-scale adjustments based on CRU and GPCC
monthly observations (Weedon et al., 2010).

The WATCH forcing data covers the period 1958-2001 and consists of

eight variables, five at a 6-hourly time step (air temperature, pressure,

specific humidity, wind speed, and long wave radiation flux) and three at

a 3-hourly time step (short wave radiation flux, rainfall rate and snowfall

rate). This data is also available at a daily time step, which was used in

this study. Weedon et al. (2010) describe the key steps in the creation

of the WATCH forcing data as:

1. Bilinear interpolation to the CRU half-degree grid,

2. Elevation correction of certain variables to account for differences in
surface heights between the one- and half-degree grids, and

3. Adjustment of certain variables at the monthly scale via the CRU
TS2.1 observations.

The data were compared to FLUXNET sites for additional validation,

which showed close correspondence between the WATCH data and the

observed data for all variables (Weedon et al., 2010).
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2.5.2 River Discharge Validation Data

Acquisition of river discharge data for the validation of the Mac-PDM
model was more challenging. There are two major global databases for
runoff data, RivDis and the Global Rivers Data Centre (GRDC). RivDis
(SAGE: Center for Sustainability and the Global Environment, 2014) is
freely available online and contains records for over 3000 discharge
stations. GRDC data is free of charge, but must be requested for
specific stations after submitting a User Declaration. The GRDC
database contains over 9000 records (GRDC, 2014), and was chosen
as the primary resource for discharge data for this study. Records for all

stations within the 21 study catchments were requested.

The spatial and temporal extent of these records is displayed in Figure
2.12. This map shows that the records are not evenly distributed either
across or between catchments. The Mississippi River has by far the
most records, which are also mostly over 50 years in length. The
Danube, Murray Darling and Niger also have a good coverage of daily
records, although the Niger catchment records are mostly in the upper
reaches in Mali. In order to represent as much of the catchment as
possible, discharge stations as near to the mouth of the river as
possible were sought. Stations in the Lena catchment are sparse,
however the map shows a few stations near the mouth that could be
adequate. Catchments of concern were the Euphrates, Nile, Ganges
and Brahmaputra. Several potential stations for each catchment were
then selected and the data were analysed for length, period and

integrity.

The thirty-year period 1971-2000 was selected for model validation, as
the EU-WATCH forcing data did not extend beyond 2001 and a thirty-
year period, as is common practice in climate averages (e.g. Met Office,
2015, NOAA, 2015), was deemed sufficient for model analysis. The

best stations for each catchment were then selected.
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Rivers that were highlighted as significantly lacking in data were the
Euphrates, which had only 2 years of data, the Ganges, which had only
3 years of data, and the Nile, which had only 14 years. Fortunately
discharge data for the Euphrates has been published by the United
States Geological Survey (Saleh, 2010). This provided several records,
the most appropriate of which yielded a 28.75 year record. Following a
British Council funded visit by the author to Bangabandhu Sheikh
Mujibar Rahman Agricultural University in Bangladesh, the Bangladesh
Water Development Board (BWDB) kindly provided discharge data for
several stations on the Ganges and the Brahmaputra Rivers. Since the
Brahmaputra record from the BWDB was superior to the GRDC record,
it was adopted for this catchment. Sadly, no additional records for the
River Nile could be found, so the GRDC record of 14 years was
retained. An overview of the records for each catchment is displayed in
Table 2.8. These records will provide valuable data for the comparison
of Mac-PDM.14 model outputs.

2.6 Summary

This chapter has outlined the preparatory work required before the
uncertainty experiment could be carried out. The Mac-PDM model has
been selected for use in this experiment and is considered to be a good
choice for several reasons: (a) the ease of parameter perturbation; (b)
its inclusion in the WATCH project and therefore ease of multi-model
ensemble runs, as well as comparison with other hydrological models;
(c) appropriate model outputs for analysis. The model structure was
presented in detail and the model parameters were defined. Some
adjustments to the maps used by the model were required. The soil
texture map was updated from a 6 type classification to a 12 type,
according to the USDA Soil Conservation Service Classification. The
land cover map was also updated from a 1984 vegetation classification
to a 2000-2009 map date.
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The land cover types were defined using a combination of several
popular methods that would allow for a detailed representation of global
land cover without over-parameterisation. This work produced a new
version of the model which will, from hereon in, be referred to as Mac-
PDM.14. 21 of the world’s largest river catchments have been chosen
as study catchments in order to represent a wide range of environments
and catchment behaviours. WATCH climate data is used to force the
model for the years 1971-2000, and validation data has been acquired
from the GRDC, USGS and BWDB.

The research presented in this chapter provides the foundations
required to progress to the uncertainty experiment which will be
introduced in Chapter 3. The results of this experiment are presented in
Chapters 4 and 5.



Chapter Three:

Parameter Uncertainty in Global

Hydrology Modelling Part 1

- Methods and Experimental
Design
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3.1 Introduction

“As we know, there are known knowns, there are things we know we
know. We also know that there are known unknowns, that is to say, we
know there are some things we do not know. But there are also

unknown unknowns, the one’s we don’t know we don’t know”
— Donald Rumsfeld

The issue of uncertainties in global hydrology models was presented in
chapter 1. Previously, global models have been assessed for their
structural uncertainties using multi-model ensembles, but have not been
thoroughly assessed for parameter uncertainty. Several studies have
investigated changing the values of a few parameters, the soil moisture
storage capacity parameter being the focus of research (e.g. Gosling
and Arnell, 2011, Alcamo et al., 2003, Nijssen et al., 2001a); however
few have investigated more than a few parameters, and none have
included all model parameters. The most comprehensive assessment
has been by Sperna Weiland (2011) who ran 250 realisations of 10
model parameters, the results of this investigation were outlined in
Chapter 1.6.

Following the work detailed in Chapter 2 which provided a new version
of the model, Mac-PDM.14, this chapter outlines the methods used to
carry out an extensive uncertainty analysis on this GHM. In this chapter,
the distinction between sensitivity analysis and uncertainty estimation is
drawn, and existing methods of uncertainty estimation are reviewed.
Methods of parameter value sampling are presented, and the method
used in this study is detailed. Parameter distributions are used in this
study, so the technique of distribution definition is presented. The

results of the uncertainty experiment are presented in Chapter 4.
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3.2 Model Calibration, Parameter Estimation, Sensitivity
Analysis and Uncertainty Estimation

” o« LE 11

The terms “model calibration”, “parameter estimation”, “sensitivity
analysis” and “uncertainty analysis/estimation” are all used to describe
very similar concepts in hydrology modelling. Model calibration can be
defined as “the process of adjusting parameter values of a model to
obtain a better fit between observed and predicted variables. [I1t] may be
done manually or using an automatic calibration algorithm” (Beven,
2009). Both sensitivity analysis and uncertainty estimation contain this
process, but they go further to understand the variation of outputs that
different parameter values achieve. The simple, traditional approach to
model calibration, whereby trial and error is used to adjust parameter
values until the model output best meets observed data has some
limitations, for example: calibration assumes that there is an optimum
set of model parameter values; calibrated model parameter values may
only be applicable to that particular model; the choice of method of
comparison to the observed data will affect which parameter values are
determined to perform best, and may be biased towards the calibrator’s
specified use of the model (e.g. flood estimation); and adjustments to
some parameters may impact the model output more than others,
(Beven, 2012).

Sensitivity analysis and uncertainty estimation are both methods of
assessing models’ responses to parameter values and structural
changes, however they vary in their ultimate purpose. Sensitivity
analysis can be defined as: “the study of how uncertainty in the output
of a model (numerical or otherwise) can be apportioned to different
sources of uncertainty in the model input” (Saltelli et al., 2008).
Uncertainty analysis, on the other hand, focuses upon quantifying the
uncertainty in model output. Tao (2008) states that sensitivity and
uncertainty analyses are not explicitly related to model calibration, as

some models may not require a formal calibration to estimate
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parameters. In this case, uncertainty estimates may come from prior
knowledge or past experience of the system; however, when calibration
is required, this can be used as a posterior for uncertainty estimation.

Saltelli et al. (2000) give six aims of sensitivity analysis, to determine:

=

if a model resembles the system or process under study;

N

. the factors that mostly contribute to the output variability and that
require additional research to strengthen the knowledge base;

3. the model parameters (or parts of the model itself) that are
insignificant, and that can be eliminated from the final model;

4. if there is some region of the space of input factors for which the
model variation is maximum:;

5. the optimal region within the space of the factors for use in a

subsequent calibration study;

6. if and which (group of) factors interact with each other.

Sensitivity analysis can be either local or global. Local sensitivity
analysis (LSA) explores a local area of the parameter space, centred on
nominal values; whereas global sensitivity analysis (GSA) extensively
explores wide ranges of parameter space (Tao, 2008). GSA therefore
comes with a much greater computational cost than LSA. However,
derivative-based LSA requires more of the analyst’s time to set up and
carry out, which is difficult if the model parameters are uncertain or of
unknown linearity (Saltelli et al., 2008, Wainwright et al., 2014).
Common methods of sensitivity analysis include: one at a time (OAT)
(Daniel, 1973, Daniel, 1958), the Morris method (Morris, 1991),
principal component analysis (PCA) (Vajda et al., 1985), Monte Carlo
(MC) analysis, Sobol’ sensitivity indices (Sobol’, 1993), and the Fourier
Amplitude Sensitivity Test (FAST) (Cukier et al., 1973, Cukier et al.,

1978). These methods are briefly described in turn here:

. One-at-a-time is a screening method that evaluates the effect of

changing each parameter one by one on the model output. The output
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of the perturbed parameter model is compared to a ‘standard’ value,
usually in the middle of a set of parameter perturbation values.

. The Morris method is a global method variation of OAT that moves
around the parameter space one parameter at a time, but does not
return the previous parameter change back to its standard value. It is an
economic method in that the number of experimental runs is
proportional to the number of input parameters (Saltelli et al., 2000).

. Principal Component Analysis is a sophisticated method that uses
linear sensitivity coefficients to extract meaningful kinetic information for
several species of reactions at several time points (Saltelli et al., 2000).
PCA uses eigenvectors and eigenvalues to reveal parts of the model
that strongly interact, and their associated model response.

. Monte Carlo analysis uses randomly selected points in the
parameter space to run the model, and then uses the results to
determine uncertainty in model prediction, and the contribution of
parameter inputs to this uncertainty. Monte Carlo is a sampling strategy
that may be used in other forms of sensitivity or uncertainty analyses.

. Sobol’ analysis produces sensitivity indices and identifies the
influence of each parameter, interaction of parameters and their
combination effects on the model outputs (Sobol', 1993). It is a popular
method in hydrological model sensitivity analysis as it considers the
interaction of model parameters (Qi et al., 2013).

. FAST is an alternative method to compute the same indices as the
Sobol’ method, however calculations are often limited to the first-order,

or main effect.

Generally, sensitivity analysis is distinct from uncertainty analysis,
though many studies have used a combined approach (e.g. Ratto et al.,
2001, Kiczko et al., 2007). Uncertainty analysis aims to define the entire
set of possible outcomes, along with their associated probabilities of
occurrence. Sensitivity analysis however, as outlined above, aims to
define the change in model output values that result from small changes

in input values, and thus measures change in a localised region of the
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parameter space (Loucks et al., 2005). Loucks et al. (2005) give five

achievable outcomes of an uncertainty analysis:

1. adescription of the range of potential outputs of the system at some
probability level (e.g. the mean and standard deviation of the
outputs).

2. an estimation of the probability that the output will exceed a specific
threshold of performance measure target value.

3. the assignment of a reliability level to a function of the outputs, e.g.
the range of function values that is likely to occur with some
probability.

4. a description of the likelihood of different potential outputs of the
system.

5. an estimate of the relative impacts of input variable uncertainties.

Methods of uncertainty analysis are discussed in more detail in section
3.4. Figure 3.1 shows the impact of both input data sensitivity and input
data uncertainty on model output sensitivity. This figure demonstrates
that input parameter uncertainty and model sensitivity combined can

lead to high levels of output uncertainty.

3.3 A One-at-a-Time Sensitivity Analysis of the Mac-PDM.09
Model

Sensitivity analyses can differ hugely in complexity, especially between
local and global methods. Since this study aims to focus on model
uncertainty, a basic one-at-a-time sensitivity analysis was carried out at
the very beginning of the study (using Mac-PDM.09, prior to the
development of Mac-PDM.14), in order to understand the relative
importance of each of the model parameters for the model output. This
sensitivity analysis could also provide insight into whether it would be
necessary to include all of the model parameters in the uncertainty

experiment or not.
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Figure 3.1 The relationship between model input parameter uncertainty and
sensitivity to model output variable uncertainty. After Loucks et al. (2005).

The one-at-a-time sensitivity analysis varied each parameter
systematically. The parameter values for the control file were varied by
0-200% of their base value (the original calibration value for Mac-
PDM.09). Percentages of 0, 20, 40, 60, 80, 90, 95, 100 (BV), 105, 110,
120, 140, 160, 180 and 200% were used in each case. This required 14
model runs per parameter. The soil parameters were varied between O
and 200% of their base values, changing all soil types at once (unless
the increase took the value above a value of 100, in which case 100
was used), and were then varied between the values of 0 and 100
simultaneously at increments of 10, as well as one at a time while
keeping the other soil types at their base values. This required 103
model runs per parameter. The vegetation parameters were also varied
simultaneously by 0-200% of their base values and were then varied
one by one. This required 210 models runs per parameter. The base
values of the parameters are given in Table 3.1, 3.2 and 3.3. The fact
parameter was excluded from this study, as well as the ultimate
uncertainty experiment, as it is a scaling factor for the fcpcand satpc
parameters. Thus factwas fixed at a value of 1.0 and the fcpcand satpc

parameters were investigated individually instead.
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The results of this experiment are shown in Figure 3.2 and Figure 3.3.
The percentage change in average annual runoff between the
perturbed simulation and base value simulation, for the years 1971-
2000, was averaged across the cells of each catchment (taking into
account variations in grid cell size due to latitude), and the minimum
and maximum changes across all 21 catchments were determined for

each parameter perturbation.

The graphs in Figure 3.2 show this percentage change response across
the varying parameter values for each model parameter. The range in
colour fill areas indicates the range in response across all 21 study
catchments. The runs that used a parameter value of 0, or 0% of the
parameter base value were not included in these graphs, as division by
0 results in infinity; and this led to some extreme changes in the model
output at values of 0. The model varies in sensitivity to changes in
parameter values. The satpc, and rootg parameters show the highest
levels of sensitivity, reaching just under a 1.2% increase in average
annual runoff. The r/ai parameter is the least sensitive, with a maximum
change of + 0.0435%. Of the control file parameters, the b parameter is
the most sensitive, showing a definite decrease in average annual
runoff with reduction in the value of b, and a notable increase with larger
values of b. The delta and xmelt parameters also show sensitivity, but
the grout and srout parameters show little change when perturbed

individually.

Of the soil types, sandy loam showed the highest sensitivity in
perturbations of both fcpcand satpc. Silt loam was the second most
sensitive in both parameters. The sensitivity of the model to the fcpc
parameter is greatest at higher values; conversely, the sensitivity of the
model to the satpc parameter is largest at lower values. This is due to
the physical meaning of the parameters as field capacity and saturation
capacity, and the logical requirement that saturation capacity be greater

than field capacity for any given soil type.
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Of the vegetation parameters, rootg (root depth) shows the highest
sensitivity to parameter perturbations. The vegetation classification with
the highest sensitivity is grass, which showed an increase in average
annual runoff of 1.145% with a value at 20% (0.12) of the base value,
and also showed a decrease with an increase in value, reaching -
0.223% at double the base value. Grass is also the most sensitive
vegetation type for the r/ai (relative leaf area index) and Ac(vegetation
height) parameters. Evergreen Needleleaf is the most sensitive
vegetation type for the capg (interception parameter) and the percov
(percent cover of grass) parameters. The percov graph shows steady
rates of increase in change in average annual runoff as the parameter
values are decreased for each vegetation type. The trend in average
annual runoff with as percov parameter values are increased appears to
be more complex, but can be explained by the fact that the parameter
values were increased until they reached a value of 100 (as the
parameter is expressed as a percentage, a value greater than 100 is

not possible) after which they were kept at 100.

All vegetation parameter results show changes that differ in sign as they
pass the base value mark (100%). None of the parameters give
parabolic results, whereby the same model output could be achieved by
more than one value of the parameter. The capg parameter shows a
very linear trend, with sensitivity apparent with both increases and
decreases in the parameter values. The r/aiparameter is less linear,
with much higher sensitivities to decreases in parameter value than
increases in parameter value. Increases in the r/ai parameter values
above 120% show little change to the model sensitivity for all vegetation
types except grass. A similar trend can be seen from the rootg
parameter graph. Interestingly, for the rlaiparameter, Evergreen
Broadleaf shows the opposite trend to most other vegetation types, with

average annual runoff increasing as r/ai increases.
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The Mosses/Lichens and Bare classifications were excluded from the
capg and rlai sensitivity graphs as they began at base value of 0, and
thus perturbation by percentage did not result in any change. Bare was
also excluded from the Acgraph for the same reason. In the actual
experiments, both Mosses/Lichens and Bare were varied between 0
and 9 for the r/ai parameter, which had no effect on the model output
over any of the study catchments. For the Ac parameter, Bare was
varied between 0 and 1, which had a maximum effect of -0.126% at a
value of 1. For capg, Mosses/Lichens and bare were both varied
between 0 and 1, which had maximum effects of -0.11% and -0.068%

respectively.

Figure 3.3 shows the variation of sensitivity between parameters and
catchments. This figure was derived from the 15 model runs per
parameter that varied the parameters from 0-200% of the original base
value. In these model runs, for each parameter, the soil and vegetation
types were all varied at the same time. So, for each parameter, with
runs at 0, 20, 40, 60, 80, 90, 95, 100, 105, 110, 120, 140, 160, 180, and
200%, all vegetation and soil types were set at that percentage of the
base value, whilst the other parameters remained at their base value.
As with the previous graphs, the 0% values were excluded from this
analysis. The figure shows the maximum response in each catchment
from the 15 runs that were employed, the sign and size of which is
indicated by colour. The most notable overall trend is that the fcpcand
satpc parameters are the most sensitive. The rootg parameter is also
very sensitive, giving significant increases in average annual runoff in
most catchments. The rsc parameter shows the strongest negative
response, with maximum change reducing the average annual runoff
over most catchments. The strongest reduction in average annual
runoff is for the rsc parameter in the Ob catchment, with a -0.37%
decrease. It is also sensitive in the many other catchments, with no real

trend in climatological zone.
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Figure 3.3 Maximum sensitivity of the Mac-PDM.09 model to parameter
adjustments (values set at 0-200% of the base value) over each catchment.

Sensitivity is given as percentage change in catchment average annual runoff. For soil and
vegetation parameters the results shown are from simultaneous perturbations of all soil and
vegetation classes. Catchment codes read as follows: Ama=Amazon; AmuD=Amu Darya;
Brah=Brahmaputra; Con=Congo; Dan=Danube; Euph=Euphrates; Gan=Ganges; Koly=Kolyma;
LaPla=La Plata; Lena=Lena; Mek=Mekong; Miss=Mississippi; MurD=Murray Darling; Nig=Niger;
Nile=Nile; Ob=0b; Oka=0Okavango; Yang=Yantze; Yell=Yellow; Yen=Yenisey; Yuk=Yukon.
The strongest positive change in average annual runoff is for the satpc
parameter over the Murray Darling catchment with an increase of
2.57% across all catchments. The fcpc shows a similar response, but
with slightly lower increases than satpc. The high impact of changes in
field and saturation capacity in the Murray Darling catchment is likely
due to the fact that the catchment has the lowest average annual
discharge of all 21 study catchments, and it receives very low annual

precipitation.

As with the graphs in Figure 3.2, for the control file parameters, the b
parameter shows the strongest trend, with decreases in average annual
runoff, particularly in the Murray Darling and Kolyma catchments. The
xmelt parameter shows sensitivity in the Yukon, Yenisey, Ob, Lena,
Kolyma and Amu Darya catchments. This is unsurprising as xmelt

defines the snow melt rate, and these are the catchments that have a
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significant snowmelt contribution to their runoff. The sroutand grout
parameters are insensitive to change in this one-at-a-time analysis. The
delta parameter and the capg parameter mirror each other, with delta
showing slight increases in runoff over the Amazon, Danube, Lena,
Mekong, Ob, Yangtze, Yenisey and Yukon catchments; whilst capg
generally shows its strongest decreases in runoff over the same
catchments (with the exception of the Yukon). The capgand delta
parameters together define the amount of precipitation that is
intercepted by vegetation, so it is reassuring that they show their
strongest trends in the same catchments. The rootgparameter shows a
fairly significant (1.53%) increase in the Murray Darling catchment, and
also shows increases over the Euphrates and Okavango catchments.
These catchments also experience decreases in average annual runoff
with adjustment of the percov parameter. It is apparent that the Murray
Darling, and Euphrates catchments are the most sensitive catchments
to parameter perturbations. The La Plata, Ob, Lena, Mississippi and

Yenisey can also be distinguished.

The fact that the soil parameters showed such significant sensitivity
confirmed the requirement for an update of the model’s soil
classification system (see Chapter 2.3). Since these parameters have
such a dramatic influence on the model output, it is necessary to define
the soil textures across the world as accurately as possible. Similarly,
the Closed Bushland, Open Shrubland, and Mosses/Lichens do not
show significant sensitivity for any parameter changes, which might
suggest obsolete vegetation types. This, coupled with the fact that the
original vegetation map was significantly out of date, aided the decision

to update the model’s land cover classification system and map.

Whilst the results of this sensitivity assessment are very interesting and
informative, they are merely a first step in model assessment. A one-at-
a-time sensitivity analysis does not consider how the parameters

interact with one another. It may seem that the grout and srout
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parameters do not have much purpose in the model, as perturbations to
these parameters do not alter the model output, however, it may be that
these parameters interact with other parameters in the model, to have a
secondary impact on model output. Therefore, a simultaneous
parameter perturbation approach must be sought to achieve a

comprehensive uncertainty assessment.

3.4 Methods of Parameter Uncertainty Analysis

This section will discuss five popular methods of simultaneous
perturbed parameter uncertainty analysis: Generalised Likelihood
Uncertainty Estimation (GLUE) (Beven and Binley, 1992), the Model-
Independent Parameter Estimation & Uncertainty Analysis software
package (PEST) (Doherty, 2010), the Shuffled Complex Evolution
Metropolis Uncertainty Analysis (SCEM-UA) (Vrugt et al., 2002, Vrugt et
al., 2003a), the differential evolution adaptive metropolis scheme
(DREAM) (Vrugt et al., 2008, Vrugt et al., 2009a), and the Bayesian
recursive estimation technique (BaRe) (Thiemann et al., 2001). Other
methods, that are not discussed here in detail for the sake of brevity,
include the Dynamic Identifiability Analysis Framework (DYNIA)
(Wagener et al., 2003), the maximum likelihood Bayesian averaging
method (MLBMA) (Neuman, 2003), dual state parameter estimation
methods (Moradkhani et al., 2005a, Moradkhani et al., 2005b), and the
simultaneous optimization and data assimilation algorithm (SODA)
(Vrugt et al., 2005).

3.4.1 Generalised Likelihood Uncertainty Estimation

Generalised Likelihood Uncertainty Estimation (GLUE) is by far the
most popular method of uncertainty analysis in hydrological modelling,
and has been applied to numerous catchment scale models (e.g. Smith,
2011, McMichael et al., 2006, Cameron et al., 1999, Hossain et al.,
2004). The GLUE methodology was developed by Beven and Binley
(1992), and was inspired by Hornberger and Spear’s (1981) method of
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sensitivity analysis (Vrugt et al., 2009b). GLUE methodology aims to
address the issue of “equifinality” in models. The equifinality concept
originates from the notion that there can be no single correct or optimal
model. Equifinality describes how different sets of model parameters
may lead to an equally good model performance. A simple illustration of
this would be to take a simple linear equation: a + b + ¢ = d. If we had
an observation of the value dthat was 9, there are many possible
combinations of a, b and cthat could provide that answer. Using
integers alone (0-9), there are 55 possible combinations that would
result in the answer 9. In hydrology modelling, the same issue applies.
Different sets of values may lead to similar model outputs, and using a
Monte Carlo sample, one would expect to see both good and bad
model outputs across a wide range of values for each model parameter,
depending on the values of other parameters. This means that the
‘goodness’ of a model does not depend upon individual parameters, but
on the whole set of parameter values, and the interactions between the
parameters. Given that the structure of the model is adequate,

unrealistic parameter combinations will lead to poor model results.

GLUE uses this theory to produce a set of ‘good’ models that are taken
forward for use in model predictions and projections. GLUE uses prior
distributions of parameter values to generate random sets of
parameters using Monte Carlo simulation. The results of the model runs
are then compared to observed data using a likelihood measure to
assess the acceptability of each model based on the residuals. A
specific likelihood measure is not defined, but is left for the modeller to
determine according to their requirements. Models that reach a certain
threshold in the likelihood measure are defined as “behavioural” and
those that don’t, “non-behavioural”’. When the model is used for
projections, the behavioural models all contribute to the distribution of
the projection, and are weighted according to their likelihood measure
(Beven, 2012). Thus, there are several moments that introduce

subjectivity in the GLUE process: when choosing feasible parameter
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ranges and distributions; when defining a sampling strategy; when
deciding upon a likelihood measure; and when determining the
conditions upon which a model is accepted as behavioural or rejected

as non-behavioural (Beven, 2012).

There has been significant debate in the literature surrounding the
GLUE methodology, which has focused on the fact that GLUE is not
formally Bayesian and is rather subjective in its approach. There have
been three central debates in the literature, between those that believe
GLUE is a useful working methodology for assessing uncertainty, and
those that prefer to use more formal probabilistic approaches (Vrugt et
al., 2009b). The provoking papers in these debates were “On
undermining the science” (Beven, 2006b), “Hydrological forecasting
uncertainty assessment: Incoherence of the GLUE methodology”
(Mantovan and Todini, 2006) , and “Pursuing the method of multiple
working hypotheses for hydrological modeling” (Clark et al., 2011).

The “On undermining science” debate was initiated by Keith Beven
(Beven, 2006b), who asked whether uncertainties in models are
overestimated by GLUE or other uncertainty estimation techniques,
whether showing the results of uncertainty analyses to users and
stakeholders would undermine their confidence in science, and how
uncertainties could be constrained in future to improve model results.
He concluded that uncertainty analysis need not undermine science,
but called for better evaluation of uncertainty in hydrological models.
Several replies suggested that whilst uncertainty need not undermine
science, the concept of uncertainty needs to be better defined, and
methods of uncertainty analysis better developed (Todini and
Mantovan, 2007, Hall et al., 2007). It was also suggested that
uncertainty is all too often an afterthought in model development (Hall et
al., 2007) and that uncertainties need to be made explicit in

communications with end-users (Andréassian et al., 2007).
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The “incoherence of GLUE” debate was sparked by Mantovan and
Todini (2006), who challenged the use of “less formal likelihoods” which
lose the learning properties of the Bayesian inferential approach. Beven
et al (2007, 2008) maintained that GLUE is appropriate and coherent
according the Bayes theorem in “special cases where the modeller is
prepared to make very strong assumptions about the nature of the
modelling errors”. This debate continued with further challenges by
Mantovan et al. (2007), and concluded with Beven et al. (2008)
demonstrating the flexibility of the GLUE approach in “non-ideal cases”.
The more recent debate with Clarke et al. (2012, 2011, Beven et al.,
2012) focussed on the superficial rejectionist nature of GLUE from a
Bayesian perspective, and concluded with recognition of the need to

continue improving the process of model development and evaluation.

It is clear from the extensive literature surrounding the GLUE
methodology, and the many applications of GLUE in hydrology models,
as well as other earth systems models, that it is a very popular and
flexible approach to model uncertainty evaluation. It is also clear
however, from the many exchanges between Professor Beven and
other hydrologists, that there are two schools of thought regarding the
application of formal and informal Bayesian methods, therefore a few of
the Bayesian approaches to model uncertainty assessment will be

discussed.

3.4.2 Bayesian Recursive Estimation

Bayesian Recursive Estimation (BaRe) (Thiemann et al., 2001) is one
of the alternatives to GLUE using a formal Bayesian framework. It
makes strong, explicit assumptions about the characteristics of errors in
the observations, using an exponential power density error model (Liu
and Gupta, 2007). BaRe defines prior probability distributions and
parameter ranges, and samples them using Monte Carlo simulation as
in GLUE. BaRe employs a recursive scheme for tracking the conditional

probabilities associated with different parameter sets (Thiemann et al.,
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2001). It predicts the outputs and the uncertainty in the outputs, and
updates the probability of the model parameter sets as new data
become available at the next time step. BaRe is a method that can
estimate uncertainty even if historic observed data are not available for
calibration, and is therefore useful for catchments that have only
recently been gauged. However, BaRe does not separate out model
structural and input data uncertainty, and as parameter estimation is the
primary objective, uncertainty estimates are not updated after the

posterior parameter distributions are obtained (Liu and Gupta, 2007).

3.4.3 Shuffled Complex Evolution Metropolis Algorithm

The Shuffled Complex Evolution Metropolis algorithm (SCEM-UA)
(Vrugt et al., 2003b) is another formal Bayesian approach. It is a
modified version of the SCE-UA algorithm developed by Duan et al.
(1992), which combines the Metropolis algorithm, controlled random
search, competitive evolution, and complex shuffling to update the
parameter distribution and develop the posterior distribution. It uses
Markov Chain Monte Carlo (MCMC) sampling to locate the high
probability density region of the parameter space efficiently.

3.4.4 DREAM

The Differential Evolution Adaptive Metropolis (DREAM) (Vrugt et al.,
2008, Vrugt et al., 2009a) algorithm is a development of SCEM-UA,
which was specially designed to estimate the posterior density function
of hydrologic model parameters in complex, high-dimensional sampling
problems (Vrugt et al., 2008). It maintains a detailed balance and
ergodicity which enables it to provide an exact Bayesian estimate of
uncertainty (Vrugt et al., 2009b).

Vrugt et al. (2009b) compared the formal Bayesian method DREAM
with less formal GLUE, for a hydrologic conceptual watershed model,
HYMOD. They concluded that formal Bayesian approaches can

generate very similar estimates of total predictive uncertainty to informal
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Bayesian approaches. DREAM in their application showed a slightly
smaller spread of streamflow prediction uncertainty bounds than GLUE,
however GLUE reveals when no model can reproduce the observations
given the available input data without compensation by a statistical error
model or input adjustments. They found that GLUE cannot separate
individual error sources and so it is difficult to identify structural
deficiencies in the model. The DREAM method attempts to disentangle
the different sources of uncertainty but suffers from interaction between

individual error sources.

3.45 PEST

PEST is a model-independent parameter estimation and uncertainty
analysis software package, that allows the user to undertake
comprehensive linear and non-linear parameter and predictive
uncertainty analysis alongside calibration, based on highly
parameterised inversion (PEST, 2014). PEST can also identify the
contributions of individual parameters to the uncertainty of prediction,
and the worth of existing or new data in reducing predictive uncertainty
(PEST, 2014). Ng et al. (2010) compared the GLUE and PEST methods
for the hydrological model SWAT. They found that both analyses
required some prior knowledge to be effective, which they obtained
from deterministic calibration using a genetic algorithm. They found
GLUE much more flexible, which makes it suitable for large complex
models, but provides a greater level of subjectivity. PEST was found to
be computationally frugal, and appropriate where the presence of local

optima is not significant.

Ultimately, it seems there are advantages and disadvantages of all
available approaches to uncertainty assessment. GLUE is a very
flexible and straightforward approach to uncertainty assessment and
has been well developed and defended in the 20 years since its
inception (Beven and Binley, 2013). Therefore, in this study the
underlying GLUE methodology has been applied to assess the
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uncertainty in the Mac-PDM.14 model, and special care has been taken
with regard to the subjective aspects of the analysis.

3.5 Defining Parameter Distributions

The first step in GLUE analysis is to identify the model parameters and
define ranges and plausible distributions for sampling. This step
required an extensive literature search for appropriate parameter values
to estimate plausible parameter distributions. With the new soil and
vegetation maps, there were 123 model parameters to define, including
the control parameters. Seeking global values of these parameters was
exceedingly difficult, so any estimates, be they local scale, regional, or
global were included, collated then analysed to calculate a distribution.

The main sources for parameter values in the literature are detailed in
Table 3.4. This table shows that for any parameter that is not a
vegetation parameter, it is very difficult to obtain observed data. For the
control file parameters, this is mostly due to the fact that many of the
parameters do not have a physical meaning, in which case values have
been sought from modelling studies that use a similar model structure.
For example, values of grout and srout were obtained from a report by
CEH and BGS (2012) that used the GWAVA model. Since GWAVA
contains the PDM model in its structure, several of the parameters are
comparable with those in Mac-PDM.14. In Table 3.4, the fcpcand satpc
parameters are mostly given the category of ‘Generalised’ in terms of
origin and scale. This is because in many cases, these parameter
values were taken from textbooks that contained tables of data on soil
hydrology (e.g. Ward et al., 2000, Arnell, 2002, Shaw et al., 2011,
Dingman, 2002). These textbooks did not specify the origins of the
values, and so they cannot be specified as observed or modelled, nor
local or global.
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The dominant source of data for the vegetation parameters was the
Plant Parameter Database (PlaPaDa) by Breuer and Frede (2003).
PlaPaDa is an online database that collates parameters from across the
literature for ecological and hydrological models. It contains more than
1300 values for 7 parameters: albedo, interception, leaf area index
(LAI), plant height, rooting depth, stomatal conductance and base
temperature. This is a very valuable resource and it provided 363
values for the r/ai parameter, 228 values for rootg, 91 values for the Ac
parameter, and 318 for rsc, A further paper by Breuer et al. (2003)
provided additional data for stomatal resistance and rooting depth. The
Land Data Assimilation System (LDAS) (LDAS, 1999) also provide a
good database of parameter estimates from both observational data

sources and land surface model simulations.

The parameter values were all collated, and were used to define
distributions ready for sampling. Sampling was carried out using the
software @RISK. Box plots presenting the data found in the literature
search are given in Figure 3.4. @RISK was chosen due to its advanced
and easy to implement sampling capabilities. It is primarily used in
industry for decision making purposes, and is tailored to run models
within the programme Excel, however it is possible to input parameter
information, form distributions and perform sampling to produce a
spreadsheet that can then be used to code an exterior model. @RISK
has a library of over 50 distribution functions, including Normal,
Uniform, Poisson, Extreme Value, Laplace and Log Logistic. The
programme has an integrated BestFit® tool which selects the best
distribution function for each parameter. This tool uses Maximum
Likelihood Estimators (MLES) to find the closest matching distribution to

the data provided.
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Figure 3.4 Box plots representing parameter values found in the literature.
Red lines indicate the sample mean, boxes represent the interquartile range, whiskers
represent the remainder of the sample, except in cases with outliers, which are shown
as red +’s. Samples with only one data point present as a red line. Soil classifications
read as: Sa — Sand, LoSa — Loamy Sand, SaLo — Sandy Loam, Lo — Loam, SiLo — Silt
Loam, Si - Silt, CILo — Clay Loam, SaClLo — Sandy Clay Loam, SiClLo — Silty Clay
Loam, SaCl — Sandy Clay, SiCl — Silty Clay, Cl — Clay, Li — Lithosols and Hi —
Histosols. Vegetetation types read as: EN — Evergreen Needleleaf, EB — Evergreen
Broadleaf, DN — Deciduous Needleleaf, DB — Deciduous Broadleaf, MF — Mixed
Forest, Mtv — Mosaic: Trees/Vegetation, Mcv — Mosaic: Trees/Cropland, Sh —
Shrubland, Gr — Grassland, Cr — Cropland, SpV — Sparse Vegetation, Ba — Bare, Bfl —
Broadleaf trees regularly or permanently flooded, Vfl — Vegetation regularly flooded
and AA — Artificial Areas.

For any density distribution f(x) with one parameter a, and a
corresponding set of n sampled values Xi, an expression called the

likelihood can be defined as:

L=TIL, fX, ) (E4.1)
To find the MLE, maximise L with respect to a:

dL

— =0 (E4.2)

da

And solve for a. This can be generalized to distributions with more than
one parameter (Palisade Corporation, 2010). @RISK provides three
statistical indicators of fitness: Chi-squared, Anderson-Darling (A-D)
and Kolmogorov-Smirnov (K-S). The outcomes of the distribution fitting
for the Mac-PDM.14 parameters, along with the statistical results of the
fitting are shown in Table 3.5. Where less than 5 values were available
from the literature, distributions could not be fitted, so uniform or

triangular distributions were applied as appropriate. Each distribution
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was also inspected for visual fit, and in some cases alternative
distributions with close rankings were applied. Following the results of
sensitivity analysis, minimum sampling values of O were replaced with
0.0001 to avoid extreme model response and infinity outputs.
Distributions with long tails were also adjusted to truncate the minimum
and maximum values to within a sensible range, slightly beyond the
range of literature values. Table 3.5 shows these adjusted minimum
and maximum values, along with the mean of the data values taken
from the literature. This spreadsheet was then ready for use in sampling

parameter values for the GLUE experiment.
3.6 Sampling Methods

GLUE traditionally uses a Monte Carlo technique for sampling the
parameter space. Monte Carlo uses random number generation to
sample the parameter space (Landau and Binder, 2005), and so
requires a large number of samples to adequately fill the sample space,

especially in a high dimensional sampling problem.

There is no ‘rule of thumb’ as to how many samples are required per
dimension, but since Mac-PDM.14 has 123 model parameters to
sample, it is likely that Monte Carlo sampling would require more
samples than would be feasible in order to achieve a good sample.
Therefore a more efficient sampling method was sought. Latin
Hypercube sampling (McKay et al., 1979) is an alternative sampling
technique that has been applied in GLUE experiments of catchment
scale hydrological models before, for example the MIKE-SHE model
(Christiaens and Feyen, 2002), and the SWAT model (Muleta and
Nicklow, 2005). Latin Hypercube sampling (LHS) is inspired by the Latin
square experimental design, and is designed to ensure that each value
of a variable is represented regardless of its resultant importance
(Cheng and Druzdzel, 2000). LHS requires that in a matrix of data,
there be only one sample per column and row. Figure 3.5 demonstrates

this concept for a two-dimensional 5 by 5 matrix.
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1 3

YIX| 1 2 3 4 5

Figure 3.5 Latin hypercube sample of a 5 x 5 matrix (after Cheng and
Druzdzel, 2000).

For each sample, [i,J], the sample values of X,Y are determined by:
X=FY{i—-14+ =x)/n)
v=FG—1+ &)/n),
where nis the sample size, exand gy are random numbers, and Fxand
Fy are the cumulative probability distribution functions of Xand Y
respectively. Figure 3.6 shows a comparison of Monte Carlo and Latin

Hypercube sampling for a 2-dimensional grid of 8 samples. This

demonstrates the space-filling properties of LHS.

(a) 1 o) (b) I
A (o] @ [6)
o
- o

y o y 5]

o o

o lo
o
0 > 0 >
X 1 X 1

Figure 3.6 Comparison of sampling techniques a) Random Monte Carlo
sampling and b) Latin Hypercube sampling. (N=8 samples), taken from
Oehler et al. (2012).
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In this study, @RISK was used to generate the Latin Hypercube sample
of the 123 parameters, using the distributions identified in Table 3.5,
with an ensemble size of 100,000 model runs. With the assigned
parameter distributions the grid from which to take the samples is no
longer evenly divided, as in Figure 3.6b, but is instead divided
according to the area underneath the distribution curve. Some

illustrations of this are given in Figure 3.7.
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Figure 3.7 lllustrations of LHS samples under different distribution types.
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This figure shows that where probability densities are high, the
sampling space is more concentrated, allowing the sample to focus on
the more likely region of the parameter space, whilst still sampling the

full range appropriately.

Once the parameter values had been sampled by LHS, the model
control, soil and vegetation files for each of the 100,000 parameter
realisations were created using the sampled values, and the Mac-
PDM.14 model was run on the Nottingham High Performance Computer
Cluster. The 100,000 model runs took approximately 40 days to run,
and output just over 2 terabytes of data. The post-processing of the
model outputs to extract catchment averaged data took a further 10
days, and produced 479MB of data. The GLUE experiment outputs
were assessed using a likelihood function. This process, along with the

results of the experiment are discussed in Chapter 4.

3.7 Summary

This chapter has reviewed the definition of, and approaches for,
sensitivity analysis and uncertainty assessment of numerical models. A
one-at-a-time sensitivity analysis was performed on the Mac-PDM.09
model. This revealed that the soil parameters, field capacity and
saturation capacity are the most sensitive parameters in the model
when perturbed individually. The root depth parameter also shows
significant sensitivity over grass. The results reinforced the need to
update the soil and vegetation maps, which was described previously in
Chapter 2.

Popular methods of uncertainty analysis were reviewed and critiqued.
The GLUE technique was chosen for the assessment of the Mac-
PDM.14 model. An extensive literature review was carried out in order
to define the ranges and distributions of the parameter values in this
experiment. The decision making software @RISK was employed to fit
distributions to the parameter values and to sample the parameter
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space using a Latin Hypercube Sampling (LHS) technique. LHS was
employed due to its superior efficiency over the traditional Monte Carlo
sampling technique. The results of this experiment will be presented in
Chapter 4, after techniques of evaluating model performance are

discussed.



Chapter Four:

Parameter Uncertainty in
Global Hydrology Modelling
Part 2

- Calibration and Results
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4.1 Introduction

Models vary in type, complexity and scale. However, regardless of their
structure, the ultimate aim of models is to represent a physical system.
In order to determine if they are adequate representations, models must
be assessed for their skill in reproducing observed hydrological
behaviour. Krause et al. (2005) give three reasons why a hydrologist
needs to evaluate their model’s performance: 1) to provide a
guantitative measure of the models capability of reproducing historic
and future catchment behaviour; 2) to provide a way of evaluating
improvements to the model through adjustments to the parameters and
structure, inclusion of additional data, and representation of important
spatial and temporal characteristics of the catchment; and 3) to

compare current modelling studies with previous efforts.

While chapter 4 outlined the methods and experimental design of a
Generalised Likelihood Uncertainty Estimation (GLUE) experiment, this
chapter will present the results. However it is first necessary to review
available objective functions which are used in hydrology for the
purpose of comparing model realisations with observed discharge data.
This chapter then details the method chosen to compare the Mac-
PDM.14 model realisations with the discharge data from study

catchments.

4.2 Objective Functions and Likelihood Measures

Objective functions, likelihood measures, evaluation metrics, error
measures, evaluation criteria, and ‘goodness of fit' measures are all
synonymous terms used to describe a numerical equation that can be
applied to assess the skill of a model using observational data. There
have been several reviews that have detailed multiple evaluation
metrics, with the most comprehensive by Dawson et al. (2007) who
developed a web-based toolbox that can be used to calculate multiple

assessment criteria simultaneously. Other notable contributions include
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Krause et al. (2005), Hauduc et al. (2011), Gupta et al. (1998) and
Reusser et al. (2009). Table 4.1 gives a list of commonly used
evaluation metrics in hydrological studies, and provides some example
references of their application in this field. Each method has its own
strengths and weaknesses, and each has conditions upon which it may
be more or less suitable. A few of the most popular methods, and their
characteristics, will be discussed here. Dawson et al. (2007) define
three types of metric, as follows:
1) statistical parameters of observed and modelled time series
datasets;
2) statistical parameters of the residual error between observed and
modelled time series datasets; and
3) dimensionless coefficients that contrast model performance with

accepted norms or recognised standards.

Within this framework, the residual error measures are the most
diverse, but dimensionless coefficients are perhaps the most popular.
The first of Dawson’s categories includes basic measures such as
mean, standard deviation, minimum, maximum and skewness. The
second category, residual error measures, can be subdivided into
absolute and relative measures. Absolute error measures define the
error in the same units as the variables of interest (Hauduc et al., 2011),
whilst relative errors measures express the error in terms of ratios and
percentages. Absolute measures include absolute mean error (AME,
eg. 1), peak difference (PDIFF, eq. 2), mean absolute and mean error
(MAE, eg. 3 and ME, eq. 4), root mean square error and fourth root
mean quadrupled error (RMSE, eq. 6 and R4MSA4E, eg. 8), Akaike and
Bayesian information criterion (AIC, eq. 9 and BIC, eq. 10), and number
of sign changes (NSC, eg. 11). Relative measures include relative
absolute error (RAE, eq. 12), percent error in peak (PEP, eq. 14), mean
absolute relative error (MARE, eq. 15), median absolute percentage
error (MAPE, eq. 16), mean relative error (MRE, eq. 17), mean squared
relative error (MSRE, eg. 18) and relative volume error (RVE, eq. 19).
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4.2.1 Absolute Residual Error Measures

Mean error (ME) can identify a systematic bias in a model, where the
model systematically overestimates, or underestimates the observed.
However, the errors in ME may counteract each other. Mean absolute
error (MAE) avoids this, and defines the average magnitude (but not
sign) of the error; underestimation or overestimation is not specified.
Absolute maximum error (AME) gives the value of maximum error in the
time series or dataset, which could be useful if the model is required to
maintain a threshold of goodness, but it is sensitive to outliers in the
residuals (Hauduc et al., 2011). Peak difference (PDIFF) is a metric that
examines the agreement in the magnitude of the highest peak in the
dataset. The peaks need not necessarily be in the same temporal
location in the time series, but the metric is useful in determining the
model’s capability of producing similar ranges of forecast values to that

of the observational data (Dawson et al., 2007).

Root mean square error (RMSE) is a very popular evaluation metric
(Nayak et al., 2004, McLeod et al., 1987, Coulibaly and Baldwin, 2005,
Dawson et al., 2007); it squares the residuals in order to avoid error
compensation, and the root returns the metric to actual units. This
metric emphasises larger errors, and therefore tends to focus on high
flow events in the time series. The fourth root mean quadrupled error
puts even more emphasis on large errors (Hauduc et al., 2011). RMSE
and MAE are fairly comparable metrics, and Willmott and Matsuura
(2005) assessed their abilities to describe average model performance
error. Willmott and Matsuura (2005) determined that MAE is favourable
over RMSE as it is unambiguous, and the most natural measure of
average error magnitude. RMSE is based on the sum of squared errors,

and so does not describe average error adequately.



131

Parameter Uncertainty in Global Hydrology Modelling Part 2

10113 arenbs uea|\

A@OONV NnNSeAIulS @ _ me_“_._ﬂm 100 poasljewoNy/l10413
pue urer ‘(5002) ‘[e 19 ewsagad u ho alenbs 3ISWAN
‘(866T) BUSPIEMEARL pUR OpURUISS (0 —'0)EK] UES\ 100y aAEIBY  ‘ISINY J
u M

(TTOZ) Jorewusna pue epnys ‘ “(9002) %_ = 351 lou3

‘e 12 ISINlY ‘(2002) ‘e 1o uspmog o 0 eL = - alenbs ues|y 1004  3ISNY 9
0 _

—— ——— = 49NN lou3

(9002) NINSeAILLIS pUE Urer (0 -"0r%Xy selg UBdIN pasiBWION  JGNN G
T=1 u
(9-'0) { = =M
(To0Z) Te1e bueyd o« -/+ 0 T 10113 Uea =10 v
‘(9002) Buor =
pue aybuiseuniey ‘(5002) vinnsieN ' -0 Nl = IV
pue nowiiM ‘(£002) ‘e 18 Bueyd o0 0 - AT Jol13 anjosqy ues\ avin €
\ViLuc) Ic

19 8sn9 ‘(£T0Z) epJenO pue SalepojN o« -/+ 0 (*O)xpue — (PPpew = 4410d ddualayig yead - 4diAd 4

(TT02) 1011
‘[e 19 onpneH ‘(866T) felovIdND oo 0 ("0 — 0| )xew = gV wnwixe anjosay ANy T
sooualojoy ajdwex3 1SIop  1Sag uolnenb3 aweN 1qqy  'ON

salpns Buljapow [e2160]0JpAY Ul pasn SJl|aW Uoien|eAs Jo 1si T't 9|gel



132

Parameter Uncertainty in Global Hydrology Modelling Part 2

(2T02)
‘Te 19 1I9M ‘((9002) ninsealuus

.umu ._”H.Hﬂ,|
_w@|§_wﬁ|m§.z

1013 anne|ay

pue urer) ‘(¥002) le 1o pery o0 0 alnjosqy uea JYVIN ST
guieyusid
(8002) [e 10 BuenH ‘(2002) 00T * (‘0)xpw _ a4 Yead Jo lou3pfead
‘[e 18 uosmeq ‘(¥00g) UsyD pue ur o -/+ 0 (O)xow — (*f)xows ul 4013 8213 d dad T
.u J10JJ
. | _(2002) 007 * |~ wu _ o 3
|e 1o uosmeq ‘(T00Z) eI NH o 0 (‘0 —'0) aAIe[aY 3INjosqy v €1
(£T02) epteno 10 —"0I"3X _ _—_ J0413
pue salrepo ‘(TT0Z) e 10 onpneH o 0 0 — 01 21N|0SqY dANeRY vy 2T
(2002) (sponpisaa Jo) sabuey)d
‘e 18 uosmeq ‘(866T) ‘e 10 €1dno oo 0 safuvyo ub1s fo saquuny = 0§ ubIS jo JaquinN OSN TT
(6002) 'e 10 ore (5002) uouaID
‘[e 19 |leysreN ‘(S66T) 'Te 12 nsH o0 0 (uiurd + (T)upwe =o1g  Uonewloju| ueisafeg 9 01
(c102) p q B
'Te 19 1preydbul “(¥66T) BMNIN (2) ¢+ (TWyuw =01V UOLBMID
(566T) e 1o nsH ‘(T) (T86T) I9AIH 0 dz + (TW)WIZ — = DIV UONBWIOJU| dYIexy NV 6
u M
(¥102) ‘e %_ = TFSWHY 10113 pajdnipend
10 lueybyaq ‘(TT0Z) e 18 dnpneH 0 Pz [ UesA 100 yuno4 IYSAPY 8
sooualojoy ajdwex3 1SIOM\  1seg uolnenb3 aweN '1qqy ON




133

Parameter Uncertainty in Global Hydrology Modelling Part 2

(£002) e1dn9 pue Iyaeyds

Adusioy3 syioIns

"(9002) "[e 1@ UaNDON “(5002) (0 —"0)'%X L= yseN /Aousioiy3
‘[e 18 asnesy ‘(2002) e 18 zanbzep  o- T 00 =0 joseod  3ISN/AD TC
(- 0y -0y <[
ghe 2 HaILE u __ 1UBI01J30D UoNe|a1I0)D
(2002) ‘1e 1@ uosmeq ‘(5002) (0-0)0-"0)3% JUSWO 19Nnpo.d
‘e 18 asnely ‘(5002) I|[@one] pue S uosJiead/uoireuiwlalaq
Isijoisnio ‘(2002) ‘fe 1o zenbzepA 0 T ] =ubgy JO JUBIIY80D bsy 02
(6002) ‘e 10 rewpty e
'(9002) ‘e 10 exjfesed (S002) Uaud 0 — 21y
pue ui7 ‘(200z2) ‘e 1@ wonsbiag oo 0 (o -0)=u% 10113 awn|oA aAlleey gAY 6T
1 T=1
(€T02) m|.w v Y qusw 10113 anITe|oy
e 19 Ueygeo (2002) fe 1o uosmeq o 0 AN0-'0/ T patenbs uespy  IYSN 8T
(€102) B\
epIeno pue sairepol ‘(9002) h|v N| —
'le 10 UoSMeQ ‘(L66T) e 1O UNNBID o -/+ 0 '0-0) 1 10113 BAle|oY UeaN JHN LT
(52
00T *| |55 |umtpam
(8002) 'Te 18 1ue|lIA (L002) 0-'0 Jou3z abejuadiad
‘[e 18 uosmeq ‘(5002) uayd pue ur o 0 = AdVP I anjosqy uelpsN  IAdVPIN 9T
sooualojoy ajdwex3 1SIOM\  1seg uonenb3 aweN 1qQqy ON




134

Parameter Uncertainty in Global Hydrology Modelling Part 2

"uonelqied ayl ul asn sjulod eiep Jo Jaquinu 8yl SI W pue ‘[apow ay) ul sisyeweled aal) Jo

Jaquinu ay) si1d ‘pooylax1] wnwixew ayl SI TN ‘SoUIBW g pue DIV 8yl 104 ‘dW0IN0 |qeliSap 1Sea| 8yl uwn|od 1SI0M 8yl pue ‘(s|qejrene
9109sS 1S8Q 8Y1) SWOIINO 3|CeJISaP 1SOW BY) S8JLIIPUI UWN|0 1S8Q 8L "S8n|eA Pa||apow sy} JO ueaw 8y SI ) pue ‘ejep paAIasqo

ay Jo ueaw ay s1/Q ‘(sulod eyep u 0} T =7 dIdYm) sanjeA (1seaa.o)) pajjapow ayl st /) ‘anjeA (pajoadxa) PaAIasqo ayl si‘d a1aym

(2002) (10 — )=

e1dno pue Iyseyds ‘(2002) ‘e 19 Tt e

uosmeq ‘(086T) Seig pue SIpIUBIY o - T (o-"0)= Xapu| 80UBISISIad Id €2
(10 —*01— |0 —"0)"
(£T0Z) epsenQ pue sauepon (o-"0y= —1
‘(L002) ‘Te 1@ uosmeq ‘(S002) -

‘e 18 asneny ‘(T86T) nowjim\ = 0 T =avol JUsWaaIby Jo xapu| avol z¢
sooualojoy ajdwex3 1SIOM\  1seg uonenb3 aweN '1qqy ON




Parameter Uncertainty in Global Hydrology Modelling Part 2 135

The final metrics among the absolute residual error group are the
Akaike and the Bayesian information criterion (AIC and BIC). These are
quite unique metrics that are not often used in hydrological model
evaluation. They use a more traditional evaluation metric within them,
which is adjusted to the number of parameters in the model, and the
number of data points used in the calibration. They both attempt to
account for model complexity, and seek the minimal model that best
explains the dataset. They quantify the relative performance of a model,
assuming that a model with many parameters will closely fit the data,
but not have many degrees of freedom, and will therefore have limited
application. AIC and BIC give credit to simple models, and discourage

over-fitting (Dawson et al., 2007).

4.2.2 Relative Residual Error Measures

Many of the relative residual error metrics are very similar, but each has
its own characteristics. Relative absolute error (RAE) compares the
total absolute error to the error that would result from a forecast of the
mean of the observed values. It gives a ratio of the overall level of
agreement between the modelled and observed data, and is influenced
by the spread of the observed records. Mean relative error (MRE) is
another measure that records the overall level of agreement between
the modelled and observed datasets, however it does not make use of
the mean of the observed record. In the same way as mean error (ME),
MRE is a signed metric where over and underestimations of the
observed data may cancel each other out. Mean squared relative error
(MSRE) is essentially the same metric, but the square of the relative
residuals makes it more sensitive to larger errors at lower magnitudes.
Due to the potential cancelling out of errors in both of these metrics, the
mean absolute relative error (MARE), and median absolute percentage
error (MdAPE) metrics are more popular (Dawson et al., 2007). MARE
is again an overall agreement metric, but it uses the absolute value of

the residual, and then expresses it relative to the observed value. Since
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it is not squared, it is less sensitive to the high errors that can occur at
high magnitudes. MARE is often expressed as a percentage, and
referred to as MAPE. MdAPE uses median, rather than mean, and is
therefore less affected by outliers and skewed error distributions.
Percent error in peak (PEP) and relative volume error (RVE) are more
specific metrics that are commonly used for single event modelling.

4.2.3 Dimensionless Evaluation Metrics

The third of Dawson’s categories, dimensionless evaluation metrics,
include the very popular Nash Sutcliffe Efficiency metric (also known as
Coefficient of Efficiency, CE eq. 21), the Coefficient of Determination
(Rsqr, eq. 20), the Index of Determination (IoAd, eq. 22) and
Persistence Index (PI, eq. 23). The Coefficient of Determination is the
square of the Pearson’s product-moment correlation coefficient (R?). It
describes the squared ratio between the covariance and the multiplied
standard deviations of the observed and predicted variables (Krause et
al., 2005). This efficiency metric only compares the dispersion of the
predicted values with the dispersion of the observed values, and does
not take the magnitude of the data into account. Thus, a model may
significantly underestimate, or overestimate each of the observed
records, but still result in a good r? value if the dispersion is of a similar

magnitude.

The Nash Sutcliffe Efficiency metric (Nash and Sutcliffe, 1970) has
been widely used in hydrology, and several papers have reviewed its
capabilities of capturing goodness of fit (e.g. McCuen et al., 2006, Jain
and Sudheer, 2008, Schaefli and Gupta, 2007, Criss and Winston,
2008). It is defined as one minus the sum of the absolute squared
differences between the predicted and observed variables, normalised
by the variance of the observed values during the specified time period
(Krause et al., 2005). Since the Nash Sutcliffe efficiency (NSE) metric
uses squares, larger values in the time series are over-emphasised,

and errors in lower values are neglected. Also, as Schaefli and Gupta
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(2007) explain, the NSE compares the performance of the model with
that of the simplest imaginable model (one that’s prediction is the mean
of the observed variables, as does RAE). This means that, depending
on the nature of the river’s flow regime, the meaning of the value of
NSE can differ widely; since for strongly seasonal time series’, the NSE
may be misleadingly high, whereas for catchments with a more
constant mean, the model would need to explain the small fluctuations
accurately to gain a high NSE value. Thus, Schaefli and Gupta (2007)
suggest that a benchmark model is required in order to compare model

performance across varying hydrologic regimes.

The Index of Agreement (IoAd) was proposed by Willmott (1981) and is
one minus the ratio of the sum of squared error to potential error
(potential error being the sum of the largest quantification that can be
obtained for each individual forecast with respect to the mean of the
observed dataset) (Dawson et al., 2007). I0Ad is an improvement over
the Coefficient of Determination (R?), as it is sensitive to differences in
the predicted to observed variances (Dawson et al., 2007). However,
since the metric uses squares, again it is also sensitive to peak values
over low values. Again, I0Ad can give relatively high values for poor
models, and the best models’ IoAd scores are not significantly higher.
The Persistence Index is one minus the ratio of the sum of the squared
error to what the sum of squared error would have been if the forecast
were the last observed value. This metric suffers similar interpretation
issues as NSE, and should be compared to the performance of a

benchmark model (Dawson et al., 2007).

4.2.4 Evaluation Metrics for Mac-PDM.14

Legates and McCabe (1999) established that correlation-based
measures, such as the Coefficient of Determination, and the Nash
Sutcliffe Efficiency metrics are not appropriate for the evaluation of
model performance, due to the ability of poor models to have high

correlation values, as well as the inherent difficulty of interpreting such
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metrics. Therefore, absolute and relative residual error metrics were
considered for this study. Squared error metrics were disregarded due
to their bias towards peak flow simulation, which would focus model
performance on the catchments with the highest flows, whilst
disregarding the performance of the model in drier catchments. Mean
Absolute Error is widely praised in the hydrological literature (e.g.
Willmott and Matsuura, 2005, Legates and McCabe, 1999), however,
due to the broad range in runoff values across the chosen catchments
for this study, Mean Absolute Relative Error was used to evaluate Mac-
PDM.14 to allow the errors from each catchment to be fairly included in

the overall performance score.

4.3 Results

The results of the 100,000 model simulations were assessed against
the observed records obtained from the GRDC, BWDB and USGS (see
Chapter 2.5) using the Mean Absolute Relative Error (MARE)

evaluation metric for each catchment as follows:

+(z2, |M|)) (E 4.1)

Qrot—Ctor

13 Qror Qm
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Where Qtot is the modelled average annual runoff for each catchment,
Qtot is the observed annual average runoff for each catchment, Qmi is
the modelled average monthly rainfall and Qmi is the observed average
monthly runoff for each catchment (i = Jan-Dec). The MARE statistics
were then averaged across catchments to give a ‘global’ average for

the 21 catchments.

4.3.1 Evaluation Metric Scores

The MARE values ranged from 0.9 to 7.9, which seemed surprisingly
high (an error of 90% for the best model). Upon investigation of the
catchment MARE statistics, it was found that Mac-PDM.14 model

performance was especially poor in the Murray Darling and the Nile
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catchments, with the lowest MARE values for these individual
catchments being 2.5 and 3.7 respectively (compared to an average
value of 0.2, std=0.16, for the remaining 19 catchments). The maximum
MARE values for the Murray Darling and Nile catchments were 99.7
and 22.7 respectively (compared to an average value of 3.4, std=2.9,
for the remaining catchments). These results suggest that the model is

not good at simulating these catchments.

Figure 4.1 shows the top ranking MARE model (i.e. lowest MARE),
when the MARE was averaged across all 21 catchments, and the
MARE when averaged across 19 catchments excluding the Murray
Darling and the Nile, as compared to the observed record. The
observed records for Murray Darling and Nile rivers show very low flow
year round, which is likely the result of extensive anthropogenic
influences on the flow regime in the form of large dams and reservoirs,
and abstractions for irrigation. The discharge station for the River Nile
that was used for the observed record is positioned at the outflow of the
Aswan Dam, which impounds Lake Nasser, with a total holding capacity
of 5.97 billion cubic meters of water. At Aswan, the Nile has the lowest
specific discharge of any river with a catchment greater than 1 million
km?, at 0.98 litres s** km? (Woodward et al., 2007). Of the estimated
mean flow of 84 km3, 18.5km? is allocated for abstraction by Sudan in
the Nile Waters Treaty of 1959, 55.5 km? allocated to Egypt, and the
remainder is subject to extensive losses through seepage and
evaporation (Woodward et al., 2007, Chauhan et al., 2014b, Sene et al.,
2001).

The Murray Darling is the fourth longest river system in the world, after
the Amazon, Mississippi-Missouri and the Nile (Thoms et al., 2007). It is
also one of the world’s driest catchments, and recently experienced the
“millennium drought” that lasted from 1995 to late 2009. Less than
10mm of rain has been recorded in a 12 month consecutive period in

the Darling catchment five times (Thoms et al., 2007). In addition, only
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about 5% of rainfall reaches the river system, and 44% of runoff is
dedicated to irrigation (Ryan, 2009). Furthermore, nearly all of the river
system is significantly degraded from its original state, with 10% of the
rivers total length being classified as substantially modified, and 84.5%
being moderately modified (Thoms et al., 2007). Due to the lack of
routing in the model, the significantly high level of transmission losses
that would be experienced in such a large dry catchment would not be
accurately represented. This, coupled with the substantial human
influence in this catchment, are the main factors in the poor
performance of Mac-PDM.14 in the Murray Darling catchment.

Each of the study catchments is subjected to some degree of
anthropogenic disturbance, and the implications of Mac-PDM simulating
‘naturalised flows’ is considered in more detail in the following section.
However, due to the severity of the disturbances in these two
catchments, and the resultant unfluctuating low flow of the observed
records, the Murray Darling and the Nile catchments were excluded
from further analyses of the performance of the model. Without the
Murray Darling and the Nile, the values of MARE ranged from 0.47 to
2.58 across the 100,000 model realisations.

Figure 4.1 shows that for most of the river catchments, the removal of
the Murray Darling and the Nile from the MARE score leads to a better
performing top ranking model when compared with the observed
records. For the Amazon and the Amu Darya however, the 21
catchment average top ranking model gives a better fit with the
observed record. This is because the MARE was averaged across all
catchments, so the significant improvement across the majority of
catchments outweighs the worsening in others. From Figure 4.1, it can
be seen that the model performs well in catchments with a strong
seasonal flow regime, such as the Brahmaputra, Ganges, Mekong and

Mississippi.
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The high latitude catchments of the Lena, Yenisey, and Yukon are not
so well simulated, as the model underestimates the peak flows
significantly; this is likely due to the lack of a glacier component in Mac-
PDM, as well as the fact that the model does not consider the seasonal

freezing and melting of permafrost.

A comparison of the top ranking model for the 19 catchments with the
previous version of Mac-PDM (Mac-PDM.09), before the soil and
vegetation classifications were updated, is shown in Figure 4.2. Mac-
PDM.09 scored a MARE of 1.05 excluding the Murray Darling and the
Nile catchments. Of the 100,000 model realisations 34,406 of the Mac-
PDM.14 models scored a MARE lower than that of Mac-PDM.09,
meaning that the updating of the maps and calibration of the model can
easily improve the model performance. However, by studying the
graphs in Figure 4.2, it is apparent that the top performing
parameterisation of Mac-PDM.14 provides a betterment over Mac-
PDM.09 in most, but not all of the catchments. For example in the
Yenisey and Yukon, the underestimation of the peak flow is
exaggerated. The top ranking MARE Mac-PDM.14 model performs
significantly better than MacPDM.09 in the Euphrates catchment, the
Okavango, and the Congo. Improvement is also evident in the Yellow,
Mekong, Niger, Ganges, and in the Amu Darya, where the peak timing

is still early, but the magnitude is a better fit with the observed.

Considering just the top ranking’ model however does not provide an
appropriate evaluation of the model performance; the main reason
being the issue of equifinality, which is described in Chapter 3.4. It is
also worth noting here that this model calibration only considers 19 of
the world’s catchments, and that this model parameterisation may not
be optimum for other catchments that have not been evaluated in this

study.
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Therefore, groupings of model parameterisations may allow for a more
realistic assessment of model output, taking equifinality into account, or

the models may also be weighted according to their goodness-of-fit.

4.3.2 Using Evaluation Metrics and Likelihood Measures

The MARE evaluation metric (or objective function) was used to create
a likelihood measure, which would enable the models to be weighted
according to their goodness-of-fit and used to determine an ensemble
weighted average. All models with a MARE value of less than 1 were
considered to be ‘behavioural’. This meant that all models that had an
average error across the 19 catchments of less than 100% were
included in the weighting. This left 25,532 model realisations, which was
26% of the ensemble. The likelihood measure was calculated by taking
the reciprocal of the MARE value, and then dividing by the sum of the
reciprocals for the 25,532 models, which made the likelihood measure
values sum to 1. The simulated model values for January to December
were then multiplied by the likelihood measure, and summed to give an

ensemble weighted average.

This ensemble average is shown in the cyan dashed line in the graphs
in Figure 4.3, compared with the observed records shown in red. These
graphs also show the ranges of outputs from all of the model
realisations that scored a MARE value of less than 1, 0.75 and 0.5. As
previously mentioned, 25,532 models scored less than 1, 1,238 scored
less than 0.75 and only 2 models scored less than 0.5. As with the top
ranking models, these graphs confirm that the Mac-PDM.14 model
performs best for highly seasonal catchments, with good fits in the
Brahmaputra, the Ganges, Mekong, Mississippi and Yangtze. The high
latitude catchments show a significant underestimation of the peak flow,
even with a fairly relaxed model acceptance of a MARE less than or
equal to 1. For the majority of catchments, this acceptance limit

encompasses the observed record.
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The June peak flows of the Lena and Yenisey catchments are
underestimated, as is the magnitude of the receding annual limb of the
Yukon catchment in September-October. The low flows of the
Okavango January-March, the La Plata in January and the Niger in
June-September are overestimated by the model. This again may be
due to abstractions, which is discussed further in the following section.
The peak flows of the Amazon River and the Amu Darya are simulated
several months too early, the Ob also shows an early peak by two or
three months, and the high latitude catchments, the Lena, Yenisey, and
Yukon, peak one month too soon. The premature simulation of peak
flows is likely due to the fact that the model does not route the runoff,
which in very large catchments can cause a significant delay in runoff
production from precipitation. Delayed peaks are likely due to the lack
of a snowmelt module in the model, so water that should be held in
frozen stores is counted as runoff for earlier months. It is noticeable that
the weighted average line deviates from the range of MARE<O0.5, and
provides a higher estimate of runoff than the two models that scored
<0.5 for all of the catchments.

The use of likelihood measures is a very subjective approach and is
one of the criticised aspects of the GLUE methodology (e.g. Mantovan
and Todini, 2006). The influence of deciding which models are
classified as “behavioural”, and which are rejected upon the model
output is significant and the impacts of this on Mac-PDM.14 is
demonstrated in Figure 4.4, which shows a weighted average when the
limit of behavioural models was set to MARE values of between 0.5 and
1 at increments of 0.1. These graphs show that a steady change in
output can be seen as the number of models included as behavioural is
reduced, however this change does not always trend towards the
observed record. The Amazon, Danube, Lena, Yangtze, Yellow,

Yenisey and Yukon all give worse results with fewer models included.
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In each catchment, the reduction of behavioural models leads to a
reduction in simulated average runoff, which suggests that this analysis
is favouring the accurate modelling of those catchments that are
overestimated by Mac-PDM.09 over those catchments that are being

underestimated.

Since the model is ranked using MARE, averaged across all
catchments, it is possible that in order to maximise the performance of
Mac-PDM.14 in some difficult catchments, where the model does not
perform well, the performance of Mac-PDM.14 in other catchments is
being reduced. The possibility of using Mac-PDM.14 calibrated for
individual catchments is the focus of the next chapter, Chapter 5. For
this reason, it seems the presentation of results through ranges, or fans,
such as in Figure 4.3, provides a more informative representation of
model outputs than using a weighted average by means of a likelihood
measure. This is because a full range of potential model outputs is
presented. For example, the Yukon catchment shown with weighted
averages in Figure 4.4 indicates that after May, Mac-PDM.14 is
incapable of simulating the high flows of June-October, however from
Figure 4.3 it can be seen that some of the models with a MARE of <1

come quite close to the observed record.

The graphs in Figure 4.3 might lead one to believe that the model is
more uncertain with higher flows, as the ranges of the model outputs is
widest during periods of peak flow. As MARE is a relative metric, this
was investigated further by averaging the Absolute Relative Error per
month for each catchment. The results of this investigation are shown in
Figure 4.5, which reveal that the volume of runoff does not determine
the amount of error in the model. For example, in the Brahmaputra
catchment, which has its widest range of model outputs in July, the
months with the largest Relative Error are actually December and

January. The width of the model output ranges is reasonably wide in
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these months in Figure 4.3, and the low runoff value means that this

error is more significant per mm than the error in July.

The graphs in Figure 4.5 give a good indicator as to how the model
performs through both high and low flows. The Kolyma and Mississippi
catchments are modelled with a consistent level of accuracy year round
(with MARE of ~0.5 and 0.2 respectively). The Brahmaputra and
Yangtze are best simulated during high flows, whilst the Amu Darya,
Congo, Euphrates, Ganges, Niger, Okavango and Yellow Rivers are
best simulated during low flows. The Lena and the Ob catchments are
simulated consistently, except for the peaks in May and April

respectively, which are dramatically underestimated.

It is important to note here that MARE does not account for the sign of
change, and that understanding of over and under-estimation must be
interpreted from the visual inspection of additional graphs (in this case
those in Figure 4.3). To this end, the values of the MARE score on the
y-axis of the graphs in Figure 4.5 help explain why the weighted
averages reduce the runoff values as the MARE behavioural limit is
made stricter. With the exception of the peak in the Lena catchment
MARE in May, the largest of the MARE scores are all associated with
overestimations of the observed record. The highest is the Okavango in
February, which has an average MARE score of 11.74 for all models
with overall MARE <1. The Ob in April is an overestimation, with
average MARE of 8.8 for overall MARE <1, and similarly, the high
errors of the Amu Darya, Euphrates, Ganges, Niger and Yellow are all
associated with overestimations of the observed record. Catchments
that are underestimated, such as the Amazon, Danube, Kolyma,
Yangtze, Yenisey and Yukon all show small MARE values that do not
exceed 1 for any individual month. Overall, by comparing the months of
high and low flows with the months of greatest error, it seems that Mac-
PDM.14 is a fairly balanced model, and shows no significant trend

towards modelling either high or low flows with more accuracy.
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4.4 Naturalised Flow Modelling

As previously discussed, each of the catchments has to some extent
been modified or is subject to abstractions. Modelling such influences
on a catchment is incredibly difficult, primarily due to lack of data,
though some hydrological models do take anthropogenic impacts into
account; for example, WaterGAP 2 estimates domestic, industrial and
agricultural water use, but the results are highly uncertain (Alcamo et
al., 2003). GWAVA also considers water use and availability but is used
for continental and global scale investigations of water resources
scarcity (e.g. Dumont et al., 2010). There have been several research
efforts attempting to quantify the volumes of abstractions on a global
scale (e.g. Shiklomanov and Rodda, 2003, Alcamo et al., 2007, Shen et
al., 2008) alongside databases such as the commonly used
AQUASTAT which provides country based water withdrawal data (FAO,
2014a).

Shen et al. (2008) used the AQUASTAT database, alongside an
irrigation map and an urban/rural population data set, to develop a
geographic distribution of current (2008) water withdrawals for each
sector, domestic, industrial and agricultural. They estimated a global
total withdrawal for all sectors of 3824.3 km?3 year 1. A map of the
spatial distribution of these withdrawals is given in Figure 4.6. This map
shows that areas with the greatest water withdrawals are India, China
and Japan with values up to 7km? year per grid square (0.5 x 0.5 deg).
Europe and the USA also show substantial abstractions. This would
suggest that of the chosen study catchments, the Brahmaputra,
Ganges, Yangtze and Yellow Rivers would show the greatest
discrepancies through the modelling of naturalised flows, however the
Brahmaputra and the Ganges rivers are two of the best simulated
catchments by the Mac-PDM.14 model.
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Figure 4.6 Distribution of total water withdrawal (domestic, agricultural and
industrial) estimated for the year 2008. Data kindly provided by Prof. Yanjun
Shen, Chinese Academy of Sciences.

The Nile and the Murray Darling catchments however, show very poor
simulations, which were suspected to be the result of abstractions, have

very low abstraction levels according to Shen et al. (2008).

Rather than attempting to correct the discharge records to account for
the removal of water by abstractions, the University of New Hampshire
(UNH) with the Global Rivers Data Centre (GRDC) have instead
produced composite runoff fields that combine their datasets of
observed discharge records with simulations from the Water Balance
Model (WBM) (Fekete et al., 1999, Fekete and Vorosmarty, 2011).
Whilst this data does not explicitly represent ‘naturalised flows’, as it is
constrained by observed discharge data, the data does represent
corrected, spatially distributed runoff for comparison with modelled
runoff. Davie et al. (2013) carried out a simple validation of the Global
Hydrology Models that took part in the ISI-MIP project (Inter-Sectoral
Impacts Model Intercomparison Project) using the UNH/GRDC
composite data set. They found that the models tended to predict higher
runoff than the GRDC data set.
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The composite data set was used to derive monthly average runoff for
each catchment to allow for a comparison with the observed record,
and with the Mac-PDM.14 adjusted parameter ensemble outputs. The
results of this analysis are shown in Figure 4.7. The Niger and the
Yellow rivers were excluded from the ranking of GLUE realisations
when compared to the composite data, as the composite data showed
such negligible flow in these catchments that the MARE values were
unreasonable (ranging from 58.9-636.9 with all 21 catchments, but from
2.25-12.71 excluding the Niger and the Yellow). The top ranking model
when compared to the composite data scored a MARE of 2.25, which is
not much lower than the MARE of the worst model, when compared
with the observed record (the best being 0.4733).

A noticeable difference in runoff can be seen between the composite
data and the observed record in all catchments. In the aforementioned
Brahmaputra, Ganges, and Yangtze Rivers, where abstractions are
estimated to be significant (Oki et al., 2001, e.g. Mekonnen and
Hoekstra, 2011), the composite data actually shows a significant
reduction in runoff compared with the observed record, which is
unexpected. The Nile and the Murray Darling catchments however, for
which Mac-PDM.14 gave unreasonable results when compared to
observed, showed higher flows with the same temporal fluctuations that
can be seen the Mac-PDM.14 simulations. The composite runoff for the
Euphrates is much higher than the observed record, and indeed higher
than the top performing Mac-PDM.14 simulations. The La Plata
catchment also shows significantly higher runoff for the composite data
in the months December-March. In most other catchments, the
composite data is not dramatically different from the observed or the
Mac-PDM.14 simulations. It is interesting that the mistiming of the peak
flow in the Amazon catchment is still an issue with the composite data,
whilst in the Amu Darya the peak of the composite data is predicted to

be 4 months prior to that of the observed record.
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Fekete and Vorosmarty (2011) explicitly state that the use of the

composite data for validation is not recommended due to the fact that it
is a combination of observed and modelled discharge. Therefore, whilst
this analysis is relevant, the composite data will not be taken forward for

use in further analyses of Mac-PDM.14.

Naturalised flow modelling is common in hydrological research, and so
comparisons of model output with observed records will not often
provide strong agreement. Accurate datasets of abstractions and
alterations to the timing of peak flows on a global scale, which are not
yet available, are required for meaningful comparisons of observed
discharge with model outputs.

4.5 Parameter Uncertainty vs Model Uncertainty

Previous research has investigated the structural uncertainty derived
from different GHMs (e.g. Warszawski et al., 2014, Schewe et al.,
2014), however the parameter uncertainties within these models has
not yet been well assessed. It was therefore considered appropriate to
determine whether the magnitude of uncertainties from different

sources are comparable.

The EU-WATCH project ran a Multi-Model Ensemble (MME) of 11
global models: 6 Land Surface Models and 5 Global Hydrology Models.
The output data for 10 of these models (GWAVA, HO08, Htessel, Jules,
LPJmI, MATSIRO, MPI-HM, Mac-PDM.09, Orchidee, and WaterGAP) is
available on the FTP website hosted by the Centre for Ecology and
Hydrology. Data from HO8 was incomplete. The remaining model data
was downloaded and analysed for comparison with the Mac-PDM.14
parameter ensemble. Each model that participated in EU-WATCH was
run with the WATCH Forcing Data, which enabled a fair comparison
with the Mac-PDM.14 parameter ensemble which was run using the
same input data. The EU-WATCH project ran all of the models under
naturalised flow options. Even those that had the option to estimate
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anthropogenic influences on runoff had those modules switched off to

make for a fair comparison.

The results of the WATCH MME, along with the Mac-PDM.14
parameter ensemble, are shown in Figure 4.8. At first glance it is
apparent that the models all show very similar results. The Murray
Darling and the Nile catchments were included in Figure 4.8, as they
show that despite a poor performance when compared to the observed
record, the range of different models all show similar outputs. This
indicates that either the observed records are unreliable for these
catchments, or that all of the hydrology models exhibit similar flaws in
their attempts to simulate the Murray Darling and the Nile catchments.
Again it is the catchments with very strong seasonal cycles in the
hydrological regime that are modelled with more confidence. For
example, the models are all very close together for the monsoon-
impacted catchments of the Brahmaputra, the Ganges, the Mekong, the
Niger and the Yangtze. The models show more variation in the rivers
with more even flow distributions throughout the year: the Congo, the

Danube, and the Murray Darling.

In terms of comparison with parameter uncertainty, the range between
models is rarely larger than the range between parameter realisations
with a MARE <1, and the majority actually lie within boundaries of the
models that had an overall MARE of <0.75. The Orchidee model tended
to have the highest runoff simulations, with the biggest discrepancies
between Orchidee and the other models being apparent in the Danube,
Mississippi, and Yellow rivers. LPJml also shows high runoff particularly
in the Kolyma, Ob, Okavango and Yukon catchments. MPI-HM seems
to simulate very high peak flows, with notable peaks exhibited in the
Danube, Lena, Mississippi and Yenisey catchments. None of the
models appear to simulate particularly low runoff values, although
despite the high peaks in some catchments, MPI-HM shows the lowest

runoff in the Brahmaputra, Ganges, Nile and Yangtze.
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The previous version of the Mac-PDM model (Mac-PDM.09, shown in

black), seems to fit fairly centrally among the other models.

These results indicate that, depending on the limit of acceptability
determined by the modeller (the number of models accepted as
behavioural), the range of uncertainty that is derived from parameter
uncertainty, is quite similar to the range of uncertainty derived from the
type of model employed. This means that the full range of uncertainty
from both parameter and structural uncertainty would be rather larger
than the ranges shown in Figure 4.8, as the parameter uncertainty of
Orchidee will push the upper uncertainty bounds towards higher
predictions, and those models that simulate runoff to be lower than
Mac-PDM will push the lower boundaries wider if they were assessed

for their parameter uncertainty.

The bar chart in Figure 4.9 shows a comparison of the performances of
each model in the MME using the MARE metric that was employed in
the Mac-PDM.14 parameter ensemble analysis. This chart shows that
on average, the models have a similar uncertainty level to the Mac-
PDM.14 ensemble results. The top performing Mac-PDM.14 model from
the ensemble is shown on the far left, with a MARE for the 12 months of
0.47. The ensemble average for all models that performed better than
an overall MARE of 0.75 gave a MARE of 0.67.

Of the MME models, MATSIRO performed the best when assessed
against the 19 catchments, with a MARE of 0.5, and LPJmI performed
least well with a MARE of 1.6. None of the models performed better
than the top ranking GLUE realisation of Mac-PDM.14. Htessel, Jules,
and MATSIRO were the only models to perform better than the Mac-
PDM.14 ensemble average. These models, as well as MPI-HM and
WaterGAP, performed better than the version of Mac-PDM used by the
WATCH project (labelled Mac-PDM in the graph).
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MARE

TopGLUE MARE <0.75 GWAVA  Htessel Jules LPJml  MacPDM MATSIRO MPLHM  Orchidee WaterGAP

Model

Figure 4.9 Bar chart showing the MARE for each EU-WATCH MME model
when compared to observed records (MARE calculated for Jan-Dec for 19
catchments). Far left bars are the top ranking Mac-PDM.14 GLUE model and
the weighted average for all parameter ensemble models with MARE <0.75.

4.6 Assessment Feasibility

This analysis of the parameter uncertainty of a Global Hydrology Model
has been undertaken to determine whether this approach could be
included in the calibration process in the development of GHMs. The
choice of the number of model realisations to run is another of the
subjective steps of an uncertainty analysis, on top of the choice of
evaluation metric, sampling strategy and limit of acceptability, and
depends on the computational resources available to the modeller as
well as the number of parameters being assessed. This study
investigated 123 model parameters, and ran an ensemble of 100,000
parameter realisations. Using the University of Nottingham High
Performance Computer Cluster (HPC) this took approximately 40 days,
and output just over 2 terabytes of data. Whilst the model does not
require significant amounts of RAM to run (less than 2.5GB), the HPC
offered the ability to run several hundred model realisations at once,
and to queue the jobs, which allowed efficient transitions when model
runs had completed. The analysis of the data took additional time and
hard disk space. Without access to such computational power,
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assessing the parameter uncertainty of a model could take considerably
longer; therefore, several smaller parameter ensembles were run in
order to investigate the impact of ensemble size on the performance
assessment of the model. Ensembles of 10,000, 5,000 and 1,000 model
realisations were run, using the same parameter distributions and
sampling technique as the 100,000 ensemble of model realisations. The
mean absolute relative error (MARE) metric was used, as before,

excluding the Murray Darling and Nile catchments.

The distributions of the MARE scores for each parameter ensemble are
shown in Figure 4.10. These histograms show that the MARE scores
are similarly distributed across the different ensemble sizes, ranging
from ~0.5 to ~2.4, with peaks between 1 and 1.1. This demonstrates
that reducing the ensemble size does not mean that the modeller is less
likely to obtain a “good” model. However, the smaller the sample size,
the fewer “good” models there are to choose from, as is demonstrated
in Table 4.2. The statistics in the table show that only the 100,000
model ensemble achieved a MARE of <0.5. Therefore, in order to
account for the issue of equifinality, the modeller might decide to relax
the limit of acceptability for smaller sample sizes, rather than just accept

the one or two models that meet a stricter criterion.

The best model for each ensemble had MARE values of 0.59, 0.55,
0.56 and 0.47 for the 1, 5, 10 and 100 thousand model ensembles
respectively. This shows that increasing the number of realisations does
reduce the MARE of the best model slightly. The top ranking model
from each ensemble is shown in Figure 4.11. The graphs in Figure 4.11
show that the best models for each realisation ensemble give very
similar results, and that the model outputs do not progress towards the
observed record with more model realisations. For example, in the
Danube catchment, the 100,000 realisation ensemble performs much
better than the 10,000 realisation ensemble, but the 1,000 and 5,000

realisation ensembles are better than the 100,000.
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Figure 4.10 Histograms of MARE scores for the 100, 10, 5 and 1 thousand
realisation runs.

Table 4.2 Number of model realisations that achieved MARE scores of 0.5 to
1 for each of the 4 ensemble sizes

Number of Number (and percentage of ensemble size) of Model

Realisations Realisations with a MARE less than or equal to:

in E I

nEnsemble o5 06 07 08 09 1

100,000 2 40 1238 3092 10656 25532

(0.002) (0.4) (1.238)  (3.092) (10.656) (25.532)

10,000 0 5 44 282 1102 2533
(0) (0.05) (0.44) (2.82)  (11.02) (25.33)

5,000 0 2 20 163 583 1267
(0) (0.04) (0.4) (3.26)  (11.66)  (25.34)

1,000 0 1 6 33 109 242
(0) (0.1) (0.6) (3.3) (10.9) (24.2)

Similarly, in the Congo catchment, the 100,000 model realisation
ensemble performs much better than the 5,000 and 10,000 model
ensembles, but the 1,000 ensemble also performs well. The 100,000
realisation ensemble only performs noticeably better than the other
ensembles in the Euphrates, Mississippi, Niger, Ob and Okavango

catchments.
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These results are similar to those of the weighted average results,
where we would expect to see a trend towards the observed record as
we “improve” the model, but the results are instead rather erratic, and
inconstant between catchments. This is likely due to the attempt to seek
a “globally good” model, which is pushing to increase the runoff in
catchments such as the Amazon, Lena, Yenisey, and Yukon, whilst
simultaneously attempting to reduce the simulated runoff in the Ganges,
Congo, Niger and Yellow Rivers. This raises the question “s it really
possible, or indeed sensible, to simulate global runoff using one set of

model parameters?” This is addressed further in Chapter 6.

The outputs of the ensemble size experiment were analysed further to
assess the impact of ensemble size on the best model output and the
range of outputs within an acceptability limit (MARE <0.75). Findings for
6 of the 19 catchments are shown in Figure 4.12 which demonstrates
that although the top performing models give very similar outputs (as
highlighted in the graphs in Figure 4.11), the ranges of model outputs
within a specified limit of acceptability vary significantly with ensemble
size. With a MARE < 0.75, the model ensembles had 1238, 116, 58 and
18 models accepted as behavioural for the 100, 10, 5 and 1 thousand
realisation ensembles respectively. It is evident from the graphs in
Figure 4.12 that the smaller the ensemble size, the smaller the range of
model outputs with a MARE < 0.75. What this means is that if a
modeller uses smaller ensembles, they may get a similarly good top
ranking model to that achieved from a larger ensemble, but they would
be underestimating the parameter uncertainty within the model

significantly.
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4.7 Summary

This chapter has presented a Generalised Likelihood Uncertainty
Estimation (GLUE) analysis of the Mac-PDM.14 model, which simulated
and analysed 100,000 model parameter perturbations. It was
determined that the Mac-PDM.14 model does not perform well for the
Murray Darling and Nile catchments, and when these were excluded,
leaving 19 study catchments, the model realisation with the best
performance across these catchments had a Mean Absolute Relative
Error (MARE) of 0.47 (an average error of 47%). A likelihood measure
was used to calculate weighted averages for each catchment which
used more information from the parameter ensemble than looking at
just the top performing model. It was found that for most catchments,
constraining the limit of acceptability (the number of models taken as
‘behavioural’) provided a better fit with the observed values, but due to
the attempt to match so many catchments with different hydrological
regimes, with Mac-PDM.14 overestimating some and underestimating
others, not all catchments gave better results. The MARE per month for
each catchment was investigated, which revealed that Mac-PDM.14
does not systematically favour the more accurate simulation of either
high or low flows, but that highest error varied temporally between

catchments.

The Mac-PDM.14 outputs were compared to composite runoff data from
the University of New Hampshire/Global Rivers Data Centre in an
attempt to account for some of the impacts of abstractions and dams on
the observed record. The results of this comparison showed that Mac-
PDM.14 was better at simulating the observed record than the
composite data, with the best model compared to the composite data
having an average MARE of 2.25. The composite data indicated that
the Murray Darling and the Nile simulations are more reasonable than
the observed record suggests, but that the Brahmaputra and Ganges,

that showed excellent results when compared to the observed record,
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significantly overestimated the composite data. Since the composite
data is a combination of modelled runoff and observed discharge
records, the data could not be used for model validation, due to

circularity of argument.

The parameter uncertainty of Mac-PDM.14 was then compared to
model structural uncertainty, using data from the EU-WATCH MME.
The outputs of 9 models were analysed, and plotted against the ranges
of outputs from Mac-PDM.14 with different thresholds of MARE. The
results of this indicated that the range of outputs from different models
closely reflected a range of a parameter ensemble of MARE<O0.75. Due
to the subjectivity of deciding upon an evaluation metric, and
determining a limit of acceptability in a parameter ensemble, it cannot
be said whether parameter uncertainty is higher or lower than the
uncertainty derived from employing different models; however the
results are comparable, and the models mostly simulate similar
seasonal runoff cycles. The MARE range across the MME models was
0.5 to 1.61; the range or MARE values across the entire parameter

ensemble was 0.47 to 2.58.

Finally, since this uncertainty analysis involved an arduous 100,000
model realisations, several smaller experiments were run in order to
compare the results and determine whether uncertainty experiments
need to be so rigorous, or whether smaller scale studies could provide
adequate insight into the parameter uncertainty of a model. It was found
that with ensemble sizes of 1, 5, 10 and 100 thousand realisations, the
top performing models all gave good performance, with a slight
reduction in MARE values as the ensemble size was increased (the
ensembles gave MARE values of 0.59, 0.55, 0.56 and 0.47
respectively). The distribution of errors across the ensembles was also

very similar.

The main issue with smaller ensembles was that, despite the top

performing model giving a good MARE score, there were far fewer
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models with good scores. For example in the 100,000 model ensemble,
40 models scored a MARE <0.6, whilst of the 1,000 model ensemble
only 1 model scored a MARE <0.6. This means that if the modeller
wishes to choose a fairly strict limit of acceptability, the range of
uncertainty in the model output may be misleadingly low. The
misperception of uncertainty from small ensembles has also been
demonstrated by using a set MARE threshold, whereby the range of
model outputs is significantly larger for larger ensembles. This shows
that a modeller should be as rigorous as their computational capacity
and budget allows, and should consider the fact that the uncertainty
ranges found from a parameter ensemble will likely only be a subset of

the true uncertainty range.

The next chapter will review the potential of using Mac-PDM.14 as a
catchment model, and will investigate the parameter values that result
in good model realisations.



Chapter Five:

Parameter Estimation and
Global Models as Catchment
Models
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5.1 Introduction

The Generalised Likelihood Uncertainty Estimation (GLUE) experiment
presented in Chapter 4 indicated that the Mac-PDM.14 model is better
at simulating some catchments than others, and that the drive to define
a ‘globally good’ model led to conflicting results. The catchments that
were overestimated by Mac-PDM.14 had higher errors than the
catchments that were underestimated, and therefore, model realisations
that sought the lowest overall error were biased towards accurate
simulation of these catchments. This raised the question, “how well
could the Mac-PDM.14 model perform when calibrated for individual
catchments, and how much better could these outputs be, over those of
a globally calibrated model output?” Therefore, this chapter seeks to
determine whether it is indeed sensible to simulate global runoff using
one set of model parameters across the entire global domain, or
whether it may be more sensible to use global hydrology models as
catchment models. The parameter values that produce both a ‘good’

global, and a ‘good’ catchment model are evaluated.

5.2 Catchment Calibration of a Global Hydrology Model

In order to rank the model realisations for a ‘globally good’ model, the
Mean Absolute Relative Error (MARE) evaluation metric was used. The
30 year average annual runoff, as well as the monthly runoff statistics
for each catchment, were compared to the observed record, and then
averaged across catchments to give a score across all catchments.
Going back to the individual catchment MARE scores, before averaging
them, facilitates an assessment of how well Mac-PDM.14 could perform

if it were to be employed for a single catchment.

Figure 5.1 shows the percentage of models within the 100,000
realisation ensemble that scored a MARE below several intervals up to
a value of 1 for each catchment. Here, the taller the bar and the more

green/blue that is visible, the better the results. It is immediately
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apparent that the Mac-PDM.14 model performs better in some
catchments than others. For example, in the Amazon and the Yangtze,
all of the 100,000 model realisations present a MARE <1. The
Brahmaputra, Kolyma, Yenisey and Yukon also come very close to this,
whereas the Okavango only has 13 model realisations <1, and the
Niger only 561. Figure 5.1 also indicates consistency across the model
realisations by the length of the colour bars; for example, the
Brahmaputra River shows 89% of its models giving a MARE between
0.4-0.5, and the Amazon has 62% of its models between 0.3 and 0.4.
The Mississippi, Congo and Euphrates show a more even distribution of
MARE values across the ensemble. This perhaps suggests that the
model is less sensitive to parameter perturbations in the Brahmaputra,
Amazon Yangtze and Yukon catchments. The Yangtze catchment gives
the model best performance, with one model giving a MARE value of
<0.05, and more than half the models scoring less than 0.3. However,
from the graph it can be seen that the Danube and the Mississippi give
the highest number of models with MARE <0.2.

Figure 5.2 shows the ranges in model outputs across the top 20 models
when globally-calibrated, compared to the ranges of the top 20 models
when calibrated against each catchment individually, for the 19
catchments. Table 5.1 shows the monthly and annual average MARE
values for the best globally-calibrated and catchment-calibrated model
realisations, and shows which performed better. These graphs show
that catchment-calibrated models perform significantly better than the
globally calibrated models, and that improvements are seen in all
catchments. Table 5.2 shows that the annual average MARE for each
catchment is improved when employing the catchment-calibrated model
over the globally-calibrated model for all 19 catchments.
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The timing of the peak flows in the Amazon, Amu Darya and Ob
catchments, which were simulated several months too early using the
globally-calibrated models, are much improved. Figure 5.2 shows that
the overestimation by the globally calibrated models of the peak flows in
the Congo, Euphrates, La Plata, Okavango and Yellow, are all reduced
in the catchment calibrated models, giving a much better fit with the
observed record. Table 5.2 indicates that the Okavango catchment
gives worse results from the catchment-calibrated model than the
globally-calibrated model for the months May-September, however
these are the lower flow months, and the significant improvement in the
simulation of December-April outweighs the small decrease in
performance over the summer months. The underestimations of the
Amazon, Danube, Kolyma, Lena, Yangtze and Yukon are also

improved, with the catchment simulations giving higher runoff outputs.

Despite the improvement in timing of the peak flow in the Amu Darya
catchment, the magnitude of the peak flow is better simulated by the
globally-calibrated model. The Brahmaputra, which was already well
simulated, shows little change between the catchment-calibrated and
the globally-calibrated models, and the Ganges, Niger and Yenisey
show only a little improvement using catchment-calibrations. The
Mekong, Mississippi and Yellow were fairly well simulated by the global
top performing model, but the range of outputs (and hence the
uncertainty) is reduced significantly when catchment specific model
realisations are applied. Table 5.2 shows that the Danube, Mekong,
Mississippi and Yangtze catchments had improvements in MARE when
using the catchment-calibrations over all months of the year. The
Euphrates, Kolyma, Lena, Yellow and Yukon show improvement in all

but one month.

In most catchments, the observed record is within the range of the top
20 catchment calibrated models for the majority of the year. In the Amu

Darya, Congo, Lena, Ob, and Yangtze, the observed record did not fit



Parameter Estimation and Global Models as Catchment Models 175

within the 20 top global models, but does within the catchment models.
In the Amazon, Danube, Euphrates, Ganges, La Plata, Niger,
Okavango, Yenisey and Yukon however, there remain months that are
not well simulated by even the catchment-calibrated models. However,
the observational record is an average of the 30 year period of 1971-
2000, within which the runoff may have varied significantly, so some
consideration of the natural variability of the catchment runoff should be

taken.

5.2.1 Natural Variability

Figure 5.3 shows a similar evaluation of the model’s overall ‘goodness’
in each catchment, but investigates the range of readings within the
observed record. Since the comparison of the models with observed
records has so far been focused upon matching the 30 year average,
this has not taken account of how variable the runoff in the catchments

may be.

One model that seems distant from the average may still be well within
the range of ‘natural variability’ (the minimum and maximum observed
values within the 30 year record), whilst another that seems to better fit
the observed average may not be within the full range of the observed

record if the river flow is very consistent year on year.

Figure 5.3 shows the number of model realisations within the ensemble
of 100,000 models that achieve 0-12 months within the observed
minimum and maximum runoff values. The Danube, Kolyma,
Mississippi and Yangtze perform the best, with 51,094 of the model
realisations lying within the range of natural variability for the Danube
catchment for all 12 months of the year. For the Mississippi, 27,143
models fit all 12 months, and the Kolyma 20,342. The Congo exhibits
the largest number of models that do not fit any of the months, at
51,406; however more of the models manage to fit a lower number of

months than the Yukon, where 98,824 of the models could not fit more
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than 2 months of the year within the range of the observed values.
Again the Brahmaputra stands out as being a consistently well
simulated catchment across the ensemble, with 72,449 of the
realisations achieving 6 months within the observational range. Figure
5.3 shows which catchments give the best results when natural
variability is taken into account, however the actual range of natural
variability is not presented, so it may be that some catchments have
wider bands of variability, and hence are easier to model. The true
ranges of natural variability are shown in the hydrographs of Figure 5.4,
alongside the ranges of the top 20 catchment-calibrated and globally-
calibrated model realisations.

These graphs show that all catchments have significant ranges
between the minimum and maximum observed values, and that in
general, the largest ranges are seen during months of highest runoff. In
addition, the maximum observed values are often further away from the
30 year mean than the minimum observed values. The Murray Darling
and the Nile catchments were included in this set of graphs, as the very
large range in the observational values for the Murray Darling show that
the outputs of the Mac-PDM.14 model, when calibrated towards that
specific catchment, are not as bad as the global top performing model
presented in Chapter 4 (see Fig 4.1). In fact, the top 20 catchment
models for the Murray Darling River lie well within the maximum
observed values of the catchment record. The River Nile however, has
an incredibly low range across the minimum and maximum values of
observations and so the model still performs very poorly in this

catchment.

From these graphs it can be seen that where the range of the top 20
catchment models did not fit the mean observed record in the
Euphrates, Ganges, La Plata, and Yukon catchments, the model

outputs are within the range of individual observations.
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The only remaining simulations that lie outside of the range of the
minimum and maximum observations are the Niger in August and
September, the Okavango in February and March, and the Yenisey
peak runoff in June. The eastern Arctic catchments, the Kolyma, Lena
and Yenisey all show very similar observational records, with a large
peak in the runoff in June, and particularly high observational ranges for
that month. The range in observational values varies, and Figure 5.5
shows the mean of the minimum-maximum ranges relative to the mean
value of each month for each catchment. This graph shows that the
Murray Darling catchment has by far the largest observational range, of
513%, and that the Nile has the lowest at 23%. The Euphrates, Kolyma,
Ganges, Niger and Mississippi have ranges greater than 150% whilst
the Amazon, Brahmaputra, Congo, La Plata, Mekong, Yangtze and
Yukon all have ranges less than 100%. The Brahmaputra, which is the
best simulated catchment, has a relatively small observational range of
81%.

It is apparent from these results that the model performs significantly
better when calibrated to individual catchments than when calibrated as
a global model, particularly when natural variability is taken into
account, so the next questions are “why?”, “what is it about the
parameter values for these realisations that make them better in each
catchment?” and “can any similarities be found among the catchments
with similar hydrological regimes?” In order to investigate this, the
parameter values of the “good” models for each catchment needed to
be examined, and compared to those of the globally “good” models.
Firstly however, the globally “good” model parameters are compared to

the parameter values of the original model calibration.
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Figure 5.5 Mean relative range of observations for each catchment

5.3 Parameter Estimation of a Global Mac-PDM.14

The top 20 globally-calibrated model realisations were extracted, and
the ranges of values for each parameter across the 20 realisations were
calculated. This was then standardised against the minimum and
maximum values of each parameter for the entire ensemble (100,000

models) to facilitate comparison between parameters (see Figure 5.6).

Figure 5.6 shows some interesting results as many of the bars do not
encompass the original calibration value, and very few are centred on
the original calibration value. The width of the bars, to some extent,
indicate a confidence in the parameter value, as bars with a narrow
range suggest that the parameter must be within the tightly constrained
range to produce a good model. However, those with wide ranges show
that the value of the parameter is uncertain, and may be insensitive or
may depend on other parameter values. This behaviour is a sign of
equifinality in the model. The b parameter for example shows a certain
deviation away from the original model calibration, as the top 20 models
are associated with a tightly constrained range much less than the

original calibration.
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The fcpc and satpc parameters show ranges that cover the original
model calibration well, except for fcpc € (clay) which indicates an
original model calibration that was too high. The rootg parameters were
sampled to values much higher than the original model calibration, and
most vegetation types covered a large proportion of the range sampled,
however the deciduous needle-leaf (DN) and deciduous broadleaf (DB)
parameters were more closely constrained to the lower end of the
sampled space. The grassland (GR), sparse vegetation (Spl) and
broadleaf forest regularly flooded (BF)) ranges all lie beyond that of the

original model calibration values.

The rsc parameter ranges lie mostly above the original model
calibration for all vegetation types, except grassland, which is well
constrained. The capg parameter ranges also lie above the original
calibration values. There is a notable stepped progression towards
higher parameter values across the forest parameter values (evergreen
needle-leaf, evergreen broadleaf, deciduous needle-leaf and deciduous
broadleaf), which suggests that deciduous canopies intercept more
precipitation in the top performing models than in the original
calibration, and more than the evergreen canopies. The rlaiand Ac
parameters have relatively narrow ranges for the majority of the
vegetation types, when compared to other parameters. The original
model calibration values of r/ai fit well with the ranges produced by the
parameter ensemble, and a stepped progression towards higher
parameter values can be seen again for the forested vegetation types.
The original model calibration values for the Ac parameters also mostly
lie within the ranges of the parameter ensemble, except for Evergreen
Broadleaf (£B) and Cropland (Cr) which were previously overestimated,
and Bare (B) and Artificial Areas (44) which were underestimated. The
percov parameter values for the top 20 global models all show wide

ranges, which suggests that this remains an uncertain parameter.
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5.4 Catchment Specific Parameter Estimation

The top catchment-calibrated 20 model realisations for each catchment
(which were used to produce the graphs in Figure 5.4) were analysed to
find the ranges of parameter values for each catchment, which were
then plotted in floating bar graphs. All 21 catchments were included in
this study, as the parameter values of the best models of the poorly
performing Murray Darling and Nile catchments may provide some
information as to the reasoning behind the model performance. This
resulted in 122 graphs, so only a selection that showed the most
interesting results are presented in Figure 5.7. For example, those that
showed significant deviation from the original model calibration value, or
those that showed distinct variation between catchments. In these
graphs, deviation from the dashed line shows that the ensemble
produced parameter values for ‘good’ models that were distinctly
different from the original model calibration value. The crosses show the
mean of the parameter values for the top 20 models, so obvious
variation in the crosses between catchments may suggest that different
catchments require different values to produce a good model.

5.4.1 Control File Parameters

The highest variations between catchments is in the control file
parameters: b (soil moisture capacity variability), delta (an interception
parameter), grout (groundwater routing parameter), srout (surface water
routing parameter), and xmelt (snow melt rate). For the majority of
catchments, the b parameter value for the top 20 models was lower
than that of the original model calibration, and this is to be expected
from the strong response that could be seen in the global average
model parameters shown in Figure 5.6. However, for the Euphrates,
Kolyma, Yenisey and Yukon the mean value of 5 was higher than the
original model calibration value. The bars for these catchments are
particularly wide, which suggests that although the average is higher,

there is a large amount of uncertainty in the b parameter values. The
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Danube, Murray Darling, Niger, Nile and Okavango show particularly
low values of b and have tightly constrained ranges. The delta
parameter graph shows that most of the catchments closely agree with
the original model calibration value, however, the most northerly
catchments, the Kolyma, Lena, and Yukon display a trend to lower
values of delta. The Ob and the Yenisey catchments are also northerly,
and show a lower delta value than other catchments, but it is a less

significant trend.

The grout parameter shows significant variation between catchments
and the ranges of values among the top 20 model realisations is
inconsistent. It is also noticeable that the original calibration value is
very low (value of 1), and the parameter space sampled includes a
maximum of 210. The Kolyma and the Lena show very low values of
grout, and have narrow ranges. The Danube and Ob also show low
grout values, but with less certainty. The Ganges, Mekong, Okavango
and Yangtze show very uncertain parameter ranges, which span the
entirety of the sampled space. The srout parameter graph is highly
variable across catchments, with the Amazon and the Ganges showing
the lowest values with narrow ranges. The Danube shows a high value
of srout. The lack of overlap between the Danube and the Ganges and
Amazon catchment values suggests that this is a parameter that should
be considered for catchment specific calibration, as a globally defined

value may not be sufficient.

The xmelt parameter graph shows a strong response from the Kolyma
and the Lena catchments, as well as the Ob. The remaining catchments
lie with mean values just below the original model calibration value,
except the Mississippi whose mean lies just above the original value.
This suggests that snow melt rate is slower in the more northerly
catchments, which is to be expected, and so demonstrates that this
parameter has appropriate physical meaning within the model. Results

among the remaining soil and vegetation parameters were less
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conclusive, but some deviations in parameter values in certain

catchments could be seen for some soil and land cover types.

5.4.2 Soil Parameters

The fcpc (field capacity) parameter values for many of the soil types
were quite variable across catchments, but most were centred about
the original calibration value. The fcpcvalues for sand show all
catchments conforming to the original calibration value, except for the
Okavango catchment in which the mean value of the top 20 models was
10% higher. The results show loamy sand should be given a higher
parameter value across all catchments and that clay should have a
much lower parameter value for all catchments. Similar results could be
seen for the satpc (saturation capacity) parameter, whereby sand was
overestimated in the original model calibration. Again, many of the
graphs showed variation across catchments, with lithosols giving the
most significant differences, showing a particularly low value for the

Amu Darya catchment.

5.4.3 Rootg Parameter

The rootg (root depth) parameter graphs show fairly consistent results
across catchments, and all land cover classifications show a preference
for higher values of the parameter than the original model calibration
values. The grassland graph is shown in Figure 5.7 as this shows an
interesting result for the Okavango catchment; a particularly high
parameter value with a range that does not overlap with the low values

of the Yangtze.

54.4 Rsc Parameter

The graphs for the rsc parameter showed that there was high
agreement between catchments on the parameter value. However, for
eight of the land cover types, the parameter value was much higher
than that of the original model calibration value, whilst the remaining
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seven land cover types showed values that were still a little higher, but
were in the lower values of the parameter space sampled. This is
indicated by the difference in the grassland and sparse vegetation

graphs in Figure 5.7.

5.45 Capg Parameter

The capgparameter, which is the second interception parameter in Mac-
PDM.14, showed strong variation in parameter values between
catchments for many of the vegetation types. The strongest
differentiation between catchments could be seen for the mosaic:
cropland/vegetation parameter type (as shown in Figure 5.7), where the
Euphrates gives the highest value and the Danube the lowest. The La
Plata, Nile, Yellow and Okavango rivers also show high parameter
values. However, unlike the xmelt parameter, and the rootg grassland
parameter, the capgranges overlap for all catchments, suggesting that
although optimum solutions may benefit from single catchment
calibration, it is not as essential for this parameter as for xmelt. The
evergreen broadleaf vegetation type for capg also showed catchment
differentiation, with the Congo showing a higher parameter value than

the other catchments.

5.4.6 Rlai Parameter

The catchments show good agreement on parameter values for the rlai
parameters, for which the mean of the top 20 models lies not far above
or below the original model calibration value. The only exception is for
bare and artificial areas, where the original model calibration value was

0, and the model realisations give values of ~1.5 and ~3 respectively.

5.4.7 Hc Parameter

The Ac (vegetation height) parameter graphs also showed good
agreement between catchments, with the bare and the grassland land

cover types showing the most variability. The cropland vegetation type
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showed an optimum parameter value of ~1m, and none of the
catchments ranges reached the original model calibration value of
14.9m. This original value is far too high to be physically meaningful,

and a value approximating 1 seems more appropriate.

5.4.8 Percov Parameter

The percov (percent cover) graphs exhibited some variation between
catchments, but not significantly; all range bars overlapped. The Congo
catchment showed a slightly higher value of percovthan other
catchments for the evergreen broadleaf land cover classification. The
mosaic: cropland/vegetation graphs showed the greatest variability (and
is shown in Figure 5.7, with the Danube giving a very low mean
parameter value (27.3%), and the Nile, Euphrates and La Plata giving
the highest values (76.7, 75.9 and 74.5% respectively).

5.4.9 Summary of Catchment Specific Parameters

In summary, the control file parameters showed the greatest variations
between catchments, particularly the routing parameters and the snow
melt rate parameter. The soil parameters showed agreement across
catchments, but sometimes provided a different value to the original
model calibration value. The root depth, vegetation height, leaf area
index and stomatal resistance parameters mostly showed little variation
between catchments, but the interception parameter capg showed more
variable results. The catchments that most often deviated from the

others were the Kolyma, Lena, Ob, Danube, and Okavango.

Figure 5.7 shows the ranges and mean values of the parameters for the
top 20 model realisations for each catchment, but Figure 5.3 shows that
for most catchments, many more than 20 models showed good
agreement with the range of values within the 30 year observed record.
Therefore, the parameter values for a larger group of model realisations
were explored further, and this was done using Approximate Bayesian
Computation theory.
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Figure 5.7 A selection of catchment parameter value plots for the top 20
catchment-calibrated model realisations for each catchment. Dashed line
indicates the original model calibration value; crosses indicate the mean of the
parameter values from the top 20 realisations; colours help display the length
of the line, with narrowest in blue and longest in red. Colour bar not set to a
scale.

5.5 Approximate Bayesian Rejection for Parameter Estimation

Bayes theorem is a rule for updating the prior probability of a hypothesis
when additional information becomes available. Bayes’ rule can be

written as:

n(8)p(¥|8)
p(¥)

p(6]Y) = (EQ5.1)
where p(0|Y) is the posterior parameter distribution, p(8) is the prior
distribution, L(8|Y) = p(Y|0) denotes the likelihood function, and p(Y)
represents the evidence (or normalisation constant) (Sadegh and Vrugt,
2013). The Approximate Bayesian Computation (ABC) methodology, or
likelihood-free inference algorithms, relax the need for an explicit
likelihood function, L(8]Y), and instead use summary statistics to
measure the distance of each model simulation to the data (Sadegh
and Vrugt, 2013). ABC seeks to determine a posterior distribution of
parameter values between the observed and simulated data that have a
distance smaller than an error tolerance value. The Approximate
Rejection Algorithm, which is drawn from in this study, is the most basic

form of an ABC algorithm and is written as:
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ABC-REJ ALGORITHM
1) Draw & ~ p(#)

2) Simulate ¥ from the model ¥ ~n(#&)
3) Accept 8 if p (?,Y(H“j) =4

In words, a sample point 6 is taken from the prior distribution, p(8). This
is used to simulate the output of the model, Y~n(0), which is then
compared to the simulated data, Y, using the distance function p(Y,
Y(6")). If this distance function is smaller than a tolerance value, §, then
the simulation is close enough to the observations and is accepted as
being in the posterior distribution, p(8|p ¥, Y(8")) < §), (Vrugt and
Sadegh, 2013). Accepted values of 6 are not from the true posterior
distribution, but rather from an approximation to it (Wilkinson, 2013).
The choice of distance function is a subjective decision, like it is in
GLUE, and it needs to be carefully considered to reduce the loss of
information. Common examples from genetic applications of ABC
include Canberra, Euclidean and Manhattan distance, alongside the
hydrological indicators outlined in Table 5.1, such as Nash-Sutcliffe

Efficiency and Root Mean Square Error.

Sadegh and Vrugt (2013) discuss two immediate similarities between
GLUE and ABC: 1) that the distance function is similar to the informal
likelihood measure used in GLUE to differentiate between behavioural
and non-behavioural models, and 2) that the sampler used in the ABC-
REJ algorithm to sample from the prior distribution is similar to Latin
Hypercube sampling, which is commonly employed in GLUE. Since
there are many similarities in the way the modelling experiment is run,
the 100,000 realisation model ensemble that was run as a GLUE
experiment could be used to explore the parameter results using simple

Bayesian theory.
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The top 1,000 of the model realisations were extracted for each
catchment, and the distributions of the parameter values among those
top models were plotted and compared to the distribution given to the
100,000 member ensemble as parameter input sample distributions.
This provided a means of identifying if any new information was gained
by comparing the prior (the 100,000 member Latin Hypercube Sampled
parameter distribution) to the posterior distribution (the top 1000 models
realisation parameter values). This provides some analytical
advantages over the method used to produce the graphs in Figure 5.7:
distributions show whether the mean value of the top performing
models is a true optima, or whether it is just the mid value of an
insensitive parameter; and the comparison with the prior distribution
indicates whether the mean value, or the range of values could have
been influenced by the allocation of a strong prior distribution. However,
the comparison between catchments is less easy to distinguish as the
distributions must be plotted on separate graphs in order to be seen

clearly.

The results of this investigation confirm, but extend, the findings of the
top 20 model realisation parameter ranges and means. Again, the
control file parameters showed distinct results, and so all catchment
results are displayed in Figure 5.8 to Figure 5.12. The b parameter
showed consistent goodness at low parameter values, though some
catchments gave lower values than others; for example the Murray
Darling catchment showed much lower values than the Amazon. The b
parameter simulates the variability of soil moisture content across a
catchment, so it is understandable that the very dry Murray Darling

catchment provides an exceptionally low value.

The delta parameter also shows a diversification of preferential values
between catchments; with the Congo showing high peak values
(approx. 1.6), and several other catchments showing peaks at near zero

values, such as the Kolyma and Yukon catchments. The delta
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parameter is an interception parameter that works alongside the capg
parameter in the interception equation by Calder (1990). The higher the
value of delta, the more precipitation that is intercepted by the
vegetation. Many catchments, such as the Congo, La Plata and Niger
showed higher values than the prior, implying that for most catchments,
the prior was inaccurate. However, the arctic catchments of the Kolyma
and Yukon returned low values, which could be expected due to the fact
these are the two catchments with the lowest precipitation rates of the
21 study catchments. The tropical catchments of the Brahmaputra and
the Amazon also show low values, which perhaps could be explained
by much higher precipitation rates, which push the delta value towards

lower values to produce a reasonable overall interception amount.

The grout and srout parameters exhibit a strong response in some
catchments and none in others. This could not be seen clearly from the
range plots in Figure 5.7. The only catchments that did not exhibit the
same trend between grout and srout were the Danube and the Kolyma,
which showed trends towards lower values for the grout parameter but
showed less or no real trend for srout. This suggests that quick flow
routing is more dominant in these catchments than slow flow routing.
The distinct trend towards low values in many catchments for the grout
and the srout parameters, when compared to the insensitivity of the
results for the globally calibrated parameter values, demonstrate the
need for consideration of catchment model calibration. However, this
study does not indicate whether a low parameter value for all
catchments would suffice. The seeming insensitivity of many of the
catchments to parameter values would need to be investigated further.
This is not the case for the delta parameter though, which shows
distinctly different parameter values between catchments, with a level of
certainty, particularly as the graph peaks deviate from the sampled

(prior) mean value.
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The xmelt parameter, shown in Figure 5.12, show that the majority of
catchments maintain the peak value of the prior at 3.5, however several
catchments, the Amu Darya, the Ob, the Lena, and to some extent the
Ganges, show a value near 0. The Ob and the Lena would be expected
to show lower (slower) melt rate values, as they are northerly
catchments, it is surprising though that the Kolyma, Yenisey and Yukon

do not also give low xmelt values.

In the semi-arid Amu Darya catchment, snowmelt contributes 69% of its
mean annual flow, predominantly from seasonal snowmelt (Savoskul
and Smakhtin, 2013). Whilst the Mac-PDM model does not have a
physically-based numerical representation of seasonal snowmelt or
glacial meltwater specifically, snowmelt may still play an important role
in the simulation of this catchment. The Ganges catchment, which also
showed a peak at the prior value, but showed some trend towards lower
values, also has a snowmelt contribution. In the Ganges this
contribution is less distinct than in the Amu Darya catchment, where
snowmelt accounts for approximately 7% of the mean annual flow
(Savoskul and Smakhtin, 2013).

Figure 5.13 shows a selection of additional distribution graphs to
demonstrate the more distinct trends in some of the other parameters.
In each of these cases, some catchments showed a deviation away
from the prior distribution, and different responses could be seen
between catchments. In most cases, not all of the catchments deviated
from the prior, as shown in the fcpc sand parameter, where only the
Okavango showed a higher peak than the other catchments. In some
parameters where a uniform prior distribution was used, such as the
capg mosaic:cropland/vegetation parameter, some catchments showed
no response, while others showed an obvious trend. It may be that the
catchments that showed no response are insensitive to perturbations in

these parameters.
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Table 5.2 summarises the trends seen in all distribution plots and
compares them to the trends found in the range plots, in order to
ascertain whether the conclusions from the previous plots were
accurate. Soil and vegetation types that are not given in this table
showed results that agreed with the prior distributions, and showed no

differentiation in parameter values between catchments.

The results indicate that whilst many of the posterior distributions
agreed with the prior distributions, it is not a straightforward process
defining parameter values for each catchment. The results in section
5.2 demonstrate that sets of good parameter values have been
identified for each catchment, and that these perform far better than
globally-calibrated model realisations. However, through parameter
estimation, it is difficult to ascertain what exact values could be used for
each parameter. Whilst the posterior distributions of the top 1,000
model realisations show trends towards certain values, the ranges of
parameter values in the top 20 models are often broad. This suggests
that these parameter sets demonstrate equifinal behaviour (Beven,
2012). It would not be possible at this stage to pick the optimum
parameter values individually for each parameter and compile them to
create a set of parameters, but there are sets of specific parameter

values that perform well.

The tendency of the posterior parameter values to trend towards the
prior distribution suggests insensitivity of these parameters.
Additionally, it suggests that regardless of the value of that parameter,
the model will produce a good calibration, and therefore the posterior
distributions of the good models are the same as that of the prior
distribution. Alternatively, it could just suggest that the prior distribution
was correct. Several potentially insensitive parameters and equifinality

issues indicate that the Mac-PDM model is likely over-parameterised.
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More analysis would need to be carried out to determine whether the
parameters are indeed insensitive or not, and to examine the
interactions between parameters. This analysis was considered by way
of model emulation, but it was deemed beyond the scope of this PhD
study. Model emulation is considered further in the Discussion Chapter
(Chapter 7).

The parameter values of the top performing models for each catchment,
including the global best model parameter values from the GLUE
experiment are given in the Appendix of this thesis. These are the

parameterisations that were used for the line plots in Figure 5.2.

5.6 Mac-PDM.14 in a Catchment Modelling Context

With the retention of the results of the 100,000 model parameter
ensemble, alongside gauged discharge records, Mac-PDM.14 could be
calibrated for any global catchment with a small amount of analysis.
This analysis would certainly be less time consuming than calibrating a
catchment model each time. The question then is: “can a catchment
calibration of a global model perform as well as a catchment model?” It
would not be appropriate to compare the goodness-of-fit of the Mac-
PDM.14 model calibrations with catchment models without using the
same input data. Therefore, in order to answer this question, catchment
models would need to be acquired, calibrated, and run with either the
WATCH or the ISI-MIP input data, which was beyond the scope of this
PhD study.

Whilst there have been several inter-comparisons of hydrology models
within their respective scales (e.g. Refsgaard and Knudsen, 1996,
Smith et al., 2004, Haddeland et al., 2011, Warszawski et al., 2014), the
first comparison of a global scale model with catchment models was in
2011 (Gosling et al., 2011). In this study, Mac-PDM.09 was compared
to six individual catchment models, however the authors compared the

results of a global calibration of Mac-PDM.09 with the catchment
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models under climate change scenarios. Thompson et al. (2013)
extended this analysis by comparing Mac-PDM.09 with the catchment
models MIKE-SHE and SLURP for several locations in the Mekong
catchment and in this case again projections of the models under
climate change scenarios were compared. Piniewski et al. (2014)
compared the results of the catchment scale model SWAT, and the
global scale model WaterGAP, on projections of environmental flow
indicators for the Narew basin in Poland. This study also focussed on
climate change projections, and so the performance of global models
has not yet been compared to catchment models over historic periods.
Specific catchment calibrations of global models have also never before

been considered.

An obvious advantage of catchment scale hydrology models over global
models is the finer resolution at which they operate. Global hydrology
models most often run at a resolution of 0.5x0.5 degrees, however
some can be run at finer resolutions, for example GWAVA can be run at
0.1 x 0.1 degrees (Dumont et al., 2010). Catchment models, on the
other hand, can operate at finer resolutions, from tens of meters, such
as the 30m SWAT model (Chaubey et al., 2005), to as fine as 2m,
which has been used for applications of TOPMODEL (Lane et al.,
2004). The main reason for the coarser resolution of global hydrology
models is the availability of climate input data. Therefore, the
application of catchment models on a global scale, would likely suffer
the same issue, as regional climate model data is not available for all
global catchments. On the other hand, global hydrology models are
often used to simulate catchment hydrology (Loos et al., 2009, Moors et
al., 2011, Ogata et al., 2012, Siderius et al., 2013, Green et al., 2014),
and specific catchment calibrations could be used to dramatically

improve the performance of the models in these circumstances.

Calibrations of GHMs have until now used sets of catchments to carry

out the calibration and then developed a globally averaged
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parameterisation. For example, Mac-PDM.09 was calibrated using a
suite of 50 worldwide catchments (Gosling and Arnell, 2011) and
WaterGAP2 was calibrated against 724 discharge stations across the
globe (Alcamo et al., 2003). This method does not recognise or address
the concept that different catchments may require, or at least benefit
from, different parameterisations. When catchment models are
employed, they are recalibrated to the catchment in question each time,
whilst global models lump all catchments together with globally uniform
parameter values. The results from this chapter suggest that parameter
values differentiated by catchment could provide much better model
results than globally averaged parameter values. Whilst this would be
difficult to employ for global scale studies, it would be relatively
straightforward when global hydrology models are employed for

catchment scale research studies.

5.7 Summary

This chapter has investigated the parameter values of Mac-PDM.14 in
detail. During this study it became apparent that seeking alternate
parameterisations of the model for each study catchment yielded
significantly better results than applying a global set of parameter
values. The months of peak runoff that were underestimated by the
globally calibrated models were better simulated by catchment
calibrated models. Similarly, the timing of peak flows that were
simulated several months too early by the global models were improved
with catchment calibration. The natural variability of the observed record
was considered, as the performance of the model may have been
misrepresented in some catchments if variability was high. This was
found to be the case for the Murray Darling catchment; where the
ranges of the top 20 models both catchment-calibrated and globally-
calibrated did not cover the observed mean values, but the simulated
runoff was within the bounds of the variability of the 30 year runoff

record. The Nile however, for which the model performs particularly
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poorly, has a low variability within the observed record, so this analysis
showed that the model results are still poor for the Nile catchment.
When catchment calibrations of Mac-PDM.14 are considered alongside
the natural variability of the catchment, the model is shown to output
very good results, with only 5 of the total 240 months (12 months over
20 catchments, excluding the Nile) lying outside of the ranges of

observed monthly runoff values.

The parameter values of the catchment model calibrations were
investigated to see if there were any significant differences between
catchments that would suggest a global calibration would be
insufficient. The ranges of values of the top 20 model realisations for
each catchment were investigated. The control file parameters (b, delta,
grout, srout and xmelf) showed the most variation between catchments.
The soil parameters, fcpcand satpc, showed agreement across
parameters, but a deviation from the original calibrated value. The
interception parameter capg also showed some variation between
catchments. Approximate Bayesian Rejection was then used to assess
the parameter values further, using distributions of the top 1,000 model
realisations (top 1%) for each catchment as an acceptance limit.
Distributions showed more detail than the range plots, and the control
files again showed the most interesting results, as well as the capg
parameters. Only a few catchments for a few parameters showed
distinguishable parameter values for different catchments. Little
consistency with climatic regime, latitude or easily distinguishably

hydrologic characteristics could be identified to explain this behaviour.

These results suggest that the model may be over-parameterised as
many parameters seemed insensitive to perturbations. The sensitivity of
parameters would need to be assessed in more detail, perhaps using
model emulation (e.g. Lee et al., 2011) to identify parameter
interactions and investigate equifinality (Beven and Freer, 2001). The

parameter values of the top globally-calibrated model, as well as the top
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catchment-calibrated model, for each of the catchments are presented
for future applications of Mac-PDM.14. The use of global models as
catchment models has been discussed. A comparison of the
performance of catchment specific calibrated Mac-PDM.14 with a
catchment model for historic periods would be an innovative step

forward from this research.

The next chapter validates the global and catchment calibrations of
Mac-PDM.14 with an alternative set of climate input data, and
compares the performance of Mac-PDM.14 with the results of the

recent ISI-MIP multi-model ensemble.



Chapter Six:

Mac-PDM.14 Model Validation
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6.1 Introduction

This chapter presents the results of a validation of the Mac-PDM.14
model with an alternate climate dataset. The findings presented in
Chapters 4 and 5 demonstrate that the uncertainty experiment and
subsequent calibrations of the model have significantly improved the
model’s performance when tested against observed data. However, due
to the nature of the calibration process, it is expected to perform better
as the model is ‘trained’ to the observed record. Therefore, it is
necessary to validate the model with a different set of climate input
data, either over a different historic time period, or an alternate
modelled climate data set of the same period, derived using a different
method. Validation gives the new calibrations of the model a measure
of credibility and, if the results are satisfactory, demonstrates that the
model can be taken forward and applied using newly available input
datasets. This chapter presents the validation datasets available, and
compares the results of the top performing model calibrations, run with
the original WATCH data, with those run with the validation dataset.
The performance of the model run with the validation dataset is then
compared to other models from a new multi-model ensemble project,
ISI-MIP (Warszawski et al., 2014). Finally, the top 20 performing
catchment individual model calibrations from the GLUE ensemble, run

with the validation dataset, are reviewed.

6.2 Validation Datasets

Observational datasets that could efficiently be applied to the Mac-
PDM.14 model for validation were available from two sources: the
WATCH project data that was used for calibration, applied for a different
time period for validation purposes; and the ISI-MIP (Inter-Sectoral
Impacts Model Inter-comparison Project) data, which could be applied
for any time period, to provide a test for the model. The relative merits

and limitations of each dataset will be discussed briefly in turn.
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The WATCH data, as described in Chapter 2 and by Weedon et al.
(2010), was derived using a reanalysis of the ERA-40 data for the
period 1958 to 2001. The processing procedure used bilinear
interpolation of the variables from the 1 degree ERA-40 grid to the 0.5
degree CRU land sea mask. Furthermore, monthly averages were
interpolated, temperatures were corrected for elevation, and the data
was then bias corrected using CRU TS2 data. Since the ERA-40
reanalysis data was not available prior to 1958, in order to develop a full
twentieth century dataset, the WATCH project generated weather data
by reordering the ERA-40 data a year at a time using a weather
generator. By this process, the statistical characteristics of the data for
the years 1901-1957 were the same as 1957-2001, but the timing of
particular weather events were not accurate for any particular location
(Weedon et al., 2010). Therefore, using the data prior to 1957 would not
be a good test for the model since the data would produce very similar
annual average time series to those already employed. Accounting for
the necessary 5 year ‘spin up’ period of Mac-PDM.14, the only
additional years in the reanalysis dataset would be the 8 year period
1962-1970. This is a short time period, which again would not provide a
very comprehensive validation assessment for the model. Additionally,
only 15 of the 21 discharge stations chosen for the catchment

calibration provide data prior to 1965.

The ISI-MIP dataset covers the period 1960-2000 and was derived
using a trend preserving, statistical bias correction approach developed
specifically for the project (Warszawski et al., 2014). The ISI-MIP data is
based upon the WATCH forcing dataset, but has adjusted the monthly
mean and daily variability of simulated climate data to observations,
whilst preserving the long-term climate signal. The full details of the
correction method are provided by Hempel et al.(2013). In order to
determine whether the ISI-MIP data was sufficiently different from the
WATCH dataset for the years 1971-2000 to provide an adequate
validation test for the Mac-PDM.14 model, the mean monthly rainfall
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was plotted, and is shown in Figure 6.1. Investigating the difference
between specific rainfall events was considered to be unnecessary as
the mean monthly outputs have been the focus of this study, and the

majority of global hydrology simulation studies to date.

The graphs in Figure 6.1 show that although the overall shape of the
monthly data for each catchment is broadly the same, there are some
distinct differences between the WATCH and the ISI-MIP datasets. The
very seasonal catchments such as the Brahmaputra, Ganges, La Plata,
Lena, Niger and Yenisey rivers show the most similar rainfall data
between WATCH and ISI-MIP, but the catchments with more complex
annual rainfall patterns show deviations. In particular, the rainfall in
January, February and March in the Amazon is much higher when
estimated by the WATCH dataset, than the ISI-MIP data. Similarly
June, July and August in the Ob catchment show higher rainfall in the
WATCH data. The ISI-MIP data shows a high rainfall peak in the Yellow
river in August, which is not present in the WATCH dataset, and the
Murray Darling shows a very different record between the two. The
peak flow in the Euphrates catchment is reached earlier in the I1SI-MIP
dataset, with the peak in February, as opposed to the peak in April for
the WATCH data. Neither dataset seems to show consistently higher
rainfall than the other, with several overlaps apparent in most
catchments. These graphs suggest that the datasets show the
similarities that would be expected of two datasets covering a long
period of time for the same catchments, whilst showing enough
differences to be able to test the models behaviour using different input

data.

6.3 Ensemble Performance with Validation Data

The 1,238 model realisations from the GLUE experiment that resulted in
a mean absolute relative error (MARE) less than 0.75 were run with the
ISI-MIP data, and the model outputs were again assessed using MARE.
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A set of three ‘best’ models were then plotted, as shown in Figure 6.2.
As before, the Nile and the Murray Darling have been excluded due to
their poor model performance. These top three models were: the
original top model realisation from the GLUE experiment run with the
WATCH input data; this same model realisation run with the I1SI-MIP
input data; and the top ranking (lowest MARE scored) model realisation
out of the 1,238 GLUE model realisations run with the I1SI-MIP data.
This best ISI-MIP model realisation happened to be the 7t best from
the GLUE experiment with the WATCH data. The MARE of the original
top model realisation (of the 100,000 runs) had a value of 0.47 when
run with the WATCH data. With the ISI-MIP data, this model realisation
had a MARE of 0.45; so the model actually performed better with the
ISI-MIP data. Of the 1,238, model run with the ISI-MIP data, the best
MARE value (from the 7" best GLUE model as previously mentioned)
was 0.44. This shows that overall, despite having calibrated the model
to the WATCH data, the performance of the model is certainly

satisfactory when applied using an alternative input dataset.

The results in Figure 6.2 show that, despite the difference in rainfall
input, the overall shape of the runoff output was similar between the
WATCH and the ISI-MIP input datasets. This can be expected, as most
global scale catchments are complex systems with storage and
vegetation feedbacks with the atmosphere, so runoff may not directly
reflect rainfall patterns, particularly when considering a 30 year
average. There are differences however, and there are many
catchments where the best of the 1,238 models driven with the I1SI-MIP
data shows a significant betterment over the WATCH model; for
example in the Amazon, where the runoff is less of an underestimation
than with the WATCH dataset. Similarly, the Danube shows runoff
levels much nearer the observed record. In a few cases, such as the
Yellow river, the WATCH data provided an overestimation of the

observed record, and the ISI-MIP data has heightened that
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overestimation. The January to March flows of the La Plata are an
additional example of this.

The best GLUE ensemble model, when run with the ISI-MIP data is
presented in these graphs, and shows the results if the newly calibrated
model parameter sets were to be applied with a different dataset,
without further calibration, as is common practice with many GHMs
employed by the hydrological modelling community. It is quite unlikely
that when passed to a new model user, they would be able to run 1,238
model parameterisations to find a new optimum model calibration with
the new input dataset. However, as that was possible in this case, it
was carried out in order to determine how well the model could perform
with the ISI-MIP data. Therefore, the yellow lines on the graphs in
Figure 6.2 would be what we might expect a user to produce in his or
her own application of Mac-PDM.14 (and not the turquoise lines, which
would require significant resources to define), so this is a robust test of
whether the newly calibrated Mac-PDM.14 is ‘valid’.

Figure 6.3 shows the MARE values for each catchment for each of the
3 top models shown in Figure 6.2. We would expect the model to
perform slightly worse than the WATCH optimum model with the ISI-
MIP data, since the model has not been calibrated with this dataset.
This is the case in several of the catchments, especially the Amazon
and the Congo, which is apparent in Figure 6.2, but there are in fact
many catchments where the model performs better with the ISI-MIP
data than it did with the WATCH data. The underestimation of the
Danube catchment is less pronounced with the ISI-MIP data, and the
overestimations of the high peaks in the Niger and the Okavango runoff
are also reduced. These results suggest that the input data of the ISI-
MIP project is driving more realistic simulations of runoff than the
WATCH dataset in these catchments.

The Brahmaputra stands out in Figure 6.3 as being worse with the ISI-

MIP data, whilst the Ganges shows a distinct improvement. Neither of
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these results are evident in Figure 6.2, perhaps due to the fact these
are the two catchments with the highest flow magnitude. Figure 6.3
shows that of the 19 catchments considered, 11 showed a decrease in
model performance with the ISI-MIP data, while 8 showed an increase.
When applying the best of the 1,238 ISI-MIP driven model realisations
instead of the top GLUE model realisation, 10 of the catchments
showed a better MARE value than the WATCH driven model. Whilst the
average MARE value across all catchments was better for both ISI-MIP
driven model realisations included in these graphs, Figure 6.3 shows
that achieving a good global model calibration is a trade-off between
catchments. Section 6.5 of this chapter gives the results of the
validation of the catchment-calibrated model realisations taken from

Chapter 5 of this thesis.

The uncertainty in the simulations that used the WATCH and the ISI-
MIP datasets were explored by plotting the ranges in the simulations
from the 1,238 model realisations. These were the same 1,238 model
realisations run with both the WATCH data, as from the original GLUE
experiment, and run with the I1SI-MIP data for comparison and
validation. Figure 6.4 displays the results. Again, where we might have
expected to see the range of outputs from the I1SI-MIP data to be wider
than those of the WATCH data, we see that the results using this new
dataset are actually significantly better. For all catchments, the upper
limit of the range of outputs is lower when using the ISI-MIP data, than
the WATCH data. There are only a few instances where the observed
record is not encompassed by any of the top 1,238 model realisations,
and only in the Yukon does this cover more months for the ISI-MIP data
than for the WATCH data.
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The uncertainty ranges of the Danube, Mekong, Mississippi, Ob and
Yangtze are all significantly reduced with the ISI-MIP data when
compared with the WATCH data. In the Congo catchment, the observed
record sits more centrally within the range of the I1SI-MIP driven model
outputs, whereas for the WATCH driven models the observed record
lies at the very bottom of the model simulation range, suggesting
systematic overestimation. This is an important result, as modellers
may be tempted to bias correct or post-process the results of their
model runs to account for such overestimation. However, Figure 6.4
suggests that such results can be due to the input data, and that
correction could lead to worse results when different, potentially better,
input data is applied. These results show that we can have confidence
when applying ensemble-based model calibrations with alternative
climate input datasets, particularly when a range of model realisations

are considered.

6.4 Mac-PDM.14 and the ISI-MIP MME

As in Chapter 4 with the WATCH multi-model ensemble (MME), the top
performing ISI-MIP data driven model has been compared with the ISI-
MIP multi-model ensemble members. The openly available outputs of
each of the model runs from the ISI-MIP project were downloaded
through the project website (ISI-MIP, 2015). Table 6.1 shows those
models that were included in the WATCH and the ISI-MIP projects,
which provided discharge data available for download. The ISI-MIP
models provided data for the period 1971-2004, but 1971-2000 was
used in this study to allow for comparison with the modelling carried out
for this thesis. The MARE over each of the 19 river catchments
(excluding the Nile and the Murray Darling) was calculated for the ISI-
MIP models. As indicated in Table 6.1, not all of the Global Hydrology
and Land Surface Models (GHMs and LSMs) participated in both
WATCH and ISI-MIP and provided data that could be used in this study;
with only Jules, LPJ-ML, Mac-PDM.09, MATSIRO, and MPI-HM
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providing data from both projects. Orchidee was used in the ISI-MIP
project, but output data was only available post-2000. The results of the
MARE scores averaged over the 19 catchments are shown in Figure
6.5, which shows both the top performing model realisation from the
GLUE ensemble, that had been calibrated with the WATCH data but
run with the I1SI-MIP data, and the top performing model realisation from
the smaller ensemble of 1,238 model realisations, which was essentially
recalibrated to the ISI-MIP data. These two models are indicated by the
yellow and the green lines in Figure 6.2 respectively. When compared
with the graph for the WATCH ensemble (shown in Figure 4.9), the
models in the ISI-MIP multi-model ensemble (MME) had higher MARE
values than the WATCH MME, and so did not perform as well. From the
ISI-MIP MME, no models scored a MARE lower than WBM at 0.72,
whilst the WATCH MME best (MATSIRO) gave a value of 0.5.
Interestingly, MATSIRO scores a worse value within the ISI-MIP MME,
with a MARE of 0.95.

Table 6.1 Participation of models in the WATCH and the ISI-MIP projects. X
indicates models which participated in the project but which could not provide
data applicable for comparison in this study.

Model WATCH ISI-MIP
DBH v
GWAVA v

HO8

HTESSEL
Jules

LPJImI
Mac-PDM.09
MATSIRO
MPI-HM
Orchidee
PCR-GLOBWB
VIC

WaterGAP 4
WBM

\

AN N N NN

X AR X AR
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0
TopGLUE  ToplSIMIP— DBH HO8 Jules LPdml Mac-PDM.O3 MATSIRO  MPEHM PCRGLOBWE  VIC WEM

Model

Figure 6.5 MARE scores of the ISI-MIP multimodel ensemble compared with
the top performing Mac-PDM.14 model calibrations with WATCH and ISI-MIP
data (MARE calculated for Jan-Dec for 19 catchments). The TopGLUE model
realisation is the top performing model from the GLUE ensemble, driven with

ISI-MIP data, and the TopISIMIP model realisation is the top perfoming model
from the ensemble of 1,238 realisations, also driven with ISI-MIP data.

Whilst the top performing Mac-PDM model from the GLUE ensemble
scored only slightly better than the other WATCH MME results, Figure
6.5 shows that Mac-PDM.14 has a much lower MARE than any of the
other participating models in the ISI-MIP project. As previously
mentioned, the MARE of the WATCH calibrated model run with the ISI-
MIP data was 0.45, whilst the ISI-MIP calibrated model scored a slightly
better 0.44. The WATCH calibrated model run with the WATCH data
had a MARE of 0.47. This shows again that despite the calibration data
set used, the model performed better with the ISI-MIP data. However, it
performed even better when calibrated to the ISI-MIP data. It is
interesting to see here that the original version of Mac-PDM (Mac-
PDM.09) scored a MARE of 1.04, which highlights the significant
improvement to the model with the updated land cover and soil maps,
as well as the GLUE experimental calibration method. The MME results
of the WATCH and ISI-MIP projects are considered in more detail in
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relation to catchment-calibrated model validation in Section 6.5 of this
chapter, and shown in the graphs in Figure 6.9.

The graphs in Figure 6.6 show the range of the 1,238 GLUE ensemble
models with a MARE <0.75, run with the ISI-MIP data (herein referred
to as the parameter ensemble) compared to the ISI-MIP ensemble
members. These graphs are remarkably similar to those seen in
Chapter 4 (figure 4.8), which reinforces the conclusion from that
chapter: that the range of parameter uncertainty of Mac-PDM.14 with an
acceptable error limit (MARE <0.75) is comparable to the structural
uncertainty from using different models for most catchments. The
Amazon seems to be an exception to this, as the parameter ensemble
range is much larger than the range of the ISI-MIP ensemble members.
The Congo also shows a discrepancy between parameter and model
structural uncertainty, as the ISI-MIP ensemble members show a high
runoff magnitude in the top part, and above, the parameter realisations
range. The observed record values from Figure 6.4 shows that the ISI-
MIP ensemble runs are mostly overestimating the runoff, which is
observed to be primarily below a value of 50 mm per month. Between
the ISI-MIP models, few conclusions can be drawn, except that DBH
shows consistently high runoff values, whilst VIC gives simulations in
the middle of the ISI-MIP ensemble range (except for in the Congo
where it gives a better simulated runoff, lower than the other models).
WBM simulates values that are close to VIC, and these are the two
models with the best MARE scores. The Murray Darling is a catchment
where the ISI-MIP ensemble displays higher values of runoff than the
parameter ensemble. In Chapter 4 (Figure 4.7) it was demonstrated that
Mac-PDM.14 overestimated the runoff on the Murray Darling
considerably, so these results show that the other models in the ISI-MIP
project have the same problem, particularly the Land Surface Models
LPJml and JULES.
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6.5 Catchment Validation

In this subsection, the use of global models as catchment models (the
principle introduced in Chapter 5) is validated. The top 20 models for
each catchment, identified from the GLUE ensemble of 100,000, were
run with the ISI-MIP climate input data. The results of this, compared to
the top 20 models with the WATCH data, are shown in Figure 6.7. The
ranges displayed on these graphs were derived using the same 20
model realisations with the two different climate input datasets. The
graphs in Figure 6.7 also show the top performing global calibration of
the model with WATCH data, and the top performing global ISI-MIP

model, which are not the same model realisation.

Immediately apparent from these graphs is the gap between the
WATCH and the ISI-MIP driven models for the Congo catchment. The
WATCH driven models provide better simulations compared to the
observed data. The results in Figure 6.4 show that using a globally-
calibrated model, the ensemble of 1,238 models contained the
observed record within the range of model outputs, which suggests that
the globally calibrated model was capable of simulating runoff in the
Congo; however the differentiation between the catchment-calibrated
model outputs with the WATCH and the ISI-MIP input data indicates
that the catchment-calibration of Mac-PDM.14 is sensitive to input data,
particularly in the Congo. The ISI-MIP data driven simulations seem to
perform worse in the Amazon as well. However, there are many
catchments where the ISI-MIP data performs better than the WATCH
data, where it gets closer to, or reaches, the observed record where the
WATCH data does not. For example, the June peak of the Lena is just
missed by the WATCH driven runs, but is encompassed by the ISI-MIP
driven runs. The same is the case with the May peak in the Danube
which is underestimated by the WATCH driven models. Also in the
Ganges, the Niger and the Okavango, where the WATCH data
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overestimated the observed record, the range of ISI-MIP runs reach, or
come closer to, the observations.

Another noteworthy result is the difference in certainty between the
catchments. It is important to note the scale of the graphs is not the
same so the absolute uncertainty (in mm) is difficult to determine, but
the proportional uncertainty can still be gauged. It can be seen that the
Brahmaputra, the Danube, the Ganges, the Kolyma, the Mekong, the
Mississippi, the Yangtze and the Yenisey all have small ranges of
model output, which suggests that the model simulations are quite
certain. The Congo, the La Plata, the Lena, the Ob and the Okavango
however, show less certain results, with wider ranges across the top 20
catchment realisations. The ranges of model output do not seem to
differ significantly from the WATCH to the ISI-MIP input data, except in
the Euphrates, Lena and Ob, where the peak runoff months show a
slightly wider range with the ISI-MIP data that with the WATCH data.
The Amazon also shows a wider range of model outputs with ISI-MIP

input data for the months January-July.

The graphs in Figure 6.8 show the difference between the top
performing catchment-calibrated and globally-calibrated models. Here
the results show that the catchment models are significantly better than
the global models for both the WATCH and the ISI-MIP data, except for
the Congo and the Niger, where the difference is between the ISI-MIP
and the WATCH models, and the catchment and the global models
perform similarly well. The magnitude of the runoff is notably improved
with catchment calibration in the Amazon, the Kolyma, the Lena, the
Yangtze and the Yukon. The shape of the monthly runoff series is better
simulated by the catchment calibrations in the Amu Darya. In most
catchments, the best performing catchment models using the WATCH
and the ISI-MIP data show very similar results, with only the Amazon,

Congo, Danube, Niger and Okavango showing notable differences.
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The error of the WATCH and the ISI-MIP driven realisations of Mac-
PDM.14 are compared to the other WATCH and ISI-MIP multi-model
ensemble members for each catchment in Figure 6.9. In these graphs,
the left-hand two bars represent the WATCH and ISI-MIP driven models
respectively. For these two bars, the height of the grey bar is the MARE
of the top performing global calibration of the model, and the red bar is
the MARE of the top performing catchment calibration of the model.
Note that the catchment-calibrated models use the same model
parameter values, whilst for the globally-calibrated models, the WATCH
driven model is the top performing model of the GLUE 100,000
realisation ensemble, and the ISI-MIP driven model is the top
performing model of the 1,238 model realisations re-run with the ISI-
MIP data.

The graphs in Figure 6.9 show the performance of each model from the
multi-model ensemble in more detail. Interestingly, as shown in Figure
6.3, when averaged over all the months of each catchment, sometimes
the WATCH driven Mac-PDM.14 performs better, and sometimes the
ISI-MIP driven Mac-PDM.14 does. The catchment calibrated model
always performs better than the globally calibrated model, though not
noticeably in the Mississippi. The most significant betterments between
the catchment and the globally calibrated models are in the Amazon,

the Brahmaputra and the Yangtze.

Overall, the global calibrations of Mac-PDM.14 seem to show
comparable results to the ISI-MIP and WATCH MME models. The
Amazon catchment shows patrticularly bad results for globally-calibrated
Mac-PDM.14 with WATCH data in comparison to the other WATCH and
ISI-MIP MME models. Also, the previous version of Mac-PDM (Mac-
PDM.09) performs better than the global calibration of Mac-PDM.14.
This is likely due to the fact the global calibration is attempting to match
the other 18 catchments and therefore is trained away from the

optimum calibration for the Amazon.
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Mac-PDM.09 outperforming Mac-PDM.14 is the case in several of the
catchments. This is explored in more detail in section 6.6 of this

chapter.

For each catchment, different models from the WATCH and ISI-MIP
multi-model ensemble perform the best. The results of the models for
each catchment show closer competition with Mac-PDM.14, than when
averaged across all catchments, as was shown in Figure 6.5. The
global calibrations of Mac-PDM.14 only performed better than all other
models (including Mac-PDM.09) in 6 out of the 19 catchments: the
Euphrates, Ganges, Lena, Mekong, Mississippi and the Niger. The
Mississippi and Niger catchments showed the best results with the ISI-
MIP data, while the remaining four showed the best MARE when driven
with the WATCH data. The catchment calibrations of Mac-PDM.14
performed better than the models in all catchments except the
Okavango, where H-TESSEL performed very well. Out of the catchment
calibrations of Mac-PDM.14, 15 catchments had better results with the
WATCH input data than the ISI-MIP input data. MATSIRO performed
the best in the Amazon, Brahmaputra, Kolyma, and Yangtze.

WaterGAP performed best in the Congo, La Plata, Yellow, and Yenisey.
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VIC performed best in the Amu Darya, WBM in the Danube, Jules in the
Ob, and PCR-GLOBWSB in the Yukon.

From the scales of Figure 6.6, it can be seen that some catchments
exhibit more certainty than others; the Okavango shows high levels of
uncertainty, as does the Ob, Lena, Euphrates, Niger and Kolyma. This
selection of catchments matches those that showed a wide range of
model outputs among the top 20 model realisations in Figure 6.7, so
reinforces that these catchments exhibit higher levels of uncertainty

than the others.

6.6 Calibration and Validation

As has been identified from Figure 6.9, in some catchments the
calibration process made the model perform worse than the original
version of the model (Mac-PDM.09). Conversely, in some catchments,
the use of the ISI-MIP climate input data made the model perform

better, which is unexpected. This leads to the questions:

1. “does calibrating a model globally improve the model performance
over the majority of the catchments?”,

2. “can a model calibrated to one climate input dataset be sensibly
implemented using a different dataset?”, and finally,

3. “does the expected improvement in model performance from
calibration, outweigh the expected decrease in performance due to

the application of a non-calibrated climate input dataset?”

These questions will help address a serious issue in global hydrology
modelling, of whether models must be recalibrated to each new set of
climate input data. Figure 6.10 shows that in the context of Mac-PDM,
the changes in MARE are due to both calibration (the move from Mac-
PDM.09 to Mac-PDM.14), and validation (the move from WATCH to ISI-
MIP input data). This figure demonstrates the performance of the top
performing, globally-calibrated model from the 100,000 member GLUE

ensemble.
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The change in model performance due to calibration is shown in Figure
6.10 by the green arrows. Downward pointing arrows show the
expected decrease in MARE values from Mac-PDM.09 to Mac-PDM.14.
This expected change is shown by full shading of the arrows. The
unexpected decrease in model performance is indicated where the
green arrows have an upward direction, and are shaded with hatching.
The first question “does calibrating a model globally improve the model
performance over the majority of the catchments?” can be answered by
studying these green arrows. 16 of the 19 catchments (the 21 study
catchments, excluding the Murray Darling and the Nile catchments
which have previously shown erroneous results) show a decrease in
MARE. This suggests that calibrating the model does improve the
model performance for the majority of catchments. The most significant
decrease in MARE, and so the most significant increase in model
performance, was observed in the Congo catchment, with a decrease in
MARE of 80%. The Euphrates, Mississippi, Okavango, Yellow, Niger,
Mekong, and La Plata all showed substantial reductions in MARE, of
greater than 65%. The three catchments that showed a significant
increase in MARE were the Yangtze, Amazon and Brahmaputra, with
increases of 91, 56 and 2.7% respectively. This is a significant
reduction in MARE for the Yangtze catchment, so a catchment
calibration for this catchment would be an important consideration.

The change in model performance due to input climate data is shown
by the red arrows in Figure 6.10. In this case, the expected change
would be an increase in MARE, as the ISI-MIP data that the model is
not calibrated with is likely to cause a decrease in model performance.
Therefore, the upward arrows have a solid red fill, and the downward
arrows have a hatched red fill. Here, 9 of the 19 catchments show an
increase in MARE with the ISI-MIP data over the WATCH data.
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Figure 6.10 Percentage changes in model performance (MARE) for each
study catchment due to the calibration process (from Mac-PDM.09 to Mac-
PDM.14) and due to the use of alternative climate input data (WATCH to ISI-
MIP). Error due to calibration shown in green and climate input data shown in
red. Upward arrows indicate an increase in MARE value, downward arrows
indicate a decrease in MARE value. Solid arrows indicate the expected
direction of change, whilst hatch arrows indicate unexpected change. Grey
shading is assigned to catchments where the change due to calibration is
stronger than the change due to input data type (validation).
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The largest increase in MARE with the ISI-MIP data was in the Mekong
catchment, an increase of 119%. The Yellow and the Brahmaputra also
show large increases at 57 and 46% respectively. This leaves 10
catchments where the MARE actually decreased with the ISI-MIP data,
the most notable of which are the Danube and the Niger with 59 and
57% reductions in MARE respectively. These results show that the
second question: “can a model calibrated to one climate input dataset
be sensibly implemented using a different dataset?” can also be
affirmed, as the results in general are much better than could be

expected.

The final question: “does the expected improvement in model

performance from calibration, outweigh the expected decrease in
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performance due to the application of a non-calibrated climate input
dataset?” can be considered by looking at the differences between the
green and the red arrows for each catchment. The shaded background
of the figure indicates which catchments show a larger change from the
calibration procure than that of the change in input data. Here, 14 of the
catchments show a larger change from calibration than data input. In
the Amazon and the Yangtze though, the direction of the calibration
arrow was towards a worse MARE value. In order to determine that the
beneficial impact of the calibration procedure outweighs the detriment of
the change in input data, the height of a downward facing green arrow
must be larger than that of an upward facing red arrow; downward
facing red arrows may also be included regardless of their length as
they show an improvement. 14 of the 19 catchments show an overall
good result, whereby the decrease in MARE from calibration process
was not outweighed by an increase in MARE from the change in input
data. The Amazon and the Yangtze were not included in this grouping,
but were replaced with the Danube and the Kolyma, where the input
data arrow (in red) was larger than the green calibration arrow, but
because it was downward facing, showing a betterment in MARE, the

model performed better overall than Mac-PDM.09.

Studying the overall percentage change from Mac-PDM.09watcH to
Mac-PDM.14si-mip, 15 of the 19 catchments showed an improvement in
MARE. The Mekong is included in this list because although the
percentage change from the input data is greater than the percentage
change from the calibration effect, the total difference still resulted in a
better model (MARE went from 0.4 to 0.14 to 0.3 for Mac-PDM.09wartcH,
MacPDM.14watcH and Mac-PDM.14si-mip respectively). The four
catchments that showed a worse result were the Yangtze, and the
Brahmaputra, with high increases in MARE of 76 and 50% respectively,
and the Yenisey and Amazon with small increases of 6 and 5%
respectively. In the Yangtze, this was definitely the result of the
calibration procedure, whilst in the Brahmaputra this was due to the ISI-
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MIP data. The greatest overall improvement was in the Niger
catchment, which showed an 86% decrease in MARE from 2.16 to 0.3.
8 of the 19 catchment showed improvements greater than 50%. These
results are a solid conclusion that the model need not be recalibrated

for each new dataset.

6.7 Alternative Evaluation Metrics

So far, this study has focused only at the MARE evaluation metric. This
was chosen as the metric is a good all round tool, that does not place
emphasis on high or low flows, and can be applied on summarised data
(calculated over few data points), such as the output of Mac-PDM used
in this study. MARE also allowed straightforward comparison of model
performance between catchments. 4 alternative metrics have been
applied to 6 instances of Mac-PDM for each catchment, each using the

30 year average values of Jan-Dec:

1. Mac-PDM.09 run as part of the WATCH project, with WATCH input
data (globally calibrated),

2. Mac-PDM.09 run as part of the ISI-MIP project, with ISI-MIP input
data (globally calibrated),

3. The top performing GLUE ensemble (100,000 realisation) model
Mac-PDM.14 run with WATCH data (globally calibrated),

4. The top performing ISI-MIP ensemble (1,238 realisation) model
Mac-PDM.14 run with ISI-MIP data (globally calibrated),

5. The top performing GLUE ensemble model Mac-PDM.14 run with
WATCH data (catchment calibrated), and

6. The top performing ISI-MIP ensemble model Mac-PDM.14 run with
ISI-MIP data (catchment calibrated)

The metrics applied were the Nash Sutcliffe Efficiency criteria (Eq 6.1),
Percent Bias (Eq 6.2), Root Mean Square Error (Eq 6.3), and the
Standardised Effect Size (Eq. 6.4).
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Bl (g -0
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where Qi is simulated runoff at time-step i, Qi is observed runoff, Q is the
mean of the observed record, and o(Qi) is the standard deviation of the
observed record. Graphs showing the results of these analyses are
presented in Figure 6.11 to Figure 6.14. The NSE and RMSE metrics
are not likely to be reliable indicators of goodness, due to the fact they
were applied to only 12 time-series values (one for each month of the
year, averaged over the 30 year period 1971-2000). The NSE metric is
at its optimum at a value of 1, and NSE values of greater than 0.7 or 0.8
are commonly accepted as representing a ‘good’ model fit (e.g. Krause

et al., 2005, Park and Ip, 2010). The metric may fall as low as -«.

The incredibly low values of NSE in many of the catchments (shown in
Figure 6.11) for the Mac-PDM.09 models is suggestive of an issue
using the NSE metric in this situation. However, the results show
significant improvements in model performance in the majority of
catchments from Mac-PDM.09 to Mac-PDM.14. As with MARE, the
Amazon is an exception to this, with the Mac-PDM.09 models showing
a better model performance than the global calibrations of Mac-
PDM.14. Also mirroring the results of the MARE evaluation metric, the
Congo, Euphrates, La Plata and Okavango show the largest
improvement as a result of the calibration process (from Mac-PDM.09
to Mac-PDM.14). The Lena and the Yukon show the greatest
differences between the catchment calibrations of the model and the
global models of both Mac-PDM.09 and Mac-PDM.14. The



Mac-PDM.14 Model Validation 239

Brahmaputra and the Mekong show especially good results from all
models, and the Yangtze, Kolyma, Lena, Ganges, Danube, Mississippi,
Yellow and Yukon catchments all show good results with the catchment

calibrated models.

In the Percent Bias (PBIAS) graphs in Figure 6.12, the opposite trend is
expected, as good model fit would be a value of O, with +/- «
representing worse model results. These graphs again show generally
better results from the Mac-PDM.14 models than the Mac-PDM.09
model, which reinforces the benefit of the model calibration process.
Again, the Amazon is a notable exception, and here the Brahmaputra,
Lena, Kolyma, Yangtze, Yenisey and Yukon show worse results from
the global calibration of the model. The better scoring of the catchment
calibrations of Mac-PDM.14, using the WATCH data over the ISI-MIP
data, is considerable in the PBIAS scoring method. The Murray Darling
and the Nile catchments show results orders of magnitude worse than
the other catchments, a result that can be seen in the Nash Sutcliffe
graphs as well, and was realised early on in the thesis with the MARE

metric.

The Root Mean Square Error (RMSE) graphs in Figure 6.13 also
indicate the best model performance at a value of 0, and show in
general a slight betterment from Mac-PDM.09 to the global calibration
of Mac-PDM.14, and then further improvement from the global
calibration of Mac-PDM.14 to the catchment calibration. 14 of the 21
catchments showed better results from Mac-PDM.09 to Mac-PDM.14
global calibration, and all catchments showed improvement from the
global calibration to the catchment calibration of Mac-PDM.14. The
Yenisey is the only catchment where neither the global nor the
catchment calibrations of Mac-PDM.14 perform better than Mac-
PDM.09: this is consistent with the NSE and PBIAS evaluation metrics.

The Standardised Effect Size (SES) relates the model’s error to the

range of the observed values, and so takes into account the variability
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of the catchments flow regime. Again the best score of SES is 0, and
the metric can range up to +«. The results of this score are again
similar to those that we have already seen. In the majority of
catchments, Mac-PDM.14 scores better than Mac-PDM.09, and the
catchment calibration again scores better than the global calibration in
all catchments. In this case, as was seen in MARE metric, but not NSE,
PBIAS and RMSE, the Yenisey shows improvement with the catchment
calibration of Mac-PDM.14 over Mac-PDM.09. Again the Yangtze and
the Amazon show significantly worse results from Mac-PDM.14 than
Mac-PDM.09, but the catchment calibrations perform better. The
improvements from Mac-PDM.09 to Mac-PDM.14 are most notable in

the Mississippi, Congo, Okavango, Niger and Euphrates.

The graphs in Figure 6.11 to Figure 6.14 demonstrate that despite
some trade-offs between catchments (e.g. the Amazon), the calibration
process significantly improved the results of the Mac-PDM model
across a range of model evaluation metrics. Despite the fact that the
model was calibrated using the MARE metric, the NSE, RMSE, PBIAS
and SES scores all show significant improvements in the majority of
catchments. Furthermore, the catchment calibrations of Mac-PDM.14
also show improvement over the global calibration in most catchments
for all metrics. This is an important result, because it means that the
choice of error metric that is used in the calibration process, which is an
inevitably subjective choice, does not dramatically influence the results
of the calibration. The calibration process has improved the model

regardless of the error metric employed.
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6.8 Summary

This chapter has demonstrated that the updated, assessed and
recalibrated Mac-PDM.14 model can be applied with alternative climate
input datasets with good results. The ISI-MIP dataset for the period
1961-2000 was deemed different enough to the WATCH dataset to
provide an adequate validation test for the model, so was applied to
both global and catchment calibrated model realisations. The global
model realisations with a MARE <0.75 were run with the ISI-MIP input
data and, for the most part, the results were actually better than those
when run with the WATCH data. There was a smaller range of
uncertainty across the 1238 models that were run with the ISI-MIP data,
than when run with the WATCH data for most catchments. When
compared to the other individual members of the ISI-MIP multi model
ensemble, Mac-PDM.14 performs much better, with a MARE score of
0.44, compared with the best MME model (WBM) at 0.72.

When catchment calibrations of the Mac-PDM.14 model are considered
and investigated in detail, it is apparent that the specific catchment
calibrations are more sensitive to input data. The model has been more
finely tuned to the WATCH data, and the difference in the ISI-MIP data
has more of a negative impact on the runoff outputs. However, in some
catchments, the model again performs better with the I1SI-MIP data. The
catchment calibrations perform better than the global calibrations for all
catchments, regardless of which climate input data is being used.
Global calibrations of Mac-PDM.14 do not always give better outputs
than all of the ISI-MIP multi-model ensemble members, but the
catchment calibrations of Mac-PDM.14 do. It would be interesting in
further research to see how the catchment calibrations of Mac-PDM.14
performed against catchment calibrations of the other models.

The influence of the calibration process upon the model performance in
each catchment was assessed. This was compared to the model
performance using the WATCH and the ISI-MIP data. It was found that
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the influence of model calibration was greater than that of the input
data, which suggests that the model need not be recalibrated to every
new input dataset. Alternative model evaluation metrics were employed
(Nash Sutcliffe, Percent Bias, Root Mean Square Error, and
Standardised Effect Size). These metrics showed very similar results to
the Mean Absolute Relative Error metric that was used for the
calibration and evaluation. This indicates that the results of the
calibration process are conclusive, and that the subjective choice of
evaluation metric does not negate the improvements seen in the model

performance.

These results demonstrate that this approach to uncertainty analysis
and the subsequent calibration of a Global Hydrology Model can be
both beneficial and useful, and will remain relevant when new climate

input datasets become available.



Chapter Seven:

Discussion: Global Hydrology
Modelling - Obstacles and
Opportunities
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7.1 Introduction

Several obstacles and opportunities in global hydrology modelling have
been highlighted in this study and the following issues are addressed
here:

1. Simulating naturalised flow by hydrology models and the impact that
this may have on analysis of model performance and on decision
making from the models outputs (see chapter 4).

2. The need for better process representation in Mac-PDM, and the
implications of this on model results.

3. The application of global hydrology models as catchment models,
and the potential for further work comparing global models with
catchment hydrology models (see chapter 5).

4. The trade-off between catchments in a global model calibration, and
the previously assumed need to recalibrate models to new climate
input data (see chapter 6).

5. The issue of computational demand in uncertainty analysis (see
chapter 4).

6. The possibility of applying model emulation techniques for sensitivity
analysis, in order to reduce computational demand, and extend
understanding of parameter interactions and optimum values (see
chapter 5).

7. Assessing parameter uncertainty under climate change projections,
and previous work on the presentation of such uncertainty from the
literature in other scientific fields.

8. Gaining a deeper understanding of the full range of uncertainties in
global hydrology modelling studies, and sources of additional

uncertainty that could be investigated further.

7.2 Naturalised Flow Simulation

The Mac-PDM model, along with a number of other hydrological models
(e.g. DBH, VIC, WBM, MPI-HM, WaterGAP, H08, PCR-GLOBWB which
participated in the ISI-MIP project (Warszawski et al., 2014)) simulates
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‘naturalised runoff’ or flow. However, these models are compared to
observed discharge records which are subject to significant deviations
from a natural flow regime, due to influences from abstraction and other
human alterations to the flow. This issue was discussed and a potential
solution to this problem was examined in Chapter 4 (see section 4.4).
Mac-PDM.14 was compared with the UNH-GRDC Composite Runoff
data, which attempts to provide a corrected observed time series for
comparison with naturalised flow simulation. However, whilst the
Composite Runoff data is useful for water resource assessments and
validation of atmospheric models, the usage guidance of the dataset
states that “the use of the composite runoff data for validation is not
recommended (because it is a mixture of modelled and measured

discharge)” (Fekete and Vorosmarty, 2011 pp. 18).

Some hydrological models such as GWAVA (Meigh et al., 1999) and
WaterGAP (Alcamo et al., 1997) use abstraction data to simulate water
availability, yet abstraction data is very difficult to obtain, especially in
the detail required to produce simulations of discharge with certainty
levels high enough to be deemed useful. Abstraction data and reservoir
levels are often quite sensitive and are currently unavailable to the
public. This leads to estimated abstraction datasets, often at a national
scale (such as AQUASTAT, FAO (2014a)), which introduce significant
uncertainty to modelling studies.

The difficulties that lead modellers to simulate naturalised river flow
often encourage them to focus their efforts on catchments that
demonstrate low levels of human influence on the flow regime, such as
those in the UK benchmark catchment network (Bradford and Marsh,
2003). This is often used for catchment selection in UK hydrological
research (e.g. Hannaford and Marsh, 2008, Hannaford and Marsh,
2006, Stahl et al., 2010). In small scale catchment studies the selection
of catchments can often factor in this consideration. Global scale

catchment modelling studies on the other hand, are less able to avoid
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the impact of water withdrawals as the largest of the world’s rivers are
often the most modified. Until detailed abstraction data become
available globally, this issue will remain a significant challenge for

hydrological modellers.

7.3 Process Representation in Mac-PDM

The results of the global calibration of Mac-PDM indicate that there are
some structural deficiencies in the model. Significant underestimations,
overestimations and mistiming of runoff peaks in catchments with
distinct climatic regimes suggest that the model may need additional
components to simulate runoff in both high latitudes, and arid to semi-
arid regions of the world.

The underestimation of peaks in high latitude catchments such as the
Lena, Yenisey and Yukon, and the simulation of peaks too early in
these catchments as well as the Amazon, Amu Darya and Ob could be
improved with the inclusion of a glacier component in the model that
also takes into account the seasonal freezing and melting of permafrost.
This structural issue was identified when discussing the potential
limitations of the Mac-PDM model in Chapter 2, and became apparent
in the results from the GLUE experiment shown in Figure 4.1. The
mistiming of the peaks is due to the fact that in reality, much of the
autumn and winter runoff is locked up in ice stores, and isn’t released
until spring. This isn’t represented in the model, and so the runoff is
simulated according to the timing of the precipitation (see Figure 6.1 for
precipitation input), which results in an early runoff peak. Whilst the
model does include a simple degree day scheme for snowmelt, this
does not account for the larger scale ice processes of permafrost and
glaciers which dominate the runoff regime in many of the study

catchments investigated in this thesis.

The sensitivity of the xmelt parameter values, particularly in high
latitude catchments suggests that the model could be adjusting this
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parameter in order to account for the lack of glacier representation. The
routing parameters were also sensitive, possibly attempting to adjust
the mistiming of the runoff peaks. Whilst amending the parameter
values improves model performance when calibrated to individual
catchments, this cannot improve the model when a global calibration is
needed.

Similarly, the model does not accurately represent runoff in arid and
semi-arid catchments such as the Okavango, Murray Darling, Niger and
Nile. In all of these catchments, the model overestimates runoff
significantly. The performance of the model in the Murray Darling and
Nile catchments is confounded by the exceptional influence of the
abstractions and reservoirs on the runoff, however the overestimation in
the Niger and the Okavango indicate that process representation in arid
and semi-arid regions could be improved. It was harder to determine
which model parameters led to an improvement in model performance
in these catchments, however transmission loss and evaporation are

likely key processes in these areas that could be explored further.

7.4 Catchment Models or Global Models?

This study has largely focused on the use of a global model as a
catchment model, by calibrating the chosen model specifically for each
catchment. The improvement in model performance using this approach
was significant. The largest improvement was seen in the Yangtze
catchment with an 89% reduction in MARE, from 0.33 to 0.04. All
catchments showed an improvement, with catchment specific
calibration showing an improvement of 33% over global calibration in
the Niger catchment. This raises the question whether global hydrology
models could be used in the place of catchment models. Catchment
hydrology models (CHMs) generally include more complex
parameterisations than global hydrology models (GHMSs), and they are

time-consuming to calibrate (Gosling et al., 2011). However, catchment
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models operate on a higher resolution than global models which

increases usefulness of model outputs.

Global hydrology models have been applied in catchment specific
research (e.g. Abdulla et al., 1996, Thompson et al., 2013, Weedon et
al., 2014, Trambauer et al., 2013, Gain and Wada, 2014, Aus der Beek
et al., 2011), which demonstrates that there is merit in the resolution vs
model complexity trade-off between CHMs and GHMs. These
applications of GHMs in catchment studies suggest that the significant
improvements in model performance from catchment specific calibration
found here are worth exploring further. In future a comparison of a
chosen CHM with a GHM for the same catchment, following a similar
calibration procedure, would be worthwhile. A comparison of GHMs and
CHMs was carried out by Gosling et al. (2011), but this did not take into
account the newly discovered improvement in Global models when
calibrated specifically to each catchment. A comparison calibrating
GHMs and CHMs in a similar way for each catchment would reveal how
well both models performed, and may provide different cost options for

distributed catchment modelling.

7.5 Model Calibration and Input Climate Data

Chapter 6 demonstrated the substantial benefit of calibrating the Mac-
PDM model. However, when evaluating the globally calibrated model,
there were some catchments where calibrating the model made the
output runoff worse in comparison with the observed record. When the
MARE metric, which was used to perform the calibration, was
considered only 3 catchments showed a worse result than the original
version of the model (Mac-PDM.09); but for the Yangtze catchment
there was a substantial worsening, with an increase in MARE of 91.4%.
This demonstrates an inevitable trade-off between catchments in the

optimisation of a global hydrology model.
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Other evaluation metrics were calculated including NSE, PBIAS, RMSE
and SES (see Chapter 6). Whilst all showed improvement in global
averaged results after calibration, the number of catchments that
showed improvement was less clear, with 11, 11, 15 and 12 out of 19
catchments showing improvement for each metric respectively. RMSE
and NSE have not been found to be appropriate measures for this
study, due to the 30 year averaged output of Mac-PDM, so it is not
surprising that the calibration did not give much improvement in these
statistics. The improvement of more than half of the catchments with
SES and PBIAS is reassuring though, showing that the calibration
procedure does indeed make the model better overall, regardless of the
metric considered. The catchment calibration of the models showed
significant improvements from Mac-PDM.09 to Mac-PDM.14 over the

majority of catchments for all metrics.

In the same analysis, the benefits of model calibration were evaluated
alongside the effects of using an alternative input dataset. This study
suggested that the calibration process had a much stronger influence
on the model output than the input data. This leads to the question, is
calibration to new datasets necessary? If a rigorous calibration process
is carried out, does it make the model good enough to negate the need
to recalibrate to different input data? In this study, the results suggested
that the improvement from model calibration outweighed the impact of
changing the model input data for the majority of catchments. This may
not always be the case though. There are some similarities in the way
the WATCH and the ISI-MIP forcing data were derived, so a
significantly different input dataset may yield a more substantial
deviation in the model output. Input data may also evolve over time,
therefore if a large calibration experiment is deemed useful for several
input datasets, will this only be the case for a certain period of time? It
would be valuable to explore this further with multiple input datasets of

varying origins, as the need to recalibrate models to input data for each
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new research project uses up considerable amounts of project

resources.

7.6 Computational Demand

The increasing computational demand is a significant challenge in
hydrological research. As datasets are produced in higher spatial and
temporal resolution, and as models become increasingly complex to
best represent the physical world, advances in computing technology
struggle to keep up with the demand. Many institutions now make use
of high performance computer (HPC) clusters, such as the one at
Nottingham used for this research, which consist of multiple computers
connected in a network that can run iterative or batch computations in
parallel and provide storage for large datasets. The cluster used in this
study consisted of a total of 2,656 CPU compute cores capable of
running at over 46 teraFLOPS. The cluster at Nottingham, known as
Minerva, cost approximately £1 million to set up, and costs around
£150,000 per year to maintain. This cost is well justified by the
widespread use of the cluster from a broad variety of research fields
across the university, and is easier to maintain than several facilities
spread across several sites. Clusters at other universities vary in size:
e.g. the 2,340 core Darwin Cluster at the University of Cambridge
(University of Cambridge, 2009), the 800 core Aquila cluster at the
University of Bath (Chapman, 2013), and the 208 core ALICE cluster at
University of Leicester (University of Leicester, 2015).

Outside of universities, research institutions also have clusters. A good
example is the JASMIN facility, funded by the Natural Environment
Research Council (NERC) and the UK Space Agency (UKSA), which
provides 3,500 compute cores and 13 petabytes of fast parallel disk
storage (Bennett et al., 2014) for research by NERC scientists. So,
whilst not all scientists have access to such systems as used in this
study, high performance computing clusters are becoming increasingly

popular. This means that the bar is set high for scientific research, and
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that multiple model runs for model calibration can be expected, as well

as multi-model ensembles for the assessment of model uncertainty.

7.7 Sensitivity Analysis — Model Emulation

The parameters of the Mac-PDM.14 model were investigated (see
chapter 5) to determine whether any trends could be identified in the
GLUE results that would indicate whether parameter values for different
catchments could be linked to catchment characteristics. It was
determined that no firm conclusions could be drawn from the results,
which indicated issues with parameter insensitivity and equifinality,
which in turn suggests that the Mac-PDM.14 model is over-
parameterised. Methods of exploring this further were discussed with
several statisticians and it was decided that the best route forward in
this situation would be to use model emulation. Model emulation derives
statistical relationships between model input and output in order to
simulate huge numbers of model runs without actually running the full
model. This is necessary in computationally demanding climate models,
and allows the modeller to explore the parameter space in detail and to

carry out a variance based sensitivity analysis (Saltelli et al., 2000).

Lee et al. (2011) describe the processes involved in Gaussian process
emulation, the steps of which are summarised in Figure 7.1. O’Hagan
(2006) provide a tutorial of the BACCO approach (Bayesian Analysis of
Computer Code Outputs) to quantifying, analysing and reducing model
uncertainty using Gaussian process model emulation, aimed at non-
mathematicians. In this study, despite having already run 100,000
model runs, it was estimated that it would take approximately three
months to derive a Gaussian emulation model for just one catchment
and so this investigation was deemed outside the scope of this study.
With increases in computing power this sort of thorough investigation is
likely to be possible in the near future. If it were possible, the outputs of
model emulation can bring great insight to the modeller. Sensitivity

analysis of the emulations can produce spatial information about the
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most important sources of uncertainty in model output (Lee et al.,
2013).

Parameters can be ranked in order of importance for each area, and
their contribution to uncertainty in the model output can be quantified
over time. An example of the potential outputs from such a study is
shown in Figure 7.2, where the results from a model emulation
experiment on a global aerosol processes model (GLOMAP-mode) on
the sensitivity of model inputs to CCN output are presented. This sort of
analysis is a significant breakthrough in parameter uncertainty
assessment; and in physically based models it enables efficient
visualisation of the effects of specific physical processes on model

output processes.

7.8 Climate Change Projections and the Cascade of

Uncertainty

The opportunity of investigating the impacts of parameter uncertainty on
climate change impacts projections is one potential next step. Having
assessed the parameter uncertainty of the Mac-PDM.14 model, and
validated the top selected parameterisations with alternative input
climate data over a historic period, it would be a novel next step in
global hydrology modelling to assess how this parameter uncertainty
contributes to runoff projections under different climate projections.
Parameter uncertainty in catchment hydrology model projections has
been researched (e.g. Wilby, 2005, Wilby and Harris, 2006), as has
global multi-model uncertainty on projections (Haddeland et al., 2011),
but parameter uncertainty contribution to climate impacts projection

uncertainty from global hydrology models has yet to be addressed.
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Figure 7.1 Flow chart of the basic steps in an emulation study. After Lee et

al. (2011).
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Figure 7.2 Example of the possibilities of model assessment outputs using
model emulation (taken from Lee et al., 2013). “Time series of mean emulator
predicted CCN concentration with 2o error bars (top graphs) and the main
effect sensitivities (the percentage of CCN variance due to each parameter)
(bottom graphs) across the year 2008 for different locations. Parameters with
main effect < 5% are shown in grey. The white space filling the bars to 100%
shows the fraction of variance due to interactions between the parameters,
since with no interactions the main effect sum to 100%” (Lee et al., 2013).
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Wilby and Dessai (2010) presented a ‘cascade of uncertainty’ that
demonstrated the propagation of uncertainty from climate scenarios,
through greenhouse gas emissions, climate models, regional scenarios,
impacts models, and local impacts, to adaptation responses (see Figure
7.3). This cascade is a ‘top-down’ assessment of climate risks and has
a long history, beginning with the “CO2 Pyramid” (Schneider, 1983).
This was developed into the “uncertainty explosion” (see Figure 7.4)
(Schneider and Kuntz-Duriseti, 2002) which was presented in the IPCC
Third Assessment Report (McCarthy, 2001). Hawkins (2014) adopted
the visualisation from Wilby and Dessai (2010) and applied it to the
work of CMIP5 using actual data (see Figure 7.5). This study used three
cascade levels to represent 1) the emissions pathway — the
Representative Concentration Pathways (RCPs), 2) the different climate
model results from the same forcing, and 3) the role of internal climate
variability resulting from multiple realisations from the same forcing
pathway (Hawkins, 2014). The same approach has also been applied to
sea-ice extent from CMIP5 in Swart et al. (2015).

When impacts models are taken into account, the cascade by
(Hawkins, 2014) represents only the first few levels of the cascade, and
hydrology models and their realisations can be added as two additional
levels to the bottom of this cascade. Alternatively, in an individual study
of hydrology model uncertainty, the same cascade could be applied
with the different climate model inputs in the place of the RCP input
presented here. This cascade concept is a novel idea for easily
interpretable presentation of uncertainty in complex multi-scenario,

multi-model and multi-realisation climate projection studies.

7.9 Presenting Uncertainty

In addition to quantifying uncertainty, presenting uncertainty is a
significant challenge in scientific research. The way in which scientific
results are presented to decision makers determines which party is

taking the most risk.
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Figure 7.3 The Cascade of Uncertainty (taken from Wilby and Dessai, 2010).
“A cascade of uncertainty proceeds from different socio-economic and
demographic pathways, their translation into concentrations of atmospheric
greenhouse gas (GHG) concentrations, expressed climate outcomes in global
and regional models, translation into local impacts on human and natural
systems, and implied adaptation responses. The increasing number of
triangles at each level symbolise the growing number of permutations and
hence expanding envelope of uncertainty. For example, even relatively
reliable hydrological models can yield very different results depending on the
methods (and observed data) used for calibration” (Wilby and Dessai, 2010).
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emission carbon cycle global climate regional range of
scenarios response = sensitivity = climate = possible
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Figure 7.4 The “Uncertainty Explosion”. The ranges in major uncertainties
typical in impact assessments, multiplies to encompass a comprehensive
range of future consequences, including physical, economic, social, and policy
responses (Modified after Jones (2000) and the “cascading pyramid of
uncertainties” in Schneider (1983).
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Cascade of Uncertainty in CMIP5

Figure created by Ed Hawkins, 2014
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Figure 7.5 CMIP5 Cascade of Uncertainty for global mean surface

temperature over different time period (Hawkins, 2014). “The three levels of

the pyramid highlight the uncertainty due to choice of RCP, GCMs and
realisation of climate variability. Unfortunately not all the simulations have
multiple realisations, resulting in a vertical line in the lowest layer. The
intersection on the top row for each time period is the multi-scenario, multi-

realisation mean” (Hawkins, 2014).

Decision makers prefer to receive a single estimate such as a multi-

model mean, which places the risk with the scientist. Scientists

however, prefer to present their results with a range of uncertainty and

allow the decision makers to make their decisions with as much

information as possible, therefore placing the risk with the decision

maker. So what is the best compromise?

There are many blogs dedicated to visualising uncertainty (e.g.

www.Visualisingdata.com,

www.understandinguncertainty.org/visualising-uncertainty) as well as

several blog posts on wider data science blogs. Probabilistic


http://www.visualisingdata.com/
http://www.understandinguncertainty.org/visualising-uncertainty
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representations are commonly in use now, as they present the full
range (or as far as can be estimated) of uncertainty, whilst maintaining
a best estimate for the decision maker. Spiegelhalter et al. (2011)
examine the success of graphic visualizations for communicating
probabilities to a wider public. This research made use of graphs that
displayed the best estimate, bounded by shaded areas that gave a
range of uncertainty from a suite of top performing models. Due to the
size of the ensemble developed in this study, there was difficulty in
employing methods that displayed the full ensemble, especially as even
the matrices of data for 21 catchments were too large to be stored in

the memory of a desktop computer for analysis and plotting.

If this were not the case, fan graphs would have been a good option,
which show the mean with shading indicating ranges of uncertainty. Fan
graphs have originated from economic forecasts, an example of which
is shown in Figure 7.6. This type of graph is an improvement on the
‘spaghetti’ graph that just plotted individual lines for each model
forecast. In a blog post about visualising data uncertainty, Krusz (2013)
present a shaded alternative to error bars, which provides more
information about the uncertainty distribution about the point. Examples
of such plots are given in Figure 7.8. This idea could be extended to line
graphs, with some interpolation to present uncertainty that may not be

evenly distributed for all data points.

One recent advance in uncertainty presentation in mapping was the
progression from stippling areas where models agree, to increasing the
saturation of colour where there is more confidence. This technique was
introduced in 2014 as part of the Inter-Sectoral Impact Model
Intercomparison Project (ISI-MIP), and this method was published just
after the IPCC 5™ Assessment Report. Figure 7.9 shows the difference
in clarity between the IPCC and the ISI-MIP techniques. Whilst the
stippling and hatching in the IPCC map in Figure 7.9a gives additional

information to the ISI-MIP saturation map, the hatching and the stippling
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indicate degrees of uncertainty and confidence respectively (by
assessing the multi-model mean change in relation to internal
variability). The saturation map is much easier to read and the results
are apparent even without the need to consult the caption. In the
saturation map, the areas of colour with the deepest saturation stand
out, such as the increase in runoff that can be seen in arctic regions
and the decrease in runoff in the Mediterranean, whilst the areas that
are less certain are shown in paler colours, which give the immediate
impression of uncertainty. Another advantage of the saturation
technique is that small localised areas of certainty can still be displayed,
where a single dot using the stippling approach might be missed by the

reader.
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Figure 7.6 Fan Chart of GDP projections from the Bank of England (taken
from Bank of England, 2015). The distribution to the left of the vertical dashed
line reflects the likelihood of revisions to the data over the past. Over the
forecast period, the distribution reflects the uncertainty over the evolution of
GDP growth. If economic circumstances identical to today’s were to prevail on
100 occasions, the MPC'’s best collective judgement is that the GDP growth
would lie within the darkest central band on only 10 of those occasions. In any
particular quarter of the forecast period, GDP growth are expected to lie
somewhere within the fan on 90 out of 100 occasions. And on the remaining
10 out of 100 occasions they can fall anywhere outside the coloured area of
the fan chart. This has been depicted by the light grey background.
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Figure 7.7 Fan and bar charts combined: Global temperature changes and
uncertainty (taken from Knutti and Sedlacek, 2013). Global temperature
change (mean and one standard deviation as shading) relative to 1986-2005
for the RCP scenarios run by CMIP5. The number of models is given in
bracket. The box plots (mean, one standard deviation, and minimum to
maximum range) are given for 2080-2099 for CMIP5 (colours) and for the
MAGICC model calibrated to 19 CMIP3 models (black), both running the RCP
scenarios. Copyright licence granted.
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Figure 7.8 An alternative to error bars (Krusz, 2013). a) Normally distributed
uncertainty with high variance. b) Normally distributed uncertainty with lower
variance. ¢) Uniformly distributed uncertainty.
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Figure 7.9 Presenting uncertainty in maps: stippling to saturation. a) Change
in annual mean runoff relative to the reference period 1986-2005 projected for
2081-2100 from the CMIP5 ensemble for RCP8.5. Hatching indicated regions
where the multi-model mean change is less than one standard deviation of
internal variability. Stippling indicates regions where the multi-model mean
change is greater than two standard deviations of internal variability and
where at least 90% of the models agree on the sign of change. (Collins et al.,
2013) b) Relative change in annual discharge at 2°C compared with present
day (1980-2010 average), under RCP8.5. Colour hues show the multi-model
mean change, and saturation shows the agreement on the sign of change
across all GHM-GCM combinations (percentage of model runs agreeing on
the sign of change) (Schewe et al., 2014).
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One final consideration in the presentation of scientific data that is re-
entering discussions is that of colour itself. Colour blindness affects
between 5 and 10% of men and 0.5% of women, and red-green colour
blindness (deuteranopia) is the most common (Hawkins, 2015) (see
Figure 7.10). Discussions of colour blindness in science have been
ongoing for more than a decade, and Light and Bartlein (2004)
highlighted the perception of rainbow scales by viewers with protanopic

vision (see Figure 7.11).

Presenting uncertainty is both an important challenge, and an
opportunity for scientists. It is essential to be able to present information
on the uncertainties inherent in modelling studies, whilst avoiding
undermining the message of the research results. Producing a quickly
interpretable graphic is often required in science communication with
both peers and public, and it can be incredibly rewarding. Yet the
complexity of many scientific studies make producing such graphics a

significant challenge.

Colour Wheel

Normal colour vision Simulation of severe deuteranopia

Figure 7.10 Simulation of deuteranopic vision of a colour wheel (taken from
Hawkins, 2015).
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Figure 7.11 Simulation of protanopic vision of a rainbow scaled map. Air
temperature anomalies (1971-2000 mean) for January 1998, during an El Nifio
event (taken from Light and Bartlein, 2004).

7.10 Deeper into the Roots of Uncertainty

Presenting uncertainty becomes more complex when different sources
of uncertainty are taken into account. The cascade of uncertainties in
the CMIP5 project presentation (see Figure 7.5) is a good start towards
making the full range of model uncertainty clear, and helping the reader
determine what levels of uncertainty are associated with each part of
the modelling process. There are many more aspects of uncertainty that
need to be addressed in modelling studies though, before it can be said
that we have a full understanding of uncertainty in hydrological
modelling. A few examples of these include the choice of climate model
to use as climate input, the choice of potential evapotranspiration
eguation used, climate modelling technigues (e.g. downscaling
methods, boundary conditions etc.), the choice and integrity of
abstraction data if it is used, and routing methods that may be

employed to simulate the translation of runoff to river discharge.

To return to the analogy of the tree of uncertainty, as presented in
Chapter 1.5, these options and decisions along the path of a modelling



Discussion: Global Hydrology Modelling — Obstacles and Opportunities 267

study can be seen as an incredibly dense network of roots at the base
of a tree, where each choice and subsequent combination leads to a
different leaf at the top of the tree. The huge variety of models available
for both climate input and hydrology modelling, alongside the plethora
of techniques of analysis and evaluation, provide hydrological scientists
with a veritable forest of possibilities. Whilst all combinations cannot
possibly be explored, comparative studies such as parameter
experiments and multi-model ensembles help us understand the

impacts of the choices that are made in scientific investigations.



Chapter Eight:

Conclusions
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8.1 Introduction

Global hydrology modelling has advanced rapidly over the last two
decades since its inception. Emerging into a research field of their own,
global hydrology models offer large scale simulations of water
resources that have not previously been possible. Many global
hydrology models are now in widespread use, and whilst a few studies
have investigated aspects of model uncertainty by comparing these
models, the uncertainties within global hydrology models have
remained un-investigated. This study aimed to “address the issue of
uncertainties within a global hydrology model by analysing parameter
uncertainties”. This was carried out using the Mac-PDM global
hydrology model for a set of 21 large river catchments across the globe.
Mac-PDM.09 was updated using recent land cover mapping products,
and a more comprehensive classification of soil texture. The model
update was renamed Mac-PDM.14, and this model was taken forward

for use in addressing the aim of this thesis.

8.2 Research Questions

The three main research questions posed are reviewed here.

Research Question 1: How can uncertainties within global

hydrology models be assessed and quantified?

Methods of investigating parameter uncertainty within global hydrology
models were reviewed (Chapter 3). Simple techniques such as One-At-
a-Time (OAT) sensitivity analysis were considered alongside more
rigorous methods such as Generalised Likelihood Uncertainty
Estimation (GLUE), and Bayesian Recursive Estimation (BaRE) which
vary several parameters simultaneously. There are numerous

techniques available, but all centre on the same principal steps:

1. choosing parameters to investigate,

2. sampling defined ranges of the parameters,
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3. running the model with the sampled parameters,
4. comparing the model output(s) with the observed record, and
5. determining whether the set(s) of parameters is/are either

acceptable or optimal

Some of the uncertainty analysis techniques are recursive, using ‘hill
climbing’ methods to seek a better set of parameters using the
knowledge gained from the previous model run(s) (e.g. Shuffled
Complex Evolution Metropolis Algorithm). Others, such as GLUE, use
random or near-random sampling techniques to run samples of the
entire parameter space simultaneously, assess the model performance
once all simulations have been completed, and then determine which, if
any, of the parameter sets are acceptable. There remains debate in the
literature between these techniques, as GLUE theorists suggest that
there is unlikely to be only one optimal solution, and therefore hill
climbing techniques may lead to a perceived optimal parameter set that
may actually be matched, or indeed exceeded, elsewhere in the

parameter space.

Three uncertainty techniques were employed in this study using the
Mac-PDM model: OAT sensitivity analysis, GLUE, and Approximate
Bayesian Rejection. The One-At-a-Time sensitivity analysis cannot
quantify the parameter uncertainty of the model as a whole, as it cannot
account for parameter interactions from non-independent parameters.
However, sensitivity analysis can inform the modeller about the relative
importance of a parameter within a model. In the Mac-PDM model, it
was found that the soil parameters were the most sensitive, whilst the
routing parameters were the least sensitive. This does provide some
information on model uncertainty though, as it shows that in this case
the soil parameters are the most uncertain, and therefore need to be
carefully considered in the model calibration process.

The Generalised Likelihood Uncertainty Estimation experiment carried

out on Mac-PDM.14, used a few alternative methods to the original
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GLUE technique. 100,000 parameter perturbations were sampled using
a Latin Hypercube Sampling technique. This sampling technique is
more efficient than the Monte-Carlo random sampling that is
traditionally used in GLUE analysis, and so allowed for fewer
simulations to be run. This was important, as all 123 of Mac-PDM.14’s
parameters were included in this GLUE experiment. The parameters
were sampled from prior distributions which were determined from the
literature using the @RISK software package. The Mean Absolute
Relative Error (MARE) measure was used to assess the models

performance with each parameter set.

From the 100,000 model runs, the best parameter set gave a MARE of
0.9, or an average error of 90% over all 21 catchments, but when the
Murray Darling and Nile catchment were excluded, where the model
performed particularly badly, the best model parameterisation had a
MARE of 0.47 or 47%. The previous version of Mac-PDM, before the
GLUE experiment, and before the update of the land cover and soil
maps (Mac-PDM.09) scored a MARE of 1.04 (104%) over the 19 study
catchments excluding the Murray Darling and the Nile. This shows that
not only can a GLUE experiment assess and quantify the uncertainty of

a model, it can also significantly improve the models performance.

Of the 100,000 model runs, 2 parameterisations scored a MARE <0.5,
1,238 scored a MARE <0.75, and 25,532 scored a MARE <1. The
ranges of the model outputs from these parameterisations were plotted
against the model results from 9 Global Hydrology Models (GHMs) from
a multi-model ensemble (MME) - the EU-WATCH project. This
demonstrated that the range of model outputs with a MARE <0.75 was
comparable to the range from the choice of GHM, demonstrating that
parameter uncertainty can easily be as large as structural uncertainty,
but that it depends on the limits of acceptability adopted by the modeller
(if only models with a MARE<O0.5 were determined as acceptable, then

the range of model output is much smaller than that of the MME). An
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additional important result here, was that the MARE of the top
performing Mac-PDM.14 model parameterisation was lower than that of
all of the GHMs that participated in the EU-WATCH project, whilst the
previous version of the model (Mac-PDM.09) ranked 6™ out of 9 in the
MARE scores of the GHMs.

The Approximate Bayesian Rejection method was used to determine
whether any trends could be found in the parameter values of the top
ranking model runs. The top 1,000 of the 100,000 model
parameterisations (the top 1%) were used in this investigation. The prior
distribution of the parameters were compared to the posterior
distribution of the 1,000 top model parameterisations.

This technique was applied to determine whether any trends could be
seen in the catchment specific results, and to ascertain whether there
were groups of climatically similar catchments showing trends towards
similar parameter values. Some differences between catchments were
identified for a few of the model parameters, but the results could not
easily be attributed to climatic regime, latitude or hydrological
characteristics. Many of the parameters appeared to be insensitive to
perturbations, which suggested that the Mac-PDM model is over-

parameterised.

Mac-PDM.14 was then validated using an alternative input dataset from
another MME experiment (ISI-MIP). This was an important exercise,
because it would conclude whether the extensive uncertainty estimation
experiment, and subsequent calibration of the model, would remain an
improvement on the model performance when applied to a different
modelling exercise. The results showed that the top performing model
parameterisation from the 100,000 GLUE simulations scored better
when run with the alternative (ISI-MIP) input data than the calibration
(WATCH) input data, with MARE scores of 0.45 and 0.47 respectively.
Again, Mac-PDM.14 scored better than all of the other models in the
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ISI-MIP ensemble, when Mac-PDM.09 came 6™ out of the 10 MMEs in
a ranking of MARE scores.

These findings showed that alongside uncertainty assessment and
quantification, significant improvements in model performance can be
made. However, there remains more work to be done on understanding
how and why these sets of identified parameter values improve the

models performance so significantly.

The potential improvement in a models outputs from an exercise such
as the one carried out in this thesis provides a great incentive for
modellers to consider this type of assessment when employing their

models.

Research Question 2: What is the feasibility of including rigorous
uncertainty estimation experiments in the global hydrology model

calibration process?

This research question was addressed (in Chapter 4.6) using a set of
GLUE experiments of different sizes. Due to the large number (123) of
model parameters being considered in this study, 100,000 model
parameterisations were run in the main GLUE experiment that was
used in the various analyses for the main aim of this thesis. However,
this required significant computational resources. GLUE ensembles of
10,000, 5,000, and 1,000 model parameterisations were also
undertaken. The same sampling method was employed for each, and
MARE was used to assess the model outputs over the 19 study
catchments.

The distribution of the MARE scores across the range of
parameterisations was very similar between the different sample sized
experiments, which demonstrated that with a smaller sample size, the
modeller is not less likely to obtain a ‘good’ model parameterisation, but
he may obtain fewer ‘good’ model parameterisations. For example, in

the 100,000 sample experiment, 1,238 model parameterisations scored
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a MARE <=0.7, whilst for the 1,000 sample experiment, only 6
parameterisations scored <=0.7. This indicates that if a modeller were
happy with a model with a MARE of 0.7, then perhaps only 1,000 model
parameter perturbations might suffice to achieve a good model.
However, for a MARE <=0.5, 2 models parameterisations from the
100,000 sample ensemble achieved this score, whilst no
parameterisations from the 10,000, 5,000 or 1,000 sample experiments
could. Furthermore, if a modeller was trying to consider the uncertainty
in their model parameters, the ranges of model outputs from the models
scoring a MARE less than a certain threshold is significantly affected by
the experiment sample size. Whilst the top ranking model output is very
similar, the range of outputs from models scoring <0.75 is much larger
from a sample size of 100,000, than it is for a sample size of 1,000. This
might give modellers that use a small sample sized experiment false
hope that the range of their uncertainty is smaller than a modelling

experiment that used a larger sample size.

The implication of this is that a modeller should carry out as many
parameter perturbations as they can afford, in order to get as good a
grasp on the true range of the parameter uncertainty of their model.
Valuable further research could be carried out (ideally using a model
with fewer parameters), to determine whether the range of model

outputs converges with increasing sample size.

Access to high performance computing is rapidly increasing, so
investigations such as this, should be accessible to most modellers
globally.

Research Question 3: To what extent are “global” hydrology

models fit for purpose?

Global hydrology models have been available since 1989, with an

increase in focus and complexity during the 215t century. Model
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evaluations that have been carried out on catchment models have not
yet been widely applied to global models.

How can models be evaluated and validated?

Evaluation of the uncertainty in global hydrology models was
considered above. In order to be calibrated, observed data is usually
required, and in this thesis observed discharge records for the chosen
study sights were obtained from the Global Runoff Data Centre, the
Bangladesh Water Development Board, and the United States
Geological Survey. This data allowed the model to be calibrated
‘globally’ using an average of the Mean Absolute Error of the models
outputs across these catchments. However, data is not available for all
catchments worldwide, so the model’s performance in other catchments
may not be optimal. A global calibration of the model (see chapter 5)
also requires a trade-off in the results of each catchment, and it was
found in this model that the Amazon catchment performed badly as a
result of the model calibration. Model validation can be carried out by
examining the models performance over a different time period, or, as
here, by applying the model using a different input climate dataset. In
this study, Mac-PDM.14 was found to perform very well with an
alternate input dataset, thus endorsing the results of the model
calibration.

How do global hydrology models perform in a catchment context?

Global calibrations of Mac-PDM.14 have been evaluated in a catchment
context (chapter 4), whilst the potential application of catchment specific
calibrations of the model have been considered (chapters 5-6). The top
20 global model calibrations from the 100,000 model parameterisation
experiment were compared to the top 20 catchment specific
calibrations. The catchment specific calibrations were shown to provide
significant improvement in the model performance in all study

catchments. In several catchments where the global model calibrations
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performed well, the range of the top 20 calibrations was significantly
reduced from the catchment calibrations compared to the range of the
global calibrations, which shows a reduction in uncertainty in catchment
calibrated model simulations. The natural variability of the catchments
was taken into account using the observed record, which further
confirmed the merits of employing catchment calibrations of the model.

This is a novel concept in global hydrology modelling, as the aim of a
global model is to enable the model to be employed worldwide without
the need to recalibrate to each catchment. However, global models are
regularly applied to catchment scale research problems, particularly in
large ‘global scale’ catchments, and the significant improvement in the
model performance with catchment specific calibration demonstrates
the potential merit of this approach. In this study, just 21 catchments
were considered, however the 100,000 model runs used in this
experiment were run at the global scale and the catchment average
runoff was extracted. Therefore, with the retention of the model outputs
from the 100,000 parameterisation ensemble, any catchment where
observed data can be obtained, can be calibrated very quickly indeed.
This would be significantly faster than calibrating a catchment model,
and the results would be better than the globally calibrated model
realisation. Where observed data cannot be found however, the global
calibration can be applied, and from this experiment, the global
calibration of Mac-PDM.14 is known to perform significantly better than
the previous version of the model (Mac-PDM.09), which is due to the
rigorous calibration procedure employed. This global calibration could
also be iteratively updated as more catchments are added to the
repertoire of the models applications, covering more areas of the globe.
Where truly global scale applications of the model are required, there
could be the potential to ‘stitch together’ the catchment calibrations of
the model, where they are available, and the global calibration of the
model where it is not. This would alleviate the issue of the reduced

model performance in catchments such as the Amazon under the global
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calibration of the model due to the trade-off involved between
catchments in the global model calibration process.

Are the uncertainties in global hydrology models acceptable?

Whether the uncertainties in global hydrology models are acceptable
depends upon how the models are used. Currently, the results of global
hydrology models are mostly used within the research community,
investigating global water resources and potential implications on
society. GHMs are featured in the significant governmental reports of
the IPCC, and uncertainty is carefully considered in these reports.
However, the uncertainty that is presented to date is established from
multi-model ensembles, and does not consider the uncertainty within a
GHM, as has been addressed in this thesis. This study has shown that
parameter uncertainty can be as significant as model uncertainty, so
this is an important issue in GHM presentation. There is no definition of
what level of uncertainty is acceptable, though having several different
GHMs agree on a model result increases confidence. Some definition of
level of confidence within each model included in a multi-model
ensemble needs to be considered. The graphs in this thesis, that
compared a parameter ensemble with the models from the WATCH and
the ISI-MIP MMEs, is a step towards this. They highlight that following
the rigorous uncertainty experiment and subsequent calibration of the
Mac-PDM model, the model performs significantly better than any other
model in each of the ensembles. If each of the participating GHMs
carried out this sort of experiment, the results of the MME as a whole

could be dramatically improved.

8.3 Further Research

The findings of this study propose that global hydrology models
undergo much more rigorous calibration and uncertainty estimation
before they are employed in multi-model ensembles. It is important to
first understand the uncertainties within a model before the
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uncertainties between models are evaluated. However, even this level
of uncertainty analysis could not address all of the issues that arose in
the study. The cause of the improvements in model performance with
certain model parameterisations was not clear, which could have been
the result of over-parameterisation of the model. Further research in this
area in the form of model emulation would be valuable. Employing a
catchment calibration of a global hydrology model has been suggested,
however it would be an important investigation to compare the
performance of a catchment model with a catchment calibrated global
model. Presenting uncertainty is also an important issue in all scientific
fields, and discussions with the end users of hydrological models over
the understanding and application of uncertainties in decision making

exercises would be extremely valuable.

This study has demonstrated the benefits of carrying out an uncertainty
experiment and calibration of global hydrology models to a level that
has not been previously considered. This process has improved the
Mac-PDM model, from performing centrally within the range of current
GHMs, to performing significantly better than the others. The cascade
of uncertainty (see chapter 7) is currently missing one of the levels in
the cascade in its application to global hydrological science. Research
methods surrounding the progression of uncertainty analyses in
catchment hydrological research could be explored to bridge this gap in
the cascade. The uncertainties in global hydrological models need to be
better understood, and the methods of assessing uncertainties applied
here have potential to improve the integrity of global hydrological

models.
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Tables A.1-A.9 Mac-PDM.14 Parameter values for the top model calibration
for each catchment, including a global model calibration.
Catchment abbreviations are detailed in figure 3.3, land cover classification codes are
detailed under table 4.5. Soil classifications read as follows: Sa=Sand, LoSa=Loamy

Sand, SalLo=Sandy Loam, Lo=Loam, SiLo=Silt Loam, Si=Silt, CILo=Clay Loam,
SaClLo=Sandy Clay Loam, SiClLo=Silty Clay Loam, SaCl=Sandy Clay, SiCI=Silty
Clay, CI=Clay, Li=Lithosols, and Hi=Histosols (Organic).

TA1 b delta grout srout xmelt
Glob 0.14016 0.45757 0.44591 0.78633 2.90955
Ama 1.68783 0.33573  63.48982  0.01869 3.21013
AmuD 0.52899 0.01592 203.38471 0.01941 0.06829
Brah 0.10751 0.00414 0.04708 2.53721 2.74085
Con 0.90732 0.84094 82.71066 0.00022 4.61507
Dan 0.11255 0.28031 9.62159 2.86746 2.16181
Euph 1.80536 0.47914 136.14668 0.00608 3.24252
Gan 0.11821 0.36105 7.72376 0.12504 0.70960
Koly 2.27161 0.02000 5.59315 2.31960 1.90494
LaPla 0.53914 0.42641  185.79728  0.01029 5.01949
Lena 0.16351 0.01748 5.19359 2.00554 0.50530
Mek 0.14863 0.72693 0.17829 1.89923 2.81414
Miss 0.24322 0.134522 110.3278 0.04895 5.96656
MurD 0.15243 0.53826  42.48102  0.00012 2.65001
Nig 0.11975 0.49909 0.94046 0.79454 4.44280
Nile 0.10190 0.42713  45.78040  2.70914 1.01223
Ob 0.36829 0.59693 107.19559 0.00907 0.13351
Oka 0.13597 0.38871 13.53619 2.02728 3.68800
Yang 0.14146 0.07034  179.85346  0.03053 3.09886
Yell 0.11964 1.15314 0.99580 2.40614 3.69460
Yen 1.69586 0.05561  18.46418  0.00270 3.00990
Yuk 3.58583 0.01590 180.39943 0.03065 1.16364
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