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Abstract

One topic of this thesis are products of two Eisenstein series. First we investigate the
subspaces of modular forms of level N that are generated by such products. We show
that if the weight k is greater than 2, for many levels, one can obtain the whole ofMk(N)
from Eisenstein series and products of two Eisenstein series. We also provide a result in
the case k = 2 and treat some spaces of modular forms of non-trivial nebentypus. We
then analyse the L-functions of products of Eisenstein series. We reinterpret a method
by Rogers�Zudilin and use it in two applications, the �rst concerning critical L-values
of a product of two Eisenstein series, and the second special values of derivatives of
L-functions.

The last part of this thesis deals with the theory of Eichler-cohomology for arbitrary real
weights, which was �rst developed by Knopp in 1974. We establish a new approach to
Knopp's theory using techniques from the spectral theory of automorphic forms, reprove
Knopp's main theorems, and also provide a vector-valued version of the theory.
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Chapter 1: Introduction

LetMk(N) be the space of weight k modular forms for the congruence group

Γ0(N) = {γ =
(
a b
c d

)
∈ SL2(Z)|γ ≡

(∗ ∗
0 ∗

)
(mod N)}.

These are holomorphic functions on the upper half plane H that satisfy

f(
az + b

cz + d
) = (cz + d)kf(z), for all

(
a b
c d

)
∈ Γ0(N)

for all z ∈ H. In addition they are required to be holomorphic at each rational number, a
condition that we explain in �1.1. A modular form that vanishes at each rational number
is called a cusp form and the space of cusp forms is denoted by Sk(N). The spaceMk(N)
splits into a direct sum

Mk(N) = Sk(N)⊕ Ek(N),

where Ek(N) is the Eisenstein subspace, generated by Eisenstein series.

To each modular form f we can associate the L-function L(f, s), a meromorphic function
in s. While cusp forms and their L-functions are the subject of many conjectures and
open problems in number theory, the Eisenstein subspace is very well understood. The
Eisenstein series that form its basis have explicit and rather simple Fourier expansions
and their L-functions come from the Riemann zeta function or Dirichlet L-functions.

A central topic of this thesis are products of two Eisenstein series. A product of Eisenstein
series is, in general, not an element of Ek(N). Hence we can generate cusp forms by taking
linear combinations of products of Eisenstein series. In Chapter 2 we study the space of
functions that is generated by linear combinations of products of two Eisenstein series and
show that in many cases this space equals the whole ofMk(N). This leads to the idea
that one can study L-functions of cusp forms by analysing the L-functions of products
of Eisenstein series. In the next chapter, Chapter 3 we derive relations between special
values of the L-functions of di�erent products of Eisenstein series and also a formula
for the special value of a derivative of the L-function of an Eisenstein series in terms of
L-values of products.

A classical example of a representation of a cusp form as a linear combination of products
of Eisenstein series is the discriminant modular form ∆ which can be de�ned by

∆ =
E4E8 − E2

6

1728
,

where, for even k, Ek = 1− 2k
Bk

∑
σk−1(n)qn is the normalised Eisenstein series of weight

k. A classical result in the theory of modular forms is that every modular form of even
weight k for the group SL2(Z) is a linear combination of product of the Eisenstein series
E4 and E6. Allowing all Eisenstein series as factors it su�ces to look at products of at
most two of them. The following theorem follows directly from results by Kohnen�Zagier
in [KZ84].

Theorem 1.0.1. Let k ≥ 4 be an even integer and Qk(1) be the space of modular forms
generated by the products ElEk−l for even l ∈ {4 . . . k − 4}. Then

Mk(1) = Qk(1) + Ek(1).

2



Chapter 1: Introduction

The main theorem in Chapter 2 is a generalisation of this theorem to modular forms with
respect to more general congruence subgroups. The results in this chapter were obtained
in collaboration with M. Dickson and will be included in a joint paper [DN15].

Before we state it we de�ne the Eisenstein series that generate Ek(N). They are given by
the Fourier expansions

Eφ,ψ
l (z) = aφ,ψl + 2

∑
n≥1

σl−1,φ,ψ(n)qn ∈Ml(M,φψ),

where q = e2πiz, φ and ψ are primitive characters of level M1,M2 with M1M2 = M | N ,
and

aφ,ψl =


L(ψ, 1− l) N1 = 1,

L(φ, 0) N2 = 1 and l = 1,

0 else.

We require not only the functions Eφ,ψ
l but also their image under the operators Bd for

d ∈ N, which act on modular forms of weight l by

f |Bd(z) = d
l
2f(dz).

The main theorem of Chapter 2 shows that products of such Eisenstein series generate
Mk(N) in many cases.

Theorem 1.0.2. Let N = N ′pn where N ′ is squarefree or twice a squarefree number and
p is prime. Let Qk(N) be the subspace ofMk(N) generated by the products

Eφ,ψ
l |Bd1d · E

φ,ψ
k−l|Bd2d

for 1 ≤ l ≤ k − 1 and all pairs of primitive characters φ, ψ of modulus M1,M2 and
d1, d2, d ∈ Z≥1 such that gcd(d1M1, d2M2) = 1 and d1M1d2M2d | N . We exclude the case
φ = ψ = 1 and l = 2 or l = k − 2. Then for even k ≥ 4

Mk(N) = Qk(N) + Ek(N).

The case of weight 2 is di�erent: One sees immediately from the Rankin�Selberg method
that products of two Eisenstein series are orthogonal to every newform f with vanishing
central L-value, i.e., L(f, 1) = 0. Accordingly we de�ne the space Srk=0

k (N) to be gen-
erated by newforms and lifts of newforms with non-zero central L-value. We obtain the
analogue of Theorem 1.0.2 subject to this constraint:

Theorem 1.0.3. Let N and Q2(N) be as in Theorem 1.0.2. Then

Srk=0
2 (N) + E2(N) = Q2(N) + E2(N).

We also prove this theorem for modular forms of prime level and non-trivial nebentypus.

One of the main ingredients in the proofs of Theorems 1.0.2 and 1.0.3 is a vanishing
result that is of independent interest. To state it, let us de�ne twists of modular forms
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Chapter 1: Introduction

by characters �rst: if α is a Dirichlet character modulo M and f =
∑
anq

n is a modular
form for the group Γ0(N), then fα =

∑
α(n)anq

n, the twist of f by α, is again a modular
form of the same weight as f and level dividing NM2. Twisting preserves cusp forms
but twisting a newform does not necessarily produce a newform again. Our vanishing
theorem follows from the theory of modular symbols and results of Atkin and Li [AL78]
on the action of Atkin�Lehner operators on twists of newforms. For detailed de�nitions
of the new subspace Snew

k (N) and Atkin�Lehner operators see �1.1.3.

Theorem 1.0.4. Let N be as in Theorem 1.0.2 and f =
∑
anq

n ∈ Snewk (N) be an
eigenfunction of all Atkin�Lehner operators. Suppose that

L(fα, l) = 0

for 1 ≤ l ≤ k − 1 and all primitive characters α modulo M |N such that α(−1) = (−1)l.
Then f = 0.

Before we describe possible applications of Theorems 1.0.2 and 1.0.3 and give a review of
related results in the literature, we give several examples. The examples were computed
with the Sage Mathematics Software [Sage] (for more of them see �2.7):

1. N = 1, k = 12: The most well-known example is of course the discriminant modular
form, which, in our normalisation, becomes

∆ =
50

3
E1,1

4 E1,1
8 − 147

4
(E1,1

6 )2.

2. N = 11, k = 2: Let φ be the character modulo 11 that maps 2 to ζ10 and ψ the
character that maps 2 to ζ3

10. Let f be the only newform of level 11. Then

f =
1

5
(−2ζ3

10 + 2ζ2
10 −

1

4
)E1,φ

1 E1,φ
1 +

1

5
(2ζ3

10 − 2ζ2
10 −

9

4
)E1,ψ

1 E1,ψ
1 .

3. N = 32, k = 2: Let χ4 be the primitive character modulo 4 and α the primitive
character modulo 32 that maps 31 to 1 and 5 to ζ8. Let f be the only newform of
level 32. Then

f =
1

8
(ζ3

8 − ζ2
8 + ζ8 − 1)E1,χ4α

1 E1,χ4α
1 +

1

4
(ζ3

8 + ζ2
8 )E1,χ4α2

1 · E1,χ4α2

1 |B2.

A representation of a newform f as a linear combination of products of Eisenstein series
has several applications. Of course we can tell, directly from Theorem 1.0.3, that the
newforms in examples 2 and 3 have non-vanishing central L-value without the need of
calculating L(f, 1).

Also, as remarked in [Rau14], one can use an expression for a modular form as a sum
of products of Eisenstein series to compute Fourier expansions at every cusp. This is
particularly simple in our case: using results of [Wei77] we know the expansion of an
Eisenstein series at any cusp of Γ0(N), so given a newform of level N = N ′pn as above,
one can provide an algorithm for calculating the expansion of a newform of Sk(N) for

4



Chapter 1: Introduction

k ≥ 4 (resp. Srk=0
2 (N) if k = 2) at any cusp of Γ0(N). When N = N ′ is squarefree one

can obtain the expansions at other cusps more directly from the expansion at in�nity by
use of Atkin�Lehner operators (c.f. [Asa76]), but the Fourier expansions at other cusps
are much more mysterious and less accessible when the level is not squarefree.

Similarly, [Wei77] also describes the action of the Atkin�Lehner operators on Eisenstein
series, so once one has an explicit representation of a newform f as a linear combina-
tion of products of Eisenstein series it is straightforward to compute the Atkin�Lehner
eigenvalues and the root number of f .

The result in Chapter 2 generalise previous results by Kohnen�Imamo	glu [IK05], where
the case N = 2 is studied, and Kohnen�Martin [KM08], where Theorems 1.0.2 and 1.0.3
are proved for odd prime levels.

Raum [Rau14] proves a di�erent, rather general result for vector-valued modular forms:
Let k ≥ 12 be an integer, let ρ be a representation of SL2(Z) on a complex vector
space V such that ker(ρ) contains a congruence subgroup, and de�ne Mk(ρ) to be the
space of V -valued functions transforming as modular forms for the automorphy factor
γ 7→ (cz + d)−kρ(γ−1). Then

Mk(ρ) = Ek(ρ) + spanφ:ρM⊗ρM′→ρ (TMEl ⊗ TM ′Ek−l) ,

where 4 ≤ l ≤ k − 4, ρM is the permutation representation on Γ0(M)\ SL2(Z), the Ek
are corresponding vector-valued Eisenstein series, and the TM are certain natural vector-
valued Hecke operators. Apart from the inclusion of low weights, our results di�er from
those of [Rau14] since our generating set does not involve Hecke operators.

In [BG01] and [BG03] Borisov�Gunnells use the theory of toric varieties to show that
certain spaces of toric modular forms are generated by products of toric Eisenstein series.
One of their results is that for any N and k > 2 the space of modular forms of weight k
with respect to the congruence group

Γ1(N) = {γ =
(
a b
c d

)
∈ SL2(Z)|γ ≡

(
1 ∗
0 1

)
(mod N)}

can be spanned by products of toric Eisenstein series, while for k = 2 they only obtain a
subspace ofM2(Γ1(N)).

Since the main theorems of [BG01] and [BG03] apply in greater generality than Theorem
1.0.2 and Theorem 1.0.3, it is important to point out some di�erences between the two
results. The generating sets forMk(N) that we give for k > 2 have size O(kN1+ε) for any
ε > 0, while the generating sets for Mk(Γ1(N)) obtained in [BG03] have size O(kN2).
As we mention in the applications below, an advantage of working with the well-studied
Eisenstein series Eφ,ψ

l is that their Fourier expansions at every cusp of Γ0(N) are known
and also the action of the Atkin�Lehner operators on them. Lastly the proofs of our
Theorems are shorter than the proofs of the main theorems of [BG01] and [BG03] and
do not make use of the theory of toric varieties.

In Chapter 3 we discuss another application of representations of f as above, that was
recently found by Rogers and Zudilin [RZ12] in connection with Boyd's conjectures and
special values of the L-function of f . Before we describe the Rogers�Zudilin method we
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Chapter 1: Introduction

give a brief overview of Boyd's beautiful conjectures. The logarithmic Mahler measure of
a Laurent polynomial P (t1, . . . , tn) ∈ C[t±1

1 , . . . , t±n ] is de�ned by

m(P ) =

∫ 1

0

. . .

∫ 1

0

log |P (e2πiθ1 , . . . , e2πiθn)|dθ1 . . . dθn.

It was �rst noticed by Deninger [Den97] that often m(P ) can be interpreted as a Deligne
period of a mixed motive. For P = X2Y +Y 2X+XY +X+Y the expected value of this
Deligne period, according to the Bloch�Beilinson conjectures, is a rational multiple of
L′(E, 0), where E is the elliptic curve that is the projective closure of the zero locus of P .
Motivated by Deninger's �ndings, Boyd performed computer calculations that indicated
that indeed

m(P ) = L′(E, 0), (1.0.1)

and that similar formulas hold for many more elliptic curves. He went on to produce a big
list of conjectural relations between Mahler measures and special values of L-functions
of elliptic curves or their derivatives in [Boy98]. In 2012 Rogers�Zudilin [RZ12] gave a
proof of some of these identities, e.g.,

m(X2Y + Y 2X + 2XY +X + Y ) = L′(E24, 0), (1.0.2)

where E24 is the elliptic curve of conductor 24; the projective closure of the polynomial
on the left. Let f ∈ S2(24) be the unique newform with the same L-function as E24. By
the functional equation of L(f, s) the right hand side in (1.0.2) can be written as

L′(E24, 0) =
6

π2
L(E24, 2) = −24

∫ ∞
0

f(z)zdz. (1.0.3)

Rogers�Zudilin start by writing f as a linear combination of products of two weight 1
Eisenstein series. They then swap integration and summation over the Fourier coe�cients
in (1.0.3) and apply a simple but ingenious change of variables to the integrals in the sum.
Swapping summation and integration back, (1.0.3) becomes an integral over elementary
functions. Finally they use properties of hypergeometric functions to �nish the proof of
(1.0.2).

Using the same method, Rogers�Zudilin proved (1.0.1) in 2014, and many other cases of
Boyd's conjectures were settled similarly in [Bru] and [Zud14].

In Chapter 3 we reinterpret the Rogers�Zudilin method in terms of a correspondence be-
tween modular forms. Most of the work presented in that paper was done in collaboration
with N. Diamantis and F. Strömberg and appeared in a joint article [DNS15].

The correspondence associates to a pair of functions F1, F2 and s ∈ C a new function
Φs(F1, F2) which, when F1 and F2 are connected to modular forms, satis�es properties
related to modularity for special values of s. Our main theorem, Theorem 3.2.2, connects
the Mellin transform of the product F1F2 with the Mellin transform of functions associ-
ated to F1 and F2 via our correspondence. This is achieved using a simple �duality" rela-
tion (Lemma 3.2.1), which reformulates the key change of variables in Rogers�Zudilin's
method. The content of the main theorem can be summarised as:

6



Chapter 1: Introduction

Theorem 1.0.5. Let F1 and F2 be functions on the upper half-plane given by

F1(z) =
∑

m1,n1≥1

a1(m1)b1(n1)e2πim1n1z,

F2(z) =
∑

m2,n2≥1

a2(m2)b2(n2)e2πim2n2z,

where we assume that the Fourier coe�cients grow at most polynomially. For j = 1, 2 we
set

fj(z) =
∑

mj ,nj≥1

bj(nj)e
2πimjnjz and gj(z) =

∑
mj ,nj≥1

aj(mj)e
2πimjnjz.

Then we have the following relation between Mellin transforms

M(F1 · F2|0WN)(s) =M(Φs+1(f1, f2) · (Φ−s+1(g2, g1)|0WN))(s) for all s ∈ C,

where Φs(f, g) is the function associated to f and g as described in Section 3.1.

In the case where F1 and F2 are Eisenstein series, the functions that appear in Theorem
1.0.5, Φs+1(f1, f2) and Φ−s+1(g2, g1), are closely connected to Eisenstein series in many
cases. We make use of this fact in two applications. They are stated in terms of completed
L-functions which, for a modular form f of level N , are de�ned as

Λ(f, s) = Γ(s)

(√
N

2π

)s

L(f, s).

The �rst one can be sketched in the following form:

Theorem 1.0.6 (Sketch of Theorem 3.4.2). If E is in a certain subspace of the weight 2
Eisenstein space on Γ1(N), then

Λ′(E, 1) = Λ(Ẽ, 1) + C

for an explicitly determined constant C and an explicit element Ẽ in the weight 1 Eisen-
stein space.

The other application gives a duality between L-values of products of Eisenstein series.

Theorem 1.0.7 (Special case of Theorem 3.3.1). Let χ1, χ2 and ψ1, ψ2 be pairs of non-
trivial primitive Dirichlet characters modulo M1,M2 and N1, N2, respectively. Let k ≥ 1,
l ≥ 2 such that (χ1 · χ2)(−1) = (−1)l and (ψ1 · ψ2)(−1) = (−1)k. Then for an integer
j ∈ {1, . . . , k + l − 1} such that (χ1 · ψ1)(−1) = (−1)k−j we have

Λ(Eχ1,χ2

l · Eψ̄2,ψ̄1

k |BM1M2 , j) = C · Λ(Eχ1,ψ2

j · Eχ̄2,ψ̄1

k+l−j|BM1N2 , l) (1.0.4)

where C is an explicit algebraic number.

7



Chapter 1: Introduction

While Theorems 1.0.6 and 1.0.7 have their independent interest, Theorem 1.0.5 was de-
rived with applications to L-functions of newforms in mind. The Rogers�Zudilin method
has been successful in proving statements about L-values of newforms of weight 2, like
Boyd's conjectures, or the fact that these L-values should be periods in the sense of
Kontsevich�Zagier [KZ01] (see [Zud13]). One future goal of the author of this thesis will
be to apply Theorem 1.0.5 to the study of L-values of newforms of higher weight.

One crucial fact about L-functions that is used in Chapter 2 is Theorem 1.0.4; if enough
L-values associated to a modular form f vanish, then so does f . This follows from one of
the main theorems in the theory of modular symbols, which is closely connected to the
Eichler�Shimura isomorphism. This isomorphism was �rst discovered by Eichler [Eic57]
and there are many di�erent ways to state it. We choose a version described in [Ant92],
which is close to Shimura's formulation in [Shi59]. Let Γ = Γ0(N) and k ≥ 2 be an even
integer. To f ∈ Sk(Γ) and γ ∈ SL2(Z) we associate the polynomial

σf,γ(X) =

∫ ∞
γ−1∞

f(τ)(τ −X)k−2dτ. (1.0.5)

Here the paths of integration are contained in the upper half plane (except for the end-
points). Let R[X]k−2 and C[X]k−2 be the space of polynomials of degree ≤ k − 2 with
real and complex coe�cients respectively. The group Γ acts on each of these spaces via
the slash action |2−k and it is easy to show that

σf : γ 7→ σf,γ(X)

is a cocycle with values in C[X]k−2, i.e., it satis�es

σf,γδ(X) = σf,γ(X)|2−kδ + σf,δ(X), ∀γ, δ ∈ Γ.

It is in fact a parabolic cocycle and the map f 7→ σf induces a linear map from Sk(Γ)
to the parabolic cohomology group H̃1(Γ,C[X]k−2) ⊆ H1(Γ,C[X]k−2) (for de�nitions see
�4.1.1). Denoting by Re(σf,γ(X)) the polynomial that has as coe�cients the real parts
of the coe�cients of σf,γ(X), we can state the Eichler�Shimura isomorphism as follows.

Theorem 1.0.8 (Eichler�Shimura isomorphism). For all k ≥ 2 we have an isomorphism

Sk(Γ)
∼=→ H̃1(Γ,R[X]k−2).

given by

f 7→ [Re(σf )],

where Re(σf ) is the cocycle that maps γ to Re(σf,γ(X)) and [Re(σf )] is its associated
cohomology class.

Theorem 1.0.8 has many applications in the theory of modular forms and the study of
critical values of their L-functions, e.g., in algebraicity results like Manin's period theorem
[Man73]. As mentioned before it is also an essential ingredient in the theory of modular
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Chapter 1: Introduction

symbols. Indeed the maps ξf that we use in �2.2, are closely connected to σf by the
relation

ξf ([(X − Y )k−2, g]) =

∫ ∞
0

f |kg(τ)(τ − 1)k−2dτ = σf |kg,σ(1),

where g ∈ SL2(Z) and σ = ( 0 −1
1 0 ).

The subject of Chapter 4 is an analogue of Theorem 1.0.8 in the case of arbitrary real
weight. Knopp �rst formulated it in 1974 [Kno74]. Let f ∈ Sk(Γ, v), where v is a
multiplier system of weight k for Γ. The �rst problem one encounters when allowing
arbitrary real weights k ∈ R, is that the factor (τ − X)k−2 in the integrand of (1.0.5)
is no longer a polynomial in X. Viewing it as a function in X = z it is not even well-
de�ned for z in the upper half plane. Knopp solved this problem by conjugating z and
conjugating the whole integral in (1.0.5) again, so that

φ∞f : γ 7→ φ∞f,γ =

[∫ ∞
γ−1∞

f(τ)(τ − z)k−2dτ

]−
is, once we choose a branch for the exponentiation by k − 2, a well-de�ned holomorphic
function on the upper half plane. In fact φ∞f,γ is an element of P , a space of holomorphic
functions with polynomial growth conditions. Viewing P as a Γ-module under the |2−k,v
action, φ∞f is a cocycle of Γ with values in P . With this Γ-action on P we denote the
�rst cohomology group with coe�cients in P by H1

2−k,v(Γ,P). With the larger coe�cient
module P all cocycles are parabolic, i.e.,

H̃1
2−k,v(Γ,P) = H1

2−k,v(Γ,P).

This is the content of Theorem 4.1.3.

Knopp conjectured that the map f 7→ φ∞f is an isomorphism from Sk(Γ, v) to H̃1
r,v(Γ,P)

but was only able to prove this for the cases k ≥ 2 and k ≤ 0. In the case k > 2 he relied
heavily on previous work by Niebur [Nie74] on automorphic integrals. Later, in 2000, a
partial result on the missing cases in Knopp's conjecture was obtained by Wang [Wan00]
and it was resolved in 2010 by Knopp and Mawi [KM10], using Petersson's principal part
theorem and generalised Poincaré series.

Theorem 1.0.9. For all k ∈ R we have an isomorphism

Sk(Γ, v)
∼=→ H1

2−k,v(Γ,P)

given by
f 7→ [φ∞f ].

A recent preprint [BCD14] by Bruggeman, Choie and Diamantis gives a similar isomor-
phism for a much wider class of automorphic forms. They also provide several motivations
to study cocycles of real weight. One of them is a formula of Goldfeld [Gol95] that sug-
gests a connection between special values of derivatives of L-functions and cocycles. To
be precise, let f =

∑
n≥1 anq

n be a Hecke cusp form of weight 2 for the group Γ0(N), and
assume that f is invariant under the Fricke involution WN = ( 0 −1

N 0 ). The L-function of

9



Chapter 1: Introduction

f , L(f, s), is de�ned as the analytic continuation to C of the Dirichlet series
∑
ann

−s.
In [BCD14, �9.4] it is shown that Goldfeld's formula leads to the following expression:

−πirL′(f, 1) +Or→0(r2) = φfr(σ)(0),

where fr(z) = f(z)(η(z)η(Nz))r is a cusp form of weight 2 + r.

In Chapter 4 we present a new proof of Theorem 1.0.9 for positive weights k 6= 1 that
views the isomorphism in Knopp and Mawi's theorem as a duality. The results in that
chapter have been accepted for publication in the Ramanujan Journal [Neu16]. The key
construction is a pairing between Sk(Γ, v) and H1

2−k,v(Γ,P) which we introduce in Section
4.3 when k > 0. In Section 4.4 we show that this pairing is perfect if k 6= 1, which implies
Theorem 4.2.1 for the weights we consider. The proof also implies Theorem 4.2.1 for the
weights k ≤ 0, and hence for all real weights except k = 1.

One of the advantages of the new proof is that once all the constructions are in place the
problem can be solved with standard techniques from the spectral theory of automorphic
forms. With the new pairing some previously di�cult facts become remarkably easy to
derive. For example one can see immediately that f 7→ [φ∞f ] is injective from the fact
that (f, [φ∞f ]) = (f, f), where the �rst pairing is the one we construct and the latter is the
Petersson inner product. Another advantage is, that the proof can easily be generalised
to the case of vector-valued cusp forms. We sketch this generalisation in the last section
of this chapter.

10
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1.1 Preliminaries

1.1.1 Modular forms

Let H = {x + iy|y > 0} be the upper half plane and H = H ∪ R∗ ∪ i∞ be its closure in
P1(C). The group GL+

2 (R) of real 2× 2 matrices with positive determinant acts on H by(
a b
c d

)
z =

az + b

cz + d
.

Since scalar matrices act trivially, this action induces an action of PSL2(R) = SL2(R)/{±I},
where SL2(R) ≤ GL+

2 (R) is the subgroup of matrices with determinant 1.

Let k ∈ Z be an integer. GL+
2 (R) also acts on functions on the upper half plane H by

the weight k slash action |k

f |kγ(z) =
(det γ)k/2

j(γ, z)k
f(γz),

where j(( a bc d ) , z) = cz + d.

We denote the modular group SL2(Z) by Γ(1) and note that it is generated by the
translation T = ( 1 1

0 1 ) and S = ( 0 1
−1 0 ). We introduce the following important subgroups

of Γ(1):

Γ(N) = {γ =
(
a b
c d

)
|γ ≡

(
1 0
0 1

)
(mod N)} (1.1.1)

Γ1(N) = {γ =
(
a b
c d

)
|γ ≡

(
1 ∗
0 1

)
(mod N)} (1.1.2)

Γ0(N) = {γ =
(
a b
c d

)
|γ ≡

(∗ ∗
0 ∗

)
(mod N)} (1.1.3)

The group Γ(N) is normal in Γ(1) and called the principal congruence group of level N .
A congruence (sub-)group of level N is any subgroup of Γ(1) that contains Γ(N), e.g.,
Γ0(N) and Γ1(N). Let Γ ≤ SL2(Z) be a congruence subgroup.

De�nition 1.1.1. Let k be an integer. A holomorphic function f : H → C is called
weakly modular of weight k with respect to Γ if

f |kγ = f, ∀γ ∈ Γ.

Since there exists an N such that ( 1 N
0 1 ) ∈ Γ, a weakly modular function f with respect

to Γ must be invariant under translation by N , i.e., f(z +N) = f(z) for all z ∈ H. This
means that for Im z � 0 we have a Fourier expansion of the form

f(z) =
∑
n≥n0

anq
n
N , where qN = e

2πi
N
z. (1.1.4)

We say that f is holomorphic at i∞ if in (1.1.4) an = 0 for n < 0. This is equivalent to
the existence of the limit lim

Im z→∞
f(z). If f is weakly modular of weight k with respect

to a congruence subgroup Γ, then f |kα is weakly modular with respect to α−1Γα for any
α ∈ SL2(Z). By exercise 1.2.5 in [DS10] α−1Γα is again a congruence subgroup so f |kα
has a Fourier-expansion of the form (1.1.4) (for a possibly di�erent choice of N) and the
following de�nition is justi�ed.

11



Chapter 1: Introduction

De�nition 1.1.2. A function f : H → C is a modular form of weight k with respect to
Γ if

1. f is weakly modular of weight k with respect to Γ.

2. f |kα is holomorphic at i∞ for all α ∈ SL2(Z).

If in addition a0 = 0 in the Fourier expansion at i∞ of f |kα for all α ∈ SL2(Z), then f
is a cusp form. We denote the space of modular forms of weight k with respect to Γ by
Mk(Γ). The space of cusp forms is denoted by Sk(Γ). If f is a weight k modular form
then we often write f |γ instead of f |kγ for any γ ∈ GL+

2 (R).

One of the key facts about modular forms is that for any congruence group Γ the space
Mk(Γ) is �nite dimensional. This implies that in order to determine a modular form of a
given weight and congruence group one only needs to know a �nite number of its Fourier
coe�cients.

Let χ be a Dirichlet character modulo N . It can be extended to a character of Γ0(N) by
de�ning χ(( a bc d )) = χ(d). We writeMk(N,χ) (orMk(N), if χ is principal) for the space
of weight k modular forms for Γ1(N) that satisfy the transformation law

f |kγ = χ(γ)f, ∀γ ∈ Γ0(N)

and Sk(N,χ) for the subspace of cusp forms inMk(N,χ). A modular form inMk(N,χ)
is said to have nebentypus χ. Then we have

Mk(Γ1(N)) = ⊕χMk(N,χ),

where the sum is over all Dirichlet characters modulo N .

We write 1N for the principal character modulo N , which satis�es 1N(n) = 1 for (n,N) =
1, and 1N(n) = 0 otherwise. The trivial character is denoted by 1; it satis�es 1(n) = 1
for all n. Any character χ modulo N =

∏
p prime p

vp(N) splits into a product of characters
modulo the prime powers dividing N :

χ =
∏
p|N

p prime

χp,

where χp is a character modulo pvp(N) for each p. If S is a set of prime divisors of N ,
then we write χS =

∏
p∈S χp for the S-part of χ.

1.1.2 Petersson inner product

De�nition 1.1.3. A fundamental domain F for a subgroup of SL2(R) is a connected
open subset of H that satis�es the following properties:

1. For every z ∈ H there exists γ ∈ Γ such that γz ∈ F , where F denotes the
topological closure of F .

12
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2. Distinct points of F are not in the same Γ-orbit.

De�nition 1.1.4. Let Γ be a congruence subgroup and F a fundamental domain for Γ.
For f, g ∈ Mk(Γ) such that either f or g is a cusp form we de�ne the Petersson inner
product

〈f, g〉 =

∫
F
f(z)g(z)yk

dxdy

y2
. (1.1.5)

Since the hyperbolic measure µ = dxdy
y2

and the function f(z)g(z)yk are both Γ-invariant,
the integral in (1.1.5) does not depend on a choice of a fundamental domain F .

1.1.3 Hecke operators and Atkin�Lehner theory

In this section we introduce Hecke operators onMk(Γ1(N)) and recall some facts from
Atkin�Lehner theory. For more details and proofs we refer the reader to the original
article by Atkin and Lehner [AL70] or [DS10].

De�nition 1.1.5. Let f ∈Mk(Γ1(N)) and p be a prime. We de�ne the Hecke operators
Tp and Uq for primes p, q with p - N and q | N onMk(Γ1(N)) by

f |kUp =

p−1∑
j=0

f |k
(

1 j
0 p

)
p|N, (1.1.6)

f |kTp =

p−1∑
j=0

f |k
(

1 j
0 p

)
+ f |k

(
mp n
Np p

)
p - N where mp− nN = 1. (1.1.7)

Let χ be a Dirichlet character modulo N . Again, we will often omit the weight k in the
notation if the weight of f is clear. The action of the Hecke operators on a modular form
f =

∑
anq

n inMk(N,χ) is given by

f |Tp =
∑
n≥0

(anp + χ(p)pk−1an/p)q
n, (1.1.8)

f |Uq =
∑
n≥0

anpq
n, (1.1.9)

where we set an/p = 0 if n/p /∈ Z.
For r ≥ 1 we de�ne the Hecke operator Tpr inductively by setting T1 to be the identity
operator and

Tpr = TpTpr−1 − pk−1χ(p)Tpr−2

and extend the Uq multiplicatively. Then we can de�ne a Hecke operator Tn for any
n =

∏
p-N p

vp(n)
∏

q|N q
vq(N) by

Tn =
∏
p-N

Tpvp(n)
∏
q|N

Uqvq(n) .

13
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Hecke operators map cusp forms to cusp forms and the operators Tp for p - N commute.
Their adjoints on Sk(N,χ) with respect to the Petersson inner product are given by

T ∗p = χ(p)−1Tp

and hence they are normal, i.e., they commute with their adjoints. Thus M(N,χ) has
an orthonormal basis of eigenvectors of all Tn where (n,N) = 1.

The Hecke operators Uq for q | N behave very di�erently. They are not normal operators
in general so one cannot �nd always �nd an orthonormal basis of eigenvectors of all Hecke
operators Tn.

A solution to this problem was given by Atkin�Lehner [AL70] with what is now known
as Atkin�Lehner theory. They introduced the old subspace of Sk(Γ1(N)) de�ned by

Sk(Γ1(N))old =
⋃

M,d:Md|N

Sk(Γ1(M))|Bd,

where Bd is the operator

f |kBd(z) = f |k
(
d 0
0 1

)
(z) = dk/2f(dz).

The new subspace Sk(Γ1(N))new is de�ned as the orthogonal complement of Sk(Γ1(N))old,
and Sold

k (N,χ) and Snew
k (N,χ) are the intersections of the old and new subspace with

Sk(N,χ). The Hecke operators act on the old and new subspaces and one of the main
results of Atkin�Lehner was that on Snew

k (N,χ) all Hecke operators are normal and com-
mute with each other. There is therefore an orthogonal basis of common eigenfunctions
of all Hecke operators on Snew

k (N,χ). One can show that if f =
∑
anq

n is such an eigen-
function, then a1 6= 0 and hence we can normalise the basis by setting a1 = 1 for all
eigenfunctions. Such a modular form is called a newform and they play an important
role in the theory of modular forms. Newforms satisfy the property

f |Tn = anf, ∀n ∈ N,

where an is the n-th Fourier coe�cient. By using the recursive de�nition of the Hecke
operators we see that one can obtain all Fourier coe�cients of a newform from the Fourier
coe�cients at primes.

Theorem 1.1.1. Let N new

k (N,χ) be the set of newforms of Snewk (N,χ). Then the set⋃
M :cond(χ)|M |N

⋃
d:Md|N

N new

k (N,χ)|Bd

is a basis of Sk(N,χ).

For a set of prime divisors S of N and a divisor M of N , we write MS for the S-part of
M , i.e.

∏
p∈S p

vp(M). By S we denote the complement of S in the set of prime divisors of
N .

14
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De�nition 1.1.6. For a set of prime divisors S of N we de�ne the Atkin�Lehner operator

WN
S =

(
NSx y
Nz NSw

)
∈ M2(Z),

where y ≡ 1 (mod NS), x ≡ 1 (mod NS) and detWN
S = NS.

In the case when S is the set of all primes dividing N we simply write WN for WN
S =

( 0 −1
N 0 ). This Atkin�Lehner operator is often called the Fricke-involution and it acts on

functions on the upper half plane by

f |kWN(z) = (
√
Nz)−kf

(
− 1

Nz

)
.

The following properties of WN
S are well-known (see for example [AL78]):

Proposition 1.1.2. (i) Let S be a set of prime divisors of N . If

M =
(
NSx

′ y′

Nz′ NSw
′

)
is any matrix with x′, y′, z′, w′ ∈ Z of determinant NS then

f |M = χS(y′)χS(x′)f |WN
S . (1.1.10)

In particular, WN
S does not depend on the choice of x, y, z, w.

(ii) Let f ∈Mk(N,χ). Then

f |WN
S ∈Mk(N,χSχS),

and cusp forms are preserved. Furthermore

f |WN
S |WN

S = χS(−1)χS(NS)f. (1.1.11)

(iii) The adjoint of WN
S on Mk(N,χ) with respect to the Petersson inner product is

given by
WN,∗
S = χS(−1)χS(NS)WN

S .

(iv) Let p be a prime divisor of N such that (p, S) = 1. Then

f |Up|WN
S = χS(p)f |WN

S |Up.

If f ∈Mk(N) is a newform, then it is automatically an eigenfunction of all Atkin�Lehner
operators. We denote the WN

S -eigenvalue of f by λS(f). If f is a newform inMk(N,χ),
then WN

S does not necessarily act onM(N,χ). However f |WN
S will be a scalar multiple

of a newform g ∈ Mk(N,χSχS). The WN
S pseudo-eigenvalue of f is de�ned to be the

constant λS(f) satisfying
f |kWN

S = λS(f)g.

Let q be a prime divisor of N . On the new subspace there is a close connection between
the Hecke operator Uq and the Atkin�Lehner operator WN

q . The following proposition is
a combination of results from [AL78]:
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Proposition 1.1.3. Let χ be a Dirichlet character modulo N and suppose χq is principal.
Let f be a newform of Sk(N,χ) with q-th Fourier coe�cient aq and W

N
q -eigenvalue λq(f).

• If q2 | N then aq = 0.

• If q2 - N then λq(f) = −q1− k
2 aq and hence we have the equality of operators

WN
q = −q−

k
2

+1Uq.

on Snewk (N,χ).

1.1.4 Twisting

The third class of operators that play a major role for us are various twisting operators.
Let f ∈ Sk(N,χ) with Fourier expansion f(z) =

∑
n≥1 ane(nz), let α be a Dirichlet

character of modulo M , and de�ne

fα(z) =
∑
n≥1

anα(n)e(nz).

With α, f as above, de�ne also

Sα(f) =
∑

a mod M

α(a)f |k
(

1 a/M
0 1

)
.

Note that if α is primitive modulo M we have

Sα(f) = G(α)fα, (1.1.12)

where
G(α) =

∑
n mod M

α(n)e2πi n
M

is the Gauss sum of α.

For any z ∈ H we can view the function F : n′ 7→
(
f |k
(

1 n′/N ′

0 1

))
(z) as a function from

(Z/N ′Z)× to C×. The Fourier coe�cient at a given multiplicative character α modulo
N ′ is

F̂ (α) =
∑

n′∈(Z/N ′Z)×

α(a)F (n′) =
∑

n′ mod N ′

α(a)F (n′) = Sα(f)(z),

so by Fourier inversion

f |k
(

1 n′/N ′

0 1

)
=

∑
α mod N ′

α(n′)

ϕ(N ′)
Sα(f), (1.1.13)

the sum being over all Dirichlet characters modulo N ′.

Finally we state some standard facts about the commutation relations for the operators
we have de�ned. These can be proved by direct computation (see also [AL78] �3).
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Proposition 1.1.4. Let N ∈ Z≥1, let f ∈ Mk(N,χ), let α be a Dirichlet character
modulo N ′ | N . Then

Sα(f) ∈Mk(NN
′, χα2).

Let q be any divisor of N that is coprime to N ′, then

Sα(f)|Uq = α(q)Sα(f |Uq).

Similarly, if S is a set of prime divisors of N such that NS and N ′ are coprime, then

Sα(f)|WNN ′

S = α(S)Sα(f |WN
S ).

1.1.5 Eisenstein series

The orthogonal complement of Sk(Γ), the Eisenstein subspace Ek(Γ), is well understood
and we give a brief overview of the theory for Γ = Γ1(N); a detailed discussion can be
found in [Miy06] or [CS15].

Let φ and ψ be two Dirichlet characters modulo N1 and N2 such that N1N2 = N and let
ψ0 be the primitive character that induces ψ. De�ne the Eisenstein series

Eφ,ψ
k (z, s) =

(k − 1)!Nk
1

(−2πi)kG(ψ0)

∑
(c,d)∈Z2\{(0,0)}

φ(c)ψ(d)

(N1cz + d)k|N1cz + d|2s
,

which converges uniformly and absolutely for k + 2 Re(s) ≥ 2 + ε, for any ε > 0. In the
region of absolute convergence it satis�es the transformation law

Eφ,ψ
k (δz, s) = φ(δ)ψ(δ)j(δ, z)k |j(δ, z)|2sEφ,ψ

k (z, s) (1.1.14)

for δ ∈ Γ0(N). Now set Eφ,ψ
k (z) = Eφ,ψ

k (z, 0). This is possible because the Eφ,ψ
k (z, s)

can be analytically continued in the s-variable. Moreover, unless k = 2 and φ and ψ are
principal, the value at s = 0 is a holomorphic function of z, so (1.1.14) along with some
growth estimates shows that in fact Eφ,ψ

k ∈Mk(N, φψ).

If φ and ψ are primitive, the Fourier expansion of Eφ,ψ
k can be deduced from Theorems

7.13, 7.2.12, and 7.2.13 of [Miy06]:

Eφ,ψ
k (z) = aφ,ψk + 2

∑
n≥1

σk−1,φ,ψ(n)qn ∈Mk(M,φψ)

where σk−1,φ,ψ(n) =
∑

d|n φ(n/d)ψ(d)dk−1 and

aφ,ψk =


L(ψ, 1− k) N1 = 1,

L(φ, 0) N2 = 1 and k = 1,

0 else.
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The special case φ = 1 is particularly important in this section. In this case we de�ne
the normalised Eisenstein series

Eψ,∗
k (z, s) =

2(−2πi)kL(ψ, k + 2s)G(ψ0)

(k − 1)!N l
E1,ψ
k (z, s)

=
∑

γ∈Γ∞\Γ0(N)

ψ(γ)

j(γ, z)k |j(γ, z)|2s
.

(1.1.15)

Theorem 1.1.5. Let AN,k be the set of ({ψ, φ}, t) such that φ and ψ are primitive Dirich-
let characters modulo N1 and N2 such that (φψ)(−1) = (−1)k and t is a positive integer
such that tN1N2|N . If k = 1 we require furthermore that φ is odd. If k 6= 2 the set

{Eφ,ψ,t
1 ; ({ψ, φ}, t) ∈ AN,k}

is a basis of E1(Γ1(N)). If k = 2 the series E1,1
2 is no longer holomorphic. To replace

it we introduce E2,t = E1,1,1
2 − tE1,1,t

2 which is a holomorphic Eisenstein series of level t.
Let BN,2 be the set of triples (φ, ψ, t) such that φ and ψ are primitive Dirichlet characters
modulo N1 and N2 with (φψ)(−1) = 1, and t is a positive integer such that 1 < tN1N2|N.
Then

{Eψ,φ,t
2 ; (ψ, φ, t) ∈ BN,2} ∪ {E1,1,1

2 − tE1,1,t
2 ; t|N}

forms a basis of E2(Γ1(N)).

In [Wei77] the action of all Atkin�Lehner operators on Eφ,ψ
k is derived:

Theorem 1.1.6 (Proposition 14 in [Wei77]). Let φ and ψ be primitive Dirichlet charac-
ters (not both trivial if k = 2) of conductors N1, N2 with φ(−1)ψ(−1) = (−1)k, and S a
set of prime divisors of N = N1N2.

Eφ,ψ
k |W

N
S =

(
N2

N1

) k−1
2

S

τ(φS)τ(ψS)E
φSψS ,φSψS
k ,

where for a character χ modulo M

τ(χ) :=
G(χ)√
M

=
1√
M

∑
n mod M

χ(n)e2πi n
M

is the normalised Gauss sum of χ.

1.1.6 L-functions

For a holomorphic function g we denote the Mellin transform of g by

Mg(s) :=

∫ ∞
0

g(it)ts
dt

t
.

For a modular form f =
∑
anq

n ∈Mk(Γ1(N)) the L-series

L(f, s) =
∑
n≥1

an
ns

converges absolutely when Re s > k+1
2
.

18



Chapter 1: Introduction

De�nition 1.1.7. The completed L-function of f is de�ned as:

Λ(f, s) := Γ(s)

(√
N

2π

)s

L(f, s) = N s/2M(f − a0)(s). (1.1.16)

Let a0 be the constant term of f and b0 the constant term of g = f |WN . By [Iwa97,
Theorem 7.3], the function

Λ(f, s) +
a0

s
+

ikb0

k − s
can be continued to an entire function on C. Furthermore we have the functional equation

Λ(f, s) = ikΛ(g, k − s).

If f ∈ Mk(N,χ) we also have functional equations for each twist of f by a character of
modulus coprime to N . If ψ is a Dirichlet character of level M , then fψ has level M2N .
Accordingly we de�ne the completed L-function of fψ as the meromorphic continuation
of

Λ(fψ, s) =
Γ(s)(M2N)s/2

(2π)s
L(fψ, s).

We then have the functional equation

Λ(fψ, s) = χ(m)ψ(−N)
τ(ψ)

τ(ψ)
Λ((f |WN)ψ, s). (1.1.17)

1.1.7 Modular symbols

We give a brief introduction to the theory of modular symbols for the group Γ1(N). For
details we refer the reader to [Mer94] or [Ste07, �8]. Let k be an integer ≥ 2, and let
C[X, Y ]k−2 be the vector space of homogeneous polynomials of degree k − 2. We de�ne
a left SL2(Z)-action on this space by

(gP )(X, Y ) = P (dX − bY,−cX + aY ), if g =
(
a b
c d

)
.

Let M be the torsion-free abelian group generated by the symbols {α, β}, where α, β ∈
P1(Q) = Q ∪∞, with the relations

{α, β}+ {β, γ}+ {γ, α} = 0, ∀α, β, γ ∈ P1(Q).

Set
Mk = C[X, Y ]k−2 ⊗M,

so Mk is a vector space over C, generated by elements of the form P ⊗ {α, β}, where
P ∈ C[X, Y ]k−2 and {α, β} ∈ M. This space has an SL2(Z)-action de�ned by

g(P ⊗ {α, β}) = gP ⊗ {gα, gβ}, for g ∈ SL2(Z),

where the action of SL2(Z) on P1(Q) comes from the action of SL2(Z) on H.
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We de�ne the space ofmodular symbols of weight k for Γ1(N),Mk(Γ1(N)), as the quotient
vector space obtained from Mk by imposing gx = x for all g ∈ Γ1(N) and x ∈Mk.

The space Mk(Γ1(N)) is generated by the Manin symbols [P, g] = gP ⊗{g0, g∞}, where
P ∈ C[X, Y ]k−2 and g ∈ SL2(Z). The action of SL2(Z) on Mk(Γ1(N)) translates to

[P, g]h = [h−1P, gh]

and the Manin symbols satisfy the following de�ning relations: the symbol [P, g] depends
only on P and the coset Γ1(N)g, and

[P, g] + [P, g]σ = 0, (1.1.18)

[P, g] + [P, g]τ + [P, g]τ 2 = 0, (1.1.19)

[P, g]− [P, g]J = 0, (1.1.20)

where
σ =

(
0 −1
1 0

)
, τ =

(
0 −1
1 −1

)
, and J =

(−1 0
0 −1

)
.

Let B be the torsion free abelian group generated by the elements of P1(Q). We de�ne

Bk = C[X, Y ]k−2 ⊗ B,

and an SL2(Z)-action by g(P ⊗α) = gP ⊗ gα. As before we de�ne the space of boundary
symbols of weight k for Γ1(N), Bk(Γ1(N)) as the quotient vector space obtained from
Bk by imposing the relations gx = x for all g ∈ Γ1(N) and x ∈ Bk. There is a natural
boundary map from Mk(Γ1(N)) to Bk(Γ1(N)) de�ned by

b(P ⊗ {α, β}) = P ⊗ {α} − P ⊗ {β}

and a modular symbol in the kernel of b is called cuspidal. The space of cuspidal modular
symbols is denoted by Sk(Γ1(N)). We can now state one of the main theorems in the
theory of modular symbols.

Theorem 1.1.7 (Theorem 3 in [Mer94]). De�ne a pairing

(Sk(Γ1(N))⊕ Sk(Γ1(N)))×Mk(Γ1(N))→ C

by

〈(f1, f2), P{α, β}〉 =

∫ β

α

f1(z)P (z, 1)dz +

∫ β

α

f2(z)P (z, 1)dz.

Then 〈· , ·〉 is non-degenerate when restricted to

(Sk(Γ1(N))⊕ Sk(Γ1(N)))× Sk(Γ1(N)).

Let η = ( −1 0
0 1 ). There is an involution on Mk(Γ1(N)) given on Manin symbols by

ι∗([P, g]) = −[P̃ , ηgη−1],

where P̃ (X, Y ) = P (−X, Y ). Denoting by Sk(Γ1(N))+ and Sk(Γ1(N))− the +1 and −1
eigenspaces of Sk(Γ1(N)) under ι∗ we have
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Proposition 1.1.8 (Proposition 8 in [Mer94]). The pairing 〈· , ·〉 is non-degenerate when
restricted to

Sk(Γ1(N))× Sk(Γ1(N))+, or Sk(Γ1(N))× Sk(Γ1(N))−.

By mapping a matrix g to its bottom row modulo N , the cosets of Γ1(N)\ SL2(Z) are in
bijection with the set

EN = {(u, v) ∈ (Z/NZ)2; (u, v) has additive order N}.

We therefore write [P, (u, v)] = [P, g] for any g ∈ SL2(Z) with bottom row congruent to
(u, v) modulo N . De�ne

ξf (j;u, v) := 〈f, [XjY k−2−j, (u, v)])〉 j ∈ {0, . . . , k − 2} and (u, v) ∈ EN .

A consequence of Theorem 1.1.7 is that if the map ξf is identically zero, then f vanishes.
Proposition 1.1.8 allows one to say more. We de�ne

ξ±f (j;u, v) =
〈f, [XjY k−2−j, (u, v)]± ι∗[XjY k−2−j, (u, v)]〉

2

=
ξf (j;u, v)± (−1)j+1ξf (j;−u, v)

2
.

It is a consequence of Proposition 1.1.8 that f is determined by the map ξ+
f or ξ−f . In

particular, if one of them vanishes, then so does f . This is the crucial fact about modular
symbols that we use in the proof of Theorem 2.2.2.

The pairing of Theorem 1.1.7, and hence the map ξf , is related to values of L-functions
associated to f . Indeed, taking g = ( a bc d ) ∈ SL2(Z) with (c, v) ≡ (u, v) mod N we have

ξf (j;u, v) =
j!

(−2πi)j+1
L(f |g, j + 1). (1.1.21)
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Chapter 2: Spaces generated by products of two Eisenstein series

2.1 Outline

The aim of this chapter is to prove Theorem 1.0.2 and Theorem 1.0.3. Here we will give
a brief sketch of the proof of the �rst of these theorems, the other requires only minor
modi�cations. By an inductive argument it su�ces to show that, for N = N ′pn as in the
statement of Theorem 1.0.2 and k ≥ 4, we have

Snew
k (N) = Qk(N),

where Qk(N) is the projection of Qk(N) to the new space. In �2.5 we show that this
projection is equal to the projection of Pk(N), the space generated by the products

(E1,α
l E1,αN

k−l )|WNM
S ; (2.1.1)

where α is primitive of level M | N , αN its extension to a character modulo N , and the
WNM
S vary over all the partial Atkin�Lehner operators. So the proof reduces to showing

that

Snew
k (N) = Pk(N). (2.1.2)

Let g ∈ Snew
k be orthogonal to Pk(N). We need to show that this implies g = 0. If g is a

newform, a standard calculation using the Rankin�Selberg method shows that for any α
as in the de�nition of Pk(N) all the critical L-values L(gα|WNM

S , j) must vanish (except
for some cases when α = 1 and j = 2, k−2, when technical di�culties coming from weight
two Eisenstein series enter). At this point one can use a calculation in modular symbols
to show that such a g must be zero. However g will in general not be a newform but
a sum of newforms. Since Pk(N) is closed under the action of the partial Atkin�Lehner
operators WN

p , we can at least assume that g is an eigenfunction of all these operators.
With a little more care in the modular symbols calculation, this assumption is enough to
prove a satisfactory criterion for the vanishing of g. The proof of the vanishing criterion,
Theorem 2.2.2, will be given in the next section.

The reason the assumptionN = pnN ′ enters is because we want to be in a situation where,
if g is a newform (or a sum of newforms with the same WN

p -eigenvalue for all p | N) and
α is a primitive character modulo M | N , then the WNM

p (pseudo-)eigenvalues of gα for
each p | (N/M) are determined by those of g. With our methods, this condition arises
naturally in the proof of Theorem 1.0.2, and our argument would extend immediately to
any situation where it holds. When N is squarefree or twice squarefree, this condition
is automatic by a Theorem of Atkin and Li in [AL78]. When N is not squarefree this is
a much more di�cult question, and it seems unlikely that a purely local argument will
work. Indeed our extension to level N = pnN ′ stems from a rather di�erent argument
involving the (global) functional equation.

In �2.6 we explain how similar arguments can be used to prove the analogue of Theorems
1.0.2 and 1.0.3 when N = p is prime and χ is primitive modulo p.

In the last section we give a few more selected examples of the main theorems.
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2.2 A vanishing condition

The main goal of this section is to prove Theorem 2.2.2, which states that if a cusp form
f has su�ciently many special values of certain twisted L-functions equal to zero, then
f must be zero. The result is in the spirit of Corollaire 2 of [Mer09], although we require
some modi�cations since we do not assume that f is a newform, or even an eigenfunction
of almost all Hecke operators. First we recall an identity from the proof of Proposition 6
in [Mer09]:

Lemma 2.2.1. Let N ∈ Z≥1, let (u, v) ∈ EN , let S denote the set of prime divisors of N
which divide u, let S denote the remaining prime divisors of N , and let N ′ be the order
of uv in Z/NZ. Let g = ( a bc d ) ∈ SL2(Z) be such that (c, d) ≡ (u, v) mod N . Then

Γ1(N)g = Γ1(N)
(

0 −1
N 0

)(
1 n

N
0 1

)(
A B
C D

)(
NN ′S 0

0 NS

)−1

,

where n is chosen so that n ≡ uv mod NS and n ≡ −uv mod NS, and ( A B
C D ) ∈ Z2×2 has

AD − BC = NSN
′
S, A ≡ uN ′S mod NS, B ≡ v/NS mod NS, and NSN

′
S | A, NSN

′
S | D,

NN ′ | C, NSN
′
S
| B.

Proof. The existence of n and A,B,C,D satisfying the conditions of the lemma follows
from the Chinese Remainder Theorem. So it su�ces to verify that, under these conditions,
the claimed identity holds. Note that the condition on the determinant is necessary, since
the matrix on the right hand side must have determinant one. Computing the matrix on
the right hand side we get (

− C
NN ′S

− D
NS

A
N ′S

+ nC
NN ′S

NSB + nD
NS

)
.

To prove the claim, it su�ces to show that the top row is integral and that the bottom
row is congruent to (u, v) modulo N . Now our conditions imply that we can write
C = NN ′C ′ for some integer C ′, and D = NSN

′
SD
′ for some integer D′, so the top row

is indeed integral. Note that the divisibility of A by N ′S is also necessary for the bottom
row to be integral; we use the full strength of our assumption and write A = NSN

′
SA
′.

With this notation the matrix we are considering is(
−N ′

S
C ′ −N ′SD′

NSA
′ + nN ′

S
C ′ NSB + nN ′SD

′

)
.

To show that the bottom row is congruent to (u, v) modulo N , we check this modulo NS

and modulo NS separately. For the former,(
NSA

′ + nN ′
S
C ′, NSB + nN ′SD

′) ≡ (NSA
′, uvN ′SD

′) mod NS,

since uvN ′
S
≡ 0 mod NS by de�nition of N ′. Since A = NSN

′
SA
′ ≡ uN ′S mod NS and N ′S

is invertible modulo NS, we see NSA
′ ≡ u mod NS. For the second component, consider

the equation AD−BC = (NSN
′
S)2A′D′−NN ′BC ′ = NSN

′
S, so NSN

′
SA
′D′−NSN

′
S
BC ′ =

1. This gives NSN
′
SA
′D′ ≡ 1 mod NS, so using A = NSN

′
SA
′ ≡ uN ′S mod NS again we
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get uN ′SD
′ ≡ 1 mod NS, hence uvN

′
SD
′ ≡ v mod NS as required.

Now consider the bottom row modulo NS:(
NSA

′ + nN ′
S
C ′, NSB + nN ′SD

′) ≡ (−uvN ′
S
C ′, NSB) mod NS,

again using the de�nition of N ′. Since B ≡ v/NS mod NS, the second component is
congruent to v modulo NS. For the �rst component we again argue from the determinant
condition. We have NSN

′
SA
′D′ − NSN

′
S
BC ′ = 1. This gives −vN ′

S
C ′ ≡ 1 mod NS, so

−uvN ′
S
C ′ ≡ u mod NS as required.

Theorem 2.2.2. Let N be a positive integer, k ≥ 2, and let f ∈ Snewk (N) be an eigenfunc-
tion of all partial Atkin�Lehner operators WN

S . Assume that L(fα|WNM
S , j+1) = 0 for all

characters α primitive modulo M | N and all sets of primes S such that
∏

p∈S p ·M | N ,

and all j = 0, 1, . . . , k − 2 such that α(−1) = (−1)j+1 (resp. α(−1) = (−1)j). Then
f = 0.

Proof. We will present the argument for the case α(−1) = (−1)j+1, which uses the
function ξ+

f . The other case, using ξ
−
f , is almost identical, the only di�erence being which

characters cancel in (2.2.4). We will show that the conditions in the theorem imply
ξ+
f |WN

(j;u, v) = 0 for all j = 0, 1, ..., k − 2 and (u, v) ∈ EN , which in turn implies f = 0

by the last remarks in �1.1.7. Let us therefore �x (u, v) ∈ EN and consider

ξ+
f |WN

(j;u, v) =
ξf |WN

(j;u, v) + (−1)j+1ξf |WN
(j;−u, v)

2
.

As in the statement of Lemma 2.2.1, let S be the set of those prime divisors of N that
divide u. Write N ′ for the order of uv in Z/NZ. Choose g = ( a bc d ) ∈ SL2(Z) such that
(c, d) ≡ (u, v) mod N . By Lemma 2.2.1 we have

Γ1(N)g = Γ1(N)
(

0 −1
N 0

)(
1 n

N
0 1

)(
A B
C D

)(
NN ′S 0

0 NS

)−1

, (2.2.1)

with A,B,C,D and n satisfying the conditions of Lemma 2.2.1. Since f |WN |WN equals
f , we have

f |WN |g = f |
(

1 n
N

0 1

)(
A B
C D

)(
NN ′S 0

0 NS

)−1

.

Now n ≡ uv mod NS and n ≡ −uv mod NS, so n also has order N ′ modulo N . Hence
nN ′ = n′N for some n′ which is coprime to N ′. Writing this as n/N = n′/N ′ and using
(1.1.13) we get

f |WN |g =
∑

α mod N ′

α(n′)

φ(N ′)
Sα(f)|

(
A B
C D

)(
NN ′S 0

0 NS

)−1

,

where α varies over all Dirichlet characters modulo N ′.

By Proposition 1.1.4 we have Sα(f) ∈ S2(NN ′, α2). Now the conditions of Lemma 2.2.1
and Proposition 1.1.2 give

Sα(f)|
(
A B
C D

)
= α2

S(B)α2
S

(
A

NSN ′S

)
Sα(f)|WNN ′

S .

25



Chapter 2: Spaces generated by products of two Eisenstein series

Hence, using (1.1.21), we see that ξf |WN
(j;u, v) equals

j!(NS/N
′
S)

k
2
−j−1

(−2πi)j+1φ(N ′)

∑
α mod N ′

α(n′)α2
S(B)α2

S

(
A

NSN ′S

)
L
(
Sα(f)|WNN ′

S , j + 1
)
, (2.2.2)

where the sum is over all characters modulo N ′.

To compute ξf |WN
(j;−u, v) we proceed analogously with g̃ =

(
a −b
−c d

)
, since this has

bottom row (−c, d) ≡ (−u, v) mod N . With A,B,C,D, n as in (2.2.1) we see that

Γ1(N)g̃ = Γ1(N)
(

0 −1
N 0

)(
1 − n

N
0 1

)(−A B
C −D

)(
NN ′S 0

0 NS

)−1

. (2.2.3)

The argument is as above, with n′ replaced by −n′, and each individual summand in the
�nal expression for ξf |WN

(j;u, v) changes by a factor of α(−1)α2
S
(−1) = α(−1). From

the de�nition of ξ+
f |WN

we then see ξ+
f |WN

(j;u, v) equals

j!(NS/N
′
S)

k
2
−j−1

(−2πi)j+1φ(N ′)

∑
α

α(n′)α2
S(B)α2

S

(
A

NSN ′S

)
L
(
Sα(f)|WNN ′

S , j + 1
)
, (2.2.4)

where the sum is over all characters α modulo N ′ with α(−1) = (−1)j+1.

The next step is to relate Sα(f) to the twist by the primitive character underlying α. The
key to this is the following lemma, the proof of which will be given after the completion
of the current argument:

Lemma 2.2.3. Let N and k be positive integers, let χ be a Dirichlet character modulo
N , and let f ∈ Sk(N,χ). Let N ′ ∈ Z≥1, let α be a character modulo N ′ with conductor
M . Assume that M < N ′, let p be any prime dividing N ′/M , and let β be the character
modulo N ′/p inducing α. Then

Sα(f) = p1−k/2Sβ(f |Tp)|
(
p 0
0 1

)
− β(p)Sβ(f).

In our case f ∈ Snew
k (N) is an eigenfunction of each WN

p , so it is also an eigenfunction of
each Up for p | N by Proposition 1.1.3. Write ap for the eigenvalue, which may be zero.
Then Lemma 2.2.3 gives

Sα(f) = p1−k/2apSβ(f)|
(
p 0
0 1

)
− β(p)Sβ(f),

and so
L(Sα(f)|WNN ′

S , j + 1) = (p−jap − β(p))L(Sβ(f)|WNN ′

S , j + 1).

Applying this repeatedly we see that L(Sα(f)|WNN ′
S , j+1) is a multiple of L(Sα0(f)|WNN ′

S , j+
1), where α0 is the the primitive character modulo M | N ′ inducing α modulo N ′. Fi-
nally we note that Sα0(f) = G(α0)fα0 ∈ Sk(NM,α2

0). We then use Sα0(f)|WNN ′
S =

Sα0(f)|WNM
S |Bd, where d = (N

M
)S (c.f. (2.5.2) below). Thus L(Sα(f)|WNN ′

S , j + 1) is a
multiple of L(fα0|WNM

S , j+1), and using (2.2.4) we see that ξ+
f |WN

is a linear combination
of L-values which we have assumed to be equal to zero, as required.
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Proof of Lemma 2.2.3. With the notation of the lemma, note that

p1−k/2Sβ(f |Up)|
(
p 0
0 1

)
=

N ′/p−1∑
a=0

p−1∑
u=0

β(a)f |
(

1 u
0 p

)(
1 a

N ′/p
0 1

)(
p 0
0 1

)
=

N ′/p−1∑
a=0

β(a)

p−1∑
u=0

f |
(
p a

N ′/p
+ u

0 p

)

=

N ′/p−1∑
a=0

β(a)

p−1∑
u=0

f |
(

1
a+uN

′
p

N ′
0 1

)

=
N ′∑
a=0

β(a)f |
(

1 a/N ′

0 1

)
.

Now if (u, p) = 1 then α(u) = β(u), and if (u, p) > 1 then α(u) = 0 but β(u) may be
non-zero:

p1−k/2Sβ(f |Up)|
(
p 0
0 1

)
=

N ′∑
a=0

α(a)f |
(

1 a/N ′

0 1

)
+

N ′/p∑
a=0

β(pa)f |
(

1 ap/N ′

0 1

)
= Sα(f) + β(p)Sβ(f).

Re-arranging this proves the lemma.

A technical di�culty arises in our application of Theorem 2.2.2 when k ≥ 4 due to the
fact that the weight two Eisenstein series E1,1

2 is not holomorphic. To this end we prove
a result which states that the problematic cases are in fact already a consequence of the
other assumptions:

Proposition 2.2.4. Let N ∈ Z≥1, k ≥ 4 be even and f ∈ Snewk (N) be an eigenform of
the Atkin�Lehner operators WN

S . Assume that L(fα|WNM
S , j + 1) = 0 for all primitive

characters α modulo M | N where M > 1, all sets of primes S such that
∏

p∈S p ·M | N ,

and all j = 0, . . . , k− 2 such that α(−1) = (−1)j+1. Assume moreover that L(f |WN
S , j +

1) = 0 for all sets S of prime divisors of N and all j 6= 1, k − 3. Then L(f, 2) = 0 and
L(f, k − 2) = 0 must hold as well.

Proof. From the second relation (1.1.19) for Manin symbols with P (X, Y ) = Y k−2 and
g = −σ we have

[Y k−2,−σ] +
k−2∑
j=0

(−1)k−2−j
(
k − 2

j

)
[XjY k−2−j,−στ ] + [Xk−2,−στ 2] = 0.

If we denote this modular symbol by M then 〈f |WN ,M + ι∗M〉 equals

ξ+
f |WN

(0;−1, 0) +
k−2∑
j=0

(−1)k−2−j
(
k − 2

j

)
ξ+
f |WN

(j; 0, 1) + ξ+
f |WN

(k − 2; 1,−1) = 0. (2.2.5)
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We already know that ξ+
f |WN

(j;u, v) = 0 for (u, v) = (−1, 0), (0, 1), (1,−1), unless j = 1 or
j = k−3. To see this we argue as in the proof of Theorem 2.2.2: By (2.2.4) ξ+

f |WN
(j;u, v)

is a linear combination of L(Sα(f)|WNN ′
S , j + 1), and we can reduce this to a linear

combination of L(fα0|WNM
S , j + 1) = 0 with α0 the underlying primitive character as in

the proof of Theorem 2.2.2. When j 6= 1, k− 3 these L-values are zero by assumption, so
ξ+
f |WN

(j;u, v) = 0 for all (u, v) ∈ EN and j 6= 1, k − 3. Thus (2.2.5) reduces to

−(k − 2)
(
ξ+
f |WN

(1; 0, 1) + ξ+
f |WN

(k − 3; 0, 1)
)

= 0.

Since k ≥ 4 this is equivalent to

ξ+
f |WN

(1; 0, 1) + ξ+
f |WN

(k − 3; 0, 1) = 0.

Now applying (1.1.21) we get

1

(−2πi)2
L(f |WN , 2) +

(k − 3)!

(−2πi)k−2
L(f |WN , k − 2) = 0;

since f is an eigenfunction of WN by assumption this is equivalent to

1

(−2πi)2
L(f, 2) +

(k − 3)!

(−2πi)k−2
L(f, k − 2) = 0.

Writing this in terms of the completed L-functions,

1

N
Λ(f, 2) +

ik

N
k−2
2

Λ(f, k − 2) = 0.

Applying the functional equation,(
1

N
+

ε

N
k
2
−1

)
Λ(f, 2) = 0,

where ε is the eigenvalue of f under WN . This implies that Λ(f, 2) = 0, unless k = 4
and ε = −1. However, when k = 4 and ε = −1, s = 2 is the central value of L(f, s) so
L(f, 2) = 0 since the sign in the functional equation is negative.

2.3 The Rankin�Selberg method

Let k ∈ Z≥1, χ be a Dirichlet character modulo N with χ(−1) = (−1)k, and let f ∈
Sk(N,χ). Given any g ∈Ml(N,ψχ), we consider the inner product

〈gEψ,∗
k−l(·, s), f〉 =

∫
F
g(z)Eψ,∗

k−l(z, s)f(z)ys+kdµ(z),

where F is a fundamental domain for Γ0(N) and dµ(z) = dxdy
y2

is the hyperbolic measure
on H. Note that integrand is Γ0(N)-invariant so the integral over this quotient makes
sense, at least when it converges. This is certainly the case if s has su�ciently large real
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part, which we assume during these next manipulations.

Let f =
∑
anq

n ∈ Sk(N,χ) and g =
∑
bnq

n ∈ Ml(N, φ). The Rankin�Selberg method
(see [Shi76]) was originally applied to study the L-function

L(f × g, s) =
∑
n≥1

anbn
ns

and derive its meromorphic continuation to C and functional equation. We will use it to
�nd an expression for the Petersson inner product between a cusp form and a product of
Eisenstein series. Let ψ = χφ−1. By the de�nition of Eψ,∗

k−l(z, s) we get

〈gEψ,∗
k−l(z, s), f〉

=

∫
F
g(z)

 ∑
γ∈Γ∞\Γ0(N)

ψ(γ)

j(γ, z)k−l |j(γ, z)|2s

 f(z)ys+kdµ(z)

=

∫
F

∑
γ∈Γ∞\Γ0(N)

g(γz)f(γz)

|j(γ, z)|2(s+k)
ys+kdµ(z)

=

∫
Γ0(N)\H

∑
γ∈Γ∞\Γ0(N)

g(γz)f(γz) Im(γz)s+kdµ(z)

=

∫
Γ∞\H

g(z)f(z)ys+k−2dxdy.

Now substitute in the Fourier expansion f(z) =
∑

n≥1 ane(nz) and g(z) =
∑

m≥0 bme(mz);
using orthogonality of the characters x 7→ e(nx) of R/Z we obtain

〈gEψ,∗
k−l(z, s), f〉

=

∫ ∞
y=0

∫ 1

x=0

(∑
n≥1

ane
−2πinx−2πny

)(∑
m≥0

bme
2πimx−2πmy

)
ys+k−2dxdy

=

∫ ∞
y=0

∑
n≥1

anbne
−4πnyys+k−2dy.

For any value of s, the exponential decay in y means that the integrand is rapidly decaying,
so we can swap the order of summation and integration. Thus

〈gEψ,∗
k−l(z, s), f〉 =

∑
n≥1

anbn
ns+k−1

∫ ∞
y=0

e−4πyys+k−2dy

=
Γ(s+ k − 1)

(4π)s+k−1

∑
n≥1

anbn
ns+k−1

.

(2.3.1)

Write f c for the function de�ned by f c(z) = f(−z). It has Fourier expansion

f c(z) =
∑
n≥1

ane(nz).
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Chapter 2: Spaces generated by products of two Eisenstein series

By results of Shimura we have f c ∈ Sk(N,χ) and this construction preserves newforms.
Alternatively, if f ∈ Sk(N,χ) is a newform, then one easily sees that f c is the newform
associated to fχ.

Proposition 2.3.1. Let N, k, l ∈ Z≥1, χ be a Dirichlet character modulo N , and f be
a newform in Sk(N,χ), let φ, ψ be Dirichlet characters such that φψ = χ and φ(−1) =
(−1)l. Let φ0 be the primitive character modulo M = cond(φ) associated to φ and exclude
the two cases φ0 = 1 and l = 2, and φ = χ and l = k − 2. Then

〈E1,φ0
l Eψ,∗

k−l(·, s), f〉 =
2Γ(s+ k − 1)

(4π)s+k−1
· L(f c, s+ k − 1)L((f c)φ0 , s+ k − l)

L(χφ0, 2s+ k − l)
. (2.3.2)

Proof. Recall that the Fourier coe�cients of E1,φ0
l are given by bn = 2σl−1,1,φ0(n) for

n ≥ 1. Substituting this into (2.3.1) and using a standard computation (see e.g. [Rau14]
Proposition 4.11) gives∑

n≥1

anσl−1,1,φ0(n)

ns+k−1
=
L(f c, s+ k − 1)L((f c)φ0 , s+ k − l)

L(χφ0, 2s+ k − l)
.

and the result follows.

Note that both sides of (2.3.2) have analytic continuation to s = 0 and by the uniqueness
of analytic continuation the equality remains true there. Using the fact that

Eψ,∗
k−l(z, 0) =

2(−2πi)k−lL(ψ, k − l)G(ψ0)

(k − l − 1)!Nk−l E1,ψ
k−l

we obtain

Corollary 2.3.2.

〈E1,φ0
l E1,ψ

k−l, f〉 =
(k − l − 1)!(k − 2)!Nk−l

(−2πi)k−l(4π)k−1L(ψ, k − l)G(ψ0)

L(f c, k − 1)L((f c)φ0 , k − l)
L(χφ0, k − l)

.

2.4 Generating spaces of cusp forms by products of

Eisenstein series

Let N be any positive integer, and de�ne Pk(N) ⊂Mk(N) to be the space generated by
the products

(E1,α
l E1,αN

k−l )|WN
S

where 1 ≤ l ≤ k − 1, S is a set of prime divisors of N , α is a primitive character modulo
M with α(−1) = (−1)l and αN is its extension to a character modulo N . The cases when
α = 1 and l equals 2 or k − 2 are excluded.

1Our divisor function is σl−1,φ,1 in Raum's notation.

30



Chapter 2: Spaces generated by products of two Eisenstein series

In this section we will prove Theorem 2.4.2, which describes the projection of Pk(N)
on to the new subspace. The proof requires us to deduce vanishing of the L-values
L(Gα|WNM

S , j+1) of the Atkin�Lehner images of a formGα from vanishing of L(Gα, j+1),
for which we prove the following technical lemma:

Lemma 2.4.1. Let N = N ′pn where N ′ is squarefree or twice a squarefree number, p
is a prime and p - N ′. Let G ∈ Snewk (N) be an eigenfunction of all Wq for q | N and
�x M | N . Suppose L(Gα, j + 1) = 0 for all primitive characters α modulo M and all
j ∈ {0, . . . , k − 2} such that α(−1) = (−1)j+1. Then, for all such α, j, and all sets of
primes S such that

∏
p∈S p ·M | N , we have L(Gα|WNM

S , j + 1) = 0.

Proof. If p /∈ S then M and NS are coprime, so by Proposition 1.1.4 we have

L(Gα|WNM
S , j + 1) = λS(G)α(S)L(Gα, j + 1) = 0.

If p ∈ S, by the functional equation we have

L(Gα|WNM
S , j + 1) = cL(Gα|WNM

S
, k − j − 1) (2.4.1)

for a non-zero constant c. Note that p /∈ S. Let α = αM ′αp, where αp is the p-primary
part of α. Then Gα = (GαM′

)αp and by Proposition 1.1.4 we have

Gα|WNM
S

= (GαM′
|WNM ′

S
)αp .

Since G is a Wq-eigenform for all q | N it is a linear combination of newforms f1, . . . , fr
which all have the same Wq-eigenvalues. Since N ′ is squarefree or twice a squarefree
number, we know that αM ′ is maximally rami�ed at primes where it is non-trivial2, so we
can apply Theorem 4.1 of [AL78] to see that (fi)αM′ is again a newform for all i and the
correspondingWq-eigenvalues are independent of i. Hence GαM′

is a pseudo-eigenfunction
of WNM ′

S
, say with pseudo-eigenvalue λNM

′

S
(GαM′

), which means

GαM′
|WNM

S
= λNM

′

S
(GαM′

)GαM′
.

In summary

L(Gα|WNM
S , j + 1) = cL((GαM′

|WNM
S

)αp , k − j − 1)

= cλNM
′

S
(GαM′

)L(GαM′αp
, k − j − 1),

which equals 0 by our assumptions.

Theorem 2.4.2. Let N ∈ Z≥1 be such that Lemma 2.4.1 holds. Then for k ≥ 4 even

Pk(N) = Snewk (N).

In the case k = 2 we de�ne Srk=0
2 (N) ⊂ Snew2 (N) to be the subspace generated by newforms

f with non-zero central L-value, i.e. L(f, 1) 6= 0 3; note that Srk=0
2 (N) ⊂ Snew2 (N)−. Then

P2(N) = Srk=0
2 (N).

2I.e. if q 6= p is prime such that αq is non-trivial, then ordq(M) = ordq(N).
3The subspace Srk=0

2 (N) whose projection to the new space is Srk=0
2 (N) is de�ned in the next section.
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Chapter 2: Spaces generated by products of two Eisenstein series

Proof. Let f be a weight k, level N newform, and write λS(f) for the WN
S -eigenvalue of

f . By Proposition 1.1.2 the operators WN
S are self-adjoint, so

〈(Eα
l E

αN
k−l)|W

N
S , f〉 = 〈Eα

l E
αN
k−l, f |W

N
S 〉

= λS(f)〈Eα
l E

αN
k−l, f〉

Using Corollary 2.3.2 (note f = f c since f has trivial character) we get that 〈(Eα
l E

αN
k−l)|WN

S , f〉
equals

λS(f)
(k − l − 1)!(k − 2)!Nk−l

(−2πi)k−l(4π)k−1L(αN , k − l)L(α, k − l)G(α)
· L(f, k − 1)L(fα, k − l). (2.4.2)

First assume k > 2. Suppose that the containment Pk(N) ⊂ Snew
k (N) is proper. Since

Pk(N) is closed under the action of the Atkin�Lehner operators WN
q for q | N , so is the

orthogonal complement of Pk(N) in Snew
k (N). Therefore there exists a non-zero form

g ∈ Snew
k (N) that is orthogonal to Pk(N) and an eigenform of the WN

q . We can write

g =
r∑
i=1

βifi,

where f1, . . . , fr are the newforms in Snew
k (N) with the same WN

q -eigenvalues as g. Using
(2.4.2) we see that orthogonality of g to Pk(N) is equivalent to

r∑
i=1

λS(fi)βiL(fi, k − 1)L((fi)α, k − l) = 0.

for all l, α, S as speci�ed in the de�nition of Pk(N). However, by de�nition of g, λS(fi) =
λS(fj) for each i, j, so the orthogonality of g to Pk(N) is equivalent to

r∑
i=1

βiL(fi, k − 1)L((fi)α, k − l) = 0. (2.4.3)

Following an idea from the proof of Theorem 1 in [KM08], we de�ne another form in
G ∈ Snew

k (N) by

G =
r∑
i=1

βiL(fi, k − 1)fi.

Since the fi all have the same WN
q -eigenvalues as g, so does G. Then (2.4.3) translates

to
L(Gα, k − l) = 0 (2.4.4)

for all primitive characters α modulo M | N with α(−1) = (−1)k−l, excluding the cases
α = 1 and l = 2 or l = k − 2.

Using Lemma 2.4.1, we get
L(Gα|WNM

S , k − l) = 0
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Chapter 2: Spaces generated by products of two Eisenstein series

for all primitive characters α moduloM | N with α(−1) = (−1)k−l, and all sets of primes
S such that

∏
p∈S p ·M | N , excluding the cases α = 1 and l = 2 or l = k − 2. Now

applying Proposition 2.2.4 we see that L(G, 2) = 0 and L(G, k − 2) = 0. We now have

L(Gα|WNM
S , k − l) = 0

for all α primitive modulo M , S || N such that rad(S)M | N , and l = 1, ..., k − 1. By
Theorem 2.2.2 we can conclude that G = 0. Since k ≥ 4, L(fi, k − 1) 6= 0, so we must
have that all βi are zero, and we arrive at the contradiction g = 0.

In the case where k = 2 the proof is similar. The containment P2(N) ⊂ Srk=0
2 (N) comes

from (2.4.2), since Pk(N) is orthogonal to every newform f with L(f, 1) = 0. The rest of
the argument works as above.

2.5 The new part of Pk(N)

In this section we will analyse the new parts of the generators of Pk(N) for any N . We
use this to construct another space Qk(N) with the same projection to the new space as
Pk(N) whose generators do not involve partial Atkin�Lehner operators. While Pk(N) was
more useful for the proof of Theorem 2.4.2, Qk(N) is more explicit and easy to implement
on a computer.

First we �nd the new part of E1,αN
k−l :

Lemma 2.5.1. Let α be a primitive character modulo M with α(−1) = (−1)k. Writing
N =

∏
i p

ei
i , let NM =

∏
pi|M peii be theM-part of N , so thatM | NM and gcd(M,N/NM) =

1. Then

E1,αN
k−l =

(
N

M

) k
2
−l ∑

e|N/NM

µ(e)α(e)e−
k
2

+lE1,α
k−l|BN/Me

Proof. For Re(s)� 0 we have

E1,αN
k−l,N(z, s) =

(k − l − 1)!Nk−l

(−2πi)k−lG(α)

∑
(c,d)6=(0,0)

αN(d)

(cNz + d)k−l|cNz + d|2s
.

Using the formula ∑
d|n

µ(d) =

{
1 if n = 1,

0 else,
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Chapter 2: Spaces generated by products of two Eisenstein series

for the Möbius function µ, we get∑
(c,d)6=(0,0)

αN(d)

(cNz + d)k−l|cNz + d|2s

=
∑

(c,d)6=(0,0)

∑
e|gcd(d,N/NM )

µ(e)
α(d)

(cNz + d)k−l|cNz + d|2s

=
∑

e|N/NM

µ(e)α(e)e−k+l−2s
∑

(c,d) 6=(0,0)

α(d)

(cM( N
Me

)z + d)k−l|cM( N
Me

)z + d|2s

=
(−2πi)k−lG(α)

(k − l − 1)!Mk−l

∑
e|N/NM

µ(e)α(e)e−k+l−2sE1,α
k−l((N/Me)z, s).

We obtain an equality of holomorphic functions

E1,αN
k−l (z, s) =

(
N

M

)k−l ∑
e|N/NM

µ(e)α0(e)e−k+l−2sE1,α
k−l((N/Me)z, s),

which must also be true at s = 0.

Thus the product E1,α
l E1,αN

k−l is a linear combination of products of the form

E1,α
l ·

(
E1,α
k−l|BN/Me

)
for e | N/NM . If e 6= 1 these products are clearly old forms. Hence the projection of
Pk(N) to the new space, Pk(N), is generated by the projections of the products(

E1,α
l |W

N
S

)
·
(
E1,α
k−l|BN/M |WN

S

)
. (2.5.1)

where S is a set of prime divisors of N . Let us focus on the �rst factor for now. Let
x, y, z, w ∈ Z as in the de�nition of WN

S . We have

WN
S =

(
NSx y
Nz NSw

)
=
(
MSx y
NSMSz NSw

)((N
M

)
S

0
0 1

)
. (2.5.2)

The �rst matrix on the right has determinant MS and satis�es all other conditions in the
de�nition of WM

SM
, where SM is the set of primes in S that divide M . So, as operators on

Ml(M,α), we have the equality WN
S = WM

SM
|B( NM )

S

.

As mentioned in the preliminaries the action of the partial Atkin�Lehner operators on
Eisenstein series was studied in [Wei77], and using Theorem 1.1.6 we see that the �rst
factor in (2.5.1) is a multiple of

E
αSM ,αSM
l |B( NM )

S

,

where SM = {p | M} \ SM . To study the second factor in (2.5.1) we use an extension of
Proposition 1.5 of [AL78] that allows us to swap the order of the lifting operator and the
Atkin�Lehner operator above:
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Proposition 2.5.2. Let F ∈Mk(M,χ), d ∈ Z≥1, and S be a set of primes dividing dM .
Let S be the complement of S in the set of prime divisors of dM , SM the elements of S
that divide M , and de�ne dS =

∏
p∈S p

vp(d) and dS as usual. Then

F |Bd|WMd
S = χS(dS)χS(dS)F |WM

SM
|BdS

Proof. Choose x, y, z, w ∈ Z as in the de�nition ofWMd
S , i.e. satisfying y ≡ 1 (mod dSMS),

x ≡ 1 (mod dSMS) and (MSdS)2xw −Mdzy = MSdS. As operators on Mk(N,χ), we
have

BdW
Md
S =

(
d 0
0 1

)(
dSMSx y
Mdz dSMSw

)
=
(
MSdSx dSy
Mz MSw

)(
d 0
0 dS

)
.

The determinant of
(
MSdSx dSy
Mz MSw

)
is MS and so by Proposition 1.1.2 and the fact that

y ≡ 1 (mod MS) and x ≡ 1 (mod MS) it equals χS(dS)χS(dS)WM
SM

.

Applying Proposition 2.5.2 with d = N/M to E1,α
k−l|BN/M |WN

S and using Proposition 14
of [Wei77], we see that the second factor in (2.5.1) is a multiple of

E
αSM ,αSM
k−l |B( NM )

S

,

so the product in (2.5.1) a multiple of(
E
αSM ,αSM
l |B( NM )

S

)
·
(
E
αSM ,αSM
k−l |B( NM )

S

)
.

Set
M1 = MS,

M2 = MS,

d1 = (N/M)S = NS/M1,

d2 = (N/M)S = NS/M2.

With these de�nitions, αSM and αSM are primitive characters moduloM1,M2 respectively;
we rename them to φ and ψ. We then de�ne the space Qk(N) to be space generated by
the products

Eφ,ψ
l |Bd1 · E

φ,ψ
k−l|Bd2 (2.5.3)

for any set S of prime divisors of N and two primitive characters φ of modulus M1|NS

and ψ of modulus M2|NS. In (2.5.3) S denotes the complement of S among the set of
prime divisors of N . The above calculation shows that Qk(N) and Pk(N) have the same
projection on to the new subspace Snew

k (N). Using the spaces Qk(N) and their lifts we
can extend Theorem 2.4.2 to the full space Sk(N):

Theorem 2.5.3. Let N be as in Theorem 2.4.2 and Qk(N) =
⋃

Md|N
Qk(M)|Bd be the

subspace ofMk(N) generated by the products

Eφ,ψ
l |Bd1d · E

φ,ψ
k−l|Bd2d
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for 1 ≤ l ≤ k − 1 and all pairs of primitive characters φ, ψ of modulus M1,M2 and
d1, d2, d ∈ Z≥1 such that gcd(d1M1, d2M2) = 1 and d1M1d2M2d | N . As usual we exclude
the case φ = ψ = 1 and l = 2 or l = k − 2. Then for k ≥ 4

Mk(N) = Qk(N) + Ek(N).

Proof. Follows from Theorem 2.4.2, the previous calculations, and the fact that

Sk(N) =
⋃
M |N

⋃
d|N/M

Snewk (M)|Bd.

by induction.

To treat the case k = 2 we need one more result.

Proposition 2.5.4. Let f ∈ Snew2 (N ′) be a newform of level N ′ | N with L(f, 1) = 0,
and let d be such that dN ′ | N . Then f |Bd is orthogonal to P2(N).

Proof. It su�ces to show that f |Bd is orthogonal to each of the generators of P2(N), so
we �x a product

(E1,α
1 EαN ,∗

1 )|WN
S

where α is a primitive odd character modulo M and S is a set of prime divisors of N .
Since WN

S is self-adjoint,

〈(E1,α
1 EαN ,∗

1 )|WN
S , f |Bd〉 = 〈E1,α

1 EαN ,∗
1 , f |Bd|WN

S ).

Using Lemma 2.5.2 and the fact that f is an eigenfunction of all WM
S′ for sets S ′ of

prime divisors of M , we see that f |Bd|WN
S is a multiple of f |Bd′ for some d′|d. By the

Rankin-Selberg method (see (2.3.1)) we get that for, Re(s)� 0,

〈E1,α
1 EαN ,∗

1 , f |Bd′〉 =
Γ(s+ 1)

d′s+1(4π)s+1

∑
n≥1

anσ1,1,α(d′n)

ns+1
,

where an are the Fourier coe�cients of f . Let d′ =
∏
pep . Then

∑
n≥1

anσ1,1,α(d′n)

ns+1
=

∑
gcd(n,d′)=1

anσ1,1,α(n)

ns+1

∏
p|d′

(
∞∑
a=0

apaσ1,1,α(pa+ep)

(pa)s+1

)
(2.5.4)

The �rst sum over n coprime to d′ is, up to the Euler factors corresponding to the prime
divisors of d′, given in the proof of Proposition 2.3.1. It has analytic continuation to
s = 0 and vanishes there, since L(f, 1) = 0. It remains to show that the sums

fp(s) =

(
∞∑
a=0

apaσ1,1,α(pa+ep)

(pa)s+1

)
can be analytically continued to s = 0. If α(p) = 1, fp(s) equals

∞∑
a=0

apa(a+ ep)

(pa)s+1
= − log(p)−1L′p(f, s+ 1) + epLp(f, s+ 1)
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where Lp(f, ·) is the Euler factor of L(f, ·) at p. So fp can indeed be analytically continued
to s = 0, since local Euler factors are entire. If α(p) 6= 1 then

(1− α(p))fp(s) =
∞∑
a=0

apa(1− α(pa+ep+1))

(pa)s+1
= Lp(f, s+ 1) + α(pep+1)Lp(fα, s+ 1),

which is again entire.

Using Proposition 2.5.4 we can also show that any lift of an old form, of the form f |Bd,
with L(f, 1) = 0 is orthogonal to Q2(N). De�ne the subspace

Srk=0
2 (N) =

⋃
M |N

⋃
d|N/M

Srk=0
2 (M)|Bd.

Then as for Theorem 2.5.3 we can use induction to prove

Theorem 2.5.5. Let N be as in Theorem 2.4.2 and Q2(N) be the subspace of M2(N)
generated by the products

Eφ,ψ
1 |Bd1d · E

φ,ψ
1 |Bd2d

for all pairs of primitive characters φ, ψ of modulus M1,M2 and d1, d2, d ∈ N such that
gcd(d1M1, d2M2) = 1 and d1M1d2M2d | N . Then

Srk=0
2 (N) + E2(N) = Q2(N) + E2(N).

2.6 Non-trivial nebentypus

Most of the methods we have developed in the previous sections also work for the spaces
Mk(N,χ), where χ is a non-trivial character modulo N . However some signi�cant com-
plications arise, in particular because the Atkin�Lehner operators WN

S are not endomor-
phisms ofMk(N,χ) anymore. To avoid these complications we restrict our treatment to
the case of prime level and weight 2.

Theorem 2.6.1. Let p be a prime and χ a character modulo p. Let P2(p, χ) be the space
generated by E1,α

1 E1,χα
1 , for odd characters α modulo p and P2(p, χ) be its projection to

S2(p, χ). Then
P2(p, χ) = Srk=0

2 (p, χ)

Proof. Note that Snew
2 (p, χ) = S2(p, χ) since S2(1) = {0}. Proposition 2.3.1 shows that

the products E1,α
1 E11, χα are orthogonal to any newform f with L(f, 1) = 0 and hence

P2(p, χ) ⊆ Srk=0
2 (p, χ). Suppose for a contradiction that the reverse inclusion does not

hold. Then there exists a non-zero form g ∈ Srk=0
2 (p, χ) that is orthogonal to P2(p, χ).

Let f1, . . . , fr be a basis of newforms of Srk=0
2 (p, χ) and

g =
r∑
i=1

βifi.
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Orthogonality to P2(p, χ) translates to

r∑
i=1

βiL(f ci , 1)L((f c)α, 1) = 0, (2.6.1)

for every odd character α modulo p. Again we introduce

G =
r∑
i=1

βiL(f ci , 1)f ci ∈ S2(p, χ)

and note that (2.6.1) is equivalent to

L(Gα, 1) = 0

for every odd character α. We will show that this implies ξ+
G|Wp

(0;u, v) = 0 for all

(u, v) ∈ Ep and hence G = 0. If p | u or p | v, then automatically ξ+
G|Wp

(0;u, v) = 0, so
we can assume that p does not divide u or v. Repeating the calculations in the proof of
Theorem 2.2.2 we obtain

ξ+
G|Wp

(0;u, v) =
1

(−2πi)

∑
α

χα2(u)

p− 1
L(Gα, 1)

where the sum is over all odd characters modulo p. Since L(Gα, 1) = 0 for all such
characters this shows G = 0. Since conjugation acts continuously on C we have L(f ci , 1) =
L(fi, 1) 6= 0, so we see that βi = 0 for all i = 1, . . . , r and hence we reach the contradiction
g = 0.

2.7 Examples

Since the Fourier expansions of the generators of Qk(N) are all given explicitly in terms
of twisted divisor sums, it is straightforward to implement an algorithm that takes a
newform f of weight k as input and calculates its representation as a linear combination
of generators of Qk(N) and Ek(N). According to Theorems 2.5.3 and 2.5.5 this is always
possible when k > 2 and in the case k = 2 only possible when f ∈ Srk=0

2 (N). We
implemented this algorithm in the Sage Mathematics Software [Sage] and present a few
selected examples here. The level and weight were always chosen so thatMk(N) contains
only one newform, that we denote by fN,k. We use the notation

Eφ,ψ,t(z) := t−k/2Eφ,ψ|kBt(z) = Eφ,ψ(tz)

that we will also be useful in the next chapter. To make the examples more readable we
denote Dirichlet characters by bold numbers, ordered as in Sage, i.e., the character i is
the one obtained by the Sage command DirichletGroup(N)[i-1].

N = 14, k = 2:

f14,2 =
1

4
E2,1

1 E2,1
1 +

1

2
E2,1,2

1 E2,1,2
1 + (

3

4
ζ6 −

3

4
)E2,1

1 E2,1,2
1 − 3

4
ζ6 · E2,1,2

1 E2,1
1 .
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N = 15, k = 2:

f15,2 = −3

8
E2,1

1 E2,1
1 − 15

8
· E2,1,5

1 E2,1,2
1 +

9

4
E2,1

1 E2,1,5
1 +

1

8
E2,5

1 E2,5
1 .

N = 19, k = 2:

f19,2 =(
1

3
ζ5

18 −
5

12
ζ4

18 +
1

12
ζ2

18 +
1

12
ζ18 +

1

4
)E2,1

1 E2,1
1

+ (− 1

12
ζ5

18 +
1

6
ζ4

18 −
1

12
ζ2

18 −
1

12
ζ18 −

1

4
)E4,1

1 E4,1
1 .

N = 20, k = 2:

f20,2 = −1

4
E2,1

1 E2,1
1 − 5

4
E2,1,5

1 E2,1,5
1 +

3

2
E2,1

1 E2,1,5
1 .

N = 27, k = 2:

f27,2 =(
1

12
ζ5

18 −
1

12
ζ4

18 −
1

6
ζ3

18 +
1

12
ζ2

18 −
1

12
ζ18 +

1

12
) · E2,1

1 E2,1
1

+ (
1

4
ζ4

18 +
1

2
ζ3

18 +
1

4
ζ18 −

1

4
) · E4,1

1 E4,1,3
1 .

N = 5, k = 4:

f5,4 = (− 7

16
ζ4 +

1

16
)E2,1

1 E2,1
3 + (

7

16
ζ4 +

1

16
)E4,1

1 E4,1
3 .

N = 6, k = 4:

f6,4 = −1

2
E2,1

1 E2,1
3 + 3 · E2,1,2

1 E2,1,2
3 − 5

2
E2,1

1 E2,1,2
3 .

N = 7, k = 4:

f7,4 = (−2

7
ζ6 +

4

21
)E2,1

1 E2,1
3 + (

4

21
ζ6 −

1

14
)E4,1

1 E4,1
3 .

N = 8, k = 4:
f8,4 = E2,1,2

1 E2,1,2
3 − E2,1

1 E2,1,2
3 .

N = 9, k = 4:

f9,4 = −1

8
ζ6E

2,1
1 E2,1

3 + (
27

4
ζ6 +

9

4
)E4,1,3

1 E4,1,3
3 .

N = 6, k = 6:

f6,6 =
5

52
E2,1

1 E2,1
5 − 10

13
E2,1,2

1 E2,1,2
5 +

7

13
E2,1

1 E2,1,2
5 +

7

52
E2,1,2

1 E2,1
5

+
45

26
E1,2

3 E1,2
3 − 180

13
E1,2,2

3 E1,2,2
3 − 315

26
E1,2

3 E1,2,2
3 .

N = 8, k = 6:

f8,6 =
1

4
E2,1

1 E2,1,2
5 − 1

4
E2,1,2

1 E2,1
5 .

N = 3, k = 8:

f3,8 = − 1

18
E2,1

1 E2,1
7 +

7

12
E2,1

3 E2,1
5 .
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Recall the de�nition of a completed L-function from �1.1.6.

Λ(f, s) := Γ(s)

(√
N

2π

)s

L(f, s) = N s/2M(f − a0)(s) (3.0.1)

and of the Fricke involution

f |kWN(z) = (
√
Nz)−kf

(
− 1

Nz

)
.

Recall also that when f is a modular form of weight k, we write f |WN for f |kWN . In
this chapter we will often look at L-functions of modular forms that aren't cusp forms.
For this reason we introduce the regularised Λ-values as in [Bru]:

De�nition 3.0.1. Let f ∈ Mk(Γ1(N)). Then the regularised values of Λ(f, s) at s = 0
and s = k are de�ned by

Λ∗(f, 0) = lim
s→0

Λ(f, s) +
a0

s

Λ∗(f, k) = lim
s→k

Λ(f, s) +
ikb0

k − s
.

The regularised values of Λ(f, s) still satisfy the functional equations

Λ∗(f, 0) = ikΛ∗(f |WN , k), and Λ∗(f, k) = ikΛ∗(f |WN , 0).

The following Lemma will be useful later.

Lemma 3.0.1 (Lemma 8 in [Bru]). Let e ∈ Ml(Γ1(N)) and f ∈ Mk(Γ1(N)) with
constant terms e0 and f0. Let e

∗ = e− e0 and f ∗ = f − f0. Then

N s/2M(e∗ · (f ∗|0WN))(s)

= i−kΛ(e · f |WN , s+ k)− e0i
−kΛ(f |WN , s+ k)− f0Λ(e, s)

(3.0.2)

for all s ∈ C. Note that for s = −k, s = 0 and s = l the poles on the right hand side
cancel and using the regularised values of Λ∗(f, s) we can specialise to s = l:

N l/2M(e∗ · (f ∗|0WN))(l)

= ikΛ∗(e · f |WN , l + k)− ike0Λ(f |WN , l + k)− f0Λ∗(e, l)

Proof. First note that since e∗ and f ∗ have exponential decay at i∞ the Mellin transform
in (3.0.2) converges. Let g0 be the constant term of g = f |WN and let g∗ = g − g0. For
Re s� 0

N s/2M(e∗ · f ∗|0WN)(s) = ikN
s+k
2 M(e∗ · f |kWN)(s+ k)− a0N

s/2M(e∗)(s)

= ikN
s+k
2 M(e∗g)(s+ k)− a0Λ(e, s)

= ikΛ(eg)(s+ k)− ike0Λ(g)(s+ k)− a0Λ(e, s).

By the uniqueness of meromorphic continuation this equation is true for all s ∈ C.
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Chapter 3: A correspondence of modular forms

3.1 A correspondence of modular forms

Let f1(z) =
∑∞

m1=0 α(m1)e2πim1z and f2(z) =
∑∞

m2=0 β(m2)e2πim2z be functions on H. By
applying the Möbius inversion formula we can rewrite f1 and f2 as double sums:

f1(z) =
∞∑

m1,n1≥0

a(m1)e2πim1n1z and f2(z) =
∞∑

m2,n2≥0

b(m2)e2πim2n2z,

where a(n) :=
∑

r|n α(r)µ(n/r) and b(n) :=
∑

r|n β(r)µ(n/r). We then de�ne a new
function Φt(f1, f2) on H by the Fourier expansion

Φt(f1, f2)(z) =
∞∑
m=1

∑
d|m

a(m/d)b(d)dt−1e2πmiz =
∑
m,n≥1

a(m)b(n)nt−1e2πimnz.

This construction leads to a correspondence on spaces of Eisenstein series. Assume that
ψ is odd and that the positive integer l satis�es φ(−1) = (−1)l. If f1 = E1,ψ

1 , f2 = E1,φ
l

and k is such that k − l is even then the function Φk(f1, f2) = Eψ,φ
k+l−1 is an Eisenstein

series of weight k + l − 1. This fact will be used in the proof of Theorem 1.0.7.

An analogous construction can be carried out when f1 and f2 are cusp forms of weight
1, level N and Dirichlet characters v1 and v2, respectively. Although we do not expect
Φt(f1, f2) to be a modular form, Proposition 3.1.1 shows that if t is even then all its
twisted L-series satisfy the functional equations of a weight t cusp form of level N2 and
character v1v2.

Speci�cally, for each prime r - N , consider a primitive character ψ of conductor r such
that ψ(−1) = (−1)u (u = 0 or 1). For convenience ψ can also stand for the trivial
character 1 (mod 1). For Re(s)� 0 consider

L(Φt(f1, f2), ψ; s) =
∑
m≥1

ψ(m)

ms

∑
d|m

a
(m
d

)
dt−1b(d)


=

(∑
m≥1

b(m)ψ(m)

ms−t+1

)(∑
l≥1

a(l)ψ(l)

ls

)
.

The second factor is connected to the L-series of (f1)ψ by

L(f1, ψ; s) =
∑
m≥1

ψ(n)

ns

∑
m|n

a(m)

 =

(∑
m≥1

a(m)ψ(m)

ms

)
· L(ψ, s)

and similarly the �rst factor is connected to the L-series of (f2)ψ. From the de�nition of
L(Φt(f1, f2), ψ; s) we immediately deduce that

L(Φt(f1, f2), ψ; s) =
L((f1)ψ, s)

L(ψ, s)

L((f2)ψ, s− t+ 1)

L(ψ, s− t+ 1)
. (3.1.1)
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Chapter 3: A correspondence of modular forms

If f1 and f2 are Hecke eigenforms, this equality implies that L(Φt(f1, f2), ψ; s) has an
Euler product representation. De�ning the completion of L(Φt(f1, f2), ψ; s) as

Λ(Φt(f1, f2), ψ; s) :=
Γ(s)(Nr)s

(2π)s
L(Φt(f1, f2), ψ; s)

we have

Proposition 3.1.1. Let f1 and f2 be cusp forms of weight 1, level N and Dirichlet
characters v1 and v2, respectively. Let ψ be a primitive character ψ of prime conductor
r - N . Then for even t > 1 the completed L-series Λ(Φt(f1, f2), ψ; s) has meromorphic
continuation to s ∈ C and satis�es the functional equation

Λ(Φt(f1, f2), ψ; s) = (−1)t/2v1(r)v2(r)ψ(N2)τ(ψ)Λ(Φt(f2|1WN , f1|1WN), ψ; t− s),

where we recall that

τ(ψ) :=
G(ψ)√

r
=

1√
r

∑
n mod r

ψ(n)e2πin
r

is the normalised Gauss sum of ψ.

Proof. We �rst express Λ(Φt(f1, f2), ψ; s) in terms of the completed L-series,

Λ(f, ψ; s) =
Γ(s)(r

√
N)s

(2π)s
L(f, ψ; s) and Λ(ψ, s) :=

( r
π

)s/2
Γ

(
s+ u

2

)
L(ψ, s),

where u = 0 or 1 is determined by ψ(−1) = (−1)u. We then have

Λ(Φt(f1, f2), ψ; s) =

(
Nr

π

) t−1
2

2s−t+1 Γ((s− t+ 1 + u)/2)Γ((s+ u)/2)

Γ(s− t+ 1)

× Λ(f1, ψ; s)

Λ(ψ; s)

Λ(f2, ψ; s− t+ 1)

Λ(ψ; s− t+ 1)
.

(3.1.2)

We recall the functional equations for the L-functions which appear in the expression
above:

Λ(fj, ψ; s) = ivj(r)ψ(N)τ(ψ)2Λ(fj|kWN , ψ; 1− s), for j = 1, 2, and

Λ(ψ; s) = i−uτ(ψ)Λ(ψ; 1− s).

By using these functional equations we can rewrite the right-hand side of (3.1.2) to obtain

Λ(Φt(f1, f2), ψ; s) = ε · Λ(Φt(f2|1WN , f1|1WN), ψ; t− s),

where

ε =22s−t Γ((s− t+ 1 + u)/2)Γ((s+ u)/2)Γ(1− s)
Γ((−s+ 1 + u)/2)Γ((−s+ t+ u)/2)Γ(s− t+ 1)

× (−1)u+1v1(r)v2(r)ψ(N2)τ(ψ)2.

The �nal version of the functional equation now follows from the identity

Γ((s− t+ 1 + u)/2)Γ((s+ u)/2)Γ(1− s)
Γ((−s+ 1 + u)/2)Γ((−s+ t+ u)/2)Γ(s− t+ 1)

= 2t−2s(−1)t/2+u+1,

which is valid for even t and can be shown using standard properties of the Gamma
function, including the re�ection and duplication formulas.
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Remark. It follows immediately from (3.1.1) that L(Φt(f1, f2), s) has in�nitely many
poles (assuming the Grand Simplicity Hypothesis [RS94]) and therefore Φt(f1, f2) can
not be a modular form. However, the extension of the converse theorem of [Dau14] to
general levels implies that Φt(f1, f2) is a modular integral.

3.2 A reinterpretation of the method of Rogers�Zudilin

The method of [Zud13] relies crucially on a simple change of variables in an integral of
the product of two series which leads to a product of two di�erent functions. This part
of the method can be expressed as the following simple "duality relation" involving the
functions rather than their Fourier expansions. For a function h on H and x ∈ Z it will
be convenient to use the notation h(x) for the function h|0Bx(z) = h(xz).

Lemma 3.2.1. Let f, g : H → C be holomorphic functions with exponential decay at
in�nity and at most polynomial growth at 0. For each m, n ∈ N and s ∈ C we have

M(f (m) · (g(n)|0WN))(s) = (n/m)sM(f (n) · (g(m)|0WN))(s).

Proof. From the growth conditions at in�nity and 0 it follows that the product f · g|0WN

has exponential decay at both in�nity and 0 and thus the Mellin transforms on both sides
are well de�ned. By the change of variables t→ (n/m)t we see thatM(f (m) ·g(n)|0WN)(s)
equals ∫ ∞

0

f(mit)g

(
ni

Nt

)
ts
dt

t
= (n/m)s

∫ ∞
0

f(nit)g

(
mi

Nt

)
ts
dt

t
.

With the above lemma we obtain the following

Theorem 3.2.2. Let F1, F2 : H → C be given by the Fourier expansions

F1(z) =
∑

m1,n1≥1

a1(m1)b1(n1)e2πim1n1z,

F2(z) =
∑

m2,n2≥1

a2(m2)b2(n2)e2πim2n2z,

where we assume, additionally, that the coe�cients aj(n) and bj(n) grow at most polyno-
mially in n. If, for j = 1, 2, we de�ne the functions

fj(z) =
∑

mj ,nj≥1

bj(nj)e
2πimjnjz and gj(z) =

∑
mj ,nj≥1

aj(mj)e
2πimjnjz

then we have the following relation between Mellin transforms

M(F1 · F2|0WN)(s) =M(Φs+1(f1, f2) · (Φ−s+1(g2, g1)|0WN))(s) for all s ∈ C.
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Proof. Set hj(z) :=
∑

nj≥1 bj(nj)e
2πinjz for j = 1, 2. The growth conditions on bj(n)

imply that h1, h2 have exponential decay at in�nity and at most polynomial growth at 0.
Hence Lemma 3.2.1 implies

M(h
(m1)
1 · h(m2)

2 |0WN)(s) =

(
m2

m1

)s ∫ ∞
0

h1(m2it) · h2

(
im1

Nt

)
ts
dt

t

=

(
m2

m1

)s ∫ ∞
0

∑
n1,n2≥1

b1(n1)b2(n2)e−
2πm1n2
Nt e−2πn1m2tts

dt

t
.

The growth condition of bj justi�es the interchange of integration and summation, so,
upon the further change of variables t→ (n2/m2)t we deduce that

M(h
(m1)
1 · h(m2)

2 |0WN)(s) = m−s1

∫ ∞
0

∑
n1,n2≥1

b1(n1)b2(n2)ns2e
− 2πm1m2

Nt e−2πn1n2tts
dt

t

= m−s1

∫ ∞
0

Φs+1(f1, f2)(it)e
−2πm1m2

Nt ts
dt

t
.

The desired conclusion now follows from the fact that

F1 · F2|0WN(z) =
∑

m1,m2≥1

a1(m1)a2(m2)h
(m1)
1 (z) · (h(m2)

2 |0WN)(z).

3.3 An application to products of Eisenstein series

We recall the weight k Eisenstein series Eψ1,φ2
k assigned to primitive Dirichlet characters

ψ1 mod N1 and ψ2 mod N2 which satisfy ψ1(−1)ψ2(−1) = (−1)k. Its Fourier expansion
at in�nity is given by

Eψ1,ψ2

k (z) = aψ1,ψ2

k + 2
∑
m,n≥1

ψ1(m)ψ2(n)nk−1e2πinmz.

To ease notation we will write Eψ1,ψ2,t
k (z) for the function t−k/2Eψ1,ψ2

k |Bt(z) = Eψ1,ψ2

k (tz)
for any t ∈ N. In the sequel we will often use the following identity

Eψ1,ψ2

k |kWtN1N2 = (−1)kτ(ψ1)τ(ψ2)

(
N2

N1

) k−1
2

tk/2Eφ̄,ψ̄,t
k , (3.3.1)

which is valid for any t > 0 and follows from Theorem 1.1.6.

We can now use Theorem 3.2.2 to prove a relation between L-values of Eχ1,χ2

l · Eψ̄2,ψ̄1,M
k

and L-values of Eχ1,ψ2

j · Eχ̄2,ψ̄1,M1N2

k+l−j . Let ψi and χi (i = 1, 2) are primitive characters
modulo Ni and Mi such that (χ1 · χ2)(−1) = (−1)l and (ψ1 · ψ2)(−1) = (−1)k. We will
regard both Eisenstein series Eχ1,χ2

l and Eψ1,ψ2

k as modular forms of level MN where
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M = M1M2 and N = N1N2. It follows immediately from (3.3.1) that

(−1)kτ(ψ1)τ(ψ2)

(
N2

N1

) k−1
2

Mk/2Λ(Eχ1,χ2

l · Eψ̄2,ψ̄1,M
k , j)

= Λ(Eχ1,χ2

l · (Eψ1,ψ2

k |kWMN), j),

and by Lemma 3.0.1 this equals

i−k(MN)
j−k
2 M((Eχ1,χ2

l − aχ1,χ2

l ) · (Eψ1,ψ2

k − aψ1,ψ2

k )|0WMN)(j − k) (3.3.2)

+ aχ1,χ2

l Λ(Eψ1,ψ2

k |kWMN , j) + i−kaψ1,ψ2

k Λ(Eχ1,χ2

l , j − k)

We are now in a position to apply Theorem 3.2.2 to the Mellin transform (3.3.2) for
j ∈ {1, . . . , k + l − 1} with χ1(−1)ψ2(−1) = (−1)j. In the notation of the theorem set

a1(m1) = χ2(m1)ml−1
1 , b1(n1) = χ1(n1)

a2(m2) = ψ1(m2), b2(n2) = ψ2(n2)nk−1
2

s = j − k

Then

M((Eχ1,χ2

l − aχ1,χ2

l ) · (Eψ1,ψ2

k − aψ1,ψ2

k )|0WMN)(j − k)

= 4M(Φj−k+1(f1, f2) · (Φk−j+1(g2, g1)|0WMN))(j − k)

=M((Eχ1,ψ2

j − aχ1,ψ2

j ) · (Eψ1,χ2

k+l−j − a
ψ1,χ2

k+l−j)|0WMN)(j − k).

(3.3.3)

Another application of Lemma 3.0.1 shows that this equals

(MN)
k−j
2 ik+l−jΛ(Eχ1,ψ2

j · (Eψ1,χ2

k+l−j|k+l−jWMN), l)

− (MN)
k−j
2 ik+l−jaχ1,ψ2

j Λ(Eψ1,χ2

k+l−j|WMN , l)− (MN)
k−j
2 aψ1,χ2

k+l−jΛ(Eχ1,ψ2

j , j − k)

Collecting everything together

Λ(Eχ1,χ2

l · (Eψ1,ψ2

k |kWMN), j) = aχ1,χ2

l Λ(Eψ1,ψ2

k |kWMN , j) (3.3.4)

+ i−kaψ1,ψ2

k Λ(Eχ1,χ2

l , j − k)

+ il−jΛ(Eχ1,ψ2

j · (Eψ1,χ2

k+l−j|k+l−jWMN), l)

− il−jaχ1,ψ2

j Λ(Eψ1,χ2

k+l−j|WMN , l) (3.3.5)

− aψ1,χ2

k+l−jΛ(Eχ1,ψ2

j , j − k).

Applying the functional equation to (3.3.4) and (3.3.5) we arrive at the following theorem.

Theorem 3.3.1. Let ψi and χi (i = 1, 2) are primitive characters modulo Ni and Mi

such that (χ1 · χ2)(−1) = (−1)l and (ψ1 · ψ2)(−1) = (−1)k. Let j ∈ {1, . . . , k + l − 1}
with χ1(−1)ψ2(−1) = (−1)j. Then we have the following relation of L-values

Λ(Eχ1,χ2

l · (Eψ1,ψ2

k |kWMN), j) = il−jΛ(Eχ1,ψ2

j · (Eψ1,χ2

k+l−j|k+l−jWMN), l)

+ i−kaχ1,χ2

l Λ(Eψ1,ψ2

k , k − j)
+ i−kaψ1,ψ2

k Λ(Eχ1,χ2

l , j − k)

− i−kaχ1,ψ2

j Λ(Eψ1,χ2

k+l−j, k − j)
− aψ1,χ2

k+l−jΛ(Eχ1,ψ2

j , j − k).
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In full generality the theorem looks complicated but note that the L-functions of Eisen-
stein series come from Dirichlet L-functions,

L(Eφ,ψ
k , s) = 2L(ψ, s)L(φ, s− k + 1),

and moreover only in special cases the constant terms of the Eisenstein series are non-zero.
In particular if all characters are non-trivial we can apply (3.3.1) to obtain:

Corollary 3.3.2. In the conditions of Theorem 3.3.1 assume furthermore that all char-
acters ψi and χi are non-trivial. Then

Λ(Eχ1,χ2

l · Eψ̄2,ψ̄1,M
k , j) = C · Λ(Eχ1,ψ2

j · Eχ̄2,ψ̄1,M1N2

k+l−j , l), (3.3.6)

where

C = (−i)l−jτ(χ2)τ(ψ2)−1M
l−j
2

1 M
l−j−1

2
2 N

− l−j
2

1 N
l−j+1

2
2 .

3.4 Application to derivatives of L-functions

Let ψ and φ be odd, primitive Dirichlet characters modulo N1 and N2 respectively. Using
the notation of the last section we set N = N1N2 and

Eψ
1 := Eψ,1

1 , aψ := aψ,11 , and fψ,φr :=

√
N

4

(
Eψ

1 − aψ
)
·
((
Eφ,r

1 − aφ
)
|1WN

)
.

The goal of this section is to evaluate a particular linear combination of the special
valuesM(fψ,φr )(2) in two di�erent ways thereby obtaining a relation between values and
derivatives of certain L-functions. We �rst observe that for a �xed positive integer r we
can write

M(fψ,φr )(2) =
1

4i
M
((
Eψ

1 − aψ
)
·
((
Eφ,r

1 − aφ
)
|0WN

))
(1).

Since we now have a weight 0 action in the right-hand side we can use Theorem 3.2.2
with

s = 1, a1(n) = 1, b1(n) = ψ(n), a2(n) = δr(n), b2(n) = φ(n),

where δr(n) = 1 if r|n and 0 otherwise. This implies thatM(fψ,φr )(2) equals

1

i
M (Φ2(f1, f2) · Φ0(g2, g1)|0WN) (1) =

1

2i
M

(
Eψ,φ

1 (it) ·
∑

n1,n2≥1

1

n1

e
−2πrn1n2

Nt

)
(1).

From the following well-known expression for the logarithm of the Dedekind eta function∑
m,n≥1

1

n
e
−2πrmn
Nu = −

∑
m≥1

log(1− e
−2πrm
Nu ) = − log

(
η(ri/(Nu))e

2πr
24·Nu

)
,

we deduce that

M(fψ,φr )(2) =
i

2

∫ ∞
0

Eψ,φ
2 (iu) log

(
η(ri/(Nu))e

2πr
24·Nu

)
du. (3.4.1)
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The integral above is well-de�ned since Eψ,φ
2 decays exponentially at both∞ and 0. The

decay at in�nity is immediate since ψ is not trivial and the decay at 0 follows from (3.3.1).
By using (3.3.1) to rewrite f φ̄,ψ̄r it follows from (3.4.1) that

M(Fψ,φ
r )(2) =

i

2

∫ ∞
0

(Eψ,φ
2 |2(1 +WN))(iu) log

(
η(ri/(Nu))e

2πr
24·Nu

)
du

= − i
2

∫ ∞
0

(Eψ,φ
2 |2(1 +WN))(iu) log

(
η(riu))e

2πru
24

)
du (3.4.2)

where

Fψ,φ
r := fψ,φr +

√
N2

N1

τ(ψ)τ(φ)f φ̄,ψ̄r .

It is clear from (3.4.2) that we can �nd a linear combination of Fψ,φ
r 's such that the

exponentials inside the logarithm on the right-hand side are eliminated:

M((N1 +N2)(Fψ,φ
1 + Fψ,φ

N )− (1 +N)(Fψ,φ
N1

+ Fψ,φ
N2

))(2) =

− i

2

∫ ∞
0

(Eψ,φ
2 |2(1 +WN))(iu) log(V (iu))du, (3.4.3)

where

V (z) :=
(η(z)η(Nz))N1+N2

(η(N1z)η(N2z))1+N
.

We will now proceed to evaluate the two sides of (3.4.3) separately.

3.4.1 The right-hand side of (3.4.3)

We �rst recall the principle behind Goldfeld's expression for derivatives of L-functions:

Proposition 3.4.1. Let f and g be holomorphic functions on H such that for some
N ∈ N:
(i) f |2WN = f
(ii) g|kWN = ±g, for some non-zero constant k ∈ R. Then∫ ∞

0

f(z)dz = 0 and 2

∫ ∞
0

f(iy) log(g(iy))dy = k

∫ ∞
0

f(iy) log(y)dy.

Proof. Condition (i) is equivalent to f(WNz)d(WNz) = f(z)dz. Therefore∫ ∞
0

f(z)dz =

∫ WN0

WN∞
f(z)dz =

∫ 0

∞
f(z)dz

and hence
∫∞

0
f(z)dz = 0. Similarly, we see that∫ ∞

0

f(z) log(g(z))dz =

∫ WN0

WN∞
f(z) log(g(z))dz =

∫ 0

∞
f(z) log(g(WNz))dz

=

∫ 0

∞
f(z) log(g(z))dz + ik

∫ 0

∞
f(iy) log(y)dy

+ c′
∫ ∞

0

f(z)dz

for some c′ ∈ C. This equality, together with
∫∞

0
f(z)dz = 0, implies the conclusion.
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Since Proposition 3.4.1 holds for f = Eψ,φ
2 |2(1+WN) and g = V with k = N1+N2−1−N ,

we deduce that∫ ∞
0

f(iu) log(V (iu))du =
k

2

∫ ∞
0

f(iu) log(u)du =
k

2
(Mf)′(1). (3.4.4)

By using Proposition 3.4.1 together with (3.0.1) we can express the the right-hand side
of (3.4.4) as

(N1 − 1)(1−N2)

2
√
N

Λ′(Eψ,φ
2 |2(1 +WN), 1).

If h is a modular form of weight 2 and level N it is easy to see from the functional
equation of Λ(h, s) that Λ′(h|2(1 + WN), 1) = 2Λ′(h, 1). It follows that the right-hand
side of (3.4.3) equals

i(N1 − 1)(N2 − 1)

2
√
N

Λ′(Eψ,φ
2 , 1). (3.4.5)

3.4.2 The left-hand side of (3.4.3)

To compute the left-hand side of (3.4.3) we �rst expressM(fψ,φr )(s) in a form where we
can apply Lemma 3.0.1:

M(fψ,φr )(s) =
i

4
M
(

(Eψ
1 − aψ) · (Eφ,r

1 − aφ)|0WN

)
(s− 1) (3.4.6)

Applying Lemma 3.0.1 and the functional equation for the completed L-functions we
deduce that 4N (s−1)/2M(fψ,φr )(s) equals

Λ(Eψ
1 · E

φ,r
1 |1WN , s) + aφiΛ(Eψ

1 , s− 1) + aψΛ(Eφ,r
1 |1WN , s)

= Λ((Eψ
1 |1WN) · Eφ,r

1 , 2− s) + aφiΛ(Eψ
1 , s− 1) + aψiΛ(Eφ,r

1 , 1− s)

= −τ(ψ)
√
N2Λ(Eψ̄,N2

1 Eφ,r
1 , 2− s) + aφiΛ(Eψ

1 , s− 1) + aψiΛ(Eφ,r
1 , 1− s).

(3.4.7)

For the last equality we again used (3.3.1) and we have an analogous expression for
4N (s−1)/2M(f φ̄,ψ̄r )(s). Note that (3.4.7) is valid for all s ∈ C if we use regularised L-
values whenever one of the L-functions in (3.4.7) has a pole.

We will now compute the value of the linear combination

M((N1 +N2)(Fψ,φ
1 + Fψ,φ

N )− (1 +N)(Fψ,φ
N1

+ Fψ,φ
N2

))(s) (3.4.8)

at s = 2 by considering each of the three summands of (3.4.7) and the analogue for f φ̄,ψ̄r .

First we treat the contributions from L-functions associated to products of Eisenstein
series. InM(Fψ,φ

1 + Fψ,φ
N )(s) they are

N (1−s)/2N
1/2
2

4
τ(ψ)Λ(−Eψ̄,N2

1 Eφ,1
1 + Eφ,N1

1 Eψ̄,1
1 − Eψ̄,N2

1 Eφ,N
1 + Eφ,N1

1 Eψ̄,N
1 , 2− s). (3.4.9)

By using the trivial fact
Λ(f, s) = asΛ(f (a), s), (3.4.10)
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combined with (Eφ,N1

1 Eψ̄,1
1 )N2 = Eφ,N

1 Eψ̄,N2

1 and (Eφ,1
1 Eψ̄,N2

1 )N1 = Eφ,N1

1 Eψ̄,N
1 , (3.4.9) be-

comes

N (1−s)/2N
1/2
2

4
τ(ψ)

·
[
(N s−2

1 − 1)Λ(Eψ̄,N2

1 Eφ,1
1 , 2− s) + (1−N s−2

2 )Λ(Eφ,N1

1 Eψ̄,1
1 , 2− s)

]
. (3.4.11)

Both Λ(Eψ̄,N2

1 Eφ,1
1 , 2−s) and Λ(Eφ,N1

1 Eψ̄,1
1 , 2−s) have a simple pole at s = 2 with residue

−aψ̄aφ. Therefore (3.4.11) is equal to τ(ψ)aψ̄aφ log(N1/N2)/
√
N1 at s = 2. It is easy

to verify that the contribution of products of Eisenstein series in M(Fψ,φ
N1

+ Fψ,φ
N2

)(2) is
exactly the same as that in M(Fψ,φ

1 + Fψ,φ
N )(2) and hence the products of Eisenstein

series contribute
τ(ψ)aψ̄aφ(N1 +N2 − 1−N)

4
√
N1

log

(
N1

N2

)
toM((N1 +N2)(Fψ,φ

1 + Fψ,φ
N )− (1 +N)(Fψ,φ

N1
+ Fψ,φ

N2
))(s).

Secondly, to compute the contribution of the terms coming from Eφ,r
1 and Eψ̄,r

1 we apply
(3.4.10) to Λ(Eφ,r

1 , 1− s) and Λ(Eψ̄,r
1 , 1− s). Thus their contribution toM(F φ,ψ

r )(s) is

N (1−s)/2rs−1

4

(
aψiΛ(Eφ

1 , 1− s) + aφ̄i

√
N2

N1

τ(ψ)τ(φ)Λ(Eψ̄
1 , 1− s)

)
,

which implies that the contribution of these terms to (3.4.8) at s = 2 is 0. We are now
left with

M((N1 +N2)(Fψ,φ
1 + Fψ,φ

N )− (1 +N)(Fψ,φ
N1

+ Fψ,φ
N2

))(2) =

(N1 +N2 − 1−N)

4
√
N1

[
τ(ψ)aψ̄aφ log

(
N1

N2

)
+

i√
N2

Λ(Eψ,φ, 1)

]
(3.4.12)

where Eψ,φ is given by

Eψ,φ := L(φ, 0)Eψ
1 +

√
N2

N1

τ(ψ)τ(φ)L(ψ̄, 0)Eφ̄
1 . (3.4.13)

We note that the last term of (3.4.12) is well-de�ned because the residues of Λ(Eφ̄
1 , s) and

Λ(Eψ
1 , s) at 1 cancel when we take the linear combination giving Eψ,φ. Equations (3.4.5)

and (3.4.12) together �nally give give

Theorem 3.4.2. Let ψ and φ be odd, primitive Dirichlet characters modulo N1 and N2

respectively and Eψ,φ ∈ E1(Γ1(N)) be de�ned as in (3.4.13). Then

i
√
N2τ(ψ)aψ̄aφ log

(
N1

N2

)
− Λ(Eψ,φ, 1) = 2Λ′(Eψ,φ

2 , 1). (3.4.14)
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Chapter 4: Eichler-cohomology for arbitrary real weights

4.1 Preliminaries

In this chapter we will work with modular forms with respect to a Fuchsian group of the
�rst kind. We sketch the de�nition of such groups here and refer the reader to [Shi71,
�1] for a more thorough introduction. The groups we have worked with in the previous
chapters, congruence groups, are special cases of Fuchsian groups of the �rst kind. Let
Γ be a discrete subgroup of SL2(R) or of SL2(R)/{±I}. A cusp of Γ is any element of
R∪{∞} that is �xed by a parabolic element of Γ, i.e., an element of Γ that has only one
�xed point in R∪{∞}. Let H∗ be the union of H with the cusps of Γ. The quotient space
Γ\H∗ can be given the structure of a Riemann surface such that the natural projection

π : H → Γ\H∗

is an open map. The group Γ is called a Fuchsian group of the �rst kind, if Γ\H∗ is
compact. For the rest of this chapter we assume that Γ ⊆ SL2(R) is a Fuchsian group
of the �rst kind that contains a translation. This condition is not very restrictive since
any Fuchsian group of the �rst kind that has cusps is conjugate to a Fuchsian group of
the �rst kind that contains translations. The only Fuchsian groups of the �rst kind that
are excluded by this requirement are cocompact groups, i.e., groups for which Γ\H is
compact. For convenience we will also assume that Γ contains −I.
In contrast to the previous chapters, the weight of modular forms in this chapter will not
necessarily be integral. We refer the reader to [Iwa97] for a good introduction to modular
forms of real weight. In order to de�ne the slash operator |r of SL2(R), we have to �x a
branch of the logarithm on C×. We choose the principal branch, i.e.,

log(z) = log |z|+ i arg(z), where arg(z) ∈ (−π, π].

Then we set j(γ, z)r = exp(r · log(j(γ, z)) and, for a function f on H,

f |rγ(z) = j(γ, z)−rf(γz).

While we have the formula

j(γδ, z)r = j(γ, δz)rj(δ, z)r

for all r ∈ Z, this is no longer true if r ∈ R and so |r is not necessarily a group action of
SL2(R) any more. To get a useful notion of modular forms we will introduce multiplier
systems.

Two important functions when dealing with real weights, introduced by Petersson in
[Pet38], are

ω(γ, δ) =
1

2π
[− arg(j(γδ, z)) + arg(j(γ, δz)) + arg(j(δ, z))]

and
σr(γ, δ) = e2πirω(γ,δ).

The value of ω(γ, δ) is independent of z and in {−1, 0, 1}. From the de�nition it follows
that

σr(γ, δ)j(γδ, z)r = j(γ, δz)rj(δ, z)r, γ, δ ∈ Γ. (4.1.1)
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Chapter 4: Eichler-cohomology for arbitrary real weights

Amultiplier system of weight r for Γ is a function v : Γ→ C which satis�es the consistency
condition

v(γδ)j(γδ, z)r = v(γ)v(δ)j(γ, δz)rj(δ, z)r, ∀γ, δ ∈ Γ,

or equivalently
v(γδ) = σr(γ, δ)v(γ)v(δ).

Note that v is also a multiplier system of any weight r′ ∈ R with r′ ≡ r mod 2 and v is
a multiplier system of weight −r. A multiplier system is called unitary if |v(γ)| = 1 for
all γ ∈ Γ. For the rest of this chapter we �x a unitary multiplier system v of weight r.

For a function f on the upper half planeH and γ ∈ SL2(R) we de�ne a new slash operator
|r,v by

f |r,vγ(z) = v(γ)j(γ, z)−rf(γz)

The consistency condition for v implies that

f |r,vγδ(z) = (f |r,vγ)|r,vδ(z), ∀γ, δ ∈ Γ,

and hence |r,v is a group operation, in contrast to |r.
Let q0 =∞ and q1, . . . , qm be a set of representatives of the cusps of Γ. For every cusp q
the stabiliser subgroup Γq is generated by −I and one generator σq ∈ Γ. For q = ∞ we
choose σ∞ = ( 1 λ

0 1 ), the minimal translation matrix in Γ with λ > 0. Let f be holomorphic
on H and invariant under |r,v. The equation f(z + λ) = v(σ∞)f(z) implies that f has a
Fourier expansion at ∞ of the form

f(z) =
∞∑

n=−∞

an,0 exp (2πi(n+ κ0)z/λ) , (4.1.2)

where κi ∈ [0, 1) is de�ned for any cusp by v(σqi) = e2πiκi . To �nd the expansion at the
other cusps, choose σqi so that if

AiσqiA
−1
i =

(
1 λi
0 1

)
,

where Ai =
(

0 −1
1 −qi

)
, we have λi > 0. The Fourier expansion of f at qi is then given by

f |rA−1
i (z) =

∞∑
n=−∞

an,i exp (2πi(n+ κi)z/λi) . (4.1.3)

De�nition 4.1.1. Let f be holomorphic in H and invariant under |r,v. Then f is called
a modular form1 of weight r and multiplier system v with respect to Γ, if in the Fourier
expansions in (4.1.2) and (4.1.3) all an,i with n + κi < 0 are zero. If in addition all an,i
with n+κi = 0 vanish, then f is called a cusp form. The set of modular forms is denoted
by Mr(Γ, v), the set of cusp forms by Sr(Γ, v).

Remark. Just like in the case of integral weight the space Mk(Γ, v) is always �nite-
dimensional.

Remark. By the main theorem of [Kno67] the only modular form of negative weight is
the zero function. By [? ] the only non-zero modular forms of weight 0 are constant
functions.

1Another common term for modular forms that is used e.g., in [Kno74], is entire automorphic forms.
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4.1.1 Cohomology

De�nition 4.1.2. Let M be an abelian group with a right group action by Γ that we
denote by m · γ for m ∈ M and γ ∈ Γ. The group M is called a (right) Γ-module if the
Γ-action is compatible with the group structure on M , i.e.,

(m1 +m2) · γ = m1 · γ +m2 · γ, ∀m1,m2 ∈M, γ ∈ Γ.

Let M be a Γ-module. A cocycle of Γ with values in M is a function φ : Γ → M that
satis�es

φ(γδ) = φ(γ) · δ + φ(δ), ∀γ, δ ∈ Γ.

We denote the space of cocycles by Z1(Γ,M). There is a natural map d from M to
Z1(Γ,M) that associates to m ∈M the cocycle

dm : γ 7→ m · γ −m.

A cocycle of the form dm for m ∈M is called a coboundary and the space of coboundaries
is denoted by B1(Γ,M). The (�rst) Eichler cohomology group H1(Γ,M) is the quotient
space Z1(Γ,M)/B1(Γ,M).

A cocycle φ is called parabolic if for all cusps qi there exists an element mqi ∈ m such
that

φ(σqi) = mqi · σqi −mqi .

We denote the space of parabolic cocycles by Z̃1(Γ,M). Since coboundaries are clearly
parabolic we can form the parabolic cohomology group H̃1(Γ,M) = Z̃1(Γ,M)/B1(Γ,M).

The classical Eichler�Shimura isomorphism (see 1.0.8) for even weights k = 2−r ≥ 2 is an
isomorphism between S2−r(Γ) and H̃1(Γ,R[X]r), where R[X]r is the space of polynomials
of degree ≤ k − 2 with coe�cients in R.
If we allow arbitrary real weights we have to work with the much larger coe�cient module
P .

De�nition 4.1.3. Let P be the space of holomorphic functions on H such that there
exist positive constants K,A and B with

|f(z)| < K(|z|A + y−B), ∀z = x+ iy ∈ H,

We can view P as a Γ-module with the |r,v action for any weight r and multiplier sys-
tem v. To emphasise the dependence of the action on r and v we denote the cocycles,
coboundaries, cohomology group and parabolic cohomology group associated to P with
the |r,v action by Z1

r,v(Γ,P), B1
r,v(Γ,P), H1

r,v(Γ,P), and H̃1
r,v(Γ,P).

We will also call elements of Z1
r,v(Γ,P) cocycles of weight r and multiplier system v.

It turns out that all cocycles in Z1
r,v(Γ,P) are parabolic. This follows from a result that

Knopp attributes to B.A. Taylor in [Kno74].

Proposition 4.1.1. Let ε ∈ C with |ε| = 1 and g ∈ P. Then there exists an f ∈ P with

εf(z + 1)− f(z) = g(z), ∀z ∈ H. (4.1.4)
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Proof. This is Proposition 9 in [Kno74] and a full proof is given there. We will only
present the main idea here. A formal solution of (4.1.4) is given by the one-sided average

f(z) = −
∞∑
n=0

εng(z + n).

However this sum does not always converge. Knopp uses the fact that P is closed under
integration and di�erentiation to replace g with a function g̃ = g1 + g2 such that the
one-sided averages f1(z) = −

∑∞
n=0 ε

ng1(z + n) and f2(z) = −
∑∞

n=0 ε
ng2(z + n) converge

and are in P .

Corollary 4.1.2. Let ε ∈ C with |ε| = 1, s ∈ R \ {0} and g ∈ P. Then there exists an
f ∈ P with

εf(z + s)− f(z) = g(z), ∀z ∈ H. (4.1.5)

Proof. First assume s > 0 and set ĝ(z) = g(sz). By Proposition 4.1.1 there exists f̂ ∈ P
that satis�es

εf̂(z + 1)− f̂(z) = ĝ(z), ∀z ∈ H.
Then f(z) = f̂(z/s) solves (4.1.5).

Now we treat the case s < 0. By the �rst part of this proof there exists an f̂ ∈ P that
satis�es

εf̂(z − s)− f̂(z) = g(z), ∀z ∈ H.
The function f(z) = −εf̂(z − s) solves (4.1.5).

Theorem 4.1.3 ([Kno74], p.627). Every cocycle in Z1
r,v(Γ,P) is parabolic, i.e.,

Z1
r,v(Γ,P) = Z̃1

r,v(Γ,P).

Proof. Let φ ∈ Z1
r,v(Γ,P). We will show that for every parabolic γ ∈ Γ there exists f ∈ P

such that

φ(γ) = f |r,vγ − f. (4.1.6)

First suppose γ = ( 1 s
0 1 ) is a translation by s ∈ R\{0}. Then by Corollary 4.1.2 a function

f ∈ P with the desired property exists.

For the general case let γ = ( a bc d ) ∈ Γ and �x a cusp q. Then there exists an s ∈ R \ {0}
such that

AγA−1 =
(

1 s
0 1

)
= U,where A =

(
0 −1
1 −q

)
.

Replacing z by A−1z in equation (4.1.6) we see that it is su�cient to show the existence
of f ∈ P with

v(γ)j(A−1UA,A−1z)−rf(γA−1z)− f(A−1z) = φ(γ)(A−1z). (4.1.7)

Setting f̂(z) = f(A−1z) this is equivalent to

v(γ)j(A−1UA,A−1z)−rf̂(z + s)− f̂(z) = φ(γ)(A−1z). (4.1.8)
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Equation (4.1.1) implies the two relations

1 = j(AA−1U, z)−r = σr(A,A
−1U)j(A,A−1Uz)−rj(A−1U, z)−r, (4.1.9)

j(A−1UA,A−1z)−r = σr(A
−1U,A)j(A−1U, z)−rj(A,A−1z)−r. (4.1.10)

After multiplying equation (4.1.8) by j(A,A−1z)r and using the two relations (4.1.9) and
(4.1.10) we get

εF (z + s)− F (z) = j(A,A−1z)rφ(γ)(A−1z), (4.1.11)

where we set F (z) = j(A,A−1z)rf̂(z) and ε = v(γ)σr(A−1U,A)σr(A,A
−1U). Note that

|ε| = 1 and j(A,A−1z)rφ(γ)(A−1z) ∈ P . The existence of such an F ∈ P again follows
from Corollary 4.1.2.

4.2 Outline

The aim of this chapter is to give a new proof of the following theorem for r 6= 1.

Theorem 4.2.1 (Knopp�Mawi (2010)). For all r ∈ R the map f 7→ [φ∞f ] is an isomor-
phism

S2−r(Γ, v)
∼=→ H1

r,v(Γ,P).

This theorem is equivalent to Theorem 1.0.9 in the introduction, except that we replaced
k with 2−r and v with v. This choice of notation will be more convenient in the following
sections.

We now give a brief outline of the proof of Theorem 4.2.1 in the case 0 < 2− r 6= 1. This
is the harder case of the theorem, for the proof in the case 2− r ≤ 0 we can skip �4.3.

In that section we construct a pairing (· , ·) between S2−r(Γ, v) and H1
r,v(Γ,P). From

the construction it follows immediately (see Corollary 4.3.4) that the map f 7→ [φ∞f ] is
injective. In order to prove Theorem 4.2.1 for 2 − r > 0 it remains to show that this
pairing is perfect.

In �4.4 we �rst show, in Theorem 4.4.2 and Corollary 4.4.5, that every cocycle φ in
Z1
r,v(Γ,P) is a coboundary in Z1

r,v(Γ,Q), where Q is a larger space of functions than P .
Suppose φ ∈ Z1

r,v(Γ,P) is orthogonal to S2−r(Γ, v). Using the description of φ as a
coboundary in Z1

2−k,v(Γ,Q), we apply classic results from the spectral theory of automor-

phic forms to show that y
4−k
2

∂g
∂z

(z) is in the image of the Maass weight-raising operator
Kk−2 (see Proposition 4.4.11). This then implies that φ is a coboundary in Z1

2−k,v(Γ,P)
and hence that the pairing ( · , ·) is perfect.
In the case k = 1 only the last step of the proof fails, since some technical complications
arise in the proof of Proposition 4.4.11.

In the last section we sketch our proof of a vector-valued version of Theorem 4.2.1.
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4.3 Petersson inner product

An essential ingredient in the proof of 4.2.1 for r 6= 1 is the pairing that we de�ne in
this section. We make use of the auxiliary integral of a cusp form of positive real weight.
For weights greater than 2 it was introduced in [Nie74] and for any positive weight it
�rst appeared in [Pri05], where also the transformation formula (4.3.1) is mentioned.
Corollary 4.3.4 can also be deduced from results in these papers and [Pri99] but the proof
presented here is new.

De�nition 4.3.1. Let r ∈ R with 2 − r > 0 and g be a cusp form for the group Γ of
weight 2− r and unitary multiplier system v. The auxiliary integral of g is de�ned as

G(z) =

[
−
∫ ∞
z

g(τ)(τ − z)−rdτ

]−
,

where [ · ]− indicates complex conjugation. The path of integration is the vertical line
p(t) = z + it where t ranges from 0 to ∞.

Since g decays exponentially at i∞ the integral converges and G is a smooth function
from H to C. We can de�ne a cocycle by

φ∞g : γ 7→ φ∞g,γ(z) = G|r,vγ(z)−G(z).

Proposition 4.3.1. The cocycle φ∞g is in Z1
r,v(Γ,P) and

φ∞g,γ(z) =

[∫ ∞
γ−1∞

g(τ)(τ − z)−rdτ

]−
, (4.3.1)

for all γ ∈ Γ.

Proof. Let γ ∈ Γ:

G(γz) =

∫ γz

∞
g(τ)(τ − γz)−rdτ

=

∫ z

γ−1∞
g(γτ)(γτ − γz)−rd(γτ)

= j(γ, z)r
∫ z

γ−1∞
g(γτ)j(γ, τ)−2+r(τ − z)−rdτ.

In the last equality we used

(γτ − γz)−r =

(
τ − z

j(γ, τ)j(γ, z)

)−r
=

(τ − z)−r

j(γ, τ)−rj(γ, z)−r
.

To prove this let

α = arg(γτ − γz) and β = arg(τ − z)− arg(j(γ, τ))− arg(j(γ, z)).

We know that α ≡ β mod 2π and want to show α = β. Both (γτ − γz) and τ − z are
in H, so their arguments are in (0, π). Furthermore exactly one of j(γ, τ) and j(γ, z) will
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be in H and one in H, so −π < β < 2π and 0 < α < π. Together with β ≡ α mod 2π
this implies α = β. Now we use the modularity of g to obtain

G(γz) = j(γ, z)rv(γ)

[∫ z

γ−1∞
g(τ)(τ − z)−rdτ

]−
, (4.3.2)

or G|r,vγ(z) =
[∫ z

γ−1∞ g(τ)(τ − z)−rdτ
]−

. An application of Cauchy's theorem now gives
us

φ∞g,γ(z) = G|r,vγ(z)−G(z)

=

[(∫ z

γ−1∞
−
∫ z

∞

)
g(τ)(τ − z)−rdτ

]−
=

[∫ ∞
γ−1∞

g(τ)(τ − z)−rdτ

]−
.

To see that φ∞g,γ is in P �rst note that (τ − z)−r is antiholomorphic in H as a function of
z (actually even in the slit plane C \ {R≥0 + τ}) and the integrals in the de�nition of G
and φ∞g converge absolutely because g is a cusp form. Therefore φ∞g,γ(z) is holomorphic
in H. To prove that φ∞g,γ is in P one can use simple bounds for |τ − z|−r. We sketch the
procedure for the case r ≤ 0 and Im(z) > 1. In this case

|τ − z|−r ≤ |τ − z|d−re ≤
d−re∑
j=0

(
d−re
j

)
|τ |d−re−j|z|j.

One can use this to bound φ∞g,γ(z) by a polynomial in |z|. If r > 0 then for any z we
can use the bound |τ − z|−r < |z|−r < |Im(z)|, so in this case we can bound φ∞g,γ(z)
by a negative power of Im(z). The missing case r ≤ 0 and Im(z) ≤ 1 is dealt with
similarly.

Let f be another modular form of the weight 2− r and multiplier system v. Then, since
f is holomorphic

∂Gf

∂z
(z) = f(z)

∂G

∂z
(z) = g(z)(z − z)−rf(z) = (−2i)−rf(z)g(z)y−r.

This is just a scalar times the integrand occurring in the Petersson inner product of g
and f , which was de�ned in 1.1.5 as

(f, g) =

∫
F
f(z)g(z)y−rdxdy,

where F is a fundamental domain of Γ (De�nition 1.1.3). Then by Stokes' theorem we
have

(f, g) = − i
2

∫
F
f(z)g(z)y−rdz ∧ dz = C2−r

∫
∂F
f(z)G(z)dz,

for C2−r = − i
2
(−2i)r. Now we choose a fundamental domain according to the following

Proposition 4.2 in [Coh13].
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Proposition 4.3.2. The fundamental domain F can be chosen such that ∂F = F \ F◦
consists of an even number of geodesic segments [Ai, Ai+1[2 for i = 1, . . . , 2n (the indices
are taken modulo 2n) and αi ∈ Γ for i = 1, . . . , 2n such that there exists an involution of
{1, . . . , 2n}, denoted by π, such that

1. π does not have any �xed points,

2. αiAi = Aπ(i)+1, αiAi+1 = Aπ(i),

3. απ(i) = α−1
i ,

4. αi maps [Ai, Ai+1[ to [Aπ(i)+1, Aπ(i)[.

Example 4.3.1. For Γ = SL2(Z) we choose the classic fundamental domain with A1 =
∞, A2 = e2πi/3, A3 = i, A4 = A2 + 1. Then α1 = T = ( 1 1

0 1 ) maps [A1, A2[ to [A1, A4[ and
α2 = σ = ( 0 1

−1 0 ) maps [A2, A3[ to [A4, A3[. So π is the permutation that swaps 1 with 4
and 2 with 3.

Remark. For general Fuchsian groups Γ of the �rst kind an example of such a fundamental
domain is the Ford fundamental domain (see [For25])

F = {z ∈ H||z| ≤ λ/2 and |j(γ, z)| > 1 ∀γ ∈ Γ \ Γ∞}, (4.3.3)

where λ, the width of the cusp ∞, was de�ned in the last section. For the rest of this
chapter, we will �x this fundamental domain for Γ.

We can restate Proposition 4.3.2 as

∂F =
n⊔

m=1

([Aim , Aim+1[ t αim ]Aim , Aim+1]) .

Thus the Petersson inner product of f and g becomes

C2−r

n∑
m=1

(∫ Aim+1

Aim

−
∫ αimAim+1

αimAim

)
f(z)G(z)dz.

Using the modularity of f , the second integral in the sum becomes∫ αimAim+1

αimAim

f(z)G(z)dz =

∫ Aim+1

Aim

f(αimz)G(αimz)d(αimz)

=

∫ Aim+1

Aim

f(z)G|r,vαim(z)dz.

Finally we arrive at

(f, g) = C2−r

n∑
m=1

∫ Aim+1

Aim

f(z) (G(z)−G|r,vαim(z)) dz

= −C2−r

n∑
m=1

∫ Aim+1

Aim

f(z)φ∞g,αim (z)dz.

2[Ai, Ai+1[ denotes the geodesic in H that connects Ai and Ai+1 and includes Ai but not Ai+1.
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Motivated by the previous calculations we de�ne a pairing between cusp forms and co-
cycles:

De�nition 4.3.2. Let 2− r > 0, f ∈ S2−r(Γ, v) and φ ∈ Z1
r,v(Γ,P). De�ne the pairing

(f, φ) = −C2−r

n∑
m=1

∫ Aim+1

Aim

f(z)φ(αim)(z)dz.

The integrals in the sum converge because φ(αim) is in P and therefore can increase only
polynomially towards the cusps, while f decreases exponentially.

Lemma 4.3.3. Let f ∈ S2−r(Γ, v) and [φ] ∈ H1
r,v(Γ,P) be represented by φ ∈ Z1

r,v(Γ,P).
The value (f, φ) does not depend on a choice of representative of [φ], i.e., the pairing

(f, [φ]) = (f, φ),

between S2−r(Γ, v) and H1
r,v(Γ,P), is well-de�ned.

Proof. It su�ces to show that if φ is a coboundary, then (f, φ) = 0. If φ is a coboundary
there exists a function h ∈ P with φ(γ) = h|r,vγ − h. We have∫ Aim+1

Aim

f(z)h|r,vαim(z)dz =

∫ Aim+1

Aim

f(z)j(αim , z)
2−rv(αim)h(αimz)d(αimz)

=

∫ Aim+1

Aim

f(αimz)h(αimz)d(αimz)

=

∫ αimAim+1

αimAi

f(z)h(z)dz.

(4.3.4)

So

(f, φ) = −C2−r

n∑
m=1

∫ Aim+1

Aim

f(z)φ(αim)(z)dz

= −C2−r

n∑
m=1

∫ Aim+1

Aim

f(z)(h|r,vαim(z)− h(z))dz

= −C2−r

n∑
m=1

(∫ αimAim+1

αimAi

−
∫ Aim+1

Aim

)
f(z)h(z)dz

= C2−r

∫
∂F
f(z)h(z)dz.

(4.3.5)

The integral over the boundary is 0 because, since f(z)h(z) decreases exponentially at
the cusps, we can approach

∫
∂F f(z)h(z)dz by integrals over closed paths contained in

H, which are all equal to zero, since f(z)h(z) is holomorphic.

Corollary 4.3.4. The map f 7→ [φ∞f ] from S2−r(Γ, v) to H1
r,v(Γ,P) is injective.

Proof. If [φ∞f ] is represented by a coboundary in Z1
r,v(Γ,P) then, by the above calculations

0 = (f, [φ∞f ]) = (f, f) and hence f = 0.
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4.4 The Duality theorem

In this section we prove that the pairing we de�ned in Lemma 4.3.3, between S2−r(Γ, v)
and H1

r,v(Γ,P), is perfect for 0 < 2 − r 6= 1. For such weights r this implies Theorem
4.2.1.

We already know that for every non-zero f in S2−r(Γ, v) there exists a cocycle φ such
that (f, [φ]) 6= 0, since (f, [φ∞f ]) = (f, f) 6= 0. To show that the pairing is perfect, we
therefore need to prove the following theorem.

Theorem 4.4.1. Let 1 6= r < 2 and [φ] ∈ H1
r,v(Γ,P). If (f, [φ]) = 0 for all f ∈ S2−r(Γ, v),

then [φ] = 0. Together with Corollary 4.3.4 this implies that S2−r(Γ, v) and H1
r,v(Γ,P)

are dual to each other.

The proof of Theorem 4.4.1 will be given at the end of this section. Most constructions
that follow will be valid for any real r and so, if not explicitly stated otherwise, we work
in this generality. In particular we will also show Theorem 4.2.1 for r ≥ 2.

Let H = H∪R ∪ {∞} be the closure of H in P1(C). A basis of neighbourhoods of ∞ in
H is given by the sets

HY (∞) = {z ∈ H| Im(z) > Y } ∪ {∞}.

Let q be a cusp with τq∞ = q for τq ∈ SL2(R) such that τ−1
q Γqτq is generated by T = ( 1 1

0 1 ).
Then the open sets HY (q) = τqHY (∞) for Y > 0 form a basis of neighbourhoods of q.

We de�ne a variation of the space P that will be useful in our proof. Let Q̃ be the space
of C∞-functions f on H such that, for every cusp q of Γ, there exists a neighbourhood
Uq ⊆ H and Kq, Aq, Bq > 0 such that f is holomorphic in Uq and

|f(z)| < Kq(|z|Aq + y−Bq), ∀z ∈ Uq.

For the purpose of proving Theorem 4.4.1 we will actually be interested in a subspace
Q ⊆ Q̃, that we introduce in De�nition 4.4.1.

Theorem 4.4.2. Every element of Z1
r,v(Γ,P) is a coboundary in Z1

r,v(Γ, Q̃).

Proof. Let φ ∈ Z1
r,v(Γ,P). We need to show that there exists a function G ∈ Q̃ with

φ(γ) = G|r,vγ − G for all γ in Γ. Choose Y large enough, so that all the HY (q) are
disjoint and contain no elliptic �xed points. De�ne U =

⋃
q cusp of ΓHY (q) and V =⋃

q cusp of ΓH2Y (q). Then U and V are Γ-invariant. Recall that the projections π(U)
and π(V ) are open in Γ\H∗. By the smooth Urysohn lemma (see for example [Con01,
Corollary 3.5.5]), there exists a smooth function η̂ on Γ\H∗ such that η̂(π(z)) = 1 for
all π(z) ∈ π(V ) and η̂(π(z)) = 0 for all π(z) outside π(U). De�ne η(z) = η̂(π(z)) to be
the pullback of η̂. It is a Γ-invariant C∞-function on H that satis�es η(z) = 1 on V and
η(z) = 0 outside U .

We will �rst construct a function that has ηφ as a coboundary. By Theorem 4.1.3, φ
is a parabolic cocycle, so for every cusp q there exists a function gq ∈ P such that
φ(σq) = gq|r,vσq− gq, where σq is the generator of Γq/{±I}. We de�ne G on U as follows:

61



Chapter 4: Eichler-cohomology for arbitrary real weights

if z ∈ HY (qi) for some i then G(z) = gqi(z). If z = δw for δ ∈ Γ and w ∈ HY (qi) we
de�ne

G(z) = v(δ)j(δ, w)r(φ(δ)(w) + gqi(w)).

Note that this is equivalent to de�ning G|r,vδ(w) = φ(δ)(w)+G(w), so once we show that
the de�nition of G(z) does not depend on the choice of δ, the coboundary of ηG will be
ηφ. Suppose z = δw = δ′w′, for δ, δ′ ∈ Γ and w,w′ ∈ HY (qi). We need to check that

v(δ)j(δ, w)r(φ(δ)(w) + gqi(w)) = v(δ′)j(δ′, w′)r(φ(δ′)(w′) + gqi(w
′)).

Multiplying both sides by v(δ)−1j(δ, w)−r and using the consistency condition of the
multiplier system v, we see that this is equivalent to

φ(δ)(w) + gqi(w) = [φ(δ′) + gqi ] |r,v(δ′−1δ)(w).

This follows from the cocycle condition on φ and the choice of gqi . Indeed, since w′ ∈
δ′−1δHY (qi) ∩ HY (qi) 6= ∅ and since we assumed that all the HY (q) are disjoint, δ′−1δ
must �x qi. Hence δ′−1δ = ±σnqi for some n ≥ 1. This implies

gqi |r,v(δ′−1δ)(w) = φ(δ′−1δ)(w) + gqi(w),

and so

[φ(δ′) + gqi ] |r,v(δ′−1δ)(w) = φ(δ)(w)− φ(δ′−1δ)(w) + gqi|r,v(δ′−1δ)(w)

= φ(δ)(w) + gqi(w).

So ηG is a well-de�ned function in Q̃. We have thus shown that ηφ is a coboundary in
Z1
r,v(Γ, Q̃).

It remains to show that (1 − η)φ is a coboundary. We �rst construct a partition of
unity on H that is Γ-invariant. The construction we describe here is due to Gunning
[Gun59]. Since Γ acts discontinuously on H, every z ∈ H has a neighbourhood Oz such
that γOz = Oz if γ ∈ Γz (the stabiliser of z), and γOz ∩Oz = ∅ if γ ∈ Γ \Γz. Let V be as
in the construction of η, a Γ-invariant open set that contains all cusps of Γ with η|V = 1.
Since Γ\H∗ is compact, there exist z1, . . . , zn ∈ H such that the sets π(Ozi) together with
π(V ) cover Γ\H∗. Let ε̂1, . . . , ε̂n, ε̂V be a partition of unity corresponding to this cover,
i.e., smooth functions supported in π(Oz1), . . . , π(Ozn) and π(V ) respectively, satisfying

n∑
i=1

ε̂i(π(z)) + ε̂V (π(z)) = 1, ∀z ∈ H.

We de�ne functions H1, . . . , Hn on H as follows. If there exists gi(z) ∈ Γ such that
gi(z)z ∈ Ozi we set

Hi(z) = −(1− η(z))
εi(z)

|Γi|
∑
g∈Γi

φ(g · gi(z))(z),

where Γi is the stabiliser of zi and |Γi| is its order. This does not depend on the choice
of gi(z): if γz ∈ Ozi with γ ∈ Γ, then we must have γ−1gi(z) ∈ Γi. Thus the set Γigi(z)
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is equal to Γiγ and we see that a di�erent choice of gi(z) just permutes the summands in
the de�nition of Hi(z). If no such gi(z) ∈ Γ exists we set Hi(z) = 0.

Clearly Hi is a function in Q̃ and de�ning H =
∑n

i=1 Hi, we will see that H|r,vγ(z) −
H(z) = (1− η(z))φ(γ)(z) for all γ ∈ Γ and z ∈ H. First note that if z is in V , then H(z)
and H(γz) vanish and so does (1− η(z))φ(γ)(z). If z is not in V we have

H|r,vγ(z) = −(1− η(z))
∑
i

εi(γz)

|Γi|
∑
g∈Γi

φ(g · gi(γz))|r,vγ(z),

where the �rst sum is over all i such that there exists a gi(γz) ∈ Γ with gi(γz)γz ∈ Ozi .
Now we choose gi(γz) = gi(z)γ−1, to get that H|r,vγ(z) equals

= −(1− η(z))
∑
i

εi(z)

|Γi|
∑
g∈Γi

[φ(g · gi(z))(z)− φ(γ)(z)]

= (1− η(z))(φ(γ)(z) +H(z)).

In the de�nition of Q̃, the constants Kq, Aq, Bq may vary from cusp to cusp, in the
following de�nition we impose stricter growth conditions, requiring the constants to be
�xed.

De�nition 4.4.1. Let Q be the space of functions F in Q̃ such that there exist positive
constants K,A,B with

|F (z)| < K(|z|A + y−B), ∀z ∈ H.

Note that the functions in P are the holomorphic functions in Q.

Proposition 4.4.3. Let F be in Q̃. If γ 7→ F |r,vγ − F = ψ(γ) is in Z1
r,v(Γ,P) then F is

in Q.

Proof. This proof is similar to the proof of the main theorem of [Kno85]. LetM be the set
of matrices γ in Γ with λ/2 ≤ Re(γi) < λ/2. M is a complete set of coset representatives
of Γ∞ \ Γ. We need a technical lemma from [Kno74]:

Lemma 4.4.4. (Lemma 8 in [Kno74]) There exist positive constants K1, A1, B1 such that
for all τ ∈ F ∩H and all γ ∈M

|ψ(γ)(τ)| < K1(Im(γτ)A1 + Im(γτ)−B1).

Since only �nitely many cusps are in F and since the real part of z ∈ F is bounded, we
can also �nd positive K2, A2, B2 with

|F (τ)| < K2(Im(τ)A2 + Im(τ)−B2), ∀τ ∈ F ∩H. (4.4.1)

As in the proof of Theorem 4.4.2, we use the fact that ψ is parabolic and hence there exists
a function g∞ ∈ P such that ψ(σ∞) = g∞|r,vσ∞−g∞. The equation F |r,vσ∞−F = ψ(σ∞)
implies

(F − g∞)|r,vσ∞ − (F − g∞) = 0.
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F is in Q if and only if F − g∞ is in P , so we can assume without loss of generality that
F (z + λ) = v(σ∞)F (z). Let z ∈ H. There exists τ ∈ F and γ ∈ Γ such that z = γτ .
Since M is a complete set of representatives of Γ∞ \ Γ, there is an integer m and δ ∈M
such that z = σm∞δτ . If δ = I then we can deduce

|F (z)| < K2(Im(τ)A2 + Im(z)−B2),

from equation (4.4.1) and the fact that |F | is Γ∞-invariant. Suppose δ = ( a bc d ) is not the
identity. Then c 6= 0, because the only member of M that �xes ∞ is I. We have

|F (z)| = |F (σm∞δτ)| = |F (δτ)| (4.4.2)

≤ |j(δ, τ)|r (|F (τ)|+ |ψ(δ)(τ)|) (4.4.3)

< |j(δ, τ)|r[K2(Im(τ)A2 + Im(τ)−B2) (4.4.4)

+K1(Im(δτ)A1 + Im(δτ)−B1)].

By our choice of fundamental domain we have |j(δ, τ)| ≥ 1, since δ /∈ Γ∞. So y = Im(z) =
Im(τ)
|j(δ,τ)|2 ≤ Im(τ). On the other hand, using τ = δ−1σ−m∞ z we have Im(τ) = y

|j(δ−1σ−m∞ ,z)|2
and

|j(δ−1σ−m∞ , z)|2 = | − cz + cmλ+ a|2 = c2y2 + (cmλ+ a− cx)2 ≥ cy2 > c0y
2,

where c0 > 0 depends only on Γ. Such a c0 exists because Γ is discrete. Therefore y ≤
Im(τ) < c−1

0 y−1, Im(τ)A2 < c−A2
0 y−A2 and Im(τ)−B2 ≤ yB2 . Also |j(δ, τ)|r = ( y

Im(τ)
)−r/2

is either ≤ 1 (if r ≤ 0), or ≤ c
−r/2
0 y−r (if r ≥ 0). These inequalities inserted into (4.4.4)

lead to the desired inequality of the form

|F (z)| < K(|z|A + y−B),

for positive constants K,A,B and all z ∈ H.

Corollary 4.4.5. Every cocycle in Z1
r,v(Γ,P) is a coboundary in Z1

r,v(Γ,Q).

Let φ ∈ Z1
r,v(Γ,P). By Corollary 4.4.5 there exists a function g ∈ Q such that g|r,vγ−g =

φ(γ) for all γ ∈ Γ. By the same calculation as in equation (4.3.5), for any f ∈ S2−r(Γ, v),
we have

(f, φ) = −C2−r

n∑
m=1

∫ Aim+1

Aim

f(z)(g|r,vαim(z)− g(z))dz

= C2−r

∫
∂F
f(z)g(z)dz

= C2−r

∫
F

∂g

∂z
dz ∧ f(z)dz.

Here we note again that the integrals above exist because g can only increase polynomially
towards the cusps of Γ, while f decreases exponentially.
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4.4.1 Spectral theory of automorphic forms

To carry out the proof of Theorem 4.4.1, we will apply spectral theory. We only give a
very brief introduction here; for more details and proofs, see the exposition [Roe66] by
Roelcke. In these articles Roelcke uses a variation of the slash operator which we denote
by |Rr,v

f |Rr,vγ(z) =

(
j(γ, z)

j(γ, z)

)r/2
v(γ)f(γz).

The connection to our slash operator is given by the following lemma:

Lemma 4.4.6. Let f : H → C, F (z) = y
r
2f(z) and γ ∈ Γ. Then

y
r
2 (f |r,vγ(z)) = F |Rr,vγ(z).

So a function f is invariant under |r,v if and only if F (z) = y
r
2f(z) is invariant under

|Rr,v.

De�nition 4.4.2. Let Hr,v = Hr(Γ, v) be the Hilbert space of functions f that are
invariant under |Rr,v and have �nite norm with respect to the scalar product

(f1, f2)R =

∫
F
f1(z)f2(z)

dxdy

y2
.

The weight r hyperbolic Laplacian and the Maass weight-raising and weight-lowering
operators are de�ned as

∆r = −(z − z)2 ∂2

∂z∂z
− r

2
(z − z)

(
∂

∂z
+

∂

∂z

)
,

Kr = (z − z)
∂

∂z
+
r

2
,

Λr = (z − z)
∂

∂z
+
r

2
.

Before we sum up the main properties of these operators in Proposition 4.4.7, we recall
some de�nitions from operator theory.

De�nition 4.4.3. Let H and H ′ be Hilbert spaces and let T be a linear operator from a
subspace D of H to H ′. T is called closed if, for every sequence xn in D that converges
to x ∈ H such that Txn converges to y ∈ H ′, we have x ∈ D and Tx = y.

De�nition 4.4.4. If D is dense in H then for any operator T from D to H, we can de�ne
its adjoint T ∗ on the domain

{y ∈ H : x 7→ 〈Tx, y〉 is continuous on D}.

Any y in this set de�nes a linear functional on D by φy : x 7→ 〈Tx, y〉. This functional
can be extended to H and by the Riesz representation theorem there exists z ∈ H such
that φy(x) = 〈x, z〉 for all x in H. We de�ne T ∗y = z.

An operator is called self-adjoint if it is equal to its adjoint. An operator is called
essentially self-adjoint if T ⊆ T ∗ = (T ∗)∗, where T ⊆ T ∗ means that T ∗ extends T .
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Let
D2
r = {f ∈ Hr,v|f twice di�erentiable and −∆rf ∈ Hr,v}.

Proposition 4.4.7.

(i) ∆r : D2
r → Hr,v is essentially self-adjoint. It has a self-adjoint extension to a dense

subset of Hr,v that we denote by D̃r.

(ii) The eigenfunctions of ∆r are smooth (in fact they are real analytic).

(iii) Kr : D2
r → Hr+2,v and Λr : D2

r → Hr−2,v can be extended to closed operators de�ned
on D̃r. For f ∈ D̃r and g ∈ D̃2+r we have

(Krf, g)R = (f,Λ2+rg)R.

(iv)

−∆r = Λr+2Kr −
r

2
(1 +

r

2
) = Kr−2Λr +

r

2
(1− r

2
).

Proof. For proofs of the statements (i), (iii) and (iv) see [Roe66]. (i) is Satz 3.2, (iii)
follows from the discussion after the proof of Lemma 6.2 on page 332 and (iv) is equation
(3.4) on page 305. Statement (ii) follows from the fact that ∆r is an elliptic operator
and elliptic regularity applies. For an introduction to the theory of elliptic operators, see
[GT01]. The result needed here is Corollary 8.11 in [GT01].

De�nition 4.4.5. A cuspidal Maass wave form in Hr,v with eigenvalue λ is an eigen-
function of −∆r with eigenvalue λ that decays exponentially at the cusps of Γ.

Remark. By [Roe66, Satz 5.2] all eigenfunctions in Hr,v of −∆r of eigenvalue r
2
(1− r

2
) are

of the form y
r
2f , where f is a modular form inMr(Γ, v) that has �nite Petersson norm,

i.e., (f, f) <∞. If f is a cusp form, then y
r
2f is a cuspidal Maass wave form.

The main result in [Roe66] is a spectral decomposition of ∆r. For this purpose we
introduce the Eisenstein series. Let q be a cusp of Γ, σq the generator of Γq/{±I}
and Aq ∈ SL2(R) chosen such that q = A−1

q ∞. The cusp q is called singular for the
multiplier system v, if v(σq) = 1 and regular for v otherwise. Let q1, . . . , qm∗ be a set
of representatives of the cusps of Γ that are singular for v. For each of these cusps, we
de�ne the Eisenstein series

Eq
r,v(z, s) =

1

2

∑
M∈Γq\Γ

σr(Aq,M)−1v(M)

(
j(AqM, z)

j(AqM, z)

)r/2
(Im AqMz)s.

The de�nition of Eq
r,v depends on the choice of Aq, but a di�erent choice of Aq will

only multiply the Eisenstein series by a constant of absolute value 1. The series above
converges absolutely and uniformly for (z, s) in sets of the form K × {s|Re s ≥ 1 + ε},
where K is a compact subset of H and ε > 0. For a �xed s with real part ≥ 1+ ε, one can
use the absolute and uniform convergence of the series to see that Eq

r,v(·, s) is invariant
under |Rr,v and that

−∆rE
q
r,v(·, s) = s(1− s)Eq

r,v(·, s).
These series can be meromorphically continued and play an important role in the spectral
decomposition of ∆r.
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Theorem 4.4.8.

(i) For �xed z ∈ H the Eisenstein series Eq
r,v(z, ·) can be meromorphically continued to

the whole complex plane.

(ii) If, for one �xed z, Eq
r,v(z, ·) has a pole of order n at s0, then the function f(z) :=

lims→s0(s− s0)nEq
r,v(z, s) is real analytic, invariant under |Rr,v and satis�es

−∆rf = s0(1− s0)f.

If n is chosen so that f(z) has no poles in H, then f grows at most polynomially
at each cusp of Γ, i.e., if q is a cusp of Γ and τq∞ = q for τq ∈ SL2(R), then there
exists A ∈ R such that f |rτq(z) = O(yA) as y →∞.

In particular, if Eq
r,v(z, s) is holomorphic at s = s0, then

−∆rE
q
r,v(·, s0) = s0(1− s0)Eq

r,v(·, s0).

Furthermore we have the following equalities:

KrE
q
r,v(·, s0) =

(r
2

+ s0

)
Eq
r+2,v(·, s0), (4.4.5)

ΛrE
q
r,v(·, s0) =

(r
2
− s0

)
Eq
r−2,v(·, s0). (4.4.6)

The poles of Eq
r,v(z, ·) in the half plane de�ned by Re s ≥ 1

2
are all simple and in the

interval (1
2
, 1]. In particular there are no poles on the line Re s = 1

2
.

Theorem 4.4.9 (Spectral expansion). Let f ∈ D̃r and en be a maximal orthonormal
system of eigenfunctions3 of ∆r. Then f has a spectral expansion

f =
∑
n

(en, f)Ren +
m∗∑
i=1

1

4π

∫ ∞
−∞

(Eqi
r,v(·,

1

2
+ iρ), f)REqi

r,v(z,
1

2
+ iρ)dρ.

If f has compact support mod Γ, i.e., π(supp(f)) is compact in Γ\H∗, then both parts of
the spectral expansion,

∑
(en, f)Ren and

∑m∗

i=1
1

4π

∫∞
−∞(Eqi

r,v(·, 1
2

+ iρ), f)REqi
r,v(z,

1
2

+ iρ)dρ,
converge absolutely and uniformly on compact subsets of H.

The properties of Eisenstein series and the spectral expansion are proved in the second
part of [Roe66] with the notable exception of the fact that Eisenstein series can be mero-
morphically continued to the whole complex plane. Roelcke attributes the meromorphic
continuation to Selberg and a proof of it can be found in [Bru81, �11]. The version of
the spectral expansion we state is a combination of Satz 7.2 and the second part of Satz
12.3 in [Roe66].

We turn back to the proof of Theorem 4.4.1: Let [φ] ∈ H1
r,v(Γ,P) be represented by

φ ∈ Z1
r,v(Γ,P). By Corollary 4.4.5, there exists a function g ∈ Q such that

φ(γ) = g|r,vγ − g, ∀γ ∈ Γ. (4.4.7)

3An orthonormal system of eigenfunctions of an operator T on a Hilbert space H is a set of eigen-
functions of T that are pairwise orthogonal and have norm 1.
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By applying ∂
∂z

to (4.4.7), we see that

∂g

∂z
(z) = v(γ)j(γ, z)−rj(γ, z)−2∂g

∂z
(γz).

A short calculation shows that the function

G : z 7→ y
r+2
2
∂g

∂z
(z) (4.4.8)

is invariant under |R2−r,v. Moreover G vanishes in a neighbourhood of every cusp since g
is holomorphic there, so G has compact support mod Γ and is in H2−r,v.

To prove Theorem 4.4.1, we have to show that if φ is orthogonal to S2−r(Γ, v), then g ∈ Q
can be chosen to be holomorphic. This implies that φ is a coboundary in Z1

r,v(Γ,P).

Lemma 4.4.10. Let 2 − r > 0 and φ, g and G be as above. Then (f, φ) = 0 for all
f ∈ S2−r(Γ, v) if and only if (f̃ , G)R = 0 for all cuspidal Maass wave forms f̃ with
eigenvalue r

2
(1− r

2
).

Proof. We have the equality

i

2C2−r
(f, φ) =

i

2

∫
F
∂g ∧ f(z)dz =

∫
F
y

2−r
2 f(z)G(z)

dxdy

y2
= (y

2−r
2 f,G)R,

so (f, φ) = 0 for all f ∈ S2−r(Γ, v) if and only if (f̃ , G)R = 0 for all functions f̃ of the
form y

2−r
2 f , f ∈ S2−r(Γ, v). According to Remark 4.4.1, these functions are exactly the

cuspidal Maass wave forms of eigenvalue r
2
(1− r

2
).

We can now use spectral theory to characterise functions which are orthogonal to cuspidal
Maass wave forms of eigenvalue r

2
(1− r

2
).

Proposition 4.4.11. Let 2− r 6= 1 and H be a smooth function in H2−r,v with compact
support mod Γ. Then the following are equivalent:

(i) (f̃ , H)R = 0 for all cuspidal Maass wave forms f̃ with eigenvalue r
2
(1− r

2
).

(ii) H = K−rF + K−rE, where F is a smooth function in H−r,v and E is a linear
combination of the functions Eqi

−r,v(z,
r
2
).

If 2− r > 1 or 2− r < 0 this implies E = 0.

Remark. By [Kno67] and [? ] we have S2−r(Γ, v) = {0}, if 2− r ≤ 0. Since, by [Roe66,
Satz 5.2], all cuspidal Maass wave forms of eigenvalue r

2
(1− r

2
) are of the form y

r
2f , where

f ∈ S2−r(Γ, v), the �rst condition is always satis�ed in the case 2− r ≤ 0.

Proof. (i)⇒(ii): By [Roe66, Satz 6.3] there is a maximal orthonormal system of eigen-
functions of ∆2−r consisting of:

1. Images of eigenfunctions of ∆−r under the Maass raising operatorK−r = (z−z) ∂
∂z
−

r
2
. We denote these by K−ren. By [Roe66, Satz 6.3] these eigenfunctions cannot

have eigenvalue r
2
(1− r

2
).
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2. A (�nite) orthonormal basis of the eigenfunctions of eigenvalue r
2
(1− r

2
). By Remark

4.4.1 this set is of the form {y 2−r
2 f1, . . . , y

2−r
2 fN}, where the fi form an orthonormal

basis of the subspace of M2−r(Γ, v) of modular forms with �nite Petersson norm.
If 2− r ≥ 1 this subspace is equal to S2−r(Γ, v), while for 2− r < 1 every modular
form inM2−r(Γ, v) has �nite Petersson norm.

Hence by Theorem 4.4.9 the spectral expansion of H is of the form

H =
∑
n

(K−ren, H)RK−ren︸ ︷︷ ︸
=K−rF1

+
N∑
i=1

(y
2−r
2 fi, H)Ry

2−r
2 fi︸ ︷︷ ︸

=y
2−r
2 Ẽ

+

m∗∑
i=1

1

4π

∫ ∞
−∞

(Eqi
2−r,v(·,

1

2
+ iρ), H)REqi

2−r,v(z,
1

2
+ iρ)dρ︸ ︷︷ ︸

=F̃2

.

Here we used that
∑

n(K−ren, H)RK−ren converges absolutely and uniformly on com-
pacta to swap di�erentiation and summation and write it asK−rF1 = K−r

(∑
n(K−ren, H)Ren

)
.

We now show that F̃2 = K−rF2 for a smooth function F2 ∈ H−r,v: Applying equation
(4.4.5) twice and using Proposition 4.4.7, we see∫ ∞

−∞
(Eqi

2−r,v(·,
1

2
+ iρ), H)REqi

2−r,v(z,
1

2
+ iρ)dρ

=

∫ ∞
−∞

(
1− r

2
+ iρ

)−2

(K−rE
qi
−r,v(·,

1

2
+ iρ), H)R︸ ︷︷ ︸

=(E
qi
−r,v ,Λ2−rH)R

K−rE
qi
−r,v(z,

1

2
+ iρ)dρ.

If r 6= 1

F i
2(z) =

∫ ∞
−∞

(
1− r

2
+ iρ

)−2

(Eqi
−r,v,Λ2−rH)REqi

−r,v(z,
1

2
+ iρ)dρ, (4.4.9)

converges absolutely and uniformly on compacta. To see this note the integrand can be
bounded above by

|1− r
2
|−2 · |(Eqi

−r,v,Λ2−rH)REqi
−r,v(z,

1

2
+ iρ)|,

and ∫ ∞
−∞

(Eqi
−r,v,Λ2−rH)REqi

−r,v(z,
1

2
+ iρ)dρ,

converges absolutely and uniformly on compacta as it occurs in the spectral expansion of
Λ2−rH. So when we apply K−r to F2 =

∑m∗

i=1
1

4π
F i

2 we can swap it with the integral and
obtain

K−rF2 = F̃2.
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F2 is clearly in H−r,v by the bound we used for the F i
2. We have thus shown that

H = K−rF + y
2−r
2 Ẽ, where F = F1 + F2 ∈ H−r,v. (4.4.10)

To see that F is smooth we apply Λ2−r to (4.4.10) and obtain

Λ2−rH = Λ2−rK−rF + Λ2−r(y
2−r
2 Ẽ) = −∆−rF −

r

2
(1− r

2
)F + Λ2−r(y

2−r
2 Ẽ).

We see that F is a solution of an elliptic di�erential equation and so, by elliptic regularity,
F is smooth.

It remains to show that y
2−r
2 Ẽ is in the image of K−r. Since H is orthogonal to all

cuspidal Maass wave forms with eigenvalue r
2
(1− r

2
), we see that in the expansion

Ẽ =
N∑
i=1

(y
2−r
2 fi, H)Rfi

only the fi ∈ M2−r(Γ, v) that are orthogonal to S2−r(Γ, v) can occur. Hence Ẽ must be
orthogonal to S2−r(Γ, v) and has �nite Petersson norm. If 2−r ≥ 1 this implies Ẽ = 0. If
2− r < 0 we haveM2−r(Γ, v) = {0} by [Kno67], so in this case we also have Ẽ = 0. We
are left with the case 0 ≤ 2 − r < 1. In this case all modular forms inM2−r(Γ, v) have
�nite Petersson norm, so Ẽ can be any form in the orthogonal complement of S2−r(Γ, v).
We can appeal to [Roe66, Satz 11.2], to see that Ẽ is a linear combination of residues of
Eisenstein series at s = r

2
. Therefore there exist ai ∈ C with

y
2−r
2 Ẽ(z) =

m∗∑
i=1

aiRess= r
2
(Eqi

2−r,v(z, s)).

Note that we can restrict the sum on the right hand side to include only Eisenstein series
that have a pole at s = r

2
. On the other hand Eisenstein series of weight −r never have

a pole at s = r
2
by [Roe66, Satz 13.2], since −r < −1. Equation (4.4.5) now implies

Ress= r
2
(Eqi

2−r,v(z, s)) = lim
s→ r

2

(s− r

2
)Eqi

2−r,v(z, s) (4.4.11)

= lim
s→ r

2

K−rE
qi
−r,v(z, s) = K−rE

qi
−r,v(z,

r

2
). (4.4.12)

Setting E =
∑m∗

i=1 aiE
qi
−r,v(z,

r
2
) we can con�rm statement (ii).

(ii)⇒(i): Let H = K−rF +K−rE as described in (ii) and let f̃ be a cuspidal Maass wave
form with eigenvalue r

2
(1− r

2
). From the �rst part of the proof we know that K−rE has

the form y
2−r
2 Ẽ, where Ẽ ∈ M2−r(Γ, v) is orthogonal to S2−r(Γ, v). This implies that

y
2−r
2 Ẽ is orthogonal to f̃ with respect to the scalar product of H2−r,v, so

(H, f̃)R = (K−rF, f̃)R = (F,Λ2−rf̃)R.

Since f = y−
2−r
2 f̃ is in S2−r(Γ, v) and hence holomorphic we have

Λ2−rf̃ = Λ2−r(y
2−r
2 f) = (z − z)

∂f

∂z
= 0,

and therefore (H, f̃)R = 0.

70



Chapter 4: Eichler-cohomology for arbitrary real weights

Theorem 4.4.1 now follows from Proposition 4.4.11.

Proof of Theorem 4.4.1 and of Theorem 4.2.1 for 2− r 6= 1. Let φ ∈ Z1
r,v(Γ,P) and g

and G be constructed as in (4.4.7) and (4.4.8). In the case 2− r > 0 suppose additionally
that (f, φ) = 0 for all f ∈ S2−r(Γ, v). By Lemma 4.4.10 in the case 2−r > 0, and Remark
4.4.1 in the case 2−r ≤ 0, G satis�es condition (i) of Proposition 4.4.11. Hence there is a
smooth F ∈ H−r,v and a linear combination of Eisenstein series E(z) =

∑m∗

i=1 aiE
qi
−r,v(z,

r
2
),

with
G = K−rF +K−rE = K−r(F + E).

As stated in Proposition 4.4.11, E is only non-zero if 0 ≤ 2− r < 1, and in this case the
Eisenstein series Eqi

−r,v(·, r2) are smooth functions that grow at most polynomially at each
cusp of Γ. Since F is smooth and in H−r,v, F also grows at most polynomially at each
cusp and so the same is true for D = E + F . We have

G(z) = y
r+2
2
∂g

∂z
(z) = 2iy

∂D

∂z
− r

2
D = 2iy

r+2
2
∂

∂z
(y−

r
2D).

Dividing by y
r+2
2 and taking the complex conjugate of both sides we arrive at

∂g

∂z
(z) =

∂

∂z
(−2iy−

r
2D)(z). (4.4.13)

Since D is invariant under |R−r,v, D is invariant under |Rr,v. By Lemma 4.4.6, the function
D̃(z) = −2iy−

r
2D is invariant under |r,v. This invariance implies that g̃ = g − D̃ satis�es

g̃|r,vγ − g̃ = φ(γ) for all γ ∈ Γ. Since D̃ grows at most polynomially at the cusps of Γ,
g̃ satis�es the growth conditions for functions in Q̃. Proposition 4.4.3 now tells us that
g̃ ∈ Q. Note also that equation (4.4.13) implies that g̃ is holomorphic, so g̃ ∈ P . We
�nally conclude that φ is indeed a coboundary in Z1

r,v(Γ,P).

The proof above shows in particular that for 2 − r ≤ 0 every cocycle in Z1
r,v(Γ,P) is a

coboundary and hence H1
r,v(Γ, v) = {0}. This proves Theorem 4.2.1 for 2 − r ≤ 0, since

S2−r(Γ, v) is also {0} in this case.

Remark. The proof fails if 2 − r = 1, because Proposition 4.4.11 is not available in
that case. The only point where we need the assumption 2 − r 6= 1 in the proof of
that proposition, is when we show that F̃2 is in the image of K−r, in particular for the
construction of the functions F i

2 ∈ H−r,v in (4.4.9). The crucial consequence of Proposition
4.4.11 is that G is in the image of K−r. In the case 2− r = 1 we only obtain

G = K−1F +
m∗∑
i=1

1

4π

∫ ∞
−∞

(Eqi
1,v(·,

1

2
+ iρ), G)REqi

1,v(z,
1

2
+ iρ)dρ.

In the notation of the proof of Proposition 4.4.11 we have F = F1 and E = 0 since r = 1.
To prove Theorem 4.2.1 in this case, one would need to show that the second summand
above is in the image of K−1.
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4.5 Vector-valued modular forms

In this section we generalise Theorem 4.2.1 to vector-valued cusp forms. Let ρ : Γ→ U(n)
be a unitary representation of Γ on Cn and v a unitary multiplier system of weight r. Let
F be a function from H to Cn. The slash operator |ρ,v,r is de�ned by

F |r,v,ργ(z) = j(γ, z)−rv(γ)ρ(γ)−1F (γz).

De�nition 4.5.1. A function f : H → Cn is a modular form for Γ of weight r, represen-
tation ρ, and multiplier system v if the following conditions are satis�ed:

(i) f is holomorphic on H.

(ii) f(z) = f |r,v,ργ(z) for all γ ∈ Γ and z ∈ H.

(iii) If q is a cusp of Γ and A∞ = q, then for any ε > 0

j(A, z)−rf(Az) is bounded for y ≥ ε.

If f satis�es the additional condition

(iii') If q is a cusp of Γ and A∞ = q, then there exists an ε > 0 such that

j(A, z)−rf(Az) = Oy→∞(e−εy),

it is a cusp form. The set of modular forms or cusp forms of this kind is denoted by
Mr(Γ, v, ρ) and Sr(Γ, v, ρ) respectively.

Let Pn be the set of vector-valued functions f(z) = (f1(z), . . . , fn(z)) such that all fi are in
P . The slash operator |r,v,ρ de�nes a Γ-action on Pn and so we can de�ne the cohomology
groups H1

r,v,ρ(Γ,Pn) and H̃1
r,v,ρ(Γ,Pn). Just as in the 1-dimensional case, they turn out

to be the same. The proof of this fact relies on a generalisation of Corollary 4.1.2:

Proposition 4.5.1. Let U ∈ U(n), s ∈ R\{0} and g ∈ Pn. Then there exists an f ∈ Pn
such that

U∗f(z + s)− f(z) = g(z), ∀z ∈ H. (4.5.1)

Proof. Since U is diagonalisable, there exists a V ∈ U(n) and a diagonal matrix D ∈ U(n)
with

U = V ∗DV.

Multiplying equation (4.5.1) by V , we get

D∗V f(z + s)− V f(z) = V g(z). (4.5.2)

Let ε1, . . . , εn be the diagonal entries of D and G = V g = (G1, . . . , Gn) ∈ Pn. We can
use Corollary 4.1.2 to �nd solutions Fi ∈ P for

εiFi(z + s)− Fi(z) = Gi(z).

Then f = V −1(F1, . . . , Fn) is in Pn and satis�es (4.5.2).

This can be used to show

Theorem 4.5.2. Every cocycle in Z1
v,ρ(Γ,Pn) is parabolic.
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Chapter 4: Eichler-cohomology for arbitrary real weights

4.5.1 Petersson inner product

Let 2 − r > 0 and f, g be in S2−r(Γ, v, ρ
−1). The Petersson inner product of f and g is

de�ned by

(f, g) =

∫
F
〈f(z), g(z)〉 y−rdxdy,

where 〈(ai), (bi)〉 =
∑n

i=1 aibi is the usual scalar product on Cn. We will repeat the
constructions of Section 4.3.

Lemma 4.5.3. Let g be in S2−r(Γ, v, ρ
−1), then

φ∞g (z) : γ 7→ φ∞g,γ(z) =

[∫ ∞
γ−1∞

g(τ)(τ − z)−rdτ

]−
,

is a cocycle in Z1
v,ρ(Γ,Pn).

Again we can use Stokes' theorem to show

(f, g) = −C2−r

n∑
m=1

∫ Aim+1

Aim

〈
f(z), φ∞g,αim (z)

〉
dz.

Using this we de�ne a pairing between S2−r(Γ, v, ρ
−1) and H1

r,v,ρ(Γ,Pn) as follows. Let
f ∈ S2−r(Γ, ρ

−1, v) and [φ] ∈ H1
r,v(Γ,Pn) be represented by φ. Then

(f, [φ]) = (f, φ) = −C2−r

n∑
m=1

∫ Aim+1

Aim

〈
f(z), φ(αim)(z)

〉
dz,

is well-de�ned (independent of the representative φ), and furthermore we have the fol-
lowing theorem, analogous to Theorem 4.2.1.

Theorem 4.5.4. Let v and ρ be as above and 0 < 2− r 6= 1. The pairing de�ned above
is perfect, so the map f 7→ φ∞f induces an isomorphism

S2−r(Γ, v, ρ
−1) ∼= H1

r,v,ρ(Γ,Pn).

If 2− r ≤ 0 we have
S2−r(Γ, v, ρ

−1) ∼= H1
r,v,ρ(Γ,Pn) ∼= {0}.

Proof. All the constructions of Section 4.4 work in the vector-valued case. In particular
every statement we cited from [Roe66] is already formulated for vector-valued functions.
The fact that every vector-valued modular form of negative weight is 0 is also stated in
[Roe66] as a consequence of Satz 5.3; and this generalises the main theorem of [Kno67].
It is also shown that a vector-valued modular form of weight 0 is constant.
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