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Abstract

Unlike conventional rigid-link robots, continuum robot, also known as elephant trunk

and snake arm robot, has numerous numbers of degrees of freedom, which enables it

to be used for accessing confined places in many fields, e.g. minimally invasive

surgery, and safe robot/objective interactions, e.g. rapid handling. Up to now, most of

the researches are driven to develop two kinds of continuum robots, i.e. flexible and

rigid backbones, which can be structured with either small diameter but short length or

long length but large diameter. Further, according to the observation of this work, the

conventional flexible backbone has a twisting problem when bending in the horizontal

plane with end load, rendering a poor position control. Therefore, designing a ‘slender’

continuum robot enabling to be employed in in-situ repair of gas turbine engine is still

a challenge, since it requires a long length, small diameter, appropriate flexibility and

variable stiffness simultaneously.

In the research of this PhD thesis, two unique concepts of continuum robot designs

were proposed, i.e. double- and twin-pivot compliant joint constructions. By

employing compliant joints, the continuum robot was enabled to be built with small

diameter/length ratio, appropriate flexibility, stiffness, and minimised twisting angle.

Further, a variable stiffness system was developed in this research, which allows the

robot arm able to be articulated in a relatively low stiffness state and dramatically

enhance its stiffness in a relatively high stiffness state. With these features, this system

was able to be navigated into gas turbine engine (Rolls-Royce Trent XWB) and

activate inspection and in-situ repair tasks.

Since the new continuum robot concepts were introduced, the fundamental modelling

was developed for both design and control of the new structures. Firstly, position

kinematics models were developed: one for double-pivot construction deployed a new

derivation approach, which can simplify the procedure; the other for twin-pivot
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construction employed a two-sub bending plane model, due to unique construction of

the robot, which is different to the conventional method. Secondly, the actuation force

analysis was derived, enabling to calculate the action force of an arbitrary section in a

multiple-section continuum robot with any bending angle. Further, buckling failure is

a major obstacle for designing the compliant joints, since flexible structure can

experience buckling. Hence, the analysis of compliant joint critical buckling load was

introduced for guiding the hardware design. Also, a general approach for deriving

Jacobian and stiffness matrix of continuum robot was presented in this work.

According to the concept and modelling of the new concepts, four demonstrators of

continuum robots were built and tested. Comparing with the conventional concept, the

double-pivot and twin-pivot concept can decrease the twisting angle by 67% and

98.6%, respectively. Further, in the machining trails, it has been proven that a three-

section twin-pivot backbone continuum robot can provide an appropriate stiffness,

control accuracy (± 1mm error for sweeping in any ± 5º area in the work volume) and

repeatability (± 0.5 mm error in the whole work volume), enabling the system to blend

metal materials, e.g. aluminium and titanium, which are the materials widely

employed in aerospace industry. Next, a two-section variable stiffness system was

tested on this demonstrator and the TCP displacement caused by end load can be

decreased by up to 69%. Finally, accessing in gas turbine engines has been realised by

the final full length continuum robot (1266mm). It has been proven that the system has

an appropriate control accuracy to be navigated to reach the first stage of LPC (low

pressure compressor) of a gas turbine engine (Rolls-Royce XWB) by following a pre-

planned path.

Therefore, it can be concluded that the study of this PhD thesis provides a unique

continuum robot design concept, which can be utilised for in-situ repair of gas turbine

engine.
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Chapter 1 Introduction

1.1. Background

As defined in Oxford dictionary, robot is a term of “a machine capable of carrying out

a complex series of actions automatically, especially one programmable by a computer”

[1]. Generally, a robot generally has two main systems, i.e. mechanical and control

systems. The former conventionally comprises several mechanical elements (e.g. end

effectors, joints and links) and actuations (e.g. electrical, hydraulics or pneumatics

motors), performing variable tasks (e.g. transport, assembly, logistics, cleaning, etc.)

by the control of the later system, which mostly consisting of actuation controllers,

sensors and computers.

The appearance of modern robots can be tracked back to the last forties because of the

development of electronics; two decades later, robots started to replace humans in

performing repetitive and dangerous tasks in industry, such as metal products and

automotive industry. Further, the application areas of robots expanded to serve outside

of factories, e.g. hospital, space, ocean and cleaning. The robots developed in the last

fifty years can be divided into two broad categories: industrial and service robots [2,

3]. According to the definition of ISO 8373 [4], the former one can be defined as “an

automatically controlled, reprogrammable, multipurpose manipulator programmable

in three or more axes, which may be either fixed in place or mobile for use in

industrial automation applications”. In this category, there are several sub-categories

classified by mechanical structure [5], including articulated [6], SCARA [7], linear [8]

and parallel robots [9]. Unlike industrial robots utilised for industrial automation

applications, service robots perform useful tasks for humans or equipment [10], which

have a wider range of applications. According to different applications, these robots

can be classified as field (e.g. space [11], underwater [12, 13], aerial [14, 15], mining

[16, 17] and rescue robots [18]), educational [19], medical [20, 21], inspection and
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maintenance [22, 23] and domestic robots [24] , etc. According to the latest survey of

IFR (International Federation of Robotics) [3], the total number of industrial robots

sold from 2006 to 2013 keeps increasing, expect 2009, since the economic and

financial crisis. In 2013, the sales reached the highest level ever recorded for one year,

which values up to US$9.5 billion. Regarding service robots, the total number of sold

units rose by 4% in the same period, which valued US $3.57 billion. And based on the

report of IFR, the market is expended to keep growing within the next 20 years.

From the mechanical point of view, most of the aforementioned robots share a similar

design principle, which comprises of several articulated rigid elements driven by

actuators. Advances of rigid robots have been revealed in terms of high stiffness, end

load carrying capability and precision. For example, a typical small industrial robot,

ABB IRB 140 [25] can pick up to 6kg end load with an good repeatability and

absolute position accuracy of 0.03mm and 0.35mm [26], respectively, which enables it

suitable for a wide range of applications, e.g. cleaning, spraying, material handling

and assembly [27]. Further, rigid-link constructions are also employed in most of the

existing service robots. For instance, iRobot (710Kobra [28]) was equipped with a

two-link manipulator, which can carry heavy end loads (max 150kg), allowing it equip

with a wide range of end-effectors for secure/defense applications, e.g. bomb disposal

and check vehicle inspections. Additionally, over the last fifty years, modellings of

conventional rigid-link robots with 2 to 6 DoFs have been well developed in terms of

kinematics, dynamics, path-planning, navigation and so on. These researches enable

rigid-link robots have a good performance (in terms of accuracy and repeatability) for

the applications in factories and service in many other fields. However, the rigidity of

the conventional robots brings some drawbacks for some specific applications, e.g. it

inevitably limits the accessibility for operating in hard-to-access environments and

also decreases the safety of human/object-robot interaction when cooperating with

humans.
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Over the last twenty years, a new brand of robots (continuum robots, also called snake

arm or elephant trunk robots) has been created, which are characterized by flexible

and hyper-redundant structure. One main advantage of continuum robots over rigid

ones is their capability of accessing and operating in confined spaces; the other one is

their ability to bump into things without causing damage to themselves or the other

party/object, which enables the robot perform safer human/object-robot interaction

with a compliance control algorithm. Due to these advantages, many researches

focused on developing small scale continuum robot system for medical applications,

like minimally invasive surgery (MIS). In last ten years, quite few companies have

been found and started to commercialize continuum medical robots to offer the market,

which has decreased diameters (generally less than 10 mm) and appropriate articulated

lengths (generally less than 300 mm) for accessing to desired organs in human bodies

[29-31]. For example, Titan medical INC developed a dual-continuum-arm medical

robot, which can be inserted into the patient’s body through a skin port of

approximately 25mm. The twin continuum robot can be equipped with variable end-

effectors, e.g. cautery hook and scissors for operating in desired areas. It can bring the

benefits for patients, e.g. quicker recovery, less pain and less blood loss and for

surgeons, e.g. improved precision. Regarding large scale of continuum robots, several

systems were developed, e.g. Festo elephant trunk, formed with fully flexible

construction, which can be utilized for safe rapid handling, however, the position

accuracy is not ideal (approximately 15mm position error). Additionally, OC robotics

provides commercial hyper-redundant robots to the market, which have been

demonstrated able to be deployed for aircraft assembly and nuclear station inspection.

Researchers from both academia and industry show a great amount of interests on

developing continuum robots for new applications. However, comparing with

conventional rigid-link robots, the new brand of robots has its own disadvantages

including low stiffness and accuracy, which limits them to be constructed with long

lengths and reduced diameters, rendering it difficult to employ large scale continuum
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robot in highly constrained environments. This requires new solutions to enhance the

performances of the new kind of robots.

1.2. Problem definition

The main goal of this thesis is to design and build a novel continuum robot for the

application of in-situ repair of gas turbine engines (including inspection and

machining). With the need to reach the area of the low pressure compressors through

the front of the engine (Rolls-Royce Trent XWB), the robot needs to be featured with

multi-DoF at reduced dimensions (the tip diameter needs to be no more than 15 mm),

appropriate length (no less than 1200 mm) and stiffness (200g end effector needs to

be carried at the tip).

However, most of the existing systems are developed for their own specialized

applications, e.g. MIS, aircraft assembly and safe rapid handling, which are

theoretically unable to be employed for the in-situ repair applications, because of the

following constraints:

1. One main limitation is the existing continuum robots do not have the

appropriate diameter/length ratio or flexibility 1 for delivering the end

effectors to desired positions in highly confined spaces (e.g. gas turbine

engine). For example, the medial systems are generally structured with small

diameters (down to 4mm [32]) but short lengths (up to 300mm [33]), which

are too short to reach the target position; while other systems [34] are

kinematically hyper-redundant and long (up to 3250mm) [35], but employs

rigid link/larger diameter pneumatic actuators as the basic unit of the arm,

which is difficult to access narrow spaces between the blades.

2. The other constraint is that the stiffness of the existing systems cannot

support the reaction forces related to desired tasks, e.g. blade mechanical

blending. What is even more challenging, the stiffness of continuum robots is

1 In the thesis, flexibility refers to the bending capability of each section of continuum robot.
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inversely proportional with the length, but proportional with the diameter. For

decreasing the diameter/length ratio, the system stiffness is inevitably

reduced, which renders low accuracy and no appropriate end effectors can be

carried.

Hence, a slender multi-degree of freedom continuum robots with appropriate stiffness

is needed to be developed so that in-situ repair/maintenance can be performed in

confined environments. With the development of new concepts of continuum robot,

scientific/academic challenges are expected to be addressed.

1.3. Objectives of this study

As a part of FP7 project MiRoR (Miniaturised Robotic systems for holistic in-situ

Repair and maintenance works in restrained and hazardous environments), a variable

stiffness continuum robot needs to be developed and combined with a walking-

hexapod system [36] for performing in-situ repair tasks. The aim of this thesis is to

develop a fundamentally novel continuum robot comprising an appropriate

diameter/length ratio continuum unit and a tubular variable-stiffness unit2. This unit

should be able to wave between engine blades to reach desired repair positions and the

variable-stiffness system allows the continuum robot have a proper flexibility to

navigate into/out from gas turbine engine and increase its stiffness (of particular

sections) when activating machining task. The specific objectives of this study are to:

- Propose novel concepts of the mechanism of continuum robots. This allows

the designer to design and manufacture a continuum robot capable to navigate

(section bending capability: 90 °) and carry active end-effectors (e.g. cutting

tools, up to 200g) in confined spaces;

- Develop kinematics models of the proposed multi-section continuum robots

for precisely controlling the system (including forward and inverse

2 In this thesis, the variable stiffness unit is called rigidizing system. And the whole articulated
unit, including the continuum unit and rigidizing unit, is called semi-rigid continuum robot.
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kinematics), since new mechanisms of continuum robot are introduced in this

thesis;

- Develop the methodologies of designing continuum robots: 1) obtain an

modelling approach for calculating actuation forces depending on number of

sections and their orientation angles; 2) investigate the models for buckling

force of the key element - compliant joint considering its geometry and

material property; 3) model and evaluate the section stiffness of the proposed

continuum robot;

- Design and build a variable-stiffness system (rigidizing system) for the

continuum robot. With the assistant of the variable stiffness system, the

continuum unit is enabled to take the reaction force when activating

machining tasks (e.g. blade blending) in the engine;

- Demonstrate a series of evolving concepts (from single to twin compliant

joints and from short to long structure) of continuum robots and evaluate their

performances measuring the accuracy and repeatability of the system and

demonstrate a precision blending repair on different materials.

1.4. Structure of the thesis

Chapter 2 provides a review on the exiting in-situ repair/maintenance technologies

utilised in the aerospace/nuclear industries and the designs of hyper-redundant robots;

this chapter also concludes with a detailed literature review from a wide range of

publications covering the key elements for developing a continuum robot including

mechanical designs, approaches of computing kinematics and variable stiffness

designs. Finally, research gaps/challenges for building a novel continuum robot are

identified.

Chapter 3 introduces the kinematics challenges and disadvantages of the existing

continuum robots. Further, regarding these disadvantages, two families of continuum

robot are presented, one employing two compliant joints connected in series in a
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segment (double-pivot compliant joint); the other one utilizing two orthogonal groups

of twin parallel elastic rods as compliant joint (twin-pivot compliant joint). Finally, a

stiffening approach is introduced, which renders the continuum robot have two states,

relatively low and high stiffness, enabling the robot bend all the sections freely in the

low stiffness state and perform machining in the other state.

Chapter 4 presents the forwards and inverse kinematics for both two proposed

families of design concepts. Moreover, with regard to the kinematic challenge

presented in chapter 3, an iterative approach is presented, so that the accurate inverse

kinematics can be obtained, which enables the continuum robot has precision position

control. Further, the cable tension for both families of continuum robots

configurations are analysed for validating the tension able to be maintained at a

constant value in arbitrary configuration. Furthermore, the method for calculating the

work volume of a multiple section continuum robot is developed and a three-section

case study is presented.

Chapter 5 covers fundamental analyses including the static actuation force, joint

buckling, Jacobian and stiffness. The auction force analysis of an arbitrary section in a

multiple-section continuum robot with a random bending shape is presented. Secondly,

the method for calculating the critical buckling load of the compliant joint is derived,

which is utilized for guiding the compliant joint designs of the physical demonstrators.

Further, the Jacobian of multiple-segment section is investigated, so it allows the

stiffness of the multiple-segment section to be analysed. The simulation validations of

the analyses are presented at the end of this chapter.

Chapter 6 details the design of four evolving concepts of prototypes, which employs

different concepts introduced in chapter 3. By comparing the mechanical

performances of these prototypes (2nd and 3rd ones), an ‘optimal’ concept is selected to

build the final prototype and the design of this demonstrator is presented. This chapter
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also introduces two variable stiffness system designs by employing the concepts

proposed in chapter 3.

Chapter 7 introduces the trials undertaken on the four demonstrators. The first

demonstrator was setup to evaluate the backbone material and according to the tests,

the super-elastic Nitinol is determined to be utilised for the following prototypes.

Further, the second demonstrator is utilised to validate the concept of double-pivot

compliant joint and the navigation strategy: the tip-following algorithm. Furthermore,

the trial results of the third prototype are presented, including position accuracy,

repeatability, twisting angle and machining test. Regarding the forth system, the

physical system are finished and under testing.

Chapter 8 discusses the conclusion of this research work, emphasising the

contributions of this thesis and the future work that could support further development

in the field.

1.5. Highlights and contributions

1.5.1. New concepts of continuum robot and variable stiffness system

1. Two families of novel continuum robot concepts were proposed (Chapter 3),

i.e. double- and twin-pivot compliant joints construction. The concepts are

different from the existing continuum robots in having unique compliant joints

connection, enabling the system to simultaneously have a small

diameter/length ratio, a great flexibility (bend capability) and an appropriate

stiffness, thus it can be utilised for in-situ repair applications.

2. The twisting problem of conventional flexible continuum robots (Chapter

3) was identified from experiments. The designs employing the proposed

concepts in this research can decrease the twisting angle by up to 98.6%

(Chapter 7).
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3. A novel variable-stiffness concept utilising thermoplastic material was

developed (Chapter 3), which can be integrated with continuum units,

rendering a conventional continuum robot into a variable stiffness one.

4. Four prototypes of continuum robots were designed and built (Chapter 6). In

the machining trails, it has been proven that three-section twin-pivot backbone

continuum robot can provide an appropriate stiffness, control accuracy (±

1mm error for sweeping in any ± 5º area in the work volume) and

repeatability (± 0.5 mm error in the whole work volume), enabling the system

to blend metal materials, e.g. aluminium and titanium, which are the materials

widely employed in the aerospace industry. (Chapter 7). Accessing in gas

turbine engines has been realised by the final full length continuum robot

(1266mm). It has been proven that the system has an appropriate control

accuracy to be navigated to reach the first stage of LPC (low pressure

compressor) of a gas turbine engine (Rolls-Royce XWB) by following a pre-

planned path. (Chapter 7)

1.5.2. Modelling

1. Two kinematics models for two families of new continuum robot design

concepts were developed (Chapter 4) by using an algebra approach and a

combination method of geometry approach and D-H parameters, respectively.

The kinematic models are modular, allowing their application to a wide range

of double/twin-pivot continuum construction, which were presented in this

PhD thesis.

2. A novel approach for evaluating the cable tension was introduced for

verifying the tension force capable to be maintained at constant value in

arbitrary configuration of the continuum robot (Chapter 4).
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3. The work volume was analysed to evaluate the reachable capability of the

continuum robot when activing machining capability by considering the

geometry limitation and compliant joint material yield (Chapter 4).

4. A general approach for calculating the static action force of an arbitrary

section in a multiple-section continuum robot with a random bending shape

was developed by considering end load, weight of robot, cable tension, force

for bending flexible backbone, and the interaction from distal sections’ cables.

It was utilised to direct the action system design, particularly to the selection

of the motors (Chapter 5).

5. Joint bucking limits the load carrying capability of elastic construction in the

longitudinal axis. The method of calculating the critical buckling load for

compliant joint was introduced in this thesis for guiding the design of the arm

(Chapter 5).

6. A general approach for computing Jacobian and stiffness of the proposed

continuum robots were investigated to evaluate the compliant joint design in

terms of section stiffness (Chapter 5).
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Chapter 2 Literature Review

2.1. Introduction

There are nowadays a large number of robots servicing in variable fields across the

world, which can be mainly divided in two broad groups, i.e. industrial and service

robots3. For in-situ repair aero-engines, a service robot needs to be developed, which

requires a reduced diameter and long length with a relatively low stiffness when

navigating in a cluttered environment and a relatively high stiffness when acting a

machining task. It can be found that several off-the-shelf technologies (employing

industrial robots or specialist tools) have been employed for repair and maintenance in

some sectors of industry, e.g. energy industry and aerospace. However, the existing

devices are limited by their DoFs and rigid construction, which disables them to be

deployed for the applications in constrained spaces. In the last thirty years, especially

last two decades, a new kind of hyper-redundant robots (continuum robot) has been

developed, which demonstrated its potential for working in confined spaces [32, 34,

37]. In this chapter, a wide range of literature review about design and kinematics of

continuum robots is provided to identify the challenges of developing a robot for in-

situ repair. Further, a research of the existing technology was made to figure out the

research gaps for developing an adjustable stiffness mechanism to enable a continuum

robot have dual stiffness states.

2.2. An overview of available in-situ repair/maintenance technologies

Maintenance and repair is critical in some key fields of industry, such as energy,

aerospace, marine and other sectors which are directly related to safety [38, 39].

Failing to maintain in good order installations can lead to serious accidents, which can

cause large casualty and financial loss [40, 41].

3 A service robot performs useful tasks for humans or equipment, e.g. mining, medical surgery,
equipment repair and maintenance.
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But they are still over-sized and lack of flexibility for operating in cluttered

environments.

For in-situ repair/maintenance in confined spaces (e.g. gas turbine engine), up to now,

invasive tooling is employed in most cases, as shown in Figure 2-1(c). Through an

accessing hole in the side of the engine, it can reach the desired area and inspect/repair

the cracked compressors. However, it cannot cover a wide range of repair &

maintenance works as the delivery system is lack of degrees of freedom, which limits

its reachable range in complex environments.

It can be seen that the existing technologies are lack of degrees of freedom and

compact design for in-situ repair/maintenance, which limits the accessing and

reachable capability of the systems in restricted environments.

2.3. Review of redundant robots

A kinematically redundant manipulator can be defined as the mechanism which is

constructed with more joints than those strictly required to reach a specified position

[44]. Generally, a task for serial robots operating in open space requires max 6 DoFs,

hence, a robot arm with seven or more joints is considered as a typical redundant robot.

The kinematic redundancy provides the robot with increased dexterity, so it enables

the robot end-effector can reach a target position with variable orientations and have

better capability for avoiding obstacles in cluttered environment (e.g. avoiding

collisions with other robots or equipment in a small operation area). Several

prototypes have been presented and proven them have a great potential to be

employed in complex and hazardous environment, such as space station [45] and

surgery operation [46].
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task. Hence, the best one needs to be determined from these solutions based on a

method, such as path planning/torque/ error optimization [48, 49, 52-54], which

requires longer time to compute. However, for operating in highly restricted

environment (e.g. gas turbine engine), the robots need more degrees of freedom than

the conventional redundant robots.

2.4. Review of continuum robots

Continuum robots, also known as hyper-redundant, snake arm and elephant’s trunk

robots, unlike conventional redundant / non-redundant rigid-link robots, can feature a

curvature shape with a large number of degrees of freedom [55]. Due to their unique

flexibility (bending capability), continuum robots can reach the places that are usually

inaccessible for other robots and/or hostile for human beings. Hence, continuum

robots can be utilised for operations in highly constrained environments, such as in-

situ repair of a gas turbine aero-engine and surgery interventions. In the following

sections, two key factors, i.e. mechanical designs and kinematics of continuum robots,

will be discussed in detail.

2.4.1. Design of continuum robots

In general, continuum robot consists of a backbone (to support the structure if it is

rigid; to enable the bending movement and support the structure if it is flexible), joints

(utilized to allow the bending movement), actuation cables (to articulate the

construction and keep the stiffness of the system) and disks (constrain the actuation

cables). For minimizing the size and weight of the arm, most of the designs locate the

actuators on the base of the robot and the actuation power is transmitted by actuation

cables/pneumatics tubes to each link. Further, variable end effectors, such as grippers

and camera, can be mounted on the tip of the robot for different applications, such as

medical surgery [32] and maintenance in nuclear power station [56, 57].

According to the backbone designs, all continuum robots can be divided into two

broad categories:
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 Rigid backbone continuum robots: single/multiple joints (universal/spherical

joints) are utilised to connect rigid backbones in one section4;

 Flexible backbone continuum robots: flexible rod/tubes or pneumatics tubes

are employed as backbone, which is made up of materials capable to generate

high elastic displacements, such as super-elastic NiTi or rubber.

In the following sections, the designs of continuum robots are discussed in two

categories, ‘rigid backbone’ and ‘flexible backbone’, respectively.

1) Rigid Backbone Continuum Robots (RBCR)

In the group of RBCR, the system generally consists of multiple rigid sections, which

are connected by R/U/S joints (revolute/universal/spherical joints). And each of the

sections is constructed with single/multiple segments [34, 37, 58, 59].

According to actuation methods and location of mechanical actuation, all rigid

backbone continuum robots can be classified into two sub categories [60]:

 Rigid backbone continuum robots with ‘extrinsic’ actuations: extrinsic

system uses remote actuations, which generally locate on the base of the

system and the actuation power is transmitted into the mechanism via cables.

 Rigid backbone continuum robots with ‘intrinsic’ actuations: In an intrinsic

system, the actuators (micro motor/pneumatics) are located in each section

separately.

A) Rigid Backbone Continuum Robots with Extrinsic Actuation

There have been numerous prior attempts to create a rigid backbone continuum robot

with extrinsic actuations. The origin concept of continuum robot can be generally

traced back to the creation of tensor arm manipulator in the late 1960s. The concept

(Figure 2-3 (a)) was presented and patented in 1967 [58, 61]. In this design, the arm

has several multiple-segment cable-driven sections. Each section can feature an arc

4 The length between two adjacent disks is termed a segment; the length between two terminate
segments is classified as a section; the terminate segments are where the actuation cables are
attached (Figure 2-3(a)).
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kinematics analysis and control

for making every segment have equal stiffness, so each section can generate an even

bending. However, practically, due to the manufacture and assembly errors of springs

and other elements, the stiffness of each segment cannot be the same, accusing

unevenly bending of the sections which leads to poor position control accuracy.

(ii): The factor limiting the payload carrying capability is the buckling of the

articulated arm

high load along the length of the arm, which can buckle the joints of the continuum

robot. By the constraint of the actuation cables, a sectio

relatively large buckling load, due to the relatively rigid construction; for a section

employing multiple U joints and a number of springs, buckling load mainly depends

on the stiffness of the springs, causing it much lower

Therefore, the concept which employs one U joint for single section is able to be

utilised for heavy duty industrial application.
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limits it to be utilised in the applications directly related to human safety, e.g.

minimally invasive surgery (MIS).

2) Flexible Backbone Continuum Robot (FBCR)

Flexible backbone continuum robots, as the names suggests, utilise elastic materials

(elastic rob or pneumatic actuator) as the backbone, which can obtain continuously

bending shape. According to actuation methods and location of mechanical actuation,

all flexible backbone continuum robots can be also classified into two sub category:

‘extrinsic’ and ‘intrinsic’ (the same with the category of FBCR).

A) Extrinsic actuation

In the early works, steel spring/flexible coupling was deployed for generating a true

continuums bend. Figure 2-12(a) and (b) illustrate two systems constructed with

spring backbones. In 1997, a 3 meter long robotic manipulator (EMMA) (using

flexible couplings as the joints) was developed and demonstrated for inspection and

remediation of high level radioactive waste in waste storage tanks [56, 101] (Figure

2-12 (c)). Another early prototype, KSI tentacle manipulator [102-104], employs two

serial connected pneumatic actuators as the backbone, and each section is controlled

by three cables (Figure 2-12 (d)). It was utilised for nuclear decontamination of a hot

cell by vacuuming radioactive detritus from the floor. These designs demonstrated

good capabilities of flexibility. However, the spring-like backbone makes it difficult to

estimate/control the length of the arm, since the varying actuation force along the

longitudinal direction compress the backbone to variable lengths in the process of

operation, which leads to poor accuracy and stiffness [105].
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The first demonstrator employing this concept, flexible Micro actuator (FMA), was

presented in 1991(Figure 2-15 (a)). This system demonstrated a great flexibility and

dexterity, but the challenge was precise control for accurate operations. By combining

several bespoken 3-DoF continuum manipulators, a flexible gripper can be

constructed with passive compliant fingers to avoid damaging complex geometry

objects by inevitable positioning inaccuracies when grasping [116]. In 1994, a three-

flexible-finger gripper was developed for subsea applications [117], as shown in

Figure 2-15(b), because of the bespoke reason and its simplify of design. Then, it was

used to build a fin biomimetic propulsion mechanism by employing an array of

parallel arranged hydraulic continuum actuators for man-made underwater vehicles.

Unlike the conventional propulsion, e.g. propeller, the fin mechanism can generate a

nature wave by moving in coordinate, bringing the advantages of minimal sediment

disturbance (improving the visibility when working close to the seabed) and smooth

moment in the water [118, 119]. Also, larger scale of continuum robots were also

suggested able to be formed by connecting multiple 3-DoF continuum manipulators in

serial [118].

Since 2006, a series of OctArm continuum robots (Figure 2-16 (a) & (b)) has been

developed, which utilised the aforementioned concept. Each section generally

integrates three independent pneumatic actuators. Single section can extend/extract by

equally adjusting the air pressure of the actuators in this section; while the orientation

can be modified by applying different pressures to the actuators. In particular, the four

sections of OctArm IV (Figure 2-16 (a)) range in diameter from 40 mm (the base two

sections) and down to 34 mm for the final two sections. Further, the vertical loading

capability of arm is 90 N at the end. This allows the arm handle relatively heavy

object, such as a large piece of wood and traffic Cone [120].

In 2010, FESTO utilised the same concept to build a pneumatic flexible trunk for

handling assistant, which can generate larger longitudinal movement and bending
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It can be seen that single rigid link was employed as one section for most of large-

dimension continuum robots. However, it limits the flexibility and accessibly of the

robot for some applications. Hence, a solution was developed to enable more joints to

be coupled in single section, which integrates elastic material into the joint mechanism

in order to passively reducing hyper-DoFs of a singles section to 2 DoFs. Most of

small scale ones developed in recent years generally takes flexible backbone as

support constructions. This design can bring many advantages, e.g. better accessibility

and safer human-robot interaction. But the disadvantage is that flexible backbone has

lower stiffness and it is more difficult to control, which makes it hard to take large end

load, comparing with rigid backbone continuum robots.

Finally, Technology Readiness Levels (TRL: a method of estimating technology

maturity of Critical Technology Elements (CTE) of a program during the acquisition

process) of the continuum robot research are discussed. Specifically, TRL is based on

a scale from 1 to 9 and the description of each level is presented in Table 2-1.

Table 2-1. TRL in the continuum robot research

TRL Description

1 Basic principles observed and reported

2 Technology concept formulated (e.g. patent)

3
Analytical and experimental critical function and/or characteristic proof of

concept

4
robot prototype validated in laboratory environment (e.g. prototype tested in

mock up environment)

5 robot prototype validated in relevant environment

6 robot prototype demonstrated in a relevant environment

7
robot prototype system prototype demonstration in operational environment

(e.g. surgical continuum robot demonstrated in surgery on animals)

8 Robot system complete and qualified

9 Robot system proven in operational environment(e.g. surgical continuum robot
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demonstrated in surgery on human)
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Table 2-2. Summary of the existing continuum robot prototypes

Backbone
Actuation

Location
Robot Name Year Image TRL* Features

Rigid

backbone

Continuum

robot

Extrinsic

actuation

Tensor arm

manipulator [61]
1967 Figure 2-3(a) 2 Mutiple U joints per section

Elephant’s Trunk

[37]
1999 Figure 2-3 (b) 3

Mutiple U joints per section + four springs coupled in every

segment (8 DoF); diameter/length ration:0.10;

OC robotics [34] 2007 Figure 2-4 (a) 9 Single U joint per section (22 DoF); diameter/length ration: 0.04;

OC robotics [70] 2014 Figure 2-4 (b) 9 Single U joint per section (24 DoF); diameter/length ration: 0.05;

Snake-Arm Robot

[73]
2012 Figure 2-5(c) 3

Mutiple S joints per section + rubber dick located between two

adjacent disks (6 DoF); diameter/length ration: 0.11;

CT ARM-I [59] 1992 Figure 2-6(a) 4 Single R joint per section (11 DoF);

A stiffness-

adjustable hyper

redundant

manipulator [76]

2014 Figure 2-6 (b) 3
Mutiple R joints per section + Teflon flexure intergrated

between two adjacnt joints (4 DoF)

Steering

mechanism [77]
2000 Figure 2-6 (c) 4

Mutiple R joints per section + two super elastic NiTi rod

intergrated along the backbone (2 DoF); diameter/length ration:

0.16;
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HARP [79] 2006 Figure 2-7 5
two concentric continuums construction which can generate

Arbitrary curvature (3 DoF); diameter/length ration: 0.03;

Single Motor

Driven Hyper-

Redundant

Manipulator [81]

2003 Figure 2-8 3 20 DoF driven by single motor; diameter/length ration: 0.11;

Intrinsic

actuation

i-Snake [84] 2010 Figure 2-9 (a) 5
Serial configuration: Micro motor coupled in every articulted

link (5 DoF); diameter/length ration: 0.03;

The JPL

Serpentine Robot

[85]

1995 Figure 2-9 (d) 3
Serial configuration: 2-DoF joint actuated by miniature motors

located in the arm (12 DoF); diameter/length ration: 0.04;

Medusa [86] 2006 Figure 2-9 (e) 3

Serial configuration: a spatial hyper-redundant robot constructed

by four 3-DoF joints (miniature motor intergrated in the arm; 12

DoF); diameter/length ration: 0.06;

a novel hyper

redundant

robot arm [91]

2012 Figure 2-10 (a) 4
Parallel configuration: a chain of mutiple 3-RSR mechanism

connected in series (motor; 15 DoF)

TAK [94] 2013 Figure 2-10 (c) 4
Parallel configuration: a serial chain of parallel section driven by

pneumatic actuators (12 DoF)
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MINIR [97] 2011 Figure 2-11 (a) 3

Serial configuration: 6 DoF continuum robot acutaed by the bend

force of piars of antagonistic pre-bent SMA wires;

diameter/length ration: 0.13;

BRAID [126] 2001 Figure 2-11 (b) 3
Parallel configuration: a serial chain of parallel section driven by

the contraction force of SMA wires when heated

A steerable

cannula [99]
2012 Figure 2-11 (c) 3

Serial configuration: 2-DoF cannula actuated by the bend force

of two antagonistic pre-bent SMA wires

Flexible

backbone

continuum

robot

Extrinsic

actuation

a curvilinear

continuum robot

[106]

1983 Figure 2-12 (a) 3 Spring-based backbone

Elephant trunk

type elastic

manipulator [107]

1999 Figure 2-12 (b) 3 Spring-based backbone

Flexible surgical

continuum robot

[127]

2004 Figure 2-13(a) 5
One main NiTi rod as backbone; another three NiTi rods /section

for transmitting the actuation power; diameter/length ration: 0.15;

The Clemson

tentacle

manipulator [109]

2002 Figure 2-13(b) 4
One main spring steel rod as backbone; three cables/section for

transmitting the actuation power;
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Bionic Tripod 3.0

[111]
2011 Figure 2-13(c) 4 Four spring steel rods as backbones

Concentric pre-

curved tube robot

[113]

2006 Figure 2-14 5
three concentric pre-curved NiTi tubes; the shape of each

section is dominated by those sections retracted inside it

Intrinsic

actuation

Octarm [128] 2005
Figure 2-16(a)

& (b)
4

Three independent pneunamtic actuators per section for

controlling the length and orientation of the system;

diameter/length ration: 0.16;

FESTO elephant

trunk [122]
2010 Figure 2-16 (c) 7 The same as Octarm; diameter/length ration: 0.33;

Instrument for

keyhole surgery

actuated by

McKibben

actuators [124]

2011 Figure 2-16 (d) 3 The same as Octarm;

MALICA [129] 2004 Figure 2-16 (e) 3 The same as Octarm; diameter/length ration: 0.25;

*The TRL level presented in this table represents Author’s opinion;
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2.4.2. Kinematics of continuum robots

Kinematics studies the relation between geometry and movement of multi-degree of

freedom kinematic chains that form the structure of robotic systems. The purpose of

forward kinematics (FK) analysis is to calculate the configuration (i.e. position and

orientation) of robot TCP with given actuation displacements (e.g. radial displacement

of motor and linear displacement of linear actuator). In comparison, inverse

kinematics (IK) determines the actuation displacements for a known position of robot

TCP.

In order to precisely control a multi-section continuum robot to reach a desired

position, two levels of IK are needed in general. The first is from task space to

configuration space of each independent articulated unit, which calculates the shape

and orientation of each section with the given TCP position [130, 131]. The second is

from this configuration space to joint/actuation space, which computes the actuation

displacements (e.g. lengths of cable, flexible rods or pneumatic actuations) for each

section to reach the desired configurations [62, 65, 66, 108, 132]. In contrast,

regarding forwards kinematics (FK), the TCP position of continuum robot can be

obtained from configuration space of each section, which is determined by the

displacement of actuations.

1) Forward kinematics

In the previous works [65, 133], constant curvature of single bending section is the

most fundamental assumption for the kinematics analysis. Based on this assumption,

two most wildly exploited approaches of forwards kinematics are expressed in this

sub-section.

A) Denavit–Hartenberg Approach

In this approach, D-H model is built by utilising ‘virtual rigid link’ connected three

joints (universal joint, prismatic joint and universal joint) to describe the curve [62,
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Further, according to D-H parameters, the transformation matrix for single section can

be obtained in Eq.2.1 [135].
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This approach is first presented in [62], and utilised in the following researches [64,

67, 134].

B) Geometry approach

Comparing with the D-H approach, the geometry approach is more direct to describe a

single section movement. It can be considered as rotating point O at bending angle 

about vector  ( S , 0, 0) in plane XOZ , thus the trajectory of the point is a curve of

the section; then rotating the curve at direction angle  about Z-axis, as shown in

Figure 2-17(b). Hence, the orientation and position of the tip of the section can be

derived as:

   
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

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1010

0 pRR
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(2.2)

Where p = [


S
(1- cos(  )),0,



S
sin(  )];  yR is the rotation matrix with respect to

vector  ( S , 0, 0);  zR is the rotation matrix with respect to Z axis.

Finally, substituting the details into Eq. 2.2 gives the same result with Eq.2.1. This

approach is also widely used in the previous works [133, 136, 137].
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In spite of these two main approaches, there are several other methods, such as Frenet-

serret frames (differential geometry) [67] and integral representation [131], developed

for FK, which can obtain the same results with the aforementioned approaches.

However, comparing with DH and geometry approaches, these two methods are more

complex and hard to understand.

2) Inverse kinematics

Since variable actuation approaches were utilised for articulating continuum robots, an

approach of IK for each specific type of actuation was developed. Cable and

continuously bending actuations (e.g. flexible rods and pneumatic actuators) are two

of the most widely used actuation approaches, thus, inverse kinematics for these two

types of actuations are discussed in detail in the following chapter. Here, the first level

of IK for continuum robots is not discussed in detail, since it is not in the scope of this

thesis; while the second level of IK (from configure space to actuation space) is

discussed.

A) Inverse kinematics for cable actuations

As discussed in previous part of this chapter (2.4.1 design of continuum robot), three

or four cables are generally utilised for articulating a single section, which are equally

spaced about the central longitudinal axis. In most of the previous works [134, 135],

the following procedure was employed to derivate IK:

 Project the cables to the bending plane of the section;

 Calculate the cable lengths on the bending plane according to the

configuration parameters (e.g. bending and direction angle, section length and

diameter);

Here, a simplified derivation of inverse kinematics for three-cable driven continuum

robots is presented as an example (Figure 2-18(a)). Specifically, section length and

PCD of cable-guide holes are S and d, respectively. Let bending and direction angles
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As shown in Figure 2-18(b), the magnitudes of vectors
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As shown in Figure 2-18(c), the projection of vector



1PO on vector



OO , 1h , can be

expressed as:
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Hence, the length of cable 1, 1l , can be written as:
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Likewise, the lengths of the other two cables, cable 2 and 3, can be obtained as:
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Therefore, IK for a three-cable section of a continuum robot is derived. The

kinematics for four-cable section can be considered in a very similar procedure to the

derivation above.

B) Inverse kinematics for continuously bending actuations

Another widely utilised continuum robot actuation is composed of actuations which

can be bent continuously, e.g. flexible rods and pneumatic actuator. The only

difference between these two types of actuations is that the cable is straight, while the
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approach can be applied on most of cases, e.g. cable actuations and continuous

bending actuations. Apart from these methods, concentric continuum robot has its own

for calculating its FK and IK. However, since it can just be utilised to this particular

design, it is not discussed in detail.

3) Jacobian

Jacobian is important and heavily used throughout robotics and control theory.

Jacobian matrix can be calculated by differentiating with respect to time of the

forward position kinematics equations:



 qJN (2.9)

Where
N is the spatial velocity of the end-effector;



q is an N-dimensional vector

composed of the joint velocity.

According to the Jacobian matrix, the velocity of the continuum arm can be obtained

and the force/torques applied on the robot joint (actuators) can be described by:

fJ T (2.10)

Where f is the force and torques acting on the end-effector.

Kinematics of continuum robots are divided into two levels. One is studying the

relation from task space to configuration space of each independent articulated unit,

which calculates the shape and orientation of each section with the given TCP position;

the other one is from this configuration space to joint/actuation space, which computes

the actuation displacements for each section to reach the desired configurations.

Therefore, the research of continuum robot Jacobian has also been studied in these two

levels.

With regard to the first level kinematics, the end-effector configuration can be

obtained by the positions and orientations of all the section:
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nP
TTTTT 

321 (2.11)

Where P
T is the orientation and position matrix of the end-effector; i

T ( i =1, 2, to n; n

is the number of section) is the orientation and position matrix of each section.

Therefore, the Jacobian can be descried by differentiating both sides of the previous

equation. By utilising the first level of Jacobian, the end-effector velocity can be

obtained, based on the given bending and direction velocities of sections [138].

Since the second level kinematics describes the relation from configuration space to

actuation space, the Jacobian can be calculated by differentiating the section position

matrix (e.g. Eq. 2.6 and 2.7), which is in terms of cable lengths 1
l , 2

l , 3
l and section

parameters (S, r) [134, 139]. According to the second level of Jacobian, the section

velocity can be described by given actuation velocity (e.g. speed of linear actuator,

velocity of pneumatics actuator).

Therefore, the Jacobian of continuum robot has been obtained.

2.5. Review of adjustable stiffness systems for continuum robots

Continuum robots have been investigated by many researchers for industrial [69, 70,

140], medical [32, 141], and security applications [86-88], due to their unique features

and advantages: high flexibility, high dexterity, obstacle-avoidance capability and so

on. However, compared with rigid link robots, the main drawback of continuum

robots is low stiffness, which limits the capability for carrying efficient end load/force.

In order to overcome this drawback, some solutions for enabling the backbone have

adjustable stiffness been developed, which allowing continuum robots move freely

when in a relatively low stiffness state and lock the arm when in a relatively high

stiffness state.

Firstly, the research started to make use of the phase-change material to obtain

variable backbone stiffness property. One widely utilised approach is to use granular

material, such as dry sand, to lock/unlock the backbone mechanism by applying
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 Phase-changing materials: granular material, Electro-rheological (ER) fluids

and thermally activated material (e.g. solder-alloy mixture)

 Mechanical approaches: pneumatic and mechanical locking mechanism (e.g.

cable locking and toothed link mechanisms).

However, it seems most of them require a relatively large volume for generating

enough stiffness, making it difficult to miniature. Among these solutions, the approach

of thermally activated material seems more promising, since it can provide a better

stiffness when it gets cold, allowing to build an adjustable stiffness at a reducing

dimension. However, it needs to identify a lightweight material which can switch

between rigid and soft states at a low temperature (between 40° and 100°). And the

material needs to provide efficient stiffness in rigid state and be really flexible in the

soft state.

2.6. Opportunities for Future Research

During the last thirty years, the researches made a significant contribution on the

development of continuum robots in design, kinematics, and application. However,

comparing with conventional rigid link robots, there are still some challenges needs to

be addressed, which are discussed in the following part of this chapter.

1) Design of continuum robots

As we discussed in Chapter 2.4.1, variable continuum robot designs have been seen

from the previous works. All the designs can be divided into two main categories, i.e.

rigid and flexible backbones. It can be found that most of large scale continuum robots

employed rigid backbone (single rigid link/section) as supporting construction, since

its good stiffness and accuracy. However, this construction limits the flexibility and

accessibly of the arm, making it difficult to be employed for highly constrained

environments, e.g. gas turbine engine. A solution, which integrates elastic material

into the joint mechanism in order to passively reducing DoFs of a singles section to

two, was developed to enable more joints to be coupled in single section, making each
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section more flexible and have better accessibility. However, most of small scale ones

developed in last decade generally takes flexible backbone, especially elastic rod and

pneumatics actuator, as support construction, which is very promising for working in a

confined space, since flexible constructions can bring many advantages as better

accessibility and safer human-robot interaction and so on. But comparing with rigid

backbone continuum robot, it has less stiffness, limiting it to be utilized for building a

long slender continuum robot (the max length of the existing flexible backbone

continuum robot with efficiently accuracy is 1.1meter, but the diameter is larger than

300mm [122]).

In summary, there are some challenges still remaining:

 A solution for constructing a long flexible backbone continuum robot with a

reduced diameter, an appropriate stiffness and end load carrying capability

needs to be found, which requires the design have the advantages of rigid and

flexible backbone designs simultaneously.

 A relatively large amount of force needs to be acted on the backbone for

carrying an appropriate weight of end load, which brings the challenges of

avoiding buckling of flexible backbone and requires enhancing the joint

stiffness.

2) Design of an adjustable stiffness system

Comparing with conventional rigid link robots, continuum robots generally have

better flexibilities as an advantage for accessing a crowed space, but less stiffness as a

drawback for carrying appropriate end load and control accuracy. Therefore, several

adjustable stiffness methods were considered for enabling continuum robots have a

relatively high stiffness for taking reaction force/torque and a relatively low stiffness

when moving.

The approaches can generally be classified into two broad groups, i.e. phase-change

material and mechanical locking mechanism. Among these solutions, the approach of
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phase-change material seems more promising, since more stiffness can be provided

with a relatively small volume. However, the following research gaps need to be filled:

 A lightweight material which can switch between rigid and soft states at a low

temperature (between 40° and 100°) needs to be identified, so it requires less

power for melting the material and allows the melt material get rigid above

the room temperature;

 A material needs to provide efficient stiffness in rigid state and be really

flexible in soft state, so it does not require a large actuation force to articulate

continuum robots in the low stiffness state.

3) Modelling

The kinematics of continuum robots (forward and inverse kinematics) has been quite

well developed since numerous approaches were presented in this field. However, the

following challenges are remaining:

 New kinematics model maybe needs to be developed for new designs. Further,

since continuum robot is generally constructed with multiple sections, it

requires the kinematics model for a new construction to be simple and precise,

in order to reduce the computing time to enable real-time control for a hyper

redundant robot;

 Since the actuation transmission mechanism of distal sections, e.g. cable or

elastic rods, influences the shapes of the proximal ones, it requires to be

considered in kinematics model.

 The models considering external effects on the kinematics, such as gravity and

end load, have been built. But it includes additional complex computation, so

it also needs some simple models for simplifying the calculation.

Further, dynamic modelling is also a very active research area. Various methods of

dynamics have been developed [110, 155, 156] . However, most of the researches

require complex computation. In the future, they need to be more efficient and stable



Chapter 2

54

for real-time application. In summary, each of the aforementioned factors is offering

an opportunity for the new researching areas.



Chapter 3

55

Chapter 3 Innovative concepts of continuum robot design

Continuum robots have been demonstrated in several critical areas, like minimally

invasive surgery [32, 113] and security [140], and also show the capability for the

potential application in industry, such as aerospace assembly [69] and

inspection/repair in power station [57]. However, there are some disadvantages of the

existing designs limiting continuum robots to be utilised in more applications. In this

chapter, the drawbacks of the existing continuum robot systems are summarized and

presented. Further, regarding the disadvantages, several new concepts of continuum

robot designs are introduced.

3.1. Disadvantages and challenges of the existing continuum robot

designs

In general, continuum robots consist of backbone (rigid backbone: support the

structure; flexible backbone: enable the bending movement and support the structure),

rigid universal or spherical joints (utilized to allow the bending movement), cables (to

actuate the construction) and disks (to constrain the cables). The critical parameters of

continuum robot design are diameter/length ratio, flexibility, stiffness and actuation

approach, which are discussed in the following part of this chapter. Further, the

kinematics challenge of continuum robots with single central located flexible

backbone is presented in this chapter.

3.1.1. Flexibility and stiffness

The flexibility determines the obstacle avoidance capability of continuum robots. For

rigid backbone continuum robots, the flexibility is determined by the number of joints

(universal or spherical joints) in a single section. Due to the degrees of freedom (DoF)

of a single section (2 DoF), rigid backbone continuum robots can only employ one

universal joint (2 DoF) in single section [69, 70], as shown in Figure 3-1 (a). The

solution for employing multiple rigid joints in single section is to utilize springs or
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other elastic material (Teflon flexure/rubber) to make all these joints have the same

stiffness so that the section can be bent evenly [37] (it can be also understood as the

springs passively reduce hyper-DoFs of a section to two, so two actuators can operate

it), as shown in Figure 3-1(b); nevertheless, these designs cause the continuum robot

to be bulky / low stiffness, which makes it difficult to access confined places / carry

appropriate weight end effectors. For flexible backbone robots, due to the elastic

property, the whole backbone performs as an elastic universal joint, resulting in

continuous bending of a single section. Therefore, it allows continuum robots to be

designed light-weight and small size, Figure 3-1 (c), thus having great obstacle

avoidance capability in cluttered environment [32]. However, the long flexible

backbone leads to low stiffness and hence, low position accuracy. Hence, it requires a

solution able to enhance the stiffness, meanwhile provides an appropriate flexibility.

(a) (b)

(c)

Figure 3-1. Accessibilities of different continuum robots (a) single universal joint model (b) multi

universal joints model (c) flexible backbone model
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3.1.2. Twist problem

Compared with rigid backbone continuum robot, flexible backbone design has good

flexibility making them more suitable for operating in tight environments. However, it

was found from the follow-up experiments that the flexible backbone is twisted along

its length due to the torque generated by the weight of the system and end load, as

shown in Figure 3-2. Only the bend movement about Y and Z axes (2 DoF), as shown

in Figure 3-2, can be controlled by the actuations in single section, as a result, the

twist angle about X axis cannot be controlled, which makes difficult in kinematic

modeling and control.

The twisting angle of segment backbone (without cables constraint) can be expressed

as:

xGI

TL
 (3.1)

Where T is the twisting torque; L is the length of the flexible backbone; xI is the

moment of inertia; G is the shear modulus of elasticity, which can be written as

  12EG ; E is elastic modulus;  is Poisson's ratio.

For example, assuming the super-elastic NiTi rod (length of a single segment,

L=15mm; diameter, Φ=1mm) on which a torque T = 0.1Nm is applied at its end, refer 

to Eq. 3.1, the twisting angle  =58.22°. (The twisting angles are not constant against

different end loads and configurations). Due to the fact that the twisting angle cannot

be controlled by actuations, it makes extremely difficult to build kinematics model and

control the system. Therefore, the best solution in such instance is to design the

backbone which can mechanically minimize the twisting angle.
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(a) (b)

Figure 3-3. Different actuation types of continuum robots: (a) triple actuation (b) double actuation

concepts

Although the double actuation design concept (Figure 3-3 (b)) can significantly

minimize the weight and size of the actuation packing system, neither flexible

backbone (Figure 3-1 (c)) nor rigid universal joint continuum robots (Figure 3-1

(a)&(b)) can apply double actuations for one section directly, due to the kinematics

problem caused by the cable tension (Figure 3-4) discussed below.

(a)

(b)

Figure 3-4. Kinematic challenge for two actuations concept: (a) flexible backbone model (b) rigid

backbone model
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Figure 3-4 (a) shows the kinematic model of one segment of flexible backbone

continuum robot. Let L and L be the length of flexible backbone and the distance

between points A and B, respectively. Then let 1l , 2l and 1l , 2l be the cable lengths in

different configurations. Hence, an equation can be obtained from initial configuration

(the left one of Figure 3-4 (a)) :

LLll  22
21 (3.2)

From the right configuration of Figure 3-4 (a), an equation can be obtained

LLll  2221 (3.3)

According to Eq. 3.2 and 3.3, an equation can be obtained

2121
llll  (3.4)

Based on the Eq. 3.4, this pair of cables cannot keep a constant tension when the

continuum robot is bent. Similarly with the presented problem, the pair of cables of a

rigid backbone continuum robot shown in Figure 3-4 (b) cannot maintain a constant

tension either. Therefore, neither the existing rigid backbone concept nor the flexible

one can apply this novel actuation concept without other additional systems, such as

cable tension compensation system.

3.1.4. Challenge of inverse kinematics

The purpose of inverse kinematics is to determine the displacements of actuation

cables for a desired TCP position in order to control the shape of continuum robot.

According to the desired position ( pX , pY and pZ ), the section’s overall bending and

directional angles can be expressed in terms of pX , pY and pZ (i.e. bending angle =







  ppp ZYX 22arctan2 ; direction angle =  pp XYarctan ). In the previous work [66,

134], the tip disk orientation angle with respect to the base disk is considered being
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robots is developed, which can improve stiffness, reduce twisting angles, have an

appropriate flexibility and employ two actuations for each section.

(a)

(b)

Figure 3-7. Continuum robot construction using two actuations concept: (a) general view; (b) one

segment

As shown in Figure 3-7 (a), the continuum robot consists of disks, actuation cables,

compliant joints and rigid rods/tubes. The disks are connected by compliant joints and

rigid rods/tubes; the continuum robot bent is caused by the torque generated through

actuation cables.

Figure 3-7 (b) shows the construction of a continuum robot which consists of the

following elements:

 Compliant joint is made of a material which is flexible and able to be bent

with little residual plastic deformation. As shown in Figure 3-7 and Figure 3-8
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(a), the compliant joint can be made by a single elastic rod/ tube, e.g. super-

elastic Nitinol, or a universal joint construction connected by elastic

rods/tubes. This construction makes rotation axes of these two pairs of elastic

rods coincide with each other. Therefore, it can perform as a universal joint.

Further, the compliant joint also can be a flexible hinge or leaf spring

construction, as shown in Figure 3-8 (b) and (c), which can also perform as a

universal joint. Figure 3-8 (d), (e) and (f) present several continuum robot

designs, which replace single elastic rod with other universal joint designs.

 Rigid rod/tube is made of a material that is significantly stiffer than the

elastic rod;

 Disks are utilized for constraining the cables; Note that pivot point of

compliant joint is on the top plane of the disk bulge, as shown in Figure 3-9

(left configuration).

 Cables consist of two pairs of cables (1A and 1B; 2A and 2B) each being

actuated by a single motor.

(a) (b)



(c) (d)
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(e) (f)

Figure 3-8. Compliant joints: (a) elastic-rod compliant universal joint; (b) notch compliant universal

joint ; (c) leaf spring compliant joint; (d) compliant universal joint continuum robot segment; (e) notch

compliant universal joint continuum robot segment; (f) leaf spring compliant joint continuum robot

segment;

Comparing with flexible backbone continuum robots, compliant joints are much stiffer.

Due to the elastic property of compliant joints, the robot can obtain an evenly

distributed bending shape, a relatively small size and simple design, which cannot be

achieved by multiple rigid universal joints concept. Further, based on the double-pivot

compliant joints construction, a twin actuation design can be applied for the

continuum robot. And the verification is given below (taking elastic rod concept as an

example):

Figure 3-9. Schematic of double-pivot compliant joint construction

1l 2l

1l
2l
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Assuming compliant joint performs as a rigid universal joint and the pivot points

coincide with the top of bulges (planes A and B – see Figure 3-9), the following

identity can be assumed:

LLll  2221 (3.5)

Hence, Eq. 3.6 can be obtained

2121 llll  (3.6)

The error caused by this approximation is calculated in the Chapter 4.1. Based on Eq.

3.6, one cable pulls a length and the other cable extends the same length, which causes

a bending deformation of compliant joints and keeps the pair of cables a constant

tension in an arbitrary configuration. Due to this construction, the novel two actuations

for one section design concept can be applied to the continuum robot.

Based on this design, a continuum robot can have an appropriate stiffness and reduced

twisting angle with a unique twin actuation design, while giving the possibility to be

constructed with a small diameter/length ratio and great flexibility so that it can carry

an appropriate end load and access confined spaces thus be applicable for a variety of

machining tasks, like visual inspection, laser cutting and laser deposition.

3.2.2. Family of concept B: Twin-pivot compliant joint construction

For enhancing the stiffness and minimizing the twisting problem, another novel family

of twin-pivot compliant joint continuum robots is developed, which also provides an

appropriate flexibility and employs double actuations for each section.

As shown in Figure 3-10 (a), the continuum robot consists of disks, actuation cables

and twin-pivot compliant joints. The disks are connected by compliant joints; a bend is

caused by the torque generated through actuation cables. Figure 3-10 (b) and (c) show

twin-pivot compliant joint construction of a continuum robot which consists of the

following elements:
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stiffness by increasing NiTi rods quantity/ NiTi sheet length, which does not make the

section size increase. Therefore, the flexibility can be adjusted to meet the

requirements of the application without sacrificing stiffness and accessibility of the

design proposed in this chapter.

3.3. Innovative concept of variable stiffness system

Continuum robots have been utilized for several light duty applications, such as

minimally invasive surgery in medical field and inspection in industry. However, the

existing design solutions still offer a limited range of system stiffness [105]. To

overcome this disadvantage, a novel concept is developed to ‘rigidize’ continuum

robot for enhancing the stiffness, which enables the system take greater reaction

force/torque when acting tasks and allow the robot flexible to move when navigating

in a confined space.

3.3.1. Basic concept of variable stiffness system

The basic concept is to utilize stiffening material, which can repeatably switch

between relatively low and high stiffness, to allow continuum robot have variable

stiffness. The stiffening material can be either thermoplastic material or low-melting-

point alloy, which can melt at a low temperature (below 100 ) and get solidified

above room temperature. Table 3-1 shows specifications of several stiffening

materials.

Table 3-1. Melting Temperature table

Material Melting temperature (°)

Polymorph 60

Field's alloy

(Bi 32.5, In 51.0, Sn 16.5)
62

Wood's metal

(Bi 49.5, Pb 27.3, Sn 13.1, Cd 10.1)
70
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3.4. Conclusions

This chapter presents the design challenges and disadvantages of the existing

continuum robots, such as the twist problem, how to balance the flexibility and

stiffness, and kinematic challenge. Further, regarding these disadvantages, two

families of continuum robots are developed, one employs two compliant joints

connected in series in a segment, which is called double-pivot compliant joint; the

other one utilizes two orthogonal groups of two parallel elastic rods as compliant joint,

which is called twin-pivot compliant joint. By employing the new concepts, the

continuum robots are able to carry an appropriate payload with double actuations per

section, while giving the possibility to be constructed with a small diameter/length

ratio, great flexibility and minimized twisting angle. Finally, a variable stiffness

system is introduced, which renders the continuum robot have two states, relatively

low and high stiffness. Hence, the robot can bend all the sections freely in the low

stiffness state and is allowed to do some machining tasks in the other state.
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Chapter 4 Kinematics analysis

Kinematics studies the relation between geometry and the movement of multi-degree

of freedom kinematic chains that form the structure of robotic systems [158].

Regarding continuum robots, kinematics can be divided into two levels, the first one is

the mapping between task space to joint space (e.g. computing the positions and

orientations of each section tip by a given desired position for robot TCP) and the

second one is the mapping between joint to actuation space (e.g. calculate the

actuation displacements by the configurations of each section obtained from the first

mapping, according to the section geometry) [135]. In this paper, the research focused

on the second mapping of kinematics. Since new structures of continuum robots are

introduced in this research, so their kinematics models are valuable to be investigated

to enable the precise control for them. Further, as mentioned in chapter 3.1, the

orientation of tip disk is assumed to be equal with section’s overall bending angle for

solving inverse kinematics, accusing positioning control errors. In this chapter, a

iterative approach is presented for minimising this error. Further, cable tension is

analysed for verifying that the cable can maintain a constant tension in arbitrary

configurations. Finally, work volume is presented to evaluate the reachable capability

of the continuum robot by considering geometry limitation and material yielding.

4.1. Kinematics analysis of family A (Double-pivot construction)

For the family of double-pivot compliant joint continuum robots, a model is developed

for computing the kinematics, which assumes that the compliant joint performs as a

rigid universal joint; this is a situation in which the continuum robot is likely to work

when backbone is not buckling under compression forces acted by the actuation cables

and no parasitic twist of the structure occurs. The previously stated condition can be

achieved by a careful control of the continuum robot once adequate models are

developed. Further, in this analysis, assume the length of a section is far more than

that of a segment (number of segments in single section is 5 or more), which renders
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Table 4-1. Nomenclature used in this section




( ux , uy , uz ) unit vector of the orientation of backbone


21OO .

il (i=1, 2,3,4) lengths of cables in single segment

iL (i=1, 2,3,4) total lengths of cables in single section

diskl thickness of the disks

backbonel length of backbone 21OO

iA ( ix , iy ,0) anchor points for the cables on the base disk, i=1, 2

segment , segment direction and bending angle of the thi segment.

tionsec , tionsec direction and bending angles respectively of a single section




vector of rotation axis

n number of segments in single section

Since the length of one pair of cables is constant, the kinematics of a segment can be

determined by the lengths of two cables, which are in different pairs. The projection of

vector


iAO1 on vector


21OO is   2Sli  . Therefore, the equation can be obtained as:

2
1

Sl
AO i

i









(4.1)

Substituting vector 


( ux , uy , uz ) and


iAO1  0,, ii yx into Eq. 4.1 produces Eq. 4.2,

2

Sl
yyxx i

iuiu


 (i= 1, 2) (4.2)

Where  0,, 111 yxA ,  0,, 222 yxA and backbone length S are known from the design of the

system and cable length 1l and 2l are given. Therefore, based on the Eq. 4.2, parameters

ux and uy can be described in terms of 1l , 2l and  0,, iii yxA (i=1 and2), so that 


( ux

, uy , uz ) can be obtained.
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can describe the orientation of a section. Therefore, the forward kinematics of double-

pivot joint continuum robots is obtained.

4.1.2. Inverse kinematics

The purpose of inverse kinematics analysis is to determine the lengths of cables for a

known position in order to manipulate the tip of a continuum robot to the desired

position. The inverse kinematics can be derived in two steps: as shown in Figure 4-1,

First, by given the bending and direction angles, the position of the upper anchor

points iB can be obtained. Then, the length of each cable can be derived by the

magnitude of vector


ii BA .

Referring to Figure 4-1, a vector-loop equation can be written for each cable as given

below:



 ii BOOOBO 2211
(4.5)

According to the kinematics model shown in Figure 4-1, the orientation of vector



iBO2 can be obtained by rotating


iAO1 through bending angle i with respect to

vector


. Firstly, the rotation axis, vector


, can be expressed as:

 
 









































0

2sin

2cos

i

i

z

y

x

k

k

k








(4.6)

And the rotation matrix TR can be expressed as

     
     
      
























cscskksnkcskksnkcskk

snkcskkcscskksnkcskk

snkcskksnkcskkcscskk

R

zzxzyyzx

zyzyyzyx

yxzzxyxx

T

111

111

111

(4.7)

Where )cos( ics  and )sin( isn  .

According to Eq. 4.6 and 4.7, vector


iBO2 can be written as
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

 iTi AORBO 12
(4.8)

As shown in Figure 4-1(b), vector


21OO can be expressed as

   
   
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








sin

sincos

coscos

21

S

S

S

OO (4.9)

Where   2i 

Substituting Eq. 4.8 and 4.9 into 4.5 produce 4.10,



 iTi AOROOBO 1211
(4.10)

Therefore, vector


ii BA can be written as



 iiTii AOAOROOBA 1121
(4.11)

Hence, the cable length il (i=1, 2, 3, 4) can be computed by the following equation



 iiTiii AOAOROOBAl 1121 (4.12)

By given bending and direction angles, cable lengths ( iL ), for a single section, can be

expressed as [134]

ii lnL  (4.13)

Where considering there is no extra cable elongation caused by the bending of the

continuum robot.

Hence, inverse kinematics of a single section for double-pivot compliant joint

construction is obtained. It was utilized for calculating the max displacement of the

control cables, which helped the designer select the motor and design the spool system

employed in prototype 2. Further, it was utilized for controlling porotype 2.
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4.1.3. Cable tension analysis

In this family, each section employs two pairs of cables, which are connected to two

motors respectively, as shown in Figure 3 (b) (Chapter 3.2); as mentioned, although

challenging to materialize, this offers an advantage of compact design and lighter

system that makes it portable and applicable for the scope of the project. For

maintaining the constant stiffness of continuum robot sections in arbitrary

configuration, two cables of each pair need to keep persistent tensions. For double-

pivot compliant joint continuum robot robots, a kinematics model is developed to

calculate the cable tension in an arbitrary configuration, as shown in Figure 4-3.

In this model, the compliant joint is considered to bend as a pure arc which is the real

kinematic performance of the joint and different with the assumptions for inverse and

forwards kinematics. Points 1E , 2E and points 3E , 4E are the ends of two compliant

joints, respectively. The coordinate system XYZ attaches on the point 1E (lower end

of the compliant joint). The parameters intjol and rodl are the lengths of compliant joint

(elastic rod) and rigid rod 32 EE .

By comparing the gap distance ii BA (i=1, 2, 3, 4) with the original total cable length

of one pair of cables, the tension condition can be obtained.

(a) (b)

Figure 4-3. Precision kinematics model of single segment: (a) general and (b) bending section views
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Specifically, if the length of cables actuated by the same motor satisfies Eq. 4.14, it

can be concluded that this pair of cables can maintain constant tensions well in any

configuration:

originaliiii lBABA 222   (i =1, 2) (4.14)

where originall is the original length of cable between two disks at the straight

configuration.

If Eq. 4.14 is not fulfilled, the pair of cables gets slack when the continuum robot

bends. When the section is in the initial configuration (straight), the gaps distance

22 


iiii
BABA is obviously equal to

original
l2 . Hence, in this analysis, the bending angle

of the section is assumed greater than 0 °.

Referring to Figure 4-3 (b), a vector-loop equation can be written for each cable as

given below:



 iiii AEBEEEBA 1441
(4.15)

Vector
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The magnitude of vector


41EE can be written as
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Therefore, vector


41EE can be written as
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Where   2i  .

And vector


iBE4 can be expressed as

 TjoAiAiTiTi lyxRAERBE 2,, int14 


(4.19)

Substituting Eq. 4.16, 4.18 and 4.19 into 4.15 produces 4.20,
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Therefore, the gap distance ii BA is obtained.

Regarding different bending angles, the gap distance of one section, as shown in

Figure 4-4, is calculated and shown in Table 4-2.

Figure 4-4 Gaps in one section

Table 4-2. Gap distances of one section for different configurations

Section bending angle
Sum of gaps for one pair of

cables
Note

0° 144mm

The gap distance 

original length of one pair

of cables (144mm)

30° 144.02mm

60° 144.07mm

90° 144.15mm

Note: the gap distances are calculated at a configuration of direction angle 0 °.
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any configuration.

Since direction and bending angles rang in

tension in the work volume is calculate and shown in

of cable be 100 N at the original position (bending angle is 0). It can be found that the

max tension force is 105.74N, when th

the cable tension can be maintained in arbitrary configuration. Based on this fact, twin

actuation can be applied in the design, which decreases the weight and size of

actuation system.
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this configuration. Hence, in the following analysis, the bending angle is assumed

equal to greater than 0 °.

Table 4-3. Nomenclature used in this section

XYZ coordinate system located at the center of disks A

ZYX  coordinate system located at the center of disks B

ZYX  coordinate system located at the center of disks C

iA guide points for the cables on the disk A, i=1, 2,3,4

iB guide points for the cables on the disk B, i=1, 2,3,4

iC anchor points for the cables on the disk C, i=1, 2,3,4

intjol length of the compliant joints (given)

diskl thickness of the disks (given)

1 bending angle of joint_1

2 bending angle of joint_2

segment bending angle of segment

tionsec bending angle of section

segment direction angle of segment

tionsec direction angle of section

1l , 2l total lengths of cable 1 ( 111 lll  ) and 2( 222 lll  ), respectively

1 angle between B1B3 and axis Y' (given, as shown in Figure 4-10(b))

 ppp ZYX ,, The tip position of single section

r distance from center of the disk to the cable anchor point (given)

n number of segments in single section (given)

orignall original length of one pair of cables in one section

gapl gap distance for one pair of cables in one section

cableK stiffness of a cable
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Hence, from Joint 1 bending section view, the following equation can be given by:

       2sin)sin(222sin22 11111int 31
  rmlll BBjo (4.23)

Similarly, the difference between 2l and 4l can be obtained:

     2sin)2sin(222 1122int   rlll jo (4.24)

Likewise, another two equations can be obtained by projecting the cables on the

bending plane of joint 2:

     2sin)cos(222 2111int   rlll jo (4.25)

And

     2sin)2cos(222 2122int   rlll jo (4.26)

Further, in order to eliminate parameters 1l  and 1l  , adding the left and right side of Eq.

4.23 with those of Eq. 4.25, respectively, yields

   2sin)cos(22sin)sin(22 21111int   rrll jo (4.27)

Where 1l is given.

Likewise, according to Eq. 4.24 & 4.26, another equation can be obtained:

   2sin)sin(22sin)cos(22 21112int   rrll jo (4.28)

Where 2l is given.

Hence, based on Eq. 4.27 and 4.28, the bending angles 1 and 2 can be written in

terms of cable lengths 1l and 2l , 1 (  90451  n ), r and joint length intjol as:
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Then, the tip position and orientation of segment can be calculated as

210
2

0 TTTT  (4.33)

As all segments of single section share the same construction, the forward kinematics

for one section can be written in terms of bending angles of 1 , 2 , n, intjol and diskl

as:

 n
n

tion TTTTT 210
2

0sec  (4.34)

Therefore, the section forwards kinematics is obtained, which includes the position

and orientation of section tip. Likewise, the forward kinematics of other sections can

be obtained based on the given cable lengths.

4.2.2. Inverse kinematics

For computing the inverse kinematics of Family B, the bending angles 1 and 2 are

the critical parameters, which can be derived based on the orientation angle of tip disk

[134]. However, regarding inverse kinematics analysis, the position of section tip is

given, hence, only the section bending and direction angles can be derived (Eq. 4.35).
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As shown in Figure 4-13, assuming the tip disk orientation is equal with the section

bending angle, thus, the bending and direction angles of segment can be written in

terms of the position of section tip ( pX , pY , pZ ) and n (number of segments in single

section):
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It can be found that if pY =0, the equation is infinite. Hence, in the real control

program, direction angle segment is set to be 90°, if pY =0 and pZ >0; segment is set to

be 270°, if pY =0 and pZ <0.

The bending angles of joint 1 and 2 in single segment can be expressed as:
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Step 2: Since the actual bending angle of single section is different with tip disk

orientation, an iteration method is utilized to compute the inverse kinematics, which

applies the initial approximations obtained from Step 1, as shown in Figure 4-14.

The proposed iteration method can be described as following:

Sub-step i: substituting 1 and 2 into forward kinematics equation (refer to

Eq. 4.34, the tip position of the section is obtained;

Sub-step ii: Then comparing this position with the desired position, the

distance differences (diff) in X, Y and Z axis ( xdiff , ydiff and zdiff ) are

calculated;
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Sub-step iii: comparing the distance difference cedis tan = 222
zyx diffdiffdiff 

with the desired distance error ;

Sub-step iv: if cedis tan is not greater than , the program moves to calculate the

cable lengths, based on current value of 1 and 2 ;

Sub-step v: if cedis tan is greater than , the iteration starts. The angles 1 and 2

are assigned with eight combinatorial paired values that are assigned using

their nominal values and  , and then the distance difference i (i = 1~8) are

calculated, according to these eight pairs of values. Compare i and assign 1

and 2 new values, which obtains the minim valve of cedis tan ;

Sub-step vi: then repeat the procedure until the cedis tan is not greater than .

Note: Value 1: (  1 , 2 ); Value 2: (  1 ,  2 ); Value 3 :(  1 ,

 2 ); Value 4 :(  1 , 2 ); Value 5 :(  1 ,  2 ); Value 6 :(  1 ,

 2 ); Value 7 :( 1 ,  2 ); Value 8 :( 1 ,  2 );
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Similarly, according to the angle values 2 , cable lengths 1l  , 2l  , 3l  and 4l  in gap 2 can

be described as:
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According to Eq. 4.37 and 4.38, the lengths of cables for a known position of section

tip can be calculated as:
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Therefore, the inverse kinematics for the family of twin-pivot point compliant joint

continuum robot is obtained. It was utilized for calculating the max displacements of
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the control cables, which helped the designer select the motor and design the spool

system employed in prototype 3 & 4. Further, it was utilized for controlling those

porotypes.

4.2.3. Cable tension analysis

In this part, cable tension of twin-pivot compliant joint construction is analyzed for

validating the tension can be maintained at arbitrary configuration. Similarly to the

method utilized for family A, by comparing the gap distance ii BA + iiCB (i=1, 2, 3, 4)

with the original total cable length of one pair of cables (Figure 4-10), the tension

condition can be obtained. Similar to the cable tension analysis of double-pivot

construction, the gaps distance ii BA + iiCB (i=1, 2, 3, 4) is obviously equal to originall2

, when the section is in the initial configuration (straight). Hence, in this analysis, the

bending angle of the section is assumed to be greater than 0°.

Referring to Figure 4-10 (a), the gap distances for cable 1l and 3l in gap 1 can be

calculated as:
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And likewise, the gap distances for cable 1l  and 3l  in gap 2 can be expressed as:
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Therefore, the gap distance in one section for one pair of cables can be written as:
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Hence, the cable tension force can be obtained as



Where

Figure

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

46.4°&+/

Figure

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

4.3. Workspace analysis

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple

Where

Figure

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

46.4°&+/

Figure

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

4.3. Workspace analysis

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple

Where

Figure 4

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

46.4°&+/

Figure 4

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

4.3. Workspace analysis

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple

cableK

4-15

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

46.4°&+/-133.5°.

4-15. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

4.3. Workspace analysis

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple

cable is denoted as the stiffness of a cable.

15 shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

133.5°.

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

4.3. Workspace analysis

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple

is denoted as the stiffness of a cable.

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

133.5°.

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

4.3. Workspace analysis

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple

is denoted as the stiffness of a cable.

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

133.5°.

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

bending angle 131.8°, direction angle +/

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

4.3. Workspace analysis

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple

is denoted as the stiffness of a cable.

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

bending angle 131.8°, direction angle +/

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

4.3. Workspace analysis

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple

is denoted as the stiffness of a cable.

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

bending angle 131.8°, direction angle +/

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

4.3. Workspace analysis

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple

F

is denoted as the stiffness of a cable.

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

bending angle 131.8°, direction angle +/

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

4.3. Workspace analysis

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple

FF 

is denoted as the stiffness of a cable.

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

bending angle 131.8°, direction angle +/

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

4.3. Workspace analysis

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple

originalF

is denoted as the stiffness of a cable.

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

bending angle 131.8°, direction angle +/

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple

original

is denoted as the stiffness of a cable.

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

bending angle 131.8°, direction angle +/

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple

original K

is denoted as the stiffness of a cable.

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

bending angle 131.8°, direction angle +/

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple

98

cableK

is denoted as the stiffness of a cable.

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

bending angle 131.8°, direction angle +/

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple

98

cable 

is denoted as the stiffness of a cable.

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

bending angle 131.8°, direction angle +/

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple

 gapl

is denoted as the stiffness of a cable.

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

bending angle 131.8°, direction angle +/

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple

gap 

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

bending angle 131.8°, direction angle +/-46.4°&+/

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple

orignall

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

46.4°&+/

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple

orignal

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

46.4°&+/

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple



shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

46.4°&+/-133.5°.

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

determining the reachable region by the tip of a multiple-section continuum robot.

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

133.5°.

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

section continuum robot.

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

133.5°.

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

section continuum robot.

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

in the design, which eliminates the weight and size of actuation system.

For performing 3D movements (e.g. machining, inspection) with the co

work volume is critical to be evaluated. This section addresses the problem of

section continuum robot.

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

of a 0.75mm diameter steel cable of 400mm length: 200mm in continuum robot and 200mm in actuation

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

For performing 3D movements (e.g. machining, inspection) with the continuum robot,

work volume is critical to be evaluated. This section addresses the problem of

section continuum robot.

shows a case study of the cable tension in work volume of a sect

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

mm in actuation

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

ntinuum robot,

work volume is critical to be evaluated. This section addresses the problem of

section continuum robot.

Chapter 4

(4.

shows a case study of the cable tension in work volume of a section. Let

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

mm in actuation

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

ntinuum robot,

work volume is critical to be evaluated. This section addresses the problem of

section continuum robot.

Chapter 4

(4.43

ion. Let

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

mm in actuation

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

Therefore, the cable tension can be maintained in an arbitrary configuration, whi

remains at least 95% of original tension. Based on this fact, twin actuation is applied

ntinuum robot,

work volume is critical to be evaluated. This section addresses the problem of

section continuum robot.

Chapter 4

43)

ion. Let

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

minimum tension force is 95N, when the section bends 131.8° at direction angle +/-

. An example of cable tension plot in work volume of single section (stiffness k= 37.5 N/mm

mm in actuation

system) ; In the work volume, the original tension is 100N at 0° bending; The min tension is 95N at

Therefore, the cable tension can be maintained in an arbitrary configuration, which

remains at least 95% of original tension. Based on this fact, twin actuation is applied

ntinuum robot,

work volume is critical to be evaluated. This section addresses the problem of

section continuum robot.

ion. Let

the pretension of cable be 100 N at the original position (bending angle is 0°). In the

work volume, the tension force modifies when the continuum robot bends, and the

ch

remains at least 95% of original tension. Based on this fact, twin actuation is applied

ntinuum robot,

work volume is critical to be evaluated. This section addresses the problem of

section continuum robot.



Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

capability of a three

4.3.1. Max bending angle of single joint

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

geometry limitation.

Firstly, the motion range is discussed in terms of yield of compliant joint material

caused by bending movement. Super

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

employed as compliant joints.

As shown in

Where d is the diameter of super elastic NiTi rod. Based on

different bending angles is calculated and shown in

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

capability of a three

4.3.1. Max bending angle of single joint

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

geometry limitation.

Firstly, the motion range is discussed in terms of yield of compliant joint material

caused by bending movement. Super

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

employed as compliant joints.

As shown in

Where d is the diameter of super elastic NiTi rod. Based on

different bending angles is calculated and shown in

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

capability of a three

4.3.1. Max bending angle of single joint

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

geometry limitation.

Firstly, the motion range is discussed in terms of yield of compliant joint material

caused by bending movement. Super

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

employed as compliant joints.

As shown in

Where d is the diameter of super elastic NiTi rod. Based on

different bending angles is calculated and shown in

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

capability of a three

4.3.1. Max bending angle of single joint

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

geometry limitation.

Firstly, the motion range is discussed in terms of yield of compliant joint material

caused by bending movement. Super

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

employed as compliant joints.

As shown in

Where d is the diameter of super elastic NiTi rod. Based on

different bending angles is calculated and shown in

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

capability of a three

4.3.1. Max bending angle of single joint

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

geometry limitation.

Firstly, the motion range is discussed in terms of yield of compliant joint material

caused by bending movement. Super

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

employed as compliant joints.

As shown in Figure

Where d is the diameter of super elastic NiTi rod. Based on

different bending angles is calculated and shown in

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

capability of a three

4.3.1. Max bending angle of single joint

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

geometry limitation.

Firstly, the motion range is discussed in terms of yield of compliant joint material

caused by bending movement. Super

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

employed as compliant joints.

Figure

Strain

Where d is the diameter of super elastic NiTi rod. Based on

different bending angles is calculated and shown in

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

capability of a three

4.3.1. Max bending angle of single joint

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

geometry limitation.

Firstly, the motion range is discussed in terms of yield of compliant joint material

caused by bending movement. Super

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

employed as compliant joints.

Figure

Strain

Where d is the diameter of super elastic NiTi rod. Based on

different bending angles is calculated and shown in

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

capability of a three-section continuum robot.

4.3.1. Max bending angle of single joint

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

geometry limitation.

Firstly, the motion range is discussed in terms of yield of compliant joint material

caused by bending movement. Super

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

employed as compliant joints.

Figure

Figure 4-16

edgeStrain

Where d is the diameter of super elastic NiTi rod. Based on

different bending angles is calculated and shown in

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

section continuum robot.

4.3.1. Max bending angle of single joint

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

caused by bending movement. Super

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

employed as compliant joints.

Figure

16, the strain of a joint can be expressed as:

edge 

Where d is the diameter of super elastic NiTi rod. Based on

different bending angles is calculated and shown in

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

section continuum robot.

4.3.1. Max bending angle of single joint

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

caused by bending movement. Super

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

employed as compliant joints.

Figure 4

, the strain of a joint can be expressed as:

jo

jo

l

l

Where d is the diameter of super elastic NiTi rod. Based on

different bending angles is calculated and shown in

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

section continuum robot.

4.3.1. Max bending angle of single joint

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

caused by bending movement. Super

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

employed as compliant joints.

4-16

, the strain of a joint can be expressed as:

int

int

jo

jo

Where d is the diameter of super elastic NiTi rod. Based on

different bending angles is calculated and shown in

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

section continuum robot.

4.3.1. Max bending angle of single joint

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

caused by bending movement. Super

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

16. Strain model of single compliant jo

, the strain of a joint can be expressed as:









Where d is the diameter of super elastic NiTi rod. Based on

different bending angles is calculated and shown in

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

section continuum robot.

4.3.1. Max bending angle of single joint

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

caused by bending movement. Super-elasti

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

. Strain model of single compliant jo

, the strain of a joint can be expressed as:

jol








Where d is the diameter of super elastic NiTi rod. Based on

different bending angles is calculated and shown in

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

section continuum robot.

4.3.1. Max bending angle of single joint

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

elasti

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

. Strain model of single compliant jo

, the strain of a joint can be expressed as:

intjo



Where d is the diameter of super elastic NiTi rod. Based on

different bending angles is calculated and shown in

99

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

section continuum robot.

4.3.1. Max bending angle of single joint

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

elastic NiTi has greater recoverable elastic strain

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

. Strain model of single compliant jo

, the strain of a joint can be expressed as:

2

jol

d


Where d is the diameter of super elastic NiTi rod. Based on

different bending angles is calculated and shown in

99

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

section continuum robot.

4.3.1. Max bending angle of single joint

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

c NiTi has greater recoverable elastic strain

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

. Strain model of single compliant jo

, the strain of a joint can be expressed as:

int

2

jo

d







Where d is the diameter of super elastic NiTi rod. Based on

different bending angles is calculated and shown in

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

c NiTi has greater recoverable elastic strain

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

. Strain model of single compliant jo

, the strain of a joint can be expressed as:



Where d is the diameter of super elastic NiTi rod. Based on

different bending angles is calculated and shown in

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

c NiTi has greater recoverable elastic strain

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

. Strain model of single compliant jo

, the strain of a joint can be expressed as:

intjol

Where d is the diameter of super elastic NiTi rod. Based on

different bending angles is calculated and shown in Table

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

c NiTi has greater recoverable elastic strain

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

. Strain model of single compliant jo

, the strain of a joint can be expressed as:

int



Where d is the diameter of super elastic NiTi rod. Based on

Table

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

c NiTi has greater recoverable elastic strain

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

. Strain model of single compliant jo

, the strain of a joint can be expressed as:

2

jol

d



Where d is the diameter of super elastic NiTi rod. Based on

Table 4

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

c NiTi has greater recoverable elastic strain

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

. Strain model of single compliant joint

, the strain of a joint can be expressed as:

intjo



Where d is the diameter of super elastic NiTi rod. Based on

4-5.

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

c NiTi has greater recoverable elastic strain

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

int

, the strain of a joint can be expressed as:

2


Where d is the diameter of super elastic NiTi rod. Based on

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

Regarding continuum robots, the max bending angle of single joint (

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

c NiTi has greater recoverable elastic strain

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

, the strain of a joint can be expressed as:

2 jol

d





Where d is the diameter of super elastic NiTi rod. Based on Eq.

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

Regarding continuum robots, the max bending angle of single joint ( max

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

c NiTi has greater recoverable elastic strain

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

intjo



Eq. 4.

Firstly, the max bending angle of a single joint is evaluated, and then the wor

of single and multiple sections are analysed subsequently to evaluate the reachable

max ) depends on

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

c NiTi has greater recoverable elastic strain

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

4.44

Firstly, the max bending angle of a single joint is evaluated, and then the work volume

of single and multiple sections are analysed subsequently to evaluate the reachable

) depends on

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

c NiTi has greater recoverable elastic strain

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

44, strain for

Chapter 4

k volume

of single and multiple sections are analysed subsequently to evaluate the reachable

) depends on

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

c NiTi has greater recoverable elastic strain

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

(4.

, strain for

Chapter 4

k volume

of single and multiple sections are analysed subsequently to evaluate the reachable

) depends on

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

c NiTi has greater recoverable elastic strain

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

(4.44

, strain for

Chapter 4

k volume

of single and multiple sections are analysed subsequently to evaluate the reachable

) depends on

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

c NiTi has greater recoverable elastic strain

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

44)

, strain for

k volume

of single and multiple sections are analysed subsequently to evaluate the reachable

) depends on

two factors: 1) yield of compliant joint material caused by bending movement; 2)

Firstly, the motion range is discussed in terms of yield of compliant joint material

c NiTi has greater recoverable elastic strain

(~8%) than other alloys (e.g. stainless steel: approximately 0.5%), hence, it is

, strain for



Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

bending radius is described as:

Since the adjacent disks of family B are closer than those of family A, family B is

used as an example in this part. As shown in

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

the max bend.

Hence, the max bending angle with respect to geometry limitation is expressed as:

According to

Max bending angle

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

bending radius is described as:

Since the adjacent disks of family B are closer than those of family A, family B is

used as an example in this part. As shown in

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

the max bend.

Hence, the max bending angle with respect to geometry limitation is expressed as:

According to

Max bending angle

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

bending radius is described as:

Since the adjacent disks of family B are closer than those of family A, family B is

used as an example in this part. As shown in

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

the max bend.

Hence, the max bending angle with respect to geometry limitation is expressed as:

According to

Max bending angle

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

bending radius is described as:

Since the adjacent disks of family B are closer than those of family A, family B is

used as an example in this part. As shown in

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

the max bend.

Hence, the max bending angle with respect to geometry limitation is expressed as:

According to

Table

Max bending angle

Strain

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

bending radius is described as:

Since the adjacent disks of family B are closer than those of family A, family B is

used as an example in this part. As shown in

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

the max bend.

Figure

Hence, the max bending angle with respect to geometry limitation is expressed as:

According to

Table

Max bending angle

Strain

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

bending radius is described as:

Since the adjacent disks of family B are closer than those of family A, family B is

used as an example in this part. As shown in

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

the max bend.

Figure

Hence, the max bending angle with respect to geometry limitation is expressed as:

According to Eq.

Table 4-

Max bending angle

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

bending radius is described as:

Since the adjacent disks of family B are closer than those of family A, family B is

used as an example in this part. As shown in

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

Figure 4-17

Hence, the max bending angle with respect to geometry limitation is expressed as:

Eq. 4.

-5. Strain of NiTi compliant joint against bending

Max bending angle max

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

bending radius is described as:

Since the adjacent disks of family B are closer than those of family A, family B is

used as an example in this part. As shown in

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

17. Max bending of one

Hence, the max bending angle with respect to geometry limitation is expressed as:

4.46

Strain of NiTi compliant joint against bending

max

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

bending radius is described as:

Since the adjacent disks of family B are closer than those of family A, family B is

used as an example in this part. As shown in

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

. Max bending of one

Hence, the max bending angle with respect to geometry limitation is expressed as:

46, the max single joint bending angles against different disk sizes

Strain of NiTi compliant joint against bending

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

bending radius is described as:

Since the adjacent disks of family B are closer than those of family A, family B is

used as an example in this part. As shown in

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

. Max bending of one

Hence, the max bending angle with respect to geometry limitation is expressed as:

the max single joint bending angles against different disk sizes

Strain of NiTi compliant joint against bending

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

bending radius is described as:

Since the adjacent disks of family B are closer than those of family A, family B is

used as an example in this part. As shown in

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

. Max bending of one

Hence, the max bending angle with respect to geometry limitation is expressed as:

the max single joint bending angles against different disk sizes

Strain of NiTi compliant joint against bending

9°

5.24%

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

Since the adjacent disks of family B are closer than those of family A, family B is

used as an example in this part. As shown in

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

. Max bending of one

Hence, the max bending angle with respect to geometry limitation is expressed as:

the max single joint bending angles against different disk sizes

Strain of NiTi compliant joint against bending

9°

5.24%

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

bendingR

Since the adjacent disks of family B are closer than those of family A, family B is

used as an example in this part. As shown in

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

. Max bending of one

Hence, the max bending angle with respect to geometry limitation is expressed as:



the max single joint bending angles against different disk sizes

Strain of NiTi compliant joint against bending

5.24%

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

bending

Since the adjacent disks of family B are closer than those of family A, family B is

used as an example in this part. As shown in

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

. Max bending of one joint considering the limitation of geometry

Hence, the max bending angle with respect to geometry limitation is expressed as:

max

the max single joint bending angles against different disk sizes

100

Strain of NiTi compliant joint against bending

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

bending 

Since the adjacent disks of family B are closer than those of family A, family B is

used as an example in this part. As shown in

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

joint considering the limitation of geometry

Hence, the max bending angle with respect to geometry limitation is expressed as:

max 

the max single joint bending angles against different disk sizes

100

Strain of NiTi compliant joint against bending

6.98%

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

jol


Since the adjacent disks of family B are closer than those of family A, family B is

used as an example in this part. As shown in Figure

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

joint considering the limitation of geometry

Hence, the max bending angle with respect to geometry limitation is expressed as:

disk

jo

R

l int

the max single joint bending angles against different disk sizes

Strain of NiTi compliant joint against bending

12°

6.98%

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di



intjo

Since the adjacent disks of family B are closer than those of family A, family B is

Figure

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

joint considering the limitation of geometry

Hence, the max bending angle with respect to geometry limitation is expressed as:

disk

int

the max single joint bending angles against different disk sizes

Strain of NiTi compliant joint against bending

12°

6.98%

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

Since the adjacent disks of family B are closer than those of family A, family B is

Figure

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

joint considering the limitation of geometry

Hence, the max bending angle with respect to geometry limitation is expressed as:

the max single joint bending angles against different disk sizes

Strain of NiTi compliant joint against bending

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

Since the adjacent disks of family B are closer than those of family A, family B is

Figure 4-17

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

joint considering the limitation of geometry

Hence, the max bending angle with respect to geometry limitation is expressed as:

the max single joint bending angles against different disk sizes

Strain of NiTi compliant joint against bending

Ø1 mm; joint length 1.5mm;

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

Since the adjacent disks of family B are closer than those of family A, family B is

17, when the bending radius is

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

joint considering the limitation of geometry

Hence, the max bending angle with respect to geometry limitation is expressed as:

the max single joint bending angles against different disk sizes

Strain of NiTi compliant joint against bending

Ø1 mm; joint length 1.5mm;

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

Since the adjacent disks of family B are closer than those of family A, family B is

, when the bending radius is

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

joint considering the limitation of geometry

Hence, the max bending angle with respect to geometry limitation is expressed as:

the max single joint bending angles against different disk sizes

Strain of NiTi compliant joint against bending

Ø1 mm; joint length 1.5mm;

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

Since the adjacent disks of family B are closer than those of family A, family B is

, when the bending radius is

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

joint considering the limitation of geometry

Hence, the max bending angle with respect to geometry limitation is expressed as:

the max single joint bending angles against different disk sizes

Strain of NiTi compliant joint against bending

Ø1 mm; joint length 1.5mm;

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent di

Since the adjacent disks of family B are closer than those of family A, family B is

, when the bending radius is

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

joint considering the limitation of geometry

Hence, the max bending angle with respect to geometry limitation is expressed as:

the max single joint bending angles against different disk sizes

angles

Note

Ø1 mm; joint length 1.5mm;

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

range depends on the max bending angle where the adjacent disks collide. The

Since the adjacent disks of family B are closer than those of family A, family B is

, when the bending radius is

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

joint considering the limitation of geometry

Hence, the max bending angle with respect to geometry limitation is expressed as:

the max single joint bending angles against different disk sizes

angles

Note

Ø1 mm; joint length 1.5mm;

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

sks collide. The

Since the adjacent disks of family B are closer than those of family A, family B is

, when the bending radius is

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

joint considering the limitation of geometry

Hence, the max bending angle with respect to geometry limitation is expressed as:

the max single joint bending angles against different disk sizes

angles

Ø1 mm; joint length 1.5mm;

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

sks collide. The

Since the adjacent disks of family B are closer than those of family A, family B is

, when the bending radius is

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

joint considering the limitation of geometry

Hence, the max bending angle with respect to geometry limitation is expressed as:

the max single joint bending angles against different disk sizes

Chapter 4

Ø1 mm; joint length 1.5mm;

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

sks collide. The

(4.

Since the adjacent disks of family B are closer than those of family A, family B is

, when the bending radius is

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

Hence, the max bending angle with respect to geometry limitation is expressed as:

(4.

the max single joint bending angles against different disk sizes

Chapter 4

Ø1 mm; joint length 1.5mm;

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

sks collide. The

(4.45

Since the adjacent disks of family B are closer than those of family A, family B is

, when the bending radius is

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

Hence, the max bending angle with respect to geometry limitation is expressed as:

(4.46

the max single joint bending angles against different disk sizes

Chapter 4

Ø1 mm; joint length 1.5mm;

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

sks collide. The

45)

Since the adjacent disks of family B are closer than those of family A, family B is

, when the bending radius is

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

46)

the max single joint bending angles against different disk sizes

Secondly, the other factor, geometry limitation is studied. Specifically, the motion

sks collide. The

Since the adjacent disks of family B are closer than those of family A, family B is

, when the bending radius is

equal to the radius of the disk, the disk collides with the adjacent one and the joint gets

the max single joint bending angles against different disk sizes



are calculated, as shown in

Max bending angle

Finally, by comparing the values calculated from these two factors, the max bending

angle for single joint can be obtained.

4.3.2. Work volume of

Further, a case study for a three

(Figure

segment is 10 mm long a

each section), three disks (lower, middle and upper) and the disks are connected by

double 1.5mm long, 1mm diameter super

Based on the single joint max bending angle, the work v

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

are calculated, as shown in

Max bending angle

Finally, by comparing the values calculated from these two factors, the max bending

angle for single joint can be obtained.

4.3.2. Work volume of

Further, a case study for a three

Figure

segment is 10 mm long a

each section), three disks (lower, middle and upper) and the disks are connected by

double 1.5mm long, 1mm diameter super

Based on the single joint max bending angle, the work v

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

are calculated, as shown in

Disk sizes

Max bending angle

Finally, by comparing the values calculated from these two factors, the max bending

angle for single joint can be obtained.

4.3.2. Work volume of

Further, a case study for a three

Figure

segment is 10 mm long a

each section), three disks (lower, middle and upper) and the disks are connected by

double 1.5mm long, 1mm diameter super

Based on the single joint max bending angle, the work v

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

are calculated, as shown in

Disk sizes

Max bending angle

Finally, by comparing the values calculated from these two factors, the max bending

angle for single joint can be obtained.

4.3.2. Work volume of

Further, a case study for a three

Figure 3-10

segment is 10 mm long a

each section), three disks (lower, middle and upper) and the disks are connected by

double 1.5mm long, 1mm diameter super

Based on the single joint max bending angle, the work v

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

are calculated, as shown in

Disk sizes

Max bending angle

Finally, by comparing the values calculated from these two factors, the max bending

angle for single joint can be obtained.

4.3.2. Work volume of

Further, a case study for a three

10) is presented. In the case study, each section contains 10 segments. Each

segment is 10 mm long a

each section), three disks (lower, middle and upper) and the disks are connected by

double 1.5mm long, 1mm diameter super

Based on the single joint max bending angle, the work v

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

are calculated, as shown in

Disk sizes

Max bending angle

Finally, by comparing the values calculated from these two factors, the max bending

angle for single joint can be obtained.

4.3.2. Work volume of

Further, a case study for a three

) is presented. In the case study, each section contains 10 segments. Each

segment is 10 mm long a

each section), three disks (lower, middle and upper) and the disks are connected by

double 1.5mm long, 1mm diameter super

Based on the single joint max bending angle, the work v

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

are calculated, as shown in

Table

Max bending angle max

Finally, by comparing the values calculated from these two factors, the max bending

angle for single joint can be obtained.

4.3.2. Work volume of

Further, a case study for a three

) is presented. In the case study, each section contains 10 segments. Each

segment is 10 mm long a

each section), three disks (lower, middle and upper) and the disks are connected by

double 1.5mm long, 1mm diameter super

Based on the single joint max bending angle, the work v

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

are calculated, as shown in

Table

max

Finally, by comparing the values calculated from these two factors, the max bending

angle for single joint can be obtained.

4.3.2. Work volume of

Further, a case study for a three

) is presented. In the case study, each section contains 10 segments. Each

segment is 10 mm long a

each section), three disks (lower, middle and upper) and the disks are connected by

double 1.5mm long, 1mm diameter super

Based on the single joint max bending angle, the work v

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

are calculated, as shown in

Table 4

Finally, by comparing the values calculated from these two factors, the max bending

angle for single joint can be obtained.

4.3.2. Work volume of multiple sections

Further, a case study for a three

) is presented. In the case study, each section contains 10 segments. Each

segment is 10 mm long a

each section), three disks (lower, middle and upper) and the disks are connected by

double 1.5mm long, 1mm diameter super

Based on the single joint max bending angle, the work v

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

are calculated, as shown in Table

4-6.

10

17.19°

Finally, by comparing the values calculated from these two factors, the max bending

angle for single joint can be obtained.

multiple sections

Further, a case study for a three

) is presented. In the case study, each section contains 10 segments. Each

segment is 10 mm long and composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

double 1.5mm long, 1mm diameter super

Based on the single joint max bending angle, the work v

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

Table

. Max Bending angles against disk sizes

10 mm

17.19°

Finally, by comparing the values calculated from these two factors, the max bending

angle for single joint can be obtained.

multiple sections

Further, a case study for a three

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

double 1.5mm long, 1mm diameter super

Based on the single joint max bending angle, the work v

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

Table 4

Max Bending angles against disk sizes

mm

17.19°

Finally, by comparing the values calculated from these two factors, the max bending

angle for single joint can be obtained.

multiple sections

Further, a case study for a three-section twin

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

double 1.5mm long, 1mm diameter super

Based on the single joint max bending angle, the work v

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

4-6.

Max Bending angles against disk sizes

Finally, by comparing the values calculated from these two factors, the max bending

angle for single joint can be obtained.

multiple sections

section twin

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

double 1.5mm long, 1mm diameter super

Based on the single joint max bending angle, the work v

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

Max Bending angles against disk sizes

15mm

11.46°

Finally, by comparing the values calculated from these two factors, the max bending

angle for single joint can be obtained.

multiple sections

section twin

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

double 1.5mm long, 1mm diameter super

Based on the single joint max bending angle, the work v

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

101

Max Bending angles against disk sizes

15mm

11.46°

Finally, by comparing the values calculated from these two factors, the max bending

multiple sections

section twin

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

double 1.5mm long, 1mm diameter super-elastic NiTi rods.

Based on the single joint max bending angle, the work v

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

(a)

101

Max Bending angles against disk sizes

15mm

11.46°

Finally, by comparing the values calculated from these two factors, the max bending

multiple sections

section twin-

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

elastic NiTi rods.

Based on the single joint max bending angle, the work v

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

(a)

Max Bending angles against disk sizes

20mm

Finally, by comparing the values calculated from these two factors, the max bending

-pivot compliant joint continuum robot

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

elastic NiTi rods.

Based on the single joint max bending angle, the work v

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

Max Bending angles against disk sizes

20mm

8.59°

Finally, by comparing the values calculated from these two factors, the max bending

pivot compliant joint continuum robot

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

elastic NiTi rods.

Based on the single joint max bending angle, the work v

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

Max Bending angles against disk sizes

20mm

8.59°

Finally, by comparing the values calculated from these two factors, the max bending

pivot compliant joint continuum robot

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

elastic NiTi rods.

Based on the single joint max bending angle, the work v

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

Max Bending angles against disk sizes

Finally, by comparing the values calculated from these two factors, the max bending

pivot compliant joint continuum robot

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

elastic NiTi rods.

Based on the single joint max bending angle, the work volume of multiple sections is

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

Max Bending angles against disk sizes

Ø 1 mm; joint length 1.5mm;

Finally, by comparing the values calculated from these two factors, the max bending

pivot compliant joint continuum robot

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

elastic NiTi rods.

olume of multiple sections is

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As show

can be found that single section can bend at least 90° in arbitrary direction.

Max Bending angles against disk sizes

Ø 1 mm; joint length 1.5mm;

Finally, by comparing the values calculated from these two factors, the max bending

pivot compliant joint continuum robot

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

olume of multiple sections is

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

an algorithm, which is based on forward kinematics. As shown in

can be found that single section can bend at least 90° in arbitrary direction.

Max Bending angles against disk sizes

Ø 1 mm; joint length 1.5mm;

Finally, by comparing the values calculated from these two factors, the max bending

pivot compliant joint continuum robot

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

olume of multiple sections is

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

n in Figure

can be found that single section can bend at least 90° in arbitrary direction.

Note

Ø 1 mm; joint length 1.5mm;

Finally, by comparing the values calculated from these two factors, the max bending

pivot compliant joint continuum robot

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

olume of multiple sections is

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

Figure

can be found that single section can bend at least 90° in arbitrary direction.

Note

Ø 1 mm; joint length 1.5mm;

Finally, by comparing the values calculated from these two factors, the max bending

pivot compliant joint continuum robot

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

olume of multiple sections is

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

Figure

can be found that single section can bend at least 90° in arbitrary direction.

Note

Ø 1 mm; joint length 1.5mm;

Finally, by comparing the values calculated from these two factors, the max bending

pivot compliant joint continuum robot

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

olume of multiple sections is

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

Figure 4-

can be found that single section can bend at least 90° in arbitrary direction.

Chapter 4

Ø 1 mm; joint length 1.5mm;

Finally, by comparing the values calculated from these two factors, the max bending

pivot compliant joint continuum robot

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

olume of multiple sections is

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

-18

Chapter 4

Ø 1 mm; joint length 1.5mm;

Finally, by comparing the values calculated from these two factors, the max bending

pivot compliant joint continuum robot

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

olume of multiple sections is

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

(a), it

Chapter 4

Ø 1 mm; joint length 1.5mm;

Finally, by comparing the values calculated from these two factors, the max bending

pivot compliant joint continuum robot

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

olume of multiple sections is

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

(a), it

Finally, by comparing the values calculated from these two factors, the max bending

pivot compliant joint continuum robot

) is presented. In the case study, each section contains 10 segments. Each

nd composed of two pairs of cables (attached to the tip of

each section), three disks (lower, middle and upper) and the disks are connected by

olume of multiple sections is

presented. For avoiding the collision between the adjacent disks, single joint is

allowed to be bent up to 9°, and then the points on the work volume is calculated by

(a), it



Figure

Likewise, the work volume of

4-

different configures

Figure

Likewise, the work volume of

-18

different configures

Figure 4-

Likewise, the work volume of

18 (b). For example,

different configures

-18. (a) 3D single section w

Likewise, the work volume of

(b). For example,

different configures

. (a) 3D single section w

Likewise, the work volume of

(b). For example,

different configures

. (a) 3D single section w

(XZ)

Likewise, the work volume of

(b). For example,

different configures

. (a) 3D single section w

(XZ); (c) case2: 2D section view of three sections work volume (XZ);

Likewise, the work volume of

(b). For example,

different configures

. (a) 3D single section w

; (c) case2: 2D section view of three sections work volume (XZ);

Likewise, the work volume of

(b). For example,

different configures can be utilised

. (a) 3D single section w

; (c) case2: 2D section view of three sections work volume (XZ);

Likewise, the work volume of

(b). For example, in order to reach point

can be utilised

. (a) 3D single section w

; (c) case2: 2D section view of three sections work volume (XZ);

Likewise, the work volume of

in order to reach point

can be utilised

. (a) 3D single section work volume;(b)

; (c) case2: 2D section view of three sections work volume (XZ);

Likewise, the work volume of the

in order to reach point

can be utilised

ork volume;(b)

; (c) case2: 2D section view of three sections work volume (XZ);

the three

in order to reach point

can be utilised:









ork volume;(b)

; (c) case2: 2D section view of three sections work volume (XZ);

three

in order to reach point

:









3

2

1







ork volume;(b)

; (c) case2: 2D section view of three sections work volume (XZ);

three-section continuum robot is presented in

in order to reach point











3

2

1

102

(b)

(c)

ork volume;(b) case1:

; (c) case2: 2D section view of three sections work volume (XZ);

section continuum robot is presented in

in order to reach point













and

102

(b)

(c)

case1:

; (c) case2: 2D section view of three sections work volume (XZ);

section continuum robot is presented in

in order to reach point

15

25

25

and

case1: 2D section view of three sections work volume

; (c) case2: 2D section view of three sections work volume (XZ);

section continuum robot is presented in

in order to reach point X





0.15

0.25

0.25

2D section view of three sections work volume

; (c) case2: 2D section view of three sections work volume (XZ);

section continuum robot is presented in

YX ,









0

2D section view of three sections work volume

; (c) case2: 2D section view of three sections work volume (XZ);

section continuum robot is presented in

ZY ,

2D section view of three sections work volume

; (c) case2: 2D section view of three sections work volume (XZ);

section continuum robot is presented in

= 

2D section view of three sections work volume

; (c) case2: 2D section view of three sections work volume (XZ);

section continuum robot is presented in

250

2D section view of three sections work volume

; (c) case2: 2D section view of three sections work volume (XZ);

section continuum robot is presented in

0,250

2D section view of three sections work volume

; (c) case2: 2D section view of three sections work volume (XZ);

section continuum robot is presented in

140,0

2D section view of three sections work volume

; (c) case2: 2D section view of three sections work volume (XZ);

section continuum robot is presented in

140 , there are

2D section view of three sections work volume

; (c) case2: 2D section view of three sections work volume (XZ);

section continuum robot is presented in

, there are

2D section view of three sections work volume

section continuum robot is presented in

, there are

Chapter 4

2D section view of three sections work volume

section continuum robot is presented in Figure

, there are

Chapter 4

2D section view of three sections work volume

Figure

, there are four

Chapter 4

2D section view of three sections work volume

Figure

four

2D section view of three sections work volume

Figure

four



Chapter 4

103











































0.35

0.15

0.35

3

2

1







and



































0.45

0.45

0.56

3

2

1







and





































0.15

0.25

0.56

3

2

1







In order to reach point  ZYX ,, =  140,0,250 , one configure can reach this point:















































0.55

0.65

0.35

3

2

1







It can found that for some positions, the end of the arm can reach the desired places

with different configurations, which can allow the robot operate on that point with

variable orientations (dexterous workspace); while regarding the other positions, the

arm can reach the desired places with one configuration (reachable workspace).

4.5. Conclusions

Over the last twenty years, there have been variable methods presented in the

kinematics study of continuum robot, e.g. Denavit-Hartenberg and geometry

approaches. However, since new continuum robot concepts were introduced,

kinematics models for them were needed to be discussed, including both inverse and

forward kinematics. Based on an algebra approach, a straightforward kinematic model

for the family of double-pivot compliant joint concepts was presented in this chapter.

Unlike the conventional approach making a projection on section’s bending plane

which transfers the 3D problem to 2D, the new method directly projects cables on the

backbone and remarkably simplifies the derivation. Regarding the concept of twin-
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pivot compliant joint construction, a new kinematic model was also developed based

on a combination of D-H method and geometry approach. Two sub-bending planes

were utilised for deriving forward kinematics, since the conventional geometry

approach cannot be deployed here by projecting on section’s overall bending plane,

due to the construction. Moreover, an iterative approach was utilised for minimising

the kinematic error causing by assuming section bending angle equal with tip disk

orientation, so that an accurate inverse kinematics can be obtained, which enables the

continuum robot have precision position control. The kinematics is simple and precise,

which enables real-time control for continuum robots. The follow-up experiments

(chapter 7) proved the kinematics models are reasonable (the trails of a three-section

twin-pivot continuum robot showed that the max position error is ±1mm for sweeping

in any ±5° operation area by using the bespoke kinematics).

Further, the cable tension for both two families are analysed: double-pivot compliant

joint construction can increase the cable tension up to 105.74% of its original tension

when bends in its work volume, while a structure employing twin-pivot compliant

joints can maintain at least 95% of its original tension force at an arbitrary

configuration in its work volume. Finally, the method for calculating the work volume

of a multiple-section continuum robot is developed by considering the yield of

compliant joint material and geometry limitation. A case study of a three-section twin-

pivot continuum robot is presented.
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Chapter 5 Modelling of continuum robots

In the last twenty years, a large amount of continuum robot researches have been

presented from academia and industry. However, most of the work is related to

kinematics, navigation and control algorithm of continuum robots [66, 134, 136]. In

order to guide the design of the prototypes, some fundamental analyses including

actuation force, joint buckling, Jacobian and stiffness were made to evaluate the new

concepts presented in the chapter 3.

5.1. Force Analysis

In the previous researches, the principle of virtual work was utilized for analyzing the

static actuation force of rod-driven continuum robot [32, 159], which neglects

actuation force, twisting of the backbone, weight of robot and friction and considers

the energy of flexible rods determining the section’s shape. Since different actuation

media is employed in this research, a general static method was developed for

calculating actuation forces of cable-driven continuum robots, which built the static

equilibrium by considering end load, weight of robot, cable tension, force for bending

flexible backbone and the interaction from distal sections’ cables. Specifically,

actuation force analysis for single section with one and multiple segments was

developed successively. Based on this analysis, the actuation forces acting on each

cable for an arbitrary continuum robot bending shape can be obtained, so it allows the

designer to select the motor and the (steel) cables for the physical demonstrators while

being useful to the further compliant joint design (the force acting on the compliant

joint can be determined).

5.1.1. Mathematical model of actuation force

Firstly, the force model of a single-segment section was built. Secondly, according to

the previous model, the mathematical force model for a multiple-segment section was

developed. Based on this analysis, the force model for a multiple-section continuum
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robot can be obtained. Since a modular force model was developed in this analysis, it

allows it to be deployed for both A & B families (double-pivot and twin-pivot

compliant joint structures) of the continuum robot concepts.

Table 5-1. Nomenclature used in this section

r pitch circle radius of the actuation cable holes

S the length of single section

segment the bending angle of single segment

LoadG the end load acting on a continuum robot section

robotG the weight of a continuum robot section

activeF the active actuation force

tentionF the cable tension force

intjok the stiffness of the compliant joint (Nmm/ °)

backboneF the force acting on the backbone of the tip segment

backboneArm the moment arm of backboneF with respect to point O

baseF the actuation net force acting on the cable lengths in the base segment

radF the component of baseF in the radial direction

radArm the moment arm of radF with respect to point O

Case 1: single-segment section

In order to simplify the modelling, the analysis starts with the case of a single-segment

continuum robot section, as shown in Figure 5-1(a). The model is constructed with

two pairs of cables which are attached on disk 1; one is in the horizontal plane and

orthogonal with the other one. And the adjacent disks are connected by a flexible

backbone. Further, an extra end load is applied on disk 1 of the section.
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Likewise, the moments generated by the other cables (cable 2, 3 and 4) can be

obtained. Therefore, the total moment acting on disk 2 with respect to point O, which

is caused by the cables, can be expressed as:
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It is very clear that cableM and backboneM are equal in magnitude and opposite in

direction, which are counteracted with each other completely, so the resultant moment

is zero and does not affect the calculation of the actuation force in this section. Hence,

along the full length of the cable, the same magnitude of actuation forces acts on

cables in the multiple-segment section.

According to Eq. 5.1, the actuation force for a section with multiple segments can be

expressed as:
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Where n denotes number of segments in a single section

Further, assuming Figure 5-2 shows a schematic of two single-segment sections of a

continuum robot, according to the analysis, it can be concluded that the interaction of
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7) indicate that the actuations of the physical demonstrators based on the force

calculation of the interface are reasonable.

5.2. Buckling Analysis

Buckling failure is a major obstacle for designing the compliant joints of continuum

robots, since flexible structure can experience buckling, especially when it is acted by

the axial compressive load and constructed with relatively high length to cross-section

dimensions ratio [160]. In this section, Euler buckling theory is employed for the

evaluation of the buckling problem and the critical buckling load can be calculated as:

2
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
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(5.11)

Where E = Young’s modules; I = area moment of inertia; L = unsupported length of

column; K = column effective length factor, whose value depends on the conditions of

end support of the column: for both ends pinned (hinged, free to rotate), K = 1.0; for

both ends fixed, K = 0.50; for one end fixed and the other end pinned, K = 0.699; for

one end fixed and the other end free to move laterally, K = 2.0.

Regarding a compliant joint of the continuum robot, it is in the case of one end fixed

and the other end free to move laterally, K of which is 2. According to Eq. 5.11, a

case study of 1mm diameter and 2mm long aluminium rod is given in Eq. 5.12.
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As shown in Figure 5-4, the critical buckling load of the aforementioned aluminium

rod is 2049.6 N, which is obtained from the FEA simulation (ANSYS).
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tionKsec the stiffness matrix of a multi-segment section

Case 1: single-segment section

Generally, Jacobian of a robot can be obtained by differentiating position kinematic

equations with respect to time. Regarding to the geometry and actuation approach of a

continuum robot, the analysis of a single-segment section is given firstly in order to

simplify the derivation. Jacobian of one segment can be written as [161]:

 JV (5.13)

Where    , is the angular velocity of the segment;  21 VVV  is the linear

velocities of the actuations, 1V and 2V are the linear velocities of each pair of cables in

the segment, respectively.

Differentiating Eq. 4.5 with respect to time, yields the linear velocity of point iB :
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Where
iBOOO JJ

221
 is a 3×3 Jacobian matrix for point iB .

Figure 5-5. Velocity of point Bi and linear velocity of actuation cable
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As shown in Figure 5-5, since the linear velocity of the cable is along the direction of

the backbone, thus, dot-multiplying both sides of Eq. 5.14 by the unit vector 


yields:
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Therefore, it can be found that the matrix

   
iBOOOiiii JJJJJJ

221321  


(5.16)

is a 1×3matrix for the Jacobian of the ith pair of cables.

Writing Eq. 5.16 two times yields Jacobian matrix for two pairs of cables, which can

be written as











232221

131211

JJJ

JJJ
J (5.17)

Since the last element of the angular velocities in Eq. 5.17 is zero (each segment of

the continuum robot has two DoFs), therefore, the Jacobian matrix of one segment can

be obtained as

 segmentJV (5.18)

Where











2221

1211

JJ

JJ
J segment (5.19)

is a 2×2matrix for the Jacobian of a single-segment section.

Case 2: multiple-segment section

Further, according to the previous analysis, Jacobian matrix for multiple-segment

section is derived. Let the cable displacement of a single segment be l in a time t .

Since all the segments share the same construction and connect serially, the total
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stretch in one section is ln  , direction and bending velocities are n and n ,

respectively. Hence, the cable velocity matrix tionVsec can be expressed as:
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According to Eq. 5.20, omitting n from both sides, the following equation can be

obtained, which is single segment cable velocity:
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And the linear velocity matrix of cables in one segment segmentV can be expressed as:

segmenttion
i

i
tion
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Where segment denotes the tip angular matrix of one segment and tionJsec denotes the

Jacobian matrix of one section.

According to Eq. 5.13 and 5.22, the following equation can be obtained:

segmenttion JJ sec (5.23)

Therefore, it can be found that the Jacobian matrix of one section is equal to that of

one segment in this section. By following the same approach (i.e. differentiation with

respect to time of position kinematics equations), Jacobian matrix of other continuum

robot structures proposed in this research can be obtained.

Further, a FEA model was utilised for validating the Jacobian matrix and the velocity

calculation in ANSYS, as shown in Figure 4-6.



Figure

based on

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

bending and direction errors are obtained, as shown in

Figure

based on

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

bending and direction errors are obtained, as shown in

Figure 5

based on

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

bending and direction errors are obtained, as shown in

5-6

based on Eq.

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

bending and direction errors are obtained, as shown in

6 illustrates the procedure for validating the Jacobian analysis. Specifically,

Eq.

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

bending and direction errors are obtained, as shown in

illustrates the procedure for validating the Jacobian analysis. Specifically,

Eq. 5.

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

bending and direction errors are obtained, as shown in

illustrates the procedure for validating the Jacobian analysis. Specifically,

5.14

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

bending and direction errors are obtained, as shown in

Figure

illustrates the procedure for validating the Jacobian analysis. Specifically,

14 and

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

bending and direction errors are obtained, as shown in

Figure

illustrates the procedure for validating the Jacobian analysis. Specifically,

and 5.

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

bending and direction errors are obtained, as shown in

Figure 5-

illustrates the procedure for validating the Jacobian analysis. Specifically,

5.23

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

bending and direction errors are obtained, as shown in

-6. Verification method for Jacobian matrix;

illustrates the procedure for validating the Jacobian analysis. Specifically,

23, actuation velocities (cable velocit

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

bending and direction errors are obtained, as shown in

. Verification method for Jacobian matrix;

illustrates the procedure for validating the Jacobian analysis. Specifically,

, actuation velocities (cable velocit

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

bending and direction errors are obtained, as shown in

. Verification method for Jacobian matrix;

illustrates the procedure for validating the Jacobian analysis. Specifically,

, actuation velocities (cable velocit

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

bending and direction errors are obtained, as shown in

. Verification method for Jacobian matrix;

illustrates the procedure for validating the Jacobian analysis. Specifically,

, actuation velocities (cable velocit

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

bending and direction errors are obtained, as shown in

117

. Verification method for Jacobian matrix;

illustrates the procedure for validating the Jacobian analysis. Specifically,

, actuation velocities (cable velocit

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

bending and direction errors are obtained, as shown in

(b)

117

. Verification method for Jacobian matrix;

illustrates the procedure for validating the Jacobian analysis. Specifically,

, actuation velocities (cable velocit

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

bending and direction errors are obtained, as shown in

(b)

. Verification method for Jacobian matrix;

illustrates the procedure for validating the Jacobian analysis. Specifically,

, actuation velocities (cable velocit

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

bending and direction errors are obtained, as shown in

. Verification method for Jacobian matrix;

illustrates the procedure for validating the Jacobian analysis. Specifically,

, actuation velocities (cable velocit

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

bending and direction errors are obtained, as shown in

. Verification method for Jacobian matrix;

illustrates the procedure for validating the Jacobian analysis. Specifically,

, actuation velocities (cable velocit

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

bending and direction errors are obtained, as shown in Figure

. Verification method for Jacobian matrix;

illustrates the procedure for validating the Jacobian analysis. Specifically,

, actuation velocities (cable velocit

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

Figure

. Verification method for Jacobian matrix;

illustrates the procedure for validating the Jacobian analysis. Specifically,

, actuation velocities (cable velocit

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

Figure 5

. Verification method for Jacobian matrix;

illustrates the procedure for validating the Jacobian analysis. Specifically,

, actuation velocities (cable velocit

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

5-7.

illustrates the procedure for validating the Jacobian analysis. Specifically,

, actuation velocities (cable velocities) at an arbitrary

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

.

illustrates the procedure for validating the Jacobian analysis. Specifically,

ies) at an arbitrary

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

illustrates the procedure for validating the Jacobian analysis. Specifically,

ies) at an arbitrary

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

illustrates the procedure for validating the Jacobian analysis. Specifically,

ies) at an arbitrary

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measu

the FEA model. Comparing the measured data with the given angular velocities, the

Chapter 5

illustrates the procedure for validating the Jacobian analysis. Specifically,

ies) at an arbitrary

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

accordingly. Further, the angular velocities of the continuum robot are measured from

the FEA model. Comparing the measured data with the given angular velocities, the

Chapter 5

illustrates the procedure for validating the Jacobian analysis. Specifically,

ies) at an arbitrary

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

red from

the FEA model. Comparing the measured data with the given angular velocities, the

Chapter 5

illustrates the procedure for validating the Jacobian analysis. Specifically,

ies) at an arbitrary

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

red from

the FEA model. Comparing the measured data with the given angular velocities, the

illustrates the procedure for validating the Jacobian analysis. Specifically,

ies) at an arbitrary

configuration can be calculated with regard to a given angular velocity of the

continuum robot, and then those velocities of the FEA simulation model are set

red from

the FEA model. Comparing the measured data with the given angular velocities, the



calculation error of the direction velocity comparing with the FEA model (

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s) and 0.63 radian/sec (36

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Jacobian matrix of continuum robots.

5.6. S

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

depends on

actuators, control system.

and steel cable is assumed

Theoretically, in respect of a conventional robot, the stiffness can be expre

Figure

calculation error of the direction velocity comparing with the FEA model (

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s) and 0.63 radian/sec (36

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Jacobian matrix of continuum robots.

5.6. S

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

depends on

actuators, control system.

and steel cable is assumed

Theoretically, in respect of a conventional robot, the stiffness can be expre

Figure

calculation error of the direction velocity comparing with the FEA model (

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s) and 0.63 radian/sec (36

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Jacobian matrix of continuum robots.

5.6. Stiffness Analysis

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

depends on

actuators, control system.

and steel cable is assumed

Theoretically, in respect of a conventional robot, the stiffness can be expre

Figure 5

calculation error of the direction velocity comparing with the FEA model (

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s) and 0.63 radian/sec (36

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Jacobian matrix of continuum robots.

tiffness Analysis

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

depends on

actuators, control system.

and steel cable is assumed

Theoretically, in respect of a conventional robot, the stiffness can be expre

5-7. (a) Calculation error of the bending velocity comparing with the FEA model (b)

calculation error of the direction velocity comparing with the FEA model (

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s) and 0.63 radian/sec (36

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Jacobian matrix of continuum robots.

tiffness Analysis

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

depends on several

actuators, control system.

and steel cable is assumed

Theoretically, in respect of a conventional robot, the stiffness can be expre

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

calculation error of the direction velocity comparing with the FEA model (

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s) and 0.63 radian/sec (36

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Jacobian matrix of continuum robots.

tiffness Analysis

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

several

actuators, control system.

and steel cable is assumed

Theoretically, in respect of a conventional robot, the stiffness can be expre

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

calculation error of the direction velocity comparing with the FEA model (

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s) and 0.63 radian/sec (36

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Jacobian matrix of continuum robots.

tiffness Analysis

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

several

actuators, control system.

and steel cable is assumed

Theoretically, in respect of a conventional robot, the stiffness can be expre

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

calculation error of the direction velocity comparing with the FEA model (

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s) and 0.63 radian/sec (36

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Jacobian matrix of continuum robots.

tiffness Analysis

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

several factors, including size and material of the

actuators, control system.

and steel cable is assumed

Theoretically, in respect of a conventional robot, the stiffness can be expre

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

calculation error of the direction velocity comparing with the FEA model (

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s) and 0.63 radian/sec (36

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Jacobian matrix of continuum robots.

tiffness Analysis

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

factors, including size and material of the

actuators, control system.

and steel cable is assumed

Theoretically, in respect of a conventional robot, the stiffness can be expre

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

calculation error of the direction velocity comparing with the FEA model (

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s) and 0.63 radian/sec (36

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Jacobian matrix of continuum robots.

tiffness Analysis

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

factors, including size and material of the

actuators, control system. In this

and steel cable is assumed to be

Theoretically, in respect of a conventional robot, the stiffness can be expre

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

calculation error of the direction velocity comparing with the FEA model (

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s) and 0.63 radian/sec (36

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Jacobian matrix of continuum robots.

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

factors, including size and material of the

n this

to be

Theoretically, in respect of a conventional robot, the stiffness can be expre

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

calculation error of the direction velocity comparing with the FEA model (

are presented in

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s) and 0.63 radian/sec (36

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Jacobian matrix of continuum robots.

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

factors, including size and material of the

n this thesis

the

Theoretically, in respect of a conventional robot, the stiffness can be expre

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

calculation error of the direction velocity comparing with the FEA model (

are presented in

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s) and 0.63 radian/sec (36 degrees/s), respectively. The max bending and

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Jacobian matrix of continuum robots.

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

factors, including size and material of the

thesis

the major

Theoretically, in respect of a conventional robot, the stiffness can be expre

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

calculation error of the direction velocity comparing with the FEA model (

are presented in

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s), respectively. The max bending and

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

factors, including size and material of the

thesis, the

major

Theoretically, in respect of a conventional robot, the stiffness can be expre

F 

118

(c)

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

calculation error of the direction velocity comparing with the FEA model (

are presented in

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s), respectively. The max bending and

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

factors, including size and material of the

, the

major source

Theoretically, in respect of a conventional robot, the stiffness can be expre

K

118

(c)

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

calculation error of the direction velocity comparing with the FEA model (

are presented in Figure

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s), respectively. The max bending and

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

factors, including size and material of the

, the relative flexibility

source

Theoretically, in respect of a conventional robot, the stiffness can be expre

X

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

calculation error of the direction velocity comparing with the FEA model (

Figure

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s), respectively. The max bending and

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

factors, including size and material of the

relative flexibility

sources

Theoretically, in respect of a conventional robot, the stiffness can be expre

X

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

calculation error of the direction velocity comparing with the FEA model (

Figure 4-6

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s), respectively. The max bending and

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

factors, including size and material of the

relative flexibility

of

Theoretically, in respect of a conventional robot, the stiffness can be expre

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

calculation error of the direction velocity comparing with the FEA model (

6)

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s), respectively. The max bending and

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

factors, including size and material of the

relative flexibility

of the

Theoretically, in respect of a conventional robot, the stiffness can be expre

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

calculation error of the direction velocity comparing with the FEA model (

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s), respectively. The max bending and

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

factors, including size and material of the

relative flexibility

the compliance.

Theoretically, in respect of a conventional robot, the stiffness can be expre

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

calculation error of the direction velocity comparing with the FEA model (the specifications of the

It can be clearly found the max bending and direction errors are

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s), respectively. The max bending and

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. T

factors, including size and material of the

relative flexibility

compliance.

Theoretically, in respect of a conventional robot, the stiffness can be expre

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

the specifications of the

It can be clearly found the max bending and direction errors are 2

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s), respectively. The max bending and

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

2DoF stiffness matrix of continuum robot will be presented. The

factors, including size and material of the

relative flexibility of the

compliance.

Theoretically, in respect of a conventional robot, the stiffness can be expre

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

the specifications of the

7.2 

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s), respectively. The max bending and

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

he stiffness

factors, including size and material of the

of the

compliance.

Theoretically, in respect of a conventional robot, the stiffness can be expre

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

the specifications of the

10

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s), respectively. The max bending and

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

stiffness

factors, including size and material of the links and joints,

of the compliant

compliance.

Theoretically, in respect of a conventional robot, the stiffness can be expre

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

the specifications of the

410 and

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s), respectively. The max bending and

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

stiffness

links and joints,

compliant

Theoretically, in respect of a conventional robot, the stiffness can be expressed as:

. (a) Calculation error of the bending velocity comparing with the FEA model (b)

the specifications of the

and

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s), respectively. The max bending and

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

stiffness of a

links and joints,

compliant

ssed as:

Chapter 5

. (a) Calculation error of the bending velocity comparing with the FEA model (b) the

the specifications of the

and 5.2

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s), respectively. The max bending and

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

of a

links and joints,

compliant

ssed as:

(5.

Chapter 5

the

the specifications of the model

105

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s), respectively. The max bending and

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

of a robot

links and joints,

compliant joint

ssed as:

(5.24

Chapter 5

model

410

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s), respectively. The max bending and

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

robot

links and joints,

joint

24)

model

radian/sec, when the given bending and direction velocities are 0.35radian/s (20

degrees/s), respectively. The max bending and

direction velocity errors between simulation and calculation are 0.08% and 0.04%,

which proves the analysis reasonable and the approach can be employed to analyse the

Stiffness is a key parameter for evaluating the design of a robot system. In this part, a

links and joints,

joint



Chapter 5

119

Where F is the vector of force or moment applied on the tip of the robot; X is the

displacement of the tip; the stiffness matrix K can be mathematically expressed as

[161]:

TT kJJK  (5.25)

Where J is the Jacobian matrix of the robot and k denotes a stiffness matrix, which

contains the stiffness information of the compliant elements of the robot, e.g. the joints

and the actuations cables.

Since the stiffness of the entire continuum robot depends on the stiffness of a single

segment, single segment stiffness is presented firstly. With regards to the proposed

concept of the continuum robot, the links are connected by compliant joints and driven

by cables, thus the segment stiffness matrix segmentK can be written as [162]:

intintint jojo
T

jocablecable
T

cablesegment JkJJkJK  (5.26)

Where cablecable
T

cable JkJ denotes the stiffness matrix caused by the actuations (cables),

intintint jojo
T

jo JkJ denotes the stiffness matrix provided by the compliant joints. cablek

and intjok are the stiffness matrixes of steel cables and compliant joints in a single

segment. cableJ & intjoJ are the Jacobian matrixes relating the segment angular

velocities to the cable and compliant joint velocities.

Eq. 5.27 represents the cable stiffness matrix and each element represents the stiffness

constant of a cable.











2

1

0

0

k

k
kcable (5.27)

Where 1k and 2k are the cable stiffness constant in X and Y direction. As

aforementioned, Jacobian matrix segmentJ maps the angular velocities of a segment to
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those of the actuations, which is as the same as cableJ , hence, cableJ is equal to the

Jacobian matrix segmentJ .

Eq. 5.28 represents the stiffness matrix determined by the compliant joints in a single

segment. Each element of the matrix represents the compliant joint stiffness constant

in different axes.

 
 








int

int
int 20

02

jo

jo
jo lEI

lEI
k (5.28)

Since the resultant angular velocities of the compliant joints are equivalent to those of

a segment, the joint Jacobian intjoJ is an identity matrix ( IJ jo int ).

Therefore, the stiffness matrix of a single segment of continuum robot can be obtained:

intjosegmentcable
T
segmentsegment kJkJK  (5.29)

Due to the fact that all segments in one section share the same construction, thus, the

stiffness matrix of a section can be express as:

n

K
K

segment
tion sec (5.30)

Where number of segments in one section is denoted as n.

With regard to bending angle range  2,2  , the stiffness of one section at

direction angle 0° and 45° are shown in Figure 5-10. For example, the stiffness of

0.75mm diameter 100mm long steel cable is 150 N/mm. The stiffness of 3mm elastic

rod is 1314 Nmm/radian. It can be found that the max and min stiffness are 6501 and

6227 Nmm/radian. Hence, the stiffness matrix on one section of continuum robot is

obtained.
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stiffness analysis and simulation was utilised to estimate the performance of the

hardware and to optimize the design.

5.4. Conclusions

In this chapter, several fundamental modelling including actuation force, joint

buckling, Jacobian and stiffness are presented. Based on the force analysis, unlike the

conventional approach utilized in the actuation analysis of rod-driven continuum robot

(principle of virtual work), a static analysis of cable-driven continuum robot is

developed, by considering gravity, end load, cable tension, force for bending flexible

backbone and the interaction from distal sections’ cables. Hence, the actuation force of

an arbitrary section in a multiple-section continuum robot with a random bending

shape can be calculated, which helped the designer determine the specifications of the

motors and steel cables utilized in the physical demonstrators. The following

experiments prove the actuation selections of the demonstrators are reasonable.

Since compliant joint is relatively flexible comparing with conventional rigid joint, the

joint can be buckled if overloaded, which can cause poor control accuracy and even

physically fail the whole system. Hence, a method for calculating the critical buckling

load of compliant joints is presented, which was utilized for guiding the compliant

joint designs of the physical demonstrators and validated on the following trials.

Further, the Jacobian of multiple-segment section is presented, so it allows the

actuation velocities able to be calculated according to the given angular velocities of a

section. Finally, based on the Jacobian analysis, the stiffness of the multiple-segment

section is analyzed and validated by the simulation with a max 7% error.
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Specifically, the first design utilizes a piece of mono-coil tube as the backbone (Figure

6-2(a)), which provides a working channel for the machining tools to be delivered to

the tip of the continuum robot along the axial direction. Concept one demonstrated a

good capability of flexibility. However, the spring-like construction makes it difficult

to evaluate/control the backbone length, since the varying actuation force along the

longitudinal direction compress the backbone to variable lengths in the process of

operation, as shown in Figure 6-2(d), which causes a poor accuracy and stiffness of

the continuum robot [105].

The second system consists of three super-elastic NiTi rods as the backbone and the

mechanism for transmitting the actuation force. All the disks are mounted to one rod

by glue, while the other two rods are attached to the tip disk and can run through the

holes of other disks along the longitudinal axis (Figure 6-2(b)). Unlike steel cables, the

elastic rod can push and pull for adjusting the orientation of the tip disk. Hence, two

linear actuators are theoretically needed for single section, which allows fewer

actuations than the other two concepts. However, since the rods bend in an uneven

shape rather than a circle arc (Figure 6-2(e)) when it is pushed, a complex algorithm of

actuation compensation is required for the precise position control [132].

The third concept (Figure 6-2 (c)) employs a single central located super-elastic NiTi

rod as the backbone. Comparing with the other two concepts, it has following

advantages:

1) NiTi rods have good stiffness in longitudinal direction, thus they do not have the

variable backbone length problem, comparing with the concept 1;

2) This system uses steel cable as the actuation, which is much easier to build a

kinematic model for it, comparing with the concept 2;

Therefore, super-elastic NiTi rod was determined to be utilized as the backbone of the

next prototype.
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Section 3 28 N

Stage 2

Section 4 27 N

48 g 27mmSection 5 25 N

Section 6 22 N

Stage 3

Section 7 22 N

26 g 20mmSection 8 19 N

Section 9 17 N

Stage 4

Section 10 18 N

17 g 15mmSection 11 17 N

Section 12 15 N

Total 275 N 495 g

In order to provide sufficient electrical motor transmission to meet the arm articulation

requirements, DC motors with high ratio gears (304:1) are used that produce 2.4Nm of

torque. This gives a max cable pull force of 143N each which is carried in additional

bearings mounted to the spools. As the actuation systems are somehow the results of

an ordinary design exercise that has been the work of an experienced engineering

designer associated to MiRoR project, they were not the focus of this thesis and

therefore, they are presented very briefly as they allow the realisation and the

demonstration of proposed continuum arm designs. As shown in Figure 6-10(a), this

electromechanical actuation pack is designed to be light (7.5Kg) and compact (O/D

235mm x 126mm total height), with planned design improvements (more torque,

lower weight) making it suitable to be coupled and carried by the walking hexapod

proposed in MiRoR (Chapter 1.3) when required. Figure 6-10(b) illustrates the

concept of the spool mechanism which makes two cables coiled in the pattern of

Archimedean spirals. However, in the experiment, it was found that when the spool

rotates an arbitrary angle, the displacement of the cable in one side is not equal to that



of the other cable attached on the same spool, thus

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

demonstrator.

Figure

The following trial (see detail in Chapter 7.2) proves this system have great bending

capability, high length

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

of the other cable attached on the same spool, thus

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

demonstrator.

Figure

The following trial (see detail in Chapter 7.2) proves this system have great bending

capability, high length

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

of the other cable attached on the same spool, thus

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

demonstrator.

Figure 6

The following trial (see detail in Chapter 7.2) proves this system have great bending

capability, high length

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

of the other cable attached on the same spool, thus

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

demonstrator.

6-10

The following trial (see detail in Chapter 7.2) proves this system have great bending

capability, high length

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

of the other cable attached on the same spool, thus

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

demonstrator.

10. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

The following trial (see detail in Chapter 7.2) proves this system have great bending

capability, high length

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

of the other cable attached on the same spool, thus

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

demonstrator.

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

The following trial (see detail in Chapter 7.2) proves this system have great bending

capability, high length

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

of the other cable attached on the same spool, thus

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

The following trial (see detail in Chapter 7.2) proves this system have great bending

capability, high length

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

of the other cable attached on the same spool, thus

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

The following trial (see detail in Chapter 7.2) proves this system have great bending

capability, high length

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

of the other cable attached on the same spool, thus

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

The following trial (see detail in Chapter 7.2) proves this system have great bending

capability, high length/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

of the other cable attached on the same spool, thus

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

of the other cable attached on the same spool, thus

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

of the other cable attached on the same spool, thus

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

of the other cable attached on the same spool, thus

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

2nd

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

of the other cable attached on the same spool, thus

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

nd demonstrato

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

137

of the other cable attached on the same spool, thus

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

(a)

(b)

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

demonstrato

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

137

of the other cable attached on the same spool, thus

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

(a)

(b)

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

demonstrato

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

of the other cable attached on the same spool, thus

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

demonstrator;

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

of the other cable attached on the same spool, thus it cause one cable is not tensioned,

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

r;

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

it cause one cable is not tensioned,

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

it cause one cable is not tensioned,

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

it cause one cable is not tensioned,

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

it cause one cable is not tensioned,

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

it cause one cable is not tensioned,

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

it cause one cable is not tensioned,

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

it cause one cable is not tensioned,

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

it cause one cable is not tensioned,

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

Chapter 6

it cause one cable is not tensioned,

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

Chapter 6

it cause one cable is not tensioned,

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

Chapter 6

it cause one cable is not tensioned,

which renders the decrease of the stiffness. In order to solve this problem, another

cable coiling approach was employed to build the spool mechanism for the 3 rd

. (a) actuation pack of full length continuum robot; (b) concept of the spool employed in the

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,

it cause one cable is not tensioned,

which renders the decrease of the stiffness. In order to solve this problem, another

The following trial (see detail in Chapter 7.2) proves this system have great bending

/diameter ratio, lightweight construction and an appropriate

navigation accuracy. However, the twisting problem of the central located backbone

needs to be addressed, which drastically affects the control of the system. Further,



regarding the actuation sys

to keep the tensions for both cables in a spool.

6.2.2. Variable stiffness system

For evaluating the stiffening concept, several variable stiffness systems have been

built and tested on the second

ordinary continuum manipulator into a

articulated, tubular constructions consist of:

Prototype (1): As shown in

steel

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

force i

regarding the actuation sys

to keep the tensions for both cables in a spool.

6.2.2. Variable stiffness system

For evaluating the stiffening concept, several variable stiffness systems have been

built and tested on the second

ordinary continuum manipulator into a

articulated, tubular constructions consist of:

(1)

(2)

(3)

(4)

Prototype (1): As shown in

steel

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

force i

regarding the actuation sys

to keep the tensions for both cables in a spool.

6.2.2. Variable stiffness system

For evaluating the stiffening concept, several variable stiffness systems have been

built and tested on the second

ordinary continuum manipulator into a

articulated, tubular constructions consist of:

(1)

(2)

(3)

(4)

Prototype (1): As shown in

steel spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

force is required for bending the spring) and Kevlar tube (low elongation ratio).

regarding the actuation sys

to keep the tensions for both cables in a spool.

6.2.2. Variable stiffness system

For evaluating the stiffening concept, several variable stiffness systems have been

built and tested on the second

ordinary continuum manipulator into a

articulated, tubular constructions consist of:

A power supplier (up to 24V);

Heating elements (Nichrome wires);

Thermoplasti

External & internal sleeve (rubber/Kevlar tube) for constraining the

thermoplastics.

Prototype (1): As shown in

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

regarding the actuation sys

to keep the tensions for both cables in a spool.

6.2.2. Variable stiffness system

For evaluating the stiffening concept, several variable stiffness systems have been

built and tested on the second

ordinary continuum manipulator into a

articulated, tubular constructions consist of:

A power supplier (up to 24V);

Heating elements (Nichrome wires);

Thermoplasti

External & internal sleeve (rubber/Kevlar tube) for constraining the

thermoplastics.

Prototype (1): As shown in

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

regarding the actuation sys

to keep the tensions for both cables in a spool.

6.2.2. Variable stiffness system

For evaluating the stiffening concept, several variable stiffness systems have been

built and tested on the second

ordinary continuum manipulator into a

articulated, tubular constructions consist of:

A power supplier (up to 24V);

Heating elements (Nichrome wires);

Thermoplasti

External & internal sleeve (rubber/Kevlar tube) for constraining the

thermoplastics.

Prototype (1): As shown in

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

regarding the actuation sys

to keep the tensions for both cables in a spool.

6.2.2. Variable stiffness system

For evaluating the stiffening concept, several variable stiffness systems have been

built and tested on the second

ordinary continuum manipulator into a

articulated, tubular constructions consist of:

A power supplier (up to 24V);

Heating elements (Nichrome wires);

Thermoplasti

External & internal sleeve (rubber/Kevlar tube) for constraining the

thermoplastics.

Prototype (1): As shown in

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

regarding the actuation sys

to keep the tensions for both cables in a spool.

6.2.2. Variable stiffness system

For evaluating the stiffening concept, several variable stiffness systems have been

built and tested on the second

ordinary continuum manipulator into a

articulated, tubular constructions consist of:

A power supplier (up to 24V);

Heating elements (Nichrome wires);

Thermoplastics (polymorph: liquid

External & internal sleeve (rubber/Kevlar tube) for constraining the

thermoplastics.

Prototype (1): As shown in

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

regarding the actuation sys

to keep the tensions for both cables in a spool.

6.2.2. Variable stiffness system

For evaluating the stiffening concept, several variable stiffness systems have been

built and tested on the second

ordinary continuum manipulator into a

articulated, tubular constructions consist of:

A power supplier (up to 24V);

Heating elements (Nichrome wires);

cs (polymorph: liquid

External & internal sleeve (rubber/Kevlar tube) for constraining the

thermoplastics.

Prototype (1): As shown in

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

regarding the actuation system, the design of the spool needs to be modified in order

to keep the tensions for both cables in a spool.

6.2.2. Variable stiffness system

For evaluating the stiffening concept, several variable stiffness systems have been

built and tested on the second

ordinary continuum manipulator into a

articulated, tubular constructions consist of:

A power supplier (up to 24V);

Heating elements (Nichrome wires);

cs (polymorph: liquid

External & internal sleeve (rubber/Kevlar tube) for constraining the

Prototype (1): As shown in Figure

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

tem, the design of the spool needs to be modified in order

to keep the tensions for both cables in a spool.

6.2.2. Variable stiffness system

For evaluating the stiffening concept, several variable stiffness systems have been

built and tested on the second

ordinary continuum manipulator into a

articulated, tubular constructions consist of:

A power supplier (up to 24V);

Heating elements (Nichrome wires);

cs (polymorph: liquid

External & internal sleeve (rubber/Kevlar tube) for constraining the

Figure

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

tem, the design of the spool needs to be modified in order

to keep the tensions for both cables in a spool.

6.2.2. Variable stiffness system

For evaluating the stiffening concept, several variable stiffness systems have been

built and tested on the second continuum robot demonstrator, which can turn an

ordinary continuum manipulator into a

articulated, tubular constructions consist of:

A power supplier (up to 24V);

Heating elements (Nichrome wires);

cs (polymorph: liquid

External & internal sleeve (rubber/Kevlar tube) for constraining the

Figure

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

tem, the design of the spool needs to be modified in order

to keep the tensions for both cables in a spool.

6.2.2. Variable stiffness system

For evaluating the stiffening concept, several variable stiffness systems have been

continuum robot demonstrator, which can turn an

ordinary continuum manipulator into a

articulated, tubular constructions consist of:

A power supplier (up to 24V);

Heating elements (Nichrome wires);

cs (polymorph: liquid

External & internal sleeve (rubber/Kevlar tube) for constraining the

Figure 6-11

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

tem, the design of the spool needs to be modified in order

to keep the tensions for both cables in a spool.

For evaluating the stiffening concept, several variable stiffness systems have been

continuum robot demonstrator, which can turn an

ordinary continuum manipulator into a variable

articulated, tubular constructions consist of:

A power supplier (up to 24V);

Heating elements (Nichrome wires);

cs (polymorph: liquid

External & internal sleeve (rubber/Kevlar tube) for constraining the

11(a) & (b), the system comprises a compression

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

138

tem, the design of the spool needs to be modified in order

to keep the tensions for both cables in a spool.

For evaluating the stiffening concept, several variable stiffness systems have been

continuum robot demonstrator, which can turn an

variable

articulated, tubular constructions consist of:

Heating elements (Nichrome wires);

cs (polymorph: liquid-like, when melt);

External & internal sleeve (rubber/Kevlar tube) for constraining the

(a) & (b), the system comprises a compression

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

(a)

138

tem, the design of the spool needs to be modified in order

to keep the tensions for both cables in a spool.

For evaluating the stiffening concept, several variable stiffness systems have been

continuum robot demonstrator, which can turn an

variable

Heating elements (Nichrome wires);

like, when melt);

External & internal sleeve (rubber/Kevlar tube) for constraining the

(a) & (b), the system comprises a compression

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

(a)

tem, the design of the spool needs to be modified in order

For evaluating the stiffening concept, several variable stiffness systems have been

continuum robot demonstrator, which can turn an

variable-stiffness

like, when melt);

External & internal sleeve (rubber/Kevlar tube) for constraining the

(a) & (b), the system comprises a compression

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

tem, the design of the spool needs to be modified in order

For evaluating the stiffening concept, several variable stiffness systems have been

continuum robot demonstrator, which can turn an

stiffness

like, when melt);

External & internal sleeve (rubber/Kevlar tube) for constraining the

(a) & (b), the system comprises a compression

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

tem, the design of the spool needs to be modified in order

For evaluating the stiffening concept, several variable stiffness systems have been

continuum robot demonstrator, which can turn an

stiffness

like, when melt);

External & internal sleeve (rubber/Kevlar tube) for constraining the

(a) & (b), the system comprises a compression

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

tem, the design of the spool needs to be modified in order

For evaluating the stiffening concept, several variable stiffness systems have been

continuum robot demonstrator, which can turn an

stiffness continuum robot. These non

like, when melt);

External & internal sleeve (rubber/Kevlar tube) for constraining the

(a) & (b), the system comprises a compression

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

tem, the design of the spool needs to be modified in order

For evaluating the stiffening concept, several variable stiffness systems have been

continuum robot demonstrator, which can turn an

continuum robot. These non

like, when melt);

External & internal sleeve (rubber/Kevlar tube) for constraining the

(a) & (b), the system comprises a compression

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

tem, the design of the spool needs to be modified in order

For evaluating the stiffening concept, several variable stiffness systems have been

continuum robot demonstrator, which can turn an

continuum robot. These non

External & internal sleeve (rubber/Kevlar tube) for constraining the

(a) & (b), the system comprises a compression

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

tem, the design of the spool needs to be modified in order

For evaluating the stiffening concept, several variable stiffness systems have been

continuum robot demonstrator, which can turn an

continuum robot. These non

External & internal sleeve (rubber/Kevlar tube) for constraining the

(a) & (b), the system comprises a compression

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

tem, the design of the spool needs to be modified in order

For evaluating the stiffening concept, several variable stiffness systems have been

continuum robot demonstrator, which can turn an

continuum robot. These non

External & internal sleeve (rubber/Kevlar tube) for constraining the

(a) & (b), the system comprises a compression

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

tem, the design of the spool needs to be modified in order

For evaluating the stiffening concept, several variable stiffness systems have been

continuum robot demonstrator, which can turn an

continuum robot. These non

External & internal sleeve (rubber/Kevlar tube) for constraining the

(a) & (b), the system comprises a compression

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

tem, the design of the spool needs to be modified in order

For evaluating the stiffening concept, several variable stiffness systems have been

continuum robot demonstrator, which can turn an

continuum robot. These non

External & internal sleeve (rubber/Kevlar tube) for constraining the

(a) & (b), the system comprises a compression

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

Chapter 6

tem, the design of the spool needs to be modified in order

For evaluating the stiffening concept, several variable stiffness systems have been

continuum robot demonstrator, which can turn an

continuum robot. These non

External & internal sleeve (rubber/Kevlar tube) for constraining the

(a) & (b), the system comprises a compression

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

s required for bending the spring) and Kevlar tube (low elongation ratio).

Chapter 6

tem, the design of the spool needs to be modified in order

For evaluating the stiffening concept, several variable stiffness systems have been

continuum robot demonstrator, which can turn an

continuum robot. These non

External & internal sleeve (rubber/Kevlar tube) for constraining the

(a) & (b), the system comprises a compression

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

Chapter 6

tem, the design of the spool needs to be modified in order

For evaluating the stiffening concept, several variable stiffness systems have been

continuum robot demonstrator, which can turn an

continuum robot. These non-

External & internal sleeve (rubber/Kevlar tube) for constraining the

(a) & (b), the system comprises a compression

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great

tem, the design of the spool needs to be modified in order

For evaluating the stiffening concept, several variable stiffness systems have been

continuum robot demonstrator, which can turn an

External & internal sleeve (rubber/Kevlar tube) for constraining the

(a) & (b), the system comprises a compression

spring in polymorph covered by Kevlar sleeve. The system can be heated up by

activated NiCr wire and softened at the temperature of 60 °C. However, it was found

that the max bend of the continuum robot (approx. 30°) is limited by the spring (great



Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

as shown in

allows the continuum

having a good stiffness in the rigid state.

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

were determined and utilised in the next prototype.

6.3. Prototype

backbone)

The second prototype has great bending capability and high length/diameter ratio.

However, in the experim

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

aforementioned twin

(three sections) used as a step

Figure

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

as shown in

allows the continuum

having a good stiffness in the rigid state.

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

were determined and utilised in the next prototype.

6.3. Prototype

backbone)

The second prototype has great bending capability and high length/diameter ratio.

However, in the experim

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

aforementioned twin

(three sections) used as a step

Figure

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

as shown in

allows the continuum

having a good stiffness in the rigid state.

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

were determined and utilised in the next prototype.

6.3. Prototype

backbone)

The second prototype has great bending capability and high length/diameter ratio.

However, in the experim

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

aforementioned twin

(three sections) used as a step

Figure 6

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

as shown in

allows the continuum

having a good stiffness in the rigid state.

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

were determined and utilised in the next prototype.

6.3. Prototype

backbone)

The second prototype has great bending capability and high length/diameter ratio.

However, in the experim

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

aforementioned twin

(three sections) used as a step

6-11

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

as shown in Figure

allows the continuum

having a good stiffness in the rigid state.

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

were determined and utilised in the next prototype.

6.3. Prototype

backbone)

The second prototype has great bending capability and high length/diameter ratio.

However, in the experim

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

aforementioned twin

(three sections) used as a step

11. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

Figure

allows the continuum

having a good stiffness in the rigid state.

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

were determined and utilised in the next prototype.

6.3. Prototype

The second prototype has great bending capability and high length/diameter ratio.

However, in the experim

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

aforementioned twin

(three sections) used as a step

(b)

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

Figure 6

allows the continuum

having a good stiffness in the rigid state.

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

were determined and utilised in the next prototype.

6.3. Prototype

The second prototype has great bending capability and high length/diameter ratio.

However, in the experim

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

aforementioned twin

(three sections) used as a step

(b)

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

6-11

allows the continuum robot generate greater bending angle in the soft state while still

having a good stiffness in the rigid state.

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

were determined and utilised in the next prototype.

3

The second prototype has great bending capability and high length/diameter ratio.

However, in the experim

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

aforementioned twin-compliant joint concept was employed in the 3

(three sections) used as a step

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

11(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

having a good stiffness in the rigid state.

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

were determined and utilised in the next prototype.

(Three

The second prototype has great bending capability and high length/diameter ratio.

However, in the experiments, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

compliant joint concept was employed in the 3

(three sections) used as a step

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

having a good stiffness in the rigid state.

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

were determined and utilised in the next prototype.

(Three

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

compliant joint concept was employed in the 3

(three sections) used as a step

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

prototype 1

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

having a good stiffness in the rigid state.

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

were determined and utilised in the next prototype.

(Three-

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

compliant joint concept was employed in the 3

(three sections) used as a stepping stone towards the final design, which was built

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

prototype 1

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

having a good stiffness in the rigid state.

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

were determined and utilised in the next prototype.

-section continuum robot with twin

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

compliant joint concept was employed in the 3

ping stone towards the final design, which was built

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

prototype 1

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

having a good stiffness in the rigid state.

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

were determined and utilised in the next prototype.

section continuum robot with twin

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

compliant joint concept was employed in the 3

ping stone towards the final design, which was built

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

prototype 1

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

having a good stiffness in the rigid state.

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

were determined and utilised in the next prototype.

section continuum robot with twin

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

compliant joint concept was employed in the 3

ping stone towards the final design, which was built

139

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

prototype 1; (c) prototype 2;

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

were determined and utilised in the next prototype.

section continuum robot with twin

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

compliant joint concept was employed in the 3

ping stone towards the final design, which was built

139

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

; (c) prototype 2;

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

were determined and utilised in the next prototype.

section continuum robot with twin

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

compliant joint concept was employed in the 3

ping stone towards the final design, which was built

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

; (c) prototype 2;

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

were determined and utilised in the next prototype.

section continuum robot with twin

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

compliant joint concept was employed in the 3

ping stone towards the final design, which was built

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

; (c) prototype 2;

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

were determined and utilised in the next prototype.

section continuum robot with twin

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

compliant joint concept was employed in the 3

ping stone towards the final design, which was built

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

; (c) prototype 2;

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

section continuum robot with twin

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

compliant joint concept was employed in the 3

ping stone towards the final design, which was built

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

section continuum robot with twin

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

compliant joint concept was employed in the 3

ping stone towards the final design, which was built

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

with the continuum robot to test the bending capability of the variable

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiC

section continuum robot with twin

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

compliant joint concept was employed in the 3

ping stone towards the final design, which was built

(c)

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

variable

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

Based on the experiments of these two variable stiffness systems, the main elements of

the system (thermoplastic: polymorph; heating element: NiCr wire; sleeve: rubber)

section continuum robot with twin

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

compliant joint concept was employed in the 3

ping stone towards the final design, which was built

(c)

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

variable

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

Based on the experiments of these two variable stiffness systems, the main elements of

r wire; sleeve: rubber)

section continuum robot with twin

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

compliant joint concept was employed in the 3

ping stone towards the final design, which was built

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

steel spring for increasing the stiffness. The demonstrator was built

variable-stiffness

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

Based on the experiments of these two variable stiffness systems, the main elements of

r wire; sleeve: rubber)

section continuum robot with twin

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

compliant joint concept was employed in the 3rd

ping stone towards the final design, which was built

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

and integrated

stiffness

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

Based on the experiments of these two variable stiffness systems, the main elements of

r wire; sleeve: rubber)

section continuum robot with twin

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

rd demonstrator

ping stone towards the final design, which was built

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

and integrated

stiffness

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

Based on the experiments of these two variable stiffness systems, the main elements of

r wire; sleeve: rubber)

section continuum robot with twin

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

demonstrator

ping stone towards the final design, which was built

Chapter 6

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

and integrated

stiffness system,

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

Based on the experiments of these two variable stiffness systems, the main elements of

r wire; sleeve: rubber)

section continuum robot with twin-pivot

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

demonstrator

ping stone towards the final design, which was built

Chapter 6

. Variable stiffness system prototypes: (a) schematic of variable stiffness system; (b)

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

and integrated

system,

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

Based on the experiments of these two variable stiffness systems, the main elements of

r wire; sleeve: rubber)

pivot

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

demonstrator

ping stone towards the final design, which was built

Chapter 6

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

and integrated

system,

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

Based on the experiments of these two variable stiffness systems, the main elements of

r wire; sleeve: rubber)

pivot

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

demonstrator

ping stone towards the final design, which was built

Prototype (2): This system is constructed along the same principles but with

alternative sleeve material (rubber which has a great elongation ratio) and does not use

and integrated

system,

(c). It was found that, comparing with prototype 1, this system

robot generate greater bending angle in the soft state while still

Based on the experiments of these two variable stiffness systems, the main elements of

r wire; sleeve: rubber)

pivot

The second prototype has great bending capability and high length/diameter ratio.

ents, it was found that the construction has a twisting problem

and the stiffness needs to be enhanced during the “moving” mode. Therefore, the

demonstrator

ping stone towards the final design, which was built



within the design remit to closely follow the intention for the final continuum robot

design.

6.3.1. Continuum arm

The prototype (as shown in

joint and twin actuation per section (

sections and each section contains 10 segments. Each section is 100 mm long and

composed of two pairs of cables (attach to the tip of ea

connected by twin 1.5mm long, 1mm diameter super

greater single joint buckling load (2207 N) than previous design and gives the

construction better stiffness, as shown in

is 62 g.

Figure

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

design.

6.3.1. Continuum arm

The prototype (as shown in

joint and twin actuation per section (

sections and each section contains 10 segments. Each section is 100 mm long and

composed of two pairs of cables (attach to the tip of ea

connected by twin 1.5mm long, 1mm diameter super

greater single joint buckling load (2207 N) than previous design and gives the

construction better stiffness, as shown in

is 62 g.

Figure

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

design.

6.3.1. Continuum arm

The prototype (as shown in

joint and twin actuation per section (

sections and each section contains 10 segments. Each section is 100 mm long and

composed of two pairs of cables (attach to the tip of ea

connected by twin 1.5mm long, 1mm diameter super

greater single joint buckling load (2207 N) than previous design and gives the

construction better stiffness, as shown in

is 62 g.

Figure 6-

of t

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

6.3.1. Continuum arm

The prototype (as shown in

joint and twin actuation per section (

sections and each section contains 10 segments. Each section is 100 mm long and

composed of two pairs of cables (attach to the tip of ea

connected by twin 1.5mm long, 1mm diameter super

greater single joint buckling load (2207 N) than previous design and gives the

construction better stiffness, as shown in

-12. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

of the continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

6.3.1. Continuum arm

The prototype (as shown in

joint and twin actuation per section (

sections and each section contains 10 segments. Each section is 100 mm long and

composed of two pairs of cables (attach to the tip of ea

connected by twin 1.5mm long, 1mm diameter super

greater single joint buckling load (2207 N) than previous design and gives the

construction better stiffness, as shown in

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

6.3.1. Continuum arm

The prototype (as shown in

joint and twin actuation per section (

sections and each section contains 10 segments. Each section is 100 mm long and

composed of two pairs of cables (attach to the tip of ea

connected by twin 1.5mm long, 1mm diameter super

greater single joint buckling load (2207 N) than previous design and gives the

construction better stiffness, as shown in

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

6.3.1. Continuum arm

The prototype (as shown in

joint and twin actuation per section (

sections and each section contains 10 segments. Each section is 100 mm long and

composed of two pairs of cables (attach to the tip of ea

connected by twin 1.5mm long, 1mm diameter super

greater single joint buckling load (2207 N) than previous design and gives the

construction better stiffness, as shown in

(a)

(c)

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

6.3.1. Continuum arm

The prototype (as shown in

joint and twin actuation per section (

sections and each section contains 10 segments. Each section is 100 mm long and

composed of two pairs of cables (attach to the tip of ea

connected by twin 1.5mm long, 1mm diameter super

greater single joint buckling load (2207 N) than previous design and gives the

construction better stiffness, as shown in

(a)

(c)

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

6.3.1. Continuum arm

The prototype (as shown in

joint and twin actuation per section (

sections and each section contains 10 segments. Each section is 100 mm long and

composed of two pairs of cables (attach to the tip of ea

connected by twin 1.5mm long, 1mm diameter super

greater single joint buckling load (2207 N) than previous design and gives the

construction better stiffness, as shown in

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

The prototype (as shown in Figure

joint and twin actuation per section (

sections and each section contains 10 segments. Each section is 100 mm long and

composed of two pairs of cables (attach to the tip of ea

connected by twin 1.5mm long, 1mm diameter super

greater single joint buckling load (2207 N) than previous design and gives the

construction better stiffness, as shown in

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

Figure

joint and twin actuation per section (

sections and each section contains 10 segments. Each section is 100 mm long and

composed of two pairs of cables (attach to the tip of ea

connected by twin 1.5mm long, 1mm diameter super

greater single joint buckling load (2207 N) than previous design and gives the

construction better stiffness, as shown in

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

Figure

joint and twin actuation per section (

sections and each section contains 10 segments. Each section is 100 mm long and

composed of two pairs of cables (attach to the tip of ea

connected by twin 1.5mm long, 1mm diameter super

greater single joint buckling load (2207 N) than previous design and gives the

construction better stiffness, as shown in

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

Figure 6-12

joint and twin actuation per section (

sections and each section contains 10 segments. Each section is 100 mm long and

composed of two pairs of cables (attach to the tip of ea

connected by twin 1.5mm long, 1mm diameter super

greater single joint buckling load (2207 N) than previous design and gives the

construction better stiffness, as shown in

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

12(a)) was

joint and twin actuation per section (Chapter 3.2

sections and each section contains 10 segments. Each section is 100 mm long and

composed of two pairs of cables (attach to the tip of ea

connected by twin 1.5mm long, 1mm diameter super

greater single joint buckling load (2207 N) than previous design and gives the

construction better stiffness, as shown in

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

140

within the design remit to closely follow the intention for the final continuum robot

(a)) was

Chapter 3.2

sections and each section contains 10 segments. Each section is 100 mm long and

composed of two pairs of cables (attach to the tip of ea

connected by twin 1.5mm long, 1mm diameter super

greater single joint buckling load (2207 N) than previous design and gives the

construction better stiffness, as shown in Figure

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

140

within the design remit to closely follow the intention for the final continuum robot

(a)) was

Chapter 3.2

sections and each section contains 10 segments. Each section is 100 mm long and

composed of two pairs of cables (attach to the tip of ea

connected by twin 1.5mm long, 1mm diameter super

greater single joint buckling load (2207 N) than previous design and gives the

Figure

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

(a)) was constructed with twin

Chapter 3.2

sections and each section contains 10 segments. Each section is 100 mm long and

composed of two pairs of cables (attach to the tip of ea

connected by twin 1.5mm long, 1mm diameter super

greater single joint buckling load (2207 N) than previous design and gives the

Figure 6

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

constructed with twin

Chapter 3.2). The system consists of three

sections and each section contains 10 segments. Each section is 100 mm long and

composed of two pairs of cables (attach to the tip of ea

connected by twin 1.5mm long, 1mm diameter super

greater single joint buckling load (2207 N) than previous design and gives the

6-12

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

constructed with twin

). The system consists of three

sections and each section contains 10 segments. Each section is 100 mm long and

composed of two pairs of cables (attach to the tip of each section), and all the disks are

connected by twin 1.5mm long, 1mm diameter super-

greater single joint buckling load (2207 N) than previous design and gives the

12(a) &(b). The whole arm weight

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

constructed with twin

). The system consists of three

sections and each section contains 10 segments. Each section is 100 mm long and

ch section), and all the disks are

-elastic NiTi rods, which has

greater single joint buckling load (2207 N) than previous design and gives the

(a) &(b). The whole arm weight

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

constructed with twin

). The system consists of three

sections and each section contains 10 segments. Each section is 100 mm long and

ch section), and all the disks are

elastic NiTi rods, which has

greater single joint buckling load (2207 N) than previous design and gives the

(a) &(b). The whole arm weight

(b)

(d)

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

constructed with twin

). The system consists of three

sections and each section contains 10 segments. Each section is 100 mm long and

ch section), and all the disks are

elastic NiTi rods, which has

greater single joint buckling load (2207 N) than previous design and gives the

(a) &(b). The whole arm weight

(b)

(d)

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

constructed with twin

). The system consists of three

sections and each section contains 10 segments. Each section is 100 mm long and

ch section), and all the disks are

elastic NiTi rods, which has

greater single joint buckling load (2207 N) than previous design and gives the

(a) &(b). The whole arm weight

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

constructed with twin-pivot compliant

). The system consists of three

sections and each section contains 10 segments. Each section is 100 mm long and

ch section), and all the disks are

elastic NiTi rods, which has

greater single joint buckling load (2207 N) than previous design and gives the

(a) &(b). The whole arm weight

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

pivot compliant

). The system consists of three

sections and each section contains 10 segments. Each section is 100 mm long and

ch section), and all the disks are

elastic NiTi rods, which has

greater single joint buckling load (2207 N) than previous design and gives the

(a) &(b). The whole arm weight

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

pivot compliant

). The system consists of three

sections and each section contains 10 segments. Each section is 100 mm long and

ch section), and all the disks are

elastic NiTi rods, which has

greater single joint buckling load (2207 N) than previous design and gives the

(a) &(b). The whole arm weight

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

Chapter 6

within the design remit to closely follow the intention for the final continuum robot

pivot compliant

). The system consists of three

sections and each section contains 10 segments. Each section is 100 mm long and

ch section), and all the disks are

elastic NiTi rods, which has

greater single joint buckling load (2207 N) than previous design and gives the

(a) &(b). The whole arm weight

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

be bent at least 90° in an arbitrary direction. The design of disks is 15 mm in diameter

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

Chapter 6

within the design remit to closely follow the intention for the final continuum robot

pivot compliant

). The system consists of three

sections and each section contains 10 segments. Each section is 100 mm long and

ch section), and all the disks are

elastic NiTi rods, which has

greater single joint buckling load (2207 N) than previous design and gives the

(a) &(b). The whole arm weight

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

he continuum robot; (d) the continuum robot equipped with a machining tool and motor;

By actively changing the lengths of two out of the four steel cables, each section can

diameter

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

Chapter 6

within the design remit to closely follow the intention for the final continuum robot

pivot compliant

). The system consists of three

sections and each section contains 10 segments. Each section is 100 mm long and

ch section), and all the disks are

elastic NiTi rods, which has

greater single joint buckling load (2207 N) than previous design and gives the

(a) &(b). The whole arm weight

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

By actively changing the lengths of two out of the four steel cables, each section can

diameter

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the

within the design remit to closely follow the intention for the final continuum robot

pivot compliant

). The system consists of three

sections and each section contains 10 segments. Each section is 100 mm long and

ch section), and all the disks are

elastic NiTi rods, which has

greater single joint buckling load (2207 N) than previous design and gives the

(a) &(b). The whole arm weight

. (a) General view of the continuum robot; (b) one segment construction; (c) working channel

By actively changing the lengths of two out of the four steel cables, each section can

diameter

and PCD (pitch circle diameter) of the cable guide holes is 12 mm. For delivering the



torque cable and electrical cables of end

tip of the robot, a 9mm diameter hole is made at the center of each disk

entire length of the manipulator, as shown in

is attached at the end of the actuation system, which can drive a spindle via a torque

cable (

Figure

Figure

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

individually cont

pre

attached to an individual spool for actuating a pair of control cables, which serially

torque cable and electrical cables of end

tip of the robot, a 9mm diameter hole is made at the center of each disk

entire length of the manipulator, as shown in

is attached at the end of the actuation system, which can drive a spindle via a torque

cable (

Figure

Figure

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

individually cont

pre-test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

torque cable and electrical cables of end

tip of the robot, a 9mm diameter hole is made at the center of each disk

entire length of the manipulator, as shown in

is attached at the end of the actuation system, which can drive a spindle via a torque

cable (Figure

Figure 6

Figure 6

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

individually cont

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

torque cable and electrical cables of end

tip of the robot, a 9mm diameter hole is made at the center of each disk

entire length of the manipulator, as shown in

is attached at the end of the actuation system, which can drive a spindle via a torque

Figure

6-13. (a) CAD of the actuation system (b) concept of the spool employed in the 3

6-13

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

individually cont

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

torque cable and electrical cables of end

tip of the robot, a 9mm diameter hole is made at the center of each disk

entire length of the manipulator, as shown in

is attached at the end of the actuation system, which can drive a spindle via a torque

Figure

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

13(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

individually cont

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

torque cable and electrical cables of end

tip of the robot, a 9mm diameter hole is made at the center of each disk

entire length of the manipulator, as shown in

is attached at the end of the actuation system, which can drive a spindle via a torque

Figure 6-12

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

individually cont

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

torque cable and electrical cables of end

tip of the robot, a 9mm diameter hole is made at the center of each disk

entire length of the manipulator, as shown in

is attached at the end of the actuation system, which can drive a spindle via a torque

12(d)).

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

individually controllable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

torque cable and electrical cables of end

tip of the robot, a 9mm diameter hole is made at the center of each disk

entire length of the manipulator, as shown in

is attached at the end of the actuation system, which can drive a spindle via a torque

(d)).

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

torque cable and electrical cables of end

tip of the robot, a 9mm diameter hole is made at the center of each disk

entire length of the manipulator, as shown in

is attached at the end of the actuation system, which can drive a spindle via a torque

(d)).

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

torque cable and electrical cables of end

tip of the robot, a 9mm diameter hole is made at the center of each disk

entire length of the manipulator, as shown in

is attached at the end of the actuation system, which can drive a spindle via a torque

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

torque cable and electrical cables of end

tip of the robot, a 9mm diameter hole is made at the center of each disk

entire length of the manipulator, as shown in

is attached at the end of the actuation system, which can drive a spindle via a torque

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

torque cable and electrical cables of end

tip of the robot, a 9mm diameter hole is made at the center of each disk

entire length of the manipulator, as shown in

is attached at the end of the actuation system, which can drive a spindle via a torque

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

torque cable and electrical cables of end

tip of the robot, a 9mm diameter hole is made at the center of each disk

entire length of the manipulator, as shown in

is attached at the end of the actuation system, which can drive a spindle via a torque

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

torque cable and electrical cables of end-

tip of the robot, a 9mm diameter hole is made at the center of each disk

entire length of the manipulator, as shown in

is attached at the end of the actuation system, which can drive a spindle via a torque

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

141

-effectors (e.g. camera & illumination) to the

tip of the robot, a 9mm diameter hole is made at the center of each disk

entire length of the manipulator, as shown in

is attached at the end of the actuation system, which can drive a spindle via a torque

(a)

(b)

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

141

effectors (e.g. camera & illumination) to the

tip of the robot, a 9mm diameter hole is made at the center of each disk

entire length of the manipulator, as shown in Figure

is attached at the end of the actuation system, which can drive a spindle via a torque

(a)

(b)

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

effectors (e.g. camera & illumination) to the

tip of the robot, a 9mm diameter hole is made at the center of each disk

Figure

is attached at the end of the actuation system, which can drive a spindle via a torque

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

effectors (e.g. camera & illumination) to the

tip of the robot, a 9mm diameter hole is made at the center of each disk

Figure

is attached at the end of the actuation system, which can drive a spindle via a torque

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

effectors (e.g. camera & illumination) to the

tip of the robot, a 9mm diameter hole is made at the center of each disk

Figure 6-12

is attached at the end of the actuation system, which can drive a spindle via a torque

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

effectors (e.g. camera & illumination) to the

tip of the robot, a 9mm diameter hole is made at the center of each disk

12(c). For machining, a motor

is attached at the end of the actuation system, which can drive a spindle via a torque

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

effectors (e.g. camera & illumination) to the

tip of the robot, a 9mm diameter hole is made at the center of each disk

(c). For machining, a motor

is attached at the end of the actuation system, which can drive a spindle via a torque

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

effectors (e.g. camera & illumination) to the

tip of the robot, a 9mm diameter hole is made at the center of each disk

(c). For machining, a motor

is attached at the end of the actuation system, which can drive a spindle via a torque

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

effectors (e.g. camera & illumination) to the

tip of the robot, a 9mm diameter hole is made at the center of each disk

(c). For machining, a motor

is attached at the end of the actuation system, which can drive a spindle via a torque

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

effectors (e.g. camera & illumination) to the

tip of the robot, a 9mm diameter hole is made at the center of each disk

(c). For machining, a motor

is attached at the end of the actuation system, which can drive a spindle via a torque

. (a) CAD of the actuation system (b) concept of the spool employed in the 3

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

effectors (e.g. camera & illumination) to the

tip of the robot, a 9mm diameter hole is made at the center of each disk

(c). For machining, a motor

is attached at the end of the actuation system, which can drive a spindle via a torque

. (a) CAD of the actuation system (b) concept of the spool employed in the 3rd

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

effectors (e.g. camera & illumination) to the

tip of the robot, a 9mm diameter hole is made at the center of each disk along the

(c). For machining, a motor

is attached at the end of the actuation system, which can drive a spindle via a torque

demonstrator

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

Chapter 6

effectors (e.g. camera & illumination) to the

along the

(c). For machining, a motor

is attached at the end of the actuation system, which can drive a spindle via a torque

demonstrator

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

Chapter 6

effectors (e.g. camera & illumination) to the

along the

(c). For machining, a motor

is attached at the end of the actuation system, which can drive a spindle via a torque

demonstrator

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

Chapter 6

effectors (e.g. camera & illumination) to the

along the

(c). For machining, a motor

is attached at the end of the actuation system, which can drive a spindle via a torque

demonstrator;

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially

effectors (e.g. camera & illumination) to the

along the

(c). For machining, a motor

is attached at the end of the actuation system, which can drive a spindle via a torque

(a) shows the actuation system of this prototype, which uses 6 high torque

motors (4.5 Nm) to prove out the finer details of this close pack arrangement, which

can provide 600N actuation force. This system was designed to accommodate 24

rollable of motors, on which here only 6 motors are included, as a

test of the final full length demonstrator design. In the prototype, each motor is

attached to an individual spool for actuating a pair of control cables, which serially



Chapter 6

142

runs through the spool system and the manipulator, and then separately attaches to the

tip of every individual section.

In particular, Figure 6-13(b) illustrates the concept of the spool system, which is the

key modification comparing with the previous actuation system. The upper spool

attaches to the motor and the lower spool can make a concentric rotation relative to the

upper one. Two cables, which are individually mounted on the upper and lower spools,

can be mechanically adjusted the tension by rotating the upper/lower spools relative to

each other. Unlike the spool utilized in the previous demonstrator, the cables are

helically coiled on the spool at the same diameter in this design. Therefore, by rotating

the spool an angle, the same length of cables can be simultaneously stretched and

contracted from either the upper or lower spool, which can help the continuum

manipulator keep a constant cable tension when it is bending. And it can achieve a

constant proportional relationship between actuator motion and manipulator motion.

6.3.2. Variable stiffness system

According to the previous experience, this system was constructed with along the

similar principle. However, a supporting construction was utilised for keeping

thermoplastics at the original position when it melt (Figure 6-14(a)).

The construction consists of compliant joints (1 mm diameter, 2.5 mm long), disks (20

mm outer diameter, 16 mm inner diameter and 2.5 mm high), which are connected

serially. The gaps between the disks are filled with polymorph material, which can

either block the movement of the compliant joints when it is solid or does not limit the

flexibility of the construction when it is melt. And a NiCr wire is integrated in the

thermoplastics as the heating element, which is connected to a power supply, as shown

in Figure 6-14(a) & (b). And both sides of the variable stiffness system are covered by

latex rubber tubes for avoiding the melt polymorph leaking into the continuum

manipulator, which can jam the actuation cables. Further, the disks and compliant
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7 4 8828

8 4.5 9931

9 4.5 9931

10 5 11035

11 5 11035

12 5 11035

Secondly, the disks (diameter & thickness) of the continuum arm and variable

stiffness system were designed. Hence, the weight of the system can be calculated, and

then the PCD of the actuation holes can be determined accordingly. Further, the action

forces for each section (Table 6-4) was calculated and the force applying on the

backbone (compliant joints& disks), was obtained. It was found the max actuation

force for single section is 439 N (the section bends 90) and the max force applying on

the backbone is 2956 N, which acts on the end section.

Table 6-4. Actuation force of each section

Section
Actuation

force (N)

Weight (g)
Diameters

(mm)
NotesContinuum

arm

Variable

stiffness

1 58 5 12.0

End load:

200g

2 76 6 12.4

3 93 6 12.7

4 146 22

78

25

5 196 27 25.7

6 240 29 26.4

7 293 45
98

27

8 348 47 27.7
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However, it was found that anti-twisting ability and stiffness of the continuum arm

needs to be further improved for the in-situ repair/maintenance application. Hence, a

variable-stiffness three-section continuum robot with a novel twin-pivot backbone was

constructed, which has following superiorities (see the trails in Chapter 7.3)

comparing with double-pivot construction:

 Minimised twisting angle along the longitudinal direction;

 Controllable stiffness since it can equip with a variable stiffness system

 An appropriate accuracy allowing to active machining tasks, e.g. mechanically

blending;

 Twin actuations for a single section;

Finally, based on the concept of twin-pivot construction, the final continuum robot

demonstrator was constructed to be able to take a 200g end load (e.g. a machining

end-effecter) and have an appropriate accuracy to be navigated to reach the low

processor compressor of gas turbine engines (Rolls-Royce XWB) with a suitable

length (more than 1.2m), diameters (tip diameter is no more than 15mm), a compact

actuation system and variable stiffness system. The following trails prove the design

can satisfy the stated requirements (chapter 7.4), except the variable stiffness system

will be integrated with the continuum arm after finishing all the initial trails. However,

it has been demonstrated on the previous demonstrator in the experiment (Chapter 7.3).
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Further, the twisting problem (referring to the design challenge of flexible backbone

continuum robot presented in chapter 3), was identified from this system, which

utilised one of the conventional continuum robot designs (a NiTi rob/tube and steel

cables are employed as backbone and actuation transmission mechanisms,

respectively). In order to measure the max twisting angle, the base section bent 90° in

the horizontal plane and the tip one kept straight, as shown in Figure 7-1(a), where the

max torque can be applied to the base section of the arm with respect to a particular

external load. According to the extensive experiments, it can be found that there is a

significant twist (order of tens of degrees) of the system even at low (tens of grams)

external loads. For example, the base section was twisted by 30°& 45° about X axis by

20 g &36 g end load (Figure 7-1(b)), respectively, which significantly influences the

control accuracy. Although the results were found not encouraging in reference to

position inaccuracies when external load is applied, these findings enabled to take a

decision on the development of a design solution to overcome this drawback (Chapter

3.2).

7.2. Test of prototype 2

The second prototype (Full length continuum robot with single double-pivot backbone)

was constructed with the concept of double-pivot construction (Chapter 3.2.1). Firstly,

this system was setup for the trial of tip-following control algorithm [165]. The tip

following approach is widely utilised for hype-redundant robot navigations, especially

for continuum robots. In particular, the strategy is that the very tip section of the

continuum robot is considered as ‘head’ of the robot and the rest of the sections are

considered as ‘bodies’. When the robot is being navigated into a confined space, the

‘bodies’ follow the trajectory the ‘head’ generated, thus it allows a simpler inverse

kinematics solution for navigating all the sections of the hyper-redundant robot (just

one section is actively controlled by the operator and the other sections are passively

controlled).
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For each cable of a spool (Figure 7-3), in polar coordinates ( r , ), it can be described

by the equation:

bar  (7.1)

Where a is the distance from the centre of the spool to the attached point of the cable

and b is equal to the diameter of the cable.

When the motor rotates, one cable coils on the spool ( r is increased) and the other

uncoils ( r is decreased), which causes different cable lengths are contracted and

extended simultaneously (Table 7-2). But in order to maintain a constant cable tension,

it requires the same lengths of cables to be contracted and extended for an arbitrary

motor rotating angle. Hence, Archimedean spiral cable cannot enable a constant

tension force, which remarkably affects the navigation accuracy (it is addressed

(Chapter 6.3) by adoption of the cable coiling arrangement).

Table 7-2. Displacements of cables versus rotation angle of spool

Rotation angle

of spool (°)

Displacement of

cable 1 (mm)

Displacement of

cable 2 (mm)

Differences

(mm)
Note

+90 21.3714 -18.9115 2.4599

a =6.5

b =0.9

+60 13.9741 -12.8809 1.0932

+30 6.8504 -6.5771 0.2733

0 0 0 0

-30 -6.5771 6.8504 0.2733

-60 -12.8809 13.9741 1.0932

-90 -18.9115 21.3714 2.4599

Finally, according to all the experiment results, it can be concluded that the system has

an appropriate control accuracy to achieve the desired bending shapes for navigating

(max deviation is 14.71mm) and increased counter-twisting ability (the twisting angles

are decreased by 67%) comparing with the conventional design (“continuum-style”
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segmented flexible backbone demonstrator). However, since the aforementioned

problem of the cable pattern, the mechanical design of spool needs to be optimised to

enable a constant cable tension at an arbitrary rotation angle (the new design is shown

in figure 13 of Chapter 6), which can enhance the control accuracy and counter-

twisting ability.

7.3. Test of prototype 3

The prototype (Three-section continuum robot with twin-pivot backbone) was built for

evaluating the twin-joint construction, i.e. the more robust solution considered in this

thesis, and demonstrating machining capability of a continuum robot built on this

concept. Thus, more in-depth experimental works and reporting are associated to this

demonstrator.

Firstly, the experiments for measuring the control accuracy and repeatability of the

continuum robot were setup to validate the kinematics analysis. Further, the bending

capability of each section was tested for evaluating the compliant joint design and the

work volume analysis. Then, the twisting angles versus different end loads were

measured to evaluate the counter-twisting ability of the twin-joint construction. After

that, the end load carrying capability of the system was also tested, by applying

different end loads at the tip of the arm. Next, the variable stiffness system was

assembled on this demonstrator for comparing the differences of the arm stiffness

when with/without the variable stiffness system. Finally, the machining trials were

demonstrated on this system by blending different metal materials, e.g. aluminum and

titanium.

7.3.1. Accuracy and repeatability measurements

In order to evaluate the control accuracy and the repeatability, a trial was setup, which

employed a video gauge system [166] for tracking the trajectory of the arm, as shown

in Figure 7-4(a).The video gauge system can provide a resolution of better than
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Table 7-3 illustrates the results of the experiment. It can be seen that the position error

is less than 1 mm in translation.

Table 7-3. Position accuracy measurement results

Bending

Angle

Desired position (mm) Actual position (mm) Error (mm)

X Z X Z  X  Z

25° 40.41 104.23 40.51 104.1 0.1 -0.13

27° 41.19 102.1 41.25 102.09 0.06 -0.01

29° 41.97 99.97 41.98 100.04 0.01 0.07

31° 42.75 97.91 42.76 97.95 0.01 0.04

33° 43.53 95.78 43.58 95.79 0.05 0.01

35° 44.31 93.65 44.46 93.77 0.15 0.12

Original position: [42.34mm, 98.98mm]; 30_sec IIItion , 0_sec IItion , 0_sec Ition ;

90_sec_sec_sec  IIItionIItionItion  ;

40° 46.63 88.6 46.89 88.75 0.26 0.15

42° 47.88 86.47 47.92 86.78 0.04 0.31

44° 49.13 84.34 49.02 84.61 -0.11 0.27

46° 50.37 82.2 49.78 83.2 -0.59 1

48° 51.62 80.07 50.96 80.89 -0.66 0.82

50° 52.87 77.94 52.9 77.2 0.03 -0.74

Original position: [49.75mm, 83.28mm]; 45_sec IIItion , 0_sec IItion , 0_sec Ition ;

90_sec_sec_sec  IIItionIItionItion  ;

55° 55.92 71.67 56.35 71.55 0.43 -0.12

57° 57.64 69.54 57.92 69.38 0.28 -0.16

59° 59.35 67.41 59.39 67.42 0.04 0.01

61° 61.07 65.27 60.85 65.5 -0.22 0.23

63° 62.78 63.14 62.45 63.68 -0.33 0.54

65° 64.5 61.01 64.04 62.01 -0.46 1

Original position: [60.22mm, 66.34mm]; 60_sec IIItion , 0_sec IItion , 0_sec Ition ;
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50 0.5 0.3 40%

100 1.0 0.7 30%

150 1.4 1.1 21%

200 2.0 1.4 30%

250 3.3 1.7 48%

300 5.3 2.0 43%

350 7.7 2.6 66%

400 8.8 3.0 65%

450 11.9 3.6 69%

The system can get flexible in 3 minutes by applying a 2A current via a NiCr wire

(0.4mm in diameter) and get rigid in 20 minutes after turning off the power of the

heating element. Comparing with Table 7-5 and Table 7-6, it can be found that the

deflection was decreased by the variable stiffness system when in soft state, since an

array of compliant joints are utilized for connecting the disks in the variable stiffness

system which enhances the stiffness of the base two sections. Further, according to the

results presented in Table 7-6, it can be seen that the deflection of the continuum robot

in rigid state is much less than the soft state (decreased up to 69%), which proves the

variable stiffness system can significantly increase the stiffness of the continuum

robot.

7.3.5. Machining trails

Finally, this demonstrator was utilised to demonstrate the machining capability of the

twin-pivot design (since machining operations require all six DOFs of the three

sections, thus the variable stiffness system was not employed in this trial). A blending

tool is attached on the tip of the robot, which is actuated by a motor via a torque cable.

The twin-pivot continuum robot was controlled to blend the edge of the metal

plate/compressor blade and two types of material (Aluminium and Titanium) were

utilised in the machining trial, as shown in Figure 7-10 (a) and (b). Specifically, in the
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Finally, according to all the experiments undertaken on the three-section twin pivot

demonstrator, the position control accuracy (the max error is less than ± 1mm for

sweeping in any ±5° space in the work volume), repeatability (the max error is less

than ± 0.5mm), counter-twisting ability (the twisting angle is 0.61° when 200g end

load), 90° bending ability at an arbitrary direction, end load carrying capability (200g

end load with 4mm deflection on the TCP and 1.4 mm when integrating with a

variable stiffness system on the base two sections) and machining abilities (aluminum

and titanium plates) of this demonstrator have been demonstrated, which prove the

design is reasonable. However, it is also found that a shape sensor needs to be

integrated into the manipulator for compensating the deflection caused by the end

effector and the reaction force of the repair tasks. However, this is beyond the scope of

the current study and research aim of the group in the future.

7.4. Test of prototype 4

In this section, the experiments undertaken on the final twelve-section demonstrator

(Full length continuum robot with twin-pivot backbone) are presented. The system

was utilised to demonstrate the navigation in obstacle environment, work volume

validation, coiling & uncoiling trials and end load carrying capability.

7.4.1. Navigation trails of the twin-pivot demonstrator

In order to inspect gas turbine engines, the continuum robot needs to be navigated to

reach the first stage of LPC (Low pressure compressor). According to the construction

of a gas turbine engine (Rolls-Royce Trent XWB), an example of navigation path is

given (Figure 7-11(a), (b) & (c))):

1. 19° bend in +Z direction in the plane XOZ (arc length: 132mm)

2. Straight path (280 mm) with a 19° tilted angle

3. 25° bend in –Y direction in the plane XOY (the arc length: 349 mm);

4. Straight path (300 mm) with a 19° tilted angle;
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Since the twin-pivot continuum robot is a flexible and slender construction, a

deflection is generated when applied an end load. For example, the deflection versus

different end loads at a particular configuration (as shown in Figure 7-15, section three

bends 30° in plane XOZ (direction angle 90°); section six bend 45° in direction angle

210° ( 55YO is direction angle 0°)with respect to coordinate 555 ZYX which is attached

on the TCP of the 5th section; section ten bends 70° in plane 999 ZOX with respect to

coordinate 999 ZYX which is attached on the TCP of the 9th section; all of the rest

sections bends 0°) are presented in Table 7-7. It can be found that the deflection of the

arm is 21.1mm when 200g end load is applied. However, there are two ways to

minimize the position error of the arm TCP caused by the deflection. One way is to

employ a light weight end effector (the current design is 45g (the same to the one

employed in the three section twin-pivot system), so the deflection is less than 5.4mm);

the other way is to monitor and control the tip position via a camera attached at the tip

of the arm by the operator, which has been demonstrated on the three-section twin-

pivot demonstrator.

Table 7-7. Deflections of the full length arm versus end loads

Mass of the end load (g) The deflection of TCP (mm)

50 5.4

100 10.3

150 15.7

200 21.1

Finally, the full length twelve-section continuum robot (1266mm in length) was built

and tested in the aforementioned experiments, e.g. navigation trail (± 10mm deviation),

work volume test, coiling & uncoiling and end load carrying capability (200g end load

with 21.1 mm deflection at the tip). It proves the demonstrator has an appropriate
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flexibility, stiffness and diameter/length ratio for inspecting in a confine space. Further,

a trial for demonstrating the machining ability of this demonstrator will be undertook.

However, some problems were identified from this prototype. One is the control

accuracy needs to be further enhanced (currently the deviation compared with the pre-

planned path is ± 10mm) by integrating a shape senor for feeding back the actual

bending shape of the manipulator. Alternatively, position sensors can be integrated

into the head of each section, which enables the actual bending shape of the system

can be calculated. However, it is difficult to implement, when the section diameter is

small. Further, the equations for computing the defection of the manipulator when

acting an end load/force/torque at the tip of the manipulator need to be studied in the

further research, which will enable more precise control when the system carries a

heavy end effector.

7.5. Conclusions

In this chapter, the trials undertaken on the four demonstrators are introduced. The

first demonstrator was setup to evaluate the backbone materials and according to the

test, super-elastic Nitinol was determined to be employed for building the further

systems as the source of generating the bending motion.

Further, a twisting problem of the conventional flexible backbone continuum robot

was identified from the continuum-style segmented flexible backbone prototype (45°

twisting angle respect to 36g end load). In order to study this problem, the twisting

angles were measured from the double-joint (15° twisting angle respect to 36 g end

load) and twin-joint constructions (0.61° twisting angle respect to 200g end load),

respectively. It was seen that the twin-joint construction has a better counter-twisting

capability.

Furthermore, the accuracy (error is less than ±1 mm for sweeping in any ±5° area in

the work volume) and repeatability (error is less than ±0.5 mm) of the three-section
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twin-pivot demonstrator were measured. It was also proved that each section of the

demonstrator can bend 90° at an arbitrary direction. Next, the three-section continuum

robot was equipped with a two-section variable stiffness system and it was found that

up to 69% of the tip deflection was decreased by employing the variable stiffness

system. Several machining trials (aluminium & titanium plates) were undertaken on

this system for demonstrating the machining capability.

Finally, the full length twin pivot demonstrator was tested to be navigated along a pre-

planned path (based on the construction of Rolls-Royce Trent XWB) into a confined

space (max deviation ± 10mm), which proves the demonstrator has an appropriate

control accuracy for inspecting a gas turbine engine. The work volume test and coiling

& uncoiling trial prove the designs of the compliant joints are reasonable in terms of

flexibility. The load carrying trial demonstrates the system is able to carry 200g end

load, which enables a wide range of repair tools to be delivered into an engine.
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Chapter 8 Conclusion and future works

In this chapter, the overall outcomes and achievements of the thesis are discussed

emphasising how these address the current limitations in the field. Based on both

academic and technology achievements of this research, this chapter also provides

possible future research directions in designing and modelling approaches which can

be utilised to advance the capabilities of a wide range of continuum robots.

8.1. Discussing challenges in continuum robots vs project objectives

In this part, the challenges of this research are discussed in terms of design and

modelling so that the achievements of the PhD research can be put into a wider

academic and technology context.

The aim of this thesis was focused on developing a novel continuum robot comprising

an appropriate diameter/length ratio continuum arm and a tubular variable-stiffness

system for in-situ repair of gas turbine engine (Rolls-Royce Trent XWB); this has not

been achieved by any other systems so far, hence, the novelty claimed by this work.

For achieving this goal, the continuum arm needs to be able to wave between the

blades to reach desired positions in the engine while the adjustable-stiffness unit

allows the arm to have a proper flexibility for navigating in the working environment

and increase its stiffness (of particular sections) when activating machining tasks.

Moreover, further challenges aroused from the fact that, being a part of FP7 project

MiRoR (Miniaturised Robotic systems for holistic in-situ Repair and maintenance

works in restrained and hazardous environments), the robot needs to combine with a

walking-hexapod system for inspection in nuclear stations; this resulted in the need for

the system to have a compact size and be light weight (especially the actuation system)

for allowing the hexapod able to carry it in a limited space. Hence, not only the robot

needed to have a high number of degrees of freedom, to be slim and able to selectively

rigidize sections but also to be very compact so that it could be carried on the top of

the walking hexapod (subject of another PhD thesis at Univ. of Nottingham).
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According to a wide range of literature review, although some of the existing

continuum robots have been demonstrated in several key applications, e.g. minimally

invasive surgery (MIS) and rapid handling, there are several limitations of these

systems identified, which need to be addressed for in-situ repair applications in this

research:

 The accessibility of a continuum robot in confined spaces is depended on

several factors, e.g. flexibility (it can be found that flexible backbone

continuum robots have better accessibility in a crowded environment,

comparing with rigid backbone ones (Chapter 3.1)), diameter/length ratio and

stiffness. Since most of the existing systems were not developed for the

applications in highly constrained and large work environments as gas turbine

engines, the designs was not given a consideration to all of these three factors

simultaneously; therefore, the thesis aimed at proposing a new mechanical

design solution for structuring a flexible backbone continuum robot, which

has a small diameter, long length, appropriate stiffness and flexibility;

 In order to perform in-situ repair, it requires the continuum robot to have a

relatively great stiffness of its arm needs to support end loads, especially

reaction force/torque of machining. However, the existing flexible backbone

continuum robots were generally designed for MIS and rapid handling by

using the advantage of safe robot-human/objective interaction (since the

flexible construction), which renders the backbone difficult to maintain the

TCP when activating desired tasks in this research, e.g. mechanical blade

blending. Hence, the research in the PhD thesis sought to develop a

mechanical solution for enhancing the arm stiffness when activating

machining tasks.

 Based on the experiment undertook on the first demonstrator built in this

thesis (continuum robot with segmented single backbone pivot), another
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drawback of the conventional designs was found: the central located flexible

backbone is twisted along the longitudinal axis by end load and its own

weight when bending in the horizontal plane (Chapter 7.1). In particular, 45°

twisting angle was generated at the base section of two-section demonstrator

(employing a conventional design concept: a super-elastic NiTi rod is located

in the centre of disk as backbone and articulated by cables) by 36g end load

when the base section bent 90° and the tip one kept straight, which leads to

poor control accuracy. Since the continuum robot needed to carry an

appropriate end load when navigating into the engine, which is very likely to

have several bends in horizontal plane, thus the research in the PhD thesis

aimed to address this problem.

In this research, since some unique concepts of continuum robots were proposed, the

following fundamental modelling, including kinematics, actuation force, compliant

joint bulking and stiffness analyses, needed to be studied for the design and control of

these new constructions.

 Regarding continuum robots kinematics, the research topic can be divided into

two levels: the first one is the mapping between task space to joint space (e.g.

computing the position and orientation of each section tip, based on a given

desired position for robot TCP: tip-following algorithm [165]); the second one

is the mapping between joint to actuation space (e.g. calculate the actuation

displacements by the configurations of each section obtained from the first

mapping, according to the geometry of section mechanism) [135]. In this

thesis, the research focused on the second mapping of kinematics, because it

had to be developed based on the design of the robot. Since new structures

were introduced in this research, so their kinematics models needed to be

investigated to enable their precise control. Further, the aforementioned
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challenge of inverse kinematics (Chapter 3.1) also aimed to be addressed in

this research.

 Model for calculating actuation force of cables is required to be developed for

assisting the hardware design. Comparing with kinematics, this field was less

considered by the existing researches. Principle of virtual work was utilised in

previous studies, which focused on the static analysis of rod-driven continuum

robot (elastic rods can pull and push) [32, 167, 168]. The analysis for cable-

driven system is dissimilar since different actuation media is utilised which

makes different interaction to the structure (cables can only pull). The

research in this PhD thesis aimed to introduce a static approach for

calculating actuation force of cable-driven continuum robot.

 Flexible rods are employed as the compliant joints of continuum robots.

Because of the elastic property, they can be buckled if overloaded. However,

this has not been seen from the existing researches. Hence, the max buckling

load of compliant joint sought to be studied. Further, stiffness of the new

constructions was needed to be introduced for guiding the design of the

hardware.

8.2. Academic findings and engineering validations

A new approach of in-situ repair for gas turbine engine has been developed by

employing continuum robots to deliver machining tools and vision system to desired

places, which cannot be reached by conventional tools or human being without

disassembling the engines, bringing the benefits on decreasing repair time and cost

significantly.

In the following the main achievements of the PhD research have been summarized.
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8.2.1. Unique designs of continuum robots

With regard to the identified limitations, two families of unique continuum robot

design concepts have been proposed for structuring a “slender” continuum robot with

appropriate stiffness and flexibility.

One employs two compliant joints connected in series in a segment (double-pivot

compliant joint) and a single section consists of multiple segments for enabling high

bending capability (Chapter 3.2).

The other, more advanced concept that has been materialised in two working

prototypes, utilizes two orthogonal groups of twin parallel elastic rods/sheets, which

are connected in series, as compliant joints (twin-pivot compliant joint) in a segment

and couples of segments are built into a single section (Chapter 3.2).

These two families of concepts bring various options for continuum robot designs,

which have the following advantages:

 Unlike the existing designs (“pure” continuum backbone/ continuum arm with

segmented backbone), the designs enable the robot to have high flexibility

(great bend capability: 90° per section), small diameter/length ratio (two full

length continuum robots’ average diameter/length ratios are 0.02 and 0.023,

respectively; the smallest diameter/length ratio of the existing long continuum

robots is 0.03 [33]) and an appropriate stiffness simultaneously (the deflection

of the final full length prototype is less than 5.4mm when carrying an end load

(50g)). Compared with the existing solutions, the continuum robots developed

in this PhD research (with 200g loading capability for 1.2m long) represent a

step-change in the development of the families of such system.

 The twisting angle along the longitudinal direction can be decreased by both

of the concepts significantly; this allows a slender continuum robot have a

precise position control, when bending in the horizontal plane (for example,

comparing with one of conventional designs continuum robot with segmented



Chapter 8

188

single backbone pivot), the twisting angles of double and twin-pivot

compliant joint concepts are decreased by 67% and 98.6%, respectively. See

chapter 7 for details). These results proved not only a significant advancement

in the field but also a critical enabler for improving the positioning accuracy

especially when dealing with a long continuum robots (that are likely to be

needed for “far away” invasive interventions such as those within gas turbine

engines).

 Based on the cable tension analysis, both concepts of continuum arm design

enable two pairs of cables employed in one single section with constant

tension force at any arbitrary configuration, giving the opportunity to

minimise the size and weight of actuation pack (at least 95% of original

tension force is able to be maintained at arbitrary configuration (Chapter 4.1

& 4.2)). Up to now, most of continuum robots have been using linear

actuators (to minimise the slippages in spools) or simple spooling systems

with tensioning mechanism that resulted in significantly bulky constructions.

With a smart spooling design, the present research work proved that the

actuation pack can be so compact (275mm in diameter; 25 motors packed in it)

that is can be a truly portable robotic system; no similar achievements have

been reported.

Based on these new concepts, three demonstrators (i.e. a three-section continuum

robot with twin-pivot backbone - 300 mm in length) and two full length ones with

double and twin-pivot backbone (no less than 1.2m in length), respectively) were

designed and built (Chapter 6).

According to the preliminary experiments, it was found that twin-pivot compliant joint

structure can provide better stiffness and minimise the twisting angle (twisting angle is

decreased by 95.9%), comparing with double-pivot compliant joint structure. Hence,

the concept of twin-pivot compliant joint was selected for building the finial prototype.
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In the machining trails, it has been proven that the three-section continuum robot with

twin-pivot backbone can provide an appropriate stiffness (the deflection of the arm is

less than 0.5mm when carrying 50g end load, which is heavier than the end effector

using on this demonstrator), control accuracy (± 1mm error for sweeping in any ± 5º

area in the work volume) and repeatability (± 0.5 mm error in the whole work volume),

enabling the system to blend metal materials stably, e.g. aluminium and titanium,

which are the materials widely employed in the aerospace industry (Chapter 7.3).

Accessing in gas turbine engines has been realised by the final full length continuum

robot (1266mm). It has been proven that the system has an appropriate control

accuracy to be navigated to reach the first stage of LPC (low pressure compressor) of

a gas turbine engine (Rolls-Royce XWB) by following a pre-planned path, since HLC

via vision is still under development by a project partner (Chapter 7.4). Further, a

machining trial will be demonstrated on this full length continuum robot in the near

future (the machining code is being prepared). According to the test, TRL of the final

full length continuum robot can be defined as Level 4.

8.2.2. Modelling of continuum robots

In this thesis, several fundamental analyses were achieved, e.g. kinematics, buckling

analysis of compliant joint, actuation force and stiffness. As aforementioned, there

were two families of novel continuum robot constructions proposed in this research,

thus new kinematics models were needed to be developed for in order to precisely

control them (Chapter 4).

 Based on an algebra approach, a straightforward kinematic model for the

family of double-pivot compliant joint concepts (flexible cable actuated

mechanism) was presented in this thesis. Unlike the conventional approach

making a projection on section’s bending plane which transfers the 3D

problem to 2D, the new method directly projects cables on the backbone and

remarkably simplifies the derivation. In this model, compliant joint was



Chapter 8

190

assumed as a virtual universal joint, which also can simplify the calculation.

Further, a simulation model was built in ANSYS for cross-validation, which

proves the kinematics model able to provide a small position (max 0.017 mm)

and angular error (max 41004.1  in radian), comparing with the simulation

results (Chapter 4.1);

 Regarding the concept of twin-pivot compliant joint (flexible cable actuated

mechanism), a new kinematic model was also developed based on a

combination of D-H method and geometry approach. In this model, the short

compliant joint was assumed as a virtual conventional revolute joint, which

simplified the analysis (Chapter 4.2). Two sub-bending plane was utilised for

deriving forward kinematics, since the conventional geometry approach

cannot be deployed here by projecting on section’s overall bending plane, due

to the construction. Further, the kinematics challenge of inverse kinematics

(Chapter 3.1) has been corrected by an iterative approach based on forward

kinematics in this model. According to the trial results of the three-section

demonstrator, the position control error of single section is less than ±1 mm in

translation for sweeping in any ± 5° operation area in the work volume. The

max error of single section repeatability is less than ±0.5mm in the work

volume (Chapter 7.3) that fulfils the requirements of machining in a confined

space. It can be applied to a wider range of continuum robots, if the flexible

rod is built in the model.

 A method for calculating work volume of multiple-section continuum robots

has been developed by considering the geometry of the robot and the material

property of compliant joints (Chapter 4.3). Because the design employed

elastic material as compliant joints which needed to be bent to a small bending

radius for generating an appropriate bending angle during the operation.

However, this factor was neglected in the existing researches. The model was
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based on forward kinematics with a search procedure to find out the location

of the section tip against different bending angles.

 Unlike the previous researches employing principle of virtual work, a static

method was developed for calculating actuation forces of a continuum robot

developed on the concepts proposed in this thesis (Chapter 5.1), which built

the static equilibrium by considering end load, weight of robot, cable tension,

force for bending flexible backbone and the interaction from distal sections’

cables. It allows designers to calculate the actuation force of an arbitrary

section of a multiple-section continuum robot for any bending angle in the

work volume. An interface was built in MATLAB, which is able to compute

actuation force based on the parameters of a robot (e.g. section diameter,

length, weight, compliant joint size and bending angles, etc.).

 Since compliant joint is relatively flexible comparing with conventional rigid

joint, the joint can be buckled if overloaded, which can cause poor control

accuracy and even physically fail the whole system. Therefore, buckling

analysis of compliant joint was introduced for providing designers with a

methodology to calculate the max load which a joint can withstand (Chapter

5.2); and it can also provide the dimensions of the compliant joint (e.g. length

and diameter) when the load along the backbone is given. It was utilised in

designing the compliant joints of the demonstrators and the experiments

proven the joint designs are reasonable.

 Stiffness matrix of a single multi-compliant section was achieved. In this

model, actuation cables and compliant joint were considered as the

compliance resource. Jacobian matrix of a single section was also analysed for

supporting the derivation of stiffness matrix. Finally, the analysis has been

validated by simulations in ANSYS with max 7% error in the whole work

volume of a single section (Chapter 5.3 & 5.4).
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8.2.3. An unique design of variable stiffness system as ancillary for

continuum robots

In this thesis, a concept of unique variable stiffness system was developed for

enhancing the stiffness of a continuum robot when it activates machining tasks and

being flexible enough to allow the robot move freely when navigating into target areas.

By employing a thermoplastic material to fill the space for the joint movement, the

system can be switched into a soft state at a low temperature (60°C) by applying an

electrical current via a heating element (NiCr wire) for melting the bespoken material

and get rigid by air when the electrical power is switched off.

Based on this idea, a two-section stiffness-controllable system was built, which also

employed twin-pivot compliant joint structure and the space between adjacent disks

are filled with polymorph (melting temperature is 60°C). It was able to be mounted on

the outside of the three-section continuum robot as a sleeve, which can significantly

decrease the deflection caused by end loads (Chapter 6.3). Specifically, the system can

get flexible in 3 minutes by applying a 2A current via a NiCr wire (0.4mm in diameter)

and get rigid in 20 minutes after turning off the power of the heating element. It was

found that the deflection of the arm TCP in rigid state can be decreased by up to 69%,

comparing with that in soft state, which proves the stiffness was increased

dramatically by the variable stiffness system; the continuum robot was also flexible

enough to move in a soft state (Chapter 7.3).

8.3. Future work

The proposed design concepts and modelling of continuum robots has been validated

based on both simulations and physical demonstrators in this thesis. However, some

further challenges that could be materialised in future research directions have been

identified and are discussed per separate topics in the following.
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8.3.1. Towards next-generation design of continuum robots

 According to the literature review, it can be found that there is a trend for

taking flexible rods as the actuation media for continuum robots, especially

for the system used in MIS. One advantage of rod actuation is that it can push

and pull, thus the backbone takes less compressive load compared with wire-

actuation system, so it does not suffer buckling problem. The other one is rod

can give the construction better stiffness. However, up to now, rod-actuation

continuum robots have been built with max three sections [169, 170], which

limit it to be utilised in large highly confined space. One possible reason is

that the shape of a proximal section is depended on the overall stiffness of

rods running through this section [135], thus it makes more difficult to bend a

proximal section if there are more actuation rods of distal sections passing

through it. Therefore, it is valuable to compare between different actuation

methods (i.e. cable and flexible rod) for structuring a small diameter and long

continuum robot, in terms of bending capability/section, stiffness and control

accuracy.

 The size of the work volume is a critical parameter for continuum robot

design. To date, the researches in this area focused on the design of symmetric

continuum robots which have symmetric work space. However, for some

application cases, the workspace of the system does not need necessarily to be

symmetric in all directions. In some applications, e.g. machining, inspecting

and surgery operations, the objective only appears on one side of the system,

so that one side of the work volume needs to be increased and the other side

does not really help on the operation, so it could be decreased. Likewise, the

stiffness of the continuum robot also can be asymmetric, thus it can provide

the advantage of higher stiffness in desired directions. Therefore, the design

solutions need to be searched in the future studies.
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8.3.2. Modelling

 According to the experiments, it was found that shape of a single section

affected by the frictions between actuation cables and guide holes. A trail is

required for comparing the kinematics differences against different amounts

of friction, in order to identify how the friction affects the kinematics

performance. In order to minimise this influence, a mechanical approach is

probably needed to be found for reducing the friction in the future;

 In this thesis, an approach for calculating the critical buckling load of single

compliant joint was introduced and validated by both simulation and physical

test (Chapter 5&6). However, the equations for obtaining critical buckling

loads of single and multiple sections were not achieved, but valuable to be

investigated, which may include other elements of the system, e.g. cables and

disks. Because the buckling problem affects the straight configuration of the

robot, generally utilised as the initial position for calibrating continuum robots,

which inevitably affects the position control. Further, the critical buckling

load of compliant joints in bent configurations is also worth to be investigated,

since the flexible structure maybe even more likely to be buckled in curved

shapes, which has not been studied.

 In this thesis, a 2D stiffness matrix was obtained, which can calculate the

deflection in 2 DoFs directions when a torque is applied. However, a 6D

stiffness matrix and deflection compensation approach needs to be developed

for the proposed designs, since end effector/reaction force/torque cause a

deflection of a continuum robot, which can affect the position control

accuracy. Further, the stiffness of the variable-stiffness mechanism also needs

to be investigated, so it can provide the deflection in both soft and stiff states

for evaluating it when designing the hardware.
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8.3.3. Control and calibration

 Furthermore, in order to minimize the control error, a shape sensor may need

to be integrated into the continuum arm which can feed back the actual shape

of the system. Alternatively, the actual lengths of all the cables can be

measured in real time, and calculate the TCP of each section from the

proximal to distal accordingly by forward kinematics.

 A method for calibrating the continuum robot (e.g. initial configurations,

including bending and direction angles of each section; tension force of cables)

needs to be developed. There are various ways can be utilised, e.g. optical

camera, strain gauge and fibre optic techniques (see: http://lunainc.com/).
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