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Abstract

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) on the brain is

a revolutionary method that provides in-vivo access to tissue macrostructure

non-invasively (Basser et al., 1994). Recently, DW-MRI has been shown to have

great potential in characterising brain microstructure, such as diameter and size

distribution of neuronal fibres, features that were available so far only post-

mortem or through animal studies (Zhang et al., 2011). Using a process known

as Tractography the existence of brain connections can be estimated using a set

of DW images (Basser et al., 2000).

The main aim of this thesis is to develop efficient methods for studying Trac-

tography within a Bayesian framework. In order to characterise the white mat-

ter in the brain we focus on the widely used partial volume model (Behrens et

al., 2003). We describe methods that are both time and computationally efficient

for estimating the parameters of the partial volume model, before reparametris-

ing the model, so that parameter estimation is viable in some special cases.

The partial volume model allows for multiple fibre orientations so we develop

methodology to choose between the number of white matter fibres in a voxel.

We then take into account the uncertainty in the number of fibre orientations

and provide a Fully Probabilistic Tractography method as an alternative to ex-

isting Tractography algorithms. Finally we look into the Global Tractography

model (Jbabdi et al., 2007) and develop efficient methods for inferring connec-

tions between brain regions by investigating methods based on Thermody-
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namic Integration.
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CHAPTER 1

Introduction

1.1 Motivation

The human brain is made up mainly of two components, grey matter and white

matter. Grey matter contains the functional centres of the brain that process in-

formation, while white matter makes up about half of the brain volume and acts

as the “wiring” of the brain, connecting the different functional centres (Filley,

2011). Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) enables the

reconstruction of the white matter tracts in the brain, non-invasively and in-

vivo by Tractography (Basser et al., 2000). Currently, Tractography is the only

technique that allows non-invasive reconstruction of fibre bundles in the human

brain (Schultz et al., 2013). The diffusion of water molecules can be quantified,

and thus can provide information about the underlying structure of the brain

(Sotiropoulos, 2010), this information can then be used within Tractography.

Understanding white matter tracts is crucial to understanding the brain’s func-

tions, which will allow better knowledge of how the brain works. White mat-

ter is partly or exclusively responsible for well over 100 brain disorders (Filley,

2011) and therefore by investigating the white matter tracts it can be studied

how the interruption of normal white matter connections could lead to neuro-

1



logical disorders. Pathology induced changes could also be identified, if these

tracts are well understood. Another important application of understanding

white matter tracts is in neurosurgical planning. Just one example of how DW-

MRI could improve the outcome in neurosurgery is in its impact on reducing

postoperative motor deficits and increasing survival times in cerebral glioma

surgery, as studied in Wu et al. (2007)

Existing Tractography methods are fairly computationally demanding and are

often inaccurate (Jbabdi and Johansen-Berg, 2011). Some methods for Tractog-

raphy tend to underestimate the true size of tracts (Kinoshita et al., 2005) and

neurosurgeons are still not happy with the reproducibility of tracts using cur-

rent software packages (Bürgel et al., 2009). The aim of this thesis is to develop

a computationally feasible and time efficient statistical method for Tractogra-

phy by developing novel statistical methodology for parameter estimation and

model selection within the context of DW-MRI models. We then apply the de-

veloped methodology to real DW-MRI data.

1.2 White matter

In this section we briefly describe white matter; more details can be found in Fil-

ley (2011). The human brain is made up of white and grey matter, with around

50% of it being constituted of white matter. White matter was distinguished

from grey matter in 1543. White matter acts as the “wiring” of the brain, thus

connecting different grey matter sectors. It is therefore important to understand

the connections within the brain, and how different regions interact with each

other. White matter is a collection of fibres (tracts) that were classified into three

different types of fibres by Meynert (1885); these different types are association

fibres, projection fibres and commissural fibres. The tracts consist of myelinated

axons of neurons. White matter neuroanatomy varies over the life span (Woz-

2



niak and Lim, 2006) so another motivation for understanding white matter is to

understand how changes occur with age.

For many years the role of white matter was seen as irrelevant in comparison to

that of grey matter, and more attention was given to understanding the latter.

However white matter has been shown more recently to be partially or exclu-

sively involved in over 100 disorders (Filley, 2011). All of these disorders have

a serious impact on cognitive or emotional function.

Carl Wernicke (1874) put forward the idea of a disconnection paradigm being

responsible for cognitive disorders in neurology and psychiatry. He believed

that the breakdown of connections between different regions caused these dis-

orders. More recently Crick and Jones (1993) stated that “to interpret the activity

of the living human brains, their anatomy must be known in detail.” Meth-

ods for understanding the white matter fibre tracts include dissection (Klingler,

1935), myelin stains (Weigert, 1897), tracer substances (Lanciego and Wouter-

lood, 2000), stereology (Schmitz and Hof, 2005) and polarized light imaging

(Axer and Keyserlingk, 2000). These methods are time consuming and require

very skilled workers to implement them. Due to the invasive nature of the

methods, most of them are not carried out in-vivo in humans (Axer, 2011).

It wasn’t until 1985 that Diffusion MRI was introduced as a tool for brain imag-

ing (Basser et al., 1994). Diffusion MRI has been fundamental in providing in-

formation about white matter that was previously unknown; it has not only

helped widen the knowledge of known diseases but has also helped us dis-

cover new diseases including vanishing white matter disease (van der Knapp

et al., 2006) and adult onset leukodystrophy with neuroaxonal spheroids (Free-

man et al., 2009).
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A further development was the introduction of Diffusion Tensor Imaging (DTI)

in the 1990s by Basser, Mattiello and Le Bihan, which has revised the under-

standing of white matter neuroanatomy (Aralasmak et al., 2006). The original

MRI that was introduced analyses the macrostructure of white matter, while

DTI allows the examination of the microstructure of white matter (Zhang et

al., 2011) .

A functional connection between regions in the brain is dependent on there be-

ing an anatomical connection (Passingham et al., 2002). A potential important

future application of DW-MRI will be to use information from the anatomy ob-

tained by DTI, to help in inferring information about functional connections

within the brain.

1.3 Physics of diffusion

To understand how MRI works, we first need to understand the idea of dif-

fusion. Brownian motion was discussed by Einstein (1905), who described an

experiment performed by the botanist Robert Brown in 1827. In this exper-

iment Brown observed a jiggling of pollen grains that were placed in water.

Einstein suggested that the pollen grains’ movement was caused by the motion

of the water molecules surrounding them. Therefore the motion of the water

molecules can be observed through an object that is visible by a microscope.

Similarly in Magnetic Resonance Imaging the radio waves emitted from atomic

nuclei act as the pollen grains allowing one to observe the diffusion of water

within the brain structure (Callaghan, 2011).

In DW-MRI an assumption is made that the underlying tissue structure deter-

mines how the water diffuses (Kang et al., 2005). Figure 1.1 shows typical dif-

fusion in a barrier free medium, grey matter and white matter. In white matter
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(a) (b) (c)

Figure 1.1: Typical diffusion in (a) a barrier free medium, (b) grey matter and
(c) white matter

water will diffuse along the fibres, so it will tend to follow their direction. Al-

though water in grey matter does not seem to diffuse in a particular direction,

the diffusion is still more restricted than in a barrier-free medium.

Diffusion is the random movement of particles from a region of higher concen-

tration to a region of lower concentration (Hobbie, 1997). Diffusion is governed

by Fick’s second law (Fick, 1855), also known as the diffusion equation,

∂n

∂t
= D▽2 n, (1.3.1)

where n(r, t) is the local concentration of particles at location r and time t, ▽2

represents the Laplacian and D is the diffusion coefficient.

Einstein (1905), from Equation (1.3.1), showed that Fick’s second law could be

adapted so that it works also in self-diffusion. Self-diffusion is the diffusion

of molecules of a medium that is caused by the medium itself. He did this by

setting the local concentration of particles to be

n(r′, t) =
∫

n(r, 0)P(r|r′ , t)dr, (1.3.2)

where P(r|r′, t) is the probability of a particle moving from r to r′ in a time
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t (Callaghan, 2011). By placing Equation (1.3.2) into Equation (1.3.1), Einstein

derived the set of equations

∂

∂t
P(r|r′, t) = D▽2 P(r|r′, t)

and

P(r|r′, t) = (4πDt)−3/2exp
(
− (r′ − r)2

4Dt

)
.

These equations are only true in a medium where the diffusion is isotropic

(Callaghan, 2011). In an anisotropic medium the above equations become

∂

∂t
P(r|r′, t) = ▽ · [D▽ P(r|r′, t)],

where D is the Diffusion Tensor, a 3× 3 symmetric matrix that describes the

diffusion process.

Hahn (1950) in a two-radiofrequency (RF) pulse experiment showed that the

self-diffusing coefficients can be measured by using radiofrequency pulses. Ste-

jskal and Tanner (1965) later on proposed the pulsed gradient spin echo se-

quence for calculating the self-diffusing coefficient; this is the commonly used

procedure in Diffusion-Weighted MRI (DW-MRI).

1.4 Within-voxel DW-MRI models

When Diffusion-Weighted MRI data are obtained from the MRI scanner, the

brain is split up into units called voxels. Then in each voxel a signal measure-

ment is obtained for each of the Diffusion-Weighted gradient pulses that are ap-

plied to the brain. The Diffusion-Weighted gradients pulses which are applied

using the pulsed gradient spin echo sequence (Stejskal and Tanner, 1965) are ap-
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plied in multiple directions which are defined as the gradient directions g, with

corresponding strength b which we call the b-value (Behrens et al., 2003). Thus

from the MRI scanner we obtain the signal measurements and the correspond-

ing gradient directions and b-values. In the data that we have used throughout

this thesis, we have 61 measures per voxel.

Models that can be used to interpret this data and obtain useful information are

available. The most commonly used models will now be described along with

the metrics that can be obtained from them. We will then describe how infor-

mation from these models can be used to implement Tractography.

It is often assumed that the data will contain some noise that needs to be taken

into account (Behrens et al., 2003). This noise amongst many other things may

be due to thermal noise in the MRI electronic circuitry, electromagnetic interfer-

ences, motion of the subject that the data is being obtained from (Pajevic, 2011)

and partial volume effects (Parker, 2011). Therefore a model that incorporates

this noise must be used. Two of the most common models that are used to es-

timate the fibre orientation of each voxel are the Diffusion Tensor (DT) model

(Pierpaoli and Jezzard, 1996) and the partial volumemodel (Behrens et al., 2003).

There are also some more models that can be used in place of the two models as

mentioned in Jbabdi and Johansen-Berg (2011). We will use the DT and partial

volume models throughout this thesis as they have been shown to be effective

in modelling fibre orientations. We will focus on the partial volume model be-

cause it allows us to model multiple fibre orientations.

Both of these models model diffusion within a voxel. The observed Diffusion-

Weighted signal is denoted by yi. Furthermore it is assumed that the observed
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signal yi is a scalar and comes from a Normal distribution such that

yi ∼ N(µi , σ
2), i = 1, ...,m,

where µi is the true Diffusion-Weighted signal measurement, σ is the standard

deviation and m is the number of diffusion gradients.

1.4.1 Diffusion Tensor Model

The Diffusion Tensor model (Pierpaoli and Jezzard, 1996) assumes that the dif-

fusion shape in a voxel may be modelled by a 3D Gaussian distribution with

variance-covariance proportional to the diffusion tensor, D where

D =




Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz



.

If the displacement of molecules within a medium can be modelled by a Gaus-

sian distribution, then the diffusivity can be represented by the apparent diffu-

sion coefficient (ADC) (Basser, P.J. and Özarslan, E. 2011). Tanner (1977) then

proposed the following formula that relates the ADC to the measured signal in

nuclear magnetic resonance (NMR),

ln
(

A(b)

A(b = 0)

)
= −bADC (1.4.1)

where A(b) is the echo magnitude of the diffusion-weighted signal, A(b=0) is

the echo magnitude of the non-diffusion weighted signal and b is the b-factor

(Basser, P.J. and Özarslan, E. 2011). In grey matter the ADC is sufficient because

diffusion does not depend on orientation. However in white matter where dif-
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fusion is anisotropic, a three dimensional Gaussian model is used to represent

the molecular displacement (Basser, P.J. and Özarslan, E. 2011). In this setting

Equation 1.4.1 is generalised to

ln
(

A(b)

A(b = 0)

)
= −(bxxDxx + 2bxyDxy + 2bxzDxz + byyDyy + 2byzDyz + bzzDzz)

(1.4.2)

where A(b) and A(b = 0) are the echo magnitudes of the diffusion-weighted

and non-diffusion weighted signals and bij is an element of a matrix b. From

Equation 1.4.2 by setting bxx = big
2
1i, byy = big

2
2i, bzz = big

2
3i, bxy = big1ig2i,

bxz = big1ig3i and byz = big2ig3i we can derive the Diffusion Tensor model such

that the ith predicted Diffusion-Weighted signal µi is

µi = S0exp(−big
T
i Dgi), i = 1, ...,m,

where gi is the ith gradient direction with a b-value bi, which represents the dif-

fusion sensitivity and is positive or zero; S0 is the baseline signal, i.e. the signal

with no diffusion gradients applied.

D may be diagonalised to obtain D = VAVT, where V is a matrix of the eigen-

vectors v1, v2 and v3 and A is a diagonal matrix of the corresponding eigenval-

ues a1, a2 and a3. From the eigenvalues and eigenvectors ofDwe can obtain the

diffusion ellipsoid which is a good representation of the shape of the diffusion

when the model is a good fit. Such an ellipsoid has 3 axes which represent the

eigenvectors obtained by diagonalising the Diffusion Tensor, each has a magni-

tude of
√
2τai, where τ is the observation time.

If a1 ≈ a2 ≈ a3 then the diffusion ellipsoid will look like Figure 1.2 (a) and dif-

fusion will be isotropic, indicating that there is no white matter in that voxel.

If a1 ≫ a2, a3 then the diffusion ellipsoid will look like Figure 1.2 (b); this is an

9



(a)

(b)

Figure 1.2: (a) The estimated diffusion ellipsoid when a1 ≈ a2 ≈ a3, i.e. dif-
fusion is isotropic, obtained by using simulated data and (b) the
estimated diffusion ellipsoid when a1 ≫ a2, a3, i.e. diffusion is
anisotropic, obtained by using simulated data.

anisotropic ellipsoid, where the eigenvector with the largest eigenvalue repre-

sents the fibre orientation of white matter. This principal eigenvector can then

be used in Deterministic Tractography (see Section 1.7.1) as the estimated fibre

orientation.

1.5 Metrics from the Diffusion Tensor Model

The parameters in the Diffusion Tensor (DT) model can be used to calculate

metrics that give information about some properties of the diffusion in a voxel.

Therefore if the parameters of the DT model can be estimated, we can then ob-

tain these metrics.
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Figure 1.3: The Mean Diffusivity (MD) of the brain data: here the purple areas
have a higher value of the MD than the blue areas. Higher values
of the MD corresponds to more diffusivity within the voxel.

From the DT model, a measure of diffusivity in a voxel can be calculated by us-

ing the eigenvalues. This measure is called the Mean Diffusivity (MD) (Alexan-

der, 2011) and is defined as

MD =
Dxx + Dyy + Dzz

3
=

a1 + a2 + a3
3

,

where a1, a2 and a3 are the eigenvalues of the Diffusion Tensor andDxx, Dyy and

Dzz are elements of the Diffusion Tensor. A higher value of the MDmeans there

is more diffusivity in that voxel. Figure 1.3 shows the MD values in a brain,

using different colours to represent different values of the MD.

Ameasurement of the anisotropy of diffusion in a voxel is the Fractional Anisotropy

(FA) (Alexander, 2011) which can be calculated as

FA =

√
3∑

3
i=1(ai − ā)2

2∑
3
i=1 a

2
i

where ā denotes the mean of the eigenvalues. Alternatively we can write the
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Figure 1.4: The Fractional Anisotropy (FA) of the brain data; lighter areas indi-
cate high anisotropy and thus more white matter.

Fractional Anisotropy as

FA =

√√√√
1
2 ∑

3
i=1(ai − ā)2

1
3 ∑

3
i=1 a

2
i

.

Higher values of the FA indicates the regions where white matter is located.

Figure 1.4 shows the values of the FA in a brain; a higher value of FA is indi-

cated by a lighter colour. If the diffusion ellipsoid is perfectly anisotropic then

a2=0, a3=0 and ā= a1
3 and therefore FA = 1. For a perfectly isotropic ellipsoid

a1=a2=a3=ā and FA = 0.

Although methods for estimating parameters of the Diffusion Tensor model can

be fast, and computationally simple (see Section 2.2), in practice there may be

voxels that have more than one fibre orientation. For this reason models with

multiple fibre orientations were proposed (Behrens et al., 2003).

1.6 Models with multiple fibre orientations

The multiple tensor model (Scherrer and Warfield, 2010) assumes that in each

voxel there are N fibre orientations each of which can be modelled by the Diffu-

sion Tensor model (Section 1.4.1). The predicted Diffusion-Weighted signal, µi,
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is

µi =
N

∑
j=1

cjS0exp(−big
T
i Djgi), i = 1, ....,m,

such that cj ∈ (0, 1] and ∑
N
j=1 cj = 1, where cj are the weights of the individ-

ual fibre orientations that also need to be estimated. All other parameters are

the same as those defined in the DT model and m is the number of diffusion

gradients in a voxel. One of the problems of the multiple tensor model is the

non-identifiability of the parameters. Zhou et al. (2008) showed an example

where S0 = bi = 1 and N = 2 where

µi = 0.2× exp



−gT

i







1 0 0

0 2 0

0 0 3







gi




+ 0.8× exp



−gT

i







4 0 0

0 5 0

0 0 1







gi




can also be written as

µi = 0.1× exp



−gT

i







1− log(2) 0 0

0 2− log(2) 0

0 0 3− log(2)







gi




+0.9× exp



−gT

i







4− log(89) 0 0

0 5− log(89) 0

0 0 1− log(89)







gi




.

A solution for the non-identifiability of the parameters was found by Zhou et

al. (2008) by reparametrising the model.

1.6.1 The partial volume model

The partial volume model is a special case of the multiple tensor model pro-

posed by Behrens et al. (2003). It is derived by treating the anisotropic and

13



isotropic parts of the voxel separately. If the diffusion is isotropic such that

the eigenvalues are a1 = a2 = a3 then by calculating the Diffusion Tensor

D = VAVT, we obtain D = a1I3 where I3 is the 3x3 identity matrix. Simi-

larly if the diffusion is anisotropic then a1 > 0 while a2 = a3 = 0 and D =

VAVT = dRART.

The partial volumemodel with one fibre orientation has the predictedDiffusion-

Weighted signal µi, which is

µi = S0((1− f )exp(−bid) + fexp(−bidg
T
i RARTgi)), i = 1, ...,m, (1.6.1)

where S0, bi and gi are the same as in the Diffusion Tensor model, d is the dif-

fusivity, f is the fraction of the signal contributed by the fibre, with direction

(θ, φ), RART is the anisotropic Diffusion Tensor along that fibre direction and

A =




1 0 0

0 0 0

0 0 0



.

R is defined to be a matrix consisting of a rotation around the y-axis by an angle

θ followed by a rotation around the z-axis by an angle φ. Thus R=RZRY,where

RY is the rotation around the y-axis andRZ is the corresponding rotation around

the z-axis such that

RY =




cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)
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and

RZ =




cos(φ) −sin(φ) 0

sin(φ) cos(φ) 0

0 0 1



.

Thus

R = RZRY =




cos(φ)cos(θ) −sin(φ) cos(φ)sin(θ)

sin(φ)cos(θ) cos(φ) sin(φ)sin(θ)

−sin(θ) 0 cos(θ)




and RART which is in Equation 1.6.1 is

RART =




(cos(φ)cos(θ))2 cos(φ)sin(φ)cos(θ)2 −sin(θ)cos(φ)cos(θ)

sin(φ)cos(φ)cos(θ)2 (sin(φ)cos(θ))2 −sin(θ)sin(φ)cos(θ)

−sin(θ)cos(φ)cos(θ) −cos(θ)sin(θ)sin(φ) sin(θ)2



;

this last matrix can be alternatively written as

RART = vvT,

where

v =




cos(φ)cos(θ)

sin(φ)cos(θ)

−sin(θ)



.

By introducing θ’=θ + π
2 , we know that cos(θ)=sin(θ’) because cos(θ)=sin(θ + π

2 )
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and thus alternatively v is

v =




cos(φ)sin(θ′)

sin(φ)sin(θ′)

cos(θ′)



.

Wework with θ and φ rather than v because we can easily obtain uninformative

priors for these parameters when working in a Bayesian framework.

Thus Equation (1.6.1) can now be rewritten as

µi = S0

(
(1− f )exp(−bid) + fexp(−bid(g

T
i v)2)

)
, i = 1, ...,m,

where there are m gradient directions. We derive this by noting that

gT
i RARTgi = gT

i vvTgi = (gT
i v)2.

The observed Diffusion-Weighted signal values of the ith acquisition are de-

noted by yi, which are assumed to come from a Normal distribution with mean

µi and standard deviation σ such that yi ∼N(µi, σ2). The values of bi and gi are

known in advance, whilst the values of θ, φ, f , d and S0 can be estimated.

When there are N fibre orientations within a voxel the predicted Diffusion-

Weighted signal µi is

µi = S0

((
1−

N

∑
j=1

f j

)
exp(−bid) +

N

∑
j=1

f jexp(−bid(g
T
i vj)

2)

)
, i = 1, ...,m,

such that ∑
N
j=1 f j <1, where S0, d, bi, gi were defined earlier, f j is the fraction of
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Figure 1.5: The estimated value of the parameter f in the partial volume model
on real data, where a darker colour corresponds to a smaller value
of f and hence less white matter.

the signal contributed by the jth fibre, with orientation (θj, φj) and

vj =




cos(φj)sin(θj)

sin(φj)sin(θj)

cos(θj)



.

Figure 1.5 shows the estimated values of the parameter f in a brain. Methods

for obtaining estimates of f will be described later. From this figure we can see

that the estimated white matter tracts look a bit more detailed than the corre-

sponding tracts when using the FA (Figure 1.4).

1.7 Tractography methods

Tractography uses the fibre orientations that are estimated from the observed

data in each voxel to reconstruct tracts in the brain. By doing this it can be

seen whether two brain regions, say A and B, are likely to be connected to

each other or not. Currently two Tractography methods are commonly used,
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namely a Probabilistic Tractography and a Deterministic Tractography (Behrens

et al., 2003). These two methods are both local approaches, i.e. they start from a

starting point which we call the seed and produce a tract. The tracts end when

either the change in fibre orientation from one voxel to another is too great or

when ameasure of the white matter within the current voxel is too low (Behrens

et al., 2003). One measure of the white matter that we could use is the Fractional

Anisotropy in the DT model or the value of the f parameter in the partial vol-

ume model.

1.7.1 Deterministic Tractography

Deterministic Tractography uses the estimated fibre orientations for each voxel

to trace a path from the seed. This method is described in Algorithm 1. Fig-

ure 1.6 shows the principal eigenvectors of voxels in real brain data. These

eigenvectors could be used within Deterministic Tractography as the fibre ori-

entation within a voxel. In this method the uncertainty in parameter estimates

is not taken into account and thus each voxel only has one direction. Each voxel

can either be connected or not connected to the seed.

Algorithm 1 Deterministic Tractography
1: Start from a point in a voxel which we define to be the seed.
2: In this voxel use the estimated fibre orientation and follow it to continue the

tract until we enter a new voxel.
3: In the next voxel follow the estimated fibre orientation to continue the tract.
4: Go back to Step 3 until stopping conditions are met, such as the Fractional

Anisotropy being too small.

Rather than using only the estimated orientation, i.e. a best guess, we want to

introduce uncertainty when implementing Tractography. Probabilistic Tractog-

raphy (Behrens et al., 2003) was introduced to assign a confidence measure to

the reconstructed path.
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(a) (b)

(c) (d)

Figure 1.6: The principal eigenvector estimates in each voxel from the DT
model to represent the fibre orientation (a) in 192 voxels of real
data, (b) in one slice of real brain data and (c) in one slice of real
brain data with the corresponding fibre direction represented by
the colour. (d) The direction of the estimated fibre orientations
represented by the colour as follows red=left-right, green=anterior-
posterior, blue=feet-head.
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1.7.2 Probabilistic Tractography

In Probabilistic Tractography (Behrens et al., 2003) we may infer the fibre ori-

entations by using Bayesian inference. For each voxel rather than having one

direction for a fibre, there is a sample of most probable orientations, this way

there is uncertainty in the fibre orientations. Probabilistic Tractography is sum-

marised in Algorithm 2. Figure 1.7 shows the tracts in the brain from one voxel,

using the Probabilistic Tractography algorithm in FSL (Woolrich et al., 2009)1.

Algorithm 2 Probabilistic Tractography
1: Start from a point in a voxel which we define to be the seed.
2: In this voxel choose one of the estimated fibre orientations with equal prob-

ability and follow it to continue the tract until we enter a new voxel.
3: In the next voxel choose one of the estimated fibre orientations with equal

probability and follow the estimated fibre orientation to continue the tract.
4: Go back to Step 3 until stopping conditions are met, such as the Fractional

Anisotropy being too small.
5: Go back to Step 1 until we have N tracts.
6: Calculate the probabilistic index of connectivity to any point in the region

by counting how many tracts pass through the point which we denote M
and calculating p = M

N .

Although Probabilistic Tractography is promising, uncertainty due to noise or

partial volume effects within the image in small local regions can cause the

pathways to deflect, and some known pathways are not reconstructed using

this method (Parker, 2011). To overcome the issues with Probabilistic Tractog-

raphy, a framework for Global Tractography was proposed (Jbabdi et al., 2007).

1FSL is free software that is available from FMRIB, University of Oxford at
http://www.fmrib.ox.ac.uk/fsl/. Within Diffusion MRI FSL can estimate the parameters of
both the DT and partial volume models and it can implement Probabilistic Tractography.
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Figure 1.7: A 2D slice of the brain showing the tracts (black) that are produced
when implementing Probabilistic Tractography in 3D in FSL. The
seed that we start from is the voxel that is shown in white.

1.7.3 Global Tractography

There is currently not an establishedmethod to statistically test for the existence

of a connection between two brain regions. A framework for Global Tractogra-

phy was proposed by Jbabdi et al. (2007) as a potential solution. In basic terms

Global Tractography parametrises the connections between two brain regions

at a global level. Its advantages include being able to acknowledge any known

connections by putting this information into the algorithm and it also reduces

the sensitivity to local noise by inferring on connections by introducing new

parameters. We introduce novel methods for estimating the parameters within

this framework in Chapter 4.

For every pair of brain regions Tractography can be done twice, once when a

connection exists between the two regions and once when the connection is ab-

sent. Then it can be tested to see whether the data supports the connection or

not.
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The current framework for Global Tractography assumes that there are N re-

gions of interest in the brain. Each of the N regions contains a number of vox-

els. Each of these voxels can be modelled using one of the most commonly used

models such as the partial volume model (see Section 1.6.1). Global parameters

are introduced, alongside the local parameters that we already have from the

partial volume model. A connection matrix C of size N ×N is introduced. If

brain Region i is connected to brain Region j then the (i, j)th element of C is 1,

otherwise it is 0. Methods for defining brain regions are discussed in Section

1.10.

We will be doing inference in a Bayesian setting so we denote by F a random

variable that represents the pathways connecting the regions and let L be a

random variable that represents the extremities of the pathways. There is an in-

finite number of paths that F could take in the 3D space; one way to overcome

the problem of modelling F is by using splines. We follow Jbabdi et al. (2007)

and choose to model F using the Catmull-Rom splines (Farin, 1996) with k con-

trol points. The Catmull-Rom splines are described in Appendix A. We choose

this type of spline because it assumes that the spline passes through the con-

trol points (denoted by K), which makes them easier to work with. The values

of the control points can then be inferred. Other options of splines/models

are possible but do not affect the method such as Gaussian Processes (Mackay,

1998) and Bayesian P-splines (Lang, 2001). Figure 1.8 shows the global param-

eters which model connections between different regions of the brain, while

Figure 1.9 shows the hierarchical model where the local parameters, which are

the parameters that model the fibre orientation in each voxel, are in the box and

generate the data Y .
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Region 1 Region 2

Figure 1.8: Adiagram that demonstrates the global parameters from theGlobal
Tractography framework when there is a connection between two
brain regions, i.e. c12 = 1, in a 2D example. The two regions, Region
1 and Region 2, are the set of voxels in the blue areas. The connec-
tion between the two regions is the green curve that is modelled by
the spline F 12. The spline is constructed from the 5 knots K and
the extremities of the spline, L1 and L2.

1.8 Bayesian Inference

In this section we will describe the fundamentals of Bayesian Inference which

will be used widely throughout this thesis. A more detailed account can be

found in Gilks et al. (1996). We denote y to be the data and ω to be the param-

eters of interest. We can then derive the posterior distribution π(ω|y) by com-

bining the likelihood π(y|ω) and a prior distribution of the parameters π(ω)

using Bayes theorem.

π(ω|y) =
π(ω)π(y|ω)∫

ω
π(ω)π(y|ω)dω

. (1.8.1)

One can obtain the value of the posterior distribution for different values of ω,

by placing the values of ω into Equation (1.8.1), however the calculation of the

denominator in Equation (1.8.1), which is known as the normalising constant,

can be difficult particularly in high dimensions. We will now describe Markov

Chain Monte Carlo (MCMC) that allows us to sample from the posterior distri-
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d,s0 fθ,φ Λ

F

K L

C

Figure 1.9: The hierarchical model which describes the parameters of the
Global Tractography model. The data Y is generated by the lo-
cal parameters from the partial volume model which are within the
dotted box, outside the dotted box are the global parameters. The
first global parameter is F which is the parameter that represent
the splines that connect brain regions. L and K represent the ex-
tremities and the knots of the splines. Finally C is the connection
matrix. The splines F are determind by the knots and extremities
of the splines, whilst the local parameters that represent the fibre
orientation within a voxel (φ, θ and f ) are determined by the spline
if it passes through the voxel.
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bution whilst avoiding calculating the normalising constant.

1.8.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) (See for example Gilks et al. (1996)) can

be used to simulate random variables from a distribution, π(·), which only has

to be known up to a normalising constant, which thus avoids the problem of

having to calculate complicated normalising constants.

Throughout this thesis MCMC will be used to sample from posterior distribu-

tions of the form π(ω|y), when estimating parameters, whichwe denote ω. The

twomain algorithms used to implementMCMC are theMetropolis-Hastings al-

gorithm (Metropolis et al., 1953, Hastings, 1970) and the Gibbs sampler (Geman

and Geman, 1984) which are described in Algorithms 3 and 4. The Gibbs sam-

pler, requires us to derive conditional posterior distributions which is not al-

ways possible. Therefore throughout this thesis we use theMetropolis-Hastings

algorithm.

Algorithm 3 Metropolis-Hastings MCMC
1: Start with an initial value of the parameter that we wish to estimate, ω, and

call it ωcur.
2: Propose a new candidate value of ω which is denoted by ωcan from a given

proposal distribution which is denoted by q(ωcur,ωcan).

3: Calculate α(ωcur,ωcan) = min
(
1, π(ωcan|y)q(ωcan,ωcur)

π(ωcur|y)q(ωcur,ωcan)

)
.

4: The new value ωcan is either accepted with probability α(ωcur,ωcan) or re-
jected so that

ωcur =

{
ωcan with probability α(ωcur,ωcan),

ωcur with probability 1− α(ωcur,ωcan).

5: Start from Step 2 again until we have the required amount of samples.
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Algorithm 4 Gibbs sampler MCMC

1: Choose initial values for ω = (ω1,ω2, ...,ωN) and denote this as ωcur. Then
derive the conditional distributions π(ωi |y,ω−i), i = 1, ...,N where ω−i is
ω without the ith element.

2: Sample ω1
cur ∼ π(ω1|y,ω−1

cur).
3: For i = 2, ...,N sample ωi

cur ∼ π(ωi |y,ω−i
cur)

4: Go back to Step 2 until we obtain the required number of samples.

1.9 Directional distributions

Due to the difficulty in estimating θ and φ when θ ≈ 0 in the partial volume

model which we will discuss in Chapter 2, an alternative reparameterisation

is proposed. Instead of estimating θ and φ we estimate the fibre orientation v,

where

v =

[
cos(φ)sin(θ) sin(φ)sin(θ) cos(θ)

]T
.

Although v has three dimensions, when we use this new parameterisation we

are still estimating two parameters because v is constrained so that vTv =

1. When using this alternative reparameterisation, parameter estimation in a

Bayesian framework using Markov Chain Monte Carlo (MCMC) (Section 1.8.1)

will require the use of a good proposal distribution for candidate values of v to

be simulated from.

Two distributions that can be used to model antipodal symmetric data are the

Bingham distribution (Bingham, 1974) and the Angular Central Gaussian dis-

tribution (Tyler, 1987). These two distributions will be used in Chapter 2.

1.9.1 The Bingham distribution

The Bingham distribution (Bingham 1974) can be derived by conditioning a

multivariate Normal distribution to lie on the sphere Sp−1 of unit radius in R
p.

We require that p = 3 and thus v takes values on the surface of a 3-dimensional

sphere S2. S2 is of unit radius and has its centre at the origin. The probability
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density function (pdf) of the Bingham distribution is

fBing(x;A) = 1F1

(
1
2
;
p

2
;A
)−1

exp(−xTAx), xTx = 1, x ∈ R
p

such that

fBing(x;A) = 1F1

(
1
2
;
p

2
;A
)−1

fBing*(x;A),

where fBing*(x;A) is an unnormalised density such that

fBing*(x;A) = exp(−xTAx),

1F1(
1
2 ;

p
2 ;A) is the hypergeometric function andA is a givenmatrix of size p× p.

In order to use the Binghamdistribution as a proposal distribution in theMCMC

algorithm (Section 1.8.1), we must be able to simulate from it. There are meth-

ods in the literature for simulating from this (Marsaglia, 1972, Hoff, 2007, Kume,

2006 and Ganeiber, 2012). The most efficient of these seems to be the rejection

sampling method proposed by Ganeiber (2012). Simulated efficiency rates for

the method can be found in Ganeiber (2012).

Rejection sampling (Ripley, 1987) simulates samples from a probability density

function f (x) = c f f *(x), by using a second probability distribution g*(x) that

need not be normalised, that we can simulate from. g*(x)must be chosenwhere

there is a constant M* such that f *(x) ≤ M*g*(x) for all x. Once such a g*(x)

is found, we simulate from f (x) using the method in Algorithm 5.

For the Bingham distribution, an Angular Central Gaussian distribution is used

as the envelope function g*(x)within the rejection sampling algorithm. Ganeiber
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Algorithm 5 Simulation from the Bingham distribution
1: Generate a value y from g*(x) and some u from U(0, 1).

2: Set x = y if u ≤ f *(y)
M*g*(y)

; otherwise go back to step 1 until a value is ac-
cepted.

(2012), derived the bound

M*(p, b) =
( p
b

)p/2
exp

(
−1
2
(p− b)

)
,

such that

f *Bing(x;A) ≤ M*(p, b)g*ACG(x;Ψ),

where

f *Bing(x;A) = exp(−xTAx),

g*ACG(x;Ψ) = (xT
Ψ

−1x)−p/2,

approximately

b = (p + 2)/2

and

Ψ−1 = Ip +
2
b
A.

1.9.2 The Angular Central Gaussian distribution

TheAngular Central Gaussian(ACG) distribution was introduced by Tyler (1987)

as an alternative to the Bingham distribution due to the complicated normalis-

ing constant of the latter. The ACG distribution works by projecting a multi-

variate Gaussian distribution with mean zero to lie on the unit sphere Sp−1.

The probability density function (pdf) of the ACG distribution is:

gACG(x;Ψ) = w−1
p |Ψ|−1/2(xT

Ψ
−1x)−p/2,
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where Ψ is a given matrix of size p× p.

If x ∼ Np(0,Ψ) then ‖x‖−1x ∼ ACG(Ψ) (Mardia and Jupp 2000), thus it is

very easy to simulate from the ACG distribution with parameter Ψ, by first

simulating y from Np(0,Ψ) and then setting x=‖y‖−1y.

1.10 Defining regions

Within the thesis wewill need to be able to define brain regions within real data.

Within FSL there is an Atlas feature, that allows a structure of the brain to be

selected, and gives the probability of a voxel within the brain being part of that

region. There are many different atlases which can be selected and they were

created by averaging over brain images.

To use the atlases that are available, first the images that we have must be trans-

formed such that their coordinate space is the same as that for the atlases. This

can easily be implemented by using FMRIB’s Linear Image Registration Tool

(FLIRT) feature in FSL (Jenkinson and Smith, 2001, Jenkinson et al., 2002). Once

this has been implemented we can then select a structure from an atlas and ob-

tain a new mask that shows on the brain image where the structure is. For each

voxel the atlas will give a estimate that represents the probability of that voxel

being within the chosen structure.

Once we have the required probability masks for the data we then transform the

masks back to the original coordinate space by using the inverse of the matrix

that was used to transform the original data to the standard coordinate system.

We can then choose a threshold for the probability of a voxel being within a cer-

tain region such that we can assume that voxels that are less than this threshold
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are not part of the defined region. Finally we can then use a binary tool to get

a mask of the brain, such that the voxels take the value 1 if the voxel is above

a certain threshold to be part of the structure and 0 otherwise. An example of

using the FSL Atlas feature to find amask of the left primary motor cortex using

the Juelic Histological Atlas (Eickhoff et al., 2005) is shown in Figure 1.10.

1.11 Thesis outline

The thesis is structured as follows. In Chapter 2 we investigate methods to

quickly and efficiently estimate the parameters in the Diffusion Tensor and par-

tial volume models. We then discuss how to reparameterise the partial volume

model to allow successful parameter estimation in a certain case when the value

of θ is close to 0.

In Chapter 3 we implement model selection to choose between different models

for the number of fibres in a voxel. We then use this model selection to propose

a Fully Probabilistic Tractography that uses model uncertainty within Tractog-

raphy.

In Chapter 4 we study Global Tractography and infer the parameters of this

model. We then employ efficient model selection methods to test for the exis-

tence of a connection between two brain regions.

In Chapter 5 we conclude this thesis and then discuss possible future work.
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(a)

(b)

(c)

Figure 1.10: The (a) coronal, (b) sagittal and (c) axial views of a brain that show
the mask of the left primary motor cortex in orange that is esti-
mated by using the Atlas feature in FSL.
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CHAPTER 2

Inference within a voxel

2.1 Motivation

We would like to efficiently infer the local parameters of the models for the ob-

served Diffusion-Weighted signal within a voxel (Section 1.4). Global Tractog-

raphy (see Section 1.7.3) and Probabilistic Tractography (Section 1.7.2) require

us to have estimates of the parameters of the partial volume model (see Section

1.6.1) for voxels, whilst in Deterministic Tractography (Section 1.7.1) we use the

parameter estimates of the Diffusion Tensor model (see Section 1.4.1). There-

fore efficient inference of the local parameters of these models will benefit these

algorithms. One assumption we make is that voxels within the brain region are

independent of each other such that the local parameters of the partial volume

model are independent of the local parameters within other voxels. Then if we

can efficiently do parameter estimation in one voxel, then we can take advan-

tage of parallel computing methods (Hernández et al., 2013) to efficiently apply

parameter estimation to all the voxels.

In this chapter we show how the parameters of both the Diffusion Tensor (DT)

model and the partial volume model can be estimated. A range of different

methods are proposed to infer the parameters. The developed methodology
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first is illustrated with simulated datasets and then is applied to a real dataset.

Finally a simulation study is carried out to thoroughly assess the methods that

are introduced in this chapter.

We adopt a Bayesian approach to inference for both the DT model and the par-

tial volumemodel. We then develop a series of MCMC algorithms ranging from

standard random-walk Metropolis-Hastings to more advanced algorithms such

as Adaptive algorithms.

2.2 Inference for the Diffusion Tensor model

The Diffusion Tensor model (see Section 1.4.1) assumes that the diffusion shape

in a voxelmay bemodelled by a 3DGaussian distribution with variance-covariance

proportional to the Diffusion Tensor, D where

D =




Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz



.

In the Diffusion Tensor model, the ith predicted Diffusion-Weighted signal, µi

is

µi = S0exp(−big
T
i Dgi) (2.2.1)

where gi is the ith gradient direction with a b-value bi, which is the diffusion

sensitivity; S0 is the baseline signal, i.e. the signal with no Diffusion-Weighted

gradients applied. We further assume that there is additive independent and

identically distributed (i.i.d) Gaussian noise:

yi ∼ N(µi , σ
2), i = 1, ...,m,
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where yi are the observed Diffusion-Weighted signal values of the ith acquisi-

tion and σ is the standard deviation.

Denote the observed data by y and the parameters of the Diffusion Tensor

model by ω=(Dxx,Dyy,Dzz,Dxy,Dxz,Dyz,S0,σ). We will now illustrate how the

parameter vector ω can be estimated using a frequentist approach and a Bayesian

approach.

As an illustrative example, a dataset of size 61 is simulated from the Diffusion

Tensor model, such that yi ∼ N(µi , τ−1) where µi = S0exp(−big
T
i Dgi) with

parameters S0=10.0, precision τ = 1
σ2 = 100 and

D =




Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz




=




0.001 0.0002 0.0003

0.0002 0.002 0.0005

0.0003 0.0005 0.003



,

such that

D = VUVT,

where

V =




0.9848 0.0786 0.1547

−0.1333 0.9133 0.3849

−0.1110 −0.3997 0.9099




and

U =




0.0009 0 0

0 0.0018 0

0 0 0.0033



.
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2.2.1 Linearised DT model

In Deterministic Tractography (Section 1.7.1) it is only required to know the

principal eigenvector of the Diffusion Tensor, D in each voxel, such that we

have a point estimate of D. Therefore any uncertainty associated with this es-

timate is ignored. Hence it is enough to just estimate the maximum likelihood

estimate (MLE) for each of the parameters in the Diffusion Tensor model. The

model that we wish to maximise is non linear but it can be transformed to a

linear model if we assume that S0 is known (Bates and Watts, 2007).

By rearranging Equation (2.2.1), note that we get the linearised Diffusion Tensor

model

log(µi)− log(S0) = AiB, i = 1, ...,m.

where

Ai = −bi

(
gi(1)2 gi(2)2 gi(3)2 2gi(1)gi(2) 2gi(1)gi(3) 2gi(2)gi(3)

)

and

B =




Dxx

Dyy

Dzz

Dxy

Dxz

Dyz




.

The ordinary least square estimator of B, B̂ is (ATA)−1AT
Y , where
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Y=(y1, y2, ....., ym), such that there are m gradient directions, and

A =




A1

A2

.

.

.

Am




.

To implement this method we will have to use an approximate value of S0. S0 is

defined to be the baseline signal, the signal value when no diffusion gradients

are applied i.e. the signal when bi = 0. Hence the value of S0 is estimated to

be the diffusion intensity yi, that corresponds to the b-value that has the value 0.

When this method is implemented on the simulated Diffusion Tensor dataset,

B̂ =

(
0.001010 0.001983 0.002970 0.000189 0.000294 0.000460

)T

.

This is very close to the true value of B which is

B =

(
0.001 0.002 0.003 0.0002 0.0003 0.0005

)T

.

2.2.2 Bayesian inference for the DT model

We now investigate Bayesian inference of the parameters in the Diffusion Ten-

sor model which we denote by ω. A Bayesian approach to estimate ω, would be

to generate samples from the posterior distribution π(ω|y). As in the previous

section the value of S0 is defined to be the yi, that has a corresponding b-value

of 0. We will follow the approach of Behrens et al. (2003).
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The prior distributions of the parameters are

π(Dxx) = π(Dyy) = π(Dzz) ∼ Γ(aD , bD)

π(Dxy) = π(Dxz) = π(Dyz) ∝ 1

π(τ) ∼ Γ(ασ, βσ)

where τ = 1
σ2 . The prior distributions are chosen such that they are uninfor-

mative, such that ασ = 1 and βσ = 0.001. We further ensure that the Diffusion

Tensor is positive definite by rejecting values of the elements that do not satisfy

this condition. The likelihood of the data is

π(y|ω) =
n

∏
i=1

√
τ√
2π

exp
(
−τ

2
(yi − µi)

2
)

=

(
τ√
2π

)n

exp

(
−τ

2

n

∑
i=1

(yi − µi)
2

)

where

µi = S0exp(−big
T
i Dgi), i = 1, ....,m.

Thus the posterior distribution, π(ω|y), is

π(ω|y) = π(y|ω)π(Dxx)π(Dyy)π(Dzz)π(Dxy)π(Dxz)π(Dyz)π(τ)

∝ π(y|ω)π(Dxx)π(Dyy)π(Dzz)π (τ) .

The full conditional distributions of π(ω|y) can be derived which are

π(Dxx| y, ω−Dxx), π(Dyy| y,ω−Dyy), π(Dzz| y,ω−Dzz), π(Dxy| y,ω−Dxy),

π(Dxz| y,ω−Dxz), π(Dyz| y,ω−Dyz) and π(τ| y,ω−τ), where the notation ω−a de-

notes the parameter matrix ω without parameter a. Then single-component
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Metropolis Hastings Markov Chain Monte Carlo (MCMC) (defined in Section

1.8.1) was used to generate samples from the full conditional distributions. We

used a random-walk proposal distribution within MCMC, so we had to tune

the proposal distribution which required trial and error.

When data were simulated from the Diffusion Tensor model, this algorithm

worked very well at generating samples from the posterior distributions that

were close to the true values of the parameters and had good mixing as can be

seen in Figures 2.1 and 2.2.

We now have a good Bayesian method for obtaining estimates for the param-

eters in the Diffusion Tensor model. We also have a good frequentist method

for a linearised version of the Diffusion Tensor model. If we just want a single

estimate for each parameter, then the linearised DT model is ideal, otherwise if

we require a distribution of values for a parameter then the Bayesian MCMC

method can be implemented. From now on we focus on inference in the more

complicated partial volume model (Section 1.6.1).

2.3 MCMC for estimating parameters in the partial

volume model

We now focus on estimating the parameters of the partial volume model (Sec-

tion 1.6.1) because it enables us to have multiple fibre orientations. Initially we

will infer the partial volume model with one fibre orientation. As in Section

1.6.1 we assume that the observed data yi has noise such that

yi ∼ N(µi , 1/τ), i = 1, ...,m
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Figure 2.1: Kernel density plots of the estimated parameters of the DT model
by simulating from the posterior distribution usingMCMC. (a) Dxx,
(b) Dyy, (c) Dzz, (d) Dxy, (e) Dxz and (e) Dyz; the red line denotes the
true value of the parameter. The algorithm that was used was the
random-walk Metropolis-Hastings MCMC.
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Figure 2.2: Traceplots of the estimated parameters of the DTmodel by simulat-
ing from the posterior distribution using MCMC. (a) Dxx, (b) Dyy,
(c) Dzz, (d) Dxy, (e) Dxz and (f) Dyz when using the random-walk
Metropolis Hastings MCMC
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where τ = 1
σ2 is the precision and

µi = S0((1− f )exp(−bid) + fexp(−bid(g
T
i v)2)), i = 1, ...,m.

We simulated a dataset for one voxel using the partial volume model where the

parameter values are θ=0.5, φ=1.0, f=0.7, d=0.0015, S0=1 and τ = 100. These

values were chosen as they are typical values in the partial volume model. This

dataset has 61 values because there are 61 gradient directions which have 61

corresponding b-values. We used values of the gradient directions and b-values

that came from a real dataset. This dataset will be used throughout this chapter.

The methods that we use throughout this chapter can easily be extended to in-

fer on the partial volume model with more than one fibre orientation as shown

in Section 2.7.2. The parameters of the partial volume model with one fibre ori-

entation are denoted by ω=(θ,φ, f ,d,S0,τ). By using a Bayesian framework and

suitable priors on each parameter, MCMC can be used to generate samples from

the posterior distribution π(θ,φ, f ,d,S0,τ|y).

We follow Behrens (2003) and adopt the following priors because they are all

non-informative except for where positivity is required.

π(θ, φ) ∼ |sin(θ)|

π( f ) ∼ U(0, 1)

π(d) ∼ U(0,∞)

π(S0) ∼ U(0,∞)

π (τ) ∼ Γ(ασ, βσ).
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The likelihood of the data is

π(y|ω) =
n

∏
i=1

√
τ√
2π

exp
(
−τ

2
(yi − µi)

2
)

=

( √
τ√
2π

)n

exp

(
−τ

2

n

∑
i=1

(yi − µi)
2

)

where

µi = S0

(
(1− f )exp(−bid) + fexp(−bid(g

T
i v)2)

)
.

The posterior distribution is then

π(ω|y) ∝ π(y|ω)π(θ, φ)π( f )π(d)π(S0)π (τ)

=

( √
τ√
2π

)n

exp

(
−τ

2

n

∑
i=1

(yi − µi)
2

)
|sin(θ)| βασ

σ

Γ(ασ)
(τ)ασ−1 exp (−βστ) .

The precision τ is integrated out of the posterior distribution as it is not a pa-

rameter of interest. The posterior distribution without τ is obtained by

π(θ, φ, f , d, S0|y) =
∫

π(ω|y)dτ

=

(
1√
2π

)n

|sin(θ)| βασ
σ

Γ(ασ)

∫
(τ)

n
2 +ασ−1exp

(
−τ

(
S(y,µ)

2
+ βσ

))
dτ

where S(y,µ) = ∑
n
i=1(yi − µi)

2.

By comparing the integrand to the probability density function of the Gamma

distribution, the posterior distribution can then be derived as

π(θ, φ, f , d, S0|y) =
βασ

σ

Γ(ασ)

(
1√
2π

)n

|sin(θ)| Γ(n2 + ασ)
(
S(y,µ)

2 + βσ

) n
2 +ασ

.

We will now describe the MCMC algorithms to draw samples from π(ω̃|y)
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where ω̃ does not contain τ such that ω̃ = (θ, φ, f , d, S0).

2.3.1 Vanilla MCMC

Initiallywe attempt to use the simplestMCMC algorithm, i.e. single-component

Metropolis-Hastings (see Section 1.8.1) with a normal proposal distribution for

each of the parameters with the mean being the current parameter value and

some variance σ2. This algorithm is called Vanilla MCMC and is described in

Algorithm 6.

Algorithm 6 Vanilla MCMC
1: Start with initial values for θ, φ, f , d and S0.
2: Use the Metropolis-Hastings random-walk algorithm to first propose

and then accept or reject a new sample from π(θ|φ, f , d, S0,y). We
then similarly propose and reject or accept values from π(φ|θ, f , d, S0,y),
π( f |θ, φ, d, S0 ,y), π(d|θ, φ, f , S0,y) and π(S0|θ, φ, f , d,y). If values are pro-
posed that are outside the permitted values for any of the parameters then
we reject the sample.

3: Repeat Step 2 until the required number of samples are obtained.

We then implemented this algorithm on the simulated partial volume dataset.

Figure 2.3 show the kernel density plots and trace plots for Vanilla MCMC on

the parameters with τ integrated out. The mixing appears to be very good and

the results correspond to the true parameter values.

Vanilla MCMC produces results that are accurate, however when there are a lot

of voxels, we would prefer to update all the parameters as a block rather than

update one at a time so that the algorithm is quicker. Therefore we will now try

Block-update MCMC.

2.3.2 Block-update MCMC

Block-update MCMC updates all of the parameters together rather than updat-

ing each parameter one at a time as in Vanilla MCMC (Section 2.3.1). In this
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Figure 2.3: Kernel density plots for the parameter estimates of the partial vol-
ume model simulated from the posterior distribution using the
Vanilla MCMC algorithm. (a) θ and (b) φ, where the true value
of the parameters is shown by the red line. The traceplots for (c) θ
and (d) φ.
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algorithm a multivariate normal proposal distribution is used with the mean

being a vector of the current parameter values. The algorithm is summarised in

Algorithm 7.

Algorithm 7 Block-update MCMC
1: Start with initial values for θ, φ, f , d and S0.
2: Use the Metropolis-Hastings algorithm, to propose values of (θ, φ, f , d, S0)

from a random-walk normal proposal distribution and then accept or reject
values from π(θ, φ, f , d, S0|y)

3: Repeat Step 2 until the required amount of samples are obtained.

The Block-update MCMC algorithm is much faster than the Vanilla MCMC al-

gorithm but deciding on a suitable covariance matrix for the proposal distribu-

tion is not easy. Therefore we consider the Adaptive MCMC algorithm (Section

2.3.3).

2.3.3 Adaptive MCMC

Adaptive MCMC (Haario et al., 2001) automatically calculates the covariance

matrix for the proposal distribution in MCMC at each iteration and will accept

about 23.4% of the candidate values (Rosenthal, 2010). This is ideal as it gives an

automatic way to find the covariance matrix rather than having to tune. Rosen-

thal (2010) discusses solutions to cases where Adaptive MCMC may not work

as well.

Adaptive MCMC works by sampling the candidate value of the parameters at

the nth iteration, ωn+1 as

ωn+1 ∼ N(ωn, [(2.38)2/d]Σn)

where ωn is the current parameter value, d is the number of variables in ωn and
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Σn is the empirical covariance matrix of ω0, ω1,...,ωn. The value of 2.38 within

the algorithm and acceptance rate of 23.4% are asymptotic as d → ∞, however

they have been shown in numerical studies to be good approximations when d

is as small as five (Rosenthal, 2010).

We would like an algorithm which is as efficient as possible, therefore we will

calculate the empirical covariance matrix in the following way. If we define the

output ωn=(ωn1,ωn2, ...,ωnd), then the (j, k)th element of the sample covariance

matrix is

qjk =
1

N − 1

N

∑
i=1

(ωij − ω̄j)(ωik − ω̄k).

Since Σn needs to be evaluated at each iteration, to increase efficiency we eval-

uate qjk recursively as follows:

qjk =
1

N − 1

(
N

∑
i=1

ωijωik −
1
N

N

∑
i=1

ωij

N

∑
i=1

ωik

)
. (2.3.1)

We will now find transformations for the parameters in the partial volume

model so that there are no constraints on the parameters when we use Adap-

tive MCMC. The parameters in the partial volume model have the following

constraints 0 < θ < π, 0 < φ < 2π, 0 < f < 1, d > 0 and S0 > 0. By transform-

ing the variables it can be ensured that they can take any value in the real line

to ease optimisation.

The following transformations were performed

θ′ = log
(

θ

π − θ

)

φ′ = log
(

φ

2π − φ

)
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f ′ = log
(

f

1− f

)

d′ = log(d)

S′0 = log(S0).

The posterior distribution was then changed to include the transformed vari-

ables. The determinant of the Jacobian matrix was included in the posterior

distribution because we’re using transformations and it is the following.

|J| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂θ
∂θ′

∂θ
∂φ′

∂θ
∂ f ′

∂θ
∂d′

∂θ
∂S′0

∂φ
∂θ′

∂φ
∂φ′

∂φ
∂ f ′

∂φ
∂d′

∂φ
∂S′0

∂ f
∂θ′

∂ f
∂φ′

∂ f
∂ f ′

∂ f
∂d′

∂ f
∂S′0

∂d
∂θ′

∂d
∂φ′

∂d
∂ f ′

∂d
∂d′

∂d
∂S′0

∂S0
∂θ′

∂S0
∂φ′

∂S0
∂ f ′

∂S0
∂d′

∂S0
∂S′0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Once the algorithm had finished the variables were then transformed back by

using:

θ =
π

1+ exp(−θ′)

φ =
2π

1+ exp(−φ′)

f =
1

1+ exp(− f ′)

d = exp(d′)

S0 = exp(S′0).

The steps of the Adaptive MCMC algorithm are summarised in Algorithm 8.

We attempted Adaptive MCMC on our simulated partial volume dataset. The
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Algorithm 8 Adaptive MCMC
1: Implement Vanilla MCMC or Block-update MCMC for a pre-determined

number of iterations, r, and then using these MCMC estimates calculate the
empirical covariance matrix for the parameters which is denoted by Σn.

2: Propose ωi+1 ∼ N(ωi, [2.382/d]Σn), where d is the number of dimensions.
3: Calculate the acceptance ratio which is

α(ωi,ωi+1) = min
(
1,

π(ωi+1|y)q(ωi+1,ωi)

π(ωi|y)q(ωi,ωi+1)

)
= min

(
1,

π(ωi+1|y)

π(ωi|y)

)

because q(ωi+1,ωi)
q(ωi,ωi+1)

=1.
4: Recalculate the empirical covariance matrix and start from step 2 again until

we obtain the required number of estimates.

×10 4

0 2 4 6 8 10

×10 -3

1.44

1.45

1.46

1.47

1.48

1.49

1.5

1.51

1.52

1.53

1.54

Figure 2.4: Traceplot for the parameter estimates of d from the partial volume
model simulated from the posterior distribution using Adaptive
MCMC.

output of the MCMC algorithm is shown in Figure 2.4. The graph demonstrates

that the mixing within Adaptive MCMC is very good.

The kernel density plots of the parameter estimates are shown in Figure 2.5.

These kernel density plots illustrate that Adaptive MCMC performs very well.

2.3.4 The independence sampler and the Laplace approxima-

tion

When implementing MCMC, up until now the proposal distribution has de-

pended on the current values of the parameters. A proposal distribution that

does not depend on the current value of the parameters is called an indepen-

48



0.49 0.495 0.5 0.505 0.51 0.515
0

50

100

150

200

250

(a)

0.975 0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02
0

10

20

30

40

50

60

70

80

90

100

(b)

0.67 0.68 0.69 0.7 0.71 0.73 0.74
0

10

20

30

40

50

60

70

f

(c)

×10 -3

1.44 1.46 1.48 1.5 1.52

×10 4

0

0.5

1

1.5

2

2.5

3.5

4

D
en
si
ty

d

(d)

Figure 2.5: Kernel density plots of the parameter estimates of the partial vol-
ume model simulated from the posterior distribution using Adap-
tiveMCMC (a) θ, (b) φ, (c) f and (d) d, with the true values indicated
by the red line.
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dence sampler (Gilks et al., 1996). A good independence sampler will propose

values for the parameters that are close to the real values, such that there is a

sufficient acceptance rate in MCMC. One way of implementing this is to use a

multivariate normal proposal distribution that approximates the target distri-

bution. A suitable multivariate normal proposal distribution may be approxi-

mated by using the Laplace approximation (Tierney and Kadane, 1986).

The Laplace approximation can be obtained by finding the mode of the loga-

rithm of the posterior distribution. Then within MCMC the proposal distribu-

tion is chosen to be N(ω̂,H−1), where H−1 is the inverse of the Hessian matrix

and ω̂ is the value of ω that maximises the logarithm of the posterior. The

Laplace approximation is not affected by the unknown normalising constant of

the posterior distibution because we work with the logarithm of the posterior

distribution. Then when we calculate the Hessian matrix by finding the second

derivatives of the logarithm of the posterior distribution, the logarithm of the

normalising constant term will differentiate to 0. The Laplace approximation

is an independence sampler on which candidate values do not depend on the

current values of the parameters.

One issue with the Laplace approximation is deciding which value to choose

as the initial vector of parameter values when maximising the logarithm of the

posterior. Eventually the metrics obtained from the DT model as mentioned in

Section 1.5 were used as the initial values for θ, φ, f and d. These initial values

were then transformed to obtain θ’, φ’, f ’ and d’ as in Section 2.3.3. The value of

S0’ was assigned to be the transformed value of the yi that corresponds to the

bi that is equal to 0. It should be fairly simple to extend the Laplace approxima-

tion for partial volume models with more fibre orientations. The algorithm for

MCMC that uses the independence sampler is summarised in Algorithm 9.
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Algorithm 9 Independence sampler MCMC
1: Assign the initial value of S0 to be the yi value that corresponds to the b-

value that is equal to 0 and using this value of S0 use the linearised DT
model to obtain B̂, the ordinary least square estimator of B described in
Section 2.2.1.

2: Use B̂ to get values for the Fractional Anisotropy, the Mean Diffusivity and
also the values of θ and φ from the principal eigenvector of the estimated
Diffusion Tensor as described in Section 1.5. The values for the Fractional
Anisotropy and Mean Diffusivity can be used as initial estimates for f and
d.

3: Use the values obtained in Steps 1 and 2 as initial estimates for θ, φ, f , d
and S0 and optimise the posterior density, so that we obtain the Laplace
approximation.

4: Use the Laplace approximation as the proposal distribution in Block-update
MCMC as in Section 2.3.2.

When the Laplace approximation was applied to the simulated partial volume

model dataset, the posterior mode was

θ=0.4966, φ=0.9957, f=0.6981, d=0.0015 and S0=1.0011.

This compares to the true parameter values of

θ=0.5, φ=1.0, f=0.7, d=0.0015 and S0=1.0.

The numerical covariance matrix that is obtained by calculating the inverse of

the Hessian matrix is

H−1 =




0.0001 −0.0000 0.0000 −0.0000 −0.0000

−0.0000 0.0001 −0.0000 0.0000 0.0000

0.0000 −0.0000 0.2065 −0.0259 −0.0487

−0.0000 0.0000 −0.0259 0.0033 0.0061

−0.0000 0.0000 −0.0487 0.0061 0.0115




.

Then using these values as described in Algorithm 9 as a proposal distribution,

the results in Figures 2.6 and 2.7 are obtained. The results look very good when

compared to the true parameter values and also the mixing is very good within

MCMC. The acceptance rate of proposed samples in the MCMC appears to be
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Figure 2.6: Traceplots for the parameter estimates of the partial volume model
(a) θ, (b) φ, (c) f , (d) d and (e) S0 simulated from the posterior distri-
bution using the Laplace approximation as a proposal distribution
in Block-update MCMC.
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Figure 2.7: Kernel density plots for the parameter estimates of the partial vol-
ume model simulated from the posterior distribution using the
Laplace approximation as a proposal distribution in Block-update
MCMC.(a) θ, (b) φ, (c) f and (d) d. The true values of the parameters
are indicated by the red line.
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Figure 2.8: The kernel density plots from Vanilla MCMC and the Laplace ap-
proximation shown by the red curve for the transformed parame-
ters of the partial volume model (a) θ’, (b) φ’, (c) f ’ and (d) d’

extremely good.

Throughout this chapter the MCMC methods that have been tried, work well

at estimating the parameters of the partial volume model with one fibre orien-

tation in a voxel. However MCMC methods in general can be very time con-

suming, and this will be more evident when many more voxels are considered.

Instead we may use the density of the Laplace approximation as a good esti-

mate of the posterior distribution, rather than as a proposal distribution.

The density of the Laplace approximation was then compared with the poste-

rior density obtained from Vanilla MCMC. This is seen in Figure 2.8. From the

graphs we can see that the Laplace approximation is in pretty good agreement

54



with the estimated posterior distribution obtained by MCMC for each parame-

ter.

2.4 Reparameterisation

We now look at a special case of the partial volume model where the MCMC

methods that we used in Section 2.3 may not work as well. Suppose that there

is a voxel where the true value of θ is such that θ ≈ 0. In this case

v =




sin(θ)cos(φ)

sin(θ)sin(φ)

cos(θ)



≈




0

0

1




so that the value of φ does not affect the value of v much and therefore many

values of φ will be accepted when runningMCMC to approximate the posterior

distribution. In this case it would be better to directly infer v rather than θ and

φ. The parameters θ and φ from the partial volume model can be reparame-

terised as in Section 1.9. Now this new reparameterisation will be used and the

new parameter, v will be estimated.

MCMC will be used to estimate the posterior distribution, π(v, f , d, S0|y). At

each iteration of MCMC a new candidate value of v will be simulated from the

proposal distribution, which will either be the Bingham distribution or the An-

gular Central Gaussian (ACG) distribution (see Section 1.9). Both the ACG and

Bingham distributions have a parameter matrix which can be chosen such that

the proposal distribution simulates values that are accepted often. Assume that

the parameter matrix of both the Bingham and ACG distributions is denotedA,

then a good approximation for A can be found as follows.
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Let

A = VUVT,

such that this is the spectral decomposition of A. Making the eigenvalues in U

larger corresponds to more clustering around the eigenvector that this eigen-

value corresponds to (Mardia and Jupp, 2000). If the Laplace approximation

(Section 2.3.4) is carried out such that estimates for θ and φ are available, then a

corresponding estimate for v, can be calculated. Estimates that cluster around

this approximation of v would be desirable.

We will denote v = [a, b, c] and create a 3x3 symmetric matrix V such that the

third column of V is v, then

V =




d e a

e f b

a b c




and

U =




u1 0 0

0 u2 0

0 0 u3




where the value of u3 is positive and very large in relation to u1 and u2 (e.g.

u1 = u2 ≈ 0.0, u3 = 900). Values of d, e and f can be found such that VVT=I3,

the 3x3 identity matrix. For this to hold true




d e a

e f b

a b c







d e a

e f b

a b c




=




1 0 0

0 1 0

0 0 1



.
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There are then six equation to solve which are

d2 + e2 + a2 = 1

e(d + f ) + ab = 0

a(d + c) + eb = 0

e2 + f 2 + b2 = 1

b( f + c) + ea = 0

a2 + b2 + c2 = 1.

The last equation can be ignored because vvT = 1 so already

a2 + b2 + c2 = 1,

by solving the other five equations, the following solution is obtained:

e =
(− cb

a )− b
a

1+ b2

a2

d =
−eb− ac

a

f =
−bc− ea

b
.

We can then first use the Laplace approximation to get estimates for θ and φ and

then find the corresponding value of v = [a, b, c]. Then we find the values of d,

e and f to obtain a good approximation for the parameter matrix A in both the

Bingham and the ACG distributions. In Section 1.9 we described how to sim-

ulate from the ACG distribution and the Bingham distribution. Therefore we
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will now use the value for the estimate of the parameter matrix A and compare

the different proposal distributions within MCMC.

2.5 Comparing the different proposal distributions

Metropolis-Hastings MCMC (Section 1.8.1) was now implemented using a va-

riety of proposal distributions on the partial volume dataset that we have used

throughout this chapter. The proposal distributions were then compared by

looking at plots of the Autocorrelation function (Box and Jenkins, 1976). The

Autocorrelation function (ACF) allows us to see how the correlation between

the parameter estimates from MCMC changes between consecutive samples.

First we used the reparameterisation such that the fibre direction is a vector, v

and then the Bingham and ACG proposal distributions are compared. After-

wards we also compared MCMC methods that do not use the reparameterisa-

tion. We investigatedMCMCmethods that uses a random-walk proposal distri-

bution and the independence sampler proposal distribution obtained from the

Laplace approximation. The ACF plots when comparing the different proposal

distributions are in Figures 2.9 and 2.10.

Clearly the Laplace approximation independence sampler is the best proposal

distribution in this example. The ACG distribution is a better proposal distribu-

tion than the Bingham distribution, when using the vector reparameterisation.

The ACG distribution is also much easier to sample from than the Bingham dis-

tribution and thus when working with the reparameterisation, the ACG pro-

posal distribution should be used.

We will now return to the motivating example that made us propose the repa-

58



(a) (b)

(c) (d)

Figure 2.9: The ACF from the MCMC estimates of (a) θ and (b) φ in the par-
tial volume model when using the Bingham proposal distribution,
(c) θ and (d) φ in the partial volume model when using the ACG
proposal distribution.
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(a) (b)

(c) (d)

Figure 2.10: The ACF of (a) θ (b) φ in the partial volume model when using a
random-walk proposal distribution, (c) θ and (d) φ in the partial
volume model when using the Laplace approximation as a pro-
posal distribution within Block-update MCMC.
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rameterisation of the model. Suppose that θ ≈ 0, then

v =




sin(θ)cos(φ)

sin(θ)sin(φ)

cos(θ)



≈




0

0

1



.

It is expected that it will be better to use the reparameterisation in this example.

For this a newdataset was generated from the partial volumemodel with θ=0.01

and φ=0.1. Then we tested the four proposal distributions and both MCMC

methods when using θ and φ as the parameters were allowing φ to take any

value, while the MCMCmethods using the reparameterisation generated good

values for v as in Figure 2.11. The mixing when not using the reparameterisa-

tion seems to be bad for θ and φ as it seems to stop at points as in the graph in

Figure 2.11 (d).

We have now demonstrated that there are some cases where it is better to use

the vector v as the fibre orientation within a voxel, rather than θ and φ. We will

keep this in consideration when doing further inference. When we are working

with real datasets we may decide to use the reparameterisation if the Laplace

approximation returns values of θ that are close to 0.

2.6 An application to real data

We have demonstrated that the methods that were proposed in this chapter

work very well on simulated datasets. The main purpose of these methods is to

be applied on real datasets. We will compare the results from our code with the

results obtained by FSL (Section 1.7.2).

One voxel was chosen from a real dataset and then the code was attempted
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Figure 2.11: The MCMC trace plots when using a Bingham proposal distribu-
tion (a,b and c) and when using the independence sampler (d and
e) for (a) the first, (b) second and (c) third element of v in the par-
tial volume model, (d) φ and (e) θ in the partial volume model.
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on this voxel. First the Laplace approximation was used as an independence

sampler inMCMC,MCMCwas then implemented using both our code and FSL

to compare the results. The results are shown in Figure 2.12. From the graphs

it can be seen that the estimates for the parameters in the partial volume model

are similar using both our code and FSL. Note that FSL only records every 20th

iteration of MCMC to account for correlations between output.

Then when we also compare these results with the Laplace approximation of

the dataset, the results in Figure 2.13 are obtained, showing that the Laplace ap-

proximation of the real data is a very good approximation to the posterior dis-

tribution when compared to both our MCMC results and the FSL results. This

section seems to confirm that our MCMC algorithms for inferring the values of

the parameters in the partial volume model are as good as the corresponding

results from FSL because the samples from both ourMCMC algorithms and FSL

correspond with the Laplace approximation. In FSL the proposal distribution

for each parameter is a zero mean Gaussian where the standard deviation is

tuned to give an acceptance rate of 0.5. Thinning is used so that every 20th iter-

ation is sampled (Behrens et al., 2003). In our algorithmwe use an independence

sampler obtained from the Laplace approximation which allows us to propose

and then accept or reject samples for every parameter in one iteration. We will

now compare the methods that we have introduced in this chapter.

2.7 Simulation study

Within this chapter we have investigated many different methods for inferring

the parameters of the partial volume model within a voxel. We will now con-

duct a simulation study in which we will consider two different cases; a voxel

with one fibre orientation and a voxel with two fibre orientations. For both
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Figure 2.12: The kernel density plots of the MCMC parameter estimates from
the partial volume model for (a) θ, (c) φ and (e) f using FSL com-
pared with (b) θ (d) φ and (f) f using our code.
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Figure 2.13: The kernel density plots of the MCMC parameter estimates from
the partial volume model compared with the Laplace approxima-
tion (in red) of (a) θ and (b) φ using FSL, (c) θ and (d) φ using our
code.
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Figure 2.14: The MCMC estimates when using Vanilla MCMC for the parame-
ters of the partial volume model (a) f and (b) S0 when τ = 1.

voxels we will look at different values of τ to see how the precision affects the

results. We will compare Vanilla MCMC (Algorithm 6), Block-update MCMC

(Algorithm 7), Adaptive MCMC (Algorithm 8), independence sampler MCMC

(Algorithm 9) and the Laplace approximation (Section 2.3.4).

2.7.1 One fibre orientation partial volume model dataset

At first we simulated a dataset of size 61 from the partial volume model with

one fibre orientation with parameter values of θ1 = 1, φ1 = 1, f1 = 0.5, d =

0.001 and S0 = 400 when τ = 1. Initially Vanilla MCMC was attempted on this

dataset and the results of the parameter estimates can be seen in Figure 2.14.

Clearly these traceplots reveal quite bad mixing because of tuning issues and

therefore we will obtain the Laplace approximation so that we can choose it as

a random-walk proposal distribution that can be used in Block-update MCMC.

We will use the values of the posterior mode from the Laplace approximation

as the initial values of the parameters. The inverse of the Hessian matrix will be

used as the covariance matrix in the proposal distribution.

The Block-update MCMC algorithm results as shown in Figure 2.15 show the
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Figure 2.15: The traceplots and kernel density plots of the MCMC estimates
when using Block-update MCMC for the parameters of the partial
volume model (a) (c) f and (b) (d) S0 when τ = 1.

traceplots of some of the parameter estimates and the kernel density plots of the

parameter estimates compared with the Laplace approximation. We observe

that the mixing has greatly improved when compared with the traceplots when

using Vanilla MCMC.

Afterwards independence sampler MCMC was attempted. Instead of using a

random-walk to propose values, this MCMC uses the mean and Hessian from

the Laplace approximation. The graphs of the results are shown in Figure 2.16.

The mixing looks excellent and the kernel density plots of the parameter esti-

mates resemble the Laplace approximation density.

Finally the MCMC is then implemented using Adaptive MCMC as in Figure
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Figure 2.16: The traceplots and kernel density plots of the MCMC estimates
when using independence sampler MCMC for the parameters of
the partial volume model (a) (c) f and (b) (d) S0 when τ = 1.
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Figure 2.17: The traceplots and kernel density plots of the MCMC estimates
when using AdaptiveMCMC for the parameters of the partial vol-
ume model (a) (c) f and (b) (d) S0 when τ = 1.

2.17. The results appear to be good but do not look as good as the indepen-

dence sampler MCMC results because the acceptance rate is lower.

We now compare the mean and standard deviation of the MCMC results. We

omit the results using Vanilla MCMC because the estimates do not appear to

be good. These results are summarised in Table 2.1. The results for each of the

three MCMC algorithms look similar. All of the approaches are quick, although

the independence sampler MCMC is faster than the other methods because the

proposal distribution is always the same.

To compare the different types of MCMC we will look at the Automatic Cor-

relation Function (ACF) plots. These are in Figure 2.18. From these graphs it
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Block-update Independence Adaptive
θ1’ -0.7646 (0.0015) -0.7646 (0.0015) -0.7647 (0.0014)
φ1’ -1.6654 (0.0014) -1.6654 (0.0014) -1.6655 (0.0014)
f1’ -0.0043 (0.0061) -0.0046 (0.0059) -0.0049 (0.0057)
d’ -6.9103 (0.0022) -6.9102 (0.0022) -6.9104 (0.0022)
S′0 5.9927 (0.0024) 5.9928 (0.0024) 5.9928 (0.0024)

Table 2.1: The mean (and standard deviation) of the transformed parameter
estimates of the partial volume model using Block-update MCMC,
independence sampler MCMC and Adaptive MCMC on the simu-
lated dataset when τ = 1.

Samples Block-update Independence Adaptive Vanilla ( f )
10000 571.6955 7993.229 550.8174 19.50942
9500 536.9074 7687.069 525.0637 18.46492

Table 2.2: The ESS of the transformed parameter estimates of the partial
volume model using Block-update MCMC, independence sampler
MCMC, Adaptive MCMC and Vanilla MCMC on the simulated
dataset when τ = 1. The first row is from all 10000 samples, the
second row is when the first 500 samples are removed as burn-in.

is clear that the best MCMC estimates are from independence sampler MCMC

and that Vanilla MCMC is bad when compared to the other methods. We will

also compare the Effiecient Sample Size (ESS) (Roberts, 1996) of all the methods.

This gives an estimate of the number of independent samples within the sam-

ples that we have. The ESS results can be found in Table 2.2. From the results

of the ESS it is very clear that the indepedence sampler MCMC is much better

than the other methods as it gives a lot more independent samples.

We repeat the investigation on a dataset with all the same parameters except

for τ which is τ = 0.1. The results from the MCMC algorithms were similar to

obtained obtained when using τ = 1. For each of the MCMC algorithms the

mean and standard deviation of the parameter estimates were calculated and

are summarised in Table 2.3. There does not seem much difference in the mean

and standard deviation from using different MCMC methods.

We compare the different MCMC methods by looking at the ACF plots which
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Figure 2.18: The plots of the ACF for the parameter estimates when using
Vanilla MCMC for the partial volume model (a) f and (b) S0 and
for f using (c) Block-update MCMC, (d) independence sampler
MCMC and (e) Adaptive MCMC when τ = 1.
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Block-update Independence Adaptive
θ1’ -0.7506 (0.0132) -0.7511 (0.0127) -0.7509 (0.0134)
φ1’ -1.6576 (0.0120) -1.6574 (0.0122) -1.6574 (0.0128)
f1’ 0.1140 (0.0569) 0.1175 (0.0592) 0.1165 (0.0615)
d’ -6.8901 (0.0210) -6.8910 (0.0202) -6.8921 (0.0199)
S′0 5.9426 (0.0226) 5.9406 (0.0233) 5.9405 (0.0233)

Table 2.3: The mean (and standard deviation) of the transformed parameter
estimates of the partial volume model using Block-update MCMC,
independence sampler MCMC and Adaptive MCMC on the simu-
lated dataset when τ = 0.1.

Samples Block-update Independence Adaptive
10000 543.0111 7210.751 621.8843
9500 521.7032 6852.391 603.0329

Table 2.4: The ESS of the transformed parameter estimates of the partial
volume model using Block-update MCMC, independence sampler
MCMC and Adaptive MCMC on the simulated dataset when τ =
0.1. The first row is from all 10000 samples, the second row is when
the first 500 samples are removed as burn-in.

are shown in Figure 2.19 and by comparing the ESS which can be found in Table

2.4. From these again we see that the independence sampler MCMC produces

the best estimates. Vanilla MCMC produces very correlated results.

Finally for the partial volume data with one fibre orientation we simulate data

with τ = 2. After implementing the MCMC algorithms we observed that the

results of the mixing are very similar to the mixing when τ = 1. For each of

the MCMC algorithms the mean and standard deviation of the parameter esti-

mates were calculated and can be summarised in Table 2.5. These seem to show

that there is not really any difference in the mean and standard deviation of the

estimates obtained using the different MCMC methods.

The ACF plots of the different MCMC methods are shown in Figure 2.20. Once

again from these we can see that the independence sampler MCMC produces

results with less correlation between samples, while the Vanilla MCMC pro-

duces results that are very correlated.
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Figure 2.19: The plots of the ACF for the parameter estimates when using
Vanilla MCMC for the partial volume model (a) f and (b) S0 and
(c) Block-update MCMC, (d) independence sampler MCMC and
(e) Adaptive MCMC when τ = 0.1.
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Block-update Independence Adaptive
θ1’ -0.7613 (0.0009) -0.7612 (0.0008) -0.7612 (0.0009)
φ1’ -1.6641 (0.0008) -1.6641 (0.0008) -1.6641 (0.0008)
f1’ 0.0012 (0.0035) 0.0015 (0.0035) 0.0015 (0.0035)
d’ -6.9070 (0.0013) -6.9071 (0.0013) -6.9071 (0.0013)
S′0 5.9913 (0.0014) 5.9912 (0.0014) 5.9911 (0.0014)

Table 2.5: The mean (and standard deviation) of the transformed parameter
estimates of the partial volume model using Block-update MCMC,
independence sampler MCMC and Adaptive MCMC on the simu-
lated dataset when τ = 2.

Samples Block-update Independence Adaptive Vanilla ( f )
10000 571.6245 7163.868 563.9729 7.614286
9500 602.8724 7086.818 527.0038 6.784524

Table 2.6: The ESS of the transformed parameter estimates of the partial
volume model using Block-update MCMC, independence sampler
MCMC, Adaptive MCMC and Vanilla MCMC on the simulated
dataset when τ = 2. The first row is from all 10000 samples, the
second row is when the first 500 samples are removed as burn-in.

The same conclusions are also reached when looking at the ESS in Table 2.6.

In summary after looking at all the results it can be seen that Vanilla MCMC

is not very good due to the fact that it is very much dependent on choosing

a good proposal distribution. However because we now have good initial ap-

proximations for the parameters of the partial volumemodel due to the Laplace

approximation, there is not much difference in the other three MCMCmethods

and all of them perform equally well. Changing the value of τ also does not

affect which of the methods is best in terms of the mean. From the ACF plots

it is clear that the independence sampler MCMC is the most efficient algorithm

as it produces results that are almost uncorrelated samples.

2.7.2 Two fibre orientations partial volume model dataset

Until now we have considered datasets from the partial volume model where

there is only one fibre orientation in a voxel. Therefore we will now implement
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Figure 2.20: The plots of the ACF for the parameter estimates when using
Vanilla MCMC for the partial volume model (a) f and (b) S0 and
(c) Block-update MCMC, (d) independence sampler MCMC and
(e) Adaptive MCMC when τ = 2.
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Figure 2.21: The MCMC estimates using Vanilla MCMC for the parameters of
the partial volume model with two fibre orientations (a) f1 and (b)
S0 when τ = 1.

Vanilla MCMC (Algorithm 6), Block-update MCMC (Algorithm 7), indepen-

dence sampler MCMC (Algorithm 9) and Adaptive MCMC (Algorithm 8) on

partial volume datasets with two fibre orientations and compare these results

with the Laplace approximation. This will allow us to observe if our methods

can be easily extended to data with more than one fibre orientation. We vary

the value of τ so that we can investigate the effect it has on the results. We use

values of τ which are 1, 2 and 0.5.

First we simulated a dataset of size 61 from the partial volume model with

two fibre orientations that has parameter values θ1 = 1, φ1 = 1, f1 = 0.2,

θ2 = 0.5, φ2 = 1.5, f2 = 0.4, d = 0.001 and S0 = 400 when τ = 1 such that

v1 =

[
0.4546 0.7081 0.5403

]T
and v2 =

[
0.0339 0.4782 0.8776

]T
We chose

these values because they are typical values in real data and the two fibre ori-

entations are very distinct. We implemented Vanilla MCMC and obtained the

graphs in Figure 2.21. Similarly to the results when investigating datasets with

one fibre orientation we see that the estimates from Vanilla MCMC are bad due

to the mixing in the traceplots.

We then used Block-update MCMC with a random-walk proposal distribution
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Figure 2.22: The traceplots and kernel density plots of theMCMC estimates us-
ing Block-update MCMC for the parameters of the partial volume
model with two fibre orientations (a) (c) f1 and (b) (d) S0 when
τ = 1.

estimated by the Laplace approximation. The traceplots and kernel density

plots of the parameter estimates are in Figure 2.22. We immediately notice that

the mixing of the Block-update MCMC algorithm is an improvement on Vanilla

MCMC. The estimates resemble the Laplace approximation density.

Afterwards independence sampler MCMC was attempted. The corresponding

graphs of the parameter estimates are shown in Figure 2.23. The mixing in the

traceplots is excellent and the estimates seem to come from the same density as

the Laplace approximation.

Finally Adaptive MCMC was also implemented. The kernel density plots of

the posterior distributions are in Figure 2.24. Although the traceplots do not
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Figure 2.23: The traceplots and kernel density plots of the MCMC estimates
when using the independence sampler MCMC for the parameters
of the partial volume model with two fibre orientations (a) f1 and
(b) S0 when τ = 1.
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Figure 2.24: The traceplots and kernel density plots of theMCMC estimates us-
ing Adaptive MCMC for the partial volume model with two fibre
orientations (a) (c) f1 and (b) (d) S0 when τ = 1.

seem as good as the results from the independence sampler MCMC they are

still satisfactory. Once again the kernel density plots seem to suggest that the

Laplace approximation is a good approximation of the posterior distribution of

the parameter estimates.

For each of the MCMC algorithms the mean and standard deviation of the pa-

rameter estimates can be calculated and are summarised in Table 2.7. The values

of the mean are very similar in all the methods, whilst the standard deviation

seems to have slightly smaller values in the Block-update MCMC results.

We then compared the MCMC methods by looking at the ACF plots and the

values of the ESS. These are in Figure 2.25 and Table 2.8. From these it is clear
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Block-update Independence Adaptive
θ1’ -1.6629 (0.0074) -1.6624 (0.0079) -1.6626 (0.0081)
φ1’ -1.1600 (0.0059) -1.1604 (0.0062) -1.1602 (0.0065)
f1’ -0.4088 (0.0185) -0.4092 (0.0197) -0.4093 (0.194)
θ2’ -0.7596 (0.0112) -0.7596 (0.0116) -0.7597 (0.0116)
φ2’ -1.6632 (0.0065) -1.6630 (0.0070) -1.6633 (0.0068)
f2’ -1.3982 (0.0275) -1.3996 (0.0295) -1.3983 (0.0301)
d’ -6.9088 (0.0033) -6.9089 (0.0034) -6.0986 (0.0034)
S′0 5.9935 (0.0026) 5.9938 (0.0027) 5.9937 (0.0027)

Table 2.7: The mean (and standard deviation) of the transformed parameter
estimates of the partial volume model using Block-update MCMC,
independence sampler MCMC and Adaptive MCMC on the simu-
lated dataset with two fibre orientations when τ = 1.

Samples Block-update Independence Adaptive
10000 392.5688 5400.187 376.6503
9500 373.3775 5441.109 361.7738

Table 2.8: The ESS of the transformed parameter estimates of the partial
volume model using Block-update MCMC, independence sampler
MCMC and Adaptive MCMC on the simulated dataset when τ = 1.
The first row is from all 10000 samples, the second row is when the
first 500 samples are removed as burn-in.

that the best estimates are obtained using independence samplerMCMC,whilst

the estimates obtained using Vanilla MCMC are much worse.

We then simulated a dataset with the same parameters as previously apart from

τ which is now τ = 0.5. For each of the three MCMC algorithms the mean and

standard deviation of the parameter estimates can be calculated and are sum-

marised in Table 2.9. The means of the estimates appear to be very similar

whilst the standard deviation results suggests that the estimates obtained from

independence sampler MCMC have a slightly smaller standard deviation.

The ACF results are in Figure 2.26 and the values of the ESS are in Table 2.10.

Again the estimates using independence sampler MCMC are the least corre-

lated, whilst the Vanilla MCMC results are the worst.
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Figure 2.25: The plots of the ACF for the parameter estimates when using
Vanilla MCMC for the partial volume model with two fibre ori-
entations (a) f1 and (b) S0 and (c) Block-update MCMC, (d) inde-
pendence sampler MCMC and (e) Adaptive MCMC when τ = 1.

81



Lag
0 5 10 15 20

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

-0.2

0

0.2

0.4

0.6

0.8

1
Sample Autocorrelation Function

(a)

Lag
0 5 10 15 20

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

-0.2

0

0.2

0.4

0.6

0.8

1
Sample Autocorrelation Function

(b)

Lag
0 5 10 15 20

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

-0.2

0

0.2

0.4

0.6

0.8

1
Sample Autocorrelation Function

(c)

Lag
0 5 10 15 20

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

-0.2

0

0.2

0.4

0.6

0.8

1
Sample Autocorrelation Function

(d)

Lag
0 5 10 15 20

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

-0.2

0

0.2

0.4

0.6

0.8

1
Sample Autocorrelation Function

(e)

Figure 2.26: The plots of the ACF for the parameter estimates when using
Vanilla MCMC for the partial volume model with two fibre orien-
tations (a) f1 and (b) S0 (c) Block-updateMCMC, (d) independence
sampler MCMC and (e) Adaptive MCMC when τ = 0.5.
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Block-update Independence Adaptive
θ1’ -0.7833 (0.0215) -0.7834 (0.0206) -0.7804 (0.0213)
φ1’ -1.6531 (0.0127) -1.6536 (0.0121) -1.6530 (0.0123)
f1’ -1.3190 (0.0553) -1.3185 (0.0526) -1.3222 (0.0546)
θ2’ -1.6883 (0.0155) -1.6889 (0.0151) -1.6885 (0.0156)
φ2’ -1.1353 (0.0130) -1.1352 (0.0122) -1.1359 (0.0125)
f2’ -0.4516 (0.0383) -0.4522 (0.0366) -0.4472 (0.0374)
d’ -6.9022 (0.0066) -6.9023 (0.0064) -6.9022 (0.0065)
S′0 5.9917 (0.0051) 5.9918 (0.0051) 5.9911 (0.0049)

Table 2.9: The mean (and standard deviation) of the transformed parameter
estimates of the partial volume model using Block-update MCMC,
independence sampler MCMC and Adaptive MCMC on the simu-
lated dataset with two fibre orientations when τ = 0.5.

Samples Block-update Independence Adaptive Vanilla ( f )
10000 366.9532 3698.739 362.8368 4.737862
9500 353.0739 3492.721 341.9449 5.538274

Table 2.10: The ESS of the transformed parameter estimates of the partial vol-
ume model using Block-update MCMC, independence sampler
MCMC, Adaptive MCMC and Vanilla MCMC on the simulated
dataset when τ = 0.5. The first row is from all 10000 samples, the
second row is when the first 500 samples are removed as burn-in.

We then simulated the data with τ = 2. For each of the three MCMC methods

the mean and standard deviation of the parameter estimates were calculated

and can be summarised in Tables 2.11. There does not seem to be any difference

in themeans or standard deviations of the estimates from the different methods.

We then compared the different MCMC methods by using the ACF which are

shown in Figure 2.27 and the ESS whose values are shown in Table 2.12. From

the ACF plots independence sampler MCMC obtains the least correlated esti-

mates whilst Vanilla MCMC obtains the worst results.

In conclusion it seems that independence sampler MCMC gives the best re-

sults as its estimates are the least correlated and the mixing is good. The Vanilla

MCMC results are very bad, but this makes sense due to us using trial and error

to get a good proposal covariance matrix. We have now shown that the MCMC
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Figure 2.27: The plots of the ACF for the parameter estimates when using
Vanilla MCMC for the partial volume model with two fibre orien-
tations (a) f1 and (b) S0 (c) Block-updateMCMC, (d) independence
sampler MCMC and (e) Adaptive MCMC when τ = 2.

84



Block-update Independence Adaptive
θ1’ -0.7662 (0.0042) -0.7658 (0.0045) -0.7658 (0.0042)
φ1’ -1.6626 (0.0028) -1.6627 (0.0028) -1.6626 (0.0026)
f1’ -1.3821 (0.0110) -1.3834 (0.0115) -1.3831 (0.0108)
θ2’ -1.6650 (0.0031) -1.6647 (0.0032) -1.6645 (0.0030)
φ2’ -1.1565 (0.0024) -1.1568 (0.0025) -1.1567 (0.0024)
f2’ -0.4133 (0.0072) -0.4125 (0.0078) -0.4127 (0.0074)
d’ -6.9093 (0.0014) -6.9094 (0.0013) -6.9095 (0.0013)
S′0 5.9928 (0.0010) 5.9927 (0.0011) 5.9927 (0.0011)

Table 2.11: The mean (and standard deviation) of the transformed parameter
estimates of the partial volume model using Block-update MCMC,
independence sampler MCMC and Adaptive MCMC on the simu-
lated dataset with two fibre orientations when τ = 2.

Samples Block-update Independence Adaptive Vanilla ( f )
10000 169.1363 1728.894 183.0949 3.442952
9500 157.4462 1654.076 177.3746 3.698462

Table 2.12: The ESS of the transformed parameter estimates of the partial vol-
ume model using Block-update MCMC, independence sampler
MCMC, Adaptive MCMC and Vanilla MCMC on the simulated
dataset when τ = 2. The first row is from all 10000 samples, the
second row is when the first 500 samples are removed as burn-in.

methods can be successfully and easily extended to the partial volume model

when there is more than one fibre orientation. We revisit the Laplace approxi-

mation for the partial volume model with two fibre orientations in Chapter 3.

2.8 Conclusions

We have introduced efficient methods for implementing parameter estimation

of both the Diffusion Tensor (DT) model and the more useful partial volume

model. First we showed that a good approximation of the parameters in the

DT model in the case when we assume that S0 is known, can be obtained by

linearising the model. We can also use MCMC to obtain parameter estimates

for this model. Both of these methods produce very good parameter estimates.

The partial volume model will be used more throughout this thesis, therefore
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we then tried to infer the parameters in this model when there is one fibre ori-

entation. First Vanilla MCMC was implemented which works but is not very

fast. Afterwards to try and make the inference faster Block-update MCMC

was used, which is difficult because of choosing a good covariance matrix for

the proposal distribution, this problem was solved by using Adaptive MCMC.

Adaptive MCMC uses the previous results in MCMC to calculate a proposal

covariance matrix at each iteration of MCMC.

A good approximation of the parameters in the partial volume model is found

by using the Laplace approximation. This approximation can then be used as

either an estimate for the posterior distribution of the parameters or as a good

independence sampler in MCMC. The estimates of the parameters from the DT

model are used to initialise the Laplace approximation.

Due to the problems that can sometimes occur when using θ and φ in the par-

tial volume model, a novel parameterisation which uses a vector for the fibre

orientation within a voxel was introduced. Then the Angular Central Gaussian

and Bingham distributions can be used as proposal distributions for this vector

within MCMC. We showed that both are effective but that the Angular Central

Gaussian proposal distribution is better.

All of this was first implemented on simulated datasets where we know the real

values of the parameters, then the methods were attempted on real datasets,

where the answers were comparable to those obtained by the software package

FSL and the mixing appeared to be better in our algorithms.

We then started a simulation study and compared our different MCMC meth-

ods, which showed that in general Vanilla MCMC is not very good, however
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the other methods are good and in particular independence sampler MCMC

obtained very good parameter estimates that are less correlated than the other

methods. We then extended the simulation study to start looking at data with

more than one fibre orientation which was successfully implemented. All of

these methods will help us when inferring the parameters of the Global Trac-

tography model.
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CHAPTER 3

Model selection within voxel

3.1 Motivation

In Chapter 2 efficient methods were proposed to estimate the values of the local

parameters of the partial volume model in a voxel. Another problem that re-

mains is to infer how many fibre orientations there are within one voxel. If we

incorrectly guess the number of fibre orientations within a voxel then the local

parameter estimates of the partial volume model may be very inaccurate. This

could then lead to very bad consequences in the Global Tractography model

(see Section 1.7.3). The aim of this chapter is to develop methods for selecting

the number of fibre orientations within a voxel, so that once the parameters of

the partial volume model in a voxel are estimated, we can be confident that the

estimates are reflective of the truth.

When Tractographymethods (Section 1.7) were first introduced, it was assumed

that there was only one dominant fibre orientation in each voxel (Behrens et

al., 2003). Behrens et al. (2007), estimated that approximately one-third of all

brain voxels with a Fractional Anisotropy value (Section 1.5) greater than 0.1

contain a crossing-fibre configuration. Attempts have been made to extend

Tractography such that multiple fibre orientations are permitted within a voxel
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(Behrens et al., 2007). This was implemented using both Deterministic Tractog-

raphy (Section 1.7.1) within Diffusion Spectrum Imaging (Hagmann et al., 2004)

and in Probabilistic Tractography (Section 1.7.2) using High Angular Resolu-

tion Diffusion Imaging (Hosey et al., 2005) and the angular structure of cerebral

tissue (Parker and Alexander, 2005). However the most widely used current

Tractography method uses the partial volume model (see Section 1.6.1) and was

introduced by Behrens et al. (2007).

The partial volume model allows us to have multiple fibre orientations in a

voxel. The methods from Chapter 2 can help us in inferring the parameters

of the partial volume model. The local parameter estimates that are obtained

can then be used within a Tractography framework to construct tracts between

different brain regions (see Section 1.7). If we do not consider models with mul-

tiple fibre orientations then this could cause us to produce tracts that are not

true due to the model not being representative of the true fibre orientation. By

recognising the existence of multiple fibre orientations, known connections in

the brain that were previously not reconstructed using Tractography methods

have been identified (Behrens et al., 2007).

In existing Tractography methods it is assumed that the number of fibres within

a voxel is known. Then at each stage of Tractography the fibre is selected by con-

sidering the fraction of the signal contributed by each of the fibres in a voxel.

Therefore we consider the estimated values of the ith fibre, fi. The existing

methods do not take into account the uncertainty in the number of fibres. A

Tractography method which we term as Fully Probabilistic Tractography is intro-

duced in this chapter. It differs from Probabilistic Tractography by also selecting

the number of fibres to model in the partial volume model at each step based on

the probability of choosing the model with that many fibre orientations. This

has the advantage that it may reconstruct tracts that would otherwise be missed
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Figure 3.1: An example of two equally weighted fibres (pink) in a voxel, and
the resulting direction that may be estimated in the partial volume
model with one fibre orientation (green).

by existing Tractography methods.

For example it is possible that there are two fibres that cross each other and are

both equally weighted as shown in Figure 3.1, so that when implementing pa-

rameter estimation, due to partial volume effects (Parker, 2011), one fibremay fit

the model well, but in practice will not be the true fibre orientation. Thus when

Tractography is performed then the wrong model is fitted and the Tractogra-

phy results will be misleading. By taking into account model uncertainty, tracts

involving the two true fibres will also be reconstructed. Schultz et al. (2013),

discuss sources of error in Tractography and the fact that model selection has

not received much attention with respect to its effect on Tractography results.

3.2 Bayesian model choice and Bayes factor

This section is a review of Bayesian solutions for implementingmodel selection.

In Section 3.3 we will use Bayesian methods to choose between partial volume

models with different numbers of fibre orientations. From these model selec-

tion estimates, the probability of choosing a certain model can be calculated

(see Section 3.6), such that model uncertainty can also be taken into account

when implementing Tractography.
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Bayes factors are used to obtain a measure to decide which of two proposed

models is a better fit for some data. In particular suppose that there are two

models denoted M0 and M1. The Bayes factor, here denoted by K, for model

M0 versus M1 is defined as

K =
π(y|M0)

π(y|M1)
.

π(y|M0) and π(y|M1), represent the evidence (or in other words the marginal

likelihood) in favour of M0 and M1 respectively. If K>1, then the model M0 is

more likely than model M1, while if K<1 then model M1 is more likely than M0.

Alternatively the Bayes factor can be written in terms of the posterior odds and

prior odds such that

K =
π(M0|y)

π(M1|y)

π(M1)

π(M0)

where π(M0|y) and π(M1|y) are the posterior probabilities of M0 and M1. The

Bayes factor is often difficult to calculate because it requires the marginal like-

lihoods π(y|M0) and π(y|M1). The marginal likelihood for model Mk and ob-

served data y is given as

π(y|Mk) =
∫

θk

π(y|θk,Mk)π(θk |Mk)dθk

where θk are the parameters that are inmodel Mk. In many cases θk can be high-

dimensional and therefore the calculation of such an integral can be difficult.

In order to take the model uncertainty into account a method that provides esti-

mates of π(Mk|y) is required. By calculating π(Mk|y) and using this to choose

which model to look at, we can take into account model uncertainty within

Tractography. One disadvantage of Bayes factors are that they can be very sen-

sitive to the choice of prior distribution (Kass and Raftery, 1995).
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3.2.1 Reversible Jump Markov Chain Monte Carlo

One method that is commonly used in the literature to estimate π(Mk|y) is

Reversible Jump Markov Chain Monte Carlo (RJMCMC) (Green, 1995). This

can be used to sample from the posterior distribution

π(θk, k|y) ∝ π(y|θk, k)π(θk |k)π(k)

where k is some parameter that indicates which model we are in so that we are

sampling from the joint posterior distribution of model indicators and parame-

ters. In more detail θk are the parameters that are specific to model k whilst θ is

the collection of all model parameters. π(θk|k) is the prior distribution for pa-

rameters within model k, π(k) is the prior for themodel indicator and π(y|θk, k)

is the likelihood for the data.

RJMCMC is an extension of the Metropolis-Hastings algorithm which moves

within models whilst allowing us to jump from one model to another such that

we have samples of (θk, k). RJMCMC works by introducing some distribution,

g that we can simulate random numbers u from and another distribution g*

that we can simulate random numbers u* from. Then a deterministic function

that allows us to move from (θk, k) to (θl , l) is denoted as

(θl , l) = fkl(θk,u, k).

Similarly

(θk, k) = flk(θl ,u*, l),

fkl must be a bijection and its derivative must be invertible (Friel and Pettitt,

2008). This only holds if

dim(θk) + dim(u) = dim(θl) + dim(u*).
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Then by denoting the probability of moving from model l to model k as

π(l → k) the probability of accepting a proposed move from (θk, k) to (θl , l) is

min
{
1,

π(θl , l|y)π(l → k)g*(u*)
π(θk, k|y)π(k → l)g(u)

|J|
}

where J is the Jacobian that is required because of the transformation from

(θk, u, k) to (θl , u*, l).

RJMCMC can be an efficient algorithm with good mixing properties. However

the model mixing across dimensions which requires choosing efficient proposal

distributions and mappings (Friel and Pettitt, 2008) can cause problems. In our

partial volume model problem we have many voxels and therefore many pa-

rameters to infer. Therefore it will be even more difficult to choose efficient pro-

posal distributions and mappings in RJMCMC. Thus we focus on calculating

the Bayes factor by investigating approximations to the marginal likelihood.

3.2.2 Importance sampling estimators

Kass and Raftery (1995) proposed importance sampling estimators as a way of

estimating the marginal likelihood. This approach assumes that we have access
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to an unnormalised density g(θk) that we can sample from. Then we can derive

π(y|Mk) =
∫

θk

π(y|θk,Mk)π(θk |Mk)dθk

=

∫
θk

π(y|θk,Mk)π(θk|Mk)dθk∫
θk

π(θk|Mk)dθk

=

∫
θk

π(y|θk,Mk)π(θk|Mk)
g(θk)

g(θk)dθk
∫

θk

π(θk|Mk)
g(θk)

g(θk)dθk

=
Eg

[
π(y|θk,Mk)π(θk|Mk)

g(θk)

]

Eg

[
π(θk|Mk)
g(θk)

] .

By obtaining a sample of size J, which we denote θ1
k , θ

2
k , ..., θ

J−1
k , θ J

k, from g(θk)

the expectations of the denominator and numerator can be approximated using

Monte Carlo methods such that

π(y|Mk) ≃
∑

J
j=1

π(y|θ j
k,Mk)π(θ

j
k|Mk)

g(θ
j
k)

∑
J
j=1

π(θ
j
k|Mk)

g(θ
j
k)

. (3.2.1)

Then the only thing that must be chosen in advance for this method is the un-

normalised density g(θk). The simplest case would be to choose it to be the

prior distribution such that

g(θ
j
k) = π(θ

j
k|Mk).

Then Equation (3.2.1) becomes

π(y|Mk) ≃
1
J

J

∑
j=1

π(y|θ j
k,Mk).

This approximation is called the prior arithmetic mean estimator. However if the

high-likelihood region is small then this estimator is not good as then the prior
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will not produce many samples from this region. Therefore to attempt to over-

come this problem the posterior harmonic mean estimator was proposed. Newton

and Raftery (1994), suggested drawing samples from the posterior such that

g(θ
j
k) ∝ π(y|θ j

k,Mk)π(θ
j
k|Mk).

If we put this g(θ j
k) into Equation (3.2.1), the following estimate is obtained.

π(y|Mk) ≃
∑

J
j=1 1

∑
J
j=1

π(θ
j
k|Mk)

π(θ
j
k|Mk)π(y|θ j

k,Mk)

=
J

∑
J
j=1

1
π(y|θ j

k,Mk)

.

Then
1

π(y|Mk)
≃ 1

J

J

∑
j=1

1

π(y|θ j
k,Mk)

. (3.2.2)

If we use the Laplace approximation as an approximate density for g(θ j
k), then

we may take samples from this approximate density and use these to calculate

an estimate for Equation 3.2.2.

It has been shown that in some situations the posterior harmonic mean esti-

mator has a variance which is infinite (Kass and Raftery, 1995) and therefore it

is not used often in practice. We propose an alternative way of estimating the

marginal likelihood in Section 3.4.

In this section we have done a review of the various Bayesian solutions for

implementingmodel selection. Wewill focus on approximating the Bayes factor

in Section 3.4 for the number of fibre orientations in the partial volume model.
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3.3 Model selectionmethods for the number of fibre

orientations

Wewill now extend the partial volumemodel so that it allows for more than one

fibre orientation. Then an existing method that enables us to choose between

the number of fibre orientations in a voxel will be discussed.

3.3.1 The partial volumemodel withmultiple fibre orientations

Parameter estimation within a voxel assuming that there is only one fibre ori-

entation can be done efficiently (i.e. quickly and accurately). We extend the

methods for parameter estimation that were developed in Chapter 2 in the case

where there is more than one fibre orientation, which we briefly visited in Sec-

tion 2.7.2. In the partial volume model with more than one fibre orientation, the

value of the predicted Diffusion-Weighted signal, µi, changes and is

µi = S0

((
1−

N

∑
j=1

f j

)
exp(−bid) +

N

∑
j=1

f jexp
(
−bid(g

T
i vj)

2
))

, i = 1, ...,m,

where vj is the jth fibre orientation, such that the parameters that represent the

fibre orientations within a voxel are θ1 ,.., θN ,φ1 ,.., φN. The likelihood of the

observed data is similar to the likelihood in the case of one fibre orientation (Sec-

tion 2.3) with the only difference being that the predicted Diffusion-Weighted

signal, µi, is as above. By the definition of the partial volume model in Section

1.6.1, f j is the fraction of the signal contributed by the jth fibre. We denote

f0 = 1−
N

∑
j=1

f j

so that
n

∑
j=0

f j = 1.
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Each of the f j must be positive but the sum of the f j can not exceed 1. Therefore

0 <

n

∑
j=1

f j < 1.

If there are two fibre orientations, then

0 < f1 + f2 < 1.

If we assume without loss of generality that f1 is greater than or equal to f2,

then we can write

0 < f2 ≤ f1 ≤ 1− f2 < 1.

If the likelihood of the observed data was maximised then transformations of

f1 and f2 would have to be used to ensure that

0 < f2 ≤ f1 < 1.

The following transformations were used

f ′1 = log
(

f1
1− f1

)

and

f ′2 = log
(

f2
f1 − f2

)
.

Samples where f1 + f2 > 1 are rejected within the MCMC algorithm.

Similar transformations were found in the case of N ≥ 3 so if the fibres are

ordered such that

fN < fN−1 < .... < f2 < f1
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then

f ′1 = log
(

f1
1− f1

)

and

f ′i = log
(

fi
fi−1 − fi

)
, i = 1, ...,N− 1.

3.3.2 Estimating the fibres in the partial volume model

When looking at real data, a method is needed to decide how many fibre orien-

tations to have in each voxel. One way would be to model each voxel using a

varying amount of fibre orientations, then decide how many fibre orientations

to have, by using the Bayesian information criterion (BIC) (Schwarz, 1978) or

Akaike information criterion (AIC) (Akaike, 1983). These are both asymptotic

approximations that rely on sufficiently large sample sizes, where the interpre-

tation of sufficiently large is not defined (Kass and Raftery, 1995). The AIC has

been shown to overestimate the number of parameters needed (Shibata, 1976,

Katz, 1981), while the BIC favours simpler models. However Findley (1991)

shows examples where the AIC works but not the BIC. For these reasons the

AIC and BIC are not very reliable estimates for inferring the number of fibre

orientations in a voxel; given that we only have 61 data points in general (Sec-

tion 1.4).

A solution that was proposed to implement model selection within the par-

tial volume model is Automatic Relevance Determination (ARD) (Behrens et

al., 2007). This is the method implemented in FSL (see Section 1.7.2).
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3.3.3 Automatic Relevance Determination prior

Automatic Relevance Determination (ARD) works by first fitting the most com-

plex model, and then forces any parameters that the data does not support to

zero. It does this by forcing the parameter’s value to zero in the posterior dis-

tribution with a very low variance, by using sparsity induced priors (MacKay,

1995). In the partial volume model these sparsity induced priors could be used

on the parameter fi to determine whether the ith fibre contributes to the signal.

Each parameter that is being considered, can have a prior distribution, whose

variance is unknown and whose mean is zero. If the variance is inferred to

be very low it will ensure that the parameter is forced to zero. If the variance is

large then it will allow the parameter to take any value. Wewill now investigate

ARD when it is applied to the partial volume model.

3.3.4 ARD applied to the partial volume model

We now illustrate how to impose an ARD prior for the parameters of the partial

volume model. In particular we need to assign a prior for fi, i ≥ 2 because

we assume that at least one fibre orientation exists. We will also ensure that the

sum of the fis is less than one by rejecting samples of fi where this constraint

doesn’t hold true. The prior for fi, i ≥ 2 is a Beta distribution with parameters

Beta(1, η). This distribution has its mode at zero. Then

fi|η ∼ Beta(1, η)

π(η) ∝ η−1
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where η follows an improper prior distribution with density proportional to

1/η. The imposed prior on fi is then derived by integrating η out.

π( fi) =
∫ ∞

0
π( fi |η)π(η)dη

=
∫ ∞

0

f 1−1
i (1− fi)

η−1

ηβ(1, η)
dη

=
∫ ∞

0
(1− fi)

η−1dη

=

[
(1− fi)

η−1

log(1− fi)

]∞

0

=
−1

(1− fi)log(1− fi)

where β(1, η) is the beta function. Then

π( fi) = − 1
(1− fi)log(1− fi)

.

When we plot the prior density for different values of fi, it can be seen that the

prior takes very high values when fi gets closer to 0 and slightly high values

when fi gets closer to 1, as in Figure 3.2.

The single-component Metropolis-Hastings MCMC algorithm can then be im-

plemented as in Section 1.8.1 to infer on the local parameters of the new poste-

rior distribution that takes into account the ARD priors for fi when i ≥ 2. The

other priors are the same as them in the partial volume model (see Section 2.3).

Behrens et al. (2007) suggests to threshold the fi at 0.05 within the Probabilistic

Tractography algorithm, such that if fi is less than 0.05 then we assume that the

corresponding fibre is not there. The value of 0.05 is arbitrary and this is the de-
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Figure 3.2: The implied ARD prior density for fi, π( fi) in the partial volume
model.

fault value in the FSL software (Section 1.7.2). Then all other fibres that remain

are considered and within a voxel we choose the fibre orientation that is most

parallel to the previous voxel’s fibre orientation to continue the tract. Thus the

weights of the fibres are ignored and also model uncertainty is ignored.

3.3.5 Examples of ARD applied to the partial volume model

Data were simulated from the partial volume model with one fibre orientation,

i.e. f2 = 0. We fitted a model with two fibre orientations and imposed an ARD

prior on f2. The graph in Figure 3.3 is the traceplot of the MCMC estimated val-

ues of f2. The MCMC mixing for f2 appears to be particularly bad, although at

some iterations it does seem to be suggesting that f2 = 0 because the accepted

samples of f2 are close to 0. The conclusions of whether the second fibre orien-

tation exists is very much dependent on the arbitrary threshold that is chosen

for f2.

Data were simulated with two fibre orientations such that θ1=0.5, θ2=0.5, φ1=1,

φ2=5, f1=0.5, f2=0.3, d=0.0015, S0=1.0 and τ=1000. Then the ARDprior was used
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Figure 3.3: Traceplot of the parameter estimates from the partial volumemodel
f2 simulated from the posterior distribution when using ARD pri-
ors within MCMC on a simulated dataset where f2 = 0.
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Figure 3.4: Traceplots of the parameter estimates from the partial volume
model (a) f1 and (b) f2 simulated from the posterior distribution
when using ARD priors within MCMC on a simulated dataset
where f2 6= 0.

on the parameter f2. The ARD method did not seem to work as demonstrated

in Figure 3.4. As we can see in the graphs the posterior implied by the ARD

prior is very bad at estimating the value of f2 in this case.

Although ARD is the method that is widely used to determine the number of

fibre orientations within a voxel, it has many issues. Firstly a value has to be

proposed where we decide whether fi is large enough to be included as a fi-

bre or not, the choice of the threshold is arbitrary. Furthermore the mixing in

random-walk MCMC can often be problematic when using the ARD prior. Fi-

nally the parameter that we use the ARD prior on is constrained to be within
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(0,1). The ARD is therefore not ideal and this was demonstrated by the exam-

ples in this section. Therefore we consider alternative methods in the section

below.

3.4 Marginal likelihood estimation using Thermo-

dynamic Integration

In the DW-MRI literature there have been attempts to use model selection meth-

ods such as in Freidlin et al. (2007) using the Bayesian Information Criteria for

comparing Diffusion Tensor models with simpler models and also Bretthorst et

al. (2004) to choose between models in baboon brains, but there does not seem

to be widely known attempts to do Bayesian model selection between partial

volume models with differing numbers of fibre orientations. Therefore in this

section we will investigate methods based on Thermodynamic Integration as a

way of estimating the marginal likelihood.

Recent work by Lartillot and Philippe (2006) and Friel and Pettit (2008), showed

that Thermodynamic Integrationwhich originated from the physics community

to compute the free energy difference between two molecular-dynamic systems

(Gelman and Meng, 1998) is one of the most promising methods for model se-

lection when compared with other available methods. Despite being promising

they have not been used yet in the context of the DW-MRI methods. The ap-

proaches are first illustrated with a basic example that has a known analytical

solution. They are then extended to compare the partial volume models with

varying numbers of fibres.
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3.4.1 Annealing-Melting Integration

A method that is based on ideas from Thermodynamic Integration was intro-

duced by both Lartillot and Philippe (2006) and Friel and Pettit (2008) indepen-

dently. Following the presentation of Friel and Pettit (2008), by introducing a

temperature parameter whichwe denote t, where t ∈ [0, 1], we define the power

posterior as

πt(θ|y) ∝ π(y|θ)tπ(θ) (3.4.1)

πt(θ|y) =
π(y|θ)tπ(θ)∫

θ
π(y|θ)tπ(θ)dθ

where π(y|θ) is the likelihood, π(θ) is the prior distribution and the normalis-

ing constant of πt(θ|y) is

z(y|t) =
∫

θ
π(y|θ)tπ(θ)dθ. (3.4.2)

From Equation (3.4.2) we derive

z(y|t = 0) =
∫

θ
π(θ)dθ = 1

and

z(y|t = 1) =
∫

θ
π(y|θ)π(θ)dθ

which is the marginal likelihood of the data.

Then the following identity can be derived

log(π(y)) = log
(
z(y|t = 1)
z(y|t = 0)

)
=
∫ 1

0
Eθ|y,t[log(π(y|θ))]dt (3.4.3)
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as follows

d

dt
log(z(y|t)) =

1
z(y|t)

d

dt
z(y|t)

=
1

z(y|t)
d

dt

∫

θ
π(y|θ)tπ(θ)dθ

=
1

z(y|t)
∫

θ
π(y|θ)tlog(π(y|θ))π(θ)dθ

=
∫

θ

π(y|θ)tπ(θ)

z(y|t) log(π(y|θ))dθ

= Eθ|y,t[log(π(y|θ))]

such that
d

dt
log(z(y|t)) = Eθ|y,t[log(π(y|θ))]. (3.4.4)

Then by integrating Equation (3.4.4) with respect to t we obtain the identity in

Equation (3.4.3). This identity can be used to approximate the logarithm of the

marginal likelihood.

Friel and Pettit (2008) suggested two methods for approximating the identity

in Equation (3.4.3). One approach involves obtaining estimates of both θ and

t from π(θ, t|y) by treating them both as random variables. An alternative

method first runs separate chains for different values of t. Values of θ are drawn

from the power posterior in Equation 3.4.1. Then these estimates are used along

with the trapezoidal rule over t to approximate log(π(y)). If t is discretised

such that 0 = t0 < t1 < t2 < ... < tn−1 < tn = 1 then the approximation is

log(π(y)) ≈
n−1

∑
i=0

(ti+1 − ti)
Eθ|y,ti+1

[log(π(y|θ))] + Eθ|y,ti [log(π(y|θ))]

2
(3.4.5)
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where

Eθ|y,ti [log(π(y|θ))] =
1

p− k + 1

p

∑
j=k

log(π(y|θi
j)) (3.4.6)

and θi
j is the jth MCMC estimate of the power posterior from the ith tempera-

ture. The MCMC will run for p iterations for n + 1 different temperatures.

Friel et al. (2013) recently proposed a method for calculating a more accurate

estimate to the logarithm of the marginal likelihood when using Annealing-

Melting Integration. In Equation (3.4.5) the trapezoidal rule is used to approxi-

mate the logarithm of the marginal likelihood. Instead the corrected trapezium

rule (Atkinson and Han, 2004), can be used to obtain a more accurate approxi-

mation with hardly any extra computational cost. The corrected trapezium rule

calculates an approximation to the integral of some function f between points

a and b as follows

∫ b

a
f (x)dx = (b− a)

[
f (b) + f (a)

2

]
− (b− a)3

12
f ′′(c),

where c is some point in the interval [a, b]. The first part of the approximation

is the same as the normal trapezium rule. We can use the fact that

f ′′(c) ≈ f ′(b) − f ′(a)
b− a

to obtain the corrected trapezium rule which is

∫ b

a
f (x)dx ≈ (b− a)

[
f (b) + f (a)

2

]
− (b− a)2

12
[ f ′(b) − f ′(a)]. (3.4.7)

Previously we needed to calculate Equation (3.4.3) to obtain the approximation

of the logarithm of the marginal likelihood. Instead if we wanted to approx-

imate Equation (3.4.3) using Equation (3.4.7) then f (x) = Eθ|y,t[log(π(y|θ))],

a = 0 and b = 1. By discretising the temperatures t we obtained Equation
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(3.4.5) for calculating the logarithm of the marginal likelihood. Similarly for the

corrected trapezium rule

log(π(y)) ≈
n−1

∑
i=0

(ti+1 − ti)

[
Eθ|y,ti+1

[log(π(y|θ))] + Eθ|y,ti [log(π(y|θ))]

2

]

−
n−1

∑
i=0

(ti+1 − ti)
2

12

[
dEθ|y,ti+1

[log(π(y|θ))]

dt
−

dEθ|y,ti [log(π(y|θ))]

dt

]
.

Friel et al. (2013) show that

d

dt
Eθ|y,tlog(π(y|θ)) = Vθ|y,t(log(π(y|θ))),

where Vθ|y,t(log(π(y|θ))) is the variance of the logarithm of the marginal like-

lihood with respect to the power posterior. This variance can be estimated at

minimal computational cost from the MCMC output.

Annealing-Melting Integration can be used to approximate the marginal like-

lihood, additionally we can use the corrected trapezium rule to obtain a more

accurate approximation. We will now describe another method based on Ther-

modynamic Intregration for approximating the marginal likelihood.

3.4.2 Importance Power Posterior

In the power posterior of the Annealing-Melting Integration method (Section

3.4.1) we could see that as we change temperatures we are slowly moving from

the prior when t = 0 to the posterior when t = 1. However the prior may be

very diffuse, therefore we introduce the power posterior in this section such that

we are moving from the proposal distribution q(θ) when t = 0 to the posterior

when t = 1. q(θ) needs to be a good approximation of the posterior distribution

so we choose it to be some multivariate normal distribution where the param-

eters are estimated using the Laplace approximation (Section 2.3.4). We now
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introduce a novel modification to the power posterior method such that we are

defining a new power posterior. We define

πt(θ|y) ∝ (π(y|θ)π(θ))t (q(θ))1−t .

where q(θ) is some distribution.

We derive the estimate to the logarithm of the marginal likelihood by first not-

ing that

z(y|t) =
∫

θ
(π(y|θ)π(θ))tq(θ)1−tdθ
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and then

d

dt
log(z(y|t))

=
1

z(y|t)
d

dt
z(y|t)

=
1

z(y|t)
d

dt

∫

θ
(π(y|θ)π(θ))tq(θ)1−tdθ

=
1

z(y|t) (
∫

θ
(π(y|θ)π(θ))t log(π(y|θ)π(θ))q(θ)1−tdθ

+
∫

θ
(π(y|θ)π(θ))t (−q(θ))1−tlog(q(θ))dθ)

=
∫

θ

(π(y|θ)π(θ))tq(θ)1−t

z(y|t) log(π(y|θ)π(θ))dθ

−
∫

θ

(π(y|θ)π(θ))tq(θ)1−t

z(y|t) log(q(θ))dθ

= Eθ|y,t[log(π(y|θ)π(θ))] − Eθ|y,t[log(q(θ))]

= Eθ|y,t[log(π(y|θ)π(θ)) − log(q(θ))]

= Eθ|y,t

[
log
(

π(y|θ)π(θ)

q(θ)

)]
.

Then by integrating both sides with respect to t, we obtain the identity

log(π(y)) = log
(
z(y|t = 1)
z(y|t = 0)

)
=
∫ 1

0
Eθ|y,t

[
log
(

π(y|θ)π(θ)

q(θ)

)]
dt.

Then using the same approach as Annealing-Melting Integration (Section 3.4.1)

we obtain

log(π(y)) ≈
n−1

∑
i=0

(ti+1 − ti)
Eθ|y,ti+1

[
log
(

π(y|θ)π(θ)
q(θ)

)]
+ Eθ|y,ti

[
log
(

π(y|θ)π(θ)
q(θ)

)]

2
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where

Eθ|y,ti

[
log
(

π(y|θ)π(θ)

q(θ)

)]
≈ 1

p− k + 1

p

∑
j=k

log

(
π(y|θi

j)π(θi
j)

q(θi
j)

)

where θi
j is the jth MCMC estimate of the power posterior from the ith temper-

ature. The MCMC will run for p iterations.

We would like to use the corrected trapezium rule (Section 3.4.1) in the Impor-

tance Power Posterior to get a potentially better estimate. By using a similar

method for calculating the corresponding estimate in Section 3.4.1, the extra

term that is required for the corrected trapezium rule is calculated by

d

dt
Eθ|y,t

(
log
(

π(y|θ)π(θ)

q(θ)

))
=
∫

θ
log
(

π(y|θ)π(θ)

q(θ)

)
d

dt
πt(θ|y)dθ.

By using the quotient rule for differentiation.

d

dt
πt(θ|y) = πt(θ|y)

(
log
(

π(y|θ)π(θ)

q(θ)

)
− Eθ|y,t

(
log
(

π(y|θ)π(θ)

q(θ)

)))
.

Then putting this back into the equation for d
dtEθ|y,t

(
log
(

π(y|θ)π(θ)
q(θ)

))
;

d

dt
Eθ|y,t

(
log
(

π(y|θ)π(θ)

q(θ)

))
= Eθ|y,t

(
log
(

π(y|θ)π(θ)

q(θ)

)2
)

− Eθ|y,t

(
log
(

π(y|θ)π(θ)

q(θ)

))2

= Vθ|y,t

(
log
(

π(y|θ)π(θ)

q(θ)

))
.
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The estimate with the added variance term is then

log(π(y)) ≈ 0.5
n−1

∑
i=0

(ti+1 − ti)

(
Eθ|y,ti+1

[
log
(

π(y|θ)π(θ)

q(θ)

)]

+Eθ|y,ti

[
log
(

π(y|θ)π(θ)

q(θ)

)])
−

n−1

∑
i=0

(ti+1 − ti)
2

12

[
Vθ|y,ti+1

[
log
(

π(y|θ)π(θ)

q(θ)

)]

−Vθ|y,ti

[
log
(

π(y|θ)π(θ)

q(θ)

)] ]
.

We now have an alternative method to Annealing-Melting Integration for ap-

proximating the marginal likelihood which may be better in cases where the

prior is very diffuse. We will now investigate a method that instead directly

estimates the logarithm of the Bayes factor.

3.4.3 Model-Switch Integration

When the Annealing-Melting Integration method (Section 3.4.1) is used to cal-

culate the logarithm of the Bayes Factor in favour of one model over another

we first approximate each model’s marginal likelihood and then use these to

calculate the Bayes factor,

K =
π(y|M0)

π(y|M1)
.

It is possible that the difference between the logarithm of the marginal likeli-

hoodsmay be small in comparison to the values of the logarithm of themarginal

likelihoods. For this reason a method was proposed by Lartillot and Philippe

(2006) which directly calculates the logarithm of the Bayes factor instead of first

approximating the two marginal likelihoods separately. This method is also

more computationally efficient as only one MCMC is run instead of two.

Suppose that there are two models that we wish to compare denoted M0 and
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M1. Also let’s denote the parameters that appear across both models as

θ = [θ0, θ1]

where θ0 are the parameters in M0 and θ1 are the parameters in M1. The like-

lihood for M0 is π(y|θ,M0) with prior π(θ|M0). The corresponding likelihood

and prior for model M1 are π(y|θ,M1) and π(θ|M1). A path which goes from

model M0 to model M1 is

πt(θ|y) ∝ [π(y|θ,M0)π(θ|M0)]
1−t[π(y|θ,M1)π(θ|M1)]

t

such that

πt(θ|y) =
[π(y|θ,M0)π(θ|M0)]

1−t[π(y|θ,M1)π(θ|M1)]
t

z(y|t)

where

z(y|t) =
∫

θ
[π(y|θ,M0)π(θ|M0)]

1−t[π(y|θ,M1)π(θ|M1)]
tdθ.

Then

z(y|t = 0) =
∫

θ
π(y|θ,M0)π(θ|M0)dθ

= π(y|M0)

and

z(y|t = 1) =
∫

θ
π(y|θ,M1)π(θ|M1)dθ

= π(y|M1).
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Then the following identity can be derived

log
(

π(y|M1)

π(y|M0)

)
= log

(
z(y|t = 1)
z(y|t = 0)

)

=
∫ 1

0
Eθ|y,t

[
log
(

π(y|θ,M1)π(θ|M1)

π(y|θ,M0)π(θ|M0)

)]
dt

by using

d

dt
log(z(y|t))

=
1

z(y|t)
d

dt
z(y|t)

=
1

z(y|t)
d

dt

∫

θ
[π(y|θ,M0)π(θ|M0)]

1−t[π(y|θ,M1)π(θ|M1)]
tdθ

=
1

z(y|t) (
∫

θ
(π(y|θ,M0)π(θ|M0))

1−t

(π(y|θ,M1)π(θ|M1))
tlog(π(y|θ,M1)π(θ|M1))dθ

−
∫

θ
(π(y|θ,M0)π(θ|M0))

1−t(π(y|θ,M1)π(θ|M1))
t

log(π(y|θ,M0)π(θ|M0))dθ)

= Eθ|y,t[log(π(y|θ,M1)π(θ|M1)] − Eθ|y,t[log(π(y|θ,M0)π(θ|M0)]

= Eθ|y,t

[
log
(

π(y|θ,M1)π(θ|M1)

π(y|θ,M0)π(θ|M0)

)]
.

Similarly to the Annealing-Melting Integration method we can use the trape-

zoidal rule to find an approximation to the logarithm of the Bayes factor, which
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is

log
(

π(y|M1)

π(y|M0)

)
≈ 0.5

n−1

∑
i=0

(ti+1 − ti)

(
Eθ|y,ti+1

[
log
(

π(y|θ,M1)π(θ|M1)

π(y|θ,M0)π(θ|M0)

)]

+Eθ|y,ti

[
log
(

π(y|θ,M1)π(θ|M1)

π(y|θ,M0)π(θ|M0)

)])

(3.4.8)

where

Eθ|y,ti

[
log
(

π(y|θ,M1)π(θ|M1)

π(y|θ,M0)π(θ|M0)

)]

≈ 1
p− k + 1

p

∑
j=k

log

(
π(y|θi

j,M1)π(θi
j|M1)

π(y|θi
j,M0)π(θi

j|M0)

)
. (3.4.9)

We would like to use the corrected trapezium rule (Section 3.4.1) to get a bet-

ter approximation when using Model-Switch Integration. By following the ap-

proach taken by Friel et al. (2013) to use the corrected trapezium rule within

Annealing-Melting Integration, we wish to find

d

dt
Eθ|y,t

[
log
(

π(y|θ,M1)π(θ|M1)

π(y|θ,M0)π(θ|M0)

)]

=
∫

log
(

π(y|θ,M1)π(θ|M1)

π(y|θ,M0)π(θ|M0)

)
d

dt
πt(θ|y)dθ.

We first must calculate

d

dt
πt(θ|y) =

d

dt

(π(y|θ,M0)π(θ|M0))
1−t(π(y|θ,M1)π(θ|M1))

t

z(y|t) .
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Then by using the quotient rule we calculate

d

dt
πt(θ|y) = πt(θ|y)

(
log
(

π(y|θ,M1)π(θ|M1)

π(y|θ,M0)π(θ|M0)

)

−Eθ|y,t

(
log
(

π(y|θ,M1)π(θ|M1)

π(y|θ,M0)π(θ|M0)

)))
.

If we put this into the equation to calculate d
dtEθ|y,t

[
log
(

π(y|θ,M1)π(θ|M1)
π(y|θ,M0)π(θ|M0)

)]
we

obtain the following approximation

d

dt
Eθ|y,t

[
log
(

π(y|θ,M1)π(θ|M1)

π(y|θ,M0)π(θ|M0)

)]
= Eθ|y,t

(
log
(

π(y|θ,M1)π(θ|M1)

π(y|θ,M0)π(θ|M0)

)2
)

−
(
Eθ|y,t

(
log
(

π(y|θ,M1)π(θ|M1)

π(y|θ,M0)π(θ|M0)

)))2

= Vθ|y,t

(
log
(

π(y|θ,M1)π(θ|M1)

π(y|θ,M0)π(θ|M0)

))
.

Then the new approximation for the logarithm of the Bayes factor in favour of

M0 over M1 is

log
(

π(y|M0)

π(y|M1)

)

≈
n−1

∑
i=0

(ti+1 − ti)
Eθ|y,ti+1

[
log
(

π(y|θ,M1)π(θ|M1)
π(y|θ,M0)π(θ|M0)

)]
+ Eθ|y,ti

[
log
(

π(y|θ,M1)π(θ|M1)
π(y|θ,M0)π(θ|M0

)]

2

−
n−1

∑
i=0

(ti+1 − ti)
2

12

[
Vθ|y,ti+1

(
log
(

π(y|θ,M1)π(θ|M1)

π(y|θ,M0)π(θ|M0)

))

−Vθ|y,ti

(
log
(

π(y|θ,M1)π(θ|M1)

π(y|θ,M0)π(θ|M0)

))]
.

We have reviewed three methods based on Thermodynamic Integration for es-

timating the logarithm of the Bayes factor. The first Annealing-Melting Integra-

tion (Lartillot and Philippe, 2006) estimates the logarithm of the marginal likeli-

hood. Annealing-Melting Integration may not work well if the prior is very dif-
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fuse, therefore we introduced Importance Power Posterior, which moves from

the proposal distribution when t = 0 to the posterior distribution when t = 1.

The final method that we reviewed is Model-Switch Integration (Lartillot and

Phillippe, 2006) which directly calculates the logarithm of the Bayes factor. It

was introduced because it is possible that the differece between the logarithm

of the marginal likelihoods may be small in comparison to the values of the log-

arithm of the marginal likelihoods. We then looked at a suggestion by Friel et

al. (2013) to apply the corrected trapezium rule when approximating the loga-

rithm of the marginal likelihood using Annealing-Melting Integration. We fi-

nally applied the corrected trapezium rule to Importance Power Posterior and

Model-Switch Integration. We will now investigate these methods on a toy ex-

ample before using them in the setting of partial volume models.

3.4.4 Simulation study on a toy example

We will now introduce an example where we can obtain an analytical solution

for the logarithm of the marginal likelihood. Then we will use this exact solu-

tion to investigate how good the estimates using the proposed methods based

on Thermodynamic Integration are.

Suppose that we have data and we want to answer the question whether they

come from aGamma distribution or an Exponential distribution. In additionwe

assume that the Gamma distribution’s shape parameter α is known and equal to

2, while its rate parameter β is assumed to be unknown. The rate parameter of

the Exponential distribution λ is also unknown. We can then execute model se-

lection using Annealing-Melting Integration (Section 3.4.1), Importance Power

Posterior (Section 3.4.2) and Model-Switch Integration (Section 3.4.3) to calcu-

late estimates of the Bayes factor, by estimating the marginal likelihoods. In this

example we will denote M0 to be the Exponential distribution while M1 will be
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the Gamma distribution. We can obtain analytically the marginal likelihoods

because we have chosen conjugate priors, which will allow us to see how well

the methods for approximating the marginal likelihoods work before applying

them on the partial volume models.

In more detail we denote

θ = [λ, β]

π(y|θ,M0) = λnexp
(
−λ ∑ yi

)

π(θ|M0) = λθexp(−λθλ)

π(y|θ,M1) =
β2n

Γ(2)n
exp(−∑ yiβ)

n

∏
i=1

yi

π(θ|M1) = λβexp(−βλβ).

To calculate the analytical solution to the marginal likelihood in the case of the

Gamma distribution,

π(y|M1) =
∫

β
π(y|θ,M1)π(θ|M1)dβ

=
∫

β
λβexp(−λββ)

βnα

Γ(α)n
exp

(
−

n

∑
i=1

yiβ

)
n

∏
i=1

yα−1
i dβ

=
λβ

Γ(α)n

n

∏
i=1

yα−1
i

∫

β
exp

(
−β(λβ +

n

∑
i=1

yi)

)
βnαdβ.

Then

π(y|M1) =
λβ

Γ(α)n
(

n

∏
i=1

yα−1
i )

Γ(nα + 1)
(λβ + ∑

n
i=1 yi)

nα+1 .
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Similarly for the marginal likelihood of the Exponential distribution

π(y|M0) =
∫

π(y|θ,M0)π(θ|M0)dλ

= λθ

∫
λnexp(−λ(∑ yi + λθ))dλ

= λθ
Γ(n + 1)

(∑ yi + λθ)n+1 .

When we investigated a few examples using the Model-Switch Integration es-

timate we observed that the estimate of Equation (3.4.9) behaves very strangely

when t = 0 and t = 1. The Expected deviance contributes to our overall Model-

Switch Integration estimate of the logarithm of the Bayes factor. After further

investigation when t = 0 and t = 1, the power posterior is

πt=0(θ|y) ∝ π(y|θ,M0)π(θ|M0)

and

πt=1(θ|y) ∝ π(y|θ,M1)π(θ|M1).

Denote θ0 as the parameters that are only in M0 and not in M1 and similarly θ1

as the parameters that are only in M1 and not in M0. Then within the MCMC,

for the temperatures t = 0 and t = 1, the value of πt=0(θ|y) does not depend

on θ1 and the value of πt=1(θ|y) does not depend on θ0, but the approximation

to log
(

π(y|M0)
π(y|M1)

)
depends on θ0 when t = 1 and depends on θ1 when t = 0.

However within MCMCwhen t = 0 any value of θ1 will be accepted and when

t = 1 any value of θ0 will be accepted. This could then greatly affect the value of

the approximation to the logarithm of the Bayes Factor in a bad way. Therefore

in the examples that follow we will use the approximation we had before and a
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modified approximation of

log
(

π(y|M0)

π(y|M1)

)

≈ 0.5
n−2

∑
i=1

(ti+1 − ti)

(
Eθ|y,ti+1

[
log
(

π(y|θ,M1)π(θ|M1)

π(y|θ,M0)π(θ|M0)

)]

+Eθ|y,ti

[
log
(

π(y|θ,M1)π(θ|M1)

π(y|θ,M0)π(θ|M0)

)])
.

From this approximation we will see how the t = 1 and t = 0 terms affect the

original approximation (Equation 3.4.8). In the alternative approximation we

can choose the lower value of t to be close to 0 and the higher value of t to be

close to 1, e.g. 0.01 and 0.99, such that we are approximating the logarithm of

the Bayes factor by

log
(

π(y|M1)

π(y|M0)

)
= log

(
z(y|t = 1)
z(y|t = 0)

)

=
∫ 1

0
Eθ|y,t

[
log
(

π(y|θ,M1)π(θ|M1)

π(y|θ,M0)π(θ|M0)

)]
dt

≈
∫ 0.99

0.01
Eθ|y,t

[
log
(

π(y|θ,M1)π(θ|M1)

π(y|θ,M0)π(θ|M0)

)]
dt.

One thing that we can modify in the algorithm is the spacing between the tem-

peratures, t. Each temperature has the form ti = ( i
n )c, for i = 0 : n, where n is

the number of points available. The value of c can be adjusted, as c increases the

approximation using Annealing-Melting Integration should get better for the

following reason. As shown in Friel and Pettitt (2008), the choice of prior distri-

bution and its parameters can greatly affect the value of Eθ|y,t[log(π(y|θ))] for

values of t close to 0.
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The Monte Carlo standard error for Eθ|y,ti [log(π(y|θ))] is denoted by si. The

overall Monte Carlo standard error for the approximation of the logarithm of

the marginal likelihood in Equation (3.4.5) is

√√√√ (t2 − t1)2

2
s21 +

n−1

∑
i=2

(ti+1 − ti−1)2

2
s2i +

(tn − tn−1)2

2
s2n. (3.4.10)

If the spacing between temperatures which are closer to 0 is made smaller then

it should help to decrease the overall Monte Carlo standard error.

3.4.5 Results

We will simulate 50 datasets of size 100 from the Gamma(2, β) distribution in

which we showed there is an analytical answer to the logarithm of the marginal

likelihood in Section 3.4.4. Then by using Annealing-Melting Integration, Im-

portance Power Posterior and Model-Switch Integration we will compare the

estimates of the logarithm of the Bayes factor in favour of the Gamma distribu-

tion over the Exponential distribution with the analytical solution. We will alter

the spacing in the temperatures and also change the prior parameters such that

we can see how these affect the estimation. We will also see how the corrected

trapezium rule affects our three methods. After an investigation we found that

temperature spacing of c = 5 appears to work well when using Annealing-

Melting Integration. The choice of temperature spacing c will be dependent on

the problem, however Friel and Pettitt (2008) found that in general cworks well

when its value is between 3 and 5. A plot of t against the Expected deviance

(Equation 3.4.6) is a good way of spotting whether the choice of temperature

spacing is good by looking at how smooth the plotted curve is. In Model-

Switch Integration the estimate without the extreme temperature values and

Importance Power Posterior worked well when c = 1.
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To assess the efficiency of the estimators we compare their mean squared error

(MSE). If we denote the analytical logarithm of the Bayes factor to be π(y), the

estimate without the added variance term π̂(y) and the other estimate with the

added variance term to be π̃(y), then the first squared error (SE) which we will

call SE1 is

SE1 = (π̂(y) − π(y))2

while the second SE, SE2 is

SE2 = (π̃(y) − π(y))2.

We then use these definitions of the squared error to obtain the MSE by calcu-

lating the mean of the SEs.

We then estimated the logarithm of the Bayes factor in favour of the Gamma

distribution over the Exponential distribution using the Annealing-Melting In-

tegration, Model-Switch Integration and Importance Power Posterior estimates

and compared these to the true value obtained analytically by calculating the

MSE, which is shown in Table 3.1 for different spacings and different methods.

The boxplots of the SE are in Figure 3.5. It can be seen that in all cases the

approximation with the added variance term is better than the original approx-

imation.

From the boxplots of the SE we can see that the best estimate is the Annealing-

Melting Integration estimate when λθ = λβ = 1. Both of the estimates when

using the Importance Power Posterior are extremely good. The Annealing-

Melting Integration estimate is not as good when λθ = λβ = 0.05, although

the MSE is still relatively small. The Model-Switch Integration estimates are

worse than the other two methods. However they are still not bad.
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Figure 3.5: The SE for the Gamma distribution toy example (Section 3.4.5) in
(a) Importance Power Posterior, (b) Model-Switch Integration and
(c) comparing Importance Power Posterior and Annealing-Melting
Integration.
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λθ = λβ = 1 λθ = λβ = 0.05
A-MI c=5 11.0518 (0.0004) 11.5110(0.0347)

A-MI added variance term c=5 11.0521 (0.0004) 11.5096 (0.0342)
IPP c=1 10.9811 (0.0054) 11.4592 (0.0051)

IPP added variance term c=1 11.0690 (0.0007) 11.5483 (0.0011)
M-S c=1 10.5083 (0.3515) 10.9738 (0.3555)

M-S c=1 added variance term 10.5121 (0.3306) 10.9780 (0.3380)

Table 3.1: The estimate of the logarithm of the Bayes factor in favour of
the Gamma distribution over the Exponential distribution and (the
MSE)when using different prior parameters and when using the dif-
ferent power posterior methods with and without the added vari-
ance term to estimate the logarithm of the Bayes factor in favour
of the Gamma distribution over the Exponential distribution. A-
MI denotes Annealing-Melting Integration, IPP denotes Importance
Power Posterior and M-S denotes Model-Switch Integration. Here
50 datasets of size 100 were simulated from the Gamma distribution
distribution with β = 1. The analytical solution of the logarithm
of the Bayes factor in favour of the Gamma distribution is 11.0510
when λθ = λβ = 1 and 11.5266 when λθ = λβ = 0.05.

For comparison purposes we looked at the estimate for the logarithm of the

Bayes factor when using the Laplace approximation of the posterior to produce

samples to be used in the posterior harmonic mean estimator (Section 3.2.2)

which is

π(y|Mk) =
J

∑
J
j=1

1
π(y|θ j

k,Mk)

.

The analytical logarithm of the Bayes factor in favour of the Gamma distribu-

tion is 15.4987 when λθ = λβ = 1 and 15.9508 when λθ = λβ = 0.05. We

produced 10000 samples from the Laplace approximation of a dataset of size

100 from the Gamma distribution, and we obtained the estimates of the Bayes

factor to be 17.7661 when λθ = λβ = 1 and 16.2298 when λθ = λβ = 0.05.

Thus when λθ = λβ = 0.05 the estimate appears to be very good, whilst when

λθ = λβ = 1 the estimate is not very good.

As a second example we simulated 50 datasets of size 100 from the Exp(1) dis-

tribution. Again we can obtain an analytical answer to the logarithm of the
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λθ = λβ = 1 λθ = λβ = 0.05
A-MI c=5 -18.7218 (0.0002) -17.7427(0.0201)

A-MI added variance term c=5 -18.7205 (0.0002) -17.7438 (0.0197)
IPP c=1 -18.7196 (0.0002) -17.7573 (0.0002)

IPP added variance term c=1 -18.7108 (0.0002) -17.7481 (0.0004)
M-S c=1 -18.6735 (0.0725) -17.7428 (0.0921)

M-S c=1 added variance term -18.6649 (0.0625) -17.7432 (0.0787)

Table 3.2: The estimate of the logarithm of the Bayes factor in favour of
the Gamma distribution over the Exponential distribution and (the
MSE)when using different prior parameters and when using the dif-
ferent power posterior methods with and without the added vari-
ance term to estimate the logarithm of the Bayes factor in favour
of the Gamma distribution over the Exponential distribution. A-
MI denotes Annealing-Melting Integration, IPP denotes Importance
Power Posterior and M-S denotes Model-Switch Integration. Here
50 datasets of size 100 were simulated from the Exponential distribu-
tion distribution with λ = 1. The analytical solution of the logarithm
of the Bayes factor in favour of the Gamma distribution is -18.7169
when λθ = λβ = 1 and -17.7634 when λθ = λβ = 0.05.

marginal likelihood in Section 3.4.4. We will compare the analytical solution

of the logartihm of the Bayes factor in favour of the Gamma distribution over

the Exponential distribution with the estimates obtained by using Annealing-

Melting Integration, Importance Power Posterior and Model-Switch Intregra-

tion. We will again look at how the prior parameters and the added variance

term in the corrected trapezium affect our results. We will then calculate the

mean squared error to test how close the estimates are to the analytical solution.

The values of the estimated logarithm of the Bayes factor in favour of the Gamma

distribution over the Exponential distribution and the MSE can be found in Ta-

ble 3.2 whilst the boxplots of the SE are in Figure 3.6. We can see that the meth-

ods work as well on the Exponential distribution datasets as they did in the case

of the Gamma distribution.

In this section we have showed that all three of our methods for estimating the

logarithm of the marginal likelihood and the logarithm of the Bayes factor are
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Figure 3.6: The SE for the Exponential distribution toy example (Section 3.4.5)
in (a) Importance Power Posterior, (b) Annealing-Melting Integra-
tion and (c) Model-Switch Integration.
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good in the toy example where we have an analytical solution to compare with.

We have also found that the added variance term in the corrected Trapezium

rule improves the approximation. In the next section we will use these methods

to estimate the Bayes factor when comparing partial volume models, where we

will not have an analytical solution.

3.5 Thermodynamic Integration applied to the par-

tial volume model

In Section 3.4 we showed that in a simple Exponential vs Gamma distribu-

tion example, Annealing-Melting Integration, Importance Power Posterior and

Model-Switch Integration are very good at approximating the logarithm of the

Bayes factor. Therefore this is now extended to the problem of model selection

between the number of fibres in a voxel in the partial volume model. Initially

we discuss how to get initial parameter estimates for the partial volume model

with two fibre orientations as until now we have mainly focused on the partial

volume model with one fibre orientation. We can also consider having more

than two fibre orientations in a voxel which is discussed further in Section 5.3.

Then the methods based on Themodynamic Integration will be described for

the partial volume model.

We will now be working with the partial volume model with two fibre orien-

tations. Therefore we want to find methods for obtaining good initial param-

eter estimates in this model which will help us in implementing an efficient

MCMC algorithm. Previously when assuming that there is only one fibre ori-

entation (e.g. fk = 0 for k ≥ 2), the values of the parameters in the partial

volume model are initialised by first using metrics obtained from the estimate

of the Diffusion Tensor (Section 1.5). These metrics are then used to initialise
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the Laplace approximation for the parameters. In particular the value of the

Fractional Anisotropy (FA) (Section 1.5) which is a measure of the anisotropy of

diffusion in a voxel, is used as the initial value of f1 as it gives an approximate

measure of the white matter in a voxel. From the model with one fibre orienta-

tion to the model with two fibre orientations the additional parameters are θ2,

φ2 and f2. To obtain an initial estimate for f2, three solutions are proposed:

Method 1 :

Split the FA equally by setting

f1 = FA/2

and

f2 = FA/2.

Method 2 :

The FA can be separated into linear, planar and spherical measures denoted cl,

cp and cs which are taken from the DT literature (Cortez-Conradis et al., 2013)

and sum to one. In more detail by using the eigenvalues a1, a2 and a3 that we

derive from the Diffusion Tensor (see Section 1.5)

cl =
a1 − a2

a1 + a2 + a3
, a1 ≫ a2 ≈ a3,

cp =
2(a2 − a3)

a1 + a2 + a3
, a1 ≈ a2 ≥ a3

and

cs =
3a3

a1 + a2 + a3
, a1 ≈ a2 ≈ a3.

Different combinations of these measures are then used to assign values for f1
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and f2. As an example we can estimate f1 to be the linear measure of the FA

such that the estimate is
cl

cl + cp + cs
FA.

Method 3 :

Split the FA by using the values of the eigenvalues from the Diffusion Tensor so

that

f1 =
a1

a1 + a2 + a3
FA

and

f2 =
a2

a1 + a2 + a3
FA.

After simulating different datasets from the partial volume model and investi-

gating the three methods, Method 3 seemed to give consistently good estimates.

Therefore this is used to obtain estimates for f1 and f2 throughout the rest of

this chapter. Then for θ1, θ2, φ1 and φ2, we just use the eigenvectors which cor-

respond to a1 and a2, so that the two eigenvectors are v1 = [v1(x) v1(y) v1(z)]
T

and v2 = [v2(x) v2(y) v2(z)]
T . Then by using the definition of the direction

vector v in Section 1.6.1 the initial estimates are

θ1 = cos−1(v1(z)),

θ2 = cos−1(v2(z)),

φ1 = tan−1
(
v1(y)

v1(x)

)
,
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and

φ2 = tan−1
(
v2(y)

v2(x)

)
.

Alongside Method 3 we use Algorithm 10 to obtain a good Laplace approxima-

tion.

Algorithm 10 Calculating the Hessian
1: Calculate the Laplace approximation for the local parameters of the partial

volume model in each voxel by starting with the eigenvectors that corre-
spond to the two highest eigenvalues from the DT approximation to esti-
mate the values of θ1, φ1, f1, θ2, φ2 and f2.

2: For each voxel test if the Hessian matrix is positive semi-definite. If it isn’t
then for that voxel initialise the Laplace approximation using the estimates
of θ1, φ1, f1, θ2, φ2 and f2 that are obtained from the eigenvectors that corre-
spond to the highest eigenvalue and lowest eigenvalue.

3: Retest the remaining voxels to see if the Hessian matrix is positive semi-
definite, if not continue by using the DT approximation corresponding to
the two lowest eigenvalues to obtain estimates for θ1, φ1, f1, θ2, φ2 and f2.

4: If we have still not found an appropriate Hessian matrix then continue the
algorithm using various different starting values for θ1, φ1, f1, θ2, φ2 and f2.

3.5.1 Implementing the methods in the partial volume model

A difference between the MCMC algorithms that we will use to calculate the

estimate of the Bayes factor and the MCMC algorithms that we used in Chapter

2 is that we must use the full likelihood and priors when estimating the Bayes

factor as this is a requirement of the methods based on Thermodynamic Inte-

gration. Therefore we must use the posterior before τ is integrated out that is

π(ω̃, τ|y) described in Section 2.3. We then need to obtain good initial parame-

ter estimates for all of the parameters including τ by using the Laplace approx-

imation. We obtain an approximation for ω̃, which denotes all the parameters

except τ, by using the Laplace approximation as in Section 2.3.4 and we can

note that the distribution of τ|ω̃,y is Gamma with parameters α and β (see Ap-
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pendix D). Therefore we can approximate the initial value of τ by obtaining the

mean of the Gamma distribution. The Hessian matrix is then calculated numer-

ically by using the obtained values of τ and ω̃.

To apply this all to the partial volume model, first we denote M0 as the partial

volume model with one fibre orientation, while M1 is the partial volume model

with two fibre orientations. The parameter vector is defined to be

θ = (θ1, φ1, f1, θ2, φ2, f2, d, S0, τ).

Further the prior distributions are

π(θ|M0) ∝ |sin(θ1)|τα0−1exp(−β0τ)

and

π(θ|M1) ∝ |sin(θ1)||sin(θ2)|τα0−1exp(−β0τ).

π(y|θ,M0) and π(y|θ,M1) are the likelihoods for the partial volume model

that were defined in Section 2.3. The Annealing-Melting Integration (Section

3.4.1), Model-Switch Integration (Section 3.4.3) and Importance Power Posterior

(Section 3.4.2) methods can then be implemented. We will now attempt these

methods on simulated datasets to determine the difference in the estimates for

the logarithm of the Bayes factor that are obtained.

3.5.2 An example using data with one fibre orientation

First we simulate data from the partial volume model with one fibre orientation

with parameter values of θ = 1, φ = 1, f = 0.5, d = 0.00008, S0 = 100 and τ = 1

so that the true model is M0. We use 101 temperatures in all the methods. The

estimates of the logarithm of the Bayes factor in favour of the partial volume

model with two fibre orientations over the partial volume model with one fibre
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log(BF) log(BF) added variance term
IPP 1.3552 1.3396
M-SI -2.4340 -2.7032
A-MI -1.8163 -2.0233

Table 3.3: The estimates of the logarithm of the Bayes factor if favour of the
partial volume model with two fibre orientations (M1) over the par-
tial volume model with one fibre orientation (M0). The estimates are
obtained using the Annealing-Melting Integration (A-MI) method
with spacing c = 5, the Model-Switch Integration (M-SI) method
with spacing c = 1 and the Importance Power Posterior (IPP) esti-
mate with spacing c = 1. The estimates with the extra variance term
are also included. The data is simulated from the partial volume
model with one fibre orientation.

orientation are in Table 3.3.

The estimate when using Importance Power Posterior is in favour of the partial

volume model with two fibre orientations. Annealing-Melting Integration and

Model-Switch Integration are in favour of the partial volume model with one

fibre orientation. Therefore we tend to believe that the Model-Switch Integra-

tion and Annealing-Melting Integration estimates are better in this case.

We then see if the posterior harmonic mean estimator that is defined in Sec-

tion 3.2.2 is a good estimator of the logarithm of the Bayes factor in favour of

the partial volume model with two fibre orientations over the partial volume

model with one fibre orientation. We use the Laplace approximations of the

partial volume models with one and two fibre orientation to generate samples.

We then use these samples within the estimate. The estimate of the logarithm

of the marginal likelihood for the partial volume model with one fibre orien-

tation is -95.9547. The estimate of the logarithm of the marginal likelihood for

the partial volume model with two fibre orientations is -165.3694. Therefore the

estimate of the logarithm of the Bayes factor in favour of the partial volume

model with two fibre orientations is -69.4147. We clearly see that the estimate

using the harmonic mean estimator is completely different from the Thermo-
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log(BF) log(BF) added variance
IPP c=1 1.5165 2.3474
M-SI 1.4075 1.6049
A-MI 0.7895 1.404

Table 3.4: The estimates of the logarithm of the Bayes factor when using
the Importance Power Posterior method with spacing c = 1, the
Annealing-Melting Integration (A-MI) method with spacing c = 5
and the Model-Switch Integration (M-SI) method with spacing c =
1. The estimates with the extra variance term are also included. The
data is simulated from the partial volume model with two fibre ori-
entations.

dynamic Integration estimates. The estimates using the Thermodynamic Inte-

gration methods seem more realistic, thus from now we concentrate on these

methods.

3.5.3 An example using data with two fibre orientations

We now simulate data from the partial volume model with two fibre orienta-

tions such that M1 is the true model. The values of the parameters are f1 = 0.4,

f2 = 0.2, θ1 = 1, θ2 = 1.5, φ1 = 1, φ2 = 0.4, d = 0.00008, S0 = 100 and

τ = 1. All the estimates of the logarithm of the Bayes factor when using 101

temperatures are compared in Table 3.4. We see that all three methods are in

support of the model with two fibre orientations and that the estimates using

Model-Switch Integration and Annealing-Melting Integration are quite similar

when we include the added variance term.

3.5.4 A second example with two fibre orientations

We finally simulate data from the partial volume model with two fibre orien-

tations and a fairly large value of d (Section 1.6.1) to see how this affects the

estimates. The values of the parameters are f1 = 0.2, f2 = 0.2, θ1 = 1, θ2 = 1.5,

φ1 = 1, φ2 = 0.4, d = 0.001, S0 = 100 and τ = 1. A summary of the estimates

for the logarithm of the Bayes factor in favour of the partial volume model with
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log(BF) log(BF) added variance
IPP 50.1390 50.1390
A-MI 54.0208 51.8062
M-SI 51.7417 51.9671

Table 3.5: The estimates of the logarithm of the Bayes factor when using the
Importance Power Posterior with spacing c = 1, Annealing-Melting
Integration (A-MI) method with spacing c = 5 and the Model-
Switch Integration (M-SI) method with spacing c = 1. The estimates
with the extra variance term are also included. The data is simulated
from the partial volume model with two fibre orientations.

two fibre orientations when using 101 temperatures are in Table 3.5.

The obtained estimates are also very close to each other showing that there is

not much difference in the three methods. The obtained estimates are strongly

in support of the model with two fibre orientations as expected.

3.5.5 A simulation study using Model-Switch Integration

After investigating a few simulated datasets, it appears that if d is small then

the Importance Power Posterior estimate is not very good due to the Laplace

approximation not being very good in this case. We decided that the best Ther-

modynamic Integration method to use is Model-Switch Integration as it is just

as good at Annealing-Melting Integration but was only introduced because of

problems that can sometimes occur in Annealing-Melting Integration. We will

now try Model-Switch Integration on various datasets with different numbers

of temperatures and different values of τ to see how they affect the results. In

DTI the signal to noise ratio of the signal corresponding to b = 0 should be at

least 20 to obtain good estimates (Lagana et al., 2010). Therefore if S0 is small

we will only obtain good estimates if the precision τ is large.
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τ = 0.5 τ = 1 τ = 2
51 temperatures -2.2843 -3.1889 -2.0742

51 temperatures added variance -2.3079 -3.2782 -2.1477
101 temperatures -1.8396 -2.6907 -2.0311

101 temperatures added variance -1.8226 -2.7287 -2.0253
201 temperatures -1.6827 -2.9290 -1.0878

201 temperatures added variance -1.6672 -2.9377 -1.0847

Table 3.6: The estimates of the logarithm of the Bayes factor in favour of the
partial volume model with two fibre orientation over the partial vol-
ume model with one fibre orientation using Model-Switch Integra-
tion. The datasets are simulated from the partial volume model with
one fibre orientation for various values of τ. We use different num-
bers of temperatures in the estimation and compare the effect of the
extra variance term in the estimate.

3.5.5.1 Model-Switch Integration on datasets with one fibre orientation

The dataset from the partial volumemodel that we investigate has the following

parameters, θ1 = 1, φ1 = 1, f1 = 0.7, d = 1
12000 and S0 = 100. Three datasets will

be simulated, with varying values of τ which will be 0.5, 1 and 2. The spacing

of the temperatures will be equal and we will look at the cases where there are

51, 101 and 201 temperatures. The results are in Table 3.6. We see that all of the

estimates are in favour of the model with one fibre orientation. The noise and

number of temperatures varies the estimates, however they are quite similar to

each other. The number of temperatures affects the approximation greatly in

the case when τ = 2.

3.5.5.2 Model-switch Integration on a dataset with two crossing fibres

In this example a dataset from the partial volume model with two fibre orienta-

tions is looked at that could potentially have the problem of crossing fibres due

to f1 being equal to f2 (Section 3.1). The parameter values are θ1 = 1, θ2 = 1.5,

f1 = 0.2, φ1 = 1, φ2 = 0.4, f2 = 0.2, d = 1
12000 and S0 = 100. The values of τ will

again be 0.5, 1 and 2. The results are in Table 3.7.
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τ = 0.5 τ = 1 τ = 2
51 temperatures original -2.0263 -0.6872 2.9097
51 temperatures new -2.0223 -0.6328 3.2338

101 temperatures original -2.3150 0.6237 2.7692
101 temperatures new -2.3550 0.6416 2.8336

201 temperatures original -2.3398 0.3616 2.6745
201 temperatures new -2.3245 0.1314 2.7212

Table 3.7: The estimates of the logarithm of the Bayes factor in favour of the
partial volume model with two fibre orientation over the partial vol-
ume model with one fibre orientation using Model-Switch Integra-
tion. The datasets are simulated from the partial volume model with
two fibre orientations for various values of τ. We use different num-
bers of temperatures in the estimation and compare the effect of the
extra variance term in the estimate.

In the results we see that when τ = 2 all of the estimates are in favour of the

partial volume model with two fibre orientations. However when τ = 1 the es-

timates when using 51 temperatures are in favour of the partial volume model

with one fibre orientation, while when τ = 0.5 all estimates are in favour of

the partial volume model with one fibre orientation. Therefore we can see the

effect of noise and the number of temperatures on the estimated logarithm of

the Bayes factor using Model-Switch Integration. It is expected that when there

is more noise and when there are less temperatures the estimation will not be

as good which we have demonstrated in this example. This example motivates

the use of FPT in Section 3.6 as we have shown that the Bayes factor may be in

favour of the incorrect model in cases when we have crossing fibres within a

voxel. FPT provides a solution by including model uncertainty within Tractog-

raphy.

3.5.5.3 Model-switch Integration on a dataset with two fibre orientations

In this example a dataset from the partial volume model with two fibre orienta-

tions was simulated where f1 6= f2. The true values of the parameter are θ1 = 1,

φ1 = 1, f1 = 0.4, θ2 = 1.4, φ2 = 2, f2 = 0.3, d = 1
12000 and S0 = 100. The values

of τ are 0.5, 1 and 2. The results of the Model-Switch Integration estimates are
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τ = 0.5 τ = 1 τ = 2
51 temperatures original -0.7614 12.5076 39.0341
51 temperatures new -0.7507 12.6190 39.7734

101 temperatures original -0.6290 13.4871 38.3061
101 temperatures new -0.6280 14.1909 38.4760

201 temperatures original 2.5329 13.3712 39.0494
201 temperatures new 2.5260 13.4160 39.1979

Table 3.8: The estimates of the logarithm of the Bayes factor in favour of the
partial volume model with two fibre orientation over the partial vol-
ume model with one fibre orientation using Model-Switch Integra-
tion. The datasets are simulated from the partial volume model with
two fibre orientations for various values of τ. We use different num-
bers of temperatures in the estimation and compare the effect of the
extra variance term in the estimate.

in Table 3.8 The results are mainly strongly in favour of the model with two

fibre orientations. However when τ = 0.5, the estimates with 51 and 101 tem-

peratures are in favour of the model with one fibre orientation. However the

estimates that uses more temperatures are in favour of the correct model.

We have seen the importance of noise and the number of temperatures when

using Model-Switch Integration. In real data we will not be able to control the

value of τ but we can control the number of temperatures. When choosing the

number of temperatures we will have to weigh the benefit of having more tem-

peratures with the extra computational cost. The computational cost increases

proportionally with the number of temperatures. Now that we have got meth-

ods for calculating the estimate of the logarithm of the Bayes factor, wewill now

apply this to implement Fully Probabilistic Tractography. We would like to do

this so that model uncertainty can be taken into account in Tractography.

3.6 Fully Probabilistic Tractography

Now that we can obtain a good estimate for the Bayes factor it is possible to

calculate the probability of choosing a certain model given the data (Kass and
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Raftery, 1995). Themethod is very simple; suppose that there are k+ 1 proposed

models which are denoted M0, M1, M2,..., Mk. Then the Bayes factor can be

calculated in favour of Mj against M0, such that we have β00=1, β10, β20,...,βk0.

Further let αj=π(Mj)/π(M0) be the prior odds for Model j against Model 0.

Then

π(Mj|y) =
αjβ j0

∑
K
r=0 αrβr0

is derived by comparing Mj with M0 and weighting this against all the other

models compared with M0. αj allows us to add in information about the plaus-

ability of competing models. Now using these probabilities the Tractography

algorithm when there are two models to choose from, M0 and M1, is defined in

Algorithm 11. We focus on the case when K = 1 because in this chapter we will

be looking at model selection when there are two models.

Algorithm 11 Fully Probabilistic Tractography
1: Choose a voxel in our starting region that we will start in. We will need

the values of π(M0|y) and π(M1|y) within this voxel so we will have to
estimate the Bayes factor in favour of M1 over M0.

2: Sample a value, u1 such that u1 ∼ U(0, 1). If u1 < π(M0|y) choose the par-
tial volume model with one fibre orientation otherwise choose the partial
volume model with two fibre orientations.

3: From the model we have chosen, Mk, get a sample from π(θk|y,Mk).
4: From θk look at all the fi values and by generating some u2 from U(0, 1)

choose the fibre orientation based on the weights of the fi.
5: Go back to Step 1, and treat the current voxel we are in as the voxel to start.

We will continue these steps until the stopping conditions are reached.

If we assume that all the models are equally likely such that π(M0) = π(M1) =

... = π(MK), then αj = 1. It is very easy to extend this algorithm to when there

are more than two models to choose from. In this example it is a requisite that

we have samples from both posterior distributions in advance.
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3.6.1 FPT Example 1

A 3D dataset was simulated, where the data in each voxel is simulated from

the partial volume model with one fibre orientation. The dataset had 11 units

in the x direction, 3 units in the y direction and 3 units in the z direction, such

that in total there are 99 voxels. There is a tract that has knots at (1.5, 1.5, 1.5),

(3.0, 2.7, 1.3), (5.0, 1.5, 0.7), (7.0, 2.1, 0.5) and (8.0, 1.5, 0.9). We will try to recon-

struct this tract as close as possible by using Fully Probabilistic Tractography.

For each of the 99 voxels we assumed S0 = 100 and d = 1
12000 which was consis-

tent with earlier values of parameters. In a voxel where the tract passes through

the value of f1 in that voxel is set to be 0.7. Otherwise the f1 value is set to 0.2.

The precision in all voxels is τ = 1. If the tract passes through a voxel the value

of (θ, φ) for that voxel is chosen such that it corresponds to the fibre orientation,

otherwise the value of (θ, φ) is chosen randomly.

Once the dataset was simulated, a separate Laplace approximation was ob-

tained for each of the 99 voxels, this helps when MCMC is implemented to

calculate the Bayes factor using the Model-Switch Integration method (Section

3.4.3). Also when implementing MCMC, for each voxel, the parameter esti-

mates from πt=0(θ|y) and πt=1(θ|y) must be saved as these correspond to the

parameter estimates for the posterior distribution of the two models.

Once Model-Switch Integration had been implemented the following were cal-

culated

π(M0|y) =
a0β00

α0β00 + α1β10

=
1

1+ β10
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because we assume that β00 = α0 = α1 = 1. Also

π(M1|y) = 1− π(M0|y)

= 1− 1
1 + β10

=
1+ β10 − 1
1+ β10

=
β10

1+ β10

where M0 is the partial volume model with one fibre orientation and M1 is the

partial volume model with two fibre orientations. Therefore the value of β10

within each voxel lets us calculate the probability of choosing a certain model

at each step of the Tractography. In this example it is expected that β10 will be

less than 1 as each voxel only has one fibre orientation. We then choose one of

the models at each voxel depending on the value of π(Mj|y) and then the val-

ues of the parameters that represent the fibre orientation are chosen depending

on which model we have chosen. For this simple example we will start at the

known value of the start of the tract (1.5, 1.5, 1.5) and we’ll finish when (x, y, z)

is such that x ≥ 8.

After estimating the logarithm of the Bayes factor using Model-Switch Integra-

tion on the dataset, in the majority of voxels, the Bayes factor was strongly in

favour of the partial volume model with one fibre orientation. The lowest value

of π(M0|y) from the 99 voxels was 2.8623x10−8 whilst the highest value was

0.9999. The mean of the values of π(M0|y) for all voxels was 0.8127. 88 of the

voxels has a value of π(M0|y) which was above 0.5. Then Tractography was

run to produce 10 tracts, which are shown in Figure 3.7.

From the graph, we see that 9 of the 10 reconstructed tracts correspond well
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Figure 3.7: The reconstructed tracts compared to the true fibre orientation
(bold blue) when using Fully Probabilistic Tractography on FPT Ex-
ample 1. There is more uncertainty as we go along the tract because
as we enter more voxels the probability that we will have chosen
the model with two fibre orientations in one of the voxels will in-
crease.

with the true fibre orientation, while one of the tracts at some point, diverts

from the true fibre orientation. This is probably due tomodel uncertainty. When

the Tractography is ran many times the majority of the tracts will follow the

true fibre orientation, while some will take a different path, but this may be an

advantage in the situations such as the one described in Figure 3.1.

3.6.2 FPT Example 2

As in Example 1, the same dataset will be simulated, with one exception. In

one of the voxels that the spline passes through, there will now be two fibre

orientations, such that f1 = 0.3 and f2 = 0.3, the values of d, S0, θ1 and φ1 stay

the same in this voxel, whilst the values of θ2 and φ2 are θ2 = φ2 = 1. The data

was then simulated and once again the Model-Switch Integration approxima-

tion to the logarithm of the Bayes factor was calculated for each voxel in favour

of the partial volume model with two fibre orientations over the partial volume

model with one fibre orientation. Once this has finished then the Fully Proba-

140



Figure 3.8: The reconstructed splines compared to the true spline (bold blue)
when using Fully Probabilistic Tractography on FPT Example 2.

bilistic Tractography algorithm was implemented. When the approximation to

the logarithm of the Bayes factor was calculated in the voxel of interest using

Model-Switch Integration the answer was 2.2159 in favour of the model with

one fibre orientation. Therefore in the voxel of interest,

π(M0|y) =
1

1 + exp(-2.2159)
= 0.9017

π(M1|y) =
exp(−2.2159)

1+ exp(−2.2159)
= 0.0983.

Therefore there is a small amount of uncertainty in the model selection in this

example. If we had not taken into account model uncertainty, then only the

partial volume model with one fibre orientation would have been used in Trac-

tography due to the Bayes factor being in favour of this. Fully Probabilistic

Tractography was then used on the dataset a number of times and the tracts in

Figure 3.8 were obtained, where the true orientation is in blue.

As can be seen from the graph, some of the reconstructed tracts are very close to

the true fibre orientation. Whilst some other tracts start moving away from the
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true fibre orientation, in particular the tract that is green. When implementing

Fully Probabilistic Tractography many of the tracts left the brain region so were

rejected. We observed that most of the tracts that we rejected were in the case

when the model with one fibre orientation is selected in our voxel of interest.

This example demonstrates the benefit of including model uncertainty in Trac-

tography. If model uncertainty has not been considered then the voxel that has

two fibre orientations would have only had one fibre orientation because the

Bayes factor was in favour of the model with one fibre orientation. When im-

plementing Tractography a lot of tracts would have been rejected because when

choosing the model with one fibre orientation in this voxel a lot of the tracts left

the brain region before reaching Region 2. By introducing model uncertainty

into Tractography, the model with two fibre orientations is also chosen in this

voxel and then tracts are produced that represent the connection between the

two regions. Now that we have shown the benefits of Fully Probabilistic Trac-

tography, we will try to implement all of the methods that we have used so far

in this chapter on real data.

3.7 An application to a real dataset

In this section the methods that were introduced in this chapter will now be

applied to be used on real data. An added difficulty in analysing real data, is

deciding on how to define the regions of the brain. We will use the Atlas feature

in FSL (Section 1.7.2) to define regions.

3.7.1 Bayes factor estimation on real data example

First we estimate the Bayes factor to determine the number of fibre orienta-

tions within a voxel as in Section 3.5.1. We will investigate a voxel with the
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log(BF) log(BF) with added variance
M-SI -3.8973 -3.9936
A-MI -1.1434 -4.094

Table 3.9: The estimates of the logarithm of the Bayes factor when using the
Annealing-Melting Integration (A-MI) method with spacing c = 5
and the Model-Switch Integration (M-SI) method with spacing c =
1. The estimates with the extra variance term are also included. The
data are the measured Diffusion-Weighted signals in one voxel of a
real brain dataset.

following Laplace approximation for the partial volume model with two fibre

orientations. θ1 = 1.4307, φ1 = 1.2249, f1 = 0.2650, θ2 = 0.9805, φ2 = 3.2106,

f2 = 0.1508, d = 0.0003, S0 = 64.3138 and τ = 0.0294. The corresponding

Laplace approximation for the partial volume model with one fibre orienta-

tion is θ1 = 1.5494, φ1 = 1.0560, f1 = 0.2462, d = 0.0002, S0 = 63.9683 and

τ = 0.0278. The summary of the estimates of the logarithm of the Bayes factors

using the Annealing-Melting Integration and Model-Switch Integration meth-

ods are in Table 3.9.

We see that theModel-Switch Integration estimate and the estimate using Annealing-

Melting Integration are very similar to each other. Both estimates are in favour

of the model with one fibre orientation. We can see that the added variance

term seems to greatly affect the Annealing-Melting Integration estimate.

3.7.2 Results of Fully Probabilistic Tractography

Wenow implement Fully Probabilistic Tractography (Section 3.6) on real datasets.

Due to the large number of voxels that will be in our examples we use paral-

lel computing for each voxel such that we are estimating the logarithm of the

Bayes factor in voxels simultaneously.
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3.7.2.1 FPT on real data Example 1

We will first look at data from subject 1 and use the atlases (Section 1.10) to

find the Thalamus and the Amygdala centromedial group on the right hand

side of the brain. Then we will investigate the voxels that contain the regions

and surround the regions. In total there are 1820 voxels in the data we investi-

gate. First we estimate the logarithm of the Bayes factor in favour of the partial

volume model with two fibre orientations for each of these voxels by using

Model-Switch Integration. Once this is done we then attempted Fully Proba-

bilistic Tractography. By implementing FPT we find a few tracts that connect

Region 1 and Region 2, but most of the time no tract is found which leads us to

believe that no connection is available in the few voxels we have. After look-

ing at the literature about the Amygdala (Bzdok et al., 2012), it seems that the

Amygdala and Thalamus are indirectly connected by the lateral nucleus and the

Basolateral Amygdala. Due to the relatively low number of voxels that we are

investigating, this may be the reason why we do not regularly find a connection

between these two regions.

3.7.2.2 FPT on real data Example 2

We will now look at data from subject 2 with 3780 voxels. The two regions that

we will investigate are the right primary auditory region and the right broca

area. The broca area is concerned with speech production in the brain, so a

guess would be that auditory and speech are connected somehow. When im-

plementing Fully Probabilistic Tractography, we have shown that when starting

at some voxels within the right primary auditory region we create a tract that

goes to the right broca area. In the majority of times that we run FPT we find

that there is a connection between the two regions, therefore it seems in this

case there is evidence for a connection between the two regions. A graph of the

connecting tracts can be found in Figure 3.9.

144



12
10

82

4

6

8

7

1

2

3

4

5

6

9

8

Figure 3.9: The tracts that are constructured that connect the right primary au-
ditory region and the right broca area when using Fully Probabilis-
tic Tractography.

145



3.8 Conclusions

In this chapter we have found a method to choose how many fibre orienta-

tions to model in a voxel when using the partial volume model. This is of vital

importance as using the wrong number of fibre orientations could get fibre ori-

entations that are completely wrong from the true fibre orientations.

First we investigated the ARD prior, the commonly used method to choose be-

tween the number of fibre orientations in the partial volume model. We sum-

marised the disadvantages of this method and thus started to consider calculat-

ing the Bayes factor to compare models.

Calculating an exact analytical solution to the Bayes factor is difficult and pro-

posed solutions to approximate this have disadvantages, thus an approxima-

tion is calculated using ideas from Thermodynamic Integration. Annealing-

Melting Integration, Importance Power Posterior andModel-Switch Integration

were introduced. We decided to use Model-Switch Integration due to it only

being proposed due to problems that sometimes occur with Annealing-Melting

Integration. We showed that sometimes Importance Power Posterior has prob-

lems, therefore we chose to reject this as a possible solution.

Now that it was possible to implement model selection to choose between the

number of fibre orientations in the partial volume model, we decided to use

uncertainty in model selection in Tractography. There are some cases where the

model that is chosen may not be the model with the true number of fibre orien-

tations, therefore wewould like to include this model selection uncertainty such

that some tracts are reproduced that are close to the truth. Now in our Tractog-

raphy algorithm at each voxel we also choose the model, based on probabilities

that can be calculated using the approximations from the Bayes factors. This
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Tractography that we term "Fully Probabilistic Tractography" has been shown

in both simulated and real data to be effective.

We then investigated the methods that were introduced in this chapter on real

data. The estimates for the logarithm of the Bayes factor appeared to work well.

Finally we implemented Fully Probabilistic Tractography on two real datasets.

Implementing parallel computing by running the algorithm for different tem-

peratures and different voxels simultaneously greatly improves the computa-

tional speed of the algorithm.
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CHAPTER 4

Global Tractography

4.1 Motivation

In the previous chapters we have looked for potential connections between

brain regions voxel-wise by inferring fibre orientations within a voxel to be

used within Tractography algorithms. We would instead like to statistically test

for the existence of a connection between two brain regions at a global level.

The Global Tractography framework (see Section 1.7.3) was first proposed by

Jbabdi et al. (2007) and parametrises the connections between two brain regions

at a global level to reduce the sensitivity to local noise. If we know that there

is a connection between two brain regions then we can include this information

within this framework by using a prior density for a connection matrix. For any

two brain regions we can then use model selection to choose between the model

where a connection exists between two brain regions and the model that says

there is no such connection. We propose a new method for inferring the global

parameters of this framework which uses model selection techniques based on

Thermodynamic Integration.

In this chapter we will attempt to infer the values of the parameters of the

Global Tractography model which are the local parameters of the partial vol-
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umemodel (Section 1.6.1) that represent the fibre orientation within a voxel and

the global parameters. In more detail if there are N voxels then the local param-

eters are d = [d1, ..., dN] which is the diffusivity in each voxel, the baseline signal

S0 = [S01, ..., S0N], Θ = [θ1, ..., θN], Φ = [φ1, ..., φN] and f = [ f1, ..., fN] which

represent the fibre’s directions and the proportion of the signal contributed by

the fibre in each voxel and finally Σ = [σ1, ..., σN] which represents the noise in

the observed measurements of the signals in each voxel. If it is assumed that we

have N brain regions of interest in the brain image that we are looking at then

the global parameters are C which is anN xN matrix whose (i, j)th element is 1

if regions i and j are connected and 0 otherwise. Furthermore we have F which

represents the pathways that connect the regions, here we choose these path-

ways to be the Catmull-Rom splines (see Appendix A) as in Jbabdi et al. (2007),

with control points K and extremities L.

Inferring the parameters of the Global Tractography model is an extension to in-

ferring the values of the local parameters of the partial volume model for each

voxel of the brain as in Chapter 2. By inferring the parameters of the Global

Tractography model we will be able to calculate the evidence for the existence

of a connection between any two regions by using model selection techniques

such as those that were introduced in Chapter 3 to infer on the connection ma-

trix C.

Throughout this chapter due to the complexity of the problem that we wish to

solve, we will assume that within each voxel there is one fibre orientation. The

work within this chapter can be extended to voxels where it is assumed there is

more than one fibre orientation. We discuss this in Section 5.3.
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Figure 4.1: The 2D simulated global dataset in which two brain regions of in-
terest in red and blue are connected to each other by a fibre that
is modelled using knots from the Global Tractography framework.
Each voxel is modelled using the partial volume model with one
fibre orientation.

4.2 Simulating data from the Global Tractography

model

A 2D dataset was simulated for illustration. A diagram of the dataset is shown

in Figure 4.1. In this diagram Region 1, in red, is connected to Region 2, in blue,

by a tract with knots at (1.5,1.5), (3,3), (5,1), (6,2) and (8,0). There are 11 voxels

in the x axis direction and 3 voxels in the y axis direction. Region 1 is all the

voxels such that x ≤ 3, while Region 2 is all the voxels where x ≥ 8

For every voxel, data is simulated from the partial volume model (Section 1.6.1)

with local parameters having the values d = 1
12000 , S0 = 100 and θ = π

2 . In vox-

els which the tract passes through f = 0.85, while in the voxels that it doesn’t

pass through f = 0.1. The values of φ in voxels which the tract passes through

are chosen to be either π
4 or 3π

4 depending on the orientation of the tract as in

the diagram. In the voxels which the tract does not pass through the value of φ

is simulated from a Uniform distribution, such that the values are random.

The method for simulating data from the Global Tractography framework is

summarised in Algorithm 12.
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Algorithm 12 Simulating data from the Global Tractography framework
1: For the voxels that the tract that connects the two regions passes though,

calculate the fibre direction and assign point estimate values for θ and φ.
2: For all other voxels assign random values for the local parameters by using

uniform random number generators such as θ ∼ U(0,π).
3: For each gradient direction that we have, calculate the true Diffusion-

Weighted signal µi by using the local parameter values where

µi = S0((1− f )exp(−bid) + fexp(−bid(g
T
i v2))), i = 1, ...,m.

4: Obtain the observed Diffusion-Weighted signal, yi for each voxel and each
gradient direction by simulating it from a normal distribution with mean µi

and variance σ2

4.3 Framework for Bayesian inference

Wewill now introduce the framework that will allow us to infer the parameters

of the Global Tractography model. The parameters will be inferred by adopt-

ing a Bayesian approach. First the likelihood of the model is derived and the

prior distributions for each of the parameters must be defined. The posterior

distribution is then derived:

π(Ω|y) ∝ π(y|Σ,d,S0, f ,Θ,Φ)π(Ω)

where π(Ω) = π(Σ)π(d)π(S0)π(f )π(Θ,Φ|F )π(F |C)π(C)

and Ω=(Σ, d, S0, f , Θ, Φ, C, F ). The local parameters are Σ, d, S0, f , Θ and Φ,

that we are familiar with from the previous chapters. The new global parame-

ters that we will work with for the first time are C, the connection matrix, and

F that represents the splines that connect regions. We should note that (K,L),

which are the knots and extreme points of the splines, are not in Ω because

there is a deterministic relationship between (K,L) and F .

The likelihood π(y|Σ, d, S0, f , Θ, Φ) is the same as the likelihood for the partial

volume model as in Section 2.3 because the data y is only generated by the local

parameters as shown in Algorithm 12. The prior distributions for d, f and S0

151



are assumed to be the same as in the partial volume model which are

π(d) = ∏
j

π(dj),

π(f ) = ∏
j

π( f j),

π(S0) = ∏
j

π(S0j),

where j is an index over voxels and

π(dj) ∼ U(0,∞),

π( f j) ∼ U(0, 1),

π(S0j) ∼ U(0,∞).

We take a different approach from Jbabdi et al. (2007) who choose the prior on

f to be the ARD prior in voxels in which the tract does not pass through. We

dismiss the ARD prior due to it not being effective (as shown in Chapter 3) in

this setting.

The conditional prior distribution on (Θ, Φ) is obtained by looking separately

at the voxels which F passes through and the voxels which it doesn’t. For

notation purposes we will label each voxel as j and we will denote the voxels

that the spline passes through as j ∈ F and the voxels that the spline doesn’t
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pass through as j /∈ F . Then

π(Θ,Φ|F ) = ∏
j/∈F

π(θj, φj|F ) ∏
j∈F

π(θj, φj|F ),

= ∏
j/∈F

π(θj, φj) ∏
j∈F

δ(θj − θ′j, φj − φ′
j|F ), j = 1, ...,N,

where δ is the Dirac delta distribution (Dirac, 1930), θ′j and φ′
j are the orientations

of the spline passing through voxel j and N denotes the total number of voxels

in a brain image. In voxels which the spline doesn’t pass through, the prior

distribution is the same as that in the partial volume model (see Section 2.3). In

voxels which the spline passes through the prior distribution is the Dirac delta

distribution. Within the MCMC we will have two 3x3 matrices which have an

element for each voxel. In each voxel the element will either be 0 or 1 depend-

ing on whether the current or candidate spline passes through that voxel.

Finally to find π(F |C), define γl as a random variable that describes one con-

nection between two regions and let C l be a vector of the upper diagonal ele-

ments of the connection matrix C, then F=(γ1,γ2,...,γN(N−1)/2) and

π(F |C) =
N(N−1)/2

∏
l=1

π(γl |C l).

If Sk is the set of splines with k knots and c is the element of the connection

matrix that represents the connection between the two regions of interest then:

π(γ ∈ Sk,γ connects the two regions|c = 1) = 1

π(γ ∈ Sk, γ connects the two regions|c = 0) = 0

π(γ ∈ Sk, γ does not connect the two regions|c = 1) = 0

π(γ ∈ Sk, γ does not connect the two regions|c = 0) = 1.
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Wenowdescribe how to infer the parameters of the Global Tractographymodel.

4.4 Inferring the whole set of parameters

Wenowwish to estimate the values of all the knots aswell as all the local param-

eters in the Global Tractography model. We will denote ω = (θ,φ, f ,d,S0) and

r = (P1,P2,P3,P4,P5) where P1 = (P1(x), P1(y)), P2 = (P2(x), P2(y)),

P3 = (P3(x), P3(y)), P4 = (P4(x), P4(y)) and P5 = (P5(x), P5(y)) are the

knots that represent the tract that connects two regions. We choose to model

the spline using five knots because Jbabdi et al. (2007) show that there is not

much difference in the splines that are constructed using more than five knots.

We wish to generate samples from π(r,ω|y). Three methods for implementing

this are now described. These methods will be compared and also challenges

attributed to these methods and their solutions will be addressed. All of these

methods work better when a good initial estimate for the parameters is pro-

vided. One such method will be described later in Section 4.5.

4.4.1 Deterministic Scan MCMC

Deterministic ScanMCMCworks by first updating π(r|y,ω) and then updating

π(ω|y, r). When generating samples from π(r|y,ω),we found that the mixing

is bad if we propose the values of all the knots at the same time. Therefore we

use separate proposal distributions for each knot. The method is described in

Algorithm 13.

Within the MCMC algorithm, the proposal distribution for each of the condi-

tional distributions is a multivariate Normal distribution where the initial mean

is the knot values estimated using the method described later in Section 4.5, and

some covariance matrix. We tried different covariance matrices in the proposal
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Algorithm 13 Deterministic Scan MCMC
1: Initialise the values of the knots and local parameters.
2: Generate new values from π(P1(x), P1(y)|y,ω,P2,P3,P4,P5) using the

Metropolis-Hastings algorithm with a random-walk proposal distribution.
3: Continue by using the Metropolis-Hastings algorithm with a random-walk

proposal distribution to sample from π(P2|y,ω,P1,P3,P4,P5),
π(P3|y,ω,P1,P2,P4,P5), π(P4|y,ω,P1,P2,P3,P5) and
π(P5|y,ω,P1,P2,P3,P4).

4: For each voxel, i, use the Metropolis-Hastings algorithm with an indepen-
dence sampler Normal proposal distribution that is estimated using the
Laplace approximation for each voxel on π(ωi|y, r).

5: Repeat all the steps until the required amount of samples are acquired.

distribution for the knots to obtain a proposal distribution that allows satisfac-

tory mixing withinMCMC. The Laplace approximation is used to obtain a good

proposal distribution for the local parameters.

4.4.2 Block-update MCMC

In this methodwewill use the proposed values of the local parameters ω, which

are acquired using the Laplace approximation, to obtain proposed values of the

knots r that correspond to the proposed values of the local parameters. There-

fore we are inferring the parameters by using π(r,ω|y) = π(ω|y)π(r|ω,y).

We then either accept or reject all of these proposed values. This method is de-

scribed in Algorithm 14.

Algorithm 14 Block-update MCMC
1: Initialise the values of the local parameters by using the Laplace approxi-

mation. Then initialise the values of the knots such that they correspond to
the initial values of the local parameters.

2: First propose candidate values from π(ω|y, r) separately for each voxel by
using the Laplace approximation.

3: Using the proposed values of ω, the candidate knot values are proposed
using the Deterministic Tractography method that is described in Section
4.5.

4: All new parameter values (ω, r) are then either rejected or accepted, using
the Metropolis-Hastings algorithm on π(ω, r|y).

5: Repeat Steps 2-4 until the required amount of samples are acquired.
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This method only accepts values of r and ω that correspond to each other, i.e.

the candidate values of the local parameters determines the candidate knots.

However the computational time and performance of Block-update MCMC is

about the same as Deterministic Scan MCMC.

4.4.3 Partially Deterministic Scan MCMC

From the previous two methods we will focus on Deterministic Scan MCMC

because the proposed knot values do not depend on the the local parameter

estimates so it allows a wider range of knot values to be proposed. However

when running Deterministic ScanMCMC the acceptance rate of new parameter

values was quite low. We will now propose a method that fixes the problems

associated with Deterministic Scan MCMC.

To solve the problem with the low acceptance rate we realised that if the spline

does not pass through a voxel then we can obtain parameter estimates for this

voxel, using the methods that were introduced in Chapter 2 as these voxels do

not depend on any of the global parameters. In Deterministic Scan MCMC at

the moment every voxel is updated at each step. Alternatively we could just

treat voxels that do not depend on the global parameters separately later and

use parallel computing on each of these voxels to speed up the computation

time. Therefore we decided to introduce Partially Deterministic Scan MCMC.

In Partially Deterministic Scan MCMC, at each step of the MCMC algorithm

only the voxels where either the current spline or the candidate spline pass

through are updated. Although this seems to help MCMC it does not seem as

optimal as we would like it to be. We found that the independence sampler pro-

posal distribution within the MCMC did not work because candidate samples
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were not accepted often. Therefore it was decided that instead of an indepen-

dence sampler we will use a random-walk proposal distribution in the MCMC

algorithm. This greatly improves the acceptance rate of the algorithm.

Partially Deterministic Scan MCMC is summarised in Algorithm 15.

Algorithm 15 Partially Deterministic Scan MCMC
1: Simulate from π(P1|P2,P3,P4,P5,ω,y) and then π(ω|r,y) for all the

voxels that the candidate and current splines pass through using the
Metropolis-Hastings algorithm.

2: Similarly to Step 1 update the values of P2, P3, P4 and P5 and also all the
local parameters for the voxels that the current and candidate spline pass
through using the Metropolis-Hastings algorithm.

3: Update all the local parameters that were not involved in the previous two
steps using the algorithms for updating local parameters such as those in
Chapter 2.

4: Repeat this until the required amount of samples are acquired.

4.5 Initialisation of the knots

One consideration when implementing the various MCMC methods is decid-

ing how to initialise the values of the knots. In Chapter 2 we proposed methods

for initialising the local parameters so we can continue to use these method in

the Global Tractography model. We propose to initialise the knot values using

a method based on Deterministic Tractography (see Section 1.7.1) which is de-

scribed in Algorithm 16.

Algorithm 16 Initialisation of knots
1: Run Deterministic Tractography starting from a voxel within Region 1

which we call P1.
2: Finish Deterministic Tractography when we hit Region 2. Choose the final

point to be P5.
3: Find the points that are a quarter, a half and three quarters of the way

through the tract. Denote these points as P2, P3 and P4.

Themethod described in Algorithm 16 can be used to obtain the initial values of
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P2, P3 and P4 when implementing Partially Deterministic Scan MCMC. One

of the problems with the method that is proposed to initialise the splines is that

it chooses the knots evenly spaced on some line. If the true knots are such that

they are approximately equally spaced on the tract, then this method appears

to work well. However in practice it is not very likely that we will always have

a true tract with approximately equally spaced knots because there are many

different tracts that could represent the connection between two regions. For

example we may have some spline where the distance between P1 and P2 is

very large when compared to the total distance between P1 and P5.

A second problem is decidingwhether to usemore knots to represent the spline.

In the literature it is suggested that 5 knots should be used (Jbabdi et al., 2007).

Using more knots was quickly discounted as it was attempted and although

the estimates were better, it induced a very large computational cost. For one

dataset we attempted to look at the tracts that are reconstructed using 5, 10 and

20 uniformly spaced knots. These are plotted in Figure 4.2

To solve the first problem, rather than choosing the knots to be the points that

are a quarter, one half and three quarters of the way through the tract that is

constructed using Deterministic Tractography, we could instead simulate three

uniform random numbers from U(0, 1). We then use these simulated numbers

as the proportion of the way we go through the distance between P1 and P5,

to allocate values for P2, P3 and P4. This was then attempted in Partially De-

terministic Scan MCMC. Unfortunately the mixing in MCMC does not appear

to be very good, because at some iterations candidate knot values will be ac-

cepted, but this is not a frequent occurrence. This can be explained by the fact

that most of the time the MCMC algorithm will propose knots that are com-

pletely far away from the truth. As an example a dataset was simulated and

then different uniform numbers were generated and the corresponding tracts
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Figure 4.2: The true fibre orientation (red) compared to tracts that are recon-
structed by using a varying number of uniformly spaced knots
(green) in Algorithm 16 on a simulated dataset. (a) 5 knots, (b) 10
knots and (c) 20 knots. We see that as the number of knots increases
the estimated spline gets closer to the true fibre orientation.
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using these numbers were plotted. These can be seen in Figure 4.3. From these

graphs we can see that some of the tracts are quite close to the true tract while

others are very bad.

To overcome the problem with the mixing, another idea that we proposed is

described in Algorithm 17. We generated one hundred sets of random num-

Algorithm 17 Improved initialisation of knots
1: Simulate many random numbers from U(0, 1).
2: For each set of three numbers, obtain the corresponding knot values using

the method described in Algorithm 16.
3: Calculate the value of the posterior distribution and find the set of numbers

which gives the maximum.
4: In Partially Deterministic Scan MCMC, start at these maximum knot val-

ues and propose new values of the knots using a random-walk proposal
distribution

bers from U(0, 1) and calculated the posterior density using the knots values

that corresponded to these random sets of numbers using Algorithm 17. The

four sets of knots that produced the highest posterior distribution values were

plotted in Figure 4.4. The splines that are plotted look very close to the true

fibre orientation. The methods that we use to infer the knots and to initialise

the knots are different from the methods used by Jbabdi et al. (2007).

4.6 2D example

We will now attempt to estimate the local and global parameters of a 2D sim-

ulated dataset by using Partially Deterministic Scan MCMC. In the dataset,

shown in Figure 4.5, which we denote dataset 3, the whole area was covered

by 11× 3 voxels, so that in total there are 33 voxels. The first region of inter-

est, shown in red, is all the voxels such that x ∈ [0, 3] and y ∈ [0, 3] which

we denote as Region A, the second region, shown in blue, is all voxels such

that x ∈ [8, 11] and y ∈ [0, 3] which we define to be Region B. The knots of
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Figure 4.3: The true fibre orientation (blue) compared to tracts that are recon-
structed by using different spacing within Algorithm 16 to obtain
5 knots (green), using (a) the true knots, (b) the knots exactly one
quarter, one half and three quarters of the way through and (c)-(t)
randomly selected knots from U(0, 1)
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Figure 4.4: The four sets of knots out of one hundred sets of simulated knots
that are reconstructed using various spacing in Algorithm 16 that
have the highest posterior distribution. These are plotted against
the true orientation (solid line)

x

y

Figure 4.5: Dataset 3 that connects the two regions with a spline that uses the
parameters within the Global Tractography model. Each voxel is
modelled using the partial volume model with one fibre orienta-
tion.

the tract are P1 = (1.5, 1.5), P2 = (5, 1.7), P3 = (6, 2.5), P4 = (7, 2.3) and

P5 = (8, 2.2).

We now investigate the results when implementing Partially Deterministic Scan

MCMC on dataset 3 to determine how well our algorithm works. Partially De-

terministic Scan MCMC was initiated using a random-walk proposal distribu-

tion. First Deterministic Tractography was applied to initialise the knot values,

also the Laplace approximation was used to get local parameter estimates and

a proposal covariance matrix for each voxel. For simplicity, initially, P1 and

P5 had their values fixed to the true values of the knots The plot of the splines
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Figure 4.6: (a) The random splines from the Partially Deterministic Scan
MCMC estimates compared with the true spline (pink) when up-
dating all knots except for the end knots in the Global Tractogra-
phy model and (b) the mixing within MCMC for one coordinate of
a knot.

using random samples of knots from the MCMC results are plotted alongside

the true fibre orientation in Figure 4.6. The mixing in MCMC is not as good as

we would like it to be. We will discuss a solution to this in Section 4.8.

4.7 Moving to 3D

We now attempt to estimate the global and local parameters of a 3D dataset.

Extending the problem to 3D should be fairly easy as there is only one more co-

ordinate for each knot plus θ for each voxel to estimate. A dataset was simulated

with P1 = (1.5, 1.5, 1.5), P2 = (3, 2.7, 1.2), P3 = (5, 1.5, 0.7), P4 = (7, 2.1, 0.5)

and P5 = (8, 1.5, 0.9) where the true fibre orientation between these knots is a

straight line. In the x direction there are 11 voxels while in the y and z directions

there are 3 voxels. Thus in total there are 99 voxels. Region 1 was defined to be

the voxels where the x coordinate is less than or equal to 3, while Region 2 was

the voxels where the x coordinate is greater than or equal to 8.

As in the 2D example the values of P2, P3 and P4 were inferred by using Par-

tially Deterministic Scan MCMC while the values of the two end knots were
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held to make the problem slightly easier. Then all the knots including P1 and

P5 and all the local parameters were inferred using Partially Deterministic Scan

MCMC.

The results that show the approximate spline alongside the true fibre orientation

in both the cases when P1 and P5 are held and when they aren’t are in Figure

4.7. Also in Figure 4.7, there is a traceplot of the mixing of a coordinate of a knot

in Partially Deterministic ScanMCMC. This is in the case when we are inferring

the values of all 5 knots. The only problem with Partially Deterministic Scan

MCMC seems to be tuning issues, but this could be solved by using Adaptive

MCMC (Section 2.3.3). We will now look at implementing Adaptive MCMC

within Partially Deterministic Scan MCMC.

4.8 Using Adaptive MCMC within the Global Trac-

tography model

When implementing Partially Deterministic Scan MCMC, one problem is de-

termining a good covariance matrix for the proposal distribution of the knots

that allows sufficient mixing. In Chapter 2 when inferring the local parameters

in a voxel using MCMC, we successfully used Adaptive MCMC to calculate

a covariance matrix for the proposal distribution at each stage of the MCMC

(see Section 2.3.3) that permitted good mixing. The algorithm for inferring the

local and global parameters of a 3D dataset by including Adaptive MCMC in

Partially Deterministic Scan MCMC is described in Algorithm 18.

4.8.1 Example

We now infer the values of the parameters of the 3D dataset using Partially De-

terministic Scan MCMC with the Adaptive MCMC extension, to determine if
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Figure 4.7: The splines that are constructed by estimating the knots of the
Global Tractography model using Partially Deterministic Scan
MCMC against the true orientation (green) when (a) updating the
three non-end knots, (b) when updating all knots. (c) The typical
mixing of one knot.
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Algorithm 18 Adaptive MCMC (Global Tractography)
1: Run the Partially Deterministic Scan MCMC algorithm for a given number

of iterations.
2: Calculate the empirical covariancematrix as described in Section 2.3.3 for all

the coordinates in each knot, such that we will have a 3× 3 matrix for each
knot. Then using this matrix calculate the proposal distribution covariance
matrix as described in Section 2.3.3.

3: In MCMC use the calculated covariance matrix in the proposal distribu-
tion for the knots and propose new values of the local parameters from a
random-walk Normal distribution from the Laplace approximation. Then
accept or reject these values using Partially Deterministic Scan MCMC.

4: Go back to Step 2 and continue until we have the required number of esti-
mates.

this extension improves the results. We will first infer the three non-end knots

before inferring the values of all five knots. In both the MCMC where we infer

three knots and all five knots, first the knots are initialised by using the uni-

form knots of a tract that is obtained using Deterministic Tractography (Section

4.5). Once this has been done then Partially Deterministic ScanMCMC is imple-

mented for 10000 iterations, before Adaptive MCMC is run for another 90000

iterations.

4.8.2 Updating 3 knots only

At first we decided to just update the values of P2, P3 and P4, whilst hold-

ing the values of P1 and P5 so that the problem was easier. The plots of the

traceplots of the MCMC estimates for some of the knots are shown in Figure

4.8 which reveal fairly good mixing. Further in Figure 4.9 we see some of the

randomly selected splines from the MCMC results in comparison to the true

spline. These figures show that the splines obtained from Partially Determin-

istic Scan MCMC correspond to the true spline. We have seen that Adaptive

MCMC greatly improves the mixing, so we attempt to infer the values of all

five knots.
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Figure 4.8: The MCMC traceplots when using the Adaptive MCMC extension
of Partially Deterministic Scan MCMC to simulate the estimated
values of the three non-end knots and the local parameters from the
posterior distribution of the Global Tractography model (a) P2(x),
(b) P2(x) when the burn in iterations are removed, (c) P4(x) and
(d) P4(x) when the burn in period is removed. The dataset that is
investigated is a 3D simulated dataset.
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Figure 4.9: The true spline (blue) compared to four randomly selected splines
when simulating the estimated values of the three non-end knots
and the local parameters from the posterior distribution of the
Global Tractography model using the Adaptive MCMC extension
of Partially Deterministic Scan MCMC.
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Figure 4.10: The MCMC traceplot of one knot coordinate when using the
AdaptiveMCMC extension of Partially Deterministic ScanMCMC
to simulate the estimated values all knots and the local param-
eters from the posterior distribution of the Global Tractography
model for P5(x). The dataset that is investigated is a 3D simulated
dataset.

4.8.3 Updating 5 knots

We now extend the algorithm to estimate the values of all 5 knots and all the

local parameters. The traceplot of the MCMC estimates for one knot coordinate

is shown in Figure 4.10. The mixing in this traceplot looks good once we start

to use the Adaptive MCMC extension. We selected four samples from these

estimates and compared them with the true fibre orientation, as in Figure 4.11.

The splines from the MCMC estimates match the true fibre orientation.

We are now able to obtain estimates of the knots and local parameters with

sufficient mixing by using Adaptive MCMCwithin Partially Deterministic Scan

MCMC. Therefore we will now execute model selection to determine whether

a connection between two brain regions exists.
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Figure 4.11: The true spline (blue) compared to four randomly selected splines
when simulating the estimated values of all knots and the local
parameters from the posterior distribution of the Global Tractog-
raphymodel using the AdaptiveMCMC extension of Partially De-
terministic Scan MCMC.
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4.9 Model selection for the existence of a priori known

connection

We now want to test whether there is evidence for the existence of an anatom-

ical connections between brain regions of interest. A functional connection be-

tween regions in the brain is dependent on there being an anatomical connec-

tion (Passingham et al., 2002), so if we can judge whether there is an anatomical

connection between two brain regions then it can help in determining potential

functional connections in fMRI experiments.

Until now we have managed to estimate the values of the knots and the local

parameters within the Global Tractography framework in Section 4.3. We now

want to infer the connectivity matrix C. The elements within C can either take

the value 1 or 0. As an example if the (i, j)th element of C is equal to 1, this

means there is a connection between regions i and j. Otherwise if the element

is 0, it means there is no connection between these regions. Jbabdi et al. (2007)

suggested using model selection to see if there is a connection between any two

regions. We assume that there are only two regions of interest Region 1 and

Region 2, such that C is a 2× 2 matrix. The two models we will select from are

defined as,

M1: The constrained model such that π(c12 = 1) = 1.

M0: The unconstrained model.

Jbabdi et al. (2007) use the Bayes factor (see Section 3.2) to choose between the

two models which they approximate with the harmonic mean approximation

(see Section 3.2.2). Despite being easy to implement the harmonic mean ap-

proximation can be a very bad estimate (Raftery et al., 2007). Therefore it is

proposed that we will use the Bayes factor, but we will approximate it using

the much more robust methods based on Thermodynamic Integration that are
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described in Section 3.4

4.9.1 Estimation of Bayes factor

We now use methods based on Thermodynamic Integration to approximate the

Bayes factor in favour of the model with a connection between two brain re-

gions against the model with no such connection. To implement this we will

make use of the likelihood and prior distributions introduced in the Global

Tractography framework in Section 4.3. The only difference fromwhenwewere

inferring the local parameters and the knots is that now we also have to include

π(F |C)π(C) in the posterior distribution π(Ω|Y ) in Section 4.3. We assume

that there are only two regions of interest Region 1 and Region 2, such that C is

a 2× 2 matrix. If we first investigate the model where we assume that c12 = 1,

which we define to be model M1, then for any knots such that Region 1 and

Region 2 are connected π(F |C) = 1, otherwise if knots are proposed that do

not connect the two regions then π(F |C) = 0. Similarly for model M0 where

there is no such connection, if knots are proposed such that there is a connection

between the regions then π(F |C) = 0, otherwise π(F |C) = 1.

We can approximate the Bayes factor by using either Annealing-Melting Inte-

gration (Section 3.4.1) or Model-Switch Integration (Section 3.4.3). By looking

more closely at the Model-Switch Integration approximation that is

log
(

π(y|M0)

π(y|M1)

)

≈ 0.5
n−1

∑
i=0

(ti+1 − ti)

(
EΩ|y,ti+1

[
log
(

π(y|Ω,M1)π(Ω|M1)

π(y|Ω,M0)π(Ω|M0)

)]

+ EΩ|y,ti

[
log
(

π(y|Ω,M1)π(Ω|M1)

π(y|Ω,M0)π(Ω|M0)

)])
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where

EΩ|y,ti

[
log
(

π(y|Ω,M1)π(Ω|M1)

π(y|Ω,M0)π(Ω|M0)

)]

≈ 1
p− k + 1

p

∑
j=k

log

(
π(y|Ωi

j,M1)π(Ω
i
j|M1)

π(y|Ωi
j,M0)π(Ω

i
j|M0)

)

such that Ω
i
j is the jth MCMC estimate of the power posterior from the ith tem-

perature. The MCMC is run for p iterations where the first k iterations are de-

fined to be the burn in period. It can be observed that problemswill occur in this

approximation because either π(Ω|M1) or π(Ω|M0) will be equal to 0, which

means at some point in the approximation we will have log(0). Therefore this

problem is avoided completely by instead using Annealing-Melting Integration

(Section 3.4.1).

We must include the precision τ in the local parameters when calculating the

Annealing-Melting Integration estimate because the likelihood must be the full

likelihood.

4.9.2 Global Tractography when there is no connection

Previously when we have been inferring the values of the parameters in the

Global Tractography framework, we have assumed that a connection exists be-

tween the two regions, as in M1. To calculate the estimate of the logarithm of

the Bayes factor we will also have to infer the model where there is no such

connection.

When running Annealing-Melting integration the following conditions on the

knots must be met for a candidate set of knots to be accepted.

M1
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Within the MCMC P1 is constrained to be within Region 1 and P5 is con-

strained to be in Region 2 such that

• P1 is in Region 1

• P5 is in Region 2

M0

Either

• P1 is in Region 1 and P2, P3, P4 and P5 are not in Region 2.

or

• P1, P2, P3 and P4 are not in Region 1 and P5 is in Region 2

or

• P5 is in Region 1 and P1, P2, P3 and P4 are not in Region 2

or

• P2, P3, P4 and P5 are not in Region 1 and P1 is in Region 2

or

• P1, P2, P3, P4 and P5 are not in Region 1 and P1, P2, P3, P4 and P5

are not in Region 2.

Before calculating the Annealing-Melting Integration estimate of the logarithm

of the marginal likelihood for the model where there is no connection, we first

infer the knots and the local parameters in the case when there is no connec-

tion between the two regions. This will help us decide on a MCMC method for

implementing Annealing-Melting Integration. We have proposed two potential

methods which we will now describe.
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Figure 4.12: The splines constructed using the knot estimates obtained by sim-
ulating knot and local parameter estimates from the posterior dis-
tribution of the Global Tractography model that is constrained so
that there is no connection between the two brain regions of inter-
est by using BNC MCMC.

4.9.3 Basic No Connection MCMC

The first method to infer the parameters in model M0 ensures that the only

condition within MCMC is that there is no spline that connects the two brain

regions such as the conditions for M0 in the previous section. This condition is

enforced by rejecting proposed knots in the MCMC that connect regions. This

is the simplest case of MCMC when inferring the parameters when there is no

connection and will be the easiest to run. We will name this MCMC algorithm

Basic No Connection MCMC (BNC MCMC). Splines that are reconstructed by

using samples from the MCMC results are shown in Figure 4.12.
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Figure 4.13: The traceplots for the transformed values of the knots (a) P1(z),
(b) P2(z), (c) P3(z), and (d) P4(z). We simulate knot and local
parameter estimates from the posterior distribution of the Global
Tractography model that is constrained so that there is no con-
nection between the two brain regions of interest by using CNC
MCMC.

4.9.4 Constrained No Connection MCMC

When implementing MCMC within Annealing-Melting Integration, we could

use the method that Jbabdi et al. (2007) use to infer knots in the model with

no connection. In this method first MCMC is used to obtain samples of the

knots in the model M1 where a connection is enforced between the two regions.

Then splines that are constrained such that they have the same length as the

splines in model M1 but are otherwise unconstrained are simulated for model

M0. We will refer to the MCMC algorithm of Jbabdi et al. (2007) as Constrained

No Connection MCMC (CNC MCMC). By using CNC MCMC to get estimates

of the knots and local parameters we obtain the traceplots in Figure 4.13. The
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Figure 4.14: The splines constructed using the knot estimates obtained by sim-
ulating knot and local parameter estimates from the posterior dis-
tribution of the Global Tractography model that is constrained so
that there is no connection between the two brain regions of inter-
est by using CNC MCMC.

graph of the splines obtained from the CNCMCMC estimates is in Figure 4.14.

4.10 Examples for Annealing-Melting Integration

Wenow investigate two simulated datasets by calculating the Annealing-Melting

Integration estimate for the logarithm of the marginal likelihood. We will cal-

culate this estimate for both the model with no connection between two brain

regions and the model with a connection between two brain regions which we

denote M0 and M1. These estimates will then be used to calculate an estimate

for the logarithm of the Bayes factor in favour of model M1 over model M0. We

will investigate one dataset where there is a connection between two brain re-

gions and one dataset where there is no such connection. For simplicity in both

datasets each of the voxels only has one fibre orientation. In the example with

a connection we will use the 3D dataset that we have been using throughout

this chapter (Section 4.7). In the example with no connection we will simulate a
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dataset with completely random local parameter values such that there is over-

whelming evidence of no connection.

4.10.1 Example 1 - a dataset with a connection

By investigating the 3D dataset that we haveworkedwith throughout this chap-

ter (Section 4.7) we will calculate three approximations for the logarithm of the

marginal likelihood. The first will be the approximation when there is the con-

straint of there being a connection (i.e. model M1). To implement this we will

use a slightly altered version of Partially Deterministic Scan MCMC, such that

we infer the power posterior by using Annealing-Melting Integration. Then

we will calculate the two approximations when there is no such connection (i.e.

model M0) by using Annealing-Melting Integration based on BNCMCMC (Sec-

tion 4.9.3) and CNCMCMC (Section 4.9.4).

Initially in the Annealing-Melting Integration method we choose the tempera-

tures to be equally spacedwhere we have 11 temperatures, so that the algorithm

can be run quickly. Each of the three methods were run for 20000 iterations for

each temperature, 10000 of which were implemented before Adaptive MCMC.

The results when excluding the Expected deviance value that corresponds to

t = 0 are shown in Table 4.1. The Expected deviance when t = 0, has a big

influence on the approximation of the logarithm of the marginal likelihood in

all three methods. The reason for this is that when t = 0 we are just sampling

from the prior distribution. Then the knots do not have any influence on the

power posterior, and therefore any values are accepted. This then causes the

high magnitude values of the Expected deviance (Equation 3.4.6).

From these results we see that the logarithm of the Bayes factor is 609.6 in favour

of the no connection model when using the CNC MCMC approximation and
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Spacing CNC BNC Partial
c = 1 −8.6300x103 −9.1654x103 −9.2396x103

c = 5 −1.0943x104 −9.0757x103 −1.7978x104

Table 4.1: The estimates of the logarithm of the marginal likelihood by using
Annealing-Melting Integration; for the CNC MCMC method when
there is no connection, the BNC MCMC method and finally the
method when there is a connection by using Partially Deterministic
Scan MCMC. Here we use 11 temperatures and temperature spac-
ings of c = 1 and c = 5.

74.2 in favour of the no connection model when using the BNCMCMC approx-

imation. We now try to execute Annealing-Melting Integration with spacing

c = 5 because Friel and Pettitt (2008) found that in general c works well when

its value is between 3 and 5.

After running the algorithmwith 11 temperatures such that the spacing is c = 5,

we obtain the results in Table 4.1. From the results we estimate that the loga-

rithm of the Bayes factor in favour of the no connection model is 7035 when

using the CNC MCMC approximation and 10874 when using the BNC MCMC

approximation.

We observed in the results that the approximations of the logarithm of the no

connection marginal likelihood do not change too much when using spacing

c = 1 and c = 5. However the approximation of the logarithm of the marginal

likelihood when there is a connection changes quite significantly when using

spacing c = 1 and c = 5. We will now use 51 temperatures with spacing c = 5

to attempt to obtain better estimates. The results can be seen in Table 4.2.

The estimate of the logarithm of the marginal likelihood in the model where

there is a connection appears to be bad when using spacing c = 5 which we can

observe by looking at the plot of the Expected deviance which is in Figure 4.15

(a). Therefore we now run Annealing-Melting Integration with 51 temperatures
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CNC BNC Partial
−1.0789x104 −1.0829x104 −3.6914x104

Table 4.2: The estimates of the logarithm of the marginal likelihood by using
Annealing-Melting integration; for the CNC MCMC method when
there is no connection, the BNC MCMC method and finally the
method when there is a connection based on Partially Determinis-
tic Scan MCMC. Here we use the 51 temperatures and spacing of
c = 5.
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Figure 4.15: The temperatures against the Expected deviance when using spac-
ing (a) c=5 and (b) c=1 to estimate the marginal likelihood for
model M1.

with spacing c = 1. When we calculate this new estimate for the logarithm of

the marginal likelihood in favour of the model with a connection, the approxi-

mation is −1.0259x104. Immediately we can see that this result looks more sen-

sible than the approximation using c = 5 by observing the plot of the Expected

deviance in Figure 4.15 (b). We can see that the plot of the Expected deviance is

much more smooth and hence the trapezium rule estimate will be better.

We then use the new estimate for the logarithm of the marginal likelihood in

favour of the model with a connection and compare it with our best approxima-

tions for the model with no connection. With the CNC MCMC approximation

the approximation of the logarithm of the Bayes factor in favour of the model

with a connection is 530, whilst the corresponding approximation when using

BNCMCMC is 570. Thus we have strong evidence in favour of the model with

a connection.
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4.10.2 Example 2 - a dataset with no connection

We now attempt model selection on a dataset where there is no connection be-

tween the two brain regions of interest. In this example the dataset that we

simulate has 11 voxels in the x direction and 3 voxels in both the y and z di-

rections. We denote region 1 to be all the voxels such that x ≤ 3 and region 2

to be all the voxels such that x ≥ 8. We choose the local parameter values in

each voxel to be completely random so that we expect there is no anatomical

connection between the two regions.

To initialise the knot values we first attempt to implement the method based on

Deterministic Tractography (Section 4.5) starting from every possible voxel in

region 1. No tract could be produced that connects region 1 and region 2 which

makes sense because there is no connection between the regions. Therefore in

this method we start with the spline that we used in Example 1 as the initial

spline.

As in Example 1 initially we implement Annealing-Melting Integration using

11 equally spaced temperatures. There seems to be problems with the accep-

tance rate of samples when using the CNC MCMC method for implement-

ing Annealing-Melting Integration in this example. Therefore we dismiss CNC

MCMC and just use BNC MCMC for the model where there is no connection.

The approximation of the logarithm of the marginal likelihoods are shown in

Table 4.3

From the results we see that the logarithm of the Bayes factor is 1758 in favour

of the model with a connection. We will now use temperature spacing of c = 5

instead of c = 1 when calculating the Annealing-Melting Integration estimates

for the marginal likelihood, as we would prefer to focus more on the higher
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Spacing No connection Connection
c = 1 −1.3114x104 −1.1356x104

c = 5 −1.1858x104 −2.3446x104

Table 4.3: The estimates of the logarithm of the marginal likelihood by using
Annealing-Melting Integration; for the BNCMCMCmethod and the
method when there is a connection based on Partially Deterministic
Scan MCMC. Here we use 11 temperatures and temperature spac-
ings of c = 1 and c = 5.

No connection Connection
−1.2732x104 −2.4798x104

Table 4.4: The estimates of the logarithm of the marginal likelihood by using
Annealing-Melting Integration; for the BNC MCMC method and fi-
nally the method when there is a connection based on Partially De-
terministic Scan MCMC. Here we use the 51 temperatures and tem-
perature spacing c = 5.

temperatures due to the problems when t = 0. The results are in Table 4.3.

From these results we see that the logarithm of the Bayes factor is 11588 in

favour of the no connection model. As in Example 1 we can observe that the

approximation for the model with a connection when using c = 1 changes dras-

tically when using c = 5. Finally we use more temperatures when the spacing

is c = 5 to attempt to obtain a better approximation. The results are in Table 4.4.

As in Example 1we can observe that the Annealing-Melting integration approx-

imation with spacing c = 5 when there is a connection is not very good. We ver-

ify this by looking at the plot of the Expected deviance in Figure 4.16. Therefore

for this model we attempt Annealing-Melting Integration again for the model

with a connection using 51 equally spaced temperatures. The approximation

of the logarithm of the marginal likelihood in favour of a connection is then

−1.6378x104. When using the approximation of the logarithm of the marginal

likelihood for the model where there is no connection which is −1.2732x104 we

can calculate the logarithm of the Bayes factor in favour of the model with a

connection to be -3646. Therefore in both Example 1 and Example 2 the result

182



0 0.2 0.4 0.6 0.8 1

×10 9

-3

-2.5

-2

-1.5

-1

-0.5

0

Figure 4.16: The temperatures against the Expected deviance when using spac-
ing c=5 to estimate the marginal likelihood for model M1.

of the logarithm of the Bayes factor corresponds to the true model.

4.11 Conclusions

The main aim of this chapter was to find some way of determining whether

regions of the brain are connected by incorporating prior knowledge and using

model selection methods. First we introduced the Global Tractography frame-

work that was proposed by Jbabdi et al. (2007). We altered this framework

slightly to take into account the conclusions in Chapter 3 that the ARD prior

was inadequate.

Within the framework our first goal was to infer the global parameters. Already

in Chapter 2 we had found ways to infer the local parameters in the Global

Tractography model, thus we just needed to extend the work in Chapter 2 to

also infer the global parameters. To aid in the inference we proposed a method

based on Deterministic Tractography for initialising the values of the knots in

the Global Tractography model. Then three methods were proposed for run-

ning MCMC to infer the knots in the Global Tractography model when there is

a connection between two brain regions of interest. Partially Deterministic Scan

MCMC was found to be the best method from the proposed methods.
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Although the mixing in Partially Deterministic Scan MCMC was adequate, it

was not as good as we would wish for it to be, therefore we applied Adap-

tive MCMC to Partially Deterministic Scan MCMC to automatically calculate

a proposal covariance matrix for the knot values after a given number of iter-

ations. This significantly improved the mixing in the Partially Deterministic

Scan MCMC algorithm. Due to the introduction of Adaptive MCMC in the Par-

tially Deterministic Scan MCMC algorithm we now have a robust algorithm for

inferring the values of both the knots and the local parameters in the Global

Tractography framework.

The next step was to then execute model selection between the model with a

connection between two brain regions and the model with no such connection.

From this we can determine whether or not it is likely that there is an anatomical

connection between any two brain regions. We used Annealing-Melting Inte-

gration to aid us in approximating the logarithm of the Bayes factor in favour

of a model.

For the model where there is a connection, model selection was just a slight

extension on the work we had already implemented to infer the values of the

knots. However it was not as easy to calculate the Annealing-Melting Integra-

tion approximation for the marginal likelihood in the model where there is no

connection. Therefore we proposed two potential methods to first infer the val-

ues of the knots and the local parameters in this model. Eventually we chose

one of the methods for approximating the logarithm of the marginal likelihood

when there is no connection which is Basic No Connection MCMC.

We looked at two simulated examples to see how well the approximations

work. The first example was a 3D dataset with a connection between two re-

gions. The approximation to the logarithm of the Bayes factor was strongly in
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favour of the model where there is a connection. Afterwards we worked with a

second example where there was no connection between the two regions. The

approximation of the logarithm of the Bayes factor was strongly in favour of

the model with no connection. Thus from our simulated datasets Annealing-

Melting Integration offers a good method to implement model selection.
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CHAPTER 5

Conclusions

5.1 Synopsis

The main aim of this thesis was to develop efficient methods for studying the

Global Tractography model within a Bayesian framework. This broader aim

was split into three smaller goals that correspond to our three main chapters.

In Chapter 2 we discussed how to provide efficient methods for estimating the

parameters of the partial volume model. In Chapter 3 we reviewed existing

methods and developed novel model selection techniques to choose between

the number of fibre orientations in the partial volume model.

The methodology developed in Chapters 2 and 3 was employed in Chapter 4

in fitting the Global Tractography model. In the Global Tractography model

the diffusion within a voxel is modelled using the partial volume model, thus

estimating the parameters of the model quicker as in Chapter 2 and selecting

the model with the correct number of fibre orientations as in Chapter 3, helps

us when working with the Global Tractography model. Finally in Chapter 4

the Global Tractography model parameters are inferred and robust methods for

model selection are used to decide whether there is evidence for a connection

between two brain regions.
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Wehave also introduced a new type of Tractography that we termed Fully Prob-

abilistic Tractography. This newmethod unlike existing Tractography methods,

considers model uncertainty for the number of fibre orientations within a voxel.

Furthermore we have introduced a reparameterisation of the partial volume

model that involves the use of directional distributions; the reason for this is

that such distributions may be more convenient to use in certain special cases.

We will now give an overview of the results of each chapter of this thesis.

5.2 Overview of the results

We first introduced the basics of Diffusion-Weighted MRI in Chapter 1 and then

in Chapter 2 we explored ways of quickly and efficiently estimating parameters

in the partial volume model. As a basis for this we first introduced fast methods

for estimating the parameters of the Diffusion Tensor model. This was imple-

mented using both the Linearised Diffusion Tensor model and Markov Chain

Monte Carlo within a Bayesian framework. The estimates obtained from the

Linearised Diffusion Tensor model were used to obtain initial estimates for the

parameters of the partial volume model by using metrics that were defined in

Chapter 1.

We used Bayesian inference to infer the parameters of the partial volumemodel.

Initially Vanilla MCMC was used to estimate the parameters in the partial vol-

ume model but it was very slow and thus impractical in the presence of many

voxels; for this reason we then considered Block-update MCMC. However the

choice of covariance matrix for the proposal distribution determines how ef-

ficiently MCMC works. To overcome the problem of mixing we introduced

AdaptiveMCMC as a solution for obtaining a good covariancematrix for propos-
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ing candidate values of the parameters within MCMC.

MCMC can potentially be very time consuming in the presence of many vox-

els, thus we introduced the Laplace approximation as a good approximation of

the posterior distribution. We showed that the Laplace approximation density

was comparable to the density obtained from MCMC results. Alternatively the

Laplace approximation was found to be a good proposal distribution for the

independence sampler within the MCMC.

Whenwe inferred the parameters of the partial volume models we showed that

there are problems when the true value of θ, which represents the fibre orien-

tation is close to 0. Thus we investigated a new reparameterisation that utilises

directional distributions. We investigated both the Bingham and the Angular

Central Gaussian distributions as proposal distributions within MCMC. The

reparameterisation was shown to be better than using the original parameters

in cases where the true value of θ ≈ 0. The Angular Central Gaussian dis-

tribution was shown to be better than the Bingham distribution as a proposal

distribution by comparing the Autocorrelation function of the samples drawn

using each algorithm.

We used our methods on real datasets to determine if the proposed methods

work as well as they do on simulated datasets. To determine how well the

methods works we compared estimates of the parameters in the partial vol-

ume model with the corresponding results obtained by FSL software. Our al-

gorithms appeared to produce samples with better mixing.

Finally we conducted a simulation study to compare the different methods for

inferring the parameters of the partial volume model. The methods that were
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compared were Vanilla MCMC, Block-update MCMC, independence sampler

MCMC, Adaptive MCMC and the Laplace approximation. Of all the methods

only Vanilla MCMC produced bad results due to the difficulty in the mixing.

This simulation study suggested that from all the MCMC methods the inde-

pendence sampler MCMC produced the least correlated samples whilst also

being very quick. We then investigated simulated datasets with two fibre ori-

entations in a voxel. The methods worked equally well in voxels with two fibre

orientations as they did in voxels with only one fibre orientation.

In Chapter 3 our goal was to find a method for determining how many fibre

orientations to model in the partial volume model. The existing method in

the literature, Automatic Relevance Determination was discussed and its prob-

lemswhen implementedwere demonstrated. We thus explored Bayesianmodel

choice and Bayes factors. Due to the difficulties in calculating the marginal like-

lihoods for the Bayes factor we must estimate the value of the marginal likeli-

hoods. This is not a straightforward task and a commonly usedmethod, namely

Reversible JumpMCMC, is too costly; it was therefore decided to attempt meth-

ods based on Thermodynamic Integration.

The two main methods based on Thermodynamic Integration are Annealing-

Melting Integration andModel-Switch Integration. Furthermore we introduced

an alternative version of Annealing-Melting Integration which involved the in-

dependence sampler, which we called Importance Power Posterior. We further

looked at a suggested improvement to the approximations using the corrected

Trapezium rule. We demonstrated that this suggestion improves the approxi-

mations in toy examples. We then applied all of this to simulated datasets from

the partial volume model, and we determined that the best method was Model-

Switch integration.
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Our model selection techniques were then used within Fully Probabilistic Trac-

tography, which is Probabilistic Tractography with added model uncertainty.

This was shown to be effective in voxels with crossing fibres. All methods that

were introduced in this chapter were then applied to real datasets, where re-

sults appeared to be similarly good.

In Chapter 4 the aim was to infer the parameters of the Global Tractography

model which then allowed us to determine where there is evidence for connec-

tions between different brain regions of interest. Initially we just focused on

obtaining estimates for the knots of the splines that represent the connections

between regions. After investigating different possible methods for inferring

the values of the knots we found that the proposed Partially Deterministic Scan

MCMC was the best method. Initially the Partially Deterministic Scan MCMC

algorithm was applied to 2D simulated datasets and this produced favourable

results.

In 3D datasets the Partially Deterministic Scan MCMC mixing was not as good

as we would expect, so Adaptive MCMC was used within the Partially De-

terministic Scan MCMC algorithm which vastly improved the mixing within

MCMC. To aid in the performance of the MCMC algorithm, initialisation of the

knots was also investigated. We used a method based on Deterministic Trac-

tography to initialise the knots; this method appeared to be better than existing

ones.

The final aim of Chapter 4 was to infer the connection matrix C, which is the

parameter from the Global Tractography model that determines whether there

is a connection between any two brain regions. We again used model selection

methods based on Thermodynamic Integration to approximate the Bayes factor

in favour of the model with a connection. We used Annealing-Melting Integra-

190



tion as we showed that Model-Switch integration is not suitable in this case. We

investigated simulated datasets and found that the approximation of the Bayes

factor in these simulated datasets supported the correct model.

5.3 Future work

There are still many possible extensions to the work in this thesis. The first

extension would be to investigate datasets that are simulated from the partial

volume model with three or more fibre orientations. In the literature there are

many conflicting views on whether voxels with more than two white matter fi-

bre orientations are actually regularly encountered (Jeurissen et al., 2013). First

one could determine if our methods for both initialising and estimating the pa-

rameters of the partial volume models work as well when there are more fibre

orientations. It would probably be relatively simple to initialise the parameter

values in the partial volume model with three fibre orientations. Similarly to

the partial volume model with two fibre orientation we can obtain three eigen-

values in the Diffusion Tensor estimate and then use these eigenvalues to split

the Fractional Anisotropy into three. However it will be more challenging to de-

termine a way of initialising the parameters in the partial volume model with

four or more fibre orientations. We could also investigate how having models

with more fibre orientations affects the methods for model selection in Chapter

3 and Fully Probabilistic Tractography.

In this thesis we have only introduced Fully Probabilistic Tractography and in-

vestigated it briefly. This Tractography method could be used to investigate

many more connections in the brain.

The methods for inferring the global parameters and connections between re-
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gions in the Global Tractography model have thus far only been used on sim-

ulated datasets with one fibre orientation in each voxel. A large investigation

that explores how these methods work on real data with more fibre orientations

needs to be implemented to confirm that these methods work on real data. It

would be interesting to see how the connections found by Global Tractography

compare with functional connections found from fMRI. We would then like to

use the results obtained in Global Tractography to help to determine which pos-

sible functional connections to look for in fMRI.

A final step is to use the model uncertainty for the number of fibre orientations

within a voxel that we used throughout Chapter 3 within the Global Tractogra-

phy model when determining the existence of a connection as this could poten-

tially affect the results greatly as it does in Fully Probabilistic Tractography.
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CHAPTER 6

Appendices

Appendix A - Catmull Rom splines

Suppose that there are four knots, labelled P1, P2, P3 and P4. These knots are

such that the order of the index determines in which order they are connected,

such that there is a curve from P1 to P2, a curve from P2 to P3 and a curve from

P3 to P4. Then a curve, P (t), can be drawn from P2 to P3, such that P (0)=P2

and P (1)=P3. This curve can be calculated for a parameter α, which represents

the spline’s tension, at any t ∈(0,1) by:

P (t) =

[
t3 t2 t 1

]




−α 2− α α − 2 α

2α α − 3 3− 2α −α

−α 0 α 0

0 1 0 0







P1

P2

P3

P4



.

Thus if two end knots are defined a spline that passes through all of the other

knots may be constructed. When these splines are used to connect the knots in

the global framework, it is required for the curve to go through all the knots

including the two end knots. A way to resolve this problem is to create two

auxiliary control points, which are placed at each end of the curve. Once these

control points are defined, the spline will then pass through the two end knots.
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A common method used to create the control points is reflection. P0, the first

control point is obtained by reflecting P2 − P1 about P1, similarly P5, the sec-

ond control point is obtained by reflecting, P4 − P3 about P4. Usually the de-

fault value of α is 0.5.

If we choose the default value of α, then

P (t) =

[
t3 t2 t 1

]




−0.5 1.5 −1.5 0.5

1 −2.5 2 −0.5

−0.5 0 0.5 0

0 1 0 0







P1

P2

P3

P4




=

[
t3 t2 t 1

]




−0.5P1 + 1.5P2 − 1.5P3 + 0.5P4

P1 − 2.5P2 + 2P3 − 0.5P4

−0.5P1 + 0.5P3

P2




=(−0.5P1 + 1.5P2 − 1.5P3 + 0.5P4)t
3

+ (P1 − 2.5P2 + 2P3 − 0.5P4)t
2

+ (−0.5P1 + 0.5P3)t + P2.

Appendix B - The calculation of the distribution in

the ARD toy example

We know that

π(yi |µ, σ) ∼ N(µ, σ)
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so that

π(yi |µ, σ) =
1√
σ2π

exp
(
− (yi − µ)2

2σ

)

and

π(Y |µ, σ) =

(
1√
σ2π

)N

exp

(
− 1
2σ

N

∑
i=1

(yi − µ)2
)
.

Also

π(µ|σµ) ∼ N(0, σµ),

π(σ) ∼ σ−1

and

π(σµ) ∼ σ−1
µ

so that

π(µ|σµ) =

(
1√

σµ2π

)
exp

(
1

2σµ
µ2
)
.

We calculate

π(µ|Y ) ∝

∫ ∞

0

∫ ∞

0
π(Y |µ, σ)π(µ|σµ)π(σµ)π(σ)dσdσµ
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by the following

π(µ|Y ) ∝

∫ ∞

0

∫ ∞

0

(
1√
2π

)N

(σ)−
N
2 exp

(
− 1
2σ

N

∑
i=1

(yi − µ)2

)

1√
σµ2π

exp
(
− 1
2σµ

µ2
)

σ−1σ−1
µ dσdσµ

=
∫ ∞

0

(
1√
2π

)N 1√
σµ2π

exp(− 1
2σµ

µ2)σ−1
µ

∫ ∞

0
σ− N

2

exp(− 1
2σ

N

∑
i=1

(yi − µ)2)σ−1dσdσµ.

We can derive

∫ ∞

0
σ− N

2 exp

(
− 1
2σ

N

∑
i=1

(yi − µ)2
)

σ−1dσ =
Γ(N2 )

(0.5∑
N
i=1(yi − µ)2)

N
2

.

Therefore

π(µ|Y ) ∝
Γ(N2 )

(0.5∑
N
i=1(yi − µ)2)

N
2

(
1√
2π

)N+1 ∫ ∞

0
σ
− 1

2
µ exp

(
− 1

σµ
0.5µ2

)
σ−1

µ dσµ

and

∫ ∞

0
σ
− 1

2
µ exp

(
− 1

σµ
0.5µ2

)
σ−1

µ dσµ =
Γ(12 )√
0.5|µ|

.

Then

π(µ|Y ) ∝
Γ(N2 )

(0.5∑
N
i=1(yi − µ)2)N2

Γ(12 )√
0.5|µ|

(
1√
2π

)N+1

∝
(∑

N
i=1(yi − µ)2)−

N
2

|µ| .
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Appendix C - Transformations used in the knots

The knots in the Global Tractography model may be constrained to be within a

certain interval of values. For example the first coordinate of the knot P1, P1(x),

may be constrained to take a value in the interval (a1, b1). It may be easier to

look at the transformed value P ′
1(x) which can take a value in the real line.

Therefore we wish to find a way of obtaining the value of P1(x) from P ′
1(x),

and vice versa. First it is easy to see that the first relation is

P1(x) = a1 + ((b1 − a1)/(1 + exp(−P ′
1(x)))).

Then we wish to obtain some function that gets the value of P ′
1(x) given a value

of P1(x). This is done as follows

P1(x) − a1 = ((b1 − a1)/(1 + exp(−P ′
1(x))))

(P1(x)− a1)(1 + exp(−P ′
1(x))) = (b1 − a1)

(1+ exp(−P ′
1(x))) =

(b1 − a1)

P1(x) − a1

exp(−P ′
1(x)) =

(b1 − a1)

P1(x) − a1
− 1

exp(−P ′
1(x)) =

(b1 − a1)−P1(x) + a1
P1(x) − a1

exp(−P ′
1(x) =

(b1 −P1(x))

P1(x)− a1

−P ′
1(x) = log

(
(b1 −P1(x))

P1(x) − a1

)

P ′
1(x) = log

(
P1(x)− a1
b1 −P1(x)

)
.
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Appendix D - The calculation of the posterior distri-

bution of τ

First note that as in Section 2.3

π(ω|y) ∝ π(y|ω)π(θ, φ)π( f )π(d)π(S0)π (τ)

=

( √
τ√
2π

)n

exp

(
−τ

2

n

∑
i=1

(yi − µi)
2

)
|sin(θ)| βασ

σ

Γ(ασ)
(τ)ασ−1 exp (−βστ) .

Then we can derive the posterior distribution of τ which is

π(τ|y) ∝ τ
n
2 +ασ−1exp(−τ(βσ + 0.5

n

∑
i=1

(yi − µi)
2))

which is proportional to a Gamma distribution with parameters α and β where

α =
n

2
+ ασ

and

β = βσ + 0.5
n

∑
i=1

(yi − µi)
2.
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