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APPENDIX A Ultrasonic Interaction With Thin Layers 

A.1 Single Interface 

 
Z Acoustic Impedance 

p Acoustic Pressure 

u Particle Velocity 

A Pressure Amplitude at x = 0 

I Intensity 

R Intensity Reflection Coefficient 

T Intensity Transmission Coefficient 

r Pressure Reflection Coefficient 

t Pressure Transmission Coefficient 

α1 α2 Attenuation Coefficient (nepers/m) in medium 1, 2 

k1 k2 Wavenumber (2πf/c) in medium 1, 2 
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For normal incidence plane waves at a single interface, the following treatment 

for reflection and transmission applies: 
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A.2 Dual Interface – Thin Layer 

 
r12 Pressure Reflection Coeff. Interface 1-2 

t12 Pressure Transmission Coeff Interface 1-2 

r21 Pressure Reflection Coeff. Interface 2-1 

t21 Pressure Transmission Coeff Interface 2-1 
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For normal incidence plane waves at a dual interface, the following treatment 

for reflection and transmission applies. 

Multiple reflections between the two interfaces result in Geometric Progressions 

for the overall reflection and transmission coefficients: 
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Finally, assuming that -1 < r12 < 1 so that the GP converges, and by summing 

the GP to infinity in each case: 
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A.2.1 Calculating the reflection coefficient: r 
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It can be shown that: 12112
2
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In order to determine the modulus of the reflection coefficient: 
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If attenuation in the inter-layer is neglected (ie α2 = 0), then: 
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Figure A-1. Plot of the absolute reflection coefficient from equation A-4 using a 

single thin resin layer embedded in carbon-fibre composite of 80% fibre volume 

fraction. This becomes the modulation function for inter-ply resonances. 
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A.2.2 Calculating the transmission coefficient: t 

From Equation (A-1): 
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If attenuation in the inter-layer is neglected (ie α2 = 0), then: 
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APPENDIX B Reflection and Transmission at a rough 
surface 

 

For measurements of absolute attenuation to be corrected for surface losses it 

is necessary to be able to measure or calculate those surface losses accurately. 

This can be achieved in a variety of ways for smooth surfaces where the 

normal-incidence plane-wave reflection and transmission coefficients are 

independent of frequency. However, rough surfaces scatter ultrasound in a 

frequency-dependent manner and the transmission coefficient must be 

determined at the particular frequency used for the attenuation scan. Apart from 

the method of using a step wedge to obtain measurements at a range of 

thicknesses, the other methods of correcting for surface losses cannot easily 

provide this information. The following discussion includes an analysis of the 

problem and proposes another method for determining transmission coefficients 

at specific frequencies. 

B.1 Smooth interfaces 

At a smooth interface there should be minimal scattering and conservation of 

energy, which requires that the energy in the incident wave equals the sum of 

the energies in the reflected and transmitted waves. The intensity I is the 

average rate of flow of energy through unit area normal to the direction of wave 

propagation. It can be shown that the ratio of the reflected and incident 

intensities is given by: 
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where r is the amplitude reflection coefficient, t is the amplitude transmission 

coefficient, Zi is the acoustic impedance of the incident material and Zt is that of 

the transmission material .  

B.2 Rough interfaces 

At a rough interface there will be energy loss due to scattering. This effect 

increases as the frequency increases. A phase-screen approximation, 

presented by Nagy and Rose 1993 gave the losses relative to the amplitudes 

for a smooth interface as: 

Reduction in reflection coefficient due to scattering = (dB) 7.342
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where Rq is the rms roughness of the surface, f is the frequency, and ci  is the 

speed of sound in the incident material and ct is the speed of sound in the 

transmission material. Hence at a water/composite interface ci  is the speed of 

sound in water and ct is the speed of sound in composite.  

Therefore, measurements of the reflection coefficient at the interface over a 

range of frequencies can be used to determine the rms roughness. The 

extrapolated value for 0 Hz will also provide a method for determining the 

surface losses for rough surfaces.  

 

Reduction in transmission 
coefficient due to scattering 
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APPENDIX C Use of the analytical model for FVF 
measurement 

C.1 Ply thickness 

Using the simple analytical model described in Appendix A with the simple 

volumetric mixture rule, it can be shown that both frequencies and reflection 

coefficients at resonance are proportional to local ply-thickness changes and 

hence to local FVF. If the density and acoustic velocity in the plies remain 

constant when the ply thickness changes, the resonance frequency would 

change as shown in Figure C-1 for the scenarios tabulated in Table C-1. 

Material properties used were: fibre density 1.69 kg/dm3 and modulus 16 GPa, 

resin density 1.27 kg/dm3 and modulus 10.7 GPa. 
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Figure C-1.Theoretical frequency response of a single ply with thickness 

corresponding to 7, 8 and 9 plies per mm, with the inter-ply layer reflection 

amplitude for a 0.02 mm layer shown too. The model assumed the same 

density and acoustic velocity for the plies regardless of ply thickness. 
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Ply Thickness 
(mm) 

No. of plies 
Total Thickness 

(mm) 
Fibre Volume 

Fraction 

0.143 7 1 80% 

0.125 8 1 80% 

0.111 9 1 80% 

Table C-1. Values used for the modelled results shown in Figure C-1. 

C.2 Fibre Volume Fraction (FVF) 

If an assumption is made that fibres do not move laterally within a ply, then it 

follows that ply thickness changes are accompanied by corresponding FVF 

changes. Such local FVF changes are accompanied by changes in effective 

elastic moduli and density in the equivalent medium according to some mixture 

rule (see Chapter 4), thus causing a change in acoustic velocity. When these 

are taken into account in the simple propagation model, it is possible to 

calculate the change in frequency response as a result of FVF changes 

resulting from a ply changing in thickness. Figure C-2 shows the effect of 

varying the thickness of a ply that should normally be 0.125 mm thick with a 

FVF of 80%, but is allowed to change in thickness by approximately ±11%. The 

corresponding FVF changes are shown in Table C-2. 

Ply Thickness 
(mm) 

No. of plies 
Total Thickness 

(mm) 
Fibre Volume 

Fraction 

0.143 7 1 70% 

0.125 8 1 80% 

0.111 9 1 90% 

Table C-2. Values used for the modelled results shown in Figure C-2. 

There are only imperceptible differences between the graphs in Figure C-1 and 

Figure C-2 because the velocity only varies by approximately 3% when the FVF 

increases from 70% to 90%. Thus the peak frequencies were only in error in 

Figure C-1 by 0.15 MHz.  
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Figure C-2. Similar to Figure C-1 but allowing for density and modulus changes 

due to the FVF change associated with a ply varying in thickness. Theoretical 

frequency response of the ply resonance is shown for ply thickness variations of 

a ply that is nominally 0.125 mm thick at 80% FVF. The variation corresponds to 

a change from 70% FVF (0.143 mm thickness) through 80% FVF to 90% FVF 

(0.111 mm thickness).  

As some of the specimens supplied for evaluating the strategy use plies as thick 

as 1 mm, a table and graphs have been produced (see Table C-3 and Figure 

C-3) to show the frequency dependence of the ply resonances in that case.  

Note that the resonances occur at much lower frequencies. 

Ply Thickness 
(mm) 

No. of plies Total Thickness 
(mm) 

Fibre Volume 
Fraction 

1.143 7 8 70% 

1.000 8 8 80% 

0.889 9 8 90% 

Table C-3. Values used for the modelled results shown in Figure C-3. 
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Figure C-3. Similar to Figure C-2 but for much thicker plies - nominally 1.0 mm 

thick at 80% FVF. The variation corresponds to a change from 70% FVF (1.143 

mm thickness) through 80% FVF to 90% FVF (0.889 mm thickness). 

By tracking the ply resonances from each volume element in the structure, it 

should be possible to obtain a measure of the local FVF.  In order to use this it 

would be necessary to calibrate an ultrasonic parameter against FVF. There are 

two possible parameters: peak frequency or peak amplitude (reflection 

coefficient). These are both plotted against FVF in Figure C-4, Figure C-5 and 

Figure C-6 for material with 8 plies, 4 plies, and 1 ply per millimetre respectively. 
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Figure C-4. Graphs of the first (pink) and second (blue) resonant frequencies 

(top) and the reflection coefficients (bottom) calculated for two interfaces - either 

side of a single ply – for a range of FVF values for 0.125 mm thick plies (8 plies 

per millimetre) with a designed 80% volume fraction value. 
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Figure C-5. Graphs of the first (pink) and second (blue) resonant frequencies 

(top) and the reflection coefficients (bottom) calculated for two interfaces - either 

side of a single ply – for a range of FVF values for 0.25 mm thick plies (4 plies 

per millimetre) with a designed 80% volume fraction value. 
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Figure C-6. Graphs of the first (pink) and second (blue) resonant frequencies 

(top) and the reflection coefficients (bottom) calculated for two interfaces - either 

side of a single ply – for a range of FVF values for 1.0 mm thick plies (1 ply per 

millimetre) with a designed 80% volume fraction value. 
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The graphs in Figure C-7 show that it is possible to calibrate both the resonant 

frequency and the peak reflection coefficient at resonance against FVF.  
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Figure C-7. Calibrations for resonant frequency vs FVF (top) and peak reflection 

coefficient vs FVF for the first (pink) and second (blue) resonant frequencies as 

a function of the nominal number of plies per millimetre and for 80% designed 

FVF in each case. 
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Figure C-8 shows that the slopes of the graphs in Figure C-7 are dependent on 

nominal FVF for resonant frequency, but less so for reflection coefficient.  
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Figure C-8. Graphs showing the variation in slope of the graphs in Figure C-7 

with nominal FVF. The top graph plots the resonant frequency dependence and 

the lower graph plots the reflection coefficient dependence. 
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Proposed equations for determining FVF have been developed based on the 

above modelling simulations, which show that a change in the resonance 

frequency is proportional to the fractional change in FVF, but the reflection 

coefficient at resonance is proportional to absolute FVF. This allows the 

generation of equations that apply to any composite system provided the 

nominal ply thickness and nominal FVF are known. The equations are as 

follows: 

 nomnn tFVFfFVF α=  (C-1) 

 tRFVF nnβ=  (C-2) 

where fn is the resonance frequency of the nth harmonic resonance, Rn is the 

corresponding reflection coefficient for the nth harmonic, t is the nominal ply 

thickness, FVFnom is the nominal FVF and αn and βn are the calibration 

coefficients – note that n=1 for the second resonance. The values for αn and βn 

for the first two resonances (n=0 and n=1) are shown in Figure C-9 and Figure 

C-10. 
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Figure C-9. Variation with nominal FVF of the first two α coefficients for the 

frequency-based method of measuring FVF using ply resonance effects. 
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Figure C-10. Variation with nominal FVF of the first two β coefficients for the 

amplitude-based method of measuring FVF using ply resonance effects. 
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APPENDIX D Bezier Curves and Hilbert Transforms 

D.1 Bezier Curves 

Bezier curves (Bartels et al, 1998) are widely used to model smooth curves with 

just a few control points that can be manipulated by the user in an intuitive way. 

Quadratic Bezier curves were adequate for this work and are described below 

D.1.1 Quadratic Bezier curves 

A quadratic Bezier curve touches two lines at specified points on those lines 

and in each case with a local gradient equal to the gradient of the line it 

touches.  It forms a smooth transition between the two lines. The curve can be 

defined in terms of just three control points: the point of intersection P1 of the 

two lines and the point on each line where the curve just touches, P0 and P2. 

 

Figure D-1. Construction of a quadratic Bezier curve B using control points P0, 

P1 and P2. 

The principle is that the Bezier curve is the locus of points B such that B is a 

fraction α along a line between two points Q0 and Q1 that are themselves a 

fraction α along the lines between P0  and P1 and P1 and P2 respectively. Thus 

B obeys the following equation which can be used for each of the cartesian 

coordinates of B, P0, P1 and P2: 

 2
2

10 )1(2)1()( PPPB ααααα +−+−=  (D-1) 

P1 

P0 

P2 

B 

Q0 

Q1 
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D.2 Hilbert Transforms 

D.2.1 Derivation 

The Hilbert Transform, named after David Hilbert, was first used as an 

ultrasonic signal processing tool by Gammell (1981), who described its use to 

track the reflected energy from a propagation medium. The Hilbert Transform 

determines from a measured signal the imaginary component of a complex 

analytic signal where the real component is the measured signal. This can be 

explained as follows. 

Gabor (1946) originally defined the complex analytic signal as a complex form 

where the measured signal is just the real component. For example, with a 

simple harmonic function, the real signal 

 )sin()cos()( tbtatf ωω +=  (D-2) 

(where a and b are real constants and ω is the angular frequency) is replaced 

by the complex form: 

 )exp()()()()( tiibatigtfth ω−=+=  (D-3) 

The function g(t) is produced from f(t) by replacing cos(ωt) by sin(ωt)  and 

sin(ωt) by -cos(ωt). The function g(t) thus represents a signal in quadrature 

(retarded by π/2 radians) with the signal represented by f(t). If g(t) is not a 

simple harmonic function, the complex analytic signal can be obtained by 

similar treatment to each Fourier component. 

The method of determining the Hilbert Transform in the frequency domain is to 

subtract π/2 radians from the phase of each frequency component above zero 

up to the Nyquist frequency (half the sampling frequency)  and add π/2 radians 

to those above the Nyquist frequency (the negative frequency components).  

However, if the Hilbert Transform is to be combined with the measured signal to 

form the complex analytic signal, it is multiplied by i, which has the effect of 

adding π/2 radians to the phase of all the frequencies, restoring the positive 

ones and cancelling out the negative ones. 
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The result is that the complex analytic signal can be created from the original 

measured signal by just setting all the Fourier components above the Nyquist 

frequency (the negative frequencies) to zero. 

D.2.2 Relationship to power 

Heyser (1971) investigated the relationship between the complex analytic signal 

and the rate of arrival of energy (power). He showed that the square of the 

magnitude of the complex analytic signal is proportional to the instantaneous 

rate of arrival of the total energy (ie the power). The square of the real signal, on 

the other hand, is proportional to the rate of arrival of just one of the 

components of the energy, such as the kinetic energy, the potential energy, or 

some linear combination of the two. The square of the real signal could thus be 

zero at an instant when one of the component energies is zero, whereas the 

square of the analytic signal magnitude will only be zero when the total (kinetic 

plus potential) instantaneous energy is zero. Since the analytic signal 

magnitude is directly related to the rate of energy arrival, it is the optimal 

estimator of interface location for echo signals of the type commonly used in 

ultrasound analysis. 

D.2.3 Magnitude and phase 

As explained above, for a pulse-echo ultrasound inspection, the magnitude of 

the complex analytic signal represents the instantaneous energy arriving back 

at the transducer at a given time. The phase of the complex analytic signal 

indicates the instantaneous proportion of that energy which is in the form of 

kinetic energy rather than potential energy.  
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APPENDIX E Focused Ultrasonic Fields 
 

E.1 Terminology 

Focusing of a sound beam achieves higher sensitivity and resolution by 

producing a narrower beam that is more concentrated, and therefore achieves a 

higher peak acoustic pressure. Even a plane-piston transducer produces a 

‘natural focus’ at the last axial maximum (or near-field distance), often 

represented as N (or Y0
+). For a circular plane-piston transducer: 

 
λ4

2D
N =  (E-1) 

where D is the transducer’s element diameter and λ is the wavelength. 

The ratio of the focal distance zf  to the near-field distance N is known as the 

focal gain, Kf and this can vary from 0 to 1: 

 
N

z
K f

f =           10 ≤< fK  (E-2) 

Another parameter, familiar from optics, is the F-number – defined as the ratio 

of focal distance to aperture diameter. In the case of an ultrasonic transducer it 

can be expressed as follows: 

 
D

z
F f=  (E-3) 

E.2 Focal beamwidth 

There is only an analytical solution for beamwidth at the focus of the transducer. 

and it is important to distinguish between acoustic-pressure beamwidth in the 

field and pulse-echo beamwidth. Figure E-1 and the following equations 

describe the -6 dB beamwidth for acoustic pressure in the field (Krautkramer 

and Krautkramer, 1969) and in pulse-echo mode (ASM Handbook). 
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Figure E-1. Diagram showing the parameters used to calculate focal 

beamwidth. 

Acoustic Pressure in the field:  -6 dB Focal Beamwidth = 1.396 λzf /D 

Pulse-echo response:   -6 dB Focal Beamwidth = 1.032 λzf /D 

E.3 Axial profile 

According to O’Neil (1949) the on-axis acoustic pressure p is given by: 
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where z is the distance on the axis from the transducer element, r is the radius 

of curvature of the spherically-curved element surface and h is given by: 

 
4

2
2 D

rrh −−=  (E-5) 

An example of the axial profile is given in Figure E-2 and Figure E-3 for 5 MHz 

and 10 MHz transducers respectively of diameter 12.7 mm and radius of 

curvature 75 mm 

Circular Focused Transducer 
Focus 

Focal Beamwidth D 

Focal Length, zf 
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Figure E-2. Normalised on-axis acoustic pressure p/p0 (where p0  is pressure at 

the transducer) as a function of distance in water for a 12.7 mm (0.5") diameter 

5 MHz transducer with radius of curvature 75 mm. The -3 dB Pressure Focal 

Range, shown in red, corresponds to the -6 dB Pulse-Echo Focal Range. 
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Figure E-3. Normalised on-axis acoustic pressure p/p0 (where p0  is pressure at 

the transducer) as a function of distance in water for a 12.7 mm (0.5") diameter 

10 MHz transducer with radius of curvature 75 mm. The -3 dB Pressure Focal 

Range, shown in red, corresponds to the -6 dB Pulse-Echo Focal Range. 



 351 

E.4 -6 dB Pulse-Echo Focal Range 

The -6 dB Pulse-Echo Focal Range can be defined as the distance between the 

-6 dB threshold axial points measuring the pulse-echo response from a point 

reflector. This is equivalent to using a -3 dB threshold with a measurement of 

acoustic pressure as in Figure E-3 because diffraction effects will be applied on 

both the transmission and reception stages. 

Ideally it would be possible to obtain an analytical expression for this -3 dB 

acoustic pressure focal range from Equation E-4. However, when this was 

attempted using Mathematica it was found not to be possible. Instead, the -3 dB 

points were determined numerically for a range of focal gains (Kf) and these 

were used to determine the -6 dB Pulse-Echo Focal Range, zr. The values, 

normalised to the near-field distance, N, are plotted in Figure E-4 for 5MHz and 

Figure E-5 for 10 MHz. A polynomial fit to these values suggests that a 

quadratic relationship with focal gain is appropriate. 
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Figure E-4. -6 dB Pulse-Echo Focal Range determined numerically (squares) 

from the -3 dB acoustic pressure focal range from Equation E-4.  5 MHz 

transducers of diameter 12.7 mm (0.5”) were simulated with different radii of 

curvature. The relationships given in Equations E-7 and E-8 are also shown. 

f 
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The quadratic relationship suggested from Figure E-4 is: 

 )072.036.1( += ffr KNKz  (E-6) 

For focal gains in the range plotted, the dashed curves in Figure E-4 and Figure 

E-5 show that the relationship can be approximated to: 

 25.1 fr NKz ≈  (E-7) 

Another relationship (Equation E-8) has been given in a Panametrics transducer 

technical note (Panametrics 1993) but no source was quoted. This relationship 

is also shown in Figure E-4 and Figure E-5: 
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Figure E-5. -6 dB Pulse-Echo Focal Range determined numerically (squares) 

from the -3 dB acoustic pressure focal range from Equation E-4.  10 MHz 

transducers of diameter 12.7 mm (0.5”) were simulated with different radii of 

curvature. The relationships given in Equations E-7 and E-8 are also shown. 

f 
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APPENDIX F Equivalent Media Modelling 

F.1 Introduction 

After starting the literature review of equivalent media modelling methods, two 

issues became evident. Firstly, most of the literature dated back to the 1960s 

and 1970s with little work following that, suggesting either that the problems had 

been solved, or that the need for better models disappeared. Secondly, several 

of the key papers were poorly written and/or contained mistakes in important 

equations. For the purposes of this project and future work in this area, There 

was a need for a careful analysis of the literature, identification of mistakes and 

a recommendation for the best models for predicting transverse compression 

modulus and transverse shear modulus in both carbon and glass fibre 

composites. 

This appendix reports a detailed study of the models and includes comparisons 

of predictions for carbon-fibre and glass-fibre composite materials, and for 

porosity in carbon-fibre composite. It begins with definitions of symbols and a 

self-consistent terminology. 

F.2 Nomenclature 

The following definitions of symbols will be used in this appendix 

E Young’s modulus 

G, Gv, Gf Shear modulus, shear modulus of voids (air), and of fibre 

K, Kv, Kf Bulk modulus, bulk modulus of voids (air), bulk modulus of fibre. 

M Compression modulus 

Cij Stiffness matrix 

ν Poisson’s ratio 

εj Strain tensor 

φf, φm, φv Fibre, matrix, and void volume fraction respectively 

ρ Density 

σi Stress tensor 
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F.3 Elastic Moduli 

F.3.1 Moduli in isotropic materials 

The definitions of the four elastic moduli: bulk modulus, shear modulus, Young’s 

modulus and longitudinal (compression) modulus are defined for isotropic 

materials as follows. 

Bulk modulus 

The bulk modulus , K measures a materials resistance to uniform 

compression. It is defined as the pressure increase needed to cause a given 

relative decrease in volume and can be formally defined by the following 

equation: 

 
V

p
VK

∂
∂−=  (F-1) 

where p is pressure and V is volume (see Figure F-1).  

 

Figure F-1. Diagram illustrating uniform pressure applied to a solid material. 

Bulk modulus is related to shear modulus K and Young’s modulus E via 

Poisson’s ratio, ν  as follows: 
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Shear modulus 

The shear modulus  (or modulus of rigidity) G is a measure of a material’s 

response to a shearing stress and is defined as the ratio of shear stress to 

shear strain, or formally by the following equation: 
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where σxy=F/A  is the shear stress in the x-y plane, εxy=∆x/I is the shear strain 

in the x-y plane, F is the force, A is the area over which the force acts, I is the 

distance between the two opposing forces and ∆x is the transverse 

displacement (see Figure F-2). 

 

Figure F-2. Diagram explaining the parameters used in the definition of shear 

modulus. 

Shear modulus is related to bulk modulus and Young’s modulus via Poisson’s 

ratio, ν  as follows: 
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Young’s modulus 

The Young’s modulus  E describes a material’s resistance to a uniaxial linear 

stress when not clamped laterally and is defined as the ratio of uniaxial stress to 

uniaxial strain in the range of stress in which Hooke’s law holds (the elastic 

range), or more formally as: 
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where σxx=F/A  is the uniaxial stress in the x direction, εxx=∆l/L is the shear 

strain in the x direction, F is the force, A is the area over which the force acts, L 

is the original length and ∆l is the uniaxial displacement (see Figure F-3). 

 

Figure F-3. Diagram illustrating the parameters used in the definition of Young's 

modulus. 

Young’s modulus is related to bulk modulus and shear modulus via Poisson’s 

ratio, ν  as follows: 
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Longitudinal (compression) modulus 

The Longitudinal (compression) modulus  M is of great interest for ultrasonic 

propagation studies where longitudinal-wave propagation is involved.  It is 

defined as the ratio of uniaxial stress to uniaxial strain when all strains in other 

directions are zero. It can be shown that: 

 2cM ρ=  (F-7) 

where c is the sound speed of a longitudinal wave and ρ is the density of the 

material. The longitudinal modulus is related to the other moduli as follows: 
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F.3.2 Moduli in anisotropic materials 

In anisotropic materials, Young’s modulus  is not the same in all directions. 

Usually a suffix is used to indicate the direction in which the stress has been 

applied and strain measured. 

For crystalline solids with a symmetry lower than cubic the bulk modulus  is not 

the same in all directions and needs to be described with a tensor with more 

than one independent value. However, it is possible to define a plane strain 

bulk modulus  which is useful when a component is long in one direction and 

so strain in that direction is limited by surrounding material, allowing strain only 

in the cross-sectional plane.  

Shear modulus is defined in a plane containing the stress vectors that cause 

the shear effect. In anisotropic materials this plane is usually specified as a 

suffix. 

The elastic moduli appropriate to different symmetry types of anisotropic 

materials will be discussed below. 

F.4 Elastic stiffness matrices 

F.4.1 Stress analysis 

The state of stress at a point in a body can be defined by all the stress vectors 

T(n) associated with all n planes (infinite number of planes) that pass through 

that point. But, according to Cauchy's fundamental theorem, by just knowing the 

stress vectors on three orthogonal planes, the stress vector on any other plane 

passing through that point can be found through coordinate transformation 
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equations. Assuming a material element exists (Figure F-4) with element planes 

perpendicular to the cartesian coordinate axes and having normal vectors e1, e2 

and e3, the stress vectors associated with each of the element planes, i.e. T(e1), 

T(e2), T(e3) can be decomposed into components in the direction of the three 

coordinate axes as follows: 
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 (F-9) 

or, in index notation: 

 jij
e eT i σ=)(  (F-10) 

where σ11, σ22 and σ33 are normal stresses whilst σ12,σ13,σ21,σ23,σ31 and σ32  

are shear stresses. 

 

Figure F-4. Diagram of generalised stress vectors acting at a point (left) and just 

the shear stresses acting in a plane perpendicular to the 3 direction (right) 

which can be represented by index 6 in the Voigt notation. 

The first index i indicates that the stress acts on a plane normal to the xi axis, 

and the second index j denotes the direction in which the stress acts.  

σ21 

σ12 
σ21 

σ12 

e3 

σ6 σ6 
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The Voigt notation representation of the stress tensor takes advantage of the 

symmetry of the stress tensor to express the stress as a 6-dimensional vector of 

the form σi where indices 1, 2 and 3 represent normal plane stresses in the 

three orthogonal directions and indices 4, 5 and 6 represent shear stresses in 

planes normal to directions 1, 2 and 3 respectively (see Figure F-4-right) 
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For the purposes of this analysis, fibres will be assumed to be placed in the ‘3’ 

direction, although some authors use the ‘1’ direction for fibres (see Figure F-5). 

        

Figure F-5. Diagram (from R E Smith, 1972) showing the Cartesian axes 

relative to the fibre direction in a fibre composite and the general stiffness matrix 

for anisotropic materials. 

Also in Figure F-5 is the generic stiffness matrix Cij relating the strain tensor εj 

to the stress tensor σi  in anisotropic materials, as follows.  
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Accepted terminology is that suffixes 1, 2 and 3 are three orthogonal plane 

strain directions in 3D space, and 4, 5 and 6 are shear strains in planes 

perpendicular to directions 1, 2 and 3 respectively. 

F.4.2 Isotropic materials 

For isotropic materials, where the properties are independent of the orientation 

of the material, the stiffness matrix can be reduced to just two independent 

elements: the bulk modulus K and the shear modulus G, as follows: 
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Note that the diagonal moduli for normal plane stresses and strains are equal to 

the longitudinal modulus, M = K + 3
4 G. 

F.4.3 Anisotropic materials 

Orthotropic materials 

For Orthotropic materials (which have three orthogonal planes of symmetry) the 

stiffness matrix can be reduced to the following: 
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Cubic symmetrical materials 

In the simple case of cubic symmetry, the matrix reduces to the following: 
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which contains just three independent stiffness constants: C11, C12 and C44.  

Kantor and Bergman (1982) define three elastic moduli in terms of these 

stiffness constants: 
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Transversely isotropic materials 

For a transversely isotropic material (where the material is symmetric about an 

axis of rotation, such as the axis of a fibre) with an axis of symmetry in the 3 

direction, the stiffness matrix reduces to the following: 
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containing just five independent stiffness constants: C11, C12, C13, C33 and C44. 

Plane strain bulk modulus  is useful in transversely isotropic materials when a 

component is long in one direction. This is the kind of modulus that is used by 

several of the models below for fibres in composite, where the plane-strain bulk 

modulus transverse to the axis can be called the transverse bulk modulus  KT 

and has been quoted by Torquato and Lado (1992) as follows: 

 GKKT 3
1+=  (F-18) 

Shear modulus is defined in a plane containing the stress vectors that cause 

the shearing effect. In transversely isotropic materials this plane can either 

be perpendicular (transverse) or parallel (axial) to the axis, resulting in two 

shear moduli: transverse shear modulus GT, and axial shear modulus GA. 

F.5 Ultrasonic Velocity 

F.5.1 Longitudinal Velocity 

Perpendicular to the fibres, the compression-wave velocity cL is given by Martin 

(1976) as: 

 
ρ
22C

cL =  (F-19) 

F.5.2 Shear Velocity 

For shear waves with a polarisation perpendicular to the fibres (in the 3 

direction), the shear-wave velocity cS is given by Martin (1976) as: 

 
ρ2

2322 CC
cS

−=  (F-20) 

although Martin also states this for anisotropic fibres but changes C23 to C12. 
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F.6 Spherical isotropic inclusions 

F.6.1 Hashin (1962) mixture rule 

Hashin (1962) is the definitive work on spherical isotropic inclusions in an 

isotropic medium. Hashin considered the change in strain energy in a loaded 

homogeneous body due to the insertion of inhomogeneities. Two geometrical 

assumptions were made: 1) that the inclusions are spherical and 2) that the 

action on any one inclusion is transmitted through a spherical shell existing 

wholly in the surrounding matrix. He generated upper and lower bounds for both 

bulk and shear modulus of the mixture. For bulk modulus, K* these coincide to 

give a single equation (Equation F-21), but not for shear modulus, G*. Hashin 

offers an equation for shear modulus (Equation F-22) that always falls between 

the upper and lower bounds and suggests that when the difference between 

moduli of the two phases is small then this is a good approximation to the shear 

modulus. 
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where φv is the void volume fraction of porosity, νm is the Poisson’s ratio for the 

matrix, Km and Kv are the bulk moduli for the matrix and voids respectively, and 

Gm and Gv are the shear moduli for the matrix and voids respectively. 

Then Hashin derives terms for the bulk (K*) and shear (G*) moduli in the very 

small concentration limit, which are given in Equations F-23 and F-24): 
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and for the very large concentration limit in Equations F-25 and F-26: 
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Hashin (1962) does observe that if the difference between the moduli of the 

matrix and inclusions is very small then the above Equations F-23 to F-26 

approximate to the volumetric mixture rule for moduli in Equation 4-4. 

In order to generate an alternative solution that also lies between the upper and 

lower bounds determined by Hashin, a Bezier curve fit (see Appendix D) was 

used to interpolate between the small and large concentration straight-line 

approximations that result from Hashin’s equations (Equations F-23 to F-26). 
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Figure F-6. Comparison of Hashin's proposed equations for bulk and shear 

modulus with Bezier fits to the high and low-concentration solutions. The 

equations identified in the legends refer to equations in Hashin (1962). 

Bulk and shear moduli are combined to give compression modulus M using:      

 GKM
3

4+=   
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Figure F-7 shows a comparison with the simple volumetric model where Mc and 

Mv are the compression moduli in the composite and air respectively: 
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Figure F-7. Comparison of the derived Hashin (1962) compression modulus M* 

with a Bezier fit to the high and low-concentration approximations and the 

simple volumetric model. 

It has been assumed that porosity effectively replaces both resin and fibres 

according to the proportion in which they already exist in the composite. The 

basis for this assumption is that in micrographs of porous regions, the voids do 

not change the fibre volume fraction of the surrounding composite (see Figure 

F-8). This suggests that the fibres are not pushed aside by the voids but 

actually pass through the voids. As very little ultrasound can penetrate into a 

void, even along the fibres, the fibres have effectively been removed from the 

local mixture in the same way that the resin has.  
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Figure F-8. An example of a micrograph of porosity (black) in a fibre-resin 

composite near the end of a ply. Note that there is little difference in fibre 

volume fraction adjacent to the porosity, implying that fibres are not pushed 

aside by the porosity, but they probably go through the voids. 

In the case of porosity, the error shown in Figure F-7 due to using a simple 

mixture rule compared with the more complex Hashin-Bezier rule is clearly 

significant. It is illustrated for phase velocity and acoustic impedance in Figure 

F-9.  
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Figure F-9. A comparison of the simple volumetric mixture rule with the 

Spherical-Hashin equations and the Hashin-Bezier mixture-rule method on 

phase velocity (top) and acoustic impedance (bottom) as a function of void 

volume fraction in a 60% fibre volume fraction carbon-fibre composite. Note the 

significant velocity change in the Spherical-Hashin and Hashin-Bezier models 

that is not exhibited by the simple volumetric mixture rule. 
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F.6.2 Pinfield scattering mixture rule 

Pinfield et al (2010) has presented a treatment of a layer of porosity where the 

backscattered signals from the pores can be integrated over a random 

distribution of pores in a layer to determine the frequency-dependent 

backscattering cross-section. The layer can then be represented as an 

equivalent medium with a complex impedance, the imaginary part of which 

accounts for the frequency-dependent backscattering process. Spherical and 

cylindrical pores are dealt with and the backscattering amplitude includes 

consideration of the morphology type of the pores. Pinfield calculates that the 

ratio of the complex impedance of the porous effective medium to the 

impedance of the porosity-free medium, ẑ , is given by: 

 [ ])(1ˆ kDfiNz π+≈  (F-27) 

where N is the density of scatterers, fπ is the backscattering amplitude 

(scattering amplitude at angle π radians) and D(k) is the diffraction correction, 

which for a plane piston source is calculated to be: 
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where b is the transducer radius, k is the wavenumber and zmin is the distance 

from the transducer to the layer (hence kzmin is the phase path length in 

radians). However, Pinfield does not provide a diffraction correction appropriate 

for focused transducers. 

For spherical scatterers: 
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and for cylindrical scatterers: 
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where An is the scattering coefficient for the nth partial wave order, given by the 

following approximations: 
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where a is the pore radius and η is the ratio of shear to compressional wave 

velocities. 

This was implemented in the QQ/UoN model and the front and back of the 

porous layer give signals that vary with void volume fraction, φv but not with 

pore radius, a even though I am using the pore size to calculate fπ and N. The 

effect of pore size on these two parameters cancels out because N is the void 

volume fraction φv divided by the pore size (4πa3/3) and from Equations F-29, 

F-31, F-32 and F-33,  fπ =29k2a3/24, so  

Nfπ = 29φvk
2/(32π) 

and the whole Equation F-34 for impedance ratio ẑ  with spherical pores and a 

planar probe becomes: 
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A comparison of the Pinfield et al (2010) model with the Hashin (1962) 

spherical-inclusion model is shown in Figure F-10, illustrating the enhanced 

frequency dependence due to the backscattering from porosity included in the 

Pinfield model. 
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Figure F-10. Comparison of Hashin (1962) spherical-inclusion model (top) with 

the Pinfield et al (2010) scattering model (bottom)  for different pore radii 

(shown in the legends). In both cases 60% fibre volume fraction carbon-fibre 

composite was used, containing a single 0.25 mm porous layer with 10% 

porosity. 
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F.7 Isotropic fibres in isotropic media 

When fibres are present in an isotropic medium, the composite thus formed can 

still be assumed to be ‘transversely isotropic’ – properties not varying with angle 

around an axis in the fibre direction. But the ‘longitudinal’ properties (in the fibre 

direction) will be different to the transverse properties. For isotropic fibre 

material (eg glass or silica) the treatment is simpler than for anisotropic fibres 

(carbon or graphite). For the purposes of this cartesian-coordinate analysis, 

fibres will be assumed to be placed in the ‘3’ direction, although some authors 

use the ‘1’ direction for fibres. 

F.7.1 Hashin and Rosen 

Hashin and Rosen (1964) and Hashin (1965), using the composite cylinder 

assemblage (CCA) model, developed expressions for the lower and upper 

bounds using infinitely long elements of either hexagonal or circular cross-

section, each containing a single fibre surrounded by matrix material. For plane-

strain bulk modulus (transverse bulk modulus), again the bounds coincide 

(Equation F-35), but not for shear modulus (Equations F-36 to F-39). 
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For transverse shear modulus GT  in a plane perpendicular to the fibres, the 

following equations for the lower and upper bounds apply respectively: 
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and in a plane parallel to the fibres (ie a plane normal to direction 1, shearing in 

direction 3), these equations for the lower and upper bounds of the axial shear 

modulus GA apply respectively: 
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F.7.2 Whitney and Riley 

Whitney and Riley (1966) claim their work is analogous to that of Hashin and 

Rosen, but is less rigorous mathematically. They use a repeating cylinder 

approach but do not specify how the cylinders are packed in the material. They 

calculate longitudinal and transverse Young’s modulus separately, but quote 

Hashin and Rosen (1964) with a single equation for shear modulus - even 

though Hashin and Rosen specify upper and lower bounds. At another point in 

the paper, Whitney and Riley state that they are using the upper bound of 

Hashin and Rosen’s shear modulus because it is more accurate, and yet the 

equation they quote is actually based on the lower bound Equation F-38 for 

shear modulus parallel to the fibre direction. The predicted response (see 

Figure F-11) also matches the lower bound for shear modulus parallel to the 

fibre direction. Later, Datta et al (1984) showed that the lower bound is 

appropriate when the fibre shear modulus is larger than the matrix, and the 

upper bound is when the fibre shear modulus is smaller than the matrix.  

Whitney and Riley (1966) derive their own equation (Equation 46 in their paper) 

for plane-strain bulk modulus (see Equation F-40), which has a minus-sign error 

in the numerator because when the fibre volume fraction is 100% the modulus 

should equal the modulus of the fibre and it does not.   

Incorrect Eqn 46: 
fmfmf

fmfmmfm

KKGK

KKGGKK
K

φ
φ

)(

)()(
*

−−+
−−+

=  (F-40) 

By correcting Equation F-40  to Equation F-41 and manipulating it (Equations F-

42 and F-43) the corrected version can be seen to be identical to the lower 

bound Equation F-35 from the Hashin and Rosen model (see Figure F-12). 
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Corrected version: 
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Figure F-11. Comparison of shear modulus predictions for a plane parallel to 

the fibres from the models of: Hashin (1965), Behrens (1968) and Whitney and 

Riley (1966) for S-glass-fibre epoxy-resin composite. The Hashin model 

predicts lower and upper bounds, which are illustrated together with the mean 

of these two bounds. The legend shows equation numbers from Hashin (1965). 
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This is also incorrect when quoted in Appendix A of Zimmer and Cost (1969). 
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There are further errors in Whitney and Riley (1966) in the definition of the bulk 

modulus of fibre and matrix where an incorrect conversion from Young’s 

modulus and Poisson’s ratio is stated. It should be K=E/3(1-2ν). 
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Figure F-12. Comparison of plane-strain bulk modulus predictions from the 

models of: Hashin (1965), Behrens (1968) and the corrected Whitney and Riley 

(1966) for S-glass-fibre epoxy-resin composite. Also shown is the Whitney and 

Riley prediction after correcting the sign error but before correcting the 

derivations of K from E and ν. 

F.7.3 Greszczuk 

Greszczuk (1966) modelled a rectangular array of circular filaments embedded 

in a continuous elastic matrix, rather than using repeating composite elements. 

Potentially this is a more realistic method but it too ignores any interaction 

between fibres and matrix. Greszczuk also generated separate expressions for 
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longitudinal (in fibre direction) and transverse Young’s modulus. Greszczuk 

compared his equations (Equations F-44 to F-54) with “a more rigorous method” 

apparently using numerical methods and claimed agreement within 10% in the 

range 50% to 73% fibre volume fraction. However, above 91% fibre volume 

fraction the Geszczuk equations become unstable (see Figure F-13). 90.7% is 

the maximum volume fraction possible for hexagonally packed cylindrical fibres, 

so the discontinuity may be caused by this effect.  
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Figure F-13. Transverse Young’s Modulus (E-trans) and an intermediate 

modulus (E’) calculated from the equations in Greszczuk (1966), showing the 

discontinuity above 90.7% fibre volume fraction. 
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The discontinuity shown in Figure F-13 occurs when the denominator of 

Equation F-49 tends to zero, which occurs when: 
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Using the quadratic formula: 
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which is equivalent to: 
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At present it is not clear whether there is an error that has caused this 

discontinuity, or a genuine physical reason. It is beyond the scope of this study 

to pursue this any further. 

F.7.4 Behrens 

Behrens (1967a; 1967b; 1969a; 1969b) developed an independent model using 

rectangular symmetry which produces an identical equation to Hashin (1965) for 

the bulk modulus, but a single equation for the shear modulus. This shear 

modulus must be for shear modulus parallel to the fibres because it matches 

Whitney and Riley’s and is equivalent to the lower bound of Hashin (1965) - see 

Figure F-11 - once it is corrected to the version that Smith (1972) quotes 

(equation 8b of his paper) – apparently correcting a mistake in equation (64) of 

Behrens (1969a), but without stating that it is a correction.  

F.8 Anisotropic fibres in an isotropic matrix 

Carbon and graphite fibres are anisotropic, whereas glass fibres are isotropic. 

Various papers have extended the above work to anisotropic fibres and some 

have also considered an anisotropic matrix such as in carbon-carbon 

composites. 

F.8.1 Behrens 

Behrens (1967a; 1967b; 1969a; 1969b; 1971) considered anisotropic fibres in 

an anisotropic matrix and derived equations for the stiffness matrix components 
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in terms of the Lamé parameters for the fibre and matrix.  He assumed 

cylindrical point symmetry for the individual fibres, and thus transverse isotropy 

of the composite.  The expressions generated by Behrens were subsequently 

quoted by R E Smith (1972) in a form that is more consistent with the 

nomenclature of this appendix and so they will be presented below. They were 

also subsequently quoted by Martin (1977) in a slightly different form. 

F.8.2 Smith (1972) 

R E Smith (1972) quotes Behrens’s (1969a) equations for bulk and shear 

modulus (assumed to be transverse bulk and transverse shear moduli), as well 

as for the C33  and C13 parameters as follows, with a correction in the fourth 

equation for C13 (the matrix C13,m was referred to instead of the fibre C13,f  in the 

numerator): 
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F.8.3 Silnutzer (1972) 

In a PhD thesis, Silnutzer (1972) moved from what are essentially second-order 

bounds in the Hashin (1965) and Hill (1964) treatments to third-order bounds 

because they are exact up to the third order in the difference in the phase 

properties. The expressions derived are considerably more complex involving 

evaluation of integrals. An example of the simplified version of these 

expressions quoted by Torquato and Lado (1992) is given here: 
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where ζm and ζf  are microstructural parameters defined as triple integrals 

related to probabilities of finding certain morphologies in the matrix or fibre 

phases respectively. 

F.8.4 Martin (1977) 

Martin (1977) clearly distinguishes between isotropic fibres and anisotropic 

fibres. For anisotropic fibres he quotes R E Smith (1972) and Behrens (1969a) 

with equations in a different form, by making some assumptions that the matrix 

will be isotropic and so C13,m =C12,m ;  C11,m= C33,m ; Gm= C44,m ; that the bulk 

modulus of the matrix, Km =½(C11,m  + C12,m) and the transverse fibre bulk 

modulus, Kf =½(C11,f  + C12,f), this time correcting a sign error in the 

denominator of the first equation: 
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By inspection, using the assumed equivalences, these equations can now be 

seen to be equivalent to those of R E Smith (1972) and Behrens (1969a) shown 

in Equations F-62 and F-63. 

F.8.5 Hashin (1979) 

Hashin (1979) extends Hashin and Rosen (1964) and Hashin (1965) to allow for 

carbon and graphite fibres, which are highly anisotropic. In fact the expressions 

for transverse bulk modulus, transverse shear modulus and axial shear 

modulus are identical in form to those in Hashin (1965) except that they are 

more specific about which moduli in the constituent materials should be used. 

For example, the expression for transverse bulk modulus KT requires the use of 

the bulk moduli for fibre and matrix and the shear modulus for the matrix (see 
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Equation F-35) and these are specified in Hashin (1979) as the transverse 

moduli. For the transverse shear modulus GT (Equations F-36 and F-37) again 

it is the transverse moduli in either the matrix or the fibre that are required. 

However, for the axial shear modulus, GA (Equations F-38 and F-39) the axial 

shear moduli in matrix and fibre need to be substituted. So the expressions 

become: 
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F.8.6 Datta et al (1984) 

Datta et al (1984) consider random but homogeneous distributions of identical 

long and parallel fibres and the propagation of longitudinal and shear waves 

perpendicular to the fibre direction. A multiple scattering approach is used to 

determine a dispersion relationship in the long-wavelength limit. Fibres are 

considered to be anisotropic and the outcome is expressions for elastic 

constants over the whole range of fibre volume fractions.  

The transverse plane-strain bulk modulus expression matches that of Hashin 

(1965) (see Equation F-35) and the transverse shear modulus matches the 

lower bound expression of Hashin (1965) (see Equation F-36) when the fibre 
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has a larger shear modulus than the matrix and identical to the upper bound 

(Equation F-37) when the fibre has a lower shear modulus than the matrix.. 

The expression obtained for the longitudinal shear modulus (in a plane parallel 

to the fibres) is identical to that of Hashin (1965) lower bound (see Equation F-

38) when the fibre has a larger shear modulus than the matrix and identical to 

the upper bound (Equation F-39) when the fibre has a lower shear modulus 

than the matrix. 

F.8.7 Chao and Chaturvedi (1997) 

Chao and Chaturvedi (1997) developed a new unified framework based on 

Helmholtz and Gibbs free energy functions, and micromechanical models 

involving average stresses and strains in the composite using the approach of 

Eshelby (1957). They compared these with the predictions from Hashin and 

Rosen (1964) and Tsai and Hahn (1980), producing the graphs shown in Figure 

F-14 for transverse Young’s modulus in a glass-fibre composite (isotropic fibres) 

and Figure F-15 for transverse Young’s modulus in a carbon-fibre composite. 

 

Figure F-14. Graph from Chao and Chaturvedi (1997) showing, for an isotropic 

(glass) fibre, a comparison of their stress and strain approaches with Hashin 

and Rosen (1964) and Tsai and Hahn (1980). Note that the horizontal axis is 

matrix volume fraction. 
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Figure F-15. Graph from Chao and Chaturvedi (1997) showing, for an 

anisotropic (carbon) fibre, a comparison of their stress and strain approaches 

with Hashin and Rosen (1964) and Tsai and Hahn (1980). Note that the 

horizontal axis is matrix volume fraction. 

F.9 Summary of chosen equivalent medium models 

The result of this assessment of equivalent medium models was that the Hashin 

(1965) model was used for carbon fibres in resin and the Hashin (1962) 

spherical-particle model was used for porosity in composite. In addition, an 

option to use the Pinfield et al (2010) model for porosity was added because it 

includes the frequency dependence of the backscattering from a given size of 

pores. 
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APPENDIX G Simulating Fibre Orientation Images 

G.1 Motivation 

In order to validate the various fibre-orientation measurement methods for a 

range of different experimental parameters, it is necessary to use carefully 

controlled input data and the most efficient method is to simulate the images, 

which can then be processed using the methods that have been developed for 

experimental data. By knowing exactly what orientation of fibres was simulated 

in the image, it is then possible to compare this with the measured orientation 

over the full range. 

G.2 In-plane fibre tows 

The main effect allowing in-plane fibre-orientation to be measured from a C-

scan of the reflections from a thin slice in a composite is the variation in the 

reflection amplitude with resin-layer thickness. The resin layer thickness varies 

due to the fibre-tow lay-up, which introduces undulations in the resin layers 

spaced at the fibre-tow spacing, which typically can be from 1 mm to 5 mm.  

A simulation of these fibre-tow undulations can be introduced in a C-scan image 

by specifying the fibre orientation and tow spacing and creating cosine-squared 

variations in the image accordingly (as shown in Figure G-1). A stack of plies 

with different orientations can then be built up into a 3D profile of C-scans for 

validation of ply stacking-sequence analysis – see Figure G-1. 

It is then possible to create in-plane fibre-waviness of known amounts by 

simulating a sinusoidal ‘wave’ with a Gaussian envelope – see Figure G-2. The 

peak simulated deviation in orientation can be calculated because it occurs 

when the Gaussian envelope is at unity and the sine wave is at maximum 

gradient. This is very useful for quantitative validation of the in-plane waviness 

measurements. 
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Figure G-1. Simulated in-plane fibre tows of spacing 10 mm and orientation 75º 

in one C-scan (left), which is one layer from a 3D-profile of C-scans of plies with 

fibre orientations that step by 15º per ply. 

 

Figure G-2. Simulated in-plane waviness of wavelength 8 mm and amplitude 

3 mm, with a Gaussian-envelope 1/e half-width 2 mm, superimposed on a 

simulated fibre tows of spacing 1 mm and orientation 25º. 

A useful outcome of using an equation-generated waviness profile is the ability 

to calculate the true angle of the profile generated by differentiation of the 
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equation.  A Gaussian-enveloped sine wave can be represented by Equation G-

1. 

 )cos( 00

2
0

2

θω +=
−

xeAy X
x

 (G-1) 

where: y  =  y-pixel location 

  x  =  x-pixel location 

  A0  =  vertical scaling factor, (Aspect ratio of y to x) 

  X0 =  half the width of the envelope at 1/e in units of x 

  ω0 =  2πfx where fx is 1/Tx and Tx is the period in x 

  θ =  phase 

An example of the Equation G-1 output is shown in Figure G-3. Then the 

waviness-profile angle, φ,  can be calculated for any value of x using Equation 

G-2.  
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The graph in Figure G-3 plots the waviness profile and the associated 

waviness-profile angle obtained using Equation G-2 with the following settings: 

  A0  =   6 

  X0  =   20 pixels 

  Tx  =  60 pixels 

  θ  =  90 degrees 
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Figure G-3 Waviness profile and associated waviness-profile  angle for a 

waviness profile generated using Equation G-1 with   A0 =  6, X0 =  20 pixels, Tx 

= 60 pixels,  θ = 90 degrees.  A Pixel size of 0.5mm was used to convert x-pixel 

and y-pixel locations into units of millimetres 

The ability to populate an image with a waviness profile generated using 

Equation 9 has been implemented into ANDSCAN.  Thus it is possible to 

generate a simulated  waviness image with a known angular variation as a 

function of pixel location.  It is possible to use ANDSCAN to generate waviness 

in either a C-scan or a B-scan image.  

Simulated C-scan waviness profiles have been used for evaluating the in-plane 

waviness measurement technique implemented in ANDSCAN, while simulated 

B-scans have been used for evaluating ANDSCAN’s out-of-plane wrinkling 

measurement method. 

G.3 Woven Fabrics 

For the Ply Fingerprinting methods that are being proposed for woven fabrics it 

is important to be able to simulate each weave type as there may be a need to 

match real fingerprints to simulated fingerprints in order to identify the weave 

type. Examples of different weave types are shown in Figure G-4. 
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Figure G-4. Examples of different weave types. 

In order to simulate these weaves, the basic fibre-tow simulation algorithm was 

modified to calculate, at each pixel, its proximity to a fibre tow of the 

perpendicular orientation. This distance then determines how the pixel is 

shaded on the basis that the fibre tow will start to turn down under a 

perpendicular fibre tow and therefore reflect less ultrasound. Examples of 

simulated C-scans, dominant angles, and angular power distributions are 

shown in Figure G-5. 

 

Figure G-5. Simulated 5-harness satin weave, offset [1], and its corresponding 

'fingerprint' angular power distribution. 

4-harness satin with 
‘crow’s-foot’ [1,2,3,2] 
repeat  

Plain Basket 2x2  Twill 2x2 
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G.4 Out-of-plane plies 

For out-of-plane ply B-scan images of wrinkles the simulation has to generate 

ultrasonic waveforms. The basic building block is a sine wave at the resonant 

frequency corresponding to the required ply spacing and velocities of the fibre 

and matrix. This sine wave effectively simulates the inter-ply reflections in the 

composite and is amplitude modulated by an envelope that simulates the front-

wall and back-wall echoes in the composite but goes to zero before and after 

these strong echoes. The wrinkle itself effectively frequency-modulates the 

waveform by changing the ply spacing in a controlled way depending on the 

location of the waveform in the B-scan stack. The wrinkle is also a sine wave 

multiplied by Gaussian envelopes in both the time axis (depth) and laterally 

across the B-scan. An example of such a waveform and multiple waveforms 

forming a B-scan are shown in Figure G-6. 

            

Figure G-6. Simulated waveform (left) and B-scan (right) for a wrinkle. 
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APPENDIX H Accuracy of fibre orientation 
measurements 

H.1 Introduction  

The StackScan toolset encompasses the tools required to measure and map, 

as a function of 3D location, fibre orientation in carbon-fibre reinforced polymer 

(CFRP) structures.  StackScan requires a full-waveform pulse-echo ultrasonic 

data set from which three primary types of fibre-orientation measurement are 

possible: 

• Ply stacking sequence 

• Out-of-plane ply wrinkling 

• In-plane fibre waviness 

This appendix deals with the general accuracy of fibre-orientation 

measurements using the 2D-FFT method with the aim of being able to state an 

accuracy value that has been validated scientifically. Firstly it is important to 

differentiate between accuracy - the systematic uncertainty in the reported value 

relative to the true value – and precision – the random uncertainty or 

reproducibility over repeated measurements of the same value. Both are 

important, but it is accuracy that this appendix addresses, precision being 

easier to assess and of less concern at the current TRL level. 

There are generally multiple contributors to inaccuracy, known as sources of 

systematic uncertainty. If it is possible to separate these sources then their 

contributions can be assessed separately and recombined using standard 

methods. Often, in the course of assessing these sources of error, it is realised 

that a correction method can be applied to reduce a systematic bias in the data. 

A good example of this is the correction for angular dependence that was 

described in Chapter 6. Once the correction is in use, it is possible to assess 

the accuracy of the corrected output values. Alternatively, it may become clear 

that particular experimental parameters can be optimised to minimise the 

uncertainties. 
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The sources of systematic uncertainty in the measurement of in-plane fibre 

orientation have been identified as follows in two broad categories: 

1. Peak angle measurement from the 2D-FFT of a series of clearly-defined 

lines at one angle in an image, and how this varies with:  

a. Angle of lines with uniform spacing. 

b. Zero padding and windowing before performing the 2D-FFT 

c. Variable line spacing and harmonics or sub-harmonics of the basic line 

spacing. 

d. Insufficient pixels between lines to define the spatial frequencies well. 

e. Insufficient lines in the whole image to define the angle. 

f. Number of points in the portion of the image used for the 2D-FFT. 

g. Spatial noise in the image containing the lines. 

2. Potential for a real C-scan of a layer in the structure to deviate from a 

series of clearly-defined lines at one angle: 

a. Smoothing of the lines caused by increased spatial averaging of the 

sensor. 

b. Presence of lines at other angles from plies above or below 

c. Depth-dependent effects other than in a. or b. above 

d. Waviness in the lines. 

e. Spatial noise in the image. 

Although a complete treatment of uncertainties for each of the fibre orientation 

parameters is beyond the requirements for this project, this appendix records 

initial work investigating many of the above sources of systematic uncertainty 

using simulated images, as well as the rationale for a future, more rigorous 

assessment. Simulated images were used because they allow predictable and 

measurable variations in each effect to be achieved.  

Before presenting this initial uncertainty assessment, it is important to show the 

characteristics of C-scans from layers in a real composite and the related 2D-

FFT and angular power distribution so an example is shown in Figure H-1 for a 

45º ply. 
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Figure H-1. Typical layer C-scan (left) from the centre of the 7th ply in a 16-ply 

stack – a 45º ply – and its corresponding 2D-FFT (right). The angular power 

distribution from this 2D-FFT is shown at the bottom. 

H.2 Peak angle measurement 

The basic methodology for converting C-scan images of fibre tows or B-scan 

images of plies has been thoroughly covered in previous chapters. Part of the 

process is a polar transformation of the 2D Fast Fourier Transform (FFT) output 

image into an angular power distribution. Additional processing of the polar 

transform is required for two purposes: to remove angular bias and to remove 

the effects of stitching in the composite. Both of these are covered in previous 

chapters. The system being assessed here includes this additional processing.  

H.2.1 Angular accuracy measuring equally-spaced line orientation 

Each of the following sources of systematic uncertainty will be presented as a 

function of angle, having been assessed for lines spaced at any angle from 0º 

to 45º. As the image and the 2D-FFT are presumed to be approximately square, 

with square pixels (unity aspect ratio), the angles from 45º to 90º can be 

assumed to have a symmetrical dependence, and so on for angles up to 180º. 
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The measurements made for the other sources of uncertainty below show that, 

provided there are enough points in the image (>100 x 100), there are enough 

lines (fibre tows) across the image (>20), and the spacing is not uniform, then 

the systematic uncertainty due purely to angular variation is less than ±0.25º 

(smaller than can be measured using a 0.25º resolution).  

If the line spacing is uniform and the lines are a sine-wave function, the 2D-FFT 

will contain just two narrow peaks (Figure H-2 left) – symmetrically, either side 

of the centre (zero frequency) point, multiplied by 0º/90º sinc-function (sin(x)/x) 

structure representing the 2D-FFT of the window of the whole image (Figure 

H-2 centre). For this reason, constant spacing is not necessarily a truly 

representative distribution of lines because it does not have a 2D-FFT that is 

similar to that of a C-scan (as in Figure H-1). It may be better to have variable 

spacing, preferably random, to spread the response in the 2D-FFT along a line 

from the centre (Figure H-2 right) so this will be investigated in the next section. 

 

Figure H-2. 2D-FFT from constant spacing lines using a 100% Hanning window 

(left) or a 20% Hanning window (centre) and 2D-FFT from pseudo-random 

spacing (right) 

The accuracy of angular measurement on 100% and 20% Hanning-windowed 

images of equally spaced lines has been investigated for lines at every 0.25º 

angle from 0º to 45º in Figure H-3. If the accuracy is taken as the peak-to-peak 

variation in the error, it is better than ±0.25º if there are at least 106 x 106 pixels 

(this is not necessarily a minimum number of pixels) and it improves with an 

increasing number of pixels in the region of the image used for the analysis. 

Zero padding to a greater number of pixels prior to FFT analysis was found to 

make negligible difference to the above angular distribution of errors.
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Figure H-3. Graphs of measured ply angle (pink) and the error in this 

measurement (blue) as a function of the angle of the 5-mm spaced simulated 

fibre tows, for regions: 32 x 32 pixels (top), 64 x 64 pixels (middle) and 106 x 

106 pixels (bottom), using a Hanning window over 100% (left), or only over 20% 

(right), of the region. The increment between simulated angles was 0.25º. 

H.2.2 Angular accuracy for variably spaced line orientation 

The above analysis is artificial in that C-scans of fibre tows, in addition to the 

basic fibre-tow spacing, actually demonstrate other effects which can be 
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categorised as a) sub-harmonics of the fundamental tow spacing, b) interfer-

ence with adjacent plies of different angles, and c) other spatial noise.  

A more realistic simulation of a real C-scan has been produced, which can be 

rotated to any desired angle. This uses harmonics and sub-harmonics to try to 

produce a realistic spread of spatial frequencies in the 2D-FFT, and it also adds 

random noise to the phase of the spatial frequencies to try to simulate the noise 

seen in real C-scans. An example of such a simulated C-scan and its 2D-FFT is 

shown in comparison with real measured ultrasonic versions in Figure H-4. 

       

    
           Real 45 degree ply 2.5 mm fibre tows 5 m m fibre tows 10 mm fibre tows 

Figure H-4. A real C-scan (top-left) with its 2D-FFT (bottom-left) and simulated 

variable-spacing C-scans (top) with their 2D-FFTs (bottom). Different fibre-tow 

spacings are illustrated for simulated C-scans: (left to right) 2.5, 5 and 10 mm. 

The accuracy of angular measurements on these simulated variable-spacing C-

scans is illustrated in Figure H-5 and suggests that, if an accuracy of ±0.25º is 

to be achieved, the region used for angular analysis should include at least 20 

fibre tows and 100 x 100 pixels. Therefore, a scan step size of between 1/2 and 

1/5 of the fibre-tow spacing is recommended, giving 2 to 5 pixels per fibre tow, 

and a region with at least 100 x 100 pixels should be used for analysis. 

The introduction of spatial noise into the simulated image did not adversely 

affect the accuracy at the relatively low noise levels used, although there 

obviously would be an effect for very high noise levels.
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Figure H-5. Graphs of measured ply angle (pink) and the error in this 

measurement (blue) as a function of the angle of variably-spaced simulated 

fibre tows, for regions: 64 x 64 mm (left) and 106 x 106 mm (right), using a 

Hanning window over 20% of the region. Fundamental fibre-tow spacings were 

10 mm (top), 5 mm (middle) and 2.5 mm (bottom). The increment between 

simulated angles was 0.25º. 

The accuracies demonstrated in Figure H-5 have been extended with further 

measurements to give Table H-1. All sizes are scaled to the fibre-tow spacing, 
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giving box size in numbers of fibre tows, and pixel size as a fraction of the fibre-

tow spacing.  

Box size (# fibre tows) Pixels per 
fibre tow 40 20 10 5 

10   ±1º ±5º 

5  ±0.25º ±1º ±5º 

4  ±0.25º ±0.5º ±3º 

3  ±0.5º ±1.75º ±4º 

2.5 ±0.25º ±0.5º ±1.5º  

Table H-1. Accuracies as a function of pseudo-random simulated fibre-tow 

spacing and the box size used for in-plane waviness measurements. 

H.3 In-plane waviness accuracy 

The above analysis suggests that in order to obtain ±0.25º accuracy, a region at 

least 100x100 pixels containing at least 20 fibre tows should be used. This is 

likely to be feasible for ply stacking sequence analysis where the average fibre 

orientation over a substantial region is required. However, it is rarely possible 

for in-plane waviness mapping, where a small box is raster-scanned over each 

C-scan image and the size of the box needs to be small enough to minimise 

averaging of orientation over the waviness. In order to compromise between 

absolute accuracy of orientation measurement and averaging out the waviness, 

it is necessary to use a box that will contain fewer than the optimum 100 x 100 

pixels and also fewer than 20 fibre tows. To determine the best compromise box 

size and pixel size for in-plane waviness, it is necessary to consider how the 

maximum expected waviness is linked to fibre tow size and how the accuracy of 

the fibre angle measurement depends on box size as a function of wrinkle 

wavelength. For the purposes of the analysis in Table H-2, the minimum 

expected in-plane waviness wavelength was equal to n fibre-tow spacings.  

The box needs to be positioned exactly over the peak angle in order to measure 

it accurately. Increasing the overlap between adjacent boxes improves the 

chances of accurate positioning over the peak angle. To demonstrate this, 50% 

and 75% overlaps were used to assess the in-plane waviness in Figure H-6. 
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Box size (# fibre tows) n, fibre 
tows per 

wavelength 20 10 5 3 

40  -3.5º ±0.5º ±1º +3º ±1º 

20  -3.5º ±1º -2º ±2º +1º ±4º 

10  -3º ±1º -2º ±2º -3º ±4º 

Table H-2. Errors and uncertainties as a function of box size and wrinkle 

wavelength for simulated sinusoidal in-plane waviness and 5 pixels per fibre-

tow width. Values are for plies of 0º/45º/90º simulated using the pseudo-random 

method with noise. 

 

Figure H-6. An example of the in-plane waviness analysis of a simulated in-

plane wave in a 45º ply of amplitude 13 mm, wavelength 50 mm, envelope half-

width 30 mm, step size 1 mm, box size 25 x 25 mm and fibre-tow spacing 

5 mm. Simulated C-scan (top), combined C-scan and in-plane fibre angle scan 

with 50% overlap (middle) and with 75% overlap (bottom). 
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The peak deviation from 45º occurs at the centre of the waviness, where the 

Gaussian envelope is unity. The wave is a sine wave with 13 mm amplitude and 

Equation G-2 in Appendix G gives a peak angular deviation of -58.5º for a 

50 mm wavelength, -39.2º for a 100 mm wavelength or -22.2 for a 200 mm 

wavelength. Errors and uncertainties given in Table H-2 were determined from 

plots as shown in Figure H-7. An underestimate in the calculated peak deviation 

is caused by a combination of the box not being positioned exactly over the 

steepest slope in the wave, and the box averaging over portions of the wave 

with reduced slope. Note that the measurement is stored in an 8-bit bitmap with 

256 levels spread over 180°, giving digitisation noise of  around ±0.7° 
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Figure H-7. Error in measuring the peak angular deviation for 13 mm amplitude, 

100 mm wavelength waviness with 5 mm fibre tow width and box sizes of 

15 x 15 mm (top), 25 x 25 mm (middle) and 50 x 50 mm (bottom). 
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H.4 Ultrasonic C-scan generation 

H.4.1 Smoothing through spatial averaging 

Spatial averaging can be simulated easily by introducing smoothing of each 

image prior to angular analysis. The results for averaging of 5 mm tow spacing 

(variable spacing) scans over spot sizes up to 10 mm are shown in Figure H-8.  

The inaccuracies due to spatial averaging are no greater than ±0.25º. Whilst 

this has not been tested for real ultrasonic spatial averaging, there is no reason 

to suspect any greater inaccuracies than for these simulated experiments. 

 1 mm spatial average 3 mm spatial average 5 mm spa tial average 10 mm spatial average 

 

 1 mm spatial average 3 mm spatial average 
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Figure H-8. Graphs of measured ply angle (pink) and the measurement error 

(blue) as a function of the angle of variably-spaced simulated fibre tows for C-

scans (top row) that have been spatially-averaged over spot sizes of 1 mm (top-

left), 3 mm (top-right), 5 mm (bottom-left) and 10 mm (bottom-right). 



 401 

H.4.2 Presence of lines from adjacent plies at other angles  

Whilst adjacent plies cause small peaks at other angles, they should only affect 

the accuracy of the measurement of the dominant peak if they are close in 

angle. As adjacent ply orientations differ by at least 45º, it is not expected that 

any inaccuracies will result. 

H.4.3 Other depth-dependent effects 

The most obvious depth-dependent effects are those in the above two sub-

sections: spatial averaging over the beam profile, and leakage of angles from 

adjacent plies. The latter problem will be exacerbated near the back-wall echo 

depth where the broad-band back-wall reflection interferes with the ply 

resonances (see Figure H-9). However, it is still felt that the main errors caused 

will be in mistaking which orientation corresponds to which ply, rather than an 

inaccurate measurement of the actual angle of the ply orientation. 

 

Figure H-9. An example of a 60-ply 15 mm thick composite showing the 

confusing response near the back-wall echo (bottom of image) and that the 

angular width of each ply's peak orientation does not appear to broaden 

significantly with depth in the structure. 
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As the ultrasound propagates through the material there is more visco-elastic 

attenuation of the higher frequencies, and the ply resonance frequency itself 

becomes a band-gap in the incident spectrum. The reduction in the peak 

frequency should only result in broadening of the beam and greater spatial 

averaging, similar to the variations in focal beam profiles that would be 

expected. Loss of the resonant frequencies of the plies does not seem to have 

a marked effect, even through 60 or more plies, with the width of the angular 

peaks being maintained through the structure (see Figure H-9). 

H.4.4 Waviness in the lines 

Waviness in the lines in a region of an image can be the source of uncertainty in 

a measurement of average peak orientation within that region. The method can 

at best measure the average or most common orientation within the region and 

any waviness will cause a broadening of the peak at that orientation. 

To investigate this effect, waviness was introduced to simulated C-scans with 

pseudo-random tow spacing, as used above, and the results are shown in 

Figure H-10. 

It can clearly be seen in the 2D-FFTs that the wrinkle introduces a broader 

range of angles in the region being analysed and this directly affects the 

accuracy with which the average ply orientation can be measured. However, a 

wrinkle of just 0.5 mm amplitude and 60 mm wavelength has a maximum 

angular deviation of 3.0º, which is much greater than the allowable 1.8º for a 

fibre wrinkle in some current OEM specifications. 
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Figure H-10. C-scans (left), 2D-FFTs (middle) and angular accuracies (right) as 

the amplitude of wrinkle increases from 0.5 mm (top) to 2 mm (bottom), with a 

60 mm wrinkle wavelength and wrinkle half-width of 50 mm. 

0.5 mm wrinkle, 60 mm wavelength, 50 mm half-width  

Maximum angular deviation: 3.0 degrees 

 

1.0 mm wrinkle, 60 mm wavelength, 50 mm half-width  

Maximum angular deviation: 5.9 degrees 

 

2.0 mm wrinkle, 60 mm wavelength, 50 mm half-width  

Maximum angular deviation: 11.8 degrees 
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H.5 Out-of-plane wrinkling 

The accuracy of out-of-plane wrinkling measurements depends on the wrinkle 

wavelength and the box size used to define the analysis regions. As with in-

plane waviness, the box needs to be narrow in order not to spatially-average 

the peak angle, but it needs to be as many pixels wide as possible to improve 

the accuracy of the measurement of angle. Thus a small incremental step size 

in the original scan is beneficial as this maximises the number of pixels per 

wrinkle wavelength.  

The number of plies included in the box height is also important. Figure H-11 

shows the benefit of including four rather than two plies, for four different box 

widths: 20, 50, 75 and 100 pixels, just measuring straight lines at a range 

different angles. 
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Figure H-11. Errors in angular measurement as a function of ply angle for 

different box widths (10 pixels per millimetre) and a box height including two 

plies (top) or four plies (bottom). 
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H.6 Fibre orientation accuracy summary 

This appendix has summarised the work to date on the accuracy of the fibre 

orientation methods. It is work in progress in an iterative fashion in that, as 

accuracies are assessed, a greater insight is gained, leading to improvements 

in the algorithms. This then requires a further accuracy assessment and the 

cycle repeats. 

It has been shown that the ply stacking sequence method has potential for the 

greatest angular accuracy because of the ability to use a large number of pixels 

in the analysis region. For waviness and wrinkling this region needs to be 

smaller in order to plot just localised orientation. Reducing the size of the 

analysis region results in poorer accuracies, but there is potential to reduce the 

incremental step size in scans and increase the full-waveform digitisation 

sampling rate in order to increase the number of pixels in the analysis region.

 


