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Abstract

This work investigates the theoretical and experimental decoherence
of phonons in weakly and strongly-interacting Bose-Einstein Condensates
(BECs). The theoretical analysis treats phonons as open quantum systems
where the environment comprises all other quasi-particle modes of the BEC.
The phonons are assumed to be Gaussian states and the time in which they
decohere is estimated from the evolution of their purity and nonclassical
depth in the dissipative channel. The calculations are performed for vari-
ous BEC systems and it is found that the excited phonon states will always
decohere much more rapidly than the rate at which they relax back to equi-
librium with the environment.

Part II of this work considers how the decoherence of the phonons can be
measured experimentally. The experiment that is currently being investi-
gated uses a strongly-interacting 6Li BEC where the scattering length can be
varied with an external magnetic field. In a strongly-interacting Bose gas the
mutual interaction between the condensed and noncondensed components
plays a greater role than in weakly-interacting gases and results in distinct
absorption images. Understanding the effects from this mutual interaction
is vital to model the in-situ absorption images of a strongly-interacting BEC
in order to extract accurate information such as that which will facilitate the
experimental measurement of decoherence. Three theoretical models that
could be used to fit in-situ absorption images of a strongly-interacting gas
are analysed. These are the bi-modal, semi-ideal and Hartree-Fock models,
which will be fit against the absorption images of the 6Li BEC for vari-
ous scattering lengths. The validity of these models is also investigated to
determine when beyond mean-field effects may be observed in the Bose gas.

Controlling decoherence is essential to the operation and physical re-
alisation of many quantum information tasks and quantum technologies.
Recently, new technologies have emerged from relativistic quantum infor-
mation science that, in principle, are more precise than their non-relativistic
counterparts. The practical setup of these devices utilizes phonons of BECs
but the decoherence of the phonons has not been considered. In this work,
one of the BEC systems used to estimate the decoherence time of the
phonons has been chosen to be based on these devices. This calculation
is expected to inform the practical realization of these devices and inspire
future related studies. Analogue gravity investigations based on BECs also
utilize phonons, for example, in the analogue of Hawking radiation. The
quantum properties of these states is of particular interest in these studies
and understanding how they decohere, and at what rate, could potentially
inform the theory of black hole physics as well as dictate what is possible
to measure experimentally.
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Introduction

The superposition principle is one of, if not the, most significant fundamen-

tal postulates of quantum mechanics. The fact that we do not observe this

principle in our macroscopic world leads to our lack of intuition of quantum

theory and to astonishing results. This is a well-known and long-outstanding

issue for quantum mechanics and many theories have been proposed to fa-

cilitate a resolution. The theory of quantum decoherence, in particular,

offers promising insight into a potential resolution [1]. This theory com-

prises the notion that realistic quantum systems can never be isolated and

are instead continuously interacting with their surrounding environment.

This is in contrast to classical physics where the objective reality of a sys-

tem can always be separated from the environment. There the environment

just creates experimental noise which prevents the observation of the true

objective reality of the system of interest. In quantum theory, however,

the entangling of states perfectly demonstrates the inherent non-isolation

of quantum systems. The continuous interaction of a quantum system with

its environment often leads to the appearance of a non-unitary evolution

of the system and, in some cases, to the local suppression of interference

between particular states. This loss of quantum coherence is the basis of

the theory of decoherence and essentially results in the quantumness of the

system “leaking” into the environment. Viewed in isolation and a particular

basis, the system has then gone from a coherent quantum superposition of

states to behaving like a classical statistical ensemble of states, although

a total superposition of the global system-environment wave function still

exists. This process often occurs in extremely short time scales [2], provid-

ing insight into a potential resolution of the non-observation of quantum

superpositions in the macroscopic world (for further discussion see e.g. [3]).
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Introduction

The theory of decoherence was introduced in 1970 by Zeh [1] and quan-

titatively measured for the first time by in 1996 by Haroche et al. [4] using

rubidium atoms where each was in a superposition of two states. As well

as playing a prominent role in fundamental notions of quantum physics,

decoherence also has applications in quantum thermodynamics [5], biology

[6], and, in particular, in the rapidly developing fields of quantum infor-

mation science and quantum technology. In quantum information science

decoherence is re-interpreted as the loss of information from a system to

the environment. The information contained in a quantum state is vital in

quantum information science and the loss of information is to the detriment

of a particular task. Therefore, understanding how a particular quantum

system decoheres is crucial to the performance and realisation of quan-

tum information tasks. Understanding the process of decoherence is also

of critical importance to the related field of quantum technology. This is a

relatively new field of physics and engineering that harness the fundamen-

tal principles of quantum physics to gain a functionality or performance

which cannot be attained from classical concepts. For example, a modern

classical computer relies on classical information theory and stores informa-

tion in binary bits. Therefore, even though an understanding of quantum

physics is required to manipulate the transistors which are used to carry

out the classical information tasks, the computer is fundamentally based

on classical concepts. Quantum computers on the other hand store infor-

mation in quantum states and rely on the superposition principle. They

are, therefore, fundamentally quantum devices. These devices offer a per-

formance that cannot be achieved by classical computers such as factoring

integers in polynomial time [7] and a quadratic speedup for function inver-

sion [8]. Given this, and the fact classical computers are beginning to reach

the physical limitations of Moore’s law [9], quantum computers are widely

considered to be the future of computing. However, this promise is reliant

on understanding and limiting decoherence in these devices since this re-

sults in the degradation of quantum superpositions which are vital to the

performance and realisation of the device. Furthermore, limiting decoher-

ence is similarly also of critical importance to other applications of quantum
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Introduction

technology such as quantum communication, which, in principle, offers ab-

solutely secure messaging, and quantum metrology and sensing, which offer

super-resolution measurements.

Bose-Einstein condensates (BECs), where bosonic atoms or molecules

form a collective state at low temperatures, are considered to be promis-

ing candidates for the implementation of various quantum technologies

since they can usually be relatively well isolated from their surroundings

and, therefore, offer relatively long coherence times. In particular, two-

component Bose-Einstein condensates, either as bosons condensed in two

different sites [10] or as condensed bosons in different hyperfine levels cou-

pled by a laser [11], have been widely considered for the implementation

of certain quantum technologies. The primary application for such two-

component BECs is considered to be quantum metrology [12], such as

atomic clocks and accelerometers, but quantum simulation and computation

have also been investigated in this context [13]. A major advancement in

this area has been the development of BECs on atom chips, which facilitates

the control of many BECs [14].

Bose-Einstein condensates have also recently been applied to the field

of Relativistic Quantum Information Theory (RQIT) [15]. This field is

concerned with formulating a theory of quantum information that is fully

compatible with the relativistic structure of spacetime. It has so far uncov-

ered unexpected obstacles to quantum information tasks, such as relativistic

degradation of entanglement, as well as completely new possibilities such as

generation of entanglement and improved precision of measurement devices

[16–18]. Many implementations and applications of quantum information,

such as space based applications, employ relativistic systems and, as the

precision of quantum devices improves, it is becoming increasingly impor-

tant to determine how relativistic effects can affect quantum information

tasks [17, 19, 20]. The field also has important applications in fundamental

questions of cosmology, black hole physics and quantum gravity.

In a relativistic setting, the phononic excitations of a BEC satisfy a

Klein-Gordon equation on a curved background metric that has two terms,

one corresponding to the real spacetime metric, and a second that is an
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acoustic analogue to a spacetime metric [21]. The second term is manipu-

lated in analogue gravity experiments [22] and has culminated in the recent

observation of an acoustic analogue of the elusive Hawking radiation of a

black hole [24]. The first term, on the other hand, allows for the observation

of real relativistic effects on BECs due to motion-induced transformations

and changes in the real gravitational field. This has been utilized with con-

cepts from RQIT to formulate a quantum accelerometer and gravitational

wave (GW) detector [17, 18] where the strength of the acceleration and GW

are estimated from the change of state of the phonons. Due to the much

slower propagation of the phonic excitations compared to that of light in

vacua, these relativistic quantum technologies are anticipated to be highly

precise and offer an accuracy that is orders of magnitude above that of the

current state-of the art [17, 18].

The utilisation of BECs to carry out information tasks in these rel-

ativistic quantum devices is fundamentally distinct to their use in tradi-

tional quantum technologies. As discussed above, the latter are generically

based on two-component BECs and thus utilize the condensed atoms and

molecules of the Bose gas. On the other hand, the relativistic quantum

devices utilize the phononic excitations of the Bose gas (the quantized long-

wavelength oscillations of the condensate). The mechanism of decoherence

of these relativistic devices will, therefore, be completely different to that

of the traditional quantum devices that use BECs. In fact decoherence has

yet to be considered in these relativistic quantum devices and the phononic

excitations of the BEC have been assumed to exist for as long as the BEC.

However, the decoherence time of the phononic excitations is expected to be

important for the practical realisation of the GW detector and accelerome-

ter since they rely on long enough times to extract the quantum information

induced in the phononic excitations.

Motivated by the above relativistic quantum devices, the work presented

here is primarily concerned with estimating the decoherence time of the

phononic excitations of BECs [25]. This can then be used to appraise the

potential realisation of the devices. Thus far, only the time scale for the

energy relaxation of phononic excitations of BECs has been investigated
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[26–29]. This is the time scale required for the approximate vanishing of

the populations of quantum states [30–32] and constitutes a strict upper

bound on the decoherence time. However, in this work it is shown that

phonons can decohere in time scales which are orders of magnitude shorter

than their corresponding relaxation time scales, placing constraints on the

practical realisation of the relativistic quantum devices.

Decoherence and, in particular, the degradation of entanglement [33]

of phononic states, is also likely to be important in analogue gravity or

related setups based on BECs [34–36].1 For example, the observation of

entanglement and nonclassical correlations in Hawking radiation relies on

these properties existing for a non-negligible time in the BEC. Furthermore,

the observation of nonclassical correlations in phonon states created by an

acoustic version of the dynamical Casimir effect [37, 38] will also be reliant

on a non-vanishing decoherence time. BECs have in fact emerged as one of

the most promising platforms to simulating the physics of a quantum field

on a generic curved space-time. Here the equation describing the propa-

gation of phonons in the moving fluid can be recast in terms of a massless

scalar field propagating in a curved space time with a suitably chosen acous-

tic metric. This can, for example, lead to an acoustic simulation of a black

holes where it is phonons rather than photons that cannot escape. An ad-

vantage of this acoustic black hole (BH) is that, unlike for gravitational

BHs, Hawking radiation can be observed [24] and the quantum description

is well-understood at the microscopic level, potentially facilitating an im-

proved understanding of the intrinsic issues in the standard derivation of

Hawking radiation. At the time of writing, quantum properties such as en-

tanglement have yet to be observed but such a signature would be of major

significance to the analogue gravity field and potentially to BH physics.2

1The robustness of entanglement generation in quasi-particles against temperature
has also been theoretically studied for these systems [36].

2Shortly after the submission of this thesis a measurement of the entanglement of
acoustic Hawking radiation was reported in [39]. Entanglement was not observed at
low frequencies but, given the results of this thesis and [33], this is unlikely to be due
to decoherence effects since it is expected that this would only increase with frequency
(although it is possible that, due to differences in experimental setup, this situation
could change). This measurement opens the door to investigations into measuring the
decoherence of phonons of BECs.
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Understanding how this entanglement degrades via decoherence processes

could thus potentially inform the theory of BH physics as well as dictate

what is possible to measure in experiments.

In this work the decoherence of phonon states of BECs is investigated by

treating them as open quantum systems in the Born-Markov approximation.

The phonon states are then further assumed to be Gaussian states, which are

states whose Wigner function is of Gaussian form. Such states are commonly

employed in continuous variable quantum information and quantum optics,

and have been recently applied to the extension of quantum metrology to

relativistic settings [17, 40]. The principle advantage of these states is that

the infinite number of degrees of freedom required to describe a general

quantum field state is reduced to just the entries of a two dimensional vector

and square matrix. The latter is commonly referred to as the covariance

matrix and all informationally relevant properties can be derived from it

[41–43]. Under the Gaussian and Born-Markov approximations, the rate of

decoherence of the phonons is then shown to be quantifiable by analysing

the evolution of certain global entropic measures and nonclassical indicators

of Gaussian states following [44].

The decoherence of the phonons is investigated for several BEC setups

where different values of thermodynamic quantities such as temperature are

used as well as different microscopic quantities such as the mass and inter-

action strength of the atoms or molecules. In particular, the decoherence

time is estimated for a BEC setup inspired by that used in [18] for the theo-

retical analysis of the relativistic GW detector, as well as a BEC setup that

is currently being investigated in order to determine the decoherence time

of phonons experimentally. The latter investigation is also the subject of

this work and uses a strongly-interacting Lithium Bose gas where molecules

of 6Li condense [45]. The decoherence time is then expected to be extracted

from in-situ absorption images of this Bose gas at various temperatures.

In a strongly-interacting Bose gas the mutual interaction between the

condensed and noncondensed components plays a greater role than in weakly-

interacting gases and is expected to result in absorption images that are

quite distinct from those of weakly-interacting Bose gases even at relatively
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low temperatures. Understanding the effects from the mutual interaction

is thus vital to the extraction of the decoherence time. Numerous theories

have been developed to successfully model this mutual interaction. Popu-

lar methods are those that utilize the Popov or Hartree–Fock approxima-

tions, which are mean-field theories for finite temperature systems [46–48].

To determine the density profiles seen in absorption images, the resulting

equations from these models have to be solved either self-consistently or

numerically. This in contrast to the most generically used model for mod-

elling absorption images, the so-called bi-modal model. This model is an

analytical model that treats the condensed and noncondensed components

as independent systems. It further treats the noncondensed component as

an ideal gas and ignores the kinetic energy of the condensate in the Thomas-

Fermi limit [49, 50].

To facilitate the experimental measurement of the decoherence time of

the phonons, three models for extracting the density profiles of in-situ ab-

sorption images of the molecular 6Li Bose gas are currently being compared

[51]. The three models are the analytical bi-modal model, a model based

on the Hartree-Fock approximation, and the semi-ideal model [52]. A sim-

ilar analysis has been carried out previously for a Rubidium Bose gas [53]

but the Lithium Bose gas used here is much more strongly interacting and

Feshbach resonances allow for the effective interaction strength to be var-

ied. Furthermore, the study discussed in this work uses in-situ absorption

images rather than time-of-flight images as in [53].

The analysis of the above three models forms Part II of this work and, as

well as facilitating the experimental measurement of the decoherence time,

is also expected to inform the BEC community on the validity of the gener-

ically used bi-modal model for modelling strongly-interacting Bose gases as

well as the effects of the mutual interaction between the condensed and non-

condensed components. The experiment is also expected to provide insight

into the legitimacy of mean-field theories for modelling strongly interacting

Bose gases and thus whether beyond-mean field theories need to be used.

7
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Thesis Outline

The proceeding chapter reviews the theory of phononic excitations of BECs

and introduces their principle interaction channels, the Beliaev and Lan-

dau interactions. Chapter 2 then treats a single phonon mode as an open

quantum system with the environment comprising all the other excitation

modes, and the mutual interaction being provided by the Beliaev and Lan-

dau interactions. The evolution in time of the density operator of the single

phonon mode is then derived in the Born-Markov and secular approxima-

tions. Chapter 3 simplifies the description for the evolution of the phonon

mode by assuming a Gaussian state. The evolution of the state is then fully

defined by the evolution of the entries of a two-dimensional vector called

the displacement vector and the covariance matrix. This derived evolution

is used in Chapter 4 to estimate the time scales for which phonon states

decohere and relax to equilibrium. This is performed for various BEC se-

tups at various temperatures, including setups based on the relativistic GW

detector [18] and the 6Li Bose gas that will be used to measure the deco-

herence time experimentally. Chapters 5-6 then form Part II of this work

and consider the experimental investigation into the decoherence time of the

strongly-interacting Lithium Bose gas. In particular, Chapter 6 compares

the three different models discussed above that can be used to analyse the

absorption images of a strongly-interacting Bose gas. Finally, Chapter 7

summarizes the findings and outlines future prospects.
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CHAPTER 1

Phonons of Bose-Einstein Condensates

This chapter investigates the dominant interaction channels of the phononic

excitations of interacting BECs, which are shown to be the Beliaev and Lan-

dau interaction channels. Subsequent chapters will then show that these

interactions cause the phonons to decohere. The chapter starts with an

introduction to the theory of Bose-Einstein condensation with an analysis

of non-interacting Bose gases as in Einstein’s original work [54]. Section

1.2 then investigates interacting Bose gases and derives the elementary ex-

citation spectrum for such gases using the Bogoliubov approximation [55].

The dominant interaction channels for these excitations, the Landau and

Beliaev processes, are then finally derived in Section 1.3.

1.1 Bose-Einstein Condensation

A BEC is a state of matter in which essentially all the atoms or molecules

occupy the same quantum state. Following the work of Bose on the statis-

tics of photons [56], this state of matter was first discovered by Einstein

when he considered a gas of non-interacting atoms obeying Bose-Einstein

statistics and concluded that a phase transition associated with the conden-

sation of the boson in the lowest-energy state would occur below a certain

temperature.

For a system of non-interacting (independent) identical particles the

11



1.1. Bose-Einstein Condensation

grand partition function is given by:1

Z =
∏
i

∑
{ni}

eni(µ−εi)/kBT (1.1)

where εi are the single-particle eigenstates; T is the temperature; ni is the

number of particles in energy state εi; {ni} denotes the set of occupation

numbers allowed by the symmetry of the particles; and µ is the chemical

potential, which can be defined as the amount by which the internal energy

of a system will change if you add a particle without changing the system’s

volume or entropy.

For fermions the Pauli exclusion principle only allows {ni} = {0, 1},
whereas, for bosons {ni} is any integer number of particles {ni} ∈ N. The

grand partition function for these types of particles is then given by:

Z =
∏
i

(1± e(µ−εi)/kBT )±1 (1.2)

and thus the average number of particles in each energy level is:

〈ni〉 =
1

e(εi−µ)/kBT ± 1
(1.3)

where + is for fermions and − is for bosons. In the limit (ε−µ)� kBT we

just recover the Boltzmann distribution e−(ε−µ)/kBT . In this case identical

particle statistics becomes irrelevant since the density is low (µ is small)

and so there are many more states thermally accessible to the particles

than there are particles [57].

The distribution function for bosons from (1.3) is called the Bose-Einstein

distribution function. This requires that µ < ε0 for bosons otherwise the

states with energy smaller than µ would have negative occupation numbers.

As µ → ε0 the occupation number for the ground state increases and this

is the mechanism behind Bose-Einstein condensation. If the volume and

1The term ‘particle’ is used here to refer to the fundamental constituent of the gas,
which could be an atom or molecule depending on the particular gas.
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the particle number are fixed, then the chemical potential µ increases to-

wards ε0 as the temperature decreases. At a certain temperature Tc, bosons

will begin to fill up the ground state, and this temperature is known as

the critical temperature for Bose-Einstein condensation. However, at the

low temperature required for Bose-Einstein condensation, the majority of

systems will form condensed phases (liquid or solid) because of attractive

inter-atomic interactions. Therefore, to achieve Bose-Einstein condensa-

tion, conditions are required that facilitate this condensation to occur more

rapidly relative to the longer time scales needed for the competing phase

changes. Experimental setups that were used to achieve this are discussed

in Chapter 5.

Taking the energy of the atoms to be given by εp = p2/2m, for example,

and treating p as continuous, the density of the particles that are not in the

condensate is given by:2

nT =

∫
dp

(2π~)3

1

e(εp−µ)/kBT − 1

=
1

λ3
T

g3/2(z) (1.4)

where z = eµ/kBT is the fugacity and ga(z) is the defined by:

ga(z) =
∞∑
l=1

z(r)l

la
. (1.5)

In (1.4) λT is the thermal de Broglie wavelength, which is can be considered

to be the average de Broglie wavelength of the gas particles in an ideal gas:

λT = h/p =
h√

2mεp
=

√
2π~2

mkBT
(1.6)

using the fact that the effective kinetic energy of free particles is πkBT .

Defining nc := nT (µ = 0), Bose-Einstein condensation will occur when

nc < n where n = N/V is the density of the gas with N the total num-

2For a walk-through of this derivation see e.g. [48, 58].
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1.2. Bose-Einstein Condensation in Interacting Gases

ber of particles. Thus, Bose-Einstein condensation will take place when the

thermal de Broglie wavelength λT becomes comparable to the average sepa-

ration between particles such that the quantum mechanical wave nature of

the particles leads to all atoms becoming increasingly correlated, eventually

forming a coherent quantum superposition.

1.2 Bose-Einstein Condensation in Interacting Gases

The previous Section considered Bose-Einstein condensation in an ideal gas.

However, although interactions were not explicitly included in the formula-

tions, it was assumed that the gas is in thermal equilibrium, which cannot be

achieved in a completely non-interacting system. This section reviews Bose-

Einstein condensation in interacting Bose gases paying particular attention

to the derivation of phonon-like excitations in the so-called Bogoliubov ap-

proximation.

Investigations into the theory of Bose-Einstein condensation in weakly

interacting BECs was sparked by the discovery of superfluity in liquid he-

lium, which was shortly considered to be associated with Bose-Einstein

condensation by London [59]. An alternative explanation for superfluidity

was then subsequently offered by Landau who used elementary excitations

without reference to condensation [60]. These two seemingly contrasting

theories were later unified by Bogoliubov when he derived the elementary

excitation spectrum for an interacting Bose gas undergoing Bose-Einstein

condensation [55], which approximated to a phonon-like spectrum for the

low-energy excitations. This theory was subsequently extended to liquid

Helium by Feynman in 1955 [61] and lead to a period of intensive study of

interacting Bose-condensed systems. Following the result of several decades

of research and the advent of laser cooling, atomic traps, and evaporative

cooling [62], Bose-Einstein condensation in interacting Bose gases was fi-

nally demonstrated experimentally for the first time in 1995 using the alkali

atoms Rubidium [63], Sodium [64] and Lithium [65], which has lead to an

explosion of interest in these systems both theoretically and experimentally.

Here the theory of interacting Bose-condensed fluids is formulated in

14



1.2. Bose-Einstein Condensation in Interacting Gases

terms of quantum field operators, which is the approach that was first ini-

tiated by Bogoliubov in 1947 [55]. In position space, the quantum field

operators are ψ̂†(r) and ψ̂(r) where the former creates a particle at posi-

tion r and the latter annihilates a particle at position r. For a Bose gas

these quantum field operators satisfy the usual Bose-commutation relation:

[ψ̂(r), ψ̂†(r)] = δ(r − r′) (1.7)

where δ(r) is the Dirac delta function.

Under the assumption that the gas is rarefied, only two-body interactions

need to be considered since interactions involving three or more particles

are very rare and so can be safely neglected. This is possible because,

by definition, the range of inter-atomic forces is much smaller than the

average distance between the particles in these gases. For example, the alkali

systems that were used in the first Bose-Einstein condensation experiments

were around 104 less dense than air even at there densest points. The

quantum field Hamiltonian for a rarefied Bose gas can then be written as:

Ĥ =

∫
drψ̂†(r)

[
− ~2

2m
∇2 + V(r)

]
ψ̂(r)

+
1

2

∫
drdr′ψ̂†(r)ψ̂†(r′)U(r′ − r)ψ̂(r)ψ̂(r′) (1.8)

where U(r) is the two-body potential and V(r) is the external potential.

For a uniform gas occupying a box of volume V = L3, with cyclic boundary

conditions, the solutions are plane-waves:

ψ̂(r) =
1√
V

∑
p

âpe
ip.r/~ (1.9)

where âp is the operator that annihilates a particle in the single-particle

state with momentum p, which is given in discrete units such that p =

2π~n/L where n is a vector with components nx, ny, nz ∈ N. Substituting

(1.9) into (1.8), the Hamiltonian of a uniform Bose gas in a volume V is
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1.2. Bose-Einstein Condensation in Interacting Gases

then found to be:

Ĥ =
∑
p

p2

2m
â†pâp +

1

2V

∑
p,p′,q

Uqâ†p+qâ
†
p′−qâp′ âp (1.10)

where Uq is the Fourier transform of U(r).

1.2.1 Bogliubov Quasi-Particles

Assuming that the condensate is macroscopically occupied, â0 and â†0 can be

replaced with their approximate classical expectation value
√
N0 where N0 is

the average occupation of the ground state N0 = 〈â†0â0〉.3 This was first used

by Bogoliubov [55] and is equivalent to ignoring the non-commutativity of

the operators and treating them classically. Separating out the condensate

component a0 from the non-condensate components âp6=0 so that:

∑
p

âp = â0 +
∑
p6=0

âp, (1.11)

the Hamiltonian (1.10) can then be written as:

Ĥ = Ĥ0 + ĤI
2 + ĤI

3 + ĤI
4 (1.12)

where [66]:

Ĥ0 :=
∑
p

p2

2m
â†pâp +

U0

2V
â†0â

†
0â0â0, (1.13)

ĤI
2 :=

1

2V

∑
p6=0

(
Upa†0a

†
0âpâ−p + Upâ†pâ

†
−pa0a0 + 2(Up + U0)â†pa

†
0âpa0

)
,

(1.14)

ĤI
3 :=

1

V

∑
p,p′ 6=0

Up
(
a†0â

†
p+p′ âp′ âp + â†p′ â

†
pa0âp+p′

)
, (1.15)

ĤI
4 :=

1

2V

∑
p,p′,q 6=0

Uqâ†p+qâ
†
p′−qâp′ âp. (1.16)

3That is, â†0|N0〉 =
√
N0 − 1|N0 − 1〉 ≈

√
N0|N0〉, for example, since N0 � 1.
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1.2. Bose-Einstein Condensation in Interacting Gases

Note that there is no Ĥ1 term since that would violate conservation of mo-

mentum. The interaction terms involving the condensate and non-condensate

modes in ĤI
2 , ĤI

3 and ĤI
4 are illustrated in Figure 1.1, and ĤI

3 will be

considered in detail in Section 1.3. Since a0 ≈ a†0 ≈
√
N0 � 0, then

ĤI
2 � ĤI

3 � ĤI
4 , and in this Section we will ignore the more suppressed

terms ĤI
3 and ĤI

4 , which is the basic assumption that leads to the so-called

Bogoliubov model.

For Bose-Einstein condensation to occur, the temperature must be smaller

than the critical temperature as discussed Section 1.1. Therefore, only low-

momentum calculations need to be considered and the short-wavelength

degrees of freedom of the two-body interaction, which reflect the correla-

tions between the two particles, can be integrated out. The exact shape

of the inter-particle potential can then be ignored and we are left with an

effective interaction to which perturbation theory can be safely applied.

Furthermore, since only small momenta are involved, only the p = 0 value

of the Fourier transform is allowed to be considered [48]. Therefore, under

the above assumptions, (1.12) simplifies to:

Ĥ =
∑
p

p2

2m
â†pâp +

U0

2V
â†0â

†
0â0â0

+
U0

2V

∑
p6=0

(
4â†pâ

†
0âpâ0 + â†0â

†
0âpâ−p + â†pâ

†
−pâ0â0

)
(1.17)

where:

U0 =

∫
Ueff(r)dr. (1.18)

For the third term, â0 and â†0 can be replaced with
√
N using the approxima-

tion that N0 ∼ N . However, for the other term involving â0 and â†0, higher

accuracy is required using the normalization relation â†â0 +
∑
p6=0 â

†
pâp = N

so that, neglecting higher order effects, the term can be replaced with [48]:

â†0â
†
0â0â0 = N2 − 2N

∑
p6=0

â†pâp. (1.19)
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1.2. Bose-Einstein Condensation in Interacting Gases

To lowest order in perturbation theory, U0 is given by the Born approxima-

tion U0 = g where g is the interaction coupling constant, which is defined in

terms of the s-wave scattering length a that characterizes the interactions:

g =
4π~2a

m
. (1.20)

However, to ensure a convergent result for the ground state energy, one

must go to the next order in perturbation theory where [48, 67]:

U0 = g +
g2

V

∑
p6=0

m

p2
. (1.21)

Substituting (1.19) and (1.21) into (1.17), and neglecting terms that are

suppressed by fewer powers of N , the Hamiltonian for the Bose gas is then

given by:

Ĥ =
N2g

2V
+
∑
p6=0

p2

2m
â†pâp+

ng

2

∑
p6=0

(
2â†pâp+ â†pâ

†
−p+ âpâ−p+

mgn

p2

)
. (1.22)

This Hamiltonian can be diagonalized by applying the following Bogoliubov

transformation:

âp := upb̂p + vpb̂
†
−p, (1.23)

â†−p := upb̂
†
−p + vpb̂p. (1.24)

where:

up, vp := ±
(p2/2m+ gn

2ε(p)
± 1

2

) 1
2

(1.25)

and the operators b̂†p, b̂p obey the Bose commutation relations [b̂p, b̂
†
p′ ] = δp,p′

where δp,p′ is the Kronecker delta.
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1.2. Bose-Einstein Condensation in Interacting Gases

In this new basis, (1.22) becomes:

Ĥ = ε0 +
∑
p6=0

εpb̂
†
pb̂p (1.26)

where:4

ε0 :=
gN2

2V
+

1

2

∑
p6=0

(
εp − gn−

p2

2m
+
m(gn)2

p2

)
, (1.28)

εp :=

√
c2
sp

2 +
( p2

2m

)2

, (1.29)

cs :=

√
gn

m
. (1.30)

The Hamiltonian (1.26) describes a system of independent quasi-particles

whose creation and annihilation operators are b̂†p and b̂p, and whose energy-

momentum relation is given by (1.29) where cs is the speed of sound, and

the ground-state energy of the system is ε0.5 Therefore, by a simple change

of basis, we have gone from an interacting system of particles described by

(1.22) to a non-interacting system of quasi-particles described by (1.26).

For small momenta p � mcs, the dispersion law of the quasi-particles

from (1.29) is that of phonons ωp = csk where εp = ~ωp and p = ~k. The

long-wavelength quasi-particles are, therefore, phonons. In this regime up ∼
vp ∼

√
mcs/2p and so, from calculating 〈b̂†pb̂p〉, the phonons can be thought

of as composed of approximately the same number of particles moving in the

quasi-particle direction as those moving in the opposite direction [69]. On

the other hand, for high momenta p� mcs the dispersion law approximates

to p2/2m+ gn and the quasi-particles behave like free particles. Therefore,

in summary, for a Bose gas in thermal equilibrium, at high temperatures

4The quasi-particle ground-state energy ε0 can be calculated by replacing the sum
with an integral in momentum space giving [68]:

ε0 = g
N2

2V

(
1 +

128

15
√
π

√
na3
)
. (1.27)

5These quasi-particles can be thought of as squeezed momentum eigenstates since,
from (1.23), they are squeezed combinations of opposite momenta states.
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1.3. Quasi-Particle Interactions

(but lower than the critical temperature) the excitations behave like free

particles, whereas, for low temperatures, phononic excitations dominate.

Since the quasi-particles are non-interacting we have an ideal gas of

quasi-particles, and so their average occupation Np is simply:

Np := 〈b̂†pb̂p〉 =
1

eβp − 1
(1.31)

where βp := ~ωp/kBT . Note that the addition of a quasi-particle does not

change the total particle number and so µ = 0. Consequently, there is no

occupation of quasi-particle modes at zero temperature since there is no

p = 0 mode by definition. However, this does not mean that the condensate

is fully occupied at absolute zero since, using (1.23)-(1.24), 〈â†pâp〉 is given

by:

〈â†pâp〉 = |up|2〈b̂†pb̂p〉+ |vp|2[1 + 〈b̂†−pb̂−p〉] (1.32)

and so, at absolute zero, 〈â†pâp〉 = |vp|2. The condensate is therefore de-

pleted at zero temperature due to the interactions in the gas.

1.3 Quasi-Particle Interactions

The previous section considered an interacting Bose gas in the Bogoliubov

approximation where the elementary excitations can be described by non-

interacting quasi-particles which, therefore, have infinite lifetimes. How-

ever, in this approximation only terms that are at most quadratic in âp

and â†p were represented in the Hamiltonian since ĤI
3 and ĤI

4 in (1.12)

were neglected. If the terms that are cubic and quartic in âp and â†p are

re-introduced then, after the Bogoliubov transformation (1.23), these terms

will provide interactions between the quasi-particles, resulting in finite life-

times. Since the terms from ĤI
4 are suppressed relative to the terms from

ĤI
3 , only the latter terms will be examined here. For a single quasi-particle

momentum mode q, these terms result in the following interaction Hamil-
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1.3. Quasi-Particle Interactions

tonian [26, 27, 70]:

ĤI = b̂qQ̂
† + b̂†qQ̂ (1.33)

where:

Q̂ := Â+ B̂ + L̂, (1.34)

Â† := g

√
n

V

∑
p,p′ 6={0,q}

Ap,p′ b̂pb̂p′δ−q,p+p′ , (1.35)

B̂† := g

√
n

V

∑
p,p′ 6={0,q}

Bp,p′ b̂†pb̂
†
p′δq,p+p′ , (1.36)

L̂† := g

√
n

V

∑
p,p′ 6={0,q}

Lp,p′ b̂pb̂†p′δq,p′−p, (1.37)

Ap,p′ := uq(vpvp′ + upvp′ + vpup′)

+ vq(upvp′ + vpup′ + upup′), (1.38)

Bp,p′ := uq(upup′ + vpup′ + upvp′)

+ vq(vpvp′ + vpup′ + upvp′), (1.39)

1

2
Lp,p′ := uq(vpup′ + upup′ + vpvp′)

+ vq(upvp′ + upup′ + vpvp′). (1.40)

Note that Q̂† and Q̂ are operators acting on the Hilbert space of the rest of

the quasi-particles but they are not, in general, creation and annihilation

operators since [Q̂, Q̂†] 6= 1 unless further approximations are made (see [71]

for an idea of the approximations that need to be assumed).

The resonant interactions b̂qL̂
† and b̂qB̂

† are the well-known Landau and

Beliaev interactions [26]. In the Landau process b̂qL̂
†, a quasi-particle from

the mode q collides with a quasi-particle from another mode to create a

higher-energy quasi-particle. Since this requires the thermal occupation of
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a quasi-particle mode, the process vanishes at zero temperature. On the

other hand, in the Beliaev process b̂qB̂
†, a quasi-particle of mode q sponta-

neously annihilates into two new quasi-particles with lower energies, which

is analogous to parametric down-conversion in quantum optics [72] and can

occur at absolute zero.6 Both these processes are illustrated in Figure 1.2.

Since the processes originate from ĤI
3 , they can also be considered from

the point-of-view of four-body interactions between the condensate and the

thermal cloud, which are illustrated in Figure 1.1.

If a phonon mode is excited out of equilibrium then these interaction

processes will damp the excitation back to equilibrium with the rest of the

Bose gas. This has been demonstrated in various experiments [73] and the

damping rate has been measured. For example, in [74, 75], the observed

damping is consistent with the theory of Landau damping [26], which will

be derived in the next chapter. The time it takes for the excited phonon

mode to be damped (relax back to equilibrium) sets an upper limit for the

decoherence time of the mode [32]. However, the actual decoherence time

could be much smaller, as will be demonstrated in the subsequent chapters.

1.4 Summary

This chapter has derived the dominant interaction channels for phonic exci-

tations of a BEC, which are the Beliaev and Landau interaction processes.

The next chapter will investigate a framework for describing how excited

phonon states will evolve in time due to these Landau and Beliaev interac-

tions with the other quasi-particle modes. This will then be simplified in

Chapter 3 and used in Chapter 4 to estimate the decoherence and relaxation

times of the phonons.

6However, it should be noted that, due to the discretization of energy levels in trapping
potentials, the Beliaev process is not active for the lowest energy modes, unlike in the
uniform systems considered here.
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(i)

(ii) (iii)

(iv) (v)

(vi) (vii)

(viii)

Figure 1.1: These vertex diagrams represent the interaction terms in the
Hamiltonian (1.12) [66]. The dashed lines correspond to a condensate par-
ticle, the solid line refers to a noncondensate particle, and the wavy line de-
notes the interaction. Diagram (i) describes the interaction term in (1.13),
(ii)-(v) correspond to the interaction terms in (1.14), (vi)-(vii) refer to the
interaction terms in (1.15), and (viii) denotes the interaction term (1.16).
Note that in a normal, noncondensed, system only (viii) is present.
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(i) (ii)

Figure 1.2: These vertex diagrams represent the on-resonance quasi-particle
interaction terms in (1.33). Diagram (i) describes the Landau interaction
whereas (ii) corresponds to the Beliaev interaction.
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CHAPTER 2

Phonons as Open Quantum Systems

The previous chapter investigated a theoretical description of phonons of

BECs from a microscopic point-of-view and derived the expected dominant

interaction processes for a single phonon mode, which are the Landau and

Beliaev interaction processes. How these interaction processes affect the

time evolution of a phonon mode that has been taken out of equilibrium

with the rest of the quasi-particle modes is the subject of this chapter, and

subsequent chapters will use this to determine how quickly the phonon mode

decoheres.

The framework used to calculate the time evolution of the state is that

of open quantum systems. Absolute isolation of a quantum system from its

surroundings, which is called its environment, is not possible and a complete

description of the environment is impractical since it is typically composed

of an extremely large number of degrees of freedom. All quantum systems

are, therefore, essentially open systems. This is of greater fundamental

importance than in classical mechanics given the entirely nonclassical phe-

nomenon of entanglement, where widely spatially separated systems can

still be highly correlated, and the measurement process. Furthermore, due

to the much greater size of space that quantum calculations are performed

in compared to classical mechanics, even if it were possible to completely

describe the environment, this would present an intractable amount of in-

formation. The theory of open quantum systems is therefore essential to

many applications of quantum physics, as well as fundamental questions.

In this theory the lack of knowledge about the environment is expressed
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2.1. Evolution of a Closed Quantum System

by averaging (mathematically tracing) over the possible states of its degrees

of freedom. In contrast to the case of an idealized closed quantum system,

this generically results in a non-unitary evolution of the open quantum

system, with only the combined system obeying the unitary evolution of a

closed system. This theory and how it is applied to the phononic excitations

of a BEC will be discussed in greater detail in the following sections.

To begin with, Section 2.1 reviews the mathematics of closed quantum

systems, which obey unitary dynamics. Section 2.2 then moves to the theory

of open quantum systems and considers the time evolution of a general open

quantum system in the Born-Markov approximation, which represents the

simplest case of the dynamics of open quantum systems and provides a first-

order linear differential equation for the open system known as the quantum

Markovian master equation in Lindblad form. Section 2.3 then applies this

general theory to the specific case that is of interest to this work, a phonon

mode of a BEC, where the environment of this open quantum system is

taken to be all the other quasi-particle modes (which could be empty).

This results in a description of the time evolution of a phonon mode due

to the Landau and Beliaev interactions with the rest of the quasi-particle

modes, which is then further simplified in Chapter 3.

2.1 Evolution of a Closed Quantum System

In non-relativistic quantum mechanics the state vector |ψ(t)〉 of a closed

quantum state evolves in time according to the Schrödinger equation:

i~
d

dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉 (2.1)

where Ĥ(t) is the Hamiltonian of the closed system. The solution of this

equation can be expressed as:

|ψ(t)〉 = Û(t)|ψ(0)〉 (2.2)
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where Û(t) is a unitary time-evolution operator which, for a general time-

dependent Hamiltonian is given by:1

Û(t) = T
←
e−

1
~
∫ t
0 Ĥ(t′)dt′ (2.3)

where T
←

is the time-ordering operator. If the Hamiltonian is time-independent

then the unitary time-evolution operator is simply Û(t) = e−iĤt/~.

If the closed quantum system is a statistical ensemble of several quantum

states, a mixed state, then the density operator ρ̂ provides a useful means

of characterizing the system and has an analogy with the phase-space prob-

ability measure in classical statistical mechanics. In this case there is not

enough information to specify the state vector and only the probabilities

pi that the system is in a normalized state |ψi〉 are known. The density

operator ρ̂ is then defined as:

ρ̂ :=
∑
i

pi|ψi〉〈ψi| (2.4)

where
∑

i pi = 1. Note that, with this definition, the expectation value of a

quantum operator Ô acting on the system can be expressed as:

〈Ô〉 =
∑
i

pi〈ψi|Ô|ψi〉 = Tr(ρ̂Ô). (2.5)

From the evolution of the state vectors (2.2), the density operator for a

closed quantum system evolves in time as:

ρ̂(t) = Û(t)ρ̂(0)Û †(t), (2.6)

=⇒ d

dt
ρ̂(t) = − i

~
[Ĥ(t), ρ̂(t)]. (2.7)

The latter equation (2.7) is the von Neumann equation and can be writ-

1For example, the Hamiltonian could be time-dependent if the system is driven by a
time-dependent external potential V (t). In this case the system is still said to be ‘closed’
but not ‘isolated’.

27



2.2. Evolution of an Open Quantum System

ten in a form that is analogous to the classical Liouville equation, which

is the equation of motion for the probability density in classical statistical

mechanics (see e.g. [32]).

2.2 Evolution of an Open Quantum System

An open quantum system can be considered as a subsystem of a larger

closed quantum system that consists of the open quantum system and an-

other quantum system called the environment which it couples to. The

Hamiltonian of the full system Ĥ can then be represented as:

Ĥ = ĤS ⊗ ÎE + ÎS ⊗ ĤE + ĤI (2.8)

where ĤS is the open system’s free Hamiltonian and acts in the Hilbert

space HS; ĤE is the free Hamiltonian of the environment and acts in the

Hilbert space HE; ÎS and ÎE are identity operators for the spaces HS and

HE respectively; and ĤI is the Hamiltonian that describes the interaction

between the system and the environment and acts in the full spaceHS⊗HE.

From now on the identity operators will be suppressed, in which case the

full system’s Hamiltonian is simply written as:

Ĥ = ĤS + ĤE + ĤI . (2.9)

Since it is a closed system, the density operator of the full system ρ̂ evolves

via the von Neumann equation (2.7), which is greatly simplified by trans-

forming to the interaction picture. In this picture the density operator of

the full system ρ̃ transforms as:

d

dt
ρ̃(t) = − i

~
[H̃I(t), ρ̃(t)] (2.10)
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where the interaction picture operators, which are denoted by tildes rather

than hats, are defined as:

ρ̃(t) := eiĤ0t/~ρ̂(t)e−iĤ0t/~, (2.11)

H̃I(t) := eiĤ0t/~ĤI(t)e
−iĤ0t/~ (2.12)

and Ĥ0 := ĤS + ĤE, which is assumed to be independent of time. The

generically rapid motion generated by Ĥ0 has therefore been separated out

from the slow motion induced by ĤI .

The time evolution of the full system’s density operator can be obtained

from (2.10). However, we are only interested in the dynamics of the open

quantum system S and not of the environment. To achieve this we can

average over the possible states of the environmental degrees of freedom.

This is equivalent to tracing over the environmental degrees of freedom in

the full system’s density operator, which leaves behind the so-called reduced

density operator of the system ρ̂S := TrE ρ̂. All information that can be

extracted by an observer analysing the open system is then contained in

its reduced density operator (assuming that the Born rule for quantum

probabilities holds). For example, for an observable acting on the open

system’s Hilbert space, its expectation value is given by:

〈Ô〉 = TrS(Ôρ̂S) (2.13)

where Ô is an operator acting on the Hilbert spaceHS. The reduced density

operator is therefore the quantity that we are most interested in determining

as a description of the open quantum system. It does not really represent the

state of the open system as that is intimately tied up with the environment,

but it is a useful calculational tool for computing the probability distribution

for the set of possible outcomes of general measurements on the open system.

The evolution of the reduced density operator (in the interaction pic-

ture) can then be calculated from the evolution of the full system’s density
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operator (2.10):

d

dt
ρ̃S(t) = − i

~
TrE[H̃I(t), ρ̃(t)]. (2.14)

The dynamics of the reduced system introduced by this equation can, in

general, be quite complex. The next sections consider certain approxima-

tions that can be made such that the above exact equation for the reduced

density can be simplified into a first-order linear differential equation, which

is known as the quantum Markovian master equation in Lindblad form.

This equation can be derived from purely algebraic means by simply as-

suming that the density operator evolves under the action of the generator

of a quantum dynamical semi-group (see e.g. [32]). However, this approach

doesn’t appeal to the underlying Hamiltonian dynamics to determine un-

der which physical assumptions the density operator can evolve in this way.

The next sections take this latter approach of starting with the underly-

ing Hamiltonian dynamics and then considering what physical assumptions

need to be made in order to derive a quantum Markovian master equation

in Lindblad form for a general system, and thus a generator of the quantum

dynamical semi-group.

2.2.1 The Born Approximation

The master equation for the full system’s density operator in the interaction

picture (2.10) can be integrated to obtain:

ρ̃(t) = ρ̂(0)− i

~

∫ t

0

[H̃I(t
′), ρ̃(t′)]dt′. (2.15)

Iterating this solution then results in [30]:

ρ̃(t) = M̂(t)ρ̃(0) (2.16)
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where:

M̂(t) :=
∞∑
n=0

M̂n(t), (2.17)

M̂n(t)ρ :=
(
− i

~

)n ∫ t

0

dt1

∫ t1

0

dt2 · · ·

×
∫ tn−1

0

dtn

[
H̃I(t1),

[
H̃(t2), . . . [H̃I(tn), ρ]

]]
(2.18)

with t0 := t and t−1 := 0 such that M̂0(t) = 1.

The system’s density operator can then be determined by tracing over

the environment:

ρ̃S(t) = N̂(t)ρ̃S(0) (2.19)

where:

N̂(t) :=
∞∑
n=0

N̂n(t), (2.20)

N̂n(t)ρ :=
(
− i

~

)n
TrE

∫ t

0

dt1

∫ t1

0

dt2 · · ·

×
∫ tn−1

0

dtn

[
H̃I(t1),

[
H̃(t2), . . . [H̃I(tn), ρE(0)⊗ ρ]

]]
(2.21)

and the initial state has been assumed to be uncorrelated ρ̂(0) = ρ̂S(0) ⊗
ρ̂E(0).

The Born approximation is to assume that the coupling between E and

S is very weak so that we can ignore higher order perturbation terms. The

term N̂1 can in fact be eliminated by assuming that TrE(H̃I ρ̂E(0)) = 0,

which is guaranteed if the environment operators coupling to S have zero

mean in the state ρ̂E, and can always be arranged by including TrE(ĤI ρ̂E(0))

in the system Hamiltonian [76]. Therefore, in the Born approximation we

neglect terms higher than second order in H̃I in (2.19). Differentiating

this equation then provides an equation of motion for the reduced density
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operator in the Born approximation:

d

dt
ρ̃S(t) ≈ − 1

~2

∫ t

0

TrE
(
[H̃I(t), [H̃I(t

′), ρ̃(t′)]]
)
dt′ (2.22)

and ρ̃(t) ≈ ρ̃S(t) ⊗ ρ̂E(0) since the reservoir is only negligibly affected by

the interaction.

Note that equation (2.22) could also have been obtained by simply plug-

ging (2.15) into (2.14), taking the trace over the environment, and then

assuming that TrE[H̃I(t), ρ̂(0)] = 0 using the assumptions made above i.e.

that TrE(H̃I ρ̂E(0)) = 0 and that no correlations exist between S and E at

the initial time [32].

2.2.2 The Markov Approximation

The Markov approximation assumes that memory effects can be neglected so

that the future evolution of ρ̃S(t) depends only on its present state. This will

be satisfied if the environment is a large system maintained in equilibrium so

that it will not preserve the minor changes brought about by its interaction

with S long enough to significantly affect the future evolution of S. That

is, the Markov approximation relies on the environment correlation time τE

being much shorter than the time scale τR for significant change in S (the

relaxation time) [32].

With memory effects neglected ρ̃S(t′) can be replaced with ρ̃S(t). How-

ever, the time evolution of ρ̃S given by (2.22) will still depend on an explicit

choice for the initial preparation at time t = 0. To remove this dependence,

a change of variable t′ → t− t′ is performed and the upper limit of the in-

tegral is taken to infinity, which is permissible provided that the integrand

disappears sufficiently fast for τ � τE [32]. The equation of motion for the

reduced density operator in the Born-Markov approximation is then:

d

dt
ρ̃S(t) = −

∫ ∞
0

TrE
(
[H̃I(t), [H̃I(t− t′), ρ̃S(t)ρ̂E]]

)
dt′
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=

∫ ∞
0

TrE
(
H̃I(t− t′)ρ̃S ρ̂EH̃I(t)− H̃I(t)H̃I(t− t′)ρ̃S ρ̂E

)
dt′ + h.c.

(2.23)

where the Hermitian property of H̃I has been used and the tensor product

has been dropped for convenience.

2.2.3 The Interaction Hamiltonian

The interaction Hamiltonian ĤI is assumed to be of the form:2

ĤI :=
∑
i

Âi ⊗ Êi (2.24)

where Âi are eigenoperators of ĤS belonging to the frequencies −ωi:

[ĤS, Âi] = −ωiÂi, (2.25)

=⇒ [ĤS, Â
†
i ] = ωiÂ

†
i . (2.26)

Therefore, the operators Âi in the interaction picture are given by:

Ãi = eiĤSt/~Âie
−iĤSt/~ = e−ωit/~Âi, (2.27)

Ã†i = eiĤSt/~Â†ie
−iĤSt/~ = e+ωit/~Â†i . (2.28)

The interaction Hamiltonian (2.24) in the interaction picture can then be

written as:

H̃I(t) =
∑
i

ei(ĤS+ĤE)t/~Âi ⊗ Êie−i(ĤS+ĤE)t/~ (2.29)

=
∑
i

e−iωit/~Âi ⊗ Ẽi(t) =
∑
i

eiωit/~Â†i ⊗ Ẽ
†
i (t). (2.30)

2See [32] for a more general discussion where any ĤI can be written as
∑
α Âα ⊗ Êα

with Âα = Â†α and Êα = Ê†α. Then the eigenoperators of ĤS are formed from the Âα
operators: Âα =

∑
ω Âα(ω) where Âα(ω) is an eigenoperator of ĤS with frequency ω.

This general Hamiltonian would then cover the case not considered here where there is
degeneracy in the eigenfrequencies.
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Substituting this into (2.23) results in:

d

dt
ρ̃S(t) =

∑
ij

ei(ωi−ωj)t/~Γij(ωj, t)
(
Âj ρ̃S(t)Â†i − Â

†
i Âj ρ̃S(t)

)
+ h.c. (2.31)

where Γij(ωj, t) is defined in terms of reservoir correlation functions as:

Γij(ωj, t) :=
1

~2

∫ ∞
0

dt′eiωjt
′/~〈Ẽ†i (t)Ẽj(t− t′)〉E. (2.32)

2.2.4 The State of the Environment

The state of the environment ρ̂E is taken to be represented by a product

of independent bosonic modes satisfying 〈b̂†k〉 = 〈b̂k〉 = 0 where b̂†k and b̂k

are the creation and annihilation operators for each mode, which obey the

usual commutation relations for bosons. The operators Êi in the interaction

Hamiltonian (2.24) will then be functions of the creation and annihilation

operators b̂†i and b̂i.

The state of the environment is assumed to be a general squeezed ther-

mal state, which reduces to a squeezed vacuum state at T = 0 and a thermal

state when the squeezing parameter is zero. Unlike a thermal state, this

squeezed state is not, in general, a stationary state of the environment i.e.

[H̃E, ρ̃E] 6= 0. Given that the environment is in a squeezed thermal state,

the correlation function Γij(ωj, t) can be split up into parts that involve

rapidly oscillating exponentials e2iωjt/~ and those that don’t [32]:

Γij(ωj, t) = Γ
(1)
ij (ωj) + e2iωjt/~Γ

(2)
ij (ωj) (2.33)

where terms Γ
(1)
ij (ωj, t) result from environment correlation functions that

contain an equal number of creation operators and annihilation operators,

and the terms Γ
(2)
ij (ωj, t) vanish for an environment in thermal equilibrium.

Note that the correlation function Γij(ωj, t), in general, depends on time

for this non-stationary state of the environment. This is in contrast to a

thermal state where the corresponding correlation functions are independent

of time (Γ
(2)
ij (ωj) vanishes) [32].
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Inserting the above decomposition of Γij(ωj, t) into the master equation

2.31 results in:

d

dt
ρ̃S(t) =

∑
ij

(
ei(ωi−ωj)t/~Γ

(1)
ij (ωj) + ei(ωi+ωj)t/~Γ

(2)
ij (ωj)

)
×
(
Âj ρ̃S(t)Â†i − Â

†
i Âj ρ̃S(t)

)
+ h.c. (2.34)

As specified in Section 2.2.2, to satisfy the Markov approximation, the

reservoir correlation functions must decay in a time τE, which is small com-

pared to the relaxation time τR. Strictly speaking the decay of the cor-

relations can only be valid for an environment which is infinity large and

involves a continuum of frequencies [32].

2.2.5 The Secular Approximation

A typical value for ωi−ωj, where |ωj| 6= |ωi|, defines a typical time scale τS

for the intrinsic evolution of the system S [32]. If τS is large compared to the

relaxation time τR of the open quantum system then the non-secular terms

in (2.34) may be neglected since they will oscillate very rapidly during the

time τR. This removal of the rapidly oscillating terms from the interaction

picture master equation for the reduced density operator is called the secular

approximation and is related to the rotating wave approximation which

refers to the the removal of the rapidly oscillating terms from the interaction

picture Hamiltonian.

With this approximation the master equation for the reduced density

operator is given by:

d

dt
ρ̃S(t) =

∑
i

(
Γ

(1)
ii (ωi)

(
Âiρ̃S(t)Â†i − Â

†
i Âiρ̃S(t)

)

+ Γ
(2)
ij 6=i(ωj)

(
Âiρ̃S(t)Â†j − ÂiÂ

†
j ρ̃S(t)

))
+ h.c. (2.35)

where in the second line j is such that Â†j = Âi since ωj = −ωi for this term.
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2.2.6 The Master Equation in Lindblad Form

The Hermitian conjugate terms in (2.35) can be gathered up by rewriting

Γij as:

Γij :=
1

2
γij + iSij (2.36)

where Sij and γij are Hermitian and positive matrices:

Sij :=
1

2i
(Γij − Γ∗ji), (2.37)

γij := Γij − Γ∗ji. (2.38)

The master equation for the reduced density operator can then be written

as:

d

dt
ρ̃S = − i

~
[ĤLS, ρ̃S(t)] +D(ρ̃S) (2.39)

where:

ĤLS :=
∑
i

(S
(1)
ii Â

†
i Âi + S

(2)
ij 6=iÂiÂi), (2.40)

D(ρ̃S) := DT (ρ̃S) +DS(ρ̃S), (2.41)

DT (ρ̃S) :=
∑
i

γ
(1)
ii

(
Âiρ̃SÂ

†
i −

1

2
{Â†i Âi, ρ̃S}

)
, (2.42)

DS(ρ̃S) :=
∑
i

γ
(2)
ij 6=i

(
Âiρ̃SÂ

†
j −

1

2
{Â†jÂi, ρ̃S}

)
(2.43)

where again j is such that Â†j = Âi.

The first part of ĤLS is often called the Lamb shift Hamiltonian since

it leads to a Lamb-type renormalization of the unperturbed energy levels

induced by the system-reservoir coupling. In general, the renormalization

of the system Hamiltonian is induced by the vacuum fluctuations of the
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environment and by thermally induced processes. The term D(ρ̃S) on the

other hand is called the dissipator. The first term DT (ρ̃S) in the dissipator

represents generalized amplitude damping, while the other terms DS(ρ̃S)

represent phase dependent fluctuations [77].

The master equation (2.39) is of first standard form3 and, since γ
(1)
ii and

γ
(2)
ij are homogeneous in time and thus positive [32], the master equation

may be diagonalized to finally obtain the Lindblad equation in diagonal

form [32]:

d

dt
ρ̂S = − i

~
[ĤLS, ρ̂S] +

∑
l

(
ĉlρ̂S ĉ

†
l −

1

2
{ĉ†l ĉl, ρ̂S}

)
(2.45)

where ĉl are called Lindblad operators and are obtained from Âi, in general,

by a unitary transformation.

The Schrödinger picture master equation for the reduced density oper-

ator is obtained from (2.45) by simply adding the free Hamiltonian ĤS to

ĤLS [32]:

d

dt
ρ̂S = − i

~
[Ĥ, ρ̂S] +

∑
l

(
ĉlρ̂S ĉ

†
l −

1

2
{ĉ†l ĉl, ρ̂S}

)
(2.46)

where Ĥ = ĤS + ĤLS.

This is a first-order linear differential equation for the reduced density

operator and was derived from the master equation (2.14) under the ap-

proximations and conditions discussed in Sections 2.2.1-2.2.5. The most

important of these is the Markov approximation which relied on the time

scale of the decay of the environmental correlation functions being much

shorter than the time scale for significant change in the open system S. This

equation can also be derived without appealing to the underlying Hamil-

tonian dynamics and instead assuming that the reduced density operator

evolves under the action of the generator of a quantum dynamical semi-

3That is the dissipator D(ρ̃S) can be written as:

D(ρ̃S) =
∑
i,j=1

F̂iρ̃SF̂
†
j (2.44)
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group (see e.g. [32]). The right-hand side of equation (2.46) therefore also

represents the most general form for the generator of a quantum dynamical

semi-group.

2.3 The Lindblad Master Equation for Phonons of BECs

This section applies the general derivation of a Lindblad master equation,

which was performed in the previous section, to the specific case that is

of interest to this work, a single phonon mode of a BEC. From the pre-

vious chapter, a phonon mode of a BEC will interact with all the other

quasi-particle modes via the on-resonance Beliaev and Landau processes as

well as certain off-resonance processes. Therefore, in the framework of open

quantum systems, the single phonon mode is the open system; the environ-

ment is made up of all the other quasi-particle modes; and the interaction

Hamiltonian is given by (1.33), which was derived in the previous chapter.

The Hamiltonian of the combined system is then:

Ĥ = ĤS + ĤE + ĤI (2.47)

where ĤS and ĤE derive from (1.26) and respectively describe the free

Hamiltonian of the single-mode phonon system and all the other quasi-

particle modes:

ĤS := ~ωq b̂†q b̂q, (2.48)

ĤE :=
∑
p

~ωpb̂†pb̂p, (2.49)

and the interaction Hamiltonian ĤI is defined as:

ĤI = b̂qQ̂
† + b̂†qQ̂ (2.50)

where Q̂ acts on the Hilbert space of the rest of the quasi-particle modes

and is defined in (1.34). The interaction terms between the states of the
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large system E in Ĥ have been ignored considering the environment to be

in thermal equilibrium and having a very fast correlation τE time since it

will form a very large system.

The interaction Hamiltonian (2.50) is already written in the form of

(2.24), which was used in the derivation of the Lindblad equation (2.46),

since b̂q and b̂†q are eigenoperators of ĤS with frequencies ω1 = ωq and

ω2 = −ωq. Therefore, in the notation of (2.24):

Â1 = b̂q, Â2 = Â†1 = b̂†q, (2.51)

Ê1 = Q̂†, Ê2 = Ê†1 = Q̂. (2.52)

Assuming that the initial state of the full system is the product state

ρ̂(0) = ρ̂S(0)⊗ ρ̂E(0), and implementing the Born, Markov and secular ap-

proximations (Sections 2.2.1, 2.2.2 and 2.2.5), the reduced density operator

of the system will evolve according to the master equation (2.46). Then,

further assuming that the environment is in thermal equilibrium and is not

squeezed so that the DS term vanishes,4 the reduced density operator will

obey the following Schrödinger picture master equation:

d

dt
ρ̂S = − i

~
[Ĥ, ρ̂S] + γ11

(
b̂qρ̂S b̂

†
q −

1

2
{b̂†q b̂q, ρ̂S}

)
+γ22

(
b̂†qρ̂S b̂q −

1

2
{b̂q b̂†q, ρ̂S}

)
, (2.53)

which can be written in diagonal form (2.46):

d

dt
ρ̂S = − i

~
[Ĥ, ρ̂S] +

i=2∑
i=1

(
ĉiρ̂S ĉ

†
i −

1

2
{ĉ†i ĉi, ρ̂S}

)
(2.54)

where:

ĉ1 =
√
γ11b̂q, (2.55)

4See [78] on how the quasi-particles could occupy squeezed states due to the Beliaev
damping process, which is analogous to parametric down conversion in quantum optics.

39



2.3. The Lindblad Master Equation for Phonons of BECs

ĉ2 =
√
γ22b̂

†
q, (2.56)

Ĥ = ~ω′q b̂†q b̂q, (2.57)

ω′q = ωq + S11 + S22. (2.58)

It can be easily verified that in the secular (or rotating wave) approx-

imation the non-resonant terms in (2.50), that is b̂qÂ
† and b̂†qÂ, do not

contribute to the evolution of the system’s reduced density operator. For

example, the interaction term b̂q b̂kb̂lδ−q,k+l from b̂qÂ
† involves the rapidly

oscillating exponentials e−2iωqt/~ in the interaction picture and so are ne-

glected in the rotating wave approximation. These terms will, therefore,

not contribute to the rates γ11 and γ22.

From, (2.32), the rates γ11 and γ22 derive from the following expressions:

Γ11 =
1

~2

∫ ∞
0

dt′eiωqt/~〈Ẽ(t)Ẽ†(t− t′)〉E (2.59)

=
1

~2

∫ ∞
0

dt′eiωqt/~
(
〈B̃(t)B̃†(t− t′)〉E + 〈B̃(t)L̃†(t− t′)〉E

+ 〈L̃(t)B̃†(t− t′)〉E + 〈L̃(t)L̃†(t− t′)〉E
)
, (2.60)

Γ22 =
1

~2

∫ ∞
0

dt′e−iωqt/~〈Ẽ†(t)Ẽ(t− t′)〉E (2.61)

=
1

~2

∫ ∞
0

dt′e−iωqt/~
(
〈B̃†(t)B̃(t− t′)〉E + 〈B̃†(t)L̃(t− t′)〉E

+ 〈L̃†(t)B̃(t− t′)〉E + 〈L̃†(t)L̃(t− t′)〉E
)

(2.62)

where B̃ and L̃ are the Beliaev and Landau operators defined in (1.36)

and (1.37) but now in the interaction picture. Since the environment is

in thermal equilibrium, any averages in (2.60)-(2.62) that contain different

numbers of environmental creation and annihilation operators will vanish

(these also vanish under the secular wave approximation), which leaves:

Γ11 = ΓB1 + ΓL1 , (2.63)
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Γ22 = ΓB2 + ΓL2 (2.64)

where:

ΓB1 :=
1

~2

∫ ∞
0

dt′eiωqt/~〈B̃(t)B̃†(t− t′)〉E, (2.65)

ΓB2 :=
1

~2

∫ ∞
0

dt′e−iωqt/~〈B̃†(t)B̃(t− t′)〉E, (2.66)

ΓL1 :=
1

~2

∫ ∞
0

dt′eiωqt/~〈L̃(t)L̃†(t− t′)〉E, (2.67)

ΓL2 :=
1

~2

∫ ∞
0

dt′e−iωqt/~〈L̃†(t)L̃(t− t′)〉E. (2.68)

The rates γ11 and γ22 in (2.53) are then given by:

γ11 = γB1 + γL1 , (2.69)

γ22 = γB2 + γL2 (2.70)

where the rates γB1 , γ
L
1 , γ

B
2 and γL2 derive via (2.36) from the corresponding

Γ functions defined in (2.65)-(2.68) above. In fact, since the environment is

in thermal equilibrium, the two rates γ11 and γ22 are not independent but

satisfy [27, 32]:

γ11 = eβqγ22, (2.71)

which can be easily verified after calculating the two rates. The rates are

then conveniently characterized by their difference γ = γ22 − γ11 which is

found to be:

γ = γB − γL (2.72)

where γB := γB2 −γB1 and γL := γL2 −γL1 characterize the Beliaev and Landau
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interactions respectively and can be shown to be given by:

γB :=
2g2n

V ~2

∫ ∞
0

πdωkpωk
B2
ωk,ωl

δ(ωq − ωk − ωl)(1 +N th
l +N th

k ), (2.73)

γL :=
g2n

V ~2

∫ ∞
0

πdωkpωk
L2
ωk,ωl

δ(ωq + ωk − ωl)(N th
k −N th

l ) (2.74)

where Bωk,ωl
and Lωk,ωl

are derived from the coupling constants defined

in (1.39)-(1.40); and N th
k and N th

l are the thermal occupation numbers of

the quasi-particles, defined by (1.31), for the modes k and l respectively.

The environment has also been assumed to have an approximate continuum

of modes with a density of states pω such that pωdω gives the number of

oscillators with frequencies in the interval ω to ω+dω. A detailed derivation

of the rates γB and γL in (2.74)-(2.73) from the functions (2.65)-(2.68) is

carried out in Appendix A.

The rates γB and γL are just the usual Beliaev and Landau dampings

rate which have been calculated under various conditions (see [79] for a brief

outline of some of the major studies such as [26]). For example, in [70], the

Beliaev-Landau damping rate γ is calculated in the Popov approximation

for a phonon mode in a uniform BEC. Following [70], a phonon mode has

energy ~ωq ≈ cq and so the coefficients up and vp, which characterize the

Bogoliubov transformations (1.23) and appear in Lωk,ωl
and Bωk,ωl

, can be

approximated as:

uq ≈

√
mc2

s

2~ωq
+

1

2

√
~ωq

2mc2
s

, (2.75)

vq ≈ −

√
mc2

s

2~ωq
+

1

2

√
~ωq

2mc2
s

. (2.76)

After substituting these approximations into (2.73) and (2.74), analytical

expressions for the damping rates can then be derived by taking the limit

kBT � ~ωq or kBT � ~ωq. The former limit is called the quantum regime

and in this regime the thermal occupation of the quasi-particle modes van-

ishes Nk ∼ e−βωq → 0 and so γB � γL since the Believe damping coefficient
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(1+Nl+Nk) goes to unity to a very good approximation, whereas, the Lan-

dau damping coefficient (Nl − Nk) tends to zero (and there is no Landau

damping at zero temperature). Therefore, the Beliaev damping dominates

over the Landau damping and is independent of the temperature [70]:

γ ≈ γB ≈
3

640π

~
mnc5

s

ω5
q (2.77)

where n is the (3-dimensional) density of the gas, cs is the speed of sound

defined in (1.30), and γ is in units of one over time. The damping rate

has a sensitive dependence on the momentum of the phonon mode since

the final state quasi-particles each have an energy lower than the phonon

and so the final state phase space is restricted. For the same reason, this

damping process cannot occur for the lowest energy modes in trapped Bose

gases where the spectrum of states to which the excitation can couple is

discrete [70].

In the opposite limit kBT � ~ωq, called the thermal regime, Landau

damping dominates over Beliaev damping. This is because the coefficient

L2
k,l is greater than B2

k,l since the latter contains additional negative con-

tributions from an extra ukvl type term and |uk| > |vl|. At very high

temperatures such that ~ωq � mc2
s � kBT (where mc2

s = gn = µ), the

Landau damping rate approximates to [70]:

γ ≈ γL ≈
3π

8

kBTa

~cs
ωq (2.78)

whereas, for temperatures such that ~ωq � kBT � mc2
s, the Landau damp-

ing rate approximates to [70]:

γ ≈ γL ≈
3π3

8

(kBT )4

mn~3c5
s

ωq. (2.79)

2.3.1 Comparison with the Quantum Optical Master Equation

The Born-Markov approximation is often used in quantum optical situations

since the physical conditions underlying this approximation are usually very
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well satisfied [32]. The application of this approximation to such quantum

optical situations frequently results in a certain form of master equation

called the quantum optical master equation. Since this master equation is

well-known, a comparison with the master equation derived here for phonons

interacting with the quasi-particle modes of a Bose gas (2.54) should help

facilitate a better understanding of the latter master equation.

The quantum optical master equation results from the application of

the Born-Markov approximation to the case of a bound quantum system,

such as an atom or molecule, interacting with a quantized radiation field

which is in thermal equilibrium. The free quantized radiation field will be

represented by the following quantum field Hamiltonian [32]:5

ĤE =
∑
k

∑
λ=1,2

~ωkr̂†λ(k)r̂λ(k) (2.80)

where λ labels one of the two transverse polarizations for the wavevector

k, ωk = c|k|, and the field operators r̂λ(k) and r̂†λ(k) are the annihilation

and creation operators for the photons. Note that this Hamiltonian for

the environment is similar to that used in the previous sections for the

environment of the phonons (see (2.49)).

In the electric dipole approximation the interaction Hamiltonian is given

by [32]:

ĤI = −D̂ · Ê (2.81)

where D̂ is the dipole operator the system under consideration, and Ê is

the electric field operator in the Schrödinger picture:

Ê = i
∑
k

∑
λ=1,2

√
2π~ωk
V

eλ(k)
(
r̂λ(k)− r̂†λ(k)

)
(2.82)

where V is a normalization volume for the field modes and eλ is a unit

polarization vector. Note that operator Ê contains a single annihilation or

5With an infinite c-number subtracted for the vacuum energy.
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creation operator acting on the field models of the environment. This is in

contrast to the operators Q̂ and Q̂† in the interaction Hamiltonian for the

phonon system (2.50) which contain two annihilation or creation operators

that act on the field modes of the environment.

For simplicity, a two-level system for the bound quantum system is as-

sumed such that the dipole operator can be written as:

D̂ = dσ̂− + d∗σ̂+ (2.83)

where d is the transition matrix element of the dipole operator and σ̂± are

the ladder operators for the two-level system.

Assuming the Born-Markov and secular wave approximations, and tak-

ing the radiation field to be in a thermal sate, the quantum master equation

for the two-level system can be written in Lindblad form as [32]:

d

dt
ρ̂S(t) = − i

~
[Ĥ, ρ̂S] + γ−−

(
σ̂−ρ̂Sσ̂

†
− −

1

2
{σ̂†−σ̂−, ρ̂S}

)
+ γ++

(
σ̂+ρ̂Sσ̂

†
+ −

1

2
{σ̂†+σ̂+, ρ̂S}

)
(2.84)

where:

γ−− :=
4ω3

0|d|2

3~c3
(N0 + 1), (2.85)

γ++ :=
4ω3

0|d|2

3~c3
N0 (2.86)

with ω0 being the transition frequency of the two-level system, N0 denot-

ing the Planck distribution at the transition frequency, and Ĥ the free

Hamiltonian of the two-level system including the Lamb and Shark shift

contributions.

The above master equation is often called the two-level quantum optical

master equation [32]. Its form is very similar to that of the Markov master

equation derived for the phonons interacting with an environment of quasi-

particle modes (2.53) with σ− replacing b̂q and σ+ replacing b̂†q. This is
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2.3. The Lindblad Master Equation for Phonons of BECs

of course to be expected as the same approximations were used in both

cases: the Born-Markov approximation, secular wave approximation, and

the assumption that the environment is in a stationary thermal state. The

major difference between the two master equations comes in their rates.

This is due to the different forms of interaction Hamiltonian where the terms

in the optical interaction Hamiltonian (2.81) contain single annihilation or

creation operators that act on the environment, whereas, the terms in the

phononic interaction Hamiltonian (2.50) contain two. The latter results in

much more complicated expressions for the rates γ11 and γ22 than the γ−−

and γ++ rates of the quantum optical master equation.6

As stated in Section 2.3, since the environment of the phonons is in

thermal equilibrium, the two rates γ11 and γ22 are not independent and

instead satisfy (2.71). The rates are then conveniently characterized by

their difference γ = γ22 − γ11 which is defined by γB − γL where γB and γL

are given by (2.73) and (2.74) respectively.

In the derivation of the quantum optical master equation, the environ-

ment was also assumed to be in thermal equilibrium and so the two rates

γ−− and γ++ are also dependent and satisfy an expression analogous to

(2.71). Therefore, the two rates are also conveniently characterized by their

difference γ0 := γ++ − γ−−, which is simply given by:

γ0 :=
4ω3

0|d|2

3~c3
. (2.87)

Since γ−− = γ0(1 + N0) and γ++ = γ0N0, the quantum optical master

equation given by (2.84) is often written as:

d

dt
ρ̂S(t) = − i

~
[Ĥ, ρ̂S] + γ0

[
(N0 + 1)

(
σ̂−ρ̂Sσ̂

†
− −

1

2
{σ̂†−σ̂−, ρ̂S}

)
+N0

(
σ̂+ρ̂Sσ̂

†
+ −

1

2
{σ̂†+σ̂+, ρ̂S}

)]
(2.88)

illustrating the fact that the rate γ0 characterizes the evolution of the sys-

6The rates γ11 and γ22 are given by (2.69) and (2.70) where γB1 , γB2 , γL1 , γL2 are defined
in (A.22), (A.23), (A.19) and (A.20) respectively.
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tem.

Note that a simple analytic expression exists for γ0. This is in contrast

to the rate characterizing the evolution of the phonon system γ which is a

lot more complicated in general. This is the principal difference between

the two-level quantum optical master equation to the master equation for

the phonon system (2.50). However, under certain approximations, simple

expressions can in fact be used for γ as illustrated by (2.77)-(2.79) but all

of these expressions have a different dependence on the system’s oscillating

frequency compared with γ0.

2.4 Summary

In conclusion, the evolution of the reduced density operator for a single-

mode phonon system has been calculated by considering the phonon system

as an open quantum system in the presence of an environment of all other

quasi-particle modes of the Bose gas, for which a similar analysis was also

performed in [27]. Under the Born-Markov and secular approximations,

and assuming the quasi-particles to be in thermal equilibrium, the reduced

density operator of the phonon system evolves according to (2.53), which is

a Markov master equation in Lindblad form. The difference of the rates that

appear in this equation is the usual Landau-Beliaev damping rate for which

analytical expressions exist in the limits discussed at the end of Section 2.3.

The damping rate of phonons has been observed in various experiments

[73]. For example, in [74, 75], the measured damping rate was found to be

consistent with the theory of Landau damping [26].

The next Chapter investigates a simplified description of the evolution

of the single-mode phonon system by assuming that the state of the system

is Gaussian. The system is then fully characterized by two two-dimensional

matrices rather than the reduced density operator ρ̂S, which lives in an

infinite dimensional space. The evolution of the system is then defined by

the evolution of the two characterizing matrices, which derives from the

equation of motion for the reduced density operator (2.53). The simple

evolution of these two matrices is then used in Chapter 4 to estimate the
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relaxation and decoherence times of the single-mode phonon system.
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CHAPTER 3

Gaussian Phonon States

The previous chapter treated a single-mode phonon state as an open quan-

tum system and the rest of the quasi-particle modes as its environment.

Under realistic assumptions, the reduced density operator of the single-

mode phonon state, which lives in an infinite dimensional Hilbert space,

was then shown to evolve in time via a Markov master equation that could

be written in Lindblad form. In this chapter a further simplification to the

description of the evolution of the phonon state is investigated, reducing

a problem in an infinite dimensional Hilbert space to a problem that can

be solved using the entries of just two two-dimensional matrices. This is

achieved by assuming that the phonon state is Gaussian. In this case the

time evolution of the phonon state can be fully encoded in the time evolu-

tion of the entries of the first and second statistical moments of the state,

which can be represented by a two-dimensional vector and square matrix

respectively.

Gaussian quantum states are states whose Wigner function is of Gaus-

sian form. They are popular in various areas of theoretical research such as

quantum optics, atomic physics, quantum information theory and relativis-

tic quantum information theory since they are convenient to manipulate

theoretically. They also frequently arise in experimental physics too. For

example, the vacuum state and thermal states of bosonic systems such as

the electromagnetic field are Gaussian, and popular manipulations of these

states such as ideal beam splitters and squeezers preserve the Gaussianity.

Certain non-Gaussian states can also often be well approximated as Gaus-
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sian such as states that can arise from a nonlinear squeezing of the vacuum

[41].

In quantum information theory Gaussian states are popular tools for

continuous variable protocols, playing a leading role in many applications

such as quantum communications and quantum metrology [41]. These states

enable great simplifications to calculations in information protocols such as

analytical derivations of certain state separability thresholds [41, 80]. The

loss of entanglement, or decoherence, caused by the influence of the envi-

ronment is a primary concern in this field and so estimating how Gaussian

states decohere is of particular importance.

Gaussian states have also become useful tools of relativistic quantum in-

formation theory, particularly in the characterization of bipartite and mul-

tipartite entanglement [80, 81]. As discussed in [82, 83], the Gaussian co-

herent states of non-relativistic quantum mechanics can be generalized to

relativistic coherent states of Klein-Gordon and Dirac particles. Recently,

Gaussian states were used in techniques formulated for the application of

relativity to quantum metrology in order to develop a novel generation of

relativistic quantum technologies such as gravimeters, clocks and sensors

[17]. For example, the phonon states of a BEC that are used in the rela-

tivistic quantum accelerometer and GW detector discussed in [17, 18] and

the Introduction are of Gaussian form.

Gaussian states also naturally arise in BECs. For example, the conden-

sate can be thought of as a coherent state1 and coherent phonon states can

be generated by a number of techniques such as Bragg scattering and the

modulation of trap frequencies [73, 84]. Furthermore, by suddenly, non-

adiabatically perturbing the phonon vacuum, two-mode squeezed phonon

states are predicted to be generated, which are also of Gaussian form [37].

This has since been investigated experimentally in [38] although only classi-

cal states where observed. Taking the excited single-mode phonon state of

Chapters 1 and 2 to be of Gaussian form should, therefore, be a reasonable

assumption to make.

1If the condensate is a coherent state |φ0〉 then â0|φ0〉 := α0|φ0〉 and so N̂ |φ0〉 =
|α0|2|φ0〉 := N0|φ0〉 such that 〈â0〉 ∼

√
N0 as required by the symmetry breaking mech-

anism.
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The next section, Section 3.1, introduces the covariance matrix formal-

ism, which is a convenient mathematical framework in phase space for de-

scribing Gaussian states and their dynamics. Section 3.2 then looks at

how the time evolution of Gaussian states that obey a Markov equation in

Lindblad form can be characterized by the evolution of the first and second

statistical moments. This is performed for a multi-mode Gaussian state and

for a general Lindblad equation. Subsequently, Section 3.3 applies the the-

ory of Section 3.2 to determine the time evolution of a single-mode phonon

system when it is taken to be in a Gaussian state. Under general conditions

this Gaussianity would be lost in time since the interaction Hamiltonian is is

cubic in field operators (it is quadratic in field operators of the environment).

However, in the assumed Born-Markov approximation it is shown that the

phonon state will persist as a Gaussian state since the master equation then

corresponds to a model in which nonlinear terms are effectively not present

(there is an effective linearization of the interaction Hamiltonian over the

environment field operators). This is important since it means that, under

realistic approximations, the simple description of the first two statistical

moments fully characterising the state will persist throughout the state’s

evolution. This simplified version of the evolution of the state is then used

in Chapter 4 to estimate the decoherence and relaxation time of a phonon

state.

3.1 The Covariance Matrix Formalism

This section introduces the covariance matrix formalism. This incorporates

a simple mathematical framework which is used to describe Gaussian states

and there transformations. It is frequently used in quantum information

with continuous variables where there is, generically, an infinite-dimensional

Hilbert space described by observables with continuous eigenspectra.

3.1.1 Phase Space Description of Quantum States

Consider a bosonic field of M independent modes where the creation and

annihilation operators for each mode are â†i , âi, i = 1, . . . ,M , with commu-
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tation relations [âi, â
†
j] = δij. The Hilbert space of the system H = ⊗Mi=1Fi

is the tensor product of the infinite dimensional Fock spaces Fi of the M

modes, each spanned by the number basis |n〉m∈M, which are the eigenstates

of the number operator N̂ = â†i âi. The free Hamiltonian of the system is

then given by Ĥ =
∑M

i=1 ~ωi(â
†
i âi + 1

2
).

Each mode is analogous to that of a quantum harmonic oscillator where

the creation and annihilation operators are analogous to the ladder opera-

tors. Similar to the quantum harmonic oscillator, position and momentum-

like operators q̂i, p̂i can be defined in terms of the creation and annihilation

operators:

q̂i :=
1

2κ1

(âi + â†i ), p̂i :=
i

2κ2

(â† − âi) (3.1)

where κ1 = κ2 := κ are are taken to be dimensionless constants in contrast

to the usual quantum harmonic oscillator operators where κ1 =
√
~/2mωi

and κ2 =
√
mωi~/2. The operators q̂i and p̂i are therefore dimensionless

operators that represent the quadratures of a single mode i and are similar

to the real and imaginary ‘parts’ of â. Canonical position and momentum

operators are obtained for κ = 2−
1
2 , while κ = 1 is the choice often made

in quantum optics [41]. For a general κ, the commutation relations for the

quadrature operators are given by:

[q̂i, p̂j] =
i

2κ2
δij. (3.2)

It is convenient to pair-up these operators and arrange them in a column

vector:

x̂ :=



x̂1

x̂2

...

x̂2M−1

x̂2M


:=



q̂1

p̂1

...

q̂M

p̂M


. (3.3)
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The components of x̂ then satisfy the commutation relations:

[x̂i, x̂j] =
i

κ2
Ωij (3.4)

where Ωij are the elements of the symplectic form:

Ω :=
M
⊕
i=1

ω, ω :=

 0 1

−1 0

 . (3.5)

Other grouping conventions exist such as that where the upper-half of x

consists of all the position-like operators and the lower-half all the momen-

tum like operators [41]. Another convention is the so-called complex form

of the real symplectic group where, instead of consisting of the quadrature

operators, the upper-half of the column vector consists of the annihilation

operators, and the lower-half consists of the creation operators of all the

modes.

Any quantum state of the bosonic system can be represented in this

phase space picture by a quasi-probability distribution function called the

Wigner function:2

W (x) :=

∫
R2M

d2Mξ

(2π)2M
e−ix

T Ωξχ(ξ) (3.6)

where x ∈ R2M are the eigenvalues of the quadrature operators and span

a real symplectic space (phase space); ξ ∈ R2M ; χ(ξ) is the symmetric

characteristic function:

χ(ξ) := Tr[ρ̂D̂(ξ)]; (3.7)

and D̂(ξ) is the Weyl (displacement) operator:

D̂(ξ) := eix
T Ωξ. (3.8)

2Quasi-probability means that it is normalized but in general non-positive.
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The Wigner function W (and characteristic function χ) offer a represen-

tation that is slightly more akin to classical statistical mechanics than the

density operator ρ̂ ∈ H⊗M , which can equivalently also be used to fully

characterize any quantum state.

3.1.2 The Displacement Vector and Covariance Matrix

Just as in classical probability theory, the quasi-probability distribution

function W can also be characterized by the statistical moments of the

quantum state. The first moment is called the displacement vector d and

the second moment is the covariance matrix σ where the diagonal elements

provide the variances of the quadrature operators. The components of these

moments are defined as:

di := 〈x̂i〉 = Tr(x̂iρ̂S), (3.9)

σij :=
1

2
〈{x̂i, x̂j}〉 − 〈x̂i〉〈x̂j〉

=
1

2
Tr({x̂i − di, x̂j − dj}ρ̂S). (3.10)

The covariance matrix is a real 2M × 2M symmetric matrix which, due to

the uncertainty relations among canonical operators, must satisfy [85, 86]:

σ +
i

4κ2
Ω ≥ 0, (3.11)

which implies the positive definiteness of the matrix. This is in fact the

only necessary and sufficient constraint a matrix has to fulfil in order to be

the covariance matrix related to a physical state [86].

3.1.3 Gaussian States

Gaussian states are defined as bosonic states whose Wigner function is of

Gaussian form:

W (x) =
e−

1
2

(x−d)Tσ−1(x−d)

(2π)2M
√

detσ
(3.12)
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where σ characterizes the width and d characterizes the centre of the Wigner

function. The first two statistical moments are therefore sufficient for a

complete description of Gaussian states. In fact, in quantum information

theory, often only the covariance matrix is used to characterize the state

since first moments don’t contribute to informationally relevant properties

such as entanglement and entropy [42].

There are four important subclasses of Gaussian states: the vacuum

state, coherent states, squeezed states and thermal states. The most impor-

tant is the vacuum state, which is the state with no bosons. The covariance

matrix of the vacuum state is just proportional to the identity:

σvac =
1

4κ2
I. (3.13)

Coherent states are displaced vacuum states. That is, they have the same

covariance matrix as the vacuum but a non-zero displacement vector. They

are defined as the the eigenstates of the annihilation operator â|α〉 = α|α〉
(the vacuum is the eigenstate with zero eigenvalue) and can be expanded

in the number basis as:

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉. (3.14)

These states are often said to have a maximal kind of coherence and exhibit a

classical kind of behaviour since the behaviour of the states closely resembles

that of the oscillatory behaviour of a classical harmonic oscillator. They are

also minimum uncertainty states (the uncertainty principle is saturated) and

are frequently used in quantum optics. For example, a coherent is the most

important state that represents a LASER operating far above threshold [87]

Squeezed states are also minimum uncertainty states. However, whereas

the variance of the quadratures is equal for coherent states, this is not the

case for squeezed states. Since the uncertainty of a state is equivalent to the

area it possesses on phase space, squeezed states form an ellipse on phase

space, whereas, the vacuum and coherent states form circles. On going from

a coherent state to a squeezed state, the circle on phase space will thus be
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squeezed and become an ellipse of identical area. Such a transformation,

called the squeezing transformation is, for a single-mode state, given by:

S(ξ) = e
1
2
ξ(â†)2− 1

2
ξ∗â2 (3.15)

and, when applied to the vacuum, generates the state:

|ξ〉 =
1
√
µ

∞∑
k=0

( ν
2µ

)k√(2k)!

k!
|2k〉 (3.16)

where µ := cosh r, ν := eiφ sinh r and ξ := reiφ.

Squeezed states of light are considered to be particularly important in-

gredients in quantum metrology and communication [88]. Squeezing of mat-

ter wave fields in BECs has also been considered for such purposes [90].

There have also been investigations into squeezed states of collective excita-

tions of the condensate. For example, in [78], the Beliaev process is treated

as parametric down-conversion where two-mode squeezed states of the exci-

tations are created. The acoustic analogue of the dynamical Casimir effect

considered in [37, 38] can, in certain cases, also create two-mode squeezed

states of the collective excitations. Another method for creating Squeezed

states of quantized density oscillations has also been considered in [91].

A thermal state is the state of a system that is in thermodynamic equi-

librium. In this case the temperature fully characterizes the system, giving

its average energy. By definition, a thermal state maximizes the von Neu-

mann entropy S = −Tr(ρ̂ ln ρ̂) for fixed energy Tr(ρ̂â†â) = n where n is the

mean number of particles in the bosonic mode. It is therefore a maximally

mixed state constrained by energy. The density operator of a thermal state

is:

ρ̂th =
e−Ĥ/kBT

Tr(e−Ĥ/kBT )
, (3.17)

which, in the number basis, is given by ρ̂th = ⊗Mi=1ν̂i with:
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ν̂i =

∑∞
n=0 e

−~ωi/kBT |n〉ii〈n|

Tr
[∑∞

n=0 e
−~ωi/kBT |n〉ii〈n|

] =
1

1 +N th
i

∞∑
n=0

( N th
i

1 +N th
i

)n
|n〉ii〈n|

(3.18)

where N th
i is the average thermal occupation of the bosonic mode i, which

comes from the Bose-Einstein distribution for the mode (see (1.31)).

The covariance matrix of this state can be shown to be given by (see

e.g. [41]):

σth =
1

4κ2
diag(1 + 2N th

1 , 1 + 2N th
1 , . . . , 1 + 2N th

N , 1 + 2N th
N ) (3.19)

and the displacement vector is zero.

Thermal states can be thought of as the most fundamental Gaussian

states. This is because, due to Williamson’s theorem which shows that

every positive-definite real matrix of even dimension can be put in diagonal

form by a particular symplectic transformation [92], every Gaussian state

can be decomposed into thermal states.

3.1.4 Gaussian Unitaries

A Gaussian unitary describes a unitary operator which preserves the Gaus-

sian character of the state. That is, it is a unitary operator which maps a

Gaussian Wigner function into another Gaussian Wigner function. These

operations play a major role in the theoretical and experimental manipu-

lation of Gaussian states. For example, ideal beam-splitters, phase shifters

and squeezers can be described in terms of a Gaussian unitary [41, 93].

In terms of the quadrature operators, a Gaussian unitary corresponds

to the affine map:

x̂→ Sx̂+ e (3.20)

where e ∈ R2M and S is a 2M × 2M real matrix. This transformation

must preserve the commutation relations of (3.4), which is satisfied when
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the matrix S is symplectic:

SΩST = Ω. (3.21)

An arbitrary Gaussian unitary is therefore equivalent to an affine symplectic

map (S, e) acting on the phase space. The symplectic transformations

corresponding to the Gaussian unitaries thus act on a 2M -dimensional phase

space and form the (real) symplectic group Sp(2M,R) [94]. The Lie algebra

of this group is given by the set of 2M × 2M (real) Hamiltonian matrices

H, which which must satisfy the condition:

(ΩH)T = ΩH (3.22)

as can be easily verified from (3.21) when S(t) = eHt. Since they are Hamil-

tonian matrices, the generators can also be written as H = ΩH where H

are 2M × 2M (real) symmetric matrices [94]. The generators that are anti-

symmetric result in the compact subgroup H(M) = Sp(2M,R) ∩ SO(2M),

corresponding to orthogonal symplectic transformations, and constitute ‘en-

ergy preserving’ or passive operations [95]. On the other hand, the sym-

metric generators result in the non-compact subset of the group, which

represents the active transformations such as squeezings [95]. Single-mode

transformations can be created from the following set of generators [95]:

χ =

 0 1

1 0

 , Ω =

 0 1

−1 0

 , ζ =

 1 0

0 −1

 (3.23)

for which the corresponding symmetric matrices H are −ζ, χ and the

identity matrix I. The identity matrix I generates the compact single-

mode rotations, while ζ and χ generate single-mode squeezings. A basis

of the general generators H can in fact be built from these generators and

those for two mode transformations [95].

The transformation of the quadrature operators induced by a Gaussian

unitary (3.20) can be easily shown to result in the following transformations
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for the first and second statistical moments (see e.g. [41]):

d→ Sd+ e, (3.24)

σ → SσST . (3.25)

It can also be shown that Gaussian unitaries must be generated from Hamil-

tonians Ĥ which are second-order polynomials in the field operators [96]:

Ĥ = H0 + i(H1aâ+ â†H2aâ+ âTH2bâ) + h.c. (3.26)

where H0 is a constant; H1a is a M -dimensional column-vector; H2a and

H2b areM×M dimensional matrices; â = (â1, . . . , âM)T ; â† = (â†1, . . . , â
†
M);

and the corresponding unitary transformation is given by Û(t) = e−iĤt/~.

3.2 Gaussian States of Open Quantum Systems

This section considers how Gaussian states evolve when the states are

treated as those of an open quantum system. In particular, the Gaussian

states are treated as open quantum systems interacting with a thermal (and

thus Gaussian) environment in the Born-Markov and secular approxima-

tions such that the density operator evolves via a Markov master equation

in Lindblad form as derived in the previous chapter.

One approach to determining how the Gaussian states evolve is to trans-

form this master equation into a Fokker-Planck equation for the Wigner

function [41, 44, 97]. The time evolution of the covariance matrix and dis-

placement vector, which fully characterize a Gaussian state, can then be

derived from the time evolution of the Wigner function. Alternatively, the

time evolution of these statistical moments can be derived straight from the

evolution of the density operator, which, in the Schrödinger picture, is given

by (2.46):

d

dt
ρ̂S = − i

~
[Ĥ, ρ̂S] +D(ρ̂S) (3.27)
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where the renormalized Hamiltonian is defined by Ĥ = ĤS + ĤLS, and the

dissipator D(ρ̂S) is given by:

D(ρ̂S) =
∑
i

(
ĉiρ̂S ĉ

†
i −

1

2
{ĉ†i ĉi, ρ̂S}

)
(3.28)

where ĉ†i are the Lindblad operators, which are obtained from the eigenop-

erators of the open system by a unitary transformation. The time evolution

of the covariance matrix and displacement vector can then be obtained by

differentiating their definitions (3.9)-(3.10) and substituting in the differ-

ential of the density operator as defined above. By assuming the bosonic

system as described in the previous section and rewriting the Markov master

equation (3.27) in the phase space picture, simple equation of motions for

the statistical moments can then be derived (see Appendix B and [98–100]).

As discussed in the previous Section, Gaussian unitaries are generated

by Hamiltonians that are second-order polynomials in the field operators

and, therefore, the (renormalized) free Hamiltonian in (3.27) is taken to be

of the form of (3.26). In the phase space picture this can be written as Ĥ =

H0 + κx̂TH1 + κ2x̂TH2x̂ where H0 is a constant; H1 is a 2M -dimensional

column vector; and H2 is a 2M ×2M real, symmetric matrix. Substituting

this Hamiltonian into (3.27) and writing the Lindblad operators as linear

combinations of quadrature operators (which must be the case since they are

linear combinations of creation and annihilation operators), the equation

of motion for the displacement vector and covariance matrix is shown in

Appendix B to be [98–100]:

dd

dt
= H1 +Ad, (3.29)

dσ

dt
= Aσ + σAT +D (3.30)

where H1 := ΩH1/~, and the matrix A and symmetric matrix D are

referred to as the drift and diffusion matrices respectively [100]. These
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matrices are defined as:

D :=
1

4κ4
ΩRe(C†C)ΩT , (3.31)

A := H2 + K (3.32)

where:

K :=
1

2κ2
ΩIm(C†C), (3.33)

H2 :=
1

~
ΩH2 (3.34)

with the matrix C defined by ĉi = Cijx̂j.

The general solution of (3.29) is:

d(t) = X(t)d0 + Y (t) (3.35)

where, when A is independent of time:

X(t) = eAt, (3.36)

Y (t) =

∫ t

0

eA(t−s)dsH1

= A−1(eAt − 1)H1. (3.37)

Note that X(t) has to fulfil the condition limt→∞X(t) = 0 and so A must

have only eigenvalues with negative parts [98, 101].

The equation of motion for the covariance matrix (3.30) is, in general,

a time varying differential Lyapunov matrix equation, of which the general

solution is [101]:

σ(t) = X(t)σ0X
T (t) +Z(t) (3.38)
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where:

X(t) = Φ(t, 0), (3.39)

Z(t) =

∫ t

0

Φ(t, s)DΦT (t, s)ds. (3.40)

When A is independent of time,3 Φ(t, s) = eA(t−s) and so the solution to

(3.30) can be written as:4

σ(t) = eAtσ0e
AT t +

∫ t

0

eA(t−s)DeA
T (t−s)ds (3.41)

for which an analytical expression can be obtained whenA is diagonalizable

[103]. As above,X(t) has to fulfil the condition limt→∞X(t) = 0 for a stable

solution and so again A must have only eigenvalues with negative parts [98,

101].

The above solution can also be written as [98, 99, 101]:

σ(t) = eAt(σ0 −Σ)eAt + Σ (3.42)

where Σ is time-independent and is the solution of the algebraic matrix

Lyapunov equation (dσ
dt

= 0):

AΣ + ΣAT +D = 0. (3.43)

Furthermore, if the following limit exists:

σ∞ = lim
t→∞

σ(t), (3.44)

then Σ = σ∞ [98].

3There is no general analytic expression for the transition matrix Φ(t, s) when A is
time dependent and in this case a numerical method is then the only way to obtain a
solution [101].

4Another option is to convert (3.30) to a vector valued ODE, which can then be
readily solved, using vectorization of the matrix σ(t) [102].
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A connection can be made with the evolution of the displacement vector

and covariance matrix generated by a Gaussian unitary (see Section 3.1.4)

by neglecting all dissipative effects (D = 0,A = H2). In this case, assuming

for convenience that H2 and H1 are independent of time, the solutions

(3.35) and (3.38) reduce to:

d(t) = eH2td0 + H1(t), (3.45)

σ(t) = eH2tσ0e
HT

2 t (3.46)

where H1(t) := B(t)H1 is a real vector with B(t) := H−1
2 (eH2t − 1). By

defining S(t) := eH2t it is clear that this is the symplectic transformation

corresponding to the free unitary evolution of the system defined by (3.20)

and H1(t) is equivalent to the real vector e. The matrix H2 = ΩH2/~

thus forms a symplectic algebra and so, as discussed in Section 3.1.4, H2 is

a (real) Hamiltonian matrix and H2 is a (real) symmetric matrix, which is

also required by the Hermitian property of Ĥ.

More generally, when H2 commutes with K, then the dissipative and free

dynamics can be separated out since in this case eAt = eH2teKt. The time-

independent solution of the equation of motion for the covariance matrix

(3.41) can then be written as:

σ(t) = E(t)σS(t)ET (t) +

∫ t

0

E(t− s)DS(t− s)ET (t− s)ds (3.47)

where the subscript S denotes the evolution due to the free dynamics, and

E and D constitute the dissipative dynamics:

σS(t) := S(t)σ0S
T (t), (3.48)

DS(t) := S(t)DST (t), (3.49)

E(t) := eKt. (3.50)
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3.3. Evolution of Gaussian Phonon States

3.3 Evolution of Gaussian Phonon States

The previous Section looked at how the statistical moments of a general

Gaussian state evolve when the state is an open quantum system obeying

the general Markov equation in Lindblad form (3.27). In this section the

results are specialized to the case of a single-mode phonon state of a BEC.

From Chapter 2, the density operator of the single-mode phonon state

obeys the Markov equation in Lindblad form where the Lindblad operators

are given by (2.55)-(2.56):

ĉ1 =
√
γ11b̂q, (3.51)

ĉ2 =
√
γ22b̂

†
q. (3.52)

Following (3.3), the quadrature operators for this state are defined as:

x̂ :=

 x̂1

x̂2

 :=
1

2κ

 1 1

−i i

 b̂q

b̂†q

 (3.53)

and the Lindblad operators can therefore be written as a the following linear

combination of the quadrature operators:

ĉ = Cx̂ (3.54)

where:

ĉ :=

 ĉ1

ĉ2

 , (3.55)

C = κ

 √γ11 i
√
γ11

√
γ22 −i

√
γ22

 . (3.56)

The renormalized Hamiltonian for the single-mode phonon state is given

by (1.26): Ĥ = ~ω′qb̂
†
qb̂q where ω′q is the renormalized frequency. This can
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3.3. Evolution of Gaussian Phonon States

then be written in the phase space picture as Ĥ = x̂TH2x̂ where:

H2 = ~ω′qI (3.57)

and I is the 2× 2 identity matrix.

Following Section 3.2, we can then transform the Markov master equa-

tion for the phonon state (3.27) to the phase space picture and the displace-

ment vector and covariance matrix will obey the equations of motion (3.29)

and (3.30) where the drift and diffusion matrices are given by:

A := ω′qΩ−
1

2
γI, (3.58)

D =
1

4κ2
γTI (3.59)

since, from (3.55), C†C is the following for the single phonon mode:

C†C = κ2

 γT −iγ
iγ γT

 (3.60)

= κ2(γTI − iγΩ) (3.61)

where γT := γ11 + γ22; γ := γ22 − γ11; γ11 and γ22 are defined by (2.69) and

(2.70); and Ω is the symplectic form:

Ω =

 0 1

−1 0

 . (3.62)

Substituting the above drift and diffusion matrices for the single-mode

phonon system into the general time-independent solutions (3.35) (using

(3.36) and (3.37)) and (3.41), the displacement vector and covariance ma-

trix at time t are found to be:

d(t) = e−
1
2
γtR(t)d0, (3.63)
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σ(t) = e−γt
(
R(t)σ0R

T (t)
)

+ (1− e−γt)σ∞ (3.64)

where:

σ∞ :=
1

γ
D =

1

4κ2

γT
γ
I, (3.65)

R(t) := eΩH2t/~. (3.66)

The matrix R(t) represents the symplectic transformation corresponding to

the free unitary evolution of the single-mode phonon system U = e−iHSt/~

and, since H2 = ~ω′qI, then R(t) = cos(ωqt)I + sin(ωqt)Ω, which is just

the usual symplectic (and in this case rotational) transformation for the

phase shift operator. Due to the dissipative effects, this free evolution is

now damped by e−γt and the state asymptotically approaches σ∞. If the

free evolution can be neglected compared to the dissipative dynamics, then

equations (3.63)-(3.64) reduce to the simple expressions [41, 44]:

d(t) = e−
1
2
γtd0, (3.67)

σ(t) = e−γtσ0 + (1− e−γt)σ∞. (3.68)

As noted in Chapter 2, since the environment is in thermal equilibrium,

the two rates γ11 and γ22 will not be independent but will instead satisfy

γ11 = eβqγ22 where βq := ~ωq/kBT [27, 32]. The rate γT can then be written

as:

γT := γ coth(
1

2
βq) = γ(1 + 2N th

q ) (3.69)

where N th
q is the average thermal occupation of a bosonic system, which is

given by the Bose-Einstein distribution (see Appendix A for a verification

of (A.25) for the single-mode phonon system using the derived expressions
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for the rates γ11 and γ22). Therefore, the matrix σ∞ is given by:

σ∞ =
(1 + 2N th

q )

4κ2
I, (3.70)

which is the covariance matrix of a single-mode thermal state (see e.g. [41]).

The excited single-mode phonon state will thus asymptotically approach a

thermal sate i.e. it will relax back to thermal equilibrium with the rest of

the quasi-particle modes as anticipated.

The form of the equations for the evolution of the statistical moments

(3.63)-(3.64) will apply to any single-mode system with free Hamiltonian

ĤS ∝ b̂†q b̂q that is interacting in the Born-Markov approximation with an

environment that is in thermal equilibrium, and is not just specific to the

case of a single-mode phonon state of a BEC. Instead the specific case of a

single-mode phonon state is only felt through the damping rate γ and the

expected experimental values for ωq and T . The damping rate γ depends

on the environment correlation functions and is, in general, given by (2.72),

although analytical expressions can be derived under certain approximations

as reviewed in Section 2.3. The fact that it is the characteristic form of the

rate γ that separates the single-mode phonon system from other bosonic

systems is illustrated in the next section using the specific example of a

damped harmonic oscillator in a Gaussian state.

3.3.1 Comparison with Previous Studies

Studies of Gaussian states of open quantum systems have principally consid-

ered a bosonic system coupled to an environment modeled by a large number

of external modes and with an interaction Hamiltonian that is bilinear in

field operators. Such an interaction Hamiltonian is given, for example, by:

ĤI =
∑
i

(
giâir̂

†
i + g∗i â

†
i r̂i

)
(3.71)

where âi and â†i represent the annihilation and creation operators of the

open system, gi denotes the coupling strength, and r̂i and r̂†i represent the
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annihilation and creation operators of the environment.

Taking just a single-mode system, (3.71) represents the interaction Hamil-

tonian of a damped harmonic oscillator, which could, for example, describe

the damping of an electromagnetic field mode inside a cavity [32]. After a

rotating wave approximation in the interaction picture has been applied, the

interaction Hamiltonian is also similar to that used for the optical system

considered in Section 2.3.1, which was used to derive the two-level quantum

optical master equation (2.84).

In the Born-Markov approximation, and assuming that the environment

is in a thermal state, a Lindblad master equation can be derived for the

single-mode bosonic system [30, 32, 76]:

d

dt
ρ̂S = − i

~
[Ĥ, ρ̂S] + γa11

(
âρ̂S â

† − 1

2
{â†â, ρ̂S}

)
+ γa22

(
â†ρ̂S â−

1

2
{ââ†, ρ̂S}

)
, (3.72)

which is analogous to the master equation derived for the phonon system

interacting with an environment of quasi-particle modes (2.53) since the

same approximations were used in its derivation. However, the two master

equations contain different rates due to the different interaction Hamiltoni-

ans. Analogous to the optical system case considered in Section 2.3.1, the

rates γa11 and γa22 of the master equation for the damped harmonic oscillator

are given by [30, 32, 76]:

γa11 :=
4ω3

a|g|2

3~c3
(1 +Na), (3.73)

γa22 :=
4ω3

a|g|2

3~c3
Na (3.74)

where ωa is the frequency of the system’s mode, and Na is the thermal

occupation of the mode. These expressions are in contrast to the much

more complicated expressions for the rates γ11 and γ22 for the single-mode

phonon system (see (2.69) and (2.70)).

By assuming an initial Gaussian state and following the same steps car-
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ried out in the previous section, the covariance matrix and displacement

vector of the damped harmonic oscillator can be shown to satisfy the fol-

lowing once the free dynamics have been neglected [41, 44]:

da(t) = e−
1
2
γatd0, (3.75)

σa(t) = e−γatσ0 + (1− e−γat)σa∞, (3.76)

σa∞ :=
1

4κ2

γaT
γa
I (3.77)

where γa := γa22 − γa11 and γaT := γa11 + γa22. These expressions are of course

analogous to those of (3.67),(3.68) and (3.65) due to the analogy of the mas-

ter equations for the damped harmonic oscillator and single-mode phonon

systems.

Just as for the single-mode phonon system, since the environment of the

bosonic system is in thermal equilibrium, the two rates γa11 and γa22 are not

independent but instead satisfy [32]:

γa11 = e~ωa/kBTγa22 =⇒ γaT
γa

= 1 + 2Na, (3.78)

which is of course clearly satisfied by (3.73)-(3.74) since, from these expres-

sions, γa = 4ω3
a|g|2/3~c3 and γaT = (4ω3

a|g|2/3~c3)(1 + 2Na). Substitution

of (3.78) into (3.77) then illustrates that σa∞ is the covariance matrix of the

thermal state with frequency ωa. The fact that γT/γ = 1 + 2Nq equally

holds in the single-mode phonon system was also used to show that the final

state for that system is similarly the thermal state of the mode q. In that

case the verification of the expression γT/γ = 1 + 2Nq using the definitions

of γ22 and γ11 is a little more complicated but still involves simple algebra

(see Appendix A).

From (3.75)-(3.76), the dissipation of the damped harmonic oscillator

system is characterized by the rate γa, which is defined by γa22 − γa11. Simi-

larly, from (3.67)-(3.68), the dissipation of the single-mode phonon system

is characterized by the rate γ, which is defined by γ22 − γ11 and this was

already anticipated in Section 2.3. As discussed in Section 2.3.1, the rate γ,
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given by (2.72), is, in general, a lot more complicated than the simple rate

γa for the damped harmonic oscillator, or equivalently the two-level system

of Section 2.3.1. However, as illustrated in Section 2.3, simple expressions

can be used for γ when certain approximations are assumed such as low or

high temperatures. These expressions are given by (2.77)-(2.79), none of

which have the same frequency dependence as γa. This is the essential dif-

ference between the single-mode phonon system in a Gaussian state and the

damped harmonic oscillator system in a Gaussian state, or equivalently the

two-level system of Section 2.3.1, and arises from the different types of inter-

action Hamiltonians. Two other parameters that characterize the evolution

of the different systems are the frequency of the mode and the temperature

of the environment, which will, in practice, likely be quite different for the

optical and phonon systems. As well as contributing to the dissipation rate

γ, the frequency of the system also characterizes the free dynamics of the

systems, which will, in general, contribute to their evolution. However, in

Chapter 4 it is shown that the free dynamics are unimportant to the quanti-

fies of interest here, the relaxation and decoherence times. The temperature

also contributes to the dissipation rate γ as well as characterizing the final

state of the system through σ∞.

3.4 Gaussian Channels

Knowing how the covariance matrix and displacement vector evolve for the

single-mode state will only be useful if they continue to fully characterize

the state. That is, if the Gaussian state remains Gaussian throughout the

interaction with the environment. One way to verify this is by studying

the Fokker-Planck equation for the Wigner function that derives from a

Markov master equation for the density operator. It can be shown that,

for a multi-mode Gaussian state obeying a quantum optical master equa-

tion, the Wigner function continues to be Gaussian [41] and so the first

and second statistical moments persist in characterizing the state. It is

straightforward to apply this to the case of a Markov master equation for

the single-mode phonon state (2.54) and to show that the first and second
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statistical moments will persist in characterizing the phonon state. The

evolution of a Gaussian single-mode phonon state can thus be defined by

the transformations of the covariance matrix and displacement vector.

More generally, the Gaussianity of a state is preserved by a quantum

operation if it can be represented as Gaussian channel, which is a trace-

preserving completely positive map that maps Gaussian trace-class oper-

ators onto Gaussian trace-class operators [104]. A Gaussian channel acts

on the first and second statistical moments through equations of the form

(3.35) and (3.38) where complete positivity requires that:5

Z(t) + iΩ− iXT (t)ΩX(t) ≥ 0, (3.79)

which for single-mode channels reduces to:

Z(t) ≥ 0, detZ(t) ≥ (detX(t)− 1)2. (3.80)

Markovian and non-Markovian noisy channels can both preserve Gaus-

sianity [41, 105].6 A Markovian channel is divisible, that is, for all inter-

mediate times the the evolution can be decomposed into two successive,

independent, completely positive maps. A necessary and sufficient criterion

for the non-Markovianity of Gaussian channel is then that there exists an

intermediate map that violates (3.79) [107].

The evolution of a Gaussian state in the Markov approximation is gen-

erally analysed for an interaction Hamiltonian that is bilinear in the field

operators (e.g. see [41]). However, the case of a single-mode phonon state of

a BEC emphasises that this isn’t a necessary condition for the preservation

of Gaussianity since the interaction Hamiltonian is cubic in field opera-

tors (see (1.33)). With the Markov approximation dropped it is expected

that the Gaussianity of the state will not, in general, be preserved and so,

in practice, it is anticipated that the state will not persist as a Gaussian

5Note that the vector Y in (3.35) just corresponds to a displacement in phase space.
6In fact any channel of the form (3.38) and satisfying (3.79) can be shown to cor-

respond to the reduction of a symplectic (unitary) evolution acting on a larger Hilbert
space, and the converse is also true [95, 106].
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state. However, if the Markov approximation is valid for the BEC setup,

the evolved state should be well approximated as Gaussian.

3.5 Summary

By assuming a Gaussian state, the description of the evolution of an excited

single-mode phonon state has been reduced down from the evolution of

the density operator in an infinite dimensional Hilbert space (2.54), to the

evolution of just the entries of two two-dimensional matrices, the covariance

matrix and the displacement vector. Furthermore, the form of the evolution

of these two matrices for the single-mode phonon state allows for simple

analytic solutions (3.63)-(3.64). These analytic expressions will be used in

the next chapter to estimate how quickly the excited state will decohere and

relax back to equilibrium with the rest of the Bose gas.
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CHAPTER 4

Decoherence of a Single-Mode Phonon State

in a BEC

The previous chapter considered how the evolution of an excited single-mode

phonon state is mathematically simplified when it is assumed that the state

is Gaussian. In this case the evolution of the single-mode state is fully

determined by two analytical expressions for the evolution of the entries

of the state’s two-dimensional covariance matrix and displacement vector.

These simple expressions are now used in this chapter to estimate the time

taken for the phonon state to decohere and relax back to thermal equilibrium

with the Bose gas. Following [44], the loss of coherence is quantified by

certain global entropic measures and nonclassical indicators of Gaussian

states. Once determined, the evolution of these quantities is then compared

to that of the average occupation, which is used as a measure of relaxation.

Since the phonon state of interest is a single-mode state, the squeezing of the

state is also investigated since this, together with the average occupation

and one of the decoherence measures, fully defines a single-mode state.

The following section reviews popular entropic and nonclassical measures

of Gaussian states, which can be used to quantify the decoherence of the

state, as well as certain properties of the state such as its average occupation

and squeezing. The evolution of each of these quantities is investigated for

a single-mode phonon state using the calculated evolution of the covariance

matrix and displacement vector from the previous chapter. Section 4.2 then

illustrates each quantity’s evolution for specific BEC setups and compares
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the estimates for the decoherence time to those for the relaxation time.

4.1 Quantifiers of Decoherence and Relaxation of Gaus-

sian States

4.1.1 Purity

The purity of a quantum state µ = Tr(ρ̂2) is a measure of how pure a quan-

tum state is: for pure states (states for which there is complete information

on the state vector) µ = 1, whereas, for maximally mixed states µ = 1/d

where d is the dimension of the space. It is directly related to the p = 2

case of the Schatten p-norms [108]:

‖ρ̂‖p := (Tr|ρ̂|p)
1
p = (Trρ̂p)

1
p , p ∈ (1,∞), (4.1)

which are invariant under unitary operations.

The p-norms are multiplicative on tensor product states and determine

the family of Rényi entropies SRp [109] and Bastiaans-Tsallis entropies SBTp

[110] by:

SRp :=
− ln Trρp

p− 1
, (4.2)

SBTp :=
1− Trρp

p− 1
. (4.3)

These quantify the degree of mixedness of the state ρ, which is related to

its coherence.1

As stated above, the purity of a quantum state is conserved for unitary

transformations of a closed system, which can be readily verified from the

von Neumann master equation:

dµ

dt
=

Tr(ρ2)

dt
= 2Tr(

dρ

dt
ρ) = −2iTr([H, ρ]ρ) = −2iTr(H[ρ, ρ]) = 0. (4.4)

1See [111] for an investigation into the relationship between coherence and mixedness
in a finite dimensional system where it is shown that the amount of quantum coherence
in a state is restricted by the amount of mixedness.
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However, this need not be the case for an open quantum system. For ex-

ample, for a Markov master equation in Lindblad form, the purity of the

quantum state evolves according to:

1

2

dµS(t)

dt
= Tr(D(ρ̂S(t))ρ̂S(t)) (4.5)

where D(ρ̂S(t)) is the dissipator.

The purity of state is easily computable from the Wigner function and,

for an m-mode Gaussian state, is simply related to the determinant of the

covariance matrix [41]:

µ =
1

(2κ)2m
√

detσ
. (4.6)

Therefore, for a single-mode state, the purity is given by:

µ =
1

4κ2
√

detσ
=

1

4κ2s
(4.7)

where s is the symplectic eigenvalue of the state (the modulus of the eigen-

values of iΩσ).

From computing the evolution of detσ one can then determine the evo-

lution of µ in the particular quantum channel. For a Markov channel the

covariance matrix evolves according to (3.30) and the evolution of the de-

terminant can be calculated from this using Jacobi’s formula:

d

dt
detσ = Tr

(
adjσ

dσ

dt

)
. (4.8)

Substituting in (3.10) for dσ/dt provides the following equation of motion

for detσ in a Markov channel:

d

dt
detσ(t) = detσ(t).Tr

( 1

κ2
ΩIm(C†C) + σ(t)−1D

)
. (4.9)

For the single-mode phonon case described in Section 3.3, the matrices C

75



4.1. Quantifiers of Decoherence and Relaxation of Gaussian States

and D are given by (3.55) and (3.59), and so the above equation of motion

simplifies to:2

d

dt
detσ(t) = γ detσ(t)

(
σ∞Tr[σ(t)]− 1

)
(4.10)

where, from (3.64), Tr[σ(t)] is given by:

Tr[σ(t)] = e−γtTr[R(t)σ0R
T (t)] + (1− e−γt)Trσ∞ (4.11)

= e−γtTr[σ0] + (1− e−γt)Tr[σ∞] (4.12)

and RRT = I since R is a rotation matrix. Therefore, using (4.10), the

evolution of µ can be computed for the single-mode phonon state. Note that

in this special case the evolution of µ is only dependent on the dissipative

effects and not on the free dynamics of the single-mode phonon state.

As stated in Section 3.1.3, due to a theorem by Williamson [92], every

covariance matrix can be diagonalized by a symplectic transformation and

thus written in terms of a covariance matrix for a thermal state. For a

single-mode state this results in any covariance matrix being written as the

application of a squeezing transformation to a thermal state [41, 112]:

σ = Σξσ
T
ν Σξ (4.13)

where σν is the covariance matrix of a thermal state and σν is the single-

mode symplectic squeezing matrix corresponding to the unitary operator

for single-mode squeezing ÛS:

ÛS = exp
{1

2
ξ(â†)2 − 1

2
ξ∗â2

}
, (4.14)

=⇒ Σξ =

 cosh r + sinh r cosψ sinh r sinψ

sinh r sinψ cosh r − sinh r cosψ

 (4.15)

2The principle assumptions that result in the simplification are that the free renor-
malized Hamiltonian is of the form of that for a simple harmonic oscillator, and the state
of the environment is a non-squeezed thermal state.
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where ξ = reiψ. The matrix version of (4.13) can be written as:

σ =
1

4κ2µ

 cosh(2r) + sinh(2r) cos(ψ) sinh(2r) sin(ψ)

sinh(2r) sin(ψ) cosh(2r)− sinh(2r) cos(ψ)


(4.16)

where µ is the purity of the state, and κ comes from the definitions of the

quadrature operators (3.1). Every single-mode covariance matrix can be

written as the above matrix and is, therefore, fully defined by the purity

and the squeezing of the state.3 The displacement vector of a single-mode

Gaussian state can also be written in a general form:

d =
1

κ

 Re(α)

Im(α)

 (4.17)

where α is the eigenvalue of the annihilation operator.

The general expression for the covariance matrix can be substituted

into (4.10) to obtain the equation of motion for the purity of a single-mode

phonon state [113]:

dµ

dt
= γµ

(
1− µ

µ∞
cosh(2r(t))

)
(4.18)

where µ∞ := (1+2Nq)
−1 = tanh(~ωq/2kBT ) is the purity of the asymptotic

state σ∞. The matrix (4.16) can also be substituted into the equation that

determines the covariance matrix of single-mode phonon state at time t

(3.64) to find the purity of the state at that time [113]:4

detσ(t) = e−2γt(detσ0) + e−γtσ∞Tr(σ0) + (1− e−γt)2σ2
∞ (4.19)

3Equivalently, instead of the purity, the symplectic eigenvalue of the state or the
average occupation of the thermal state σν could be used in addition to the squeezing
since these are all directly related to each other.

4Or, alternatively, (4.18) can be solved together with the corresponding differential
equation for r (see Section 4.1.3) [41, 113].
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=⇒ µ(t) = µ0

(
e−2γt +

µ2
0

µ2
∞

(1− e−γt)2 +
2µ0

µ∞
e−γt(1− e−γt) cosh(2r0)

)−1/2

.

(4.20)

The purity of the state as defined by (4.20) can exhibit a local minimum

when r0 > max(µ0/µ∞, µ∞/µ0) [44, 113]. If this is satisfied then the

minimum is reached at the following time [44, 113]:

tmin =
1

γ
ln

( µ0
µ∞

+ µ∞
µ0
− 2 cosh(2r0)

µ0
µ∞
− cosh(2r0)

)
. (4.21)

The time tmin can provide a good characterization of the decoherence time

of such squeezed states [44, 113]. Any increase in the purity after that time

just reflects the state being driven towards the state of the environment.

This characterization of the decoherence time will be used in Section 4.2 for

an estimate of the decoherence time of a single-mode phonon state in several

BEC setups. Note that as r0 → ∞ the minimum time tmin tends towards

1
γ

ln 2. This minimum time is also obtained for an initially pure state at

T = 0 (as long r0 > 1). On the other hand, as T →∞ then tmin → 0.

The above decoherence time has been derived from a Born-Markov mas-

ter equation, which assumed that the full state of the system (the single-

mode phonon system and its environment) remains a separable state (see

Section 2.2.1). Therefore, the loss of coherence is not arising from the gener-

ation of entanglement between the environment and the open system, which

differs to some decoherence processes [32].

For a more general discussion on the evolution of purity, where the en-

vironment is taken to be a thermal squeezed state and the free dynamics

are ignored from the outset, see [44, 113].

4.1.2 Von Neumann Entropy

The von Neumann entropy SV is determined by the p-norms as [114]:

lim
p→1+

SRp = −Tr(ρ ln ρ) = SV . (4.22)
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It is an important measure of the mixedness of a quantum state with SV = 0

corresponding to pure states. For the case of a single-mode Gaussian state,

SV simplifies to [104, 115]:

SV = f(
√

detσ) (4.23)

where:

f(x) := (x+
1

4κ2
) ln(x+

1

4κ2
)− (x− 1

4κ2
) ln(x− 1

4κ2
). (4.24)

The von Neumann entropy provides the same characterization of mixedness

for a single-mode Gaussian state as the linear entropy, which is defined as

SL := (1− µ) and, from (4.3), is given by the p = 2 case of the Bastiaans-

Tsallis entropies SBTp . The equation of motion for the von Neumann entropy

can thus be obtained from that for purity using the relation:

d

dt
SV (t) =

1

4κ2µ(t)
ln
(1− µ(t)

1 + µ(t)

) d
dt
µ(t), (4.25)

which is derivable from (4.23). From this relation it is clear that, as would

be expected, if the purity of a single-mode state has a minimum then the

von Neumann entropy undergoes a maximum at the same time.

4.1.3 Squeezing

From (4.16), the covariance matrix of a general single-mode state is fully

defined by its purity and squeezing.5 Therefore, computing the evolution

of the squeezing and purity completely determines the evolution of the co-

variance matrix. In fact, since the squeezing parameter ψ can be shown

to remain a constant for a non-squeezed environment [41, 113], only the

evolution of r and µ needs to be considered, with the latter already being

computed in Section 4.1.1.

From (4.16), the squeezing of a general single-mode covariance matrix

5Equivalently, a single-mode state in an environment in thermal equilibrium is also
fully defined by its nonclassical depth and purity (see (4.31)).
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can be calculated at any time using:

cosh(2r(t)) = 2κ2µTr(σ(t)). (4.26)

For a single-mode phonon state, the trace of the covariance matrix evolves

as (4.11), and so the equation of motion for r can be derived as [113]:

dr(t)

dt
= −γ

2

µ(t)

µ∞
sinh(2r(t)). (4.27)

After integrating this equation together with the corresponding equation

of motion for µ, which is given by (4.18), or equivalently, after substituting

(4.16) into (3.64) and using (4.26), the value of r at time t is found from

[113]:

cosh(2r(t)) = µ(t)
(
e−γt

cosh(2r0)

µ0

+
1− e−γt

µ∞

)
. (4.28)

Note that, as was also the case with the purity, the above equation illustrates

that the squeezing evolves independently of the free dynamics for the single-

mode phonon case. The evolution of r is also calculated in [41, 44, 113] for

a squeezed Markovian environment with the free dynamics ignored from the

start.

4.1.4 Nonclassical Depth

A popular measure for quantifying the nonclassicality of a quantum state

has been the nonclassical depth introduced in [116]. This has the physical

meaning of the number of thermal photons necessary to destroy the non-

classical nature of the quantum state [117]. For a general quantum state ρ̂,

the nonclassical depth is defined as:

τρ :=
1− Sρ

2
(4.29)
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where Sρ is the supremum of the set of values s for which the Wigner func-

tion function can be regarded as a (positive semidefinite and non singular)

probability distribution. For a coherent state τρ = 0, whereas, for a Fock

state τρ = 1. This quantity is easily computed for a general Gaussian state

since it is given by:

τ = max
[1− 2u

2
, 0
]

(4.30)

where u is the smallest eigenvalue of σ. In this case the nonclassical depth

τ detects the state as nonclassical if a canonical quadrature exists whose

variance is below 1/2 [44], and τ cannot be greater than 1/2. For a single-

mode Gaussian state the smallest eigenvalue is given by u = exp{−2r/µ}
and so:

τρ = max
[1

2

(
1− e−2r

µ

)
, 0
]

(4.31)

where the maximum value of τ is reached when r =∞.

From the time evolution of the covariance matrix (3.64), the nonclassical

depth τ of the single-mode can be shown to evolve as [44]:

τ(t) =
µ0(µ∞ − 1) + e−γt(µ0 − µ∞e−2r0)

2µ0µ∞
(4.32)

=
1

2

(
1− 1

µ∞
+ e−γt

( 1

µ∞
− e−2r0

µ0

))
. (4.33)

The time at which the state becomes classical i.e. when τρ = 0 (if this can

occur) is then found to be:

t0 =
1

γ
ln

(
1− µ∞

µ0
e−2r0

1− µ∞

)
. (4.34)

For high squeezing r0 � 1 (and assuming µ∞ < µ0) this time can be
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approximated as:

t0 ≈
1

γ
ln
( 1

1− µ∞

)
, (4.35)

which is independent of the initial purity. For high temperatures on the

other hand t0 tends to zero, and for low temperatures t0 tends to infinity, in

contrast to the time at which a minimum of purity is achieved (see Section

4.1.1). The maximisation of the evolution of τρ is considered in [44] where

it is shown from numerical analysis that the nonclassical depth increases

with increasing squeezing r0 and purity µ0.

4.1.5 Coherence Measures

Recently a rigorous framework for the quantification of coherence has been

introduced by adopting the viewpoint of coherence as a physical resource

[118]. Intuitive and easily computable measures of coherence can then be

put on a sound footing following the approach that has already been es-

tablished for entanglement [119]. This is in contrast to a wide variety of

measures of coherence that tend to be justified principally on the grounds

of physical intuition [118].

In [118] a set of properties that every proper measure of coherence should

satisfy were introduced, and the relative entropy of coherence and the l1-

norm of coherence were identified as the most general and easy-to-use quan-

tifiers of coherence. The l1-norm is a widely used quantifier of coherence

and is intuitively defined in terms of the off-diagonal elements of a density

matrix ρ in the chosen reference basis:

Cl1(ρ̂) :=
∑
i 6=j
|ρ̂ij|. (4.36)

The relative entropy of coherence on the other hand is a distance-based

coherence monotone defined by:

Cre(ρ̂) := SV (ρ̂diag)− SV (ρ̂) (4.37)
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where ρ̂diag :=
∑

i ρii|i〉〈i| only contains the leading diagonal elements of

ρ̂ :=
∑

ij ρij|i〉〈j| in the reference basis, and SV (ρ̂) is the von-Neumann

entropy.

Decoherence could be quantified by considering the evolution of the

above coherence monotones. This would potentially provide a more in-

tuitive description of decoherence and would be similar to the approach

used where the decoherence time is derived from the decoherence function

Γnm(t), which describes the behaviour of the off-diagonals of the reduced

density matrix [32]. However, the above quantifiers implicitly assume the

finite dimensional setting [118], whereas the case of interest here is infinite

dimensional. Hence, a quantum theory of coherence in infinite dimensional

systems is needed. This would likely follow the the development of entan-

glement quantification [118] where problems concerning continuity can be

addressed by requiring energy constraints [120] or by considering special,

experimentally relevant, subclasses such as Gaussian states [121]. In fact

a connection between entanglement and coherence has recently been found

where any degree of coherence with respect to some reference basis can be

converted to entanglement via incoherent operations [122]. This has al-

lowed for the development of a general class of measures of coherence for a

quantum system in terms of the maximum bipartite entanglement that can

be generated via incoherent operations applied to the system and an inco-

herent ancilla. The resulting measures are then valid coherence monotones

satisfying all the requirements dictated by the resource theory of quantum

coherence and will potentially provide powerful advances for the operational

quantification of coherence [122].

4.1.6 Average Occupation

The average occupation of a general state is defined by N :=
∑

iNi :=∑
i〈â
†
i âi〉 where i labels the different modes. In general, this quantity de-

pends on the first as well as the second statistical moment of a Gaussian
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state:

N =
∑
i

〈â†i âi〉 (4.38)

= κ2
∑
i

〈q̂2
i + p̂2

i + i[q̂i, p̂i]〉 (4.39)

= κ2
∑
i

(〈q̂2
i 〉+ 〈p̂2

i 〉)−
1

2
(4.40)

= κ2
(
Tr(σ) + dTd

)
− 1

2
. (4.41)

Using (4.16), for a general single-mode Gaussian state i, the average occu-

pation is given by:6

Ni =
1

2µ
cosh(2r) + |α|2 − 1

2
. (4.42)

The time evolution of the average occupation can, therefore, be calculated

from the evolution of squeezing parameter r and purity µ. However, it is

simpler to calculate it from the quantum Markov master equation for the

density operator of the state (2.46) (see Appendix C). From (C.5), and using

Ô = N̂i = b̂†q b̂q, the average occupation at time t for a single-mode phonon

state is shown to be given by:

Nq(t) = (Nq(0)−N th
q )e−γt +N th

q (4.43)

where:

N th
q :=

1

(γ11/γ22)− 1
. (4.44)

6Since µ is inversely proportional to the symplectic eigenvalue of the state, the average
occupation can also be defined in terms of that or the average occupation of the thermal
state obtained from Williamson’s theorem.
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Since the environment is in thermal equilibrium the two rates γ11 and γ22

are related via (2.71) and so:

N th
q =

1

eβωq − 1
, (4.45)

which is just the the average (thermal) occupation of the environment.

Note that this evolution is independent of the free evolution of the

system since Ĥ ∝ N̂q. This can also be observed from its above def-

inition in terms of the covariance matrix and displacement vector since

Tr(σ)(t) is independent of the free evolution as discussed in Section 4.1.1,

and dT (t)d(t) = dT0A
TAd0 = e−γtdT0 d0.

The relaxation time is the time scale required for the approximate van-

ishing of the populations of quantum states [30, 31] and thus the evolution

of the average occupation provides information on this time scale. From

(4.43), the time at which the the original populations vanish and the mode

is completely occupied by the thermal population is never actually reached

theoretically. Typically the relaxation time is instead given by the inverse

of a typical relaxation rate such as the damping rate [32]. However, this

choice of time scale cannot be compared well against the time scales for

decoherence derived in Sections 4.1.1 and 4.1.4 since these are given by

the occurrence of an exact event (the minimum of purity or the vanishing

of nonclassicality) rather than the inverse of a rate. Alternative charac-

terisations of the relaxation time, which can be better compared to the

decoherence times of Section 4.1.1 and 4.1.4, are the time at which the

original and thermal populations only differ by one quanta, or when the

population of the state reaches a certain percentage of the fixed point ther-

mal population.7 Experimentally of course there will be a limit to what can

be differentiated. In this case, to determine if the state has reached a ther-

mal state, the method of state discrimination could be used. Then perfect

unit fidelity is not required and one tolerates that the quantum state arrives

within a small fidelity distance from the target, fixed a priori. This could

7Another option would be to just compare the rate at which the purity goes to a
minimum (or the nonclassical depth goes to zero) to the rate at which the populations
decay to zero, rather than attempting to calculate actual time scales.
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be achieved in this case, for example, by considering the fidelity distance

between the covariance matrix of the phonon state and the environment.

Then one characterizes the relaxation time as the minimal time required for

the initial state to freely reach the target state within a given error param-

eter. For example, in [77], the minimal time required for an initial state σ0

to freely reach the target σ∞ within a fixed fidelity 1 − ε was found to be

| ln ε|/2γ where γ is the damping rate.

4.2 Decoherence of Phonons in Realistic BEC Setups

This section investigates the time evolution of the above global entropic

measures and nonclassical indicators for particular BEC setups. The setups

that will be considered are: (i) the setup for the GW detector based on

concepts from RQIT that was discussed in the Introduction and developed in

[18], (ii) the setup used to observe Landau damping in the MIT experiment

with Sodium atoms [64], and (iii) the setup that will be discussed in Chapter

5 which is the setup that is currently being investigated in Nottingham to

measure the experimental decoherence of phonons.

As discussed in Sections 4.1.1 and 4.1.4, it is possible to extract an

estimate for the decoherence time of the phonons from the evolution of the

purity and nonclassical depth. Furthermore, from the time evolution of the

average occupation, it is possible to extract an estimate for the relaxation

time as discussed in Section 4.1.6.

Each BEC setup will be discussed in turn in the following three sections.

The time evolution of the entropic measures and nonclassical indicators are

evaluated for high and low temperatures and for three different initial Gaus-

sian phonon states: a coherent state, vacuum squeezed state, and thermal

squeezed state (thermalized to the given temperature). All these initial

states are chosen such that the initial average occupation is the same.

4.2.1 RQIT Gravitational Wave Detector

The setup of the GW detector introduced in [18] is based on a uniform 87Rb

BEC with a speed of sound of cs ∼ 1 × 10−2 ms−1 and angular frequency
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of the excitatory phonon mode ωq ∼ 2π× 5000 Hz. As discussed in Section

2.3, there are two temperature regimes of interest called the quantum and

thermal regimes, which are characterized by kBT � ~ωq and kBT � ~ωq re-

spectively. In the former regime Beliaev damping dominates, whereas, in in

the latter regime it is Landau damping that dominates. These two regimes

will be investigated in turn in the Sections 4.2.1.1 and 4.2.1.2 respectively.

4.2.1.1 Quantum Regime

For a temperature of 0.5nK the BEC will be in the quantum regime where

Beliaev damping dominates. Figure 4.1 illustrates the time evolution of the

purity, nonclassical depth, squeezing, and average occupation of a single-

mode phonon state with angular frequency ωq ∼ 2π×5000 Hz. From Figure

4.1 the squeezed states undergo a minimum of purity before asymptomati-

cally relaxing to the purity of the environment, which is approximately the

vacuum. From Section 4.1.1, the time tmin at which the minimum is attained

is given by (4.21) and provides a good characterization of the decoherence

time of the squeezed states [44]. In this quantum regime, it is approxi-

mately given by tmin ≈ ln 2/γ where γ is the Beliaev damping rate. This is

to be compared with the time at which the nonclassical depth reaches zero,

which is approximately given by tτ=0 = 2βq/γ and will thus only asymp-

totically approach zero when T = 0. The decoherence time characterized

by the time at which the purity of squeezed states reaches its minimum is

of order 6s, whereas, the time at which e−γt = 1% is of order 40s for this

particular BEC setup. The latter time is taken to be a rough guide to the

comparative relaxation time of the system.8 Note that the ratio of the two

scales is independent of γ and so is not explicitly dependent on intrinsic

BEC parameters such as the density and atomic mass, but it is dependent

on certain properties of the phonon state such as the initial squeezing and

average occupation.

The time of 6s for pure squeezed states to reach a minimum of purity

could be taken as a rough estimate of the decoherence time of the phonons

8This equivalent to taking ε = (0.01)2 for the error parameter used in quantum
discrimination as discussed in Section 4.1.6.
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in the proposed GW detector. Such a decoherence time, although much

smaller than the expected lifetime of the BEC, is still anticipated to provide

the relativistic quantum technological device with a better accuracy than

the current state of the art [18]. A more accurate determination of the

decoherence time would need to generalize the results to two modes and

the effects from gravity and motion would also need to be included. This is

discussed in more detail in Chapter 7.

4.2.1.2 Thermal Regime

Although the GW detector has been designed for a BEC in the quantum

regime, this section looks at the behaviour of the measures in the thermal

regime to illustrate the dependence of the measures on the temperature of

the BEC and angular frequency of the phonon mode. For a temperature

of 100nK and phonon angular frequency of ωq = 2π × 500Hz, the BEC

will be in the thermal regime where Landau damping dominates and obeys

(2.79) since ~ωq � kBT � mc2
s. Figure 4.2 illustrates the time evolution

of the purity, nonclassical depth, squeezing, and average occupation of a

single-mode phonon state in this regime. The squeezed states still undergo

a minimum of purity but now the nonclassical depth goes to zero in around

the same time scale. The time at which this occurs is of order 5 × 10−2s

whereas the time taken for e−γt to reach 1% is of order 1.7s.

When kBT � µ the damping rate γ is approximately linear in T (see

(2.78)). This is the case when T = 100nK and the phonon frequency is ωq =

2π× 500Hz as in the previous section, but now the speed of sound is taken

to be cs = 2.5 × 10−3ms−1. The time evolution of the purity, nonclassical

depth, squeezing and average occupation for this regime is illustrated in

Figure 4.3. In this regime the purity of realistically squeezed states still

undergo a minimum but the nonclassical depth degrades to zero in a time

that is an order of magnitude shorter. The time at which this occurs is

approximately given by tτ ≈ β/γ and is of order 10−4s for the chosen BEC

setup. On the other hand, the time taken for the e−γt to reach 1% is of

order 4× 10−3s.
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4.2.2 MIT Sodium BEC Setup

This section investigates the decoherence of a single-mode phonon state for a

BEC setup inspired by that used to observe Landau damping in [64], which

used a Sodium Bose gas. As with the GW detector, the evolution of the

entropic and nonclassical measures will be investigated for different energy

regimes, and the same three different initial Gaussian phonon states will be

used. It should be emphasized that the derivation of the decoherence and

relaxation times assumed a uniform BEC whereas this experiment used an

harmonic trap. However, estimates for the damping rate using a uniform

BEC were still found to be applicable to this experiment [26].

4.2.2.1 Quantum Regime

The BEC setup assumed in this and the following section is a uniform

Sodium BEC with speed of sound cs = 5×10−3ms−1 and an excited phonon

mode with angular frequency 2π× 510Hz.9 For a temperature of 0.5nK the

BEC will be in the quantum regime where Beliaev damping dominates.10

Figure 4.4 illustrates the time evolution of the purity, nonclassical depth,

squeezing, and average occupation of the single-mode phonon state. The

squeezed states undergo a minimum of purity before asymptomatically re-

laxing to the purity of the environment, which is approximately the vacuum.

From Section 4.1.1, the time tmin at which the minimum is attained is given

by (4.21) and provides a good characterization of the decoherence time of

the squeezed states [44]. In this quantum regime, it is approximately given

by tmin ≈ ln 2/γ. This is to be compared with the time at which the non-

classical depth reaches zero, which is approximately given by tτ=0 = 2βq/γ

and will thus only asymptotically approach zero when T = 0.

9The actual experiment used a trapped Bose gas but the theoretical calculations
performed in this work are for a uniform BEC.

10Note that this temperature wasn’t achieved in the experiment of [64] and is just used
for illustrative purposes. In fact, since the experiment used a trap, Beliaev damping
wouldn’t have been active for the lowest energy modes.
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4.2.2.2 Thermal Regime

For a temperature of 50nK and phonon angular frequency of ωq = 2π ×
510Hz, the BEC will be in the thermal regime where Landau damping

dominates and obeys (2.79) since ~ωq � kBT � mc2
s. Figure 4.5 illustrates

the time evolution of the purity, nonclassical depth, squeezing, and average

occupation of a single-mode phonon state in this regime.

For T = 150nK the condition kBT � µ is satisfied and the damping

rate γ is approximately linear in T (see (2.78)). The time evolution of the

purity, nonclassical depth, squeezing and average occupation for this regime

is illustrated in Figure 4.6. In this regime the purity of realistically squeezed

states still undergo a minimum but the nonclassical depth degrades to zero

in a time that is an order of magnitude shorter.

4.2.3 Nottingham Lithium BEC Setup

This section investigates the decoherence of a single-mode phonon state

for a BEC setup inspired by the experiment currently being investigated

in Nottingham that uses a Lithium BEC and is planned to be used to

experimentally observe decoherence (see Chapter 5 for more detail). As

with the previous two setups, the evolution of the entropic and nonclassical

measures will be investigated for different energy regimes, and the same

three different initial Gaussian phonon states will be used.

4.2.3.1 Quantum Regime

The BEC setup used in this and the following section is a uniform molecu-

lar Lithium BEC with speed of sound cs ∼ 5××10−3ms−1 and an excited

phonon mode with angular frequency 2π × 100Hz.11 For a temperature of

0.5nK the BEC will be in the quantum regime where Beliaev damping dom-

inates. 12 Figure 4.7 illustrates the time evolution of the purity, nonclassical

depth, squeezing, and average occupation of the single-mode phonon state.

11The actual experiment uses a trapped Bose gas but the theoretical calculations per-
formed in this work are for a uniform BEC.

12Note that this temperature may not be achievable in the experiment and is instead
just used for illustrative purposes. In fact, since the experiment used a trap, Beliaev
damping wouldn’t have been active for the lowest energy modes.
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The squeezed states undergo a minimum of purity before asymptomatically

relaxing to the purity of the environment, which is approximately the vac-

uum. From Section 4.1.1, the time tmin at which the minimum is attained

is given by (4.21) and provides a good characterization of the decoherence

time of the squeezed states [44]. In this quantum regime, it is approxi-

mately given by tmin ≈ ln 2/γ. This is to be compared with the time at

which the nonclassical depth reaches zero, which is approximately given by

tτ=0 = 2βq/γ and will thus only asymptotically approach zero when T = 0.

4.2.3.2 Thermal Regime

For a temperature of 25nK and phonon angular frequency of ωq = 2π ×
100Hz, the BEC will be in the thermal regime where Landau damping

dominates and obeys (2.79) since ~ωq � kBT � mc2
s. Figure 4.8 illustrates

the time evolution of the purity, nonclassical depth, squeezing, and average

occupation of a single-mode phonon state in this regime.

For T = 100nK the condition kBT � µ is satisfied and the damping

rate γ is approximately linear in T (see (2.78)). The time evolution of the

purity, nonclassical depth, squeezing and average occupation for this regime

is illustrated in Figure 4.9. In this regime the purity of realistically squeezed

states still undergo a minimum but the nonclassical depth degrades to zero

in a time that is an order of magnitude shorter.

4.3 Summary

In this chapter the times in which a single-mode phonon state of a BEC de-

coheres and relaxes to equilibrium have been estimated for certain examples

of BEC setups. In particular, in the BEC setup that is inspired by the GW

detector [18], the decoherence time at T = 0.5nK for a squeezed vacuum

state was estimated to be around 6s, and a rough estimate for the relaxation

time was 40s. A BEC setup based on that which is planned to be used to

experimentally measure decoherence was also considered. For example, at a

temperature of around T = 25nK, it was estimated that a thermal squeezed

state would decohere in around 0.9− 2.5× 10−4s, and relax to equilibrium

91



4.3. Summary

in around 3×10−3s (see Figure 4.8). These estimations for the decoherence

and relaxation times are the culmination of the theoretical calculations of

Part I of this work, which have involved treating the phonons of BECs as

open quantum systems and as Gaussian states such that the times can be

extracted from the evolution of some of the properties of these states.

Part II of this work considers how these decoherence and relaxation

times could be extracted from experiments. This will, in particular, involve

investigating strongly-interacting BECs and how their absorption images

can be understood in order to extract these times from the experiments.
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Figure 4.1: Time evolution of (a) Purity µ; (b) Nonclassical depth τ ; (c)
Squeezing r; (d) Average occupation N . The BEC setup assumed in [18]
was used (a uniform 87Rb BEC with cs ∼ 10−2m−1) with a temperature of
100nK and angular frequency ωq = 2π × 5000Hz. The blue dot-dash line
is an initial coherent state, the red dotted line (behind the black line) is
an initial thermal squeezed state with r = 2, and the black solid line is
an initial vacuum squeezed state with r = 2. The initial thermal squeezed
state is approximately a vacuum squeezed state at this temperature. All
initial states were chosen such that the initial average occupation is the
same. These graphs, and all the proceeding graphs in this chapter, were
generated by a MATLAB package developed by R. Howl.
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Figure 4.2: Time evolution of (a) Purity µ; (b) Nonclassical depth τ ; (c)
Squeezing r; (d) Average occupation N . The BEC setup assumed in [18]
was used (a uniform 87Rb BEC with cs ∼ 10−2m−1) with a temperature of
100nK and angular frequency ωq = 2π × 500Hz. The blue dot-dash line is
an initial coherent state, the red dotted line is an initial thermal squeezed
state with r = 2, and the black solid line is an initial vacuum squeezed
state with r = 2. All initial states were chosen such that the initial average
occupation is the same.
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Figure 4.3: Time evolution of (a) Purity µ; (b) Nonclassical depth τ ; (c)
Squeezing r; (d) Average occupation N . The BEC setup assumed in [18]
was used (a uniform 87Rb BEC with cs2.5× ∼ 10−3m−1) with a temperature
of 100nK and angular frequency ωq = 2π × 500Hz. The blue dot-dash line
is an initial coherent state, the red dotted line is an initial thermal squeezed
state with r = 2, and the black solid line is an initial vacuum squeezed
state with r = 2. All initial states were chosen such that the initial average
occupation is the same.
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Figure 4.4: Time evolution of (a) Purity µ; (b) Nonclassical depth τ ; (c)
Squeezing r; (d) Average occupation N . BEC parameters similar to [64]
were used with a temperature of 0.5nK and angular frequency ωq = 2π ×
510Hz. The blue dot-dash line is an initial coherent state, the red dotted
line (behind the black line) is an initial thermal squeezed state with r = 2,
and the black solid line is an initial vacuum squeezed state with r = 2. The
initial thermal squeezed state is approximately a vacuum squeezed state at
this temperature. All initial states were chosen such that the initial average
occupation is the same.
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Figure 4.5: Time evolution of (a) Purity µ; (b) Nonclassical depth τ ; (c)
Squeezing r; (d) Average occupation N . BEC parameters similar to [64]
were used with a temperature of 50nK and angular frequency ωq = 2π ×
510Hz. The blue dot-dash line is an initial coherent state, the red dotted
line (behind the black line) is an initial thermal squeezed state with r = 2,
and the black solid line is an initial vacuum squeezed state with r = 2. The
initial thermal squeezed state is approximately a vacuum squeezed state at
this temperature. All initial states were chosen such that the initial average
occupation is the same.

97



4.3. Summary

(a)

t (s)

0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1
(b)

t (s) ×10
-4

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

(c)

t (s)

0 0.002 0.004 0.006 0.008 0.01
0

0.5

1

1.5

2
(d)

t (s)

0 0.002 0.004 0.006 0.008 0.01
0

50

100

150

Figure 4.6: Time evolution of (a) Purity µ; (b) Nonclassical depth τ ; (c)
Squeezing r; (d) Average occupation N . BEC parameters similar to [64]
were used with a temperature of 150nK and angular frequency ωq = 2π ×
510Hz. The blue dot-dash line is an initial coherent state, the red dotted
line (behind the black line) is an initial thermal squeezed state with r = 2,
and the black solid line is an initial vacuum squeezed state with r = 2. The
initial thermal squeezed state is approximately a vacuum squeezed state at
this temperature. All initial states were chosen such that the initial average
occupation is the same.
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Figure 4.7: Time evolution of (a) Purity µ; (b) Nonclassical depth τ ; (c)
Squeezing r; (d) Average occupation N . BEC parameters discussed in
Section were used with a temperature of 0.5nK and angular frequency ωq =
2π×100Hz. The blue dot-dash line is an initial coherent state, the red dotted
line (behind the black line) is an initial thermal squeezed state with r = 2,
and the black solid line is an initial vacuum squeezed state with r = 2. The
initial thermal squeezed state is approximately a vacuum squeezed state at
this temperature. All initial states were chosen such that the initial average
occupation is the same.
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Figure 4.8: Time evolution of (a) Purity µ; (b) Nonclassical depth τ ; (c)
Squeezing r; (d) Average occupation N . BEC parameters discussed in
Section were used with a temperature of 25nK and angular frequency ωq =
2π×100Hz. The blue dot-dash line is an initial coherent state, the red dotted
line (behind the black line) is an initial thermal squeezed state with r = 2,
and the black solid line is an initial vacuum squeezed state with r = 2. The
initial thermal squeezed state is approximately a vacuum squeezed state at
this temperature. All initial states were chosen such that the initial average
occupation is the same.
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Figure 4.9: Time evolution of (a) Purity µ; (b) Nonclassical depth τ ; (c)
Squeezing r; (d) Average occupation N . BEC parameters discussed in
Section were used with a temperature of 100nK and angular frequency ωq =
2π×100Hz. The blue dot-dash line is an initial coherent state, the red dotted
line (behind the black line) is an initial thermal squeezed state with r = 2,
and the black solid line is an initial vacuum squeezed state with r = 2. The
initial thermal squeezed state is approximately a vacuum squeezed state at
this temperature. All initial states were chosen such that the initial average
occupation is the same.
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CHAPTER 5

Measuring the Decoherence of Phonons

using a Strongly-Interacting BEC

The previous part of this work concerned the estimation of the theoretical

decoherence and relaxation time of an excited single-mode phonon state

of a Bose condensed gas [25]. In this second part, the progress with the

experimental verification of these predictions is considered. The part com-

prises two chapters where this chapter discusses how the decoherence could

be measured and the BEC setup that is planned to be used, while the fol-

lowing chapter considers the progress that is being made in analysing the

BEC, which will facilitate the experimental observation of the decoherence

of phonons.

This chapter starts with a discussion on how phonons are excited and

analysed in BEC experiments. Section 5.2 then considers what quantities

need to be measured in experiments, such as purity and density, in order to

determine the decoherence and relaxation times of the phonons. The BEC

setup that is planned to be used is then introduced in Section 5.3. This BEC

is a strongly-interacting BEC and this type of BEC is not as well under-

stood as its weakly-interacting counterpart. In particular, in-situ absorption

images of this strongly-interacting BEC are expected to differ significantly

from those of a weakly-interacting BEC, and these must be properly un-

derstood in order to measure the decoherence of phonons. Chapter 6 inves-

tigates how in-situ absorption images of a strongly-interacting BEC could

be modelled and discusses the current progress with modelling the images
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of our BEC at various scattering lengths and temperatures [51]. Once the

in-situ absorption images can be modeled effectively, the decoherence of the

phonons will be investigated experimentally [45].

5.1 Phonons in the Lab

In a Bose-Einstein context, phonons are defined as the quanta of long-

wavelength oscillations (sound waves) of the condensate. In Chapter 1

these phonons were derived as quantum excitations (quasi-particles) involv-

ing the noncondensate. However, the phonons can also be derived in a more

classical way which emphasizes the connection to condensate oscillations.

This more classical derivation is presented in Appendix D where the wave

function of the condensate is treated as a classical field in analogy with

the transition from quantum electrodynamics to the classical description of

electromagnetism. There it is also shown that the spectrum of the con-

densate density oscillations is in fact identical to that of the quasi-particles

(1.29). This is a characteristic signature of Bose-Einstein condensation that

is valid at zero and finite temperatures, and can be understood from the

symmetry-breaking mechanism of the condensation [50].

Long-wavelength oscillations of condensed Bose gases were observed

shortly after the first demonstrations of Bose-Einstein condensation in al-

kali gases [74, 75]. These experiments used trapped atomic gases and mea-

sured the oscillations in a classical way: they induced an oscillation of the

condensate by modulating an external parameter which, in this case, was

achieved by applying a small, sinusoidal, time-dependent perturbation to

the transverse trap potential. Unlike a uniform BEC where the condensed

and normal components overlap everywhere, in a trapped BEC the density

of the condensate varies in space and has a finite size. In these systems the

oscillations that have a wavelength comparable to the size of the conden-

sate result in collective shape oscillations of the condensate. These were

the oscillations observed in [74, 75, 123, 124] and were soon followed by the

observation of smaller wavelength oscillations (much smaller than axial size

of the cloud [125] but still larger than the healing length, which varies in
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space in a trapped BEC). These smaller wavelength oscillations appear as

hydrodynamic ripples spreading across the surface of the condensate at the

speed of sound.

Since the Bose gases are trapped in these experiments, at non-zero tem-

peratures the condensed and noncondensed components are spatially dis-

tinct, which facilitates the use of absorption imaging for the identification

of the condensed fraction and its oscillations. This imaging technique is a

destructive method that involves shining light onto the gas and using the

shadow from the absorption to cast its image [63]. In the experiments that

first observed condensate oscillations, after the cloud was set to oscillate by

the sudden perturbation to the trap potential, the cloud was then allowed

to freely oscillate until the trap potential was turned off so that the cloud

suddenly expanded and could be imaged by the above technique. The oscil-

lations were then identified by the apparent time-dependent changes to the

shape of the condensate in the absorption images. In the experiments that

observed shorter wavelengths [125], the localized density perturbations on

the condensate surface were similarly studied by allowing the condensate to

expand adiabatically but then taking a rapid sequencing of non-destructive

phase contrast images.

Rather than perturbing the transverse trap potential as in the early ex-

periments [74, 75, 123], the experiments that observed shorter wavelengths

generated localized density perturbations using a focused far-off-resonant

laser beam [125]. In fact several methods have since been adopted to per-

turb the condensate to create long-wavelength oscillations. These include

modulating the trap potential of the gas as discussed above, modulating the

scattering length [126], and using Bragg spectroscopy where laser beams

coherently impart an energy to the condensate and optically “imprint”

phonons into the gas (see e.g. [125, 127]). In the limit of low excitation

amplitude, the spectrum of low-lying collective excitations corresponds ex-

actly to the Bogoliubov quasi-particle spectrum as discussed above [84, 128]

and the collective condensate response to the perturbation, in the limit of

low amplitude, is simply a coherent state of these elementary excitations

[129].
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Another, more quantum, method to create phonons was proposed in [37]

where the scattering length is modulated at a rapid rate. In this case the

system is not able to adiabatically follow the instantaneous ground state,

and non-adiabatic processes result in the creation of correlated pairs of ex-

citations out of the vacuum state [130]. This is an acoustic analogue to the

dynamical Casimir effect of quantum field theory, which has been experi-

mentally confirmed using superconducting circuits [131], where the vacuum

can generate real particles whenever the boundary conditions, dispersion

law, or background of the quantum field are quickly varied in time. The

result can in fact be similar to that of parametric down-conversion [72] in

quantum optics where a two-mode squeezed state of photons can be created.

This more quantum method of creating phonons has been investigated

experimentally in [38] where the trap stiffness was changed rather than

the atomic scattering length. This has a similar effect since changing the

scattering length is analogous to changing the optical index as the speed of

sound changes, and this also occurs when the trap stiffness changes since the

density changes (see (1.30) which was derived for a uniform BEC). When the

confining potential was modulated in time a pair of elementary excitations

were produced in both the phonon and particle regimes, which were then

examined in momentum space.1 In the phonon regime the phonons were

adiabatically converted into single atoms of the same momentum during

the release of the trap in a process referred to as ‘phonon evaporation’ [133]

and the momentum of these atoms was then measured. However, due to

the high temperature, the pairs in this case came from the thermal noise

rather than the vacuum and so no quantum correlations were observed.

Note that this method of generating phonons can be used to create

two-mode squeezed states of phonons as the process can be analogous to

parametric down conversion [37, 38]. Such a state was utilized in [18] to

develop a theoretical GW detector and so it is vital to understand the

decoherence of this state. This technique is, therefore, the technique that

1Interestingly, such a fast modulation of the confining potential was also studied from
a purely classical point of view in Faraday wave experiments [132] where the radial
trapping potential was modulated. In fact modulations of the scattering length have also
been considered in this classical context [132].
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we plan to use to generate phonons in our BEC to study the decoherence.

However, as discussed in further detail in Section 5.3, we intend to modulate

the scattering length rather than the trap stiffness.

5.2 Measuring Decoherence and Relaxation

5.2.1 Measuring Relaxation

The first observations of condensate oscillations [73] revealed oscillations

with almost no damping, which is in good agreement with the zero tem-

perature Gross-Pitaevskii equation (see Appendix D). Since then various

experiments have been performed illustrating the damping of oscillations

[73]. For example, in [73] the original experiments were carried out at higher

temperatures where an exponentially decaying amplitude of the oscillations

in the radial cloud width was observed in agreement with Landau damping

[70, 134] and, in [135–138], Beliaev damping was observed.

The experiments are usually performed using a harmonic trapping po-

tential, whereas, the theory of damping derived in Section 1.3 was based on

a uniform Bose gas. This uniform-BEC theory can be extended to various

types of traps [139], but the uniform case can still work quite well [70, 140].

A principle difference between trapped and homogeneous systems is that

the Beliaev damping is not active for the lowest energy modes in the former

case because of the discretization of levels [70, 134].

From the observed damping rate one can, in principle, estimate the

relaxation rate (see Section 4.1.6). Alternatively quantum discrimination

could be used where, for Gaussian states, a fidelity distance between the

covariance matrix of the system, or some of its properties such as purity, and

the environment can be computed (see Section 4.1.6 for more detail). For

example, in [77], the minimal time required for an initial state σ0 to freely

reach the target σ∞ within a fixed fidelity 1− ε was found to be | ln ε|/2γ.

This is equivalent to the time taken for relaxation in Section 4.2 if ε = α2

with α = 1%. This quantum discrimination would of course involve deter-

mining the full covariance matrix or some of its properties. In principle, the

covariance matrix can be constructed from the joint detection of two conju-
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gate quadratures, say position and momentum. Similar to quantum optics,

phonon evaporation2 could be performed and then homodyne detection of

the atoms called be carried out [30, 113, 143]. However, as discussed in

[35], another, potentially simpler, method would be to measure the Fourier

component of the atomic density fluctuations corresponding to the phonon

mode. An example, of a particular setup to measure the covariance matrix

in this way is presented in [35] where an optical cavity couples to the con-

densate and the phonon’s quadratures can be reconstructed from particular

measurements of the optical mode shift.

5.2.2 Measuring Decoherence

From Section 4.1.1, one possible way to measure the decoherence time of a

squeezed single-mode phonon state would be to determine the time at which

the state’s purity reaches a minimum. Purity is a non-linear function of the

state’s density operator and so is not related to the expectation value of

a single-system hermitian operator or a single-system probability distribu-

tion that would be obtained from a positive operator-valued measure [113].

On the other hand, if the full quantum state of the system is known then

the purity can be determined. For example, this could be performed using

quantum tomography [144]. For Gaussian states this would mean just hav-

ing to determine their first two statistical moments, which can be measured

by the joint detection of two conjugate quadratures (see the discussion in

the previous section).3 However, this can be simplified further since, for

Gaussian states, the purity is a simple function of the determinant of the

covariance matrix as discussed in Section 4.1.1. The measurement of the

Q–function can then be shown to provide the optimal minimal measurement

for the purity for Gaussian states since it requires the minimum number of

2 Phonon evaporation is the adiabatic conversion of phonons (and other quasi-
particles) into a single atom/molecule of the same momentum during the release of the
Bose gas from the trap [141, 142]. When the trapping potential is turned off, all the
interaction energy is transformed into kinetic energy during a short acceleration period.
The free particles that the quasi-particles are transformed into can then be imaged by
resonant absorption imaging.

3In fact, since Gaussian states are fully characterized by the first and second moments,
it suffices to measure only the rotated quadrature x̂θ = (â†eiθ + âe−iθ)/

√
2 for three

different values of θ [113].
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observables to be measured [113]. By measuring the purity of the phonons

at various different stages in their free propagation (which would likely in-

volve repeating the same experiment several times unless no destructive

techniques were used [91]), it should be possible to extract the evolution of

the purity of the states and thus their decoherence.

Several strategies have been proposed to directly measure the purity of

a state. For example, in [145, 146] a simple quantum network is proposed

in the context of a discrete system, and in [147] a setup is proposed that

needs only beam splitters and single-photon detectors which could also be

experimentally implemented in atom-field cavity or trapped ions experi-

ments [146]. The latter scheme can also be used to measure the squeezing

of Gaussian states [147], which, together with the purity, is enough to de-

termine the nonclassicality of single-mode states.4 This quantity could also

be used as a quantifier of decoherence as discussed in Section 4.1.4.

A quantity unique to multi-partite systems is entanglement. Interactions

with the environment can lead to rapid loss of entanglement, which is of

primary importance in fields such as quantum information theory. Extend-

ing the theoretical framework of the previous chapters for the decoherence

of a single-mode phonon state to the loss of entanglement in multi-mode

systems will be the subject of future work [33]. Entangled phonons should,

in principle, occur in the acoustic analogue of Hawking radiation in ana-

logue gravity setups as well as other setups such as the acoustic analogue of

the dynamical Casimir effect discussed above where a two-mode squeezed

state is created [23, 37, 148–152]. A popular measure of entanglement is

the Peres-Horedecki measure [153, 154], which has been extended to the

continuous variable case of present interest [155, 156]. For two-mode Gaus-

sian states this measure is easily calculated from the covariance matrix, and

its application to phonon modes of a BEC has been discussed in [34–36,

157]. In particular, in [157] it was shown that, in the context of analogue

gravity setups at low temperatures, violation of this inequality could be

measured from the density-density correlation function extracted from in-

4Other methods for observing squeezing of phonons of BECs are considered in [78].
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situ imaging.5 At the time of writing, entanglement, and thus the loss of

entanglement, is yet to be observed in phonons of BECs but this is expected

to be achieved in the very near future.67 Such a signature would be a clear

sign of the quantumness of the systems, and measuring its loss would be

vital in determining the application of such systems to relativistic quantum

information science [17, 18, 40, 158] and potentially to quantum gravity

theories. Note that this entanglement is of a very different nature to that

observed in two-component BECs where it is atoms rather than phononic

excitations that are entangled [159, 160].

Another nonclassical indicator that has been explored experimentally

in BECs is the Cauchy-Schwarz inequality [161]. This has been measured

for two-component BECs [162] but has yet to be violated using phononic

excitations. For example, the acoustic analogue experiment of the dynam-

ical Casimir effect investigated the Cauchy-Schwarz inequality but found

no violation at the high temperature of the experiment. The violation and

satisfaction of this inequality could also be used as a potential measure

of the decoherence of the system. Furthermore, in [163], a violation of the

Cauchy-Schwarz inequality was also considered to be a sign of entanglement

of the BEC system in [162].

5.3 BEC Setup: A Strongly-Interacting BEC

5.3.1 Experimental Setup

Decoherence of phonons will be measured using a molecular 6Li Bose gas.

Bose-Einstein condensation has been demonstrated with this gas in the lab

and was achieved in the following way: after leaving an oven, the technique

of Zeeman slowing [164–166] is used to reduce the velocity of the gas so

5We are also currently looking at whether purity could be measured in a similar way
[45].

6Subsequent to the submission of this thesis a measurement of the entanglement of
high-frequency acoustic Hawking radiation was reported in [39]. This measurement opens
the door to investigations into measuring the decoherence of phonons of BECs.

7As well as analogue gravity studies investigating entanglement of phonons in BECs,
the generation of entanglement of phonons of BECs has also been considered in other
contexts such as Beliaev decay and measurement backaction of a far-detuned light field
[78, 91].
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that it can be captured and cooled in an magneto-optical trap (MOT) [167].

After the MOT stage, the gas is then transferred to and trapped in a far

off-resonance optical dipole trap [168]. The gas is then further cooled using

the technique of evaporative cooling. This removes the molecules with the

highest energies and allows those remaining to re-thermalize through elastic

collisions.

Absorption imaging is used as the primary tool for observing the Bose

gas. An on-resonance probe beam is sent through the cloud and the shadow

corresponding to the light absorbed by the cloud is imaged on a camera.

This destroys the atomic cloud but is simple to implement and produces a

large signal-to-noise ratio. In our setup, the cloud can be imaged in-situ or

after a time-of-flight.

5.3.2 Generating Phonons

As reviewed in Section 5.1, there are a number of ways in which condensate

oscillations can be induced such as perturbing the potential, modulating

the scattering length and using the technique of Bragg scattering. Of these

options, modulating the scattering length has the advantage that, at finite

temperatures, the thermal component would not be excited by this tech-

nique [126]. It can also be used to create special states such as a two-mode

squeezed state as discussed in Section 5.1. For 6Li, the Feshbach resonances

make it possible to modulate the scattering length by the modulation of an

external magnetic field.8

One method that is used to observe long-wavelength oscillations, of

which phonons are the quanta, is through absorption imaging as discussed

in Section 5.1 [74, 75, 123, 125]. For in-situ imaging the condensate is usu-

ally modelled as being constrained to an inverted parabolic region, which

comes from assuming the Thomas-Fermi approximation where, for dense

and large clouds, the kinetic energy of the particles is neglected when com-

pared to interparticle interaction energy (see Chapter 6 for more detail).

At finite temperatures there will also be a thermal cloud, which is usually

8Feshbach resonances occur when the energy associated with an elastic scattering
process comes close to the energy of a bound state. See e.g. [58] for more detail.
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modelled as an ideal gas and thus its density profile occupies a Gaussian

profile. From fitting the condensate and noncondensate clouds various ther-

modynamic properties can be estimated such as the temperature, chemical

potential and condensate fraction. This particular fitting technique where

the extent of condensate is modelled as a parabola and the thermal cloud as

a Gaussian, is often called the bi-modal or ideal gas fit. Once the clouds can

be fit to, any perturbations can be identified and measured, which will fa-

cilitate the quantification of relaxation and decoherence using the methods

discussed in Section 5.2.

5.3.3 Effects from Strong Interactions

The simple bi-modal fitting technique discussed in the previous section as-

sumes negligible interactions between the condensate and the thermal cloud

as well as within the thermal cloud. However, experiments have shown ev-

idence of the mutual interaction between the condensate and thermal com-

ponent [172]. This causes the condensate to be compressed by the thermal

cloud and its shape to deviate from that predicted by the bi-modal model.

The shape of the thermal cloud will also differ to that predicted by the bi-

modal model since the condensate will act back on the thermal cloud and

their will be repulsive interactions between thermal particles. These interac-

tion effects become more prominent at higher temperatures as the thermal

cloud grows in size. They will also be enhanced in more strongly-interacting

gases such as 6Li which has a greater coupling constant than other alkali

gases such as 23Na, 41K and 87Rb. Therefore, at low, and especially high,

temperatures we expect to see a greater effect from the thermal cloud in-

teractions than in previous studies and, unless modelled correctly, this will

result in inaccurate measurements taken from in-situ (and time-of-flight)

absorption imaging.

We are currently in the process of modelling in-situ images using more

sophisticated methods than the bi-modal model. The next chapter reviews

these alternative models, which are all based on mean-field theory, and dis-

cusses the current progress with modelling the 6Li Bose gas. As well as fa-

cilitating the experimental measurement of the decoherence and relaxation
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time of phonons, this analysis is also expected to inform the BEC commu-

nity on the validity of the generically used bi-modal model for modelling

strongly-interacting Bose gases as well as the effects of the mutual interac-

tion between the condensed and noncondensed components. The Feshbach

resonances of 6Li also make it possible to vary the scattering length by

adjusting an external parameters such as the magnetic field and this will

provide more information on the applicability of the bi-modal model. If the

interaction strength is high enough then beyond mean-field theory effects

may also be seen. These occur when the dilute condition na3 � 1 breaks

down and interactions are no longer only dominated by two-body encounters

[58]. This will also be discussed in further detail in the next chapter.
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CHAPTER 6

Modelling Absorption Images of a

Strongly-Interacting Gas

6.1 Introduction

This chapter investigates three different models that can be used to fit the

density profile from an in-situ absorption image of a strongly-interacting

BEC. These three models are referred to as the bi-modal, semi-ideal [52]

and Hartree-Fock models [46, 47, 173]. In the previous chapter it was ar-

gued that the bi-modal model, where the (three-dimensional) condensate

density profile is an inverted parabola and the noncondensate profile is a

Gaussian, would not represent an accurate model for a strongly-interacting

BEC since all inter-particle interactions are ignored in this model except

those involving only condensate particles. The semi-ideal model, which was

first formulated in [52], represents a more accurate model since it includes

the interaction that the condensate imparts on the thermal cloud in a mean-

field description. As with the bi-modal model, the semi-ideal model can be

formulated as independent analytical expressions for the condensate and

noncondensate density profiles, and is a simple model to fit the density pro-

files to. The third model that will be investigated is the Hartree-Fock model

which improves on the semi-ideal model by including all interactions within

a mean-field approximation. However, this model is more complicated to

use compared to the other two models since the two density profiles are

coupled and must be solved numerically.
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The next section derives all three models from the quantum field Hamil-

tonian of a Bose gas (1.8). This derivation relies on the assumption that

the temperature of the gas is high kBT � µ. However, at low temperatures

the thermal cloud should be negligible and so any additional interaction ef-

fects beyond those of the bi-modal model would unlikely be seen in realistic

absorption images at those temperatures. The subsequent section, Section

6.3, then considers how the three models can be used to fit the line density

profiles of an absorption image of a BEC in a cylindrical trap. In particular,

in Section 6.3.4, absorption images of the 6Li BEC that was introduced in

the previous chapter are used to illustrate these fits, and current progress

with the experiment is discussed. Finally, in Section 6.4, the validity of the

models is examined and beyond-mean-field theory effects are considered.

6.2 Derivation of the Hartree-Fock, Semi-Ideal and Bi-

Modal Models

All three fitting models can be derived from the quantum field Hamiltonian

of a rarefied interacting Bose gas, which is given by (1.8). Taking the

temperature of the gas to be below the critical temperature so that there is

sufficiently low-energy and the gas is dilute, the potential U(r′ − r) can be

approximated to be short-range and given by the contact potential gδ(r′−r)

where, in the s-wave approximation, g = 4π~2a/m.1 This results in the

Hamiltonian:

Ĥ =

∫
dr
(
− ψ̂†(r)

~2

2m
∇2ψ̂(r) + V(r)ψ̂†(r)ψ̂(r)

+
g

2
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

)
. (6.1)

1In principle, the assumption of a contact potential is only really consistent in a first-
order approximation where the physical quantities are evaluated to first order in the
interaction (see Chapter 1 and [66] for more detail). Any additional effects are neglected
in this chapter.
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By analogy with (1.11), the field operator is then split up into its condensate

and noncondensate components:

ψ̂(r) = ψ0(r)a0 +
∑
i 6=0

ψ(r)âi (6.2)

:= Φ(r) + δψ̂(r) (6.3)

where, in the Bogoliubov approximation (see (1.11)), Ψ(r) behaves as a

classical-field since â0 is now a c-number. On substituting (6.2) into (6.1),

the Hamiltonian of the gas becomes:

Ĥ =

∫
dr
[
Φ∗(r)

(
− ~2

2m
∇2 + V(r) +

1

2
g|Φ(r)|2

)
Φ(r)

+ δψ̂†(r)
(
− ~2

2m
∇2 + V(r)

)
δψ̂(r)

+ ĤI
2 + ĤI

3 + ĤI
4

]
(6.4)

where the interaction Hamiltonians are given by:

ĤI
2 :=

g

2
|Φ(r)|2[δψ̂(r)δψ̂(r) + 4δψ̂†(r)δψ̂(r) + δψ̂†(r)δψ̂†(r)], (6.5)

ĤI
3 := g[Φ∗(r)δψ̂†(r)δψ̂(r)δψ̂(r) + Φ(r)δψ̂†(r)δψ̂†(r)δψ̂(r)], (6.6)

ĤI
4 :=

g

2
δψ̂†(r)δψ̂†(r)δψ̂(r)δψ̂(r), (6.7)

which are analogous to (1.14)-(1.16) but in position space. In the self-

consistent mean-field approximation, the terms in Ĥ3
I and ĤI

4 are approx-

imated into various terms involving the normal average 〈δψ̂†δψ̂〉, and the

anomalous averages 〈δψ̂†δψ̂†〉 and 〈δψ̂δψ̂〉 [174]. In the Hartree-Fock-Bogoliubov

approximation the averages that include three or more operators are then

neglected:

δψ̂†δψ̂δψ̂ ≈ 2〈δψ̂†δψ̂〉δψ̂ + 〈δψ̂δψ̂〉δψ̂†, (6.8)
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δψ̂†δψ̂†δψ̂ ≈ 2〈δψ̂†δψ̂〉δψ̂† + 〈δψ̂†δψ̂†〉δψ̂, (6.9)

δψ̂†δψ̂†δψ̂δψ̂ ≈ 4〈δψ̂†δψ̂〉δψ̂†δψ̂ + 〈δψ̂†δψ̂†〉δψ̂δψ̂ + 〈δψ̂δψ̂〉δψ̂†δψ̂†. (6.10)

Note that the origin of the factor of 2 in the above equations is due to

the identicality of the Hartree and Fock exchange terms in the zero-range

interaction approximation [174]. Substituting (6.8)-(6.10), and dropping

the terms that do not conserve momenta, the Hamiltonian of (6.4) is then

given by:

Ĥ =

∫
dr
[
Φ̂∗0(r)

(
− ~2

2m
∇2 + V(r) +

1

2
gn0

)
Φ̂0(r)

+ δψ̂†(r)
(
− ~2

2m
∇2 + V(r) + 2gn0(r) + 2gnT (r)

)
δψ̂(r)

+
1

2
gm∗(r)δψ̂(r)δψ̂(r) +

1

2
gm(r)δψ̂†(r)δψ̂†(r)

]
(6.11)

where:

n0(r) := |Φ(r)|2, (6.12)

nT (r) := 〈δψ̂†(r)δψ̂(r)〉, (6.13)

m(r) := Φ(r)2 + 〈δψ̂(r)δψ̂(r)〉, (6.14)

m∗(r) := Φ(r)∗2 + 〈δψ̂†(r)δψ̂†(r)〉. (6.15)

Comparing (6.11) to the Hamiltonian obtained in the Bogoliubov ap-

proximation (1.22) in Section 1.2.1, the interaction terms that were cubic

in δψ̂, which are responsible for Landau and Beliaev damping of phonons,

have again vanished, but terms from ĤI
4 have been kept. The Bogoliubov

approximation is a good description of a weakly interacting dilute Bose gas

at low temperatures because the depletion of the condensate is very small.

However, as the gas becomes denser or the temperature becomes higher, the

interactions between the noncondensate particles become more important

and the Bogoliubov model loses its validity. The Hartree-Fock-Bogoliubov
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approximation thus upgrades the Bogoliubov interactions by taking into ac-

count the contributions from interactions between the noncondensate par-

ticles [66]. Analogous to the case of the Bogoliubov approximation, the

Hamiltonian (6.11) can again be diagonalized by a Bogoliubov transforma-

tion resulting in quasi-particles similar to the Bogoliubov quasi-particles

but now ‘dressed’ by the mean-field effects on noncondensate particles [66].

6.2.1 Noncondensate Equation of Motion

The equations of motion for the operators δψ̂ and δψ̂† in the Heisenberg

picture are by definition:

i~
∂δψ̂

∂t
= [δψ̂, Ĥ] and i~

∂δψ̂†

∂t
= [δψ̂†, Ĥ], (6.16)

which, upon substitution of Ĥ from (6.11), become:

i~
∂δψ̂(r, t)

∂t
=
(
− ~2

2m
∇2 + V(r) + 2gn0(r, t) + 2gnT (r, t)

)
δψ̂(r, t)

+ gm(r, t)δψ̂†(r, t) (6.17)

and:

i~
∂δψ̂†(r, t)

∂t
=
(
− ~2

2m
∇2 + V(r, t) + 2gn0(r, t) + 2gnT (r, t)

)
δψ̂†(r, t)

+ gm∗(r, t)δψ̂(r, t). (6.18)

These equations of motion can be solved by carrying out a transformation

analogous to the Bogoliubov transformations given by (1.23):

δψ̂(r, t) =
∑
i 6=0

(
ui(r)b̂ie

−iεit/~ − v∗i (r)b̂†ie
+iεit/~

)
(6.19)
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where ui(r, t) and vi(r, t) are given by the solutions of the coupled Hartree-

Fock-Bogoliubov equations [174]:

(
− ~2

2m
∇2 + V(r) + 2gn(r)− εi

)
ui(r)− gm(r)vi(r) = 0, (6.20)

(
− ~2

2m
∇2 + V(r) + 2gn(r) + εi

)
vi(r)− gm∗(r)ui(r) = 0 (6.21)

with n(r) := n0(r) + nT (r). Here the condensate and noncondensate have

been assumed to both be in static thermal equilibrium so that the time

dependence of various terms can be dropped. Note that these equations

are similar to the Bogoliubov-de-Genes equations [175] and can be derived

using a variety of methods (see [173, 174] for more detail).

Once the eigenvalues εi and the associated solutions ui and vi have been

determined, the operator Ĥ may be expressed in these terms so that Ĥ =∑
i 6=0 εib̂

†
i b̂i + constant [58] where, for a uniform BEC with nT ignored, εi

is just given by (1.29) from Chapter 1. As discussed in Section 1.2.1, if

the temperature is high then the excitations are dominated by free particles

and the effects from the phonon-like excitations can be neglected. This is

equivalent to neglecting the δψ̂δψ̂ and δψ̂†δψ̂† terms in ĤI
2 and means that

v ≈ 0 in (6.20)-(6.21). The anomalous averages 〈δψ̂δψ̂〉 and 〈δψ̂†δψ̂†〉 will

also vanish in this high temperature limit so that (6.20) and (6.21) reduce

to just:

(
− ~2

2m
∇2 + V(r) + 2gn0(r) + 2gnT (r)

)
ui(r) = εiui(r) (6.22)

where δψ̂(r) =
∑

i ui(r)b̂i. This equation describes the noncondensate com-

ponent of the gas in the so-called Hartree-Fock approximation. In deriving

this equation, the only interaction terms that have been kept are then those

from the terms Φ∗δψ̂†Φδψ̂ (the so-called Hartree term), Φ∗δψ̂†δψ̂Φ (the so-

called Fock term) and δψ̂†δψ̂†δψ̂δψ̂, which are all illustrated in Figure 6.1.

This suggests that an alternative derivation of (6.22) is to assume high tem-

peratures kBT � µ from the start and that such high temperatures results

in all excitations being particle-like (no phononic contributions). All the
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terms in (6.4) would then be assumed to vanish except the Hermitian terms

in δψ and Φ, and with ĤI
4 replaced by (6.10) as before. This illustrates that

the wave function of the excitations must have the form of a product of

single-particle states symmetrized with respect to interchange of particles.

The equilibrium distribution of the excitations can be derived from

(6.22) by maximizing the entropy with the the condition that the total

energy and the total number of particles are fixed. The excitations here

just correspond to adding a single particle to a gas and thus, in maximizing

the entropy, one must introduce the chemical potential term to maintain

the particle number at a constant value [58]. This is unlike the case for

quasi-particles in Section 1.2.1 where the chemical potential for the uniform

gas µ = gn is contained in the solutions (the constraint on the particle

number has been implemented explicitly) which, for the above derivation,

would have meant starting with the grand canonical operator K̂ = Ĥ−µN̂
[58].

In the semi-classical approximation the typical de Broglie wavelengths of

particles are small compared with the length scales over which the trapping

potential and the particle densities vary significantly [58]. For a cylindrical

trap this requires that kbT � ~ωr, where ωr is the radial frequency of

the trap, so that the cloud of thermal atoms has a spatial extent much

larger than the oscillator length. The properties of the excitations may then

still be described semi-classically when the particles interact provided that

spatial variations occur over distances large compared with the wavelengths

of typical excitations. In this approximation, the density of noncondensed

particles is then given by (see, for example, [48, 58]):

nT (r) =

∫
dp

(2π~)3

1

e(εp−µ)/kBT − 1
=

1

λ3
T

g3/2(z(r)) (6.23)

where λT is the thermal de Broglie wavelength:

λT =
( 2π~2

mkBT

) 1
2
; (6.24)
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the function g3/2(z) is defined by:

g3/2(z(r)) :=
∞∑
l=1

z(r)l

l3/2
, (6.25)

z(r) := e(µ−2gnT (r)−2gn0(r)−V(r))/kBT ; (6.26)

and the energies εp are continuous and derive from (6.22):

εp =
p2

2m
+ V(r) + 2g(n0(r) + nT (r)). (6.27)

Equation (6.23) describes a density profile of the noncondensed particles.

This will be referred to as the Hartree-Fock density profile of the noncon-

densed particles. Note that this equation contains nT (r) on both the left

and the right.

6.2.2 Condensate Equation of Motion

The previous section derived an expression for the density profile of the

noncondensate particles by starting with the quantum field Hamiltonian

of the Bose gas and assuming high temperatures. In this section the same

assumptions are applied to derive the density profile of the condensate com-

ponent.

For the quantum field Hamiltonian (6.1), the grand canonical operator

K̂ = Ĥ − µN̂ is given by:

K̂ =

∫ [
ψ̂†(r)

(
− ~2

2m
∇2ψ̂(r) + V(r)− µ

)
ψ̂(r)

+
g

2
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)dr

]
. (6.28)

The equation of motion for the operator ψ̂ in the Heisenberg picture is then:

i~
∂ψ̂(r, t)

∂t
=
(
− ~2

2m
∇2 + V(r)− µ

)
ψ̂(r, t) + gψ̂†(r, t)ψ̂(r, t)ψ̂(r, t)

(6.29)
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since:

i~
∂ψ̂

∂t
= [ψ̂, K̂]. (6.30)

As in the previous section, the field operator ψ̂ is split up into its conden-

sate and noncondensate parts (see (6.2)), and so 〈ψ̂〉 = Φ since 〈δψ̂〉 = 0.

Therefore, the equation of motion for the condensate is given by:

i~
∂Φ(r, t)

∂t
=
(
− ~2

2m
∇2 + V(r)− µ

)
Φ(r, t) + g〈ψ̂†(r, t)ψ̂(r, t)ψ̂(r, t)〉.

(6.31)

Using (6.2), the last term in (6.31) can be expanded as:

ψ̂†ψ̂ψ̂ = |Φ|2Φ + 2|Φ|2δψ̂ + Φ2δψ̂† + Φ∗δψ̂δψ̂ + 2Φδψ̂†δψ̂ + δψ̂†δψ̂δψ̂

and, following the previous section, in the Hartree-Fock-Bogoliubov mean-

field approximation, δψ̂†δψ̂δψ̂† ≈ 2〈δψ̂†δψ̂〉δψ̂ + 〈δψ̂δψ̂〉δψ̂† so that this

terms vanishes on evaluating its expectation value. The condensate equation

of motion can then be approximated as:2

i~
∂Φ(r, t)

∂t
=
(
− ~2

2m
∇2 + V(r)+gn0(r, t) + 2gnT (r, t)− µ

)
Φ(r, t)

+ g〈δψ̂(r, t)δψ̂(r, t)〉Φ∗(r, t) (6.32)

where, as before, n0(r, t) = |Φ(r, t)|2 and nT (r, t) = 〈ψ̂†(r, t)ψ̂(r, t)〉.
In the limit of high temperatures the anomalous density 〈δψ̂(r, t)δψ̂(r, t)〉

in the above equation vanishes since the excitations are particle-like as dis-

cussed in the previous section. Ignoring all time dependence, the equation

2Note that this equation almost reduces to the well-used (T = 0) Gross-Pitaevskii
equation when the noncondensate component is neglected such that the anomalous and
normal density terms for this component vanish. The only reason it doesn’t quite reduce
to the Gross-Pitaevskii is that the latter is derived from the Hamiltonian rather than the
grand canonical and so there is no µ term.
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of motion for the condensate then reduces to:

(
− ~2

2m
∇2 + V(r) + gn0(r) + 2gnT (r)

)
Φ(r) = µΦ(r) (6.33)

where the absence of a factor of two compared to (6.22) reflects the fact

that there is no exchange term for two particles in the same state.

A further approximation that can usually be successfully applied to a

trapped Bose gas is the Thomas-Fermi approximation where the kinetic en-

ergy associated with the condensate in (6.33) is ignored, which is equivalent

to neglecting the quantum pressure term in the hydrodynamic version of

the equation (the Madelung description). By comparing the kinetic and

potential energy terms, this can be shown to be valid for a cylindrical trap

when [176]:3

N0a

aho
� 1 (6.34)

where:

aho :=
( ~
mωho

)1/2

, ωho := (ωxωyωz)
1/3. (6.35)

This approximation is therefore valid when there are sufficiently high num-

bers of condensate particles. With this approximation the equation of mo-

tion for the condensate then simplifies to:

(
V(r) + gn0(r) + 2gnT (r)

)
Φ(r) = µΦ(r) (6.36)

and so the density profile of the condensate is given by:

n0(r) =
1

g

(
µ− V(r)− 2gnT (r)

)
θ(µ− V(r)− 2gnT (r)) (6.37)

3Note that this can be satisfied at the same time as the condition for dilute gases
n|a|3 � 1.
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where θ(x) is the step function:

θ(x) =

1 if x > 0

0 if x < 0
(6.38)

6.2.3 The Hartree-Fock Model

The coupled density equations (6.23) and (6.37) will be referred to as the

Hartree-Fock model of the Bose gas [46, 47, 173]. In this mean-field model

the noncondensate component is treated as a ‘non-interacting’ gas of den-

sity that experiences a self-consistent mean-field interaction potential from

the noncondensate and condensate components 2gn(r) [177]. That is, a

mean-field description is used which treats excited particles as independent

and evolving in a self-consistent static potential. Numerical schemes must

be employed to solve the condensate and noncondensate densities of this

model [46]. For example, a transcendental equation method can be used

by substituting (6.37) into (6.23) such that a transcendental-type equation

is obtained for the noncondensate density [178]. Other alternatives include

iterative schemes such as a Newton-Raphson method.

Note that an improved description of the gas would be to include the

collective (phononic) effects that were neglected in the derivation. How-

ever, it has been demonstrated that low-energy, collective excitations cause

a minute change in the thermodynamic properties of the system even at

relatively low temperatures[179–181]. In fact, in trapped Bose gases, the

Hartree-Fock model provides a good approximation down to much lower

temperatures than in the case of a uniform Bose gas [50].

6.2.4 The Semi-Ideal Model

The Hartree-Fock model can be simplified by neglecting the mean-field re-

pulsion from noncondensed particles in (6.37) and (6.23). This results in

the uncoupled equations:

n0(r) =
1

g

(
µ− V(r)

)
θ(µ− V(r)) and (6.39)
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nT (r) =
1

λ3
T

g3/2(z(r)) (6.40)

where:

z(r) = e(µ−2gn0(r)−V(r))/kBT (6.41)

= eµ/kBT θ(|r| −RTF ) + e(V(r)−µ) θ(RTF − |r|) (6.42)

and RTF is the radius of the condensate in the Thomas-Fermi approxima-

tion.

Equations (6.39)-(6.40) form the so-called semi-ideal model [52]. The

condensate density profile in this case is that which derives from the Gross-

Pitaevskii equation in the Thomas-Fermi approximation and is thus the

density of a zero temperature Bose gas in a trap with a significant number

of condensate particles. On the other hand, the density of the noncondensed

component is that of an ideal gas of bosons confined in the combination of

the external trapping potential and the repulsive mean-field potential of

the condensate particles. Its wide range of validity has been confirmed by

numerical analysis [182].

6.2.5 The Bi-Modal Model

A further simplification is to neglect the mean-field potential of the conden-

sate particles in (6.40) and assume that the temperature of the gas is high

enough such that the majority of the noncondensate particles have energies

much larger than µ. The noncondensate particles then follow a Boltzmann

distribution rather than a Bose-Einstein distribution:

nT (r) =
1

λ3
T

e(µ−V(r))/kBT . (6.43)

This together with the condensate density given by (6.40) defines the bi-

modal model. It is the simplest of the three models and the one that is

used most frequently in BEC experiments. The principle assumption in

its derivation is that the temperature is high enough such that the kinetic
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energy of the noncondensate particles is much larger than the mean-field

energy and thus deviations from ideal gas behaviour are small [74, 75, 137,

183]. However, it also assumes the Thomas-Fermi approximation for the

condensate component which might not be particularity accurate at such

high temperatures since the condensate will be more depleted than at low

temperatures.

6.3 Fitting Absorption Images

The above models can be used to fit in-situ absorption images of a Bose gas

to extract certain thermodynamic properties such as the chemical potential,

temperature, atom number and condensate fraction. The Lithium BEC

that was discussed in Chapter 5 uses a cylindrical trapping potential and

the images that will be fit are line density images. Therefore, the three

models will need to be fit to a line density absorption image of a BEC from

a cylindrical trap. Sections 6.3.1-6.3.3 derive the expressions for the line

densities of the condensate and noncondensate component of a Bose gas

in a cylindrical trap for the bi-modal, semi-ideal and Hartree-Fock models

respectively. These can then be used to fit an in-situ absorption image of

a Bose gas in a cylindrical trap. To illustrate this, Section 6.3.4 provides

examples of in-situ absorption images of the strongly-interacting 6Li BEC

and how these three models can be used to fit to them.

6.3.1 Bi-Modal Line Densities

The potential of a cylindrical trap is defined as:

V(r) =
1

2
m(ω2

ρρ
2 + ω2

zz
2) (6.44)

where z is the axial direction; ρ2 = x2 + y2 is the radial direction; and

ωρ = ωx = ωy, or more generally, ωρ =
√
ωxωy. The three-dimensional

condensate density profile of (6.39) therefore corresponds to an inverted

parabola extending from the potential minimum up to the Thomas-Fermi

radius. The line density of the condensate and noncondensate can be found
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by radially integrating (6.39) and (6.43):

n0(z) =
π

gmω2
ρ

(
µ− 1

2
mω2

zz
2
)2

θ(µ− 1

2
mω2

zz
2), (6.45)

nT (z) =
1

λ5
T

( 2π~
mω2

ρ

)2

e(µ− 1
2
mω2

zz
2)/kBT . (6.46)

These equations can then be fit to line density images of a BEC in a cylin-

drical trap. Note that the total number of particles for each component is

easily obtained by integrating over the remaining coordinate:

N0 =
( 2µ

~ωho

)5/2 aho
15as

, (6.47)

NT =
( kBT
~ωho

)3

eµ/kBT . (6.48)

6.3.2 Semi-Ideal Line Densities

Cylindrical coordinates can be used to calculate the line and radial densities

of the condensate and noncondensate components [52]. Concentrating on

just the line densities, these are given by:

n0(z) =
π

gmω2
ρ

(
µ− 1

2
mω2

zz
2
)2

θ(µ− 1

2
mω2

zz
2), (6.49)

nT (z) =
1

λ5
T

( 2π~
mω2

ρ

)2[
g5/2(e(µ− 1

2
ω2
zz

2)/kBT )θ(µ− 1

2
mω2

zz
2)

+
(

2ζ(5/2)− g5/2(e( 1
2
mω2

zz
2−µ)/kBT )

)
θ(

1

2
mω2

zz
2 − µ)

]
(6.50)

where n0(z) is the same as for the bi-modal model.

Note that, as with the bi-modal model, the density profiles for the two

gases can still be solved separately. However, a simple geometric series now

needs to be evaluated for the Bose gas (see (6.40)), which converges quickly.
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6.3.3 Hartree-Fock Line Densities

In the Hartree-Fock model the densities of the condensed and thermal clouds

are given by the coupled equations (6.37) and (6.23):

n0(r) =
1

g

(
µ− V(r)− 2gnT (r)

)
θ(µ− V(r)− 2gnT (r)) and (6.51)

nT (r) =
1

λ3
T

g3/2(z(r)), z(r) = e(µ−V(r)−2gnT (r)−2gn0(r))/kBT (6.52)

where, for a cylindrical trap, V(r) is given by (6.44). These equations must

be solved numerically and integrated to determine the line densities. For

example, (6.51) can be substituted into (6.52) to obtain an equation that

only depends on the noncondensate density:

nT (r) =
1

λ3
T

g3/2(e±X(r))θ(∓X(r)) (6.53)

where X(r) := µ − V(r) − 2gnT (r). This equation can then be solved

using an iterative scheme such as a Newton-Raphson method or using a

transcendental equation method as discussed in Section 6.2.3. The solution

is then substituted into (6.51) to determine the condensate density, and the

line densities are obtained upon integrating over the radial coordinates.

Unlike the bi-modal and semi-ideal models, the shape of the condensate

is no longer solely determined by the trap potential, and is instead influ-

enced by the thermal cloud. This will result in the condensate being more

compressed as the temperature increases, which is in contrast to the other

models where the condensate maintains the same width for all temperatures

while the chemical potential is kept constant.

6.3.4 Absorption Image Fits

The models have been fit to trial absorption images of the strongly-interacting

6Li BEC in a cylindrical trap by minimising χ2 using the unknown param-

eters µ and T .4 In particular, C++ and MATLAB programs were developed

4Other unknown parameters included the centre of the trap.
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that utilized minimization packages and numerical solvers to determine the

best fit for all the models. Figures 6.2 and 6.3 illustrate how the models

can be used to the fit the line density data from two particular absorption

images of the 6Li BEC. Note that these images are only for illustrative pur-

poses as they are examples of trial absorption images from the experiment

and will, therefore, not form part of the publication [45]. The two images

were taken with different cameras, with the camera used for 6.3 being of

higher resolution but potentially used with a poorer calibrated BEC setup.

Preliminary results from the experiment suggest that, as expected, the

Hartree-Fock provides the best fits, closely followed by the semi-ideal model,

and the bi-modal model provides the poorest fits.5 However, at the time

of writing, it is too early to draw any conclusions from the experiment as

it is still in operation and numerous sections of parameter space have yet

to be explored. For example, future in-situ absorption images of the 6Li

BEC will be taken for different effective interaction strengths by utilizing

the Feshbach resonances. Once all the data has been collected, the three

models will then be used to extract thermodynamic properties, such as the

condensate fraction, and will be compared to one another (for example, by

comparing the best values of χ2). That is, parameter fitting and hypothesis

testing will be carried out for all the absorption images.

A similar analysis has been carried out in [53]. There the ideal, semi-

ideal and Hartree-Fock models were all fitted to time of flight absorption

images of a 87Rb BEC in a harmonic trap at finite temperatures.6 Unam-

biguous deviations from ideal-gas thermodynamics were observed and good

agreement with the Hartree-Fock model was found. The experiment was

carried out for a range of temperatures and primarily investigated the con-

densed fraction and release energy. However, unlike [53] our study will look

at a strongly-interacting BEC using a range of interaction strengths and will

use in-situ absorption images in an attempt to circumnavigate the issue of

5However, at distances far from the centre of the trap, the models all agreed well since
the thermal cloud behaves like an ideal gas in this region. This region is in fact often
used to extract the temperature of the gas but, in our case, had a small signal-to-noise
ratio for preliminary images.

6Note that the ideal model in [53] slightly differs to the bi-modal model used here.
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there being a lack of theory to understand the expansion of a mixed cloud

(which could lead to systematic errors [53]).

Deviations from ideal gas behaviour at finite temperatures were also

measured in [184, 185] for a 39K BEC where the scattering length can also

be varied. In particular, the effects of interactions on the mechanism of

condensation were investigated, namely the saturation of the excited states

where the semi-ideal model appears to have been used. The effects of inter-

actions on the critical temperature were also investigated and experimental

results were compared to both mean-field and beyond-mean-field theories.

Again time-of-flight expansion from the trap was used but the interactions

were rapidly turned off at the beginning by tuning the Feshbach field to the

a = 0 point.

Studies have also been performed to investigate the effect of temper-

ature on the radius of a Bose–Einstein condensate [177], which have also

demonstrated deviations from ideal gas behaviour. In [177] an approxima-

tion to the Hartree-Fock model was made such that the interactions within

the thermal cloud were neglected. The resulting model is slightly more

complex than the semi-ideal model discussed here since the influence of the

thermal cloud has on the condensate is still kept. By assuming the quan-

titative equivalence between the chemical potential and the interaction the

thermal cloud feels from the condensate, an analytical model can then be

derived for this model. However, this assumes that, no matter where the

thermal particles are in the trap, they feel the same interaction with the

condensate. This simplified Hartree-Fock model showed good agreement

with the data, and the standard parabola prediction of the semi-ideal and

bi-modal models was clearly excluded, confirming that the thermal cloud’s

mean-field energy affects the condensed atoms.

6.4 Beyond Mean-Field Theory

Since a 6Li Bose gas is strongly-interacting, it is possible that beyond mean-

field theory effects will be observable at high interaction strengths. Such

effects are expected to occur when the diluteness condition na3 � 1 breaks
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down i.e. when the number of particles in a “scattering volume” is no longer

very small (note that this does not imply necessarily that the interaction

effects themselves are small). In [186] it was demonstrated that this can

occur when na3 ∼ 10−3, which might be reached for high values of a for our

BEC.

The above models also begin to lose their validity when the Thomas-

Fermi approximation breaks down. As discussed in Section 6.2.2, this breaks

down for a cylindrical trap when:

N0a

aho
� 1 (6.54)

which is equivalent to RTF � λT . Note that it is possible for this to be

violated but the diluteness condition still to be satisfied. However, both

conditions are satisfied for the gas used to generate the absorption images

in Figures 6.2 and 6.3.

The Hartree-Fock model will also no longer be a good approximation

when finite size effects are sufficiently large; the condensate is not macro-

scopically occupied (since the Bogoliubov approximation of treating the

condensate field as a classical field can no longer be made); and, as dis-

cussed in its derivation, when the temperature of the gas is not too small

such that collective effects need to be taken into account and the semi-

classical approximation is no longer valid. However, in the latter case the

thermal cloud may be so small that the signal-to-noise ratio may prevent

an accurate fit to the corresponding data from an absorption image.

The calculation carried out in Part I for the decoherence and relaxation

time of phonons was based on mean-field theory concepts and assumed di-

lute gases. It would, therefore, be interesting to determine whether there

are significant deviations from these time estimates in a beyond mean-field

theory regime. Experimental measurements of the times in this regime

would also potentially facilitate a better theoretical understanding of de-

coherence when mean-field theory breaks down. One would naively expect

the times to be shorter in this regime due to the greater interaction be-

tween the phonon and its environment. For example, the damping rates of
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(2.73)-(2.74) are proportional to the square of the coupling constant, but of

course these rates were derived using mean-field theory. Experiments are

planned to determine whether mean-field effects can be observed and, if so,

what affect this has on the decoherence of phonons.
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(a) (b) (c) (d)

Figure 6.1: These vertex diagrams represent the interactions that make up
the Hartree-Fock model, which are also the (i), (iv), (v) and (viii) vertex di-
agrams of Figure 1.1. The solid line represents a noncondensate particle, the
dashed line a condensate particle, and the wavy line the s-wave scattering.
Diagram (a) is the Hartree interaction between a condensate and noncon-
densate particle, and (b) is the Fock interaction where the the condensate
and noncondensate particles are exchanged. Diagrams (c) and (d) repre-
sent interparticle interactions between only condensate and noncondensate
particles respectively.
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(a)

(b)

(c)

Figure 6.2: Fits to an absorption image of a 6Li BEC in a harmonic trap
using the (a) Bi-Modal model, (b) Semi-Ideal model and (c) Hartree-Fock
model. The χ2, χ2

av := χ2/Ndof and R2 values are provided within the
header of each graph where Ndof is the number of degrees of freedom. Both
the Semi-Ideal and Hartree-Fock model show improved fits over the Bi-
Modal model. The absorption image was taken with an old camera and
only represents preliminary results. The graphs were created using a C++
package developed by R. Howl.
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(a)

(b)

(c)

Figure 6.3: Fits to an absorption image of a 6Li BEC in a harmonic trap
using the (a) Bi-Modal model, (b) Semi-Ideal model and (c) Hartree-Fock
model. The χ2, χ2

av := χ2/Ndof and R2 values are provided within the header
of each graph where Ndof is the number of degrees of freedom. Both the
Semi-Ideal and Hartree-Fock model show improved fits over the Bi-Modal
model. The absorption image only represents preliminary results and will,
therefore, not be in the final publication. The graphs were created using a
C++ package developed by R. Howl.
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CHAPTER 7

Conclusions and Outlook

Overcoming or limiting quantum decoherence is vital to the practicality

and potential of many quantum information tasks and their corresponding

quantum technologies. For example, rapid decoherence can turn quantum

computers into classical computers, invalidating the whole principle of their

quantum algorithms. Recently new technologies have emerged from the ap-

plication of relativity to quantum information [17, 18]. These have been

shown to be, in principle, orders of magnitude more precise than their non-

relativistic counterparts [17, 18]. However, decoherence has yet to be inves-

tigated in these devices, which could be integral to their physical realisation.

The devices, an accelerometer and GW detector, utilize the phononic ex-

citations of BECs by measuring how these excitations are disturbed by an

acceleration or gravity in a process that is related to the dynamical Casimir

effect [17, 187]. Their practicality is thus reliant on the decoherence time

of the phononic excitations not being rapidly short.

Quantum decoherence of phononic excitations of BECs, the decay of

the quantum coherences of phononic states due to interaction with their

environment, has yet to be investigated in general, with studies instead

concentrating on the process by which perturbed phonons relax back to

equilibrium with the rest of the Bose gas. This latter process can set an

upper limit for the decoherence time, the time in which quantum coherence

is effectively lost, but often the actual decoherence time is significantly

shorter [30–32]. Motivated by the recently proposed relativistic quantum

technologies, the principle focus of this work has been to determine the
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mechanism by which phonons decohere and to provide an estimate for their

decoherence time.

As well as being vital to the practical realization of the proposed rela-

tivistic quantum devices, it is expected that estimations for the decoherence

time of phononic excitations will also inform analogue gravity experiments

that are based on BECs since these experiments are directly related to the

proposed devices (see the Introduction). For example, although Hawking

‘radiation’ has recently been observed as propagating phonons in analogue

gravity experiments based on BECs, at the time of writing, nonclassical

properties such as entanglement have yet to be measured for this radia-

tion.1 Such a signature would be of major significance to the analogue

gravity field and potentially to BH physics. However, the observation of

nonclassical properties of Hawking radiation relies on this property existing

for a non-negligible time in the BEC.2 Similarly, although a classical ana-

logue of the dynamical Casimir effect has been observed as the pair creation

of phonons of a BEC, nonclassical properties such as entanglement have yet

to be observed and this observation would also be reliant on these quantum

properties not decaying too rapidly. Furthermore, understanding how the

nonclassical properties of acoustic Hawking radiation or related processes

degrade via decoherence processes could also inform studies on BH physics.

In this work the decoherence of phononic excitations of BECs has been

investigated using a single-mode phonon system and treating it as an open

quantum system in the Born-Markov approximation. For simplicity the

state of the system was also assumed to be Gaussian, and an estimation

of the decoherence time was extracted from the evolution of certain global

entropic measures and nonclassical indicators of the Gaussian state such as

purity and nonclassical depth [44]. The single-mode phonon state was found

1Subsequent to the submission of this thesis a measurement of the entanglement of
acoustic Hawking radiation was reported in [39]. Entanglement was not observed at
low frequencies but, given the results of this thesis and [33], this is unlikely to be due
to decoherence effects since it is expected that this would only increase with frequency
(although it is possible that, due to differences in experimental setup, this situation
could change). This measurement opens the door to investigations into measuring the
decoherence of phonons of BECs.

2In a related study, the robustness of entanglement generation in quasi-particles
against temperature has also been theoretically analysed for these systems to inform
experimental setups [36].
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to primarily decohere due to the Landau and Beliaev interactions with all

the other quasi-particle modes of the BEC, and the time in which this occurs

is heavily dependent on the particular BEC setup such as the temperature

of the gas and the frequency of the excited phonon mode. A decoherence

time was estimated for several BEC setups including one inspired by the

GW detector [18] where the decoherence time was found to be a few seconds.

An estimate for the relaxation time of phonons was also performed to

provide a comparison for the decoherence time. In order to provide an ap-

propriate comparison, the relaxation time was similarly calculated by treat-

ing the single-mode phonon system as a low-energy quasi-particle mode

interacting via the Landau and Beliaev mechanisms with a continuum of

quasi-particle modes in thermal equilibrium. The same Born-Markov mas-

ter equation was then derived as for estimating the decoherence time, and

the relaxation time is characterized by the decay rate obtained from this

equation (see Section 4.1.6).

This approach to estimating the decay rate of the quasi-particles was

also discussed in [27] and is very similar to that taken in [188] and [189]

where a quantum Langevin approach is used. The estimated decay rate

matches that of the Landau-Beliaev damping rate obtained using pertur-

bation theory in a uniform system [70, 134, 190, 191].3 This damping rate

has been studied in great detail in Bose superfluids both theoretically [26]

and experimentally [73]. Of the two processes, Landau damping has re-

ceived the most attention. This damping process was first discussed for

plasmas by Landau [193] and has since been explored by several authors

within the context of dilute BECs. It was first investigated for a uniform

Bose gas in [194] using Green’s function techniques for low temperatures,

and later for higher temperatures in [195]. After the first experimental mea-

surements for the damping of collective oscillations[73, 123], the fact that

Landau damping might be principally responsible was put forward in [196]

and results obtained for the uniform gas were used to estimate the damp-

ing in a trapped gas [140] within the framework of an imaginary time path

3For a discussion on the relationship between the Markov approximation and the
Fermi Golden Rule see e.g. [32, 192].
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integral. Expressions for Landau damping in trapped systems were then

shortly developed using perturbation theory in [190] that, when applied to

the uniform case, reproduced the known results for both the low- and high-

temperature asymptotic behaviour of the phonon damping and, as stated

above, match those derived here. Other methods such as semi-classical ap-

proaches [79, 134, 197] and kinetic theories for superfluids [198] have also

been performed. Furthermore, Landau damping has also been investigated

in additional BEC contexts such as lower-dimensional BECs [199].

Beliaev damping, associated with the decay of an elementary excitation

into a pair of excitations, was first studied by Beliaev in the case of uniform

Bose superfluids [200]. It was investigated in trapped systems using a time-

dependent mean-field approach based on the Popov approximation in [70],

which also derived similar results to [190] for Landau damping and, as stated

above, which also match the results derived here for both rates when applied

to a uniform system. Beliaev damping has been explored experimentally [73]

and also considered in other ultracold systems such as Fermi-Bose mixtures

[201], colliding BECs and optical lattices [29]. The relaxation processes of

Landau and Beliaev damping of quasi-particles have also been investigated

when considering the de-phasing mechanism of the condensate [28].

Rather than simply using the inverse of the damping rate for the relax-

ation time [28, 32], this time was also considered from the point of view of

state discrimination. The relaxation time is then taken to be the minimal

time required for the initial state to freely reach the target state within

a fixed fidelity (see e.g. [77]). Using an appropriate error parameter, the

relaxation time was estimated to be of the order of 10s for the GW detec-

tor, which compares to a few seconds for the decoherence time. In fact, for

all BEC setups, it was found that the decoherence time was shorter than

the relaxation time and, in some cases, by several orders of magnitude. In

contrast to the decoherence time, the relaxation time was determined for a

generic initial state rather than just a Gaussian state since the relaxation

time is independent of the initial state according to the Born-Markov master

equation.

The short decoherence and relaxation times for the GW detector setup
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suggest that these effects could be important in the realization of these

devices. However, more work is required to determine exactly how the pre-

cision of the proposed GW detector and accelerometer are affected by the

decoherence and relaxation channels for the phonons. For example, these

devices respectively rely on a two-mode squeezed state and two single-mode

squeezed states rather than just one single-mode squeezed state that was

used in the analysis presented here. Furthermore, the sensitivity of the

device is determined by the quantum Fisher information (QFI) since this

is used to measure the distinguishability of states. Therefore, understand-

ing how this is quantity is modified by the decoherence of phonons would

properly identify how the device is affected by decoherence. Using the gen-

eral techniques developed for Gaussian states in Chapter 3, it should be

straightforward to determine how the QFI depends on the decoherence of

the phonons once they are extended to two-mode states. In particular, this

can be extracted from the time evolution of the covariance matrix of a two-

mode state, which can then be used to determine the time evolution of the

QFI.

Other future developments could include investigating the decoherence

times of more realistic setups. In this work a uniform, dilute BEC in a

three-dimensional box with Gaussian phonon states and an environment of

quasi-particles in thermal equilibrium was assumed. However, in practice,

BEC setups use traps and the phonon states will not be exactly Gaussian.

Although it is expected that these approximations will lead to an analysis

that is still applicable to general experimental setups [26, 70], more realistic

results would be obtained, for instance, by analysing the decoherence of

phonons of BECs in harmonic traps. Damping in such systems has already

been analysed [139] and it should, therefore, be relatively straightforward

to apply the results presented here to calculate the decoherence in such

systems. An example of the changes that a trapped system can have on the

damping mechanism compared to a homogeneous system is that Beliaev

damping is not active for the lowest energy modes in the former systems

due to the discretization of levels [70, 134]. Damping in lower-dimensional

systems has also been analysed in [199] which could be useful for further
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analysis of the decoherence of the proposed accelerometer and GW detector

since the current theoretical analysis is based on a one-dimensional system.

Further improvements to the estimation of the decoherence time would

be to investigate the changes that occur when the Born-Markov approxi-

mation is dropped and the initial state of the phonons and the environment

is non-separable. Dropping thermal equilibrium of the environment and

introducing a squeezed environment may also create interesting effects as

discussed in Chapter 4. It was also highlighted in that chapter that, rather

than using the time evolution of the purity and nonclassical depth to esti-

mate the decoherence time, it could be more instructive to determine the

evolution of proper coherent measures such as the relative entropy of co-

herence [118], although this would require the development of a coherent

measure for Gaussian states. Another alternative to estimating the deco-

herence time would be to analyse the evolution of QFI [202] and, when

two mode states are considered, the depletion of entanglement, which is

currently being investigated [33].

As well as theoretically estimating the decoherence of the phonons, this

work has also considered how the decoherence could be measured experi-

mentally. In particular, an experiment that uses a molecular 6Li BEC is

currently being investigated for performing the measurement. This BEC is

strongly-interacting and the effects introduced by such strong interactions in

a Bose gas are not yet fully understood. This is important for the measure-

ment of decoherence as the mutual interaction between the condensed and

noncondensed components of a strongly-interacting Bose need to be under-

stood in order to successfully extract information from an in-situ absorption

image of the gas. In Chapter 6, three different models were investigated to

determine their effectiveness in fitting density profiles from in-situ absorp-

tion images and extracting thermodynamic quantities. These models were

the well-used bi-modal model, the semi-ideal model and a model based on

the Hartree-Fock approximation. Currently in-situ absorption images are

being generated for the 6Li BEC at various interaction strengths and tem-

peratures, and the models are then being fit to this data. Initial results

suggest that, as expected, the Hartree-Fock fits the data most successfully
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and that the bi-modal model can produce highly inaccurate results in cer-

tain sections of parameter space. However, it is currently too early in the

experiment to draw any definite conclusions.

As well as being essential to the future measurement of decoherence of

phonons, the investigation into the three models is also expected to further

the current understanding of the effects of strongly-interacting Bose gases

and how these effects can be observed in in-situ absorption images. The in-

teractions strengths achievable should also be much higher than in similar

past studies [53, 184, 185], and could potentially move the gas into a regime

where beyond mean-field theory effects are observable (see Chapter 6). Once

the in-situ absorption images of the 6Li BEC are well understood and effec-

tively modelled, a measurement of the decoherence time of phononic exci-

tations should be possible. As discussed in Chapter 5, there are numerous

ways this could be measured. However, a promising possibility would be

to extract information on the purity of the state or, for two-mode states,

the entanglement from density-density correlation functions extracted from

in-situ imaging [157]. It is hoped that measurements of this kind will be

able to appraise the legitimacy of the approximations used in the theoretical

estimation of the decoherence time of the phononic excitations, as well as

inform the theory of Bose-Einstein physics, particularly strongly-interacting

BECs, and potentially other fields such as analogue gravity and black hole

physics.
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APPENDIX A

Derivation of the Beliaev and Landau

Damping Rates

In this Appendix the expressions (2.73)-(2.74) damping rates for Beliaev

and Landau damping are derived. From (2.72), these damping rates are

defined as:

γB := γB2 − γB1 , (A.1)

γL := γL2 − γL1 (A.2)

where, from (2.36), each γXi is defined in terms of environment correlation

functions:

ΓXi :=
1

2
γXi + iSXi (A.3)

where X = L,B; i = 1, 2; and each ΓXi is given by (2.65)-(2.68). These are:

ΓB1 =
1

~2

∫ ∞
0

dt′eiωqt/~〈B̃(t)B̃†(t− t′)〉E, (A.4)

ΓB2 =
1

~2

∫ ∞
0

dt′e−iωqt/~〈B̃†(t)B̃(t− t′)〉E, (A.5)

ΓL1 =
1

~2

∫ ∞
0

dt′eiωqt/~〈L̃(t)L̃†(t− t′)〉E, (A.6)
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ΓL2 =
1

~2

∫ ∞
0

dt′e−iωqt/~〈L̃†(t)L̃(t− t′)〉E (A.7)

where L̃ and B̃ are the interaction picture environment operators for the

Landau and Beliaev interactions. From Section 1.3, the corresponding

Schrödinger picture operators are given by:

L̂† = g

√
n

V

∑
k,l6={0,q}

Lklbkb†lδq,l−k, (A.8)

B̂† = g

√
n

V

∑
k,l6={0,q}

Bklb†kb
†
lδq,k+l. (A.9)

Concentrating on just Landau damping, the interaction picture operator

is given by:

L̃† = g

√
n

V
eiHEt/~

∑
k,l6={0,q}

Lklbkb†le
−iHEt/~δq,l−k, (A.10)

= g

√
n

V

∑
k,l 6={0,q}

Lkl(eiHEt/~bke
−iHEt/~)(eiHEt/~b†le

−iHEt/~)δq,l−k, (A.11)

= g

√
n

V

∑
k,l 6={0,q}

Lklbkb†le
i(ωl−ωk)t/~δq,l−k. (A.12)

where HE is given by (2.49) and hats on operators have been dropped for

convenience. Similarly, the annihilation-like operator is given by:

L̃ = g

√
n

V

∑
k,l6={0,q}

Llkb†kble
−i(ωl−ωk)t/~δq,l−k. (A.13)

Using the above expressions, the Landau correlation functions ΓL1 and ΓL2

are given by:

ΓL1 =
g2n

V ~2

∫ ∞
0

dt′eiωqt/~δq,l−kδq,m−n
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×
∑

k,l,m,n6={0,q}
LklLmnei(ωk−ωl+ωn−ωm)t/~ei(ωm−ωn)t′/~〈b†kblbmb

†
n〉E,

(A.14)

ΓL2 =
g2n

V ~2

∫ ∞
0

dt′e−iωqt/~δq,l−kδq,m−n

×
∑

k,l,m,n 6={0,q}
LklLmne−i(ωk−ωl+ωn−ωm)t/~ei(ωn−ωm)t′/~〈bkb†lb

†
mbn〉E.

(A.15)

Taking the environment to be in thermal equilibrium, the above expressions

are only non-zero when k = m and l = n (with k 6= l). That is:

δq,l−kδq,m−n〈b†kblbmb
†
n〉E = δq,l−kδk,mδl,n(NkNl +Nk), (A.16)

δq,l−kδq,m−n〈bkb†lb
†
mbn〉E = δq,l−kδk,mδl,n(NkNl +Nl). (A.17)

Plugging the above into (A.14)-(A.15) and then using (A.3) as well as taking

a continuum of states i.e. introducing a density of states p(ω) such that

p(ω)dω gives the number of oscillators with frequencies in the interval ω to

ω + dω, the rates γL1 and γL2 are given by:1

γL1 =
g2n

V ~2

∫ ∞
0

πdωkp(ωk)L2
ωk,ωl

(NkNl +Nk)δ(ωq + ωk − ωl), (A.19)

γL2 =
g2n

V ~2

∫ ∞
0

πdωkp(ωk)L2
ωk,ωl

(NkNl +Nl)δ(ωq + ωk − ωl) (A.20)

and the difference of these two rates is:

γL =
g2n

V ~2

∫ ∞
0

πdωkp(ωk)L2
ωk,ωl

(Nk −Nl)δ(ωq + ωk − ωl), (A.21)

which is the expression used in (2.74).

1Note that: ∫ ∞
0

dt′e−iεt
′

= πδ(ε)− iP
ε

(A.18)

where P is the Cauchy principal value.
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A similar derivation can also be performed for the Beliaev interactions.

In this case γB1 and γB2 are given by:

γB1 =
g2n

V ~2

∫ ∞
0

πdωkp(ωk)B2
ωk,ωl

(NkNl)δ(ωq − ωk − ωl), (A.22)

γB2 =
g2n

V ~2

∫ ∞
0

πdωkp(ωk)B2
ωk,ωl

(NkNl +Nk +Nl + 1)δ(ωq − ωk − ωl)

(A.23)

and so:

γB =
g2n

V ~2

∫ ∞
0

πdωkp(ωk)B2
ωk,ωl

(Nk +Nl + 1)δ(ωq − ωk − ωl), (A.24)

which is the expression used in (2.74).

The above expressions can also be used to verify that (2.71) holds for

the single-mode phonon system (this equation holds for any Markov system

when the environment is in thermal equilibrium [32]). First (2.71) is re-

written in the form of (A.25):

γT := γ coth(
1

2
βq) = γ(1 + 2N th

q ) (A.25)

where γT := γ11 + γ22 = γB1 + γL1 + γB2 + γL2 and γ := γ22 − γ11 = γB + γL.

We therefore need to verify that the following equality always holds:

g2n

V ~2

∫ ∞
0

πdωkpωk

(
B2
ωk,ωl

(2NkNl +Nk +Nl + 1)δ(ωq − ωk − ωl)

+L2
ωk,ωl

(2NkNl +Nl +Nk)δ(ωq + ωk − ωl)
)

= (1 + 2Nq)
g2n

V ~2

∫ ∞
0

πdωkpωk

(
B2
ωk,ωl

(Nk +Nl + 1)δ(ωq − ωk − ωl)

+L2
ωk,ωl

(Nk −Nl)δ(ωq + ωk − ωl)
)
. (A.26)

By simple algebra, it is straightforward to show that this equality does
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indeed always hold by simply verifying the following identities:

2NkNl +Nk +Nl = (1 + 2Nq)(Nk −Nl) when ωq = ωl − ωl, and

(A.27)

2NkNl +Nk +Nl + 1 = (1 + 2Nq)(Nk +Nl + 1) when ωq = ωk + ωl

(A.28)

where Nq, Nk and Nl are given by the Bose-Einstein distribution (1.31).
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APPENDIX B

Derivation of the Equations of Motion for

the Displacement Vector and Covariance

Matrix

In this Appendix the equations of motion for the displacement vector and

covariance matrix given by (3.29)-(3.30) are derived. The Lindblad master

equation (3.27) provides the equation of motion for the reduced density

matrix and can be written as:

dρS
dt

= − i
~

[Ĥ, ρ̂S] + (C†C)∗ijx̂iρ̂Sx̂j −
1

2
(C†C)ij{x̂ix̂j, ρS} (B.1)

where ĉ := Cijx̂j as defined in Chapter 3.

Using the fact that, from Chapter 3, the Hamiltonian can be written

as Ĥ = H0 + κx̂TH1 + κ2x̂TH2x̂ where H0 is a constant; H1 is a 2M -

dimensional column vector; and H2 is a 2M × 2M real, symmetric matrix;

it is possible to show that the equation of motion of any operator B̂ is:

d〈B〉
dt

= Tr
(dρS
dt

B
)

=
iκ

~
H1iTr

(
ρS[xi, B]

)
+i
(κ2

~
H2ij +

1

2
Im(C†C)ij

)
Tr

(
ρS

{
[xi, B], xj

})

+
1

2
Re(C†C)ijTr

(
ρS

[
[xi, B], xj

])
(B.2)

where [AB,C] = A[B,C] + [A,C]B has been used as well as the cyclic
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property of the trace, and C†C has been separated into its real (symmetric)

and imaginary (anti-symmetric) parts.

B.1 Displacement Vector

The displacement operator is defined as dk := 〈x̂k〉 and so, to determine

its equation of motion, B̂ = x̂k should be substituted into (B.2)into the

above equation. In this case [xi, B] = [xi, xk] = i
2κ2

Ωik and thus
[
[xi, B], xj

]
vanishes and

{
[xi, B], xj

}
=
{

[xi, xk], xj

}
= i

2κ2
Ωik, which just leaves:

ddk
dt

= − 1

2κ~
H1iΩikTr(ρS)− 1

~
ΩikH0ijTr(ρSxj)

− 1

2κ2
ΩikIm(C†C)ijTr(ρSxj) (B.3)

=
1

2κ~
ΩkiH1i +

1

~
ΩkiH0ijdj +

1

2κ2
ΩkiIm(C†C)ijdj (B.4)

=⇒ dd

dt
=

1

~
ΩH1 + Ω

(1

~
H0 +

1

2κ2
Im(C†C)

)
d (B.5)

:= H1 +Ad (B.6)

B.2 Covariance Matrix

Taking di = 0, the covariance matrix can be written as σkl = 1
2
〈xk, xl〉, so

this case Bkl = 1
2
{xk, xl} must be plugged into (B.2). Using [A,BC] =

B[A,C] = [A,B]C, it is possible to show that:

[xi, B] =
1

2
[xi, {xk, xl}] (B.7)

=
i

2κ2
(Ωikxl + Ωilxk), (B.8)[

[xi, B], xj

]
= − 1

4κ4
(ΩikΩlj + ΩilΩkj), (B.9){

[xi, B], xj

}
=

i

2κ2
(Ωik{xl, xj}+ Ωil{xk, xj}) (B.10)
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and so the equation of motion for the covariance matrix is given by:

=⇒ dσkl
dt

=− 1

2κ~
H1i

(
ΩikTr(ρSxl) + ΩilTr(ρSxk)

)
−

[ 1

2~
H0ij +

1

4κ2
Im(C†C)∗ij

]
Tr

[
ρS

(
Ωik{xl, xj}+ Ωil{xk, xj}

)]
− 1

8κ4
Re(C†C)ij

(
ΩikΩlj + ΩilΩkj

)
Tr(ρS) (B.11)

= Ωki

(1

~
H0ij +

1

2κ2
Im(C†C)∗ij

)
σjl+

σkj

(1

~
H0ji +

1

2κ2
Im(C†C)∗ji

)
Ωil +

1

4κ4
ΩliRe(C

†C)ijΩjk

(B.12)

=⇒ dσ

dt
= Aσ + σAT +D (B.13)

where the fact that σ is symmetric by definition has been used as well as

Tr(ρSxk) = dk = 0, Re(C†C) is symmetric, and Ω is anti-symmetric.
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APPENDIX C

Derivation of the Evolution of the Average

Occupation of a Single-Mode Phonon State

In this Appendix the time evolution of the average occupation is derived

(4.43). Similar to Appendix B, the master equation for the the single-mode

phonon state (2.53) can be used to determine the time evolution of the

average of any operator B̂:

d

dt
ρ̂S = − i

~
[ĤS, ρ̂S] + γ11

(
b̂qρ̂S b̂

†
q −

1

2
{b̂†q b̂q, ρ̂S}

)
+ γ22

(
b̂†qρ̂S b̂q −

1

2
{b̂q b̂†q, ρ̂S}

)
, (C.1)

=⇒ d〈B̂〉
dt

= Tr
(dρS
dt

B̂
)

(C.2)

= iωTr
(
ρS[b̂†q b̂q, B̂]

)
(C.3)

+
γ11

2
Tr

(
ρS

(
[b̂†q, B̂]b̂q − b̂†q[b̂q, B̂]

))
(C.4)

+
γ22

2
Tr

(
ρS

(
[b̂q, B̂]b̂†q − b̂q[b̂†q, B̂])

))
(C.5)

where ĤS = ~ωq b̂†q b̂q, [AB,C] = A[B,C] + [A,C]B has been used as well as

the cyclic property of the trace. Substituting B̂ = N̂i = b̂†q b̂q, the average

occupation at time t for a single-mode phonon state is then found to be:

Nq(t) = (Nq(0)−N th
q )e−γt +N th

q (C.6)
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where:

N th
q =

1

(γ11/γ22)− 1
(C.7)

=
1

eβq − 1
(C.8)
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APPENDIX D

Density Waves

In this Appendix condensate density fluctuations are derived using the T=0

Gross-Pitaevskii (GP) equation. These are the classical counterparts of the

elementary excitations described by the Bogoliubov theory and are shown

to have an identical spectrum.

The T=0 Gross-Pitaevskii equation can be derived from the general

quantum field Hamiltonian for a rarefied Bose gas, which is given by (1.8):

Ĥ =

∫
drψ̂†(r)

[
− ~2

2m
∇2 + V(r)

]
ψ̂(r)

+
1

2

∫
drdr′ψ̂†(r)ψ̂†(r′)U(r′ − r)ψ̂(r)ψ̂(r′) (D.1)

where U(r) is the two-body potential and V(r) is the external potential. The

equation of motion for the Bose gas field operator ψ̂(r, t) in the Heisenberg

picture is defined as:

i~
∂

∂t
ψ̂(r, t) = [ψ̂(r, t), Ĥ], (D.2)

which, upon substitution in (1.8), results in:

i~
∂

∂t
ψ̂(r, t) =

[
− ~2

2m
∇2 + V(r)

+

∫
dr′ψ̂†(r, t)U(r′ − r)ψ̂(r′, t)

]
ψ̂(r, t). (D.3)
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Analogous to (1.11), at temperatures below the critical temperature, the

field operator can be split up into a condensate and noncondensate part:

ψ̂(r) = ψ̂0(r)â0 +
∑
i 6=0

ψ(r)âi (D.4)

:= Φ̂(r) + δψ̂(r). (D.5)

In the Bogoliubov approximation (see Section 1.2.1), Φ(r) is a classical

field since â0 is taken to be a c-number. Φ(r) is then often referred to

as the order parameter or wave function of the condensate. At very low

temperatures T ≈ 0, all the particles will be in the ground state to a

very good approximation and so ψ̂(r, t) ≈ Φ(r, t). (D.3) then becomes an

equation of motion for the classical field Φ(r, t). Further approximating the

general potential U(r′−r) at low-energy by the contact potential gδ(r′−r),

(D.3) becomes:

i~
∂

∂t
Φ(r, t) =

[
− ~2

2m
∇2 + V(r) + g|Φ(r, t)|2

]
Φ(r, t). (D.6)

This is the time-dependent T=0 GP equation [203], which is a non-linear

Schrödinger equation and is the primary tool used to investigate non-uniform

dilute Bose gases at low temperatures [48]. Analogous to the Madelung for-

mulation of the Schrödinger equation [204], the classical field Φ(r, t) can be

written in terms of the condensate density nc(r, t) = |Φ(r, t)|2 and a phase

θ(r, t):

Φ(r, t) :=
√
nc(r, t)e

iθ(r,t) (D.7)

such that the GP equation splits up into an equation for the real and imag-

inary components:

∂nc
∂t

+ ∇.(ncvc) = 0, (D.8)

m
∂vc
∂t

= −∇εc (D.9)
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where:

vc :=
~
m
∇θ(r, t), (D.10)

εc := µc +
1

2
mv2

c , (D.11)

µc := −
~2∇2

√
nc(r, t)

2m
√
nc(r, t)

+ V(r) + gnc(r, t) (D.12)

such that vc is velocity of the condensate flow; µc(r, t) acts as a time and

space-dependent chemical potential; εc plays the role of the local energy of

a condensate particle having potential energy µc and kinetic energy 1
2
mv2

c ;

and so (D.8) is a continuity equation, and ∇εc in (D.9) is a quantum force.

The description offered by (D.8)-(D.9) is analogous to the Madelung for-

mulation of quantum mechanics (which is similar to Bohmian mechanics)

but for a non-linear Schrödinger equation, and is often referred to as the

hydrodynamic theory.

Considering a departure of the gas from its equilibrium, nc is written as

neqc +δnc where neqc is the equilibrium density and δnc is the departure of the

density from its equilibrium value. Treating δnc and vc as small quantities,

(D.8)-(D.9) can then be linearized:

∂δnc
∂t

= −∇.(neqc vc), (D.13)

m
∂vc
∂t

= −∇δµc (D.14)

where δµc is obtained by linearizing (D.12). These two equations can be

combined into a single equation of motion by taking the time derivative of

(D.13) and eliminating the velocity by means of (D.14) [176, 205]:

∂2δnc
∂t2

=
g

m
∇.[neqc ∇δµc]. (D.15)

For a uniform gas (V = const) the equilibrium density is the same every-

where and so it may be taken outside the spatial derivatives. The solutions
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of (D.15) will then be plane waves δnc(k, t) ∝ eik.r−ωt and, from (D.12), the

change in µc will be given by:

δµc =
(
g +

~2k2

4mneqc

)
δnc (D.16)

so that (D.15) becomes:

mω2δnc =
(
neqc gk

2 +
~2k4

4m

)
δnc. (D.17)

The solution of (D.15) is ω = ±εpk/~ where εpk satisfies:

εpk =

√
c2
spk

2 +
(pk2

2m

)2

(D.18)

with:

pk := ~k, (D.19)

cs :=

√
gn

m
. (D.20)

Note that (D.18) is equivalent to spectrum of Bogoliubov quasi-particles

given by (1.29) and the low-energy condensate oscillations are sound waves

ω = csk.1. Therefore, the condensate density fluctuations have an identical

spectrum to that of the Bogoliubov quasi-particles (excitations involving the

noncondensate). This is in fact a characteristic signature of Bose-condensed

fluids and persists at finite temperatures [50]. The properties of elementary

excitations may, therefore, be investigated by considering small deviations

of the state of the gas from the equilibrium and finding periodic solutions

to the hydrodynamic equations [58].

1This would have been the only solution had the Thomas-Fermi approximation been
applied where the quantum pressure term (the first term in (D.14)), which comes from
the kinetic energy term, is neglected in comparison to the Hartree interaction term gnc
[50]
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ńczuk, Phys. Rev. A 90, 033616 (2014).

[164] W. D. Phillips and H. Metcalf, Phys. Rev. Lett. 48, 596 (1982).

[165] A. Paris-Mandoki, M. D. Jones, J. Nute, J. Wu, S. Warriar, and
L. Hackermüller, Review of Scientific Instruments 85, 113103, –
(2014).

[166] A. Paris-Mandoki, “A Single Apparatus for the Production of
Ultracold Fermionic Lithium and Cold Bosonic Caesium Gases”,
PhD thesis (Univeristy of Nottingham, 2015).

[167] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard,
Phys. Rev. Lett. 59, 2631 (1987).

[168] G. A. Askar’yan, Sov. Phys.-JETP 15, 1088 (1962); J. E.
Bjorkholm, R. R. Freeman, A. Ashkin, and D. B. Pearson, Phys.
Rev. Lett. 41, 1361 (1978); S. Chu, J. E. Bjorkholm, A. Ashkin,
and A. Cable, ibid. 57, 314 (1986).

[169] G. A. Askar’yan, Sov. Phys.-JETP 15, 1088 (1962).

[170] J. E. Bjorkholm, R. R. Freeman, A. Ashkin, and D. B. Pearson,
Phys. Rev. Lett. 41, 1361 (1978).

[171] S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, Phys. Rev.
Lett. 57, 314 (1986).

[172] R. Smith and Z. Hadzibabic, English, in Physics of quantum flu-
ids , Vol. 177, edited by A. Bramati and M. Modugno, Springer
Series in Solid-State Sciences (Springer Berlin Heidelberg, 2013),
pp. 341–359; R. P. Smith, R. L. D. Campbell, N. Tammuz, and Z.
Hadzibabic, Phys. Rev. Lett. 106, 250403 (2011); M Zawada, R
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A 61, 043606 (2000).

[198] E. Lifshitz and L. Pitaevskii, Physical kinetics (Pergamon Press,
Oxford, 1981).

[199] X.-D. Ma, Z.-J. Yang, J.-Z. Lu, and W. Wei, Chinese Physics B
20, 070307, 070307 (2011); Z.-J. Yang, Z.-L. Chai, C.-X. Li, and
X.-D. Ma, Communications in Theoretical Physics 57, 789 (2012);
C. Trallero-Giner, D. G. Santiago-Pérez, M.-C. Chung, G. E. Mar-
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