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Abstract

One topic of this thesis are products of two Eisenstein series. First we investigate the
subspaces of modular forms of level N that are generated by such products. We show
that if the weight k is greater than 2, for many levels, one can obtain the whole of M (N)
from Eisenstein series and products of two Eisenstein series. We also provide a result in
the case k = 2 and treat some spaces of modular forms of non-trivial nebentypus. We
then analyse the L-functions of products of Eisenstein series. We reinterpret a method
by Rogers—Zudilin and use it in two applications, the first concerning critical L-values
of a product of two Eisenstein series, and the second special values of derivatives of
L-functions.

The last part of this thesis deals with the theory of Eichler-cohomology for arbitrary real
weights, which was first developed by Knopp in 1974. We establish a new approach to
Knopp’s theory using techniques from the spectral theory of automorphic forms, reprove
Knopp’s main theorems, and also provide a vector-valued version of the theory.
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CHAPTER 1: INTRODUCTION

Let My(N) be the space of weight & modular forms for the congruence group

(V) ={y= (4 §) esta@by = (5 1) (mod M}

These are holomorphic functions on the upper half plane H that satisfy

az+b
cz+d

) = (cz +d)*f(z), for all (g 3) e I'h(N)

I

for all z € H. In addition they are required to be holomorphic at each rational number, a
condition that we explain in A modular form that vanishes at each rational number
is called a cusp form and the space of cusp forms is denoted by Si(IN). The space M (N)
splits into a direct sum

Mi(N) = Si(N) @ E(N),
where &(N) is the Eisenstein subspace, generated by Eisenstein series.

To each modular form f we can associate the L-function L(f, s), a meromorphic function
in s. While cusp forms and their L-functions are the subject of many conjectures and
open problems in number theory, the Eisenstein subspace is very well understood. The
Eisenstein series that form its basis have explicit and rather simple Fourier expansions
and their L-functions come from the Riemann zeta function or Dirichlet L-functions.

A central topic of this thesis are products of two Eisenstein series. A product of Eisenstein
series is, in general, not an element of &.(N). Hence we can generate cusp forms by taking
linear combinations of products of Eisenstein series. In Chapter 2| we study the space of
functions that is generated by linear combinations of products of two Eisenstein series and
show that in many cases this space equals the whole of My(N). This leads to the idea
that one can study L-functions of cusp forms by analysing the L-functions of products
of Eisenstein series. In the next chapter, Chapter 3| we derive relations between special
values of the L-functions of different products of Eisenstein series and also a formula
for the special value of a derivative of the L-function of an Eisenstein series in terms of
L-values of products.

A classical example of a representation of a cusp form as a linear combination of products
of Eisenstein series is the discriminant modular form A which can be defined by

_ E,Es— E}
1728

where, for even k, Fy =1 — g—i > ok—1(n)q"™ is the normalised Eisenstein series of weight
k. A classical result in the theory of modular forms is that every modular form of even
weight & for the group SLo(Z) is a linear combination of product of the Eisenstein series
E, and Eg. Allowing all Eisenstein series as factors it suffices to look at products of at
most two of them. The following theorem follows directly from results by Kohnen—Zagier
in [KZ84].

Theorem 1.0.1. Let k > 4 be an even integer and Q(1) be the space of modular forms
generated by the products EyEy._; for evenl € {4...k —4}. Then

M(1) = Qp(1) + & (D).
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The main theorem in Chapter [2]is a generalisation of this theorem to modular forms with
respect to more general congruence subgroups. The results in this chapter were obtained
in collaboration with M. Dickson and will be included in a joint paper [DN15].

Before we state it we define the Eisenstein series that generate & (N). They are given by
the Fourier expansions

EfY(z) = af" +2) o1 155(n)g" € MM, ¢3b),

n>1

where ¢ = €*™*, ¢ and ¢ are primitive characters of level My, M, with MM, = M | N,
and
Ly,1-1) Ni=1,
a’? = { L(s,0) Ny=1and =1,
0 else.

We require not only the functions Ef ¥ but also their image under the operators By for
d € N, which act on modular forms of weight [ by

fI1Ba(z) = d2 f(dz).

The main theorem of Chapter [2| shows that products of such Eisenstein series generate
M (N) in many cases.

Theorem 1.0.2. Let N = N'p™ where N’ is squarefree or twice a squarefree number and
p is prime. Let Qr(N) be the subspace of My(N) generated by the products

E{*|By,a - E)| Biya

for 1 <1 < k —1 and all pairs of primitive characters ¢, of modulus My, My and
di,dy,d € Zsy such that ged(dy My, daMs) =1 and dyMydaMad | N. We exclude the case
o=v=1andl =2 orl=Fk—2. Then for even k > 4

M (N) = Qi(N) + E(N).

The case of weight 2 is different: One sees immediately from the Rankin-Selberg method
that products of two Eisenstein series are orthogonal to every newform f with vanishing
central L-value, i.e., L(f, 1) = 0. Accordingly we define the space ST=°(N) to be gen-
erated by newforms and lifts of newforms with non-zero central L-value. We obtain the
analogue of Theorem subject to this constraint:

Theorem 1.0.3. Let N and Q2(N) be as in Theorem[1.0.3 Then

S;UN) + E(N) = Qo(N) + E(N).

We also prove this theorem for modular forms of prime level and non-trivial nebentypus.

One of the main ingredients in the proofs of Theorems [1.0.2| and [1.0.3| is a vanishing
result that is of independent interest. To state it, let us define twists of modular forms

3
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by characters first: if « is a Dirichlet character modulo M and f = a,q¢™ is a modular
form for the group I'o(V), then f, = > a(n)a,q™, the twist of f by «, is again a modular
form of the same weight as f and level dividing NM?2. Twisting preserves cusp forms
but twisting a newform does not necessarily produce a newform again. Our vanishing
theorem follows from the theory of modular symbols and results of Atkin and Li [ALTS)|
on the action of Atkin-Lehner operators on twists of newforms. For detailed definitions
of the new subspace SP®¥(N) and Atkin-Lehner operators see

Theorem 1.0.4. Let N be as in Theorem and f = Y a,q" € S(N) be an
eigenfunction of all Atkin—Lehner operators. Suppose that

L(fa;1) =0

for 1 <1 <k—1 and all primitive characters o modulo M|N such that a(—1) = (—1)".
Then f = 0.

Before we describe possible applications of Theorems [1.0.2{ and [1.0.3| and give a review of
related results in the literature, we give several examples. The examples were computed
with the Sage Mathematics Software [Sage] (for more of them see §2.7):

1. N =1,k = 12: The most well-known example is of course the discriminant modular
form, which, in our normalisation, becomes
~ 50

A= EE;JE;J -

147

T(Eé e,

2. N =11,k = 2: Let ¢ be the character modulo 11 that maps 2 to (;o and v the
character that maps 2 to (j,. Let f be the only newform of level 11. Then

1 ‘ 1 3 1, . 9 7
f =2 (=2G +2¢ = PEIEN? + £ (2C — 2 — ) BV EN

3. N = 32,k = 2: Let x4 be the primitive character modulo 4 and « the primitive
character modulo 32 that maps 31 to 1 and 5 to (5. Let f be the only newform of
level 32. Then

1 o a 1 o2 a2
f= g(Cg —(+ (g — D) EPMOEPAT 4 Z(Cg + Q)BT BYNT By,

A representation of a newform f as a linear combination of products of Eisenstein series
has several applications. Of course we can tell, directly from Theorem [1.0.3] that the
newforms in examples [2] and [3] have non-vanishing central L-value without the need of
calculating L(f,1).

Also, as remarked in [Rauld|, one can use an expression for a modular form as a sum
of products of Eisenstein series to compute Fourier expansions at every cusp. This is
particularly simple in our case: using results of [Wei77] we know the expansion of an
Eisenstein series at any cusp of I'o(N), so given a newform of level N = N'p™ as above,
one can provide an algorithm for calculating the expansion of a newform of S(N) for

4
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k > 4 (resp. SS=O(N) if k = 2) at any cusp of Io(N). When N = N’ is squarefree one
can obtain the expansions at other cusps more directly from the expansion at infinity by
use of Atkin-Lehner operators (c.f. [Asa76]), but the Fourier expansions at other cusps
are much more mysterious and less accessible when the level is not squarefree.

Similarly, [Wei77| also describes the action of the Atkin-Lehner operators on Eisenstein
series, so once one has an explicit representation of a newform f as a linear combina-
tion of products of Eisenstein series it is straightforward to compute the Atkin-Lehner
eigenvalues and the root number of f.

The result in Chapter [2| generalise previous results by Kohnen-Imamoglu [IK05|, where
the case N = 2 is studied, and Kohnen-Martin [KMO08], where Theorems [1.0.2 and [1.0.3|
are proved for odd prime levels.

Raum [Rauld] proves a different, rather general result for vector-valued modular forms:
Let k& > 12 be an integer, let p be a representation of SLo(Z) on a complex vector
space V' such that ker(p) contains a congruence subgroup, and define My (p) to be the
space of V-valued functions transforming as modular forms for the automorphy factor
v+ (cz+d)*p(y~1). Then

Mi(p) = Ek(p) +spang,,, qp. —p (T Bl @ Tar Egy)

where 4 < | < k — 4, py is the permutation representation on I'g(M)\ SLy(Z), the Ej
are corresponding vector-valued Eisenstein series, and the T, are certain natural vector-
valued Hecke operators. Apart from the inclusion of low weights, our results differ from
those of [Rauld] since our generating set does not involve Hecke operators.

In [BGO1] and [BGO3| Borisov-Gunnells use the theory of toric varieties to show that
certain spaces of toric modular forms are generated by products of toric Eisenstein series.
One of their results is that for any N and k > 2 the space of modular forms of weight %
with respect to the congruence group

V) =y = (¢ g) eSL@)y=(§ 1) (mod N)}

can be spanned by products of toric Eisenstein series, while for £ = 2 they only obtain a
subspace of My(I';(N)).

Since the main theorems of [BGOI] and [BGO3| apply in greater generality than Theorem
and Theorem [1.0.3] it is important to point out some differences between the two
results. The generating sets for My(N) that we give for k& > 2 have size O(kN'T€) for any
€ > 0, while the generating sets for My (T';(NN)) obtained in [BG03] have size O(kN?).
As we mention in the applications below, an advantage of working with the well-studied
Eisenstein series Ef ¥ is that their Fourier expansions at every cusp of Iy(N) are known
and also the action of the Atkin—Lehner operators on them. Lastly the proofs of our
Theorems are shorter than the proofs of the main theorems of [BG0I| and [BG03| and
do not make use of the theory of toric varieties.

In Chapter |3| we discuss another application of representations of f as above, that was
recently found by Rogers and Zudilin [RZ12] in connection with Boyd’s conjectures and
special values of the L-function of f. Before we describe the Rogers—Zudilin method we
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give a brief overview of Boyd’s beautiful conjectures. The logarithmic Mahler measure of
a Laurent polynomial P(t,...,t,) € C[t{',...,t*] is defined by

1 1
m(P) = / / log|P(62”91,...7627“9")|d91...d9n.
0 0

It was first noticed by Deninger [Den97| that often m(P) can be interpreted as a Deligne
period of a mixed motive. For P = X?Y +Y2X + XY + X +Y the expected value of this
Deligne period, according to the Bloch—Beilinson conjectures, is a rational multiple of
L'(E,0), where E is the elliptic curve that is the projective closure of the zero locus of P.
Motivated by Deninger’s findings, Boyd performed computer calculations that indicated
that indeed

m(P) = L'(E,0), (1.0.1)

and that similar formulas hold for many more elliptic curves. He went on to produce a big
list of conjectural relations between Mahler measures and special values of L-functions
of elliptic curves or their derivatives in [Boy98]. In 2012 Rogers—Zudilin |RZ12] gave a
proof of some of these identities, e.g.,

m(X?Y + Y2X +2XY + X +Y) = L/(Ey,0), (1.0.2)

where Fs, is the elliptic curve of conductor 24; the projective closure of the polynomial
on the left. Let f € S3(24) be the unique newform with the same L-function as Fyy. By
the functional equation of L(f,s) the right hand side in (1.0.2)) can be written as

L'(Es4,0) = %L(EM,Q) =—-24 /OO f(2)zdz. (1.0.3)
0

Rogers—Zudilin start by writing f as a linear combination of products of two weight 1
Eisenstein series. They then swap integration and summation over the Fourier coefficients
in and apply a simple but ingenious change of variables to the integrals in the sum.
Swapping summation and integration back, becomes an integral over elementary
functions. Finally they use properties of hypergeometric functions to finish the proof of
(11.0.2).

Using the same method, Rogers—Zudilin proved ((1.0.1)) in 2014, and many other cases of
Boyd’s conjectures were settled similarly in [Bru| and [Zud14].

In Chapter |3| we reinterpret the Rogers—Zudilin method in terms of a correspondence be-
tween modular forms. Most of the work presented in that paper was done in collaboration
with N. Diamantis and F. Stromberg and appeared in a joint article [DNSI5].

The correspondence associates to a pair of functions F, F5 and s € C a new function
O (F, Fy) which, when F; and Fy are connected to modular forms, satisfies properties
related to modularity for special values of s. Our main theorem, Theorem [3.2.2] connects
the Mellin transform of the product F}F5 with the Mellin transform of functions associ-
ated to F; and F3 via our correspondence. This is achieved using a simple “duality" rela-
tion (Lemma , which reformulates the key change of variables in Rogers—Zudilin’s
method. The content of the main theorem can be summarised as:
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Theorem 1.0.5. Let Fy and Fy be functions on the upper half-plane given by

Fl(Z) = Z al(ml)bl(nl)e%iml”lz,

mi,n;>1

Fy(z)= Y as(ma)by(ng)e”™ ™%,

ma,n2>1
where we assume that the Fourier coefficients grow at most polynomially. For j = 1,2 we

set
f](Z) = Z bj (nj)62mmjnj2’ and g](Z) = Z aj(mj)€2m'mjnjz_

mj,n;>1 mj,m;>1

Then we have the following relation between Mellin transforms

M(Fy - FoloWh)(s) = M(@sy1(f1, f2) - (Psi1(g2,91)|[0Wn))(s)  for all s € C,

where O4(f, g) is the function associated to f and g as described in Section .

In the case where F} and F; are Eisenstein series, the functions that appear in Theorem
1.0.5) ®s41(f1, f2) and ®_¢11(g2, g1), are closely connected to Eisenstein series in many
cases. We make use of this fact in two applications. They are stated in terms of completed
L-functions which, for a modular form f of level N, are defined as

VN
A(fa8> :F(S) (2_ L(f,S)
T
The first one can be sketched in the following form:

Theorem 1.0.6 (Sketch of Theorem [3.4.2)). If E is in a certain subspace of the weight 2
Fisenstein space on I'1(N), then

N(E,1)=A(E,1)+C

for an explicitly determined constant C and an explicit element E in the weight 1 Eisen-
stein space.

The other application gives a duality between L-values of products of Eisenstein series.

Theorem 1.0.7 (Special case of Theorem B.3.1)). Let x1, x2 and i1, be pairs of non-
trivial primaitive Dirichlet characters modulo My, My and Ny, No, respectively. Let k > 1,
[ > 2 such that (x1 - x2)(—1) = (=1)! and (Y1 - ¥3)(=1) = (=1)k. Then for an integer
je{l,....k+1—1} such that (x1 -¥1)(—1) = (=1)7 we have

A(EX - BV By, §) = C - A(EX - 2P Byying, ) (1.0.4)

where C' is an explicit algebraic number.
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While Theorems [1.0.6] and [1.0.7] have their independent interest, Theorem was de-
rived with applications to L-functions of newforms in mind. The Rogers—Zudilin method
has been successful in proving statements about L-values of newforms of weight 2, like
Boyd’s conjectures, or the fact that these L-values should be periods in the sense of
Kontsevich—Zagier [KZ01] (see [Zud13]). One future goal of the author of this thesis will
be to apply Theorem to the study of L-values of newforms of higher weight.

One crucial fact about L-functions that is used in Chapter [2]is Theorem [1.0.4} if enough
L-values associated to a modular form f vanish, then so does f. This follows from one of
the main theorems in the theory of modular symbols, which is closely connected to the
Eichler—Shimura isomorphism. This isomorphism was first discovered by Eichler [Eic57]
and there are many different ways to state it. We choose a version described in [Ant92],
which is close to Shimura’s formulation in [Shi59|. Let I' = I'y(N) and k& > 2 be an even
integer. To f € S(I") and v € SLy(Z) we associate the polynomial

07(X) = /Oo f(r)(r — X)F2dr. (1.0.5)

—loo

Here the paths of integration are contained in the upper half plane (except for the end-
points). Let R[X];_o and C[X];_2 be the space of polynomials of degree < k — 2 with
real and complex coefficients respectively. The group I' acts on each of these spaces via
the slash action |o_j and it is easy to show that

or: v opy(X)
is a cocycle with values in C[X|;_o, i.e., it satisfies
010(X) = 075(X) |20 + 075(X), V7,0 € T.

It is in fact a parabolic cocycle and the map f +— o induces a linear map from S (T")
to the parabolic cohomology group H'(I', C[X];_2) € HY(T, C[X]s_s) (for definitions see
§4.1.1). Denoting by Re(oy,(X)) the polynomial that has as coefficients the real parts
of the coefficients of o, (X), we can state the Eichler-Shimura isomorphism as follows.

Theorem 1.0.8 (Eichler—Shimura isomorphism). For all k > 2 we have an isomorphism
Sp(T) = H'(D, R[X i)
given by
f = [Re(ay)],

where Re(oy) is the cocycle that maps v to Re(os~(X)) and [Re(oy)] is its associated
cohomology class.

Theorem has many applications in the theory of modular forms and the study of
critical values of their L-functions, e.g., in algebraicity results like Manin’s period theorem
[Man73]. As mentioned before it is also an essential ingredient in the theory of modular
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symbols. Indeed the maps {; that we use in §2.2 are closely connected to oy by the
relation

£ (X —Y)*2,g)) = / " Flag(n)(r — 12 = 000 (1),

where g € SLy(Z) and 0 = ( ).

The subject of Chapter [] is an analogue of Theorem in the case of arbitrary real
weight. Knopp first formulated it in 1974 [Kno74]|. Let f € Si(I',v), where v is a
multiplier system of weight k& for I'. The first problem one encounters when allowing
arbitrary real weights k € R, is that the factor (7 — X)*2 in the integrand of
is no longer a polynomial in X. Viewing it as a function in X = z it is not even well-
defined for z in the upper half plane. Knopp solved this problem by conjugating z and
conjugating the whole integral in again, so that

[e.e] -

oF o = | [ =2

—1loo

is, once we choose a branch for the exponentiation by k — 2, a well-defined holomorphic
function on the upper half plane. In fact ¢% is an element of P, a space of holomorphic
functions with polynomial growth conditions. Viewing P as a I'-module under the |o_; 3
action, ¢ is a cocycle of I' with values in P. With this I-action on P we denote the
first cohomology group with coeflicients in P by H;_W(F, P). With the larger coefficient
module P all cocycles are parabolic, i.e.,

oy (0, P) = Hy (I, P).

This is the content of Theorem 1.3l

Knopp conjectured that the map f — ¢ is an isomorphism from S (T, v) to F[;U(F, P)
but was only able to prove this for the cases kK > 2 and £ < 0. In the case k > 2 he relied
heavily on previous work by Niebur |[Nie74| on automorphic integrals. Later, in 2000, a
partial result on the missing cases in Knopp’s conjecture was obtained by Wang [Wan(0)]
and it was resolved in 2010 by Knopp and Mawi [KM10], using Petersson’s principal part
theorem and generalised Poincaré series.

Theorem 1.0.9. For all k € R we have an isomorphism

o

Sk(ra U) — H%—k,ﬁ(r7 7))

given by
[ o7l

A recent preprint [BCDI14] by Bruggeman, Choie and Diamantis gives a similar isomor-
phism for a much wider class of automorphic forms. They also provide several motivations
to study cocycles of real weight. One of them is a formula of Goldfeld [Gol95] that sug-
gests a connection between special values of derivatives of L-functions and cocycles. To
be precise, let f =" ., a,¢" be a Hecke cusp form of weight 2 for the group I'¢(V), and

assume that f is invariant under the Fricke involution Wy = (5, 3'). The L-function of
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fs L(f,s), is defined as the analytic continuation to C of the Dirichlet series > a,n~".
In [BCD14} §9.4] it is shown that Goldfeld’s formula leads to the following expression:

—mirl'(f,1) + Or—>0(r2) = ¢y,(0)(0),

where f,.(2) = f(2)(n(2)n(Nz))" is a cusp form of weight 2 + 7.

In Chapter 4] we present a new proof of Theorem for positive weights k # 1 that
views the isomorphism in Knopp and Mawi’s theorem as a duality. The results in that
chapter have been accepted for publication in the Ramanujan Journal [Neul6]. The key
construction is a pairing between Si(I',v) and Hj_, (", P) which we introduce in Section
when k£ > 0. In Section we show that this pairing is perfect if k # 1, which implies
Theorem for the weights we consider. The proof also implies Theorem for the
weights £ < 0, and hence for all real weights except k = 1.

One of the advantages of the new proof is that once all the constructions are in place the
problem can be solved with standard techniques from the spectral theory of automorphic
forms. With the new pairing some previously difficult facts become remarkably easy to
derive. For example one can see immediately that f — [¢%°] is injective from the fact
that (f, [¢7°]) = (f, f), where the first pairing is the one we construct and the latter is the
Petersson inner product. Another advantage is, that the proof can easily be generalised
to the case of vector-valued cusp forms. We sketch this generalisation in the last section
of this chapter.

10
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1.1 Preliminaries

1.1.1 Modular forms

Let H = {x +iy|y > 0} be the upper half plane and H = H U R* U ico be its closure in
P!(C). The group GLj (R) of real 2 x 2 matrices with positive determinant acts on H by

a by_ _az+b
(C d) T etd
Since scalar matrices act trivially, this action induces an action of PSLy(R) = SLo(R) /{#£I},
where SLy(R) < GLj (R) is the subgroup of matrices with determinant 1.

Let k € Z be an integer. GLj (R) also acts on functions on the upper half plane H by
the weight k slash action |

(det y)"2

0.2 f(v2),

Fliv(z) =

where j((25),2) =cz +d.

We denote the modular group SLy(Z) by I'(1) and note that it is generated by the

translation T = (3 1) and S = (% {). We introduce the following important subgroups

of I'(1):

r(N):{yz(g g) |75(5 (1)) (mod N)} (1.1.1)
rl(N):{»y:(g 3) w;(}) *1‘) (mod N)} (1.1.2)
o) ={7= (& D)= (5 1) (mod N)) (1.1.3)

The group I'(IV) is normal in I'(1) and called the principal congruence group of level N.
A congruence (sub-)group of level N is any subgroup of I'(1) that contains T'(N), e.g.,
Fo(N) and I'y (V). Let I' < SLy(Z) be a congruence subgroup.

Definition 1.1.1. Let k£ be an integer. A holomorphic function f : H — C is called
weakly modular of weight k with respect to I if

Since there exists an N such that (3 %") € T, a weakly modular function f with respect
to I must be invariant under translation by N, i.e., f(z + N) = f(z) for all z € H. This
means that for Im z > 0 we have a Fourier expansion of the form

f(z) = Z ang, where qy = e~ 2. (1.1.4)
n>ng

We say that f is holomorphic at ico if in (1.1.4) a,, = 0 for n < 0. This is equivalent to
the existence of the limit : lim f(2). If f is weakly modular of weight k£ with respect
m z—0o0

to a congruence subgroup I', then f|.« is weakly modular with respect to a™'T'a for any
a € SLy(Z). By exercise 1.2.5 in [DS10] o 'T'« is again a congruence subgroup so f|za
has a Fourier-expansion of the form (1.1.4]) (for a possibly different choice of N) and the
following definition is justified.

11



CHAPTER 1: INTRODUCTION

Definition 1.1.2. A function f : H — C is a modular form of weight k with respect to
rif

1. fis weakly modular of weight k& with respect to I'.

2. f|ra is holomorphic at ico for all a € SLy(Z).

If in addition ay = 0 in the Fourier expansion at ico of f|ra for all a € SLy(Z), then f
is a cusp form. We denote the space of modular forms of weight k£ with respect to I' by
M (I'). The space of cusp forms is denoted by Si(I'). If f is a weight & modular form
then we often write f|y instead of f|,y for any v € GL3 (R).

One of the key facts about modular forms is that for any congruence group I' the space
M, (I') is finite dimensional. This implies that in order to determine a modular form of a
given weight and congruence group one only needs to know a finite number of its Fourier
coefficients.

Let x be a Dirichlet character modulo N. It can be extended to a character of I'y(/V) by
defining x((2¢ %)) = x(d). We write My(N, x) (or My(N), if x is principal) for the space
of weight £ modular forms for I'; (V) that satisfy the transformation law

fley = x(0)f, Yy € To(N)

and Si(N, x) for the subspace of cusp forms in My (N, x). A modular form in Mg(N, x)
is said to have nebentypus x. Then we have

M(T1(N)) = &M(N, x),

where the sum is over all Dirichlet characters modulo N.

We write 1y for the principal character modulo N, which satisfies 15(n) = 1 for (n, N) =
1, and 1x(n) = 0 otherwise. The trivial character is denoted by 1; it satisfies 1(n) = 1
for all n. Any character y modulo N =[] (M) splits into a product of characters
modulo the prime powers dividing N:

X = H Xps

pIN
p prime

Up
p prime p

where Y, is a character modulo p»M) for each p. If S is a set of prime divisors of N,
then we write xs = [[ g X, for the S-part of x.

1.1.2 Petersson inner product

Definition 1.1.3. A fundamental domain F for a subgroup of SLy(R) is a connected
open subset of H that satisfies the following properties:

1. For every z € H there exists v € I' such that vz € F, where F denotes the
topological closure of F.

12



CHAPTER 1: INTRODUCTION

2. Distinct points of F are not in the same I'-orbit.

Definition 1.1.4. Let ' be a congruence subgroup and F a fundamental domain for I'.
For f,g € My(T") such that either f or g is a cusp form we define the Petersson inner
product

(f9) = /f kdxdy (1.1.5)

Since the hyperbolic measure p = d””dy and the function f(2)g(z)y"* are both T-invariant,

the integral in - ) does not depend on a choice of a fundamental domain F.

1.1.3 Hecke operators and Atkin—Lehner theory

In this section we introduce Hecke operators on My (I';(/N)) and recall some facts from
Atkin-Lehner theory. For more details and proofs we refer the reader to the original
article by Atkin and Lehner [AL70] or [DS10].

Definition 1.1.5. Let f € M (I';(N)) and p be a prime. We define the Hecke operators
T, and U, for primes p,q with p{ N and ¢ | N on M (I'1(NV)) by
p—1 1 i
ey = > 11 (5 ) PN, (1.16)
=0

p—1 )
f|kTp:Zf|k <(1) %) + flk (%g Z) p1 N where mp —nN = 1. (1.1.7)
=0

Let x be a Dirichlet character modulo N. Again, we will often omit the weight &k in the
notation if the weight of f is clear. The action of the Hecke operators on a modular form
=Y a,q" in Mg(N,x) is given by

ATy = (an, + x(0)P* ansp)g™, (1.1.8)
n>0

f|Uq = Zanpqn» (119)
n>0

where we set a,,, = 0 if n/p ¢ Z.

For r > 1 we define the Hecke operator 7, inductively by setting 7' to be the identity

operator and
Ty = T)Tyr-1 — p" X (p) T2

and extend the U, multiplicatively. Then we can define a Hecke operator 7,, for any

n= pr pvr H aN N by
H T pop() H U gra(m -

alN

13
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Hecke operators map cusp forms to cusp forms and the operators 7, for pt N commute.
Their adjoints on Si(N, x) with respect to the Petersson inner product are given by

and hence they are normal, i.e., they commute with their adjoints. Thus M(N, x) has
an orthonormal basis of eigenvectors of all 7;, where (n, N) = 1.

The Hecke operators U, for ¢ | N behave very differently. They are not normal operators
in general so one cannot find always find an orthonormal basis of eigenvectors of all Hecke
operators T,,.

A solution to this problem was given by Atkin—Lehner [AL70] with what is now known
as Atkin—Lehner theory. They introduced the old subspace of Si(I'1(IN)) defined by

STiN)™ = | ) SuTi(M))|Ba,

M,d: Md|N

where By is the operator
FeBa(z) = fli (§ ) (2) = a2 (az).

The new subspace Si(I'1(N))™*" is defined as the orthogonal complement of Sy, (' (N))4,
and SP4(N, x) and SP°V(N, x) are the intersections of the old and new subspace with
Sk(N, x). The Hecke operators act on the old and new subspaces and one of the main
results of Atkin—Lehner was that on Sp*(N, x) all Hecke operators are normal and com-
mute with each other. There is therefore an orthogonal basis of common eigenfunctions
of all Hecke operators on Sp*V(N, x). One can show that if f = > a,¢™ is such an eigen-
function, then a; # 0 and hence we can normalise the basis by setting a; = 1 for all
eigenfunctions. Such a modular form is called a newform and they play an important
role in the theory of modular forms. Newforms satisfy the property

FIT, = anf, ¥n € N,

where a,, is the n-th Fourier coefficient. By using the recursive definition of the Hecke
operators we see that one can obtain all Fourier coefficients of a newform from the Fourier
coefficients at primes.

Theorem 1.1.1. Let N*“(N, x) be the set of newforms of SP"(N, x). Then the set

U U MwlB,

M:cond(x)|M|N d: Md|N

is a basis of Sk(N, x).

For a set of prime divisors S of N and a divisor M of N, we write Mg for the S-part of
M, i.e. Hpesp”P(M). By S we denote the complement of S in the set of prime divisors of
N.

14
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Definition 1.1.6. For a set of prime divisors S of N we define the Atkin—Lehner operator

N _ (Nsx y
3= (N7 W) €M)

where y =1 (mod Ng), x =1 (mod Ng) and det W{ = Ng.

In the case when S is the set of all primes dividing N we simply write Wy for W{ =

(¥ o'). This Atkin-Lehner operator is often called the Fricke-involution and it acts on

functions on the upper half plane by
1
Ps(e) = (VR (<572)-

The following properties of W are well-known (see for example [AL78]):
Proposition 1.1.2. (i) Let S be a set of prime divisors of N. If

_ (Ngz' o
M_<NZ/ Ns’w,>

is any matriz with o'y, 2/, w' € Z of determinant Ng then
FIM =Xs(y )Xs(2) fIWS'. (1.1.10)
In particular, WL does not depend on the choice of z,y, z, w.
(11) Let f € My(N,x). Then
FIWE € Mi(N,Xsx3),
and cusp forms are preserved. Furthermore

FIWEIWE = xs(—=1)xs(Ns) f. (1.1.11)

(iii) The adjoint of W& on My(N,x) with respect to the Petersson inner product is
given by
W5 = xs(=Dxs(Ns) W'

(iv) Let p be a prime divisor of N such that (p,S) =1. Then

FIUIWSE" = xs(p) FIWS'|Up-

If f € My(N) is a newform, then it is automatically an eigenfunction of all Atkin—Lehner
operators. We denote the W& -eigenvalue of f by Ag(f). If f is a newform in My (N, ),
then W& does not necessarily act on M(N, ). However f|WZ will be a scalar multiple
of a newform g € My(N,Xgxg). The WL pseudo-eigenvalue of f is defined to be the
constant A\g(f) satisfying

FlWs = As(f)g.

Let g be a prime divisor of N. On the new subspace there is a close connection between
the Hecke operator U, and the Atkin-Lehner operator WqN . The following proposition is
a combination of results from [AL7S|:

15
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Proposition 1.1.3. Let x be a Dirichlet character modulo N and suppose x4 s principal.
Let f be a newform of Si,(N, x) with q-th Fourier coefficient a, and Wév—eigenvalue A (f)-

e If¢* | N then a, = 0.
o If >t N then \,(f) = —ql_gaq and hence we have the equality of operators

Wl = —q_%“Uq.

q

on SPU(N, x)-

1.1.4 Twisting

The third class of operators that play a major role for us are various twisting operators.
Let f € Sp(N,x) with Fourier expansion f(z) = > ., a,e(nz), let a be a Dirichlet
character of modulo M, and define

fa(z) = Zana(n)e(nz).
n>1
With «, f as above, define also
Salf) = > atafl (5 M)
a mod M

Note that if « is primitive modulo M we have

Sa(f) = G(@) fa, (1.1.12)

where

is the Gauss sum of @.
For any z € # we can view the function F : n/ — (f[x (} "/N")) (2) as a function from

(Z/N'Z)* to C*. The Fourier coefficient at a given multiplicative character ov modulo

N’ is
Flay= Y a@F®)= Y al@F®)=_S.(f)(z),

n'€(Z/N'Z)* n’ mod N’

so by Fourier inversion

flw (6 ”//1N/> = agd:]w 5((;,>>Sa(f), (1.1.13)

the sum being over all Dirichlet characters modulo N'.

Finally we state some standard facts about the commutation relations for the operators
we have defined. These can be proved by direct computation (see also [ALTS8] §3).
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Proposition 1.1.4. Let N € Zsq, let f € My(N,x), let a be a Dirichlet character
modulo N' | N. Then
So(f) € Mp(NN', xa?).

Let q be any divisor of N that is coprime to N', then
Sa(NNUg = a(q)Salf|Uy)-

Similarly, if S is a set of prime divisors of N such that Ng and N’ are coprime, then

Sa(F)IWEN = a(9)Sa(fIWE).

1.1.5 Eisenstein series

The orthogonal complement of Si(I"), the Fisenstein subspace ('), is well understood
and we give a brief overview of the theory for I' = I';(/N); a detailed discussion can be
found in [Miy06] or [CS15].

Let ¢ and v be two Dirichlet characters modulo N; and N, such that Ny N, = N and let
19 be the primitive character that induces 1. Define the Eisenstein series

(e, = K= UINE A
B (2, 8) = (— 27r2)kG(¢0) Z (Nicz + d)F|Nyez + df*s’

d)eZ?\{(0,0)}

which converges uniformly and absolutely for k£ + 2Re(s) > 2 + ¢, for any € > 0. In the
region of absolute convergence it satisfies the transformation law

Ep(82,) = ¢(8)1(8)4(8, 2)* (6, 2)|* EY¥ (2, 5) (1.1.14)

for § € To(N). Now set EPY(z) = E{¥(2,0). This is possible because the EJ"(z, s)
can be analytically continued in the s-variable. Moreover, unless kK = 2 and ¢ and v are
principal, the value at s = 0 is a holomorphic function of z, so (1.1.14)) along with some
growth estimates shows that in fact E,f’w € My(N, ).

If ¢ and v are primitive, the Fourier expansion of E,f’w can be deduced from Theorems
7.13, 7.2.12, and 7.2.13 of [Miy06]:

EPY(z) = af +220k Low(n)q" € My(M, ¢y)

n>1
where oj_1,6,4(n) =>4, é(n/d)y(d)d*! and

L, 1—k) Ny =1,
al? = { L(¢,0) Np=1land k=1,

0 else.
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The special case ¢ = 1 is particularly important in this section. In this case we define
the normalised Eisenstein series

2(—27i)*L(v, k + 25)G (1))
(k—1)!N

_ v()

YET o \To(N) ity 2k iy, 2))

E}*(2,5) = ErY(z,8)

(1.1.15)

Theorem 1.1.5. Let Ay, be the set of ({1, ¢}, t) such that ¢ and iy are primitive Dirich-
let characters modulo Ny and Ny such that (¢)(—1) = (=1)* and t is a positive integer
such that tNyNo|N. If k = 1 we require furthermore that ¢ is odd. If k # 2 the set

{EPY ({0, 0}, t) € Ay}

is a basis of E1(I'1(N)). If k = 2 the series B3 is no longer holomorphic. To replace
it we introduce Foy = Eytt —tEYY which is a holomorphic Eisenstein series of level t.
Let By o be the set of triples (¢,1,t) such that ¢ and i are primitive Dirichlet characters
modulo Ny and Ny with (p)(—1) =1, and t is a positive integer such that 1 < tN;Ny|N.
Then

{E3 (0, 6,1) € Bro} U{Ey™ —tEy Mt N}

forms a basis of E3(I'1(N)).

In [Wei77] the action of all Atkin-Lehner operators on E{" is derived:

Theorem 1.1.6 (Proposition 14 in [WeiTT|). Let ¢ and v be primitive Dirichlet charac-
ters (not both trivial if k = 2) of conductors Ny, Ny with ¢(—1)1(—1) = (=1)*, and S a
set of prime divisors of N = N1 N,.

k-1

N. D Betbe
ELU W = (f) 7(¢5)7(s) BT 0Y,
where for a character x modulo M
G(X) 1 271'1—

T(x) == Vi mnmomx

is the normalised Gauss sum of x.

1.1.6 L-functions

For a holomorphic function g we denote the Mellin transform of g by

My(s) := /Ooog(it)ts%.

For a modular form f =) a,q¢" € My(I';(N)) the L-series

L(f.s) =Y "

n>1

converges absolutely when Res > k“
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Definition 1.1.7. The completed L-function of f is defined as:

VN

A(f,s) :=T(s) <§> L(f,s) = N*2M(f — ag)(s). (1.1.16)

Let ag be the constant term of f and by the constant term of ¢ = f|Wy. By [Iwa97,
Theorem 7.3|, the function

ikbo

k—s

can be continued to an entire function on C. Furthermore we have the functional equation

A(f,s) =i*A(g, k — s).

If f € My(N,x) we also have functional equations for each twist of f by a character of
modulus coprime to N. If ¢ is a Dirichlet character of level M, then f, has level M?N.
Accordingly we define the completed L-function of f, as the meromorphic continuation
of

A(f,s)+%+

T(s)(M2N)*/?
(2m)°

A(ﬁb’ 3) =
We then have the functional equation

— T(¢)
A 5) = - i

L(fd)v 5)'

1.1.7 Modular symbols

We give a brief introduction to the theory of modular symbols for the group I';(N). For
details we refer the reader to [Mer94] or [Ste07, §8]. Let k& be an integer > 2, and let
ClX,Y]r_2 be the vector space of homogeneous polynomials of degree k& — 2. We define
a left SLo(Z)-action on this space by

(gP)(X,Y) = P(dX — bY, —cX +aY), if g = (g 3) .

Let M be the torsion-free abelian group generated by the symbols {«, 5}, where a, 3 €
P'(Q) = QU oo, with the relations

{o, 8} + {87} + {70} =0, Vo, 8,7 € PH(Q).

Set
M, = (C[Xa Y]k*Q & Ma

so My is a vector space over C, generated by elements of the form P ® {«, 5}, where
P € C[X,Y]r—2 and {«, 5} € M. This space has an SLy(Z)-action defined by

g(P®{a,B}) = gP ® {ga,gB}, for g€ SLy(Z),

where the action of SLy(Z) on P'(Q) comes from the action of SLy(Z) on H.
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We define the space of modular symbols of weight k for I'y(N), My (I'1(N)), as the quotient
vector space obtained from M, by imposing gz = z for all g € I'1(N) and x € M.

The space My (I'y(N)) is generated by the Manin symbols [P, g] = gP ® {¢0, goo}, where
P e C[X,Y]x_2 and g € SLy(Z). The action of SLy(Z) on M (I'1(N)) translates to

[P, glh = [P, gh]

and the Manin symbols satisfy the following defining relations: the symbol [P, g] depends
only on P and the coset I';(N)g, and

[P, g] + [P, g]o =0, (1.1.18)
[P, g] + [P, g]T + [P, g]T* = 0, (1.1.19)
[P, g] — [P.g]J =0, (1.1.20)

where 1 1 1
o=(1 o). =1 Z1), aas=(3" ).
Let B be the torsion free abelian group generated by the elements of P'(Q). We define
Bk = (C[Xa Y]k—2 & Ba

and an SLy(Z)-action by g(P ® o) = gP ® ga. As before we define the space of boundary
symbols of weight k for T'1(N), Bx(I'1(N)) as the quotient vector space obtained from
B, by imposing the relations gz = x for all ¢ € T'1(IN) and = € B;. There is a natural
boundary map from My (T';(N)) to Bx(I';(N)) defined by

b(P®{a,f}) = P®{a} - P {f}

and a modular symbol in the kernel of b is called cuspidal. The space of cuspidal modular
symbols is denoted by Si(I';(V)). We can now state one of the main theorems in the
theory of modular symbols.

Theorem 1.1.7 (Theorem 3 in [Mer94]). Define a pairing
(Sk(T'1(N)) @ Sp(T1(N))) x My(I'y(N)) — C
by
B g
((f1, f2), P{ov, B}) = / fi(2)P(z,1)dz + / f2(2) P(2,1)dz.
Then (-,-) is non-degenerate when restricted to

(Sk(F1(N)) © ST (N))) x S(T1(N)).
Let n = (' {). There is an involution on My (I';(N)) given on Manin symbols by

([P, g]) = =[P, ngn "],

where P(X,Y) = P(—=X,Y). Denoting by S;(I';(N))* and Sy(I';(N))~ the +1 and —1
eigenspaces of S (I';(N)) under ¢* we have
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Proposition 1.1.8 (Proposition 8 in [Mer94]). The pairing (-, -) is non-degenerate when
restricted to

Si(T1(N)) x Sp(T1(N)F, or Si(T1(N)) x SE(T'1(N))~.

By mapping a matrix g to its bottom row modulo N, the cosets of I';(N)\ SLy(Z) are in
bijection with the set

Ey = {(u,v) € (Z/NZ)? (u,v) has additive order N}.

We therefore write [P, (u,v)] = [P, g] for any g € SLo(Z) with bottom row congruent to
(u,v) modulo N. Define

Er(Jyu,v) == (f, [(XIY 27 (u,0)])) j €{0,...,k —2} and (u,v) € Ey.

A consequence of Theorem is that if the map &; is identically zero, then f vanishes.
Proposition [I.1.8] allows one to say more. We define

IYk=2-7 (u, v CIXIY R0 (v
f;ﬁz(j;U,U):<f7[XY v(? )];t [XY >(a >]>
_ €f<j; u, U) + (_1)j+1€f<j; —u, U)

5 .

It is a consequence of Proposition that f is determined by the map £ or ;. In
particular, if one of them vanishes, then so does f. This is the crucial fact about modular
symbols that we use in the proof of Theorem [2.2.2]

The pairing of Theorem and hence the map &y, is related to values of L-functions
associated to f. Indeed, taking g = (2 %) € SLy(Z) with (¢,v) = (u,v) mod N we have

1
i) = ot Lo g + 1), (1.1.21)
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CHAPTER 2: SPACES GENERATED BY PRODUCTS OF TWO EISENSTEIN SERIES

2.1 Outline

The aim of this chapter is to prove Theorem and Theorem Here we will give
a brief sketch of the proof of the first of these theorems, the other requires only minor
modifications. By an inductive argument it suffices to show that, for N = N'p" as in the
statement of Theorem [1.0.2]and k£ > 4, we have

S (N) = Qu(N),

where Qi (N) is the projection of Qx(NN) to the new space. In we show that this
projection is equal to the projection of Py(IV), the space generated by the products

(BB W™ (2.1.1)

where « is primitive of level M | N, ay its extension to a character modulo N, and the
WM vary over all the partial Atkin-Lehner operators. So the proof reduces to showing
that

Sp™(N) = Py(N). (2.1.2)
Let g € Sp®V be orthogonal to P, (NN). We need to show that this implies g = 0. If g is a
newform, a standard calculation using the Rankin—Selberg method shows that for any «
as in the definition of P, (N) all the critical L-values L(go|W&™, j) must vanish (except
for some cases when @ = 1 and j = 2, k—2, when technical difficulties coming from weight
two Eisenstein series enter). At this point one can use a calculation in modular symbols
to show that such a g must be zero. However g will in general not be a newform but
a sum of newforms. Since Py (N) is closed under the action of the partial Atkin-TLehner
operators WZfV , we can at least assume that g is an eigenfunction of all these operators.
With a little more care in the modular symbols calculation, this assumption is enough to
prove a satisfactory criterion for the vanishing of g. The proof of the vanishing criterion,
Theorem will be given in the next section.

The reason the assumption N = p" N’ enters is because we want to be in a situation where,
if g is a newform (or a sum of newforms with the same W™N-eigenvalue for all p | N) and
« is a primitive character modulo M | N, then the WpN M- (pseudo-)eigenvalues of g, for
each p | (N/M) are determined by those of g. With our methods, this condition arises
naturally in the proof of Theorem [I.0.2] and our argument would extend immediately to
any situation where it holds. When N is squarefree or twice squarefree, this condition
is automatic by a Theorem of Atkin and Li in [AL78]. When N is not squarefree this is
a much more difficult question, and it seems unlikely that a purely local argument will
work. Indeed our extension to level N = p"N’ stems from a rather different argument
involving the (global) functional equation.

In §2.6) we explain how similar arguments can be used to prove the analogue of Theorems
[1.0.2) and [1.0.3] when N = p is prime and x is primitive modulo p.

In the last section we give a few more selected examples of the main theorems.
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2.2 A vanishing condition

The main goal of this section is to prove Theorem [2.2.2] which states that if a cusp form
f has sufficiently many special values of certain twisted L-functions equal to zero, then
f must be zero. The result is in the spirit of Corollaire 2 of [Mer09], although we require
some modifications since we do not assume that f is a newform, or even an eigenfunction
of almost all Hecke operators. First we recall an identity from the proof of Proposition 6
in [Mer(09]:

Lemma 2.2.1. Let N € Z3y, let (u,v) € Ey, let S denote the set of prime divisors of N
which divide u, let S denote the remaining prime divisors of N, and let N' be the order
of wo in Z/NZ. Let g = (%) € SLy(Z) be such that (¢,d) = (u,v) mod N. Then

s =ne (v 0) (o 1)@ 5) (0 &)

where n is chosen so that n = uwv mod Ng and n = —uv mod Ng, and (4 B) € Z**? has
AD — BC = NgN§, A =uN;mod Ng, B=v/Ng mod Ng, and NsNg | A, NsN¢ | D,
NN'|C, NgNg | B.

Proof. The existence of n and A, B, C, D satisfying the conditions of the lemma follows
from the Chinese Remainder Theorem. So it suffices to verify that, under these conditions,
the claimed identity holds. Note that the condition on the determinant is necessary, since
the matrix on the right hand side must have determinant one. Computing the matrix on
the right hand side we get

— < D
NN Ng
A nC - nD | -
NZ + NN NsB + Ng

To prove the claim, it suffices to show that the top row is integral and that the bottom
row is congruent to (u,v) modulo N. Now our conditions imply that we can write
C' = NN'C’ for some integer C’, and D = NgNiD' for some integer D', so the top row
is indeed integral. Note that the divisibility of A by N§ is also necessary for the bottom
row to be integral; we use the full strength of our assumption and write A = NgNgA'.
With this notation the matrix we are considering is

—NLC' ~NLD/
S
(NSA’ +nNLC' NgB + nNgD'>

To show that the bottom row is congruent to (u,v) modulo N, we check this modulo Ng
and modulo Ng separately. For the former,

(NsA"+nNgC', NgB + nNgD') = (NgA', uvNgD') mod Ng,

since uvNg = 0 mod Ng by definition of N'. Since A = NgNgA" = uNg mod Nz and Ny
is invertible modulo Ng, we see NgA' = u mod Ng. For the second component, consider
the equation AD—BC = (NgN§)2A'D'—NN'BC’" = NgN{, so NgNgA'D'—NgNgBC" =
1. This gives NgNgA'D" = 1 mod Ng, so using A = NgN¢A' = uNg mod Ng again we
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get uNgD' = 1 mod Ng, hence uvNgD' = v mod Nyg as required.

Now consider the bottom row modulo Ng:
(NSA/ + nNéC’, NgB + nNgD’) = (—qu’gC’, NgB) mod Ng,

again using the definition of N’. Since B = v/Ngmod Ng, the second component is
congruent to v modulo Ng. For the first component we again argue from the determinant
condition. We have NgNGA'D' — NgN’gBC” = 1. This gives —vNéC” = 1 mod Ng, so
—qu’gC’ = u mod Ng as required. n

Theorem 2.2.2. Let N be a positive integer, k > 2, and let f € SP"(N) be an eigenfunc-
tion of all partial Atkin—Lehner operators W& . Assume that L(f,|W&™,j+1) =0 for all
characters a primitive modulo M | N and all sets of primes S such that [[,cqp- M | N,
and all j = 0,1,....k — 2 such that a(—1) = (=1)"* (resp. a(—1) = (=1)7). Then
f=0.

Proof. We will present the argument for the case a(—1) = (—1)7™!, which uses the
function S}L. "The other case, using £, is almost identical, the only difference being which
characters cancel in (2.2.4). We will show that the conditions in the theorem imply
fj['WN(j;u,v) =0forall j=0,1,...k — 2 and (u,v) € Ey, which in turn implies f = 0
by the last remarks in §1.1.7 Let us therefore fix (u,v) € Ex and consider
, Epwy (U5 u,0) + (1) Ewy (75 —u, v)

€y s ,m) = S0 S )
As in the statement of Lemma let S be the set of those prime divisors of N that
divide u. Write N’ for the order of uwv in Z/NZ. Choose g = (¢ %) € SLy(Z) such that
(¢,d) = (u,v) mod N. By Lemma we have

g =1 (x o) (o 1) (@ B) (9% ]85)1, (2.2.1)

with A, B, C, D and n satisfying the conditions of Lemma [2.2.1] Since f|Wx|Wyx equals
f, we have

mwalo=s1(5 1) (& B (YD )

Now n = wv mod Ng and n = —uv mod Ng, so n also has order N modulo N. Hence
nN' = n'N for some n’ which is coprime to N’. Writing this as n/N = n//N’ and using
(1.1.13) we get

fwslo= Y SEsnl(@ B) (05 )7
a mod N’

where « varies over all Dirichlet characters modulo N'.

By Proposition we have S, (f) € S2(NN',a?). Now the conditions of Lemma [2.2.1]
and Proposition give
A

SN1(& ) =80l (55 ) Suoma™.

25



CHAPTER 2: SPACES GENERATED BY PRODUCTS OF TWO EISENSTEIN SERIES

Hence, using (1.1.21)), we see that &g, (j;u, v) equals

where the sum is over all characters modulo N'.

To compute &gy (j; —u,v) we proceed analogously with g = (% ), since this has
bottom row (—c¢,d) = (—u,v) mod N. With A, B,C, D,n as in (2.2.1]) we see that
o 0 -1 1—N)<A B)(NNg 0)‘1
(NG = T1(N) (N 0 ) (0 M D) (0 N (2.2.3)

The argument is as above, with n’ replaced by —n/, and each individual summand in the
final expression for &g, (j;u,v) changes by a factor of a(—1)aZ(—1) = a(-1). From

5
the definition of §JT|WN we then see fEWN (4;u,v) equals

j( : S/)]avf1)¢(;p) > aln')ag(B)a (N:lNQ L(SaHIWE™,+1),  (224)

where the sum is over all characters @ modulo N’ with a(—1) = (—1)7*,

The next step is to relate S, (f) to the twist by the primitive character underlying . The
key to this is the following lemma, the proof of which will be given after the completion
of the current argument:

Lemma 2.2.3. Let N and k be positive integers, let x be a Dirichlet character modulo
N, and let f € Sp(N,x). Let N' € Z>1, let a be a character modulo N' with conductor
M. Assume that M < N', let p be any prime dividing N'/M, and let 5 be the character
modulo N'/p inducing o. Then

Sall) =P 2S5(NT)I (1) = B@)Ss(f).

In our case f € §p®V(N) is an eigenfunction of each WpN , 50 it is also an eigenfunction of
each U, for p | N by Proposition |L.1.3] Write a, for the eigenvalue, which may be zero.
Then Lemma gives

Salf) =P 20,8 (NI (1) = Bw)Ss(f),

and so ’ _
L(Sa( W™, j+1) = (077, — B(p)) L(Ss(£IWEN, j +1).
Applying this repeatedly we see that L(S,(f)|[W&N', j+1) is amultiple of L(S,, ()WY, j+

1), where «yq is the the primitive character modulo M | N’ inducing a modulo N’. Fi-
nally we note that S, (f) = G(Oz_o)fao € Si,(NM,a2). We then use Sao( JWEN' =

Sao(f)[WEM|By, where d = (£)g (c.f. - ) below). Thus L(S,(f)|W&N,j + 1) is a
multlple of L(f‘a0 |[W&M | j+1), and using (2.2.4) we see that £JT|W.N is a linear combination
of L-values which we have assumed to be equal to zero, as required. O
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Proof of Lemma[2.2.3. With the notation of the lemma, note that

s (5 ) - (s 5) (o 7) 6 )
a=0 u=0
N P
— B(G)Zﬂ(o " )
a=0 u=0
N'/p—1 p—1 a-‘ruﬂ
pr— B 1 /p
2 ma);f‘ (0 3 )
B N _ 1 a/N’
=S Bl (5 )
a=0

Now if (u,p) = 1 then a(u) = f(u), and if (u,p) > 1 then a(u) = 0 but S(u) may be

non-zero:

N N'/p
P81 (B ) =S atr (§ )+ Bwar (5 PN

Re-arranging this proves the lemma. O]

A technical difficulty arises in our application of Theorem when £ > 4 due to the
fact that the weight two Eisenstein series E21 1 i3 not holomorphic. To this end we prove
a result which states that the problematic cases are in fact already a consequence of the
other assumptions:

Proposition 2.2.4. Let N € Z>y, k > 4 be even and f € SP“(N) be an eigenform of
the Atkin—Lehner operators W& . Assume that L(fo|W&¥M 5+ 1) = 0 for all primitive
characters o modulo M | N where M > 1, all sets of primes S such that Hpesp-M | N,
and all j =0,...,k—2 such that a(—1) = (=1)7T'. Assume moreover that L(f|W&,j+
1) = 0 for all sets S of prime divisors of N and all 7 # 1,k — 3. Then L(f,2) =0 and
L(f, k —2) =0 must hold as well.

Proof. From the second relation (1.1.19)) for Manin symbols with P(X,Y) = Y*~2 and

g = —o we have

[YF2 —o] + i(—l)k_Q_j (k - 2) [(XIY 27 —or] + [X*2, —0or?] = 0.

Jj=0 J

If we denote this modular symbol by M then (f|Wy, M + t*M) equals

k—2 k9
5?WN(05—170)+Z(—1)“3< ; )fﬁwN(j;O,l)+§}|WN(k—2;1,—1):o. (2.2.5)
=0
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We already know that §]T|WN (j;u,v) = 0 for (u,v) = (—1,0),(0,1),(1,—1), unless j = 1 or

j =k —3. To see this we argue as in the proof of Theorem : By (22.2.4) §;I‘WN (J;u,v)

is a linear combination of L(S,(f)|[W&Y' j + 1), and we can reduce this to a linear
combination of L(fa,|W&M, j+ 1) = 0 with o the underlying primitive character as in
the proof of Theorem When j # 1,k — 3 these L-values are zero by assumption, so

SEWN (7;u,v) =0 for all (u,v) € Ex and j # 1,k — 3. Thus (2.2.5)) reduces to

(k= 2) (& (1,0.1) + € (6 = 3:0,1)) = 0.
Since k > 4 this is equivalent to
g;r\WNU; 0,1) + §;F|WN(/€ —3;0,1) = 0.

Now applying (1.1.21)) we get

1 (k — 3)!
(—2m;)2L(f|WN’2) R ECaT

L(fIWn,k—2)=0;

since f is an eigenfunction of Wy by assumption this is equivalent to

(—le')?L(f’ 2)+ %L(ﬁ k—2)=0.

Writing this in terms of the completed L-functions,

Z'k:

1
NA(f,Q)—i—EA(f,k—m =0.

Applying the functional equation,

1 €
(N + Nl;_l) A(f7 2) = 07

where € is the eigenvalue of f under Wy. This implies that A(f,2) = 0, unless k = 4
and € = —1. However, when k = 4 and ¢ = —1, s = 2 is the central value of L(f,s) so
L(f,2) = 0 since the sign in the functional equation is negative. O

2.3 The Rankin—Selberg method

Let k € Zsy, x be a Dirichlet character modulo N with y(—1) = (=1)¥, and let f €
Sk(N, x). Given any g € M;(N, 1), we consider the inner product

(GELA (), f) = /f 9(2)EL% (2, ) F @)y dp(2),

where F is a fundamental domain for I'o(N) and du(z) = % is the hyperbolic measure
on H. Note that integrand is I'¢(/V)-invariant so the integral over this quotient makes
sense, at least when it converges. This is certainly the case if s has sufficiently large real
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part, which we assume during these next manipulations.

Let f =Y a,¢" € Sx(N,x) and g = > b,q" € M;(N,¢). The Rankin—Selberg method
(see [Shi76]) was originally applied to study the L-function

nbn
L(f xg.5) = Y ==

n>1

and derive its meromorphic continuation to C and functional equation. We will use it to
find an expression for the Petersson inner product between a cusp form and a product of
Eisenstein series. Let ¢ = y¢~!. By the definition of E}ffl(z, s) we get

(9B (2, 5), f)

= / g2 | D> - v = | FR)ydu(z)

'YEFOO\FO(N) j(’y’ Z)kil |](,y7 Z)| °

/ > —Q(WZ);; 572—) Y dp(z)

761"00\1"0 ) ’j (’77

- / D SRR CETCEICRRTIO

NN\H oo \To(N)

= / 9(2) f(2)y* 2 dady.
Toc\H

Now substitute in the Fourier expansion f(2) = > -, a,e(nz) and g(2) = >, - bme(mz);
using orthogonality of the characters x — e(nx) of R/Z we obtain

(9EL"(2,8), f

/ / ( —_— 72mnx 27rny> (Z bm627rim:p27rmy> ys+k72dxdy
y=0 Ja=0 n>1 m>0

_ / Z mbn€f4wnyys+k72dy.
y=0

Y n>1

For any value of s, the exponential decay in y means that the integrand is rapidly decaying,
so we can swap the order of summation and integration. Thus

* Gnby, > _dry s+k—
(9B (2,9), f) = Zm/ . Iy th =2 gy
n>1 y=

(2.3.1)

(47T)s+k—1 nstk—1 '
n>1

Write f¢ for the function defined by f¢(z) = f(—%). It has Fourier expansion

fi(z) =) ane(n).

n>1
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By results of Shimura we have f¢ € Si(V,X) and this construction preserves newforms.
Alternatively, if f € Sk(N, x) is a newform, then one easily sees that f¢ is the newform
associated to fy.

Proposition 2.3.1. Let N, k,l € Z>y, x be a Dirichlet character modulo N, and f be
a newform in Sp(N, x), let ¢, be Dirichlet characters such that ¢ = x and ¢p(—1) =
(=1)L. Let ¢ be the primitive character modulo M = cond(¢) associated to ¢ and exclude
the two cases o9 =1 and l =2, and ¢ = x and |l =k — 2. Then

A (s+k—1) L(fSs+k—DL((f)g9,5+k—1)

1,60 pi,x
(E;" By 8), ) = Ay h 1 L0025 + % — 1) (2.3.2)

Proof. Recall that the Fourier coefficients of E% are given by b, = 20y_11.4,(n) for
n > 1. Substituting this into (2.3.1)) and using a standard computation (see e.g. [Rauld|
Proposition 4.1[[) gives

Z a_nal—1,1,¢o (n) . L(fcv s+ k— 1)L((fc)¢o7 s+k— l)
nsthk=1 L(X¢o,2s +k —1) '

n>1
and the result follows. O

Note that both sides of (2.3.2)) have analytic continuation to s = 0 and by the uniqueness
of analytic continuation the equality remains true there. Using the fact that

e - A
we obtain

Corollary 2.3.2.

(k—1—1)!(k —2)INk? L(fe k—1)L((f%)gy,k — 1)

1,60 pp1, —
(BB 1) = (—2mi)e=L(4m )LD, k — )G (o) L(X¢o,k —1)

2.4 Generating spaces of cusp forms by products of
Eisenstein series

Let N be any positive integer, and define P,(N) C My(N) to be the space generated by
the products o

(BB )IWe
where 1 <[ <k —1, S is a set of prime divisors of NV, « is a primitive character modulo

M with a(—1) = (—1)! and ay is its extension to a character modulo N. The cases when
a =1 and [ equals 2 or k — 2 are excluded.

'Our divisor function is ;_1,4,1 in Raum’s notation.
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In this section we will prove Theorem [2.4.2] which describes the projection of Py (N)
on to the new subspace. The proof requires us to deduce vanishing of the L-values
L(Go|[WEM | j41) of the Atkin-Lehner images of a form G, from vanishing of L(G,, j+1),
for which we prove the following technical lemma:

Lemma 2.4.1. Let N = N'p" where N’ is squarefree or twice a squarefree number, p
is a prime and p ¥ N'. Let G € SI¥(N) be an eigenfunction of all W, for ¢ | N and
fix M | N. Suppose L(Gy,j+ 1) = 0 for all primitive characters o modulo M and all
Jj €40,...,k —2} such that a(—1) = (=1)*'. Then, for all such «, j, and all sets of
primes S such that [[,cgp- M | N, we have L(Go| W™, j +1) = 0.

Proof. If p ¢ S then M and Ng are coprime, so by Proposition we have
L(GWEM . 54+ 1) = As(G)a(S)L(Gq, j + 1) = 0.
If p € S, by the functional equation we have
L(Go[WEM j+ 1) = cL(Go|[WEM K — j — 1) (2.4.1)

for a non-zero constant c. Note that p ¢ S. Let a = a0, Where o, is the p-primary
part of a. Then G, = (G4, )a, and by Proposition we have

Ga‘WévM ( Q! |WNMI)%

Since G is a W,-eigenform for all ¢ | NV it is a linear combination of newforms fi,..., f,
which all have the same W, -eigenvalues. Since N’ is squarefree or twice a squarefree
number, we know that «,, is maximally ramified at primes where it is non—trivia]ﬂ, SO we
can apply Theorem 4.1 of [ALT8]| to see that (f;),,, is again a newform for all i and the
corresponding W,-eigenvalues are independent of . Hence G, is a pseudo-eigenfunction

of WM’ say with pseudo-eigenvalue AYM'(G,, ), which means

aM/ ‘WNM /\gM/(GaM/)GW'

In summary

L<GQ|WE]D'VM7J + 1) - CL(( CV]W/|WNJ\/[>OZpJ k - j - ]‘)
= C)\%M/(GQM,)L(GWQP, k — j — 1),

which equals 0 by our assumptions. O]

Theorem 2.4.2. Let N € Z>; be such that Lemma holds. Then for k > 4 even
Py(N) = S (N).

In the case k = 2 we define S5¥°(N) C S”ew( ) to be the subspace generated by newforms
f with non-zero central L-value, i.e. L(f,1) # Ol note that 87"’“ O(N) C 83“(N)~. Then

Py(N) = S5F9(N).

?Le. if ¢ # p is prime such that «, is non-trivial, then ord,(M) = ord,(N).
3The subspace Stk=9(IV) whose projection to the new space is S5-=Y (V) is defined in the next section.
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Proof. Let f be a weight k, level N newform, and write Ag(f) for the W -eigenvalue of
f. By Proposition the operators W are self-adjoint, so
(BFEI)IWS f) = (B EXD, fIWS)
= As(f)(EPERZ, )
Using Corollary (note f = f¢since f has trivial character) we get that ((E*E;™) W, f)
equals

(k — 1 — 1)l(k — 2)IN*

As(f) (—2mi)k =L (4m) 1 Loy, k — ) L(a, k — )G(a)

L(fok —1)L(fa k—1). (2.42)

First assume k& > 2. Suppose that the containment Py(N) C Sp¥(N) is proper. Since
P(N) is closed under the action of the Atkin-Lehner operators W, for ¢ | N, so is the

orthogonal complement of P,(N) in Sp¢¥(N). Therefore there exists a non-zero form
g € §p°(N) that is orthogonal to P,(N) and an eigenform of the TW,¥. We can write

9= Z Bifi,
i=1

where fi,..., f, are the newforms in Sp*¥(N) with the same W;V—eigenvalues as g. Using
(2.4.2)) we see that orthogonality of g to P,(N) is equivalent to

Z As(fi) BiL(fi,k = 1) L((fi)a, k — 1) = 0.

for all [, ar, S as specified in the definition of P,(N). However, by definition of g, As(f;) =
As(f;j) for each i, j, so the orthogonality of g to Py(NN) is equivalent to

Z@L(fi, k—1)L((f:)a, k —1) = 0. (2.4.3)

Following an idea from the proof of Theorem 1 in [KMOS§|, we define another form in
G € §(N) by

G=) BL(fik=1)f:
i=1

Since the f; all have the same W V-eigenvalues as g, so does G. Then (2.4.3) translates
to
LGy, k—1)=0 (2.4.4)

for all primitive characters a modulo M | N with a(—1) = (—1)*7!, excluding the cases
a=landl=2o0rl=FkF—2.

Using Lemma we get
L(GWEM &k —1) =0
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for all primitive characters o modulo M | N with a(—1) = (—1)¥~!, and all sets of primes

S such that [[ cgp- M | N, excluding the cases « = 1 and [ = 2 or [ = k — 2. Now
applying Proposition we see that L(G,2) =0 and L(G,k — 2) = 0. We now have

L(GWEM &k —1) =0

for all a primitive modulo M, S || N such that rad(S)M | N, and [ = 1,...,k — 1. By
Theorem we can conclude that G = 0. Since k > 4, L(f;,k — 1) # 0, so we must
have that all ; are zero, and we arrive at the contradiction g = 0.

In the case where k = 2 the proof is similar. The containment P»(N) C Si¥=°(N) comes
from (2.4.2)), since P,(N) is orthogonal to every newform f with L(f,1) = 0. The rest of
the argument works as above. O]

2.5 The new part of P;(N)

In this section we will analyse the new parts of the generators of Py(N) for any N. We
use this to construct another space Qi (V) with the same projection to the new space as
P(N) whose generators do not involve partial Atkin—Lehner operators. While P,(N) was
more useful for the proof of Theorem [2.4.2] Qy(N) is more explicit and easy to implement
on a computer.

First we find the new part of F,%":

Lemma 2.5.1. Let a be a primitive character modulo M with o(—1) = (=1)*. Writing
N =1T1I,pi, let Ny = Hpi‘Mpfi be the M -part of N, so that M | Ny and ged(M, N/Ny) =

1. Then i
-1

anN N\?2 _k a
B = <M) > we)ale)e MBS By
e[N/N
Proof. For Re(s) > 0 we have
(l{ -1 — 1)'Nk_l OéN(d)

Ep N (2,8) =

(—2mi)G(@) (N2 + d)FeNz + dPPs

(c,d)#(0,0)

Using the formula

> u(d) = {(1) o =1

1
i else,
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for the Mobius function p, we get

Z OéN(d)
(cNz+d)*YeNz +d|*

(c,d)#(0,0)
ald
D DR D e et
(Cvd)7£(0’0) elng(va/NIW)

_ —hl—2s a(d)
— 6|Nz/;VMu(e)a(e)e (c,d)%(:o,o) (M ()2 + d)e1[eM ()2 + dfs
= O S el B (/M) 5)

e|N/Nuy

We obtain an equality of holomorphic functions

aN N i — —2s a
BT = () X seaee TEE((NM):, ),
e|N/Nxs
which must also be true at s = 0. O

1

Thus the product £ O‘E,:_QT is a linear combination of products of the form

E - (ES|Byyase)

for e | N/Ny. If e # 1 these products are clearly old forms. Hence the projection of
Pr(N) to the new space, Py(N), is generated by the projections of the products

(B WE) - (B8 By WE) . (2.5.1)

where S is a set of prime divisors of N. Let us focus on the first factor for now. Let
T,y,2z,w € Z as in the definition of W2". We have

N M Ny 0
Wy — (st N:gﬂ)) _ <N§]\sfsz Ngw) ((%)s 1). (2.5.2)

The first matrix on the right has determinant Mg and satisfies all other conditions in the
definition of Wé‘/[M , where S); is the set of primes in S that divide M. So, as operators on
M;(M, ), we have the equality W& = W%I‘B(ﬁ,) :

M)s
As mentioned in the preliminaries the action of the partial Atkin—Lehner operators on
Eisenstein series was studied in [Wei77|, and using Theorem we see that the first

factor in (2.5.1)) is a multiple of

EZESM ’O‘W|B(ﬂ) :
s

M

where Sy = {p | M} \ Sy To study the second factor in (2.5.1) we use an extension of
Proposition 1.5 of [ALT8] that allows us to swap the order of the lifting operator and the
Atkin—Lehner operator above:
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Proposition 2.5.2. Let F' € My(M,x), d € Z>1, and S be a set of primes dividing dM.
Let S be the complement of S in the set of prime divisors of dM, Sy the elements of S
that divide M, and define dg = Hpes p» @D and ds as usual. Then

F|Ba|Wg' = Xs(dg)Xs(ds) FIW3! | Ba,

Proof. Choose z,y, z,w € Z as in the definition of W14 i.e. satisfyingy =1 (mod dsMs),
r =1 (mod dgMg) and (Msds)*rw — Mdzy = Mgds. As operators on My(N,x), we

h
T gy (d 0) (dgMgac Y ) B <Mgdsx dfy) (d o>
d¥vs  —\0 1 Mdz dgMgw) — Mz Sw 0 dg)-

The determinant of (ijjx A‘Ei) is Mg and so by Proposition |1.1.2] and the fact that

y =1 (mod Mg) and =1 (mod Myg) it equals Xg(dg)xg(ds) W5’ .

]

Applying Proposition with d = N/M to E;E\BN/M]WéV and using Proposition 14
of [Weir7|, we see that the second factor in (2.5.1) is a multiple of

as, ,0g—
B SM|B(f) :

M

S

so the product in (2.5.1)) a multiple of

(BB, ) - (B 1By, )

M

Set
Ml = MSv
M, = My,
dy = (N/M)s = Ng/My,
dy = (N/M)g = Ng/Ms.
With these definitions, as,, and @5 are primitive characters modulo M, M respectively;
we rename them to ¢ and ¢. We then define the space Qx(NN) to be space generated by
the products o
| By, - B\ Ba, (2:5.3)
for any set S of prime divisors of N and two primitive characters ¢ of modulus M;|Ng

and ¢ of modulus My|Ng. In S denotes the complement of S among the set of
prime divisors of N. The above calculation shows that Qx(/V) and Py(N) have the same
projection on to the new subspace Sp*¥(N). Using the spaces Qr(N) and their lifts we
can extend Theorem to the full space Si,(NV):

Theorem 2.5.3. Let N be as in Theorem (2.4.2 and Qx(N) = |J Qr(M)|By be the
Md|N

subspace of My (N) generated by the products

E{*|By,a - E)| Biya
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for 1 < 1 < k —1 and all pairs of primitive characters ¢, of modulus My, My and
dy,ds,d € Z>y such that ged(dy My, doMs) =1 and dyMydeMad | N. As usual we exclude
the case p =9 =1 andl =2 orl =k —2. Then for k > 4

M (N) = Qi(N) + E(N).
Proof. Follows from Theorem [2.4.2] the previous calculations, and the fact that

s =1 U spm)B..

M|N d|N/M

by induction. O]

To treat the case k = 2 we need one more result.

Proposition 2.5.4. Let f € Sy“(N’) be a newform of level N' | N with L(f,1) =0,
and let d be such that AN' | N. Then f|B, is orthogonal to Pa(N).

Proof. Tt suffices to show that f|B, is orthogonal to each of the generators of Py(NNV), so
we fix a product o

(B BTN |WS
where « is a primitive odd character modulo M and S is a set of prime divisors of N.
Since W& is self-adjoint,

(BPCETNN) W, fIBa) = (EPYETN", f|BaWE).

Using Lemma and the fact that f is an eigenfunction of all W&/ for sets S’ of
prime divisors of M, we see that f|By|[WZ is a multiple of f|By for some d’|d. By the
Rankin-Selberg method (see (2.3.1])) we get that for, Re(s) > 0,

_ [(s+1) 4,011 .0(dn)
1,a oy % _ n-iLo

(EYET™, f|Ba) = d's+1(4m)s+1 Z ns+l ’

n>1

where a,, are the Fourier coefficients of f. Let d’ =[] p®. Then

ano-l,l,a<d/n) o ano-l,l,a(n) = apagl,l,a (p(HeIJ)
Z nstl o Z nstl H Z (pa>s+1 (254)

n>1 ged(n,d')=1 pld" \a=0

The first sum over n coprime to d’ is, up to the Euler factors corresponding to the prime
divisors of d’, given in the proof of Proposition [2.3.1l It has analytic continuation to
s = 0 and vanishes there, since L(f, 1) = 0. It remains to show that the sums

fuls) = (Z whaes ,,))

a=0

can be analytically continued to s = 0. If a(p) = 1, f,(s) equals

a=0
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where L,(f,-) is the Euler factor of L(f, -) at p. So f, can indeed be analytically continued
to s = 0, since local Euler factors are entire. If a(p) # 1 then

. a of a+ep+1))
(1 —ap =2 SH = L(f,s+ 1) + a(p® ) Ly(fa, s+ 1),
a=0

which is again entire. O]

Using Proposition we can also show that any lift of an old form, of the form f|Bj,
with L(f,1) = 0 is orthogonal to Q2(N). Define the subspace

Srk 0 U U Srk 0 ’Bd

M|N d|N/M
Then as for Theorem we can use induction to prove

Theorem 2.5.5. Let N be as in Theorem and Qa(N) be the subspace of Ma(N)
generated by the products

E{"|Baya - B{|Baa

for all pairs of primitive characters ¢,v of modulus My, My and dy,dy,d € N such that
ng(dlMl,dQMg) =1 and dlMldgMQd | N. Then

S 7UN) + E2(N) = Qa(N) + &(N).

2.6 Non-trivial nebentypus

Most of the methods we have developed in the previous sections also work for the spaces
M(N, x), where x is a non-trivial character modulo N. However some significant com-
plications arise, in particular because the Atkin—Lehner operators W are not endomor-
phisms of M (NN, x) anymore. To avoid these complications we restrict our treatment to
the case of prime level and weight 2.

Theorem 2.6.1. Let p be a prime and x a character modulo p. Let P(p, x) be the space
generated by E1 aEI X for odd characters o modulo p and Py(p, x) be its projection to
Sa(p, x). Then

Py(p, x) = S3*=(p, x)

Proof. Note that S5 (p, x) = Sa(p, x) since Sy(1) = {0}. Proposition shows that
the products ElYE)1, Yo are orthogonal to any newform f with L(f, 1) = 0 and hence
Py(p, x) C Sik= O(p, X). Suppose for a contradiction that the reverse inclusion does not
hold. Then there exists a non-zero form g € Si*=%(p, x) that is orthogonal to P (p, x)-
Let fi,..., f. be a basis of newforms of S*=(p, x) and

9= Bif:
=1
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Orthogonality to Ps(p, x) translates to

Zﬁl < 1) =0, (2.6.1)

for every odd character a modulo p. Again we introduce

G = ZB’L fCESQ(p7 )

and note that (2.6.1)) is equivalent to
L(G,1) = 0

for every odd character a. We will show that this implies §E|Wp(0;u,v) = 0 for all
(u,v) € E, and hence G = 0. If p | uw or p | v, then automatically §Z§|Wp(0;u,v) =0, so
we can assume that p does not divide u or v. Repeating the calculations in the proof of
Theorem 2.2.2] we obtain

X
EG‘W (05 u,v) 27rz Z L(Gy, 1)

where the sum is over all odd characters modulo p. Since L(G,,1) = 0 for all such
characters this shows G = 0. Since conjugation acts continuously on C we have L(ff, 1) =
L(fi,1) # 0, so we see that 5; = 0 foralli = 1,...,r and hence we reach the contradiction
g = 0. ]

2.7 Examples

Since the Fourier expansions of the generators of Qi (N) are all given explicitly in terms
of twisted divisor sums, it is straightforward to implement an algorithm that takes a
newform f of weight k£ as input and calculates its representation as a linear combination
of generators of Q(N) and &, (N). According to Theorems [2.5.3| and [2.5.5| this is always
possible when k& > 2 and in the case k = 2 only possible when f € S;*=°(N). We
implemented this algorithm in the Sage Mathematics Software [Sage] and present a few
selected examples here. The level and weight were always chosen so that My (N) contains
only one newform, that we denote by fnx. We use the notation

E¥(z) = t’k/QE‘ﬁ’w\kBt(z) = E%Y(t2)

that we will also be useful in the next chapter. To make the examples more readable we
denote Dirichlet characters by bold numbers, ordered as in Sage, i.e., the character i is
the one obtained by the Sage command DirichletGroup(N)[i-1].

N =14,k =2:

1 5 1 _
fuap = ERUER 4 _ERERR g (B - Dy e g graaght
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N=15k=2
f152__§E121E121_§ E1215E12,1,2+_E121E1215+éE125E125
N =19,k =2
f19.2 Z(%Cfg - %Cfg + 1—12C128 + 1—12C18 + i)E2,1E12,1
+(—g5Cha o+ 50h — 75 — 5 — PEHER
N =20,k = 2:
f2072 — _}lEf,lEf,l . ZE12,1,5E12,1,5 + gEf,lElz,l,S'
N =27k=2

1 1 1 1 2.1 571
for2 ( C1s 2Cf8 - 6(?8 + EC%S - EQS + E) BT E

1 1 1 _
™ (1618 + §C138 + ZClB — Z) . Ef’lEf’l’?’,

N — 57 kj e 4
7 L 21,21, 7 1. 4141
_— JR— - b ) o i s E , ‘
fra= =gl t gl B B (gl + g B B
N = 6’ k —= 4
1 5 _ 5 B
Joa = —EEIZ’IE?I +3- EMPER? - §E12’1E§’1’2,
N - 7’ k = 4
fra= (——Cﬁ + — 1 )El2 IEZ1 (= 4 Co — i)E‘L’lEZvl_
21 3 21 14 3
N — 87 k’ = 4
fsa = Ef’l’zEE’“ — Elz’lE?’l’Z,
N=9k=4
1 5 27 9 .
fou = —GEP B + (g 1 g,
N = 67 k‘ e 6
_5 2,1 2,1 10 21,2 1-2,1,2 7 212,12 7 21221
6,6 —52E1 E5 13E E -+ 13E E + 52E E
45E§2E12 180E122E;22 315E12E122
26 13 26
N — 87 ]{j e 6
_ 1E2,1E§,1,2 1E2,1,2E§,1
4 4
N == 3’ k e 8
1 2,1 2,1 7 2,1 21
= —— L7 By — L3 B
fas = s + 55
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Recall the definition of a completed L-function from §1.1.6]

A(f,s) == T(s) (é—f) L(f.s) = N*°M(f — ao)(s) (3.0.1)

and of the Fricke involution
1
PWs(e) = VR (<572

Recall also that when f is a modular form of weight k, we write f|Wy for f[;Wx. In
this chapter we will often look at L-functions of modular forms that aren’t cusp forms.
For this reason we introduce the regularised A-values as in [Brul:

Definition 3.0.1. Let f € My(I';(N)). Then the reqularised values of A(f,s) at s =0
and s = k are defined by

: Y ao
A (f70)_£1_1>%A(f7S)+ s

i*bo
k—s

N*(f k) = lim A(f, ) +

The regularised values of A(f,s) still satisfy the functional equations
A*(f,0) = i*A*(fIWi, k), and A*(f, k) = *A*(f|Wn,0).
The following Lemma will be useful later.

Lemma 3.0.1 (Lemma 8 in [Brul). Let e € M (I'y(N)) and f € Mg(I'1(N)) with
constant terms eq and fo. Let e =e — ey and f* = f — fo. Then

N ZM(e" - (f*1oWn))(s)

- . (3.0.2)
=1 "Ae- fIWn,s+ k) —epi "A(f]Wn,s+ k) — fol(e, s)

for all s € C. Note that for s = —k, s = 0 and s = | the poles on the right hand side
cancel and using the regularised values of A*(f,s) we can specialise to s = l:

N'ZM(e - (f*loWw)(D)
= i"N*(e- fIWn, 1+ k) — i"eoA(f|Wi, 1 + k) — foA*(e, 1)
Proof. First note that since e* and f* have exponential decay at ico the Mellin transform

in (3.0.2) converges. Let go be the constant term of g = f|Wy and let g* = g — go. For
Res> 0

s+

NM(e* - f oW (s) = N2 M(e" - W) (s + k) — agN*2M(e*) (s)
— "N

zk,/\/l(e*g)(s + k) — agA(e, s)
= i"A(eg)(s + k) — i*eoA(g) (s + k) — apA(e, s).

By the uniqueness of meromorphic continuation this equation is true for all s € C. [
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CHAPTER 3: A CORRESPONDENCE OF MODULAR FORMS

3.1 A correspondence of modular forms

Let fi(2) = Y 0 _ga(my)e*™™* and fo(z) = > 0% _ B(ma)e™™2* be functions on H. By
applying the Mdobius inversion formula we can rewrite f; and f, as double sums:

)
fl(z) _ Z a(ml)€2mm1n1z and f2 Z b 2mm2n22
mi,n1>0 ma,n2>0

where a(n) = > a(r)u(n/r) and b(n) = > B(r)u(n/r). We then define a new
function ®,(f1, fo) on H by the Fourier expansion

4(f1, f2)(2 ZZ (m/d)b(d)d" ' e*™™* = Z a(m)b(n)nt~1e2mimn=,

m=1 dlm m,n>1

This construction leads to a correspondence on spaces of Eisenstein series. Assume that
¢ is odd and that the positive integer [ satisfies ¢(—1) = (=1).. If f; = E1"Y, fo = E?
and k is such that & — [ is even then the function ®.(f1, f2) = E;/’jr‘zl’_l is an Eisenstein
series of weight k + [ — 1. This fact will be used in the proof of Theorem [1.0.7]

An analogous construction can be carried out when f; and f, are cusp forms of weight
1, level N and Dirichlet characters v; and wvs, respectively. Although we do not expect
®,(f1, f) to be a modular form, Proposition shows that if ¢ is even then all its
twisted L-series satisfy the functional equations of a weight ¢ cusp form of level N? and
character v;v,.

Specifically, for each prime r f N, consider a primitive character ¢ of conductor r such
that ¢(—1) = (—=1)* (u = 0 or 1). For convenience ¢ can also stand for the trivial
character 1 (mod 1). For Re(s) > 0 consider

L(@(f1, f2) 0 Zl/} Z (%) d"'b(d)

m>1 dlm
b(m)y(m a(D)y(l
)

The second factor is connected to the L-series of (f1), by

L(f1,4; ) Zw > a(m) =(Z%)-L<w,s>

m>1 m‘n m>1

and similarly the first factor is connected to the L-series of (f2)y. From the definition of
L(®¢(f1, f2),1; s) we immediately deduce that

L((f1)y,5) L((f2)g, s =t + 1)
L(p,s)  L(p,s—t+1) (3.1.1)

L(q)t(f1,f2),¢§5) =
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If fi and f, are Hecke eigenforms, this equality implies that L(®;(f1, f2),1;s) has an
Euler product representation. Defining the completion of L(®y(f1, f2),%;s) as
['(s)(N7)*

A(Di(f1, f2), 95 8) i= (27"

L(®:(f1, f2), ¢35

we have

Proposition 3.1.1. Let f; and fy be cusp forms of weight 1, level N and Dirichlet
characters vy and ve, respectively. Let 1 be a primitive character i of prime conductor
r {4 N. Then for even t > 1 the completed L-series AN(P.(f1, f2),1;s) has meromorphic
continuation to s € C and satisfies the functional equation

A((I’t(fh f2)>¢; 3) = (—1)t/201(T)Uz(r)iﬂ(NQ)T(qﬂ)A(‘I)t(fz\1WNa f1|1WN),E;t - $)>

where we recall that

_Gl) 1 )2
() = NV > (n)

n mod r

is the normalised Gauss sum of 1.

Proof. We first express A(P;(f1, f2),%; s) in terms of the completed L-series,

M) = P 1 ) ana aw) = ()1 (S5 b

where u = 0 or 1 is determined by ¢(—1) = (—1)". We then have

t—1
2 —
A@(fr, fo), i 5) = (%) yeotn D(s =t 4 ;(jﬁ)t/i)li)((s +u)/2)
o AL is) AMfo s —t+ 1)
A(ss)  Alhys —t+1)
We recall the functional equations for the L-functions which appear in the expression
above:

(3.1.2)

A(fj7 % 3) = Z’U](T)w(N)T<¢)2A<f]‘kWN7Ev - 5)7 for ] = 17 27 and
Al s) =i " T()AW; 1 — s).
By using these functional equations we can rewrite the right-hand side of (3.1.2) to obtain

A(@y(f1, f2), 05 8) = €- A(Di(fo| s W, i1 W), 5t — ),
where
F((s—t+1+u)/2)['((s +u)/2)T(1 —s)
M((=s+14+w)/2)((—s+t+u)/2)T(s—t+1)
X (= 1) oy (r)va (1) (N?)7 ()%,
The final version of the functional equation now follows from the identity
I((s—t+14u)/2)0((s +u)/2)l(1—s) =25 q )/t

T((—s+1+u)/2)T((=s+t+u)/2)T(s—t+1)
which is valid for even ¢ and can be shown using standard properties of the Gamma
function, including the reflection and duplication formulas. m

€ :225—t
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Remark. It follows immediately from that L(®.(f1, f2),s) has infinitely many
poles (assuming the Grand Simplicity Hypothesis [RS94]) and therefore ®,(fi, f2) can
not be a modular form. However, the extension of the converse theorem of [Dauld] to
general levels implies that ®,(f1, f2) is a modular integral.

3.2 A reinterpretation of the method of Rogers—Zudilin

The method of [Zud13]| relies crucially on a simple change of variables in an integral of
the product of two series which leads to a product of two different functions. This part
of the method can be expressed as the following simple "duality relation" involving the
functions rather than their Fourier expansions. For a function h on ‘H and x € Z it will
be convenient to use the notation h(*) for the function hloB,(2) = h(zz2).

Lemma 3.2.1. Let f,g : H — C be holomorphic functions with exponential decay at
infinity and at most polynomaial growth at 0. For each m, n € N and s € C we have

M - (g™ W) (s) = (n/m)*M(F™ - (g™ o Wi))(s)-

Proof. From the growth conditions at infinity and 0 it follows that the product f - g|oWx
has exponential decay at both infinity and 0 and thus the Mellin transforms on both sides
are well defined. By the change of variables t — (n/m)t we see that M(f™.g™|;Wy)(s)

equals
& ni d & mi d
[ sming (55) 5 = iy [ stwing (57) 5

With the above lemma we obtain the following

Theorem 3.2.2. Let F, Fy : H — C be given by the Fourier expansions

F1(2>: Z al(ml)bl(nl)e2”mlmz,

my,n1>1

FQ(Z) = Z ag(mg)bg(ng)e%im?"”,

ma,nz2>1

where we assume, additionally, that the coefficients a;j(n) and b;j(n) grow at most polyno-
mially in n. If, for j = 1,2, we define the functions

FR) =D bi(ng)™ ™ and gi(2) = Y ag(my)etTmine

mj,n;>1 mj,n;>1
then we have the following relation between Mellin transforms

M(F - F2loWh)(s) = M(Pur1(f1, f2) - (Pst1(92, 91)[0Wn))(s)  for all s € C.
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Proof. Set hj(z) = an>1b (nj)e*™mi* for j = 1,2. The growth conditions on b;(n)
imply that hq, hy have exponential decay at infinity and at most polynomial growth at 0.
Hence Lemma [3.2.1] implies

m ma mo\°® [ _ imq \ L dt
M(B™ - b >yOWN)(s>:(—2)/ hy (mait) - hy (—Ntl)t7
0

my

271"m n dt
< > / Z b1(n1)ba(ng)e e 727rn1m2tts7‘

ni,n2>1

The growth condition of b; justifies the interchange of integration and summation, so,
upon the further change of variables t — (ny/ms2)t we deduce that

mi ma2 —8 > s _2mmymy TN sdt
M(h§ >-h§ )|0WN)(S) =m; / Z by (n1)ba(no)nse™— Nr e 2mmanaty n
0 nime>1
_s o0 2rmm dt
=my / Oyy(fi, fo)(it)e ™t ?'
0

The desired conclusion now follows from the fact that

FiBlyWy(z) = > ai(mi)as(ma)h{™ (2) - (bW ) (2).

mi,ma>1

3.3 An application to products of Eisenstein series

We recall the weight k& Eisenstein series E;fl’q52 assigned to primitive Dirichlet characters
¥1 mod N; and 9 mod Ny which satisfy 1, (—1)ts(—1) = (—1)%. Its Fourier expansion
at infinity is given by

E;/)l7w2(2) _ aflﬂﬁz +2 Z ¢1(m)¢2(n)nk—1e2winmz‘

m,n>1

To ease notation we will write E{">(2) for the function t*/2E/"V?| B,(z) = EXV"* (tz2)
for any t € N. In the sequel we will often use the following identity

k—1
No\ 2z .
B [k Wony vy = (=1)F7(01)7 (1) (ﬁ) 2 E, (3.3.1)

which is valid for any ¢ > 0 and follows from Theorem [I.1.6]

We can now use Theorem to prove a relation between L-values of £ - E}E*%’M
and L-values of E;-‘“” E,fjl%]MlNQ. Let ¢; and x; (i = 1,2) are primitive characters

modulo N; and M; such that (x; - x2)(—1) = (=1)" and (¢; - ¢2)(—1) = (—1)F. We will
regard both Eisenstein series EZXI’X2 and E,’f“” as modular forms of level M N where
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M = MM,y and N = Ny N,. It follows immediately from (3.3.1) that

k—1
N 2 T
(_1)k7_(¢1)7_(¢2) (Nj> q{k/QA(EZXLXQ -E;Z]Z’%’M,])

_ A(Elxl,m . (Egl,w2|kWMN)’j)’
and by Lemma this equals
ITEMINY'T MBS = afe) - (B — ) o Wan) (G - k) (33.2)
+ @A (E [ W, §) + i R e P AER 2§ — k)

We are now in a position to apply Theorem to the Mellin transform (3.3.2)) for
je{l,...,k+1—1} with x;(—1)1s(—1) = (—1)?. In the notation of the theorem set

ay(my) = Xz(ml)m1 bi(n1) = x1(m) g
az(mz) = ¥1(ma), by(nz) = 1?2("2)”]571 Y
Then
MUER = a ) - (B — o) o Warn) G ~ b
= AM(Pj—k+1(f1, f2) - (Pr—js1(92, 91)[oWin)) (G — k) (3.3.3)
= MBS = ™) - (BYY, = ) Wanw) (= k).

Another application of Lemma [3.0.1| shows that this equals
(MN) k+l ]A(EX1 W2 (E% X2 |k+l—jWMN)7 l)

k+l—j
_ (MN) k=i X1 7/)2A(E11€L'J1FIX2J|WMN’ l) _ (MN) = atkbjrlXQJA<EX1 ¢2 : k‘)

Collecting everything together
A(E - (E;fl’w’kWMN),j) = G?I’XZA(EZI’WMWMNJ) (3.3.4)
+ i—ka;fl,%/\(EXl,Xz’j . ]{?)

4 il_jA(EX17?P2 . (ElgilXQJ |k+l—jWMN)’ l)

i@ N (B W, 1) (3.3.5)

—~ af;f2]A(E}1 V2 — k).
Applying the functional equation to 4)) and (3.3.5)) we arrive at the following theorem.
Theorem 3.3.1. Let ¢; and x; (i = 1,2) are primitive characters modulo N; and M;

such that (x1 - x2)(=1) = (=1)! and (1 - o) (—=1) = (=1)*. Let j € {1,....k+1—1}
with x1(—1)Ys(—=1) = (=1)7. Then we have the following relation of L-values

A(EX - (B W), 5) = il_jA(ijl’wQ : (Elilrlmj‘kﬂ—jWMN), )

+ i_k X1,X2A(E1Z)1 2 ]{7 . )
4 1111 1/12A(EX1 Xz . k‘)

ay “A<Eiﬁf‘3, )

_aqkpilXQJA(E 1w2’j k’)
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In full generality the theorem looks complicated but note that the L-functions of Eisen-
stein series come from Dirichlet L-functions,

L(EYY, s) = 2L(¢, s)L(¢, s — k + 1),

and moreover only in special cases the constant terms of the Eisenstein series are non-zero.
In particular if all characters are non-trivial we can apply (3.3.1) to obtain:

Corollary 3.3.2. In the conditions of Theorem 3.3.1] assume furthermore that all char-
acters V; and x; are non-triwvial. Then

A(ElXLXQ . E]’fZ,@ZhM’j) =C. A(E]Xlﬂl& . Eg(ivl’l/_ilsz1N27 l), (336)
where , . . ,
=i v FE e N
¢ = (_Z> T(X2)T(¢2) Ml M2 N1 N2

3.4 Application to derivatives of L-functions

Let ¢ and ¢ be odd, primitive Dirichlet characters modulo N; and N, respectively. Using
the notation of the last section we set N = Ny N, and

VN
EY = EVY ay = al", and f¥0 = e (Eip - aw) . <<Efr - a¢) ]1WN) .
The goal of this section is to evaluate a particular linear combination of the special
values M(f¥?)(2) in two different ways thereby obtaining a relation between values and
derivatives of certain L-functions. We first observe that for a fixed positive integer r we

can write

M@ = M (B = a) - ((BE —a0) o) ) (1)

Since we now have a weight 0 action in the right-hand side we can use Theorem [3.2.2]
with

s =1,a1(n) = 1,b1(n) = P(n), as(n) = 6-(n), b(n) = ¢(n),
where d,(n) = 1 if r|n and 0 otherwise. This implies that M(f¥?)(2) equals

ni

SM®3(f1, ) Bolgzsg0)loWi) (1) = 5 M (Ei"’¢’(it>~ > i) (1),

ni,n2>1

From the following well-known expression for the logarithm of the Dedekind eta function

1 —2mtrmn —2mrm 27T
ST log(1 — e~ ¥y = —1 ( i/ (Nu))eziva )
ST e = = Y log(1 - ¢ F) = —log (n(ri/ (Nu))e

m,n>1 m>1

we deduce that

% /O " BY(iu) log (n(ri/(Nu))esti ) du (3.4.1)

M(f)(2) =
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The integral above is well-defined since E;ﬁ ' decays exponentially at both oo and 0. The
decay at infinity is immediate since 1 is not trivial and the decay at 0 follows from (3.3.1]).

By using ({3.3.1)) to rewrite ff”z it follows from (3.4.1)) that
/Z./ > 3 . T
M(FP)(2) = 5/ (EY?)5(1 4+ W) (iu) log (n(rl/(Nu))efZNu) du
0
1

- /OOO(E;”’¢\2(1 + W) (i) log (n(riw)e ) du  (3.4:2)

EY® = [0 [ 207057
1

It is clear from (3.4.2) that we can find a linear combination of F¥?’s such that the
exponentials inside the logarithm on the right-hand side are eliminated:

M((N1 + No)(FP? + F0%) — (1+ N)(FR2 + FR2))(2) =

where

B % /OOO<E3)’¢|2(1 + W) (iu) log(V (iu))du, (3.4.3)
where

(n(2)n(Nz))Ni+N2

(n(N12)n(Naz))tH+N-

We will now proceed to evaluate the two sides of (3.4.3)) separately.

V(z) =

3.4.1 The right-hand side of (3.4.3)

We first recall the principle behind Goldfeld’s expression for derivatives of L-functions:

Proposition 3.4.1. Let f and g be holomorphic functions on H such that for some
N € N:

(i) fl:Wn = f
(i1) g|xWn = %g, for some non-zero constant k € R. Then

| sz =0 and 2 [ pan)tostatin)dy =k [ i) og(w)d.
0 0 0
Proof. Condition (i) is equivalent to f(Wyz)d(Wyz) = f(2)dz. Therefore

/Ooof(z)dz:/‘/:: dz—/ f(z

and hence [ f(z)dz = 0. Similarly, we see that

0o WnO0 0
/0 £(2) log(g(2))dz = / £(2) log(g(2))dz = / £(2) log(g(Wiz))dz

Wy oo o)

= [ s ostgtenaz + ik [ s ios)iy

+d /oo f(2)dz
0

for some ¢ € C. This equality, together with fooo f(2)dz = 0, implies the conclusion. [
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Since Proposition holds for f = EJ?|,(1+Wy) and g = V with k = Ny +No—1—N,
we deduce that

/ f(iw) log(V (iu) / f(iu) log(u k(/\/lf)( 1). (3.4.4)

By using Proposition together with (3.0.1) we can express the the right-hand side

of (B44) as

(N1 —1)(1 — Ny
2v/'N

If A is a modular form of weight 2 and level N it is easy to see from the functional
equation of A(h,s) that A'(h|2(1 + Wy),1) = 2A'(h,1). Tt follows that the right-hand

side of (3.4.3) equals

)A'(E§’¢|2(1 + W), 1).

i(Ny — 1)(Ny — 1
2V N

)A’(E;W, 1). (3.4.5)

3.4.2 The left-hand side of (3.4.3)

To compute the left-hand side of (3.4.3)) we first express M(f¥*?)(s) in a form where we
can apply Lemma [3.0.1}

M (B~ ) (B2 ag) W) (s — 1) (3.4.6)

MUFP9)(s) = |

Applying Lemma and the functional equation for the completed L-functions we
deduce that 4NG=D/2 M (f¥)(s) equals
AEY - EYT [\ Wi, 8) + agih(EY s — 1) + ay A(EY" |, W, 5)
= A(EY[\WN) - EYT 2 — 8) 4+ agih(EY s — 1) + agiA(EP" 1 — s) (3.4.7)
= 7 (V) VNP A(EP N2 EST 2 — 5) 4 agih(EY s — 1) + agiN(ES, 1 — s).
For the last equality we again used ([3.3.1) and we have an analogous expression for

ANG=D2 M(f2%)(s). Note that ([3.4.7) is valid for all s € C if we use regularised L-
values whenever one of the L-functions in (3.4.7) has a pole.

We will now compute the value of the linear combination
M((Ny + M) (FP 4+ F%) — (L+ N)(ESS + Fi9)(s) (3.4.8)

at s = 2 by considering each of the three summands of (3.4.7) and the analogue for f&¥.

First we treat the contributions from L-functions associated to products of Eisenstein
series. In M(FY'? + F%)(s) they are

N(1—s)/2N21/2

. r(W)A(—EPN2pSt 4 e pel _ pNapoN | poNipeN o gy (3.4.9)

By using the trivial fact
A(f.s) = A (£, 5), (3.4.10)
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combined with (E¢™M BV = ONEPINe and (EPEPN)N = EPNM BN (B4.9) be-
comes

N(1=s)/2 \1/2
TQT(W

: [(Nf-2 —DAEPNVEP 2 — s) + (1 — N3 2)AEPMEM 2 — s)} . (3.4.11)

Both A(E}Z’ME;M, 2—s) and A(Ef”NlEf’l, 2 —s) have a simple pole at s = 2 with residue
—agag. Therefore (3.4.11) is equal to 7(¢)agaglog(Ny/Nz)/v/ Ny at s = 2. It is easy
to verify that the contribution of products of Eisenstein series in M (F ;@fb + F ]1\1;;"5)(2) is

exactly the same as that in M(F}"® + F{'?)(2) and hence the products of Eisenstein

series contribute
T(@D)a@%(]\h + Ny —1—N)

lo &
1/N, &\,
to M((Ny + No)(FY? + Fy?) — (1+ N)(ER? + FR)(s).

Secondly, to compute the contribution of the terms coming from E?" and Ef’ " we apply
(3.4.10) to A(ES", 1 —s) and A(E"",1 — 5). Thus their contribution to M(F??)(s) is

N(l—s)/2 s—1 N. -
(@A B 1 = 5) + agi [ T TOAEY 1 - 9)),
4 Ny

which implies that the contribution of these terms to (3.4.8) at s = 2 is 0. We are now
left with

M((N1 + No)(FP? + F9?%) = (L+ N)(EFNS + FR9))(2) =

Mt fe 220 Lrwpasaaton (1) + -ae ] ar

where £%¢ is given by
£9¢ 1= L(6,0)B} + | 2r()7(6) L0, 0)EF. (3.4.13)
1

We note that the last term of (3.4.12) is well-defined because the residues of A(Ef_), s) and
A(E?,s) at 1 cancel when we take the linear combination giving €. Equations (3.4.5)

and (3.4.12) together finally give give

Theorem 3.4.2. Let ¢ and ¢ be odd, primitive Dirichlet characters modulo Ny and No
respectively and E¥¢ € & (T'1(N)) be defined as in (3.4.13)). Then

i/ NoT(¥)agag log (%) — A(E¥?,1) = 2N (E3?,1). (3.4.14)
2
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CHAPTER 4: EICHLER-COHOMOLOGY FOR ARBITRARY REAL WEIGHTS

4.1 Preliminaries

In this chapter we will work with modular forms with respect to a Fuchsian group of the
first kind. We sketch the definition of such groups here and refer the reader to [Shi71l
§1] for a more thorough introduction. The groups we have worked with in the previous
chapters, congruence groups, are special cases of Fuchsian groups of the first kind. Let
I be a discrete subgroup of SLy(R) or of SLy(R)/{£1}. A cusp of I' is any element of
R U{oo} that is fixed by a parabolic element of T, i.e., an element of I" that has only one
fixed point in RU{oco}. Let H* be the union of H with the cusps of I'. The quotient space
['\'H* can be given the structure of a Riemann surface such that the natural projection

T H— D\H*

is an open map. The group I is called a Fuchsian group of the first kind, if T\H* is
compact. For the rest of this chapter we assume that I' C SLy(R) is a Fuchsian group
of the first kind that contains a translation. This condition is not very restrictive since
any Fuchsian group of the first kind that has cusps is conjugate to a Fuchsian group of
the first kind that contains translations. The only Fuchsian groups of the first kind that
are excluded by this requirement are cocompact groups, i.e., groups for which T'\H is
compact. For convenience we will also assume that I" contains —1.

In contrast to the previous chapters, the weight of modular forms in this chapter will not
necessarily be integral. We refer the reader to [Iwa97| for a good introduction to modular
forms of real weight. In order to define the slash operator |, of SLy(R), we have to fix a
branch of the logarithm on C*. We choose the principal branch, i.e.,

log(z) = log |z| + i arg(z), where arg(z) € (—m,n].
Then we set j(v,2)" = exp(r - log(j(v, 2)) and, for a function f on H,
flv(2) = 3 (7, 2) " f(72).

While we have the formula

J(v0,2)" = j(v,62)"5(d, 2)"

for all r € Z, this is no longer true if 7 € R and so |, is not necessarily a group action of
SLy(R) any more. To get a useful notion of modular forms we will introduce multiplier
systems.

Two important functions when dealing with real weights, introduced by Petersson in
[Pet38], are

w(y,0) = % [—arg(j(v6, 2)) + arg(j(v, 02)) + arg(j (0, 2))]

and ‘
0}(’77 5) _ eerw(v,é).

The value of w(7,d) is independent of z and in {—1,0,1}. From the definition it follows

that

01 (7,0)j (16, 2)" = j(3,62)"§(6,2), 7,0 €T. (4.1.1)
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A multiplier system of weight r for I is a function v : I' — C which satisfies the consistency
condition

v(76)j (0, 2)" = v()v(8)j(v,62)"j(0,2)", Vy,0 €T,
or equivalently
0(18) = 7,(, ) (7)o (0).
Note that v is also a multiplier system of any weight ' € R with " = r mod 2 and v is
a multiplier system of weight —r. A multiplier system is called unitary if |v(v)| = 1 for
all v € I'. For the rest of this chapter we fix a unitary multiplier system v of weight 7.
For a function f on the upper half plane H and v € SLy(R) we define a new slash operator
|0 by
flray(2) =0(7)i(v,2) 7" f(72)

The consistency condition for v implies that

flrwy0(2) = (flroV)lrd(2), Vv, €T,

and hence |, is a group operation, in contrast to |,.

Let gqg = o0 and q1, ..., qmn be a set of representatives of the cusps of I'. For every cusp ¢
the stabiliser subgroup I'; is generated by —I and one generator o, € I'. For ¢ = oo we
choose 0o, = (}7), the minimal translation matrix in I" with A > 0. Let f be holomorphic
on H and invariant under |,,. The equation f(z + \) = v(0w)f(2) implies that f has a
Fourier expansion at oo of the form

f(z) = Z ano€exp (2mi(n + Ko)z/A), (4.1.2)

n=—0oo

where x; € [0,1) is defined for any cusp by v(a,,) = e*™*i. To find the expansion at the
other cusps, choose o, so that if

_ 1 N\
Aiog A; b= (() 1) )

where A; = ( 9 __qli), we have \; > 0. The Fourier expansion of f at ¢; is then given by

flrAT (2) = Z an i exp (2mi(n + ki) z/N;) . (4.1.3)

n=-—o00
Definition 4.1.1. Let f be holomorphic in H and invariant under |,,. Then f is called
a modular form[] of weight r and multiplier system v with respect to T, if in the Fourier
expansions in (4.1.2)) and (4.1.3) all a,; with n + k; < 0 are zero. If in addition all a,,;

with n+ x; = 0 vanish, then f is called a cusp form. The set of modular forms is denoted
by M,.(I",v), the set of cusp forms by S,(I',v).

Remark. Just like in the case of integral weight the space My (I",v) is always finite-
dimensional.

Remark. By the main theorem of [Kno67| the only modular form of negative weight is
the zero function. By [? | the only non-zero modular forms of weight 0 are constant
functions.

! Another common term for modular forms that is used e.g., in [Kno74], is entire automorphic forms.
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4.1.1 Cohomology

Definition 4.1.2. Let M be an abelian group with a right group action by I' that we
denote by m -~ for m € M and v € T'. The group M is called a (right) T-module if the
[-action is compatible with the group structure on M, i.e.,

(my+mg)-y=my-y+mg-7y, Ymy,mey € M, v €T.

Let M be a I'-module. A cocycle of T" with values in M is a function ¢ : I' — M that
satisfies

H(v6) = () - 6 + ¢(0), Vy,0 €T.

We denote the space of cocycles by Z'(T', M). There is a natural map d from M to
ZY(T', M) that associates to m € M the cocycle

dm: y—m-vy—m.

A cocycle of the form dm for m € M is called a coboundary and the space of coboundaries
is denoted by BY(T', M). The (first) Eichler cohomology group H' (T, M) is the quotient
space Z*(T', M)/B*(T, M).

A cocycle ¢ is called parabolic if for all cusps ¢; there exists an element m, € m such
that

¢<U¢I¢> =My, - Og;, — My,

We denote the space of parabolic cocycles by Z Yo, M ). Since coboundaries are clearly
parabolic we can form the parabolic cohomology group H'(T', M) = ZY(T', M)/B*(T", M).

The classical Eichler—Shimura isomorphism (see|1.0.8)) for even weights & = 2—r > 2is an
isomorphism between S,_,.(T') and H'(T', R[X],), where R[X], is the space of polynomials
of degree < k — 2 with coefficients in R.

If we allow arbitrary real weights we have to work with the much larger coefficient module

P.

Definition 4.1.3. Let P be the space of holomorphic functions on H such that there
exist positive constants K, A and B with

[f(2)] < K(lo|* +y77), Vz=a +iy € H,

We can view P as a [-module with the |, action for any weight r and multiplier sys-
tem v. To emphasise the dependence of the action on r and v we denote the cocycles,

coboundaries, cohomology group and parabolic cohomology group associated to P with
the |, action by Z},’U(F,P), B},,v(F,P), HAU(F,P), and Hﬁ’v(F,P).

We will also call elements of Z%v(l“, P) cocycles of weight r and multiplier system wv.

It turns out that all cocycles in Z; (I',P) are parabolic. This follows from a result that
Knopp attributes to B.A. Taylor in [Kno74].

Proposition 4.1.1. Let € € C with |e| =1 and g € P. Then there exists an f € P with

€f(z+1)— f(2) =g(2), VzeH. (4.1.4)
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Proof. This is Proposition 9 in [Kno74| and a full proof is given there. We will only
present the main idea here. A formal solution of (4.1.4]) is given by the one-sided average

f(z)=— ZE”g(z +n).

n=0

However this sum does not always converge. Knopp uses the fact that P is closed under
integration and differentiation to replace g with a function § = ¢g; + ¢ such that the
one-sided averages fi(z) = — > 2 €"gi1(z+n) and fo(z) = — > 7 €"g2(z +n) converge
and are in P. N

Corollary 4.1.2. Let e € C with || =1, s € R\ {0} and g € P. Then there ezists an
f € P with

ef(z+s)— f(z) =9g(z2), VzeH. (4.1.5)

Proof. First assume s > 0 and set §(z) = g(sz). By Proposition there exists f € P
that satisfies R .
ef(z+1)— f(2) =9(z2), VzeH.

Then f(z) = f(z/s) solves .

Now we treat the case s < 0. By the first part of this proof there exists an f € P that
satisfies

fz—8) - fe) = g(s), Veet.
The function f(z) = —ef(z — s) solves (£.1.5). O
Theorem 4.1.3 ([Kno74], p.627). Every cocycle in Z} ,(T',P) is parabolic, i.e.,

Z,(T,P) = Z,,(L, P).

Proof. Let ¢ € Z} ,(T',P). We will show that for every parabolic v € I there exists f € P
such that

First suppose v = (} {) is a translation by s € R\ {0}. Then by Corollary a function
f € P with the desired property exists.

For the general case let v = (¢%) € I and fix a cusp ¢. Then there exists an s € R\ {0}
such that { 0 —1
-1 _ S\ o —
AvAT = (0 1) = U, where A = <1 —q)'
Replacing z by A~z in equation (4.1.6) we see that it is sufficient to show the existence
of f € P with

V() J(ATUA, A7 2) " f(7 A7 ) — F(A'2) = 6(7)(A"2). (4.1.7)
Setting f(z) = f(A~'2) this is equivalent to
VNJATUA, A2 " f(z+5) — f(2) = p(7)(A72). (4.1.8)
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Equation (4.1.1) implies the two relations

1=j(AAT U, 2) " = 0,(A, AU (A, AU 2) (AU, 2) 7, (4.1.9)
JATTUA A 2) " =0, (AU, A)j (AU, 2)"j(A, A1) 7" (4.1.10)

After multiplying equation (4.1.8)) by j(A, A~'2)" and using the two relations (4.1.9)) and
(4.1.10) we get

EF(z+s8) — F(2) = j(A, A7 '2)"p(7) (A7 12), (4.1.11)

where we set F|(z) = j(A, A™! )”f( ) and € = v(y)o,. (AU, A)o,.(A, A7'U). Note that
le] =1 and j(A, A7'2)"¢(7)(A™12) € P. The existence of such an F' € P again follows
from Corollary |4.1.2] O]

4.2 Outline

The aim of this chapter is to give a new proof of the following theorem for r # 1.

Theorem 4.2.1 (Knopp-Mawi (2010)). For all v € R the map f > [¢5] is an isomor-
phism
S,—.(I',w) = H; (I, P).

This theorem is equivalent to Theorem in the introduction, except that we replaced
k with 2—r and v with ©. This choice of notation will be more convenient in the following
sections.

We now give a brief outline of the proof of Theorem in the case 0 < 2—1r # 1. This
is the harder case of the theorem, for the proof in the case 2 —r < 0 we can skip §4.3

In that section we construct a pairing (-,-) between 32 T(F v) and H} (T',P). From
the construction it follows immediately (see Corollary [£.3.4) that the map f — [¢7] is
injective. In order to prove Theorem [£.2.1] for 2 — r > 0 1t remains to show that this
pairing is perfect.

In §4.4] we first show, in Theorem and Corollary [4.4.5] that every cocycle ¢ in
Z,(I,P) is a coboundary in Z} (I, Q), where Q is a larger space of functions than P.

Suppose ¢ € Z,}’v(F,P) is orthogonal to Sy_.(I', 7). Using the description of ¢ as a
coboundary in Z%_W(F, Q), we apply classic results from the spectral theory of automor-

phic forms to show that y%g—g(z) is in the image of the Maass weight-raising operator

K} (see Proposition 4.4.11 This then implies that ¢ is a coboundary in Z;_, (T, P)
and hence that the pairing (-, -) is perfect.

In the case k = 1 only the last step of the proof fails, since some technical complications
arise in the proof of Proposition [4.4.11]

In the last section we sketch our proof of a vector-valued version of Theorem [£.2.1]
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4.3 Petersson inner product

An essential ingredient in the proof of for r # 1 is the pairing that we define in
this section. We make use of the auxiliary integral of a cusp form of positive real weight.
For weights greater than 2 it was introduced in |[Nie74] and for any positive weight it
first appeared in [Pri05], where also the transformation formula is mentioned.
Corollary Can also be deduced from results in these papers and [Pri99] but the proof
presented here is new.

Definition 4.3.1. Let » € R with 2 — 7 > 0 and g be a cusp form for the group I' of
weight 2 — r and unitary multiplier system v. The auxiliary integral of g is defined as

6 = |- [ atrir 2]

where [-]” indicates complex conjugation. The path of integration is the vertical line
p(t) = z + it where t ranges from 0 to oo.

Since g decays exponentially at ioo the integral converges and G is a smooth function
from H to C. We can define a cocycle by

Gy 17 = 055 (2) = Gl (2) — G(2).
Proposition 4.3.1. The cocycle ¢3° is in Z} (T, P) and

= / T -] (43.)

,100

forallveT.

Proof. Let v €1

Gt = [ aln)(r =2

g(ym) (v —vZ) " "d(yT)

I
T

,100

37, 2) / M) (= 7).

,100

In the last equality we used

(77_%)7“:( o ))_T J(%(TT)‘_;(Z,TE)""

3y, 7).z
To prove this let
o = arg(y7 — %) and § = arg(r — %) — arg(j(7,7)) — arg(j (7. 7)).

We know that « = f mod 27 and want to show a = . Both (y7 —4Z) and 7 — Z are
in H, so their arguments are in (0, 7). Furthermore exactly one of j(v,7) and j(v, %) will
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be in H and one in H, so —7 < § < 27 and 0 < a < 7. Together with f = o mod 27
this implies &« = 3. Now we use the modularity of g to obtain

6o2) = i1, 27v) | [ atrtr =37 (132

or Gl,,7(2) [f L 9(T)(r=2)” TdT} . An application of Cauchy’s theorem now gives
us

;?'y(z) = va)/ G(z)

:[(/_lw S
) Uwoo g(r)(r = 2)" Tdf}

To see that ¢2° is in P first note that (7 — %)™ is antiholomorphic in H as a function of
2z (actually even in the slit plane C\ {R>o+ 7}) and the integrals in the definition of G
and ¢g° converge absolutely because g is a cusp form. Therefore ¢g°, (z) is holomorphic
in H. To prove that ¢ is in P one can use simple bounds for |7 — z| . We sketch the
procedure for the case r < 0 and Im(z) > 1. In this case

[—7]
_—— <|r—z|“<2( )W 3|2

One can use this to bound ¢3° (2) by a polynomial in |z]. If r > 0 then for any 2 we
can use the bound |7 —Z|™" < |2|7" < [Im(z)], so in this case we can bound ¢3° (2)
by a negative power of Im(z). The missing case r < 0 and Im(z) < 1 is dealt with
similarly. O

Let f be another modular form of the weight 2 — r and multiplier system v. Then, since
f is holomorphic

P (o) = 1022 ) = g0~ 27 () = (207 F

This is just a scalar times the integrand occurring in the Petersson inner product of g
and f, which was defined in as

/ f(z Yy~ "dxdy,

where F is a fundamental domain of I' (Definition |1.1.3). Then by Stokes’ theorem we
have

(f,9) ———/f y "dZ Ndz = Cy, ff(z)G(z)dz

for Cy_, = —%(—2i)". Now we choose a fundamental domain according to the following
Proposition 4.2 in [Coh13)].
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Proposition 4.3.2. The fundamental domain F can be chosen such that OF = F \ F°
consists of an even number of geodesic segments [A;, Ai+1ﬂﬂf0r i=1,...,2n (the indices

are taken modulo 2n) and a; € T for i =1,...,2n such that there ezists an involution of
{1,...,2n}, denoted by m, such that

1. 7 does not have any fized points,

2. (%) A A i)+1s OéiAz’+1 - A7r(i)7

3. Qr(s) = 04;1,

4' Qg maps [AiaAiJrl[ to [Aﬁ(i)—O—l?Aw(i)[-
Example 4.3.1. For I' = SLy(Z) we choose the classic fundamental domain with A; =

OO,AQ = 62m/3 Ag = Z A4 Az + 1. Then ) = T = ((1) %) maps [Al,AQ[ to [Al,A4[ and
ag=0= (" 1) maps [As, A3[ to [A4, A3[. So 7 is the permutation that swaps 1 with 4

and 2 with 3.

Remark. For general Fuchsian groups I of the first kind an example of such a fundamental
domain is the Ford fundamental domain (see [For25|)

F={z€H|lz]| <A/2and |j(7,2)] > 1Vy eI\ Ty}, (4.3.3)

where A, the width of the cusp oo, was defined in the last section. For the rest of this
chapter, we will fix this fundamental domain for I'.

We can restate Proposition [4.3.2] as

oOF = |_| Tm zm+1 |—| Q;,, ]Azma AZerl]) :

Thus the Petersson inner product of f and g becomes

n Ay +1 iy Ay +1
Coy Z (/ —/ ) f(2)G(z)dz.
m=1 Aip, iy, Aiyy

Using the modularity of f, the second integral in the sum becomes

/aaimAimﬂ f(2)G(2)dz = /Aim+1 Flaw,2)Glei, 2)d(a,, 2)

im Aim Aip,

Aip+1
_ / F(2)Clrurs, (2)dz.

A

im
Finally we arrive at
7m+1

(f.9) = Cs_ TZ / G(2) = Gy, (2)) d

zm+1

= —Cy, Z/ 2) g, (2)dz.

n

2[A;, Aiy1] denotes the geodesic in H that connects A; and A;,1 and includes A; but not A; .
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Motivated by the previous calculations we define a pairing between cusp forms and co-
cycles:

Definition 4.3.2. Let 2 —r >0, f € 8,_(I',7) and ¢ € Z! (I',P). Define the pairing

Aim+1

(fi¢) = —Cory Z/A f(2)o(e,,)(2)dz.

im

The integrals in the sum converge because ¢(q;,, ) is in P and therefore can increase only
polynomially towards the cusps, while f decreases exponentially.

Lemma 4.3.3. Let f € S,_,(T',9) and [¢] € H] (T, P) be represented by ¢ € Z; (T, P).
The value (f, @) does not depend on a choice of representative of (@], i.e., the pairing

(f:10]) = (f, 9),
between Sy_,(I',v) and H (L', P), is well-defined.

Proof. 1t suffices to show that if ¢ is a coboundary, then (f, ¢) = 0. If ¢ is a coboundary
there exists a function h € P with ¢(vy) = h|.,7 — h. We have

At Aippt1

[ H@an @z = [ @i, 2 e has, 2, 2

A Aip,

Aipp+1

= / flas, 2)h(ay, 2)d(a, 2) (4.3.4)

A

im

im

iy Ay +1
= / f(z)h(z)dz.

A

im Ai
So

Ajpp+1

(Fo)==Cor Y [ St ) )i

n A +1
=G 3 [ HO i)~ bl
m=1" “im (4.3.5)
n Qi A +1 Aipp 1
= —CzrmZ:l </ocimAi _/Aim > f(2)h(z)dz

=Coh_, f(2)h(z)dz.
oF

The integral over the boundary is 0 because, since f(z)h(z) decreases exponentially at
the cusps, we can approach faff(z)h(z)dz by integrals over closed paths contained in
H, which are all equal to zero, since f(z)h(z) is holomorphic. O

Corollary 4.3.4. The map f — [¢%] from S,_.(T',v) to H} (T, P) is injective.

Proof. If [¢7°] is represented by a coboundary in Z} (T, P) then, by the above calculations
0= (f,[6%]) = (/, /) and hence f = 0. 0
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4.4 The Duality theorem

In this section we prove that the pairing we defined in Lemma 4.3.3) between Sy_,.(I",7)
and H%U(F,P), is perfect for 0 < 2 —r # 1. For such weights r this implies Theorem
4211

We already know that for every non-zero f in S,_,.(I',7) there exists a cocycle ¢ such
that (f,[#]) # 0, since (f,[¢7°]) = (f, f) # 0. To show that the pairing is perfect, we
therefore need to prove the following theorem.

Theorem 4.4.1. Let 1 #r <2 and [¢] € H} (T, P). If (f,[¢]) =0 for all f € So_.(T, ),
then [¢] = 0. Together with Corollary this implies that S,_.(I',7) and H; (T, P)

are dual to each other.

The proof of Theorem will be given at the end of this section. Most constructions
that follow will be valid for any real r and so, if not explicitly stated otherwise, we work
in this generality. In particular we will also show Theorem for r > 2.

Let H = H UR U {oo} be the closure of # in P'(C). A basis of neighbourhoods of co in
H is given by the sets

Hy(0) ={z € H|Im(z) > Y} U {o0}.

Let ¢ be a cusp with 7,00 = ¢ for 7, € SLy(R) such that 7,7 'T';7, is generated by 7' = ({§ }).
Then the open sets Hy (q) = 7,Hy (c0) for Y > 0 form a basis of neighbourhoods of ¢.

We define a variation of the space P that will be useful in our proof. Let Q be the space
of C*°-functions f on H such that, for every cusp ¢ of I', there exists a neighbourhood
U, CH and K,, Ay, By > 0 such that f is holomorphic in U, and

()] < Ko(|2* + =), Vz € Uy

For the purpose of proving Theorem we will actually be interested in a subspace
Q C Q, that we introduce in Definition [4.4.1]

Theorem 4.4.2. Every element of Z} (T',P) is a coboundary in Z, (T, Q).

Proof. Let ¢ € Z;,(I',P). We need to show that there exists a function G € Q with
#(v) = G|y — G for all v in I'. Choose Y large enough, so that all the Hy(q) are
disjoint and contain no elliptic fixed points. Define U = |, .yqp of r Hy(¢) and V =
Uy cusp of  F2v(¢). Then U and V' are I-invariant. Recall that the projections 7(U)
and 7(V') are open in I'\'H*. By the smooth Urysohn lemma (see for example [Con01]
Corollary 3.5.5]), there exists a smooth function 7 on T'\H* such that 7(mw(z)) = 1 for
all 7(z) € m(V) and 7f(7(z)) = 0 for all 7(2) outside 7(U). Define n(z) = n(w(z)) to be
the pullback of 7. It is a [-invariant C*°-function on H that satisfies n(z) =1 on V and
n(z) = 0 outside U.

We will first construct a function that has n¢ as a coboundary. By Theorem )
is a parabolic cocycle, so for every cusp ¢ there exists a function g, € P such that
®(04) = 9qlrvog — gq, Where o, is the generator of I';/{x1}. We define G on U as follows:
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if = € Hy(g;) for some i then G(z) = g,,(2). If z = dw for § € I' and w € Hy(q;) we
define

G(z) = v(0)7(6,w)" (¢(0)(w) + gg: (w)).

Note that this is equivalent to defining G|, ,0(w) = ¢(0)(w) +G(w), so once we show that
the definition of G(z) does not depend on the choice of §, the coboundary of nG will be
n¢. Suppose z = dw = §w', for 6,0’ € I' and w,w’ € Hy(g;). We need to check that

v(6)7 (0, w)"(A(8)(w) + gg, (w)) = v(8")7 (0", w")"(¢(6") (W) + gq, (w')).

Multiplying both sides by v(4)1j(6,w) " and using the consistency condition of the
multiplier system v, we see that this is equivalent to

3(0)(w) + gg, (w) = [(0") + gq.] |10 (6 10) (w).

This follows from the cocycle condition on ¢ and the choice of g,. Indeed, since w' &
8 '0Hy(q;) N Hy(q;) # 0 and since we assumed that all the Hy(q) are disjoint, 6’16
must fix ¢;. Hence 6’19 = %07 for some n > 1. This implies

ro(07710) (w) = ¢(8"18) (w) + gy, (w),

g(h

and so

[6(0) + g4] 1ro (0" 0) (w) = G(8)(w) — A(8"'8) (w) + gy, |1 (6”0) (w)
= ¢(0)(w) + gg, (w).

So nG is a well-defined function in Q. We have thus shown that n¢ is a coboundary in
Z},(L, Q).

It remains to show that (1 — n)¢ is a coboundary. We first construct a partition of
unity on H that is I'-invariant. The construction we describe here is due to Gunning
[Gun59|. Since I' acts discontinuously on H, every z € H has a neighbourhood O, such
that 7O, = O, if v € T, (the stabiliser of z), and yO,NO, = if v € T\T,. Let V be as
in the construction of 7, a I'-invariant open set that contains all cusps of I with 7|y, =
Since I'\'H* is compact, there exist z1,. .., 2, € H such that the sets 7(O.,) together with
w(V) cover I'\'H*. Let €,...,€,, €y be a partition of unity corresponding to this cover,
i.e., smooth functions supported in 7(O.,),...,7(0,,) and (V) respectively, satisfying

n

Y am(z) +eév(n(z) =1, VzeH.

i=1
We define functions Hi,..., H, on H as follows. If there exists g;(z) € I' such that
gi(2)z € O,, we set

Tﬁfﬁ S (0 5(2)(2),

gel’;

Hi(z) = =(1 = n(2))

where T; is the stabiliser of z; and |I';| is its order. This does not depend on the choice
of gi(2): if vz € O,, with v € ', then we must have v~ 'g;(z) € T';. Thus the set T';g;(2)
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is equal to [';y and we see that a different choice of g;(z) just permutes the summands in
the definition of H;(2). If no such g;(z) € I" exists we set H;(z) = 0.

Clearly H; is a function in Q and defining H = Y7, H;, we will see that H|,,7(z) —
H(z) = (1—n(2))p(v)(2) for all v € " and z € H. First note that if z is in V, then H(2)
and H(vyz) vanish and so does (1 —n(z))o(y)(2). If z is not in V' we have

Hlr () === 1) 30 4 3 000 0ir2)lnan 2,

g€l

where the first sum is over all ¢ such that there exists a g;(yz) € I' with g;(v2)vz € O,,.
Now we choose g;(vz) = gi(2)y", to get that H|,,v(z) equals

() 35 Slole- g - o))

gerl;

= (1 =n(2)(6()(2) + H(2))-

i

]

In the definition of Q, the constants K, A, B, may vary from cusp to cusp, in the

following definition we impose stricter growth conditions, requiring the constants to be
fixed.

Definition 4.4.1. Let O be the space of functions F' in Q such that there exist positive
constants K, A, B with

IF(2)| < K(|z|* +y7P), VzeH.

Note that the functions in P are the holomorphic functions in Q.

Proposition 4.4.3. Let F be in Q. If v — Fl,,y — F = () is in Z) (U, P) then F is
in Q.

Proof. This proof is similar to the proof of the main theorem of [Kno85|. Let M be the set
of matrices v in I with A\/2 < Re(yi) < A\/2. M is a complete set of coset representatives
of ['o \ T'. We need a technical lemma from [Kno74]:

Lemma 4.4.4. (Lemma 8 in [Kno7{|]) There exist positive constants K1, A1, By such that
forallr e FNH and all vy € M

[W()(T)] < Ky(Im(y7)™ + Im(y7) =),

Since only finitely many cusps are in F and since the real part of z € F is bounded, we
can also find positive Ky, Ay, By with

|F(7)] < Ky(Im(7)™ + Im(r)~52), Vre FNH. (4.4.1)

As in the proof of Theorem [4.4.2] we use the fact that ¢ is parabolic and hence there exists
a function g, € P such that ¥)(05) = goo|rvTo0 — goo- The equation F|, ,000 —F = (0)
implies

(F = goo)lrv0o0 — (F = goo) = 0.
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Fisin Q if and only if F' — g is in P, so we can assume without loss of generality that
F(z+ X)) = v(0s)F(2). Let z € H. There exists 7 € F and v € T such that z = 7.
Since M is a complete set of representatives of 'y, \ I, there is an integer m and 6 € M
such that z = o¢27. If 6 = I then we can deduce

|F(2)] < Kg(hrn(T)A2 +Im(z)"P2),

from equation (4.4.1) and the fact that |F| is I'w-invariant. Suppose 6 = (%) is not the
identity. Then ¢ # 0, because the only member of M that fixes oo is I. We have

|F(2)] = |[F(oZoT)| = [F(67)| (4.4.2)
< |76, DI (F ()] + [ (3)(7)]) (4.4.3)
< 15(0, 7)["[Ko(Im(7)2 + Im(7)52) (4.4.4)

+ K (Im(67)% + Im(o7)5Y)).

By our choice of fundamental domain we have |j(d,7)| > 1, since § ¢ I'o. Soy = Im(2) =

[m(r) y
l7(6,7)|? [7(6~ o™ 2)I2
and

< Im(7). On the other hand, using 7 = §~*0 "2 we have Im(7) =

15(6 o ™ 2)|? = | — ez + emA +al? = Py + (emA +a — cx)? > ey’ > coy?,

oo

where ¢y > 0 depends only on I'. Such a ¢y exists because I' is discrete. Therefore y <
Im(7) < cgly™", Im(7)*2 < ¢y ™y 2 and Im(7) 52 < yP2. Also | (6,7)|" = (Im(T))_T/2

is either <1 (if » <0), or < car/zy_’” (if » > 0). These inequalities inserted into 1)
lead to the desired inequality of the form

[F(2)] < K(l2" +y77),
for positive constants K, A, B and all z € H. O

Corollary 4.4.5. Every cocycle in Z} (T, P) is a coboundary in Z} (T, Q).

Let ¢ € Z, (L', 'P). By Corollary |4.4.5[there exists a function g € Q such that g|, ,y—g =
¢() for all v € T'. By the same calculation as in equation (4.3.5)), for any f € Sy_.(T', v),
we have

zm+1

(f.6) = —Cy_ ,Z / (gl (2) — 9(2))d

=Coy | f(2)g()a

—Cy /giawf()

Here we note again that the integrals above exist because g can only increase polynomially
towards the cusps of I', while f decreases exponentially.
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4.4.1 Spectral theory of automorphic forms

To carry out the proof of Theorem we will apply spectral theory. We only give a
very brief introduction here; for more details and proofs, see the exposition [Roe66] by
Roelcke. In these articles Roelcke uses a variation of the slash operator which we denote
by [,

(o 2\ /2
M) = (225 stnseo),

The connection to our slash operator is given by the following lemma:

Lemma 4.4.6. Let f : H — C, F(z) =y2f(z) and v € T'. Then
y2 (flrov(2)) = Pl (2).

So a function f is invariant under |, if and only if F(z) = y2 f(2) is invariant under
R

rv*

Definition 4.4.2. Let H,, = H,(I',v) be the Hilbert space of functions f that are
invariant under |,’fv and have finite norm with respect to the scalar product

o= [ AR

The weight r hyperbolic Laplacian and the Maass weight-raising and weight-lowering
operators are defined as

0 r

K, =(z—7)<
r=(z Z>8z+2’
0 r
A =(z—2)— 4+ —.
= (z z)82+2

Before we sum up the main properties of these operators in Proposition we recall
some definitions from operator theory.

Definition 4.4.3. Let H and H’ be Hilbert spaces and let T be a linear operator from a
subspace D of H to H'. T is called closed if, for every sequence x,, in D that converges
to x € H such that Tz, converges to y € H', we have x € D and Tx = y.

Definition 4.4.4. If D is dense in H then for any operator T from D to H, we can define
its adjoint T* on the domain

{y € H:xzw~ (Tx,y) is continuous on D}.

Any y in this set defines a linear functional on D by ¢, : © — (T'z,y). This functional
can be extended to H and by the Riesz representation theorem there exists z € H such
that ¢,(z) = (x, z) for all z in H. We define T%y = 2.

An operator is called self-adjoint if it is equal to its adjoint. An operator is called
essentially self-adjoint if T C T* = (T*)*, where T' C T* means that 7™ extends 7.
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Let
D? = {f € H,,|f twice differentiable and — A, f € H,,}.

Proposition 4.4.7.

(i) A, :D? — H,, is essentially self-adjoint. It has a self-adjoinl exlension to a dense
subset of H,, that we denote by D,.

(i1) The eigenfunctions of A, are smooth (in fact they are real analytic).

1) K, :D? = H,.9, and A\, : D> = H,_5, can be extended to closed operators defined
i +2,v T )
on D,. For f € D, and g € Dy, we have

(Krfa g)R = (fv A2+rg)R‘

(iv)

r

S0+ By = KA+ 21— ).

_Ar = Ar Kr -
+2 2 2 2

Proof. For proofs of the statements (i), (iii) and (iv) see [Roe66]. (i) is Satz 3.2, (iii)
follows from the discussion after the proof of Lemma 6.2 on page 332 and (iv) is equation
(3.4) on page 305. Statement (ii) follows from the fact that A, is an elliptic operator
and elliptic regularity applies. For an introduction to the theory of elliptic operators, see
[GTO1]. The result needed here is Corollary 8.11 in [GT0T]. O

Definition 4.4.5. A cuspidal Maass wave form in H,, with eigenvalue A is an eigen-
function of —A, with eigenvalue A that decays exponentially at the cusps of I'.

Remark. By [Roe66, Satz 5.2] all eigenfunctions in H,., of —A, of eigenvalue £(1— %) are
of the form y2 f, where f is a modular form in M,.(T', v) that has finite Petersson norm,
i.e., (f, f) < oo. If fis a cusp form, then y2 f is a cuspidal Maass wave form.

The main result in |[Roe66| is a spectral decomposition of A,. For this purpose we
introduce the Eisenstein series. Let ¢ be a cusp of I', o, the generator of I';/{£I}
and A, € SLy(R) chosen such that ¢ = A;loo. The cusp q is called singular for the
multiplier system v, if v(o,) = 1 and regular for v otherwise. Let ¢i,...,¢n+ be a set
of representatives of the cusps of I' that are singular for v. For each of these cusps, we
define the Eisenstein series
1 —— (§(AM, 2\
Bl (z,5) = 5 Z o, (Ag, M) 0(M) <§EAZ—M:Z;) (Im A, Mz)°.

MeT\T

The definition of E?, depends on the choice of A,, but a different choice of A, will
only multiply the Eisenstein series by a constant of absolute value 1. The series above
converges absolutely and uniformly for (z,s) in sets of the form K x {s|Re s > 1+ €},
where K is a compact subset of H and € > 0. For a fixed s with real part > 14¢, one can
use the absolute and uniform convergence of the series to see that Ef (-, s) is invariant
under |7, and that

“ACES () = s(1 = $)EL (- 5)

These series can be meromorphically continued and play an important role in the spectral
decomposition of A,.
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Theorem 4.4.8.

(i) For fized = € H the Eisenstein series Ef (z,-) can be meromorphically continued to
the whole complex plane.

(i) If, for one fived z, EZ (2,-) has a pole of order n at sy, then the function f(z) =
lim, s, (s — 50)"E2, (2, 5) is real analytic, invariant under |F, and satisfies

_Arf - 80(]— - SO)f‘

If n is chosen so that f(z) has no poles in H, then f grows at most polynomially
at each cusp of ', i.e., if q is a cusp of I' and 7,00 = q for 7, € SLa(R), then there
exists A € R such that f|,7,(z) = O(y?) as y — oo.

In particular, if E} (2, s) is holomorphic at s = so, then
_ATE;J,U('7 80) = 80(1 - 30>E7?,’U<.7 SO)'

Furthermore we have the following equalities:

T

KTE:"I,U(W SO) - (5 + 80) EngQ’v('; 50), (445)
T

ATE?’,U(-? 50) = (5 - 50) E3727v(-, So)- (4.4.6)

The poles of Ef (z,-) in the half plane defined by Re s

> 2 are all simple and in the
interval (%, 1]. In particular there are no poles on the line R

1
2
€s 2

Theorem 4.4.9 (Spectral expansion). Let f € D, and e, be a mazimal orthonormal
system of eigenfunctiond] of A,. Then f has a spectral expansion

_ 1 .
F=3 e eﬁzm / (g i), F)PER (2 5+ ip)dp.

If f has compact support mod T, i.e. W(supp(f)) is compact in T\H*, then both parts of
the spectral expansion, > (en, f)%e, cmd S = [ (B S +ip), [)RED (2,5 +ip)dp,
converge absolutely and uniformly on compact subsets of H.

The properties of Eisenstein series and the spectral expansion are proved in the second
part of [Roe66] with the notable exception of the fact that Eisenstein series can be mero-
morphically continued to the whole complex plane. Roelcke attributes the meromorphic
continuation to Selberg and a proof of it can be found in |[Bru81, §11]. The version of
the spectral expansion we state is a combination of Satz 7.2 and the second part of Satz
12.3 in [Roe66].

We turn back to the proof of Theorem Let [¢] € H},(I',’P) be represented by
¢ € Z',(I,’P). By Corollary 4.4.5| there exists a function g € Q such that

() =glry — 9, Vv €T (4.4.7)

3An orthonormal system of eigenfunctions of an operator 7' on a Hilbert space H is a set of eigen-
functions of T' that are pairwise orthogonal and have norm 1.
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By applying a% to (4.4.7)), we see that

%9 (2) = v i(1.2) i1, 2) 22 (12)

A short calculation shows that the function
G:z—y2 —=(2) (4.4.8)

is invariant under | .. Moreover G vanishes in a neighbourhood of every cusp since g
is holomorphic there, so G has compact support mod I' and is in Hy_, 5.

To prove Theorem [4.4.1} we have to show that if ¢ is orthogonal to Sy—,.(I', 7), then g € Q
can be chosen to be holomorphic. This implies that ¢ is a coboundary in Z; (I, P).

Lemma 4.4.10. Let 2 —r > 0 and ¢, g and G be as above. Then (f,¢) = 0 for all
f € S . (,) if and only if (f,G)E = 0 for all cuspidal Maass wave forms f with
eigenvalue 5(1 — 7).

Proof. We have the equality

‘ _— o )
20@2” o= %/}'89 A e = /nyf(Z)G(Z) :;Qy =(y >

1GO)",

so (f,¢) = 0 for all f € S,_(I',7) if and only if (f,G)® = 0 for all functions f of the
form y%f, f € Sy .(T,v). According to Remark these functions are exactly the
cuspidal Maass wave forms of eigenvalue Z(1 — 7). ]

We can now use spectral theory to characterise functions which are orthogonal to cuspidal
Maass wave forms of eigenvalue £(1 — 7).

Proposition 4.4.11. Let 2 —r # 1 and H be a smooth function in Hy_,5 with compact
support mod I'. Then the following are equivalent:

(i) (f,H)® =0 for all cuspidal Maass wave forms f with eigenvalue s(1—13).

(i) H = K_,F + K_,E, where F is a smooth function in H_.5 and E is a linear
combination of the functions E* (2, %).

If2—r>1o0r2—r <0 this implies ' = 0.

Remark. By [Kno67| and [? | we have S_,(I',v) = {0}, if 2 — r < 0. Since, by [Roe66]
Satz 5.2|, all cuspidal Maass wave forms of eigenvalue 2(1— %) are of the form y2 f, where
f € Sy (I',v), the first condition is always satisfied in the case 2 —r < 0.

Proof. ({)=-(ii): By |[Roe66l Satz 6.3] there is a maximal orthonormal system of eigen-
functions of Ay_, consisting of:

1. Images of eigenfunctions of A_, under the Maass raising operator K_, = (z—?)% —

7. We denote these by K_,e,. By [Roe66, Satz 6.3] these eigenfunctions cannot

have eigenvalue 7(1 — 7).
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2. A (finite) orthonormal basis of the eigenfunctions of eigenvalue £(1—7%). By Remark

this set is of the form {y%fl, . ,y%fN}, where the f; form an orthonormal
basis of the subspace of My_,.(I',7) of modular forms with finite Petersson norm.
If 2 —r > 1 this subspace is equal to Sy_,.(I', ¥), while for 2 — r < 1 every modular
form in My_,(I',0) has finite Petersson norm.

Hence by Theorem the spectral expansion of H is of the form

N
2—r 2—r
H=> (K_pen, H)'K_ren+> (y7 fi, H) 'y fi+
n =1

s

~

~
= 2—r -
=K_F :yﬁlE

*

3

1 ~ di 1 ) R 174i 1
47T/00(E2 rv<72 +Zp)7H) E2 rv( 2 "—’Lp)dp

=1

J/

=I5
Here we used that Y (K_,e,, H)®K_,e, converges absolutely and uniformly on com-
pacta to swap differentiation and summation and write it as K_,. I}, = K_, (Z (K_,en, H)Ren).
We now show that FQ = K_,F, for a smooth function F, € H_, 3 Applying equation

(4.4.5) twice and using Proposition we see

> 1. 1
/(%w&v+w%mﬂﬁm(2+m®

< (1- - 1 1

:(Eq_irj:A2—rH)R

Ifr#1

. o /1—r N\ I
e = [ (55 4) (B e B+ i) (1.49)

converges absolutely and uniformly on compacta. To see this note the integrand can be
bounded above by

1—7r 1
Mo HY'ES, (25 +ip)],

72 (B

—r,0)

and

00 1
/ (E® 5, AQ,TH)RE%M(,Z, 3 +1ip)dp,

converges absolutely and uniformly on compacta as it occurs in the spectral expansion of
As_.H. So when we apply K_, to F5, = Zznl 41 F} we can swap it with the integral and
obtain

K ,Fy=F.
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Fy is clearly in H_,5 by the bound we used for the F. We have thus shown that
H=K_ ,F+y7TE, where F=F +F, € H_,. (4.4.10)
To see that F' is smooth we apply Ay, to (4.4.10) and obtain
Ao H =Ny yK_,F+ Ny (y7 E) = —A_,F — 2(1 - g)F 4 Ao, (y T B).
We see that F'is a solution of an elliptic differential equation and so, by elliptic regularity,
F' is smooth.

It remains to show that y?E~ is in the image of K_,. Since H is orthogonal to all
cuspidal Maass wave forms with eigenvalue $(1 — ), we see that in the expansion

N
E=Y (y= fi, H)'f,
i=1

only the f; € My_.(I',v) that are orthogonal to Sy_.(I',7) can occur. Hence F must be
orthogonal to Ss_,.(I", ¥) and has finite Petersson norm. If 2—r > 1 this implies E=0.1f
2 —r < 0 we have M,_,(I',7) = {0} by [Kno67], so in this case we also have £ = 0. We
are left with the case 0 < 2 —r < 1. In this case all modular forms in My_,.(I",7) have
finite Petersson norm, so E can be any form in the orthogonal complement of Sy (T, D).
We can appeal to [Roe66l Satz 11.2], to see that E is a linear combination of residues of
Eisenstein series at s = 5. Therefore there exist a; € C with

ZalRess_, (B3, 5(2,5)).

Note that we can restrict the sum on the right hand side to include only Eisenstein series
that have a pole at s = 7. On the other hand Eisenstein series of weight —r never have
a pole at s = % by [Roe66] Satz 13.2], since —r < —1. Equation (4.4.5) now implies

Ress—r (E3., ;(z,5)) = lim (s — §)E§’ ) (4.4.11)
S—)Q

— lim K, E% (2,5) = K_,E% (2, ;) (4.4.12)
5=

—’f”U

.:>. Let H=K_,F+ K_,FE as described in 1) and let f be a cuspidal Maass wave
form with elgenvalue 7(1 —%). From the first part of the proof we know that K_,E has

the form y°z" E, where E € M,_,(I,7) is orthogonal to S,_,(I',7). This implies that
yQ%E is orthogonal to f with respect to the scalar product of Hy_, 7, so

<H7 f)R = (K*TFv .]E)R = (F7 A27Tf~)R'
Since f =y~ 7 f is in Sy _(I', ) and hence holomorphic we have

f=(-25L =

Setting £ = Y7 a;E” (2, %) we can confirm statement 1.)

-

A27rf = Ay, <y22

and therefore (H, f)* = 0.

0,
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Theorem now follows from Proposition 4.4.11

Proof of Theorem and of Theorem [{.2.1] for 2—r # 1. Let ¢ € Z}! (I',P) and g
and G be constructed as in 7) and (4.4.8). In the case 2—7r > 0 suppose additionally

that (f,¢) =0forall f € S, T(F 7). By Lemma[4.4.10]in the case 2—r > 0, and Remark
4.4.1|in the case 2—r < 0, G satisfies condition (i . ) of Proposition m Hence there is a
smooth F' € H_,5 and a linear combination of Eisenstein series E(z) = > " | a; E* (2, §),
with

G=K , F+K E=K  (F+E).
As stated in Proposition §.4.11] E is only non-zero if 0 < 2 —r < 1, and in this case the
Eisenstein series E”, ;(-, 5) are smooth functions that grow at most polynomlally at each

cusp of I'. Since F' is smooth and in H_, 5, F' also grows at most polynomially at each
cusp and so the same is true for D = F + . We have

’““g& )= 2y 22 Doy

2 a _r
Glz)=y> % 3 g(y D).

Dividing by y%z and taking the complex conjugate of both sides we arrive at

dg 0

52(2) = 5= (=272 D)(2). (4.4.13)

D is invariant under \fv. By Lemma the function

D(z) = —2iy~2 D is invariant under |,,. This invariance implies that § = g — D satisfies
Glroy — g = ¢(7y) for all v € T'. Since D grows at most polynomially at the cusps of T,
§ satisfies the growth conditions for functions in Q. Proposition now tells us that
g € Q. Note also that equation implies that ¢ is holomorphic, so g € P. We
finally conclude that ¢ is indeed a coboundary in Z; (T, P).

Since D is invariant under |7 -,

The proof above shows in particular that for 2 — r < 0 every cocycle in Z! (F P) is a
coboundary and hence H; (I',v) = {0}. This proves Theorem |4.2.1| for 2 — r <0, since
So—(I',w) is also {0} in this case. O

Remark. The proof fails if 2 — r = 1, because Proposition 4.4.11] is not available in
that case. The only point where we need the assumption 2 —r # 1 in the proof of
that proposition, is when we show that F3 is in the image of K _,., in particular for the

construction of the functions Fj € H_,5 in (1.4.9)). The crucial consequence of Proposition
4.4.11]is that G is in the image of K_,.. In the case 2 —r = 1 we only obtain

. 1
G=K F+ Z / o= —|— ip), G)"ET (2, 3 +ip)dp.

In the notation of the proof of Proposition [4.4.11| we have F' = F} and E = 0 since r = 1.
To prove Theorem in this case, one would need to show that the second summand
above is in the image of K_.
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4.5 Vector-valued modular forms

In this section we generalise Theorem to vector-valued cusp forms. Let p: I' = U(n)
be a unitary representation of I' on C" and v a unitary multiplier system of weight r. Let
F be a function from H to C". The slash operator |, ,, is defined by

Flrw,1(2) = (v, 2) " 0(y)p(y) T F(72).
Definition 4.5.1. A function f : H — C" is a modular form for I" of weight r, represen-
tation p, and multiplier system v if the following conditions are satisfied:

(i) f is holomorphic on H.
(i) f(2) = flrwpy(2) forall y € I" and z € H.

(iii) If ¢ is a cusp of I and Aocc = ¢, then for any € > 0
J(A, 2)7"f(Az) is bounded for y > €.

If f satisfies the additional condition

(iii") If ¢ is a cusp of I and Aoco = ¢, then there exists an € > 0 such that
J(A,2) 7 f(Az) = Oyy(e™),

it is a cusp form. The set of modular forms or cusp forms of this kind is denoted by
M, (T, v, p) and S,(T, v, p) respectively.

Let P" be the set of vector-valued functions f(z) = (f1(2), ..., fa(2)) such that all f; are in
P. The slash operator |, , defines a T'-action on P™ and so we can define the cohomology
groups H}, (I',P") and H}, (I',P"). Just as in the 1-dimensional case, they turn out
to be the same. The proof of this fact relies on a generalisation of Corollary

Proposition 4.5.1. Let U € U(n), s € R\ {0} and g € P". Then there exists an f € P"

such that
U'f(z+5s)— f(z) =9g(2), VzeH. (4.5.1)

Proof. Since U is diagonalisable, there exists a V' € U(n) and a diagonal matrix D € U(n)
with

U=V*DV.
Multiplying equation (4.5.1) by V', we get
D'V f(z+s)—Vf(z)=Vyg(z). (4.5.2)

Let €,...,€, be the diagonal entries of D and G = Vg = (Gy,...,G,) € P". We can
use Corollary to find solutions F; € P for

aFi(z +5) = Fi(2) = Gi(2).
Then f=V~YF,...,F,) is in P" and satisfies (4.5.2)). O

This can be used to show

Theorem 4.5.2. Every cocycle in Zip(F,P") is parabolic.
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4.5.1 Petersson inner product

Let 2—7 >0 and f,g be in So_(T',7, p~!). The Petersson inner product of f and g is
defined by

(f.9) = /f (f(2), 9(2)) y~"dudy,

where ((a;), (b)) = >.r, a;b; is the usual scalar product on C". We will repeat the

)

constructions of Section

Lemma 4.5.3. Let g be in Sy_(T',0,p7 1), then

o0 -

¢;@<z>:w¢;g<z>—[/w o)~ ar)

—loo

is a cocycle in Z, (T, P").

Again we can use Stokes’ theorem to show

<f(z), o (z)> dz.

Aipt1
i

(f.9) = —omz /

Using this we define a pairing between Sy (I, v, p™') and H}, (T',P") as follows. Let

0,p

f eS8 (T,p7",7) and [¢] € H} (T, P") be represented by ¢. Then

m

A1
7

hio) =0 =6, Y [ (), B @)

m

is well-defined (independent of the representative ¢), and furthermore we have the fol-
lowing theorem, analogous to Theorem [1.2.1]

Theorem 4.5.4. Let v and p be as above and 0 < 2 —r # 1. The pairing defined above
is perfect, so the map [+ ¢F° induces an isomorphism
So(D,w,p~ ") = HY (D, P).

If 2 —r <0 we have
82—7“<Fa@7 p_l) = H,},U,p(F,P”) = {0}

Proof. All the constructions of Section work in the vector-valued case. In particular
every statement we cited from |[Roe66]| is already formulated for vector-valued functions.
The fact that every vector-valued modular form of negative weight is 0 is also stated in
[Roe66] as a consequence of Satz 5.3; and this generalises the main theorem of [Kno67].
It is also shown that a vector-valued modular form of weight 0 is constant. O]
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