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ABSTRACT 
 

This thesis documents a programme of work undertaken from mid-2005 to mid-

2009 as a part-time PhD, investigating the application of signal-processing 

methods to ultrasonic non-destructive evaluation (NDE) data from fibre-

reinforced composite materials. The aims of the project were:  

• to push the boundaries of defect detectability by applying knowledge-

based filtering methods to remove the response of the structure;  

• to produce 3D profile maps of various measured parameters to assist in 

differentiating between defects and structural effects;  

• to present the NDE information in terms of actual material properties that 

can be easily interpreted.  

These aims are linked to specific NDE problems in inhomogeneous materials:  

• 3D characterisation of the material properties and defects in composite 

materials such as carbon-fibre reinforced plastic (CFRP);  

• 3D mapping of ply wrinkling and fibre orientation in CFRP and glass-fibre 

reinforced plastic (GFRP).  

By developing and using a model, it was possible to understand the ultrasonic 

response of multi-layered structures when the layers themselves comprise both 

fibres and matrix. Various defects were inserted into the model to determine 

which parameters from the ultrasonic response would provide good distinction 

between defect types and enable quantitative 3D profiling of the required 

material properties. 

A toolset of signal-processing and image-processing algorithms was used to 

apply the methods to both simulated and real ultrasonic data from the above 

NDE problems in order to demonstrate the benefits of the new methods. At 

various stages through the project a validation process was undertaken to 

evaluate the methods for use on real composite aerostructures. 

This thesis contains information protected by United Kingdom Patent Application No. 0818383.2 and No. 0818088.7.  
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NOMENCLATURE 

 

Symbols for complex variables and matrices are in bold face type. Vector 

quantities are denoted by an over-bar. Descriptions of symbols which have 

more than one meaning are separated by a semi-colon. 

Roman Symbols: 

a Radius of pores 

A Pressure amplitude at x = 0 

c Sound velocity 

Cij Stiffness matrix 

D Element diameter of a circular transducer 

E Young’s modulus 

G Shear modulus 

I Intensity 

k Wavenumber: 2π / λ 

K Bulk modulus 

Kf Focal gain: zf / N 

M Compression modulus 

N Near-field distance (distance to last axial maximum): D2/4λ 

p Acoustic pressure 

r Complex pressure reflection coefficient 

R Intensity reflection coefficient  

t Complex pressure transmission coefficient 

T Intensity transmission coefficient 

u Particle velocity 

wf Focal beamwidth 

wt Fibre-tow width 

zf Focal distance 

zps Ply spacing 

Z Acoustic impedance 



 vii  

Greek symbols: 

α Attenuation coefficient. Also used as a local coefficient, usually 

together with β 

αn The reciprocal of the product of the nth resonant frequency and the 

ply spacing 

β Scattering function which governs the long-wavelength behaviour of 

the reduced scattering cross-section. Also used as a local coefficient, 

usually together with α 

η Ratio of shear-wave to compression-wave velocities 

θ Usually an angle 

λ Wavelength of ultrasound 

ν Poisson’s ratio 

ρ Density of a material 

φ Volume fraction: proportion of one material in the whole, by volume 

ψ Value of ka below which the long-wavelength limit applies 

Γ Reduced scattering cross-section 
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GLOSSARY OF TERMS 

 

CFRP Carbon-Fibre Reinforced Epoxy 

CNR Contrast-to-noise ratio. The ratio of a) the difference 

between a signal and the background, and b) the 

surrounding noise level. 

FMC Full Matrix Capture 

FVF Fibre volume fraction. The proportion of a composite that 

is fibres, by volume. 

GFRP Glass-Fibre Reinforced Epoxy 

GLARE GLass-fibre Aluminium hybrid Reinforced Epoxy laminate 

NDE Non-destructive evaluation. 

NDT Non-destructive testing. 

POD Probability of detection of a defect. 

RIFT Resin infusion through flexible tooling. 

RFI Resin film infusion. 

RTM Resin transfer moulding. 

SNR Signal-to-noise ratio 

TFM Total Focusing Method 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

1.1.1 Non-destructive Evaluation (NDE) in aerospace  

Non-destructive evaluation (NDE) methods are in widespread use for both 

detection and characterisation of defects in metals and composites in most 

fields of engineering and manufacturing, both in production and in service. In 

the vast majority of cases the application of conventional NDE methods is 

straightforward, well qualified and adequate for the task. But it is the few cases 

where conventional methods are less effective that consume the majority of the 

resources spent on NDE and become a source of constant frustration for the 

end-users. This is the same across the user spectrum from car manufacturers 

to military fighter squadrons, and applies to both detection and characterisation 

of defects. 

The civil aerospace industry is currently undergoing a massive culture change 

as it scales up the proportion of composite structural components on new 

aircraft almost ten-fold within just a few years. Manufacturers now need to 

inspect the actual material they are using to construct the aircraft, whereas the 

older metallic raw materials did not require inspection. The first substantially-

composite airliners will each contain at least 1800 m2 of structural composite, 

much of it including complex structures such as co-cured stiffeners. 

Military aircraft operators are facing a different challenge – their largely metallic 

fleets are being required to fly beyond their original design lives, requiring life-

extension programmes and a reliance on NDE to assure damage tolerance is 

maintained. In complex structures that were built before the days of CAD 

packages and CNC machines, and which have often been repaired in a way 

that changes the structure significantly, NDE is becoming a significant financial 

and resource burden. 
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Thus virtually the entire aerospace industry is moving towards an NDE reliance 

that is unprecedented and requires solutions that will dramatically raise the 

effectiveness of NDE methods on complex structures, both metallic and 

composite. 

The effectiveness of NDE methods is determined statistically through 

probability-of-detection (POD) trials (Berens, 2001; Spencer, 2001) if the 

objective is defect detection, or through calibration if the objective is 

characterisation of either the material or a defect. Ultimately the governing 

factor for image-based defect detection is the contrast-to-noise ratio (CNR) 

when the structure is simple (Smith and Hugo, 2001). This is the difference 

between the responses from the defect and from the surrounding structure, 

relative to the ‘noise’ fluctuations in the same area. For simple materials and 

structures the contrast achievable will change with location and material 

properties according to well-known physical effects such as diffraction, diffusion, 

dispersion etc. The point at which the CNR falls below 2.5 is often regarded as 

the limit of defect detectability (Smith and Hugo, 2001). But, when the materials 

or structures are inhomogeneous, the causes of the ‘noise’ become location-

dependent and much more complex, often swamping the contrast from the 

defect. It is then much more difficult to predict the effectiveness of the technique 

from simple POD trials. 

1.1.2 Inspection of inhomogeneous materials and str uctures 

Many of the most difficult unresolved problems in the field of NDE involve the 

detection and characterisation of defects in inhomogeneous materials and 

structures, where the basic response of the structure can overshadow the 

response of the defect. In the author’s experience, this is especially true when 

defects are just a particular variation of the basic inhomogeneity of the 

structure, such as fibre-volume fraction changes in carbon-fibre reinforced 

plastic (CFRP) composites (Smith et al, 1999a). This is less of a signal-to-noise 

(SNR) problem than a defect-to-structural-response problem - the structural 

response cannot be classified as ‘noise’ as it is rarely random. In each case, the 

optimum solution to extract the defect response depends on whether the 

structural response is predictable or random, or a combination of the two. 
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NDE techniques that are highly successful on simple structures can rapidly 

become unusable as the structure becomes more inhomogeneous, either by the 

inclusion of extra layers, fasteners or edges, or because the materials 

themselves are inhomogeneous, as in composite materials. 

1.1.3 Ultrasonic response of inhomogeneous material s 

The ultrasonic NDE method generally uses acoustic frequencies above 0.5 MHz 

in either a through-transmission (two transducers, one either side of the 

specimen) or pulse-echo mode (one transducer), requiring a liquid couplant 

such as water to transfer the energy into the component under test. The full-

waveform ultrasonic response is analysed at each location on the surface of the 

structure and either the results of this analysis, or the full-waveform data, are 

stored for further post-processing and analysis (Smith, 2004). 

Ultrasound is an extremely useful NDE method for inspecting inhomogeneous 

materials for several reasons: 

• the wavelengths can be of the order of the size of any particles or layers, 

allowing the use of resonance and/or scattering methods 

• the beamwidth can be big enough to average over a distribution of 

inhomogeneities, or small enough to map them individually 

• energy is reflected or scattered at boundaries of acoustic impedance - 

local changes in density or stiffness – allowing both inhomogeneities and 

defects to be characterised. 

• by storing the full-waveform response at each location on the structure, a 

3D dataset has effectively been captured representing the 3D structure 

itself (Smith, 2004). 

The challenge when interpreting ultrasonic signals from inhomogeneous 

materials is that simple amplitude variations within the ultrasonic waveform, or 

even more complex spectral variations, are often insufficient to identify their 

cause. Often it is necessary to compare the 3D location of the source of the 

amplitude variation with the 3D locations of structural components such as 
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fasteners and edges, or with the expected resonance response from multiple 

layers or plies in a composite.  

1.1.4 Ultrasonic 3D characterisation 

As mentioned above, 3D characterisation is often essential for defect detection 

and identification in inhomogeneous materials due to the complexity of the 

ultrasonic response. Essentially the response of each volume element needs to 

be extracted from the overall response of the structure. This may be achieved in 

several ways, but the one covered in this project is beam focusing, for in-plane 

zone definition and time-delay gating for out-of-plane zone depth. 

1.1.5 Ultrasonic mapping of material properties 

Ever since the first ultrasonic signals were obtained from static objects, over 60 

years ago, the interpretation of those signals has remained a specialist skill. 

Even modern computer-based mapping methods generally map ultrasonic 

parameters that are meaningful only to trained NDE personnel. However, it 

should be possible to combine the ultrasonic ability to map structures with a 

knowledge of how ultrasound interacts with materials in order to reprocess the 

data and produce maps of actual material properties such as: density, modulus, 

ply spacings in monolithic composites, porosity levels, degree of bonding at an 

adhesive/adherend interface, consolidation and uniformity of fibre spacing in a 

metal matrix composite, etc.  

1.2 Objectives 

1.2.1 Aims 

The primary aim of this project is to produce 3D profile maps of various 

measured parameters for inhomogeneous materials and structures to assist in 

differentiating between defects and structural effects, and to provide a higher 

degree of material characterisation for subsequent use by materials engineers. 

A second aim for the project is to present quantitative NDE information in terms 

of actual material properties that can be easily interpreted, rather than ultrasonic 
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response parameters that require considerable understanding and expertise to 

interpret in terms of material properties.  

A third and final aim of the project is to develop visualisation methods for each 

of the parameters to help NDT engineers to present convincing information to 

structures and design engineers, who then need to make decisions on allowing 

defects (concession or disposition) or repair strategies. 

1.2.2 Specific requirements 

With the rapidly escalating usage of composite materials, not only in military 

aircraft but in civil airliners as well, production NDT throughput is already 

stretched to its limit internationally. NDT data analysis is set to become the 

bottleneck preventing the required rise in production rates of composite civil 

aircraft in the next few years. Thus there is an urgent requirement for rapid, 

automated analysis of up to a Terabyte of data per airliner, escalating to over 

200 Terabytes per year - worldwide. The primary aim of automated analysis is 

to release operators from the time-consuming analysis of all scans and focus 

operator attention on non-compliant structures. A secondary aim is to provide 

three-dimensional quantitative information that lightens the operator’s decision-

making burden. The latter aim is one of the requirements for the current project. 

Through advanced characterisation methods, NDT also has the potential to 

provide crucial feedback to control the composite production process, increase 

production yield and decrease costs. Current analysis methods for ultrasonic 

scans produce through-thickness average parameters, which provide little 

useful information to assist the stress analysis for defects, or the production 

process. Three-dimensional characterisation of defects can increase yield by 

informing the concession/disposition process for defects. For future process 

control, information is required about the 3D distribution of material properties in 

the structures on the production line, providing comprehensive long-term trend 

analysis. 

After consulting composites design engineers and materials scientists, the 

following list of composite material properties was generated, where accurate 

3D measurements would be advantageous: 
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• distributed porosity 

• layer porosity 

• ply spacing  

• fibre volume fraction (thick resin layers etc) 

• ply stacking sequence 

• in-plane fibre waviness 

• out-of-plane fibre wrinkling 

All of these material properties are important for both CFRP and glass-fibre 

reinforced polymer (GFRP). 

Most of the critical material properties for CFRP and GFRP, such as void 

volume fraction and fibre volume fraction (FVF), are currently measured 

indirectly using ultrasonic parameters related to bulk properties. Direct 

measurements of material properties would be of more use to structural 

designers, especially if they could be mapped as a function of 3D location in the 

structure. This would allow structural designers to vary the acceptance criteria 

on these parameters depending on the predicted stress at each location, 

resulting ultimately in a lighter design.  

Full-waveform acquisition and storage is now becoming commonplace for both 

production and in-service ultrasonic inspection, so there is potential for the 

direct measurement of various important material properties through signal 

processing and spectral analysis of the full-waveform data. Ultimately it should 

be possible to generate 3D profiles of these material properties by analyzing 

separately each 3D volume element in the structure. A short time gate placed 

on a particular ultrasonic waveform effectively isolates the ultrasound reflected 

or scattered from a specific 3D volume element. The extent to which the time-

gate response is actually isolated from the effects of material in advance or in 

the rear of this volume element depends on the technique used to analyze the 

response and on the structure itself, and is an important consideration in any 

validation exercise.  

In this work, the author has investigated new ways of decomposing the 

ultrasonic volume-element response into contributions from fibre-resin effects 
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(fibre volume fraction, ply spacing and thick resin layers), porosity and fibre 

orientation.  

1.2.3 Scope and originality 

The scope of the project in terms of inhomogeneous materials is confined to just 

CFRP and GFRP composite laminates. Only ultrasonic inspection of these 

composite laminates is included, although the first review chapter (Chapter 2) 

has a wider scope in order to justify the use of ultrasound. 

The project is broad in terms of the range of material properties that are 

characterised and mapped and, for this reason, not all of the 3D 

characterisation toolset has been fully validated by the end of the project. 

The originality in this project is in the application of signal- and image-

processing methods to the isolation and characterisation of various material 

properties of composite laminates and then refining the methods of application, 

all in ways that have not been done before. 

1.3 Overview of the project 

1.3.1 Modelling of ultrasonic propagation in layere d composites 

A multi-layer ultrasonic bulk wave propagation model, MLM-Propmat, has been 

developed at the University of Nottingham to simulate the reflection and 

transmission responses of composite materials. Each layer is modelled as an 

effective medium using conventional mixture rules for the physical properties 

(Greszczuk, 1971). During the period of this project this model has been 

augmented by other workers to include the frequency dependence of ultrasonic 

attenuation due to porosity in the resin, based on the scattering theories of 

Epstein and Carhart (1953) and Allegra and Hawley (1972).  

The effects of porosity and other panel defects were investigated by using a 

flexible simulation of ultrasonic wave propagation through multi-layered 

structures. For the purposes of simulation it was assumed that a monolithic 

composite could be considered to contain multiple layers which could consist of 

resin alone, resin with fibres, or either of these with the inclusion of porosity. 
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The model was essentially a transfer matrix formulation, and followed the earlier 

work of Freemantle (1995). The model simulates acoustic wave propagations in 

multi-layered media on the basis of a well-established transfer matrix model 

which originated from the works of Thompson (1950), Haskell (1955), Knopoff 

(1964) and Pialucha (1992). A description of the model was presented recently 

by Mienczakowski et al (2008). 

For benchmarking purposes, a different and completely separate model was 

developed in parallel by the author, using similar mixture rules but a different 

software architecture. Also, the ultrasonic attenuation due to porosity was 

calculated using a different method – that described by Adler et al (1986) 

because it has an analytical formulation that does not require access to 

scattering-model software. This model is based on analytical expressions for 

the complex reflection coefficients at groups of interfaces, which can then be 

built into larger structures of interfaces. It was built by the author into QinetiQ’s 

ANDSCAN® Waveform Analysis software for easy comparison with 

experimental data. The ability to compare the two models proved invaluable 

during this project and the models have been used to develop techniques to 

detect, localize and characterize flaws in composite materials. 

1.3.2 Development of an ultrasonic signal processin g toolset 

The author had already developed substantial waveform-processing, image-

processing, and spectral analysis toolsets in QinetiQ’s ANDSCAN® application 

(Smith 1995a; Smith 1995b; Smith 2004). As the aims of this project included 

making the methods developed here available in the industry, it was appropriate 

to develop the new capabilities within this framework and it was obviously 

familiar to the author. 

In many cases the pre-existing toolset just needed to be applied to the problems 

of inhomogeneous material inspection and then refined based on the 

knowledge gained from modelling and experiment. However, in certain cases 

new tools had to be added to the toolset. 

As in most applications of signal processing and image processing, it is not the 

process itself that is new, but the specific optimisation of parameters for its 
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application to a particular problem. Hence most of the techniques used in this 

project already existed and were freely available as code fragments or 

algorithms in books or on the internet. This thesis focuses on their application to 

the above requirements and the originality in the optimisation of the solutions. 

1.3.3 Mapping of Inhomogeneous Material Properties 

Having extended the new toolset of image- and signal-processing tools, they 

were applied to each of the above requirements for inhomogeneous materials 

mapping. This process involved understanding the problem through modelling 

and experiment, followed by several stages, each including: application of the 

tools, optimisation of the parameters, and assessment of the outcome. Finally, 

in cases where a particularly successful process was defined, a validation stage 

followed where the accuracy and precision of the method was assessed.  

1.4 Structure of the thesis 

This thesis is divided into eight chapters and eight appendices. It was decided 

to put most of the scientific detail into the appendices in the interests of clarity 

and to maintain the flow of the main chapters.  

Two literature review chapters are provided – Chapter 2 covers NDE methods 

for composite materials and the current position whilst Chapter 3 reviews 

modelling methods relevant to ultrasound propagation in composites. Chapter 4 

describes the development of a model for normal-incidence ultrasonic 

propagation in a multi-ply composite. Then Chapter 5 covers the original use of 

this model for model-based decomposition in order to isolate the contributions in 

the response from different material properties. Moving away from the use of 

the model, Chapter 6 describes the development of novel methods for mapping 

fibre orientation and ply inclination. Chapter 7 is a discussion of applications of 

these new methods to various types of composite materials whilst Chapter 8 

gives the conclusions.  

This thesis contains information protected by United Kingdom Patent 

Application No. 0818383.2 and No. 0818088.7 dated October 2008. 
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CHAPTER 2 REVIEW OF NDE METHODS AND 

CURRENT POSITION 

This chapter reviews the development of NDT methods targeted at composite 

materials but focuses on innovations of the last ten years. The chapter begins 

with two historical review sections: the first covering the early developments 

from the 1960s to the early 1990s and the second covering the 1990s to the 

start of the project in 2005. The subsequent sections then focus on individual 

material properties or defect types, namely: porosity, fibre volume fraction, ply 

stacking sequence, in-plane fibre waviness and out-of-plane ply wrinkling. 

Finally a discussion section summarises this review chapter. 

2.1 Early NDE Methods for composite materials 

This section reviews the development of non-destructive testing (NDT) methods 

for composite materials since the 1960s, as well as summarising relevant 

technical achievements and current work in academia, industry, and research 

organizations.  

2.1.1 Scope and availability of literature 

Much of the very early research was conducted in the defence establishment 

where composite materials were being developed – the Royal Aircraft 

Establishment (RAE) – and reports of this work, although often restricted in 

circulation, were made available to the author for this review. Some defence-

based work in the USA is still restricted and not accessible. More recently the 

use of composite materials has become more widespread and filtered into the 

civil arena, resulting in a broader research base and more accessible literature. 

A range of defect types is covered in this chapter, and materials include 

monolithic carbon fibre reinforced plastic (CFRP), glass fibre reinforced plastic 

(GFRP), sandwich structures such as honeycomb or foam between CFRP 

skins. 
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2.1.2 Historical NDT of Composites – 1960s and 1970 s 

Early in the development of CFRP (initially at the RAE in Farnborough, UK) it 

was realised that non-destructive testing would be essential in order to detect 

internal defects that were not visible on the surface. A small Non-destructive 

Evaluation (NDE) Group was established at RAE in the late 1960s to support 

the development of CFRP, drawing on expertise in image processing and 

coherent optical methods, such as holography. Reports in 1972/3 included work 

on holography (Sanders, 1973; Chubb and Abbiss, 1973; Wright, 1973), Moiré 

imaging (Wadsworth et al., 1972) and stress-wave sensing, later called acoustic 

emission (Dingwall, 1973). Work also commenced around this time on the 

ultrasonic NDT of composites. This was linked with work by the Materials and 

Structures groups at the RAE on, for example, compressive failure in CFRP 

(Ewins and Ham, 1973), buckling performance (Snell, 1979), and fracture 

mechanisms (Bishop and McLaughlin, 1979). 

In parallel, an NDT Group within the Admiralty Materials Laboratory at Holton 

Heath in Dorset had started looking at acoustic emission for metallics and 

pressure vessels. This work was recognized as potentially useful for CFRP 

(Green, 1974; Green and Lane, 1978; Green et al., 1979). By 1974, holographic 

interferometry had been demonstrated at the RAE on honeycomb sandwich 

panels (Marchant, 1974) and acoustic emission on CFRP missile fins (Dingwall 

and Mead, 1974). In 1978 holography was applied to CFRP wing tips 

(Marchant, 1978) at the RAE and then used to determine the flexural stiffness of 

thin plates (Marchant and Snell, 1981). Laser holography was then used in 

industry by Westland Helicopters (Worsdell, 1982) for composite components. 

In the USA, NDT of composites seemed to precede a thorough understanding 

of failure mechanisms and defect types, leading to some conclusions that now 

seem surprising, with hindsight. For example, Hagemaier et al (1970) performed 

an early review of NDT techniques for carbon, glass and boron fibre epoxy 

composites but ultrasound was only noted as being useful for disbonded areas.  

X-radiography was found to be suitable for most sub-surface defects that were 

tested for, including fibre patterns, fibre gaps, broken fibres and resin-rich 

areas. Maigret and Jube (1971) also drew a strange conclusion from their 
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survey of NDT methods for composites – that the defect detection problem had 

largely been solved using X-radiography!  

At the US Air Force Materials Lab, Anderson and deLacy (1972) found 

radiographic and ultrasonic tests to be the most effective for detecting open 

bonds and laminar defects. By 1982 deLacy (deLacy 1982) was using passive 

acoustic emission for GFRP structures on telecommunications satellites. Rose 

et al (1973) were some of the first researchers to realise the potential for using 

the ultrasonic spectroscopic signature of a composite to characterise its 

properties. At Sikorsky, Nevadunsky et al (1975) looked for early fatigue 

damage in composites using a range of NDT methods but found ultrasonic and 

holography to be the most effective. Sheldon (1978) systematically evaluated 

NDE techniques for in-service inspection of composites using an acoustic 

positioning system to allow the building up of 2D images from ultrasonic or 

optical methods. Knollman et al (1978) also evaluated a similar positioning 

system. 

Double through-transmission ultrasonic systems for detecting voids in 

composites were developed by Markham (1969) and Compton (1971) as well 

as at the RAE. From Harwell, Reynolds (1974) reported on ultrasonic and 

vibration methods and the importance of porosity measurement. Stone (1974) 

highlighted the need for alignment between NDT developments and mechanical 

testing programmes to determine the importance of defect types, based on his 

work at RAE.  A breakthrough in ultrasonic NDT of composites was reported by 

Stone and Clarke (1974) - the ultrasonic measurement of porosity. They 

demonstrated that ultrasonic attenuation increases due to the scattering of 

ultrasound by voids, that this is a frequency-dependent effect, and that it could 

be used to measure volume void content provided a calibration curve for the 

particular fibre-resin system had already been established. This was 

groundbreaking work and was published in the public domain (Stone and 

Clarke, 1975). Work at the RAE to check whether calibration data could be read 

across to other fibre-resin systems was published by Jones and Stone (1976) 

and showed approximately a 1 dB difference between two fibre-resin systems of 

the same fibre-volume fraction. Their data were re-analyzed and described in a 
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review by Birt and Smith (2004), showing that the agreement between the two 

systems was within the accepted ±0.5% error in the acid-digestion method used 

by Jones and Stone to determine volume void content. Sturgeon (1978) 

confirmed the important role that NDT was playing at the time in the 

development of composite materials. For the next thirty years this ultrasonic 

method of assessing porosity levels has prevailed in the production NDT of 

aerospace composites. It is only now, because civil airliners will soon contain a 

much higher proportion of composite structure, that improved methods are 

being sought to reduce production costs, weight, and hence operating costs. 

Burchett (1972) successfully used holographic interferometry to inspect 

composite laminates. Meanwhile, under UK defence funding, electronic 

speckle-pattern interferometry (ESPI) was developed at the University of 

Loughborough (Bergquist, 1978) and this went on to form the backbone of the 

laser shearography method that is now being used in many composite 

applications, particularly for disbonding of sandwich components.  

2.1.3 Historical NDT of Composites – 1980s and earl y 1990s 

A group in British Aerospace was working on developing B-scan capability with 

Diagnostic Sonar Ltd (Figure 2-1) and carried out feasibility studies on an array-

based ‘System 185’, with 394 elements at 5 MHz, in the early 1980s (Gassert, 

1983).  

 

Figure 2-1 - Diagnostic Sonar's ‘System 185’ for array-based B-scanning of 

CFRP was developed following interest from British Aerospace for military 

composite aircraft inspection, and was on sale in 1978 (Gassert, 1983). 
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They also reported on NDT of defects in CFRP (Thacker, 1984), on attenuation 

and velocity of acoustic emissions in composites (Hall, 1985) and, of particular 

interest, on ultrasonic spectroscopy for characterization of the composite itself 

(Brant, 1984). At this time there was also acoustic pulsing (later known as 

acousto-ultrasonics) work on GFRP at the Welding Institute (Bartle, 1983), and 

work at the Atomic Energy Authority’s Harwell Laboratory on measurement of 

moisture content in CRFP from positron annihilation lifetime measurements 

(Allen et al, 1986). Also, at Harwell, Reynolds was investigating porosity using 

ultrasonic velocity measurements in CFRP (Reynolds and Wilkinson, 1978). He 

went on to use thermography for composite inspection in the early 1980s 

(Reynolds, 1985). With Milne he developed pulsed video thermography 

(UKAEA, 1983), later known as transient thermography (Milne and Reynolds, 

1985). Hobbs continued evaluating transient thermography for use on 

composites in the 1990s at Harwell (Hobbs et al, 1991; Hobbs and Temple, 

1993; Hobbs et al, 1994). 

Other research was being carried out in the UK on the use of electromagnetic 

acoustic transducers (EMATs) by Tube Investments (Connor, 1988), and on 

computed tomography for helicopter rotor blades by Westland Helicopters Ltd 

(Powell, 1988). 

Apart from some work on high-frequency eddy-currents for CFRP, by the end of 

the 1980s research at RAE on the NDT of CFRP was focused on ultrasonics 

and penetrant-enhanced X-radiography. Early ultrasonic immersion tanks from 

Meccasonics Ltd and C-scanning using electrostatic paper to produce six 

quantized gray levels were state-of-the-art (Lloyd and Wright, 1986). Computers 

were becoming useful for processing data from digitizers and the first pseudo-

3D ultrasonic images of impact damage in CFRP were produced by Lloyd 

(1989) from one of the first full-waveform capture systems (see Figure 2-2). The 

author recollects that each 3D representation required at least ten minutes to 

calculate and display on a PDP-11 computer.  
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Figure 2-2 - Pseudo-3D images of impact damage in CFRP (Lloyd, 1989) 

generated from a Krautkramer KB6000 linked to a PDP-11 computer. 

At this time in the Admiralty Research Establishment (ARE, formerly AML), the 

NDE Group was using acoustic emission (Jemison et al, 1989), eddy-currents 

(Lane, 1988), ultrasound, and X-ray (Jemison and Culpan, 1989) methods for 

some of the first aluminium metal-matrix composites (MMC) (Jemison et al, 

1993). Meanwhile, at the Harwell Laboratory, acoustic methods were being 

tested for these MMC materials (Buttle and Scruby, 1988), and acoustic 

emission source location was being studied in CFRP (Buttle and Scruby, 1989). 

Acoustic microscopy was investigated for a range of composite materials, 

including MMCs, by Briggs, Lawrence and Scruby (Briggs et al, 1993; Lawrence 

et al, 1993a; Lawrence et al, 1993b; Lawrence et al, 1993c), and acoustic 

emission was investigated for MMCs (Mummery et al, 1991; Mummery et al, 

1993).  

In the late 1980s at Imperial College, London, Cawley and Adams were 

developing an understanding of the low-frequency vibrational response of 

composite structures and how to harness this for inspection purposes (Cawley, 

1985; Cawley et al, 1985; Cawley, 1987; Adams and Cawley, 1988; Cawley and 

Adams, 1988; Cawley, 1989; Cawley and Adams, 1989; Cawley, 1990). Then 

Cawley turned his attention to the potential for using ultrasonic guided-wave 

modes to inspect large areas of composite structures using sparsely distributed 

sensors (Guo and Cawley, 1993; Cawley, 1994; Guo and Cawley, 1994a), with 

some work on normal-incidence pulse-echo ultrasound for porosity 
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measurement in composite repairs (Guo and Cawley, 1994b). Also, at Imperial 

at this time, an acousto-ultrasonic method was being investigated for composite 

inspection by Rawlings (Thompson and Rawlings, 1991; Aduda and Rawlings, 

1990). 

2.2 A review of composite inspection from the 1990s  

2.2.1 Ultrasonic Composite Inspection 

The availability of personal computers led to the transfer of C-scanning to 

computer operation at RAE Farnborough from 1989. Immersion-tank scanning 

was transferred first, and then a portable in-service inspection system, soon to 

be known as ANDSCAN®, was developed (Smith and Jones, 1992; Smith, 

1995a; Smith, 1995b). These systems allowed the gathering of ultrasonic data 

from a flaw detector followed by storage and imaging as coloured maps of the 

ultrasonic response of the structure. In addition, the pseudo-3D imaging 

capability developed by Lloyd (1989) was reproduced within the ANDSCAN 

imaging system. The increase in computer speed in just three years allowed the 

3D images to be calculated and displayed in just a few seconds and soon it was 

possible to manipulate them on the screen, at a viewing angle controlled by the 

computer mouse. 

By this time the RAE had been merged with the ARE and two other non-nuclear 

defence research establishments (RSRE and RARDE) to form the Defence 

Research Agency (DRA). A few years later this became the Defence Evaluation 

and Research Agency (DERA) when some other establishments were 

amalgamated. 

Having started capturing full waveforms from every point in the scan in the 

1980s, the benefits were well understood at RAE Farnborough and the new 

computerized systems were designed to continue with this method (Smith, 

1996). An early benefit was the ability to determine ply stacking sequence by 

imaging sequential C-scans generated by moving a narrow time gate down 

through the 3D ultrasonic data set that represented the structure (Smith and 

Clarke, 1994). Examples of these early scans are shown in Figure 2-3. The 
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stacking sequence was determined by noting the two dominant fibre-tow 

directions by eye from each scan and tracking them down through the structure. 

An automated system to measure fibre orientation was developed later and is 

described below. 

 

Figure 2-3 - Examples of amplitude C-scans obtained from half-ply wide time 

gates at different depths in a 6-ply skin, from near-surface (top left) descending 

(top right, bottom left, etc). The imprint of fibre tows from plies both above and 

below the reflecting interfaces is clearly evident. A significant void defect is also 

detected in a deeper ply. 

Defect sizing for accurate measurement of defect growth became an issue, 

resulting in several papers that assessed the errors in the -6 dB and amplitude 

sizing methods, and recommended procedures to minimize these errors (Smith, 

1994; Smith et al, 1997; Smith et al., 1998). In collaboration with the Ultrasonics 

Section of the National Physical Laboratory (NPL), the NDT Group at 

Farnborough investigated the effect on immersion NDT measurements of 

nonlinear propagation in water – a phenomenon that had been overlooked, and 
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still is, due to the relatively narrowband sensors used for NDT, but which can 

cause significant errors in attenuation and spectroscopic measurements (Smith 

et al, 1998b; Smith, 1999; Smith et al, 1999b). One of the effects of nonlinear 

propagation in water is that energy is transferred into higher harmonics, often 

creating a saw-tooth waveform with positive pressure peaks being sharper and 

exceeding the negative pressure peaks. Figure 2-4 shows the high-frequency 

harmonics that are evident when a broadband sensor is used to measure the 

acoustic pressure waveform from a conventional commercially available 

transducer and flaw detector. 

 

Figure 2-4 - Acoustic waveform (left) and its spectrum (right) from a 

conventional commercially available 10 MHz focused NDT transducer 

measured at the focus, 34 mm, using a broad-band PVDF membrane 

hydrophone (Bacon, 1982). Measurements made at the National Physical 

Laboratory. 

It was becoming clear in the early 1990s that large-area in-service inspection of 

composites would prove necessary. Two strands of work were undertaken at 

DERA Farnborough: Lamb wave inspection of large composite panels, and 

multi-element ultrasonic arrays. The Lamb wave method was investigated in 

terms of the potential for different modes of propagation in CFRP and to detect 

delaminations at different depths in the material (Percival and Birt, 1997; Birt, 

1998). As ultrasonic-array technology had been successfully used in the 

medical field for years, it seemed obvious that this was the way forward for 

rapid NDT of composites. The author’s history in medical ultrasound at the 

National Physical Laboratory (NPL) prior to joining RAE in 1989 led to a strong 

collaboration with Diagnostic Sonar Ltd, a company that had been producing 
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modified medical array systems for B-scan inspection of composites since 1978 

– see Figure 2-1 (Gassert, 1983; Lines, 1998; Lines et al, 1999). By linking this 

array technology to accurate positional scanning systems such as ANDSCAN®, 

it became possible to produce C-scan images and capture full waveforms over 

large areas (Figure 2-5) (Willsher and Smith, 1998a; Willsher and Smith, 1998b; 

Smith et al, 1999a; Lines et al, 2003). 

 

Figure 2-5 - Large-area thickness scan produced from a full-waveform 

ultrasonic-array scan of an 8.5 m2 (91.5 ft2) wing structure. A manual scanning 

method was used with Diagnostic Sonar’s FlawInspecta® array attached to an 

R-theta scanning arm (inset) and DERA’s ANDSCAN® software. Each individual 

‘slave’ scan is scanned and stored at high resolution and automatically stitched 

into the large ‘master’ scan shown. The ‘large-area grid’ shown is used to select 

and open a specific high-resolution ‘slave’ scan for detailed analysis. 
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The NDE Group at DERA Farnborough was involved early in the development 

of new low-cost manufacturing methods for CFRP, such as resin transfer 

moulding (RTM), resin film infusion (RFI) and resin infusion with flexible tooling 

(RIFT). Projects funded by the Department of Trade and Industry in the UK 

included: ultrasonic methods for detecting and characterizing any new types of 

defect (Jones et al, 1998), a study of porosity, fibre volume fraction, and fibre 

waviness measurement, as well as the effects of rough surfaces on 

measurements. Another project investigated the ultrasonic inspection of thick-

section monolithic CFRP and foam-sandwich structures produced using RTM. 

The difficulties of mapping changes in fibre volume fraction and fibre orientation 

were first encountered during these projects and are only now being solved by 

the author in collaboration with the University of Nottingham under this PhD 

project. 

2.2.2 Development of Standards for Ultrasonic C-sca n Production 

Inspection of CFRP 

Following a study by the NPL, funded by the Department of Trade and Industry 

(Broughton and Sims, 1996a; Broughton and Sims, 1996b), a program 

commenced to respond to a need for improved standardization of ultrasonic C-

scan inspection. This collaborative program involved NPL, DERA and a large 

number of industrial advisers. A considerable amount of research was carried 

out to underpin the standards and most of this was documented in a special 

issue of INSIGHT – the Journal of the British Institute of NDT (Broughton et, 

1998; Smith et al, 1998a; Smith et al, 1998b; Smith et al, 1998c; Zeqiri et al, 

1998;) and in other papers (Smith et al, 1998d; Broughton et al, 1999, Smith et 

al, 1999b).  

Three draft standards were produced covering: a) operational procedures, b) 

transducer calibration, and c) preparation of reference defects and reference 

panels (BSI, 1999a; BSI, 1999b; BSI 1999c). Two round-robin comparisons 

were then carried out – one in the UK and the other in the USA and Europe. 

The standards are still at the draft stage. 
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2.2.3 Automated Analysis and Sentencing 

As the use of composites in military and civil aircraft became more widespread, 

it became clear that large-area automated analysis and sentencing capabilities 

would be required for both production and in-service inspection. QinetiQ’s NDE 

Group embarked on a project for the Ministry of Defence to develop automated 

analysis and sentencing software, specifically targeted at analyzing large full-

waveform capture scans at high resolution (Connor, 2005). A reference scan is 

used for comparison. This can be either an earlier scan of the same component 

or a scan of a ‘reference’ component. Two images from the data, such as C-

scans, are automatically aligned in both translation and rotation. Then the two 

data sets are subtracted (see Figure 2-6) and the resulting differences are 

classified in terms of the cause of the difference (structural misalignment, noise, 

or a defect), and various measurements are performed. This information is then 

used to form a priority list for an operator to investigate. It is expected that this 

process could reduce the amount of data that needs to be analyzed by an 

operator to less than 10%. 

   

Figure 2-6 - Demonstration of automated registration (translation and rotation) 

in QinetiQ’s PinPoint® software, followed by image subtraction to highlight the 

defect. The back-wall amplitude C-scan on the left is prior to impacting, the 

middle C-scan is after impacting, and the right-hand image is after automated 

registration and image subtraction. 

In recent years the NDE Group in BAE Systems at Warton in Lancashire has 

collaborated with the University of Central Lancashire to develop software for 

image registration of NDT images with CAD wire-frame models, and hence with 

other NDT images for data fusion purposes (Matuszewski, 2000; Matuszewski, 



 22 

2001; Shark et al, 2001; Bach et al, 2002; Deng et al, 2002; Matuszewski, 

2002). 

2.2.4 Advanced Low-frequency Vibration Methods 

To improve the defect detection and characterization capabilities of the low-

frequency vibration method for honeycomb sandwich structures, Nelson et al 

(2006) at QinetiQ Ltd have been modelling the low-frequency response of 

honeycomb structures. From this work a new model-assisted inspection mode 

has been developed that is single-sided whilst being equally sensitive to front 

and rear skin-to-core disbonds, as well as to core crushing from impact 

damage. Some commercially available low-frequency vibration instruments 

have the ability to make use of the parameters recommended by the structural 

model. However, the optimum implementation of this method requires more 

advanced instrumentation and signal processing, and is currently being 

evaluated by QinetiQ using various existing modules within the ANDSCAN® 

software application. This includes the use of a multi-element linear-array 

version of the traditional pitch-catch arrangement, with ANDSCAN® storing the 

response from each element at its correct location on the scan, thus providing 

large-area scanning coverage of honeycomb structures.  

2.2.5 Microwaves 

Under a Ministry of Defence program, microwave imaging methods have been 

applied by QinetiQ Ltd (in collaboration with the University of Missouri at Rolla) 

to various applications, including the inspection of thick-section GFRP and 

various sandwich-construction composite maritime structures for disbonds, 

delaminations and core crushing. The microwave response of a composite 

structure is governed by the locations and thicknesses of dielectric materials. 

An assessment of the potential for using this method on maritime structures has 

been presented by Green (2004) and an example is given in Figure 2-7 of the 

type of image possible from a 150 mm (6 inches) wide region of impact damage 

in the PVC foam core of a sandwich structure with 3.5 mm thick GFRP skins. A 

relatively low frequency of 15 GHz was used to penetrate into the core of the 

structure. Skin and core material dielectric properties, as well as their 

thicknesses, govern the optimum operating frequency and the ultimate defect 
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detection capability. At present, minimum detectable defect sizes have not been 

formally established because critical defect sizes in this form of construction are 

generally large for maritime structures. 

 

Figure 2-7 – 15 GHz microwave-NDT image of impact-damage core crushing in 

a 3.5 mm thick e-glass GFRP-skinned, PVC foam-cored specimen. The image 

covers an area 300 mm (12 inches) wide. 

2.2.6 Laser Shearography 

Over the past 30 years the University of Loughborough has been developing 

electronic speckle pattern interferometry (ESPI) for NDT applications. In more 

recent years, under the direction of Dr John Tyrer, the group has evaluated 

laser speckle shearing interferometry for use on composites (Zhang et al, 

1997a; Zhang et al, 1997b; Zhang et al, 1997c; Richardson et al, 2000; Nurse et 

al, 2000; Petzing et al, 2002). These techniques have become known 

collectively as Laser Shearography and some are commercially exploited world-

wide for particular NDT applications where a surface displacement can be 

produced above a defect such as a delamination or disbond using a vacuum or 

the application of heat.  

2.2.7 Thermal methods 

For some years a group at the University of Bath headed by Prof Darryl Almond 

has been researching thermal NDT methods and transient thermography in 

particular. In a transient thermographic inspection powerful flash lamps are 
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used to flash heat the surface of a test piece and its subsequent cooling 

transient is monitored by an infrared camera. Delaminations in composites 

block the conduction of heat from the surface into the composite. Consequently, 

the surface above a delamination defect cools relatively slowly and an image of 

the defect appears brighter in infrared camera frames collected during the 

cooling transient (Figure 2-8). This technique has the advantages of providing a 

large area inspection of a composite structure that is non-contacting and rapidly 

produces defect images that are simple to interpret. The technique is well suited 

to composite inspection because composites have low thermal conductivities, 

making thermal transients long (several seconds) and surface temperature rises 

adequate (a few degrees Celsius) for modest flash powers. In addition, 

composites are often black and/or non-reflective, ensuring good absorption of 

optical flash energy and good emission of infrared. The technique is, however, 

limited to the detection of defects within a few millimetres of the surface (Quek 

and Almond, 2005). It is now used commercially to inspect thin section 

composite structures and their bonding to, for example, honeycomb cores.   

 

 
 

Figure 2-8. Transient thermographic image showing near-surface damage 

caused by a 51 J impact on an 8 mm thick CFRP composite sample. (Image 

courtesy of S. Pickering, University of Bath) 

2.2.8 Acoustography 

At the University of Bath, acoustography has been investigated in terms of its 

suitability for composite NDT. Acoustography is a medium-area ultrasonic 

imaging system that provides an alternative to ultrasonic C-scanning. A broad 
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beam of ultrasonic waves is passed, water coupled, through a test piece to an 

acousto-optic imager formed by a layer of ultrasound-sensitive liquid crystal. On 

exposure to ultrasound the layer becomes birefringent, showing a brightness 

change that increases with ultrasonic intensity. Consequently, a shadow image 

of defects that block ultrasound is formed on the imager that can be captured by 

a standard visible light CCD camera.  The acoustographic system used by the 

University of Bath produces full-field images in a few seconds of inspection 

areas up to 150 mm x 150 mm using 3.3 MHz ultrasound. It has been shown 

that acoustographic images can potentially reveal more detail than conventional 

C-scans (Bond-Thorley et al, 2000) because the image is not broken up into 

scan-step sized elements. Acoustography applications include large-area 

ultrasonic inspection of composite sheets and the inspection of tight radii in 

parts that can be manipulated in the broad ultrasonic beam. The technique has 

been used by Chen et al (2001) at the University of Bath to study, in real time, 

the growth of impact damage in composite test pieces during fatigue loading in 

a mechanical testing machine – see Figure 2-9. This was groundbreaking work 

because it was possible to image the specimen with an in-plane compressive 

load applied, thus opening the delaminations and showing that, when loaded, 

delaminations appear larger to ultrasound than when unloaded. The reason for 

this effect is thought to be that the edges of delaminations are effectively tightly-

closed cracks in intimate contact and are transparent to ultrasound. An in-plane 

compressive load tends to open the delaminations, resulting in an ultrasonically 

reflecting gap (Figure 2-9 and Figure 2-10).  

 
 

Figure 2-9. Acoustography images of impact damage growth in aerospace 

composite subjected to compressive fatigue, peak stress 170 MPa. Number of 

fatigue cycles (from left to right): 0, 2880, 5760, 8640 cycles. Images courtesy 

of Professor D Almond of the University of Bath. 
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Figure 2-10. Damage width change during load/unload test, measured from 

acoustographic images. Image courtesy of Professor D Almond of the 

University of Bath. 

 

 
Before load/unload Load at 148 MPa At peak, 235 MPa 

 

 
At peak, 235 MPa  Unload 151 MPa   After load/unload. 

 

Figure 2-11. Image of damage area changes under static loading (top row) and 

unloading (bottom row). Images courtesy of Professor D Almond of the 

University of Bath.  
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2.3 Porosity Characterisation in Composite Material s 

2.3.1 Introduction to porosity defects in composite s 

There are several types of defect that can occur during the manufacture of 

carbon fibre-reinforced composites. One of the most serious is voids in the 

matrix, which can be further classified as: 

• Delaminations:- these are large planar voids occurring at the interfaces 

between the plies and can also be described as layer porosity. They are 

easily detected by ultrasonic methods as they act as almost perfect 

reflectors of the ultrasonic beam. 

• Discrete voids:- these are large enough to be of structural significance 

and can also be individually detected and measured by ultrasound. 

• Porosity:- this can be described as a large number of micro-voids, each 

of which is too small to be of structural significance or to be detected 

individually by a realistic inspection technique, but which collectively may 

reduce the mechanical properties of the components to an unacceptable 

degree. It is usually produced during the curing cycle from entrapped air, 

moisture or volatile products. 

The distinction between discrete voids and porosity is a matter of convenience 

but, for practical purposes, porosity may be thought of as sub-millimetre voids 

whereas voids of several millimetres dimension would be considered as 

discrete defects. 

The occurrence of high levels of porosity has been recognised as a serious 

problem for composite materials for many years. As the compressive and 

interlaminar shear strength of carbon fibre-reinforced composites depend 

primarily on the matrix properties, these are reduced by the presence of 

porosity. In contrast, tensile properties, which are determined almost exclusively 

by the fibre properties, are relatively unaffected by the presence of porosity 

(Garrett 1983). An extensive review of the effects of porosity on the mechanical 

properties of composites was undertaken by Judd and Wright (1978) and 
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subsequent work has been reported by Uhl et al (1988). These studies have 

concluded that the interlaminar shear strength is more seriously affected by the 

presence of porosity than the compression strength. It has generally been found 

that the interlaminar shear strength decreases by about 7% per 1% of voids, up 

to a total void content of about 4%. Other mechanical properties are also 

affected, although not to the same degree.  

A figure of 2% porosity has commonly become the nominal acceptance 

threshold for many composite components. As an example, Hagemaier and 

Fassbender (1979) state that for secondary aircraft structure, composite with 

void contents in excess of 2% are unacceptable. Research programmes in NDE 

have therefore concentrated on providing techniques that could detect and 

measure porosity in the range of 1 to 5% by volume. Ideally an NDE technique 

is required that could determine the level of porosity in a composite laminate 

independent of other variables such as pore morphology and the fibre and 

matrix materials. However, to date, no single NDE method has been able to 

provide this universal ‘porosity meter’. The majority of the work on porosity 

measurement has concentrated on ultrasonic techniques. This sub-section 

reviews these in some detail but also describes some other methods that have 

been proposed for porosity measurement.  

2.3.2 Review of porosity measurement in composites 

Ultrasonic velocity and attenuation can both be used to estimate the porosity 

level in composite material. The velocity and attenuation of an ultrasonic pulse 

travelling in a fibre-reinforced composite will be dependent on both the porosity 

(void fraction) and the fibre volume fraction of the composite. Measurements of 

attenuation have been used in many studies as it is simpler to measure and 

less affected by variation in the volume fraction of fibres in the reinforcement.  

Both velocity and attenuation measurements depend on the frequency of the 

ultrasound used for the inspection. Williams et al (1980) studied the variation of 

attenuation and velocity with frequency in carbon composite. Longitudinal 

velocity was found to be only very weakly frequency dependent while the 

attenuation increased significantly with increasing frequency. In principle, the 



 

 29 

visco-elastic attenuation in matrix resin should increase linearly with frequency 

for low frequencies. This should be true for composite material at practical 

inspection frequencies (0.5 to 10 MHz), where the ultrasonic wavelength (6 to 

0.3 mm) is much greater than the diameter of the reinforcing fibres. 

Stone and Clarke (1975) carried out one of the earliest investigations into 

ultrasonic methods for porosity measurement at the Royal Aircraft 

Establishment (RAE), Farnborough. They performed an extensive series of 

experiments on a set of panels made from pre-preg material with HTS carbon 

fibre and ERLA 4617/DDM resin matrix, giving nominally 60% fibre volume 

fraction. The panels were manufactured in an autoclave to a nominal thickness 

of 2 mm using a unidirectional lay-up. An attempt was made to vary the porosity 

in the panels by altering the pressures used during the cure cycle. Porosity 

values were obtained by destructive examination using acid digestion. The 

panels were found to have porosity in the range of approximately 0.4% to 4.0%, 

with an estimated measurement error of ±0.5%. Both surfaces of the panels 

were ground flat so that all the panels were of constant thickness and surface 

finish. All the ultrasonic measurements were taken with the ultrasound 

propagating perpendicular to the carbon fibres. 

Stone and Clarke investigated the use of ultrasonic velocity measurements for 

determining void content. The velocity in 2 mm thick CFRP with no porosity was 

measured to be 2980 ms-1. Experimentally, they found that a void content of 5% 

reduced the velocity by about 6%. Assuming this to be a linear dependence of 

velocity on porosity, a specimen with 1% voids would have a velocity of about 

2944 ms-1 - a change in transit time of just 17 ns for 2 mm thickness. Although 

precision ultrasonic test equipment could measure this small difference, most 

commercial test sets are not capable of the required accuracy. Moreover, the 

temperature of the water bath is very important for accurate velocity 

measurements. They therefore concluded that, for general inspection purposes, 

the use of attenuation measurements was preferable to velocity measurements. 

The ultrasonic attenuation was measured for the panels using three different 

pairs of transducers with measured centre frequencies of 2.5, 5 and 7 MHz in 

through-transmission geometry. The results were used to define a calibration 
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curve for the initial resin system; see Figure 2-12. The measured attenuation of 

the signal was corrected for surface insertion losses before being converted to a 

value of the attenuation coefficient, α, in dB/mm. In the absence of a theoretical 

treatment two ways of fitting the data empirically were explored. 

Figure 2-12.  Variation of attenuation coefficient with void content (Stone & 

Clarke 1975). The curves show the best fit to the data using Equation 2-1. 

Initially a parabolic fit to the data was attempted using the form:- 

 2)( vfn φα =  (2-1) 

where n is a constant for a given frequency, f, and φv is the void volume fraction. 

The constant n was found to be 0.251 for the 2.5 MHz data, 0.616 for the 5 MHz 

data and 0.912 for the 7 MHz data. The fitted curves using these three 

constants are reproduced by the author and shown in Figure 2-12.  

The dependence of n on frequency can be approximated from the above three 

values and the three theoretical curves may be expressed as:- 

 227.10794.0 vf φα =  (2-2) 
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Figure 2-13 shows these curves reproduced by the author using Equation 2-2, 

compared to the experimental data. 

Figure 2-13. Variation of attenuation coefficient with void content (Stone & 

Clarke 1975). The curves show the best fit to the data using Equation 2-2. 

A second fitting method took a bilinear form:- 

 α=a1(f)φv + b1(f)              φv < 1.5 % porosity (2-3) 

 α=a2(f)φv + b2(f)              φv > 1.5 % porosity (2-4) 

where a1, b1, a2, and b2 are constants for a given frequency. This bilinear form 

(see Figure 2-14) was motivated by the observation, during destructive 

examination of the specimens, that there was a qualitative change in the 

character of the voids at about 1.5% porosity. Up to 1.5% porosity, the voids 

tended to be spherical, with the void diameter ranging from 5 to 20 µm. These 

voids were thought to be due to the various volatile elements present and there 

is some evidence that the size of the individual voids increases with φv.  
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Figure 2-14. Variation of attenuation coefficient with void content (Stone & 

Clarke 1975). The curves show the fit to a bilinear form. 

Beyond a φv of about 1.5%, interlaminar voids caused by air entrapped between 

the laminates start to predominate. These were flattened and elongated and 

tended to be significantly larger than the volatile-induced voids; see Figure 2-15.  

 
0.8 % Void volume fraction 2 % Void volume fraction 

Figure 2-15. Typical void structure in carbon-fibre composite below 1.5% φv 

(mostly spherical voids) and above 1.5% φv (mostly flattened and elongated 

voids) as found by Stone and Clarke (1975). 
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Stone and Clarke concluded that the bilinear form appeared to provide a better 

fit to the experimental data. Hale & Ashton (1988) developed a combined 

sphere / disc model capable of predicting this bilinear form, although the fit is 

not as good as the one in Figure 2-14. It is discussed further in Chapter 3. 

Finally, Stone and Clarke (1975) correlated ultrasonic attenuation measure-

ments at 7 MHz with the interlaminar shear strength (Figure 2-16).  

Figure 2-16. Relationship of interlaminar shear strength to the 7 MHz attenua-

tion coefficient for HTS fibres in ERLA 4617/DDM matrix (Stone & Clarke 1975). 

Other studies (Judd & Wright 1978; Uhl et al 1988) showed that the interlaminar 

shear strength was most seriously affected by the presence of porosity. The 

ultrasonic attenuation measurements were used instead of the porosity 

measurements as it was considered that the ultrasonic attenuation 

measurements were more reproducible than the porosity figures from the acid 

digestion method. For the fibre-resin system considered in this work, it can be 

seen that there was a good correlation between the ultrasonic attenuation and 

the interlaminar shear strength. 
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Attenuation due to porosity arises from elastic scattering of the ultrasound due 

to the acoustic mismatch at the voids. As the mismatch in acoustic impedance 

between the matrix material and void is several orders of magnitude, it is 

reasonable to assume that the scattering will be dominated by the geometrical 

considerations alone and not by the material properties of the resin. In this 

approximation the increase in attenuation due to porosity would be similar for all 

resins, providing the morphology of the porosity does not change. It was 

therefore assumed that the data for the ERLA 4617 system could be read 

across to other resin systems. 

A further programme of work was undertaken at RAE to check the validity of 

this assumption (Jones & Stone 1976). The resin used for the follow-up study 

was DX 210 with the same volume fraction as the original study. The 

attenuation measured at 7 MHz centre frequency for the two resin systems is 

shown in Figure 2-17.  

Figure 2-17. Variation in attenuation for two resin systems at 7 MHz centre 

frequency (Jones & Stone 1976). 
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It can be seen that the results are similar, although the attenuation for the 

DX 210 system appears to be up to 1dB higher for intermediate void contents. 

The ±0.5 % error bars for the acid digestion measurements have been added to 

the original Jones and Stone results and are based on accepted overall 

uncertainties in this method. 

Martin (1976) presented a theoretical treatment of the relationship of the 

ultrasonic attenuation to the void diameter. In this analysis all the voids were 

assumed to be spherical. He compared his results to the experimental work by 

Stone and Clarke (1975). Martin derived an expression for the ultrasonic 

attenuation making it inversely proportional to the cube of the void radius and 

proportional to the void content, but this is only valid when the ultrasonic 

wavelength was much larger than the diameter of the void. So, if the void radius 

changed by a factor of two, the attenuation changed by a factor of eight. It was 

also shown that for measuring void content ultrasonically it was best to use the 

highest frequency possible that will not be totally attenuated for void contents in 

the range ≤ 4 % by volume. However, this is likely to move out of the regime 

where the ultrasonic wavelength is much larger than the diameter of the void. 

Hsu and Nair (1987) related the slope of an attenuation verses frequency 

measurement to the void content. The work was based on a model of the voids, 

which assumed long cylindrical voids with an elliptical cross-section. This shape 

of void was chosen as it had been observed that in composite the voids tend to 

occur at the interface between the plies and are generally flattened and 

elongated along the axial direction of the adjacent fibres. For a set of seven 

unidirectional and quasi-isotropic laminates, reasonably good agreement was 

observed between the porosity measured ultrasonically from the attenuation 

slope and acid digestion measurements; see Table 2-1 and Figure 2-18. 

It was also noted by Hsu and Nair that porosity affects the spectral content of a 

broadband pulse. The shift in the centroid frequency, when normalised by 

dividing by the centroid frequency of the void-free specimen, showed a linear 

correlation with void content; see Figure 2-19.  
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Sample Porosity by attenuation slope, 
% 

Porosity by acid digestion, 
% 

1 0.5 0.2 

2 0.2 0.32 

3 0.8 1.14 

4 1.1 1.25 

5 1.8 2.04 

6 2.5 2.82 

7 3.4 4.05 

 

Table 2-1.  Porosity measured by attenuation slope and acid digestion (Hsu and 

Nair 1987). 

Figure 2-18.  Comparison of porosity measured by attenuation slope and acid 

digestion (Hsu and Nair 1987). The line represents exact agreement and is for 

comparison with the experimental data. 
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Figure 2-19. Correlation between void content and normalised centroid 

frequency shift for a 10 MHz transducer (Hsu and Nair 1987). The line is a 

linear best fit to the experimental data and has a slope of 0.095 %-1. 

The use of ultrasonic velocity measurements to determine both porosity and 

fibre volume fraction has been considered by other investigators. Reynolds and 

Wilkinson (1978) described a method to calculate the elastic constants of 

unidirectional fibre-reinforced materials containing matrix voids. This permitted 

the construction of calibration curves for given materials by means of which the 

measurement of two or more ultrasonic wave velocities may be converted to 

estimates of fibre volume fraction and porosity. Martin (1977) also developed a 

model relating ultrasonic velocities to both fibre volume fraction and porosity.  

More recent work by Jeong and Hsu (1995) investigated the frequency 

dependence of the phase velocity (dispersion), which was ignored by both 

Reynolds and Wilkinson (1978) and Martin (1977). When the wavelength of the 

ultrasound is of the same order of magnitude as the characteristic dimension of 

the voids it would be expected that over this frequency range the medium 

should show velocity dispersion. Dispersion effects are detected as frequency-
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dependent ultrasonic velocities. A pulse, being a superposition of many 

frequencies, will change its shape as it propagates through a dispersive 

medium. Jeong and Hsu undertook a theoretical analysis followed by an 

experimental study. The ultrasonic attenuation and dispersion due to scattering 

are not independent according to Kramers-Kronig relations (O’Donnell et al 

1978). Jeong and Hsu tested the relationship between the attenuation and 

dispersion using the theoretical local form of the Kramers-Kronig relation, which 

was found to hold experimentally for porous composite materials over the 

frequency range 2 to 10 MHz. The attenuation was found to be linearly 

dependent on frequency, with the attenuation slope (dα/df) higher for laminates 

with higher void contents. The shape of the voids was found to have a great 

effect on the constant that relates void content to dα/df and this could explain 

almost a factor of two difference in attenuation compared with the Stone and 

Clarke (1975) experimental data. It was therefore considered important to use 

prior knowledge about the laminate structure and pore morphology in order to 

estimate the void content from the attenuation slope measurements.  

The ultrasonic velocity decreased with increasing void content and the velocity 

dispersion increased as the frequency decreased. The velocity decrease was 

highest in unidirectional and quasi-isotropic samples, lower in the woven 

carbon/epoxy samples and lowest in the woven carbon/polyimide samples. 

B T Smith 1990 proposed a method for fitting the back-surface reflection to that 

generated by a scattering model convolved with the front-surface echo (giving 

the system response). The fitting parameters would be sound velocity, reflection 

coefficient and porosity level. A nonlinear least-squares fitting routine was used 

and results looked promising for artificial porosity of a known pore size 

distribution. It is thought by the author that this method would be unreliable in 

real situations where the pore size is unknown. 

Methods based on the Bar-Cohen & Crane (1982) observation of polar 

backscattering from composites have been developed by Yuhas et al (1986) 

and Blodgett et al (1986). They measured the azimuthal-angular dependence of 

the oblique-incidence backscattered amplitude. Backscatter from porosity 

should be independent of azimuthal angle, whereas backscattering from the 
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anisotropic composite is highly directional. Experimental results confirmed that 

this is potentially a highly sensitive method, but it requires numerous 

measurements for each location in the structure. It is too onerous a method for 

a single-element transducer, but with the advent of phased arrays and full-

matrix capture, this method could be revisited in the future. Grolemund & Tsai 

(1998) used a statistical approach to understand the polar backscattering. Their 

results confirmed that the statistical behaviour of the echo amplitudes from 

porous laminates followed predictions based on circular Gaussian statistics for 

void contents in the range 2 to 5%. 

Daniel et al (1992) proposed a method that combined pulse-echo and through-

transmission measurements to measure attenuation accurately. Whilst this 

method may prove more accurate for attenuation measurement, the 

measurement of attenuation is not the biggest source of error – it is the 

relationship between attenuation and porosity level that is the biggest unknown. 

2.3.3 Summary of ultrasonic porosity measurement 

Measurement of the ultrasonic attenuation of composite laminates was found in 

the review by Birt & Smith (2004) to be the most frequently used method to try 

to measure porosity. From the literature it is clear that several factors affect the 

relationship between the measured ultrasonic attenuation and the void content. 

It can be assumed that there is a general equation relating the measured 

ultrasonic attenuation, α, in dB/mm to the volume void content, φv of the form:- 

 )(),,( vCsdfK φα =  (2-5) 

where K is dependent on the ultrasonic frequency, f, and the void shape, s and 

size, d. C(φv) is the function relating attenuation to void volume fraction, φv.  

Stone and Clarke (1975) initially assumed:-  

 C(φv) = φv
2 (2-6) 

and that K was a function of the ultrasonic frequency only, i.e. 
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 fK
27.1

0794.0=  (2-7) 

However Stone and Clarke (1975) concluded that a better fit was obtained 

using a bi-linear relationship of the form:- 

 C(φv) = a1(f)φv + b1(f) for φv < 1.5% (2-8) 

 C(φv) = a2(f)φv + b2(f) for φv > 1.5% (2-9) 

Jeong and Hsu (1995) found a linear relationship between the void content and 

the attenuation slope, dα/df:- 

 VsK
df

d φα
)(=  (2-10) 

The parameter K was found to be dependent only on the void shape, s. This 

study was based on composite laminates manufactured from unidirectional, 

quasi-isotropic and woven laminates. The different material types produced 

different void shapes. The unidirectional and quasi-isotropic materials tended to 

have voids, which were flatter and longer. However, the voids in the woven 

laminates were more spherical in shape.  

2.3.4 Ultrasonic 3D characterisation of porosity 

An early method for 3D porosity mapping was proposed by B T Smith et al 

(1986). This converts the waveform response from the structure into a 

magnitude-versus-time profile, which can then be plotted in 3D. The conversion 

method starts with a deconvolution of the waveform with the system response, 

obtained by reflecting off a planar metallic reflector. The next stage is to apply a 

digital band-pass filter that approximately matches the system response, 

presumably to remove the noise that would have resulted from the 

deconvolution. The resulting waveform has its ‘analytic magnitude’ calculated – 

rather like an instantaneous reflection coefficient – and this forms the 

magnitude-versus-time profile. The method is mentioned again by B T Smith 

(1990) and a comparison is made with the porosity levels in an induced-porosity 

specimen. The porosity had been created by introducing hollow carbon micro-
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spheres with a known size distribution in each layer. The 3D profiles were 

displayed as a movie and porosity could clearly be seen at the correct depths.  

2.3.5 Other NDE methods for porosity measurement 

Other methods for measuring porosity have also been reported in the literature. 

Connolly (1992) reported the use of a thermographic method to measure the 

porosity of six carbon composite samples. The technique consisted of heating 

one face of the sample with a laser and observing the temperature rise on the 

other face as the heat diffused through the sample. A good correlation was 

obtained between the diffusivity and porosity for all six samples. 

Gray et al (1995) investigated the use of microwaves for the estimation of 

porosity in polymer composites. This work is currently at an early stage and the 

reported results apply to air-filled microballoon inclusions in epoxy resin 

samples. They estimate that porosity changes of about 2% should be 

detectable using the method. The technique reported should be applicable to 

glass fibre composite but is not a method easily adaptable for in-service use. 

Kite et al (2008) investigated destructive methods of measuring porosity for 

comparison with NDT methods for calibration purposes and to make reference 

standards. An image processing method for micrographic sections is compared 

with the acid digestion method. Neither method is new although they do explain 

what image processing was used within a free open-source software package. 

Agreement between the two methods was good (±1% porosity) for specimens 

with evenly distributed spherical pores, but non-spherical pores and uneven 

distribution both resulted in significantly poorer agreement (±4% porosity) 

between the methods. These comparisons are useful to show the state-of-the-

art for destructive methods looking at through-thickness average void content. 

2.3.6 Porosity standards 

Kollgaard et al (2008) reported work aimed at producing reproducible standards 

for porosity and providing an improved relationship between NDT 

measurements and void content. The paper reviews effects of porosity on 

mechanical strength and methods of porosity determination and then highlights 
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the problem that the relationship between ultrasonic attenuation and void 

content is dependent on void size and morphology. Thus a given volume 

fraction of small voids would produce a smaller attenuation than the same 

volume fraction of large (flatter) voids. The historical result was that standards 

were produced that used clouds of fine pores, which resulted in over-sensitivity 

to larger pores. The next part of the paper focuses on how to produce artificial 

standards that replicate the response to porosity, although the potential is 

addressed for using a parameter other than attenuation that is better related to 

actual void content. Kollgaard then presents a study of commercial ultrasonic 

instrument responses to porosity, showing that frequency content of the signal 

is the most important factor to control in order to obtain consistent results. 

Velocity measurements, on the other hand, showed remarkable immunity to the 

spectral variations across instruments; but velocity measurements require a 

knowledge of the component thickness at every location. They felt that this 

would be possible for relatively uniform shapes such as I-stiffeners, blade 

stiffeners and hat stiffeners. 

2.4 Fibre Volume Fraction 

2.4.1 Introduction to fibre volume fraction measure ment 

Changes in fibre volume fraction (FVF) in carbon-fibre composites affect both 

ultrasonic attenuation and surface losses – reflection and transmission 

coefficients change due to changes in the acoustic impedance (the product of 

density and ultrasonic velocity). It is possible for these two effects to cancel out 

for through-transmission measurements. Hence simple through-transmission 

attenuation is an unsatisfactory method for detection of fibre volume fraction. An 

ideal solution would be to use the combined ultrasonic information to generate a 

‘volume-fraction’ meter. This may be possible by collecting full waveforms and 

analysing the frequency-dependence of the transmitted ultrasound. 

Resin Transfer Moulding (RTM) processes use rigid matched metallic moulds, 

which control the finished size of the component. It is therefore possible to 

produce, from this tooling, panels with significantly different fibre volume 
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fractions, in a way that cannot be determined with a simple mechanical 

thickness measurement.  

The following sub-sections summarise the work that had been done by the 

author and colleagues at the start of the current project, as well as reviewing 

work by other workers. 

2.4.2 Ultrasonic attenuation 

As the fibre volume fraction increases there should be a reduction in the bulk 

ultrasonic attenuation of the material (due to reduced resin content – the resin 

causes a higher ultrasonic attenuation than the fibre). But, due to the increase 

in density and velocity and, therefore, the acoustic impedance, there can be a 

complementary increase in the surface transmission losses. This is seen clearly 

in the 10 MHz double through-transmission scan in Figure 2-20.  

12 P ly A reas
(N om inal V f
48% )

14 P ly A reas
(N om inal V f
56% )

16  P ly A reas
(N om inal V f
64% )

 

Figure 2-20. 10 MHz attenuation C-scan of a panel with variable fibre volume 

fraction which has 12 plies in the top section, 14 in the middle, and 16 in the 

bottom section. Note that there is very little variation in measured attenuation 

despite considerable variations in volume fraction. This is attributed to the 

cancelling effects of the attenuation and the surface losses. 

This suggests that, at 10 MHz, the expected reduction in attenuation within the 

material at higher volume fractions was directly offset by the increased surface 

transmission losses due to the higher density and velocity. This self-cancelling 
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effect will be dependent on the thickness of the material as well as the changes 

in volume fraction but, most significantly, it will depend on the inspection 

frequency because the bulk attenuation is frequency-dependent whilst the 

surface losses are not, for normal incidence on a smooth surface (neglecting 

beam profile effects). 

2.4.3 Acoustic Impedance Method 

Although through-transmission ultrasonic measurements are affected by both 

bulk attenuation and surface-loss changes, it is possible to isolate the acoustic 

impedance effect by plotting the reflection amplitude from the surface of the 

specimen. An example of this type of scan is shown in Figure 2-21.  

 

Figure 2-21. Front-surface reflection amplitude plotted for the variable volume-

fraction specimen with 12 plies (top), 14 plies (middle), and 16 plies (bottom). 

The effective impedance at the surface is a combination of the impedances of 

the fibres and resin matrix and is therefore sensitive to the fibre volume fraction 

according to a mixture rule. Mixture rules will be investigated in Chapter 3. 

2.4.4 Ultrasonic Velocity Method 

Another alternative to through-transmission attenuation measurement is to 

measure ultrasonic velocity. This is appropriate for RTM materials where rigid 
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moulds maintain accurate thicknesses and changes in velocity can be observed 

by plotting the time-of-flight to traverse the specimen. An example of this type of 

scan is shown in Figure 2-22 where the same variable volume-fraction panel 

has been scanned. The ultrasonic velocity through the material is frequency 

independent and can be measured to a high degree of accuracy. Although 

velocity would appear to be the most satisfactory measure of volume fraction it 

should be noted that the velocity can also be influenced by other factors such 

as porosity and foreign bodies. 

 

Figure 2-22. Time-of-flight (corresponding to 1/velocity) through a variable 

volume fraction panel 

2.4.5 B-scan Method 

The third method investigated for determination of fibre volume-fraction (FVF) 

changes involves the use of high-frequency B-scan cross-sectional slices 

through the specimen (see Figure 2-23). The number of plies can be counted to 

determine the volume fraction. In addition, the velocity changes can be seen as 

changes in the apparent depth of the back surface. 

In summary, isolation of surface loss can give an indication of volume fraction, 

but only near the surface, and may be influenced by the local resin thickness 
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before the first ply, depending on frequency. Bulk attenuation can be affected by 

porosity levels and small variations in fibre volume fraction can be masked by 

changes in surface losses and/or porosity. Velocity measurements may be 

affected by porosity levels, whereas B-scan ply-counting is satisfactory 

assuming plies can be imaged throughout the thickness. 

 

Figure 2-23. Image shows B-scan slices (left and top) and time-of-flight (bottom-

right) through variable volume fraction panel. Change in number of plies and 

distortion at ply drop-offs can be clearly seen. Ply reflections nearer the back 

surface are less easily distinguished. 

2.5 Ply stacking sequence 

2.5.1 Introduction to ply stacking sequence methods  

Non-destructive inspections for many types of defect are performed routinely at 

manufacture and during the service life of carbon-fibre composite structures. 

However, checking of the ply stacking sequence present in a component is 

rarely performed non-destructively due to tight quality controls during 

manufacture. These usually require the destructive inspection of an offcut of the 
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same lay-up as the component itself.  In some instances it is necessary for the 

stacking sequence to be checked independently. 

Standard fractographic techniques, involving polishing and examination using a 

conventional optical microscope, can be performed at the edges of 

components. However, many components have complex ply reductions in the 

central area, away from any edges, and these components may need to be 

checked in the centre to verify which ply orientations extend across the whole 

component. 

2.5.2 Review of earlier work 

Previous techniques have involved the use of eddy currents (Prakash & Owston 

1976, Owston 1976 and Summerscales 1990b) and ultrasonics (Prakash & 

Owston 1977; Dreumel & Speijer 1983) but both methods produced a polar 

diagram which required comparison with specimens of identical stacking 

sequence. Thus it would be possible to deduce that a deviation from the 

expected sequence existed but difficult to determine the exact sequence that 

was present. Theoretical models were developed for both the eddy-current and 

ultrasonic techniques but no further work to develop the stacking sequence 

capabilities was felt necessary at the time by any of the authors.  

In 1993 a technique was developed by the author at QinetiQ (Smith & Clarke 

1994) to ultrasonically inspect each ply of unidirectional pre-preg CFC and 

determine the ply stacking sequence. This proved useful for determining that 

the incorrect plies had been terminated in the middle of the skin of a 

honeycomb structure.  

In a unidirectional pre-preg CFC material the inter-ply interfaces are generally 

flat and the ply thickness constant. By using a gate width equivalent to half the 

ply thickness it is possible to image the dominant fibre directions at this depth – 

see Figure 2-3. In general two ply directions can be seen on the resultant C-

scan, corresponding to the plies above and below the inter-ply reflecting layer. 

By repeating this for all depths the stacking sequence can be obtained. This is 

done using a high frequency pulse-echo technique and capturing the entire 

ultrasonic waveform representing the thickness of the panel.  
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The reason for two ply directions being visible was thought to be due to the fact 

that the main reflection at the ply interface is from the inter-ply resin player, 

where the thickness of the layer is approximately proportional to its reflection 

coefficient. It therefore seems natural that the thickness of the inter-ply resin 

layer should be influenced by the fibre tows both above and below it. 

2.5.3 More recent work 

Subsequent work by Hsu et al (2002), reproduced the author’s original work and 

then went on to use 2D Fourier Transforms to accurately determine ply 

orientation for carbon-fibre composites (CFCs). They introduced the idea of 

producing a greyscale map of angular distribution against depth, which has 

been further developed and refined in this PhD project. 

2.6 In-plane Fibre waviness 

The above technique was also successfully applied by the author and 

colleagues for the detection of in-plane fibre waviness in RTM panels 

manufactured in non-crimp fabric (NCF) for a previous project (Figure 2-24).  

 

Figure 2-24. Fibre distortions in a non-crimp fabric RTM specimen caused by 

deliberately teasing the fibres in one ply after cutting the stitching. The scan was 

produced by gating over one inter-ply reflection. 
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The significant differences when applied to RTM materials are the use of thicker 

plies and variable ply thickness depending on fibre volume fraction. Non-

crimped fabric laminates emulate normal unidirectional pre-preg in that each ply 

contains fibres in one direction and the inter-ply interfaces are nominally flat. 

However, woven materials have two orthogonal fibre directions (warp and weft) 

within each ply and the inter-ply interface has a more variable thickness. 

Several panels were manufactured from five-harness satin-weave material to 

test the suitability of the ultrasonic de-plying technique for the detection of in-

plane wavy fibres. The central region of these 6-ply panels contained deliberate 

fibre distortions in the middle one or two plies. Attempts to ultrasonically de-ply 

these panels revealed a strong interference effect caused by the interaction of 

adjacent plies that does not appear on scans of plies above that with the in-

plane waviness (see Figure 2-25).  

 

Figure 2-25. C-scans gated on ply boundary reflections in an in-plane waviness 

panel. The waviness was in the 3rd ply with a periodicity of around 100 mm and 

an amplitude of 15 mm in the centre of the panel, decreasing to the top and 

bottom of the scans. Note the interference effects (horizontal lines in the lower 

images) caused by the interaction of adjacent plies. In the middle and lower 

scans, which both include ply 3, but not in the top scan, which does not. 
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As the number of plies that the ultrasound has to pass through increases, so the 

interference effects increase. It is however possible to extract the information 

with the use of image processing techniques although the image is not as clear 

as those obtained from the NCF materials. Another effect noticed when 

stepping through the inter-ply reflection is that the interference effects can be 

either constructive or destructive. It is possible that this information could be 

used to infer the presence of fibre distortions. 

In order to reduce the high level of noise on the C-scans a bandwidth limit was 

applied to the ultrasonic waveforms that were gated to generate the C-scan. 

Unfortunately this failed to have any positive effect on the detection of in-plane 

fibre waviness. 

There is a possibility of using image processing and pattern recognition 

techniques (such as a Hough transform for detecting lines in an image) to 

highlight the inter-ply signals and enhance the imaging of waviness.  

Another method that worked well when attempted during the author’s earlier 

project was the use of kevlar tracer fibres which were then imaged using X-

radiography. This method worked well for thin panels but is non-preferred on 

grounds of the effect on the structural properties. 

2.7 Out-of-plane ply wrinkling 

2.7.1 Volume fraction as an indicator of out-of-pla ne ply wrinkling 

In thin RTM panels, out-of-plane ply wrinkling will usually take the form of fibre 

crimping, where fibres are folded back upon themselves.  This can lead to a 

local increase in volume fraction associated with the crimping, but with relatively 

thin panels this crimping represents a large increase in volume fraction, often 

leading to poor fibre wet-out and porosity. It is therefore possible to image this 

severe out-of-plane wrinkling as changes in attenuation due to local volume-

fraction changes caused by the crimping method, but there would be no ability 

to characterise the cause of the attenuation change. In addition, there are the 

same problems of potential complementary surface loss changes, requiring the 

isolation of surface loss from bulk attenuation. 
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Ultrasonic velocity changes are also indicators of local fibre volume fraction 

changes and may be imaged in order to identify locations of out-of-plane fibre 

waviness. 

2.7.2 B-scan imaging for out-of-plane ply wrinkling  

In a large stack, a single wavy ply is insignificant in terms of volume fraction 

change, but it could be seen by B-scan imaging of the plies. A B-scan system 

such as the author’s ANDSCAN software allows a slice through the thickness to 

be displayed in both x and y orientations showing all the inter-ply reflections in a 

stack, enabling out-of-plane fibre waviness to be imaged. This system is now 

flexible enough to rapidly process the large full waveform data files and display 

a real time B-scan image for any point on the C-scan. Other features 

incorporated include 256 level colour or monochrome resolution, RF or rectified 

display, an adjustable bandwidth limit, and distance amplitude correction (DAC) 

facilities to compensate for the effects of attenuation. 

2.7.3 Experimental results for out-of-plane fibre w rinkling 

Out-of-plane fibre wrinkling was created in a series of carbon fibre RTM6 panels 

by distorting the dry fibre pre-form prior to moulding. The panels were 

manufactured with two different fibre volume fractions, both 2 mm thick but with 

either 6 or 7 plies. Control panels with the same number of plies were 

manufactured with no distorted plies. Initially the panels were C-scanned using 

a standard through-transmission technique to check for variability or any 

evidence of the distorted fibres. Both control panels appeared acceptable from 

the attenuation scans although both 7 ply panels had a small area of gross 

porosity. The attenuation scan of the 7 ply fibre waviness panel showed no 

obvious evidence that distorted fibres were present but had a similar area of 

gross porosity as the control panel. The 6 ply fibre waviness panel had a 

distorted line running across its entire width which showed a significant increase 

in attenuation.  

The full waveform ultrasonic data was initially collected at a modest frequency 

of 10 MHz using a weakly-focused transducer. B-scan slices through both 

control panels showed no significant fibre distortions. Those small distortions 
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imaged were consistent with the use of a woven fabric, although it should be 

noted that as the volume fraction increases it becomes more difficult to extract 

the B-scan information as the inter-ply reflections appear to become weaker. 

The B-scan images of the 6 ply panel with deliberately introduced fibre 

waviness (see Figure 2-26) show  significant distortions in the central plies over 

the area identified in the attenuation C-scan, and in areas extending into the 

plies above and below. The distortion introduced in the pre-form will have 

caused the fabric to buckle in these areas and may have cause either a 

variation in volume fraction or some porosity which is imaged in the amplitude 

C-scan. 

The 7-ply panel (see Figure 2-27) showed significant distortion distributed 

through the mid plies in the central region. In some areas the distortion was so 

severe that the interface reflection was lost totally, again suggesting fibre 

buckling but to a lesser extent than seen in the lower volume-fraction panel. The 

panels were subsequently re-scanned at both 15 and 22 MHz to see if the 

quality of the B-scan image could be further improved, but the increased 

attenuation at these higher frequencies offset the potential increase in axial 

resolution. 

 

Figure 2-26. B-scan image of through thickness waviness in 6-ply specimen. A 

large angular displacement of fibres makes it difficult to get a reflection back 

from ply interfaces and porosity around fibre waviness also reduces reflected 

amplitude. Hence the indicated region shows distorted fibres.  
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Figure 2-27. B-scan image of through thickness waviness in 7 ply specimen. A 

large angular displacement of fibres makes it difficult to get a reflection back 

from ply interfaces and porosity around fibre waviness also reduces reflected 

amplitude. Hence the indicated region shows distorted fibres.  

A 4 mm RTM6 woven carbon panel produced with 12, 14 and 16 ply areas was 

scanned at 10 MHz. This panel had the extra plies added at its mid plane, 

therefore the plies either side of here would become distorted through the 

thickness at the step volume fraction changes. B-scan images across the 

volume fraction changes proved excellent at imaging the distortions in these 

areas (see Figure 2-28). 

There are several methods for enhancing the inter-ply reflections, including use 

of the DAC, by bandwidth limiting and by performing a deconvolution with the 

front-surface signal as the reference.  

Figure 2-28 and Figure 2-29 show the effects of introducing a DAC and a 

bandwidth limit – the deep inter-ply reflections are much clearer than in the raw 

images in Figure 2-23 and Figure 2-26 respectively and the actual two plies that 

stop at two locations can be seen in the left-hand B-scan. 
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Figure 2-28. This image should be compared with the raw, unprocessed image 

in Figure 2-23. In the above image a distance-amplitude correction (DAC) has 

been applied plus and 8 MHz bandwidth limit.  The bandwidth limit helps to 

reduce noise levels and cleans up inter-ply reflections, whereas the DAC allows 

imaging of plies nearer to the back surface. 

 

Figure 2-29. A 12 MHz upper frequency limit and DAC applied to the waveform 

data shown in Figure 2-26.  
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2.8 Discussion 

This chapter has reviewed the development of various NDT methodologies for 

the inspection of composites over the past 40 years. It is clear that ultrasonic 

methods were recognised as offering great potential right from the early 

development of composite materials. However, despite considerable research 

effort since then, the real benefits of ultrasound inspection had still not been 

fully exploited for composites by 2005 when this project began. For example, 

most inspection was performed using analysis of either A-scan waveforms, or 

two-dimensional in-plane C-scan maps. These C-scans generally provided a 

through-thickness average parameter representing the attenuation (or insertion 

loss) for the whole specimen. A variant of the C-scan, the Depth-scan (or D-

scan) did plot the depth of a signal, and Pseudo-3D images of the same data 

were developed in the 1990s, but depth-dependent information was uncommon 

and full B-scan cross-sections were rarely used.  

The main reason for this predominance of through-thickness average 

information was the complexity of the pulse-echo response of the laminated 

structure to ultrasound compared with the apparent simplicity of a through-

transmission or back-wall echo signal. Attempts to understand the full pulse-

echo response and generate parameters that accurately reflected structural 

variations in the laminate had merely shown how difficult the problem was.  

Another impasse in the development of composite inspection methods was the 

inability to provide measurements of actual material properties and thereby 

remove the need for expert NDT interpretation of results. This has been a 

constant source of frustration for manufacturers of composite materials who 

have repeatedly requested advanced automated analysis methods, which can 

output quantitative plots of real material properties, requiring no interpretation. 

The current project aims to extend the inspection of composites to include 3D 

quantitative characterisation of the laminate itself and any deviations from the 

designed structure in terms of porosity, ply spacing, fibre-volume fraction, ply 

stacking sequence, in-plane fibre waviness or out-of-plane ply wrinkling. The 

project is necessarily broad in terms of the range of material properties so much 

of the validation of new methods will be covered in future work.
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CHAPTER 3 REVIEW OF MODELLING OF 

ULTRASOUND PROPAGATION IN 

INHOMOGENEOUS MATERIALS 

3.1 Motivation 

In order to develop and evaluate new ultrasonic methods for three-dimensional 

characterisation of composite materials, it is necessary to use ultrasonic 

propagation modelling to gain a deep understanding of the interaction of 

ultrasound with these composites. The use of a model can make evaluation and 

refinement of new methods both possible and rapid when it is impractical to use 

experimental data due to the sheer number of possible scenarios and the 

difficulty of destructive characterisation – often the only other way to determine 

the exact properties of the materials and to map them in three dimensions. 

The composite materials under consideration include multi-ply layered materials 

such as carbon-fibre or glass-fibre in a polymer-resin matrix, GLARE – a 

layered hybrid material comprising thin aluminium layers alternating with glass-

fibre composite layers, and metal-matrix composites such as Titanium with 

Silicon-Carbide fibres in a periodic lattice – usually hexagonal. The types of 

defects to be modelled include porosity, which can be thought of as particulate 

scatterers, thick resin inter-ply layers, and changes in ply spacing. Hence this 

review of modelling methods includes particulate, periodic and layered 

structures. 

As the objective of this work is to develop 3D characterisation methods from 

normal-incidence ultrasonic inspection, it is appropriate to restrict this review of 

modelling methods, and the development of the model itself, to normal-

incidence compression-wave insonification of composite materials with in-plane 

layers. This constraint reduces the modelling problem to a much simpler one, 

where anisotropy can be largely neglected and the normal-incidence ‘effective 

medium’ properties can be determined for each composite layer using 

appropriate mixture rules. 
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An important part of modelling inhomogeneous composite layers is this mixture-

rule method used for combining the properties of two or more different materials 

to obtain ‘effective medium’ properties that realistically represent the combined 

material. These mixture rule methods are reviewed and compared in Chapter 4, 

which describes the model developed in this project. 

3.2 Particulate structures 

The main reason to include modelling of ultrasonic interaction with particulate 

structures is to allow for the presence of porosity in composite materials.  

However, it should be noted that the modelling of ultrasonic scattering is a huge 

subject in its own right and is not part of the project work reported here. It was 

always intended to include the effects of scattering from porosity by 

collaboration with other members of the Applied Ultrasonics group at the 

University of Nottingham specialising in this area, and this collaborative work is 

covered in Chapter 4 as part of the mixture-rule development. However, the 

following review of modelling methods for particulate structures is included for 

completeness and for reference in the rest of this thesis. 

3.2.1 Ultrasonic scattering theory 

The first mathematical investigation of the scattering of sound was by Lord 

Rayleigh (1896) but he only considered the long-wavelength (small scatterers) 

limit. Morse (1948) considered larger scatterers and eventually extended his 

work to include the propagation of sound inside the scatterer.  Faran (1951) 

extended this further to include shear waves, which can exist inside scatterers. 

Then followed the three classical formulations of the diffraction problem for a 

compression wave incident on a single particle: the first by Epstein and Carhart 

(1953) for liquid particles in a liquid medium, the second by Ying and Truell 

(1956) for solid particles in a solid medium, and the third by Allegra and Hawley 

(1972) for solid or liquid particles in liquid. The equivalence of these three 

formulations has more recently been demonstrated by Challis et al (1998a) who 

have shown the Allegra-Hawley formulation to be adaptable to provide a basis 

for calculation in all three scenarios. It is this formulation that underpins the 
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model used at the University of Nottingham (Challis et al 1998b) to calculate the 

ultrasonic attenuation and velocity in scattering fields. 

Habeger (1982) described the Allegra-Hawley formulation as an exact solution 

to the basic governing equations, which reduces to the less-complete models, 

such as those of Sewell (1910), Epstein (1941), Lamb (1945) and Urick (1953), 

as limiting cases. It should be noted that Davis (1979) has more recently 

corrected a sign error in the Allegra-Hawley boundary conditions and discussed 

its extension to more dense suspensions. Attenborough & Walker (1972) 

performed calculations with cylindrical inclusions for the long-wavelength case, 

whereas Habeger (1982) was concerned about shorter wavelengths – of the 

order of a radius of the cylinders they were considering. 

A completely different theory, originating from the classical resonance theory of 

nuclear reactions, has been applied by Flax & Dragonette (1978) to acoustic 

scattering from elastic cylinders and spheres in a liquid. The resonance effects 

are in the particles themselves and these are superimposed on the rigid-body 

scattering. The study reveals that the elastic particles are relatively 

impenetrable to the incident wave except at the resonant frequencies, which 

occur at the eigenfrequencies of the elastic vibrations of the body. 

3.2.2 Scattering from particulate fibres 

The Gaunaurd and Uberall (1983) paper is of interest because it determines an 

effective medium via a scattering approach, and also investigates what 

concentration of scatterers is the limit before multiple scattering needs to be 

taken into account – yielding a limit of approximately 25% concentration. 

Otherwise, this paper is of little interest because it deals with particulate solid 

composites modelled as an aggregate with a random 3D distribution of solid 

elastic spheres in an elastic matrix. This situation is substantially different to 

long-fibre composites with porosity. 

A more complex approach for random fibrous composites is given in a letter by 

Beltzer and Brauner  (1984). This uses a theoretical determination of 

attenuation based on the microstructure and then the Kramers-Kronig relations 

to determine the wave speed in composite where fibres are aligned parallel to 
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an axis. Only the fibre volume fraction φf  is required to determine the 

attenuation as a function of the frequency and fibre-radius product. However, 

the method applied appears to use an axially polarized shear wave and it is not 

clear to what extent this has influenced the outcome, or whether it is also 

applicable to the normal-incidence compression-wave case required for the 

current project. 

3.2.3 Scattering from porosity in solids. 

The review in Chapter 2 of experimental measurements of porosity in 

composites mentions models generated by Martin (1976, 1977), Reynolds and 

Wilkinson (1978), Hsu and Nair (1987), as well as Jeong and Hsu (1995), by 

way of comparison with experimental data. These are revisited briefly here after 

discussing the model of Adler (1986) used in this project. 

Adler et al (1986) developed a theory for determining ultrasonic attenuation 

from porosity in solids based on the frequency dependence of scattering as a 

function of the size and volume fraction of the pores. This theory was based on 

the formally exact expressions developed by Gubernatis and Domany (1984) 

and used, for the scattering cross-section, numerical evaluations of the series 

expansion of Ying and Truell (1956). The useful aspect of this work is that they 

generate analytical expressions for the frequency-dependent attenuation as a 

function of pore size and volume fraction in both the short-wavelength and long-

wavelength limits. For this reason, this method was chosen to calculate 

analytically the attenuation due to porosity in the model developed for this 

project – see Chapter 4.  

The equation for the scattering attenuation coefficient α(k) derived from Adler 

is: )(
4
3

)( ka
a

k v Γ= φα  (3-1) 

where φv is the void volume fraction, k is the wavenumber, a is the radius of the 

pores, and Γ is the reduced scattering cross-section. A scattering cross-section 

describes the area of a single scatterer that acts as an effective ‘source’ of 

ultrasound at a particular angle relative to the incident ultrasound – in this case 
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0° because it is forward scattering being considere d here. The reduced 

scattering cross-section is a dimensionless function defined as the proportion of 

the actual cross-sectional area of the scatterer (perpendicular to the incident 

angle) that acts as an effective source of ultrasound propagating in a particular 

direction. This actual cross-sectional area is effectively the geometrical limit of 

the scattering cross-section for high ka values (ie the short-wavelength limit). 

Adler explains that the reduced scattering cross-section depends on the host 

medium’s Poisson ratio only, which is also manifested in the ratio of shear to 

longitudinal velocities, η and is plotted in the graph reproduced from Adler et al 

(1986) in Figure 3-1.  

 

Figure 3-1. The reduced scattering cross-section determined by Adler et al 

(1986), based on a series expansion of Ying and Truell (1956) and reproduced 

here from the Adler et al (1986) paper. 
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The long-wavelength (low ka) equation given by Adler et al (1986) for the 

reduced scattering cross-section is: 

 44)()( akka ηβ=Γ  (3-2) 

where β is a function of η plotted graphically by Adler et al (1986) from the 

series expansion of Ying and Truell (1956), and reproduced in Figure 3-2.  
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Figure 3-2. Graphical representation of β(η) derived by Adler et al (left) and by 

the author (right) from the series expansion of Ying and Truell (1956) given in 

Equation 3-3.  

Ying and Truell (1956) use a definition of η that is the reciprocal of the one used 

by Adler et al (1986) so their expansion has been modified to be consistent with 

Adler et al (1986) and is given in Equation 3-3: 
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The short-wavelength limit scattering attenuation coefficient α(k) derived from 

Adler, where Γ(ka)→ Γ(∞) as ka→∞ is given in Equation 3-4: 

 )(
4
3

)( ∞Γ=
a

k vφα  (3-4) 

β 

η 
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Martin (1976) uses the same expressions as Adler et al (1986) derived from 

Ying and Truell (1956) considering scattering from a single spherical void. 

However, Martin proposed that, for high concentrations of multiple voids, the 

ultrasonic velocities of the surrounding medium should be modified to allow for 

the void content. The author feels that this is debatable, and Martin’s results, by 

comparison with the experimental measurements of Stone and Clarke (1975) 

are far from convincing. 

Hale and Ashton (1988) have proposed a refinement of the model of Martin 

(1976) in order to fit the data of Stone and Clarke (1975). The refinement is that 

they assume small spherical voids at low concentrations (<1.5%), but flattened 

discs at higher concentrations, as observed experimentally by Stone and Clarke 

(1975). Attenuation due to disc voids was calculated by Hale and Ashton and 

takes the functional form: 

 )()( ka
t

k v Γ= φα  (3-5) 

where t and a are the thickness and radius of the disc respectively, and the 

reduced scattering cross-section in the long-wavelength limit is given by the 

spherical version in Equation 3-2. Distributions of void sizes were incorporated 

prior to the comparison of this model with the Stone and Clarke (1975) data, 

which is reasonable at 7 MHz, but poor at the two lower frequencies: 5 MHz and 

2.5 MHz. 

3.3 Layered structures 

Having reviewed particulate structures, this section now considers modelling of 

the layered composite structures that are the main focus of this project. Limiting 

the ultrasonic propagation to normal-incidence and compression waves does 

simplify the modelling, and therefore the literature review, because the majority 

of models consider oblique incidence propagation through anisotropic media, 

often including guided waves as well. For normal incidence plane waves, each 

composite layer can be considered to be transversely isotropic. 
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3.3.1 Previous reviews 

An excellent review of the layer models developed in the last 60 years was 

published by Lowe (1995), clearly distinguishing between response models, 

which calculate reflection and transmission response of a multilayered system 

to an incident plane wave, and modal models, which address plate-wave 

propagation properties of the system.  

The current project is only considering response models, and only for normal-

incidence plane waves, where the layers can be considered to be isotropic 

effective media. Thus most of the formalisms reviewed by Lowe are far more 

complex than necessary for this project, although they do provide more general 

models against which the model for this project can be benchmarked. 

Transfer-matrix response models are applicable to this project, where the 

displacements and stresses at the bottom of a given layer can be expressed in 

terms of those at the top of the layer, and a matrix can be used to express them 

at the bottom of a multilayered stack in terms of the top of the stack. Thomson 

(1950) and Haskell (1953) pioneered this method, often referred to as a 

‘propagator matrix’ approach according to Lowe.  A problem with the Thomson-

Haskell propagator matrix was discovered by Dunkin (1965) and concerns the 

ill-conditioning of the matrix for large thicknesses and high frequencies, known 

as the ‘large f d problem’ (where f is the frequency and d is the thickness of a 

layer). Although several attempts have been made to resolve this limitation 

(Castaings and Hosten; 1993, 1994), it is unlikely to be of concern in the current 

project where layer thicknesses are of the order of a wavelength due to the 

need to exploit the low-order ply resonances in all the methods implemented 

here. 

Many developments of the early work since 1980 have been inspired by the 

need to model propagation in composites, introducing viscoelastic and 

anistotropic media. In particular, the work by Hosten and Castaings (1993), and 

by Nayfeh and Chimenti (1991) contain general solutions for arbitrary angles of 

incidence on composite materials, but are far more complex than necessary for 

the normal-incidence, transversely isotropic case considered here. 
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Pialucha (1992) also generated a transfer-matrix model based on the Thomson-

Haskell method but in order to solve the ‘large f d problem’ resorted to using a 

global matrix approach, effectively a stiffness-matrix method similar to the one 

subsequently used by Wang and Rokhlin (2001). 

3.3.2 More recent work, or from other fields 

3.3.2.1 Skelton-James model 

Interestingly, a completely separate line of work on acoustic propagation 

through anisotropic solids had been developed for underwater acoustics (sonar) 

applications by the UK’s Admiralty Research Establishment, culminating in the 

publication of a propagation-matrix model by Skelton and James (1992), which 

also uses a stiffness (or compliance) matrix as part of the formulation. This line 

of work converged with the above work reviewed by Lowe when Skelton moved 

to Imperial College and the work began to focus on the use of composites in 

maritime applications. More recently the model, which is now owned by QinetiQ, 

has been used to benchmark the model in the current project. 

The Skelton-James model also deals with arbitrary angles of incidence through 

multi-layered anisotropic media and can determine plane-wave reflection and 

transmission coefficients. Each layer can be characterised by a complex infinite-

plate compliance matrix.  This matrix can be found analytically using a mixture 

rule of Wilczynski and Klasztorny (2000).  Using the Skelton-James model, the 

behaviour of the individual layers in a sandwich composite may be combined 

and the overall acoustic behaviour of the infinite plate determined. 

3.3.2.2 Stiffness matrix method 

Wang and Rokhlin (2001) overcame the instabilities in the transfer matrix 

approach of Thomson-Haskell by using a layer stiffness (compliance)  

matrix to replace the layer transfer matrix. This method is shown to be 

‘unconditionally stable’ and more computationally efficient than the transfer-

matrix method. A recursive method is used to calculate the stiffness matrix in 

Rokhlin and Wang (2002a) and the method is used to determine the effective 

elastic properties of layers in composites in Rokhlin and Wang (2002b). The 
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final paper by Wang and Rokhlin (2003) describes the use of this recursive 

stiffness matrix method to generate time and frequency domain responses of 

multi-layered laminates and compares these with experiment. A normal-

incidence transversely-isotropic version of this Wang and Rokhlin (2003) model 

was chosen as the most suitable for the current project in terms of the 

computation speed required for model-based decomposition – the ultimate 

objective for 3D characterisation of porosity in composites. 

3.3.2.3 MLM-Propmat 

A multi-layer model, MLM-Propmat, has been developed by Mienczakowski et 

al (2008) at the University of Nottingham, based on earlier work by Freemantle 

(1995). It is essentially a transfer matrix model using mixture rules to calculate 

the properties of each layer as effective media and is similar to the work of 

Pialucha (1992). This model assumes isotropic layer properties but can 

calculate propagation at an arbitrary angle.  It was used for benchmarking the 

transversely-isotropic model developed in this project. 

3.4 Equivalent media 

A detailed critique and comparison of the various models proposed in the 

literature for equivalent media calculations is given in Appendix F with just a 

summary here for taking forward into the model used in this project 

3.4.1 Basic physics of mixtures 

It is assumed that composite materials can be described adequately by an 

elastic, homogeneous, isotropic matrix in which inclusions of another elastic, 

homogeneous, isotropic material exist, and that the density and moduli of both 

materials are known. Furthermore, it is assumed that the volume concentration 

is known and is uniform throughout the region considered, and that the material 

may be regarded as a quasi-homogenous and quasi-isotropic equivalent 

medium and described by effective elastic moduli and an effective density. 

Until 1960, the determination of elastic moduli for solid mixtures of elastic media 

had only been studied for small concentrations (Eshelby, 1957; Hashin, 1958). 

Early attempts to extend these treatments to finite concentrations resulted in 
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numerous different formulae which were often contradictory. A review of these 

latter studies is beyond the scope of this thesis but summaries can be found in 

Frisch and Simha (1956) and Reiner (1958). 

The models that were subsequently developed were based either on 1) a ‘self-

consistent approach’ where stress or strain fields are analysed as a result of 

applying an external load, or 2) a ‘variational method’ considering the change in 

strain energy stored in a loaded homogeneous body as a result of inserting 

inhomogeneities (inclusions). For the variational method it was assumed that 

Hooke’s law could be applied to relate stresses and strains in each direction, 

resulting in a stiffness matrix relating the multi-dimensional strain and stress 

tensors. This analysis was initially applied to spherical inclusions assuming that 

stress and strain are continuous across the boundary of each inclusion. Then, 

for fibres in a matrix, infinite elements of either circular or hexagonal cross-

section were used, each containing a single fibre surrounded by a matrix, with 

similar boundary conditions and assumptions. 

3.4.2 Spherical or cylindrical inclusions in an ela stic matrix 

A breakthrough occurred when Hashin (1962) abandoned the search for exact 

formulae for the moduli of equivalent media and proceeded by considering the 

generation of expressions for the upper and lower bounds of the effective 

elastic moduli. These expressions were found to coincide for the bulk modulus 

and to be very close for the shear modulus, allowing an expression to be 

derived that always lay between the upper and lower bounds. Two basic 

assumptions were made: firstly that the particles are spherical and secondly 

that the action of the bulk material on any one inclusion is transmitted through a 

‘virtual’ spherical shell which lies wholly in the matrix. Long-fibre composites do 

not comply with the spherical-inclusion assumption but in fact the biggest 

deviation from a simple volumetric mixture rule is for dissimilar materials such 

as air and resin for porosity, rather than for carbon fibre and composite. 

However, glass fibre has about eight times the cross-axis compression modulus 

of carbon, and also violates this spherical requirement, so glass-fibre 

composites may need a different treatment. 
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Hashin derived expressions for the moduli (shear and bulk) for both very large 

and very small concentrations and showed that when the difference between 

the moduli of matrix and inclusions is small, then the equations reduce to a 

simple volumetric-ratio mixture rule. 

Martin (1977) used the Hashin (1962) model for porosity in composite materials 

but realised the need for a different model for fibres in a matrix, before 

considering the porosity. 

In a completely different approach, Pinfield et al (2010) has presented a 

treatment of a layer of porosity where the backscattered signals from the pores 

can be integrated over a random distribution of pores in a layer to determine the 

frequency-dependent backscattering cross-section. The layer can then be 

represented as an equivalent medium with a complex impedance, the imaginary 

part of which accounts for the frequency-dependent backscattering process. 

Spherical and cylindrical pores are dealt with and the backscattering amplitude 

includes consideration of the morphology type of the pores. 

3.4.3 Isotropic fibre reinforcement of an elastic m atrix 

A useful review of models for predicting elastic constants in composite materials 

has been produced by Halpin (1992) in Section 6.3 of his book, a second 

edition of the earlier Ashton et al (1969).  

Specific extensions of the Hashin (1962) ‘variational method’ to the case of 

long-fibre reinforced composites have been undertaken by Hashin and Rosen 

(1964), Hill (1964a) and Greszczuk (1966), whilst  Hill (1965a) and Whitney and 

Riley (1966) pursued a ‘self-consistent model’ approach. 

3.4.3.1 Variational models 

Hashin and Rosen (1964) developed the composite cylinder assemblage (CCA) 

model, which looks specifically at the case where each fibre can be considered 

as a cylinder of fibre material surrounded by a matrix material, extending from 

one end of the specimen to the other, so end effects can be neglected.  Two 

cases were considered – the first with fibres of equal circular cross-sections 

arranged in a hexagonal array, the second being a randomised arrangement of 



 68 

fibres of different circular cross-sections whose diameters range from finite to 

infinitesimal.  As with the spherical inclusions of Hashin (1962), upper and lower 

bounds were generated for the bulk and shear moduli. In the normal fibre-

composite case, the lower and upper bounds coincide for the bulk modulus but 

not the shear modulus. 

Tsai (1962a; 1962b) and Azzi and Tsai (1965a; 1965b) developed a model that 

is similar to Hashin and Rosen (1964) and uses a variational principle based on 

theorems of minimum potential energy to generate upper and lower bounds of 

the elastic constants.  

Hill (1964a) produced analogous equations for the bounds to those of Hashin 

and Rosen (1964), considering a mathematical model of a large number of 

filaments so that local irregularities have negligible effect. 

Hashin (1965) generalised the geometrical cases considered by Hashin and 

Rosen (1964) - the CCA model - to include a range of fibre sizes surrounded by 

larger cylinders of matrix material where the only restriction is that of transverse 

isotropy in the statistical sense.  

Behrens (1967a; 1967b; 1969a; 1969b) developed an independent model using 

rectangular symmetry which produces an identical equation to Hashin (1965) for 

the bulk modulus, but a single equation for the shear modulus. This shear 

modulus must be for shear modulus parallel to the fibres because it matches 

Whitney and Riley (1966) and is equivalent to the lower bound of Hashin 

(1965), once it is corrected to the version that R E Smith (1972) quotes 

(equation 8b of his paper) - see Appendix F. 

3.4.3.2 Self-consistent models 

Hill (1965a) used the ‘self-consistent’ method to model the composite as a 

single fibre embedded in an unbounded homogeneous medium, 

indistinguishable from the composite. Whitney and Riley (1966) modelled, using 

the ‘self-consistent method’, a hexagonal array of repeating cylindrical 

elements, each containing a fibre surrounded by resin matrix. Although their 

method is claimed to be “written to appeal to the engineer rather than the 
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mathematician”, it appears to be considerably more complex than Hashin’s and 

contains several errors  which are revealed in Appendix F.  

Greszczuk (1966), with little reference to any previous work, modelled a 

rectangular array of circular filaments embedded in a continuous elastic matrix, 

rather than using repeating composite elements. He generated separate 

expressions for longitudinal (in fibre direction) and transverse Young’s modulus 

and compared his equations with “a more rigorous method” apparently using 

numerical methods and claimed agreement within 10% in the range 50% to 

73% fibre volume fraction. However, above 90% fibre volume fraction the 

Geszczuk equations become unstable (see Appendix F for a full discussion). 

This method also ignores any interaction between fibres and matrix. 

Martin (1977) took the equations of Greszczuk (1966) and Whitney and Riley 

(1966) and combined them into an isotropic-fibre model yielding equations for 

all the relevant elastic (stiffness) constants. He then went on to extend this to 

anisotropic fibres (eg. Carbon and Graphite) – dealt with in the following 

section. 

3.4.3.3 Comparison of models 

A comparison of the various methods discussed above is given in Figure 3-3 for 

the compression modulus, M, calculated from the bulk and shear moduli using 

Equation F-8, and in Figure 3-4 for compression velocity, c=√ (M/ρ). For 

Hashin (1965), Equations F-32 (transverse bulk), F-33 (transverse shear) and 

F-35 (longitudinal shear) are used. For Whitney and Riley (1966) Equation F-38 

is used for bulk modulus but they use the Hashin (1965) lower-bound 

longitudinal shear modulus equation so this (Equation F-35) is used for the 

graph. For Behrens (1969a), the Equations F-56 and F-57 quoted by R E Smith 

(1972) are used. It can be seen that, apart from the Greszczuk method 

(Equation F-51), there is reasonable agreement. Possible reasons for the 

discrepancies shown by the Greszczuk method are discussed in Appendix F.  
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Figure 3-3. Comparison of compression modulus for S-glass fibre epoxy 

composite calculated using various methods from the literature. The Greszczuk 

modulus is actually the transverse modulus (across the fibres). The Hashin 

moduli have been calculated using the lower bounds for both longitudinal shear 

(1-2 plane) and transverse shear (2-3 plane) modulus. 
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Figure 3-4.Comparison of transverse ultrasonic velocity for (isotropic) S-glass 

fibre composite calculated using the various models for fibre composites. 

Greszczuk is not included due to the difficulty of determining velocity 

3.4.3.4 Validation of isotropic long-fibre models 

Validation of these theoretical equivalent-medium models has been minimal. 

Whitney and Riley (1966) used static methods to determine tensile and shear 

modulus in comparison with Hashin and Rosen (1964), Tsai (1962a; 1962b), 

and their own model. They obtained good agreement between experimental 

results and their own model, and with the Hashin and Rosen upper-bound 

theoretical predictions for the transverse moduli, but not with Tsai’s model. For 

Poisson’s ratio the trend with fibre volume fraction was in good agreement but 

the absolute values measured were considerably lower than predicted. They 

suspected that the type of strain gauge used was reinforcing the material in the 

transverse direction and causing the discrepancy. For shear modulus their 
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comparison was with the Hashin and Rosen equation only, and agreement with 

just two experimental data points of their own, and one from an external source, 

was poor. Tsai (1964) has suggested using a ‘contiguity factor’ to adjust the 

predicted values and there is also an issue of the difference between static and 

dynamic stiffness. Whitney and Riley point out that neither they, Tsai nor Hashin 

and Rosen have considered the interaction between adjacent filaments in their 

model, which may be of considerable importance for composites under shear 

load. 

Greszczuk (1966) compared transverse and longitudinal Young’s Modulus, and 

shear modulus, with experimental data from Tsai (1964) and Schneider (1964) 

and claimed good correlation. However, a fairly simple assessment shows that 

all the methods shown in Figure 3-3, apart from the simple mixture rule, would 

have correlated well with this experimental data.  

Zimmer and Cost (1970) used ultrasonic velocity measurement of longitudinal 

and shear waves in various directions through a glass-fibre composite as a 

method for obtaining elastic stiffness constants, and thereby testing the above 

three theories for elastic properties of a fibre composite. Glass fibre has a much 

higher stiffness than carbon fibre, giving a much bigger difference in properties 

between fibre and matrix, so this was a choice that gave true potential for 

determining the validity of the theories. Although problems of dispersion in the 

composite were investigated, Zimmer and Cost were able to justify neglecting 

them on the basis that they are not appreciably greater than the experimental 

error in the method. Experimental measurements of the five elastic constants 

were compared by Zimmer and Cost with predictions from three earlier theories 

(Hashin and Rosen, 1964; Whitney and Riley, 1966; Greszczuk, 1966). They 

reported that the Greszczuk theory was the only one to come within the 

measurement uncertainties in most cases and this was not unexpected 

because they regarded this model as the most realistic, comprising fibres in a 

continuous matrix rather than repeated composite elements. In addition, the 

Greszczuk theory predicted a C33 modulus (the one that is relevant to 

transverse ultrasonic propagation across a fibre-composite ply when the fibres 

are in the ‘1’ direction) that was very close to Zimmer and Cost’s experimental 
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value, whilst the other two theories’ predictions underestimated by more than 

30%. This comparison was made after Zimmer and Cost had applied a 40% 

mark-up in modulus of the epoxy resin matrix in the three models to allow for 

the difference between static and dynamic moduli of a viscoelastic material. It is 

unclear how justifiable such a mark-up is as it will be very dependent on the 

state of cure of the resin. Zimmer and Cost referred to Bodner and Lifshitz 

(1967) and Schultz and Tsai (1968) to justify it. However, whilst Greszczuk’s 

method gave the best absolute values of modulus, the trend in Greszczuk’s 

Young’s Modulus with angle to the fibres does not match the experimental data 

as well as either the Hashin and Rosen or Whitney and Riley methods. Also, 

Zimmer and Cost failed to correct the mistake in Whitney and Riley (1966) for 

plane-strain bulk modulus, so it is unclear whether they were using the 

corrected equations to plot the predictions (see Appendix F). 

3.4.4 Anisotropic fibre reinforcement of elastic ma trix 

According to R E Smith (1972), silica and glass fibres are isotropic materials but 

carbon or graphite fibres are only isotropic perpendicular to the fibre axis and 

can have a factor of 10 (carbon) to 20 (graphite) higher axial modulus than 

transverse modulus. Therefore it is important to consider anisotropic fibre 

properties when modelling carbon or graphite fibres. 

Behrens (1967a; 1967b; 1969a; 1969b; 1971) considered anisotropic fibres in 

an anisotropic matrix and derived equations for the stiffness matrix components 

in terms of the Lamé parameters for the fibre and matrix.  He assumed 

cylindrical point symmetry for the individual fibres, and thus transverse isotropy 

of the composite.  The expressions generated by Behrens were subsequently 

quoted by R E Smith (1972) in a form that is more consistent with the 

nomenclature of Appendix F where they are presented. They were also 

subsequently quoted by Martin (1977) in a slightly different form. 

In a PhD thesis, Silnutzer (1972) moved from what are essentially second-order 

bounds in the Hashin (1965) and Hill (1964) treatments to third-order bounds 

because they are exact up to the third order in the difference in the phase 

properties. The expressions derived are considerably more complex involving 
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evaluation of microstructural parameters which are defined as triple integrals 

related to probabilities of finding certain morphologies in the matrix or fibre 

phases respectively. 

Martin (1977) clearly distinguishes between isotropic fibres and anisotropic 

fibres. For anisotropic fibres he quotes R E Smith (1972) and Behrens (1969a) 

with equations in a different form, by making some assumptions that the matrix 

will be isotropic. Using the assumed equivalences, the new equations can be 

seen to be equivalent to those of R E Smith (1972) and Behrens (1969a) – see 

Appendix F. 

Hashin (1979) extends Hashin and Rosen (1964) and Hashin (1965) to allow for 

carbon and graphite fibres, which are highly anisotropic. In fact the expressions 

for transverse bulk modulus, transverse shear modulus and axial shear 

modulus are identical in form to those in Hashin (1965) except that they are 

more specific about which moduli in the constituent materials should be used. 

More detail and the new equations are provided in Appendix F. 

Tsai and Hahn (1980) produced a book which reviewed the current methods for 

modelling composite materials but it has not been possible to trace a copy of 

this, just references to it by others such as Chao and Chaturvedi (1997). 

Kantor and Bergman (1982) proposed a new approach to determining an 

‘effective stiffness matrix’ for a homogeneous sample that exactly matches the 

boundary conditions and the volume-average properties of the inhomogeneous 

material in question. It then determines the eigenstates of individual fibres 

before going on to determine the eigenstates for the whole composite. This can 

then be applied to a hexagonal or square lattice of cylindrical fibres. A matrix 

perturbation technique is then used to allow an exact expansion of the elastic 

constants in terms of the fibre volume fraction. The equations for a hexagonal 

lattice are exact equivalents of Hashin and Rosen (1964) for bulk modulus and 

Hashin (1970) for shear modulus. For a square lattice the expressions are much 

more complicated but this is more appropriate for Boron fibres than for carbon 

fibre composites. 
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Datta et al (1984) consider random but homogeneous distributions of identical 

long and parallel fibres and the propagation of longitudinal and shear waves 

perpendicular to the fibre direction. A multiple scattering approach is used to 

determine a dispersion relationship in the long-wavelength limit. Fibres are 

considered to be anisotropic and the outcome is expressions for elastic 

constants over the whole range of fibre volume fractions. The expressions 

obtained for the longitudinal and transverse shear moduli were identical to the 

lower bounds of Hashin (1965) and the plane-strain bulk modulus matched 

Hashin (1965) exactly. 

Lado and Torquato (1986) introduced microstructural parameters to the 

formulations of Hashin and Rosen (1964) in a similar way to Silnutzer (1972). 

Torquato and Lado (1992) extend the work of Lado and Torquato (1986) and of 

Silnutzer (1972) but only treat impenetrable cylinders, which do not include any 

of the anisotropic fibres being considered here. However, they did produce a 

simplified form of Silnutzer’s expressions for effective elastic constants which 

otherwise only reside in a PhD thesis. 

Wilczynski (1992) and later Ward and Wilczynski (1993) presented a rather 

lightweight simplification of the problem and declared that much of this 

computation for structural design purposes was being carried out using finite 

element analysis by this time.  

Therein lies the key to why there is a sudden lack of reported work on analytical 

effective-medium methods – they were no longer needed for structural design 

purposes because finite-element analysis provided a far more versatile and 

application-specific method of modelling exact structures and composite 

materials. Indeed, Hashin, one of the main authors in this field, summarised his 

work in a major review (Hashin, 1983) and then diverted his attention from 

about 1980 to modelling damaged composites – particularly fatigue cracks in 

the matrix. 

The most recent published work that has been found is Chao and Chaturvedi 

(1997), where a new unified framework is presented based on Helmholtz and 

Gibbs free energy functions and micromechanical models involving average 
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stresses and strains in the composite using the approach of Eshelby (1957). 

Both isotropic and anisotropic fibres are catered for. This model accounts for 

interaction between the fibres and matrix, and so is more advanced than many 

of the other methods such as Hashin and Rosen (1964) and its derivatives. A 

comparison of Chao and Chaturvedi methods with others is given in 

Appendix F. The new methods are claimed to fit experimental data well and to 

be more accurate for certain elastic constants, as well as being more versatile, 

than the earlier models. However, the fact that the Chao and Chaturvedi (1997) 

stress and strain models give functions of volume fraction that are even more 

widely spaced than the upper and lower bounds of Hashin and Rosen (1964) 

means that there is little benefit in escalating the complexity of the formalism 

this much.  

3.5 Discussion 

3.5.1 Modelling porosity 

The scattering model of Adler (1986) for forward scattering from porosity in 

solids provides a useful analytical solution that is easily coded, and it can be 

combined with the Pinfield (2010) model for backscattering from a porous layer, 

which is a suitable configuration for layered composites. An alternative to 

Pinfield’s model is the Hashin (1962) model for effective moduli of spherical 

inclusions in a solid, but this does not include the frequency dependence of 

backscattering, which is itself pore-size dependent. It was decided to include 

both of these options – Adler with either Hashin or Pinfield - in the model for this 

project. 

3.5.2 Modelling multi-layered structures 

The modelling requirement for this project is limited to normal-incidence 

ultrasound but a simple analytical model is required that has the potential for 

running rapid calculations as part of a model-based decomposition method. For 

this reason, a much reduced transfer matrix approach is suitable, catering for 

just normal incidence and producing analytical expressions for transmission and 

reflection coefficients of three-layer structures with two interfaces. By allowing 

the interfaces to have complex reflection and transmission coefficients, it is 
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possible to apply this expression multiple times to build up the response of a 

multi-layered structure. 

3.5.3 Modelling long-fibre/resin composites 

The remaining aspect is the prediction of the transverse compression velocity in 

long-fibre composites. The Hashin (1965) expressions for effective bulk and 

shear modulus (Equations F-33 and F-35) were selected to derive the 

compression velocity because they are in agreement with most of the other 

credible models that have been developed, even using different physical 

principles to arrive at the effective parameters. Where other models deviate 

from the Hashin (1965) predictions, they have subsequently failed to agree with 

the later models, whilst Hashin (1965) has been shown to be equivalent to 

these. A simple volumetric mixture rule is accurate for density. 
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CHAPTER 4 MODELLING OF ULTRASOUND 

PROPAGATION IN LAYERED 

STRUCTURES 

4.1 Introduction  

4.1.1 Motivation 

In order ultimately to decompose the ultrasonic response from monolithic 

composite materials into components related to material properties, it is 

necessary to gain a deep understanding of the ultrasonic propagation through 

layered inhomogeneous materials. The use of a model fulfils this requirement 

and also enables prediction of the ultrasonic response of the material and 

extensive testing of various proposed decomposition methods. 

For the purposes of this project the model can be restricted to normal incidence, 

because that is the acquisition method already in use in industry, and plane-

wave propagation for simplicity. Diffraction corrections due to finite sized planar 

transducers or focused transducers could be added at a later date but generally 

only weak focusing (eg 75 mm focal length in water from a 12.5 mm diameter 

probe) was used in this project, where the plane-wave approximation is 

sufficiently valid. The normal-incidence restriction allows the transversely 

isotropic composite plies to be considered without concern for the direction of 

the anisotropy. This enables a ply to be represented by an equivalent 

homogeneous medium with material properties determined as some 

combination of properties of the constituent phases (fibre, matrix, voids, etc). 

4.1.2 Model development 

Such a model requires three main components: 1) a layer model, allowing the 

stacking of multiple plies of these equivalent homogeneous media and the 

determination of its impulse response to normal-incidence ultrasound, 2) a 

transducer model, or equivalent, to simulate a realistic pulse of ultrasound with 

which the impulse response can be convolved, and 3) an equivalent-medium 
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model, which determines the equivalent material properties of the specific 

mixture of phases in a ply. 

During this project the three parts of the model were developed in the following 

sequence chronologically: layer model, transducer model and then equivalent-

medium model. However, in order to test and validate the layer model by 

benchmarking against other models it was necessary to use a simple volumetric 

equivalent-medium mixture rule. During this period, extensive research was 

undertaken into other equivalent-medium models to find those most suited to 

use for this project and it transpired that the considerable amount of literature 

on the subject from 1960 to 1990 (documented in Chapter 3 and Appendix F) 

was in a poor state, with many errors and confusing comparisons of methods. 

The most suitable equivalent-medium models would be those that could run 

rapidly as part of an analytical multi-layer model, with the potential for use in a 

model-based decomposition method or an iterative inversion algorithm. The 

chosen equivalent-medium models were then used in the model as it 

progressed to include porosity and other types of defects. 

4.1.3 Validation of the model 

Experimental validation of all aspects of the model from scratch would be an 

extremely time-consuming exercise. Fortunately this was not necessary 

because extensive validation against experiment and other models had already 

been undertaken for the MLM-Propmat model when it was developed at the 

University of Keele (Freemantle, 1995), and the current model could be 

validated by comparison with MLM-Propmat. Other aspects of the model were 

compared with experimental results and the comparisons are documented in 

this chapter in the appropriate sections. 

4.1.4 Organisation of the chapter 

Section 4.2 is a broad treatment of the complexity of the ultrasonic response of 

composite materials in terms of the contributions to the frequency response 

from different material properties. It is not a rigorous treatment but sets the 

scene for the development of the model and played a crucial role in determining 

which assumptions and constraints would be appropriate. 
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Section 4.3 describes the development, testing and benchmarking of an 

analytical layer model comprising a single-ply between two thin resin layers, 

embedded in composite, using a simple volumetric mixture rule. This was used 

to test some theories about how the frequency dependence of the single-ply 

response depends on ply thickness, resin layer thickness and fibre volume 

fraction (FVF) – the proportion of a given volume that comprises the fibre phase 

of the mixture. In order to test, debug and validate it, the model was compared 

with the University of Nottingham’s ‘MLM-Propmat’ model, which also used a 

simple volumetric mixture rule at the time and had been extensively tested 

against other models and experimental data (Freemantle, 1995; Mienczakowski 

et al, 2006). 

Section 4.4 describes the extension of the analytical model to multiple plies 

separated by thin resin layers, where the properties (thickness, FVF, properties 

of phases) for each ply can be stipulated, as can the thickness and properties of 

the resin layers. At this stage the option for the entry and exit media to be water 

was included. Again the model was benchmarked against MLM-Propmat. 

Section 4.5 deals with convolution of the impulse response with realistic 

ultrasound pulses, either generated from a transducer model, measured 

experimentally, or generated from a simple Gaussian frequency-response 

model. 

In Section 4.6 porosity is added to the model by inserting a frequency-

dependent attenuation due to scattering and changing to micro-mechanical 

mixture rules allowing the equivalent-medium model to include a spherical-

particle model for porosity and a cylindrical fibre model for the long fibres. 

Section 4.7 adds the ability to investigate a single thick resin layer whilst 

Section 4.8 looks at using the model to show how to distinguish between 

porosity and thick resin layers. 
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4.2 Frequency-dependence of ultrasonic interactions   

4.2.1 Multiple Frequency Dependencies 

At the start of this project it was well known that in composite materials there 

are many inhomogeneities that cause different frequency-dependent effects 

when ultrasound propagates through the material. Previous experiments have 

shown that the frequency range used can dictate which frequency-dependent 

interaction dominates the response. For example, above 10 MHz the inter-ply 

layer reflections become significantly larger than the visco-elastic damping 

effects. The following sub-sub-sections briefly introduce the interactions that are 

summarised in Table 4-1 and Figure 4-1. Then the resonances are treated in 

more detail.  

Normal incidence Interaction Backscatter Transmission 

Smooth surface  
Independent of f 

R ∝ f 0 

Independent of f 

T ∝ f 0 

Porosity (size >> wavelength) (Smith, 
2005) 

Independent of f 

R ∝ f 0 

Independent of f 

T ∝ f 0 

Inter-ply layer reflections R ∝ f √(1-T2) ∝ f 

Ply Resonant Frequency fres∝ 1/ply thickness fres∝ 1/ply thickness 

Visco-elastic damping in resin -LogR ∝ f -LogT ∝ f 

Rough Surfaces (Nagy & Rose, 1993) -LogR ∝ f 2 -LogT ∝ f 2 

Porosity (size << wavelength) (Adler 
et al, 1996) 

LogR ∝ f 4 -LogT ∝ f 4 

Table 4-1. Summary of frequency dependence of normal-incidence ultrasonic 

interactions.  

4.2.1.1 Smooth surface reflection/transmission 

These smooth surface reflections are independent of frequency at normal 

incidence. They can be measured by extrapolating spectral attenuation effects 

back to DC (0 Hz). At a smooth interface there should be minimal scattering and 

conservation of energy, which requires that the energy in the incident wave 
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equals the sum of the energies in the reflected and transmitted waves. See 

Appendix B to this thesis for a full treatment. 
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Figure 4-1. Graphical illustration of the multiple frequency-dependencies 

involved in understanding the interaction of ultrasound with carbon-fibre 

composites. This graph shows the reflected response of the structure as a 

function of frequency. 

4.2.1.2 Rough surfaces 

At a rough interface there will be energy loss due to scattering. This effect 

increases as the frequency increases. In Appendix B to this thesis it is shown, 

using a phase-screen approximation presented by Nagy and Rose (1993), that 

the logarithm of both the reflection and the transmission coefficients are 

proportional to frequency squared. 
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In fact, measurements of the reflection coefficient at the interface over a range 

of frequencies can be used to determine the rms roughness (Smith and Bruce, 

2001; Birt et al, 2004), and potentially for removing the effects of roughness 

from other measurements. The extrapolated value for 0 Hz will also provide a 

method for determining the surface losses for rough surfaces. 

4.2.1.3 Visco-elastic damping in resin 

In general the logarithm of the attenuation coefficient is proportional to 

frequency for this type of damping. Hence, as the frequency increases, the 

amplitude decreases. 

4.2.1.4 Inter-ply layer reflections 

If thickness is small relative to a wavelength then the actual reflected amplitude 

from the layer (combined interfaces) is approximately proportional to frequency. 

Hence, log amplitude (eg in dB) is proportional to log frequency.  

4.2.1.5 Ply resonances 

The inter-ply reflections (above) also cause ply resonances, the frequencies of 

which depend on the ply thickness and the amplitude on the inter-ply resin layer 

thickness. 

4.2.1.6 Porosity 

In the long wavelength limit (ka << 1) the scattered power vanishes as k4 

(Adler et al, 1986). In the short-wavelength limit a large pore looks like a 

delamination or a smooth surface. Obviously these are over-simplifications of 

the real situation with porosity, but they are useful for considering how the 

different frequency-dependencies compete for dominance. 

The graph for 2% porosity where the porosity is smaller than the wavelength (ka 

<< 1 ) in Figure 4-1 uses the long-wavelength equation 4 from Adler et al, 1986, 

where the scattering attenuation coefficient α(k) is given by: 

 
( )
a

ka
k v

4
3

)(
4βφα =  (4-1) 
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where φv is the void volume fraction, k is the wavenumber, a is the porosity size 

and β(η) is a function which governs the long-wavelength behaviour of the 

reduced cross-section and depends on η, the ratio of shear to longitudinal 

velocities, with the following values in Table 4-2. For the composite application 

a value of η of 0.5 was used. 

η β 

0.3 20 

0.4 7 

0.5 2.5 

0.6 1.7 

0.7 1.1 

Table 4-2. Approximate values of β(η) for different values of η, the ratio of shear 

to longitudinal velocities. Data taken from Adler et al (1986), calculated from 

Ying and Truell (1956). 

4.2.2 Inter-ply resin layer resonances 

The interaction of ultrasound with the fibres is dominated by the reflection from 

the thin inter-ply resin layer that exists between plies of different fibre 

orientation. This layer is much thinner than a wavelength of ultrasound at the 

frequencies being investigated and resonance occurs at 35 MHz for a 0.02 mm 

resin layer, as shown in Figure 4-1 by the ‘inter-ply thickness 0.02 mm’ curve. 

Figure 4-2 illustrates that, in the case of thin layers, the overall reflection 

coefficient of the resin layer is highly dependent on the layer thickness. It is for 

this reason that an impression of the fibre tows both above and below the resin 

layer are present in C-scan images plotting the reflection amplitude from the 

resin layer (see Figure 4-3). 

Changes in FVF may change the thickness of the resin layer but the effect of 

this may only be detected as a variation in reflection amplitude if the resonant 

frequency of the resin layer is higher than it is proposed to operate. 
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Figure 4-2. Graph of the variation in reflection coefficient of a thin resin layer 

between two carbon-fibre composite plies. The properties of the layers were 

kept constant while the resin-layer thickness was varied. Plots are for three 

different pulse lengths and a single interface, based on bulk material acoustic 

impedance. The blue shading shows the region where the thin inter-ply resin 

layers occur and shows how sensitive their reflection coefficient is to thickness. 

 

Figure 4-3. Amplitude C-scans obtained from inter-ply resin layer reflections at 

different depths in a 16-ply skin. Note that generally there is an impression of 

fibre tows in two ply orientations –one above and one below the resin layer. 
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4.2.3 Ply resonances 

The composite plies themselves are half-wave resonant layers with a resonant 

frequency (the second resonance) at approximately 12 MHz for 0.125 mm 

thickness plies – see the ‘0.125 mm plies + inter-ply resonance’ curve in  Figure 

4-1. The first resonance is not a classical resonance as a half-wave resonator 

should have a maximum at zero frequency, but when it is multiplied by the 

frequency response of the thin resin layer it then has a minimum at zero 

frequency and a first resonance at approximately a quarter of the second 

resonance. This corresponds to groups of four plies vibrating together. 

By tracking the ply resonances from each volume element in the structure, it 

should be possible to obtain a measurement of the local FVF.  In order to use 

this it would be necessary to calibrate an ultrasonic parameter against FVF. 

There are two possible ultrasonic parameters: peak frequency or peak ampli-

tude (reflection coefficient). In practice it is usually more reliable to use a freq-

uency-based parameter because amplitude measurements are more suscep-

tible to other variations – as in the benefits of frequency-modulated radio over 

amplitude-modulated radio.  Such a variation that could affect a ply-resonance 

amplitude (reflection coefficient) parameter is a change in the inter-ply reflection 

coefficient due to thickness variations in the thin resin layer (see Figure 4-2). 

It has been shown in Appendix C to this thesis, using a further development of 

the author’s simple analytical model described in Appendix A, that both the 

resonant frequencies and the reflection coefficients at resonance are 

proportional to local ply-thickness changes. If an assumption is made that fibres 

do not move sideways along the ply in bulk, over the width of the ultrasonic 

beam, then this change in ply spacing can be assumed to be inversely 

proportional to FVF. A full treatment and explanation is given in Appendix C 

where proposed equations for determining FVF have been developed. These 

show that, given the above assumption, a change in the resonance frequency is 

proportional to the fractional change in FVF. This allows the generation of 

equations that apply to any composite system provided the nominal ply 

thickness and nominal FVF are known. The equations developed by the author 

for this purpose are: 
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 nomnn tFVFfFVF α=  (4-2) 

 tRFVF nnβ=  (4-3) 

where fn is the resonance frequency of the nth harmonic resonance, Rn is the 

corresponding reflection coefficient for the nth harmonic, t is the nominal ply 

thickness, FVFnom is the nominal FVF and αn and βn are the calibration 

coefficients. The values for αn and βn for the first two resonances (n=0 and 1) 

are shown in Table 4-3 (and plotted on graphs in Appendix C) and it can be 

seen that there is little variation in these coefficients for different nominal FVFs. 

 Nominal Fibre Volume Fraction 

Calibration 
Coefficient 

60% 70% 80% 90% 

α0 (mm-1 MHz-1) 2.5 2.4 2.4 2.4 

β0 (mm-1) 120 120 120 120 

α1 (mm-1 MHz-1) 0.62 0.61 0.61 0.61 

β1 (mm-1) 21 21 21 21 

Table 4-3. Calibration factors (to 2 significant figures) for converting resonant 

frequency and reflection coefficient measurements into FVF measurements. 

These apply for the designated nominal FVFs. Material properties used were: 

fibre density 1.69 kg/dm3 and bulk modulus 16 GPa, resin density 1.27 kg/dm3 

and bulk modulus 10.7 GPa. 

Thus, the parameters that need to be entered in order to calibrate such a FVF 

meter are the nominal ply thickness and the nominal FVF. Then the 

measurements of peak frequency and amplitude can be converted to estimates 

of local FVF. This is potentially a major breakthrough and makes the 3D 

profiling of FVF a real possibility. However, it is likely that there will be certain 

cases where this method will not work – such as deep in structures with thin ply 

thicknesses where the low frequency required for penetration is below the 

lowest ply resonance frequency. 



 88 

4.3 Analytical Layer Modelling 

For the purposes of investigating the potential for fibre volume fraction (FVF) 

measurement, a simple model for predicting resonant frequencies was required. 

The choice of model was based on the need for a high computational speed for 

ultimate use in a model-based decomposition method for 3D characterisation of 

FVF and porosity in composites. The chosen type of model is a simplified 

normal-incidence version of a recursive stiffness-matrix model presented by 

Wang and Rokhlin (2003), as reviewed in Chapter 3.  

The basic principle behind this model is that, if it is possible to describe a 

combination of two interfaces in terms of complex transmission and reflection 

coefficients, then that combination can be treated as a single interface 

characterised by those coefficients. The method used to calculate the complex 

reflection and transmission coefficients includes multiple reflections between the 

interfaces by employing a Geometric Progression (GP) principle, arn, where the 

sum to infinity (n→∞) is well defined, provided the multiplier, r, meets the 

condition: |r|< 1.  

4.3.1 Single-ply analytical model  

At first, this model only needed to handle 3 layers (two resin layers separated 

by a composite ply) embedded in a medium because the intention was to use 

small volume elements in the structure that only encompassed one or two plies.  

If the interface pairs are symmetrical (ie they have the same medium either side 

of them – see Figure 4-4) then two such interface pairs can then be combined in 

the same way. The frequency dependence of the ultrasonic response, and 

hence the impulse response of the structure, will be contained in those complex 

reflection coefficients. 

The full treatment of this single-ply model is given in Appendix A to this thesis. It 

is referred to in many graph legends as the ‘RAS Model’. 
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Figure 4-4. Diagram showing how an interface pair can be described by 

complex reflection and transmission coefficients. 

4.3.2 Simple mixture rule 

For each layer the model uses single values for the compression modulus, M, 

and density, ρ, to derive single values of phase velocity, c, and acoustic 

impedance, Z. This assumes that each layer is a homogeneous medium. As 

only normal incidence is considered, transversely isotropic layers are 

satisfactorily dealt with by the model. If a layer is actually inhomogeneous then 

it is possible to approximate its properties to an ‘equivalent’ homogeneous 

medium using a mixture rule. For the purposes of comparison with other models 

such as MLM-Propmat, the simplest of these mixture rules was used initially - 

the volumetric rule, which assumes that the proportionate contribution of each 

component of the mixture depends predominantly on its volume fraction in the 

mixture – as shown in Equations 4-4 and 4-5 for a two-component fibre-resin 

mixture. 

 rfff MMM )1( φφ −+=  (4-4) 

 rfff ρφρφρ )1( −+=  (4-5) 

Medium 1 

Medium 2 

Medium 1 
Composite 

Composite 
R12 

R21 

R21 

R12 

T12 

T21 

T12 

T21 

l Resin layer 
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where φf  is the fibre volume fraction, Mf and Mr are the compression moduli in 

the propagation direction of the fibre and the resin respectively, and ρf and ρr 

are the densities of fibre and resin respectively. More comprehensive mixture 

rules are considered later for long-fibre composites and where porosity is added 

to the mixture. 

4.3.3 Benchmarking the single-ply analytical model 

The analytical model from Appendix A was implemented in an MS Excel 

spreadsheet in order to predict the frequency response of up to two resin layers 

separated by a composite ply. In order to test, debug and validate it, the model 

was compare with the University of Nottingham’s MLM-Propmat model for a 

limited number of layers – see Figure 4-5 – and it compared favourably. Both 

models were using the simple volumetric mixture rule as described above. 

 

Figure 4-5. Comparison of the Excel version of the (RAS) analytical model with 

MLM-Propmat for a single 0.125 mm thick composite layer (80% Fibre Volume 

Fraction) sandwiched between two 0.020 mm (blue) and 0.001 mm (red) thick 

resin layers on a linear scale (left) and a logarithmic scale (right). 

Then attenuation in the resin layer was added and a further comparison with 

MLM-Propmat – see Figure 4-6 – also showed good agreement but with a slight 

discrepancy in the peak reflection coefficients at the higher resonant 

frequencies. This discrepancy was removed later by a change in the way 

attenuation was applied to the resin part of the mixture in MLM-Propmat – see 

later comparison in Figure 4-13. 
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Figure 4-6. Comparison of the Excel version of the (RAS) Analytical model with 

MLM-Propmat for a single 0.25 mm ply sandwiched between two 0.02 mm resin 

layers with 0.15 dB/mm/MHz attenuation in the resin. 

4.3.4 Effect of fibre volume fraction changes 

The ultimate aim of the modelling exercise was to investigate the effects of 

changes in Fibre Volume Fraction (FVF) on the time-frequency ultrasonic 

response in a realistic structure containing many plies. Firstly, these FVF effects 

were modelled using a single ply with a constant number of fibres per unit width 

across the fibres – assuming that changes in FVF would be reflected in ply 

thickness changes. Figure 4-7 shows that a linear relationship exists between 

FVF and resonant frequency as described by Equation 4-2, where fn is the nth 

resonant frequency, t is the nominal ply spacing, and αn is the constant of 

proportionality for the nth resonance. 

4.3.5 Dependence on ply thickness and ply spacing 

In order to determine whether the composite ply thickness or the ply spacing 

(sum of the composite and resin layer thicknesses) dominated in determining 

the resonant frequency, the model was used to generate values of αn for a) 

variable resin thickness with the same composite ply thickness, and b) variable 

resin thickness but a constant ply spacing (composite + resin thickness). Figure 

4-8 shows evidence that it is the ply spacing that dominates in determining the 

resonant frequency rather than just the composite ply thickness. This result 
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means that the resonant frequency is a suitable metric for mapping 3D 

variations in FVF, but it will be relatively insensitive to resin-rich areas within a 

given ply spacing. 
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Figure 4-7. Relationship between resonant frequency and local FVF for a 

nominal 80% FVF 8 plies/mm composite, with a nominal 0.113 mm composite 

layer between two 0.012 mm thick resin layers (left) and how the slope of this 

dependency varies with nominal FVF (right). Only the first two resonances are 

shown, the first in pink and the second in blue. 
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Figure 4-8.  Comparison of the effect on the first two resonant frequencies of 

varying the resin layer thickness with (left) constant (80% FVF) composite ply 

layer thickness of 0.113mm, and (right) constant ply spacing of 0.125 mm. Only 

the first two resonances are shown, the first in pink and the second in blue. 



 

 93 

4.4 Multi-Layer  Analytical Modelling 

4.4.1 ANDSCAN version 

In order to extend the model to include multiple layers, and then to produce a 

time-domain response to a typical transducer pulse input, the model was 

migrated into Microsoft ‘C’. It was embedded within the ANDSCAN® Waveform 

application in order to use all ANDSCAN’s signal processing, image processing 

and display capabilities, and to provide direct comparisons with real data. The 

model produces an impulse response that can then be convolved with the front-

wall echo from a real structure, which represents a typical ultrasonic pulse. 

The migration into ANDSCAN was achieved by writing a Modelling.c module 

incorporating new functions for complex number arithmetic, and routines for 

calculating complex reflection and transmission coefficients for combinations of 

interfaces. A user interface was provided for input of material properties, 

numbers of layers and their thicknesses etc – see Figure 4-9.  

 

Figure 4-9. User interface for input of material properties, layers and their 

thicknesses, whether surrounded by water or composite, as-designed FVF etc. 
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The extension of the model involved using a more generalised method for 

determining the complex reflection and transmission coefficients for a given 

group of layers. The basic concept was similar to a finite-element approach 

where the effect of each ply (composite layer plus resin layer) is added 

sequentially.  

Figure 4-10 illustrates the principle of adding a single ply to a stack and 

calculating the new values for the forward and back reflection and transmission 

coefficients of the new expanded system: Rfwd Rback Tfwd and Tback. When the 

next ply is added Rfwd becomes the new R12, Rback becomes R21, Tfwd becomes 

T12 and Tback becomes T21. The new resin layer at interface 2-3 itself comprises 

two interfaces, each of which has real reflection and transmission coefficients 

that can be calculated in the usual way using the impedances of the resin and 

composite and then combined using the same equations given below. Because 

the thicknesses and FVFs of each layer may vary, the reflection and 

transmission coefficients R23 R32 T23 and T32 must be calculated from the 

impedances in this way for each new ply. 

 

Figure 4-10. Diagram showing how an additional ply can be added to a group of 

plies to give new complex reflection and transmission coefficients for the now 

expanded system of plies. 
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The equations, including attenuation, for calculating the reflection and 

transmission coefficients for this generalised system are as follows (Equations 

4-6 to 4-9), where l is the thickness of the new layer of composite. Any variation 

in thickness of the new resin layer will need to be incorporated in a fresh 

calculation of R23, R32, T23 and T32 for the additional resin layer. 
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4.4.2 Comparison for 3 layers with MLM-Propmat 

For validation purposes, comparisons between MLM-Propmat and the MS Excel 

and ANDSCAN versions of the analytical model were performed using a simple 

resin-composite-resin three-layer stack surrounded with composite. Again, both 

methods used the simple mixture rule described above. These are documented 

in Figure 4-11 and Figure 4-12 for the case with no attenuation, and in Figure 

4-13 for visco-elastic attenuation in the resin of 0.15 dB/mm/MHz. 

Note that in in Figure 4-13 the discrepancy in peak reflection coefficient at the 

resonant peaks evident in Figure 4-6 has been solved through a modification in 

MLM-Propmat. 
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Figure 4-11. Comparison of the ANDSCAN Waveform version of the (RAS) 

Multi-layer Analytical Model with the original MS Excel version and with MLM-

Propmat for a single 0.125 mm thick composite layer (80% Fibre Volume 

Fraction) sandwiched between two 0.020 mm (top) and 0.001 mm (bottom) 

thick resin layers. 
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Figure 4-12. Comparison of the ANDSCAN Waveform  and Excel versions of 

the (RAS) Multi-layer Analytical Model with MLM-Propmat for a single 0.125 mm 

thick composite layer (80% Fibre Volume Fraction) between two 0.020 mm 

(blue) and 0.001 mm (red) thick resin layers on a logarithmic scale. 
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Figure 4-13. Comparison of the ANDSCAN Waveform and Excel versions of the 

(RAS) Multi-layer Analytical Model with MLM-Propmat for a single 0.25 mm 

thick composite layer (80% Fibre Volume Fraction) between two 0.020 mm thick 

resin layers but with 0.15 dB/mm/MHz visco-elastic attenuation in the resin. 
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4.4.3 Results for multiple plies 

4.4.3.1 Embedded in composite 

After this validation process, frequency responses and temporal impulse 

responses were produced for different numbers of 60% FVF plies embedded in 

composite, firstly assuming  no attenuation (see Figure 4-14 and Figure 4-15) 

and then with a visco-elastic attenuation of 0.15 dB/mm/MHz (see Figure 4-16 

and Figure 4-17). 
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4 Plies, 0.25 mm Ply, 20 um Resin, 0 dB/mm/MHz Attenuation
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8 Plies, 0.25 mm Ply, 20 um Resin, 0 dB/mm/MHz Attenuation
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Figure 4-14. Reflection coefficient frequency responses calculated for (left to 

right, top then bottom) 1, 2, 4 and 8 plies of 60% FVF and thickness 0.25 mm, 

separated by 0.02 mm resin layers, neglecting attenuation and embedded in 

composite. 

As the number of plies increases, the resonance peaks become much narrower. 

Note that when there is no attenuation included in the model, the magnitude of 

the total reflection coefficient can approach very close to unity at the resonant 

frequencies for a large number of plies.  
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Figure 4-15. Reflection temporal impulse responses calculated for (left to right, 

top then bottom)  1, 2, 4 and 8 plies of 60% FVF and thickness 0.25 mm, 

separated by 0.02 mm resin layers, neglecting attenuation and embedded in 

composite. In each case, ‘BWE’ indicates the back-wall echo reflection. 

At this stage the responses have not been convolved with a realistic waveform 

from a transducer so they are impulse responses. In addition, the structure is 

effectively embedded in composite whereas when the surrounded medium is 

water the front-wall and back-wall reflections will dominate the spectrum. 

An interesting effect in Figure 4-17 (bottom-right) is in the waveform predicted 

for 8 plies where the echo from one ply beyond the back-wall echo is actually a 

higher amplitude than from the back-wall itself. The model has been checked 

for artefacts in the Inverse Fourier Transform (IFT) by doubling the sample rate 

– extending the Nyquist frequency up to 100 MHz. This still produced the same 

effect, which can also be seen for 5, 6 and 7 plies, suggesting it is a real resp-

onse of the structure, maybe due to the lack of a real interface at this depth to 

cause destructive interference with the multiple reflections from earlier plies. 
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8 Plies, 0.25 mm Ply, 20 um Resin, 0.15 dB/mm/MHz Attenuation
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32 Plies, 0.125 mm Ply, 20 um Resin, 0.15 dB/mm/MHz Attenuation
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Figure 4-16. Reflection coefficient frequency responses calculated for 1 and 2 

(top), 4 and 8 (middle) plies of 60% FVF and thickness 0.25 mm, each 

separated by 0.02 mm resin layers, using 0.15 dB/mm/MHz visco-elastic 

attenuation in the resin and embedded in composite. Also shown (bottom) are 

16 and 32 plies of 0.125 mm thickness with the same resin thicknesses and 

attenuation. 
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Figure 4-17. Reflection temporal impulse responses calculated for 1 and 2 (top), 

4 and 8 (middle) plies of 60% FVF and thickness 0.25 mm, each separated by 

0.02 mm resin layers, using 0.15 dB/mm/MHz attenuation in the resin, 

embedded in composite. Also shown (bottom) are 16 and 32 plies of 0.125 mm 

thickness. In each case, ‘BWE’ indicates the back-wall echo reflection. 
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4.4.3.2 Embedded in water 

When water is used as the embedding medium the front-wall and back-wall 

reflections are phase-reversed and dominate the waveform. The frequency 

response then exhibits a quarter-wave resonance instead of a half-wave 

resonance, as shown in Figure 4-18 with time-domain responses in Figure 4-19. 
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Figure 4-18. Reflection coefficient frequency responses calculated for 1 and 2 

(top), 4 and 8 (middle) 0.25 mm plies of 60% FVF, each separated by 0.02 mm 

resin layers, using 0.15 dB/mm/MHz attenuation in the resin, and embedded in 

water. Also shown (bottom) are 16 and 32 plies of 0.125 mm thickness. 
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Figure 4-19. Reflection temporal impulse responses calculated for 1 and 2 (top), 

4 and 8 (middle) plies of 60% FVF and thickness 0.25 mm, each separated by 

0.02 mm resin layers, using 0.15 dB/mm/MHz attenuation in the resin and 

embedded in water. Also shown (bottom) are 16 and 32 plies of 0.125 mm 

thickness. 

4.4.4 Comparison with MLM-Propmat for multiple plie s 

The comparison with MLM-Propmat was performed for a 32-ply stack of 

0.125 mm thick plies separated by 2 µm resin layers, all surrounded by water. 

The impulse response spectrum is shown in Figure 4-20 and Figure 4-21; both 

BWE 
BWE 

BWE 

BWE 

BWE BWE 
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showing good agreement. There was also good agreement with the simulated 

waveforms and spectra from Wang and Rokhlin (2003). 
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Figure 4-20. Comparison of the ANDSCAN version of the model with MLM-

Propmat for a 32-ply stack of 0.125 mm-thick plies separated by 2 µm resin 

layers, surrounded by water, using 0.15 dB/mm/MHz attenuation in the resin. 
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Figure 4-21. Expanded view of Figure 4-20 for better comparison. 

A further comparison, but for 20 µm resin layers, surrounded by water is shown 

in Figure 4-22, demonstrating excellent agreement between the ANDSCAN 

(RAS) model and MLM-Propmat.  
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Figure 4-22. Comparison with MLM-Propmat for a 32 ply stack of 0.125 mm-

thick plies, 80% FVF, separated by 20 µm resin layers, surrounded by water, 

using 0.15 dB/mm/MHz attenuation in the resin. The lower graph is an 

expanded view of the same comparison. 

4.5 Convolution with Realistic Pulses 

In order to simulate a real waveform and validate against experimental data, the 

impulse responses shown above need to be convolved with a realistic ultrasonic 

pulse, which can be generated in various ways. The reflected pulse from a 
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perfect reflector can be captured experimentally and used; the actual front-wall 

reflection from the specimen is generally adequate but less satisfactory. 

Alternatively, it can be formed from the transmit waveform (a step or short 

pulse) convolved twice with the impulse response of the transducer (ie transmit 

and receive filtering by the transducer), or the transducer itself can be modelled. 

All three options are considered here.  

4.5.1 Use of front-wall echo 

Convolution of the impulse response with a real ultrasonic pulse waveform is 

also possible if a front-wall echo signal is gated and then windowed using a 

Hanning taper before convolving with the impulse response calculated using the 

model. Although the front surface signal also includes interference from deeper 

plies, to a first approximation the water-to-composite interface will dominate this 

reflection. A 72-ply 18 mm-thick specimen is shown in Figure 4-23.  
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Figure 4-23. 2.25 MHz 38 mm focal-length (in water) focused-probe experi-

mental and plane-wave modelled waveforms for a 72-ply 18 mm-thick comp-

osite specimen. The focus was at the mid-plane. The front surface signal from 

the experimental waveform was convolved with the impulse response from the 

model, having randomised the ply thickness by up to 60% of the nominal value.  

Although agreement is far from exact, the actual ply spacings are unknown and 

cannot be modelled accurately, so randomised ply spacings, l, were used, 

allowing up to q=60% variation of the nominal ply spacing, l0.  
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The randomness was introduced using the following equation: 

 ])5.0(21[0 qrandll −+=  (4-10) 

where rand is a pseudo-random number generator embedded in Microsoft C, 

which generates equally distributed values (see Figure 4-24 for over 5000 

samples) from 0 to 1 so that the range of thicknesses is (1 - q)l0 to (1 + q)l0. 
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Figure 4-24. Distribution of pseudo-random numbers produced by Microsoft C 

rand() function – over 5000 samples divided into 16 equal categories in the 

output range. 

In addition, the model automatically recalculates the fibre volume fraction to be 

the ratio l0/l of the ‘designed’ fibre volume fraction. Inclusion of this randomness 

was necessary to obtain some similar amplitudes of ply reflections, relative to 

the front-wall echo, to those found experimentally in Figure 4-25. 

The effect of increasing the randomness in layer thicknesses can be seen in 

Figure 4-26. With reference to Figure 4-25 it can be seen from the time-

frequency plots that the experimental data seems to include less than 10% 

randomness and yet the signals from the ply resonances seem much larger 

than from the model, relative to the front surface signal. The 38 mm focal-length 

probe was focused at the mid-plane of the specimen. This could have artificially 

increased the mid-ply resonance amplitudes relative to the front-surface signal.  
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Figure 4-25. Experimental waveform (top) and corresponding band-pass filtered 

time-frequency plot (bottom) from a 72-ply 18 mm thick composite using a 

2.25 MHz focused probe. Note that the calculated first resonance for this 

structure occurs at 1.7 MHz – very close to the green energy-centroid frequency 

line shown on the time-frequency plot. 

  

Figure 4-26. The effect of increasing randomness in the composite layer 

thickness in a 72-ply stack modelled using 0.25 mm plies separated by 20 µm 

resin layers. Amounts of randomness are (left to right) 0%, 10% and 20%.  
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A band-gap in transmission at the resonant frequency has caused attenuation 

of the resonances in the left image of Figure 4-26 to such an extent that a 

spectrum could not be generated from the sub-digitisation-level amplitudes of 

the later inter-ply reflections. It is only when there is no randomness in ply 

spacing that such a significant and narrow band gap is generated. This, and the 

effect of randomness on that transmission band-gap are discussed in 

Chapter 5. 

However, when this specimen was examined more closely by micro-sectioning, 

it was found to contain stitched groups of four plies and that the stitching 

caused a thicker layer every four plies. This was then simulated using 18 plies 

of thickness 0.85 mm separated by 0.17 mm resin layers – see Figure 4-27. 
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Figure 4-27. Result of convolving a 2.25 MHz front-surface reflection with the 

impulse response from 18 layers 0.85 mm thick with 0.17 mm resin layers for 

the stitching. FVF was set at 80% and resin attenuation at 0.15 dB/mm/MHz. 

The specimen used for the experimental data contained regions of out-of-plane 

fibre waviness and two waveforms from such regions are shown in Figure 4-28. 

It can be seen that the time-frequency plot does seem to identify these regions 

with a change in the energy-centroid frequency. 
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Figure 4-28. Experimental 2.25 MHz waveforms from the same specimen as 

Figure 4-25 but over a region with out-of-plane waviness near the front of the 

specimen (left image) and near the back of the specimen (right image). Note 

that in these regions the time-frequency plot shows a change in the energy-

centroid frequency (green line). 

Further comparisons of experimental and modelled waveforms - at 25 MHz for a 

24-ply 3 mm thick composite - are shown in Figure 4-29 and Figure 4-30. Note 

that approximately 20% randomness in thickness (Figure 4-26, right) is required 

to give a similar time-frequency plot to the experimental data (Figure 4-28). 

 

 
Figure 4-29. 25 MHz waveform, averaged over a small region, from a 24-ply, 

3 mm thick composite.  
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Figure 4-30. 25 MHz modelled waveforms using different amounts of 

randomness in the 24 composite layers: (top, left to right) 0%, 4%, 8%, (bottom, 

left to right) 20%, 40%, 60% of randomness in ply thickness. 

4.5.2 Use of a modelled transducer response 

The transducer response has been modelled previously (Phang 2006) using a 

convolution of the impulse response of the transducer front and back interfaces 

with a half-cycle of a sine wave. In the current work, this convolution is 

performed in the frequency domain so it is easy to apply the response twice - 

simulating transmit and receive responses - and then filter it using a low-pass 

filter to represent the attenuation of water (if water is the coupling medium). The 

result is a realistic pulse waveform. The Q-factor can be varied by changing the 

reflection coefficients of the two interfaces of the transducer – a higher reflection 

coefficient giving a narrower bandwidth and hence a higher Q-factor. Spectra 

and waveforms are shown in Figure 4-31 and Figure 4-32 respectively. 
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Figure 4-31 Simulated spectral responses corresponding to the pulse-echo 

waveform from a reflector placed at the front of the specimen. 
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Figure 4-32 Simulated temporal responses corresponding to the pulse-echo 

waveform from a perfect reflector placed at the front of the specimen. Time 

delays have been applied to separate the pulses for ease of viewing and the 

first two (left-most) pulses are from the Gaussian pulse envelope method, whilst 

the 3rd and 4th (right-most) pulses were generated using the transducer model. 



 

 113 

4.5.3 Use of a Gaussian pulse envelope 

If the transducer is approximated as a Gaussian band-pass filter, it is possible 

to control the Q-factor of the pulse quite easily. The equation for the spectrum 

depends on the centre frequency f0 and the half-bandwidth at half-height, w6dB , 

which is calculated from the Q-factor, Q (w6dB = f0/2Q): 

 θπ sin/)2ln()(

0

2
6

2
0)(

iwff
dBeAfA

+−−=  (4-11) 

where the phase response is forced to follow a sine-wave profile varying from -π 

to +π as the resonance is transitioned, given by: 

dBw

ff

6

0

4
)( −= πθ  but is constrained by: 

22
πθπ −≥≥  

Spectra and waveforms are also shown in Figure 4-31 and Figure 4-32 

respectively, by comparison with the modelled transducer response. 

4.6 Modelling a Porous Layer 

4.6.1 Porous layers in the model 

The model changes the material properties of each ply based on the specified 

amount of porosity. The simple volumetric mixture rule described above was 

used initially to calculate local changes in modulus, ultrasonic velocity and 

density, thus giving the averaged changes in impedance across each layer as a 

result of porosity. However, an investigation of more comprehensive mixture 

rules (documented in Section 4.6.5) revealed that the simple volumetric rule is 

probably too simple for the inclusion of porosity into composite.  

There is also enhanced attenuation due to scattering from the porosity. This can 

be modelled in various ways but the method of Adler et al (1986) was used for 

the convenience of an analytical expression. 

If multiple plies containing porosity are modelled, it is possible to include an 

element of randomness in the void volume fraction φv in each adjacent layer. 

The randomness was introduced using the following equation: 
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 ])5.0(21[0 qrandv −+= φφ  (4-12) 

where φ0 is the nominal void volume fraction and rand is the above-mentioned 

pseudo-random number generator embedded in Microsoft C, which generates 

evenly distributed but random values from 0 to 1 so that the range of void 

volume fractions is from (1 - q)φ0 to (1 + q)φ0. 

4.6.2 Enhanced attenuation due to scattering 

The basis of the increased attenuation due to scattering in a porous layer for the 

long-wavelength limit is Equation 4-13, which is derived from Adler et al (1986) 

and links the frequency dependence to pore size via the reduced scattering 

cross-section Γ(ka).  

 )(
4
3

)( ka
a

k v Γ= φα  (4-13) 

where φv is the void volume fraction, k is the wavenumber and a is the porosity 

radius. Thus the size of the individual pores has to be specified in order to 

determine the frequency-dependent attenuation. At this stage, no allowance 

was made for the return of backscattered energy to the transducer except in the 

sense of changes in reflection coefficient at the composite-resin boundaries due 

to changes in average impedance of the composite layer due to porosity. 

A transition between long-wavelength and short-wavelength expressions for 

Γ(ka) is required in order to match the frequency responses given by Adler et al 

(1986) in Figure 4-33. For ka < ψ  (where ψ = 0.7 works well because that is 

the peak in the Adler  curve) the long-wavelength expression is used (from 

Equations 3-1 and 3-2). For ka > ψ  the long-wavelength expression is 

modified to Equation 4-14 and it is mixed with the short-wavelength limit Γ(∞) 

(which still seems to depend on η) based on the ratio (ψ/ka)2. The modified 

long-wavelength expression is: 

 nnkaka ψηβ −=Γ 4))(()(  (4-14) 



 

 115 

where η is the ratio of shear to longitudinal velocities and n is used to adjust the 

rate of transition from the long- to short-wavelength expressions. The full 

equation for reduced scattering cross-section (Equation 4-15) best matched the 

graphs of scattering cross-section of Adler et al when n = 3, see Figure 4-33. 
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Figure 4-33. Adler et al (1986) (left) and modelled version (right) of the reduced 

scattering cross-section for n=3 and for different values of η. 

The complete equation used for calculating the scattering attenuation coefficient 

α(k) is shown in Equation 4-16. 
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4.6.3 Single-ply frequency response of porosity 

In order to simulate the response from a small volume element in the way that 

the 3D porosity profiling is intended to work, a simple 3-layer system (resin-

composite-resin, embedded in composite) was investigated first as this could be 

an ideal layer thickness for a volume element. Examples of the frequency-

response variations with the inclusion of varying amounts of porosity in the 
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single composite layer in the middle of the volume element are given in Figure 

4-34 for both 60% and 80% fibre volume fraction.  
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Figure 4-34. The effect of varying porosity levels in a single ply on the local 

resin-ply-resin frequency-dependent reflection coefficient for 60% fibre volume 

fraction (top) and 80% (bottom). The simple volumetric mixture rule was used. 

It is very interesting that only a small amount of porosity is required to 

completely change the nature of the ply resonance from a ½-wave resonance to 

a ¼-wave resonance. This is due to the resin and composite impedances being 

very similar, so a very small lowering of the impedance of the composite layer 

results in a reversal of the resin-composite reflection coefficient, thus changing 
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the nature of the reflection in the thin resin layer. From these modelling results it 

is possible to envisage the use of the amplitude response at the resonant 

frequency, or the resonant frequency itself, to measure porosity. Possible 

calibration curves are shown in Figure 4-35. 

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25

% Porosity

R
es

on
an

ce
 P

ea
k 

R
ef

le
ct

io
n 

C
oe

ff
.

60% FVF, 1st Res, 
0 um Porosity

80% FVF, 1st Res, 
0 um Porosity

80% FVF, 1st Res, 
10 um Porosity

80% FVF, 1st Res, 
20 um Porosity

80% FVF, 1st Res, 
50 um Porosity

80% FVF, 1st Res, 
100 um Porosity

60% FVF, 2nd Res, 
0 um Porosity

80% FVF, 2nd Res, 
0 um Porosity

80% FVF, 2nd Res, 
10 um Porosity

80% FVF, 2nd Res, 
20 um Porosity

80% FVF, 2nd Res, 
50 um Porosity

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25

% Porosity

R
es

on
an

t F
re

qu
en

cy
 (

M
H

z)

60% FVF,  0 um
Porosity

80% FVF,  0 um
Porosity

80% FVF,  10 um
Porosity

80% FVF,  20 um
Porosity

80% FVF,  50 um
Porosity

80% FVF,  100 um
Porosity

60% FVF,  0 um
Porosity

80% FVF,  0 um
Porosity

80% FVF,  10 um
Porosity

80% FVF,  20 um
Porosity

80% FVF,  50 um
Porosity

 

Figure 4-35. The calibration curves for single-ply porosity against resonant 

amplitude reflection coefficient (top) and resonant frequency (bottom). These 

are given for different void sizes at 80% fibre volume fraction and, at a zero 

size, for 60% (thick red lines) and 80% fibre volume fraction.. 
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If the amplitude response is used, it is likely to be very susceptible to other 

material variations, such as thickening of resin layers, so there may be a need 

to use the resonant frequency shift as a classifier to determine whether porosity 

is present or not. 

4.6.4 Micromechanical mixture rules 

Various mixture rules have been proposed in the literature (see Chapter 3 and 

Appendix F). Several of these methods are derived from, or use the work by 

Hashin (1962), often providing further validation of his work against experiment. 

For this reason, the Hashin (1962) spherical-inclusion method was chosen to 

provide a comparison with the simple mixture rule for porous composite, and 

the Hashin (1965) method for long-fibre composites was chosen for the fibre 

composite. If carbon fibres are being modelled, which are anisotropic, it is 

important to use the transverse modulus and Poisson’s ratio for ultrasonic 

propagation across the plies, in which case the isotropic-fibre expressions of 

Hashin (1965) still apply – as shown by Hashin (1979). 

The modulus that is required for compression-wave propagation of ultrasound is 

the compression (or longitudinal) modulus, M, which can be derived from the 

bulk (K) and shear (G) moduli as in Equation 4-17 (App. F has a full treatment): 

 GKM
3

4+=  (4-17) 

It is also noted that the simple mixture rule (Equation 4-5) is still valid for 

calculating density.  

4.6.5 Mixture rules for porosity in composite 

In Appendix F a comparison of mixture rules from the literature is made. For 

spherical inclusions such as porosity, the Hashin (1962) method has been 

shown to be adequate (see Figure 4-36). 

Three of the methods for determining the modulus of porous composite 

proposed in Appendix F – Hashin, Hashin-Bezier and the Pinfield et al (2010) 

scattering model - were all built into the model as optional mixture rules to use.   
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Figure 4-36. Comparison of compression modulus (top) and velocity (bottom) 

for porous carbon-fibre epoxy composite calculated using the methods 

presented in Appendix F.  

The Hashin and Hashin-Bezier methods are indistinguishable, but the Pinfield 

scattering method affects both the frequency response and the phase of the 

backscattered signal and this can be seen in the normalised time-frequency 

analysis shown in Figure 4-37. The additional π/2 phase shift at all frequencies, 
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noted by Pinfield et al (2010), has the effect of changing the reflected pulses 

from even to odd functions (see A and B labels in Figure 4-37). 

     

Figure 4-37. Comparison of the Hashin mixture rule (left) and the Pinfield et al 

(2010) scattering mixture rule (right) for the simulated impulse response of a 

single porous 0.125 mm ply in a 32-ply stack, where 10% porosity comprising 

10 µm radius pores has been inserted at ply 6. Time-domain waveforms (top) 

and time-frequency analysis with a Hanning window on 20% of the gate width 

(bottom) are both shown. Front (FWE) and back-wall (BWE) echoes are 

indicated along with the front and back of the porous layer (A and B). 

4.6.6 Comparison of mixture rules for fibre-resin c omposite 

The simple volumetric mixture rule is a lot closer to the more exact Hashin 

(1965) analysis for carbon fibres in resin than for glass fibres or porosity in 

resin. This is because carbon fibre has a transverse modulus that is much 

nearer to that of the resin matrix – see Figure 4-38. 
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Figure 4-38. Comparison of compression modulus (top) and transverse velocity 

(bottom) for carbon-fibre epoxy composite calculated using various methods 

from the literature. The Hashin moduli have been calculated using the lower 

bounds for the shear moduli. 
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Figure 4-38 shows that there is a maximum 4% difference (at 60% FVF) in 

modulus and 1.7% difference (also at 60% FVF) in velocity between the simple 

volumetric and the more complex mixture rules for carbon-fibre composite. This 

is relatively trivial and suggests that the work in this project using the model with 

the simple volumetric mixture rule is still valid in terms of the conclusions that 

were drawn as a result. 

4.6.7 Effect of mixture rules on porosity modelling  

The modelling of porosity in composite addressed above used the simple 

volumetric mixture rule, before the Hashin method was programmed into the 

model. Figure 4-39 illustrates the difference that the velocity change modelled 

by Hashin (1962) has on the resonances in porous composite layers – resonant 

frequencies are downshifted at higher porosity levels due to a velocity 

overestimate by the simple volumetric rule by 20% for a 30% void volume 

fraction (see Figure 4-36). The reflection coefficients are up to 50% greater in 

magnitude using the Hashin method than the simple volumetric method. 

This downshift in the first two resonant frequencies is also illustrated in Figure 

4-40 (top) and is relatively independent of void size, although the amplitude at 

the resonance in Figure 4-40 (bottom) is dependent on void size.  

For local porosity up to a volume void content of 30% there is insufficient 

downshift in the second resonant frequency for it to coincide with the normal ply 

resonance frequency – shown at 0% porosity on the graph in Figure 4-40 (top) 

and also in Figure 4-39. 
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Figure 4-39. Simple volumetric (top) and Hashin-Bezier (bottom) mixture rules 

applied using the (RAS) analytical model to 10 µm porosity in a single 0.125 

mm  ply of 60% FVF composite sandwiched between two 0.002 mm resin 

layers. Note that the velocity change modelled in the Hashin-Bezier mixture rule 

(bottom) causes a downshift in resonant frequency for larger amounts of 

porosity. 



 124 

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30

% Porosity

R
es

on
an

t F
re

qu
en

cy
 (

M
H

z)

Volumetric, 1st Res, 
1 µm Porosity

Volumetric, 1st Res, 
10 µm Porosity

Hashin, 1st Res,  1
µm Porosity

Hashin, 1st Res,  10
µm Porosity

Volumetric, 2nd Res, 
1 µm Porosity

Volumetric, 2nd Res, 
10 µm Porosity

Hashin, 2nd Res,  1
µm Porosity

Hashin, 2nd Res,  10
µm Porosity

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30

% Porosity

R
es

on
an

ce
 P

ea
k 

R
ef

le
ct

io
n 

C
oe

ff
.

Volumetric, 1st Res,  1
µm Porosity

Volumetric, 1st Res,  10
µm Porosity

Hashin, 1st Res,  1 µm
Porosity

Hashin, 1st Res,  10 µm
Porosity

Volumetric, 2nd Res,  1
µm Porosity

Volumetric, 2nd Res,  10
µm Porosity

Hashin, 2nd Res,  1 µm
Porosity

Hashin, 2nd Res,  10 µm
Porosity

 

Figure 4-40. Resonant frequency and amplitude at resonance using the (RAS) 

analytical model for the first two resonances as a function of porosity level, for 

1 µm and 10 µm radius pores in a single 0.125 mm ply of 60% FVF composite 

between 0.002 mm resin layers. Both simple volumetric and Hashin-Bezier 

mixture rules are shown. Note that pore size only affects reflection amplitude, 

resonant frequency being less sensitive, but downshifted at high porosity levels. 

4.6.8 Time-domain response of single-ply porosity 

Examples of modelled time-domain waveforms are shown in Figure 4-41 for a 

pulse generated from a Gaussian spectrum with a Q factor of 0.8, and a range 

of typical local porosity (void volume fraction) levels in ply 12 of a 32-ply stack, 

which may be present even when the thickness-average porosity is only 2%.

Normal ply resonance 

Normal ply resonance 
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Figure 4-41. Modelled time-domain responses from a porous ply in a 32-ply 

stack of 0.125 mm 70% FVF plies separated by 0.005 mm resin layers. A 

Gaussian Q=0.8 pulse profile centred at 10 MHz was used. Different 

percentage porosities at a pore size of 10 µm are shown. 
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4.6.9 Back-wall attenuation due to single-ply poros ity 

The traditional method of inspecting composite for porosity is to monitor the 

back-wall echo in comparison with a standard, and assume any additional 

attenuation is caused by scattering at porosity. The model can be used to 

determine how this back-wall echo depends on percentage porosity (void 

volume content) and the result is shown in Figure 4-42 for 5 and 10 MHz centre-

frequency pulses and 10 µm radius pores. 
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Figure 4-42. 5 and 10 MHz (UoN pulse) modelled back-wall attenuation as a 

function of percentage of 10 µm radius porosity (ka = 0.21) in the 14th ply of a 

32-ply stack of 0.125 mm or 0.25 mm thick 70% FVF plies separated by 5 µm 

resin layers. 

Figure 4-43 shows how back-wall echo attenuation is affected by pore radius for 

different ply spacings, l, and frequencies (and therefore wavenumbers, k). 

However, it is worth determining what scaling factors apply, so Figure 4-44 is 

plotted against ka showing that the 5 MHz 0.25 mm plies data agrees well with 

the 10 MHz 0.125 mm ply data, because the response depends not just on ka 

but the ply-spacing-wavenumber product: kl. 
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Figure 4-43. 5 and 10 MHz (UoN pulse) modelled back-wall attenuation as a 

function of radius of pores in the 14th ply of a 32-ply stack of 0.125 mm or 

0.25 mm thick 70% FVF plies separated by 5 µm resin layers.  
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Figure 4-44. As Figure 4-43 but plotted against ka showing that the response 

depends on ka  and the ply spacing * wavenumber product kl. 
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4.6.10 Time-frequency response of single-ply porosi ty 

In order to decompose the response of a real composite into contributions from 

normal plies, thick plies, porosity or thick resin layers, it is necessary to 

understand the response to each of these individually. This can be achieved by 

using a time-frequency analysis of the modelled response. In the case of a 

single porous ply, this is shown in Figure 4-45. 
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Figure 4-45. Modelled impulse-response time-frequency spectrum (top) for a 

32-ply stack of 125 µm thick 80% FVF plies and 5 µm resin layers with a single 

ply (centred at green label ‘3’) containing 20% porosity (10 µm radius pores), 

and (below) spectra taken from five different time windows in the waveform, 

labelled as 1 to 5 on the above time-frequency spectrum. 
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The response of a normal ply (region 1 in Figure 4-45) is that of a ½-wave 

resonance, whilst the response at the centre (region 3 in Figure 4-45) of the 

porous ply is a ¼-wave resonance. As explained above, this is because only a 

very small amount of porosity is required to lower the impedance of the ply 

below that of the resin layers.  

Interestingly, there is a difference between the spectra for transition region 2 

and transition region 4 at the higher frequencies in Figure 4-45. The former 

retains an intermediate response between non-porous and porous plies, whilst 

the latter moves towards the non-porous response at higher frequencies. This 

may be a differentiator between increasing and decreasing porosity but it is 

unlikely to be of practical value because the frequencies involved are too highly 

attenuated.  

From this analysis there appears to be potential for using the shift in type of 

resonance as a means of decomposing the single-ply spectral response into 

contributions from non-porous and porous plies. Further investigations show 

how the spectrum from an individual ply changes with percentage porosity in 

the presence of certain effects, namely:  

1. 10% randomness in the ply spacing (Figure 4-46), showing that this does 

not completely prevent the change in resonance type being used as a 

differentiator, but that some form of ply-spacing assessment may be 

necessary; 

2. different bandwidths of the incident pulse (Figure 4-47), showing that a 

broader bandwidth (lower Q-factor) allows better differentiation. 

In Figure 4-46 it is important to note that an increase in porosity level in a ply of 

the nominal ply spacing results in an equal shift in all the resonant frequencies, 

such that the nth resonant frequency shifts from nf1 at 0% porosity to nf1+∆f, 

where f1 is the frequency of the second resonance at the nominal ply spacing. 

This shift ∆f has been modelled and illustrated above, in Figure 4-40, for both 

the simple volumetric mixture rule (as used in Figure 4-45) and the Hashin 

(1965) mixture rule. In contrast, an increase in ply spacing by a factorκ, results 
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in a frequency scaling of the spectrum by a factor 1/κ so that the nth resonance 

peak is at (nf1+∆f) /κ . 
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Figure 4-46. Frequency  response taken from the central region (region 3 from 

Figure 4-45) of a region of porosity in a 32-ply stack of 125 µm thick 70% FVF 

plies and 5 µm resin layers with no randomness (top) and with 10% 

randomness (bottom) in ply thickness. Multiple curves represent different levels 

of porosity in the single porous ply. 
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Also shown on these graphs are spectra from the front-wall reflection, and from 

the front of a ply with 100% porosity – which is like an air-backed back-wall 

reflection and tends to reflect the full spectrum of the incident pulse. 
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Figure 4-47. Responses to porosity for a 10 MHz Gaussian pulse with Q=1.0 

(top) and Q=0.5 (bottom) from the central porous region (region 3 from Figure 

4-45) of a 32-ply stack of 125 µm thick 70% FVF plies and 5 µm resin layer. 
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Finally, Figure 4-48 shows that, using a Q-factor of 0.7, there is a significant 

difference between non-porous and porous ply spectra, except at high levels of 

porosity where the ultrasound does not penetrate the porous layer enough to 

change the type of resonance. 
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Figure 4-48. 10 MHz Gaussian Q=0.7 pulse responses from central porous 

region 3 (top) and non-porous region 1 (bottom) of Figure 4-45 in a 32-ply stack 

of 125 µm thick 70% FVF plies and 5 µm resin layers. 
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The above results suggest that this change in resonance type may be used to 

distinguish porous from non-porous plies, but there are several options for 

parameters that might quantify this. One possible parameter is the bandwidth of 

the resonance peak so this is plotted in Figure 4-49 to show its dependence on 

porosity level. Unfortunately, the variation in this parameter is not sufficient for it 

to be a viable contender. The modelling of thick resin layers is covered in the 

following section, whilst Chapter 5 deals with the search for a method to reliably 

decompose the single-ply spectra into contributions from normal plies, porous 

plies and thick resin layers. 
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Figure 4-49. Trend in -3 dB Bandwidth as a function of porosity in the centre of 

a porous ply in a 32-ply stack of 125 µm thick 70% FVF plies and 5 µm resin 

layers. 

4.7 Modelling a Thick Resin Layer 

4.7.1 Thick resin layers in the model 

In order to model a thick resin layer, or even an adhesive bondline between two 

adherends, it is necessary to allow at least one resin layer to have an 
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independent thickness. The model incorporates, as an input parameter, an 

array of thicknesses for the inter-ply (resin) layers as well as arrays for both the 

ply thicknesses and fibre volume fractions of the plies themselves. The default 

thickness for all the inter-ply layers is a single nominal value but a different 

thickness can be provided for one specified inter-ply layer. The model allows 

the option to automatically adjust the adjacent composite ply layer in thickness 

and fibre volume fraction to retain the same ply spacing and total volume of 

fibres in the local region, if required. 

4.7.2 Back-wall echo response from a thick resin la yer 

Experimental observation of the back-wall echo C-scans of composites suggest 

that an ‘impression’ of fibre directions is sometimes evident. The small effect of 

a single thick resin layer on the back-wall echo attenuation is modelled in Figure 

4-50 for a 10 MHz centre-frequency pulse. This suggests that variations of less 

than 1 dB are possible in a back-wall echo C-scan where the impression of fibre 

directions could be the result of small undulations in resin-layer thickness 

between the finite-width fibre tows in each ply. 
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Figure 4-50. 10 MHz (UoN pulse) back-wall additional attenuation as a function 

of resin-layer thickness before the 18th ply in a 32-ply stack of 0.125 mm thick 

70% FVF plies with 0.005 mm standard resin layer thickness. 
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4.7.3 Time-frequency Analysis for a thick resin lay er 

In order to investigate whether the spectrum from a thick resin layer can 

distinguish it from porosity or any other effect, a time-frequency analysis was 

conducted on the modelled waveform, looking at five different depths spanning 

the depth of the thick resin layer. The spectra are shown in Figure 4-51. 
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Figure 4-51. Modelled impulse-response time-frequency spectrum (top) for a 

32-ply stack of 125 µm thick 80% FVF plies and 5 µm resin layers, with a single 

20 µm thick resin layer, and (below) spectra taken from five different time 

windows in the waveform, labelled as 1 to 5 on the above time-frequency 

spectrum. 

1 2 3 4 5 
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Although the frequency and bandwidth of the second ply resonance are affected 

by the resin-layer thickness when considering the impulse response, these 

effects are considerably reduced when a realistic pulse spectrum is used. This 

is shown in Figure 4-52, suggesting that neither resonant frequency nor 

bandwidth are suitable parameters for quantifying resin layer thickness. 
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Figure 4-52. Resonant frequency (top) and bandwidth (bottom) as a function of 

resin-layer thickness using various incident pulses from an impulse response to 

a Q-factor of 1.0. Both front-wall echo and the centre of the reflected signal from 

the thick resin layer (Region 3 in Figure 4-51) are plotted for comparison. 
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The effect of a thick resin layer on the spectrum of the adjacent ply can be 

considered in terms of the convolution of the ply resonance with the resin-layer 

resonance. As the resin layer increases in thickness, its resonant frequency 

decreases, resulting in a significant rise in the low-frequency gradient – see 

Figure 4-53 – and this can be seen in the time-frequency plot in Figure 4-51. 
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Figure 4-53. Resonance spectra for different thicknesses of thin resin layer, 

illustrating that at low frequencies, the main effect is the increase in gradient 

with increasing thickness. 

4.8    Distinguishing between porosity and a thick resin layer  

To the extent that both produce increased amplitude reflections, a thick resin 

layer can masquerade as local porosity in a ply. However, the above two 

sections have shown that a porous layer results in a minimum (anti-resonance) 

at the normal ply-resonance frequency, while the thick resin layer enhances the 

amplitude of the normal ply resonance but does not significantly change its 

frequency. These effects can be clearly seen in the time-frequency comparison 

in Figure 4-54 and can be used to distinguish between the two causes. 
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Figure 4-54. Time-frequency response using a 10 MHz UoN-simulated 

transducer pulse of a 32-ply stack of 120 µm 70% FVF plies and 5 µm resin 

layers. The 10th ply has 10% of 10 µm radius porosity and the 18th ply has a 

20 µm resin layer followed by a 105 µm thick ply, with increased FVF to 

compensate. 

This analysis provides the key to decomposing the spectral response of a ply 

into contributions from normal ply resonance, porosity and thick resin layers. 

4.9 Benefits of the model 

Throughout the development and use of the model it has gradually increased in 

its versatility and it has also found applications in modelling adhesive-bonded 

joints in metals and metal-composite hybrid laminates such as GLARE. As well 

as forming the basis of the model-based decomposition method (see Chapter 5) 

it has also been incorporated into a multi-dimensional optimisation method 

developed by a colleague of the author and has been successfully adapted for 

electromagnetic wave (microwave) propagation in multiple dielectric layers by 

another colleague.
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CHAPTER 5 ISOLATION OF LOCALISED 

PROPERTIES IN LAYERED 

STRUCTURES 

5.1 Motivation 

5.1.1 Material properties 

A fundamental part of achieving the objectives of this project is the extraction 

from full-waveform ultrasonic data of independent parameters that can be 

related to specific material properties at each location in the structure. Many 

composite materials comprise layers, or plies, which produce resonances, even 

in ‘good’ material without defects. These resonances are strong in composites 

with phases of very different stiffness, such as GFRP, and quite weak when the 

phases have similar stiffness, such as CFRP. In developing methods for 

isolation of material properties, these resonances cannot be ignored. Instead, 

they can be exploited and, by studying their characteristics, can actually be 

used to measure material properties. This chapter considers the isolation of 

several material properties of layered fibre-matrix composites; in particular: ply 

spacing, matrix inter-layer thickness, fibre volume fraction and void volume 

fraction (porosity). Fibre orientation and waviness, and ply wrinkling, are 

considered in Chapters 6 and 7. 

5.1.2 Background 

In addition to the reviews in Chapters 2 and 3 of this thesis, some previous work 

has been reviewed specific to the characterisation of composite materials using 

advanced waveform-processing methods and is summarised here. 

Buoncristiani and Smith (1985) reported a method of extracting two generic 

frequency-dependent parameters characterising a composite material and its 

status, using a model of the frequency-dependent propagation in the composite. 

The first parameter is dependent on the dispersion and attenuation within the 

sample and scales with thickness. The second parameter relates to the 
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properties of local scattering centres within the bulk of the material. The model 

used accounts carefully for the steady-state acoustic flux established in the 

material but requires an assumption that the scattering and attenuation 

processes occur uniformly through the structure. 

Smith and Buoncristiani (1986) extended this method by analysing a complex 

analytical function, formed by combining the backscattered waveform (the real 

part) with its Hilbert Transform (the imaginary part – see Appendix D), 

statistically to provide a distribution of scatterers within the material. This was 

an early attempt at producing a 3D distribution of material properties in a 

composite. They reported that the method compared well with experiment for 

delaminations caused by impact damage but did not test the method with 

porosity or investigate how it is influenced by the thickness of resin layers 

between plies. The problem of shadowing of deeper defects by shallower ones 

was identified in this work because it is a more significant problem when dealing 

with virtually impenetrable delaminations than with porosity. 

Lorraine et al (2003) published a patent covering the decomposition of 

backscattered sonic waveforms from composites into a set of time-domain basis 

functions, each representing characteristics of material or defects. The 

coefficients associated with the basis functions may be non-zero when a defect 

is present, thus allowing rapid defect detection. 

The above literature failed to address the problem of thick inter-ply resin layers 

masquerading as porosity and therefore did not solve the primary concern of 

this chapter – the isolation of the effect of each material property and defect 

type. In fact the work in this chapter shows that neither Smith and Buoncristiani 

nor Lorraine et al would have succeeded in differentiating between porosity and 

thick resin layers. Therefore, a new approach was required in this project to 

distinguish between these two material properties and quantify them. 

5.1.3 3D data presentation 

This chapter is primarily concerned with the generation and presentation of 

three-dimensional information about material properties. A crucial part of the 

presentation is the imaging technique employed. It needs to help the user  to 
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assimilate the information and rapidly understand the implications of what is 

being presented. 

Many of the applications addressed here require the same processing to be 

applied to each volume element within a structure. In ultrasonics this involves 

waveforms from one or more beams that pass through the given volume 

element. These beams may be combined in some way (eg averaging or array 

processing) to form one waveform. That waveform may then have further signal 

processing performed before the application of a time-gate (or window), which 

defines the volume element. The portion of the waveform in that time-gate may 

then be processed and analysed to determine scalar values for one or more 

material properties for that volume element.  

Because of this importance of presenting data, the first section of this chapter 

deals with the presentation of a 3D array of scalar quantities representing the 

3D-profile of a material property. 

5.2 Presentation of 3D localised properties 

5.2.1 3D-Profile layers 

In order to accommodate 3D profiles within the ANDSCAN software, a new type 

of ‘layered’ measurement channel was introduced, which stores multiple layers 

of scalar data. During this project, the 3D-profile method was developed to 

include all measurement parameters available in ANDSCAN, plus some new 

ones, so that any parameter can be plotted as a 3D profile. In general the third 

axis (layer number) represents depth in the structure (propagation time in fact), 

but in some cases, such as for ultrasonic resonance analysis or low-frequency 

(5 kHz – 40 kHz) vibration analysis, it has been found beneficial to use 

frequency as the third axis and effectively visualise the spectral response of the 

structure. 

In the normal ‘C-scan’ type of display, only one layer can be displayed at a time. 

However, there are other ways of displaying this 3D profile, which are discussed 

below. 
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5.2.2 Cross-sectional View 

The cross-section windows in ANDSCAN can display slices through the 3D-

profile layers.  

An example of the single-layer C-scan with cross-sectional slices is shown in 

Figure 5-1. This was produced by allowing any measurement type in ANDSCAN 

that is applied within a time gate to be automatically plotted as a 3D parameter 

where the time gate is systematically moved deeper in the structure and a new 

scalar value is calculated for each successive layer.  

 

Figure 5-1. Cross-sectional view of a 3D profile of the Peak Amplitude in a short 

gate for each volume element in the structure of a six-ply carbon-fibre 

composite skin on a honeycomb core. The crosshairs illustrate the location of 

the cross-sectional slices in the other dimensions. Note that the worm-hole 

porosity can be seen in the two cross-sectional slices through the 3D profile as 

well as in the single layer C-scan. 

The new measurement type illustrated in Figure 5-1 is: “Gate 1 Peak Amp 

Layers in Gate 2”, where Gate 1 is a short gate that is scanned through a longer 

Gate 2, and these can be selected to be any of the gates available. The amount 

of overlap between successive gate depths can be preset. 
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For this type of presentation it is important that the operator can navigate 

through the 3D structure and have feedback about the current position. 

Navigation is by moving cross-hairs using the mouse cursor on the C-scan (in-

plane section) view, or by clicking on one of the vertical slice cross-sections. In 

addition, the mouse-wheel is used to rapidly change layers whilst over the C-

scan view. Feedback of current location is achieved through the crosshairs on 

each cross-section as seen in Figure 5-1, as well as a read-out of layer number 

and (x,y,z) coordinates in the status bar in a real-space coordinate system and 

selectable units (mm or inches). 

5.2.3 Projection View 

The ‘projection’ or ‘elevation’ mode of display is based on the methods used in 

technical drawings where side and end elevations are provided together with a 

plan view. Essentially this is akin to ‘projecting’ the data from the object onto 

three perpendicular surfaces. The level of effective transparency, allowing 

different depths to be viewed simultaneously, should be selectable, as should 

the width, length, height and location of the ‘projection volume’ that is to be 

projected. This is achieved in ANDSCAN by allowing the operator to select the 

number of voxels (3D pixels) in a given dimension that are in the projection 

volume, centring it on the current cursor location, and allowing the operator to 

move it through the 3D structure as with the cross-sectional view. 

An example of this method is given in Figure 5-2 by comparison with the cross-

section method. The specimen is a tape-layup CFRP skin where a simple 

amplitude 3D profile easily detects the butt-joins of thick resin between adjacent 

tapes in each ply. It is important to check that these resin lines, which can 

cause effective stress concentrations, do not line up from one ply to another, 

causing a weakness in the structure. In the cross-sectional view the resin lines 

appear as single dots in the vertical slices and just one layer is shown in the C-

scan slice at a time. This makes it difficult to check whether plies of the same 

orientation have the same location of butt-joins. By contrast, the projection 

(lower) view clearly shows multiple layers in the C-scan and it is clear that the 

butt-joins are staggered in plies of the same orientation. 
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Feedback to the operator of the projection volume size and location is provided 

by showing two sets of crosshairs in each projection, which effectively define 

the boundaries of the projection volume. These can be seen in Figure 5-2. 

Another option would be to just show the bounds of projection volume itself as a 

rectangle. 

 

 

Figure 5-2. Illustration of the difference between cross-sectional view (top) and 

projection view (bottom) for a 3D profile of peak amplitude in a short gate. The 

specimen is a simple CFRP panel manufactured using tape lay-up, where the 

resin butt-joins between adjacent tapes can be clearly seen. 



 

 145 

5.2.4 Rotating pseudo-3D images of layers 

The pre-existing Pseudo-3D imaging software in ANDSCAN was modified on 

this project to allow the display of 3D-profile layered data. This extended the 

capability where previously only one 3D value per surface location could be 

plotted – creating just a surface in 3D space. Now the complete 3D profile is 

plotted. An example of the type of pseudo-3D image of a 3D profile of amplitude 

is given in Figure 5-3 for the same specimen as shown above in Figure 5-1. The 

worm-hole porosity and the hexagonal honeycomb cells are very clearly seen. 

 

Figure 5-3. An example of a full 3D layered data set displayed as pseudo-3D 

images, which can be rotated and viewed from any angle. This is the same 

amplitude data as shown in Figure 5-1 with six composite plies above honey-

comb, the hexagonal pattern of which shows up at the bottom of the images. 

In order to plot all points from the 3D profile, various problems had to be solved. 

Firstly, if all points are plotted then the observer would only see the outside of 

the cuboid of data being displayed. There needs to be a process whereby the 

most important data takes precedence. This is achieved in two ways.  

• Firstly, a Noise Reject Threshold is applied, below which 3D points are 

not plotted, cleaning up the presentation considerably. 
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• Secondly, the user can choose whether to display the ‘nearest’ or the 

‘brightest’ points when they overlap. This has the effect of reducing the 

influence of any low-amplitude noise, as well as making bright reflectors 

visible through the more transparent lower-amplitude voxels. 

The pre-existing method of treating each possible height in the 3D image as a 

single pixel in depth does not work with 3D-profile layered data because the 

layers can have large gaps between them and it no longer looks like a 

continuous 3D profile. For this reason the software was modified to fill in the 

gaps between layers – effectively making the layers thicker. 

Processing time is much greater for the 3D profiles than for a 2D image plotted 

as a surface, although the expected increases in speed of computer processors 

should soon make up for the current delay of a second or two in recalculating 

the image on a relatively slow laptop computer. A dual-core processor could 

also be specifically instructed to dedicate one core to the 3D-to-2D coordinate 

calculations, leaving the other core to cope with displaying the image. 

5.3 Fibre-resin effects 

5.3.1 Ply spacing 

It has been shown in Appendix C to this thesis that a useful relationship exists 

between ply resonant frequencies and ply spacing. In order to analyse this 

further, an analytical expression for the resonant frequencies as a function of 

ply spacing and other material properties was sought. 

Equation 4-6 in Chapter 4 can be used to represent the frequency-dependent 

reflection coefficient from a single ply between two thin resin layers, each of 

which act as an interface with complex reflection and transmission coefficients. 

If the density and acoustic velocity in the plies were to remain constant when 

the ply thickness changes, the frequency responses for the scenarios tabulated 

in Table 5-1 would change as shown in Figure 5-4.   

Material properties used were: fibre density 1.69 kg/dm3 and fibre modulus 

16 GPa, resin density 1.27 kg/dm3 and resin modulus 10.7 GPa. 
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Total Thickness 
(mm) 

No. of plies 
Ply Thickness 

(mm) 
Fibre Volume 

Fraction 

1 7 0.143 80% 

1 8 0.125 80% 

1 9 0.111 80% 

Table 5-1. Values for an available and representative specimen used for the 

simple analytical model from Chapter 4, the results of which are in Figure 5-4. 
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Figure 5-4.. Theoretical frequency response of the ply resonance for ply 

thicknesses corresponding to 7, 8 and 9 plies per mm of unidirectional pre-preg 

material, with the inter-ply layer reflection amplitude for a 0.02 mm layer shown 

too. The theoretical model was the analytical one from Chapter 4, and was set 

up to assume the same density and acoustic velocity for the plies regardless of 

ply thickness. 

In order to find an analytical expression for the resonant frequencies it is 

necessary to differentiate the magnitude of the reflection coefficient expression 

of Equation 4-6 in Chapter 4 with respect to frequency, or in this case the 
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wavenumber k, to find the turning points. This was attempted but is very difficult 

because the resin-layer interface reflection and transmission coefficients are 

complex and dependent on its thickness. However, an easily differentiated 

approximation to the magnitude of the complex reflection coefficient can be 

made by considering the response as a convolution of the impulse response of 

a single resin layer of thickness d with the impulse response of two single 

infinitesimally thin interfaces separated by distance l (see Figure 5-5).   

 

Figure 5-5. Diagram showing the principle of convolution for a time-domain 

propagation (top) and the equivalent frequency response (bottom) for finite-

thickness two interfaces. The responses are for a) a single thickness d resin 

layer, b) two infinitesimal thickness interfaces at spacing l, and c) two thickness 

d resin layers at spacing l. 

In the frequency domain this becomes a simple rectified cosine curve 

(dependent on the ply spacing l) modulated by a sine curve (dependent on the 

resin layer thickness d): 

 )cos()2sin( klkdR∝  (5-1) 

For typical multi-ply carbon-fibre composite with 4 or 8 plies per millimetre 

thickness and resin layers of 2 µm thickness, Figure 5-6 shows that there is a 

*  = 

x = 

d l 

Time 

Frequency 

(a) (b) (c) 
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close similarity between the simple expression in Equation (5-1) and the 

magnitude of the reflection coefficient calculated using the full model of Chapter 

4 with various different visco-elastic damping coefficients for the resin. Of 

particular note is that the resonant frequencies are very similar for the simple 

equation and the full model. 
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Figure 5-6. Illustration of the similarity of the full modelled response and the 

simplified equation |sin(2kd)cos(kl)| for a 0.125 mm ply and a 0.25 mm ply of 

60% FVF composite between two resin layers of thickness 0.002 mm. Different 

visco-elastic attenuations in the resin have been used in the full model and are 

indicated in the legend. 

The derivative of this new simplified expression is required to determine the 

maxima and is given below: 

 [ ] )sin()2sin()cos()2cos(2)cos()2sin( klkdlklkddklkd
dk

d −=  (5-2) 
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The nth turning point occurs when the magnitude of this expression is equal to 

zero, which is when:  

 
)2tan(

2
)tan(

dkl

d
lk

n
n =  (5-3) 

When the resin layer thickness d, is small compared with the ply spacing 

)( ld << , the resonant frequency becomes independent of the resin layer 

thickness: 

 
lk

lk
n

n

1
)tan( ≈  (5-4) 

The nth resonant peak frequency, fn is related to the wavenumber as follows: 

 
l

clk
f n

n π2

)(=  (5-5) 

where l is the ply spacing and c is the ultrasonic compression-wave velocity. 

Note that what is called the ‘second resonance peak’ corresponds to n=1. 

The expressions in Equation 5-3 and Equation 5-4 also cannot be solved 

analytically, but Figure 5-7 illustrates that the first four maxima are at the 

intersections of the graphs of the functions from the two sides of Equation 5-3.  

For d = 0.002 mm, these intersections occur at kn l = θn where θn takes the 

values 0.862, 3.425, 6.44 and 9.53 radians for n = 0,1,2 and 3 respectively. 

These resonant frequencies are higher than for an infinitesimal resin layer, 

where they would be at nπ radians.  

For the first four solutions when d = 0.002 mm (circled in Figure 5-7), Equation 

5-5 becomes: 

 
l

c
f n

n π
θ
2

=  (5-6) 
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Figure 5-7. Graph of the left and right sides of Equation 5-3, illustrating peak 

resonant frequencies (circled intersections of the two curves) when a finite resin 

layer thickness d=0.002 mm modulates the response of the ply resonance. 

Also shown (dashed) is Equation (5-1) for the magnitude of the response to 

demonstrate that the maxima are correctly identified by the intersections of the 

curves. 

The αn value defined in Chapter 4 Equation (4-2) is also defined as: 

 
l

f
n

n α
1=  (5-7) 

so it follows that: 

 
clkn

n )(
2πα =  (5-8) 

or: 

 
cn

n θ
πα 2=  (5-9) 

Equation (5-4) assumes that the resonant frequencies are independent of the 

resin layer thickness, provided it is thin relative to the wavelength. But for 

thicker resin layers (and Chapter 4 used 20 µm thickness where d ≈ l / 6) the 
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effect is to change the resonant frequencies and hence the values of kn l (see 

Figure 5-8) and αn.  
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Figure 5-8. Graph showing how sensitive the θn value is to resin layer thickness 

for the first four resonances of a ply spacing l = 0.125 mm. Note that the n=3 

resonance is not plotted beyond 23 µm, where the resin-layer anti-resonance 

(minimum in the modulation function) is below the ply resonance frequency. 

If a resin layer thickness d of 0.02 mm is used instead, k1l falls by 3% to 3.31 

giving an α1 value of 0.622 mm-1MHz-1 using a compression velocity c of 

3050 m/s. Thus, for the same material parameters as used in Appendix C, this 

α1 value compares well with the value of 0.629 mm-1MHz-1 determined by graph 

plotting from the full model in Chapter 4 Equation 4-2.  
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For most normal resin-layer thicknesses, up to 0.01 mm, the values of knl can 

be regarded as invariant at θn = 0.862, 3.425, 6.44 and 9.53 radians for 

n = 0,1,2 and 3 respectively. 

In order to measure the ply spacing a resonant frequency fn  should be 

measured and the equation to use will be: 
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f

c
l

π
θ
2

=  (5-10) 

The value for the compression velocity c will need to be calculated based on the 

fibre volume fraction using an appropriate mixture rule. However, for carbon-

fibre composites, the FVF has little effect on the compression velocity (see 

Appendix F and Figure 4-38 in Chapter 4), a reduction in FVF from 60% to 40% 

producing a reduction in velocity of just 1%. Therefore, it is probably sufficient to 

use a single value for velocity in CFRP, but not in GFRP (see Figure 3-7 in 

Chapter 3), where the velocity can reduce by as much as 12% for this reduction 

in FVF due to the much higher transverse modulus of glass than carbon fibre. 

5.3.2 Fibre Volume Fraction (FVF) 

If assumptions are made that:  

• average fibre volume per unit lateral surface area is constant, and  

• fibres do not move laterally within a ply even when the ply thickness 

changes,  

then it follows that ply thickness changes are accompanied by corresponding 

local FVF changes, and that measurement of local ply spacing may provide a 

method for measuring local FVF, φf. This has been investigated in Appendix C 

using the layer model and an expression derived based on a constant product 

φf l, the average fibre volume per unit lateral ply area. Thus: 

 
l

l nom
nomff ,φφ =  (5-11) 
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where φf,nom and lnom are the designed values for FVF (typically 60%) and ply 

spacing respectively. 

Substituting Equation 5-10 into Equation 5-11 results in an expression for FVF 

in terms of resonant frequency... 

 
c

f
l

n

n
nomnomff θ

πφφ 2
,=  (5-12) 

Local FVF changes modify the effective bulk modulus and density in the 

equivalent medium according to an appropriate mixture rule (see Chapter 4), 

thus causing a change in compression velocity, c and this may need to be 

accounted for in FVF measurement of GFRP plies, as explained above, but 

probably not in CFRP according to results in Appendix C.  

For GFRP and CFRP respectively, the compression velocity varies with FVF 

(see Figure 5-9) approximately following a parabola: 

 mff cc += 2φγ  (5-13) 

where γf  is related to the acoustic velocity in the fibre, φf  is the fibre volume 

fraction and cm is the compression velocity of the matrix – 2903 m/s for the 

example simulated in Figure 5-9.  Using the Hashin (1965) equivalent medium 

model to plot the equivalent-medium compression velocity, γf  takes values 

1954 m/s and 185 m/s for S-glass fibre and carbon fibre composite respectively 

to generate the fit illustrated in Figure 5-9 which is optimised for 50% to 70% 

FVF – the likely range to be found in a composite material with a designed FVF 

of 60%. These two values for γf  are radically different because γf  represents 

the difference between the velocity in the composite and that in the matrix only, 

and whilst carbon fibres have a similar velocity to resin, glass fibres are much 

stiffer and have a much higher velocity. 

The method for calculating the value of γf  optimised for the range of FVF (see 

Figure 5-9) is to find the mean value from three Hashin (1965) calculations of 
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compression velocity c1 , c2  and c3 at φf,1 = φf,nom - 0.1, φf,2 = φf,nom and φf,3 = 

φf,nom + 0.1 as follows: 

 ∑
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Figure 5-9. Simplified equations to fit the compression velocity of GFRP and 

CFRP (right), based on γf  values calculated using Equation 5-14 with values 

plotted against FVF (left). 

5.3.3 Combined Ply Spacing and Fibre Volume Fractio n 

The effect of FVF on compression velocity, discussed above, results in the need 

to account for this in measurements of both ply spacing and FVF. Equations  5-

10 and 5-12 are probably adequately accurate for CFRP as the sound velocity 

is relatively independent of FVF and the velocity corresponding to the designed 

nominal FVF will suffice: cnom giving the following: 
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In this case Equation 5-13 can be substituted into Equation 5-10 and then 

combined with Equation 5-11 to give the following cubic expressions for ply 

spacing, l and FVF, φf  : 

 
11

232

f

C

f

lcl fm

n ππθ
=−  (5-17) 

 1,
2 2)( flc nomnomfmfffn πφφγφθ =+  (5-18) 

where Cf is a combination of nominal (as designed) material properties and is 

defined as: 

 2
,

2
nomffnomf lC φγ=  (5-19) 

The real solutions of Equations 5-17 and 5-18 (there being two other complex 

solutions) link the ply spacing, l and FVF, φf  to the resonant frequency and are: 
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where F1 and G1 are functions of the first resonant frequency f1 and are defined 

as follows: 
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5.3.4 Measurement of resonant frequency 

Measurement of resonant frequency is not straightforward. A gate width has to 

be chosen for defining the portion of the waveform for spectral analysis. This 
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gate must include two ply interfaces in order for its spectrum to contain the ply 

resonances. Experience has shown that choosing a gate of approximately two 

ply thicknesses, combined with a 20% Hanning window (10% of the gate width 

at each end), ensures that there are always just two interfaces in the gate. 

There are two main sources of error in measuring the resonant frequency: the 

influence of the incident pulse spectrum, and the algorithm for measuring a 

single resonance frequency. These two sources of error are interlinked because 

the incidence pulse will influence each measurement algorithm differently. 

Examples of four algorithms are shown in Figure 5-10 and Figure 5-11. 

 

 

  
Figure 5-10. Waveform (top) and time-frequency plots for a simulated 32-ply 

stack of constant-thickness 0.125 mm plies, each showing a different algorithm 

for determining resonant frequency (labelled in green bottom-left in each plot). 
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Figure 5-11. Comparison of algorithms for measuring the resonant frequency for 

the simulated 32-ply stack of 0.125 mm constant-thickness plies shown in 

Figure 5-10, with a 10 MHz Gaussian-profile simulated incident pulse shape. 

The thick black line indicates the modelled resonant frequency in the region 

between the front-wall echo (FWE) and back-wall echo (BWE) as marked. 

Even with constant ply spacing in the above example, the four different 

algorithms measure different resonant frequencies. The Frequency of Peak 

algorithm fails when the peak is flat-topped or when it is split by an anti-

resonance and the algorithm decides which is the correct peak to take, based 

on amplitude. The -6 dB Centre Frequency algorithm copes well with flat-topped 

peaks but can be confused by multiple peaks that do not go below -6 dB 

between them. The Centroid Frequency measurement is too heavily influenced 

by the low parts of the spectrum unless these are deliberately filtered out, but 

then the filter influences the value. The Energy-Centroid Frequency is less 

susceptible to the low amplitude parts of the spectrum because it uses the 

square of the amplitude, but still gives a value that is influence by the spectrum 

length or filter bandwidth, if one is used. Having decided that the Frequency of 
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Peak and -6 dB Centre Frequency are the best performing metrics, similar 

problems are evident for 30% randomness in ply spacing, as in Figure 5-12. 
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Figure 5-12. Time-frequency plots and resonant frequency calculations for 32-

ply simulated material with 30% randomness in the ply spacing. The same 

waveform was used for each analysis. The rectangular grey box between the 

front-wall echo (FWE) and back-wall echo (BWE) shows the modelled resonant 

frequency band for 30% randomness in ply spacing. 

Next, a single thick ply was simulated at ply 10 of the 32-ply stack and the 

resulting FVF at each ply from the model was plotted with the measured 

resonant frequency using the two methods in Figure 5-13. 
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Figure 5-13. Resonant frequencies measured using gates of width 0.2 mm 

(top), 0.24 mm (middle) and 0.4 mm (bottom) for a thick (0.2 mm) ply at ply 10 

(31.6 µs) in a 32-ply stack of 0.125 mm thick plies. The calculated FVF for each 

ply is also plotted (green) to show the thick ply. 
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This shows promise as the resonant frequency is responding to the change in 

ply spacing and FVF. However, when a high level of variability is introduced, it 

is not clear that either algorithm for resonant frequency is adequately following 

the FVF – see Figure 5-14. 
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Figure 5-14. Resonant frequencies measured using gates of width 0.24 mm 

(top) and 0.4 mm (bottom) for 30% randomness in ply spacing in a 32-ply stack 

of 0.125 mm thick plies. The calculated FVF for each ply is also plotted (green) 

to show variation, which should be matched by the resonant-frequency 

measurements. 
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5.3.5 Cross-correlation algorithm for resonant freq uency 

measurement 

A new algorithm has been developed that uses the multi-layer model to 

generate a ‘reference’ spectral response of a single layer bounded by two resin 

layers and compares this with the measured spectrum at each depth. By 

performing a log-transform on the frequency axis of both the measured and 

reference spectra prior to cross-correlation, it then compares the relative scale 

factors for the two spectra and produces a peak at the scaling giving the best 

match. The result is a factor that gives the ratio of measured resonant 

frequency to the reference resonant frequency.  

In order to improve this method it will be necessary to include the incident pulse 

spectrum in the calculation of the reference spectrum, or to remove it from the 

measured spectrum, prior to cross-correlation. The examples in Figure 5-15 to 

Figure 5-18 use a reference spectrum with a simulated incident pulse spectrum 

applied to the modelled single-ply spectrum. The cross-correlations of the log-

transformed spectra are demonstrated in Figure 5-16 and Figure 5-17 for a 

normal-thickness (0.125 mm) simulated ply and a 0.25 mm thick simulated ply. 
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Figure 5-15. The reference spectrum (blue solid curve) generated by the 

analytical model, and the dimensionless log-transform LF (pink dashed curve) 

defined as: LF = 20log10(f re: 1MHz)/log1020 where f is the frequency in MHz. 
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Figure 5-16. The reference (blue dotted) and locally measured (red dashed) log-

transformed spectra for a 0.125 mm ply, and the output of the cross-correlation 

algorithm (green solid) with point 0 corresponding to scaling of unity, and the 

peak between points -1 and 0 shows that the spectra are scaled by -½  a point. 
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Figure 5-17. As in Figure 5-16 but for a single simulated 0.25 mm ply in a stack 

of 32 simulated plies of thickness 0.125 mm, showing that the cross-correlation 

peak is between points -4 & -3 so the two spectra are scaled by -3.5 points. 
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The method measures the resonant-frequency shift but gives very similar 

results to the Frequency of Peak method, as shown in Figure 5-18 for a 

modelled simulation, and takes longer to calculate. Thus it is concluded that the 

log-transform cross-correlation method is not worth pursuing further. 
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Figure 5-18. Resonant frequencies measured using gate of width 0.28 mm for 

30% randomness in ply spacing in a 32-ply simulated stack of 0.125 mm thick 

plies. The calculated FVF for each ply is also plotted (green) to show variation, 

which should be matched by the resonant-frequency measurements. 

5.3.6 Summary of 3D characterisation of fibre-resin  effects 

Algorithms have been developed for relating both ply spacing and FVF to local 

resonant frequency. The five methods that have so far been tested for 

measuring local resonant frequency have had some success with single thick 

plies in a stack of otherwise uniform plies. However, they all deteriorated as the 

ply spacing became more random. This suggests that if significant randomness 

exists, the local ultrasonic resonance is affected by adjacent ply spacings as 

well as the ply spacing on which it is centred. Some promising initial work has 

been done on the use of multi-dimensional optimisation methods to determine 

the thicknesses of multiple adjacent plies with the analytical model as part of the 

feedback loop. This may point the way ahead for ply spacing measurements in 

highly random laminates but is beyond the scope of this project. 

Time  (µs) 
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5.4 Porosity – Amplitude method 

5.4.1 Rationale 

A possible metric for porosity could be amplitude-based rather than frequency-

based but it would be susceptible to numerous other influences on amplitude 

that could masquerade as porosity or affect its measurement. For example: 

• The response from a particular depth will be modified by what happens 

to the ultrasound in the shallower layers through which it passes. This 

includes any visco-elastic damping, reflections at interfaces, and 

scattering from voids or inclusions. In particular the amplitude of the 

response will be affected, so a correction must be applied before any 

calibration can occur. 

• Other changes in the material, such as a variation in thickness of a resin 

layer between plies, can increase the amplitude of a reflection from a 

particular layer, thus masquerading as porosity. This material variation 

may also be significant, but it needs to be distinguishable from porosity 

itself. 

In this section, a method is proposed for deriving a parameter that is sensitive to 

porosity and can be corrected for depth in the structure, calibrated, and 

supplemented by a method for distinguishing porosity from other sources of 

increased amplitude. 

5.4.2 Basis of an amplitude method 

It is possible that porosity can be measured by measuring the local reflection 

coefficient in each volume element. If this is the case then it is necessary to 

correct the amplitude response for depth in the structure and calibrate the 

relationship in order to determine porosity distribution. A possible scenario for 

using this method is shown schematically in Figure 5-19. 
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Figure 5-19. Schematic illustrating how a calibrated inverse model could be 

used to determine the porosity distribution based on the ultrasonic waveform. 

5.4.3 Assumptions 

The following assumptions are required in order to pursue an amplitude method 

for porosity measurement and develop it using the model from Chapter 4: 

• That actual backscattered energy from porosity can be modelled sufficiently 

accurately by varying the bulk material properties that affect the acoustic 

impedance of a layer, thus ignoring the frequency dependence and the 

angular dependence of the response. 

• That the response at a particular time in the waveform is dominated by the 

product of the reflection coefficient and incident energy at the corresponding 

depth. For this to apply, multiple reflections will probably need to be 10 dB to 

20 dB lower in amplitude than the primary reflection from that depth, which is 

realistic for CFRP, but GFRP may violate this condition because the inter-ply 

reflections are stronger. 

• That beam profile variations with distance have negligible effect. 

• That the instantaneous acoustic intensity is proportional to the instantaneous 

acoustic pressure-squared. This is usually only the case when the pressure 

and particle velocity are in quadrature phase – ie in a plane or spherical 

wave. However, combining the original signal (the real component) with its 

Hilbert Transform (the imaginary component – see Appendix D) to form the 

complex analytic signal, and taking the modulus of the result gives the 

envelope representing the instantaneous amplitude, removing the effect of 

phase, and so should solve this problem. 
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• That the front-surface reflection is captured, unsaturated, as part of the 

waveform, and is unaffected by surface roughness causing a change in the 

reflection coefficient and the introduction of a frequency dependence, and 

hence can be used to help determine the incident energy. 

5.4.4 Proposed amplitude method 

It is proposed that a modified waveform could be produced that is the per-point 

quotient of a ‘reflection amplitude’ waveform and a derived ‘incident amplitude’ 

waveform, thus correcting for shadowing of nearer-surface porosity or other 

material variations, and determining the actual reflection coefficient from each 

depth. The reflection amplitude waveform can be generated by first combining 

the received signal (the real component) with its Hilbert Transform (the 

imaginary component – see Appendix D) and taking the modulus of the result, 

giving the envelope representing the instantaneous amplitude of the response 

reaching the transducer from each depth. It is then low-pass filtered and high-

pass filtered to remove any residual effects of normal ply resonances 

superimposed on it.  

In order to correct for the gradually changing amplitude of the pulse incident at 

each depth, an ‘incident amplitude’ curve is required. For each volume element 

at time t, the pressure-squared (equivalent to the transducer voltage squared) is 

integrated in the waveform up to the time of interest to determine the reflected 

energy from all material shallower than the volume element.  

Through conservation of energy, assuming only forward or backward scattering 

and neglecting scattering in other directions and visco-elastic (or internal 

friction) thermal losses:  

Incident energy = reflected energy to time t + transmitted energy beyond t 

The integrated reflected energy profile is thus used to determine the energy 

transmitted to each volume element and its use is similar to that of an energy 

DAC curve. By square-rooting this incident energy curve, an ‘incident amplitude’ 

curve is obtained, and dividing the reflection curve by it results in a plot of the 

reflection coefficient at each volume element – the maximum value being unity. 
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The initial energy incident on the whole structure is not known directly but it can 

be derived from the front-surface signal and the front-surface amplitude 

reflection coefficient, R1.  R1 can be calculated using simple effective 

impedances derived from mixture rules and the modulus and density of fibre 

and resin: 

R1 = 0.535 for 80% FVF 

R1 = 0.524 for 70% FVF 

If the signal is not saturated, the front-wall amplitude-squared over the pulse 

can be integrated and divided by the intensity (or energy) reflection coefficient 

(R1
2) to give an approximate initial incident energy. 

The time of the end of the front-surface reflected pulse, t1  needs to be 

determined for each waveform so that the front-surface reflected pulse can be 

integrated. It could be the time at which the FWE envelope falls below some 

percentage of its peak height, but a consistent method must be developed as 

this will be fundamental to the calibration. 

The reflected energy density (energy per unit area across the beam), Er prior to 

each time τ is given by: 

 ∫=
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For the front surface reflection, the reflected energy density, Er1 is calculated: 

 ∫=
1

1

0

21
t

r dtp
c

E
ρ

 5-25 

where p is the instantaneous acoustic pressure amplitude in the beam, ρ is the 

density, c is the sound speed, and t1 is the time of the end of the front-surface 

reflection. Hence the incident energy density, Ei is: 
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Then the transmitted energy density at each time τ, Et(τ) is given by: 
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Instantaneous reflection coefficients (from each volume element) are required, 

because this is what the model uses to determine calibration curves, and they 

need to be calculated from instantaneous intensity, I, where: 
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In order to convert the energy density in the incident pulse into an 

instantaneous intensity, an assumption can be made that the maximum 

instantaneous intensity in a pulse is what contributes to the ‘reflected amplitude’ 

waveform (ie. the filtered modulus of the complex analytic waveform – the real 

original waveform combined with its imaginary Hilbert Transform – see 

Appendix D). In this case, an effective pulse length Teff can be defined, which 

converts the integrated energy density in the pulse into a maximum 

instantaneous intensity. For the front-wall incident pulse this can be calculated 

as follows: 
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where Imax is the maximum instantaneous intensity in the incident pulse. The 

instantaneous reflection coefficient at each time τ, R(τ) is given by: 

 
)(

)()(
τρ

ττ
t

eff

cE

T
pR =  5-30 

Substituting for ρcEt(τ) in Equation 5-30 from Equations 5-26 and 5-27, 
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Assuming that the instantaneous voltage amplitude V from the non-filtered 

modulus of the combined transducer output (real part) and its Hilbert Transform 

(imaginary part – see Appendix D) is proportional to acoustic pressure 

amplitude p then it is possible to re-write the above Equation 5-31 as: 
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where V1 is the filtered modulus of the complex analytic signal (the combined 

original waveform and its Hilbert Transform – see Appendix D). 

If the incident energy density Di is to be calculated globally, prior to the analysis 

of each waveform, the parameter that needs to be calculated is: 
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and the equation to which it applies is then: 
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5.4.5 Evaluation of the amplitude method 

An example of this analysis is shown in Figure 5-20 for simulated porosity and a 

thick resin layer. The biggest potential problem with this amplitude method is 

the potential for thick resin inter-ply layers to masquerade as porous plies 

because they give an increased amplitude response that is potentially 

indistinguishable from that of porosity when just using the modulus of the 

complex analytic waveform generated from a Hilbert Transform (see Appendix 

D), as shown in Figure 5-21 (top). 
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Figure 5-20. Simulated temporal response (magenta), and instantaneous 

reflection coefficient R(τ) calculated by correcting the filtered Hilbert-

transformed waveform for transmitted energy at each depth. The simulation 

used a 10 MHz Q=0.8 Gaussian pulse with a 32-ply stack of 120 µm 70% FVF 

plies and 5 µm resin layers. The 10th ply (at 31.6 µs) has 10% of 10 µm radius 

porosity and the 18th ply (at 32.2 µs) has a 20 µm resin layer followed by a 105 

µm thick ply, with increased FVF to compensate.    

However, it is possible to use the phase of the complex analytic waveform, 

formed by combining with the Hilbert Transform (see Appendix D). This is 

effectively the instantaneous phase of the response - and shows different 

characteristics for porosity and thick resin layers.  The phase is plotted in Figure 

5-21 (bottom) after subtracting the instantaneous phase of the centre frequency 

of the resonance in the structure. For porosity, the phase increases rapidly on 

entering the first porous ply, increases further during the thickness of the porous 

ply, and also on exiting the porous ply, ending at a different phase to the entry 

phase.  For a thick resin layer, there is only one increase in phase, followed by 

dropping back to the original phase again. The latter effect is important as the 

porosity response does not do this and it offers potential for use as a 

differentiator between porosity and thick resin layers but the work required to 

Time  (µs) 
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understand these phase responses was beyond the scope and time available 

for the current project.  
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Figure 5-21. Simulated temporal response (magenta) with the magnitude (top, 

blue) and phase (bottom, blue) of the complex analytic waveform after 

combination with its Hilbert Transform (see Appendix D). A 10 MHz Q=0.8 

Gaussian pulse was simulated propagating into a 32-ply laminate of 120 µm 

70% FVF plies and 5 µm resin layers. The 10th ply (at 31.6 µs) contains 10% of 

10 µm radius porosity and the 18th ply (at 32.2 µs) has a 20 µm resin layer 

followed by a 105 µm thick ply, with increased FVF to compensate.  
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5.5 Porosity – Model-based decomposition method 

5.5.1 Rationale 

The main aim of this chapter of the project is to develop quantitative 3D 

methods that differentiate between local porosity and fibre-resin effects such as 

ply spacing, resin layer thickness and fibre volume fraction. In order to achieve 

this, the ultrasonic response from the complex composite materials needs to be 

decomposed into components from each of the important material properties 

and defect types. 

The above amplitude method exhibits cross-talk between the various defect 

types such as porosity and thick resin layers. This is fundamentally caused by 

the fact that the links between the ultrasonic parameters and the material 

properties have not been independent. A method is required that decomposes 

the ultrasonic response from each volume element into substantially 

independent (orthogonal) components, each of which is the result of a different 

material property. For this reason an actual decomposition method was 

investigated and is reported here 

5.5.2 Frequency-domain decomposition 

The work that has been reported above on modelling and studying composite 

structures has resulted in a good understanding of the underlying physics of the 

interaction between ultrasound and composite materials. This understanding 

has led to a realisation that it is the frequency spectrum of the response from 

each volume element that contains the differentiating information and therefore 

may be decomposed into a linear combination of basis functions that are linked 

to material properties. By definition, basis functions are substantially 

independent and can be combined linearly. Equation 5-35 shows how the 

modelling has indicated this could work to decompose F(ω), the signal 

response from a single-ply volume element, where ω is the angular frequency.  

    )]P(a ),C(a  ),R()S([a ),D()(TA  Na   )F( 321
2

00 ωωωωωωω +++= thicknorm ttd  (5-35) 

where:  tnorm is the thickness of a ‘thick resin layer’,  
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tthick is the thickness of a normal-thickness resin layer 

A0 is the incident signal amplitude, 

T is the transducer response,  

D is a correction for the incident spectrum at each depth d, 

a0 – a3 are the coefficients of the basis functions in the linear 

combination. 

and the following four basis functions have been identified: 

1. SR is the normal ply resonance, S, multiplied by the normal resin layer 

resonance, R 

2. C is a thick resin layer,  

3. P is the  single porous layer response, and 

4. N is white noise. 

The aim of the work reported in this section is to establish whether such basis 

functions can be identified, develop a decomposition method and then evaluate 

how independent the basis functions are for the purposes required, using 

modelled waveforms. Finally, the decomposition method was tested on real 

data and these results are shown in subsequent sections. 

5.5.3 Evaluation of decomposition methods 

There are various decomposition methods available but Singular Value 

Decomposition (SVD) (Press et al, 2002) was chosen as a) the most suitable 

method in this application because of the ease of using weightings, and b) 

because it had already been included in the ANDSCAN toolset for other 

purposes (transient eddy currents). Similar results were obtained with another 

decomposition method (least squares decomposition) but the SVD method 

seemed more tolerant of basis-function amplitude levels.  
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In order to test the SVD implementation for the specific type of basis functions 

required, test spectra were artificially generated by adding together basis 

functions with different coefficients and then using SVD to recalculate those 

coefficients using the test spectrum and the basis functions. For this purpose, 

simplified basis functions were used (see Figure 5-22) as follows: 

1. A half-wave resonance amplitude modulated by a linear slope with 

frequency, to represent a normal ply resonance: S(ω)R(ω, tnorm) where: 

S(ω) = |cos(ω/ω0)| 

R(ω, tnorm) = (ω/2π).10-6 

and ω0 is the resonant angular frequency. 

2. A simple linear slope with frequency to represent the low-frequency part 

of a thick resin layer response: C(ω, tthick) = (ω/2π).10-6 

3. A quarter-wave resonance to represent layer porosity: 

P(ω) = |sin(ω/ω0)| where ω0 is the resonant angular frequency. 

4. A constant, representing white noise : N = 1. 

The trials showed that SVD is very accurate, in the absence of noise, at 

determining the various coefficients of these basis functions – see Table 5-2. 

A more realistic test of the SVD method would be when there are spectral 

effects that do not readily fall into one of the categories represented by the 

basis functions. Normal ‘white’ noise is represented by the fourth basis function, 

so it was decided to add ‘random spectral fluctuations’ of different amplitudes to 

the simulated spectra before running the SVD algorithm. 
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Figure 5-22. Figure showing the four simple basis functions and the simulated 

spectrum that was then decomposed into the four basis functions. 

 
Basis functions: N C(ω, tthick) P(ω) S(ω)R(ω, tnorm) 

Input coefficients: 2.50 1.70 4.30 3.90 

SVD output coefficients: 2.50 1.70 4.30 3.90 

Table 5-2. Comparison of input coefficients (bold) used to create the simulated 

spectrum, and the output coefficients determined by SVD. 

With increasing amplitude of random spectral fluctuations (Figure 5-23) the SVD 

method becomes less accurate, as shown in Table 5-3, where the spectral 

fluctuations are in the same arbitrary units as all the other coefficients of basis 

functions. The single-attempt data is shown as a function of peak-to-peak 

random spectral fluctuation level in Figure 5-24, together with the standard 

deviations as error bars. 
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Figure 5-23. Figure showing the same decomposition as Figure 5-22 but for a 

random spectral random fluctuation level with a peak-to-peak amplitude of 1.0. 

Basis functions: N C(ω, tthick) P(ω) S(ω)R(ω, tnorm) 

Input coefficients: 

p-p Random 
Spectral 

Fluctuations 2.50 1.70 4.30 3.90 

0 2.5 1.7 4.3 3.9 

0.5 2.83 1.71 4.20 3.81 

1 2.98 1.8 4.29 3.84 

1.5 3.24 1.72 4.26 4.02 

2 3.45 1.87 4.35 3.75 

2.5 4 1.37 4.22 3.91 

3 4.32 2 3.8 3.41 

SVD output 
coefficients: 

3.5 3.94 1.53 4.54 4.25 

Table 5-3. Comparison of input coefficients (bold) used to create the simulated 

spectrum, and the output coefficients for each basis function determined by a 

single attempt at SVD, as a function of the level of random spectral fluctuations. 
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Figure 5-24. Single SVD attempts with different random spectral fluctuation 

levels, showing Standard Deviation error bars that increase with random 

fluctuation level, as expected. The curve labelled ‘Constant’ is the white noise 

basis function coefficient N. 

In order to determine whether the trend with random spectral fluctuation level is 

systematic, SVD was repeated 18 times for each different level of random 

spectral fluctuations, using different input spectra, and the mean and ‘standard 

error on the mean’ (SEOM) values are plotted in Figure 5-25.  

Figure 5-25 shows that there is no increase in systematic errors (accuracy) as 

the random spectral fluctuation level increases, purely an increase in random 

errors (precision), for all basis functions except the ‘white noise’ basis function, 

N. The coefficient for the latter basis function understandably increases with 

increasing peak-to-peak random spectral fluctuation as it has a positive mean 

level and has been added to the spectrum. These results were very 

encouraging and were followed by a more rigorous evaluation of the model-

based decomposition approach. 
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Figure 5-25. Mean of 18 SVD attempts, with Standard Error on the Mean error 

bars. The curve labelled ‘Constant’ is the white-noise coefficient N. 

5.5.4 ANDSCAN Implementation of SVD working on mode lled 

spectra 

The SVD method was then coded into the ANDSCAN software and evaluated 

using four basis functions, broadly matching the ones used above. An 

adaptation was implemented whereby if the porosity coefficient is negative, the 

porosity basis function is removed and the SVD is repeated with just three basis 

functions. Then, if the thick resin layer coefficient is negative, SVD is repeated 

with just two basis functions (white noise and ply resonance). 

The ply resonance and porosity basis functions needed to use the ply spacing 

and the composite velocity to determine the resonant frequency, and the full 

implementation uses the ANDSCAN version of the analytical model to generate 

the basis functions (see Chapter 4). 

Initially, no transducer response, T, was applied to either the modelled spectra 

or the basis functions so effectively the impulse and frequency responses were 
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being considered. Figure 5-26 to Figure 5-28 show that the fit is good and this 

was confirmed by the ANDSCAN display of the coefficients where porosity gave 

a positive coefficient for porosity that seemed approximately linear with 

percentage porosity, and the thick resin layer coefficient was zero for a porous 

region (Table 5-4). Similarly the thick resin layer coefficient seemed 

approximately linear with resin layer thickness and the porosity coefficient was 

zero for a thick resin layer. This is exactly the desired response. 

 N C(ω, tthick) P(ω) S(ω)R(ω, tnorm) 

Good material 7.44 0 0 4.27 

20 µm Resin Layer – ply 4 68.95 5.7 0 6.82 

10% (1 µm) porosity – ply 8 12.22 -4.41 228.26 3.69 

Table 5-4. Initial coefficient values from simulated good structure, a thick resin 

layer, and a porous ply. 
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Figure 5-26. [Impulse] frequency response modelled spectra (Input – black) and 

the fitted spectra (Fit – pink) for good 0.33 µm ply structure using a 2.2-ply gate 

width.  
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Figure 5-27. Impulse-response modelled spectra (Input – black) and the fitted 

spectra (Fit – pink) for a 0.33 µm ply structure with a 20 µm thick resin layer 

using a 2.2-ply gate width. Note that the vertical scale is logarithmic so the thick 

resin layer basis function (Gradient – green) is curved. 
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Figure 5-28. Impulse-response modelled spectra (Input – black) and the fitted 

spectra (Fit – pink) for a 0.33 µm single- ply structure with 10% of 1 µm porosity 

using a 2.2-ply gate width.  
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5.5.5 Inclusion of the transducer response 

Initially, a test was made to see if it is necessary to use the transducer response 

in the decomposition at all. The test used the simulated impulse response from 

a thick resin layer, multiplied by the transducer response of a 10 MHz 

transducer with a Q-factor of 0.8. The transducer response was deliberately not 

applied to the basis functions. The result is shown in Figure 5-29 where the fit is 

very poor.  
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Figure 5-29. Transducer response applied to modelled impulse response 

spectrum of 20 µm thick resin layer but not to the basis functions. 

The next stage was to decide whether to apply the transducer response to the 

basis functions or to divide the ultrasonic spectrum by it. The latter is a 

deconvolution and is notoriously problematic, especially in cases like this where 

the low-level noise at both high and low frequencies would be artificially 

emphasised. An initial check that this is the case was sufficient confirmation and 

it was decided to multiply each basis function by the transducer response 

squared (to allow for both transmit and receive responses in pulse-echo mode). 

After further consideration and some experimentation, it was decided not to 

apply the transducer response to the white noise basis function, N. 
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Examples of the resultant fits obtained for thick resin layers and porosity are 

shown in Figure 5-30 and Figure 5-31 respectively and are highly satisfactory. 
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Figure 5-30. Transducer response convolved with modelled impulse response 

data of 20 µm thick resin layer and with three basis functions (all except the 

constant). 
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Figure 5-31.  Transducer response convolved with modelled impulse response 

data of 10% (1 µm) porosity in ply 8 and with three basis functions (all except 

the constant). 
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A standard evaluation of the performance and cross-talk of the decomposition 

method was carried out using simulated, modelled waveforms (see Chapter 4) 

of a 32-ply stack of 0.125 mm plies, a 10 MHz, Q=0.8 transducer and a 2.2-ply 

gate width. The simple volumetric mixture rule was being used in the model at 

this time. The values of the porosity and thick-resin layer coefficients were 

plotted when centred on the depth of the defect and then various amounts of 

either porosity or thick resin layer were simulated, with results in Figure 5-32.  

At this stage the porosity and thick resin layer coefficients appeared to respond 

quite linearly, and with little cross-talk, but further work was required, and is 

reported in subsequent sections, to understand why the porosity coefficient was 

multiple-valued above 70% porosity and zero below 10% porosity in a ply. 

y = -0.0043x3 + 0.5807x2 - 6.2464x + 9.7689
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Figure 5-32. Evaluation of the decomposition method using modelled responses 

of structure with a single porous ply (top) or a single thick resin layer (bottom). 

The equation is a cubic polynomial fit to the porosity coefficient. 
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5.5.6 Effect of shadowing by nearer-surface flaws 

Then the thick resin layer was moved to the 13th ply in a 15-ply stack, with a 

10% porosity layer at ply 8. At this depth, the visco-elastic attenuation of the 

resin, reflections at ply interfaces, and any scattering from porosity at ply 8 will 

have effectively applied a frequency-dependent filter, which is likely to decrease 

the thick resin layer coefficient. This was tested at 10 MHz by changing the size 

of the pores in the simulation of the 10% porosity layer at ply 8, above a thick 

resin layer at the 13th ply, with results shown in Table 5-5, and at 5 MHz with 

results in Table 5-6: 

Pore radius N C(ω, tthick) P(ω) S(ω)R(ω, tnorm) 

1 µm pores -2.49 6.67 86.3 10.9 

10 µm pores -4.17 3.85 104.61 12.47 

20 µm pores -7.91 -6.27 168.18 16.74 

Table 5-5. 10 MHz transducer results for a 20 µm thick resin layer at ply 13 

beyond a 10% porosity layer at ply 8 which attenuates the signal with 

frequency-dependent attenuation. 

Pore radius N C(ω, tthick) P(ω) S(ω)R(ω, tnorm) 

1 µm pores 2.97 5.7 52.2 16.11 

10 µm pores 2.97 5.7 52.2 16.11 

20 µm pores 1.85 4.53 56.85 16.9 

Table 5-6. 5 MHz transducer results for a 20 µm thick resin layer at ply 13 

beyond a 10% porosity layer at ply 8 which attenuates the signal with 

frequency-dependent attenuation. 

The conclusion from these results is that frequency-dependent effects occurring 

above a defect can influence the measurement of that defect and they may 

need to be corrected for. At 5 MHz, the scattering of the longer wavelength from 

the porosity is much less significant and so the additional frequency-dependent 

attenuation is reduced compared with that at 10 MHz.  
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5.5.7 Modification to include a new ‘delamination’ basis function 

It became evident that a further basis function, R0, may be required – the 

response of a single interface with a frequency-independent reflection 

coefficient, such as the BWE, FWE, a delamination, or high-percentage layer 

porosity. This would modify Equation 5-35 to give the following equation: 

]Ra)P(a ),C(a  ),R()S([a ),D()(TA  Na   )F( 04321
2

00 ++++= ωωωωωωω thicknorm ttd (5-36) 

It can be seen from Figure 5-33 that including this delamination basis function 

has the desired effect of picking out high levels of porosity as delaminations 

rather than porosity, but there is undesirable interaction with the thick resin layer 

basis function, which is quite similar to the delamination basis function. 
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y = -0.0045x3 + 0.5158x2 - 6.6335x + 25.211
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Figure 5-33. The effect of including a new basis function to represent a 

delamination, or FWE or BWE reflections. The equations are cubic polynomial 

fits to the porosity coefficient. 
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It was concluded that the decomposition had been more successful without the 

delamination basis function so it was removed from the processing. 

5.5.8 Removal of ply resonance basis function if ne gative 

Up to this stage the ply resonance basis function had been allowed to have a 

negative coefficient - often the case for a porous layer. However, this does not 

have a physical basis, so it was decided to limit it to being positive by removing 

the basis function if the coefficient goes negative, and reprocessing. The 

software was then modified accordingly and results are shown in Figure 5-34.  
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Figure 5-34. Removal of ply resonance basis function if the coefficient is 

negative. The equation is a cubic polynomial fit to the porosity coefficient. 

It can be seen that the level of cross-talk is very low and the response of each 

coefficient is relatively linear. However, the minimum detectable level of porosity 

is still 10%. Given that current allowable through-thickness average porosity 



 188 

levels are around 2%, the minimum measurable porosity level in a given ply 

should be less than 2% in case all plies contain 2% porosity. Thus the 10% 

threshold is higher than desired. The reason is that the resonant frequency of 

the layer does not increase to that of the porosity basis function until this 

porosity level is reached (see Chapter 4, Figure 4-39 and Figure 4-40). Chapter 

4 suggests that the choice of mixture rule also affects the calculated resonant 

frequency.  The next stage was to adapt the porosity basis function to optimise 

the fit from the decomposition and then to test it with different mixture rules. 

5.5.9 Adaptive modification of porosity basis funct ion 

Adaptively modifying the porosity basis function and optimising the fit from the 

SVD improves the sensitivity to low levels of porosity - see Figure 5-35. 
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Figure 5-35. The result of using an adaptive resonant frequency shift for the 

porosity basis function - improved measurement of low values of porosity 

simulated using the simple volumetric mixture rule. 
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The adaptive method involves reducing the resonant frequency in the porosity 

basis function if the porosity coefficient is low, then re-processing the SVD to 

see if the porosity coefficient increases. If it does, a further reduction in the 

resonant frequency is applied until the SVD porosity coefficient is maximised. 

5.5.10 Effect of single versus multiple porous plie s 

At this initial stage the method was assessed in terms of how it responds to 

single or multiple porous plies. Examples of the two coefficients (porosity and 

thick-resin layer) superimposed on a time-frequency image of simulated single-

ply porosity and a single thick resin layer are shown in Figure 5-36. 

 

Figure 5-36. Example of the response of the porosity coefficient (green in 

middle image) and thick-resin layer coefficient (green in bottom image) to a 

simulated 32-ply stack of 0.125 mm plies with 30 µm thick resin layer at ply 7 

(45.2 mm)  and 30% porous layer at ply 18 (47.6 mm). Porosity was simulated 

using the Hashin mixture rules. 

Plies: 0            8            16            24            32 
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However, it was found that intermediate layers in a multi-layer stack of porosity 

give no response in the porosity coefficient. This is shown for 5 plies of 30% 

porosity in Figure 5-37 and is thought to be because the basis function has 

been generated to apply to a single porous ply surrounded by non-porous plies.  

 

 

Figure 5-37. Example of the response of the porosity coefficient (green in 

middle image) and thick-resin layer coefficient (green in bottom image) to a 

simulated 32-ply stack of 0.125 mm plies with 30% porous plies from ply 14 

(47.1 mm depth) to ply 18 (47.6 mm depth) inclusive. Porosity was simulated 

using the Hashin mixture rules. 

 Plies: 0           8         16         24         32 
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5.5.11 Effect of ply spacing 

Another problem was shown when variations in ply spacing are induced in the 

porous ply or the ply next to the thick resin layer. A thick ply can potentially 

move resonances into the location of peaks expected for porosity. This was 

investigated and the results are shown in Figure 5-38. 
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Figure 5-38.The response of the decomposition method porosity and thick resin 

layer coefficients to changes in local ply spacing, for both 0% and 10% porosity, 

and for a thick (5 µm) resin layer. The defects were put at the 20th ply in a 32-ply 

stack of 125 µm plies, with a 10 MHz transducer function and Q-factor of 1.0. 

The conclusion of this investigation was that an increase in ply spacing above 

about 10% can cause an underestimate in porosity coefficient, and a reduction 

in ply spacing can cause an overestimate in thick resin layer coefficient. Future 

work will investigate whether it would be preferable to determine the ply spacing 

before computing the basis functions to be used in the decomposition. 
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5.5.12 Calibration of the decomposition method 

In order to calibrate the decomposition method’s coefficients it is first necessary 

to determine which factors will influence the calibration of coefficients a2 

(porosity) and a3 (thick resin layer) from Equation 5-35. Assuming that these 

two coefficients are actually linear functions of the material property on which 

they have been modelled, as demonstrated by the above modelling, then: 

 a2 = f2(tthick)  which approximates to:  a2 = b2tthick + const 
 
 a3 = f3(Vv) which approximates to:  a3 = b3Vv for Vv < 0.8 

and: 

)]()(),()(),()()[,()()( 321
2

00 ωωωωωωω PVftCtftRSadDTANaF vthickthicknorm +++= (5-37) 

Inversion of the above gives: 

 tthick = g2(a2)          where g2(a2) =  a2 / b2 + c2tnom   
   [c2 may equal unity] 
 Vv = g3(a3)  where g3(a3) = a3 / b3 

The significance of these functions is that calibration coefficients b2, b3 and c2 

are sufficient to calibrate the porosity and resin layer thickness decomposition 

coefficients. 

5.5.12.1 Correction for depth 

The incident spectrum at each depth will change as the ultrasound propagates 

deeper in the structure. In order to correct for this the incident spectrum can be 

corrected using the model to determine the double-pass transmission frequency 

response of the structure above the depth of interest. This will be a frequency-

dependent and depth-dependent correction D(ω,d) from Equation 5-35  where 

d is the depth in the structure, or the number of plies passed. D(ω,d) will need 

to be calculated for each depth or ply, and A0T
2(ω)D(ω,d) is the incident 

spectrum at each depth or ply d.  If the analytical model is used to generate 

D(ω,d), Figure 5-39 and Figure 5-40 show this function (effectively the  

transmission coefficient) for 0% to 30% randomness in ply separation. The 
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trend is an increased attenuation of higher frequencies with a particularly high 

loss at the resonant frequency of the plies, which forms a narrow band-gap in 

the transmission spectrum. However, as the randomness of ply spacings 

increases the band gap becomes broader and less distinct, as expected. 
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Figure 5-39. Depth-dependent incident spectrum for 0% (top) and 10% (bottom) 

randomness. 
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Figure 5-40. Depth-dependent incident spectrum for 20% (top) and 30% 

(bottom) randomness. 

Then, using simulated waveforms from a layer of 30% porosity in ply 29 of a 32 

ply stack, the results in Figure 5-41 were obtained, showing that the fit improves 

if the depth is corrected for. 
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Figure 5-41. 30% porosity (10 µm radius pores) in ply 29 of a 32 ply 0.125 mm 

ply spacing stack. Standard basis functions (top) and corrected by D(ω,d) 

(bottom) using 10% randomness in the preceding 28 plies. The porosity value 

quoted is the value of the porosity coefficient determined by decomposition. 

Using modelled waveforms, several depths were then tested for both 10% 

porosity and 30% porosity with the depth correction implemented, and also for 

30% porosity with no depth correction. The results, shown in Figure 5-42, 
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illustrate that the depth dependence of the porosity coefficient has been very 

effectively removed using this model-based correction of the basis functions. 
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Figure 5-42. Graph showing how the depth correction (with 10% randomness in 

ply spacing to generate the correction factors) removes the depth dependence 

of the porosity coefficient. 

Finally, the linearity and cross-talk were investigated for the new depth-

corrected method as before, using simulated waveforms for porosity and thick 

resin layers at ply 29 in a 32-ply stack. Graphs of the relationships between the 

coefficients and their associated material properties are shown in Figure 5-43 

for ply 29. These graphs show an improvement in both cross-talk and linearity 

for both coefficients. 

5.5.12.2 Use of Front-Wall Echo  

A0T
2(ω) must be determined in some way in order to calibrate the coefficients. 

An option is that both A0 and T2(ω) may be obtained from the front-wall echo, 

thus saving the need to use a modelled spectrum for T(ω). This removes 

dependence on the system setup, transducer response and gain of the pulser-
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receiver, digitiser etc, as well as determining a value for A0. However, obtaining 

a good front-wall echo signal is not necessarily straightforward, especially if it 

has saturated the acquisition system in order to obtain good signal strength 

from internal reflectors and scatterers.  
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Figure 5-43. Ply 29 porosity (top) and thick resin layer (bottom) using 10% 

randomness to generate the depth dependent incident spectrum correction 

D(ω,d). The simple volumetric mixture rule was used. 
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5.5.12.3 Other dependencies of calibration coefficients  

It was found that the porosity calibration, which is dependent on the absolute 

amplitude in the spectrum, varies with both: 

• the number of points in the gate 

• the type and extent of the taper windowing used 

but not with: 

• the number of zero padding points 

Two corrections were made to allow for this.  

• the time-domain values were divided by approximately the amount that 

the window had reduced them: 

∫+−

b

a

dW
ab

ωω)(
1

1
 

where W is the windowing function and the gated region is from points a 

to b inclusive. This affects only the absolute values obtained in the 

subsequent spectral analysis, not the shape of the spectrum itself. 

• the porosity coefficient and thick resin layer coefficient were both divided 

by the number of points in the gate. 

5.5.12.4 Calibration of basis-function coefficients 

This leaves the need to calibrate the coefficients to extract actual % porosity 

and resin-layer thickness. One option is to determine the calibration coefficients 

b2, b3 and c2 for the above inversion equations, based on the graphs from 

simulated waveforms from the model. 

However, using the model to determine amplitude-based coefficients relies on 

the mixture rule being accurate and the pore size and attenuation and 

backscattering being allowed for correctly. Hence any calibration using the 

model would itself have to be calibrated against known reference specimens.  
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A preferred option is to use real data from real structures, but then the problem 

is the accurate measurement of porosity in the small 3D volumes that have 

been scanned and evaluated ultrasonically. Various methods of doing this are 

being investigated including micro-CT X-ray and X-ray diffraction methods, as 

well as micro-sectioning. 

5.5.13 The problem of multiple porous plies 

The above decomposition method has been evaluated primarily with simulated 

waveforms of single porous plies in stacks of multiple non-porous plies. In this 

situation it has been shown to deliver a coefficient that is linearly related to the 

porosity levels in the single ply of interest. However, the investigation of multiple 

porous plies demonstrated that the coefficient did not respond except for the 

first and last porous ply. This suggests that it is sensitive only to changes in 

porosity levels. An investigation ensued into the possibility of using the 

decomposition method to find a basis function that is a differential measure of 

porosity, giving a different value for increasing and decreasing levels of 

porosity. 

The investigation followed from the recently developed Pinfield (2010) model of 

porosity as a random array of scatterers (see Chapter 4) where the combined 

response can be calculated by integrating the response over all the scatterers. 

This showed that there is a π/2 difference in phase, at all frequencies, between 

the reflection at an increase in porosity compared with that at a decrease in 

porosity. It follows that there should be a method of distinguishing between 

increasing and decreasing porosity levels, then tracking and integrating the 

change in porosity to calculate the porosity profile through the depth.  

Section 4.6.10 in Chapter 4 showed that the time-frequency plot for a waveform 

of a single porous ply exhibits transition regions with resonances at frequencies 

that do not correspond to resonances of single plies, whether porous or not. It is 

intended to develop basis functions for these transition regions and use them 

with the SVD decomposition method to see if it is possible to track changes in 

porosity levels and calculate porosity profiles. 



 200 

5.5.14 Summary of 3D porosity measurement 

The objective of measuring 3D quantitative profiles of porosity was ambitious at 

the outset. Considerable progress has been made in isolating the effects of 

porosity from other effects that masquerade as porosity. By using the local 

spectral response of a volume element it has been possible to distinguish 

porosity from thick resin layers, which have a similar time-domain amplitude 

response. This method has been embodied in a SVD decomposition approach 

for which a patent has been applied. 

The method has been successful on simulated porosity in single plies, but 

porosity does not appear like this in real composites. The amounts of porosity 

vary within plies and there can be multiple plies with porosity, but each with 

different amounts. It is intended in the future to extend the decomposition 

method to track increases and decreases in porosity levels, and thereby 

determine, through integrating the depth profile of the coefficient with respect to 

depth, a profile of porosity levels through the depth of the material.  

5.6 Summary of property isolation in layered struct ures 

Considerable progress has been reported in this chapter in isolating the many 

interfering influences on ultrasonic pulse-echo responses of composite 

structures. Methods have been developed to produce separate 3D profiles of 

ply spacing, fibre volume fraction, porosity and thick resin layers. However, the 

quantitative measurement of each of these material properties in three 

dimensions is still some way off. Chapter 7 reports on some attempts to apply 

these methods qualitatively to both simulated and real composite structures and 

begins to look at validation methods that can be applied in the future.
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CHAPTER 6 FIBRE ORIENTATION MEASUREMENT 

AND MAPPING 

6.1 Introduction 

6.1.1 Motivation 

As civil airframes contain more composite components, including primary 

structures such as wings and fuselage, there are growing concerns about 

quality assurance in terms of ply stacking sequence and straightness of fibres in 

CFCs, and about fibre spacing in titanium metal-matrix composites (TiMMCs). 

Current methods for assurance of these parameters are purely optical and can 

only be applied at the surfaces and edges of components. This does not 

provide for checking stacking sequence over thinner central regions of 

components, nor for detecting wrinkling in the middle of a component at a 

radius – a location where it is most likely to occur. If an ultrasonic method can 

be developed to automatically measure 3D fibre orientation (including ply 

inclination) across the whole component then this could be used as a detection 

and auditing tool. 

6.1.2 Background 

The original work on  fibre orientation by the author, in 1994, was to determine 

ply stacking sequence non-destructively for CFC/honeycomb sandwich 

structure and was reported in an external paper (Smith & Clarke 1994). 

Subsequent work by Prof David Hsu at Iowa State University, published in 2002 

(Hsu et al 2002), reproduced this original DRA work and then went on to use 2D 

Fourier Transforms accurately to determine ply orientation for carbon-fibre 

composites (CFCs). At the start of the current work reported here, the author 

implemented Hsu’s 2D Fourier Transform method in QinetiQ’s ANDSCAN 

analysis software and began applying it to TiMMC, as well as to CFC. Since 

then the technique has been improved and adapted to provide accurate ply 

stacking sequences, ply fingerprinting for woven fabrics and full 3D profiles of 

in-plane waviness and out-plane ply wrinkling. 
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6.1.3 Description of method  

Ultrasound is reflected by acoustic-impedance mismatches at boundaries. The 

fibre-to-resin boundaries in carbon-fibre composite therefore reflect ultrasound. 

Also, if each inhomogeneous fibre-resin composite layer can be regarded on a 

macro scale as a mixture with a single effective stiffness and density, then each 

change in fibre volume fraction will be an acoustic-impedance change and will 

result in a reflection (see Chapters 3 and 4). Between plies there are two such 

boundaries, either side of a pure resin layer. This resin layer is of variable 

thickness, but it is always thin relative to the ply thickness. The reflection 

coefficient of the resin layer is directly related to its thickness according to the 

graph in Figure 6-1, derived from a full treatment of this thin-layer reflection, 

which can be found in Chapter 4 and Appendix A. In carbon-fibre composites 

this resin layer is much thinner (around 2 µm for 7 µm diameter fibres) than 

one-tenth of a wavelength at normal inspection frequencies (less than 20 MHz) 

and therefore the reflection coefficient will be approximately linearly proportional 

to the thickness of the resin-rich layer.  

It is fortunate in CFRP and GFRP that the fibres are generally inserted into a ply 

in bunches, known as ‘tows’. This creates a natural undulation in the resin layer 

thickness such that lines of slightly thicker resin occur between the tows. As 

mentioned above, the reflection coefficient from a thicker resin layer is greater 

and this causes the lines to show up on a C-scan of amplitude from a time gate 

at the depth of the resin layer. 

The reflections from the resin layers can also be tracked - in B-scan cross-

sections where they follow the profile of any ply wrinkles. 
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Figure 6-1. Calculated reflection coefficient for a thin layer of resin within a CFC 

material for a long tone-burst (thin line). The dashed brown straight line shows 

the reflection coefficient level for a single interface of composite to resin. The 

thick pink line is the result of a simulation of a short, 1.5-cycle pulse where the 

resonance effect decreases as the thickness increases because interference 

between the incident and reflected pulses decreases. When the specimen is 

thinner than half the pulse duration then the reflection coefficient will depend on 

the exact thickness-to-wavelength ratio. As the specimen becomes thicker than 

half the pulse length in the material then the thickness-mode resonance 

disappears and the single-interface reflection coefficient (dashed straight line) 

dominates. 
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6.1.4 The method applied to Ply Stacking Sequence  

The ply stacking sequence method can be applied to C-scans of each ply 

interface reflection to determine the sequence of dominant fibre orientations. 

The C-scan generally shows lines in two directions - those of the fibre tows in 

the plies above and below the interface (because both contribute superimposed 

ripples on the resin layer thickness). A two-dimensional Fast Fourier Transform 

(2D FFT) is applied to the C-scan and the relative power at each angle is 

calculated. Peaks in this angular power distribution indicate the dominant ply 

orientations. A resolution of less than one degree appears to be achievable. 

Examples of this method applied to the first four ply orientations in the same 

specimen used for the earlier work (Smith & Clarke 1994) are shown in Figure 

6-2 to Figure 6-5. 

   

 

Figure 6-2. First ply interface showing C-scan (top-left), 2D FFT from the whole 

scan (top-right) and resultant logarithmic plot of angular analysis of ply 

orientation (bottom) with a peak at approximately 137° (-43°). 
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Figure 6-3. Second ply interface showing C-scan (top-left), 2D FFT from the 

whole scan (top-right) and resultant logarithmic plot of angular analysis of ply 

orientation (bottom) with a peaks at approximately 137° (-43°) and 43°. 

   

 

Figure 6-4. Third ply interface showing C-scan (top-left), 2D FFT from the whole 

scan (top-right) and resultant logarithmic plot of angular analysis of ply 

orientation (bottom) with a peaks at approximately 43° and 90°. 
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Figure 6-5. Fourth ply interface showing C-scan (top-left), 2D FFT from the 

whole scan (top-right) and resultant logarithmic plot of angular analysis of ply 

orientation (bottom) with a peaks at approximately 0° and 90°. 

6.1.5 Use of 3D profile layers 

Both the ply stacking sequence and the in-plane waviness applications require 

C-scans to be produced from the amplitude in a gate moved down through the 

structure. 3D-Profile layered channels were developed in this project (see 

Chapter 5) specifically for this type of application so that the same processing 

can be repeated for each layer in a structure. Depth-angle distribution images of 

ply stacking sequence have been shown by Hsu et al (2002) and the use of 3D 

profile layers means that they can now be produced by ANDSCAN using a 

range of different processing methods, depending on the application. 

6.2 2D FFT method 

This is a conventional 2D FFT with pre-specified windowing and ‘mean-value-

padding’ (as the mean value is not zero) allowing improved spatial-frequency 

resolution if required. The magnitude alone of the 2D FFT is analysed to obtain 

the angular power distribution and plotted as a graph– see Figure 6-6. 
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Figure 6-6. Example of the effect of a Hanning window applied to just 20% of 

the image width or height - 10% each side. The left-hand images are the 

windowed C-scan data from a single ply of TiMMC, and the right-hand images 

are the corresponding 2D FFTs and computed angular distribution: without 

windowing (top), rectangular mode (middle) and circular mode (bottom). The 

thin line in the FFTs marked ‘A’ corresponds to the wrinkle marked ‘C’ in the 

original C-scans, whilst the line marked ‘B’ is caused primarily by the wrinkle at 

the top of the scan marked ‘D’ 
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6.2.1 Windowing 

A ‘windowing’ function can be applied to avoid spectral leakage. Spectral 

leakage is caused by the truncation of the image at its edges, which effectively 

convolves the actual (non-truncated) image of the structure with a rectangular 

2D step function (Challis & Kitney 1991, Oppenheim & Schafer 1975). A choice 

of window types was added into the software: 

• Bartlett 

• Parzen 

• Hanning  

• Hamming 

• Blackman 

• Welch 

• Finite Gaussian 

• Infinite Gaussian 

The choice of rectangular or circular application of the windowing function was 

investigated in an attempt to avoid any bias in the angular distribution 

calculation. Figure 6-6 compares these two window application methods for a 

2D FFT of a whole scan. It appears that the main difference is to do with what 

angles are present in the portion of the image that is excluded by the window. 

For example, the circular-windowed FFT in Figure 6-6(bottom) has one, rather 

indistinct, diagonal line (marked ‘A’) at approximately 5 degrees anticlockwise to 

the vertical, whereas the other FFTs also have a mirror-image line (marked ‘B‘). 

This is caused by the waviness at the top of the image (marked ‘D’), which has 

been excluded by the circular window. 

With a Hanning window applied within this software a study of the difference in 

angular distributions for rectangular versus circular windowing was performed. 

This showed negligible difference between the two types of windowing in terms 

of an expected bias towards 0° and 90° for the rect angular window (Figure 6-7). 

Hence, the circular windowing has the disadvantage of reducing the amount of 

useful data used for the FFT, especially if the area selected has an aspect ratio 

that deviates significantly from unity – see Figure 6-8 and the resulting angular 

power distributions in Figure 6-9.  
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Figure 6-7. Difference between rectangular (top) 20% windowing and circyular 

(bottom) 20% windowing on a scan with a unity aspect ratio. The central image 

shows the 2D FFT resulting from the left hand image. Apart from a slightly 

clearer low-frequency 90° line on the 2D FFT from t he rectangular window, 

there is negligible difference that would actually affect the angular distribution. 

 

Figure 6-8. Comparison of rectangular (top) and circular (bottom) windowing on 

a high aspect-ratio image. Circular windowing removes most of the useful data. 
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Figure 6-9. Resulting angular power distributions from rectangular (top) and 

circular (bottom) windowing on the high aspect ratio image from Figure 6-8, 

where circular windowing removes most of the useful fibre orientation data. 

A similar analysis of the effect of varying the percentage of the image used for 

windowing showed that there is no noticeable benefit, in terms of faithful 

angular distribution, from extending the window over more than 20% of the 

image. However, there is a detrimental effect; a window spread over a greater 

percentage area reduces the amount of usable data. This analysis shows that 

the optimum windowing is a rectangular 20% Hanning window.  

6.3 Angular power distribution 

6.3.1 2D FFT of C-scan images with unity aspect rat ios. 

6.3.1.1 The Polar Transformation Algorithm 

A polar transformation is performed on the 2D FFT data to determine the 

angular power distribution, but it is not straightforward for various reasons. 

Firstly, the central region of the 2D FFT contains a largely angle-independent 

distribution, which just raises the background level for the angular power 

distribution. Secondly, the 2D FFT image is pixelated and some directions, such 

as 0°, 90°, 45° and 135°, are better populated with  pixels than others (see 
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Figure 6-10). And thirdly, there is an angle-dependent variation in amplitude, 

which has to be corrected to prevent bias in the measured angle 
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Figure 6-10. Population of angles (blue thin line) for 16 x 16 pixels of a 2D FFT 

of an image with an aspect ratio of 1:1. 720 angle bins of width 0.25° were 

used. The pink thick line (left axis) and green thin line (right axis) is the result of 

applying the Gaussian shading function with a 1/e half-width, φ, of 5 degrees. 

The first two effects can be seen in Figure 6-4 particularly, where the 90° peak 

is extremely narrow due to the large number of pixels in this direction, and there 

is always a small peak at 0° and 90°, even when no plies at these angles can 

be seen.  

A solution was found by applying a weighting function (in angle) to the 

contribution from each pixel, effectively ‘blurring’ it in the angular direction (ie 

convolving with the weighting function) so each pixel contributes to the integral 

at more than one angle. In the first instance, linear (triangular) and Gaussian 

weighting functions were tested and the Gaussian function was chosen 

because it more consistently removed the 0° and 90°  spikes in the angular 
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distribution. Equation 6-1 shows how the angular distribution F(θ) is calculated 

with Gaussian weighting: 
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where x, y and a are the coordinates and value of each point in the 2D FFT, 

and φ is the 1/e point on the Gaussian shading function. Note that the 

amplitudes are squared so it is really an angular power distribution. This is in 

order to enhance the peaks in the distribution. Finally, the function is normalised 

to the sum of the weighting at each angle to allow for the fact that angles have 

differing numbers of contributors. An example is shown in Figure 6-10 of the 

effect of using a Gaussian shading function with φ=5º. 

It was found that no detrimental effect was observed by truncating the 

summation when the Gaussian weighting function became smaller than 1/e2 

and, by calculating this in advance, a considerable computation-speed 

advantage could be achieved.  

The value of φ, the 1/e point on the Gaussian shading function, was found to be 

important. Too large a value caused too much smoothing and loss of angular 

resolution in the angular power distribution. Too small a value failed to 

adequately remove the effects of pixelation, giving preference to 0°, 45°, 90° 

and 135°. The optimum value was shown to depend a) on the number of points 

in the 2D FFT because the angular spacing between angles with contributing 

pixels becomes greater as the number of points decreases (compare Figure 

6-11 with Figure 6-10) and b) on the aspect ratio of pixel spacing (see next sub-

section).  



 

 213 

0

1

2

3

4

5

6

7

8

-10 0 10 20 30 40 50 60 70 80 90 100

Angle (degrees)

P
op

ul
at

io
n

0

0.05

0.1

0.15

0.2

0.25

0.3

G
au

ss
ia

n 
W

ei
gh

te
d 

P
op

ul
at

io
n

Population
Gaussian Weighted (5 degree 1/e half-width)
Gaussian Weighted (5 degree 1/e half-width)

 

Figure 6-11. Population of angles (blue thin line) for 8 x 8 pixels of a 2D FFT of 

an image with an aspect ratio of 1:1. 720 angle bins of width 0.25° were used. 

The pink thick line (left axis) and green thin line (right axis) is the result of 

applying the Gaussian shading function with a 1/e half-width, φ, of 5 degrees. 

A method was implemented that uses a larger value of φ (ie a wider angular 

width to the weighting function) as the number of contributing points in the 2D 

FFT decreases: 

 
mn.

1∝ϕ  (6-2) 

where n and m are the number of points in the two directions of the rectangular 

portion of the image used for the 2D FFT. An example of the improvement is 

shown in Figure 6-12. This was implemented as a spatial-frequency-dependent 

Gaussian half-width that decreases with increasing spatial frequency, with a 

high-pass filter that limits the influence of the low spatial-frequencies. 
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Figure 6-12. As for Figure 6-11, the pink thick lines (left axis) and green thin 

lines (right axes) are the result of applying the Gaussian shading function with a 

1/e half-width, φ, of 10 degrees (top) and 15 degrees (bottom) 
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6.3.1.2 Angle-dependent Correction – Square Images 

Finally, an angle-dependent correction is required for the angular power 

distribution because the peak amplitude from a given angle of fibres decreases 

from 0 or 90 degrees towards 45 or 135 degrees. This is illustrated in Figure 

6-13 for a square region extracted from simulated fibre-tow C-scan images with 

different fibre orientations (see Appendix G on simulation of fibre tows).  
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Figure 6-13. The measured ply angle and peak amplitude in a square region 

20x20 mm for fibre tows simulated at 2 mm spacing and at angles ranging from 

0º to 180º in 5º steps (top) and 0º to 45º in 2º steps (bottom). 
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It is possible that a correction is justified based on the varying spatial-frequency 

area of each 0.25º segment of the square 2D FFT. The variation in spatial-

frequency area A, is given by: 

 
2cos2 2
FFTw

A
φ

φ∆=  (6-3) 

where wFFT is the width of the 2D FFT. A possible correction factor is the 

normalised variation with angle, given by 1/cos2φ. Such a correction factor, 

applied to the analysis of the 16x16 population of pixels used above, is 

illustrated in Figure 6-14.  
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Figure 6-14. 5º 1/e half-width Gaussian weighting and 1/cos2φ area correction 

applied to a 16x16 pixel region as shown in Figure 6-10. 

The correction clearly appears to produce a flatter amplitude response as a 

function of angle. However, when applied to the amplitudes obtained from the 

actual simulated fibre tows used for Figure 6-13, it is obvious (in Figure 6-15) 

that the 1/cos2φ correction is not appropriate and that the varying area is not the 

cause. 
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Figure 6-15. Data from Figure 6-13 corrected using the proposed 1/cos2φ 

segment-area correction, showing that this does not solve the problem. 

An alternative cause of this correction requirement is the finite ‘aperture’ or 

region of image chosen, which is effectively multiplied by the image of fibre-

tows. In the spatial-frequency domain this becomes a convolution of the FFT of 

the aperture with the FFT of the fibre tows (two dots either side of the zero-

frequency centre point) – see examples in Figure 6-16. It can be understood 

why this introduces a rotational symmetry of order 4 for square regions. 

       

       

Figure 6-16. Square regions of fibre-tow images (top) and their corresponding 

2D FFTs (bottom) for fibre orientations (left to right) 0º, 8º and 90º. 
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A quadratic fit to the data in Figure 6-13 provides a quadratic correction, κ for a 

square image region, for φ in degrees, in Equation 6-4, giving a relatively flat 

amplitude response with angle, as shown in Figure 6-17 
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Figure 6-17. Data from Figure 6-13 corrected using the quadratic correction 

factor κ, showing a considerable improvement in peak amplitude uniformity and 

accuracy of orientation measurement. 

Note that the measurement of ply angle is also more accurate when the 

correction has been applied, as shown in Figure 6-17.  

An example of the analysis of a simulated stack of plies in 5-degree steps is 

shown in Figure 6-18 and this non-normalised data illustrates that the quadratic 

correction produces uniform, angle-independent amplitudes. 
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Figure 6-18. Simulated ply angles in 5 degree increments measured accurately 

with the quadratic correction factor. This data is not normalised in each layer so 

it would demonstrate any changes in amplitude if the correction had failed.. 

6.3.1.3 Angle-dependent Correction – Rectangular Images 

The above quadratic correction is only applicable to square analysis regions. 

For rectangular analysis regions (see Figure 6-19) the effect is more 

complicated because the FFT for each of the two points is stretched in one 

direction and now has rotational symmetry of order two. 

       

       

Figure 6-19. Rectangular regions of fibre-tow images (top) and corresponding 

2D FFTs (bottom) for aspect ratios (left to right) 1, 2 and 4. 
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The effect of this on the angle-dependent peak amplitude in the 2D- FFT is 

shown in Figure 6-20 where the rotational symmetry of order two is clearly 

superimposed on the rotational symmetry of order four. 
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Figure 6-20. Uncorrected response from a 20 mm wide, 10 mm tall rectangular 

region from the C-scan image. 

If these two effects are superimposed, it may be possible to correct for them 

separately. If the quadratic correction is applied first to correct for rotational 

symmetries of order 4 (see Figure 6-21), the remaining angle-dependent 

variation may be due purely to effects with rotational symmetry of order 2. 

Based on this method, corrections were derived that fitted the remaining 

symmetry order 2 effects. For aspect ratios where the width is greater than the 

height, the correction is given by: 

 1 - αsinφ (6-5) 

and for aspect ratios where the width is less than the height: 

 1 + β(1 - cosφ) (6-6) 
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where α and β depend on the aspect ratio (width / height) of the analysis region. 
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Figure 6-21. Response from Figure 6-20 but corrected using the quadratic 

correction described above for square regions. The red line is the proposed 

correction for the effects with rotational symmetry of order 2. 

Using the simulated fibre-tow images, it was possible to determine empirically 

the apparent optimum values of α and β as a function of aspect ratio in Figure 

6-22. From curves of best fit through these values, the following equations for α 

and β as a function of aspect ratio (of width w to height h) can be derived: 

 α = -0.0178(w/h)2 + 0.2545(w/h) - 0.2337 (6-7) 

and for aspect ratios where the width is less than the height: 

 β = 4.044e-5.5118w/h (6-8) 
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Figure 6-22. Corrections for rotational symmetry of order 2 are shown (curved 

lines) in the top graph and are compared with the measured peak amplitudes 

(symbols) from various aspect ratios of regions on simulated fibre-tow images. 

Also shown (bottom) are values for the multipliers α (left) and β (right) as a 

function of aspect ratio, based on the best fit to the data in the top graph. 

In order to test this two-stage correction methodology, five regions with different 

aspect ratios were tested - see Figure 6-23. Whilst the correction is not perfect, 

the variation in amplitude with angle has been reduced to less than 6%. 
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Figure 6-23. Implementation of the two-stage correction for angular dependence 

of amplitude for rectangular regions of dimensions (width x height): Top to 

bottom: 20 x 10 mm, 20 x 5 mm, 10 x 20 mm, 5 x 20 mm and 20 x 40 mm. 
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6.3.2 2D FFT of B-scans (images with non-unity aspe ct ratios). 

In order to use the angular distribution method for measurements of out-of-

plane ply wrinkling it is necessary to analyse out-of-plane B-scan slices, which 

are very different to the in-plane C-scan slices used so far. B-scans are cross-

sectional slices built up from multiple waveforms spaced at a given scan step 

size. The pixel separation in the time domain, corresponding to the depth axis in 

the structure is usually much smaller than the pixel separation along the surface 

of the structure between waveforms. This leads to a non-unity aspect ratio 

which changes the symmetry in the 2D FFT and needs addressing in order to 

produce an unbiased angular power distribution. In the example shown in 

Figure 6-24 the aspect ratio (width:depth) is 13.6:1 and this translates into an 

aspect ratio in the spatial frequency (2D FFT) domain of 1:13.6 as illustrated. 

Consequently, the distribution of pixels contributing to angles in the angular 

power distribution is skewed considerably (Figure 6-25). Although there are 

many contributors at 0°, there are none for a wide range of adjacent angles.  

  

Figure 6-24. Typical B-scan of out-of-plane fibre waviness in an 18 mm thick 72-

ply carbon-fibre composite skin (left). The pixels in the actual B-scan are 1 mm 

wide and only 74 µm tall. The box illustrated on the B-scan is actually 10 mm 

(10 pixels) wide and 2 mm (27 pixels) tall. A 2D FFT of this box is shown 

diagrammatically (right) and will typically be tall and thin. 

18 mm 

16 pixels 

32 pixels 

16 pixels 

2D FFT 
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Figure 6-25. Population of angles in the 2D FFT for a 16 x 32 pixel 2D FFT of a 

B-scan with an aspect ratio of 13.6:1. 720 angle bins of width 0.25° were used. 

Note that 90° in the FFT corresponds to 0° lines in  the B-scan. 

One solution was to use a much larger value of φ (the 1/e point on the above-

mentioned Gaussian shading function) for the 0° pix els and the adjacent angles, 

whilst reverting to a smaller value of φ when the population is non-zero. This 

was a relatively time-consuming algorithm, especially considering that most of 

the time was spent applying a wide shading function to the 0° 2D-FFT angles, 

whilst the plies in the B-scan are orientated close to 0°, corresponding to 90° in 

the 2D FFT, where the angles are well populated.  

A second, more efficient solution was found: as only one orientation angle 

exists in the B-scan – the ply angle of inclination – it is possible to just calculate 

the ‘power centroid’ for the raw angular power distribution, with no shading 

function applied at all. This works mainly because that one ply angle is at 90° in 

the 2D FFT – a well-populated region. 

6.4 2D map of orientation 

In order to detect local variations in orientation of fibres or fibre tows in 

composites, it was decided that a local assessment of orientation was required. 

This could be achieved by applying the 2D FFT and angular distribution 
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analysis to a small region at a time and then raster-scanning that region over 

the image. When developing this method, it became obvious that the 2D 

spacing of orientation information would be equal to the increment with which 

the box is moved, so a smaller increment (larger overlap) is advantageous 

when raster-scanning the box across the image. Initially the processing was 

very time-consuming and so the increment chosen was half the size of the box 

in each direction. Later, the algorithm for B-scan (out-of-plane) analysis was 

speeded up using the power-centroid’ method and the increment was reduced 

to a quarter of the box size. In order to fill in the gaps between the sparsely-

distributed values of orientation (at the centre of each box location), a linear 

interpolation method was initially used (see Figure 6-26).  

Figure 6-26. An example of 2D mapping of fibre orientation for the scan of wavy 

SiC fibres in a Ti matrix (top). The lower image plots as a colour the dominant 

angle at each location of the analysis box (shown dashed in both images), 

which is then raster-scanned over the whole image using a 50% overlap of 

adjacent box positions and linear interpretation between adjacent box centres. 

However, this did not perform well in all situations such as on B-scans with high 

aspect ratios so a different method using weighted averaging was introduced. 

Amplitude C-scan 
of gated 
reflections from a 
single ply. 

Map of dominant 
angle (in degrees) 
measured at each 
box location. 
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After experimenting with different weightings, an elliptical Gaussian weighting 

function, with the ellipse matched to the aspect ratio of the image, was found to 

produce the best results. The size of the Gaussian weighting function (ie its 

spatial influence) was linked to the increment of the box (the % overlap) rather 

than the box size. An example of this method of interpolation is shown in Figure 

6-27 for wavy fibres in a single ply of carbon-fibre composite. It is also possible 

to superimpose the original image on the orientation map. 

 

Amplitude C-scan In-plane waviness image Combined C-scan + 
waviness 

 

Figure 6-27. Optimised in-plane waviness image (middle) with the C-scan from 

which it was generated (left) and a combination of the two images (right). A 5 x 

5 mm box size was used with 60% overlap and 40% rectangular Hanning 

windowing and an elliptical Gaussian weighted average. 

Figure 6-28 shows an example of a B-scan (left) and the ply-angle cross-section 

result (right) of applying the 2D FFT with 50% overlap of box locations and 

elliptical Gaussian-weighted averaging.  Whilst the wrinkle can be visualised in 

the B-scan, it can be completely quantified in the ply-angle cross-section 
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Figure 6-28. 2D mapping of out-of-plane ply wrinkling in an 18 mm thick CFC 

specimen. The B-scan cross-section (left) has been analysed using a 2D FFT in 

an analysis box as marked, scanned with a 50% overlap and elliptical Gaussian 

weighted average. The output shows cross-sections of ply inclination (right). 

Bands of high-angle measurements at the top and bottom surfaces of the 

specimen are evident in Figure 6-28. This was solved by moving to the power-

centroid method of determining the dominant ply angle of inclination. It is 

therefore thought that this was an aberration caused by the original method of 

Gaussian shading to determine the angular power distributions. An example of 

the cleaner output from the power-centroid method is shown in Figure 6-29. 

 

Figure 6-29. B-scan (left) and corresponding power-centroid method ply-

inclination analysis (centre), with the two superimposed (right). 

Analysis 
Box 
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6.5 1D profile of stacking sequence 

By taking the Angular Power Distribution for each layer in a 3D Profile and 

plotting it as a grey-scale image, it is possible to visualise the ply stacking 

sequence in the structure. Figure 6-30 shows such an image in the six-ply 

carbon-fibre composite skin, adhesively-bonded to honeycomb, that was used 

for Figure 6-2 to Figure 6-5. The skin has the following ply lay-up: 135°, 45°, 

90°, 0°, 135°, 45°. In fact, the design was for a ‘ balanced’ structure with 135° 

plies on the outside on both sides, furthest from the centreline, so this skin had 

been incorrectly manufactured. 

 

Figure 6-30. Ply stacking sequence shown as a greyscale image highlighting 

the dominant orientation as a function of depth in the structure, culminating in 

the hexagonal lattice of the honeycomb bond-line. 

6.5.1 Visualisation 

Ideally the output from this ply stacking sequence analysis would be a definitive 

list of the ply orientations in depth order. Whilst the automation of such a 

process is the ultimate aim, there will always be a need for a method of 

visualisation so that the operator can check the automated analysis. The grey-

scale image method has already been introduced in Figure 6-30, and in the 

following section there is a discussion of the issues of normalisation in order to 

assist the operator to distinguish the dominant orientation. In addition, horizontal 

lines can be added to the image to delineate where the plies occur and vertical 

lines to show where the expected orientations of 0°, 45°, 90° and 135° (pseudo-

isotropic carbon-fibre composite lay-up) occur.  

Additional features have been added to the ANDSCAN software to allow 

improved operator verification. For example, when the operator clicks the 



 230 

mouse on a layer of interest on the image, the C-scan layer shown in 

ANDSCAN automatically changes to the layer clicked on, allowing immediate 

confirmation of the ply orientation at that depth.  

6.5.2 Normalisation  

A rigorous study of the application of this stacking sequence method was 

applied to a range of specimens. The aim was to determine the optimum 

acquisition settings: scan step size, probe frequency and bandwidth, and 

optimum analysis parameter settings for the variables that had been written into 

the software by the author: gate width, gate overlap, window size, type and 

extent of windowing for the FFT, etc. The peak amplitude in the angular 

distribution varies considerably as the C-scan layer descends down through the 

stack, due to attenuation. The initial normalisation method to overcome this – 

normalising to the peak in each layer - was found to be inadequate because it 

could give poor contrast-to-noise  for low amplitude reflections. Various other 

methods of normalisation were attempted and are compared in Figure 6-31. 
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Figure 6-31. Three methods for normalising the stacking sequence image. Each 

layer is normalised to: the peak in that layer; the average of a specified number 

of layers above/below (5 and 9 shown); an exponential fit to the layers from 

25% to 75% of the range of layers. 
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Whilst the exponential fit produces potentially the most realistic curve shape, 

matching attenuation in the structure, it has proven to be the most difficult to 

adapt to different scans and different structures. This is because, if the front or 

back surface reflections are included in the data that is fitted, a completely 

unrepresentative exponential curve can result. The exponential fit shown in 

Figure 6-31 was produced using the central 50% of the range of layers in an 

attempt to avoid the front and rear surface effects. However, then the 

exponential normalisation can be erroneous near the front and rear surfaces. 

Using a running average across a range of layers proved to be more consistent 

in implementation although this method is sensitive to the number of layers 

used for the average. If the range of layers averaged is less than a single 

composite ply, the desired result is not achieved, because contrast between 

plies can be lost in the normalisation process. This can be seen in Figure 6-32 

where the different normalisation methods shown in Figure 6-31 are 

demonstrated on the 6-ply honeycomb structure. 

 

Figure 6-32. Examples of different normalisation methods: peak in layer (top-

left), exponential fit (top-right), 5-layer running average (bottom-left), 9-layer 

running average (bottom-right). 
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6.5.3 Max-Min normalisation. 

The biggest problem with the above normalisation methods is that the noise 

level in the angular distribution is also affected. Noise manifests itself mainly as 

an angle-independent elevation in amplitude in the angular distribution. 

Therefore, a method of spreading the colour or greyscale levels over just the 

range from the maximum to the minimum angular amplitude, results in setting 

all the background levels to black and providing a uniform background against 

which the peaks can be more easily observed. Max-min normalisation has 

become the standard for ply stacking sequence visualisation and analysis. 

6.5.4 Resolution requirements 

It is known from the modelling work discussed in this thesis that the source of 

reflections within the composite is the inter-ply resin layer, the thickness of 

which dictates the amplitude of the reflection. However, the dominant 

resonances in the response are at frequencies governed by the ply spacing and 

the variations in resin layer thickness just modify the amplitude of the resonant 

response. It is also known that the main cause of variations in the inter-ply resin 

layer thickness is the presence of fibre tows, or bunches of fibres within each 

ply. It is these variations that are imaged and used to determine fibre 

orientation. 

For adequate stacking sequence determination, the basic requirement is to 

resolve the in-plane variations in local reflection amplitude due to the fibre tows 

in each ply in the stack. These fibre tows have a width from 1 mm to 5 mm, 

depending on the method of manufacture of the composite material. Thus it is 

necessary to ensure that the ultrasonic pulse-echo beamwidth is less than the 

fibre-tow width over the whole depth of the structure being inspected. 

For an acquisition system with a fixed focal length (ie without phased-array 

dynamic focusing or full-matrix capture and array processing) it is therefore 

necessary to choose a focused transducer to achieve this requirement, and 

focus it at the mid-depth in the structure. 

The two focusing requirements are:  
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1. -6 dB pulse-echo focal beamwidth < fibre tow width 

2. -6 dB pulse-echo range of focus > thickness of the structure 

Initially dealing with these requirements separately, the focal beamwidth is 

defined as follows (see Appendix E on focused fields): 

 wwf Fw λ032.1=  (6-9) 

where wf  is the -6 dB pulse-echo focal beamwidth, λw is the wavelength in 

water and Fw is the F-number in water, defined as in optics, as:  

 
D

z
F f

w =  (6-10) 

where zf  is the focal length and D is the aperture (transducer) diameter.  

The resonant frequency required for stacking sequence imaging is the half-

wave resonance where the wavelength in the composite λc is twice the ply 

spacing, zps. The resonant wavelength in water λw can then be determined: 

 
c

w
psw c

c
z2=λ  (6-11) 

where cw is the speed of sound in water and cc is the speed of sound in 

composite. As the speed in water is approximately half that in composite, the 

following approximation can be made without undue effect on the conclusions of 

this treatment of resolution. 

 psw z≈λ  (6-12) 

Substituting into Equation 6-9, a similar approximation can be made, to 

determine the focal beamwidth: 

 wpsf Fzw ≈  (6-13) 
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If the requirement is that the focal beamwidth wf  should be less than the fibre-

tow width wt then the following requirement defines the upper limit on F-

number, based on the ratio of fibre tow width and ply spacing: 

 
ps

t
w z

w
F <  (6-14) 

Secondly, the requirement for the range of focus to be greater than the material 

thickness d provides a lower limit on F-number. An equation for the -6 dB pulse-

echo range of focus in water zr is derived in Appendix E and is equivalent to: 

 )072.044.5( DFFz wwwr += λ  (6-15) 

Appendix E also shows that this can be approximated to the following for focal 

gains in the range that we are expecting to use: 0.2 to 0.7. 

 26 wwr Fz λ≈  (6-16) 

As the requirement is for zr to be greater than the material thickness d in 

composite, or approximately 2d in water, and Equation 6-12 links the 

wavelength to the ply spacing, the following approximation to the requirement 

for minimum F-number can be made: 
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Combining these two requirements gives the following limits on F-number: 

 
ps

t
w z

w
F

n <<
3

 (6-18) 

where n is the number of plies in the specimen and is equal to d/zps. 

Practical examples are shown in Table 6-1 with the limiting cases shown in 

bold. These limiting cases show the maximum number of plies in the stacking 

sequence for a given ply spacing and fibre-tow width. 
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Ply Spacing 
(mm) 

Number 
of plies 

Fibre-Tow 
Width (mm) 

Material 
Thickness (mm) 

Minimum 
F-number 

Maximum 
F-number 

0.125 64 1 8 4.6 8 

0.125 192 1 24 8 8 

0.25 64 1.5 16 4.6 6 

0.25 108 1.5 16 6 6 

0.25 64 2 16 4.6 8 

0.25 192 2 48 8 8 

0.25 256 3 64 9 12 

0.25 432 3 108 12 12 

Table 6-1. Examples of minimum and maximum F-number for various carbon-

fibre composite material specifications. Limiting cases are shown bold . 

It can be seen that the limiting number of plies nmax is given by the following 

equation and is shown graphically in Figure 6-33: 
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Figure 6-33. Maximum number of plies that can be resolved in the ply stacking 

sequence if the optimum transducer F-number is selected. 
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6.6 Spatial-frequency energy distribution and spati al filtering 

The spatial-frequency energy distribution is a profile of the all-angle sum of the  

amplitude-squared at each spatial frequency from the 2D-FFT output. This can 

be useful for determining fibre-tow widths. 

Spatial filtering has various uses within fibre orientation analysis, but primarily 

the benefits are: a) to speed up the processing by reducing the number of 

points in the 2D-FFT that need to be analysed, b) to remove the low spatial 

frequencies where the angles are sparsely populated, or c) to preferentially 

remove certain frequencies that are adversely influencing the assessment of 

fibre orientation. High-pass filtering is useful for ply stacking sequence and in-

plane orientation or waviness analysis, while low-pass filtering is useful for out-

of-plane wrinkling analysis. A notch filter is useful for removing the effects of 

regularly-spaced stitching in a non-crimp fabric (NCF). 

6.6.1 Spatial-frequency distribution 

The spatial frequency distribution is calculated from the 2D FFT and suffers 

similar problems of sparse populations, particularly at low spatial frequencies 

(Figure 6-34).  
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Figure 6-34. Population of spatial frequencies in the FFT (blue) from a 16x16 

pixel region and the result of using the Gaussian weighting function (pink) with a 

1/e half-width of 1 pixel in spatial frequency. 
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This is overcome by populating spatial-frequency ‘bins’ using a weighting based 

on a Gaussian function. The 1/e half-width of the Gaussian is one spatial-

frequency spacing and this is applied out to three half-widths (where the 

weighting has fallen to 1/e3) – see Figure 6-34. 

6.6.2 High-pass spatial filtering  

A half-Gaussian-shaped edge is used for the cut-off of a high-pass filter in 

cases where it is known that most of the information is at the high-frequency 

end of the spectrum. This is the case when the lines in the image are caused by 

fibre tows and the resolution of the scan has been chosen to be approximately 

half or a quarter of the fibre-tow spacing. Both the ply stacking sequence and 

the in-plane waviness imaging methods use the fibre tows as the source of the 

lines in the image so the operator is asked to specify the maximum fibre tow 

width and the software uses this to calculate the minimum spatial frequency 

required, thus defining the high-pass filter cut-off spatial frequency. This is 

shown for a 10 mm maximum fibre tow spacing in Figure 6-35. 

 

Figure 6-35. C-scan of +45º /-45º plies with 5 mm stitching aligned to the 0º 

direction (left), the corresponding 2D-FFT (centre) and an example of applying a 

10 mm high-pass filter to the top half of the 2D-FFT. Only the top half of the 2D-

FFT and the right half of the central (zero frequency) row are used for angular 

analysis. 

6.6.3 Low-pass spatial filtering 

A half-Gaussian-shaped low-pass filter cut-off is used in cases where the line 

spacing is a large proportion of the width or height of the image, which is the 

case for out-of-plane wrinkling imaging, where just two or three plies are 
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included in the boxed image. In this case the high spatial frequencies can be 

ignored and the algorithm runs faster if there are fewer frequencies to process. 

It was found that, for out-of-plane wrinkling, the 1/e cut-off frequency can be 

reduced to a fraction 4/n of the Nyquist frequency where n is the number of 

pixels between adjacent lines in the image. Reducing the cut-off frequency 

further resulted in corruption of the angular information because the main 

spatial frequency of the plies was being affected – as can be seen in Figure 

6-36 where the filter for 16 pixel spacing is beginning to influence the main peak 

in the 2D-FFT from a 14-pixel line-spacing image.. 

     

Filter cut-off for line-spacing: 1 pixel                 8 pixels                16 pixels 

Figure 6-36. Examples of low-pass spatial filtering applied to the top half of 2D-

FFTs from the box (20 x 42 pixels) in the B-scan on the left, where the line 

spacing is approximately 14 pixels. The cut-off frequencies shown in the 2D-

FFT images correspond to line spacings, n, of (left to right) 1, 8 and 16 pixels. 

Only the top half of the 2D-FFT is used for angular analysis. 

6.6.4  Notch Filtering 

A notch filter is useful for removing the effects of regularly-spaced stitching in a 

non-crimp fabric (NCF). In this case a band-gap notch has to be introduced not 
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only for the fundamental spatial frequency of the stitches, but also for its 

harmonics. The filter has to go to zero for a region of frequencies either side of 

the harmonic in order to remove the stitching effects. Thus the function chosen 

to define this notch filter is... 

 
2

sin1 χ+
 (6-20) 

where χ is limited to a maximum value of +π/2 and a minimum value of -π/2 and 

is defined as follows: 
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where f is the spatial frequency, fS is the stitching spatial frequency, MOD(x/y) 

is a function that takes the remainder of a division of x by y, ψ is the sharpness 

of the filter and η adjusts the width over which the filter has zero value. Figure 

6-37 shows the filter when ψ = 2 and η = 1.05 and Figure 6-38 shows the 2D-

FFT with the filter applied, excluding the notch at zero frequency. 
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Figure 6-37. Graph showing the first two cycles of the notch filter function when 

ψ = 2 (sharpness of the filter cut-off) and η = 1.05 (width of the zero region). 

Figure 6-39 illustrates the benefit of using this filter for the +45º / -45º panel 

from Figure 6-35 with 0º/90º stitching.  
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Figure 6-38.The result of applying the notch filter (centre) to the 2D-FFT from 

Figure 6-35 (left). The notch centred at zero frequency has not been applied, 

but the high-pass filter can be superimposed (right).  

 

Figure 6-39. Comparison of the ply stacking sequence without (top) and with 

(bottom) a stitching notch filter for a panel comprising alternating +45º / -45º 

plies with stitching spaced at 5 mm in the 0º and 2.6 mm in the 90º direction. 

It can be seen that the majority of the 0º/90º indications have been filtered out. 

However, there are now some weak 0º/60º/120º indications, which appear to 

come from the points in the 2D-FFT (see Figure 6-38) that have been missed by 
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the omni-directional notch spatial-filter. This result suggests that it may be 

necessary to to calculate different spatial filters in different directions by 

requesting the operator to input multiple stitching directions and spacings.  

This was investigated next, for the same panel where, in the top half of the 

panel, the stitching is at 5 mm spacing in the 0º direction but at 2.6 mm spacing 

in the 90º direction. Figure 6-40 shows the filters being applied separately and 

illustrates that all the stitching responses (dots in the 2D-FFT) have been 

effectively removed. The result is shown in Figure 6-41 (top) where the mainly 

0º stitching has been removed.  

 

Figure 6-40. Separate 0º/5mm and 90º/2.6mm notch filters applied (right) to the 

same 2D-FFT (centre). 

However, in the lower half of the panel the plies are turned over and round by 

90º, giving 90º stitching at 5 mm spacing. The stitching has not been removed 

in the lower half of the panel because, whilst 2.6 mm is close to a harmonic of 

5 mm, the reverse is not true, so the best option is to filter out 5 mm stitching at 

both 0º and 90º - see Figure 6-41 (bottom). 

In the case of the panel illustrated, the separate stitching filters are very 

successful, but there are instances where this is not the case, such as when 

both fibre directions and stitching directions coincide. 

6.7 Discussion 

In this chapter a complete basis for ultrasonic fibre orientation measurement 

has been outlined, including refinements for improved processing and 

visualisation of the results and avoidance of aberrations.  
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Figure 6-41. Comparison of the ply stacking sequence with (top) separate 

0º/5mm and 90º/2.6mm notch spatial filtering and with (bottom) separate 

0º/5mm and 90º/5mm notch filters for a panel comprising alternating +45º / -45º 

plies with stitching spaced at 5 mm in the 0º and 2.6 mm in the 90º direction. 

Various corrections have been identified, calculated, and applied to the data in 

order to provide unbiased measurements of fibre orientation and further 

validation of these will be discussed in Chapter 7. An important factor is that the 

data should be of adequate quality and a recommended specification for the 

focal characteristics of the transducer have been provided to ensure good 

resolution of fibre tows for in-plane orientation.  

The application of the method to ply stacking-sequence determination, in-plane 

waviness and out-of-plane wrinkling has also been described, paving the way 

for a complete 3D characterisation of the 3D fibre orientation, which will also be 

described in Chapter 7 on Validation and Application. 
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CHAPTER 7 VALIDATION AND APPLICATION 

7.1 Ply spacing and fibre volume fraction mapping 

7.1.1 Rationale 

The research work reported in Chapter 5 went a long way towards solving the 

problems associated with 3D mapping of ply spacing and fibre volume fraction 

(FVF) in composites. There are remaining issues to do with the measurement of 

local resonant frequency, from which the ply spacing measurement is derived.  

These have been taken as far as possible within the current project and will be 

revisited in the near future. In this chapter it is important to address the 

validation and application of the methods to real composite structures. In 

addition, certain assumptions were made in Chapter 5, which need to be 

considered in this chapter in terms of their validity and practicality.  

The equations derived in Chapter 5, Section 5.3.3 for combined ply spacing and 

FVF assessment have been put into a function: CalculatePlySpacingAndFVF() 

within the ANDSCAN software package in order to allow comparison in this 

chapter with data from simulated and real specimens.  

7.1.2 Validation of assumptions 

During the derivation of the equations, the Hashin (1965) equivalent-medium 

mixture rule was used as it has been shown to be valid for long carbon fibres in 

resin. This assumes even distribution of fibres in the resin and such an 

assumption needs ultimately to be tested against real components using micro-

sectioning, but over the size of volume element dictated by the ultrasound beam 

– about 2.5 mm for a typical focused probe, and around one ply in depth – the 

average distribution should be fairly even. 

The other assumption that was made when deriving these equations was that 

fibres do not move laterally within a ply when the ply gets thicker or thinner. This 

assumption needs to be valid over the size of the ultrasound beam – about 

2.5 mm for a typical focused probe – meaning that the average number of fibres 

in a 2.5 mm width of a ply should remain approximately constant. At this stage it 
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is not known if this assumption is valid, but a programme of work is 

commencing at QinetiQ to determine this using analysis of micro-sections. 

The method for ply-spacing and FVF determination assumes that the operator 

inputs ‘as designed’ nominal values for both parameters. However, knowledge 

of these parameters may not be well established, so the method is really 

designed just to measure 3D variations in the two parameters. For this reason 

the software was designed to output %-change in ply spacing or FVF. Even 

then, the UoN/QQ model is required to calculate the ‘as designed’ nominal 

resonant frequency, making assumptions about modulus and density for both 

fibre and resin. Any inaccuracies in the nominal values for ply spacing, FVF, 

modulus or density would merely result in an overall offset in ply spacing and 

FVF across the whole panel. 

7.1.3 Measurement of Resonant Frequency 

Work reported in Section 5.3.4 on the measurement of local resonant frequency 

as a way of determining ply spacing and FVF has shown that this is not 

straightforward. Five different methods have been tested and three of them 

(Frequency of Peak, -6 dB Centre Frequency, and Cross-Correlated Resonant 

Frequency) work well on single simulated thick plies embedded in a stack of 

equally-spaced plies. However, as the randomness in ply spacing increased, 

the tracking of the ply spacings became gradually less accurate, suggesting a 

need to further develop the method in the future for more variable ply spacings. 

In Figure 7-1 and Figure 7-2 an additional dependence of resonant-frequency 

measurement on the incident pulse spectrum is illustrated. When the centre 

frequency of the incident waveform is not exactly at the resonant frequency of 

the plies, both the centre frequency and the pulse-echo bandwidth influence the 

measured peak frequency. For this reason an inverse filter has been developed 

to correct for the incident pulse spectrum before measurement of resonant 

frequency. However, it has been difficult to keep this stable because an inverse 

filter of this kind tends to amplify the high and low frequencies.  

The quantitative 3D profile method for ply spacing and FVF would therefore 

benefit from further work on resonant frequency measurement. 
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Figure 7-1. Dependence of measured resonant frequency of 0.125 mm plies on 

the incident pulse frequency for a simulated incident pulse with Q factor 0.8. 

The blue triangle is the 10 MHz, Q=0.8 point at which this graph crosses the 

one in Figure 7-2. 
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Figure 7-2. Dependence of measured resonant frequency of 0.125 mm plies on 

the incident pulse bandwidth (Q-factor) for a simulated incident pulse with 

centre frequency of 10 MHz. The red diamond symbol is the 10 MHz, Q=0.8 

point at which this graph crosses the one in Figure 7-1. 

7.1.4 Simulated changes in ply spacing and FVF 

A simulated wrinkle is a good example of changes in ply spacing and simulated 

wrinkles were produced using the Gaussian-weighted sine-wave method from 

Appendix G to test the ply spacing and FVF analysis – see Figure 7-3.  
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Figure 7-3. Picture of two simulated 0.5 mm amplitude wrinkles used for testing.  

For FVF determination (Figure 7-4), the Frequency Of Peak method (Section 

5.3.4) was used to determine resonant frequency, with a quadratic fit to the top 

five points of the resonance peak to measure its frequency more accurately. 

         

Figure 7-4. B-scan cross-sections (left) and cross-sections through a 3D profile 

(see Section 5.2.2) of percentage variation in FVF (right). Red (R) represents a 

5% increase in FVF where plies have been squashed together. Blue (B) is a 5% 

reduction where plies have been separated. 50% Hanning windowing was used. 

In the lower part of the simulated specimen in Figure 7-4, a gradual increase in 

ply spacing (reduction in FVF) has resulted in a blue roughly-spherical volume 

in the FVF 3D-profile – shown as blue circular area ‘B’ in the cross-sections. A 

gradual decrease in ply spacing results in an orange-red ‘R’ spherical volume. 

It was found that the gate width used to create the spectrum at each depth is 

quite critical. A gate of just over two cycles of the normal resonant frequency is 

recommended, with a 50% Hanning window applied. Reducing the windowing 

to 20% of the gate results in banding through the depth, as shown in Figure 7-5. 
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Figure 7-5. Image of the 3D profile of FVF showing that with just 20% Hanning 

windowing there is ‘banding’ through the depth as marked. 

7.1.5 FVF and ply spacing changes in a real specime n 

A similar FVF analysis (50% Hanning window on a gate just wider than two 

cycles of the resonant frequency) was performed on experimental data from the 

real wrinkle shown pictorially in Figure 7-6, and the results are in Figure 7-7. 

 

Figure 7-6. A rendered Pseudo-3D image of the surface heights of a ply 2/3 of 

the way through a real specimen, produced using the method from Chapter 6. 

Considering the poor agreement of this FVF method with simulated 30%-

random ply spacings in Section 5.3.4, the FVF profile in Figure 7-7 seems 

remarkably plausible. This is because  ply-spacing variations in a wrinkle are 

not random and the ultrasound resonant frequency can respond gradually 

through the thickness, as for the well-behaved simulated wrinkle in Figure 7-4. 

Banding 

Banding 



 248 

   

Figure 7-7. Experimental data from a real wrinkle in the 18 mm thick composite 

panel shown in Figure 7-6. B-scans (left) and 3D profile of FVF (right). As 

above, red (R) is a 5% increase in FVF and blue a 5% decrease. 

The final example for FVF profiling is the 32-ply pre-preg panel with removed 

and added triangular ply cut-outs, shown diagrammatically in Figure 7-8.  

 

Figure 7-8. Diagram (left) and experimental data from a back-wall echo C-scan 

(right) for the 32-ply panel with triangular ply cut-outs at the pre-cure lay-up. 

This is an extreme case of FVF variation. However, as a measure of ply spacing 

variation, it is a useful example. Where there is a ply cut-out there is generally a 

localised region of twice the ply spacing but with one ply’s worth of fibres, giving 

a halving of FVF (60% down to 30%). This is seen in the FVF 3D-profile (see 

Section 5.2.2) in Figure 7-9 where blue-black regions quantify a 20-30% 

reduction in FVF. But when a ply has been added, the ply spacings even out 

through the thickness giving just a 1/32 increase in FVF (60% to 62%).  

R 
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Figure 7-9. Cross-sections through a 3D FVF profile (see Section 5.2.2) created 

for the 32-ply stack of 0.125 mm plies – see Figure 7-8 - where triangular cut-

outs have been removed at ply 20 (middle row, 2.57 mm depth) and ply 24 

(bottom row, 3.01 mm depth) and extra triangular-shaped plies have been 

inserted. Note that the removed plies result in a reduction from 60% to 30% 

FVF and the added plies result in an increase from 60% to 62% (discussed in 

the main text). 

In all these examples on real structures, the Frequency of Peak method used to 

calculate resonant frequency has been successful in generating plausible 3D 

profiles of FVF, suggesting that ply-spacing randomness is not a major problem. 
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7.2 Porosity and thick resin layer mapping – The Po rosity 

Meter  

The Decomposition Method (Section 5.5) was clearly the most promising 

method developed so far, with potential for becoming a 3D porosity meter. 

Initially the decomposition method was tested using the model to simulate 

waveforms from a 32-ply stack of 0.125 mm plies. Section 5.5 included 

quantitative studies of this work but the current section is looking at the 

implementation in ANDSCAN and is leading to use of the method on data from 

real structures. 

7.2.1 Performance of the Decomposition Method 

The first assessment was made qualitatively to assess cross-talk between the 

porosity and thick-resin-layer coefficients (Section 5.5.12). It is important that 

the coefficients correctly distinguish between the two defect types. The method 

of determining cross-talk is by measuring both coefficients in the presence of 

just one of the defect types. This is illustrated on time-frequency plots from 

ANDSCAN in Figure 7-10 to Figure7-12. The analytical model was used to 

simulate waveforms from a 32-ply stack of 125 µm thick plies separated by 

2 µm resin layers with a thick resin layer before ply 7 and a layer of porosity at 

layer 18. The gate width was the equivalent of 2.2 plies (280 µm) and a Hanning 

taper window was used over 50% of the gate (25% at each end). 

These images seem to show more cross-talk between the two coefficients – 

porosity and thick resin layers – than the quantitative assessment in Section 

5.5.12 (Figure 5-43) would suggest. However, in Section 5.5.12, no windowing 

was used on the gated waveform segment before transforming it to the 

frequency domain. When the windowing was turned off, the analysis of the 

same simulation from Figure7-12 was improved to give a much lower cross-talk 

(see Figure7-13). This suggests that windowing can cause cross-talk between 

the two coefficients, which may be explained as follows. The thick-resin-layer 

basis function is a constant slope in the frequency domain (for frequencies well 

below the resonance of the resin layer), whilst the porosity basis function is a 

series of quarter-wave resonances and anti-resonances. The cross-talk shown 
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in Figure7-12 suggests that windowing causes a response from simulated 

porosity in the thick-resin-layer basis function due to the presence of energy at 

the expected anti-resonances, flattening the spectrum.  

  

Figure 7-10. Simulated waveforms (top) and time-frequency plots (bottom) for 

10 µm thick resin layer at ply 7, 10% porosity (10 µm radius) at ply 18 in a 32-

ply stack, showing the porosity coefficient (left) and the thick resin layer 

coefficient (right) in green overlaid on the time-frequency plot. 

  

Figure7-11. Simulated waveforms (top) and time-frequency plots (bottom) for 

20 µm thick resin layer at ply 7, 20% porosity (10 µm radius) at ply 18 in a 32-

ply stack, showing the porosity coefficient (left) and the thick resin layer 

coefficient (right) in green overlaid on the time-frequency plot. 

Resin Porosity Resin Porosity 

Resin Porosity Resin Porosity 
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Figure7-12. Simulated waveforms (top) and time-frequency plots (bottom) for 

30 µm thick resin layer at ply 7, 30% porosity (10 µm radius) at ply 18 in a 32-

ply stack, showing the porosity coefficient (left) and the thick resin layer 

coefficient (right) in green overlaid on the time-frequency plot. 

 

Figure7-13. The same simulation as in Figure7-12 but without windowing the 

gated waveform before transforming to the frequency domain, resulting in 

reduced cross-talk between the two effects – porosity and thick resin layers. 

Further work is required to investigate and understand this effect and then 

determine how to minimise its effect. Additional trials will determine whether 

windowing is required and, if so, what kind of windowing is optimum. 

Resin Porosity Resin Porosity 

Resin Porosity Resin Porosity 
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7.2.2 Multiple layers of similar porosity levels 

It was found that, due to the way the porosity basis function works, it is not 

sensitive to porosity in layers that are between other layers with the same 

amount of porosity (see Figure 7-14). At present it is not clear how detrimental 

this will be for the 3D porosity meter, because it is thought unlikely that identical 

amounts of porosity will exist in adjacent volume elements. An initial test using 

simulated waveforms with random amounts of porosity (Figure 7-14) suggested 

that, even with 20% variation in porosity, this still does not increase the 

sensitivity to intermediate plies significantly. 

 

Figure 7-14. 30% ± 6% porosity in plies 14 to 18 (ie with 20% randomness in 

the amount of porosity in adjacent plies), showing the porosity coefficient (left) 

and the thick resin layer coefficient (right) in green overlaid on the time-

frequency plot. Note that only the first and last plies really register with the 

porosity coefficient. 

7.2.3 Performance on real components 

Figure 7-15 shows 3D profiles of porosity and thick resin layers generated using 

the Model-based Decomposition Method for the 32-ply panel shown in Figure 

7-8. At present too little is known about the actual 3D distribution of porosity and 

thick resin layers to use this as any sort of validation. However, micro-sections 

suggest there is porosity in regions with high porosity coefficients in this image.  

Porosity Porosity 
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Figure 7-15. 3D profiles (see Section 5.2.2) of the porosity (top images and 

scale) and thick-resin-layer (middle images, bottom colour scale) coefficients. 

Pseudo-3D profiles of the porosity coefficient (bottom). Experimental data from 

the 32-ply panel in Figure 7-8 containing triangular ply cut-outs from which 

porosity has formed. Coefficients are uncalibrated and are in arbitrary units. 
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Micro-CT X-Ray provides a possible method for qualifying ultrasonic 3D 

porosity-characterisation methods. Recent Micro-CT images of some parts of 

this panel show significant amounts of porosity, mainly long tubular voids 

following the fibre orientations. Figure 7-16 has less than 1% average porosity.  

 

Figure 7-16. Micro-CT X-ray data of porosity in a 4 mm x 4 mm x 6 mm section 

of the same 0°/90° specimen. The voxel size is appr oximately 5 µm in width, 

length and height. The large cylindrical feature at the bottom is a hole drilled to 

provide accurate registration of the ultrasonic data with the Micro-CT data. The 

colour map is the through-thickness average porosity from the Micro-CT data. 

In order to ensure that the porosity seen in Figure 7-16 is all that there is, and 

that there is no cloud of small voids, through-thickness summation of pixels 

below a threshold was performed for a range of thresholds. The results, plotted 

in Figure 7-17, and the 3D images at each threshold (eg Figure 7-18) showed 

that only porosity existed below a threshold of 60 [8-bit levels], but that the 

fibres themselves started contributing at thresholds above 60. 
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Figure 7-17. The number of pixels below the threshold as a function of threshold 

level. The sudden sharp rise beyond a threshold of 60 (8-bit) levels is where the 

fibres start to be counted. Below 60, just the porosity is counted.  

 

Figure 7-18. Two Micro-CT images of the same specimen with a threshold 

above 60 levels, showing that fibres are contributing a significant amount, 

except in the ply cut-out region where only resin exists. Both images show a 

vertical stack of plies in perspective view but from different viewing angles.  

Fibres 

Porosity 
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In addition, the back-wall echo attenuation from the ultrasonic data was 

compared with the through-thickness average porosity from the Micro-Ct data in 

order to check that the expected trend would be observed. All current porosity 

inspections are based on this trend and a correlation coefficient (R) of 0.925 is 

observed from the analysis in Figure 7-19. 
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Figure 7-19.  Back-wall echo ultrasonic attenuation compared with through-

thickness average porosity from the Micro-CT data. The correlation coefficient R 

is 0.925. 

Comparison of a 3D analysis of the porosity in the Micro-CT data with the 3D 

profile of the decomposition porosity coefficient gave very poor correlations of 

less than 0.1. When looking at just individual plies, some of the plies gave 

correlation coefficients as high as 0.5. Initial observations suggest that, in most 

cases, the decomposition porosity coefficient is acting as a differential 

parameter – responding to an increase or decrease in porosity rather than an 

absolute porosity level. This is confirmed by the work of Pinfield et al (2010). 

The ongoing analysis work will concentrate on using decomposition to 

determine the rate of increase or decrease in local porosity levels. Using an 

integration algorithm, it may then prove possible to reconstruct the actual 

porosity levels at each depth. 
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7.3 Fibre Orientation Mapping 

7.3.1 Background 

Chapter 1 contained the background information on the requirement for fibre 

orientation mapping in polymer matrix composites, Chapter 3 reviewed previous 

work and Chapter 6 contained the current methodology for fibre-orientation 

mapping. This chapter describes how it has been applied to carbon fibre 

composites to solve three different quantitative inspection requirements: 

• Ply stacking sequence 

• In-plane waviness 

• Out-of-plane wrinkling 

Most of the work on optimising the parameters for data acquisition for in-plane 

fibre orientation was carried out by using the ply stacking-sequence analysis 

method as it is very sensitive to changes in parameters.  

7.3.2 Accuracy of in-plane fibre orientation measur ement. 

Appendix H contains an accuracy assessment for in-plane fibre orientation. The 

results of this analysis are incorporated in the following recommendations for 

optimised parameters. In summary, a region of size at least 100 x 100 pixels is 

required , containing at least 20 fibre tows, to obtain an accuracy of better than 

±0.25º. This is generally achievable for ply stacking-sequence measurements, 

but not for in-plane waviness where a size of just a few fibre tow widths is the 

maximum in order to avoid flattening the peak in the angular deviation. In 

simulations of waviness with a wavelength of 10 to 20 fibre tows, use of a 

square region 5 fibre-tows wide resulted in flattening of the 45º peak deviation 

equivalent to a 4% underestimate, with a ±2º uncertainty. 

7.3.3 Accuracy of out-of-plane wrinkling measuremen t. 

Appendix H contains an initial accuracy assessment for out-of-plane wrinkling 

but ongoing work beyond this project will be required to complete it. The angular 

accuracy depends on the wrinkle wavelength, the box size used to define the 

analysis regions and the number of pixels in that box. As with in-plane 

waviness, the box needs to be narrow relative to a wrinkle wavelength in order 
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not to spatially-average the peak angle, but it needs to be as many pixels wide 

as possible to improve the accuracy of the measurement of angle. Thus a small 

incremental step size in the original scan is beneficial as this maximises the 

number of pixels per wrinkle wavelength.  

The number of plies included in the box height is also important. A good 

compromise includes 4 plies in the box height and 50 pixels in the box width, 

provided this is less than a quarter of a wrinkle wavelength. Then the accuracy 

of the ply angle should be within ±1°. 

7.4 Ply Stacking Sequence 

7.4.1 Acquisition and analysis parameters and proce dure 

Because of the ability of ply stacking-sequence analysis to rapidly demonstrate 

improvements in the output of the process, a major part of the investigations 

has been focused on this method. Some of the evaluation was performed by a 

third party under the supervision of the author. Aspects requiring investigation 

were divided into three key areas, as follows: 

1)  Probe frequency 

2)  Ultrasonic acquisition parameters 

3)  Analysis parameters 

7.4.1.1 Probe frequency: improving stacking sequence resolution at depth 

As expected, use of a lower-frequency ply resonance increases the depth to 

which adequate stacking-sequence information can be generated. The first 

resonance is not available for stacking sequences because this does not show 

all the ply reflections and averages the effects of four plies. Thus the lowest 

available resonant frequency is the second resonance, which is at 

approximately 6 MHz for a panel with 0.25 mm ply spacing (4 plies/mm), and 

approximately 12 MHz for 0.125 mm spacing (8 plies/mm). 

It has been confirmed, using piezo-composite focused probes centred at 

various frequencies, that using the second resonance frequency produces an 
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optimum compromise between high-resolution stacking-sequence images from 

higher frequencies and better depth penetration from lower frequencies.  

7.4.1.2 Acquisition parameters 

As a result of the above accuracy analysis and probe frequency trials, the 

recommended acquisition parameters are:  

• a scan pitch of between a half and a fifth of the width of the fibre tows, ie 

between 0.4 mm and 1.0 mm for fibre tows 2.0 mm wide. 

• at least 100 x 100 waveforms acquired in the scan area, containing 

between 20 and 50 fibre-tow widths in each direction. 

• a probe frequency close to the second ply resonance frequency: 6 MHz 

for 0.25 mm ply spacing (4 plies per mm) or 12 MHz for 0.125 mm ply 

spacing (8 plies per mm).  

• a DAC (depth-amplitude correction) applied at acquisition, prior to 

digitisation, to compensate for attenuation, allows better penetration (see 

Section 7.4.2 below). 

The limit on probe frequency means that stacking sequence and waviness 

measurements can only be achieved down to approximately 9 mm in 0.125 mm 

ply (8 plies per mm) material,  18 mm in 0.25 mm ply (4 plies per mm) material, 

or 13 mm in 0.070” (0.175 mm) ply material. However, if 0.5 mm plies are used 

for material thicker than 18 mm then it would be possible to image ply 

orientation down to 36 mm in this material. 

7.4.1.3 Analysis procedure 

The following analysis procedure was found to give the best resolution stacking-

sequence images and in-plane waviness C-scans, and was programmed in to 

ANDSCAN as an automated procedure: 

• Use the modulus of the waveform combined with its Hilbert Transform (see 

Appendix D) before processing the C-scans, removing phase effects. 

• Set a gate width equal to one sample point in the waveform, with a 0% 

overlap so each sample point produces one layer in the 3D profile. 
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• Use a 100% scan magnification - anything higher wastes analysis time.  

• A reasonable compromise in accuracy and analysis time is achieved using 

a 120 x 120 pixel area for analysis. This achieves ±0.25º accuracy. 

• Only zero pad to the next power of two larger than the sample size (ie 128 

x 128 for the recommended sample size). 

• Use a Hanning taper over 20% of the scan, as a rectangular window. 

• Use Max-Min normalisation for displaying angular power distribution. 

• Use a colour scale to dramatically improve stacking-sequence imaging 

• Use a logarithmic distribution of colours and variable dynamic range. 

The benefit of these optimum settings can be seen in the example in Figure 

7-20 for a 25 MHz focused probe scan of a 16-ply stack of [(45°/135°/90°/0°) 2]s 

lay-up with a ply spacing of 0.125 mm (8 plies/mm), over a honeycomb core.  

  

Figure 7-20.  Ply stacking sequence for a 16-ply laminate (note back-wall at 

2.0 mm depth) over honeycomb (note 0°/60°/120° angl es). A 25 MHz focused  

probe was used. Comparison of images prior to optimisation (left), with the 

benefits of the optimisation and software refinements (middle), and the correct 

lay-up shown diagrammatically (right). 

The optimisation improvements have made it possible to determine stacking 

sequence to a much greater depth, and even in the most difficult ply lay-ups. 

0         45         90      135 
    Orientation (degrees) 
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7.4.2 Ply Stacking Sequence Depth Penetration 

Depth of penetration is dependent on the frequency, because visco-elastic 

attenuation in the resin is frequency-dependent, as is scattering from the fibres 

and any porosity. However, the optimum frequency for determining ply stacking 

sequences is the second resonance (see above) which is approximately 6 MHz 

for ply spacings of 0.25 mm and 12 MHz for ply spacings of 0.125 mm. Thus it 

will be possible to penetrate deeper in the thicker ply materials, which is 

advantageous as the thicker plies are generally used for thicker structures.  

In order to counter some of the attenuation effects a DAC (depth-amplitude 

correction) can be applied, which is a time-dependent gain. If this can be done 

at acquisition time, prior to digitisation, then it does not get applied to digitisation 

‘noise’ and hence improves the signal-to-noise ratio at depth if digitisation is the 

most significant noise source. An example of the ability of the technique to 

determine errors in stacking sequence to 15 mm depth is shown in Figure 7-21. 

 

Figure 7-21. Stacking sequence in a 15 mm thick laminate with 0.25 mm plies, 

shown photographically (left) and as an ultrasonic ply stacking sequence 

(middle) with stacking sequence listed on the right - incorrect lay-ups indicated 

in red. The ‘as designed’ stacking sequence is shown diagrammatically (right). 

The probe centre frequency was 5 MHz. A DAC was applied at acquisition.  

0         45         90      135 
    Orientation (degrees) 
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7.4.3 Automated calculation of ply stacking sequenc e 

The key to automated determination of the fibre angle in a particular ply is first 

to determine the depths of the ply centres. This has been achieved by detecting 

the depth of the hand-over of the peak amplitude from one angle to the next. 

These hand-over depths are not necessarily the ply interface depths due to 

varying reflected amplitudes from each interface. However, the centres of the 

plies can be assumed to be located close to the mid-depths between these 

hand-over depths. At the ply centre the peak angle can then be determined and 

this reliably identifies and measures the fibre angle provided the data has been 

acquired and analysed using the above optimum parameters. An example of 

this automated analysis is shown in Figure 7-22, where the hand-over depths 

are shown as horizontal lines and the selected ply angles are joined by a zig-

zag line. The measured ply angles are shown as a column of numbers colour-

coded based on the four expected orientations . 

 

Figure 7-22. An example of ply stacking-sequence determination, where the ply 

interfaces have been detected automatically and the Quasi-isotropy and 

balance depth are plotted on the right (see later discussion).  
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7.4.4 Polar displays summarising ply stacking seque nce. 

Also illustrated in Figure 7-22 is a method for summarising the results of the ply 

stacking-sequence analysis in terms that would be understood by materials 

scientists and composite stress engineers.  The two most important design 

criteria for the lay-up of a monolithic composite panel are the number of plies at 

each angle, and the order in which they are positioned in the sequence.  

The number of plies at a given angle will determine the stiffness and strength in 

that direction. Often a panel will be designed to have quasi-isotropic properties 

by putting equal numbers of plies at each of the four angles. The top-right polar 

plot in Figure 7-22 displays the extent of quasi-isotropy of the measured 

stacking sequence by plotting a light-blue line joining points defined by the fibre 

angle and the proportion of plies at that angle. This quasi-isotropic stacking seq-

uence (all four angles represented in equal numbers) should have all points on 

the mid-radius circle marked as ¼ of plies on the diagram in Figure 7-23 (left). 

 

Figure 7-23. Diagram explaining the polar plots used to asses the extent of 

quasi-isotropy (left) and the balance depth (right). 

The order of plies in the stacking sequence is critical and it is usually desirable 

to have a balanced stacking sequence – where the mid-plane of the laminate is 

a plane of symmetry and all ply angles are repeated in the opposite half of the 

panel depth, at the same distance from the mid-ply. A method of displaying the 

extent to which the panel is balanced (see bottom-right in Figure 7-22) is shown 

diagrammatically on the right of Figure 7-23. The mean (or ‘balance’) depth of 
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plies at a given angle is plotted as the radius on a polar diagram where the mid-

radius is mid plane, the centre is the front surface of the panel, and the outer 

circumference is the back of the panel. Hence a balanced stacking sequence 

would have all points on the mid-plane circle at mid-radius, as illustrated in 

Figure 7-24 using some real data. 

 

Figure 7-24. Balance-depth polar plots (right) for a balanced (top-left) stacking 

sequence and an unbalanced (bottom-left) stacking sequence. The mean depth 

(or ‘balance depth’) for each angle is shown as a cross on the diagrams. 

Finally, in Figure 7-22,  the actual mean ultrasonic amplitude at each angle is 

plotted as the radius of a background colour map in the quasi-isotropy plot (top-

right) and the weighted-mean (or centroid) depth of the ultrasonic amplitudes as 
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the radius at each angle on the balance-depth plot (bottom-right). The latter 

display needs some refinement because the low signal-to-noise angles 

(between the four main ply orientations) are currently included and tend to 

dominate the display. It may be necessary to use colour, where the brightness 

increases or the colour changes with amplitude at the angle, as in Figure 7-25. 

 

Figure 7-25. Same data as for Figure 7-24 but with modified balance-depth 

polar plot (bottom-right) using colour to show which ply angles are present. 

7.5 In-plane Waviness 

7.5.1 In-plane waviness evaluation 

Acquisition parameters and generation of a 3D-profile layered image from the 

data is covered under the stacking-sequence work in Section 7.4. Conversion of 

a C-scan into a waviness map is required to quantify the effects observed by 

eye in the C-scan. To do this, a box is passed over the scan with some 

overlapping, and the angular distribution is assessed at each box location as 
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described in Section 6.2. For in-plane waviness, pixels in the C-scan usually 

have an aspect ratio of unity so this is not as significant an issue as for out-of-

plane waviness. 

Appendix H covers the effect of the box size on the accuracy of the fibre 

orientation measurements. For the only specimen with in-plane waviness 

available for this project (Figure 6-27), the best parameters were determined 

experimentally to be: a 5 x 5 mm box with 60% overlap and a rectangular 

Hanning window over 40% of the scan.  

 

C-scan In-plane waviness image Combined C-scan + 
waviness 

 

Figure 7-26. In-plane waviness image (middle) with the C-scan from which it 

was generated (left) and a combination of the two images (right). A 5 x 5 mm 

box size was used with 60% overlap and 40% rectangular Hanning windowing. 

At this stage, the selection of analysis parameters can be guided by the 

accuracy work in Appendix H, but it is an ongoing exercise to optimise these 

parameters for a range of fibre-tow widths and fibre wavelengths. 
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7.5.2 In-plane waviness visualisation 

The combined orientation (colour) and C-scan (greyscale) image shown in 

Figure 6-27 is a very convincing and useful method of presentation. The colour 

scale still gives quantitative orientation information, whilst the greyscale gives 

qualitative confirmation that the processing is correct to give that orientation 

information. 

This method of combining quantitative colour and qualitative greyscale images 

was then implemented in the ANDSCAN software via 24-bit RGB colour 

bitmaps where previously only 8-bit Palette bitmaps were available – see Figure 

7-27. Both scales can be modified independently in terms of brightness (offset) 

and contrast (gain) in order to produce the desired result, and quantitative 

information can be gained from the colour scale as the cursor is moved over 

any location, or by analysis of the scan. 

 

Figure 7-27. Example of the ANDSCAN implementation of the combined 

quantitative colour and qualitative greyscale images. The scales can be 

adjusted by dragging either end of either scale in the window on the right. 
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7.5.3 Application to 3D in-plane waviness 

By performing this analysis for every layer in a 3D profile of amplitude response 

from a laminate, the 3D in-plane waviness can be visualised. This is shown in 

Figure 7-28 for a nominally ‘good’ 16-ply quasi-isotropic composite laminate – 

the same one used for Figure 7-25. 

 

Figure 7-28. An example of a 3D in-plane waviness profile  for a composite with 

no simulated waviness, showing the different ply angles in the cross-sections 

(top and left). 

Experience with other in-plane waviness samples suggests that they often also 

contain out-of-plane wrinkling, resulting in cross-talk between plies – plies of a 

different angle encroaching on the layer being imaged. The future 3D method 

will need to use out-of-plane wrinkling information (see next section) to pre-

determine the depth of each ply and track the plies through the structure to 

produce in-plane C-scans of each ply on which in-plane waviness can be 

determined. 
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7.6 Out-of-plane Wrinkling 

7.6.1 Out-of-plane ply-wrinkling visualisation 

Figure 7-29 shows an example of a B-scan with the ply inclination analysis 

(Section 6.2) applied in ANDSCAN. As with in-plane waviness, it is 

advantageous to present an image of combined quantitative colour orientation 

overlaid with qualitative greyscale image of the wavy plies (Figure 7-29(d)). This 

has also been implemented in ANDSCAN, this time in the cross-section 

windows, as 24-bit RGB bitmaps, again with both colour and greyscale scales 

(Figure 7-29(c)) adjustable. 

 

 

Figure 7-29. Example of the ANDSCAN implementation of qualitative greyscale 

for B-scan (a) combined with a quantitative colour ply orientation (b) image of 

out-of-plane waviness. The combined image (d) uses the colour and greyscale 

scales shown in (c)  and is still quantitative in terms of ply angle. 

7.6.2 3D Mapping of Ply Wrinkling 

7.6.2.1 Horizontal and Vertical Ply Angles 

The above analysis of horizontal and vertical B-scans produces values for the 

horizontal and vertical ply angles, α and β respectively as shown in Figure 

7-30. These values are sufficient to fully describe the local inclination of a flat 

plane and they can be calculated at every 3D location in the structure, 

 (a) (b) (c) (d) 
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populating two 3D arrays, one for α  and one for β. These are stored in two 

channels in ANDSCAN. 

 

Figure 7-30. Diagram showing the calculation of horizontal (α) and vertical (β) 

ply angles, and then peak ply angle θ and azimuthal direction φ. 
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3D data is easier to visualise in videos and animations than in a paper report, 

but, for two simulated wrinkles, the horizontal and vertical angles are shown in 

Figure 7-31 as cross-sectional slices through the 3D data. 

 

Figure 7-31. Cross-sections through horizontal α (top and middle) and vertical β 

(bottom) ply angles as 3D data sets for two simulated wrinkles. The top cross-

section is along a horizontal line and the left cross-sections are along a vertical 

line . Also shown (top left) is a pseudo-3D image of the simulated wrinkles 

showing their orientation. 
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7.6.2.2 Measurement of Ply Wrinkles 

Although two 3D profiles of α and β are not necessarily the generic parameters 

required for quantification of wrinkles in any direction, they are sufficient to 

generate whatever other parameters are required. It is possible to measure the 

wrinkle severity (peak angle), wavelength and volume for wrinkles lying in the 

vertical or horizontal directions of the scan, as shown in Figure 7-32. 

 

Figure 7-32. An example of quantification of the horizontal and vertical wrinkles 

in the simulated data using the α and β parameter 3D profiles. The extent of 

the wrinkled volume is represented by a cuboid, marked visually on each of the 

cross-sections as a box. Measurements appear in the window at the bottom. 
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What follows is the conversion of these two 3D profiles of α and β into other 

profiles that more closely match the required metrics for ply wrinkles. 

7.6.2.3 Peak Ply Angle and Direction 

In order to transform the two 3D orthogonal ply-angle data sets (α and β) into 

two 3D data sets giving the local peak angle of inclination of the plane θ, and its 

azimuthal direction φ (see Figure 7-30), it is necessary to transform the data as 

follows.  

If I = (x,y,z) is the unit vector perpendicular to the inclined plane of the ply at the 

origin (see Figure 7-30), then: 
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 and from these equations, the following expressions can be derived: 
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The angle θ  is always positive (see the analysis of simulated wrinkles in Figure 

7-33 top and middle) and is the angle of inclination of the ply at each 3D 

location. In fact, the major benefit of the transformation into these θ and φ 

parameters is that the peak ply angle of inclination, regardless of direction, can 

more easily be determined by finding the peak of the 3D profile of θ. This 

means that wrinkles that do not align with the x or y axes can now be accurately 

measured as well. An outcome of this transformation is that the azimuthal angle 

φ  undergoes 180º inversions as the wrinkle is traversed from positive to 

negative slopes. This effect can be easily seen in Figure 7-33 (bottom).  
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Figure 7-33. Angle of inclination θ  (top and middle profile, and left-hand colour 

scale), and azimuthal angle φ (bottom profile and right-hand colour scale) for 

the two simulated wrinkles. 
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7.6.2.4 Calculation of ply surface depth. 

Although the actual deviation of the ply depth is unlikely to be a parameter that 

is required quantitatively, it is extremely useful for visualisation of wrinkles (see 

Figure 7-34). Such visualisation is important for describing the wrinkles to 

composites structural experts who have the job of deciding on concessions. 

 

Figure 7-34. Surface height 3D profile showing deviation of the ply depth. 
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The surface depth profile is calculated from the horizontal and vertical angles α 

and β  by first converting angle to gradient for an in-plane slice of each 3D 

profile and then integrating them both before combining the two results. The 

integration is undertaken in the frequency domain in order to use the angular 

information from the whole in-plane slice. The result is a process that is robust 

and copes well with missing data from angles of inclination that are too steep to 

measure. Other integration methods that worked from point to point proved 

unreliable because multiple small rounding or digitisation errors rapidly build up 

into ramps and large deviations in surface height. 

7.6.3 Illumination of rendered surfaces. 

Two methods for illuminating a rendered surface have been tested. The first 

determines a scalar quantity representing brightness by taking the dot product 

of I with an ‘illumination’ unit vector L, where   -1 is black and +1 is white. An 

alternative method uses an ‘embossed’ kernel-processing method to determine 

local slope in a particular direction. The latter method (Figure 7-35 and Figure 

7-36) is much faster but does not allow different vertical angles for the 

illumination direction. 

 

Figure 7-35. Two different rendered image views of a ply wrinkle in a real 

component showing the 45° illumination direction. 
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Figure 7-36. Two examples of ply surface height 3D rendered images with 

illumination. 

7.7 Applications summary 

Examples have been given of the 3D characterisation toolset developed in this 

project applied to both simulated and real composites. Further work is still 

required on the validation of 3D porosity, ply spacing and fibre volume fraction 

mapping. The fibre orientation mapping methods (ply stacking sequence, in-

plane waviness, and out-of-plane wrinkling) have been validated using 

simulations and now need extensive validation against real components that will 

need to be sectioned in order to determine what really exists in them.  

During the course of this project there has been interaction with manufacturers 

of composite aerospace components and there is considerable interest at 

present in the unique capability for ply-wrinkling characterisation in order to 

ensure complex components have no internal wrinkling. The uniqueness and 

impact of this work is evidenced by the winning of several related contracts by 

the author’s employer, QinetiQ, including a key one in the USA where the 

invitation to tender was very widely circulated. 
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CHAPTER 8 DISCUSSION AND CONCLUSIONS 

8.1 Initial position and motivation 

At the start of this project, in 2005, most inspection of composite materials at 

manufacture and in service was already being performed using ultrasound 

because of its ideal properties. In particular, wavelengths for ultrasound in the 

low-Megahertz frequency range are of the order of a composite ply thickness. 

Also, achievable beamwidths of a few millimetres provide adequate detection 

and sizing of the kind of defects found at manufacture and in service.  

Despite considerable research effort during the period from the early 1970s to 

2005, it was apparent that the real benefits of ultrasound inspection had still not 

been fully exploited for composites. For example, most inspection was 

performed using analysis of either A-scan waveforms, or two-dimensional in-

plane C-scan maps. These C-scans generally provided a through-thickness 

average parameter representing the attenuation (or insertion loss) for the whole 

specimen. A variant of the C-scan, the Depth-scan (or D-scan) did plot the 

depth of a signal, and Pseudo-3D images of the same data were developed in 

the 1990s, but depth-dependent information was rare and full B-scan cross-

sections were rarely used.  

The main reason for this predominance of through-thickness average 

information was the complexity of the response of the laminated structure to 

ultrasound. Attempts to understand this response and generate parameters that 

accurately reflected structural variations in the laminate had merely shown how 

difficult the problem was.  

Another impasse in the development of composite inspection methods was the 

inability to provide measurements of actual material properties and thereby 

remove the need for expert NDT interpretation of results. This has been a 

constant source of frustration for manufacturers of composite materials who 

have repeatedly requested advanced automated analysis methods, which can 

output quantitative plots of real material properties, requiring no interpretation. 



 280 

During the 1990s the author and other research teams, had begun to explore 

the response of composite plies and resin inter-ply layers to ultrasound. In 

parallel, the Applied Ultrasonics Laboratory at the University of Nottingham had 

been developing an understanding of the scattering of ultrasound from small 

particulate inclusions in liquids and solids, and of the propagation of ultrasound 

in multi-layered adhesively-bonded structures. The current project was thus 

established as a synergistic collaboration aimed at extending the inspection of 

composites to include three-dimensional quantitative characterisation of the 

laminate itself and any deviations from the designed structure in terms of 

porosity, ply spacing, fibre-volume fraction, ply stacking sequence, in-plane fibre 

waviness and out-of-plane ply wrinkling. 

This project has been necessarily broad in terms of the range of material 

properties considered but just one model, one signal-processing method and 

one image-processing scheme sufficed for all of these. 

8.2 Approach 

Early in this project it was realised that a multi-layer inhomogeneous-medium 

normal-incidence ultrasonic propagation model would be required in order to 

understand the interaction of ultrasound with composite laminates. This model 

would also prove extremely useful for testing various approaches and the 

validity of relationships between potential ultrasonic parameters and material 

properties. If possible, a fast analytical model was required so that it could be 

built into the code for calculating material properties if necessary. This has 

transpired to be an essential requirement for decomposing the complex 

response into various contributory material characteristics. 

At this stage the research branched into two approaches, one using spectral 

analysis of small 3D voxels to determine ply spacing, fibre-volume fraction and 

void-volume fraction (porosity), and the other using 2D Fourier analysis of 

cross-sectional images to determine local fibre-tow and ply angles. The above-

mentioned model proved beneficial for understanding both approaches, but 

additional simulation methods were required for validation of the fibre-waviness 

and ply-wrinkling methods. 
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Validation of the methods has relied heavily on simulation, mainly because of 

the difficulty of obtaining actual 3D information about real laminates. Only 

towards the end of the project was Micro-CT X-ray imaging beginning to provide 

some real validation information for porosity measurement, and photo micro-

graphic sectioning for fibre volume fraction and ply wrinkling. Several validation 

programmes are now commencing with composites manufacturers and end 

users now that interest in the 3D characterisation methods has been aroused. 

8.3 The wave propagation model 

A multi-layer wave propagation model was required from the start of this project 

to understand the complex response of composite laminates to ultrasound 

propagation, but how comprehensive would that model need to be?  

Even before the project started it was clear that only normal-incidence 

ultrasound inspection would be acceptable for manufacturers of composites 

because there is only time in the production cycle for one inspection of the 

structure. Whilst full-waveform data had rarely been captured up to this time, 

the ramp-up to Boeing 787 manufacture – the first wide-body civil aircraft made 

largely from composites – saw full-waveform data being captured as standard. 

Previous work by the author had suggested that the thickness of the thin resin 

layer between composite plies was very important in governing the local 

reflection coefficients. 

These factors bounded the model requirements and resulted in the need for a 

normal-incidence propagation model that could cope with multiple layers 

comprising fibre-resin mixtures alternating with thin resin layers. It was 

considered adequate to model each composite ply as an effective 

homogeneous medium with properties calculated using one of the mixture rules 

developed for modelling material properties in the 1960s-1970s. The use of 

normal-incidence ultrasound and the transversely-isotropic (see Appendix F) 

nature of each ply greatly simplified the model. 

The importance of the thin resin layer between plies led to a decision to build a 

simple implementation of the well-established transfer-matrix approach around 
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the composite-resin-composite three-layer interface. The thickness of the resin 

layer and any visco-elastic attenuation were included by making the reflection 

and transmission coefficients of the three-layer interface complex. Thus the 

basic building block was an interface element with complex normal-incidence 

frequency-dependent reflection and transmission coefficients calculated for both 

propagation directions. Any number of plies could then be modelled by adding 

additional elements and the properties of each ply could be varied using the 

mixture rules to pre-calculate the effective moduli and density. A study of the 

literature on mixture rules for composites resulted in the adoption of two options 

for fibre-resin mixture rules. The first option was a simple volumetric rule whilst 

the second used Hashin (1965) for anisotropic fibres in resin. 

The model was initially built and tested in MS Excel in order to understand the 

importance of various parameters on its performance. Then the model was 

easily ported into MS Visual C as a dynamic-link library, which was callable 

from ANDSCAN or from MATLAB for testing purposes.  

This basic model sufficed for understanding the effects of ply thickness, resin-

layer thickness and fibre volume fraction, but then it was necessary to include 

the effects of porosity. Initially porosity was incorporated as a simple volumetric 

mixture rule and an additional frequency-dependent attenuation in the 

propagation using an adaptation of the Adler et al (1986) formulation for forward 

scattering. Then the Hashin (1962) mixture rule for spherical inclusions in a 

solid was incorporated and finally the Pinfield et al (2010) model was added, 

which condenses the integrated backscattering from randomly distributed pores 

into a complex frequency-dependent effective impedance for a porous layer. 

Throughout the development and use of the model it has gradually increased in 

its versatility and it has also found applications in modelling adhesive-bonded 

joints in metals and metal-composite hybrid laminates such as GLARE. As well 

as forming the basis of the model-based decomposition method (see below) it 

has also been incorporated into a multi-dimensional optimisation method 

developed by a colleague of the author. In addition, the concept of the three-

layer interface building-block was successfully adapted for electromagnetic 

wave (microwave) propagation in multiple dielectric layers by another colleague. 
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8.4 3D characterisation of composites 

8.4.1 Isolation of responses 

It was quickly realised that the key to the localised 3D response of a composite 

to ultrasound lay in the frequency response. It is only in the spectra that the 

variations in response due to changes in layer thicknesses, fibre volume fraction 

and porosity can be observed.  

The multi-layer composite laminate behaves towards ultrasound propagation as 

multiple resonators in series. For carbon-fibre composite the reflection 

coefficients are small because the transverse acoustic impedance of a carbon 

fibre is similar to the resin matrix. This means that multiple reflections are very 

much second- or higher-order effects, which do not result in much cross-talk 

between plies in the structure. However, glass fibres have a much higher 

stiffness than resin, resulting in much higher reflection coefficients, more cross-

talk between plies, and smaller overall transmission through the structure. This 

latter effect is well-known in the NDT community but is commonly (and 

erroneously) thought to be the result of higher intrinsic absorption in glass-

fibres, rather than stronger internal reflections. 

Decomposing the ultrasonic response of the structure falls conveniently into two 

stages. Firstly, a porosity assessment can be applied because this is most likely 

to cause a structurally significant defect. Only if the porosity is less than the 

minimum reportable threshold is it important to move on to assess ply spacing 

or fibre volume fraction. Often it is the case that any zone in a structure is only 

susceptible to either porosity or ply spacing / fibre volume fraction, but rarely 

both. Having said this, it transpired during the project that the porosity 

assessment requires a knowledge of the local ply spacing and fibre volume 

fraction, so it may be that all parameters will need to be determined at every 3D 

voxel. 

8.4.2 Ply spacing and fibre volume fraction 

Ply spacing can be determined from a measurement of local resonant 

frequency, but if accompanied by a fibre volume fraction change, the resultant 
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variation in velocity will also contribute to the modification of the resonant 

frequency. In order to extract both ply spacing and fibre volume fraction from a 

single measurement of resonant frequency it is therefore necessary to make an 

assumption that links these two material properties. The chosen assumption 

was based on experience with viewing optical micrographs. It is that fibres 

rarely move laterally in a laminate enough to change the total number of fibres 

in the width of an ultrasound beam, even a focused beam. There may be a 

need to provide a correction for this assumption in radius regions for example. 

Using this assumption, which is in the process of being validated by quantitative 

assessment of many micrographs, it has been possible to derive analytical 

expressions for percentage variations in both ply spacing and fibre volume 

fraction in terms of resonant frequency changes. The propagation model has 

proved invaluable in this task, both for validation purposes and also as part of 

the algorithm to determine the baseline ‘as designed’ resonant frequencies. 

Initial validation trials suggest that the algorithm works well for either single-ply 

changes or gradual variations in the structure, such as from ply wrinkling, but 

totally random fluctuations in ply spacing are more difficult to track. This 

limitation is thought to be due to the cross-talk between plies – effectively the 

overlap of ring-down resonances in adjacent plies. A programme is just starting 

using multi-dimensional optimisation methods combined with the propagation 

model to better track random fluctuations in ply spacing. 

8.4.3 Porosity and thick resin layers 

Two methods were tested for quantifying local 3D porosity. The first is based on 

measuring the backscattered energy from the voids and assumes a monotonic 

relationship between the backscattered energy and the void volume fraction. 

According to the literature, combination of the received signal with its Hilbert 

Transform to form a complex analytic signal, and then using the modulus of this 

signal, should result in a good measure of backscattered energy. This method 

was implemented but unfortunately there were two problems: 1) other sources 

of backscattered energy such as normal ply interfaces or enhanced reflections 

from thick resin layers, and 2) the interference effect between multiple 
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scatterers (Pinfield et al, 2010) resulting in a reduction in backscattered energy 

from multiple porous plies (thick porous layers). 

The second method was aimed primarily at differentiating between porosity and 

thick resin layers, both of which give a strong amplitude response but differ in 

the frequency domain. Thickening of a single resin layer merely increases the 

amplitude of the reflection at that interface so the spectral response does not 

change shape or phase, just amplitude. In contrast, a small amount of porosity 

in a carbon-fibre ply is sufficient to lower the effective acoustic impedance 

below that of resin, changing the sign of the reflection coefficients and 

converting a half-wave resonance into a quarter-wave resonance for the porous 

ply. Thus, all the single-ply resonant frequencies increase as the porosity level 

increases, until they reach the frequencies of the previous minima (anti-

resonances) for 5% porosity or more. The assumption in this analysis is that 

porosity is confined to a single ply and is homogeneously, but randomly 

distributed in that ply. 

In order to decompose the single-ply frequency response at each volume 

element into contributions from 1) a normal ply, 2) a thick resin layer, 3) porosity 

and 4) noise, four basis-function spectra are generated using the model and 

singular value decomposition (SVD) is used to determine the coefficients of 

each basis function contributing to the measured response. This frequency-

domain decomposition method was refined by testing using model-simulated 

waveforms with different kinds of defects. It is necessary to apply the incident 

spectrum to each basis function and adaptively modify the porosity basis 

function in order to accurately measure porosities of less than 10%. Depth 

dependence can be corrected for by using a different incident spectrum for each 

depth, calculated using the model in transmission-coefficient mode. Using 

simulated waveforms the decomposition method was shown to exhibit minimal 

cross-talk between the porosity and thick-resin coefficients, successfully 

differentiating between the two defect types and quantifying them up to 80% 

porosity or 50 µm resin layers. 

During further testing it was found that if the porosity basis function is created 

using the model for a single porous ply between adjacent non-porous plies, then 
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it becomes insensitive to multiple porous plies, only detecting the first and last 

porous ply. This was confirmed using Micro-CT X-ray analysis of a real porosity 

specimen. Such a basis function results in a differential porosity coefficient, 

which is only sensitive to increases or decreases in porosity. The next and 

ongoing stage of this research is to generate a basis function that can 

differentiate between increases and decreases in porosity levels. Such a 

coefficient could be plotted as a function of depth in the structure and integrated 

to determine absolute local porosity levels. 

Calibration of the output coefficients from the decomposition will be required 

before the method can be implemented and the first stage of this will be an 

assessment of what material and inspection parameters the calibration is 

dependent on. This work has been started and is ongoing. 

8.5 3D fibre orientation in composites 

8.5.1 Ply stacking sequence 

At the start of this project the author had previously established that ply stacking 

sequence can be determined by producing amplitude C-scans at each depth in 

the structure (for each time in the waveform) and imaging the variations due to 

fibre tows (bundles of fibres as laid down in the ply). The actual mechanism for 

seeing these fibre tows in C-scans is that the primary reflector – the resin inter-

ply layer – varies in reflection coefficient as a function of resin-layer thickness, 

which in turn varies following an undulating pattern dictated by the original fibre 

tows in the ply. It is thought that the undulations from both interfaces adjacent to 

a ply constructively interfere, giving a strong impression in the C-scan from the 

fibre-tow direction of that ply. 

This original ply stacking-sequence method (Smith and Clarke, 1994) was 

enhanced during the current project using the 2D-FFT method of Hsu et al 

(2002). Following numerous improvements, an automated method has been 

developed for determining the ply stacking sequence from a full-waveform scan 

and presenting this in a form that is understood by structures and design 

engineers, without the need for NDT interpretation. The technique has been 
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shown to work down to at least 15 mm depth when plies are 0.25 mm in 

thickness, and deeper for thicker plies. An accuracy assessment has shown 

that ±0.25° accuracy is possible provided at least 100 x 100 pixels are present 

in each C-scan and this contains at least 20 fibre tows. 

Despite some of the principles behind this tool being in the public domain, no 

actual implementation of a ply stacking-sequence tool is known to the author. 

8.5.2 In-plane waviness 

An extension to the above stacking sequence method involves using a smaller 

sample region on each C-scan, determining the dominant fibre direction and 

plotting its measured value as a function of location of the sample region in the 

C-scan. The output is a 3D profile of in-plane fibre angle, which is sensitive to, 

and can map, in-plane fibre waviness.  

An accuracy assessment has shown that the smaller sample region results in a 

reduced angular accuracy compared with the ply stacking-sequence method. 

The region cannot be increased in size beyond a quarter of a wavelength of the 

waviness without causing an unacceptable underestimate in angular deviation. 

However, the accuracy can be recovered if a finer-pitch scan is performed in the 

wavy-fibre region. Ongoing work is investigating whether improved accuracy 

can be achieved through better signal processing or image processing alone.  

Another issue with 3D in-plane waviness mapping is that any out-of-plane 

wrinkling or variation in ply thickness can cause bleed-through to a particular 

depth from adjacent plies, resulting in a confusing map of fibre angles at that 

depth. Future work will include pre-processing the data for out-of-plane 

wrinkling to determine the surface profile of each ply and then tracking the ply 

through the structure to generate an in-plane C-scan of a single ply without any 

bleed-through from adjacent plies. 

8.5.3 Out-of-plane wrinkling 

Finally, the same processing for local orientation can be applied to B-scan 

cross-sections in order to determine ply angles and map out-of-plane wrinkling. 

This is a more complicated analysis because the pixels no longer have a unity 
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aspect ratio. Again the accuracy suffers if the box width has a reduced number 

of pixels but this can be partially recovered with a finer-pitch original scan. 

The initial output of this method is two 3D profiles of ply angle in two 

perpendicular orientations – sufficient information from which most other 

parameters can be calculated. Further processing can determine the maximum 

ply inclination at each 3D location and from this data a quantitative evaluation 

and comparison with acceptance criteria can be made. 

The last processing stage is a 2D integration of each in-plane slice through the 

ply-angle data, generating the surface profile of each ply in the laminate. This is 

useful for visualisation of any wrinkles and presentation to structural and design 

engineers who need to decide whether the wrinkle can be allowed to remain in 

the structure or needs to be repaired. 

The ability to pull out of the ultrasonic data the actual profile of a wrinkled ply at 

any depth has been acknowledged as a significant and unique advance in the 

NDT of composites. As a result, the author’s employer has been included in 

numerous programmes to pursue the quality control of ply wrinkling, allowing 

the potential removal of weight from structures where thicknesses have been 

increased to mitigate risk due to the an inability to quantify ply wrinkling. 

8.6 Benefits 

3D characterisation of the inner quality of composite laminates offers 

considerable benefits to the aerospace industry as it moves towards high 

volume production of wide-body civil aircraft from composite materials. This 

benefit is partly medium-term in quality control and better-informed disposition 

of manufacturing defects. But the main benefit will be in the long-term, once the 

new ability to determine 3D distributions of porosity and other defects is realised 

by composites designers and 3D acceptance criteria can be built into their 

designs. This then offers the potential for weight reductions, opening up the 

design space and allowing a full realisation of the potential of composite 

structures.  
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New European targets for CO2 emissions from aircraft require a reduction of 

50% by 2020, equating to a 50% reduction in fuel usage. This will primarily be 

achieved through structural weight savings, although aerodynamics and engine 

efficiency will also play a part. It is hard to see how these savings in weight will 

be possible without a step change in the design philosophy and 3D acceptance 

criteria for composites is just such a step change. At present the structural 

models used in the design process are not able to deal with 3D acceptance 

criteria, and the mechanical test programmes have not been carried out, but in 

the long term there is a great opportunity offered by 3D characterisation of 

composites. 

8.7 Recommendations for future work 

In each of the tools developed for this project there is a future work plan, either 

for validation or for further development followed by validation. For fibre-resin 

effects the ply spacing measurement needs to be extended to use multi-

dimensional optimisation. The frequency-domain decomposition method needs 

a modified porosity basis function that can respond differently to the increase or 

decrease in porosity level.  

The three tools for fibre orientation measurement (ply stacking sequence, in-

plane waviness and out-of-plane wrinkling) have been combined into an 

application called StackScan™, which is based on the ANDSCAN® libraries 

developed in this project. Various composite manufacturers and end-users of 

composites are starting programmes to evaluate StackScan on real 

components on the production line or in-service for repairs. The future route for 

these three tools includes: more versatile automation of ply stacking sequence 

generation, improvement in the angular accuracy of waviness and wrinkling 

measurements, and the pre-processing of C-scans for in-plane waviness using 

the ply-wrinkling information.  

Various other techniques such as the polar-backscattering technique of Blodgett 

et al (1986) and Yuhas et al (1986) deserve revisiting using full matrix capture 

with arrays. 
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8.8 Final Conclusions 

An ultrasonic three-dimensional characterisation toolset has been developed for 

determining the inner quality of composite laminates, incorporating six output 

parameters that have never been assessed quantitatively in this way before. 

These six parameters are actual material properties, not NDT parameters, and 

can be understood without the need of NDT interpretation. They are: ply 

spacing, fibre volume fraction, porosity, ply stacking sequence, in-plane fibre 

waviness and out-of-plane ply wrinkling. To a large extent the generation of 

these parameters has been automated and validation has commenced with 

simulated data. Quantitative comparisons with acceptance criteria can be 

performed using these output parameters, and visualisation methods have been 

developed to help explain the results to structures or design engineers. 

However, further refinement is still required, particularly for the 3D porosity 

parameter, where a new basis function for the decomposition must be 

developed as well as a calibration strategy. 

By the end of this project in 2009 there had been no other reported work in the 

literature attempting to compete with the approaches described herein to 

achieve the same objectives. This does not rule out other undisclosed work, but 

the two patent applications made by QinetiQ in October 2008 have not so far 

resulted in the discovery of competing work, or prompted a challenge to the 

originality of this work.  
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