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Abstract

Staff scheduling is a complex combinatorial optimisation problem
concerning allocation of staff to duty rosters in a wide range of industries
and settings. This thesis presents a novel approach to solving staff
scheduling problems, and in particular nurse scheduling, by simplifying
the problem space through information granulation. The complexity of the
problem is due to a large solution space and the many constraints that
need to be satisfied. Published research indicates that methods based on
random searches of the solution space did not produce good-quality results
consistently. In this study, we have avoided random searching and
proposed a systematic hierarchical method of granulation of the problem
domain through pre-processing of constraints. The approach is general and

can be applied to a wide range of staff scheduling problems.

The novel approach proposed here involves a simplification of the original
problem by a judicious grouping of shift types and a grouping of individual
shifts into weekly sequences. The schedule construction is done
systematically, while assuring its feasibility and minimising the cost of the
solution in the reduced problem space of weekly sequences. Subsequently,
the schedules from the reduced problem space are translated into the
original problem space by taking into account the constraints that could
not be represented in the reduced space. This two-stage approach to
solving the scheduling problem is referred to here as a domain-

transformation approach.

The thesis reports computational results on both standard benchmark
problems and a specific scheduling problem from Kajang Hospital in
Malaysia. The results confirm that the proposed method delivers high-

quality results consistently and is computationally efficient.
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Glossary of Terms

Cover requirements represent the number of nurses required at work
each day or at specific times (i.e. during shifts) each day. This may
also be called shift or coverage demand.

Coverage demand. This indicates the required number of nurses with
specific qualifications for each shift on a particular day during the
planning period.

Cyclical scheduling. A cyclical work schedule establishes that shifts are
performed in cyclical (rotating) patterns. A work schedule is
specified for a certain planning horizon, and after this period the
schedule is repeated. A cyclic schedule may be specified for either
all or a subset of the employees of a department.

Days off requests specify that an employee requests not to work on a
specific day, or on a specific part of a day. Days off requests are
mostly modelled as soft constraints.

Days off scheduling constructs schedules that indicate working days and
days off for each employee. The specific shifts performed by
employees on working days are determined at a later stage. A days
off schedule should satisfy labour legislation, specifying for example
the maximum number of consecutive working days. In addition,
days off scheduling should ensure that sufficient employees are
available to be assigned to shifts.

Float nurses move between units and departments to cover gaps in staff
cover due to absences e.g. sick, vacation leave etc.

Hard constraints are rules which must be satisfied for the roster to be
feasible. They may also be called binding constraints or
imperative planning rules.

Individual preferences. A nurse may request a rest day, annual leave or
specific working shifts for some days of the planning period.

Planning period. This defines the time horizon over which nurses are
scheduled. A typical planning period in nurse scheduling is four

weeks (28 days).
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Qualifications and skills. Personnel can be categorised based on a
number of factors, such as qualifications, skills, experience and
responsibility  (Burke, De  Causmaecker, Petrovic, and
VandenBerghe, 2004a; Burke, De  Causmaecker, and
VandenBerghe, 2004b). In some cases, gender, nationality and
personality are also considered.

Schedule. A schedule is an ordered list of working shifts and rest days, or
an ordered list of shift sequences and rest day periods, or an
ordered list of one or more shift patterns. The length of the
schedule is the length of this ordered list, which must be the same
as the planning period. A schedule can be either cyclic or non-
cyclic. If a schedule is non-cyclic, staff members can indicate their
preferences for working or being off on specific days.

Scheduling horizon is the time period over which the roster is provided.
It may also be called the planning period.

Scheduling is the allocation, subject to constraints, of resources to objects
placed in space-time, in such a way as to minimise the total cost of
the resources used.

Self-scheduling. With self-scheduling, employees propose the work
schedule they prefer to work during a given planning horizon. Since
these proposed schedules possibly do not match the shift staffing
demand as specified by the organisation, the planning problem is to
reassign shifts in order to match the specified shift staffing
demand. In Chapter 8, we propose a method that supports the
planner to create feasible work schedules from the individual work
schedules proposed by the employees.

Shift pattern. A fixed length set consisting of working shifts and non-
working shifts (Aickelin and Dowsland, 2000). A rest day is
considered a non-working shift.

Shift requests specify that an employee requests to work (or not to work)
a specific shift on a specific day. Shift requests are mostly modelled
as soft constraints. In addition to proposing schedules, some
literature lets employees specify ‘importance’ of shift requests,

where ‘strong’ shift requests or more important to satisfy.
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Shift rostering is concerned with the assignment of employees to shifts.

On a planning horizon of typically a couple of weeks or a month, for
each day and employee it should be specified which shift the
employee performs, such a schedule we refer to as a work schedule.
Shift rostering is subject to labour legislation specifying constraints

on assignment of a single shift, but also on combinations of shifts.

Shift rotation is the situation when an employee works a different shift

to the one they worked previously. Depending on whether the start
time 1is earlier or later than before, it is called backward or

forward rotation.

Shift scheduling defines shifts that should be staffed for a period of, for

example, a day, a week or a month. These shifts should respect a
set of constraints and are supposed to cover given staffing levels,
expressing the required number of employees in each time slot, as
efficiently as possible. In addition to the required number of
employees, staffing levels may also specify required skill levels.
Thus, shift scheduling defines a set of shifts, which are not yet
assigned to employees. Shift scheduling only defines the shifts that

are required to be staffed.

Shift sequence. A set of shift types on consecutive days, one shift a day

(Brucker et al., 2010). Shift sequences often have different lengths.

Shift type. Hospital shifts with a typically well-defined start and end

Skill

time. Many NSPs are concerned with the three traditional shifts:
early (e.g., 7:00-15:00), late (15:00-22:00) and night (22:00-7:00).

category. Each class of nurses has particular minimum
qualifications, skills or responsibilities and experience. In hospitals,
typical categories include matrons, head nurses, specialised nurses,
regular nurses, junior nurses, caretakers and cleaners. These

classes may also be referred to as ‘grades’.

Soft constraints are rules which should ideally be satisfied but in order

to provide a feasible solution may be broken. They may also be
called non-binding constraints, floppy constraints,
preference planning rules or aversion costs. Soft constraints
are often given priorities which are relative to each other. If the

priorities are assigned using weights then a higher priority
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constraint may be violated if it means a number of lower priority
constraints will be satisfied. 2 Literature Review 16

Split weekend is the situation where an employee works on only one day
of the weekend (i.e. Saturday or Sunday). A complete weekend is
the opposite (i.e. the employee works on neither or both days of the
weekend). A stand alone shift or stand alone day is an off-on-off
work pattern. It may also be called an isolated work day. A work
pattern is an individual’s schedule over a planning period. That is,
the days they have on and off and possibly also the shifts they have
on the days on. Predefined patterns may also be called stints.

Weekend shift rostering addresses the assignment of weekend shifts to
employees. The weekday shifts are assigned to employees in a later
stage. Also weekend shift rostering has to comply with labour
legislation specifying for example constraints on the number of
consecutive working weekends.

Work regulations. It is common for each nurse to have a personalised
agreement and job description, specifying whether the nurse is full-
time or part-time, permanent or temporary and whether they can

do shift work.
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Chapter 1: Introduction

This thesis focuses on a novel transformation approach to addressing staff
scheduling problems (SSP), in particular nurse scheduling, involving
different real-word problems. These problems are transformed into a more
structured domain, in which a new representation of information through
pre-processing (called ‘patterns’) is introduced. The study also implements
several techniques, focusing on a general algorithm that enhances the
solutions generated by the proposed approach. This chapter presents the
introduction to this study, followed by the problem statement, research
questions and scope of this study. Finally, the chapter presents the

roadmap for the rest of the thesis.
1.1 Introduction

‘Scheduling’ is defined by Cambridge Dictionaries Online (see
http://dictionary.cambridge.org) as ‘the job or activity of planning the
times at which particular tasks will be done or events will happen’.
Scheduling problems are multi-faceted, meaning it is vital to understand
the development of the different aspects involved in constructing a good
schedule. The term ‘scheduling’ has several different meanings across the
literature. For the purposes of this study, we use the definition of Wren

(1996):

Scheduling is the allocation, subject to constraints, of resources
to objects placed in space-time, in such a way as to minimise the

total cost of the resources used. (p. 53)

Scheduling deals with the allocation of resources to tasks over given
periods to achieve certain objectives while meeting various constraints
(Barker, 1974). The components involved in scheduling are characterised
by complicated interrelationships. Due to this, the preparation of a
schedule can become complex and expensive in terms of time and

resources.
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Problems with staff scheduling are common across a wide range of
industries, including in manufacturing, service industries, resource
allocation, transportation, project management and distribution settings.
At its base, these problems are concerned with scheduling a workforce to
meet demand for manpower that varies within a day and/or within a week.
Dealing with SSPs means determining which staff should cover which
shifts so that the demand for manpower is met at all times, taking into
account organisational and legal rules. The major challenge is providing
reasonable labour costs and customer satisfaction while meeting this

varying demand.

One of the best-known areas where staff scheduling is a concern is the
healthcare industry. In order to meet strict quality standards in patient
care, the objective of personnel rostering in healthcare is to match the
number of skilled people working at given time intervals to the demand for
certain nurse services. Timetables are constrained by governmental and
hospital rules, but also by personal preferences and work regulations. A
key SSP in the healthcare industry is the scheduling of working hours for
nurses, known as ‘nurse rostering’ or ‘nurse scheduling’ (Burke, 2004).

This thesis focuses specifically on this nurse scheduling problem (NSP).

NSPs are well-known, having been studied by personnel managers,
operations researchers and computer scientists for more than 45 years.
They are unique compared to other SSPs mainly because of a presence of a
range of different staff requirements on different days and shifts (Li and
Aickelin, 2006). The wide fluctuation in demand that can occur throughout
the day and from one day to the next—subject to some of the most difficult
and specific constraints—is what makes NSPs so challenging and difficult.
Maintaining an acceptable service level according to nurses’ preferences
with minimal coverage requirements is also considered of extreme
importance. In addition, hospital personnel rostering is a very complex
scheduling domain because, unlike many other organisations, healthcare
Institutions operate 24 hours a day, every single day of the year (Li and

Aickelin, 2006).
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NSPs are not only one of the more commonly occurring problems in
healthcare (the UK’s NHS alone currently employs approximately 655,000
nurses, see Christie & Co., 2015) but also one of the most complex. This
high complexity is due to a number of factors, some of which (but rarely

all) may be found in other SSPs. These factors include:

e As stated, hospitals operate for 24 hours a day, seven days a week.
This introduces a number of legal constraints and working
preferences relating to night shifts, minimum rest times, working
on weekends and national holidays, among others.

o The workforce consists of nurses with varying skills and grades,
which need to be considered when constructing rosters.

e There are a variety of shifts. Even the more basic NSPs usually
involve a minimum of three shift types (e.g., early, late and night).
More frequently, there are a number of other shift types to assign,
each with varying durations and associated constraints.

o There are a large number of employees.

e Cover requirements may not be uniform but vary from day to day.

o There are long planning horizons. They can range up to 12 weeks or
even a year in some instances.

e There are many, often conflicting, constraints and objectives. For
example, constraints or objectives relating to:

o Cover requirements.

o Day on/off and shift on/off requests.

o Minimum and maximum length stretches of days on, off, or
specific shifts.

o Minimum and maximum hours and/or shifts worked during
certain periods.

o Shift rotations.

o Desirable and undesirable work patterns.

o Minimum and maximum numbers of specific shift types
(possibly during certain periods).

o Minimum and maximum ratios of shift types worked.

o Tutorship requirements or the opposite, meaning ensuring

certain employees do not work at the same time.



ADDRESSING STAFF SCHEDULING PROBLEMS 4

These features make NSPs not only hard to solve but also difficult to
model. However, the effort required is worthwhile when high-quality

rosters are produced.

At present, many nurses prepare their own schedules based on availability
and contractual agreements, and make adjustments through consensus in
the case of conflicts. If NSPs can be solved efficiently, this will have an
Immense impact on nurses’ working environment, which in turn can
strongly improve the quality of healthcare. Nurses preparing their own
schedules can also improve nurses’ satisfaction level and facilitate the

recruiting of capable personnel.

This contrasts with the situation when schedules are created individually
for each hospital unit by the head nurse (Berrada, Ferlandand and
Michelon, 1996). The fundamental intention of scheduling in general is to
ensure that the number of staff members is ample to cover the nursing
requirements and individual nurse duties (Glass and Knight, 2010). Most
hospital wards have head nurses or nurse managers who are responsible
for manually constructing nurse schedules. Head nurses usually spend a
substantial amount of time developing schedules, especially when faced
with many requests for consideration of changes from their staffs.
Additional time spent in handling ad-hoc changes to current duty
schedules (Cheang, Li, Lim and Rodrigues, 2003). This makes manual
procedures time consuming and inefficient. Consequently, more feasible
approaches have been developed (Purnomoand Bard, 2007), by having
significant benefits in terms of saving administrative staff time and

generally improving the quality of the schedules produced.

NSPs are very complex real-world scheduling problems (Karp, 1972) and
belong to a class of non-deterministic polynomial-time (NP)-hard
problems. Generating good work schedules can greatly influence nurses’
working conditions, which is strongly related to quality of healthcare.
Nurse schedules are designed to ensure a reasonable (fair) and efficient
schedule for nurses. The scheduling problem involves allocating suitably
qualified staff to meet a time-dependent demand for different services. The

most general form of a NSP could be described as follows: subject to a set
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of constraints and given a set of shifts, nurses and a time frame, every
nurse is assigned to a shift. The constraints are usually defined by
regulations, working practices and the preferences of the nurses (Brucker,
Qu, Burke and Post, 2005). Usually, there are a number of different
constraints on the problem that must be satisfied, which can be split into
hard and soft constraints, depending on whether they are essential or
merely desirable, respectively. Problems with both hard and soft
constraints essentially have two separate objectives. Firstly, all the hard
constraints must be satisfied for the solution to be feasible and secondly,
the soft constraints must be satisfied as far as possible. Where there are
several soft constraints, this raises a further issue of which of these
constraints are the most important and, from an algorithmic point of view,
how to deal with the problem of setting appropriate weights. The
complexities and challenges of NSPs arise from the fact that a large
variety of constraints exist, some of which contradict each other. Often,
different constraints will be in direct conflict with one another, and so a
trade-off is necessary to find optimal solutions. Additional difficulties occur
when the satisfaction of the hard constraints is non-trivial, which raises a
further issue of how much bias can be given to the feasibility aspects of the
problem without adversely affecting the final solution quality. If the bias is
too much in favour of the soft constraints, resulting solutions will not be
feasible; however, by focusing solely on the satisfaction of the feasibility
constraints, optimal solutions may be missed. With very small problems,
all possible solutions to the problem may be enumerated and finding an
optimal solution is reduced to the task of merely choosing the solution with
the best cost. With larger problems, this is not feasible. For NP-hard
problems, the amount of time required to solve the model grows

exponentially with problem size.

It is important to have careful balance between the different constraints in
these types of large NP-hard problems, involving hierarchies of objectives
and conflicting constraints, and the resulting trade- offs necessary to
produce high-quality solutions. In this thesis, we propose an alternative
granular formulation of the problem that reduces the size of the problem

space with optimal solutions. In addition, the formulation of domain
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transformation allows the replacement of extended-time scheduling with
the recursive application of a week-at-a-time scheduling process. The
nested nature of sets of feasible schedules for consecutive weeks gives rise
to a natural hierarchical algorithm for nurse scheduling. In particular,
attention is given to the solution of two real-world problems: ORTEC 01
and Kajang Hospital. For both problems, there are conflicting hard and
soft constraints that must be successfully balanced to produce optimal
solutions. For each available nurse, a single cost relating to the soft
constraint is known for each complete set of potential shifts, or ‘shift
patterns’. These costs are based on the nurses’ individual preferences; by

keeping these costs low, staff satisfaction is increased.

A comprehensive discussion of a wide variety of methodologies and models
developed to deal with different problem circumstances during the years in
the literature is provided in the survey papers by Sitompul and Randhawa
(1990), and Cheang et al. (2003). Burke et al. (2004b) present a more
extensive and excellent survey that mainly copes with nurse scheduling.
These range from traditional mathematical programming methods and
linear programming to heuristic methods that guarantee to find an
optimal solution and prove its optimality for every instance of a problem.
However, computational difficulties exist with these methods due to the
huge size of the search spaces that are generated. To reduce complexity,
some researchers have restricted the problem dimensions and developed
simplified models. However, this leads to solutions that are not applicable
to real hospital situations. A major drawback of these meta-heuristic
methods is that they can neither provably produce optimal solutions nor
provably reduce the search space. They also tend to lack well-defined
stopping criteria. Moreover, as most NSPs are highly constrained, the
feasible regions of their solution space can be disconnected (i.e., separated
by the infeasible area). Meta- heuristics generally have difficulty in

dealing with such situations Burke et al. (2009).

This thesis is concerned with creating solutions within a constructive
information granulation called domain transformation approach. The real-
world benchmark and the newly introduced real-world NSP chosen are

suitable for applying such a method. Further, the method is general
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enough to be used in other SSP applications. The techniques applied to
execute the general algorithm (information granulation and pattern
construction) in this thesis are constructive and deterministic, and are our

main achievements.
1.2 Problem Statement and Scope

The problem statement of this thesis is: To what extent can information

granulation be used to solve NSPs?

This study proposes solutions that can be applied to solve SSPs in
healthcare, specifically NSPs. The research presented in this thesis
focuses on developing a novel approach to information granulation for
NSPs. It also seeks to develop and implement a general algorithm of
generating schedules for nurses under the information granulation
approach. The aim is to achieve a feasible solution with minimum cost,
flexibility in staff scheduling and continuity in the scheduling process. The
aim is also to ensure a balanced and equitable schedule between all
employees, in terms of workload, and also to respect a predefined sequence

of work shifts and days off, either following work rules or staff preferences.

The main objectives of this thesis relate to the exploitation of a high-
quality constructive approach, transforming the original problem domain
to a smaller domain. In the smaller domain, some shifts have the same set
of constraints, so they may be considered as the same type; further, this
domain involves fewer patterns to be scheduled. These observations mean
that fewer shift types need to be considered, thus simplifying the problem.
With conversion to a larger domain, the search space expands. This
indicates that all schedules that can be derived directly in larger domain
patterns are covered. This information granulation is called ‘domain
transformation’. The domain transformation approach can produce high-
quality solutions within a short implementation and development time.
The domain transformation method is easily reproduced, in contrast to
some meta-heuristic methods that tend to use extensive problem-specific
information and random decision-making to arrive at solutions. Domain

transformation can also be performed on any number of months or weeks
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of schedule. The schedules produced have continuity between the months.
All the constraints are considered in order to generate the monthly
schedule. In this thesis, the proposed solutions will be assessed using a
real-world benchmark NSP (available for download from
http://www.cs.nott.ac.uk/~tec/NRP/) and new data collected from Kajang
Hospital.

1.3 Research Questions

The research questions of this thesis, following from the problem

statement described above are:

1. What is a suitable design for information granulation to solve
NSPs?

2. How can we achieve feasible nursing schedules?

3. To what extent can information granulation solve NSPs in the real
world?

4. To what extent can the method used be generalised?

5. Can nurses’ preferences be adopted into this new NSP approach?

6. Is continuity from one month to another maintained with feasibility

using the proposed method?
1.4 Thesis Overview

This chapter has discussed the research problem and objectives and the
contributions of the research. The remainder of this thesis is structured as

follows:

e Chapter 2 contains the literature review. It outlines how previous
literature has considered the complexity of NSPs. It also discusses
the nurse scheduling classifications and techniques used in
addressing NSPs, and reviews various surveys from the scheduling
literature.

e Chapter 3 presents the real world benchmark datasets used to
evaluate the mnovel algorithm. The chapter also presents

background of important terminology related to NSPs.
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e Chapter 4 presents the methodologies employed in the subsequent
chapters. It introduces domain transformation as a novel state-of-
the-art approach in addressing NSPs. The objective of domain
transformation is to minimise cost and meet nurse demands by
satisfying the constraints. The chapter also discusses the literature
related to domain transformation.

e Chapter 5 presents a detailed result analysis, and analyses the
effect of various instance parameters on the domain transformation
results. To assess the performance of the domain transformation
approach, experimental results from 18 real-world benchmark
datasets and a new real-world dataset from Kajang Hospital,
Malaysia, are presented. This chapter also describes the
implementation of the method, with three different techniques used
to solve NSPs. Zero-cost patterns using these techniques based on
the main algorithm are explored and proposed as possibly
enhancing final solution quality.

e Chapter 6 summarises the findings of this thesis and suggests

possibilities for future work arising from the study.
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Chapter 2: Literature Review

This chapter presents a literature review focusing on state-of-the-art
developments in solving NSPs. The purpose is to provide a foundational
understanding of nurse scheduling. To achieve this, the different
approaches and methods used to solve NSPs are explored, and the various
objectives and constraints applicable in NSPs are identified. Additionally,
we also summarise the algorithm techniques proposed in this area by
providing timeline surveying the past 15 years. Finally, we derive the gap

between the way nurse scheduling is approached in theory and in practice.
2.1 Background of Scheduling and Staff Scheduling

Scheduling has been widely researched for decades. It covers a large
variety of problems. Most of these problems are computationally hard to
solve (in the sense of being NP-hard) and need complex algorithms
(Pinedoe, 2008). Difficulty lies also in the modelling of the problems, and
the mapping between high-level, declarative models and low-level,
procedural search techniques (Michael, 2008). The goal of scheduling can
be either satisfaction or optimisation of objectives (Draper, Jonsson,
Clements and Joslin, 1999). Each objective may have a certain priority
level, an earliest possible starting time and a due date. The objectives can
also take many forms. One objective may be the minimisation of the
completion time of the last task, while another may be the minimisation of
the number of tasks completed after their respective due dates, or the

minimisation of the cost associated with the schedule.

Beginning in the 1950s, attempts were made to solve scheduling problems
using computers; however, at that time, computers had inadequate power
for some formulations (Wren, 1996). More recently, it has been possible to
solve much more complex scheduling problems using computers. Owing to
the importance of scheduling problems in real life, a number of studies
have sought to solve these problems in novel ways. In scheduling
problems, time plays a central role. The schedule time horizon is the

period for which the schedule is constructed. The schedule time horizon
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imposes constraints on the time range of an individual job in terms of its

start and end time.

Staff scheduling is becoming a critical concern in service organisations
such as emergency services and higher education, healthcare, hospitality
and transportation systems. Scheduling in service organisations is
different from that of manufacturing systems (Aggarwal, 1982). Some of
the major differences are that the product of service systems cannot be
placed into an inventory and that the customer receives the service
directly from the server. While the primary objective of the manufacturing
system 1s to minimise the total cost, service systems deal with conflicting
objectives, such as minimising total cost and maximising staff satisfaction

with their schedules.

Blochliger (2004) introduced a tutorial to SSP using a hospital example. In
this study, the focus was on how the scheduling problem could be analysed
and modelled using various constraints, objectives and models. While
Bléchliger’s study did not give a solution to the problem, the modelling did
suggest a number of algorithms for use in future studies, such as genetic
algorithms, simulated annealing and tabu search. Ernst, Jiang,
Krishnamoorthy, Owens, and Sier (2004) classified 16 different scheduling
models based on rostering processes or the determination of staff
requirements, such as task-based demand, shift-based demand, days- off
scheduling, shift scheduling and task assignment. The authors also
addressed 15 different application areas for scheduling problems,
including airlines, buses, nurse scheduling, venue management, financial
services and manufacturing. Staff scheduling did not get much attention
in the area of artificial intelligence (Al) until the 1980s when Fox (1983)
began their work on constraint-directed scheduling systems for the job—
shop scheduling problem. A variety of service delivery settings have been
studied in relation to staff scheduling, such as airline crews (Schindler and
Semmel, 1993), hotel reservation personnel (Holloran and Byrn, 1986),
telephone operators (Henderson and Berry, 1976), factory workers
(Berman et al., 1997), police officers (Taylor and Huxley, 1989) and

security guards (Engku, 2001) and many more.
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A large section of the studied SSP come from healthcare organisations
such as hospitals and clinics and requires the scheduling of nurses.
Sitompul (1992) notes that nurse scheduling shares much in common with
other SSPs. All these problems require staff to be on duty 24 hours a day
seven days a week, with fluctuating daily demand for services and fixed
regulations as to acceptable work patterns. However, a NSP is further

recognised by the following characteristics:

e Staffing levels: There can be four or more grades of nursing staff,
each with a different skill level. Legal controls limit the tasks each
grade of nurse can perform. Consequently, each shift can have a
minimum staffing requirement for each grade of nurse.

e Nurse preferences: Due to the importance of maintaining nurse
satisfaction and reducing turnover, schedules should reflect a
nurse’s preferences for shift patterns and days off.

e Flexible scheduling: To meet changing nurse requests for particular
days off, a schedule should not be fixed or imposed. This means a
new schedule needs to be calculated in each scheduling period,

rather than rotating duties within an existing schedule.

The main feature that appears from these points is that nurse scheduling
has multiple objectives (Ozkarahan and Bailey, 1988). Other sophisticated
problems, such as the aircrew-scheduling problem, usually have the single
objective of minimising costs after the basic constraints have been met
(Graves, McBride, Gershkoff and Mahidhara, 1993; Hoffman and Padberg,
1993).

Chapter 1 discussed how NSPs are significant due to their importance,
scientific challenges and complexity. As this thesis is primarily concerned
with the nurse rostering problem, this is where we will focus most of our

attention in this chapter.
2.2 Nurse Scheduling Problems

NSPs are well-known scheduling problems that arise in hospital wards
globally. Although the details of NSPs vary in different countries, the

essence of the problem is to allocate suitable nurses to shifts to meet
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service demand across different planning periods, while attempting to
satisfy workplace regulations, nurses’ preferences and other constraints,
and minimising costs (Berrada, Ferland, and Michelon, 1996; Ernst et al.,
2004). In NSPs, the most used types of coverage are the night, evening and
day shifts, although several other shift types can be defined.

Part of the scheduling problem is to determine the times at which shifts
are allocated to each member of the nursing staff (Rowland and Rowland,
1997). Nurses’ wellbeing and job satisfaction are affected by irregular shift
work (Burke, De Causmaecker, Vanden Berghe, and Van Landeghem,
2004c). Properly scheduling the nursing staffs has a great impact on the
quality of healthcare (Oldenkamp, 1996), the recruitment of nursing
personnel, the development of a nursing budgets and various other
functions of the nursing service. The process of constructing nurse
schedules consists of determining the number of nurses, their skills and
qualifications, nurses’ preferences, workplace regulations or policies,
service demand, the layout of the work timetable, the constraints and
other criteria relevant to the specific hospital setting. Additionally, nurses
have the right to request rest days and which shift pattern they would like
to work. All nurses are different and should be treated as such when the

schedules are created.

NSPs are known as NP-hard (Osogami and Imai, 2000). This complex
problem cannot realistically be solved to optimality. This explains the
scientific community’s degree of interest in this research area over the last
45 years. A general overview can be found in (Hung, 1990) and (Sitompul
and Radhawa, 1990). Producing good-quality nurse schedules greatly
1impacts on the quality of healthcare service (Cheang et al., 2003; Landa-
Silva and Le, 2008). Many hospitals use software to support the
construction of nurse schedules; however, in many other cases, scheduling
1s still done manually. For problems of considerable size, the non-
automated construction of nurse schedules is time consuming, difficult and
prone to mistakes. As Burke et al. (2004c, p. 24) note, the automatic
generation of high quality nurse schedules can lead to improvements in
hospital resource efficiency, staff and patient safety, staff and patient

satisfaction and administrative workload’.
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The following section provides the basic understanding in nurse
scheduling and discusses work regulations and the other constraints in

nurse scheduling commonly found mentioned in the literature.
2.2.1 Cyclic v. non-cyclic scheduling

There are a number of different lines of work models. Schedules can be
cyclic or non-cyclic. In a cyclic model, all nurses of the same class perform
exactly the same line of work but with different starting times for the first
shift or duty. This schedule type is most applicable for situations with
repeating demand patterns. In a cyclic schedule, a number of shifts are
always grouped together and nurses rotate from one pattern to another.
This involves generating a fixed roster that can satisfy staff requirements,
without considering individual nurse requests. Nurses are then assigned
schedules within the schedule. The basic problem with cyclic scheduling is
its lack of flexibility (Smith and Wiggins, 1977): the schedule remains the
same 1n each successive scheduling period. Nurses may also be unable to
obtain their preferred holiday periods. Using this model, one schedule can
be used for several months or even years. Due to this infrequent
calculation, it may be more cost-effective to use human expertise to
generate cyclic schedules, rather than to develop an automated solution

(Megeath, 1978).

Meanwhile, in non-cyclic scheduling, shifts are considered independent,
every shift is assigned individually and the schedule is reformulated
before each scheduling period, with each schedule being matched to a
particular nurse. This is done to accommodate individual nurses’
preferences and allow for fluctuations in the number and type of staff
assigned to a ward. This type of scheduling will usually result in longer
work stretches and a more unbalanced distribution of shift types than
would otherwise be necessary. More attention has been paid in the
literature to the computerised generation of non-cyclic rosters than to the
generation of cyclic rosters. This is due to the greater complexity of non-

cyclic rosters.
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2.2.2 Complexity of nurse scheduling

The nurse scheduling environment provides a complex problem because of
the large number of conflicting constraints that must be balanced to create
a schedule. These constraints cannot be prioritised because they are not
independent or stable. This forces unique solutions to the scheduling
problem (Jelinek and Kavois, 1992). According to Bard and Purnomo
(2005) and Chiaramonte (2008), job dissatisfaction may affect turnover
and absenteeism rates, further complicating the work of creating desirable
schedules. The importance of mitigating scheduling problems for nurses

has resulted in the emergence of various approaches and techniques for

solving NSPs.

Within the hospital environment, staff members are organised into groups
of nurses in a ward. Usually, each ward performs a set of fixed activities at
a settled location (Burke and Newall, 2004), for the most part with a

permanent team of nurses.

The nurse schedule configuration should fulfil both an agreed list of
requirements as well as demand coverage. Normally, efforts are also made
to minimise salary costs and satisfy nurse preferences as far as possible.
This agreed list of requirements are the constraints that help to define
acceptable schedules for individual nurses in terms of seniority, workload,
holidays, weekends off, consecutive assignments and rotations (Jaumard,
Semet and Vovor, 1998). During each day of a planning horizon, several

shifts can be planned.

Due to the large number of possible schedules and the change of the cost
with different combinations of shifts, the optimisation of the overall
schedule by the modification of individual shifts and/or various groups of
shifts is considered an NP-hard problem (Celia and Roger, 2010). However,
this classification is predicated on the assumption of the deployment of

scheduling algorithms that explore the solution space directly.

Miller et al. (1976) defined m; as ‘the set of feasible patterns for nurse i’, and

the solution space as the Cartesian product of all feasibility regions 1, 12,
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ms... n. For a single employee with four shifts worked over a period of 28

days, a single feasibility region contains:

(n) = L = (28) = L = 491 400 schedules
K xttn—k) \4) 41(28—-4)

However, according to the author, in practice, the number of available
solutions is smaller. The majority of solutions can be eliminated by
applying constraints associated with the problem; for instance, the
demand allocated for each nurse during each shift, or the legal limits to
the number of consecutive shifts a nurse can work without a rest day. The
total number of permutations is therefore also lower. If feasibility regions
are defined, each region can be defined as an upper bound for the
complexity of the problem. Even given the application of such constraints,
realistically NSPs are still too complex to be solved by an exhaustive

search methodology.

NSPs present a high degree of diversity in addition to complexity. de
Causmaecker and Vanden Berghe (2010) have initiated the development
of a general framework for categorising nurse rostering problems. The
categorisation of the problems will help researchers to study the
complexity and hardness of the problem instances and the efficiency of the
corresponding algorithms. Categorisation is according to their properties
such as the personnel environment, work characteristics and optimisation

objective.

Vanhoucke and Maenhout (2009) have developed 10 complexity indicators
in four groups for NSPs. The indicators are based on problem properties
such as problem size, preferences of the nurses, coverage constraints and
time-related constraints, which restrict the individual schedules of the
nurses. The indicators can be used to predict the performance of exact and
heuristic methods on a given problem instance. Moreover, they can assist
to select the most promising algorithm from a set of algorithms to solve a
given problem instance. Messelis et al. (2010) utilised a number of
structural and formal features of NSPs to predict algorithm behaviour on a
particular problem instance. The structural problem features were size-

dependent features, coverage constraint structure, workforce structure,
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contract and request- related features. The resulting approach can be
utilised in a system in which the solution quality of a problem instance
needs to be calculated quickly without finding the actual solution, such as

agent negotiation systems between hospital wards.

The constraints and multiple objectives of NSPs make them unique within
the domain of SSP. The situation is further complicated by the existence of
different policies and circumstances for different hospitals and wards. This
has prevented existing solutions to the problem from being widely applied
(Sitompul, 1992). In Sections 3.3 and 3.4, the existing approaches to nurse

scheduling are considered in detail.

2.2.3 Constraints in nurse scheduling

Nurse scheduling is defined as the creation of a periodic (weekly,
fortnightly or monthly) schedule for nursing staff of one or several wards,
subject to constraints such as legal regulations, personnel policies, nurses’
preferences and other hospital-specific requirements. Bechtold et al. (1991)
list the constraints of NSPs as: (1) labour requirements (2) labour schedule
duration (3) labour schedule start time (4) meal and rest breaks (5)
consecutive/non-consecutive days off (6) labour productivity (7) number of
employees (8) equipment capacity (9) labour availability (10) labour
location site (11) hours per day of operation (12) schedule planning
horizon, or (13) some combination of the above. While, Miller, William and
Gustave (1976) groups constraints into feasibility set and non-binding
constraints (also known as hard and soft constraints, respectively), which
vary with legal regulations and individual preferences. In the scheduling
literature, constraints can be classified into two categories; hard

constraints and soft constraints (Qu et al., 2009a).

Hard constraints are those that must be satisfied to obtain feasible
solutions. They may include legal and hospital requirements enforced on
the schedule. The legal requirements, either fixed or contract-based,
usually limit the maximum time a nurse can work and describe
combinations of shifts that can occur in the schedule. This generates a
very complex set of constraints. Conversely, hospital requirements relate

to the coverage needed to maintain an appropriate level of care quality.
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When the hard constraints are satisfied, the generated schedule will be
usable from the perspective of the law and the hospital. Much work
remains to be done on workforce requirements, which are often

incorporated into soft constraints.

Soft constraints are typically time-related. Their satisfaction is desirable
but not compulsory, and thus they can be violated. Soft constraints are
diverse and serve to encourage roster quality by satisfying the workforce,
in turn helping to meet demands for high-quality care. As an incentive not
to violate the more important soft constraints, they will bring high costs or
penalties when violated. Soft constraints might include requests for rest
days, shift type preferences or requests for longer free time blocks between
worked shifts. However, one implicit soft constraint remains hidden if
there is no nurse or a bad schedule, and the schedule can be improved with

the exception of the head nurse.

The goal is always to schedule resources to meet the hard constraints
while aiming at a high-quality result with respect to soft constraints.
These two categories will not affect the three sets of constraints as defined
by Cheang et al. (2003); that is, coverage, work and contract regulations
and nurse preferences. Any constraint in any of these three sets can be
considered a hard or soft constraint. The first constraint category,
coverage, requires a set number of nurses of each skill category to be
scheduled at the required period. This ensures an adequate level of staff to
meet patient demands, which define the required number of nurses during
the planning period. The work and contract regulations constraints ensure
that shifts assigned to nurses respect the regulations outlined in their
contracts and any other regulations that apply to all staff. The main types

of work regulation constraints are:

o  Working hours: the maximum/minimum hours that a nurse can
work over a period (e.g., a week or a fortnight).

o Consecutive working shifts/days: the maximum/minimum number
of shifts/days that a nurse can work in a row. Maximum
consecutive working shifts/days allow regular breaks in a nurse’s

schedule.
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Shift patterns: illegal and/or undesired patterns of shift types.

Shift assignments: the maximum/minimum number of shifts that a
nurse can work in the planning period.

Working weekends: constraints related to weekend work. For
example, the maximum/minimum number of weekends that nurses
can work during the planning period, or whether nurses can work
both days of a weekend.

Break periods: the maximum/minimum length of breaks between

consecutive working shift patterns.

The third category of constraints includes all nurse preferences. According

to Ernst et al. (2004), the tendency in the modern workplace is to focus on

individuals rather than on teams. Hence, personnel schedules should cater

to individual preferences. This is mainly true in nurse scheduling because

1t is common that each nurse indicates their preferences and gets involved

in the scheduling process. Complying with these preferences as much as

possible may assist in increasing nurse satisfaction levels. Commonly

occurring constraints listed below:

e A ol i

10.
11.

12.
13.

14.

15.

Nurses workload (minimum/maximum).

Consecutive same working shift (minimum/maximum/exact number).
Consecutive working shift/days (minimum/maximum/exact number).
Nurse skill levels and categories.

Nurses’ preferences or requirements.

Nurses free days (minimum/maximum/consecutive free days).

Free time between working shifts (minimum).

Shift type(s) assignments (maximum shift type, requirements for each
shift types).

Holidays and vacations (predictable), e.g., bank holiday, annual leave.
Working weekend, e.g., complete weekend.

Constraints among groups/types of nurses, e.g., nurses not allowed to
work together or nurses who must work together.

Shift patterns, Historical record, e.g., previous assignments.

Other requirements in a shorter or longer time period other than the
planning time period, e.g., every day in a shift must be assigned.
Constraints among shifts, e.g., shifts cannot be assigned to a person at
the same time.

Requirements of (different types of) nurses or staff demand for any shift
(minimum/maximum/exact number).
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2.2.4 Objective functions

Objective functions are calculated to measure the quality of schedules.
Depending on the model used to represent the schedule, different
approaches can be engaged to evaluate objective functions. It is common
that objective functions are related to the constraints in the model and
hence can measure the violations of the constraints or the cost of
constraint violation. The objective function criteria that have been used or
suggested in past solutions include: (1) total labour hours scheduled, (2)
total number of employees, (3) labour costs, (4) unscheduled labour costs,
(5) customer service, (6) over-staffing, (7) understaffing, (8) number of
schedules with consecutive days off, (9) number of different work
schedules utilised, or (10) some combination of the above (Bechtold, Brusco
and Showalter, 1991). These criteria are not limited to the nurse
scheduling environment alone, and some are not appropriate for certain

NSPs where part-time personnel are not allowed.

Bechtold et al. (1991) mentioned that total labour hours scheduled is the
performance criteria most frequently used by scheduling researchers. In
Dowsland’s (1998) nurse scheduling solution, individual preferences and
requests for days off were taken into consideration when formulating the
objective function. The lower the cost obtained, the better is the quality of
the schedule. Of course, due to the often conflicting and large number of
constraints, there is rarely a perfect roster with penalty zero Burke et al.

(2013).

2.3 Summary of Nurse Scheduling Approaches and

Techniques

Modelling nurse scheduling is not a new idea. Until the 1960s, scheduling
tools consisted only of graphical devices such as the Gantt Chart. Howell
(1966) outlined the procedure necessary to develop a cyclical schedule
accommodating the work patterns and individual preferences of nurses. In
the early 1970s, scheduling systems began to be based on heuristic models
(Isken and Hancock, 1991; Smith, Wiggins and Bird, 1979). These models

represented an improvement because they could theoretically take into
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account all scheduling constraints in solving the problem. Maier-Rothe
and Wolfe (1973) developed a cyclical scheduling procedure that assigned
different types of nurses to each unit based on average patient care
requirements, hospital personnel policies and nursing staff preferences.
Howell (1966) and Frances (1966) laid down some basic principles for
manual cyclic rostering. Rosenbloom and Goertzen (1987) developed a
computer algorithm for the generation of cyclic rosters. Warner (1976)
described an early approach combining manual planning and integer
programming. The author defined five criteria for the scheduling part of
the problem: coverage, quality, stability, flexibility and cost. Arthur and
Ravindran (1981) formulated NSPs as a goal programming problem—an
approach that was taken up by hospital schedulers for building real-life
schedules. Their research has been described as innovative because the
scheduler makes different changes in the final solution and integrates Al
techniques into the interface of a decision support system to facilitate

manual changes.

Turning to survey articles, in 1976, Fries (1976) compiled an early
bibliography of applications of operations research methods in healthcare
systems. Hung (1995) collected 128 articles on nurse scheduling, from the
1960s to 1994, and presented an overview from a variety of research
domains, where most papers study the experience of new work- week
arrangements. Ernst et al. (2004) present a very comprehensive overview
of the literature on staff scheduling and rostering. The authors divided
their paper into three main parts: definitions, classification of personnel-
scheduling problems and a classification of the literature into application
areas and solution methods, with comments on applicability. They also
pointed out some areas for improvement, including greater consideration
of individual preferences and the generalising of the scheduling
algorithms, models and methods. De Vries (1987) developed a
‘management control framework’ to balance supply and demand, replacing
strict balance for nursing care. The author believed the flexibility of
setting parameters separately per ward, and according to the expert
knowledge on the floor that is used for forecasting the workload, have

mainly seen the satisfactory performance of the framework. Silvestro and
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Silvestro (2000) discuss the results of a survey of nurse scheduling
practices in the UK National Health Service. The authors define three
different scheduling policies: departmental rostering, team rostering and
self-rostering. They conclude that the benefits and limitations of these
policies depend on the operational context, such as ward size,
predictability of demand, demand variability and complexity of nurses’

skill mix.

Many different techniques for solving NSPs have been proposed in the
literature. One of the first techniques used for solving NSP (dated back to
the 1970s) 1s mathematical programming (Abernathy et al., 1973; Trivedi
and Warner, 1976; Miller, 1976; Warner, 1972, 1976). Traditional
techniques from linear programming and integer programming have been
employed to solve NSPs (see, for example, Beasley, 1996; Jaumard et al.,
1998; Miller, 1976; Warner, 1972, 1976). Integer-programming techniques
designed to find optimal solutions to linear programming problems that
have integer variable restrictions. However, integer-programming
algorithms are computationally expensive, and models with large numbers

of variables soon become time consuming to solve (Chow and Hui, 1993).

Warner (1976) uses a multiple-choice programming algorithm based on
the work of Healy (1964) to solve a nurse rostering problem in the
University of Michigan Hospital. Following on from Warner’s work,

Kostreva,

Lescyski and Passini (1978) developed a mixed-integer programming
formulation of NSPs. Then, using a suitable computational technique, the
value of the objective function is maximised or minimised (Papadimitriou
and Steiglitz, 1982). Bailey (1985) developed a cyclical scheduling model
with integer programmingThe branch-and-bound algorithm is a classic
method to solve the integer program (Wolsey and Nemhauser, 1999;
Thorton and Sattar, 1997). Maenhout and Vanhoucke (2010) present an
exact branch-and-price algorithm for NSPs that incorporates different
branching strategies. Balakrishnan and Wong (1990) used network model
to solve the workforce scheduling problem. The decomposition technique

involves intelligently breaking larger problems into smaller ones that are
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easler to manage. By aggregating these subgroups, all the hard
constraints must be satisfied. Dealing with each sub- problem in turn has
been shown to work well in nurse rostering (Aickelin and Dowsland, 2000)
and other scheduling problems (Burke et al., 2004). A constructive based
on successive resolution was proposed (Ademir, Dario, Everton, and
Wesley, 2011) in which the algorithm first constructs an initial solution by
solving successive bottleneck assignment problems. Subsequently, in the
second phase, two improvement procedures based on reassignment steps
are applied. The basic principles of the method used by Warner 1976
1llustrated in Figure 2.1. Firstly, a set of feasible schedules generated for
each nurse. These schedule sets combined until the best staffing levels for
the complete roster found. In the second phase, the algorithm calculated
the best combination of schedules according to the nurses’ preferences. In
both phases, the multiple-choice algorithm used a linear programming
method to arrive at an initial solution and then searched for the best

integer solution.
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E = Early Shift. L = Late Shift. N = Night Shift. - = Day Off
Figure 2.1. Warner’s feasible schedule approach to nurse

scheduling.



ADDRESSING STAFF SCHEDULING PROBLEMS 24

Following from Warner’s work, Kostreva, Lescyski, and Passini (1978)
developed a mixed-integer programming formulation of NSPs. The first
phase involved heuristically generating a complete schedule that fulfilled
all the constraints of the problem. The aim was for the schedule to meet
the minimum standard and all nurse requirements; that is, at least one of
the schedules generated should afford the nurses the days off that they
requested. The second phase of the approach used a mixed-integer
programming technique to assign schedules to individual nurses. The
objective of phase two was to minimise the total ‘hate points’ score; where
nurses were provided with questionnaire and a matrix of ‘hate points’ was
calculated for each nurse in relation to each schedule (Kostreva et al.,
1978, p. 287). The algorithm iterates between phases one and two to
generate a new schedule with each iteration, as illustrated in Figure 2.2.
However, the heuristic is not specified in detail and its performance is not

comparatively tested; therefore, the approach cannot be fully assessed.
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Figure 2.2. Kostreva et al.’s assignment approach to nurse

rostering.

Working with NP-hard scheduling problems, Huarng (1997) proposed the
approach of sub-grouping, by splitting nurses and workloads into several

subgroups, and obtained a very satisfactory computational result.
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However, this approach is model dependent. Li, Lim and Rodrigues (2003)
presented a hybrid Al approach using a class of over-constrained NSPs.
Their approach was two-phased: first, a solution was obtained for a
relaxed version of the problem that included only the hard constraints and
part of the nurses’ requests for shifts. In the second phase, adjustments
were made by descending local search and tabu search to improve the
solution. Glover and McMillan (1986), Valouxis and Housos (2000) aimed
to combine the strength of mathematical programming and Al approaches.
The problem was formulated as an approximate integer programming
model, where the integer programming problem is first solved and its

solution further improved using tabu search.

Many heuristic approaches were straightforward automation of manual
practices, which have been widely studied and documented in nursing
administration literature (see, for example, Hung, 1995; Jelinek and
Kavois, 1992). Heuristic searches apply heuristic models to find feasible
schedules. A heuristic model is a set of rules constructed based on some
level of knowledge; it does not guarantee an optimal solution. This type of
method is ideal for solving problems with soft constraints, although it may
have problems dealing with hard constraints. When the constraint
conditions are numerous, it is generally difficult for the heuristic
scheduling approach to attain a reasonable solution. It is thus not easy to
process NSPs using this approach (Millar and Kiragu, 1998). However, the
heuristic search approach is useful to adopt to address some of the
weaknesses of other approaches (Smith and Wiggins, 1977); for example,
local searches, the tabu search or simulated annealing methods are likely
to be weak on their own and usually need to be combined with other
techniques. Further, it seems almost impossible to define a simple
hierarchy or set of priorities to enable a completely mechanical relaxation

of the constraints.

Okada and Okada (1988) aimed to solve NSPs by applying a state- space
search procedure similar to the manual method of the human scheduler.
These search algorithms can produce high-quality solutions, but often at a
considerable computational cost. Another example of the heuristic search

approach was developed by Randhawa and Sitompul (1993), whose model
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consists of a best-first search algorithm to generate work patterns. Meta-
heuristics represent a higher level of abstraction. They are usually
implemented as a heuristic scheduler on top of low-level heuristics (Burke
et al., 2004a), which are treated as black boxes. In certain cases, the
heuristic search approach increases the efficiency of the state-space
search. Chiaramonte and Chiaramonte (2008) proposed a heuristic method
using a competitive agent-based negotiation that focused on nurses’
preferences. However, this heuristic search approach does not do very well
with regard to job satisfaction, because personal requests will only be
granted whenever these requests do not conflict with other priorities.
Further, a heuristic approach is implicitly based on a certain view of
nursing schedule quality, which makes it less useful whenever another

view is applied.

Rosenbloom and Goertzen (1987) presented an algorithm with three
stages: generate a set of possible schedules which are seven-tuples of 0-1
depending on whether the day is off or on, formulate the problem as an IP,
and produce a solution. For example, Arthur and Ravindran (1981) used
0—1 goal programming to solve two-stage cyclical scheduling problems.
Musa and Saxena (1984) used a 0—1 goal- programming formulation for
nurse scheduling in one unit of a hospital. In their study, goals with
different priority levels represented hospital policies and nurses’
preferences. Berrada et al. (1996), in their 0—1 goal programming model
for nurse scheduling, set the hard constraints based on administrative and
union contract specifications, while work patterns and nurses’ preferences
determined the soft constraints. Moores, Garrod and Briggs (1978) also
applied 0-1 goal programming to formulate the student nurse allocation
problem. The main drawback of the exhaustive search approach is its
rigidity concerning the priority structure of the optimisation algorithm.
Although both goal programming and constraint programming offer more
flexibility in choosing priorities, they still require a fully specified
hierarchy of priorities. Therefore, the problem for Moores et al. (1978) was
to produce a three-year schedule for student nurses that complied with the
minimum practical and theoretical standards, while also being suitable for

use as part of the hospital work force. Ozkarahan and Bailey (1988)
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utilised goal programming to search for a schedule with the traditional ‘set
covering’ model. Throughout this paper, the importance of flexibility in the
nurse scheduling environment was emphasised where each solution can be

disaggregated into specific assignments for specific units and nurses.

The main idea of local search is to take a possible solution to the problem
as a start (even if it is bad), and slowly modify it according to
predetermined rules with the hope of creating better solutions. In its
default form, the local search process is a hill-climbing algorithm.
Important variations on hill-climbing algorithms are tabu search and
simulated annealing. Bellanti, Carello, Della Croce and Tadei (2004)
developed an approach in which they use both tabu search and simulated
annealing in a largely similar problem with an initial solution created
using a heuristic method. Thereafter, a set of neighbourhood operators is
defined and tabu search or simulated annealing is applied to improve the

solution.

Aickelin and Dowsland (2000) used genetic algorithms to solve NSPs.
Dowsland and Thompson (2000) combined tabu search and network
programming to establish a non-cyclical scheduling system, while Knjazew
(2002) used genetic algorithms to solve cyclical scheduling problems. Li
and Aickelin (2006) used a Bayesian optimisation algorithm to solve NSPs.
Several nurse scheduling models were based on linear programming
(Ozkaharan, 1989), penalty-point algorithms and mixed-integer
programming (Harmeier, 1991). Another example of exhaustive search
uses constraint programming for solving NSPs (Weil, Heus, Francois and
Poujade, 1995) is the constraint programming combines logic
programming and an Al technique with operations research techniques. It
enables the problem modelling to be dissociated from the algorithms used
for the solution, which provides flexibility in adjusting the formal model of
NSPs. Jaumard et al. (1998) solve a NRP with the objective of reducing
salary cost and improving nurse preference satisfaction. They also use
column generation techniques, where the columns correspond to individual
schedules for each nurse. Darmoni et al. (1995) use constraint
programming to solve the scheduling problems in a French hospital. A fair

scheduling among nurses is applied using a search strategy over a
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planning horizon of up to six weeks. Abernathy, William, Nicholas, John
and Sten (1973) present two solution procedures to determine the staffing
level: the first approach iteratively uses a penalty function for
understaffing and overstaffing, whereas the second approach determines a
required staffing level based on the chance-constraints. Other optimisation
techniques have been used in nurse scheduling particularly for the non-
cyclical type. These include the assignment problem (Gaetan, Pierri and
Brigitte, 1999), non-linear programming (Warner, 1976) and goal
programming (Ozkaharan, 1989). Blau and Sear (1983) applied a cyclic
descent approach to another NSP and reported the successful
implementation of the algorithm on a microcomputer; however, they did

not evaluate the quality of the rosters generated.
2.4 Survey Review of the Nurse Scheduling Problem

This research field has grown rapidly over the past decades. We focus on
the period 2000-2015, selecting 88 articles that focus on algorithmic
techniques that have been successfully applied to NSPs and specifically
target approaches using real-world benchmark problems from various
places. In addition to explaining and summarising the characteristics and
algorithms of techniques (such as in Section 2.3). Table 2.1 gives an
overview of the selected articles on algorithmic techniques for solving
NSPs. We categorise the most broadly used and well-cited literature (up to
2015) on algorithmic techniques based on four classification criteria:
Integer programming, construction techniques, heuristic and others
(methods were hybridised or integrated with other techniques). Therefore,
recent methods that are not as well established are not represented in this
table. We also did not include in the categorisation any articles that

present general staffing or SSPs.
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Table 2.1. Techniques for the Nurse Scheduling/Rescheduling

Problem

Year

Authors

Integer

Construction Heuristic
Programming Technique

Others

2000

Aickelin &
Dowsland
Dowsland &

Thompson
Cai & Li

GA

GA+H

TS+IP

2001

Burke et al.
Brusco & Jacobs

ILP

2002

Knjazew

GA

2003

Soubeiga
Liet al.

Dias et al.
Tkegami et al.

MIP

HH

TS, GA

H+LS+TS

2004

Aickelin & White
Aickelin &
Dowsland

Isken
Winstanley

Bard (2004b)
Bard (2004a)
Burke (2004a)

1P

MIP
1P

IGA

VNS

GA+IP

CLP+AB

2005

Bard & Purnomo
(20052)

Bard & Purnomo
(2005b)

Azaiez & Al Sharif
Bard & Purnomo
(2005c¢)

Bard & Purnomo
(2005d)
Matthews

Horio

Fung et al.
Brucker et al.

IP (B&P)
IP

0-1LinearGP

Lp

CH

CH

CGB+IP

CGB+IP+H

GCS/SS

2006

Beddoe & Petrovic
Suman & Kumar
Belien

Lietal

Dowsland et al.

MIP(B&P),DA

SA

GA

CBRG+GA

BOA

2007

Moz & VazPato
Bard & Purnomo
Purnomo & Bard
Burke et al.
Burke et al.
Thompson

Bai et al.

Beddoe & Petrovic
Bester et al.
Majumdar &
Bhunia
Aickelin& Li
Aickelin& Li

IP(LR)
IP(B&P)

EA(SS)

LS,SA

TS
GA

GA+CH

H+VNS

GA+SA +HH
CBR+TS

ED+LD
ED

2008

Chiaramonte
Landa-Silva & Le
Vanhoucke &
Maenhout

Burke et al.

SEAMO
1P

H+VNS

2009

Brucker et al.

CH+LS
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Year Authors Integer Construction Heuristic Others
Programming Technique

Goodman et al. GRASP
Burke et al. IP+VNS
Beddoe et al. HM+CBR
Tsai & Li GA

2010 Glass & Knight MIP
Maenhout MO
Brucker CH
Bai EHA
Bouarab et al. MP

2011 Constantino et al. GA+SS
Vlah et al. VNS
Ramli & Ahmad TS (Enhanced)

2012 Burak et al. VNS
Gino et al. MO
Fang He & Qu CP-CG
Naudin et al. MM
Birgin et al. LS
Valouxis MIP

2013 Burke et al. VDS
Awadallah et al. HHS
Messalis et al. AP
Solos IP VNS
Maenhout et al. IP-CG

2014 Liang & Turkcan MOO
Kim et al. GA
Leksakul & GA
Phetsawat
Kumar et al. LP
Legrain et al. MOO
Wong et al. H+LS+GP

2015 Gonsalves & MA
KoheiKuwata
Chun et al. GA
Jafari & Salmasi SA
Jafari et al. MP
Agyei et al. GA+PGA
Bagheri et al. 0-1GP
Swapnaja et al. SP

Note: GA=Genetic algorithm, H=Heuristic, TS=Tabu search, IP=Integer programming,
GP=Goal Programming, LP=Linear programming, MA=Memetic algorithm, ILP=Integer
linear programming, HH=Hyper-heuristic, IGA=Indirect GA, CLP=Constraints logic
programming, AB=agents-based, MM=Mathematical Model, MIP=Mixed-integer
programming, B&P=Branch & Price, CGB=Column generation based, GCS/SS=Guided
complete search/Simplex solver, NN=Neural network, CH=Constructive heuristics,
CBRG=Case-based repair generation, CBR=Case-based reasoning, SA=Simulated
annealing, DA=Decomposition approach, SS=Scatter search, VNS=Variable neighbourhood
search, LS=Local search, GRASP=Greedy random adaptive search procedure,
SEAMO=Simple Evolutionary Algorithm for Multi-objective Optimisation, CP—
CG=Constraint programming based column generation., MOO=Multi-objectives
Optimisation. PSO=Particle Swarm Optimisation, MP=Mathematical Programming,
EHA=Evolutionary Hybrid Algorithm, HM=Hybrid Meta-heuristicc, BOA=Bayesian
Optimisation Algorithm, ED=Estimation Distribution, VDS=Variable neighbourhood
search, HHS=Hybrid Harmony Search, AP=Algorithm prediction, SP=Stochastic
Programming, PGA=Parallel Genetic Algorithm Summary
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2.5 Summary

This chapter presented basic concepts and models for scheduling, SSPs
and NSPs. The chapter also presented a brief description of the constraints
that are found most often in the literature, as well as in real-world nurse
scheduling scenarios, although solutions to these constraints are not
presented. The extensive review of the extant literature in this chapter
leads us to draw several conclusions that may be useful for guiding further
research. First, it is clear that this research field is growing rapidly.
Researchers are increasingly creative in applying multiple methodologies
and techniques to optimise NSPs, and thus meet a myriad of objectives
and performance constraints. In this chapter, these techniques have been
placed in four different categories. Arguably, these categories could have
been further divided and, in future, novel methods for solving this problem

are likely to appear.

Despite the many models and approaches proposed to counter NSPs in the
literature, there is still a significant gap between nurse scheduling in
theory and the challenging requirements in a real hospital environment.
This is because models in the research are often an over-simplification of
real-world NSPs. The current trend is to address the requirements of the
real world (Burke et al., 2004) and try to bridge the gap between research
models and real-world models. This aim could be pursued by including
many constraints in the research models but still allowing flexibility of

models.

Benchmark problems from real-world environments would be particularly
useful as a means for improving and validating the algorithms. Creating
useful real-world benchmark examples is not easy, however, as they are
nearly always very complicated problems. Most of the approaches in the
literature have been shown to produce high-quality rosters and have real-
life implementation. However, despite the many methods proposed to date,
there is no single heuristic that is able to solve all scheduling problems
effectively (Burke et al., 1994a). That is, there is no way of knowing which
is the ‘best’ method. Implementing and comparing the different algorithms

across all the literature would be an impractical task.
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In the author’s experience, although there are advantages and
competencies in the many approaches reported in the literature, several
results are not easily reproducible because most of the algorithms depend
on some random number generation. This means that a simple change in
the generation of random numbers may affect very significantly the
direction of the optimisation process. As a result, randomness generates
different results and makes the results only statistically comparable. Since
the results are hard to reproduce, it is difficult to determine whether they
are optimal or not and it is not possible guarantee the quality of every

individual solution.

The survey of the literature also showed that the previous approaches
used are highly reliant on the technology available at the time. Early
systems were severely constrained by computational limitations in terms
of the problem complexity that was examinable. For example, in some of
the early approaches, punch cards were used to input data and paper
forms were needed for data collection. As computing power has increased,
scheduling approaches have become more flexible and take into account
more working preferences. Some of the current state-of-the-art approaches
to automate nurse scheduling require similar run times of algorithm on
personal computers with 3000MHz processors and numerous other
improvements. This highlights either a serious lack of progress over the
past 25 years, or more likely, limitations on the size and complexity of the
problems that could be solved in the past, and the increase in complexity
of the problems that are solved now. This increase in computing power is
expected to continue in the future, so we should anticipate even better
solutions to be produced more quickly for even harder real-world problems.
In contrast to the gaps in the existing research, this thesis is significant in
its flexibility of approach, applicability in practice and generic problem

formulation.
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Chapter 3: Datasets and Background of the
Nurse Scheduling Problem

From the published research it is clear that benchmark datasets were
used quite extensively. The usage of the same standard benchmark
datasets in different research conducted by all researchers in this area is
very important in order to have a fair judgment about the efficiency and
efficacy of a particular approach. This chapter explains in detail the
datasets used in the thesis to test the performance of the analysed
approach. In addition, it gives a background of NSPs, to situate all

subsequent chapters.
3.1 Datasets

The real-world datasets used in this study were available for download for
scientific research from http://www.cs.nott.ac.uk/~tec/NRP/. The primary
use of these datasets was to obtain information related to the nurses to be
scheduled. In this study, we interpret a NSP as a problem of constructing
appropriate information granules and using these granules to design an
optimised schedule. The schedule must satisfy a variety of hard
constraints relating to work regulations and as many soft constraints as
possible relating to employee requests and personal preferences. A large
set of constraints are accessible for this NSP. Some of these datasets have
logic constraints and are very complex to handle. Others are over-
constrained, making it difficult to find a feasible solution to satisfy all
constraints. Therefore, soft constraints are used to represent the
conflicting preferences of nurses. We search for feasible solutions that

minimise this violation of soft constraints.
3.1.1 ORTEC

Without the loss of generality, we discuss our contribution in the context of
a specific NSP as encountered by ORTEC, the Netherlands, in intensive
care units in Dutch hospitals. ORTEC supports hospitals and other

organisations internationally with automated workforce management
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solutions. ORTEC provided data that showed a challenging real-world
problem very typical of their clients’ needs. Over the years, this problem
has been tested by a range of meta-heuristic algorithms (Burke et al.,
20044, 2008; Brucker et al., 2005; Li et al., 2012), and has become a
benchmark dataset in the literature. The characteristics of this problem
have been discussed in Baskaran, Bargiela and Qu (2009). We focus on
creating weekly schedules for a ward with 16 nurses. The problem is to
assign a certain number of different types of shift to 16 nurses in a ward
within a scheduling period of five weeks. Twelve of the nurses are full-time
and have a contract of 36 hours/week. One other full-time nurse works 32
hours/week and the remaining three part-time nurses work 20
hours/week. Each instance also has a number of specific personal requests,

such as particular shifts and/or days requested off or on.
3.1.2 Shifts and shift demand

There are four different shift types in the problem: day, early, late and
night shifts. All the shifts except night shifts cover nine hours including
one hour of rest time. So the actual number of working hours for each shift
type is eight. Night shifts last eight hours but include no rest time and so
are counted as eight working hours. The total demand requirement for
each shift for each day varies between instances. Generally, larger wards
require more nurses on duty during each shift but similar sized wards can
also have different demand requirements. The required number of nurses
on individual shifts for different days of the week is summarised in Table
3.1. The hard and soft constraints that need to be satisfied are described in

turn below.
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Table 3.1. Shift Types and Daily Demand of 16 Nurses During a

Week
Demand

Shift Type Start Time End Time

M T W T F S S
Early (E) 07.00 16.00 3 3 3 3 3 2 2
Day (D) 08.00 17.00 3 3 3 3 3 2 2
Late (L) 14.00 23.00 3 3 3 3 3 2 2
Night (N) 23.00 07.00 1 1 1 1 1 1 1
Rest (R) Denotes any of the above if the nurse is not required to work

during this shift

3.1.2.1 Constraints

The NSP involves allocating the required workload to nurses subject to a

number of hard and soft constraints, as detailed below.

3.1.2.1.1 Hard constraints

The hard constraints (denoted by HC) listed below must be met in all
circumstances; otherwise, the schedule is considered infeasible and

unacceptable.

HC1. Demands need to be fulfilled.

HC2. For each day, one nurse may start only one shift.

HC3. Within a scheduling period, a nurse is allowed to exceed the
number of hours for which he/she is available for his/her

department by at most four hours.

HC4. The maximum number of night shifts is three per period of five

consecutive weeks.

HC5. A nurse must receive at least two weekends off duty per five- week
period. A weekend off duty lasts 60 hours including Saturday 00:00
to Monday 04:00.

HC6. Following a series of at least two consecutive night shifts, a 42-

hour rest period is required.
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HC7. During any period of 24 consecutive hours, at least 11 hours of rest
is required. A night shift has to be followed by at least 14 hours of
rest. An exception is that once in a period of 21 days for 24

consecutive hours, the resting time may be reduced to eight hours.
HC8. The number of consecutive night shifts is at most three.
HC9. The number of consecutive shifts (workdays) is at most six.
HC10. One of the full-time nurses requires not receiving any late shifts.

HC11. The maximum labour time averages 36 hours/week over a period of
13 consecutive weeks if this period does not include work during

night shifts.
3.1.2.2 Soft constraints

The soft constraints (denoted by SC) in the problem we are dealing with
are listed in Table 3.2. These constraints should be satisfied as much as
possible; however, in real-world circumstances, it is usually unavoidable
that some will be violated. Depending on how strongly these soft
constraints are desired, a weight (a simple number) is assigned to each to
reflect its importance (especially in comparison to other soft constraints).
The highest weight is 1000, denoting a strong desire that this constraint
be satisfied. The lowest weight is 1, indicating the relative unimportance
of satisfying this constraint. The penalty of a feasible schedule is the sum
of the weights of all the violations of soft constraints in the schedule. The
weights are fixed either by the head nurses or through feedback from the
nurses about what qualities they desire in their schedules. As a rough

guide, the weights are described as follows:

Weight 1000: The constraint should not be violated unless absolutely

necessary.
Weight 100: The constraint is strongly desired.
Weight 10:  The constraint is desired but not critical.

Weight 1: Try to obey this constraint if possible, but it is not essential.
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In practice, exponentially scaled weights like these are the most common
type used. However, users do have the option of setting and changing the

weight for each constraint to any positive integer value.

Table 3.2. Soft Constraints and their Weights

Soft Constraints Weights

SC1  For the period of Friday 23:00 to Monday 0:00, a nurse should 1000
have either no shifts or at least two shifts (complete weekend).

SC2  Avoid sequences of shifts with length of one for all nurses. 1000

SC3a For nurses with availability of 30-36 hours per week, the length 1000
of a series of night shifts should be within the range [2, 3]. It
could be part of, but not before, another sequence of shifts.

SC3b For nurses with availability of 0—30 hours per week, the length 1000
of a series of night shifts should be within the range [2, 3]. It
could be part of, but not before, another sequence of shifts.

SC4  The rest after a series of day, early or late shifts is at Least two 100
days.

SCba For nurses with availability of 30-36 hours per week, the 10
number of shifts is within the range [4, 5] per week.

SC5b For nurses with availability of 0—30 hours per week, the 10
number of shifts is within the range [2, 3] per week.

SC6a For nurses with availability of 30—36 hours per week, the length 10
of a series of shifts should be within the range of [4, 6].

SC6b For nurses with availability of 0—-30 hours per week, the length 10
of a series of shifts should be within the range [2, 3].

SC7  For all nurses, the length of a series of early shifts should be 10
within the range [2, 3]. It could be within another series of
shifts.

SC8  For all nurses, the length of a series of late shifts should be 10
within the range of [2, 3]. It could be within another series of
shifts.

SC9a An early shift after a day shift should be avoided.
SC9b An early shift after a late shift should be avoided.
SC9c A day shift after a late shift should be avoided.
SC10 A night shift after an early shift should be avoided.

= Ot Ot Ot

To have the same evaluation functions as those of other approaches in the
literature, the above soft constraints are measured by the quadratic
function. That is, the measure of violations is squared and multiplied by

the corresponding weight.
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3.1.3 Kajang Hospital
3.1.3.1 Problems faced by head nurse (matron,)

The general process of manual roster runs is as follows. Early in each
week, the head nurse of Medical Ward 2 will draft the roster for each
nurse. The process of producing the roster begins with the collection of
information from each nurse, including their preference of days off and
shifts. The head nurse faces a few problems during the production of the

roster:

1. They need to reproduce drafts until nurses with adequate skills and

experiences are equally mixed in each shift.

2. When new nurses need to attend training/courses, the workload of
these leaving nurses has to be equally distributed. Therefore, the

roster needs to be reshuffled.

3. When certain nurses have to be transferred to other wards for a few

weeks because their expertise is needed, the roster needs to be

reshuffled.

It is inefficient for the head nurse to spend his/her time and effort to
arrange the schedule. Moreover, the task is made difficult by the problems
stated above. Therefore, a solution is needed to make scheduling quicker
and easier. The new scheduling problem presented in this thesis has been
studied for three wards in a large Malaysian hospital; that is, the coronary
care unit (CCU), medical ward and male ward in Kajang Hospital. We

outline the following characteristics.

1. We have to adhere to Malaysian national laws and the collective

labour agreements enforced in Malaysian hospitals.

2. The requests of the personnel are very important and should be
met as much as possible; the soft constraints we use are those that,

In our experience, represent the situation in Kajang Hospital.
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3. It is not necessary to consider qualifications, as all personnel are
highly qualified. However, specialised nurses are required to

oversee all tasks in each shift.

All 28 nurses in Kajang Hospital are full-time and have a contract of 40
hours per week. There are 10 specialised U29 grade nurses and 18 normal
U29 grade nurses working across different types of shift, as illustrated in

Table 3.3. This satisfies the daily coverage requirements for these shift

types.

3.1.4 Shifts and shift demand

There are four different shift types in the problem: day, early, late and
night shifts. The hospital uses the terminology of ‘morning’, ‘office hours’,
and ‘evening’ shifts; however, for the purpose of this study, and with the
consent of the matron, we have renamed these shifts using the terms
common in the nurse- scheduling literature: early, day, late and night.
These shift types vary in their duration, but all include one hour of rest
time. The early and late shifts have a seven-hour duration, the dayshift is
nine hours and the night shift is 10 hours. The hospital’s scheduling period
1s two weeks long, and the hospital practices a number of types of rest day,
including Sleep Day (SD), Day Off (DO), Public Holiday (PH), Annual
Leave (AL) and Emergency Leave (EL).

The required number of nurses on individual shifts for different days of
the week 1s summarised in Table 4.7. The hard and soft constraints that

need to be satisfied are described in turn below.

Table 3.3. Shift Types and Daily Demand of 28 Nurses During a

Week
Demands

Shift type Start time End time

M T W T F S S
Early 07:00 14:00 6 6 6 6 6 6 6
Day 08:00 17:00 1 1 1 1 1 1 1
Late 14:00 21:00 6 6 6 6 6 6 6
Night 21:00 07:00 3 3 3 3 3 3 3
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3.1.4.1 Constraints

3.1.4.1.1 Hard constraints

The hard constraints listed below must be met in all conditions; otherwise,

the schedule is considered infeasible and unacceptable.

HC1l: Demands need to be fulfilled.

HC2: For each day, one nurse may start only one shift.

HC3: One of the nurses requires performing only the Office Hour shift
per day.

HC4: At least one skilled nurse must be scheduled to each shift.

HC5: The number of consecutive shifts (night) is at most three.

HC6: The number of consecutive shifts (workdays) is at most six.

HC7: Following a series of three consecutive night shifts, a 48-hour rest

1s required.

HCS8: Following a series of six consecutive day shifts, a 24-hour rest is

required.

HC9: The maximum number of night shifts is three per period of two

consecutive weeks.

3.1.4.1.2 Soft constraints

The soft constraints listed below represent the preferences of the nurses
and hospital requirements at Kajang Hospital. These soft constraints
should be satisfied as far as possible; however, in real-world
circumstances, it is usually unavoidable that some of these soft constraints
will be violated. A numerical penalty weight is given for each soft
constraint based on the importance of that constraint. A weighting is
simply a number. Depending on how strongly these soft constraints are
desired (especially in comparison to other soft constraints), a weight is

assigned to each (see Table 3.4). The higher the weight, the more strongly
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the satisfaction of this constraint is desired. The penalty of a feasible
schedule is the sum of the weights of all the violations of soft constraints
in the schedule. One key issue regarding setting the weights of constraints
in NSPs is that there are no standard weights for soft constraints, as they
vary widely from one hospital to another. To serve as a guide, the weights

shown in Table 3.4 can be understood as follows:

Weight 1000: The constraint should not be violated unless absolutely

necessary.

Weight 100: The constraint is strongly desired.

Weight 10:  The constraint is desired but not critical.

Weight 5: The constraint is favoured but not crucial.

Weight 1: Try to obey this constraint if possible, but it is not essential.

In practice, exponentially scaled weights like these are most commonly
used. However, the users do have the option of setting and changing the

weight for each constraint to any positive integer value.
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Table 3.4. Soft Constraints and their Weights

Soft Constraints Weights
SC1 Avoid sequences of shifts with length of one for all nurses. 1000
SC2 The rest after a series of morning or evening shifts is at least 100

two days.
SC3 The number of shifts is within the range [4, 6] per week. 10
SC4 The length of a series of shifts should be within the range of [4, 10

6].
SC5 Days on/off requests: Requests by nurses to work or not to 10

work on specific days of the week should be respected;
otherwise, solution quality is compromised.

SC6  Shift on/off requests: Similar to SC5 but relating to specific 10
shifts on certain days.

SC7 For all nurses, the length of a series of morning shifts should 10
be within the range [1, 4]. It could be within another series of
shifts.

SC8 For all nurses, the length of a series of evening shifts should be 10
within the range of [1, 4]. It could be within another series of
shifts.

SC9a A morning shift after the office hour shift should be avoided. 5
SC9b An evening shift after the office hour shift should be avoided. 5

SC10 An evening shift after a day off followed by a night shift should 1
be avoided.

3.1.4.2 Proposed solution of simplified plan for simulation in Kajang
Hospital

In this study, we proposed a simulation model for Kajang Hospital that
describes the functioning of the main processes in the NSP (Baskaran et
al., 2013a). This study was conducted by request from Kajang Hospital
(see Appendix C for the related article). Figure 3.1 shows the design
process to achieve an efficient scheduling simulation and presents a cost-
effective schedule by executing the demand simulation. One example that
we showed to the hospital used integer programming to find the results.
Interactive scheduling is facilitated in our novel approach. Interactive
scheduling allows human abilities to be extended and a scheduling
approach applied to solve real problems. It provides a means for modifying
the solution to cater for factors that had been assumed away during

problem simplification. Generally, our solution is focused on solving
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complex problems based on well-justified simplifications of the original
problem. We systematically subdivided the problem into smaller sub-
problems capable of reproducing the result. This identification of
interactive scheduling is dynamic. It is thus fully independent, user-
oriented and compatible with the new human-centred computing
paradigm. It is important to have easily understandable results in both
domains. Another benefit in this simulation model is that the domain
transformation can reduce computational complexity and thus

computational time.
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Figure 3.1. Design of the simulation model.

The simulation model also reduces the cross-referencing over the detailed
swapping of shifts for individual nurses. The goal of this scheduling
simulation is to test how the different schedules perform when, for
instance, the workload or capacity has to cope with uncertainty. To
retrieve meaningful results, the simulation was tested intensively with a
range of different parameters. The results were then discussed with the
real system matron to identify a number of service criteria in coordination
with the hospital. If the first results indicate that the schedule does not
meet the goals set in the simulation model, it can be adjusted or added to
using some of the constraints in the mathematical programming model.
Schedulers are provided with all of the information they need concerning

the different steps so that matrons can choose which schedule to
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implement. During this simulation model, the schedules obtained will not
make any difference in terms of the different order of processing. The
schedule is the same when we change the order of individual patterns or

nurses.
3.1.5 Other real-world benchmark problems.

To validate our algorithms and encourage more competition and
collaboration between researchers addressing scheduling, we have built a
collection of diverse and challenging benchmark datasets. The collection
has grown over several years, has been sourced from 13 different countries
and the majority are based on real-world scheduling scenarios. Table 3.5
lists these benchmark instances. All are available for download from

http://www.cs.nott.ac.uk/~tec/NRP/.

The instances vary in the length of the planning horizon, the number of
employees, the number of shift types and the number of skills required.
Each instance also varies in the number, priority and type of constraints,
as well as the objectives present. The objectives were set by the
organisation that provided the data. For example, some organisations
prefer to minimise overstaffing, whereas others prefer to maximise staff

satisfaction and so set a higher importance weighting for those objectives.
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Table 3.5. Benchmark Instances

Instance Staff Shift Length  Skill Best- Ref

types  (days) types known

Musa 11 1 14 3 175 [5]

GPost 8 2 28 1 5

GPost-B 8 2 28 1 3

Ozkarahan 14 2 7 2 0 [16]

Millar-2Shift- Datal 8 2 14 1 0 [4]

Millar-2Shift- 8 2 14 1 0 [4]

Datal.l

Azaiez 13 2 28 2 [19]

WHPP 30 3 14 1 [14]

Valouxis-1 16 3 28 1 20 [6]

Ikegami-2Shift- 28 2 30 9 0 [4]

Datal

Tkegami-3Shift- 25 3 30 8 2 [4]

Datal

Ikegami-3Shift- 25 3 30 8 3 [4]

Datal.l

Tkegami-3Shift- 25 3 30 8 3 [4]

Datal.2

ORTECO01 16 4 31 1 270 [8]

ORTECO02 16 4 31 1 270 [8]

QMC-1 19 8 28 1 13

QMC-2 19 3 28 3 29

SINTEF 24 5 21 1 0

3.1.5.1 Initial study on selected real-world benchmark datasets: Hard and

soft constraints

Table 3.6. Hard Constraints

HC Category

Details

GPost One shift per day

Coverage (no over/

under cover)

Working type
Shift patterns

One shift per day (D, N, R)*

Weekday: 3D 1N; Weekend: 3D, 1N

Full-time: 18 shifts; Part-time: 10 shifts

Maximum consecutive working days: 6

Maximum consecutive N shifts: 3
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HC Category Details

Maximum consecutive working weekends: 3
After a series of work, at least 2 days rest

Complete weekends, 1.e. rest or work on both
days

After N shifts, at least 2 days of rest
Valouxis  One shift per day One shift one day (D, E, N, O)*

Coverage (no over/ 4D 4E 2N; Weekend: 3D 3E 2N
under cover) Weekday:

Working type 18 shifts

Shift patterns Maximum consecutive working days: 5
Maximum consecutive N shifts: 3
Maximum consecutive working weekends: 3
After a series of work, at least 2 days off

Complete weekends, i.e. free or work on both
days

After N shifts, at least 2 days off
WHPP One shift per day One shift one day (D, E, N)*

Coverage (no over/ 10D on Mon and Tues; 5D on Wed to Sun;10E
under cover) Weekday: on Mon, Tues, Wed &Fri; 5E on Thurs &
Weekend; 5N

30 standard nurses

Working type

Shift patterns Maximum consecutive working days: 7
At least 2 days off after 7 working days
Maximum consecutive N shifts: 4
At least 2 days off after 4N
No N-D, N-E, E-D

Ozkarahan One shift per day One shift one day (12,8)

Coverage (no Skill AID: Shift 12(1) and Shift 8(0); Skill RN:
over/under cover) Skill 8(2) and Skill 12(4) Weekday and 12(3)
Weekday: Weekend

Working type AID: 3 nurses and RN: 11 nurses

Note: D=day shift; E=Early, N=night shift; O=off day, Mon=Monday, Tues=Tuesday,
Wed=Wednesday, Thurs=Thursday, Fri=Friday, Sat=Saturday, Sun=Sunday.
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Table 3.7. Soft Constraints
SC Category Details Weights
GPost Balanced Full-time: [4,5] shift/week 1*
workload Part-time: [2,3] shift/week 1*
Full-time: shifts series length [4,6] Part- 100
time: shifts series length [2,3]
Pattern No standalone shift, i.e. single day on
preference No one shift over a weekend 100
No one day off between shift series 10
Valouxis  Balanced No. of D shifts: [5, 8] in the schedule 100
workload
Pattern No. of E shifts: [5, 8] in the schedule 100
preference
No. of N shifts: [2, 5] in the schedule 100
No. of O shifts: [10, 13] in the schedule 100
No standalone shift, i.e. single day on 1000
No one shift over a weekend 1000
A D after E should be avoided 1000
A E after N should be avoided 1000
A D after N should be avoided 1000
At least 2 days off between shift series 100
WHPP Pattern Series of D/E/N shift length: 3 40
preference
Series of D/E/N shift length:3
Ozkarahan Pattern No On-Off-On should be avoided 20
preference
1* No Off-On-Off should be avoided
1* Work both Sat and Sunday
1* Max 1 working weekend
1* Weekend On-Off, Off-On or On-On 400

Note: To have the same evaluation functions as those of other approaches in the literature,

the constraints denoted by * are measured by the quadratic function. That is, the measure

of violations is squared and multiplied by the corresponding weight.
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3.2 Further Definition of Shifts, Sequence of Shifts,
Schedules and Scheduling

To understand better the definitions based on Baskaran, Bargiela and Qu
(2014c), an example of shifts is given in Table 3.8. These shifts are taken
from the ORTEC dataset explained in Section 3.1.1.

Table 3.8. Shift Types and Daily Demand During a Week

Demand

Shift Type Start Time End Time

M T W T F S S
Early (E) 07.00 16.00 3 3 3 3 3 2 2
Day (D) 08.00 17.00 3 3 3 3 3 2 2
Late (L) 14.00 23.00 3 3 3 3 3 2 2
Night (N) 23.00 07.00 1 1 1 1 1 1 1
Rest (R) Denotes any of the above if the nurse is not required to work

during this shift

There are five shift types in the problem presented in Table 3.8: day, early,
late, night and rest shifts. The total demand requirement for each shift for
each day varies from three nurses Monday to Friday to two nurses on
weekends. There is no difference in night demand. Every day, only one
nurse covers the night shift. Feasible sequences of shifts must satisfy all
hard constraints. For the above problem, 16,768 feasible sequences of
shifts were identified for a one-week period. An example of a feasible
sequence of shift for a one-week period (Monday to Sunday) is EDLLRRR,
while an infeasible sequence of shifts might be EDLNNNN. The latter is
infeasible because the sequence of night shifts violates hard constraint
where the number of consecutive night shift is at most three for this real-
world dataset, which requires no more than three night shifts in a row.
The identified feasible sequences can be classified into zero-cost or non-

zero-cost sequences of shifts,

zero-cost means the sequence does not violate any soft
constraints and non-zero-cost means the sequence does

violate one or more soft constraints.
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Cost can range from a smaller value to larger value. The value can go
higher when sequences are connected, due to the greater number of
possible violations of soft constraints. Sequences of shifts depend on
satisfying constraints. Further explanations based on soft constraints and
weight are illustrated in Section 4.6. The weight for each soft constraint is
calculated either linearly or quadratically using the violation
measurement factors (Li et al., 2012). A soft constraint with a linear
penalty function is calculated as: violation measurement factor multiplied
by weight. Alternatively, a quadratic penalty function is calculated as:
violation measurement factor squared and multiplied by weight. An
example of a feasible sequence of shifts that does not violate any soft
constraints (i.e., a zero-cost sequence) 1s ELLLRRR. Similarly, an example
of a feasible sequence of shifts that violates soft constraint two by having a
sequence of shifts with a length of one, giving a cost of 1000, is ELLLRRE.
Likewise, when there are few combinations of violations happen, an
example of feasible sequence having three violation of soft constraint one,
two and six by not having a complete weekend, having a sequence of shifts
with a length of one and violating the length of series of shift, giving a cost
of 2010, is DRRRRDR where violation 1 gives cost 1000, violation 2 gives
cost 1000 and violation 3 gives cost 10. Specifically on ORTEC study,
among all feasible sequences, there are 193 zero-cost sequences for the
36/32hours/week nurses and 66 zero-cost sequences for the 20 hours/week
nurses. The remaining 16,510 feasible shift sequences have a non-zero-
cost. It 1s now possible to define the objective of the problem: To find a
feasible schedule with the lowest possible weight caused by soft constraint
violations. From the viewpoint of the head nurse, the actual weight hides a
lot of information about the solution but is not totally meaningless. By
investigating the weight of each schedule, it is possible to gain some idea
of the schedule quality. For example, if the weight is less than 1000, then
we know that all the constraints with weight 1000 have been satisfied.
However, the key to producing satisfactory schedules is setting the correct
weights and ensuring that all the required constraints are defined.
Therefore, it is important that the end user either has a good
understanding of how to fix the weights and define constraints or has

clearly described the requirements that they need.
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A schedule is a set of sequences allocated to each nurse such that they add
up to the coverage requirement, as described in Table 3.8. In our ORTEC
case study, schedules are constructed to minimise the cost of sequences of
shifts over a period of five weeks. Table 3.9 provides an example of a five-
week schedule with a specific number of nurses that meets the coverage
requirement of each different shift. This schedule is feasible since it
satisfies all the hard constraints, especially the demand or cover. As we
can see, each week, the total demand requirement for each shift for each
day that varies from three nurses Monday to Friday to two nurses on
weekends is satisfied. There is no difference in night demand. Every day,

only one nurse covers the night shift.

Table 3.9. Example of Five-week Schedule with 16 Nurses

Sequences of Shifts

Week 1 Week 2 Week3 Week 4 Week 5

1 ELLRRLL LDNNRRR RLLLDRR EEELLRR LLLRRLL
12 LRRRDDD DLLRRLL LDNNRRR RDDLLRR DDDDLRR
16

Cover E 3333322 3333322 3333322 3333322 3333322
Cover D 3333322 3333322 3333322 3333322 3333322
Cover L 3333322 3333322 3333322 3333322 3333322
Cover N 1111111 1111111 1111111 1111111 1111111

Note: E=Early, D=Day, Li=Late, N=Night

Scheduling is a process of allocating shifts over a predefined period subject
to various constraints. Scheduling that satisfies the hard constraints on
sequences of shifts and the cover requirement will generate a feasible
schedule (see Table 3.9). This can then be refined to lower the cost of the
schedule by ensuring satisfaction of as many soft constraints as possible.
The scheduling problem in the above scenario presents a combinatorial
optimisation problem in a space of 16%¥535=4.6%*1025 possible schedules,
which 1is clearly a computationally prohibitive task (Baskaran, Bargiela
and Qu, 2013a). Most of the methods highlighted in Chapter 2 perform

optimisation on feasible schedules by adjusting individual shifts. This can
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involve the replacement of one shift type with another and subsequent
balancing of the required cover. Alternatively, optimisation may involve
swapping shifts allocated to two nurses on the same day, which does not
alter staff cover. As Table 3.10 shows, swapping a shift can produce a

lower-cost schedule.

Table 3.10. Shift Swapping to Achieve a Schedule with a Lower
Cost

Sequences of Shifts

Week 1 Week 2 Week 3 Week 4 Week 5
Nurses MTWTFSS M....... S M....... S M...... S M....... S

1 ELLRRLL LDNNRRR RLLLDRR EEELLRR LLLRRLL
$Swapping

12 LRRRDDD DLLRRLL. LDNNRRR RDDLLRR DDDDLRR

16 ...

Cover E 3333322 3333322 3333322 3333322 3333322
Cover D 3333322 3333322 3333322 3333322 3333322
Cover L 3333322 3333322 3333322 3333322 3333322
Cover N 1111111 1111111 1111111 1111111 1111111

Note: E=Early, D=Day, L=Late, N=Night

Both a simple change of a single shift and the swapping of two shifts imply
non-monotonic changes in the cost of a schedule (non-monotonic=defeasible
inference, 1.e., inference in which reasoners draw conclusions tentatively,
reserving the right to retract them in the light of further information). In
other words, a decrease in the number of violated soft constraints does not
necessarily imply a decrease in the cost function. Therefore, the process of
optimisation of the non-monotonic cost may converge to local optima
rather than global optima. For example, if there are 15 constraints with
different cost values, the challenge is to choose which constraints to violate
and which not to violate. If the schedule violates one of the more expensive
constraints (i.e., with an associated cost closer to 1000), it can be replaced
with a schedule that violates one or more less expensive constraints at a

lower total cost. Unfortunately, local optima evaluated in this way do not
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provide any guidance concerning the required adjustment of the
independent variables to facilitate convergence to global optima. This
means that existing methods have to perform combinatorial searches in a
large problem space. Figure 3.2 illustrates the challenge of the scheduling
problem by providing an example of two possible sequences of shifts
allocated to Nurse 1 in week 1. A simple change of one shift implies a non-
monotonic change in the cost associated with the violation of constraints.
Due to the large number of possible schedules and the non-monotonic
change of the cost with different combinations of shifts, the optimisation of
the overall schedule by the modification of individual shifts and/or various
groups of shifts is considered an NP-hard problem (Celia and Roger, 2010).
However, this classification is predicated on the assumption of the
deployment of scheduling algorithms that explore the solution space

directly.

Week 1 Week 2 ... Week 5

N\

Nurse \

? N\
Sequence of shifts in \ \
week 1 resulting in SC

violation penalty of E E D L R R R
[13 10”

Nurse 1

Sequence of shifts in
week 1 resulting in
SC violation penalty E E L L R R R
of “0”

Figure 3.2. Example of a single shift change in a schedule.
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Chapter 4: Domain Transformation Approach

This chapter presents the proposed approach for the NSP that will be
employed in the subsequent chapters of this thesis. First, a ‘bigger picture’
overview summary of previous studies and the proposed study is
illustrated in a diagram. Background to the domain transformation
approach is given to explain the decision of using the selected approach.
Finally, to understand better how the structure of the problem influences
the behaviour of the NSP, a novel approach is discussed that explains how
costs are minimised in a schedule by transforming the original problem
domain into a smaller domain that is easier to manage. We then provide

the general novel algorithm designed based on this approach to solve any

NSP or SSP.
4.1 The Bigger Picture

During the last decades, many scientific studies have been conducted in
order to support the task of nurse scheduling using computer programs, as
discussed in Chapter 2. The concepts of the previous studies are

summarised in Figure 4.1 below.

3

Feasible solution that may be /

“expensive” in terms of constraints

|

Explore neighbour
of this seauences

I

If not reduced, then replace initial

with current solution. \
Risk of iteration
1 for local

- g Specific shift

allocate

Difficult to find
the solution

Meta-heuristic, Tabu Search,
Case Based Reasoning,

Mathematical programming,
Simulated Annealing, Hybrid
Technique, Expert System

Figure 4.1: Summary of previous studies on NSPs

As mentioned previously, a feasible schedule is a schedule that satisfies all

the hard constraints. In most cases, feasible solutions that are found may
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be ‘expensive’ in terms of the constraint weight or cost. This leads to
difficulty in finding a solution. Hence, in order to find a feasible solution,
the neighbourhood of these sequences are explored. From the literature,
there are many approaches, methods and techniques used. A few
techniques are highlighted in Figure 4.1. In general, if the cost of the
schedule is not reduced, then the initial solution will be replaced with the
current solution found. In this process, nurses are allocated to a specific
shift most of the time. As an alternative, we transform the original
problem domain into a smaller domain that is easier to manage. Nurses
are allocated with patterns instead of shifts. In the offline preparation, as
labelled in Figure 4.2, initially we identified all shift sequences with zero-
cost. These sequences are called ‘patterns’, and these patterns are
allocated to a specific shifts sequence. Later, we use this sequence of
patterns to design and obtain an optimal schedule. This is done in an
analytical preparation. This approach contrasts with the standard,
detailed level of problem representation, which requires arrangement of

various heuristic methods to manage computational complexity.

(a) Identify all shift
sequences with “0” | —>

Offline
Preparation

l _>[ Specific Shift Seauence ]

allocated

Use the shift
sequences
from (a) to design
and obtain an

Analytical
Preparation

(e ) — (porern

allocated

Figure 4.2: Outline of proposed approach for the NSP

The fundamental hypothesis of this thesis is that the information
granulation of the pre-processing of initial problem information can lead to

a transformation of the NSP into a new solution domain in which the
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problem is solved more easily. This aggregated information from the
modified information domain, grouped properly, will be much easier to
handle and perform efficiently. This is because it will be generating
reproducible results, as opposed to dealing with the original information

as in many previous studies.

4.2 Overview of Information Granulation

As a simple way of understanding information granulation, consider the
following example: when one is travelling, it is most useful to know first
about the weather conditions in a place rather than the exact temperature.
The less precise but more general notion of weather is more appropriate at
the planning stage then the precise information about the temperature at
a specific instant. In another example, to establish a course view of the
world map, the focus is on high-level information such as the placement of
the continents, countries and oceans. Only when one needs more detail is
1t necessary to move down to finer-scale information such as the location of

regions, provinces and states.

To simplify a concept while maintaining its accuracy is one of the
objectives of the emerging computing paradigm of granular computing
(Zadeh, 1979). Granular computing views the world as divided into entities
called information granules that are grouped together due to their
similarity, functional adjacency, in distinguish ability or coherence
(Bargiela and Pedrycz, 2003). A highly detailed granular world can be
abstracted into lower granulation using formal frameworks that

approximate the original representation. This can be formally written as:

G=<XGA..>

Where G is the granulation process, X is the element to be granulised, G is
a family of reference and A refers to abstractions (Bargiela and Pedrycz,
2003). Briefly, granular computing is geared towards representing and
processing basic chunks of information; that is, information granulation
(Kasabov, 1996; Zadeh, 1997). In 1979, Zadeh first introduced and

discussed the notion of information granulation, pioneering the explicit
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study of granular computing (Zadeh, 1979). In 1982, Pawlak proposed the
theory of rough sets (Pawlak, 1982, 1991), which provides a concrete
example of granular computing. To some extent, rough set theory brought

increased attention to the importance of granulation.

According to Zadeh, granules are constructed and defined based on the
concept of generalised constraints. A granule may be interpreted as a
subset of a universal set; while in programming, a granule can be a
program module (Yao, 2004b). To quote Zadeh’s (1997, p. 111) definition,
‘granulation involves a decomposition of whole into parts. Conversely,
organization involves an integration of parts into whole; causation
involves association of causes with effects’. An important property of
granules and granular level is their granularity. The granularity of a level
refers to the collective properties of granules in a level with respect to
their size. Granularity is reflected by the size of all granules involved in
the level, and it enables the construction of a hierarchy. Thus, information
granules are divided into layers or hierarchies to build an information
pyramid in which the granules at the bottom are concerned with numeric
processing and the granules at the top are solely devoted to symbol-based
processing. Information granules are most commonly encountered at the

intermediate level. This is illustrated in Figure 4.3.

Hig
A
- A
- |

Figure 4.3. An information-processing pyramid
(Bargiela and Pedrycz, 2003).

The issues of relevance and defining the ‘size’ of an information granule
are of fundamental importance in the field of granular computing and

depend on the problem in which the granules are used. In general, high
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information granularity levels are associated with a decrease in the
usefulness of the concept. Granular computing, therefore, focuses on every

day and commonly used concepts.
4.3 Granular Computing Work

Stepaniuk and Skowron (2005) studied granulated information systems
and granular approximate space and discussed the granular framework of
approximation and dependency relationships between concepts. Initiatives
include granular computing as a way of problem solving (Yao, 2004a,
2004b, 2007; Zhang and Zhang, 2007) and granular computing as a
paradigm of information processing (Bargiela and Pedrycz, 2002, 2008).
Based on granularity and abstraction, many authors have studied certain
fundamental topics of Al, such as knowledge representation (Giunchglia
and Walsh, 1992; Zhang and Zhang, 1992), theorem proving (Giunchglia
and Walsh, 1992), planning (Knoblock, 1993), natural language
understanding (Mani, 1998), intelligent tutoring systems (McCalla, Greer,
Barrie and Pospisil, 1992), machine learning (Saitta and Zucker, 1998)

and data mining (Han, Cai and Cercone, 1993).

Chen, Chen, Hsu and Zeng (2008) present a novel model called the
‘information granulation based data mining approach’ to tackle the
imbalanced data of many real-world datasets. This method imitates the
human ability to process information, acquires knowledge from
information granules rather than from numerical data, and introduces a
latent semantic indexing-based feature-extraction tool by using singular
value decomposition to reduce the data dimensions dramatically. In
another study, Li, Qiu, Liu and Bai (2010) propose an algorithm for
generating a domain concept granule lattice. Li et al. illustrated that
ontology building can be attained from a given incomplete multi-valued
information system, and can automatically construct a basic domain
ontology based on the domain concept granule lattice. Further,
granulation is one of the most common techniques used in sound design,
where the samples within the grain are identical to those found in the
original (Truax, 1990a, 1994b). Information granulation is a powerful

approach for emphasising the relevant information rooted completely in
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the raw data. In their granular model, Rahim and Bargiela (2009) showed
that by capturing the persistent feature of potential (as opposed to actual)
conflicts in the conflict chain information granule, one could construct a

much simpler model of an exam-scheduling task.

There are many reasons for studying domain transformation using
methods derived from information granulation. Human problem solving is
based crucially on levels of granularity and change between granularities
(Hobbs, 1985; Zadeh, 1997); therefore, the implementation of information
granulation principles extracts the common elements from human problem
solving, leading to more effective information-processing systems.
Moreover, a multiple-level representation reveals orderliness, control and
the complex system or problem. Thus, by omitting unnecessary, irrelevant
details and focusing on the correct level of abstraction, it is possible to
simplify a complex system or problem. Further, by considering the same
problem at different levels of granularity, some details may be ignored.
While this may result in approximate and inaccurate solutions (Zadeh,
1997), it also brings the benefit that such solutions can normally be
obtained at a fraction of the cost. Granular computing provides true and
natural representations of the real- world NSP. Through multiple-level

representations, one can obtain a full understanding of a system.
4.4 Proposed Approach of Domain Transformation

The need for effective and efficient scheduling is becoming increasingly
important. In private hospitals, this importance lies in the need to control
hospital costs efficiently through optimising nursing salaries. The main
challenge in nurse scheduling is to allocate specific shifts to nurses while
ensuring minimum costs or penalties. In this study, we adopt a novel
information granulation approach to nurse scheduling. Granular
computing can be understood as processing aggregated information that
represents semantically meaningful entities in the context of a specific
application. Like sets theory, granular computing explores the composition
of information items into information granules (analogous to forming set-
theoretic classes from set elements), their interrelationships and the

semantic transformation of the data (Bargiela and Pedrycz, 2008). The
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model of building on information granules provides a simplified
representation of the actual scheduling problem, but one with enhanced
generality because of the degree of abstraction from non-critical
information inherent to the process of data granulation (Bargiela and
Pedrycz, 2003). In this context, the challenge of granular computing is to
design and validate appropriate information granules based on a
multilevel and multi-view representation of the problem (Yao, 2007).
Information granules are collections of entities that usually originate at
the numeric level and that are arranged together due to their similarity,
functional or physical adjacency, indistinguishability or coherency. The
information granules produced in this study are aggregated shift types
and patterns representing shift sequences with soft constraints taken into
consideration. This data processing creates a significant methodological
development of nurse scheduling practice. The aggregation was inspired
by insights from previous studies conducted by the authors (Bargiela,
1985; Peytchev et al., 1996) and was formalised as a granular computing

methodology (Bargiela and Pedrycz, 2003, 2004, 2008).

Our novel approach to the solution of the scheduling problem is referred to
here as the domain transformation approach (in the context of information
granulation). The domain transformation approach introduced in
Baskaran, Bargiela and Qu (2012) departs from the orthodoxy of direct
exploration of the space of schedules. It is an effective methodological
approach to dealing with a complex NSP. Examples of the domain
transformation approach in other applications include the subdivision of a
problem domain into multiple sub-problems (e.g., the Danzig-Wolfe
decomposition for solving linear programming problems), and the
transformation from continuous to discrete functional description (e.g., the
Z-transform converting time domain signals into discrete domain of trains

of pulses).

The domain transformation is a general methodological approach that has
been used in other application domains such as control system design. In
this case, the Laplace Transform converts a difficult problem of solving
partial differential equations in the time domain into a relatively easy

problem of solving algebraic equations in the Laplace s- domain (Goodwin,
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Taylor, Villella, Foss, Ryner, Baker, and Hall, 2000). The combined
computational effort of the domain transformation in addition to the
solution of the transformed problem and the conversion from the
transformed to the original domain is significantly smaller than what
would be required for the solution in the original problem domain. The
same problem-solving philosophy is proposed here in the context of nurse

scheduling. Our approach can be summarised into a three-stage process:

1. Convert the problem from the original edINR domain into a
problem in the smaller DNR domain (‘edINR’ and ‘DNR’ are

explained below).
2. Solve the problem in the DNR domain.

3. Convert the DNR solution into a solution in the original edINR

domain.

As far as the NSP is concerned, a domain transformation approach could
be applied successfully to produce feasible and good-quality nurse
schedules. Information granulation (Bargiela and Pedrycz, 2002) serves as
an important medium to simplify a problem that needs to be split into
smaller sub-tasks. It provides an abstraction mechanism that reduces the
overall conceptual burden in the original domain. A systematic approach
that involves information granulation will create new data representation
(patterns), which will provide valuable and meaningful information that
could definitely ease the scheduling task. By having different sizes or
representations of the information granules, a certain amount of details
can be hidden during the problem solving. This offers an advantage in

terms of reducing the complexities of NSPs.

Our main example in Chapter 5 is the ORTEC dataset used for the
algorithm evaluation. The constraints on the ORTEC real-world dataset,

listed in Section 3.1.4.1, are taken as the sample for the discussion in this

chapter (Baskaran, Bargiela and Qu, 2014d, 2015).
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4.4.1 Granulation of constraints

The ORTEC constraints are defined at a very detailed time resolution. In
this form, they can be overwhelming given the number of shifts in the
planning horizon and the number of nurses to be scheduled. Following
from the observation of only three feasible night-shift patterns that satisfy
ORTEC’s hard constraints (as shown in Table 3.6), we propose to identify
feasible ‘merged-Day’ (D shift) (as discussed in Section 4.4.2) in a similar
way in this chapter. From the description of constraints in Section 3.1.4.1
(on ORTEC), we noticed that soft constraints 1 to 6 are used to identify the
feasible ‘merged- Day’. Later the soft constraints 7 to 10 are used for the
conversion from the ‘merged-Day’ to the day shifts which consist of Early
(E), Day (D) and Late (Li). Figure 4.6 explains this, which involves
abstraction from the detailed specification of the hard constraints and the
development of new semantic entities of feasible day- and night-shift
patterns to express NSPs. In the context of granular computing, we

interpret this as the granulation of constraints.
4.4.2 Granulation on shifts types

The edINR domain is the problem domain with five types of shift, as
defined in Table 3.1. The logic of granulation of shifts into patterns can be
applied directly to the edINR shifts. From the description of the shifts, it is
clear that the Early (E), Day (D) and Late (L) type shifts are similar in
terms of working hours and applicable work regulations. This justifies
considering these three shifts as one shift of type ‘merged-Day’ (D shift),
which simplifies the scheduling task. By contrast, the Night (N) shift has a
clearly distinct set of work regulations; therefore, N shift is retained.
Similarly, the rest shift (R) is retained. It is thus proposed that the NSP be
expressed at a more abstract level using just three types of shift: merged-

Day (D), night (N) and rest (R).

To assess the complexity of the scheduling problem, we can consider the
following: the problem consists of S shift types and we are concerned with
providing a schedule for N nurses over a period of W weeks. The solution
search space is N*SA(7*W), which means that for every nurse, there is a

possibility of assigning one of S shifts in each day within the scheduling
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horizon of 7*W days. In the specific case of 16 nurses working over 35 days
(five weeks) and involving five shift types, we have 16*¥5435=4.6%10*25
different schedules in the overall edINR solution space. By contrast, in the
DNR solution space for schedules for the same number of nurses over the
same duration but with only three shift types, the number of possible
schedules is considerably smaller at 16*3435=8%*10~17. Despite remaining
computationally prohibitive, this represents a reduction by a factor of 108.
Moreover, we notice the potential for additional domain transformation,
with the associated computational gain. A further reduction of the
cardinality of the solution space can be obtained by considering shorter
scheduling periods. The reduction of the search space is probably best
1llustrated by adopting a week-at-a-time approach, whereby the problem
space reduces to W*(N*S~7), which is 5*(16%5*7) in the edINR domain
and 5%(16*377) in the DNR domain. Thus, the reduction is from 80*5*7 to
80*377 (i.e., from 78,125 in the edINR domain to 2187 in the DNR
domain). Of these 625000 and 174960 sequences in the edINR and DNR
domains, 16,768 and 160, respectively, are feasible sequences. This has
been generated by the pattern generator. Table 4.1 summarises the staff
cover requirements for the corresponding edINR shifts in the DNR domain

during one week.

Table 4.1. Demand Summarisation

Demand
Shift Type %;r; '1]:31111 M T W[T|F s s
Early (E) 07.00 16.00 3 3 3 3 3 2 2
Day (D) 08.00 17.00 3 3 3 3 3 2 2
Late (L) 14.00 23.00 3 3 3 3 3 2 2
Night (N) 23.00 07.00 1 1 1|11 1 1
Rest (R) Denotes any of the above if the nurse is not requjred to work
during this shift
Demangd

M T \\% T F S S
Merged-shift (D) 9 9 9 9 9 6 6
Night (N) 1 1 1 1 1 11
Rest (R) Denotes any of the above if the nurse is not required

to work during this shift
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4.4.2 Granulation of shift sequences into patterns

We note that the soft constraints are expressed in terms of penalties
associated with specific shift sequences during one week. We can therefore
produce sequences of shifts of one week’s duration that do not have any
penalties associated with them and sequences that have some arbitrary
penalties. We will call these sequences ‘patterns’ and use them as the basic
building blocks for the schedules. The distinct value added by patterns is
that, because of their prior assessment with regard to the satisfaction of
soft constraints, they can be used in the scheduling process without the
need for additional checking of the constraints. This is an advantage
compared to scheduling with sequences of shifts, wherein a change of a
single shift requires the evaluation of all constraints, both hard and soft.
Figures4.2 and 4.3 provide examples of zero-cost and non-zero-cost

patterns, respectively.

P1 N N R R D D D

P18 R R D D D D D

Figure 4.4. Zero-cost patterns—No violation of soft constraints.

P19 ID [p [Db R |R |R |R |

(Violation of SC- For nurses with availability of 36
hours per week, the number of shifts is within the
range [4,5] per week)

P18 'R [ Db R |[R |D |D |

(Violation of SC- For nurses with availability of 36
hours per week, the length of series of shifts should
be within the range of [4,6] per week)

Figure 4.5. Non-zero-cost pattern—Violation of soft constraints

with cost 10.
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The problem of scheduling shifts is therefore transformed into a problem of
scheduling patterns. The computational gain that can be attained from
this domain transformation depends on the number of patterns that need
to be considered. It is found that the number of zero-cost patterns and
patterns with other pre-specified costs is relatively small. In the scenario
considered above, there are only 18 zero-cost patterns. This means that
there are only 16%185=3*107 five-week schedules that can be constructed
from 18 patterns for 16 nurses. This number of schedules can be
completely enumerated within seconds on an average personal computer
(PC). The combined two domain transformations have achieved an
enormous reduction of the space of possible schedules by a factor 1018. In
other words, one second of computations in the domain of patterns is
equivalent to 100,000,000,000 years of computations in the edINR domain.
Of course, the solution of the scheduling problem in the domain of patterns
needs to be converted back into the original edINR domain. This involves a
small computational effort, primarily concerned with the specific
requirements with regard to the precedence of E-, D- and L-shifts, as

summarised in Table 4.2.

Table 4.2. Interrelationship of the edl Shifts and DNR Domain,

with Associated Costs.

Succeeding Shifts Succeeding Shifts
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By combining the granulation of shift types and sequences into patterns,
we can derive patterns of shifts in the DNR domain. Such patterns
represent sets of patterns in the original edINR domain. For example, the
pattern DDNNRRR can be considered representative of nine patterns in
the edINR domain, as illustrated in Figure 4.6. We note that some
sequences in the edINR domain have a non-zero-cost due to

interrelationships that cannot be captured in the DNR domain, as all edl
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shifts are represented by the same shift D. Table 4.2 shows the

interrelationships of the edl shifts that give rise to some cost.

—

Sequences of shifts Cost

E N 0

o|Oo| o

Pattern Cost Limit

D D N N R R R |O

|00V |O0| |V |O|D

rir|lrlolo|l o|m|{m|m
go|/m|rim|r| gol|lo|r
Zl|lZ2|l 2| 2|2 Z2|Z2|Z2|Z
|l 2|2/ 2|2| Z2|Z2|Z2
|V |XWVW|OV|O| ”W|OD|D|XDT
| n|w|xHmm|o| n|HW|W| D
oo O| 01| O

R

Figure 4.6. edINR domain patt:erns and a representation of a DNR

pattern.

We adopt the lowest cost sequences in the edINR domain as an indication
of the lower limit on the cost in the DNR domain, as illustrated in Figure
4.6. This means that we are open to revising the cost of the schedule
upwards once we convert the solution from the DNR domain to the

original edINR domain.
4.4.3 Pattern construction

With the granulation of data described in the previous section, we can
proceed with the construction of patterns that satisfy the various
constraints. We start with all possible shift sequences and apply the hard
constraints consecutively to eliminate all sequences that violate them (i.e.,
the infeasible sequences). The remaining sequences are feasible as far as
the individual hard constraints are concerned, but this set can be refined
further by considering the implicit hard constraints derived from the
combination of hard constraints. One such implicit hard constraint is
1llustrated in Table 4.3. The requirement for an uninterrupted sequence of
three night shifts over the weekend and a maximum number of two to
three night shifts during the week creates an implicit requirement that
one may not work three consecutive night shifts on Monday—Wednesday or

Tuesday—Thursday, because the remaining day would have just a single
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night shift. After applying the implicit hard constraints (see Table 4.3) the
sequences satisfying these constraints are available for ranking with

respect to their soft constraints violation cost.

Table 4.3. Night Sequences

M T W T F S S
1 N N R R
2 N N R R
3 N N N

We start ranking these sequences from the highest cost of 1000 to zero-
cost. For the 36/32hours/week full-time nurses, there are 18 zero-cost
patterns. Meanwhile, for the 20 hours/week part-time nurses, there are 15
zero-cost patterns. Table 4.4 itemises these zero-cost patterns for the

different nurse contract types.

Table 4.4. Numbering of the Zero-Cost Patterns in the DNR
Solution Space by Nurse Contract Type.

36/32 hours FT nurses 20hours PT nurses
Al NNRRRDD B1 NNRRRRR
A2 NNRRDDD B2 RRNNRRR
A3 DDNNRRR B3 RDNNRRR
A4 DRRRNNN B4 RRRRNNN
A5 DDRRNNN B5 DDRRRRR
A6 RRRDNNN B6 RDDRRRR
A7 DRRDNNN B7 DDDRRRR
A8 RRDDNNN B8 RRDDRRR
A9 DDDDRRR B9 RDDDRRR
Al10 RDDDDRR B10 RRRDDRR
All DDDDDRR B11 DRRDDRR
Al2 DDRRRDD B12 RRDDDRR
Al3 DDDRRDD B13 RRRRRDD
Al4 DRRRDDD Bi4 DRRRRDD
Al5 DDRRDDD B15 RRRRDDD

A16 RRRDDDD
A17 DRRDDDD
A18 RRDDDDD

Note: FT=Full-time, PT=Part-time
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If the zero-cost patterns are augmented by non-zero-cost patterns (e.g.,
patterns violating soft constraints with cost 10), then the set of available
patterns for the 36/32hours/week nurses is increased to 30, and the set of
patterns for the 20hours/week nurses is increased to 26. By including
progressively higher cost patterns, the set of available patterns will
increase; however, since the objective of scheduling is to find the lowest
cost schedule, there would typically be no need to consider higher cost

patterns.

4.5 Important Novel Design of Domain Transformation

Algorithm

Having defined the granular entities of shifts and patterns, we proceed to
formulate the NSP as a recursive process with duration of one week. We
postulate that a granulation of the scheduling horizon from individual
days into weeks correlates closely with the granulation of constraints into
patterns, and consequently provides a natural simplification of the
scheduling problem from the full-scheduling horizon to a recursive-weekly-
scheduling. The search space pertinent to finding a weekly schedule is
significantly smaller than the search space for the corresponding full-

scheduling-horizon task.

The feasible schedules for week 1 for the granular NSP can be enumerated
relatively easily and be seen as a new granular search space for the
solutions for subsequent weeks. Since these schedules capture the essence
of hard constraints and the requirements for personnel cover (which are
pre- defined for the scheduling horizon), this set is exhaustive and can only
be reduced by the introduction of additional constraints. Owing to the
above granulations, the scheduling task becomes spanned by the relatively
small vector of feasible patterns and schedules for week 1. The overall idea
outlined above is to reduce the problem complexity by granulating the
search space. We now introduce one of the benchmark NSPs that we will
tackle later in the chapter. As explained in Chapter 3, the ORTEC dataset
is derived from real- world problems in intensive care units at a Dutch
hospital. The main algorithm for implementing the schedule in the smaller

space is as follows (Baskaran et al., 2009):
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1. Convert the problem space from {e, d, 1, N, R} to the smaller space
of {D, N, R}.

[The result of the granulation of the shift types is the reduction of the
number of feasible shift patterns by several orders of magnitude. This
point is illustrated in Figure 4.6, where a large number of patterns are
represented by the single pattern DDNNRRR. The size reduction brought
by this granulation of shift types becomes even more pronounced when

considering several weeks.]

2. Identify all the shift patterns with ‘0’ cost for week 1 in the {N, d, R}

space.

[This is carried out by the offline processing of all hard and soft
constraints. Although some hard constraints, such as constraints 4 and 5
as listed in Section 3.1.2.1.1 are specified in the context of the five-week
scheduling horizon, they can be easily interpreted in the context of a one-
week scheduling horizon with an appropriate additional constraint
1mposed onto subsequent weeks. The resulting set of 18 zero-cost patterns
for full-time, 36/32hours/week nurses and 15 zero-cost patterns for part-

time, 20hour/week nurses are listed in Table 4.4.]

3. Within the space of feasible shift patterns for week 1, we identify
sets of patterns that satisfy the personnel cover requirements,

which have cardinality equal to the number of nurses on the ward.

[By specifying the differing cardinality of the sets, we can generate feasible
schedules for different numbers of staff. We can also easily take into

account the different requirements for personnel cover.]

4. Extending the scheduling horizon from week ‘w’ to ‘w+1’, we
identify which of the feasible shift patterns need to be excluded for

each specific pattern deployed in week ‘w’.

[This step ensures that the hard constraints on the number of consecutive
shifts on the interface of two weeks and the number of night shifts for a
single nurse are satisfied. Note that this step reduces the search space of

feasible schedules for week ‘w+1".]
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5. Given the set of feasible schedules identified in step 3 above, and
the set of feasible patterns for the week ‘w+1’ identified at step 4,
we perform a search in this schedule space to find feasible

schedules for week ‘w+1’.

[The elimination of some of the patterns as a possible continuation after a
specific pattern in week ‘w’ (as highlighted in step 4) reduces the number
of possible schedules that can be generated from this smaller set of
patterns in week ‘w+1’. Consequently, some of the schedules that were
feasible in week ‘w’ will not be feasible in week ‘w+1’. An important
conclusion is that a set of feasible schedules for week ‘w+1’ is contained in
the set of feasible schedules for week ‘w’. This provides an upper limit on
the extent of the search that is needed to identify all feasible schedules in

week ‘w+1’.]

6. The process of scheduling personnel for subsequent weeks is
implemented by repeating steps 4 and 5 above until the set of

feasible patterns is empty if the planning horizon has been reached.

4.6 Pattern Generator

Using a pattern generator (see Figure 4.7) was very important in this
domain transformation approach to NSPs. This generator class contains
the logic to generate all possible patterns to construct the schedule for a
single week. In Section 4.4.3, we described the pattern construction. As
revealed in Section 3.1, different hospitals will have their own specific
operating policies concerning the hard and soft constraints. Based on these
constraints, we generate the patterns without any cost (zero-cost patterns)
and those with cost (non-zero-cost patterns). The cost comes from the soft
constraints, which are each assigned a weight. Using a pattern generator,
each pattern is passed through the selected hard and soft constraint
checkers. The pattern generator class also has the logic to expand the
patterns from DNR to edINR. Along with the pattern, the generator stores
which soft constraints are violated, and it can return the total cost for a

pattern.
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Figure 4.7. Pattern generator class.

4.7 Summary

Nurses’ performance in a hospital can be managed and coordinated with

the aid of nurse scheduling. We use the domain transformation method

introduced in as a practical illustration of the information granulation

methodology to generate multiple feasible low-cost rosters, which are

evaluated with simulation. Domain transformation is an approach to

solving complex problems that relies on a well-justified simplification of

the original problem. We deal with several corresponding problem

descriptions at different levels of generality or accuracy. The more general

descriptions serve to facilitate an approximate problem solution in a

smaller search domain and more detailed representations preserve the

possibility of refinement of the solutions. We subdivided the problem into

smaller sub-problems in a systematic way and capable to reproduce the

result. This approach is able to conquer solution easily by avoiding random

search. Conversely, in other methods, some failed to reproduce results, and

produce inconsistent performance, some works best on some datasets but

failed to repeat the good characteristics on other datasets. It represents a

departure from the conventional one-shift-at-a-time scheduling approach.

70
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It offers the advantage of efficient and easily understandable solutions, as
well as offering deterministic reproducibility of the results. The models
and algorithms involved in generating the schedule should have a strong
yet flexible structure to adapt to the various unexpected situations that
can occur in the hospital setting (discussed further in Chapter 5 and
Appendix C). The previous state-of-the-art never used information
granulation (domain transformation approach), thus dealing with a lot of
cross-referencing and checking of data. We note, however, that this cannot

guarantee the global optimum will be achieved.
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Chapter 5: Algorithm Evaluation

This chapter explains the three different techniques implemented in the
main algorithm to solve NSPs using the domain transformation approach
with real-world datasets. This chapter also discusses the exhaustive
analysis conducted using the three techniques by presenting the results
obtained from the experiments. These techniques were able to find the
adequate coverage breakpoint in a wide variety of real-world NSPs. The
aim of this analysis is to: a) propose standard configurations for handling
small and large datasets, b) compare the complexity of the obtained
solutions and the time required to achieve them, ¢) compare these domain
transformation approaches using real-world datasets and d) determine
possible areas of improvement in domain transformation. Moreover, in the
final validation stage, our approach was computationally up to nine times
faster than the best-known result for challenging real-world nurse
scheduling datasets. Each algorithm is also tested using data collected
from schedules actually worked at Kajang Hospital, a public hospital in
Malaysia. This allows the results obtained using the domain
transformation approach to be compared with the manually generated

solutions developed by hospital staff.
5.1 Introduction

Based on the main algorithm in Section 4.5, we have tried to plug many
techniques to evaluate the performance of the algorithm. In this chapter
we present three main technique that produced good computational

results based on the real-world benchmark NSP.

5.2 Technique 1 (T1)

Scheduling involves selecting one out of a set of available patterns for each
nurse. The selection is subject to the requirement that the cover specified
in Table 4.1 is satisfied. Although the cardinality of the sets of patterns
that can be assigned to individual nurses is relatively small (of the order of
tens), the combinatorial space of schedules remains very large: the

selection of one out of 18 patterns in each of the five weeks of the planning
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horizon amounts to 1875=1889568 schedules. We therefore proceed with
the further simplification of the NSP from the full-scheduling-horizon to a
recursive-weekly-scheduling. The proposed procedure is deployed in the

following stages (Baskaran et al., 2014c):
Step 1: Scheduling weeklschedule (DNR)
Step 2: Expand schedule in N weeks (DNR)
Step 3: Convert DNR to edINR schedule.

These steps are now discussed in turn.

5.2.1 Scheduling weeklschedule (DNR)

In step 1, once we have identified the zero-cost patterns as in Table 4.4, we
construct the week 1 schedule in the DNR domain. We associate patterns
based on zero-cost patterns with nurses based on full-time or part- time
schedules. This is called schedule set. Schedule set is stored in a vector
object (array). To construct the schedule, we must consider some specific
measures. First, we consider the shifts that are the most difficult to
schedule; in our case, this is the night shift. This is also the most
important shift, with a cost of 1000 if the length of the shifts is not within
the range of [2, 3]. Subsequently, we place the day-only patterns in the
array of day patterns. The result is 18 zero-cost patterns for the 32/36
hours/week full-time nurses and 15 zero-cost patterns for the 20
hours/week part-time nurses. As the full- time nurses working both 32 and
36 hours have the same patterns, they fall in the same category: set A. The
20 hours/week part-time nurses are set B. Scheduling can then proceed for
the 13 nurses using patterns from set A, and three nurses using patterns
from set B. We select one assignment of night patterns based on zero-cost
patterns. As shown in Table 5.1, the night shifts (N) are grouped together
in pairs or triples at fixed days. We can calculate the number of ways to
combine them into patterns using mathematical combinations as described
in Table 5.2. The objective is to satisfy the demand of 1111111—one nurse
every day (as referred to in Table 4.1) for the night shift.
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Table 5.1. Zero-Cost Patterns with Night Shifts

36/32hour FT Nurses 20hour PT Nurses
Al NNRRRDD B1 NNRRRRR
A2 NNRRDDD
A3 DDNNRRR B2 RRNNRRR
B3 RDNNRRR
A4 DRRRNNN B4 RRRRNNN
A5 DDRRNNN
A6 RRRDNNN
A7 DRRDNNN
A8 RRDDNNN

Table 5.2. Mathematical Combinations of Night Shifts Based on

Zero-Cost Patterns

MT WT FSS
FT 2C1 1C1 5C1
FT + PT 3C1 3C1 6C1
Demand Filled 11 11 111

Note: M T=Monday, Tuesday; W T=Wednesday, Thursday; F S S=Friday, Saturday,
Sunday

The notation for the combinations is given as:

nCr:

which means the number of combinations of n items taking r items at a

time.

For the full-time nurses, for M and T, we have only two night patterns: Al
and A2. For W and T, we have only the A3 pattern. For F, S and S, we
have five patterns: A4 to A8. If we are choosing for just the full-time
nurses, then we select 1 from 2 for M and T; 1 for W and T; and 1 from 5
for F, S and S. Similarly, when selecting for both full- and part-time
nurses, for M and T, we select 1 pair from 3; for W and T, we select 1 from
3; and for F, S and S, we select 1 from 6. The total number of combinations

of patterns is thus 3C1 x 3C1 x 6C1=54.
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Later, the day shifts are assigned as illustrated in Table 5.3. Here, we
assign the day shifts on weekends using the zero-cost patterns. To satisfy
the demand for total D of 9999966 (as referred to Table 4.1), with nine
nurses on weekdays and six nurses on weekends, blocks A12 to A18 are
chosen first. These are the patterns of days on weekends. Thus, the total
number 1s 7C5=21. Next, the remaining shifts on weekends are assigned.
To satisfy the demand for total R of 9999966, patterns of rest on weekends
are chosen. Firstly, blocks A9 to A11 are selected, followed by blocks B5 to
B12. If no zero-cost assignments are found, the number of patterns is

increased by including non-zero-cost patterns.

Table 5.3 Zero-Cost Patterns with Day Shifts only

36/32hours 20hours PT
FT nurses MTWTFSS nurses MTWTFSS
A9 DDDDRRR 1110000 B5 DDRRRRR 1100000
A10  RDDDDRR 0111100 B6 RDDRRRR 0110000
A1l DDDDDRR 1111100 B7 DDDRRRR 1110000
A12 DDRRRDD 1100011 B8 RRDDRRR 0011000
A13 DDDRRDD 1110011 B9 RDDDRRR 0111000
Al4 DRRRDDD 1000111 B1I0 RRRDDRR 0001100
A15 DDRRDDD 1100111 B1l DRRDDRR 1001100
A16  RRRDDDD 0001111 B12 RRDDDRR 0011100
A17 DRRDDDD 1001111 B13 RRRRRDD 0000011
A18  RRDDDDD 0011111 Bl4 DRRRRDD 1000011
B15 RRRRDDD 0000111

Table 5.4. Switching Patterns Based on Zero-Cost Patterns

Replacement of patterns Day of the week
More shifts Fewer shifts

Al17 Al6 Monday

A9 C9 Monday

Al5 Al4 Tuesday

If demand is over-satisfied, we use the switching patterns, as shown in
Table 5.4. We can increase the number of replacements by also including
the switching patterns of non-zero-cost patterns. This can be done by move
the shift (more shift) or less the shift (fewer shift) according to the days. A

complete zero-cost pattern switching is shown in Figure 5.1. The different
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shift counts indicate the number of day shifts in the pattern. For example,
we can move a shift from A17 to A16 or vice versa. This means we are

moving from a five-day shift to a four-day shift on a Monday.

Shift/Day |5 4 3 2 Shift/Day |5 4 3 2
Monday A4> B4 Wednesday B12> B10
A3—> B3 Thursday | A7=> A4
A7 A6 A6—> B4
A%> B9 A9—> B7
Al> A10 Al17>r Al4
Al4> B16 A16>B15
Al+>Al6 B9—> B6
B7> B6 A2 Al
B1:x» B10 Al A9
B14>B13 Al16> B9
Tuesday A5—> A4 Al5> Al12
AlG> B12 Al4>Bl14
AlZ> B14 B12> B8
A15> Al4 B15> B13
B2—> B3 Friday A2—> Al
B8—= B9 Alt> A9
Wednesday | A8—> A6 Al5> Al12
Al3> Al2 Al4>Bl14
Al8> Al6 B12> B8
B> B5 B15> B13

Figure 5.1. Switching patterns based on shifts of zero-cost patterns

according to days.

Table 5.5 shows an example of switching zero-cost patterns for the week 1
scheduling. Initially, placing the night and day patterns failed to satisfy
the demand of 9999966—the result was 9979966. This was corrected by
using the switching patterns: shifting A12 to pattern A13 for two nurses.
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Table 5.5. Example of Week 1 Schedule using Zero-Cost Patterns

Number of Pattern Patterns Initial cover Pattern after Cover after
nurses number/ switch switch
Switch MTWTESS MTWTFSS
1 A4 DRRRNNN 1000000 1000000
2 A3 DDNNRRR 1100000 1100000
3 Al NNRRRDD 0000011 0000011
Partial Cover 1 of D 2100011 2100011
4 Al12->A13 DDRRRDD 1100011 DDDRRDD 1110011
5 Al7 DRRDDDD 1001111 1001111
6 Al8 RRDDDDD 0011111 0011111
7 Al2->A13 DDRRRDD 1100011 DDDRRDD 1110011
8 Al4 DRRRDDD 1000111 1000111
Partial Cover 2 of D 6312366 6332366
9 Al0 RDDDDRR 0111100 0111100
10 Al0 RDDDDRR 0111100 0111100
11 All DDDDDRR 1111100 1111100
12 All DDDDDRR 1111100 1111100
13 A9 DDDDRRR 1111000 1111000
14 B6 RDDRRRR 0110000 0110000
15 B10 RRRDDRR 0001100 0001100
16 B10 RRRDDRR 0001100 0001100
TOTAL OF D 9979966 9999966

5.2.2 Expand schedule for N+1 Week (DNR)

Based on the week N schedule detailed in the previous section, we next
construct the N+1 week schedule in the DNR domain. For N=1, we have
45 zero-cost schedules. Week 1 selection is very important because it
underpins finding a good schedule in the following weeks. The most
important hard constraint to be checked at week 1 is the night shifts
constraint. According to hard constraints 4 and 9, listed in Section
3.1.2.1.1, the maximum number of night-shift a nurses can work is 2 to 3.
Two sets can be used in this placement: 1) we can choose one of three
night-shift patterns from pattern A, or 2) we can choose two night-shift
patterns from pattern A and one night- shift pattern from pattern B.
Figure 5.2 illustrates the placement of night shifts in the schedule.
Indirectly, this night-shift placement will satisfy hard constraint 11 in
Section 3.1.2.1.1.
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As an example, we now calculate the night shifts per week over the five-
week scheduling period. Referring to Figure 5.2, night shifts placed using
pattern A are 3+3+2+2+2=12 per period of five consecutive weeks, while

night shifts placed using pattern B are 1+1+1=3.

Week1 Week2 Week3 Weekd Week5
NNXXXXX ~
XXNNXXX
XXXXNNN
ININXXXXX
XXNNXXX
XXXXNNN > Pattern A
XXNNXXX
XXXXNNN .
XXNNXXX
XXXXNNN
XXNNXXX
XXXXNNN |
——/ —— 709090VUVUV9V9U79B9U0/
NNXXXXX ; x
NNICOOK } Pattern B
i _ NNXXXXX

Figure 5.2. Night placement over five weeks.

Next, we need to satisfy the hard constraints 5, 6 and 9, as given in
Section 4.5.1.1.1. Table 5.6 shows a good sample of patterns that need to
be considered when selecting schedules from the generated zero-cost week
1 schedules for N weeks. For example, patterns of A4 to A8 need to be
followed by a minimum of two days’ rest. Accordingly, we see that pattern
A16 satisfies hard constraint 6. Further, since pattern A16 has four Ds
(workdays), this pattern can be followed by pattern A12. In this way, it
satisfies hard constraint 9 because the number of consecutive shifts is at
most six. The example shown in Table 5.6 also satisfies hard constraint 5,

with two weekends off duty.

Table 5.6. Possible Five-Week Patterns

A4-A8 Al6 Al2 A9 A9

XXXXNNN RRRDDDD DDRRRDD DDDDRRR DDDDRRR

To find all possible five-week schedules for each nurse, the week 1 zero-
cost schedules are converted into tree structures, as shown in Figure 5.3.
In this figure, we see that all week 1 zero-cost schedules are assigned a
number for marking purposes. These numbers are used to check the

feasible patterns of shifts that can follow a pattern from a previous week.
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Feasibility is mainly checked according to hard constraints 5, 6, 9 and the
night-shift constraints. In Figure 5.4, the example of the possible shift
patterns over five weeks for Nurse 1begins with a schedule generated for
week 1 (see Table 5.5): in this case, pattern DRRRNNN, marked as 1. This
pattern can only be followed with RRDDDDD (marked 6) for week 2.
Moving to week 3 for nurse 1, patterns 5, 6 and 8 can follow. In the case of
multiple pattern options for a week, the pattern assigned the lowest
number is listed first. These steps are repeated for weeks 4 and 5. This
simplification is important for recursive- weekly-scheduling, both to limit

the use of large loops and to ease computational time.

1 week 1
b week 2
5 ] 8 week 3
|
4 5 b 7 8 5 b 8 4 5 7 § week 4
A A A M A
471345678568 47134578 45678 568 4578 4713 45678 4713 4578  weekd

The numbers and the patterns relationship

1 i 5 | 4 4
| DRRRNNN | RRDDDDD | DRRDDDD | DDRRRDD | DDRRRDD

Figure 5.3. Possible patterns of shifts for a five-week period,

arranged as a subset list.

In this study, building schedules using only zero-cost patterns could be
achieved only until week 3 following all subset lists of which Figure 5.3
gives one example. From week 4 onwards, other low-cost patterns are
incorporated to satisfy the demand. Checking is done on switching
patterns to determine whether these patterns could be used to improve the
initial solutions. Our aim at this stage is to decrease the penalty cost from

the use of non-zero-cost patterns.
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5.2.3 Convert DNR to edINR schedule

In step 3, once the DNR domain schedule is constructed, we cdhvert this
result to the edINR domain. First, we obtdin the schedule array from
determining whether it is a four- or five-week schedule. Next, we find the
‘D’ index in the array. For example, if we have (RRDDDDD RRRDDDD) as
the array, the position of ‘D’ is (3456 7 11 12 13 14). We convert this ‘D’
to D, L, E, making the permutation for shift L. C3. After selecting 3 L shift,
the 6 D shift remains. Hence, the permutation for shift E is C3 . All
possible 3 3 permutations of edl for some day equal C9 C6 . This loop is
continued until the demand is satisfied. Figure 5.4 shows the best
schedule using this method; it was generated in only 45 seconds, at a cost

of 100.

Computed Schedule for 5 week(s):

Week-> Week1 Week 2 Week 3 Week4  Week5 I

Nursel 'NNRRRRR' 'EERRREE' 'RREEEDD' 'LRRRELL' EEERRRR

Nurse2 'LLNNRRR' 'EEERREE'’ 'EEELRRR' 'LLRRLLL' EERREEE 7 10 EEE
Nurse 3 'RREENNN' 'RREEEDD' 'LRRRELL' 'DLLRRRR' REEELRR

Nurse4 'EERRREE' 'LLNNRRR' JERRULUMMNMLLLRREEN cLLLRRR 9a 5 DE
Nurse5 'EEERREE' 'DLLLRRR' EENNRRR' 'RRREEDD' LRRREEE Sb S LE
Nurse6 ‘LRRRELL' 'NNRRRRR' 'DDLLLRR' 'DDLLLRR' LLLRRLL 9c 51D
Nurse7 'LLRRLLL' [NRREUSMMMIRREENN EEELRRR'  LLNNRRR

Nurse 8 'RRREEDD' 'LLRRLLL' 'DLLRRRR' 'RDDLLRR' RREENNN

Nurse9 'RREEEDD' 'RRREEDD' 'EERRREE’ 'EENNRRR' DDLLLRR

Nurse 10 'EELLLRR' 'RREENNN' ‘RRREEDD' 'EERRREE' DDDLRRR

Nurse 11 'DLLLRRR' 'EELLLRR' 'RREENNN' 'RREEEDD' RRREELL

Nurse 12 'RDLLLRR" 'RDLLLRR' 'RDDLLRR' 'RREENNN' RRRDDDD

Nurse 13 'DDDDDRR' 'DDDDDRR' 'DDDDDRR' 'DDDDDRR' DDRRDDD

Nurse 14 DDDRRRR DDDRRRR RRREDRR RRREDRR NNRRRRR

Nurse 15 RRRDDRR RRRDDRR RRDDDRR NNRRRRR RRDDLRR

Nurse 16 RRDDDRR RRDDDRR NNRRRRR RRDDDRR RRDDDRR

Verifying total nurses available each day:

Total D: 9999966 9999966 9999966 9999966 9999966

Total N 1111111 1111111 1111111 1111111 1111111

Figure 5.4. Best result schedule for the NSP.

5.3 Technique 2 (T2)

Another method applied in this thesis is integer programming, which is
specific case of linear programming that constrains variables to integer
values (Ballnski, 1965). In particular, we use a branch-and-bound (IP- BB)
algorithm (Baskaran, Bargiela and Qu 2013b, 2014a, 2014b, 2014d).
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Integer programming seeks to solve problems that require integer

solutions.

To specify the problem, the objective is to minimise the value of individual

variables.

We formulate the problem of a two-week scheduling period with an
integer-programming model that can be altered to adapt to any other
problem with different constraints. The above patterns for the two weeks
scheduling have three states: D, N and R. Therefore, if we want to use
binary representation of patterns, we need to separate the day and night
components of the patterns, as shown in Figure 5.5. This will allow for the

representation of three states.

Day - - - - - - Night - - - .

0 0 1 1 0 0 0 0 0 0 0 1 1 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0

Figure 5.5. Binary pattern matrix.

This binary pattern matrix will be called B. This matrix is replicated for

each nurse, and the combined pattern matrix, C, is shown in Figure 5.6.
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Figure 5.6. Combined pattern matrix.

The selection of patterns from C represents the schedule that satisfies the
equality constraints, such as the cover requirement. This can be expressed

as:
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C *x=¢ (5.1)

Where x is the unknown binary vector, representing a solution to the
scheduling problem, and c is the staff cover requirement. The requirement
that each nurse is assigned to one pattern at most represents a constraint

that can be written as:

A *x<=b (5.2)

Where A is a matrix where the number of columns corresponds to the
number of nurses and the number of rows is equal to the product of the

number of nurses n and the number of patterns p, represented as:

m=n*p (5.3)

Rowl 1 o . . . . . . . . . . . 0
Row2 1 o . . . . . . . . . . . 0
Row18 1 o . . . . . . . . . . . 0
Rowl9 O 1 . . . . . . . . . . . 0
Row20 O 1 . . . . . . . . . . . 0
Row36 O 1 . . . . . . . . . . . 0
Row253 0 0 . . . . . . . . . . . 1
Row254 0 0 . . . . . . . . . . . 1
Row270 0 0 . . . . . . . . . . . 1

Figure 5.7. Example of rows=number of nurses (say 15) * number

of patterns (say 18).

Figure 5.7 represents matrix A for n=15 and p=18. The vector b is a vector
of 1s, corresponding to the number of nurses. Subsequent weeks will need

to use different sets of patterns for each nurse. This will depend on what
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assigned in week 1. The objective of the optimisation of the scheduling
defined as trying to satisfy the cover requirement with the minimum

number of nurses. This expressed simply as:
Min NP *x (5.4)

where NP is a vector of 1s of size m. The cost function defined as a sum of
penalties representing a nurse working a given shift on a day. Therefore,
our aim is either to minimise the penalty subject to a nurse should have no
shifts or at least two shifts (complete weekend) and avoid sequences of

shifts with length of one for all nurses.
5.3.1 Branch-and-bound

Branch-and-bound (algorithms, see Lawler and Wood, 1966 for examples),
methods implicitly enumerate all possible solutions to an integer-
programming model. The basic concept underlying the branch-and-bound
technique is to ‘divide and conquer’. Since the original ‘large’ problem is
difficult to solve directly, it is divided into smaller sub-problems until
these sub-problems can be ‘conquered’. The dividing (branching) is done by
partitioning the entire set of feasible solutions into increasingly smaller
subsets. The conquering (fathoming) is carried out by providing a bound
for the best solution in the subset or discarding the subset if the bound
indicates that it does not contain an optimal solution. The steps used for

each iteration were:

1. Branching: This was used among the unfathomed sub-problems (F1)

and the one created most recently was selected.

2. Fathoming: If the sub-problems were not feasible, they were

discarded.

3. Bounding: The new sub-problems were solved and a lower bound

b(Fi) for the sub-problem was computed.

4. Fathoming: For each new sub-problem, if b(Fi) > U, then the
current best upper solution was bound and the fathomed sub-

problem was discarded.
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5. Optimality test/partitioning: If no unfathomed sub-problems
remain, either they were obtained at an optimal solution to the sub-
problem (stop), or the corresponding problem was broken into

further sub-problems to perform another iteration.
5.3.2 User interface

The Create Patterns button runs the generating pattern code for creating

patterns. The Create Schedule button reads input.txt for configuration and
a common patterns document and stores that information in a database. It
then creates the schedules. When the Create Schedule button is pressed, a

layout such as in Figure 5.8 appears.

C=sirosedie

Re=d from rput i

NosseSchzcuer NET DmataseMlods Scheadeiputlofumion
Siat sthediz ceonfor cogt gup of 0

Bpandrg DL forco gop 0

Fnahed sediz cesionfr ot quip o 0
Wisngto #ie [NF schadde_ oo guip 0

Wiingto fie EDUNA schediie_ cod goup 0

Sat sthedie cemnfor cosf gup oF 5
Epandrgi E)L_frcodgop 5
Fnshed schedie cealonir cod goup o 5
Wiling o iz CNA schede._cod goip 5
Wingtofie EDINA schedie_ ot guip 5
Sat schedide cezionforcost g o 1

Figure 5.8. Layout of window opened by the Create Schedule
button.

The Matrix Files history shown in Figure 5.9 illustrates the schedules
generated by weeks and stored in a Matrix Files table created with the
Create Schedule button. All patterns used in this process are saved in the
history for all weeks and all costs used. This history does not use matrices

or integer programming.
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Figure 5.9. Layout of schedule generated by weeks.

The Nurse Schedules button creates the final nurse schedules in both the

DNR and edINR domains for all three cost groups (see Figure 5.10).

B 0 DRRDDREEFE. A o 00 2 o =
1 1 NNRRRFFD T A i} 00 b7t Y it
i 2 DRADDSEFRR. 1 i i iiocd vriei Y 30000
1 3 FODDISAICD. I n i ‘00008 prarar.crco Bk i1 d
1 £ DODRAICNE. I ] ] 00008 WRERE X 30000
1 5 RRADDICCOR. 2% % ] e 1zize BEEEE O i
i & DONNARFRDD. B % it fiLiizzrsl BRREE (X 0000
1 7 DODIARECD. D % i ‘00008 BREEE X e
1 8 FODDIRROCO. | S ] 00008 BREEE ¥ 30000
1 3 RDDDDSRCCD.. & % a iiiood BEREE ¥ fiivid
i 10 DODARICOCH. 1 I i i Uiy EREEE ¥ 20000
1 il DRRAMNERE. X % i N BREEE ¥ i
1 12 FODDIRRRRD. I S ] 00008 BREEE ¥ 30000
1 1 DDDRRDOCCO.. & % i iiood BRREE ¥ fierid
1 1% DRARDICCCO. 2 i i} fliiood BREFE ¥ 30000
1 15 FRDDIIERE. X % i 777 BREEE ¥ i
1 ] (RREERSFRE I ol o 00002 # 30000
1 1 NNRRSSSFFE. D . | i 00 R B fierid
¥ 2 (FRERTFR. D i i 0] # 11
‘ B 4 ]

Figure 5.10. Layout of schedule generated in both domains.
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A new configuration ID is assigned each time Create Schedule is started.
This ID can be used as a reference number in tables with nurse schedules

(see Figure 5.11).

o Mhains Vorse Lchachuler N LI SR S S W P
- - - -
Costeponers | | Cestescrodsm Mazs fhee taswe Schachies
Codouaten 0 7 Current losded cordigurastion id m
Text Dox with messsges from applicatsn

ind schedud cranhon status

Figure 5.11. Layout of interface and the position of the

configuration ID.
5.3.3 IP-BB computational result

In the DNR domain for the week 1 schedules, IP-BB managed to find zero-
cost patterns only, satisfying the demand of ‘9999966’; that is, nine nurses
with the D shift each weekday and six nurses with the D shift each
weekend day. Demand of nights ‘1111111 is also satisfied, as shown in

Figure 5.12.
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#Number of nurses = 16

###### OUTPUT SCHEDULE (DNR format) ######

computed Schedule for 1 week(s)

start date: 1-1-2003

End date: 31-1-2003

Days—> MTWTESS ctot
Nurse 1(20 RDDRRRR 0
Nurse 2{20): RRRDDRR 0
Nurse 3(20): RRRDDRR 0
Nurse 4(32): RDDDDRR 0
Nurse 5(36): RDDDDRR 0
Nurse 6{(36): NNRRRDD 0
Nurse 7(36): DDDDDRR 0
Nurse 8(36): DDDRRDD 0
Nurse 9(36): DRRDDDD 0
Nurse 10{326): DDDDDRR 0
Nurse 11(36): RRDDDDD 0
Nurse 12(36): DDDRRDD 0
Nurse 13(36): DRRRDDD 0
Nurse 14{(36): DRRRNNN 0
Nurse 15(36): DDNNRRR 0
Nurse 16(36): DDDDRRR 0

verifying total nurses available each day:

Total D:

9999966

Total N:

1111111

Figure 5.12. Week 1 IP-BB schedule in the DNR domain.

Upon conversion to the original domain of edINR for a month, non-zero-

88

cost patterns were incorporated, increasing the cost of the schedule to 90,

as shown in Figure 5.13.
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computed Schedule for 4 week(s)

start date: 1-1-2003

end date: 31-1-2003

Days-> | MTWTFSS ctot | MTWTFSS ctot | MTWTFSS ctot | MTWTFSS ctot | MTWTFSS ctot
Nurse 1(20): --ERRRR 0 | RRRRNNN 0 | RRREERR 0 | RRRRREE 0 | RRRRE-- 0
Nurse 2(20): --REERR 0 | EERRRRR 0 | NNRRRRR 0 | EERRRRR 0 | RRRRR-- 0
Nurse 3(20): --REERR 0 | RRREERR 0 | RRRRNNN 0 | RREEERR 0 | REERR-- 0
Nurse 4(32): --ELLRR 0 | EELLRRR 0 | RREEELL 0 | LRRRNNN 0 | RRREE-- 10
Nurse 5(36): --ELLRR 0 | RREEELL 0 | LRRRLLL 0 | NNRRREE 0 | ELLLR-- 0
Nurse 6(36): --RRREE 0 | ELLLRRR 0 | REELLRR 0 | REELLRR 0 | EELLL-- 0
Nurse 7(36): --LLLRR 0 | REELLRR 0 | RREEEDD 0 | DRREELL 0 | NNRRL-- 0
Nurse 8(36): --LRREE 0 | LLNNRRR 0 | RDLLLRR 0 | RREEELL 0 | LRREE-- 0
Nurse 9(36): --REELL 0 | NNRREEL 0 | LLRRREE 0 | ELLLRRR 0 | RREED-- 0
Nurse 10(36): --DDDRR 0 | DDDDDRR 0 | EEDDDRR 0 | EELLLRR 0 | LLNNR-- 0
Nurse 11(36): --DDDLL 0 | LRRRDDD 0 | LLLRRRR 10 | RDDDDRR 10 | EERRN-- 20
Nurse 12(36): --LRRDD 0 | LLLRRDD 0 | DDNNRRR 0 | RDDDDRR 0 | RRDDD-- 0
Nurse 13(36): --RRDDD 0 | DDDRREE 0 | ELLLRRR 0 | LLNNRRR 0 | pDLLL-- 0
Nurse 14(36): --RRNNN 0 | RREEDRR 20 | EEDRREE 20 | LLLRRDD 20 | DDDDR-- 20
Nurse 15(36): --NNRRR 0 | DDDDLRR 10 | DDDDDRR 10 | DDDDDRR 10 | pbbbp-- 10
Nurse 16(36): --DDRRR 0 | RRRDLLE 5 | DRRDDDD 15 | DRRRLDD 30 | LLERR-- 30
verifying total nurses available each day:

Total E: 0033322 | 3333322 | 3333322 | 3333322 | 3333300
Total D: 0033322 | 3333322 | 3333322 | 3333322 | 3333300
Total L: 0033322 | 3333322 | 3333322 | 3333322 | 3333300
Total N: 0011111 | 1111111 | 1111111 | 1111111 | 1111100

Figure 5.13. One month schedule on the edINR domain.

Computed Schedule for 5 week(s)

start date: 1-10-2012

end date: 4-11-2012

Days-> | MTWTFSS ctot | MTWTFSS ctot | MTWTFSS ctot | MTWTFSS ctot | MTWTFSS ctot
Nurse 1(20): REERRRR 0 | RRRRNNN 0 | RRREERR 0 | RRRRREE 0 | RRRREEE 0
Nurse 2(20): RRREERR 0 | EERRRRR 0 | NNRRRRR 0 | EERRRRR 0 | RRRRREE 0
Nurse 3(20): RRREERR 0 | RRREERR 0 | RRRRNNN 0 | RREEERR 0 | REERRRR 0
Nurse 4(32): REELLRR 0 | EELLRRR 0 | RREEELL 0 | LRRRNNN 0 | RRREELL 10
Nurse 5(36): REELLRR 0 | RREEELL 0 | LRRRLLL 0 | NNRRREE 0 | ELLLRRR 0
Nurse 6(36): NNRRREE 0 | ELLLRRR 0 | REELLRR 0 | REELLRR 0 | EELLLRR 0
Nurse 7(36): DDLLLRR 0 | REELLRR 0 | RREEEDD 0 | DRREELL 0 | NNRRLLL 0
Nurse 8(36): LLLRREE 0 | LLNNRRR 0 | RDLLLRR 0 | RREEELL 0 | LRREEDD 0
Nurse 9(36): LRREELL 0 | NNRREEL 0 | LLRRREE 0 | ELLLRRR 0 | RREEDRR 20
Nurse 10(36): EDDDDRR 0 | DDDDDRR 0 | EEDDDRR 0 | EELLLRR 0 | LLNNRRR 0
Nurse 11(36): RRDDDLL 0 | LRRRDDD 0 | LLLRRRR 10 | RDDDDRR 10 | EERRNNN 20
Nurse 12(36): LLLRRDD 0 | LLLRRDD 0 | DDNNRRR 0 | RDDDDRR 0 | RRDDDDD 0
Nurse 13(36): ERRRDDD 0 | DDDRREE 0 | ELLLRRR 0 | LLNNRRR 0 | DDLLLRR 0
Nurse 14(36): ERRRNNN 0 | RREEDRR 20 | EEDRREE 20 | LLLRRDD 20 | DDDDRRR 20
Nurse 15(36): DDNNRRR 0 | DDDDLRR 10 | DDDDDRR 10 | DDDDDRR 10 | DDDDDRR 10
Nurse 16(36): DLDDRRR 15 | RRRDLLE 20 | DRRDDDD 30 | DRRRLDD 30 | LLERRRR 40
verifying total nurses available each day:

Total E: 3333322 | 3333322 | 3333322 | 3333322 | 3333322
Total D: 3333322 | 3333322 | 3333322 | 3333322 | 3333322
Total L: 3333322 | 3333322 | 3333322 | 3333322 | 3333322
Total N: 1111111 | 1111111 | 1111111 | 1111111 | 1111111

Figure 5.14. Five-week schedule in the edINR domain using IP-BB.
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Figure 5.13 shows that from week 2 onwards, patterns of cost 5, 10 and 20
were incorporated. As the weeks progressed, at least one non-zero-cost
pattern was incorporated to fulfil the demand of the nurses in the
schedule. However, when the schedule was extended to five weeks, as in
Figure 5.14, non-zero-cost patterns were also incorporated in week 1. This
is because it was necessary to fulfil the demand for nurses for the five-
week duration using patterns able to satisfy the continuity from one week

to the next.
5.4 Technique 3 (T3)

Addition to the above two methods, we have also used the greedy
technique in domain transformation to solve NSPs problem (Baskaran,
Bargiela and Qu, 2015). The initial solution is computed by means of a
greedy algorithm. A complete solution for this problem is defined for each

day of the month and for each nurse on the shift associated.
5.4.1 Step 1: Obtain the week 1cost groups

First, weekly sequences of patterns consisting of high-quality shift
sequences are generated (Baskaran et al., 2009). They can then be used to
schedule the week 1 patterns in the DNR domain. We group the patterns
into three categories: cost 0, cost 5 and cost 10, according to the full-time
and part- time nurses’ patterns. We list all the night patterns (which may
or may not include day patterns) as well as all of the day-only patterns.
We also list the schedule set that contains the week 1 schedule and nurse
information. The schedule set is tied to the nurses, so the number of
elements in a schedule set is the same as the number of nurses. Further,
the schedule set contains nurse information, such as costs, constraint

violations and hours.
5.4.2 Step 2: Generate the week 1schedule

The schedule set comprises associated patterns based on zero-cost patterns
with nurses, based on full- or part-time schedules. The schedule set is
stored in an array. The night shift is the most important shift in the NSP,

as it involves a number of hard constraints (HC5, HC7 and HC9) as well
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as highly weighted soft constraints (SC2, SC3). Therefore, as it 1s difficult
to satisfy the night shifts, we begin by assigning the night patterns in an
array. A greedy algorithm examines all the days with the aim to guarantee
the requested coverage for each shift. This is done by selecting, for each
given shift, the best nurse to be assigned to that shift. Thus, day-only
patterns are placed in the array. Demand is calculated to check the

remaining number of day and night shifts to be filled per day.

The remaining demand is calculated by looping all nurses for each day,
counting the number of shifts and subtracting them from the total allowed
demand for each type of shift. We use two nested loops (nurses and days)
for counting shifts used in total for a day. Then, when calculating the
difference, ifs (for shift types) and fors (for days) are used, separating shift
types when calculating the difference, per day. For example, if for some
days D is allowed (DNR mode), demand is 9, four nurses only have D shift
and remaining demand is 5. A similar approach is used for other shift
types. Nurses are looped to assign a pattern to the nurse and meaning to
the schedule set. For the first week, nurses are considered carriers of the

schedule set.

1.0 The nurse assignment method is invoked where:
1.1 we check if night shift is allowed
1.2 all day-only patterns are looped (for loop)

1.2.1 patterns are checked and validated regarding demand
(Iength of pattern is checked depending on number of hours
the nurse works, which cannot be more than six days in one

week)

1.2.2 pattern value is calculated (number of working shifts

in pattern)
1.3 go back to 1.0 until the end of the number of day-only patterns

1.4 all night-shift patterns are looped, if nurse can work night

shifts (for loop)
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1.4.1 patterns are checked and validated regarding demand
(length of pattern is checked depending on number of hours
the nurse works, which cannot be more than six days in one

week)

1.5 pattern value is calculated (number of working shifts in

pattern). It is checked which pattern is the best fit

1.5.1 if night shift is not allowed, the best day-only-valued

pattern that fits the demand is assigned to the nurse

1.5.2 if night shift is allowed, the best night-shift-valued
pattern is assigned if existing or not used; otherwise, the

day pattern is assigned

1.5.3 a pattern is assigned: if possible, night pattern;

otherwise, day pattern

1.6 if too many night shifts are present in the schedule and exceed

the demand, excessive night shifts are replaced with R (free days)
1.7 end of nurse assignment method.

Later, a check 1s made of whether the demand has been met. If not, the
nurse repair function is called to repair the missing demand by replacing
patterns with other day or night patterns. A check is also made of whether
the patterns are correct. The function is run repeatedly. Later, the number

of demand-remaining patterns is calculated.
2.0 for each day in a week:

2.1 if more than the needed day shifts are assigned, the fix pattern

method is called
2.1.1 the fix pattern replaces someday shifts with a free day
2.1.2 pattern validity is checked

2.2 i1f more than the needed night shifts are assigned, the fix

pattern method is called
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2.2.1 the fix pattern replaces some night shifts with a free
day

2.2.2 pattern validity is checked

3.0 the number of remaining demand patterns is calculated

4.0 for each day in a week

4.1 if less than the needed day shifts are assigned, the fix pattern
method is called

4.1.1 the fix pattern replaces someday shifts with a free day

4.1.2 pattern validity is checked

4.2 if less than the needed night shifts are assigned, the fix pattern
method is called

4.2.1 the fix pattern replaces some night shifts with a free
day

4.2.2 pattern validity is checked.

Thus, first we use a greedy algorithm to create a schedule. Then, we try to
fit improved patterns to the schedule using the nurse repair function
recursively. The function is limited by time, so it will not try to find a
better long-term pattern than what can be found in an optimal number of
seconds while checking the results in the experiment. Next, the fix pattern
function is used to address demand, removing shifts from the schedule
when the demand is overbooked. For the first week, we use zero-cost
patterns. Figure 5.15 provides a graphical illustration of the generation of

the week 1 schedule.
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We use a Greedy algorithm for scheduling.
S 1) We first ry to fulfil demands only using
patterns for first "{*k pattems with 4 working days and 3 rest days
Initialize per each nurse with this gives balanced schedule)
ScheduleSet, properties about the 2) We always select that pattem, which
patternlists | G schedule! eeees minimizes' the "maximum number of urfilled
and demands WithNightPatterns ¢ |slots”.
and DayOnlyPatterns & |3) fthere are muttiple options, we select that
selection setup: : pattem which minimizes the total number of
RemainingDemand  ;  (unfiled slots
setup..

Assign nurses
to schedule set
(FOR ab\urses}

Check demand

Repair patterns for demand FOR
all nurses)

Figure 5.15. The process of generating a week one schedule.
5.4.3 Step 3: Generate the N week’s schedule

To expand the schedule to N weeks, matrix base subsets are used to set
the combinations of nurses and patterns that can or cannot be used. First,
the subset is based on pattern validity inside the first for loop. In the
following for loop, it is set based on which nurses will and will not take
night patterns. This function uses similar methods as for the first week,
but with added checks of the current week’s schedule against those of
previous weeks. The function also calculates the costs and violations, and
finally corrects the schedule in relation to the demand. The changes
incorporated to modify the week 1 function are at 1.2.1 and 1.4.1. The

patterns are checked and validated regarding cost and violations, where
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zero-cost and zero violations are allowed. There are also some loops added

at 1.5, which for week N we name 5.5.

5.5 1t is checked which pattern is the best fit

5.5.1 if no pattern is the best fit, we take a similar approach

as for 1.2 but with increased cost

5.5.1.1 all day-only patterns are looped, and patterns
are checked and validated regarding cost and

violations, allowing up to 20 cost and zero violations.
The same is done with night patterns. Pattern value

1s retrieved

5.5.1.2 if the best fit is still not found, we exit the

assign nurse function

5.5.2 if night shift is not allowed, the best day-only-valued
pattern is assigned to nurses that fit the demand. We also
check the cost of the pattern inside the schedule and the

violations, where zero-cost is allowed

5.5.3 if night shift is allowed, the best night-shift-valued
pattern is assigned if existing or not used; otherwise, the
day pattern is assigned. We also check the cost of the
pattern inside the schedule and the violations, where zero-

cost 1s allowed

5.5.4 a pattern is assigned: if possible, night pattern;

otherwise, day pattern.

Again, a check is made of whether the demand has been met, and all other
steps as in the generation of the week 1 schedules are followed. The
difference here is that the check made for cost allows for both zero-cost and
zero violation. Once more, the number of remaining demand patterns is
calculated as shown in 2.0 to 4.2.2. Here, at each if selection, before the
pattern validity is checked, costs and violations are checked. Between 0

and
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20 cost patterns are allowed. This is because patterns formed together can
incur costs. Thus, the pattern is checked to ensure it forms a cost within
the schedule and that it has zero hard violations. First, whether the
schedule can be made with zero-cost is checked, and if not, cost up to 20 is

allowed per nurse.
5.4.4 Step 4: Convert DNR to edINR

At this stage, we convert the DNR domain to the original edINR domain.
Here, the ‘edl’ patterns are involved. We look for the next series with a day
pattern and check its position of next day pattern, night pattern and series
length (this attempt is based on solving series). First, we check if the
pattern ends with a night series. If yes, we place 2—-3 Ls or Es before the N
shift series, provided this is possible with the demand. We keep the Ds
where it is not possible to replace them with L or E, depending on demand.
If the series is the first in the schedule, we allow one day’s length of
miniseries (of Ls or Es); otherwise, if the pattern does not end with a night
series, we place Es at the beginning of all short series with length 23,
depending on demand. We also place Ls at the end of all series with length
of 2—-3 and retain the Ds where it is not possible to replace them with L or
E, depending on demand. We then look for the next series. At this point,

we always check the demand.

Following this, we backtrack all nurses. We loop days and check for
missing demand for the day and for E or L. Then, we place E or L for found
D shifts. Again, we check the demand and ‘edl’ costs and violations.
Finally, we check if the schedule is required for incomplete weeks. If the
schedule begins later than Monday and ends earlier than Sunday, these
extra shifts are removed. Cost is recalculated with the extra days removed
from the schedule, so it is possible that the schedule cost is lower than for

full weeks. The complete process is illustrated in Figure 5.16.
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Figure 5.16. Process of converting from DNR to edINR.

5.4.5 Greedy technique computational result

As in the greedy technique, the patterns with cost 15 and 20 are used in

generating the schedules for a month. The total cost for a month schedule

1s 130. However, the cost increased to 150 when extended to a five-week

schedule (see Figure 5.17).
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Days-> | MTWTFSS cost | MTWTFSS cost | MTWTFSS cost | MTWTFSS cost | MTWTFSS cost
Nurse 01(20):LRREERR 0 | RRREERR 0 | NNRRRRR 0| RRRREEE 0 | RRRREEE 0
Nurse 02(20) :NNRRRRR 0 | RREEERR 0 | REEERRR 0| EEERRRR 0 | EERRRRR 0
Nurse 03(20):LRREERR 0 | RRRREEE 0 | RRRREEE 0] RRRRNNN 0 | RRREERR 0
Nurse 04(32) :REELLRR 0 | EELLRRR 0 | REELLRR 0| RRREELL 0 | NNRREEE 0
Nurse 05(36) :EEERRLL 0 | NNRRDDD 0 | LLLRREE 0| ELLLRRR ~ 0 | EELLLRR O
Nurse 06(36):RRREEEL 0 | LLRRNNN 0 | RRREERR 20| EELLLRR 20 | EEERRLL 20
Nurse 07(36) :LLNNRRR 0 | REELLRR 0 | EEERRRR 20| REEELLL 20 | RRRDLLL 20
Nurse 08(36) :EELLRRR 0 | EELLLRR 0 | DDLLLRR 0| DDLLLRR 0 | RREEDDD O
Nurse 09(36) :RDLLLRR 0 | DDDDDRR 0 | RDLLLRR 0| DDDDDRR 0 | RRLLNNN O
Nurse 10(36) :RDDDDRR 0 | DDDDRRR 0 | LLNNRRR 0| RREEEDD 0 | DRRDDDD O
Nurse 11(36) :DLLRREE 0 | LLNNRRR 0 | RRDDDLL 0] LRRRDDD 0 | LLLRRRR 10
Nurse 12(36) :ERRRNNN 0 | RRRRREE 20 | ERREEDL 20| LLRRRRR 20 | DDDLLRR 20
Nurse 13(36) :RDDDDRR 0 | RREEDLL 0 | LRRRDDD 0| NNRRREE 0 | DDDDRRR 0
Nurse 14(36) : DLDRRDD 0 | DDDDRRR 0 | DDDDDRR 0| DDDDRRR 0 | LLNNRRR 15
Nurse 15(36) : DRRRDDD 0 | LLLRRDD 0 | DLDRRLD 0| LLNNRRR 0 | RDDEDRR 30
Nurse 16(36) :RREDLLE 0 | ERRRLLL 0 | ERRDNNN 0| RRDDDRR 20 | LLERRRR 35
verifying total nurses available each day:

Total E: 3333322 | 3333322 | 3333322 | 3333322 | 3333322
Total D: 3333322 | 3333322 | 3333322 | 3333322 | 3333322
Total L: 3333322 | 3333322 | 3333322 | 3333322 | 3333322
Total N: 1111111 | 1111111 | 1111111 | 1111111 | 1111111

Figure 5.17. Five-week schedule in the edINR domain using the
greedy technique.

5.5 Comparison Result in DNR Domain and EdINR

Domain

It is interesting to compare the total costs of the patterns in the different
domains. In the DNR domain, patterns of cost 0, 10 and 20 are used. In
the edINR domain, the same pattern category types are used, and patterns
of cost 5 are included, mainly because of the soft constraints related to edl
shifts. During conversion, patterns of cost 1 or 5 can be incorporated.
Figure 5.18 shows the results of the three different techniques used to
evaluate the DNR domain for one month. It is shown that T1 used the
lowest total cost pattern, at a cost of 10, while T2 and T3 used patterns of
the same cost, 20, in week 2. Looking at week 3, of the three techniques,
T2 used the lowest cost pattern. However, at the end of the week, the
patterns used by T1 and T3 had decreased to zero-cost. When we compare
the three techniques in the DNR domain for five weeks, T1 started with
patterns of a total cost of 15, while T2 and T3 started with patterns of a

total cost of 20 in week 2. In week 4, T2 used zero-cost patterns; however,
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in week 5, the patterns had a total cost of 30. For T1 and T3, both had an
increased cost of patterns in week 3, decreasing to zero-cost for T1 and a

total cost of 10 for T3 in week 5.

DNR domain (One Month)
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" /‘K
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7 AN />
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Figure 5.18. Comparison of T1, T2 and T3 in the DNR domain for

one month.
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DNR domain (Five Weeks)
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Figure 5.19. Comparison of T1, T2 and T3 in the DNR domain for

five weeks.

Among the three techniques used to generate schedules in the edINR
domain for one month (see Figure 5.20), T2 had the highest total cost of
patterns in week 2, but the lowest total cost in week 4. Conversely, T'3
started with the lowest cost of patterns in week 2, but used the highest
cost patterns in the final week. T1 started with zero-cost patterns, and

ended with zero-cost patterns in the final week.
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edINR domain (One Month)
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Figure 5.20. Comparison of T1, T2 and T3 in the edINR domain for

one month.

Figure 5.21 shows the results of the three techniques used in the edINR
domain for five weeks. T2 started with cost patterns in week 1, but used
zero-cost patterns in week 4. For T3, the cost of patterns increased to week
3, before dropping slightly in week 4 and increasing again in week 5. The
pattern costs for T1 were similar to in the one-month generation in Figure
5.20, with the exception of the incorporation of a pattern of cost 5 in week

5.



ADDRESSING STAFF SCHEDULING PROBLEMS 102

edINR domain (Five Weeks)

80
70
60
50
40
30
20
10

Cost

Weeks

——T1 —B=T2 ——T3

Figure 5.21. Comparison of T1, T2 and T3 in the edINR domain for

five weeks.

Table 5.7. Comparison of total cost in DNR and edINR domain

Domain One Month/Total Cost Five Weeks/Total Cost
T1 T2 T3 T1 T2 T3

DNR 45 60 80 60 70 90

edINR 95 90 130 100 120 150

As shown in Table 5.7, the total cost of patterns in the DNR domain is
smaller than in the edINR domain. This is because the conversion
incorporates all soft constraints. Therefore, higher cost patterns must be
used to satisfy the demand. T1 was found to perform better in the DNR
domain for both one month and five weeks, and in the edINR domain for
five weeks. However, T2 outperformed T1 in the edINR domain for one
month. It has been demonstrated that domain transformation is a simple
and economical approach for generating reliable high-quality NRP
schedules. This approach has facilitated the transformation of this
complex problem in benchmark studies into a more cost-effective schedule.
Finding the solution in a smaller domain (DNR) and generating a

database of feasible patterns offline is an important feature of our
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approach, allowing the saving of computational effort and production of

low-cost schedules.

5.6 Computational Results for One Month and Five
Weeks

During the offline preparation process using the ORTEC dataset in the
DNR domain, 18 feasible zero-cost shift patterns were generated for the
36/32 hours/week FT nurses, while 15 feasible zero-cost shift patterns
were generated for the 20hours/week PT nurses. These zero-cost patterns
were used for the allocation of schedules for different types of nurses.
Using another dataset, we also generated some one-week sets of zero-cost
patterns for FT and PT nurses, which we subsequently expanded to a five-
week solution. In this case, all patterns were generated with a zero-cost
solution for the DNR domain until week 3. There was no evidence that
having zero-cost solutions in early weeks forced the later adoption of
expensive (non-zero-cost) patterns, as in our problem solution we had all
20 cost patterns in the DNR domain solution. These results were
subsequently converted to the edINR space. The patterns generated had to
satisfy the problem constraints. During the conversion, a zero-cost
schedule was again produced for the five-week period. However, this may
not hold true when trying to satisfy a greater number of constraints or
different sets of problems. In the case of infeasibility, the constraints can
be relaxed incrementally in order of cost until a feasible solution is found.
Once the zero-cost patterns do not fit the schedule, the lowest cost
patterns should be chosen. Both the one-week sequences and the five-week
solution then have a non-zero-cost schedule to satisfy the nurse demand
for each day. By comparing against previous solutions reported in the
literature (see Table 5.8 for five weeks and Table 5.9 for one month), our
approach is shown to produce the optimal solution for the problem. Our

particular implementation is an adaptation of Baskaran et al. (2009).
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Table 5.8. Previous Solutions to this Same Problem Statement (5

weeks/35 days)

Penalty Approach Execution time Author

170 Decomposition + VNS <1 minute Brucker et al.,
Iterative 2005

100* Domain Transformation 45 seconds Baskaran et al.,
T1 2014c

120%* Domain Transformation 150 seconds Baskaran,G et al.,
T2 2014d

150% Domain Transformation 90 seconds Baskaran,G et al.,

T3

2015

Table 5.9. Previous Solutions to this Same Problem Statement (4

weeks/one month)

Penalty Approach Execution time Author
775 GA 1 hour Burke et al., 2008
681 GA 24 hour Burke et al., 2008
706 HO/VNS 1 hour Burke et al., 2008
541 HO/VNS 12 hour Burke et al., 2008
360 VDS 25 minutes Burke et al., 2007
465 VDS 600 seconds Burke et al., 2014
270 MIP 2 minutes Glass and Knight,
2009
270 Branch-and-Price  69.3 seconds Burke et al., 2014
*95 Domain 30 seconds Baskaran et al.,
Transformation 2014c
T1
*9() Domain Baskaran,G et al.,
Transformation 135 seconds 2014d
T2
%130 Domain ) Baskaran,G et al.,
Transformation
T3 85 seconds 2015

According to the literature that tests the ORTEC dataset (see Table 5.9),

the best result was a 270 cost solution after an execution time of two

minutes (Glass and Knight, 2009) while Burke et al. produced the same

results with a shorter computational time of 69.3 second. We have thus

achieved an improvement by obtaining a 90 cost solution using T2. The

execution times were achieved using comparable computers. Burke et al.

(2007, 2008) used a P4, 2.4 GHz processor PC. While Glass and Knight
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(2010) used a desktop PC with a P4 2.67 GHz processor whereas ours had
a clock speed of 2.64 GHz. Our shorter execution time is partly due to the
accessibility of a feasible solution with no penalties; that is, a zero-cost
solution. Should a zero-cost solution have proved infeasible, we would have
relaxed one or more of the higher penalty constraints, with run time
increasing as a result. We recognise that using this domain transformation
approach with problems of higher complexity may be challenging

computationally, but not impossible.
5.6.1 Continuity

An important issue in nurse scheduling is the continuity from one
scheduling period to the next. This has been a gap in the literature, as
highlighted in Celia et al. (2010). The NSP benchmark instances tested in
this thesis are designed to produce schedules for an isolated period. The
penalties are applied in accordance with the standard that all possible
violations are counted at the beginning of the period, and not ignored at
the end. We recognise that the benchmark instances are intended as a
basis for comparison between alternative scheduling methodologies, and
that the consideration of isolated schedule periods serves this purpose.
However, in a practical environment, information relating to one
scheduling period is carried forward to the next, creating additional issues
of ‘continuity’. For example, while the scheduling period may only be one
month in length, the constraints do not primarily relate to that one-month
period. In those constraints relating to periods, some relate to one week,
others to a rolling five-week period, or even a rolling 13-week period. To
1llustrate this point, Appendices 1 and 2 show, respectively, the schedule
of T2 for 13 weeks, with a total cost of 250, and the schedule of T2 for 52
weeks, with a total cost of 580. Table 5.10 shows the results of the three
techniques used for the domain transformation to generate the 52-
weekschedules. T2 performed better on cost compared to T3 or T1.
However, while T3 generated the 52- week schedule at a higher cost, it did

so with the lowest computational time, at only 21 minutes.
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Table 5.10. Result of three techniques generating schedule for 52

weeks
ORTEC 52 weeks T2 T3 T1
Cost 580 640 600
Time (minutes) 25 21 24

Domain transformation is an effective approach, designed to handle the
constraints relating to various periods. Table 5.11 presents the results for
our approach compared to two other approaches on the 12 large real-world
NSP datasets of ORTEC (January to December). The first approach for
comparison is a hybrid genetic algorithm developed by ORTEC in the
commercialised software Harmony TM (Fijn van Draat, Post, Veltman and
Winkelhuijzen, 2006). The second approach is a hybrid Variable
Neighbourhood Search with a heuristic ordering as the construction
method (Burke, Curtois, Post, Qu and Veltman, 2008). The Hybrid IP
method (Burke, Li and Qu, 2009) applies an IP model to construct the
initial solution and a Variable Neighbourhood Search to make
improvements to the results. Our approach obtained better results on all
12 datasets for all three techniques, generating the one-month schedules
with <2.25 minutes computational time. Minor cost variations occur
between months in our approach because of the different start days, which
affects some of the hard constraints. This may require the incorporation of
non-zero-cost patterns. Overall, however, the results demonstrate that
domain transformation can find good-quality solutions in less
computational time for highly constrained NRPs, compared to the current

best approaches in the literature.
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Table 5.11. Comparison of Results for ORTEC January to

December

ORTEC Hybrid GA Hybrid VNS Hybrid Domain

Jan— IP Transformation
Dec

[125] [115] [123] T2 T3 T1
Jan 775 735 460 90 130 95
Feb 1791 1866 1526 70 100 75
Mac 2030 2010 1713 75 115 80
Apr 612 457 391 85 120 85
May 2296 2161 2090 95 135 100
Jun 9466 9291 8826 90 130 95
July 781 481 425 85 125 90
Aug 4850 4880 3488 95 130 100
Sept 615 647 330 80 120 90
Oct 736 665 445 90 130 95
Nov 2126 2030 1613 95 135 100
Dec 625 520 405 85 125 90

5.7 Comparison of Performance Reported in the
Literature of Techniques Using Domain Transformation

in NSP

We assess our domain transformation approach upon a set of benchmark
real-world NSP datasets, publicly available at
http://www.cs.nott.ac.uk/~tec/NRP. The chosen benchmark datasets are
the most tested problems in the literature because of their complex

constraints.

The rules, regulations and objectives have been taken directly from the
real- world cases and preserved with their essential characteristics. The
difficulty of the problems not only depend on the number of shift types,
number of nurses and length of the scheduling period, but also on the

complex constraints involved.

Within our approach, the IP process was solved by using the latest GNU
Octave’s GLPK (4.45). We have also used the database engine SQL Server
Compact 3.5. The results obtained through solving the T1, T2, and T3 are
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presented in Table 5.12. The problem is one of minimisation, and the
results in bold indicate the optimal solutions. All the techniques using the
domain transformation approach were able to solve most of the instances
to optimality; however, the computation time varied from <0.1 second to
2.25 minutes in the case of the hardest instance. In comparison with the
best-known results, we achieved a new result for GPost-B with a cost of2
in 15 seconds with T2 and WHPP, zero-cost with T2 in 17 seconds and T1
in 5 seconds. One result for large instances outperformed the other
examples: ORTEC. This appears significantly better than the best results
achieved in the existing literature. Our approach achieved cost 90 within
135 seconds for ORTECO1 and 155 seconds for ORTEC02. Overall, our

results represent the best-known cost.



Table 5.12. Results on Benchmark Datasets

535 7580

90 270 105.1 95 60 90 155 130 99
13 13 57.6 20 4435 39 3160 13 60 13 62 13 60
29 29 1.9 29 1 29 3 29 2

0 0 10.5 4 4105 0 10 0 48 0 22
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We have presented a novel information-granulation-based formulation of
the NSP and have solved it using T1, T2 and T3. The results show that all
three techniques can solve some instances very effectively. For other
Instances, the time and resource requirements may be restrictive.
However, with more development of new ideas, it may be possible to
improve the performance of our method further. The domain
transformation approach uses a number of novel ideas that we believe are
general enough to be adapted to other problem domains. All instances
tested were modelled using a generic model. Tables 5.13and 5.14 below
show, respectively, the comparison of the average cost percentage from the
optimal cost, and the average time percentage from the optimal cost, with
other methods solving the benchmark problems reported in the literature.
We evaluate the mean percentage differences between the results
distributed by a given method and the best-known results reported in the
literature, showing the standard deviation of the difference. Our domain
transformation approach is shown to be competitive, with the lowest mean
percentage of 0 (T2), 7.7 (T3) and 3.4 (T1) for cost average and 49.6 (T2),
34.1 (T3) and 26.1 (T1) for time average when comparing our approach to
the best-known costs. Among our three techniques, T2 is nine times faster
on average compared to Burke et al.’s results (2014). Moreover, our
approach is the most consistently reliable, as indicated by standard
deviations of 0 (T2), 17.8 (T'3) and 11.8(T1) for the differences where the
cost is clustered closely around the mean. This is supported by the
coefficient of variation, which is less than 5% for our domain
transformation approach which generally give us a feeling of good method
performance. The standard deviations for time were also lower for our
method (44.3 [T2], 36.7 [T3] and 21.8 [T1]) than for other methods
reported in the literature. This indicates that our domain transformation
method is reliable and stable and is more capable of reducing the
computational effort required than other methods reported in the

literature.



Table 5.13. Average Cost Percentage from Optimal Cost

Data Sets Best BUR 14 MET 09 BUR 09b BUR 09b Our approach
known (SS2) (MEH) T2 T3 T1
Cost C % C % C % C % C % C % C %
Musa 175 175 0.0 175 0.0 175 0.0 175 0.0 175 0.0
GPost 5 5 0.0 8 60 9 80 915 18200 5 0.0 5 0.0 5 0.0
GPost-B 2 3 50.0 5 66.7 789 26200 2 0.0 3 50.0 3 50.0
Ozkarahan 0 0 0.0 0 0.0 0 0.0
Millar-2Shift- 0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
Datal
Millar-2Shift- 0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
Datal.1l
Azaiez 0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
WHPP 0 5 0 0 0.0 5 00 0 0.0
Valouxis-1 20 80 300 160 700 100 400 20 0.0 20 0.0 20 0.0
Tkegami-2Shift- 0 0 0.0 0 0.0 0 0.0 0 0.0
Datal
Tkegami-3Shift- 2 2 0.0 63 3050 2 0.0 2 0.0 2 0.0
Datal
Tkegami-3Shift- 3 4 33.3 3 0.0 3 0.0 3 0.0
Datal.1l
Tkegami-3Shift- 3 5 66.6 3 0.0 3 0.0 3 0.0
Datal.2
ORTECO1 90 270 200.0 365 305.6 535 494.4 90 0.0 130 444 95 5.6
ORTECO02 90 270 200.0 90 0.0 130 444 95 5.6
QMC-1 13 13 0.0 20 53.9 39 200 13 0.0 13 0.0 13 0.0
QMC-2 29 29 0.0 29 0.0 29 0.0 29 0.0
SINTEF 0 0 0.0 4 0 0 0.0 0 0.0 0 0.0
Average % mean% = 47.2 mean%=544.3 mean%=113.3 mean%=11175.4 mean%=0 mean% =17.7 mean%=3.4
Difference to std% = 90.1 std% =1134.5 std%=153.3 std% =13143.4 std% =0 std% =17.8 std%=11.8
Best known cv% =1.9 cv% =2.1 cv% =1.4 cv% =1.2 cv% =0 cv% =2.3 cv% = 3.5

Cost

Note: std=standard deviation, CV=coefficient of variation



Table 5.14. Average Time Percentage from Optimal Cost

Data Sets BUR 14 MET 09 BUR 09b BUR 09b Our approach
(SS2) (MEH) T2 T3 T1

Time (s) Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)
Musa <0.1 39 1 1 1
GPost 2 234 4305 605 20 5 3
GPost-B 29.3 3955 475 15 10 8
Ozkarahan <0.1 1 1 <0.1 <0.1
Millar-2Shift- <0.1 1 910 43 1 <0.1
Datal
Millar-2Shift- <0.1 20 30 2 1
Datal.l
Azaiez 0.3 233 30 2 1
WHPP 17.6 17 10 5
Valouxis-1 909.6 3780 4000 42 40 40
Tkegami-2Shift- 41.7 40 40 40
Datal
Tkegami-3Shift- 597.8 671 68 55 50
Datal
Tkegami-3Shift- 995.2 88 85 80
Datal.1l
Tkegami-3Shift- 5411.9 95 95 90
Datal.2
ORTECO01 69.3 3400 7580 135 85 30
ORTECO02 105.1 155 99 60
QMC-1 57.6 4435 3160 62 60 60
QMC-2 1.9 3 2 1
SINTEF 10.5 4105 48 22 10
Average mean =458.3 mean =708.4 mean =3141.3 mean =2955 mean =49.6 mean =34.1 mean =26.1
Percentage std =1276.6 std =1374.5 std =1696.4 std = 3322 std =44.3 std =36.7 std =21.8

Difference to

Best Known Cost
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5.8.1 Hospital Kajang

Currently, the matron in charge of the nursing department in Hospital
Kajang, Malaysia, creates all nurses’ schedules manually using a trial and
error approach. Producing satisfactory schedules using this approach is
costly and inefficient. These manual schedules do not satisfy a number of
important criteria for efficient scheduling. In particular, they fail to satisfy
the hard constraints of balanced schedules, fairness considerations and
nurses’ preferences, ergonomic considerations, and staffing requirements
related to quality and size. Therefore, we cannot compare the cost of
creating these manual schedules to those generated by our approach, as
even when the manual schedules satisfy demand, they will include some
infeasible patterns (see Appendix F). Our domain transformation
approach, as well as being a practical computerised tool, provides
Important improvements in relation to the feasibility of schedules

produced.

Our approach considers such restraints as nurses’ preferences, current
hospital policies, recommended policies drawn from the literature, and
ergonometric issues. Satisfying simultaneously all these factors may not
be feasible; however, some are considered hard constraints that must be
satisfied. The hard constraints were designated as such based on feedback
from the matron. The remaining constraints, considered soft constraints,
were also assigned their priority levels and weights based on the judgment
of the matron. The hands-on experience of the matron and nurses of
Hospital Kajang offered valuable insight into our subject. The hospital
matron prepares the nurses’ schedules manually every two weeks.
However, we have shown that four- and five-week schedules can also be
generated in a short computational time at not too high a cost. Figures
5.22-5.23 below show the schedules generated for two weeks with T2, four
weeks with T1 and five weeks with T3.
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Figure 5.22. Schedule for 2 weeks (T2).

Computed Schedule for 4 week(s)

Daysz-> | MTWTFSS viol cozt | MTWTFSS viol cost | MTWTFSS viol cozt | RTWTFSS viol
Nutse 01(40, ):LLNNRRR ] O |REEEERR [5) O | RRRLNNN o O |RREEEER o 1
Nurse 02(40, ):NNRRELE o 0O |EEERRLL 0 O NNRRREL 0 O EEEERRR 0 0
Nurse 03(40, IRRRLNNN o O |RREEEER 0 OIRREEEER o O |EEEERRR [¢] 1
Nurse 04(40,0):0DDORRR o 0 | RRRDDOOC 0 O | RRDODDR 0 0 | RDDDDRR o] 0
Nurse 05(40, ):RREEEER 0 O | LENNRRR 0 O|EECEERRR 0 0 | RRRL NNN (s} 1
Nurze 06(40, ):ICEERRRL 0 O |CEEERRRA (s} O LENNRRR 0 O |RECEERR (=] o
Nursa O07(40, ):CERRRLE o O | NNRRRLE o O|CCEREED o O | ERRRNNN o o
Nurse O8(40, ):ERRRLLE 0 O | NNRRREL o O|EEEERRR 0 O RRREEEE o o
Nurse 09020, ):RRRELEE 0 O EERRRLL 0 O NNRRREE 0 O | EERRREE 0 o
Nurse 10040, ):LLNNRRR ] O |RDEEERR 0 O | RRLLNNN 0 O |RRRLEEE o 5
Nurse 11(40, INNRREEE 0 O |ERRREEE 0 OlERRREEE 0 O |ERRREEE (] D
Nurse 12(40, IREEEERR 0 O |RRDEEER o O | LENNRRR 0 O|RRELLDR (v] S
Nurze 13(40, IRREEERR 0 O LLNNRRR o OlRRRLLLE 0 O INNRRRLE o 0
Nursze 14(40, ):EEERRRD 0 O |ELLRRRE Q Q| EDERRRE Q O |DELRRRD (<] 3
Nurse 15040, IRELEDRL o O | LLNNRRR o O|RLLEERR o O |LLNNRRL o o]
Nurse 1640, ):LLNNRRR 0 O/RLLLLRR 0 O|RLLEERR 0 O | LLNNRRR 0 0
Nurse 17(40, ):NNRRLEL 0 0| DRRRLEE 4] O | DRRRNNN 0 O|RRLLLRL (4] 10
Nurse 18(40, ):ERRRNNN 0 0 RRLLLRL 0 10 NNRRLLR 0 10/ RLLRRLL 0 11
Nurse 19(40,S):EEEERRR 0 O | RRRL NNN o O|RRREEEE 0 0| LRRREEL [} 1
Nursze 20(40,S):RRLLEER o O /ELEREER [+] O LLNNRRR Q O |RRLELLR [+ )
Nurzg 21(40,S):LLLRARRE Q O | LELRRRE 0 O|EEERRLL Q O |EEERRLL o ]
Nurse 22(40,5) :LLRRRLL o O | NNRRLLE [+] O|LRRRLLL o O | NNRRLLL (4] o
Nurse 23(40,5):LLLRRRL 0 O |LLLRRRL 0 O|LLLRRRL 4] O | LLNNRRR 0 0
Nurse 24(40,5) :RRLLLLR 0 0 | RRRLNNN 0 O|RRRLLLL o O|RLLLLRR 0 1
Nurse 25(40,5) 1RRRARRR 0 1O |RRRRRRR 0 10| RRERRRR o 1O |RRRRRRR o 10
Nurse 26(40,5) :RRRLNNN o O|RRRLLLL 0 OILLRRRLL 0 O INNRRLLE o 11|
Nursze 27(040,S) 1RRRLLDL o 0 | LRRRNNN o O|RRLLLRD Q 10 | LRRENNN 0 1s|
Nurse 28(40,S):RRLLLLR Q OlRALLLLR Q OlRLLLLRR 0 OILLLLRRR (=] ol

verifying total nurses available each day:

Total B: 6E66566 | 66666656 | GE6E666 | 6666666
Total p: 1111111 | 1111111 | 1111111 | 11113111
Total L: 6666666 | 6666666 | 666666 | 6666666
Total N: 3333333 | 3333333 | 3333333 | 3333333

Figure 5.23. Schedule for 4 weeks (T1).
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Murse 0L{40, )iLENNRRR 4] O|RREEEER 4] O|LENNRRR

Nurse 02(40, )iNNRRREE 0 O|EERRRLE 0 O NNRRRELE

Nurse 03(40, )iRRRENNN 0 O|RREEEER 0 O|EEEEERR

Nurse 04(40,0):RODDDRR 0 0| RRRDDDD 0 0| RODDDRR

Nurse 05(40, ):RREEEER 0 O|REEREER 0 10| RRNNRRR

Nurse O6(40, ):EEERRRE 4] O|LENNRRR 4] O|RRRELELE

Nurse O7(40, )iERRREEE 0 O | ERRRNHN 0 0| RRRRRRR

Nurse OB(40, ):RRREEEE 0 O|ERRREEE 0 O|EERRREE

Nurse 09(40, )iLEMNRRR 0 0|EEEERRE 0 0|EEERELE

Nurse 10{40, ):iMNRRREE 0 0|EEERRRE 0 0|EEERRRE

Nurse 11{40, ):iRRRENNN 0 0| RRDEEER 0 0| RRRENNN

Nurse 12(40, ):IEEEERRR 0 O|RRRLLLE 0 0| NMNRREED

Nurse 13(40, ):REELERR 0 0| DDLERRR 0 0| LLMNRRR

Nurse 14(40, ):RRELEDR 0 0| LLMNNRRR 0 0O|RLEEERR

Nurse 15{40, J)IELLRRRD 0 O|LLLLLRR 0 O|RRRLLLL

Nurse 16{40, )IERRRLLL 4] O|NNRRLLL 4] O|ERRRLEL

Nurse 17{40, ):NNRRRELL 0 O|ELLRRRL 0 0| DLERRRL

Nurse 18{40, ):DRRRENNN 0 O|RRRRRRR 0 20| NNRRRRR

Nurse 19(40,5):REEEERR 0 O|LENNRRR 0 O|RREEEER

Nurse 20(40,5)RRLLLER 0 0| RRRENMN 0 O|RRLLLER

Nurse 21{40,5):LLLRRRE Y] O|LLERRRE Y] O|EELRREL

Nurse 22{40,5):RRRLLLL Y] O|RLLLERR Y] O|RRRELDE

Nurse 23({40,5)RLLLLRR 0 0| RRRELNNN 0 O|RRLLLLL

Nurse 24{40,5)RRLLLLR Y] O|RRLLLER Y] O|RELENNN

Nurse 25({40,5):LLLRRRL 0 O|LLLRRRL 0 O|LLLLRRR

Nurse 26{40,5):ELRRRELL Y] O|NNRELLL Y] O|LRRRELLL

Nurse 27(40,5) iLLNNRRR 0 O|RRERELLLL 0 O LLRRNNN

Nurse 285(40,5) LRRRLLL 0 O NNRERRELL 0 OJLLLLRRR

verifying total nurses available each day:

Total E: GO6GG666 | GGGGG66 | GOGG6G6 | GGOGG6G | 6666666
Total D: 1111111 | 1111211 | 1111121 | 1112111 | 1111111
Total L: 6666666 | GOGOOG6 | GOOGOG6 | GOGO6OGG | GOGGG6G
Total N: 3333333 | 3333333 | 3333333 | 3333333 | 3333333

Figure 5.24.
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Schedule for 5 weeks (T3).

| MTWTFSS viol cost | MTWTFSS viol cost | MTWTFSS viol cost | MTWTESS viol

115

cosT | MTWTFSS v

EEEEERE 4] 10
REEEERR 0 10
REEEERR 0 10
DODDRRR 0 0
RRRRRRR 0 20
EERRREE 4] 4]
RRRREER 0 20
EEERREE 0 10
ELEERRR 0 0
MMRREEE 0 10
MMRRDEE 0 5
ELLRLDD O 10
RRRELLL 0 5
RRRLLLL 0 0
LRLLLLR 0 15
| LRRRMNNN 4] |
|LLLLRRR 0 51
| RRNMRREL 0 20|
|EEERRRE 0 |
|LLNNRRR 0 |
|LLLERRR Y] |
| RRRELMNNN Y] G|
| RRRREER 0 31|
|LRRRLLL Y] 10|
| RRLLMNNN 0 10|
| NNRRRLL Y] Q|
| RLNNRRR, 0 31|
|RRLLLLL 0 11|

Table 5.15. Summary of the Results of the Techniques for Kajang

Hospital

T2 T1 T3

Cost Time (s) Cost Time (s) Cost Time (s)
2 weeks 44 21 50 19 65 9
4 weeks 77 47 77 35 107 30
5 weeks 100 52 109 40 249 38
Mean 73.7 40 78.7 31.3 140.3 25.7
Standard 28.2 16.6 29.5 11 96.4 15
deviation

Table 5.15 shows that T2 outperformed T1 and T3 on cost for all time
horizons, but that it was the slowest in computational time. T3 had the
best computational time results: producing schedules in just nine seconds
for two weeks, 30 seconds for four weeks and 38 seconds for five weeks.
However, the standard deviation for T1 was lower than for either T2 or T3.
Regardless of technique, our approach produced feasible schedules,
satisfying the constraints. This represents an advantage to the hospital,

whose existing method for generating schedules fails to satisfy even the
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demand for nurses. Using our method, we could produce two-, four- and

five-week schedules for their perusal.

The results from the real-world datasets can provide insight into domain
transformation using information granulation. In almost all cases, the
computerised method produced better-quality schedules (figure 5.23) than
the manually generated solutions used in Kajang Hospital (Appendix G).
Scheduling quality was measured using the five factors developed by

Oldenkamp and Simons (1995):

e Optimality: where the granulation of shifts helps in representing
the degree to which nursing expertise is distributed over the
different shifts.

e Completeness: where the model is formulated as hard constraints
and is always satisfied in the domain transformation approach to
represent the degree to which the quantitative demands for nurses
per shift are met.

e Proportionality: where the granulation of patterns and the checking
of shifts to satisfy the demand hours actually represents the degree
to which each nurse has been given about the same amount of
working days (morning, evening and night shifts).

e Healthiness: where the incorporation of preferred shifts or rest days
as hard and soft constraints represents the degree to which the
welfare and health of the nurses has been considered.

o Continuity factor: analysed systematically wusing the hard
constraints provided to represent the degree to which there is

continuity in the nursing group during the different shifts.

5.8 Conclusion

Nurses’ performance in the hospital setting can be managed and
coordinated with the aid of nurse scheduling. Nurse scheduling helps
departments in the hospital to organise the number of nurses working in a
day, on either day or night shifts. Using proper scheduling methods, a
high- quality schedule can be produced. From the research presented

above, it is clear that preparing a nurse schedule requires the assessment
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of a wide range of criteria, including organisational rules, personal data
and legal regulations. No single software can provide the solution, as each
hospital has its own unique requirements and constraints; however, the
same method can achieve a good solution. For proper results, the models
and algorithms involved in generating the schedule should have a strong
but flexible structure to adapt to the various unexpected situations that
occur in a hospital. Further, the complexity of the NSP dataset makes it
difficult to find feasible schedules with the precise number of nurses

demanded per day and fulfilling a majority of soft constraints.

Our approach is not ‘hard coded’ to certain instances; rather, it has been
designed keeping in mind the goal of learning about new problem- solving
situations. In particular, our approach is applicable to most NSPs found in
the literature. The proposed domain transformation approach to nurse
scheduling represents a significant departure from the heuristic or meta-
heuristic approaches that rely on the randomisation of the search
procedure in the vast search space. Our approach offers deterministic
reproducibility of solutions, as the domain of patterns allows for full
enumeration of solutions. However, although our proposed method
provides competitive and transparent results, it does not guarantee the
global optimum. This is because the selection of non-zero-cost patterns for
use 1n a specific scheduling process is guided only by the (rational) notion

of making use of cheaper patterns first.
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Chapter 6: Conclusions and Future Work

This chapter presents a summary of the work conducted in this thesis to
improve the efficiency of nurse scheduling when handling large-scale
domains. This chapter summarises the methodologies used and the
findings of each chapter. This chapter also highlights the contributions
made by this thesis to the area of nurse scheduling, and suggests some
future research directions regarding domain transformation and the

research field in general.
6.1 Outcomes of the Research

In this thesis, we discussed our novel proposed approach to solving NSPs.
NSPs are usually highly constrained, have a large number of possible
solutions and are complex (Okada and Okada, 1988). In our preliminary
study, we suggested that when enough information is delivered, using a
systematic method, a real-world NSP can be solved efficiently and
effectively. Although real-world NSPs are complex and very challenging to
solve, they can be solved by simplifying the problem and ensuring that
solutions are always reproducible. It is important to look at the ‘big
picture’ in order to grasp the core of the problem before focusing on the
small details. In this process, information is pre-processed to group related
data so we can avoid too much detail. This simplification can cause
common characteristics to emerge, which can provide a balance between
the accuracy and generality of problem illustration. The easiest and least
determined way of problem simplification is when the problem is divided
and then solved in stages. This can be achieved through information
granulation, explained in Chapter 4. The concept of granular computing
(Bargiela and Pedrycz, 2002; Bargiela et al., 2004; Bargiela and Pedrycz,

2008) provided important information for efficient scheduling.

This thesis proposed a domain transformation approach to solving NSPs.
The domain transformation approach transforms the original scheduling
problem domain into smaller sub-domains. This reduces the problems’

complexities effectively and can be converted back into the original
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problem domain. By subdividing the real-world NSPs into smaller sub-
problems, each problem was solved more effectively. By performing this
step, we successfully mapped the original problem expressed in the multi-
dimensional domain onto a reduced dimensionality domain. Another
important highlight of our proposed approach is the pattern generation.
We generated the zero-cost and non-zero-cost patterns by granulating data
and constraints. This provides more meaningful information that can be
utilised at a later stage in the scheduling process. When performing this
granulation, certain data and constraints are grouped according to certain
conditions (e.g., granulation of constraints, granulation of shift and
granulation of patterns into sequence). This reduces cross-checking and
cross-referencing in big data during scheduling. Further, the schedule is
feasible (in terms of demand of nurse cover, and all hard constraints are

satisfied) and is generated in a short amount of time.

An important issue when solving NSPs is how to handle complex
constraints. The complexity of the dataset of NSPs requires finding a
feasible schedule with a precise number of nurses per day, which fulfils
many soft constraints as well. The large number of complicated
constraints cannot easily be applied to limit the space of acceptable
solutions (Smith and Wiggins, 1977; Weil et al., 1995). These constraints
concern, for example, continuity in service, personnel policies, staff
preferences, operating budgets and labour constraints (see Rosenbloom
and Goertzen, 1987). Additionally, some of these considerations may be in
conflict with others, such as employment requests and the need to balance
the workload (Randhawa and Sitompul, 1993). Also Ozkarahan and Bailey
(1988, p. 306) stress the conflicting objectives and constraints of NSPs.

This is proved in our domain transformation algorithm, which runs
quickly and produces good solutions. In real nurse scheduling settings, we
noticed that the problems are nearly always over-constrained. The feasible
solutions produced in previous studies have tended to be expensive in
terms of violating constraints. Moreover, it has often been difficult to find
a solution (Focacci et al., 1999). A common characteristic of many methods
in the surveyed literature is that they have a tendency to converge

towards feasible solutions when small modifications made after the
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schedule is generated will produce a better result (Forest and Michell,

1993; Rawlins, 1991).

The Nottingham benchmarks (Burke et al., 2010) are a collection of SSP
instances gathered from various resources and published online (see
http://www.cs.nott.ac.uk/_tec/NRP/). The diversity of its resources makes
the Nottingham benchmarks a valuable sample of international SSPs.
These benchmark instances allow researchers to compare their algorithms
to other approaches that have been independently implemented. This
increases the credibility of results and conclusions and helps reviewers

better gauge the strength of new methods.

The proposed method for NSPs utilising a general novel algorithm and
being evaluated using three techniques are described in Chapter 5. All
techniques have been shown to deliver consistently competitive results for
all real-world benchmark datasets. Comparing the average mean
deviations from the best-known solution for each benchmark dataset, our
method shows that the performances are consistent for all types of
problem and on average outperforms all other results. The variance of
these deviations is smallest for our method when compared to others
reported in the literature—other constructive methods found in the
literature demonstrated an irregular performance, where they performed
well on some benchmark problems and less well on others (Junker et al.,
1999; Yunes et al., 2000). Further, by automating NSPs, the scheduling
effort and calculation time are reduced considerably from the manual
approach that was previously used in our new real-world dataset (Kajang
Hospital). The quality of the automatically produced schedules is much
higher than the quality of the manual schedules.

Existing research shows the inefficiency of manual schedules for large and
complex NSPs (Howe, 2001; Burke et al., 2010), especially in the
continuity of scheduling from month to month. This is also observed
through our experiments in Chapter 5. Our approach has successfully
maintained continuity for highly constrained and large-scale NSPs.
However, some of these methods, especially the design of neighbourhood

structures in the literature, are tailored to a specific problem instance
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(Ahuja, 2002). With each alteration in a local search, solutions need to be
checked to preserve feasibility (Kilby et al., 2000). Conversely, our
approach is tailored in a more widely applicable and general way.
According to Dowsland (1997, page 394), a general algorithm is like a size
48 cloth. It will cover everybody but it does not fit anyone very well.
Moreover, general algorithms are designed from the management
viewpoint and do not consider special constraints, like ergonomic criteria.
Other sources used in building scheduling policies are the current applied
policies in the hospital, as well as recommended policies displayed in the
literature that account for ergonomic factors. Therefore, the developed
model performs quite well based on the quality criteria. The model has
been found not only to satisfy hospital objectives but also, and to a larger
extent, nurses’ preferences (proportionality, days off, isolated days on and

off, etc.).

Due to the need to ensure the feasibility of schedules, our general
algorithm checks if patterns allocated to nurses satisfy the demand for
that particular week. For conventional approaches, without the
information granulation stage, clashing information is implicit in data;
thus, a lot of permutations requiring a lot of time need to be conducted in
order to create a feasible timetable. This problem can be avoided using the
approach proposed in this study. The information granulation stage is one
of the biggest contributions of this thesis towards solving and minimising

the search domain.

Many techniques have been applied to explore the neighbourhood in the
schedule or select elements randomly; however, the majority suffer from
the risk that if the cost is not reduced, the initial cost will be replaced by
the current solution (Nareyek, 2001; Junker et al., 1999; Yunes et al.,
2000; Fahle et al., 2002). Also problematic is the fact that sometimes the
methods used are not reproducible (Gendron, et al. 2005). Conversely, the
approach taken in this thesis is systematic. It transforms the NSP into a
simpler problem with fewer shift types and constant nurse demand and

availability.
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To summarise, it is clear that the domain transformation approach
proposed in this study is very simple and competitive in terms of
generating reliably high-quality schedules. By transforming the original
real-world scheduling problem into smaller sub-problems and applying
appropriate granulations, we managed to reduce the complexities of the
problem, thus saving a substantial computational effort compared to other
methods. The implication of this is that different simplifications can be
obtained at different levels of construction. Further, we can reduce the
search space at a more abstract level, while retaining the opportunity of
improvement by using a more detailed representation. Such simplification
can save computation effort, as well as allow for greater ease of handling
the data. The problems are not characterised just at the most detailed

level, but include a diverse construction at a higher level.

The approach proposed in this study to solve NSPs is efficient and reliable
in producing high-quality schedules. It has consistently produced
encouraging results for all real-world benchmark datasets, which is not
the case for some other constructive methods in the literature. They
perform well on some benchmark problems and not as well on others, and
in a few cases some methods fail to produce a solution. This is a rather
unwelcome characteristic from the user’s perspective, as there is no way of
predicting the quality of the solution that will be obtained using a
particular method on a new dataset. Since the proposed approach produces
consistent results when tested on different real-world benchmark datasets
and a new dataset, the method is shown to be very flexible and has

quality, consistency and potential for universal application.

This proposed approach is not limited to NSPs; it is a general approach of
looking at problems at different levels of construction. By doing so, a
spectrum of possibilities becomes available: we can reduce either the
search domain or the complexity of the problem by looking at a more
abstract level, or we can gain a more detailed description of the problem by
examining a more detailed level. We would also like to highlight that an
important feature of the proposed approach is that its deterministic
pattern in the results generated for all datasets is always preserved, which

makes it a novel contribution to the NSP research field.
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The content of the present dissertation has been the subject of journal
articles, conference papers and conference abstracts (see

‘Publications/Disseminations during PhD Period’).

6.2 Future Research

In this section, we identify a number of opportunities for future research
in the field of nurse scheduling. In our future work, a few extensions of
this work could prove interesting. First, the domain transformation
approach developed here could be extended to solve a wider range of NSPs
and other SSP. Hospitality management is a promising area that should

be more explored, namely hotels (housekeeping staff) and restaurants.

Combining the approach with state estimation could provide better
judgment with a greater number of more diverse schedules. The
estimation of the state of a system that is monitored through
measurements that have limited accuracy has long been recognised as a
challenging practical problem. This is primarily because it becomes
necessary to identify a much larger set of possible system states (Bargiela,
Pedrycz and Tanaka, 2003; Hashemian and Armaou, 2014). This can be
evaluated using the sensitivity matrix method to find a set of efficient
solutions. The basis of this method is the observation that when the
measurement set is minimal (i.e., it is observable and contains no
observable subset), the linearized uncertainty bounds can be calculated
without recourse to a linear programming procedure (Bargiela, 2001).
Bargiela et al. (2003), Yang Fan and Xiao Deyun (2008) and Lou (2015)
present a sensitivity matrix method that offers a good compromise
between the accuracy and efficiency of estimation of the state uncertainty
set. Thirdly, as our domain transformation approach has demonstrated
computational efficiency comparable to previous approaches reported in
the literature, implementing this approach to find diverse solutions in
NSPs could be interesting. An extension to the Kajang Hospital NSP could
include simulation of patient number per nurse. This would involve
modifying the solution procedure. The domain transformation model could

also be expanded for all units, departments and wards in Kajang Hospital.
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Discussions have already begun regarding the possibility of designing the
graphical user interface for our model for use in Kajang Hospital. Future
work may also focus on building a user-friendly computer package.
Importantly, there is also a need to improve the system to allow the head
nurse to regenerate the system in the case of unexpected occurrences (i.e.,
no feasible solution). In this thesis, we have constructed a deterministic
nurse- scheduling model capable of defining the demand for each nurse.
However, hospital administration systems operate in a dynamic and
uncertain environment in which unexpected events lead to schedule
disruptions and infeasibilities. Therefore, most hospitals will at some time
confront the problem of rescheduling, where it is necessary to update the
activity schedule. Rescheduling is thus an important and interesting topic,
and one that would be valuable to investigate using the Hospital Kajang

dataset, to assess how our modelled system reacts to unexpected events.

6.3 Conclusions

The approach this thesis proposes to solving NSPs has proven to be very
effective in generating feasible schedules. A general algorithm was
developed and applied with three techniques to 27 real-world benchmark
datasets in NSPs. ORTEC benchmark datasets, which are most
challenging and most studied in the literature, were used in order to test
the insight of our proposed approach. Our results were compared to those
of other approaches tested in the literature for all real-world benchmark

datasets.

Three main goals of the proposed model were to develop and evaluate
general algorithms using a novel approach of information granulation to
achieve a feasible solution with minimum cost, flexibility in staff
scheduling solutions and continuity in the scheduling process. These goals
were achieved by implementing the domain transformation approach
based on the insight of information granulation allowing the
transformation of the NSP into a smaller problem domain that could be
solved in stages and a reasonable amount of time. This resulted in

reducing the complexity of the problem domain.
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This original formulation also makes it possible to control the periodicity
of rest days as well as the length of the planning horizon. The definition of
the planning period is not a much-explored issue in the literature, since it
is closely related to demand forecast periods and is often an input
parameter. However, the initially set planning period may not be the best
fit to a problem’s features, and so it was pertinent to determine the ‘ideal’
planning period for a specific instance. This experiment was carried out in
Kajang Hospital, Malaysia. The proposed approach developed in this study
was shown to be generalizable and flexible, with several degrees of
freedom and with the capacity of being easily applied to different real-life
SSPs.

This is a new finding and represents a novel contribution to the academic
literature. From a healthcare organisation (Kajang Hospital) point of view,
the use of the flexible scheduling approach proposed in this study
represents a powerful tool for increasing both the efficiency and the
effectiveness of the staff scheduling process, leading to higher profitability
and productivity. However, the implementation of such a solution into
practice is not always easy; it depends on the involvement of the
organisation’s management in the whole development process. This was

positively achieved in our new real-world dataset from Kajang Hospital.

Information granulation and pattern generation leads to cost reduction in
producing a feasible schedule. The proposed method is systematic, robust
and proven flexible, since it has been tested in real-world benchmark
applications. Further, through the avoidance of meticulous searches,
which normally use the random selection process, the proposed approach
1s capable of generating a solution that is reproducible and consistent. The
generality of the algorithm used in various different nurse scheduling
benchmark problems demonstrates that the proposed method can also be
applicable to a wide range of SSPs. The deterministic process of both
information granulation and pattern generations is an unique
achievement, since there appears to be no prior research of deterministic

patterns used in scheduling.
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In conclusion, this thesis has proposed a generic, novel and valuable
approach to SSPs, which was tested in NSP real-world benchmark studies.
We developed general methodologies, showed their flexibility and solved
27 real-world benchmark datasets of NSPs. We developed an innovative
formulation of sequences and consecutiveness of shifts. We contend that
this study can add value to any healthcare application by leading to cost

reduction and an increase in productivity.
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Appendix B: Schedule for 52 weeks

Week 1 to 13 of 52 weeks schedule
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Continue Week 14 to 26 of 52 weeks schedule
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Continue Week 40 to 52 of 52 weeks schedule
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Appendix C: Cost-Effectiveness in Nurse

Scheduling

This chapter analyses and discusses the trade-off in the context of the NSP
between the flexibility afforded by greater numbers of staff and the
implied cost of employing extra staff. If the number of staff is constant, the
method used in this study allows quantification of the degree of pressure
put on the staff resulting from schedules that do not satisfy their
preferences for shift allocation. Moreover, results from real-world data
problem sets show that domain transformation facilitates the computation
of feasible schedules in a relatively short time, with non-critical
constraints being satisfied to a large degree. The resulting solutions

facilitated conducting cost—benefit analysis of different staffing levels.
6.1 Introduction

The NSP involves assigning appropriate and efficient work regimes for
nurses in either private and government hospitals. According to
Henderson (2006, page 26): the unique function of the nurse is to assist the
individual, sick or well, in the performance of those activities contributing
to the heath or its recovery that he would perform unaided if he had the

necessary strength, will or knowledge.

For nurses to perform their job well, they need to be organised through
effective nurse scheduling. Nurse scheduling is often done manually;
however, this takes a great deal of time and seldom generates the best
quality results (Bouarab et al., 2010). Several requirements must be taken
into account in nurse scheduling, including the minimal allocation of the
ward, legal regulations and nurses’ personal needs (Abdennadher and
Schlenker, 1999). A common problem in healthcare systems worldwide is
the shortage of nursing staff (Ulrich, Wallen, Grady, et al. 2002). Nursing
managers continue to struggle with high turnover levels (Wright, 2013).
This can be partly attributed to the demanding nature of the nursing
profession, which requires nurses to be available for shift work. In this

context, producing work schedules that satisfy not only the clinical cover
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demands but also the specific requests and preferences of nurses becomes
a key to staff satisfaction and retention. Failing to deal with this issue
would inevitably lead to a lack of skilled nurses in clinical settings,
resulting in a significant negative impact on patient outcomes, including

mortality (Aiken et al., 2002).

From the perspective of hospital management, there is an inseparable link
between the scheduling activity and the decision about the total number of
staff employed. In their publications, Costa (1996) and Knauth (1996)
provided some guidelines on this issue. Hospitals prefer to avoid the
expense of employing more nurses than is needed to meet required clinical
care standards. Hospitals can be aided in striking this delicate balance by
the use of computationally efficient software tools capable of constructing
work schedules in both a long and medium-term planning mode, as well as
In response to immediate staff requests. Independent studies have
supported the view that investment in the advanced scheduling of nursing
staff translates into the significant enhancement of job satisfaction, as
well as savings in labour costs due to reduced nurse turnover (Bester,

Nieuwoudt and Vuuren,

2007; Blythe et al., 2005). However, producing schedules that meet
hospital requirements and satisfy individual preferences and immediate

requests is an extremely complex task (Gino, Mobasherand Murray, 2012).

Hospitals are constantly looking to optimise the cost of their nurses. To
this end, it is crucial to ensure the available nurses match the expected
demand for the workload. Automation of nurse scheduling is one aspect of
optimising the nurse cost. In this chapter, we present an alternative way
of tackling a large, real-world NSP. We have approached the problem of
cost- effective nurse scheduling using the domain transformation method
introduced in Baskaran et al. (2009, 2012) as a practical illustration of the
information granulation methodology (Bargiela and Pedrycz, 2002, 2008)
to generate multiple feasible low-cost schedules, which are subsequently
evaluated. In this approach, the hospital is supplied with detailed
information about the schedule, which they can use to make their selection

objectively. Based on this solution, this chapter also investigates the



ADDRESSING STAFF SCHEDULING PROBLEMS 156

optimum balance between the staffing levels of a ward and the ability to
achieve good-quality schedules. Without the loss of generality, we consider
a nurse-scheduling scenario based on the operation of an intensive care
unit in a Dutch hospital (Baskaran et al., 2009, 2012). To appreciate the
computational complexity of the scheduling problem, we consider a specific
case of a ward with 16 nurses employed on 36hours/week contracts, with a

scheduling period of five week (35 days).
6.2 Methodology

The domain transformation approach introduced in Baskaran et al. (2012)
departs from the orthodoxy of direct exploration of the space of schedules,
as described in Chapter 4, section 4.3. Domain transformation is an
approach to solving complex problems that relies on well-justified
simplification of the original problem. We subdivided the problem into
smaller sub-problems in a systematic way that remained capable of
reproducing the result. Another benefit of this model is that domain
transformation can reduce computational complexity and therefore
computational time. It also reduces the need for cross-referencing over the
detailed swapping of shifts for individual nurses. Through this model, the
schedule obtained will not make any difference in terms of the order of
processing. The schedule is the same when we change the order of
individual patterns or nurses. This approach is able to offer solutions
easily by avoiding random searching. By contrast, some other methods
have failed to reproduce results, have performed inconsistently or have
demonstrated good characteristic with some datasets but not others.
Previous state-of-the-art methods do not use information granulation and

have thus involved much cross-referencing and checking of data.
6.3 Balancing the Cost of Soft Constraints and the Cost of Staff

Nurse scheduling is inextricably linked with determining how many
nurses should be employed. Most healthcare systems are under pressure
to control costs while trying to provide high levels of service. This is a
difficult balance to strike. Having a small number of nurses may affect
quality of care, while employing a large number of nurses and not utilising

their contractual hours is wasteful. In the approach presented in this



ADDRESSING STAFF SCHEDULING PROBLEMS 157

chapter, the aim is to balance these concerns by combining the cost for the
under-utilisation of nurses with the costs of violation of the soft
constraints into a single performance index. The expectation is that with
the decreasing number of nurses, we will find a progressively higher cost
of violation of constraints up to the point that hard constraints would have
to be broken, rendering solution infeasible. Conversely, with the
increasing number of nurses, we expect that, although it will become
easier to find schedules that do not violate soft constraints (i.e., one may
find low- or zero-cost schedules), the pro-rata cost of the unused

contractual hours of extra nurses will dominate the balance.

For the sake of clarity, we demonstrate our balancing approach only in the
context of full-time nurses employed on 36 hours/week contracts. The

under-utilisation of nurses (U) is measured as:
U=TC-TW (6.1)

Where TC is the total number of contractual hours per week and Tw is the
total number of hours worked by all nurses in one week (as defined by the

shift-cover requirement).

6.3.1 Process of checking the demands

It is important to appreciate that the number of hours defined by the shift-
cover requirement (TW) does not determine, on its own, the required staff
numbers. A simple division of TW by the number of hours per week
stipulated by the nurses’ employment contract provides only a lower bound
on the number of required staff; it does not provide a good estimate of the
actual staffing requirement. This is because the varying hard and soft
constraints may imply the need for extra staff, despite identical shift-

covers and nurse contracts.

For balancing the nurse schedules and staff numbers, we consider only
positive values of U in equation (6.1). This is because negative numbers
represent the requirement that the nurse works longer hours than
stipulated in his/her employment contract, which is already penalised

through the hard and soft constraints. The comparison of the cost
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associated with violation of constraints and the monetary cost of
employing extra staff requires the adoption of some convention that would
make these costs comparable. We assume that the following represents

well the notional cost of under- employment of staff:

CU=U * 10 (6.2)

Where CU is cost of under-utilisation.

6.4 Numerical Results

The numerical experiments described in this section provide a
representative sample of the experiments conducted to balance the degree
of satisfaction of soft constraints and the decisions on employing additional
nursing staff. We have varied the required cover on individual shifts to
simulate the decision support functionality that may be required by the
hospital management. To understand the behaviour of our model, multiple
demand versus number of nurses scenarios were generated. For each

scenario, the solution time is calculated in seconds.

6.4.1 Test data on original demands

Based on the original problem, we performed some sample runs for
different numbers of nurses (Cases 1-3). Table 6.1 presents the results for
the best set of nurses satisfying the demand of the original problem with a
reasonable cost for the month. Tables 6.2 and 6.3 show the alternative

demand scenarios, and Graphs 6.1-6.3 illustrate the costs for each case.
6.4.1.1 Case 1

Case 1 used ‘9999966’ D-shift and the ‘1111111’ N shift cover
(TW=57*9+7*8=569 hours).
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Table 6.1. Balance of Violation of Soft Constraints and the Under-

Utilisation of Nurses for Case 1

TN TC Uv/w) CSC CU T(s)
14 504 0 1250 0 706
15 540 0 375 0 503
16 576 7 210 70 139
17 612 43 185 430 31
18 648 79 180 790 22

Note: TN=Total number of nurses, TC=Total number of contractual hours, TW=Total

number of hours works (in hours), U(h/w)=Under-utilisation of nurses (hours/week),

CSC=Cost of violating soft constraint, CU=Cost of under-utilisation, T(s)=Time (in seconds)

to execute the software.
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Graph 6.1. Balance of constraint costs and cost of under-utilisation for

Case 2

Case 1.

Case 2 used ‘8888855’ D-shift and the ‘1111111’ N shift cover
(TW=50*9+7*8=506 hours).

Table 6.2. Balance of Violation of Soft Constraints and the Under-

Utilisation of Nurses for Case 2
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TN TC U(h/w) CSC CU T(s)
14 504 0 2854 0 761
15 540 34 345 340 501
16 576 70 290 700 204
17 612 106 190 1060 71
18 648 142 160 1420 73

Note: TN=Total number of nurses, TC=Total number of contractual hours, TW=Total
number of hours works (in hours), U(h/w)=Under-utilisation of nurses (hours/week),
CSC=Cost of violating soft constraint, CU=Cost of under-utilisation, T(s)=Time (in seconds)

to execute the software.
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Graph 6.2. Balance of constraint costs and cost of under-utilisation for
Case 2.

Case 3

Case 3 used ‘101010101077 D-shift and the ‘1111111’ N shift cover
(TW=64*9+7*8=632 hours).
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Table 6.3. Balance of Violation of Soft Constraints and the Under-

Utilisation of Nurses for Case 3

TN TC Uh/w) CSC CU T(s)
14 504 0 7175 0 863
15 540 0 4350 0 809
16 576 0 3900 0 790
17 612 0 2550 0 779
18 648 16 300 160 504
19 684 52 355 520 515
20 720 88 430 880 641

Note: TN=Total number of nurses, TC=Total number of contractual hours, TW=Total
number of hours works (in hours), U(h/w)=Under-utilisation of nurses (hours/week),
CSC=Cost of violating soft constraint, CU=Cost of under-utilisation, T(s)=Time (in seconds)

to execute the software.
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Graph 6.3. Balance of constraint cost and cost of under-utilisation for Case

3.
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6.5 Discussion

This chapter has presented a combined investigation of nurse scheduling
and staffing level decisions. The findings quantify how the constraints
associated with the scheduling problem influence the cost- effectiveness of
employing additional staff. Under-utilisation is undesirable, as the cost of
nurses increased with their idleness. The investigation was conducted
using a representative set of three scenarios, with total number of
contractual hours per week and total number of hours worked by all

nurses.

The results indicate that for the original problem demand of ‘999966 D-
shift, 16 nurses are required (see Graph 6.1). With fewer than 16 nurses,
the clinical cover requirement could not be satisfied, while larger numbers
of nurses resulted in an unnecessarily high employment cost. The ideal
numbers of nurses for the alternative cover‘8888855'was15 nurses (see
Graph 6.2), while 18 nurses were required for cover ‘101010101077 (see
Graph 6.3). It was also found that the number of contractual hours was
equivalent to two-thirds of the possible number of hours the nurses could
work. This finding may ensure that fewer nurses are under-utilised.
Similarly, as found here, the cost is higher for over-utilised nurses. A
balance is thus important. The result presented here can help hospitals in

addressing any instant issues implied.

6.6 Conclusion

The NSP considered at the level of detailed time constraints and different
types of dayshifts represents a very significant computational challenge.
In this chapter, we proposed an unusual set of demands such as ‘8888855’
or ‘101010101077 for use in hospitals by using domain transformation.
Investigation was also undertaken of the efficiency of identifying feasible
schedules for varying combinations of cover demand and nurse
availability. Nurse scheduling is a difficult, time-consuming managerial
problem and there are many types of NSP. Automating the solution of the
NSP can reduce the effort and time required for scheduling. It can also
increase nurses’ satisfaction and long-term retention. Many constraints

can affect total labour cost. Applying some ‘tactical’ scheduling analysis
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can ensure the satisfaction of all constraints and give a rapid valuation of

schedules.

The results suggest that hospital management can significantly reduce
annual nursing labour costs by setting less through demand requirements.
The calculation of the number of nurses required per shift is also
important in solving the NSP; this can overcome the problems of over-
staffing (i.e., increased labour costs) and under-staffing (i.e., reduced
quality of care or service). Further, using a non-optimal demand can
consume costly managerial time and effort. Determining optimal demand
1s also important to avoid downgrading. In the case of shortages,
schedulers may consider downgrading, whereby higher skilled nurses are
assigned to tasks that lower skilled nurses are capable of performing.
However, as the reverse is not possible, determining the best demand with
the best set of nurses is important to ensure the best possible utilisation of

all nurses’ available work hours.
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available staff nurses, The aim of this study is to present a novel approach to solving the
nurse rostering problem by simplifying it through information granulation. It deals with
assigning shifts to staff nurses’ subject to satisfying required workload and other
constraints. The constraints are classified into hard constraints (compulsory) and soft
constraints (should be satisfied as much as possible), A feasible solution is a solution
that satisfies all hard constraints. However, the eminence of the duty roster is
considered based on satisfying the soft constraints. . This study is an effort to solve a
real world situation from Kajang Hospital.

I am requesting for a quick approval to conduct the research in Kajang Hospital. This will
actually help me to complete my PhD studies and also to publish my approach by using
our Malaysian hospital nurse rostering problem as a base. Together with this letter I am
attaching the

a) Study Proposal
b) Questionnaire
c) Research Agreement

Thank you for your consideration of this request.
Sincerely,

30¢152013

Geetha Baskaran
Coordinating Investigator
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Appendix F: Letter of Approval to Conduct

Research

JAWATANKUASA ETIKA & PENYELIDIKAN PERUBATAN
(Medical Research & Ethics Committee)
KEMENTERIAN KESIHATAN MALAYSIA

), dia Institut Pengurusan Kesihatan Tel. : 03 2282 9082/03 2282 9085
Jalan Rumah Sakit, Bangsar 03 2287 4032/03 2282 0491
59000 Kuala Lumpur Faks : 03 2287 4030

Ruj. Kami : {2} -dIm.KKMINIHSEC'/BpO-ZIZD Jid2 P13-466
Tarikh 5 Julai 2013 X

Geetha Baskaran

Fakulti Sains

The University of Nottingham Malaysia Campus

Puan,

NMRR-13-294-14765
DOMAIN TRANSFORMATION APPROACH TO SOLVE NURSE ROSTERING PROBLEM AT

KAJANG HOSPITAL
Lokasi Projek : Hospital Kajang

Dengan hormatnya perkara di atas adalah dirujuk.

2. Jawatankuasa Etika & Penyelidikan Perubatan (JEPP), Kementerian Kesihatan Malaysia (KKM)
mengambil makium bahawa projek tersebut adalah untuk memenuhi keperluan akademik Program
PhD Sains Kesihatan, The University of Nottingham Malaysia Campus.

3. Sehubungan dengan Ini, dimaklumkan bahawa pihak JEPP KKM tiada halangan, dari segi
etika, ke atas pelaksanaan projek tersebut. JEPP mengambil makium bahawa kajian ini tidak
melibatkan sebarang intervensi dan hanya menggunakan borang soalselidik sahaja untuk
mengumpul data kajian. Segala rekod dan data adalah SULIT dan hanya digunakan untuk tujuan
kajian dan semua isu serta prosedur mengenai dala confidentiality mesti dipatuhi. Kebenaran
danpada Pengarah Hospital di mana kajian akan dijalankan mesti diperolehl terebih dahulu
sebelum kajian dijalankan, Puan periu akur dan mematuhi keputusan tersebut

4. Adalah dimakiumkan bahawa kelulusan inl adalah sah sehingga 5 Julai 2014. Puan perlu
menghantar 'Confinuing Review Form' (Lampiran 1) selewat-lewatnya 2 bulan sebelum tamat
tempoh kelulusan ini bagi memperbaharui kelulusan etika. Pihak Puan juga perlu mengemukakan
laporan tamat kajian dan juga laporan mengenai "All adverse events, both serious and unexpected”
kepada Jawatankuasa Etika & Penyelidikan Perubatan, KKM,

Sekian terima kasih.
BERKHIDMAT U K NEGARA

Saya yang menu rintah,

(DATO' DR CHANG KIAN MENG)

Pengerusi

Jawatankuasa Etika & Penyelidikan Perubatan
Kementenan Kesihatan Malaysia
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Appendix G: Hospital Kajang Sample Schedule
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Appendix H: Initial Questionnaire

The University of GEETHA BASKARAN

Nottingham The Nottingham University of Malaysia Campus

Faculty of Science, JalanBroga, 45300

UNITED KINGDOM + CHINA - MALAYSIA Semenyih, Kajang

Q5:

Q6:

Q7.

Q8:

Tel: 603 8924 8129
E-mail: Geethz.Baskarzn@nottingham.edu.my

NURSE SCHEDULING INTERVIEW QUESTIONNAIRE

» What wards are you in charge on?

: How do you generate schedules for the wards that you are in charge?

: How do you deal with ad- hoc request for any changes in the schedule?

. Would it be useful to be able to generate schedules more quickly?

What is the schedule horizon (fixed one week or moving windows)?

What are the shifts that you practice in this hospital?

How many nurses you need for each shift?

What are the regulatery constraints inveolved in your scheduling?

- The number of night shifts

- The number of day shifts

- The number of consecutive shifts

- Can the nurse have more than one shift 2 day
- The number of rest day

- Maximum length of the shift

- Other constraints
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Certificate of Best Paper Award

Appendix J
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Certificate of Keynote Speaker

Appendix K
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Appendix L: Certificate of Award: Gold Medal
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MINISTRY OF

EDUCATION

MALAYSIA
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SULTAN ABDUL HALIM MUTADZAM SHAH

This is to certify that

GEETHA BASKARAN

Has been awarded the Gold Medal

For the invention/innovation DOMAIN TRANSFORMATION IN NURSE
SCHEDULING PROBLEM USING INTEGER
PROGRAMMING

¢ - iCompEX’1S

NATIONAL INNOVATION AND INVENTION COMPETITION
THROUGH EXHIBITION 2015

Held On 24, 25 & 26 March 2015
. 2 y At ~Pofiteknik Sultan Abdul Halim Mu’adzam Shah

THE UNIVERSITY OF NOTTING
(Sompomy N
JALAN EROGA,

! D SELANGOR DAFLL £}
EL: 052 d A
o

MEJAR (K) ASMARA BINTI SULONG  LT. KQL (K) DATUK*J MOHLIS BIN JAAFAR
Pangareh Ketua Fengarah
Polsknik Sutan Abaul Hafim Mu'adzam Shah Jabatan Fengajian Politeknik
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