
 

 

INVESTIGATING THE EFFECTS OF 

MICROSTRUCTURE AND MAGNETIC 

SUSCEPTIBILITY IN MRI 

 

 

 

 

Matthew John Cronin, BSc. 

Sir Peter Mansfield Imaging Centre 

School of Physics and Astronomy 

 

 

 

Thesis submitted to the University of Nottingham for the degree of 

Doctor of Philosophy 

 

December 2015 

 



 

     i 

 

 

 

 

 

 

 

 

“I think this would be a good time for a beer.” 

Franklin Delano Roosevelt, March 22nd 1933 

 

 

 

  



 

ii 

ABSTRACT  

 

Over the last decade, phase measurements derived from gradient echo MRI have 

increasingly been used as a source of quantitative information, allowing tissue 

composition and microstructure to be probed in vivo and opening up many new avenues 

of research.  However, the non-local nature of phase contrast and the complexity of the 

underlying sources of phase variation mean that care must be taken in the interpretation 

and exploitation of phase information.  The work described in this thesis explores the 

application of phase-based quantitative susceptibility measurements in vivo, and uses 

theory, experiment, and simulation to investigate the contribution of local structural 

effects to measurements of MRI signal phase. 

In initial work, the use of phase imaging and quantitative susceptibility mapping (QSM) 

is compared in the analysis of white matter lesions in multiple sclerosis, demonstrating 

in vivo the dipolar distortions inherent in phase images, and the correction of such 

artefacts through the application of QSM, based on a thresholded k-space division 

method .  Visual analysis of the lesions with a focus on the presence of the peripheral 

rings that occur in some white matter lesions allows comparison of our data with 

previous studies. 

A theoretical description of effects of magnetic susceptibility anisotropy using a 

susceptibility tensor model is then presented, and its predictions tested using 

macroscopic phantoms composed of pyrolytic graphite sheet, a highly anisotropic and 

diamagnetic material.  The results of these experiments confirm that the full tensor 

model must be used to predict the effects of structures composed of such materials on 

the magnetic field. 

Finally, Monte Carlo simulation is used to demonstrate the effects of perturber shape 

and diffusion on the MRI signal phase measured from a volume containing oriented, 

NMR-invisible, spheroidal perturbers with constant bulk magnetic susceptibility.  The 

rate of phase accumulation over time is shown to be highly dependent on perturber 

shape and diffusion, and the possible implication of these results on real MRI 

measurements are discussed. 
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1 INTRODUCTION 

1.1 Introduction 

Magnetic resonance imaging (MRI) is a non-invasive medical imaging technique 

based on the manipulation of nuclear magnetization produced by high magnetic 

fields.  Imaging sequences can be varied to reflect or measure various tissue 

properties depending on the aims of the investigation, making MRI a versatile tool in 

both clinical and research settings.  Most conventional MRI techniques are based on 

the measurement of a weighted signal magnitude to probe various properties, such as 

signal relaxation times, target nucleus concentration, blood oxygenation, or diffusion 

[1, 2] , researchers have increasingly been turning to imaging techniques based on 

MRI signal phase in order to extract more quantitative information about the 

underlying structure and composition of tissue.  Such techniques include phase 

imaging, susceptibility-weighted imaging (SWI) [3], quantitative susceptibility 

mapping (QSM) [4-14] as well as a number of novel techniques exploiting the 

orientation [15-21] and time [15] dependent rate of accumulation of local signal 

phase to probe the sub-voxel level structure of the brain.  The work presented in this 

thesis begins with an investigation into the application of phase imaging and QSM in 

vivo in the imaging of white matter lesions in multiple sclerosis, before going on to 

consider in greater detail the effects of magnetic susceptibility anisotropy on the 

local MRI frequency, and the effects of oriented mesoscopic susceptibility inclusions 

on measured MRI signal phase. 
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1.2 Thesis Overview 

Chapter 2 describes the background theory of the phenomenon of nuclear magnetic 

resonance (NMR), the foundation of magnetic resonance imaging.  It discusses the 

magnetisation of a population of nuclear spins in an applied magnetic field, as well 

as excitation, relaxation, and detection of the NMR signal. 

Chapter 3 contains theory relating to the formation of magnetic resonance images 

from the NMR signal, including the theory of slice selection and signal encoding, as 

well as accelerated imaging and the formation and control of contrast in images. 

In Chapter 4, the theory of quantitative susceptibility mapping is introduced, 

including the processing of MRI phase data to remove wraps and the effects of 

externally produced field variations, the calculation of magnetic field maps from 

known susceptibility distributions, and a number of methods of conditioning the ill-

posed inversion of this calculation to generate susceptibility maps from phase data. 

Chapter 5 presents an investigation comparing the imaging of white matter lesions in 

multiple sclerosis (MS) using phase imaging and quantitative susceptibility mapping.  

The non-local nature of phase contrast is demonstrated in vivo in MS lesions, and 

QSM is shown to provide local contrast more consistent with the structure shown in 

T2
*-weighted magnitude images.  The prevalence and representation of peripheral 

rings observed around a subset of white matter lesions in MS is also compared 

between phase images and quantitative susceptibility maps. 

The magnetic susceptibility measured using QSM has been shown to be dependent 

on the orientation of structures with respect to the applied magnetic field, 𝐵0, in 

some regions of the brain.  This effect has been attributed to the anisotropy of the 

magnetic susceptibility of the myelin sheath.  In Chapter 6, the effects of magnetic 

susceptibility anisotropy are modelled using phantoms constructed using pyrolytic 

graphite sheet, a highly diamagnetic, anisotropic material.  Novel field perturbations 

are demonstrated in macroscopic models of long cylinders and spherical shells, as 

well as from point-like sources.  These results are used to validate a full, tensor-

based model of susceptibility anisotropy, while also showing that a simplified model 

fails to accurately predict the measured field perturbation. 

In Chapter 7, Monte Carlo simulations are used to simulate the evolution of the MRI 

signal phase and frequency from an ensemble of precessing particles in a volume 
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containing NMR-invisible oriented spheroidal perturbers.  The effects of varying the 

diffusion of the particles, and the shape and volume fraction of the perturbers are 

considered. 

The findings and implications of the work presented in this thesis are summarised 

and discussed in Chapter 8.  Possible future work is also suggested. 
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2 NUCLEAR MAGNETIC 

RESONANCE THEORY 

Nuclear magnetic resonance (NMR) is a phenomenon in which certain atomic nuclei, 

when placed in a magnetic field, can be excited and caused to resonate at a 

characteristic frequency, leading to the emission of electromagnetic (EM) radiation.  

NMR is observed in atoms whose nuclei have intrinsic spin angular momentum, such 

as 1H, 13C, and 31P.  In medical imaging, hydrogen nuclei (with spin 
1

2
) are typically, 

although not exclusively, the nuclei of interest, due to their high concentration in the 

body. 

The resonant frequency of a particular nucleus is related to the strength of the applied 

magnetic field by the gyromagnetic ratio, the ratio of its magnetic dipole moment to 

its angular momentum, which is characteristic of the nuclei:  

  

𝜔0 = 𝛾𝐵0     . 

 

         Eq.  2.1 

 Here, 𝜔0  is the resonant angular frequency, 𝛾 is the gyromagnetic ratio (267.5 ×

106 𝑟𝑎𝑑 𝑠−1𝑇−1  for a proton [1]), and 𝐵0 is the strength of the applied magnetic 

field. 
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2.1 Magnetization 

If we consider an ensemble of N protons in a volume, V, at room temperature and in 

the absence of a magnetic field, the spin angular momentum of the protons will be 

randomly oriented, leading to no net magnetization.  If a magnetic field is applied, 

the spins can exist with two quantised energy levels; in the low energy (spin = +
1

2
) 

spin-up state with a net magnetization parallel to 𝐵0, and the high energy  (spin =

−
1

2
)   spin-down state with a net magnetization anti-parallel to 𝐵0 .  The energy 

difference between these levels is proportional to the gyromagnetic ratio and 𝐵0, as 

shown in Figure 2-1.  In Cartesian coordinates, 𝐵0 is conventionally considered to be 

applied in the z-direction. 

 

 

The population of spins will exhibit a net magnetization in the direction of the 

magnetic field, proportional to the population difference, 𝑛, between the spin up and 

spin down energy levels.  This population difference is related to 𝐵0 by  

Figure 2-1 – Quantised proton energy levels in an applied 

magnetic field 

∆E = γℏB0 
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𝑛 =
𝑁ℏ𝛾𝐵0

2𝑘𝐵𝑇
     , 

         Eq.  2.2 

where 𝑁 is the total number of nuclei, 𝛾 is the gyromagnetic ratio, 𝐵0 the applied 

magnetic field strength, 𝑘𝐵 the Boltzmann constant, ℏ the reduced Planck constant, 

and 𝑇 the temperature.  The net magnetization, 𝑀0, is usually referred to as the bulk 

magnetisation, and NMR and MRI can be considered classically in terms of the 

evolution of this magnetisation, which at equilibrium is given by 

𝑀0 =
𝑁𝑉(ℏ𝛾)2𝐵0

4𝑘𝐵𝑇
     . 

         Eq.  2.3 

2.2 Excitation 

At equilibrium, the bulk magnetization is oriented along the z-direction in the 

laboratory frame, parallel to the applied field, as shown in Figure 2-2.  

 

Figure 2-2 – Bulk magnetization at equilibrium 
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When radiofrequency (RF) energy is applied to the sample at the Larmor frequency, 

𝜔0, with an amplitude 𝐵1, for a time, 𝜏, it causes a rotation of the magnetization by 

an angle 𝛼 about an axis in the transverse plane, such that 

𝛼 = 𝛾𝐵1𝜏     . 

         Eq.  2.4 

RF pulses in NMR and MRI are often referred to by the angle through which they 

rotate the magnetization, for example a 90˚ pulse rotates the bulk magnetisation 

completely into the transverse plane, and a 180˚ pulse completely inverts the bulk 

magnetisation so that it is directed along the –z direction. 

In a simple NMR experiment, a sample may be excited by a 90˚ RF pulse of 

electromagnetic radiation at the resonant frequency of the target nuclei.  This has the 

effect of rotating the bulk magnetisation from the z-direction into the x-y plane, as 

shown in Figure 2-3 

 

 Figure 2-3 – Excitation of the bulk magnetization with a 90˚ RF pulse  

 

Once in the x-y plane, the transverse component of the magnetisation precesses about 

the z-axis at the Larmor frequency, defined in Eq.  2.1, generating an NMR signal, as 

shown in Figure 2-4. 
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The transverse magnetisation is often considered in a rotating frame of reference, 

rotating at the reference frequency of the scanner (typically the Larmor frequency for 

a proton), with axes x’, y’ and z.  If the spins precess at the Larmor frequency, the 

transverse magnetization remains stationary along the y’-axis. 

2.2.1 Specific Absorption Rate 

When RF energy is applied to a sample, energy is deposited, which can cause 

heating.  When scanning heat-sensitive samples, especially humans or animals, this 

heating must be carefully limited in order to avoid damage or harm.  The deposition 

of energy in tissue can be measured as a specific absorption rate (SAR), and is 

defined as power absorbed per unit mass of tissue, in units of watts per kilogram 

(WKg-1).  It may be measured over the whole body or by exposed body part.  SAR 

levels are strictly regulated, and especially important in poorly perfused areas such as 

the eye, where heat dissipation is slow.  SAR is increased in ultra high field scanners, 

such as the 7T scanner used for in vivo imaging of MS patients in Chapter 5, and 

accurate modelling of SAR is necessary to fully exploit the power of these scanners 

[2]. 

Figure 2-4 – Precession of the transverse magnetization in the 

laboratory frame, generating an NMR signal. 
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2.3 Relaxation 

Relaxation of the signal in NMR reflects a combination of longitudinal recovery of 

the bulk magnetisation in the z-direction (and consequent decrease in the magnitude 

of transverse magnetisation in the x-y plane), and the loss of phase coherence 

between the precession of individual spins, causing further attenuation of the 

measured signal amplitude. 

Longitudinal recovery is also known as 𝑇1  relaxation and the recovery of the 

longitudinal magnetization 𝑀𝑧 is described by 

𝑑𝑀𝑧

𝑑𝑡
=

𝑀0 − 𝑀𝑧

𝑇1
     , 

         Eq.  2.5 

where 𝑀0  is the equilibrium longitudinal magnetisation, and 𝑇1  is the longitudinal 

relaxation time constant.  𝑇1 relaxation is caused by the return of the excited spin 

population to thermal equilibrium via exchange of energy between the spins and the 

lattice.  Figure 2-5 shows the recovery of the longitudinal magnetization after 

inversion with a 180° RF pulse.  𝑇1 varies between tissues in the body, and forms the 

basis of contrast in widely used anatomical imaging sequences, as discussed in 

section 3.4.1. 

 

Decay of the magnetization in the x-y plane is known as transverse relaxation, shown 

schematically in Figure 2-6.  It is caused by small variations in the local magnetic 

field experienced by individual spins at different locations in the volume.  These 

variations are divided into those resulting from time-varying processes, such as 

molecular motion, and those caused by static processes, such as the variation in the 

Figure 2-5 – Recovery of the longitudinal magnetization 
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magnetic field due to spatial variations of the magnetic susceptibility in the sample.  

Signal loss due to time-varying processes is described by the time constant 𝑇2.  In 

protons, the dominant source of 𝑇2 relaxation is dipole-dipole interactions occurring 

between protons and other protons or protons and electrons.  Signal loss due to static 

processes is described by 𝑇2′ , accounting for dephasing due to poorly shimmed 

magnetic fields and the field perturbations caused by heterogeneous magnetic 

susceptibility.  The combined transverse decay constant 𝑇2
∗ is defined as 

1

𝑇2
∗ =

1

𝑇2
+

1

 𝑇2′
     . 

         Eq.  2.6 

Transverse relaxation is then described by  

𝑑𝑀𝑥,𝑦

𝑑𝑡
=

−𝑀𝑥,𝑦

𝑇2
∗      . 

         Eq.  2.7 

 

 

2.4 The Bloch Equation 

The general expression for the evolution of the magnetization  𝐌 due to nuclei with a 

gyromagnetic ratio 𝛾 in the presence of an applied magnetic field 𝐁𝑒𝑥𝑡 i is the Bloch 

equation [3] 

 

Figure 2-6 - Decay of the transverse magnetization in the rotating frame of 

reference 



Investigating the effects of microstructure and magnetic susceptibility in MRI 

Matthew John Cronin - December 2015    12 

𝑑𝐌

𝑑𝑡
= 𝛾𝐌 × 𝐁𝑒𝑥𝑡 +

1

𝑇1

(𝑀0 − 𝑀𝑧)𝐳̂ −
1

𝑇2
𝑀𝑥𝑦     , 

         Eq.  2.8  

where 𝑀0is the equilibrium magnetization, 𝑀𝑧 is the longitudinal magnetization, 𝑀𝑥𝑦 

is the transverse magnetization, and 𝑇1  and 𝑇2  are the spin-lattice and spin-spin 

relaxation times.  Solving the Bloch equation for 𝐁𝑒𝑥𝑡 = 𝐵0𝐳̂  yields the rate of 

change of the magnetization components 𝑀𝑥, 𝑀𝑦,  and 𝑀𝑧 as 

𝑑𝑀𝑧

𝑑𝑡
=

𝑀0 − 𝑀𝑧

𝑇1
      

𝑑𝑀𝑥

𝑑𝑡
= 𝜔0𝑀𝑦 −

𝑀𝑥

𝑇2

𝑑𝑀𝑦

𝑑𝑡
= 𝜔0𝑀𝑥 −

𝑀𝑦

𝑇2

     , 

         Eq.  2.9 

where 𝜔0 = 𝛾𝐵0.   

Integration of these equations gives the magnetization components 𝑀𝑥, 𝑀𝑦 and 𝑀𝑧 at 

a time t, such that 

𝑀𝑥(𝑡) = (𝑀𝑥(0) cos 𝜔0𝑡 + 𝑀𝑦(0) sin 𝜔0𝑡)𝑒−𝑡 𝑇2⁄

𝑀𝑦(𝑡) = (𝑀𝑦(0) cos 𝜔0𝑡 − 𝑀𝑥(0) sin 𝜔0𝑡)𝑒−𝑡 𝑇2⁄

      𝑀𝑧(𝑡) = 𝑀𝑧(0)𝑒−𝑡 𝑇1⁄ + 𝑀0(1 − 𝑒−𝑡 𝑇1⁄ )                       .

      

         Eq.2.10  

The transverse magnetization 𝑀𝑥𝑦(𝑡)  can be represented as a complex quantity 

𝑀+(𝑡), a complex combination of the individual transverse components, 𝑀𝑥(𝑡) and 

𝑀𝑦(𝑡) so that 

𝑀+(𝑡) = 𝑀𝑥(𝑡) + 𝑖𝑀𝑦(𝑡)     , 

and  

𝑀+(𝑡) = |𝑀+(𝑡)|𝑒𝑖𝜙(𝑡) = 𝑀𝑥𝑦(𝑡)𝑒𝑖𝜙(𝑡)     , 

giving  

𝑀+(𝑡) = 𝑀+(0)𝑒−𝑖𝜔0𝑡𝑒−𝑡 𝑇2⁄      . 

         Eq.  2.11 
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Here, 𝜙(𝑡) is the signal phase, describing the orientation of 𝑀𝑥𝑦  in the transverse 

plane.  In the laboratory frame of reference is it given by 

𝜙(𝑡) = 𝜙(0) − 𝜔0𝑡     , 

         Eq.  2.12 

where 𝜙(0) is the phase when 𝑡 = 0.  In the rotating frame of reference, 𝜙 = 𝜙(0) 

assuming that there is no perturbation to the applied magnetic field. 

2.5 The Free Induction decay 

The measurement of the free induction decay is the simplest NMR experiment, and 

forms the basis of many MRI pulse sequences.  A 90˚ pulse is applied to the sample, 

rotating the magnetisation into the x-y plane.  The magnetisation then precesses 

about the field, generating a signal, known as a free induction decay (FID), shown in 

Figure 2-7.   

The signal relaxes exponentially such that the signal magnitude 𝑆 at a time 𝑡 is  

𝑆 = 𝑆0𝑒−𝑡 𝑇2
∗⁄  

         Eq.  2.13  

where 𝑆0  is the signal amplitude when 𝑡 = 0 , and 𝑇2
∗  is the transverse relaxation 

constant.  The signal decays to zero in a time of approximately 5𝑇2
∗. 

 

   Figure 2-7 – The Free Induction Decay 
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2.6 Detection 

The NMR signal is recorded by one or more RF receiver coils.  A voltage is induced 

in the coil by the time-varying magnetic field generated by the precessing spins, and 

discretely sampled by the scanner. The high frequency of the NMR signal (~300 

MHz for protons at 7 T) makes direct discrete sampling of the signal impractical due 

to the Nyquist limit.  To overcome this, the detected signal is demodulated with a 

reference signal, typically close to 𝜔0.  This signal is then passed through a phase 

sensitive detector (PSD), separating it into real and imaginary components (in and 

out of phase with the reference signal, respectively), before being digitised by an 

analog to digital converter (ADC) and recorded as a function of time.   

The magnitude of the signal, S, may then be calculated by combining the real (Re) 

and imaginary (Im) signals in quadrature so that  

 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = √𝑅𝑒2 + 𝐼𝑚2 

         Eq.  2.14 

 

The phase, 𝜙, of the signal relative to the reference frequency of the scanner may be 

calculated by taking the 4-quadrant arctangent of the ratio of the real and imaginary 

signals so that 

 

𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛4𝑞 (
𝐼𝑚

𝑅𝑒
) 

         Eq.  2.15 

 

The calculated phase is always mapped into the range +𝜋 to – 𝜋, leading to “phase 

wrapping” when the true phase of the signal goes beyond these limits, as discussed in 

section 4.3.1. 
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3 MAGNETIC RESONANCE 

IMAGING THEORY 

Magnetic resonance imaging (MRI) uses the principles of NMR to form an image of 

the inside of a body or sample of interest in a non-invasive manner.  The NMR signal 

is spatially encoded using magnetic field gradients, which allow images to be 

calculated from the measured signal.  Contrast in MRI images can be based on 

various properties of the sample, including the concentration of hydrogen nuclei, the 

different relaxation times described in Section 2.3, local signal phase, or other 

physical properties such as local magnetic susceptibility. 

Here we will consider MRI signal encoding using a basic gradient echo imaging 

sequence in both 2D and 3D.  This is followed by a discussion of the fast low-angle 

shot (FLASH), and the magnetisation prepared rapid gradient echo (MPRAGE) 

sequence. 

3.1 Slice Selection 

Almost all MRI sequences start with selective excitation of a slice or volume to be 

imaged.  A magnetic field gradient is first applied along the slice direction, for 

example a gradient 𝐺𝑧.  The spins in the volume of interest now have a spatially 

varying resonant frequency given by 

𝜔 = 𝛾(𝐵0 + 𝐺𝑧𝑧) 

         Eq.  3.1 

While this gradient is applied, a 90°  RF pulse can be applied at the resonant 

frequencies within the volume of interest, selectively exciting the spins in that slice.   
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  Figure 3-1 – Spatial encoding in the slice direction 

The bandwidth, ∆𝜔, and centre frequency, 𝜔 , of the RF pulse can be altered to 

change the thickness, ∆𝑧 = ∆𝜔 𝛾𝐺𝑧⁄  and position of the slice, 𝑧 = 𝜔 𝛾𝐺𝑧⁄ , as can be 

seen in Figure 3-1. 

3.2 The Gradient Echo 

As well as RF pulses, magnetic field gradients can be applied spatially across a 

sample volume to manipulate the behaviour of the spins.  An example of this is the 

1D gradient echo sequence [1] shown in Figure 3-2. 

In the gradient echo sequence, a 90˚ RF pulse is first applied to the sample, tipping 

the magnetization into the transverse plane.  The magnetisation then precesses at the 

Larmor frequency, as described by Eq.  2.1. 

A dephasing magnetic field gradient −𝐺𝑧 is then applied across the sample in the z-

direction, starting at time 𝑡1 and ending at time 𝑡2.  The spins’ precession frequency 

now varies spatially, and is given by 

𝜔(𝑧) = 𝛾(𝐵0 − 𝐺𝑧𝑧) 

         Eq.  3.2 
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and at a time 𝑡, the position-dependent phase of the spins in the rotating frame is 

given by 

𝜙𝐺(𝑧, 𝑡) =  −𝛾𝐺𝑧𝑧(𝑡 − 𝑡1)        (𝑡1 < 𝑡 < 𝑡2) 

         Eq.  3.3 

This defocussing causes a loss of phase coherence of the signal generated by the 

precession of the spins across the sample, attenuating the combined signal recorded 

by the scanner. 

A refocussing gradient +𝐺𝑧 is then applied across the sample between times 𝑡3 and 

𝑡4,  and the phase now evolves as  

𝜙𝐺(𝑧, 𝑡) =  𝛾𝐺𝑧𝑧(𝑡 − 𝑡3) − 𝛾𝐺𝑧𝑧(𝑡2 − 𝑡1)        (𝑡3 < 𝑡 < 𝑡4) 

         Eq.  3.4 

This refocussing causes an echo of the original FID, which peaks at a time TE, 

referred to as the echo time, and given by 

𝑇𝐸 =  𝑡3 + 𝑡2 − 𝑡1 

         Eq.  3.5 

with an amplitude 𝑆, given by 

𝑆 = 𝑆0𝑒−𝑇𝐸 𝑇2
∗⁄  

         Eq.  3.6 

Figure 3-2 – A simple 1D gradient echo sequence 
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where 𝑆0 is the amplitude of the initial FID.  The 𝑇2
∗ of a sample can be measured 

simply by repeating a simple gradient echo sequence while varying TE, and fitting an 

exponential function to the amplitude of the gradient echo vs echo time. 

 

3.3 Simple Gradient Echo Imaging 

3.3.1 Frequency Encoding 

In a gradient echo sequence, the signal is encoded in the frequency dimension by 

applying a magnetic field gradient to de-phase the FID, and then reversing the 

polarity of the gradient to induce a gradient echo.  The application of a gradient 𝐺𝑥 

causes the frequency of the signal to vary spatially as 

𝜔 = 𝛾(𝐵0 + 𝐺𝑥𝑥) 

         Eq.  3.7 

As a consequence of this frequency variation, the spins will acquire a phase offset, 

𝜙𝐺(𝑥, 𝑡), relative to the reference frequency of the scanner, given by 

𝜙𝐺(𝑥, 𝑡) = ∫ 𝛾𝐺𝑥𝑥𝑑𝑡
𝑡

0

=  𝛾𝐺𝑥𝑥𝑡 

         Eq.  3.8 

Ignoring relaxation terms, the complex signal generated by precession of the spins 

will then be described by  

𝑆 = ∫ 𝜌(𝑥)𝑒𝑥𝑝(−𝑖𝜙𝐺(𝑥, 𝑡))𝑑𝑥 = ∫ 𝜌(𝑥)𝑒𝑥𝑝(−𝑖𝛾𝐺𝑥𝑥𝑡)𝑑𝑥  

         Eq.  3.9 

where 𝜌(𝑥) is the spin density. 

Data given as a function of spatial position can be expressed as a function of spatial 

frequency by use of a Fourier transform.  The 1D Fourier transform is given by 

𝐹(𝑘) = 𝐹𝑇(𝑓(𝑥)) =  ∫ 𝑓(𝑥) 𝑒𝑥𝑝(−𝑖𝑘𝑥) 𝑑𝑥
∞

−∞

 

         Eq.  3.10 
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where 𝑓(𝑥)  is a function of real-space coordinate 𝑥,  and 𝐹(𝑘)  is a function of 

frequency-space coordinate 𝑘.  Frequency-space is commonly referred to as k-space.  

If we define the spatial frequency coordinate  

𝑘(𝐺, 𝑡) = 𝛾𝐺𝑡     𝑚−1 

         Eq.  3.11 

then the time-dependent signal 𝑆(𝑡) can be expressed as a function of 𝑘 as  

𝑆(𝑘) = ∫ 𝜌(𝑥) exp(−𝑖𝑘𝑥) 𝑑𝑥 

         Eq.  3.12 

 

Using Eq.  3.12, the spin density 𝜌(𝑥) can be recovered from the signal via an 

inverse Fourier transform, giving 

𝜌(𝑥) = 𝐹𝑇−1(𝑆(𝑘)) =
1

2𝜋
∫ 𝑆(𝑘) exp(𝑖𝑘𝑥) 𝑑𝑘 

         Eq.  3.13 

 

To perform this calculation, the signal from the excited slice must be recorded as a 

function of 𝑘.   

Figure 3-3 shows a simple gradient echo imaging sequence.  The signal is collected 

along a line in k-space in the frequency encoding direction between the value 

±𝑘𝑚𝑎𝑥.  The signal is first defocussed with a gradient −𝐺𝑥 applied for a time 𝑡1, 

after which 

𝑘 = 𝛾(−𝐺𝑥)𝑡1 =  −𝑘𝑚𝑎𝑥 

         Eq.  3.14 

The negative gradient is then switched off and a positive gradient 𝐺𝑥 applied for a 

time 2𝑡2, where 𝑡2 = 𝑡1.  The signal refocuses as a gradient echo, peaking after a 

time 𝑡2, at which point 𝑘 = 0, and reaches +𝑘𝑚𝑎𝑥 after 2𝑡2.  The time between the 

RF excitation pulse and the peak of the gradient echo is the echo time, TE. 
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As can be seen in Figure 3-3, the gradient echo peaks when the area underneath the 

positive gradient is equal to the area underneath the negative gradient.  In real MRI 

sequences, 𝑡1and 𝑡2  are not necessarily equal in length and the amplitudes of the 

positive and negative gradients may differ, however the integral of the applied 

gradient over time will determine TE. 

The signal is received by RF coils and transmitted to an analog-to-digital converter 

(ADC), which samples the signal at discrete time intervals of length ∆𝑡 as it traverses 

k-space during the application of the positive gradient, as shown in Figure 3-4.  The 

resolution of the sampling in k-space is related to the time between samples by  

∆𝑘 = 𝛾𝐺𝑥∆𝑡 

         Eq.  3.15 

The separation of points sampled in k-space is, in turn, related to the field of view 

(FOV) in real space by 

𝐹𝑂𝑉𝑥 =
2𝜋

∆𝑘𝑥
=

2𝜋

𝛾𝐺𝑥∆𝑡
 

         Eq.  3.16 

Figure 3-3 - A simple 1D gradient echo with frequency encoding in the x-direction 
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The resolution in real space is inversely proportional to the field of view in k-space.  

If 𝐹𝑂𝑉𝑘 = 2𝑘𝑚𝑎𝑥, 

∆𝑥 =
𝜋

𝑘𝑥𝑚𝑎𝑥
=

2𝜋

𝛾𝐺𝑥𝑇
 

         Eq.  3.17 

where 𝑇 = 2𝑡2  is the total time over which the signal is sampled by the ADC.  

Following sampling of the required amount of k-space, the recorded signal 𝑆(𝑘) can 

be used to calculate the spin density 𝜌(𝑥) using a discrete Fourier transform Eq.  

3.13. 

3.3.2 Phase Encoding 

To create a 2D image, rather than a 1D profile of spin density across the excited 

slice, the signal must also be encoded in a second spatial dimension.  This is the 

phase encoding dimension, considered here to be in the y-direction of the laboratory 

frame. 

When 2D encoding is applied, a grid of points is sampled in k-space, instead of a 

single line in the frequency encoding direction.  To achieve this, a second 

defocussing gradient 𝐺𝑦  is applied at the same time as 𝐺𝑥 .  This adds a second 

dimension to 𝑘, which may now be considered to consist of two k-space coordinates 

giving 𝐤 = (𝑘𝑥, 𝑘𝑦), and so the signal becomes a function 𝑆(𝐤) = 𝑆(𝑘𝑥, 𝑘𝑦).  The 

phase encoding gradient is only applied for a time T during the dephasing of the 

Figure 3-4 – Signal read-out trajectory in k-space for the 

sequence shown in Figure 3-3 
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signal in the read direction, and is not then reversed, leaving a fixed displacement of 

the k-space coordinate 𝑘𝑦.  The signal is then sampled between (±𝑘𝑥, 𝑘𝑦), as shown 

in Figure 3-5.  The process is repeated 𝑁 times to sample the desired range of k-

space, with the amplitude of 𝐺𝑦 changed by ∆𝐺𝑦 between for each acquisition, with a 

repetition time TR separating the 𝑛𝑡ℎ and (𝑛 + 1)𝑡ℎ acquisition sequences.  In this 

example we assume that TR ≫ 𝑇1 , allowing full recovery of the longitudinal 

magnetisation and full loss of transverse magnetisation between excitations.  The 

FOV and spatial resolution in the phase encoding direction are then related to the 

FOV and resolution of k-space by 

𝐹𝑂𝑉𝑦 =
2𝜋

∆𝑘𝑦
=

2𝜋

𝛾𝐺𝑦𝑇
 

         Eq.  3.18 

and  

∆𝑦 =
𝜋

𝑘𝑦𝑚𝑎𝑥
=

2𝜋

𝛾𝐺𝑦𝑚𝑎𝑥
𝑇

     , 

         Eq.  3.19 

where 𝐺𝑦𝑚𝑎𝑥
 is the largest positive value of the phase encode gradient. 

A 2D Fourier transform can then be applied to the 2D k-space representation of the 

signal to generate a 2D MRI image.  A simple 2D gradient echo sequence is shown 

in Figure 3-6. 

3.3.3 3D Image Encoding 

In most real-world applications of MRI it is typical to want to acquire a number of 

2D images covering a 3D volume of interest.  One way to achieve this is to repeat a 

two dimensional imaging sequences while using selective excitation with varying 

frequency offsets to image different individual slices. 

Alternatively, the entire volume may be excited and k-space sampled in 3D by the 

addition of a second phase encoding gradient in the slice direction.  K-space is then 

sampled line-by-line in the frequency encoding direction, with phase encoding 

gradients 𝐺𝑦  and/or 𝐺𝑧  being varied between each repetition of the acquisition 

sequence.  A simple 3D gradient echo sequence is shown in Figure 3-7. 
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Figure 3-6 - A simple 2D gradient echo sequence with frequency encoding 

in the x-direction and phase encoding in the y-direction 

Figure 3-5 – Signal trajectory in k-space for one TR period of the 

sequence shown in Figure 3-6 
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3.4 Controlling Contrast and Accelerating Imaging 

In Sections 3.1 and 3.2 a method was described for the formation of an MR image 

using a simple gradient echo sequence.  In practice, MRI pulse sequences are more 

complex, accounting for signal relaxation (and how this can be exploited to change 

the contrast in the image), and the need for time-efficient image acquisition. 

3.4.1 Contrast in MRI images 

The utility of MRI as a medical imaging technique arises in part from the variety of 

mechanisms through which contrast in images may be manipulated, allowing the 

probing of many different tissue properties and the investigation of a wide range of 

disease pathologies.  In addition to measurement of the local proton density of tissue, 

 
Figure 3-7 – A simple 3D gradient echo sequence with frequency encoding in the 

x-direction and phase encoding in the y-direction and z-direction 
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MR images may be weighted by, or used to measure quantitatively, the signal 

relaxation parameters 𝑇1 , 𝑇2 , and 𝑇2
∗ .  These parameters are affected by tissue 

properties such as iron content, myelination, uptake of contrast agents, and vary 

strongly between tissue types and between healthy and diseased or damaged tissue.  

The relaxation parameters for grey and white matter in the brain, measured at 7 T 

(the field strength at which in vivo data were acquired for the work presented in 

Chapter 5), are shown in Table 1.  Other factors affecting contrast include flow, 

magnetization transfer, and diffusion [1]. 

 

 𝑻𝟏 (ms)[2] 𝑻𝟐 (ms)[3] 𝑻𝟐
∗  (ms)[4] 

Grey matter 1940 ± 150  ~45 ± ~10  33 ± 1  

White matter 1130 ± 100  ~45 ± ~10  27 ± 1  

Table 1 – Relaxation times in the brain at 7 Tesla [2-4] 

 

In a simple 90° flip angle gradient echo imaging sequence, the contrast between two 

tissue types (A and B) is given by [1] 

 

 

𝐶𝐴𝐵 = 𝑆𝐴(𝑇𝐸) − 𝑆𝐵(𝑇𝐸) 

        = 𝜌0𝐴
(1 − 𝑒−𝑇𝑅 𝑇1𝐴

⁄ )𝑒−𝑇𝐸 𝑇2𝐴
∗⁄ − 𝜌0𝐵

(1 − 𝑒−𝑇𝑅 𝑇1𝐵
⁄ )𝑒−𝑇𝐸 𝑇2𝐵

∗⁄      , 

         Eq.  3.20 

 

where 𝑆𝐴  is the signal from tissue A, 𝑆𝐵  is the signal from tissue B, and 𝜌0𝐴
 and 

𝜌0𝐵
are their respective proton densities.  Appropriate values of TR and TE can then 

be selected to maximise or minimise the influence of the 𝑇1 and 𝑇2
∗ decay terms as 

desired.  Noting that when 𝑥 ≪ 1, 𝑒−𝑥 ≈ (1 − 𝑥), and when 𝑥 ≫ 1, 𝑒−𝑥 ≈ 0, it can 

be seen from Eq.  3.20 that to maximise proton density, 𝑇1, or 𝑇2
∗-based contrast, TR 

and TE values should be chosen as shown in Table 2. 
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Type of contrast TR TE 

Spin density As long as possible As short as possible 

𝑇1 − 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑  Of the order of the 𝑇1 values As short as possible 

𝑇2 − 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑  As long as possible Of the order of the 𝑇2 values 

𝑇2
∗ − 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑  As long as possible Of the order of the 𝑇2

∗ values 

Table 2 – Guidelines for generating tissue contrast [1] 

In addition to the appropriate selection of TR and TE values, 𝑇1 contrast may be 

further enhanced by the inclusion of magnetization preparation steps prior to the 

excitation and image acquisition.  Such techniques are discussed in Section 3.4.6.  If 

𝑇2-weighting is desired, a simple spin echo sequence may be used in place of the 

gradient echo sequence described here.  In a simple spin echo sequence, the 

refocusing gradient in the read direction in the gradient echo sequence is replaced by 

an RF pulse rotating the magnetization by 180° in the transverse plane, causing 

refoucussing of the signal component lost to T2’ effects.  TR and TE chosen as 

shown in Table 2 [1]. 

3.4.2 Accelerated Imaging 

In both clinical and research settings, minimising the duration of imaging sequences 

is essential to ensure both the comfort and compliance of the subject, and to make 

efficient use of available scanner time which may be in considerable demand.  While 

the example of the simple gradient echo provides a convenient illustration of the 

important principles of MR image acquisition and contrast, such a sequence would 

be prohibitively long in duration in practice.  For example, to acquire a 3D 𝑇2
∗-

weighted image using a simple gradient echo with a 90° flip angle, 200 × 200 ×

100 mm field of view, and 0.5 mm isotropic resolution, a TR of 10 s (~5𝑇1) [2] 

might be chosen to maximise the recovery of the longitudinal magnetisation.  Using 

Eq.  3.18 and Eq.  3.19 we find that such a scan would require the acquisition of 20 

000 lines in k-space, giving a total scan time of over 273 hours. 

To overcome such excessive acquisition times, various adjustments can be made to 

the acquisition sequence to significantly reduce the time required.  For example, a 

technique called echo planar imaging (EPI) [5, 6, 27, 28] allows the rapid acquisition 
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of entire planes of k-space.  In the work presented in this thesis, 𝑇2
∗-weighted images 

were acquired using an accelerated gradient echo sequence known as a spoiled fast 

field echo (FFE) or fast low-angle shot (FLASH) [7]. 

3.4.3 Echo Planar Imaging 

In echo planar imaging, all lines of k-space are acquired in a single TR period. [5, 8, 

27, 30]In the same manner as the simple 2D gradient echo described above, an EPI 

sequence begins with a selective excitation of a slice of the object under 

examination.  Read and phase encoding gradient echoes de-phase the FID, and the 

read gradient is reversed and ADC activated to sample a line of k-space.  In EPI, 

however, the readout is followed by the application of a short pulse or ‘blip’ of a 

gradient in the phase encode direction, which moves the k-space coordinate by ∆𝑘𝑦.  

This is followed by a reversal of the read gradient.  The latter causes a formation of a 

subsequent echo, which allows a read-out of the following line of k-space.  This step 

is then repeated until the whole of k-space has been sampled, as shown in Figure 3-8, 

greatly reducing the time required to acquire an image.  The echo time is defined by 

the time where the centre of k-space is sampled.  A schematic representation of an 

EPI sequence is shown in Figure 3-9.  While EPI offers significant time savings, this 

is achieved at the cost of reduced SNR, and increased distortions due to susceptibility 

artefacts [9], as well signal dropout in regions surrounding strong susceptibility 

sources such as the sinuses, where the rapidly varying magnetic field causes rapid 

T2
* decay. 

Figure 3-8 – Signal 

trajectory in k-space for an 

EPI sequence, as shown in 

Figure 3-9 
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3.4.4 FLASH – Reducing Flip Angle and TR 

The major time constraint of the simple gradient echo sequence is the length of time, 

TR, required for the longitudinal magnetisation to recover fully following a 90° 

excitation pulse.  The FLASH sequence [7] utilises 𝐵1 pulses with a flip angle that is 

significantly less than 90°, and a TR significantly shorter than 𝑇1 , meaning that 

subsequent excitation pulses are applied before the longitudinal magnetisation has 

fully recovered. 

As with the simple gradient echo, the signal strength in the FLASH sequence is 

proportional to the transverse magnetisation.  If the longitudinal magnetisation before 

the 𝑛𝑡ℎ RF pulse is 𝑀𝑧(𝑇𝑅)𝑛−1, the transverse magnetisation at a time 𝑡 following 

the 𝑛𝑡ℎ RF pulse, 𝑀𝑥𝑦(𝑇𝑅)𝑛 is  

𝑀𝑥𝑦(𝑡)𝑛 = 𝑀𝑧(𝑇𝑅)𝑛−1 sin(𝜃)  𝑒𝑥𝑝 (−
𝑡

𝑇2
∗)     , 

         Eq.  3.21 

where 𝜃 is the flip angle. The evolution of the longitudinal magnetisation 𝑀𝑧(𝑡)𝑛 

during the same time period is given by the solution to the Bloch equation 

Figure 3-9 – A simple EPI pulse sequence 
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𝑀𝑧(𝑡)𝑛 = 𝑀0 (1 − 𝑒𝑥𝑝 (−
𝑡

𝑇1
)) + 𝑀𝑧(𝑇𝑅)𝑛−1 cos(𝜃) 𝑒𝑥𝑝 (−

𝑡

𝑇1
)     . 

         Eq.  3.22 

 

After a number of TRs, the longitudinal and transverse magnetisations reach a 

dynamic steady state, where the signal is the same at corresponding time points in 

each TR period so that the longitudinal magnetisation at the beginning and end of 

𝑇𝑅𝑛  is equal to that at the beginning and end of 𝑇𝑅𝑛−1 .  In the steady state, 

𝑀𝑧(𝑇𝑅)𝑛 = 𝑀𝑧(𝑇𝑅)𝑛−1 = 𝑀𝑧𝑒
, and Eq.  3.22 becomes  

 

𝑀𝑧𝑒
= 𝑀0 (1 − 𝑒𝑥𝑝 (−

𝑇𝑅

𝑇1
)) + 𝑀𝑧𝑒

cos(𝜃) 𝑒𝑥𝑝 (−
𝑇𝑅

𝑇1
)     . 

         Eq.  3.23 

 

Using Eq.  3.23, the steady-state longitudinal magnetisation can be expressed as 

 

𝑀𝑧𝑒
=

𝑀0 (1 − 𝑒𝑥𝑝 (−
𝑇𝑅
𝑇1

))

(1 − cos(𝜃) 𝑒𝑥𝑝 (−
𝑇𝑅
𝑇1

))

     . 

         Eq.  3.24 

The signal strength, which depends on the amount of transverse magnetization for a 

spoiled 3D FLASH sequence, with echo time TE, can therefore be expressed as  

 

𝑆 ∝ 𝜌0 sin(𝜃)

(1 − 𝑒𝑥𝑝 (−
𝑇𝑅
𝑇1

))

(1 − cos(𝜃) 𝑒𝑥𝑝 (−
𝑇𝑅
𝑇1

))

𝑒𝑥𝑝 (−
𝑇𝐸

𝑇2
∗ )     , 

         Eq.  3.25 
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showing that the signal strength is governed by the ratios 𝑇𝑅 𝑇1⁄  and  𝑇𝐸 𝑇𝟐
∗⁄ , and the 

flip angle 𝜃.  The flip angle at which the peak signal is achieved is known as the 

Ernst angle, as shown in Figure 3-10.  The Ernst angle is related to the TR and 𝑇1 by 

cos 𝜃 = 𝑒𝑥𝑝(−𝑇𝑅 𝑇1⁄ ).  As can be seen in Figure 3-10, maximum signal is achieved 

with lower flip angles as 𝑇𝑅 𝑇1⁄  reduces, however the maximum absolute signal 

possible increases as 𝑇𝑅 𝑇1⁄  increases. 

During a steady-state gradient echo acquisition with 𝑇𝑅 ≤ 𝑇2, additional steps must 

also be taken to reduce as far as possible the remaining transverse magnetisation at 

the end of each TR period, and to avoid constructive addition of transverse 

magnetisation from the (𝑛 − 1)𝑡ℎ excitation to that generated by the 𝑛𝑡ℎ excitation.  

Failure to do so can lead to imaging artefacts due to stimulated echoes.  Such steps 

are known as ‘spoiling mechanisms’, and can be divided into gradient spoiling and 

RF spoiling mechanisms.   

In the FLASH sequence, both gradient and RF spoiling are generally applied.  The 

gradient spoiling involves the application of ‘crushing’ gradients in the read and slice 

directions after signal read-out.  This is designed to dephase any remaining 

transverse magnetisation after readout.  In addition, RF spoiling is applied, whereby 

the phase of the 𝑛𝑡ℎ excitation pulse is incremented by 117° relative to that of the 

(𝑛 − 1)𝑡ℎ  pulse.  This value is chosen as it has been shown to result in optimal 

cancellation of unwanted transverse coherences [10], since it does not share integer 

multiples with 360° for low 𝑛 [11]. 

Once TR and 𝜃 have been chosen, balancing the need for adequate signal-to-noise 

ratio (SNR) against time constraints, TE may be chosen to achieve the balance 

between 𝑇1-weighting, which is most prominent at very short TE, and 𝑇2
∗ weighting, 

which is best seen when TE~𝑇2
∗ (~ 33 27⁄  ms in grey/white matter at 7T, see Table 

1 [4]). 

Figure 3-11 shows a schematic representation of the FLASH sequence, divided into 

sections a, b, c and d.  The slice select gradient and RF excitation pulse are shown in 

a, the frequency and phase encoding gradients in b, the readout gradients and 

gradient echo signal in c, and the gradient spoiling in d. 
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Figure 3-11 – The FLASH pulse sequence 

Figure 3-10 – Signal strength as a function of flip angle for varying values of 

𝑇𝑅 𝑇1⁄  
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3.4.5 Further Acceleration of FLASH Imaging: EPI Factors and Parallel 

Imaging 

In addition to the reduction in TR made possible by steady-state imaging sequences 

such as FLASH, further acceleration of image acquisition can be achieved through 

the use of EPI factors and parallel imaging. 

Gradient echo-based imaging sequences such as FLASH may be further accelerated 

by the acquisition of multiple lines of k-space during each TR period.  While full 

echo planar imaging involves the acquisition of an entire k-space plane in a single 

TR period, SNR and acquisition time can be balanced by collecting more than one 

line of k-space in a single TR period, but not extending this to a full EPI acquisition.  

The number of lines collected is often referred to as the EPI factor, and the imaging 

time will be reduced by this factor. 

Parallel imaging methods accelerate the acquisition of MR images by the systematic 

under-sampling of k-space in the phase encode direction while acquiring the data 

using an array of independent receiver channels, and subsequent reconstruction of a 

single corrected image from these under sampled data through the application of an 

appropriate algorithm [12].   

In the work presented in Chapter 2, sensitivity encoding (SENSE) [13] parallel 

imaging was used in the acquisition of the FLASH images.  SENSE utilises data 

acquired at a lower resolution in the phase encoding direction in k-space, which leads 

to aliasing in the resulting images from the individual receive channels.  In MR 

images, aliasing (also known as ‘ghosting’  or ‘wraparound’) is the projection of any 

signal-producing volume falling outside of the FOV of the image back into the 

opposite side of the image. Aliasing occurs due to the reduction of the image-space 

FOV due to the decrease in the k-space resolution (see Eq.  3.18) below the Nyquist 

limit, and is a consequence of the periodic nature of the Fourier transform [1].  The 

SENSE algorithm takes advantage of the known spatial sensitivity of each 

independent receiver channel, which must be measured for each subject or object 

through a separate reference scan, to create an unaliased image from a weighted 

combination of the individual aliased images. 

In the work presented in Chapter 2, data were acquired at 0.5 mm resolution using a 

FLASH sequence with TR = 150 ms, with an EPI factor of 3 and a SENSE factor of 

2.  For the same 200 × 200 × 100 mm ROI considered at the beginning of this 
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section, the acquisition time would be reduced from over 273 hours for the simple 90 

degree gradient echo sequence to 8.3 minutes using these parameters. 

3.4.6 T1-weighted Imaging 

𝑇1-weighting is commonly used in anatomical imaging of the brain as it can offer 

good contrast between grey matter (GM), white matter (WM), and cerebrospinal 

fluid (CSF).  One method of generating strong 𝑇1-weighting is the combination of an 

inversion recovery sequence with a conventional gradient or spin-echo readout 

sequence.  A common 𝑇1-weighted imaging sequence is the magnetisation-prepared 

rapid-acquisition gradient echo (MPRAGE) [14]. 

3.4.6.1 Magnetisation-Prepared Rapid-Acquisition Gradient Echo (MPRAGE) 

Imaging 

A schematic of an MPRAGE sequence is shown in Figure 3-12.  A 180˚ inversion 

pulse is applied across the sample to invert the magnetisation from the +𝐳̂ to the −𝐳̂ 

direction.  The magnetisation then recovers according to Eq.  2.8, with the 

magnetisation in GM, WM, and CSF recovering at different rates, as shown in Figure 

3-13.  At a time 𝑇𝐼 after the inversion pulse a FLASH readout is used to acquire the 

𝑇1-weighted image.  𝑇𝐼 may be varied to generate optimum contrast between two 

tissue types, or to null the signal from one tissue, commonly CSF.  The echo time of 

the readout sequence is kept as short as possible to maximise 𝑇1-weighting, as shown 

in Table 2. 

MPRAGE images are sensitive only to the magnitude of the magnetisation in each 

voxel.  If  𝑇𝐼  is chosen such that GM and WM have magnetisations of equal 

magnitude but opposite polarity, there will be no contrast between them in the 

resulting image.  However, in voxels containing both GM and WM, signal loss will 

be observed where the contribution from the two magnetisations cancel, leading to a 

dark line artefact where regions of GM and WM meet.  This effect can be exploited 

using phase sensitive inversion recovery (PSIR) and null-point imaging [15, 16]. 

 



 Chapter 3: Magnetic Resonance Imaging Theory  

Matthew John Cronin - December 2015    35 

 

 

3.5 T1, T2 and T2* Measurements Using MRI 

Conventional MRI is typically based on mapping the magnitude of the signal from 

each voxel in the ROI, measured at fixed point in time.  While the relative signal 

levels between voxels may be weighted by or manipulated, based on sensitivity to 

the relaxation times in different media, the absolute intensity of the final image is 

often arbitrary, varying between subjects, with changes in imaging parameters, and 

between scanners.  Quantitative MRI techniques, in theory, create images whose 

intensity and contrast is based on quantitative measures of local variations in some 

property of the media under investigation.   

Figure 3-12 – A schematic representation of an MPRAGE imaging sequence 
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Figure 3-13 – Longitudinal recovery of the magnetisation in grey matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF)* at 1.5 T 

*The CSF T1 used here related to a field strength of 1.5 T, as no published value for 

T1 in CSF at 7 T was available.  However, T1 in CSF varies very little with field 

strength relative to GM and WM. 

 

Such measurement allows direct quantitative comparison between subjects, and the 

drawing of inferences regarding sub-voxel level tissue composition and structure.   

One group of parameters that are commonly quantified using MR are the relaxation 

times 𝑇1 , 𝑇2 , and 𝑇2
∗  (often expressed as relaxation rates, which are simply the 

inverse of these times).  These values in turn may be linked to factors such as iron 

and myelin content in tissues, oxygenation in blood, and diffusion. 

𝑇1 , 𝑇2 , and 𝑇2
∗ -weighted images can be acquired through the use of inversion 

recovery, spin echo, and gradient echo based sequences respectively.  In such 

sequences, 𝑇1-weighting is controlled by varying the inversion time TI, and 𝑇2- and 

𝑇2
∗-weighting are determined by the echo time TE.  These relaxation times can be 

calculated by the acquisition of multiple images while varying TI or TE, and voxel-

wise fitting of the resulting images to Eq. 2.10 and Eq.  3.6. 
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Figures 3-14, 3-15 and 3-16 show examples of T2
*-weighted magnitude images and 

quantitative R2
* maps of a post-mortem chimpanzee brain.  Data were acquired at 0.3 

mm isotropic resolution using a multi-echo FLASH sequence at 7 T using a 32-

channel RF receive coil (TE=8.0/21.5/35.0 ms, TR=200 ms, FOV=75x134x134 

mm3, scan duration = 6 hours and 20 minutes).  The R2
* map was calculated from the 

multi echo data in MATLAB.    These images were acquired for collaborators at the 

University of Nottingham School of Veterinary Medicine and Science, who were 

interested in investigating changes in iron levels in the deep grey matter during aging 

in captive chimpanzees.  Unfortunately this project did not proceed due to the small 

number of samples available, and the poor condition of some of these samples.  

Theses figures, however, show striking examples of the post-mortem image quality 

achievable at 7 T with standard hardware for in vivo human imaging. 

Darker areas in the T2
*-weighted magnitude appear bright in the quantitative R2

* 

maps, with the iron rich red nuclei appearing clearly as dark circles in the T2
*-

weighted image and bright circles in the R2
* map in Figure 3-16.  Field perturbations 

due to paramagnetic iron cause signal dephasing which results in a shorter T2
* and 

therefore higher R2
*. 

 

 



Investigating the effects of microstructure and magnetic susceptibility in MRI 

Matthew John Cronin - December 2015    38 

 

Figure 3-14 – Transverse T2
*-weighted magnitude (top) and quantitative R2

* 

(bottom) images of a post-mortem chimpanzee brain.  Three magnitude images were 

acquired using a multi-echo FLASH sequence, at 0.3 mm isotropic resolution, with a 

total scan duration of 380 minutes 
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Figure 3-15 – Sagittal T2
*-weighted magnitude (top) and quantitative R2

* (bottom) 

images of a post-mortem chimpanzee brain.  Three magnitude images were acquired 

using a multi-echo FLASH sequence, at 0.3 mm isotropic resolution, with a total 

scan duration of 380 minutes 
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Figure 3-16 – Coronal T2
*-weighted magnitude (top) and quantitative R2

* (bottom) 

images of a post-mortem chimpanzee brain.  Three magnitude images were acquired 

using a multi-echo FLASH sequence, at 0.3 mm isotropic resolution, with a total 

scan duration of 380 minutes.  The iron-rich red nuclei can be clearly seen as dark 

(T2
*-wt.) or bright (R2

* map) circles in the lower mid section of the images. 
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4 QUANTITATIVE 

SUSCEPTIBILITY MAPPING 

In addition to the quantification of relaxation times through measurement of the 

decay of MR signal magnitude, novel contrast and additional quantitative 

measurements can be made by considering the signal phase, both in combination 

with the magnitude signal and on its own.  Signal phase is increasingly of interest as 

variations in signal phase are linked to local variations in the 𝐵0 field caused by the 

magnetisation of molecules within the sample with non-zero magnetic susceptibility.  

As well as simple phase imaging, techniques such as susceptibility-weighted imaging 

(SWI) [1], quantitative susceptibility mapping (QSM) [2-10], and frequency 

difference mapping [11] have become prominent in the investigation of a number of 

diseases and attempts to probe sub voxel level microstructure. 

In SWI, T2
*-weighted magnitude images are multiplied by a weighted mask derived 

from the phase data.  Phase data is unwrapped and high-pass filtered using a high-

pass filtered using a Hanning window, and a mask generated which varies between 0 

and 1, with positive phase values being set to 1, and values from –π to 0 varying 

from 0 to 1, either linearly or by a power function.  These images highlight areas of 

high susceptibility such as veins, iron stores, and haemorrhages [1].  While SWI 

processing is simple and its results can be sued to highlight clinically important 

features, it limited by its reliance on non-local, orientation dependent phase effects, 

and as such SWI contrast does not correlate with local magnetic susceptibility. 
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Quantitative susceptibility mapping (QSM) refers to a number of techniques used to 

map the variation in the relative magnetic susceptibility within an object based on the 

measured MR signal phase.  Such measurements are particularly useful in biological 

tissue such as the brain, as magnetic susceptibility is directly linked to iron and 

myelin content [6, 12-14], and QSM is increasingly used in the study of 

neurodegenerative conditions such as multiple sclerosis (MS), where iron deposition 

and demyelination are believed to play important roles [15-20].  QSM processing is 

more complex than SWI processing, but QSM images offer the advantage of 

quantitative, local contrast, directly linked to the local magnetic susceptibility, and so 

inferences may be drawn about local tissue content. 

4.1 Susceptibility and Magnetisation 

When a molecule is placed in a magnetic field, a magnetic moment is induced in it, 

which is either parallel or antiparallel to the external field.  If the net spin and orbital 

angular momentum of the electrons in a molecule both cancel, the molecule has no 

intrinsic magnetic moment.  However when an external magnetic field is applied to 

the molecule, precession of the orbital moments is induced, producing a magnetic 

moment which is opposed to the applied field [21].  This effect is known as 

diamagnetism.  If the net spin and orbital angular momentums of the electrons do not 

cancel both then molecules possess an intrinsic magnetic moment which is greater 

than the induced diamagnetic moment, and when exposed to a magnetic field on 

average adopt a least-energy state with the dipoles aligned with the applied field.  

This effect is known as paramagnetism.  The net magnetic moment per unit volume 

of a material is known as the magnetisation, 𝐌.  The magnetisation is quantified by 

an intrinsic property of the material known as the magnetic susceptibility, 𝜒, and is 

related to an the applied magnetic field by 

𝐌 = 𝜒𝐇     , 

         Eq.  4.1 

where 𝐇 is the magnetic field expressed in Am−1.  𝜒 is positive for paramagnetic 

materials and negative for diamagnetic materials.  A magnetised material will 

produce its own magnetic field which adds linearly to the externally applied field 

causing spatial field perturbations.   
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In magnetostatics, the magnetic field 𝐇  and the magnetic induction 𝐁  follow the 

Maxwell relations  

𝛁 ∙ 𝐁 = 0        

             Eq.  4.2 

and 

𝛁 × 𝐇 = 𝐉     , 

         Eq.  4.3 

where  𝐉 is the current density.  In the absence of current, Eq. 4.3 becomes 

𝛁 × 𝐇 = 0     , 

         Eq.  4.4 

and 𝐇 may be defined in terms of a magnetic scalar potential Φ(𝐫), such that  

𝐇 = −𝛁Φ(𝐫)     . 

         Eq.  4.5 

The magnetic field and magnetic induction are related by 𝐁 = 𝜇0(𝐇 + 𝐌), and so Eq 

4.2 may be written as  

𝛁 ∙ 𝐁 = 𝛁 ∙ 𝜇0(𝐇 + 𝐌) = 0     . 

         Eq.  4.6 

Therefore, using Eq. 4.5, 

𝛁𝟐Φ(𝐫) = −𝛁 ∙ 𝐌 = −𝜌𝑀     , 

         Eq.  4.7 

where 𝜌𝑀 = −𝛁 ∙ 𝐌 is the effective magnetic charge density.  The solution for Φ(𝐫) 

in the absence of boundary surfaces is given by [21] 

Φ(𝐫) =  −
1

4𝜋
 ∫

𝛁′ ∙ 𝐌(𝐫′)

|𝐫 − 𝐫′|
𝑑3𝑟′

𝑉

     . 

         Eq.  4.8 
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If the magnetization distribution contains boundary surfaces, these surfaces may be 

idealized as discontinuities in the magnetization distribution, and boundary 

conditions imposed to find Φ(𝐫) .  Application of the divergence in a Gaussian 

pillbox at the surface gives an effective surface charge density of [21] 

𝜎𝑀 = 𝐧 ∙ 𝐌     , 

         Eq.  4.9 

where 𝐧 is a unit vector normal to the surface directed outward.  In the presence of 

such boundary surfaces, Eq. 4.9 becomes 

Φ(𝐫) =  −
1

4𝜋
 ∫

𝛁′ ∙ 𝐌(𝐫′)

|𝐫 − 𝐫′|
𝑑3𝑟′

𝑉

+
1

4𝜋
 ∮

𝐧′ ∙ 𝐌(𝐫′)

|𝐫 − 𝐫′|
𝑑𝑆′

𝑆

 

         Eq.  4.10 

Eq.  4.10 may be solved analytically for uniformly magnetised objects whose 

geometry fits with a particular coordinate system such as spherical and cylindrical 

polar coordinates, or ellipsoidal coordinates, allowing easy calculation of the 

magnetic field 𝐇 or the magnetic induction 𝐁, which are related by 𝐁 = 𝜇0𝐇 + 𝐌, 

where 𝜇0 is the permeability of free space.  However, outside of these special cases 

the field perturbation must be calculated numerically.  Direct calculation of 

numerical solutions to Eq.  4.10 over any significant number of points is 

computationally intensive, and impractical or impossible in many cases. 

4.2 Fourier-based Calculation of Magnetic Field Perturbations 

Several methods have been proposed to calculate field perturbations due to 

heterogeneous magnetic susceptibility distributions.  These include iterative methods 

[22-26] and convolution based methods [27-30].  The Fourier-based method 

introduced by Marques and Bowtell [29] provides a fast, computationally efficient 

means of calculating the magnetic field perturbation due to an arbitrary distribution 

of magnetic susceptibility.  This method directly includes the sphere of Lorentz 

correction [31-33].  The sphere of Lorentz is a theoretical construction in which each 

nucleus is imagined to be at the centre of a sphere of zero susceptibility outside of 

which the surrounding molecules form a homogenous medium with constant 
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magnetic susceptibility, and is required to accurately calculate the magnetic field 

experienced by the nucleus. 

If a strong magnetic field 𝐵0𝐳̂ is applied to an object with spatially varying magnetic 

susceptibility 𝜒(𝐫), the z-component of the induced magnetisation is given by 

𝑀𝑧(𝐫) = 𝜒(𝐫)
𝐵0

𝜇0𝜇𝑟(𝐫)
= 𝜒(𝐫)

𝐵0

𝜇0(1 + 𝜒(𝐫))
≈ 𝜒(𝐫)

𝐵0

𝜇0
 

         Eq.  4.11 

where 𝜇0 is the permeability of free space, 𝜇𝑟 = (1 + 𝜒) is the permeability of the 

medium, and 𝜒 ≪ 1 .  Each element of the magnetization distribution creates a 

dipolar field perturbation.  The total field perturbation at a point 𝐫 is given by the 

sum of these contributions.  In real space, this is a complex expression, given by [29] 

∆𝐁(𝐫) =
𝜇0

4𝜋
∫

1

|𝐫 − 𝐫′|3
× (3

𝐌(𝐫′) ∙ (𝐫 − 𝐫′)

|𝐫 − 𝐫′|2
(𝐫 − 𝐫′) − 𝐌(𝐫′))𝑑3𝐫′ 

         Eq.  4.12 

The expression for the z-component of the field, Δ𝐵𝑧 , becomes simple and local 

when expressed in k-space, where [29] 

Δ𝐵𝑧(𝐤) = −𝜇0 (cos2(𝛽) −
1

3
)𝑀𝑧(𝐤) 

         Eq.  4.13 

where 𝐤 is the k-space coordinate, 𝛽 is the angle between the main magnetic field 

and 𝐤, and 𝑀𝑧(𝐤) is the 3D Fourier transforms of 𝑀𝑧(𝐫).  We can consequently 

define a dipole kernel 𝑑(𝐤) 

𝑑(𝒌) = (3 cos2(𝛽) − 1) = (3
𝑘𝑧

2

𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2
− 1)  

         Eq.  4.14 

such that 

∆𝐵𝑧(𝐤) =
𝜇0

3
𝑀𝑧(𝐤) ∙ 𝑑(𝐤)    . 

         Eq.  4.15 
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Figure 4-2 – The dipole kernel defined over a 1000 mm-3 matrix in k-space 

 

B0 

Figure 4-1 – A unit dipole kernel defined over a (200 mm)3 matrix in real space 
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∆𝐵𝑧(𝐫) may then be calculated using an inverse Fourier transform.  Eq.  4.14 is 

equivalent to the Fourier transform of a unit dipole in real space, as shown in Figures 

4-1 and 4-2 .   

This method can be validated by the comparison of its result with structures for 

which the analytical form of the field perturbation is known.  Figures 4-3, 4-4 and 4-

5 show the field perturbation due to a sphere with a magnetic susceptibility of -9 ppm 

residing in a vacuum and exposed to a z-directed magnetic field.  The sagittal images 

show a close correspondence between the analytical and Fourier forms of the field 

perturbation, with a slight distortion at the edge of the image due to the periodic 

nature of the Fourier transform.  This distortion can be made insignificant by 

ensuring that the size of the matrix is sufficiently large relative to the perturbing 

structures.  In real world use, this can be achieved by zero-padding the image data 

before performing calculation involving Fourier transforms.  The 1D profile through 

the image also shows slight deviations of the Fourier model from the analytical 

solution at the boundary of the sphere, caused by truncation and discretisation effects 

inherent in the discrete fast Fourier transform used in the calculation [29]. 

Quantitative susceptibility mapping is based upon the inversion of Eq.  4.13 to map 

the distribution of magnetic susceptibilities in an object based on a measured field 

perturbation. 

 

 

 

 

Figure 4-3 – Sagittal image of the analytical form of the field perturbation in Tesla 

due to a spherical perturber with a 20 voxel radius and  𝜒 = −9 ppm  exposed to a 

𝐵0 field of 7 T. 
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Figure 4-4 – Sagittal image of the field perturbation in Tesla due to a 

spherical perturber with a 20 voxel radius and  𝜒 = −9 ppm  exposed to a 

𝐵0 field of 7 T, calculated using the Fourier calculation in Eq.  4.15. 

Figure 4-5 – 1D profile through analytic and numerically calculated field 

perturbations due to a sphere with 𝜒 = −9 ppm and 𝐵0 = 7 T 
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4.3 Calculation of Field Perturbations from MRI Phase Data 

Modern MRI systems increasingly use multiple receiver coils to sample the MR 

signal in order to increase SNR throughout the image and accelerate image 

acquisition using parallel imaging techniques.  Prior to further processing, the phase 

signal from each coil must be properly combined to form a single image.  This is 

optimally performed by weighting coil values in each voxel by the complex 

sensitivity of the coil at that position.  Accurate sensitivity maps may be acquired 

dividing the complex data acquired using each coil with complex data acquired using 

a volume reference coil [34]  For the data presented in this thesis, coil sensitivity 

maps were acquired as part of all imaging protocols and data from each coil was 

combined automatically by the scanner. 

In order to invert Eq.  4.13 and calculate 𝜒(𝐫), it is necessary to measure the field 

perturbation ∆𝐵𝑧(𝐫) caused by this distribution.  While the relationship between MR 

phase accumulation and the local magnetic field is presumed to be linear for the 

purposes of QSM, measurement of ∆𝐵𝑧(𝐫) is confounded by the presence of large 

field perturbations caused by susceptibility variations outside of the object being 

imaged, and by the wrapping of the phase recorded by the scanner.  In order to 

overcome these issues, the phase must be unwrapped, filtered to remove background 

fields, and divided by TE to yield a frequency map, which can then be related to the 

local magnetic field by 𝜔 = 𝛾𝐵𝑜. 

4.3.1 Unwrapping MRI Phase Data 

A number of algorithms exist for the unwrapping of MRI phase data.  Readily 

available software, such as PRELUDE in FSL [35], identifies regions with similar 

phase values and merges them by adding or subtracting integer multiples of 2𝜋 at the 

boundaries where wraps occur.  This method is robust, however high-resolution MRI 

datasets may take several hours to process [36].   

For the work presented in this thesis, a Laplacian-based phase unwrapping algorithm 

was used [6, 37].  This algorithm exploits the inherent insensitivity of the Laplacian 

operator to phase wraps, allowing the expression of the unwrapped phase purely in 

terms of the wrapped phase.  It is computationally efficient, taking ~ 4 s to unwrap a 

384x384x170 element volume on a desktop computer (3.40 GHz Intel Core i7-3770 

CPU, 8.00 GB RAM, Windows 7 64-bit operating system). 
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The true phase, 𝜙(𝐫) , of a continuous function wrapped about ±𝜋  at a point 𝐫 

relative to the origin of coordinates may be expressed in terms of the wrapped phase 

𝜙𝑤(𝐫), calculated from the real and imaginary signals recorded by the ADC and an 

integer 𝑛(𝐫) as 

𝜙(𝐫) = 𝜙𝑤(𝐫) + 2𝜋𝑛(𝐫) 

         Eq.  4.16 

Applying the Laplacian operator to both sides of Eq.  4.16 and rearranging, 𝑛(𝐫) may 

be expressed as 

𝑛(𝐫) =
1

2𝜋
∇−2[∇2𝜙(𝐫) − ∇2𝜙𝑤(𝐫)] 

         Eq.  4.17 

Now we define a function 𝑃(𝐫) where 

𝑃(𝐫) = 𝑒𝑥𝑝(𝑖𝜙𝑤(𝐫)) = 𝑒𝑥𝑝(𝑖𝜙(𝐫) − 𝑖2𝜋𝑛(𝐫)) 

          =
𝑒𝑥𝑝(𝑖𝜙(𝐫))

𝑒𝑥𝑝(𝑖2𝜋𝑛(𝐫))
= 𝑒𝑥𝑝(𝑖𝜙(𝐫)) 

         Eq.  4.18 

First, considering a simple 1D wrapped function, 𝜙(𝐫) = 𝜙(𝑥), 𝜙𝑤(𝐫) = 𝜙𝑤(𝑥).  If 

𝑃(𝐫) = exp(𝑖𝜙(𝑥)) = exp (𝑖𝜙), then 

𝜕2

𝜕𝑥2

2

𝑃 =
𝜕2

𝜕𝑥2
exp(𝑖𝜙) =

𝜕2

𝜕𝑥2
(cos(𝜙) + 𝑖 sin(𝜙))

=  
𝜕

𝜕𝑥
(− sin(𝜙)

𝜕𝜙

𝜕𝑥
+ 𝑖 cos

𝜕𝜙

𝜕𝑥
)

= −
𝜕2𝜙

𝜕𝑥2
sin(𝜙) − cos(𝜙) (

𝜕𝜙

𝜕𝑥
)
2

+ 𝑖 cos(𝜙)
𝜕2𝜙

𝜕𝑥2

− 𝑖 sin(𝜙) (
𝜕𝜙

𝜕𝑥
)

2

 

 =  − (
𝜕𝜙

𝜕𝑥
)
2

(cos(𝜙) + 𝑖 sin(𝜙)) + 𝑖
𝜕2𝜙

𝜕𝑥2
(cos(𝜙) + 𝑖 sin(𝜙))

=  − (
𝜕𝜙

𝜕𝑥
)
2

exp(𝑖𝜙) + 𝑖
𝜕2𝜙

𝜕𝑥2
exp (𝑖𝜙) 

Eq.  4.19 



Investigating the effects of microstructure and magnetic susceptibility in MRI 

Matthew John Cronin - December 2015    52 

           

and we can also write 

1

𝑃
∇2𝑃 = −exp(−𝑖𝜙) (

𝜕𝜙

𝜕𝑥
)
2

exp(𝑖𝜙) + 𝑖exp(−𝑖𝜙)
𝜕2𝜙

𝜕𝑥2
exp(𝑖𝜙)

= (
𝜕𝜙

𝜕𝑥
)

2

+ 𝑖
𝜕2

𝜕𝑥2
𝜙   

         Eq.  4.20 

so that 

𝐼𝑚 [
1

𝑃
∇2𝑃] = ∇2𝜙     . 

         Eq.  4.21 

Now, if we express Eq.  4.20 and Eq.  4.21 in terms of trigonometric functions we 

find that 

1

𝑃
∇2𝑃 = (cos(𝜙) − 𝑖 sin(𝜙))(∇2 cos(𝜙) + ∇2𝑖 sin(𝜙))

= cos(𝜙) ∇2 cos(𝜙) + 𝑖 cos(𝜙) ∇2 sin(𝜙)

− 𝑖 sin(𝜙) ∇2 cos(𝜙) + sin(𝜙) ∇2 sin(𝜙) 

         Eq.  4.22 

and 

𝐼𝑚 [
1

𝑃
∇2𝑃] = cos(𝜙) ∇2 sin(𝜙) − sin(𝜙) ∇2 cos(𝜙)     . 

         Eq.  4.23 

Using Eq.  4.18, Eq.  4.21, and Eq.  4.23 we can express the Laplacian of the 

unwrapped function 𝜙 entirely as a function of the wrapped function 𝜙𝑤, giving 

∇2𝜙 = cos(𝜙𝑤) ∇2 sin(𝜙𝑤) − sin(𝜙𝑤) ∇2 cos(𝜙𝑤) 

         Eq.  4.24 

Although we initially considered 𝜙  to be a one-dimensional function of 𝑥 , these 

expressions also apply in two and three dimensions. 
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To unwrap MRI phase data using Eq.  4.24, we apply fast Fourier techniques 

exploiting the convolution theorem to apply the discrete Laplace operator, so that for 

arbitrary functions 𝑓 and 𝑔 

∇2𝑓 = −
4𝜋2

𝑁2
FFT−1 [|𝐤|𝟐FFT[𝑓]]   ;    ∇−2𝑔 = −

𝑁2

4𝜋2
FFT−1 [

FFT[𝑔]

|𝐤|2
] 

         Eq.  4.25 

Applying Eq.  4.25 to Eq.  4.24, we find that  

∇2𝜙 = −
4𝜋2

𝑁2
(cos(𝜙𝑤) FFT−1[|𝐤|2FFT[sin(𝜙𝑤)]]

− sin(𝜙𝑤) FFT−1[|𝐤|2FFT[cos(𝜙𝑤)]]) 

         Eq.  4.26 

and the unwrapped phase 𝜙 is then given by 

𝜙 = ∇−2∇2𝜙 = FFT−1 [
1

|𝐤|2
FFT [cos(𝜙𝑤) FFT−1[|𝐤|2FFT[sin(𝜙𝑤)]]

− sin(𝜙𝑤) FFT−1[|𝐤|2FFT[cos(𝜙𝑤)]]]] 

         Eq.  4.27 

4.3.2 Removing Background Fields from Unwrapped Phase Data 

In order to reconstruct a map of the susceptibility within the object being imaged, it 

is necessary to remove field perturbations generated by external sources.  In the 

human brain, these include sources such as the lungs and the air-tissue interface at 

the surface of the skull.  Various methods have been proposed and used to remove 

these fields.   

A high-pass filtering approach to phase filtering was proposed by Haacke et al in 

their work on susceptibility weighted imaging (SWI), in which unwrapped and 

filtered phase data is used to weight the magnitude image [1].  Complex data is 

convolved with a Hanning window to create a low-pass filtered image, and the 

subsequent complex division of this into the unfiltered complex data and calculation 

of the phase of the result creates a high-pass filtered image.  This removes slowly 

varying field perturbations generated by sources outside of the object, whilst mostly 
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preserving those generated by the local susceptibility variations.  Appropriate filter 

width selection can be used to remove most phase wraps from the image.  This 

method is limited, however, as it fails to discriminate properly between fields 

generated inside and outside of the object, and so some useful information is lost. 

Another method is the projection onto dipole fields (PDF) algorithm [3, 38].  In the 

PDF algorithm, the measured field offset inside of the ROI is fitted to fields 

generated by dipolar sources outside of the ROI, and the result subtracted from the 

measured phase. 

4.3.3 Sophisticated Harmonic Artefact Reduction for Phase Data 

(SHARP) 

The phase filtering method used in this thesis is the sophisticated harmonic artefact 

reduction for phase data (SHARP) algorithm [39].  Like the phase unwrapping 

algorithm described above, the SHARP algorithm exploits the properties of the 

Laplacian operator.  If the measured field perturbation is composed of fields 

generated by sources inside (∆B𝑖𝑛𝑡) and outside (∆B𝑒𝑥𝑡) the region of interest, it can 

be expressed as  

∆B = ∆B𝑖𝑛𝑡 + ∆B𝑒𝑥𝑡 

         Eq.  4.28 

∆B𝑒𝑥𝑡 is harmonic throughout the ROI, and as such it satisfies Laplace’s equation 

throughout the ROI [40, 41], so 

∇2∆B𝑒𝑥𝑡 = 0 

         Eq.  4.29 

and  

∇2∆B = ∇2∆B𝑖𝑛𝑡 + ∇2∆B𝑒𝑥𝑡 = ∇2∆B𝑖𝑛𝑡     . 

         Eq.  4.30 

Eq.  4.30 may be solved for ∆B𝑖𝑛𝑡 by exploiting the mean value property of harmonic 

functions [42].  This property means that a harmonic function 𝑎(𝐫) is unchanged by 

convolution with any non-negative, radially symmetric, normalised function 𝑏(𝐫), so 

that [43]: 



 Chapter 4: Quantitative Susceptibility Mapping  

Matthew John Cronin - December 2015    55 

𝑎(𝐫) = 𝑏(𝐫)⨂𝑎(𝐫) 

         Eq.  4.31 

where ⨂ is the 3D convolution operator.  This allows the elimination of harmonic 

components of ∆B as follows 

∆B̂ = ∆B − 𝑏(𝒓)⨂∆B 

= ∆B𝑒𝑥𝑡 + ∆B𝑖𝑛𝑡 −  𝑏(𝑟)⨂∆B𝑒𝑥𝑡 − 𝑏(𝑟)⨂∆B𝑖𝑛𝑡 

= ∆B𝑖𝑛𝑡 −  𝑏(𝑟)⨂∆B𝑖𝑛𝑡 

          Eq.4.32 

If 𝛿 is a unit impulse at the centre of a radial function, Eq.  4.32 may be re-written as 

∆B̂ = ∆Bint −  𝑏(𝒓)⨂∆B𝑖𝑛𝑡 

= (𝛿 − 𝑏(𝒓))⨂∆B𝑖𝑛𝑡 

         Eq.  4.33 

∆B𝑖𝑛𝑡 may then be recovered from Eq.  4.33 by deconvolution of ∆B̂ with the kernel 

(𝛿 − 𝑏(𝒓)) 

∆B𝑖𝑛𝑡 = (𝛿 − 𝑏(𝒓))⨂−1∆B̂ 

         Eq.  4.34 

In the work presented in Chapter 5, the function 𝑏(𝒓) was chosen to be a normalised 

sphere of radius 1.5 mm.  SHARP filtering of phase data is limited by convolution 

artefacts at the edges of the VOI over which it is applied.  However, this region can 

be limited to a few voxels in thickness by the appropriate choice of deconvolution 

kernel.   

4.4 Calculation of Magnetic Susceptibility from Measured 

Field Perturbations 

As discussed in section 4.2, the relationship between an arbitrary magnetic 

susceptibility distribution and the z-component of the resulting magnetic field 

perturbation is shown by Eq.  4.15 to be the result of a simple pointwise 

multiplication in the Fourier domain between the magnetisation 𝑀𝑧(𝐤) and a dipole 

kernel 𝑑(𝒌) = 3 cos2(𝛽) − 1, where 𝛽 is the angle between 𝐤 and the z-axis.  While 
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this calculation is simple and well defined, inversion of this problem is ill-posed due 

to the presence of zeros in the Fourier-space dipole kernel where 𝛽 ≈ 54.7°  or 

125.3° , known as the magic angle.  The susceptibility distribution 𝜒(𝐫)  cannot 

therefore be recovered by simple deconvolution (division in the Fourier domain) of a 

measured field perturbation by the dipole kernel, as the inverse kernel tends to 

infinity at the magic angle.  This division by small numbers causes severe 

amplification of noise and streaking artefacts in the deconvolved susceptibility map. 

Quantitative susceptibility mapping is therefore reliant on the regularisation of this 

problem to extract meaningful information about 𝜒(𝐫).  Various algorithms have 

been proposed to achieve this, including threshold-based k-space division methods 

[3, 8, 9], multiple orientation methods [2, 10], and iterative methods [4, 5, 44]. 

4.4.1 Quantitative Susceptibility Mapping using Threshold-based k-

space Division 

The simplest methods of susceptibility mapping involve the modification of the 

inverse dipole kernel in k-space to remove or replace regions where it approaches 

infinity.  If a threshold parameter 𝛼  is chosen, the deconvolution kernel 𝐶(𝐤) =

[𝑑(𝐤)]−1 may be set to either 𝛼 [9] or 0 [3] where |𝐶| > 𝛼.  Studies using doped 

agar phantoms [3] and in vivo [3, 9] and ex vivo [9] tissue show that this method can 

generate susceptibility maps which agree well with known object susceptibilities [3] 

and estimated tissue iron concentrations [3, 9].  Care must be taken in choosing the 

threshold parameter, however.  High values of 𝛼 provide more accurate susceptibility 

estimates, as a lower volume of k-space is excluded around the conical surfaces at 

the magic angle.  However, this comes at the expense of amplified noise and 

streaking artefacts, which obscure the resulting image.  Conversely, reducing 𝛼 

reduces artefacts, but also leads to less accurate susceptibility estimates as an 

increasing amount of information is lost from the image.  Optimum values for 𝛼 lie 

in the range of 2 – 5 [9] to 15 [3], with lower values being more appropriate for 

images with a low SNR which are more sensitive to noise amplification. 

Another threshold-based approach to QSM is presented as part of the superfast 

dipole inversion (SDI) algorithm [8].  This algorithm was used to generate QSM data 

presented in Chapter 5 of this thesis, and is shown schematically in Figure 4-6.  The 

SDI algorithm combines the Laplacian-based phase unwrapping and SHARP phase 
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filtering algorithms described in Sections 4.3.2 and 4.3.3 with thresholded k-space 

division using a modified dipole kernel.  The modified dipole kernel is defined such 

that  

𝑑′(𝐤) = {
  
1

3
           𝑑(𝐤) > 0

−
2

3
           𝑑(𝐤) < 0 

 

         Eq.  4.35 

This modified kernel can now be used to generate an inverse kernel 𝐶′(𝐤) = 𝑑′(𝐤)−1 

which is well defined for all 𝐤 .  The application of this dipole modification 

introduces a point spread function (PSF) whose effects must be corrected.  The 

correction factor may be calculated by the inversion of a simulated field map due to a 

delta function at the origin of coordinates, and deconvolution of this by the modified 

dipole kernel.  The degree to which this function is underestimated in the calculated 

susceptibility map gives the correction factor which must be applied to all data 

calculated using this method.  This algorithm produces susceptibility maps which 

have slightly increased noise, but relatively good agreement with images generated 

using the gold-standard COSMOS algorithm [2], described in section 4.4.2. 

4.4.2 Calculation of Susceptibility through Multiple Orientation 

Sampling (COSMOS) 

The COSMOS algorithm [2] stabilises the inversion problem using data acquired 

with the susceptibility distribution at multiple orientations to 𝐵0, thus allowing the 

entirety of k-space to be sampled and represented in the resulting susceptibility map.  

If k-space coordinates are defined in the frame of reference of the object, and the 

object is imaged at N angles produced by rotations about the x-axis in the frame of 

reference of the scanner, Eq.  4.15 becomes [2] 

[
 
 
 
 
 
 
 
 
 (

1

3
−

(𝑘𝑧 cos(𝜃1) + 𝑘𝑦 sin(𝜃1))
2

𝑘2
)

(
1

3
−

(𝑘𝑧 cos(𝜃2) + 𝑘𝑦 sin(𝜃2))
2

𝑘2
)

⋮

(
1

3
−

(𝑘𝑧 cos(𝜃𝑁) + 𝑘𝑦 sin(𝜃𝑁))
2

𝑘2
)
]
 
 
 
 
 
 
 
 
 

∙ 𝑀(𝐤) = [

Δ𝐵1

Δ𝐵2

⋮
Δ𝐵𝑁

]      

Eq.  4.36 
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Direct inversion of this expression in k-space is possible so long as no nonzero 

element exists in (1 3⁄ − 𝑘𝑎𝑥𝑖𝑠𝑁

2 𝑘2⁄ ) , 𝑛 = 1, 2, … ,𝑁 .  A set of angles 𝜃1, … , 𝜃𝑁 

which satisfy this condition exist for every point in k-space when 𝑁 ≥ 3 [2].  An 

exception to this solution exists at the origin of coordinates, where the dipole kernel 

is not defined, however this point may simply be set to zero in the inversion as it 

only defines a constant offset in the image.  The best results from COSMOS are 

achieved when 𝜃1/𝜃2/ 𝜃3 = −60°/0°/60°  [2].  While COSMOS allows the 

complete sampling of k-space, and so provides a gold standard for QSM calculations, 

Figure 4-6 – Schematic representation of QSM processing using Laplacian 

unwrapping, SHARP filtering and deconvolution with the modified dipole kernel 

proposed in [1]. 
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it is impractical in many applications, particularly in vivo, due to the need for 

multiple image acquisitions and large rotations which may be uncomfortable or 

impractical for the subject to perform.  The required range of motion may be reduced 

by making combined rotations about the x- and y-axes [3].  While COSMOS remains 

impractical in many experimental settings, it provides a useful standard against 

which other single-acquisition based QSM algorithms may be compared [3, 5, 8, 10]. 

4.4.3 Quantitative Susceptibility Mapping using Iterative Inversion 

Methods 

Alternatives to QSM by direct k-space inversion of the fast forward calculation exist 

in the form of iterative methods.  These methods involve applying the forward 

calculation to guessed solutions of the susceptibility distribution, comparing this 

result to the measured field perturbation and adjusting the guess based on this 

comparison to yield a more accurate result.   

A simple iterative solution to the QSM inversion involves the solution of a least-

squares minimisation of the form 

min𝑥‖𝐴𝑥 − 𝑏‖2 

         Eq.  4.37  

where 𝑏 is the measured data, 𝑥 is the unknown quantity, 𝐴 is a matrix representing 

an operation, and ‖…‖ is the Euclidian or L2 norm given by  

‖𝑦‖ = √∑(𝑦𝑖)2

𝑛

𝑖=1

 

         Eq.  4.38 

In QSM Eq.  4.37 takes the form 

min𝜒‖𝐶𝜒 − Δ𝐵‖2 

         Eq.  4.39 

where 

𝐶𝜒(𝐫) = FFT−1 (𝑑(𝐤) ∙ FFT(𝜒(𝐫)))  

         Eq.  4.40 
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In problems where 𝐴𝑥 is a simple pointwise multiplication, Eq.  4.37 may be solved 

by single value decomposition [45] or application of the Moore-Penrose pseudo 

inversion [46] to 𝐴.  However in QSM, the operation in question is a 3D convolution 

over a sizeable matrix (400 x 400 x 200 points for both the kernel and image for a 

200 x 200 x 100 mm volume imaged at 0.5 mm isotropic resolution) making such a 

direct inversion extremely computationally inefficient, and impractical in most 

settings.  Other algorithms must therefore be used, such as the conjugate gradient 

method [47], which only require knowledge of the product 𝐴𝑥 rather than the explicit 

form of 𝐴.   

Morphology enabled dipole inversion (MEDI) [5, 48] is a more complicated iterative 

QSM algorithm involving a weighted L1 norm or least absolute errors (LAE) 

minimisation based on spatial priors derived from the magnitude image.  MEDI 

assumes that uniform-appearing tissue compartments in the T2
*-weighted magnitude 

image most likely correspond to regions of uniform magnetic susceptibility.  This 

assumption is expressed in the MEDI algorithm by the minimization of the number 

of edges in the QSM that do not exist in the magnitude image.  A structural 

weighting matrix 𝑀 is derived from the gradient of the magnitude, and is given by 

𝑀 = {
0     |𝐺𝑚| ≥ 𝜇

1     |𝐺𝑚| < 𝜇
 

         Eq.  4.41 

where 𝑚  is the magnitude image, 𝐺  is the gradient operator and 𝜇  is a threshold 

parameter related to the image noise level.  The MEDI L1 norm minimisation is then 

given by 

min𝜒‖𝑀𝐺𝜒‖1       subject to       ‖𝑊(𝐶𝜒 −Δ𝐵)‖2
2 ≤ 𝜀 

         Eq.  4.42 

where 𝑊 is a weighting matrix proportional to the signal magnitude to compensate 

for noise variation in ∆𝐵, and 𝜀 is the noise power used to control the fidelity of the 

reconstruction to the data. 

MEDI has been used in a number of QSM applications, including the investigation of 

multiple sclerosis [16], intracranial calcifications and haemorrhages [49], cerebral 

microbleeds [50] and iron quantification [51]. 
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5 A COMPARISON OF PHASE 

IMAGING AND 

QUANTITATIVE 

SUSCEPTIBILITY MAPPING 

OF MULTIPLE SCLEROSIS 

LESIONS AT 7T 

In vivo quantification of brain tissue properties is increasingly of interest in the 

investigation of neurodegenerative diseases, particularly due to the changes in the 

chemical and structural composition of brain tissue associated with such disease 

pathologies.  The inherent sensitivity of MRI to such changes makes it a powerful 

tool in the diagnosis and investigation of such conditions, however it is important to 

understand the strengths and limitations of specific imaging protocols and techniques 

in order to be able to draw reliable inferences and measurements from data. 

A prominent application of MRI in neurological research is the diagnosis and 

investigation of multiple sclerosis (MS).  T2
*-weighted gradient echo sequences are 

often used to study MS due to the high signal to noise ratio (SNR) and good contrast 

[1-10] that they provide.  With the increasing availability of high and ultra-high field 
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MRI systems, the phase data associated with the T2*-weighted magnitude images are 

increasingly being used both as an adjunct to conventional magnitude images [10-

13], or in combination with them to produce susceptibility-weighted (SWI) images 

[7, 14, 15], as they provide a complimentary contrast mechanism. 

In recent years, phase and SWI images have been used to study the variation in iron 

levels in different anatomical brain regions with age and gender [13, 16], as well as 

changes in iron levels in MS [3, 7, 10].  However, the use of phase contrast as a 

qualitative or quantitative measure of iron content assumes a direct relationship 

between signal phase and local iron levels.  This assumption is flawed since a 

magnetic susceptibility perturbation, such as a local increase in iron concentration, 

produces a change in the magnetic field (and hence phase) that is not localised to the 

susceptibility perturbation, but instead is dipolar in nature, causing both positive and 

negative field/phase perturbations in the surrounding region [14].  This effect can 

lead to incorrect inferences being drawn about local iron levels based on phase or 

SWI images. The non-local nature of the phase contrast can be overcome by the 

application of quantitative susceptibility mapping (QSM) [17-19] algorithms to the 

data, producing maps of the local variations in the bulk susceptibility of the tissue 

that are responsible for the measured phase changes. The QSM technique has, 

amongst other applications, been used in vivo to measure changes in the magnetic 

susceptibility of the basal ganglia in MS patients [1, 2].  While these techniques offer 

a local contrast directly linked to the physical property of magnetic susceptibility, 

they rely on accurate measurement of the local field perturbations originating only 

within the imaging volume.  For this reason, care must still be taken in the choice of 

filtering algorithms and parameters for processing of the phase data. 

The white matter lesions occurring in MS are sometimes surrounded by rings on T2
*-

weighted magnitude and phase images and it has been suggested that these rings may 

be a marker of local changes in iron content [5, 7, 10]. However, this MR signature 

could also result from a local variation of the myelin density, or even from changes 

in tissue microstructure [20], and so the origin of peripheral rings remains a matter of 

some debate.  The ability to detect iron changes around lesions would be useful in 

understanding the pathogenesis of MS lesions and in tracking disease progression.  In 

previous work, phase and SWI images have been used to investigate the prevalence 

and nature of peripheral rings in MS lesions [3, 7, 10].  
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The aim of the work described here was to compare the depiction of white matter MS 

lesions in high resolution (0.5 mm, isotropic) phase and QSM images.  The 

prevalence of peripheral rings was measured across a cohort of 39 MS patients in 

order to compare the effectiveness of phase and QSM images in such identification.  

More detailed analysis was applied to a subset of 6 lesions with peripheral rings, in 

order to establish the sources of the contrast in each image type, including 

comparison of the effects of SHARP and high-pass (SWI) phase filtering algorithms 

on phase and QSM contrast.  Simulated field maps were generated for models of a 

solid and shell-like susceptibility distribution based on one lesion, in order to 

illustrate the field patterns that such structures produce. 

5.1 Methods 

5.1.1 Data Acquisition 

Data were drawn from previous studies conducted at the Sir Peter Mansfield Imaging 

Centre (SPMIC) investigating the prevalence of central veins in white matter lesions, 

and iron deposition in the deep grey matter in multiple sclerosis.  These studies were 

led by Dr Nikos Evangelou and Dr Cris Constantinescu at the SPMIC Queen’s 

Medical Centre site, and Professor Penny Gowland at the SPMIC University Park 

site.  To acquire the data used in this study, 39 patients with multiple sclerosis were 

scanned using a Philips Achieva 7T system equipped with a either a 16 or 32 channel 

receiver head coil.  Different head coils were used as the system hardware was 

upgraded during the period over which these data were acquired.  Data for 

susceptibility mapping were acquired using a multi-stack, spoiled 3D T2
*-weighted. 

FLASH sequence with 4 stacks, overlapping by 10 voxels at each interface, and 0.5 

mm isotropic resolution (TE=20 ms, TR=150 ms, FOV=196x164x85 mm3, EPI 

factor=3, SENSE factor=2).  As the imaging protocol was designed several years 

before the inception of the study presented here, and so without regard for the most 

up-to-date practices in the field of QSM, these images were acquired with a single 

echo rather than the multi-echo acquisitions often used to calculate MRI signal 

frequency.  MPRAGE images were acquired for segmentation at 0.6x0.5x0.6 mm3 

resolution and reconstructed at 0.5 mm isotropic resolution (TE=5.89 ms, TR=15 ms, 

TI= 1186 ms, shot interval = 3000 ms, FOV=192x156x163.2 mm3, SENSE 

factor=2). 
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5.1.2 Lesion Selection 

In order to establish the prevalence of peripheral rings in the cohort, up to 11 WM 

lesions were identified by the author on the axial T2
*-weighted magnitude images for 

each subject.  Binary masks were generated using MRIcro (www.mricro.com), 

identifying an approximately central voxel in lesions as images were viewed in the 

axial plane starting at the top of the head.   In total, 305 lesions were identified in the 

39 subjects.  In addition, 6 well-isolated lesions with peripheral rings in the axial 

phase images were identified in 4 subjects for more detailed analysis. 

5.1.3 Image Processing 

For all subjects, the T2
*-weighted magnitude and phase images from the 4 stacks 

were merged using software written in-house in MATLAB (Mathworks Inc., 

Massachusetts, USA). As the signal to noise ratio is worst at the edge of the stack, 

the overlapping regions were combined using a linearly-weighted sum, so that 

𝑤 =  𝑒𝑥𝑝(−𝑛2 20⁄ )     , 

𝑀𝑚𝑒𝑟𝑔𝑒𝑑(𝑛) =
(𝑤(𝑛) × 𝑀𝑠𝑡1(𝑛) + 𝑤(11 − 𝑛) × 𝑀𝑠𝑡2(𝑛))

𝑤(𝑛) + 𝑤(11 − 𝑛)
     , 

𝑃𝑚𝑒𝑟𝑔𝑒𝑑 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑅𝑒(𝑤(𝑛) × 𝑒𝑖×𝑝𝑠𝑡1(𝑛) + 𝑤(𝑛) × 𝑒𝑖×𝑝𝑠𝑡2(𝑛))

𝐼𝑚(𝑤(𝑛) × 𝑒𝑖×𝑝𝑠𝑡1(𝑛) + 𝑤(𝑛) × 𝑒𝑖×𝑝𝑠𝑡2(𝑛))
)     . 

           

         Eq.  5.1 

Here, n is the number of the slice in the overlapping region of each stack counting 

from the edge of the stack in the overlapping region; w is a weighting factor; Mmerged 

(n) and Pmerged (n) are the magnitude and phase in the merged slice; Mst1(n) and 

Pst1(n) are the signal magnitude and phase in the nth slice from the top of the head in 

the overlapping region in the upper stack (closest to the top of the head), and Mst1(n) 

and Pst1(n) are the signal magnitude and phase in the first slice in the overlapping 

region from the top of the volume in the lower stack (closest to the feet). 

5.1.3.1 Phase Data Processing 

For all subjects, the phase data were first unwrapped using the Laplacian-based 

method [21, 22] described in Chapter 4.  A binary brain mask was generated from the 

T2
*-weighted magnitude data using the brain extraction tool (BET) in FSL [23].  This 
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mask was then zero-padded with 8 voxels at each edge and eroded to ensure the 

exclusion of unreliable phase data from outside of the brain after which padding was 

removed.  Mask erosion was carried out using two iterations of Matlab’s imerode 

tool using a 3x3x3 voxel erosion kernel.  Background fields from sources outside of 

the brain were removed using the SHARP algorithm [18] described in section 4.3.3, 

using a spherical SHARP kernel with a radius of 3 voxels (1.5 mm) and a truncation 

value of 0.015.  Each element of the SHARP kernel was set to 1, with the exception 

of the voxel at the origin which was set to 0.  The kernel was then normalized so that 

the sum of its elements was equal to 1.  

Additionally, the phase images from the 4 subjects from whom lesions were selected 

for more detailed analysis were unwrapped and filtered slice by slice in 2D using a 

standard high-pass filtering algorithm employed in SWI processing [24].  Low-pass 

filtered phase images were created by constructing a 2D square Hanning window in 

k-space.   The original phase images were then complex-divided by the low pass 

filtered data to create unwrapped, high-pass filtered images.  In order to establish the 

optimum filter width for this data, one dataset was processed using filter widths of 

0.063, 0.094, 0.125 and 0.199 (using the definition described by Walsh and Wilman 

[25]), and a filter width of 0.094 was chosen as a compromise between maximising 

the removal of the effects of background fields from the data while preserving as 

much structural contrast as possible. 

5.1.3.2 Quantitative Susceptibility Mapping 

In this study, quantitative susceptibility mapping was carried out using the threshold-

based k-space division method [26, 27] using the modified dipole kernel from the 

superfast dipole inversion algorithm [28], described in section 4.4.1.  The SHARP-

filtering and QSM formation is described schematically in Figure 4-6.  The TKD 

method was chosen as rotation of the head was impractical in a patient study, making 

the COSMOS algorithm [19] unsuitable.  Also, since there is no clear consensus 

regarding the nature of the susceptibility offsets associated with MS lesions and their 

consistency with the magnitude data, the spatial constraints enforced by the MEDI 

algorithm [29, 30] were not appropriate for this study. 
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Quantitative susceptibility maps for all subjects were calculated from the SHARP 

filtered phase data.  The data were Fourier transformed and divided in k-space by the 

modified Fourier domain dipole kernel 𝑑̃(𝒌), where 

𝑑̃(𝒌) =  
1

3
     [𝑑(𝒌) ≥ 0] 

𝑑̃(𝒌) = −
2

3
   [𝑑(𝒌) < 0] 

         Eq.  5.2 

and 𝑑(𝒌) represents the unmodified dipole kernel defined in Eq. 4.7.  The result was 

then inverse Fourier transformed to yield a susceptibility map.  Finally, the map was 

divided by a correction factor of 0.502 to compensate for the global underestimation 

inherent in this inversion method [28].  This QSM method was computationally 

efficient, taking approximately 1 minute to run on a PC (3.1 GHz Intel Core i3, 4GB 

RAM, 64-bit Linux OS) including the unwrapping and filtering steps described 

above. 

QSM data were also generated using the high-pass filtered phase images containing 

the lesions identified for detailed analysis using the same method described above. 

5.1.3.3 Whole Cohort Lesion Analysis 

Following QSM processing, the lesions identified across all subjects were examined 

in the axial, sagittal and coronal planes intersecting the voxel marked in the T2
*-

weighted magnitude, SHARP-filtered phase and QSM images.  Lesions were not 

examined in the high-pass filtered phase images, as SHARP-filtered phase gives a 

more accurate representation of the fields generated within the ROI. The appearance 

of lesions in the phase and QSM images was classified as either (i) showing 

hyperintense contrast relative to normal appearing white matter (NAWM) with a 

hyperintense peripheral ring, (ii) showing hyperintense contrast relative to NAWM 

without a peripheral ring, (iii) showing no contrast, or (iv) as unclassifiable.  It was 

additionally noted if there was a distinguishable external dipolar pattern surrounding 

the lesion. 

5.1.3.4 Detailed Individual Lesion Analysis 

In addition to the visual analysis described above, the six well-isolated individual 

lesions were further assessed in each image type by the generation of 1D profiles of 
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mean voxel intensity in the lesion and surrounding white matter (WM).  This process 

is shown in Figure 5-1.  MPRAGE images were coregistered onto the T2
*-weighted 

magnitude images using FLIRT in FSL.  Lesion masks were drawn on the T2*-

weighted images, and white matter masks were drawn on MPRAGE images, using 

MRIcro.  To ensure consistent lesion edges, the lesion was counted as white matter 

when drawing the WM mask, and the lesion mask was later subtracted from this.  

Profiles of the mean voxel intensity in the WM and in the lesion as a function of 

radial distance to the nearest point on the edge of the lesion mask were generated by 

convolution of the voxels in the ROIs with a spherical kernel whose elements were 

set to the radial distance of the voxel from the centre of the sphere, rounded to the 

nearest integer.   

The distance of each voxel was set to the value of the kernel element that overlapped 

with the lesions mask (for voxels outside of the lesion) or WM mask (for voxels 

inside of the lesion). for T2
*-weighted magnitude images, phase images and 

susceptibility maps (generated from both SHARP and high-pass filtered phase) using 

code written in-house in MATLAB.  The magnitude data were normalized to the 

mean voxel intensity 3 mm from the lesion edge.   

The QSM and phase images were normalized relative to the susceptibility and phase 

value in CSF averaged over two 6x6x10 voxel ROIs, one placed centrally in each 

ventricle. 

One lesion was used as a model to simulate the effect of a relevant susceptibility 

distribution on phase distortion.  For that lesion, masks of the peripheral ring and of 

its central core were created from the magnitude image data.  These masks were 

assigned a nominal susceptibility of 0.15 ppm (the approximate magnitude of voxels 

in the ring in the QSM image of the lesion relative to the surrounding white matter)  

and the phase shifts caused by the resulting susceptibility distributions were 

modelled using the Fourier method [31].  The images were then processed with both 

high-pass and SHARP filtering methods to allow qualitative comparison with the 

measured phase shift patterns, and the SHARP filtered phase shift was inverted to 

form a susceptibility map using the TKD method. 
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Figure 5-1 – Voxelwise distance mapping was carried out by: (a) Masking of 

the lesion on the T2
*-weighted magnitude image and surrounding white matter 

on the MPRAGE; (b) Convolution of the masked region with a 3D radial 

distance kernel; (c) allocation of an integer distance value to each voxel in the 

masked region. 
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5.2 Results 

5.2.1 Optimisation of Hanning Window Width for Phase Unwrapping 

and Filtering 

Figure 5-2 shows phase images of a WM lesion with visible external dipolar contrast, 

unwrapped using a Laplacian-based method with no filter applied in the top row, and 

unwrapped and filtered using a Hanning window with filter widths of 0.063, 0.094, 

0.125 and 0.199 in the remaining rows. The external dipolar contrast is clearly 

present in the unfiltered image; however most of the image is dominated by the large, 

slowly varying fields generated by field sources outside of the brain.  As the filter 

width increases, the filtered images show remaining phase wraps visible on the right 

hand side of the axial and coronal images, as well as an overall flattening of the 

image and reduction in the visible external dipolar contrast as the range of spatial 

frequencies attenuated in the image increases. 

5.2.2 Visual Analysis of White Matter Lesions with Peripheral Rings 

Figures 5-3, 5-4 and 5-5 show different individual WM lesions in magnitude, 

SHARP filtered (SF) and high-pass filtered (HF) phase images, along with the 

corresponding susceptibility maps, for axial, sagittal and coronal slices cutting 

through the centre of the lesion. In the axial plane, the SF images display hyper-

intense rings at the periphery of the lesion, consistent with the boundaries seen in the 

magnitude images.  In Figures 5-3 and 5-4, the ring in the axial SF image is 

surrounded by a distinct, hypo-intense region located outside of the lesion.  In the 

sagittal and coronal planes, the dipolar nature of the field perturbation underlying the 

phase contrast due to the lesion is more apparent.  Figure 5-5 shows an example of a 

lesion with a less distinct boundary in the magnitude image.  In the SF image, the 

dipole field is still present, and the hyper-intense periphery is also evident in the 

susceptibility map. However these features are less visually striking than in Figures 

5-2 and 5-3.  Dipolar patterns in the phase are observed around all three lesions, 

extending significantly beyond the boundaries of the lesions observed in the 

magnitude images, as indicated by arrows.  The intensity of these patterns is reduced 

in the HF images compared to the SF images due to the effect of the high-pass spatial 

filtering.  The susceptibility maps show hyper-intense rings at the lesion boundaries 

in all 3 planes, without significant external offsets.  
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Figure 5-2 – Phase images of a white matter MS lesion with a peripheral ring and 

visible external dipolar pattern (indicated by the white arrows).  The raw, wrapped 

phase image is shown, along with images that have been filtered in k-space using 

Hanning windows with widths of 0.063, 0.094 0.125 and 0.199. 
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The presence of material with heterogeneous paramagnetic susceptibility is evident 

inside the lesions from the hyper-intensity seen in the susceptibility maps although 

this feature is slightly less prominent in Figure 5-5. 

Figure 5-3 also shows images of an additional axial slice located above the lesion. 

The magnitude image of this slice shows only normal-appearing white matter, while 

in the SF and HF images, a hyper-intense offset can be seen in the white matter 

region overlying the lesion. This corresponds to the region where the plane cuts the 

hyper-intense lobe of the dipole field projected above the lesion.  The susceptibility 

map shows no such offset. 

Figure 5-6 shows sagittal images (magnitude, phase and susceptibility contrast) from 

an MS patient which span a larger field of view. Several lesions are indicated, and 

the phase and susceptibility images show similar contrast behaviour to that seen in 

Figures 5-1 – 5-3.  As in the previous figures, the contrast in the HF image appears 

flatter than in the SF image. 

Figure 5-7 shows simulated phase images produced from forward field calculations 

based on a mask of the peripheral ring of the lesion shown in Figure 5-3, and on a 

mask of the entire lesion, in both cases assuming a constant susceptibility difference 

of 0.15 ppm in the mask region relative to the rest of the tissue.  The simulated phase 

images were then processed with the same high-pass and SHARP filtering methods 

that were applied to the real data.  Susceptibility maps were calculated from these 

phase images using the TKD method.  Both the shell and solid models produced a 

dipolar phase pattern, shown in the sagittal plane, which is consistent with the pattern 

observed in the sagittal phase images in the measured data.  The amplitude of the 

dipolar field is reduced in the HF phase compared to the SF phase, as observed in the 

real data, and some lateral distortion can be seen in the HF images.  As would be 

expected, the external phase perturbation is larger in magnitude for the solid model 

since the dipole moment is stronger in this case. In addition, the solid model yields a 

more significant overall perturbation of the internal phase for this non-spherical 

lesion shape.  In the shell model, while a dipolar perturbation is observed outside of 

the ring, there is also a phase shift within the shell itself of opposite polarity to the 

adjacent dipole lobe. 
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Figure 5-3 - Magnitude, phase and QSM images of a white matter MS lesion with a 

peripheral ring.  The first three columns show cross-sectional images through the 

lesions, with the plane of the axial images indicated on the coronal magnitude image 

in white, and with the location of the projected dipolar field lobes (identified from 

the phase images) indicated with white arrows on the phase and QSM images.  A 

hyper-intense peripheral ring is visible on the QSM images.  The fourth column 

shows axial images in the plane indicated in green on the coronal magnitude image, 

with the location of the projected dipolar field indicated with green arrows on the 

phase and QSM images. 
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Figure 5-4 - A second example of a white matter MS lesion with a peripheral ring.  

The location of the projected dipolar field lobes is indicated with white arrows on the 

phase and QSM images.  A hyper-intense ring can be seen at the periphery of the 

lesion in the QSM images. 
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Figure 5-5 - A white matter MS ring with a less distinct boundary in the magnitude 

image than those seen in Figures 5-1 and 5-2.  A weaker, but still present dipolar 

field is visible in the SF phase images, and its location is indicated by white arrows 

on the phase and QSM images.  A hyper-intense ring can be seen at the periphery of 

the lesion in the QSM images. 
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Figure 5-6 - Whole head sagittal images of a patient with multiple sclerosis showing 

several white matter lesions, indicated by white arrows, with peripheral rings.  Dipolar 

fields are apparent in the phase image, but do not appear in the QSM image. 
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Figure 5-7 – Sagittal susceptibility masks, simulated phase patterns, and QSM 

images generated using the TKD method, based on the lesion shown in Figure 5-2.  

The first column shows corresponding experimental data.  The top row shows 

susceptibility masks based on shell-like and solid representations of the lesion, 

shown in the second and third columns, respectively.  The second and third rows 

show the result of a simulation of the high-pass filtered and SHARP-filtered phase 

data, respectively.  The fourth row shows quantitative susceptibility maps generated 

from the SHARP-filtered phase data. 

 

5.2.3 Average Voxel Intensity Profile in Ringed WM Lesions in 

Magnitude, Phase and QSM Images 

Figures 5-8 and 5-9 show the average variation with distance from the lesion edge of 

the signal magnitude, high-pass (HP) and SHARP-filtered (SF) signal phase, and 

susceptibility derived from both HP and SF phase images in the lesions and 
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surrounding WM.  The mean and standard deviation of the phase and susceptibility 

used to normalise the lesion profiles is shown in Table 5-1. 

Figure 5-8 shows the mean (and standard deviation in) intensity variation around all 

6 lesions, while the inset graphs show the profiles for each individual lesion.  In the 

phase and susceptibility maps, the mean standard deviation in the ROIs used to 

normalise the data is also shown, giving an indication of the relative precision of 

measurements taken relative to these ‘zero’ points.  The magnitude profile is hyper-

intense inside the lesions, falling monotonically to a constant lower level in the 

external WM.  The phase data show relatively flat mean profiles, with both the 

lesions and the external WM being hyper-intense relative to CSF, and with consistent 

profiles for individual lesions.  The mean SF phase profile is consistently higher 

relative to the CSF and has a greater variation between individual lesions than the HF 

phase.  In contrast, the susceptibility profile has a consistent internal hyper-intense 

offset, shows a peak at the lesion boundary, and falls monotonically to a constant 

level in the external WM.  

The mean susceptibility profiles show a consistent trend, but the susceptibility 

variation seen in the data generated from the HF phase is lower in magnitude and 

flatter than the profile generated from the SF phase.  The mean and standard 

deviation of the phase values in the CSF ROIs is of a similar magnitude for both the 

HF and SF data and is of significant magnitude relative to the mean phase profiles. 

The standard deviation of the mean profiles is greater in the SF phase than the HF 

phase.  Similarly, the standard deviation of the susceptibility in the CSF is also 

significant in magnitude relative to the mean profiles.  The standard deviation of the 

individual susceptibility profiles is decreased inside the lesions and beyond ~2 mm 

outside of the lesions in the HF data relative to the SF data. 

The individual lesion profiles in Figure 5-9 show trends that are consistent with the 

mean profiles.  In the SF phase profiles, lesion 6 has a susceptibility profile similar in 

behaviour but markedly higher in absolute value relative to CSF than the other 

lesions.  Additionally, lesion 5 has a more negative interior phase and more positive 

external phase between 2 and 4 mm outside of the lesion then lesion 1-4.    In the 

susceptibility profiles, lesion 5 has a greater susceptibility difference between inside 

and outside of the lesion relative to the other lesions. The raised phase profile of the 

lesion 6 may be explained by the more negative mean phase measured in the CSF 
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relating to this lesion relative to the lesions represented by lesion 1-4.  It is possible 

that either through the proximity of a structure such as a blood vessel to the ROI, or 

the orientation of the head in the scanner.  The standard deviation of the phase values 

in the CSF ROI is also ~2x the standard deviation in those relating lesion 1-4, which 

may suggest the presence of a relatively strong phase gradient across the ROI from 

an outside source.  The phase and susceptibility profiles of lesion 5 may be 

interpreted similarly.  The mean phase in the CSF is again more negative than that 

relating to lesions 1-4, which causes the phase profile to appear high relative to those 

others.  The more negative phase inside the lesion may be a real product of the 

relatively strong susceptibility of the lesion, as seen in the susceptibility profiles.  As 

no lesion is perfectly spherical, phase offsets will be caused both inside and outside 

of the lesion due to its heterogeneous susceptibility distribution.  The susceptibility 

profile supports this explanation, showing a significantly larger difference in 

susceptibility between the lesion and external white matter.  While the susceptibility 

profile seems to suggest a lower susceptibility in the external white matter 

surrounding this lesion and a similar susceptibility within the lesion compared to the 

mean susceptibility profile, the mean susceptibility in the CSF for this lesion is high 

and positive relative to the other lesions.  If this is due to a higher susceptibility being 

present in the CSF ROI (due to blood vessels, for example), then it may be inferred 

that the susceptibility within this lesion is in fact higher than the other lesions, rather 

than the external susceptibility being lower.  

Table 5-1 – Mean and standard deviation of phase and susceptibility in CSF ROIs. 

 

Mean CSF Phase ± Std. 

Dev. 

Mean CSF Susc. ± Std. 

Dev. 

Lesion 1 & Lesion 2 -0.009±0.003 ppm -0.012±0.017 ppm 

Lesion 3 & Lesion 4 -0.008±0.003 ppm 0.001±0.034 ppm 

Lesion 5 -0.015±0.004 ppm 0.003±0.023 ppm 

Lesion 6 -0.017±0.006 ppm -0.014±0.034 ppm 
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Figure 5-8 - Profiles of the mean voxel intensity in the white matter as a function of distance 

to the nearest point at the edge of the lesion in:(a) T2
*-weighted magnitude images (b) 

SHARP-filtered phase images (c) high-pass filtered phase images, (d)  QSM images 

generated from SF phase data,  (e) QSM images generated from HF phase data - showing 

mean values (solid black lines) with standard deviations (dashed black lines).  Phase and 

QSM data were normalised relative to CSF, and the mean of the standard deviations 

calculated within the individual CSF ROIs is shown by the horizontal dashed blue lines. 
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 Figure 5-9 - Profiles of the voxel intensity in the white matter as a function of distance 

to the nearest point at the edge of individual lesions in:(a) T2
*-weighted magnitude 

images (b) SHARP-filtered phase images (c) high-pass filtered phase images, (d)  QSM 

images generated from SF phase data,  (e) QSM images generated from HF phase data - 

The mea of the standard deviations calculated within the individual CSF ROIs is shown 

by the horizontal dashed blue lines. 
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5.2.4 Whole Cohort Lesion Analysis 

Figures 5-10 and 5-11 show the results of the analysis of the 305 lesions identified on 

the T2
*-weighted magnitude images of the 39 subjects included in this study.  Of 

these lesions, one was excluded as it was deemed unclassifiable in the sagittal and 

coronal planes of the T2
*-weighted magnitude images.  In all image types, lesions 

were considered unclassifiable if the contrast was not isointense, but the presence or 

absence of a focal lesion was ambiguous to the observer.  Of the remaining 304 

lesions, 60 (20%) were visible in the SHARP filtered phase (SF) images and 69 

(23%) were visible in the QSM images.  144 lesions (47%) were not visible on SF 

phase or QSM images.  A further 81 (27%) of selected lesions were unclassifiable in 

the SF phase images, and 67 (22%) were unclassifiable in the QSM images.  Of the 

60 lesions visible in the SF phase images, 37 (62%) displayed evidence of a 

peripheral ring, and 23 (38%) had no peripheral ring. 19 (32%) of the lesions visible 

in the SF phase images displayed visible, external dipolar contrast.  Of the lesions 

visible in the QSM images, 30 (43%) displayed evidence of a peripheral ring, 39 

(57%) had no peripheral ring, and no lesions displayed external dipolar contrast.  12 

(4%) lesions were visible on SF phase images but invisible or unclassifiable in QSM 

data, 21 (7%) were visible on QSM images but invisible or unclassifiable on SF 

phase data.  45 lesions (15%) were unclassifiable in both SF phase and QSM images.  

Of the 48 lesions visible in both SF phase and QSM images, 27 (56%) had peripheral 

rings and 21 (44%) had no rings on QSM, 34 (71%) had peripheral rings and 14 

(29%) had no rings on SF phase images.  Of the 34 lesions with peripheral rings on 

SF phase images, 27 (79%) had rings on the QSM images while 7 (21%) did not.  Of 

the 27 of these 48 lesions in QSM images with peripheral rings, all had peripheral 

rings in the SF phase images.  

  

Figure 5-10 – Total number of lesions 

identified in the SHARP-filtered phase and 

QSM images from a total of 305 lesions 

identified in the T2
*-weighted magnitude, 

alongside total number of lesions identified 

with and without peripheral rings. 



Investigating the effects of microstructure and magnetic susceptibility in MRI 

Matthew John Cronin - December 2015    86 

 

5.3  Discussion 

In this study, the use of ultra-high field MRI has allowed comparison of the 

appearance of white matter MS lesions with peripheral rings in high resolution 

magnitude, phase and QSM images, as well as facilitating the representation of the 

lesions using 1D plots of voxel intensity with respect to distance from the lesion 

boundary. Axial and coronal phase images showed obvious dipolar patterns 

surrounding some lesions: patterns that are not consistent with any expected 

distribution of iron in or around MS lesions if phase offsets are considered to be a 

 

Phase lesion appearance categorised using QSM images 

QSM lesion appearance categorised using phase images 

Figure 5-11 – Appearance of lesions in SHARP-filtered phase images subdivided 

according to appearance in QSM, and appearance of lesions in QSM images sub-

divided according to appearance in SHARP-filtered phase. 
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locally generated. Quantitative susceptibility maps showed lesion structures that are 

more consistent with the tissue changes known to occur in MS from post-mortem 

studies [5, 32], where iron bearing macrophages have been identified at the boundary 

of ringed lesions.  Comparison between phase data unwrapped and filtered using a 

Hanning window and data unwrapped using a Laplacian-based method and filtered 

using the SHARP technique highlighted the sensitivity of both phase and QSM 

images to processing methods.  Visual analysis of a subset of 304 lesions gave an 

indication of the prevalence of peripheral rings in phase and QSM images, and the 

variable morphology of individual lesions when their appearance is compared in 

phase and QSM images. 

Histological studies have linked the paramagnetic rings surrounding some MS 

lesions to the presence of iron-rich macrophages at the periphery of the lesions [5, 

10].  In vivo quantification of such features is clearly desirable, and the effect of such 

features on tissue susceptibility makes susceptibility-sensitive MRI contrast an 

obvious tool for such research.  Using phase contrast rather than QSM to investigate 

changes in tissue susceptibility in MS poses the risk that images will be 

misinterpreted, especially if the lesion is not viewed in the sagittal or coronal planes 

where the non-local, dipolar nature of phase contrast is most obvious.  For example, 

if phase contrast were simply used as a measure of the iron level surrounding these 

lesions, the presence of raised iron levels above and below the lesion would 

mistakenly be inferred, while reduced levels would be assigned to the region 

surrounding the lesion in central axial planes, as can be seen clearly in Figures 5-2, 

5-3 and 5-4.  The exact appearance of lesions in the phase images depends on the 

spatial filtering that is applied to the phase data.  The use of high-pass filtering 

reduces the amplitude of the phase variation due to the external field perturbations 

when compared to the SHARP filtered phase. However, as can be seen in Figure 5-2, 

the degree of attenuation will depend on the size of the lesion relative to that of the 

filter window and such filtering also obviously leads to underestimation of the phase 

effects due to structures with large susceptibilities.  Non-local effects generally also 

confound the use of the phase measured in a lesion relative to the phase of nearby 

normal appearing white matter as a means of characterising tissue changes and mean 

that, in general, reliable quantitative information about tissue composition cannot be 

measured from local phase contrast. 
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In contrast, quantitative susceptibility maps show features that are consistent with the 

physical extent of the lesion and with the occurrence of normal appearing WM 

around the lesion.  Locally elevated susceptibility can also be seen to occur with 

varying degrees inside the lesion, and consistently in the peripheral ring, as expected 

from histology [5].  

Iron levels cannot be directly quantified from a susceptibility map alone, particularly 

due to the negative contribution of myelin, which is diamagnetic, to the bulk 

susceptibility, although techniques for quantifying iron by combining information 

from susceptibility and R2
* maps have been proposed [33, 34].  Recently, it is also 

been suggested that the presence of iron in tissue can be inferred from QSM images 

if the bulk susceptibility measured relative to that of the CSF are greater than zero 

[35, 36]. Both decreased myelin levels and increased iron levels lead to a positive 

increase in the net magnetic susceptibility [37-39].  Complete demyelination in a 

voxel would not be expected to increase the bulk susceptibility above that of CSF, 

and so any further increase in susceptibility is argued to be related to iron.  As shown 

in Figures 5-8 and 5-9, profiles through the lesions in T2
*-weighted images show that 

T2
* is increased inside the lesion and reduced at the lesion boundary before levelling 

off at the value for external normal appearing white matter. This variation is 

consistent with either myelin or iron loss within the lesion, but is most probably due 

to myelin loss and the destruction of normal tissue. On some T2
*-weighted images 

(Figures 5-2, 5-3 and 5-4), hypo-intensity can be seen at the lesion edge, which 

would be consistent with increased iron (or myelin) in that region, although this is 

not detected on the averaged radial profiles (Figure 5-9), probably due to the 

competing effects of reduced myelination and increased iron deposition in this 

region.  The average phase profile in both the HF and SF phase is slightly reduced 

inside the lesions, rising at the edge of the lesion, and remaining level (SF) or 

reducing slightly (HF) in the external WM, giving little, if any, indication of a 

change in tissue composition internally or externally because of the non-local, 

dipolar nature of phase contrast [14].  In contrast, the susceptibility profiles are 

higher inside the lesion than outside, and display a peak at the lesion edge, reflecting 

structure consistent with that observed in the magnitude images.  When normalised 

to CSF, a positive susceptibility measured within the lesions is consistent with an 

internal loss of myelin and the presence of iron, and the peak at the lesion edge is 
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suggestive of a peak in iron levels.  The T2*-weighted and susceptibility profiles are 

therefore consistent with recently reported results from histology [5] which suggest 

that myelin levels are reduced inside lesions relative to the surrounding WM, while 

iron levels are increased at the lesion boundaries. 

The magnitude of the phase variation relative to CSF was clearly reduced in the HF 

phase images when compared to the SF phase images.  The SF phase in the lesions is 

consistently positive relative to the CSF however the mean standard deviation of the 

voxels in the CSF ROIs overlaps considerably with the phase profile in the HF data.  

This indicates both that normalised phase values are highly sensitive to the specific 

filtering applied to the data, and that attempts to quantify phase variation relative to 

CSF are somewhat confounded by variability of values found within the ‘zero’ 

region defined in the CSF.  

The susceptibility calculated from the SF phase shows a more positive susceptibility 

within the lesion and a more negative susceptibility in the external WM than the 

susceptibility calculated form the HF phase.  This may indicate a systematic 

underestimation of the magnetic susceptibility calculated using QSM due to the 

flattening effect of the high-pass filtering on the phase data, and suggests that the 

choice `information in phase data and calculating quantitative susceptibility maps.  

There is also a large variability in the susceptibility measured within the CSF, as 

shown by the large mean standard deviation in these regions.  This indicates that 

even with the application of QSM, care must be taken in drawing conclusions from 

these measurements, as the ‘zero’ point is poorly defined so there is still a significant 

degree of uncertainty in the quantitative values measured. 

Variation in susceptibility distribution can be seen between the lesions, for example, 

the smaller increase in susceptibility inside the lesion shown in Figure 5-4 could be 

due to that lesion having undergone less demyelination than the lesions shown in 

Figure 5-3 and Figure 5-5.  

Figure 5-7 shows the phase shift caused by a simulated shell of raised susceptibility 

at the periphery of a lesion, and also that produced by a uniform increase in 

susceptibility of the region lying within the same lesion boundary.  The simulated 

phases can be seen after both high-pass and SHARP filters have been applied. In 

both cases the resulting external phase shifts are consistent in polarity and orientation 
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to the pattern observed in the real phase data.  In the shell model, it can be seen that 

in addition to an external dipole, a local field shift is generated on the inner surface 

of the shell, with opposite polarity to the adjacent external dipole lobes.  This feature 

can also be seen in the real phase images in Figures 5-2, 5-3 and 5-4.  The solid 

model produces a dipole of greater magnitude, but without this feature.  The 

susceptibility of the shell and solid object were based on the susceptibility of the 

shells observed in experimentally acquired susceptibility maps, but the magnitude of 

the dipole produced by the shell model appears reduced compared to the real data 

whereas the solid model generates a dipole of similar magnitude to the real data.  

This suggests that the experimental maps are consistent with a shell of high 

susceptibility with an additional contribution from internal material with 

susceptibility that is greater than that of the surrounding white matter, but lower than 

the susceptibility of the shell.  As noted in the discussion of Figures 5-2, 5-3 and 5-4, 

the amplitude of the dipolar phase patterns is reduced in the HF phase relative to the 

SF phase data.  Additionally, some lateral distortion can be seen in the HF phase 

images as a result of the filter being applied in 2D to axial slices of the data, further 

demonstrating that images processed in this way must be interpreted with care.  The 

calculation of susceptibility maps from phase images is an ill-posed problem, 

whereas the forward calculation used in the simulation is well conditioned, so this 

result strengthens the interpretations made from the QSM images.  The susceptibility 

distribution calculated from the simulated phase data is approximately consistent 

with the simulated susceptibility distribution, although there are some streaking and 

other artefacts present due to the imperfect inversion resulting from the truncated k-

space filter used in the TKD implementation.  This effect may account for the hypo-

intense region seen immediately below the lesion in the susceptibility map, 

indicating that, even when using QSM, care must be taken when drawing inferences 

from small variations in contrast, despite the strong localisation of contrast that QSM 

displays in comparison to phase imaging. 

An indication of the relative prevalence and variable appearance of white matter 

lesions in SHARP filtered phase and QSM images can be seen in Figures 5-10 and 

5-11.  Of the 304 lesions marked on the T2
*-weighted magnitude images, 20% were 

visible in phase images.  This is lower than the prevalence reported in previous 

studies which included similar analysis [7, 10, 32, 40], in which 40-78% of lesions in 
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magnitude data were found to be visible in phase images.  These figures could be 

affected by a number of factors, including the field strength of the scanner used, the 

resolution of the data acquired, the criteria by which lesions were identified for 

comparison and the number of planes in which lesions were compared.  Further 

variation would be expected due to the subjective nature of visual comparison and 

the lack of consistent criteria for categorization of lesions across different studies.  

Our data were acquired at an ultra-high field strength of 7 T with a high isotropic 

resolution of 0.5x0.5x0.5 mm3, and images were compared in the axial, sagittal and 

coronal planes.  In contrast, images used for lesion identification in previous studies 

were typically acquired with high in-plane resolution, but with slice thicknesses of 2-

3 mm [7, 10, 32, 40], and only axial images are reported.  In one case the lesions 

used for comparison were specifically selected for their large size [40].  For this 

reason, smaller lesions (<3 mm in diameter) would be less likely to be selected for 

comparison.  A systematic bias towards larger lesions in previous analyses may 

explain the increase in the proportion of lesions found to be visible in phase images, 

as smaller lesions may have different levels or distributions of iron deposition or 

demyelination.  As small lesions may be early indicators of new disease activity, 

investigation of them has been recognised as an important area of future focus [40], 

making the use of high, isotropic resolution acquisitions a potentially important 

improvement on previous imaging protocols. 

The absolute number of lesions identified was greater in the QSM images than in the 

phase data.  The majority of this difference is due to lesions with no ring in the QSM 

images, and are unclassifiable in the phase images.  In contrast, the majority of 

lesions which presented rings in the QSM also appeared in the phase images.  This 

suggests that lesions with peripheral rings are more likely to have a relatively 

consistent appearance in the phase and QSM images, possibly indicating that the 

changes in tissue composition in these lesions is greater relative to the surrounding 

white matter than lesions with no ring.  Lesions with less pronounced changes in 

microstructure relative to the surrounding white matter may be more obscured by the 

distortion inherent in phase imaging, making them unclassifiable or undefined, while 

the correction of this distortion in QSM may allow a greater proportion of such 

lesions to be identified.  
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Of the 48 lesions visible on both phase and QSM images, 27 (56%) had rings on both 

phase and QSM images, 14 (29%) did not display rings in the phase or QSM images, 

7 (15%) displayed rings in the phase, but not the QSM images, and no lesions 

displayed rings in the QSM images, but not in phase images.  Recently published 

work has highlighted that solid, nodular distributions of magnetic susceptibility can 

lead to shell-like patterns in phase images [40].  Such an effect may explain the 7 

lesions found in our data which displayed rings in the phase images but not in QSM 

images. In contrast, the fact that no ringed lesions were found in QSM images where 

no ring had been found in the phase data suggests that QSM may offer improved 

specificity in the identification of peripheral rings in white matter lesions compared 

with phase images.  This further highlights the importance of using QSM when 

trying to quantify such features.  As our data was acquired during a single visit for 

each patient and without the use of contrast, our ability to establish any significance 

of the presence or absence of peripheral rings in the severity of progression of MS 

symptoms was limited. 

5.4 Conclusions 

In this study, isotropic high-resolution, whole head T2
*-weighted images acquired at 

7T were used to compare phase imaging and QSM as a means of investigating white 

matter MS lesions with peripheral rings.  Phase images were shown to be dominated 

by non-local dipolar field effects, causing both positive and negative shifts in the 

contrast, even in the axial plane. These effects have the potential to be misleading 

when interpreting phase images and preclude the use of phase contrast in studying 

tissue composition.  However, QSM techniques can be applied to phase data to yield 

susceptibility maps showing contrast that is much more closely linked to the local 

tissue composition.  Although the susceptibility values are affected by both myelin 

and iron, the use of susceptibility maps in combination with T2*-weighted data allow 

inferences to be drawn about changes in tissue composition and comparison to be 

made to histology.  The peripheral rings and visible dipolar field pattern apparent in 

some phase images were shown to appear in both SHARP and high-pass filtered 

data, although high-pass filtering sufficient to remove phase wraps was found to 

systematically yield lower susceptibility values both inside and outside of lesions 

when processed using QSM.  The prevalence of peripheral rings in phase and QSM 

data was found to be lower than previously reported [7, 10, 32, 40], however this 
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could be attributed to the high isotropic resolution images used in this study, which 

may have resulted in the identification of smaller lesions in the magnitude data than 

those identified in other studies. 
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6 INVESTIGATING MRI 

FREQUENCY SHIFTS DUE TO 

STRUCTURES WITH 

ANISOTROPIC MAGNETIC 

SUSCEPTIBILITY 

6.1 Introduction 

The uptake of high and ultra-high field strength MRI systems in clinical and research 

settings has led to an increasing exploitation of new MR contrast mechanisms. In 

particular, novel contrast based on local variations in the Larmor frequency, ω0, 

caused by the heterogeneity of tissue magnetic susceptibility, χ, has been used to 

generate frequency maps and susceptibility-weighted magnitude images, as well as 

quantitative susceptibility maps [1].  The resulting images give insight into 

microscopic tissue composition in vivo, providing a valuable tool in the non-invasive 

assessment of changes in tissue composition in various medical conditions, including 

neurodegenerative diseases such as multiple sclerosis [2-5]. 

In order to exploit fully the information provided in susceptibility-based contrast, it is 

essential to understand the microscopic basis of the macroscopic measurements of 

MR frequency taken at the voxel level.  Early attempts at quantifying magnetic 
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susceptibility from MRI assumed that each voxel created a dipolar field perturbation 

whose strength was governed by the average scalar susceptibility of the tissue within 

the voxel, and that frequency maps calculated from the signal phase simply reflected 

the superposition of the perturbations generated by all of the voxels in the image 

(assuming fields generated outside of the region of interest had been removed 

through appropriate filtering).  However, some biological materials such as lipids 

have been shown to have an anisotropic magnetic susceptibility, which particularly 

leads to unusual field effects being observed due to ordered structures, such as 

lipoproteins [6] and myelinated axons [7-12].  The latter effect forms the basis for 

susceptibility tensor imaging and novel susceptibility-based methods for fibre 

tracking [12-16].   

Although correct mathematical expressions for calculating the field perturbation due 

to structures composed of materials with anisotropic susceptibility have been 

described [9, 13], the effects of such structures have often been modelled using a 

simplified approach in which the anisotropy is represented by allocating the material 

an isotropic susceptibility whose magnitude depends on its orientation with respect to 

the field [7, 14].  Here we demonstrate using theory and experiment that this 

approximation leads to errors in predicting the frequency perturbation due to 

anisotropic structures, and also show that a tensor model of magnetic susceptibility 

anisotropy yields correct expressions for these perturbations.  In addition, we show 

that the correct calculation predicts interesting behaviour in a hollow cylinder model 

of myelinated nerve fibres, and in spherical shell models, whose behaviour could 

form the basis for creating tuneable contrast in MRI. 

Pyrolytic graphite is a material composed of highly-ordered layers of graphite, 

making it both highly diamagnetic and anisotropic, giving it an anisotropic magnetic 

susceptibility.  It is most strongly diamagnetic when the applied magnetic field is 

normal to the plane of the sheet.  As a result of its strong diamagnetism, this material 

has previously been used in MRI as a passive shimming material, which was placed 

in the mouth, to reduce susceptibility artefacts when imaging the inferior frontal 

cortex [17].  Pyrolytic graphite sheet (PGS) is made from a highly ordered polymer 

graphite film, and is readily available for use in heat transfer applications.  Here, we 

use PGS to form point-like regions of anisotropic magnetic susceptibility, as well as 

cylindrical and spherical shells.  While previous studies have used mathematical 
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models to explain the MR signal acquired from protons within and surrounding 

microscopic biological structures [6, 10], here we use macroscopic phantoms which 

allow direct separate measurement of the field perturbations in the internal and 

external compartments, allowing a more detailed comparison of theory and 

experimental results.  Measurements of the field perturbations generated by these 

structures made using MRI at 3 T allowed validation of the tensor model. 

6.2 Theory 

The magnetic susceptibility of an anisotropic material can be represented by a 

cylindrically-symmetric, second-order tensor of the form 

𝜒 = 𝜒𝐼𝐼 + [

−
𝜒𝑎

2⁄ 0 0

0 −
𝜒𝑎

2⁄ 0

0 0 𝜒𝑎

]     , 

         Eq.  6.1 

where 𝜒𝐼 and  𝜒𝑎 (<< 1) represent the isotropic and anisotropic components of the 

susceptibility, and 𝐼 is the identity matrix.  Here we have assumed that the principal 

axes of the susceptibility tensor are aligned with the Cartesian x-, y-, and z-axes, and 

that the axis of symmetry is aligned with the z-axis.  If a structure made from such a 

material is exposed to an applied magnetic field, H, the magnetization, M, is given 

by 𝐌 = 𝜒𝐇.  The field perturbation due to this magnetization can then be calculated 

by evaluation of the magnetic scalar potential,Φ(𝐫), which is related to the field 

perturbation by 𝐇 = −𝛁𝛷, and given by [18] 

 

𝛷(𝐫) =  −
1

4𝜋
 ∫

𝛁′ ∙ 𝐌(𝐫′)

|𝐫 − 𝐫′|
𝑑3𝒓′

𝑽

+
1

4𝜋
 ∮

𝐧′ ∙ 𝐌(𝐫′)

|𝐫 − 𝐫′|
𝑑𝑆′

𝑺

     , 

         Eq.  6.2 

where 𝐧′ is a unit vector, which is locally normal to the surface of the perturbing 

structure.  This expression can be solved analytically in structures with spherical or 

cylindrical symmetry.  Here we consider the field perturbation produced inside and 

outside of hollow spherical and cylindrical shells with a radially-oriented, 
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cylindrically-symmetric susceptibility tensor, as described in Eq.  6.1, as well as the 

field perturbation due to a point source of anisotropic susceptibility 

6.2.1 Field Perturbation due to a Point Source of Anisotropic Magnetic 

Susceptibility 

To compare the representation of anisotropic susceptibility as an orientation-

dependent scalar value [7, 14] with the tensor model used in this work, we 

approximate the field perturbation due to a small solid cylinder of material with 

anisotropic susceptibility as that of a point-like susceptibility inclusion producing a 

dipolar field perturbation whose strength and orientation depend on the 

magnetization induced by a magnetic field 𝐇𝐴𝑝𝑝𝑙𝑖𝑒𝑑 = 𝐻0𝒛̂, applied in the laboratory 

frame of reference.  We consider a Cartesian coordinate system in the frame of the 

susceptibility tensor (x′, y′, z′).  If the tensor is rotated by an angle Θ about the x-axis 

in the y-z plane of the laboratory frame, as shown in Figure 6-1,  𝑧′ = z when Θ = 0 

and z′ = y when Θ = 90°.   

 

Figure 6-1 – Orientation of the tensor 

coordinates y’ and z’ relative to the 

laboratory-frame coordinates y and z. 
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In the frame of the tensor, the applied field is 

𝐇𝐴𝑝𝑝𝑙𝑖𝑒𝑑 = [
0

−𝐻0 sinΘ
𝐻0 cosΘ

]     . 

         Eq.  6.3 

 

This field induces volume magnetization of the susceptibility, in the frame of the 

tensor which is given by 

𝐌𝑇𝑒𝑛𝑠𝑜𝑟 = −𝐻0 (𝜒𝐼 −
𝜒𝑎
2
) sinΘ 𝐲̂′ + 𝐻0(𝜒𝐼 + 𝜒𝑎) cos Θ 𝐳̂

′     . 

         Eq.  6.4 

 

This can be expressed in the laboratory frame as 

𝐌𝐿𝑎𝑏 = 𝐻0 sinΘ cos Θ
3𝜒𝑎
2
𝐲̂ + 𝐻0 (𝜒𝐼 + 𝜒𝑎 (1 −

3

2
sin2 Θ)) 𝐳̂     . 

         Eq.  6.5 

 

If this magnetization is placed at the origin, the magnetic field perturbation induced 

at a point 𝐫 will be 

Δ𝐇(𝐫) =  
1

4𝜋
(
3𝐫(𝐦 ∙ 𝐫)

|𝐫|5
 −

𝐦

|𝐫|3
)     , 

         Eq.  6.6 

 

where 𝐦 = 𝑴𝛿𝑉, and 𝛿𝑉 is the volume of the magnetised material.  As the MR 

frequency depends only on the z-component of the field perturbation, we note that 

 

Δ𝐇 ∙ 𝐳̂ =  
1

4𝜋
(
3𝑧(𝑀𝑦𝑦 +𝑀𝑧𝑧)

|𝐫|5
 −

𝑀𝑧

|𝐫|3
)𝛿𝑉     . 

         Eq.  6.7 
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Separating the contributions due to 𝑀𝑦 and 𝑀𝑧 and expressing the result in spherical 

polar coordinates (𝑟, 𝜃, 𝜙), in the laboratory frame we find that 

∆𝐻𝑧(𝑀𝑦) =  
3

8𝜋|𝐫|3
(sin 2𝜃 sin𝜙)𝑀𝑦𝛿𝑉

∆𝐻𝑧(𝑀𝑧) =  
3

4𝜋|𝐫|3
(cos2 𝜃 − 

1
3)𝑀𝑧𝛿𝑉

     , 

         Eq.  6.8 

and therefore, using Eq. 6.5 

∆𝐵𝑧(𝑀𝑦) =  
3𝜇0
8𝜋|𝐫|3

(sin 2𝜃 sin𝜙)𝑀𝑦𝛿𝑉

                                 =
9𝐵0𝛿𝑉𝜒𝑎
16𝜋|𝐫|3

(sin 2𝜃 sin𝜙) sinΘ cos Θ

∆𝐵𝑧(𝑀𝑧) =  
3𝜇0
4𝜋|𝐫|3

(cos2 𝜃 − 
1
3)𝑀𝑧𝛿𝑉

                                                      =
3𝐵0𝛿𝑉
4𝜋|𝐫|3

(cos2 𝜃 − 
1
3) (𝜒𝐼 + 𝜒𝑎 (1 −

3
2 sin

2 Θ))

     . 

         Eq.  6.9 

In comparison, if we represent the effect of the anisotropic susceptibility by 

allocating the material an effective isotropic susceptibility of (𝜒𝐼 + 𝜒𝐴(1 −

3 2⁄ sin2 Θ)), the predicted field perturbation follows Δ𝐵(𝑀𝑍) only. 

6.2.2 Field Perturbation due to a Cylindrical Shell with Radial 

Anisotropic Magnetic Susceptibility 

The field perturbation due to a cylindrical shell with radial anisotropic susceptibility 

has been considered in previous work for modelling the effect of the myelin sheath 

[10].  We consider a hollow cylinder centred at the origin and rotated in the x-z plane 

of the laboratory reference frame, such that the cylinder’s axis makes an angle Θ to 

the z-direction. 

If a uniform applied magnetic field 𝐇𝐴𝑝𝑝𝑙𝑖𝑒𝑑 = 𝐻0𝒛̂ is applied in the laboratory frame, 

the field and induced magnetization can be defined in the local frame of the shell 

using cylindrical coordinates (𝜌, 𝜙, 𝑧′) as 
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HApplied = H0 sinΘ cosϕ 𝛒̂ − H0 sin Θ sin𝜙 𝛟̂ + H0 cos Θ 𝐳̂′

=  [

H0 sin Θ cos𝜙
−H0 sin Θ sin𝜙

H0 cosΘ
]     . 

         Eq.  6.10 

If the principal axis of the cylindrically symmetric tensor is radially oriented, we can 

write  

𝜒 = 𝜒𝐼𝐼 + [

𝜒𝑎 0 0

0 −
𝜒𝑎

2⁄ 0

0 0 −
𝜒𝑎

2⁄

] 

         Eq.  6.11 

in this instance so that 

MI = H0χI  [
sinΘ cosϕ
− sin Θ sinϕ

cosΘ

]

MA = H0χa  [

sinΘ cosϕ
1
2
 sin Θ sinϕ

−1
2
 cosΘ

]

     . 

         Eq.  6.12 

First we consider the scalar potential due to 𝑴𝐴.  We define the internal and external 

radii of the shell as 𝜌𝑖 and 𝜌𝑜 respectively, as shown in Figure 6-2.  Using Eq. 6.2 

and Eq. 6.12, noting that in cylindrical coordinates 𝐧′ = 𝛒̂ at the outer surface of the 

shell and 𝐧′ = −𝛒̂ at the inner surface, using the Green’s function expansion in 

cylindrical coordinates of |𝐫 − 𝐫′|
−1

, and integrating over 𝜙′ and 𝑧′ we find  that  [10] 

Φs(𝐫) =  H0χa sin Θ cosϕ(
ρ<o
2ρ>o

ρo − 
ρ<i
2ρ>i

ρi)     . 

         Eq.  6.13 

This gives, inside the shell (𝜌 < 𝜌𝑖): 

Φ𝑠(𝒓) = 0     , 

         Eq.  6.14 
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and outside the shell (𝜌 > 𝜌𝑜): 

Φ𝑠(𝒓) = 𝐻0𝜒𝑎 sinΘ cos𝜙
(𝜌0

2 − 𝜌𝑖
2)

2𝜌
 

           

         Eq.  6.15 

 

Figure 6-2 – A schematic representation of the cylindrical shell, showing the 

local Cartesian coordinates (x’,y’,z’) relative to the laboratory coordinates 

(x,y,z), and their relation to the local cylindrical coordinates (ρ,ϕ,z’) 

^ ^ 
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Taking the divergence of the magnetization using the cylindrical polar form of 𝛁 and 

integrating using the Green’s function expansion we find that the contributions of the 

volume integral in Eq. 6.2 are [10] 

Inside the shell (𝜌 < 𝜌𝑖): 

Φ𝑣(𝐫) =  −
3

4
𝐻0𝜒𝑎 sinΘ cos𝜙 𝜌 ln (

𝜌𝑜
𝜌𝑖
)     , 

         Eq.  6.16 

 

and outside the shell (𝜌 > 𝜌𝑜): 

 

Φ𝑣(𝐫) =  −
3

8
𝐻0𝜒𝑎 sinΘ cos𝜙

(𝜌𝑜
2 − 𝜌𝑖

2)

𝜌
     . 

         Eq.  6.17 

Consequently, the total scalar potential, Φ𝐴(𝐫) , due to the anisotropic magnetic 

susceptibility is 

Φ𝐴(𝐫) =  

{
 
 

 
 −

3

4
𝐻0𝜒𝑎 sinΘ cos𝜙 𝜌 ln (

𝜌𝑜
𝜌𝑖
)    (𝜌 < 𝜌𝑖)

      
1

8
𝐻0𝜒𝑎 sinΘ cos𝜙

(𝜌𝑜
2 − 𝜌𝑖

2)

𝜌
     (𝜌 > 𝜌𝑜)

 

         Eq.  6.18 

Taking the gradient of the potential yields magnetic field shifts both inside and 

outside of the cylinder due to the magnetic susceptibility anisotropy in the frame of 

reference of the cylinder 

∆𝐇𝑨(𝐫) =

{
 
 

 
 3

4
𝐻0𝜒𝑎 ln (

𝜌𝑜
𝜌𝑖
) sinΘ (𝑐𝑜𝑠 𝜙 𝛒̂  − 𝑠𝑖𝑛 𝜙 𝛟̂)         (𝜌 < 𝜌𝑖)

1

8
𝐻0𝜒𝑎 sinΘ

(𝜌𝑜
2 − 𝜌𝑖

2)

𝜌2
(𝑐𝑜𝑠 𝜙 𝛒̂ + 𝑠𝑖𝑛 𝜙 𝛟̂)     (𝜌 > 𝜌𝑜)

 

         Eq.  6.19 

Taking the projection of ∆𝐇𝐴(𝐫)  onto the z-axis in the laboratory frame, and 

assuming 𝑡 ≪ 𝜌𝑖 , 𝜌𝑜 so that ln(𝜌𝑜 𝜌𝑖⁄ ) ≈ 𝑡 𝜌𝑖⁄ , we find 
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∆𝐻𝐴𝑧 = 

{
 
 

 
 3

4
𝐻0𝜒𝑎

𝑡

𝜌𝑖
sin2 Θ                                 (𝜌 < 𝜌𝑖)

1

8
𝐻0𝜒𝑎 sin

2 Θ cos 2𝜙
(𝜌𝑜

2 − 𝜌𝑖
2)

𝜌2
     (𝜌 > 𝜌𝑜)

     , 

        Eq.  6.20 

∆𝐵𝐴𝑧 = 

{
 
 

 
 3

4
𝐵0𝜒𝑎

𝑡

𝜌𝑖
sin2 Θ                                 (𝜌 < 𝜌𝑖)

1

8
𝐵0𝜒𝑎 sin

2 Θ cos 2𝜙
(𝜌0

2 − 𝜌𝑖
2)

𝜌2
     (𝜌 > 𝜌0)

     . 

         Eq.  6.21 

Applying the same method to calculate the z-component of the field perturbation due 

to 𝐌𝐼, we find that  

∆𝐵𝐼𝑧 = {

                               0                                (𝜌 < 𝜌𝑖)

1

2
𝐵0𝜒𝐼 sin

2 Θ cos 2𝜙
(𝜌𝑜

2 − 𝜌𝑖
2)

𝜌2
       (𝜌 > 𝜌𝑖)

     . 

         Eq.  6.22 

The total field perturbation due to the isotropic and anisotropic components of the 

magnetic susceptibility is therefore 

∆B𝑧 = 

{
 
 

 
 3

4
𝐵0𝜒𝑎

𝑡

𝜌𝑖
sin2 Θ                                            (𝜌 < 𝜌𝑖)

(
𝜒𝐼
2
+
𝜒𝑎
8
)𝐵0 sin

2 Θ cos 2𝜙
(𝜌𝑜

2 − 𝜌𝑖
2)

𝜌2
     (𝜌 > 𝜌𝑜)

     , 

         Eq.  6.23 

where (𝜌0
2 − 𝜌𝑖

2)~2𝜌𝑖𝑡 for 𝑡 ≪ 𝜌𝑖 , 𝜌𝑜.  Note that allocating an orientation-dependent 

value of 𝜒𝐼 in Eq. 6.43, varying as sin2 Θ, would lead one to erroneously predict that 

the external field perturbation would scale as sin4 Θ. 

6.2.3 Field Perturbation due to a Spherical Shell with Radial Anisotropic 

Susceptibility 

We consider a spherical shell with radial anisotropic susceptibility, centred at the 

origin with internal radius, 𝑟𝑖, and external radius, 𝑟𝑜, as shown in Figure 6-3.   
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If a uniform applied magnetic field 𝐇𝐴𝑝𝑝𝑙𝑖𝑒𝑑 = 𝐻0𝒛̂ is applied in the laboratory frame, 

the field and induced magnetization due to the isotropic and anisotropic components 

of the susceptibility can be defined in the local frame of the shell using spherical 

polar coordinates (𝑟, 𝜃, 𝜙) as  

𝐻𝐴𝑝𝑝𝑙𝑖𝑒𝑑 = 𝐻0 cos 𝜃 𝐫̂ − 𝐻0 sin 𝜃 𝛉̂ = [
𝐻0 cos 𝜃
−𝐻0 sin 𝜃

0

]     , 

         Eq.  6.24 

and using 𝐌 = 𝜒𝐇 with  

𝜒 = 𝜒𝐼𝐼 + [

𝜒𝑎 0 0

0 −
𝜒𝑎

2⁄ 0

0 0 −
𝜒𝑎

2⁄

]     , 

         Eq.  6.25 

such that the principal component of the susceptibility tensor is along the radial 

direction, we find that the magnetization, 𝑀𝐼, due to the isotropic susceptibility and, 

𝑀𝐴, due to the anisotropic susceptibility are given by 

 

𝑀𝐼 = 𝐻0𝜒𝐼  [
cos 𝜃
− sin 𝜃
0

]

𝑀𝐴 = 𝐻0𝜒𝑎  [
cos 𝜃
1
2
sin𝜃

0

]
}
 
 

 
 

     . 

  

         Eq.  6.26 

We now evaluate the scalar potential given by Eq. 6.2 in the region inside the 

spherical cavity (𝑟 < 𝑟𝑖) and outside the shell (𝑟 > 𝑟𝑜).  First, we consider the scalar 

potential Φ𝐴(𝐫) due to 𝑀𝐴.  Considering the surface integral term 

𝜙𝑠 = 1 4𝜋⁄ ∫
𝐧′ ∙ 𝐌(𝐫′)

|𝐫 − 𝐫′|
𝑑𝑆′     , 

         Eq.  6.27 
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we note that 𝐧′ = 𝐫̂ at the outer surface of the shell and 𝐧′ = −𝐫̂ at the inner surface, 

so that 𝐧′ ∙ 𝐌 = ±𝐻0𝜒𝐴 cos 𝜃 .  The Green’s function expansion in spherical 

coordinates of |𝐫 − 𝐫′|
−1

 is given by 

1

|𝐫 − 𝐫′|
= 4𝜋 ∑ ∑

1

2𝑙 + 1
 
𝑟<
𝑙

𝑟>
𝑙+1  𝑌𝑙,𝑚

∗ (𝜃′, 𝜙′)𝑌𝑙,𝑚(𝜃, 𝜙)

𝑚=𝑙

𝑚=−𝑙

∞

𝑙=0

     , 

         Eq.  6.28 

where 𝑌𝑙,𝑚(𝜃,𝜙) are spherical harmonic functions [18] , and  

𝑟< = {
𝑟     (𝑟 < 𝑟𝑠)

𝑟𝑠     (𝑟 > 𝑟𝑠)

𝑟> = {
𝑟𝑠     (𝑟 < 𝑟𝑠)

𝑟     (𝑟 > 𝑟𝑠)

     , 

         Eq.  6.29 

where 𝑟𝑠 is the radius of the surface of integration.  Then by symmetry only the term 

with 𝑚 = 0 and 𝑙 = 1, 𝑌1,0(𝜃,𝜙) = √
3

4𝜋
cos 𝜃, gives a non-zero integral with respect 

to 𝜃 and 𝜙 in Eq. 6.27. 

Figure 6-3 – A schematic representation of the spherical shell, showing 

the Cartesian z-axis and the spherical polar vectors r and θ. 
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Since∫ 𝑑𝜙′ ∫ 𝑑𝜃′
𝜋

0

2𝜋

0
𝑌10(𝜃, 𝜙)𝑌10(𝜃′, 𝜙′) cos 𝜃′ sin 𝜃′ = cos 𝜃, the contribution to the 

scalar potential from the surface integral is given by  

Φ𝑠(𝐫) =  
𝐻0𝜒𝑎
3

(
𝑟<𝑜
𝑟>𝑜
2 𝑟𝑜

2 − 
𝑟<𝑖
𝑟>𝑖
2 𝑟𝑖

2) cos 𝜃     . 

         Eq.  6.30 

Now, following the same approach, the volume integral in Eq. 6.2 can be evaluated 

using the spherical polar form of 𝛁 and the Green’s function expansion, yielding 

Φ𝑣(𝐫) = −𝐻0𝜒𝑎 cos 𝜃 ∫
𝑟<

𝑟>
2 𝑟

′𝑑𝑟′
𝑟𝑜

𝑟𝑖

     . 

         Eq.  6.31 

Then evaluating  and  we find that inside the shell (𝑟 < 𝑟𝑖): 

 

Φ𝑠(𝐫) = 0

Φ𝑣(𝐫) =  −𝐻0𝜒𝑎 cos 𝜃 𝑟 ln (
𝑟𝑜
𝑟𝑖
)
}     , 

         Eq.  6.32 

while outside the the shell (𝑟 > 𝑟𝑜): 

 

Φ𝑠(𝐫) =
𝐻0𝜒𝑎
3

(𝑟𝑜
3 − 𝑟𝑖

3)
cos 𝜃

𝑟2

Φ𝑣(𝐫) =  −
𝐻0𝜒𝑎
3

(𝑟𝑜
3 − 𝑟𝑖

3)
cos 𝜃

𝑟2

} 

         Eq.  6.33 

The scalar potential, Φ𝐴(𝐫), due to the magnetic susceptibility is therefore  

Φ𝐴(𝐫) =  {
−𝐻0𝜒𝑎 cos 𝜃 𝑟 ln (

𝑟𝑜
𝑟𝑖
)    (𝑟 < 𝑟𝑖)

                            0               (𝑟 > 𝑟𝑜)
     . 

         Eq.  6.34  

Taking the gradient of Eq. 6.34, and noting that ∆𝐇𝐴 = −𝛁Φ𝐴, we find that the field 

perturbation due to the anisotropy 
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∆𝐇𝐴(𝐫) = {
𝐻0𝜒𝑎 ln (

𝑟𝑜
𝑟𝑖
) (𝑐𝑜𝑠 𝜃 𝐫̂  −  𝑠𝑖𝑛 𝜃 𝛉̂)      (𝑟 < 𝑟𝑖)

                                      0                            (𝑟 > 𝑟𝑜)
     . 

         Eq.  6.35 

We are only interested in the component of the field perturbation which is aligned 

with the main magnetic field.  Taking the projection of ∆𝐇𝐴(𝐫) onto the z-axis in the 

laboratory frame, we find that 

∆H𝐴𝑧 = 𝐳̂ ∙ ∆𝐇𝑨 =  𝐻0𝜒𝑎l n (
𝑟𝑜
𝑟𝑖
)     , 

         Eq.  6.36 

and in fact the components of the field perturbation along the y and z axes are zero.  

If 𝑟𝑜 = 𝑟𝑖 + 𝑡, where 𝑡 is the thickness of the shell, the z-component of the field, 

∆H𝐴𝑧 may be written in Cartesian coordinates as  

∆H𝐴𝑧 = 𝐻0𝜒𝑎 ln (
𝑟𝑖 + 𝑡

𝑟𝑖
) =  𝐻0𝜒𝑎 ln (1 +

𝑡

𝑟𝑖
)      (𝑟 < 𝑟𝑖) 

         Eq.  6.37 

If the thickness of the shell is much less than its radius, such that 𝑡 ≪ 𝑟𝑖, we may use 

the approximation ln(1 + 𝑥) ≈ 𝑥     (𝑥 ≪ 1) and so  becomes 

∆H𝐴𝑧 = 𝐻0𝜒𝑎
𝑡

𝑟𝑖
     (𝑟 < 𝑟𝑖)     . 

         Eq.  6.38 

The magnetic induction 𝐁 is related to the magnetic field 𝐇 and the magnetization 𝐌 

by 𝐁 = 𝜇0(𝐇 +𝐌) where 𝜇0  is the permeability of free space.  As 𝐌 = 𝟎  when 

(𝑟 < 𝑟𝑖), this yields 

∆B𝐴𝑧 = 𝜇0𝐻0𝜒𝑎
𝑡

𝑟𝑖
     (𝑟 < 𝑟𝑖)   𝐸𝑞. 14  

        =  𝐵0𝜒𝑎
𝑡

𝑟𝑖

 
           (𝑟 < 𝑟𝑖)              

= 0                       (𝑟 > 𝑟𝑜)     

         Eq.  6.39 
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Now, considering the magnetization due to 𝜒𝐼, the contribution to the scalar potential 

from the surface integral is given by  

Φ𝑠(𝐫) =  
𝐻0𝜒𝐼
3

(
𝑟<𝑜
𝑟>𝑜
2 𝑟𝑜

2 − 
𝑟<𝑖
𝑟>𝑖
2 𝑟𝑖

2) cos 𝜃     , 

         Eq.  6.40 

 and the contribution to the scalar potential from the volume integral 

Φ𝑣(𝐫) =  0     . 

         Eq.  6.41 

Evaluating the potential inside and outside of the shell yields a potential 

Φ(𝐫) = {
                  0                         (𝑟 < 𝑟𝑖)

 
𝐻0𝜒𝐼
3

(𝑟𝑜
3 − 𝑟𝑖

3)
cos 𝜃
𝑟2

     (𝑟 > 𝑟𝑜)
     . 

         Eq.  6.42 

The potential outside of the sphere is thus that of a unit dipole along the z-direction, 

with dipole moment [18] 

𝐦 = 
4𝜋𝑀𝐼

3
(𝑟𝑜
3 − 𝑟𝑖

3)𝐳̂     , 

         Eq.  6.43 

where 𝑀𝐼 = 𝐻0𝜒𝐼.  The total field perturbation due to the isotropic and anisotropic 

susceptibility contributions is therefore given by  

∆B𝑧 = {

𝐵0𝜒𝐼
𝑟3

(𝑟𝑜
3 − 𝑟𝑖

3) (cos2 𝜃 − 
1

3
)          (𝑟 > 𝑟𝑜)

                        𝐵0𝜒𝑎
𝑡

𝑟𝑖
                           (𝑟 < 𝑟𝑖) 

     , 

         Eq.  6.44 

where (𝑟0
3 − 𝑟𝑖

3)~3𝑟𝑖
2𝑡, when 𝑡 ≪ 𝑟𝑖, 𝑟𝑜 . 

6.3 Methods 

In order to test the theoretical predictions of the tensor model of anisotropic magnetic 

susceptibility, we went on to measure experimentally the field perturbations 
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produced by such susceptibility distributions.  Different structures were produced 

from 25 or 70 µm thick pyrolytic graphite sheet (PGS) (Panasonic EYGS121803 / 

EYGS121807).  Image data were acquired using a Philips Achieva 3T MRI system.  

Frequency maps were measured using a dual-echo field mapping sequence acquired 

at 1.5 mm isotropic resolution. For the spherical and cylindrical shell phantoms, the 

imaging parameters were: TE/TR = 3/40 ms, ∆TE = 1 ms, flip angle = 18°.  For the 

PGS stacks, the imaging parameters were: TE/TR = 3/7.4 ms, ∆TE = 2 ms, flip angle 

= 8°. 

6.3.1 Measuring the External Field Perturbation due to a Small Point-like 

PGS Stack 

Disks of nominally 25 μm  thick PGS with a diameter of 4.95  mm  were stuck 

together using cyanoacrylate glue to form a cylindrical stack of ~5 mm in height, 

using 65.960 ± 0.030 mg of pre-cut disks with a mean mass of 0.984 ± 0.006 mg 

per disk.  The mean thickness of the PGS, measured using a micrometer over 5 sets 

of 10 disks, was found to be 29.0 ± 0.5 μm.  The volume, 𝛿𝑉, of PGS in the stack 

was then calculated to be 𝛿𝑉 = (3.74 ± 0.22) × 10−8 m3 .  The stack was then 

embedded in an agar-filled perspex sphere with a diameter of 180 mm.  Field maps 

were then generated with the stack at 5 different angles (Θ) to the field.  In each 

case, the field variation in a spherical shell with an internal radius of 𝑟𝑖 = 10 mm 

and external radius 𝑟𝑜 = 15 mm  around the stack was analysed to identify the 

amplitude of the field components due to 𝑀𝑧 and 𝑀𝑥.  The field variation was then 

fitted to sin 2Θ  or sin2Θ  to allow evaluation of the magnitude of 𝜒𝐼  and 𝜒𝑎 , 

respectively, as defined in Eq.  6.9.  Construction of the PGS stacks was carried out 

by the author. 

6.3.2 Measuring the Internal Field Perturbation due to Cylindrical Shells 

of 25 µm PGS 

Glass tubes with three different external diameters (5, 10 and 15 mm) were covered 

with a layer of nominally 25 μm thick PGS producing a hollow cylinder structure.  

Narrow slots running lengthwise down the cylinder were left uncovered to reduce 

any potential RF shielding of the agar inside of the tubes by the PGS coating.  The 

tubes were filled with agar and embedded in a 180 mm  diameter spherical agar 

phantom, as shown in Figure 6-4.  Field maps were generated with the tubes at 
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angles (Θ) of 1°, 17°, 33°, 49°, 59°, 73°, and 89° with respect to the magnetic field.  

ROIs were drawn inside each cylinder and in a cylindrical annulus (length = 15 mm 

and inner/outer radii ≈ 7.5/15, 6.0/13.5, and 4.5 12.0⁄  mm for the 15, 10 and 5 mm 

diameter cylinders respectively) surrounding the cylinder at each angle to the field 

using MRIcro (http://www.mricro.com).   

 

Figure 6-4 – Agar phantom containing 5, 10 and 15 mm diameter glass tubes coated 

in nominally 25 µm pyrolytic graphite sheet. 

Mean internal field shifts were calculated for each cylinder at each angle relative to 

the mean field in the surrounding cylindrical shell ROI in order to minimize errors 

due to B1 phase or imperfect shimming, and compared to values predicted from Eq 

6.44.  The standard deviation of points in the internal ROI was taken for each 

measurement as an indication of the uniformity of the internal field shift.  Coating of 

the glass cylinders with PGS was carried out by Ian Thexton in the SPMIC 

workshop.  Construction of the agar phantom was carried out by the author. 

6.3.3 Measuring the External Field Perturbation due to a Cylindrical 

Shell of PGS 

Two agar filled glass tubes of 15 mm  diameter were embedded in a 180 mm 

diameter spherical agar phantom.  One tube was covered in a layer of 70 μm thick 

PGS.  Field maps were generated with the tubes at angles of 4°, 37°, 48°,  

62°, 78°, and 90° with respect to the field.  Cylindrical annuli with an internal radius 

of 𝑟𝑖 = 7.5 mm and external radius 𝑟𝑜 = 10 mm were generated surrounding each 
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tube at each angle to the field in MATLAB.  The mean external field perturbation in 

the ROI was measured as a function of the angle, 𝜙, about the axis of the cylinders, 

and a linear polynomial fit of the perturbation as a function of cos 2𝜙 was calculated, 

reflecting the variation expected from .  The amplitude of the perturbation 

surrounding the uncoated glass tube was subtracted from that surrounding the PGS 

coated tube, resulting in corrected amplitude of the field perturbation due to the PGS 

shell.  This amplitude was then plotted as a function of sin2 Θ, where Θ is the angle 

formed between the principal axis of the cylinder and B0.  Coating of the glass 

cylinders with PGS was carried out by Ian Thexton in the SPMIC workshop.  

Construction of the agar phantom was carried out by the author. 

6.3.4 Measuring the Field Perturbation due to Spherical Shells of 25 µm 

PGS 

Five thin-walled plastic spheres with radii, r, of 5, 10, 12.5, 19 and 25 mm were 

covered with a layer of nominally 25-µm-thick PGS, filled with water, and set in a 

180 mm diameter spherical agar phantom, as shown in Figure 6-5.   

 

 

A field map was then generated of the phantom.  ROIs were generated inside the 

spheres and in a spherical shell outside of each sphere in MATLAB, with inner/outer 

radii = 10.5 18⁄ , 18 25.5, 22.5 30,⁄ 31.5 39⁄ ,⁄  and 40.5 48⁄  mm for the 5, 10, 12.5, 

Figure 6-5 – Agar 

phantom containing 

plastic spheres with 

radii of 5, 10, 12.5, 

19 and 25mm, 

coated in nominally 

25 µm pyrolytic 

graphite sheet. 
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19 and 25 mm radius spheres respectively.  The mean field in the internal ROI 

relative to that in the external ROI was calculated for each sphere.  A first order 

polynomial fit of these values with respect to 1/r was then calculated, reflecting the 

field variation expected from .  Coating of the plastic spheres with PGS was carried 

out by Ian Thexton in the SPMIC workshop.  Construction of the agar phantom was 

carried out by the author with assistance from Dr Sam Wharton. 

6.4 Results 

6.4.1 Measuring the External Field Perturbation due to a Small Point-like 

PGS Stack 

Figure 6-6 shows 48 × 48 mm2 sections of the measured field maps in the y-z plane 

through the centre of a PGS stack orientated at different angles to 𝐵0.  Also shown 

are simulated field maps generated using the tensor model of anisotropy, and 

simulated field maps generated using an orientation-dependent isotropic 

susceptibility model.  The simulations were carried out with susceptibility values of 

𝜒𝐼 = −135 ppm and 𝜒𝑎 = −260 ppm, and a perturber volume of 3.289 × 10−8m3, 

representing similar values to those of the PGS stack.  A field perturbation following 

a standard dipolar field pattern (3 cos2 𝜃 − 1), aligned with 𝐵0, is evident when the 

normal to the stack is nearly parallel (2˚) or perpendicular (90˚) to the field, with the 

amplitude being greater in the parallel case.  At the intermediate angle (64˚) the field 

contribution from 𝑀𝑦 is evident from the rotation of the field pattern.  This rotated 

field pattern is predicted by the tensor model, but not by the orientation-dependent 

isotropic model. 

𝑀𝑦 and 𝑀𝑧 were determined by measuring the amplitude of the field variation in a 

spherical shell around the stack.  From Eq. 6.9, the z-component of the field 

perturbation (in Hz) may be expressed as ∆B𝑧 = 𝐴𝑦(3 2|𝐫3|⁄ )(sin 2𝜃 sin𝜙) +

𝐴𝑧(3 |𝐫3|⁄ ) (cos2 𝜃 − 
1

3
) , where 𝐴𝑦 = 𝛾𝑀𝑦𝛿𝑉 𝜇0 4𝜋⁄ , and 𝐴𝑧 = 𝛾𝑀𝑧𝛿𝑉 𝜇0 4𝜋⁄ , 

where 𝛾 = 42.576 MHz T−1 .  To measure 𝐴𝑦  the field was first normalised to 

remove the variation with |𝒓|−3  and sin𝜙 , and its amplitude then plotted as a 

function of 1.5 sin 2𝜃 .  To measure 𝐴𝑧  the field was normalised to remove the 

variation with |𝐫|−3, and its amplitude then plotted as a function of 3cos2 𝜃 − 1.  
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These plots are shown in Figure 6-7.  Linear regression of these plots then yielded 

values for  𝐴𝑦 and  𝐴𝑧 at each orientation. 

We therefore plot 𝐴𝑦 (𝛾𝐵0𝛿𝑉 4𝜋⁄ )⁄  vs. 1.5 sinΘ cos Θ and find 𝜒𝑎 from the slope of 

the plot and also plot 𝐴𝑧 (𝛾𝐵0𝛿𝑉 4𝜋⁄ )⁄  vs. 1 − 1.5 sin2 Θ and find 𝜒𝑎 from the slope 

of the plot and 𝜒𝐼 from the y-intercept.  Here, (𝛾𝐵0𝛿𝑉 4𝜋⁄ ) = 0.3801 Hz m−3. 

Figures 6-8 and 6-9 show plots of 𝐴𝑦 and 𝐴𝑧 with 1.5 sinΘ cos Θ and 1 − 1.5 sin2 Θ, 

indicating a good agreement with theory.   Linear regression of the variation of 𝑀𝑦 

gave 𝜒𝑎 = −257 ± 21 ppm , and regression of the variation of 𝑀𝑧  gave 𝜒𝐼 =

 −121 ± 10 ppm and 𝜒𝑎 = −234 ± 18 ppm.  

 

 

Figure 6-6 Field maps in the y-z plane through the centre of a PGS stack orientated 

at 2˚, 64˚, and 90˚ to𝐵0.  The top row shows the measured field maps from the 

phantom, the middle row shows simulated field maps generated using the full 

tensor model, and the bottom row shows simulated field maps generated using an 

orientation-dependent isotropic susceptibility model. 
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Figure 6-7 – Amplitudes 𝐴𝑦 (blue) and 𝐴𝑧 (red) of the normalised frequency 

variation around the PG stack. 
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Figure 6-8 -– Variation of 𝐴𝑦 with respect to 1.5 sin Θ cosΘ  

Figure 6-9 – Variation of 𝐴𝑧 with respect to 1 − 1.5 sin2 Θ 
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6.4.2 Measuring the Internal Field Perturbation due to Cylindrical Shells 

of 25 µm PGS 

Figure 6-10 shows a 46.5 × 149 mm2  section of the field map acquired with the 

three PGS covered tubes oriented perpendicular to 𝐵0.  A negative frequency offset, 

whose magnitude increases with decreasing tube radius is evident in the map, as 

predicted by Eq. 6.23.  Figure 6-11 shows plots of the average field offset inside the 

tubes as a function of  sin2 Θ.  This indicates that the frequency offset scales linearly 

with sin2 Θ  with a constant of proportionality which increases in magnitude as 

𝑟 decreases. 

 

The tH 

Figure 6-10 – Field map showing the internal field shifts (in Hz) of the PGS-covered 

tubes with diameters (from left to right) of 5, 10 and 15 mm, with the tubes orientated 

perpendicular to 𝐁0. 

Figure 6-11 - Mean internal frequency 

due to 5mm (black), 10mm(red) and 

15mm (blue) cylindrical shells of 

PGS, as a function of sin2 Θ, where Θ 

is the angle with respect to the field.  

Error bars show the standard deviation 

from the mean for the ROI chosen 

inside each cylinder. 
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The linear variation of the field offsets with sin2 Θ  agrees with the theoretical 

prediction given by Eq. 6.23.  Figure 6-12 shows the gradient of the slopes shown in 

Figure 6-11 as a function of the inverse radius of the cylinders.  Linear regression 

gave a good fit to the data (𝑅2 > 0.99), confirming the linear relationship predicted 

by , and gave a value of 𝜒𝑎 = −221 ± 11 ppm. 

6.4.3 Measuring the External Field Perturbation due to a Cylindrical 

Shell of PGS 

Figure 6-13 shows a cross section through a field map spanning two glass tubes, with 

and without PGS coating, with the tubes oriented perpendicular to 𝐵0.  The field 

outside the tubes varies as cos 2𝜙, as predicted by Eq. 6.23.  Linear regression of the 

amplitude of this field perturbation with sin2 Θ, shown in Figure 6-14,  gave a good 

fit to the data (𝑅2 > 0.99) .  An F-test showed no evidence of any significant 

improvement in the model with the addition of a sin4 Θ  term predicted if an 

orientation-dependent value for 𝜒𝐼 were used in Eq. 6.43 (F=2.4083, P = 0.2481). 

Figure 6-12 – Internal frequency offset normalised for variation 

with sin2 Θ and plotted as a function of inverse radius.  Error 

bars show the 68% confidence interval for the fit to each line 

shown in Figure 6-11 
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Figure 6-14 – Amplitude of the cos 2𝜙  external field perturbation due to a 

cylindrical shell of PGS, as a function of sin2 Θ .  Error bars show the 

uncertainty in the amplitude of the field at each orientation. 

Figure 6-13 – Field map showing the field perturbation in Hz due to the 

two 15 mm diameter glass tubes, with (left) and without (right) PGS 

coating, with their principal axes orientated perpendicular to 𝐁0. 
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6.4.4 Measuring the Field Perturbation due to Spherical Shells of 25 µm 

PGS 

Figure 6-15 shows an axial cross-section through the field map spanning the centres 

of the five spheres.  It shows a uniform field offset inside each sphere, with a 

magnitude that is inversely proportional to the radius, as predicted by Eq. 6.44.  The 

field outside each sphere is relatively homogeneous, indicating that the external 

dipolar field perturbation is weak.   

Figure 6-16 shows the variation of the mean internal field shift with 1 𝑟𝑖⁄ .  Linear 

regression yields a fit with R2 > 0.99, showing that inside the shells ∆𝐁 ∝ 𝑟𝑖
−1, as 

predicted by Eq. 6.44.  The slope of the plot is 𝛾𝐵0𝑡𝜒𝑎/2𝜋,  yielding a value 𝜒𝑎 =

−212 ± 16 ppm, shown in Table 1. 

 

 

 

Figure 6-15 – Field map showing the field shifts due to 5 spheres 

coated in nominally 25μm PGS.    A uniform field offset can be seen 

inside each shell. 
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6.4.5 Summary of Measured Susceptibility Values 

Table 1 shows a summary of the susceptibility values measured in experiments 1, 2 

and 4. 

          Table 1 – Calculated Susceptibility Values 

Structure 𝝌𝑨/𝐩𝐩𝐦 𝝌𝑰/𝐩𝐩𝐦 

Stack 𝑀𝑦 -257±21 N/A 

Stack 𝑀𝑧 -234±18 -121±10 

Cylinders -221±11 N/A 

Spheres -212±16 N/A 

 

Figure 6-16 – Mean internal field shift due to spherical 

shells of nominally 25 μm  thick PGS, varying as a 

function of 1/r.  Error bars show the standard deviation 

from the mean for the ROI chosen in each shell. 
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6.5  Discussion 

These results confirm the importance of using the full tensor representation of 

magnetic susceptibility when modelling the effects of structures formed from 

materials with anisotropic magnetic susceptibility.   

If anisotropic magnetic susceptibility is simply modelled as an orientation dependent 

isotropic property, the contributions from  𝑀𝑦  in Eq. 6.5 and 𝜒𝑎  in  and  would 

vanish completely, predicting no sin 2𝜃 sin𝜙 variation about a point source, and no 

internal field perturbation in spherical or cylindrical shells.  The experimental data 

presented here clearly demonstrates the presence of such field shifts. 

The comparison of simulated and experimental data show that the contribution to the 

field perturbation which varies as sin 2𝜃 sin𝜙  resulting from the effect of 𝑀𝑦 

(predicted by Eq.  6.5 & 6.9) is apparent in Figure 6-6, and supported numerically by 

the high R2-value of the fit to this model. 

The uniform, orientation- and radius-dependent internal field shift demonstrated with 

the cylindrical 25 μm  PGS shells, and the sin2Θcos2𝜙  dependent external field 

shift demonstrated with the 75 μm PGS shell are consistent with  and the previously 

published work by Wharton and Bowtell regarding fibre orientation-dependent MR 

contrast in white matter [10].  The F-test comparison of first and second order 

polynomial fits of the external field amplitude to sin2Θ  showed no significant 

improvement to the model with the addition of a sin4Θ  term, which has been 

proposed in other models which assume that the effect of anisotropy can be 

represented by using an orientation-dependent isotropic susceptibility [14].   

The radius-dependent internal field perturbation demonstrated with the spherical 

25 μm PGS shells is consistent both with  and previously published work by Lounila 

et al regarding the particle size dependence of the  NMR line position of signals from 

spherical lipoproteins [6].  The large internal field shift and relatively small external 

field perturbation observed suggest that if such structures could be formed on a 

microscopic scale, and an MR signal be obtained from a water pool contained within 

them, this may be exploited to form the basis of tunable MR contrast.  Contrast 

materials based on precisely-dimensioned small particles have previously been 

proposed by Zabow et al in the form of micrometer-sized gold-plated iron and nickel 

disks, and cylindrical nanoshells [19, 20]. 
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The values of 𝜒𝐼 and 𝜒𝑎 obtained from the work presented here can be seen in Table 

1.  The measured values for 𝜒𝑎 are consistent between models and with the order of 

magnitude of previously reported values of the susceptibility of pyrolytic graphite 

[17], with the exception of the value calculated from the fit to the field perturbation 

due to 𝑀𝑦 in experiment 1.   The values for 𝜒𝑎 measured from the PGS stack are 

higher than those found from spherical and cylindrical shells.  This may be explained 

by the material removed from our cylindrical and spherical shells to ensure detection 

of the signal from within the structures. 

6.6 Conclusions 

This work demonstrates the importance of the use of a full tensor model in the 

modelling of anisotropic magnetic susceptibility in order to accurately predict the 

magnetic field perturbations produced.  The results presented are consistent with 

previously published observations based on biological systems [6, 10], and may 

provide an interesting basis for future research. 
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7 INVESTIGATING THE 

EFFECTS OF NMR 

INVISIBLE ORIENTED 

SPHEROID PERTURBERS ON 

SIGNAL PHASE 

7.1 Introduction 

The growing use of magnetic resonance imaging techniques based on the phase of 

gradient signals means that it is increasingly important to understand the nature of 

phase contrast and to be cautious in drawing direct inferences from phase 

measurements or using them as a basis for further calculations.  As discussed in 

Chapter 5, unguarded interpretation of the contrast shown in techniques such as 

phase imaging and susceptibility-weighted imaging (SWI) may lead to incorrect 

inferences being made about the underlying tissue composition due to the non-local 

nature of the phase offsets caused by variations in magnetic susceptibility.  

Quantitative susceptibility mapping (QSM) was shown to offer an effective remedy 

to this problem in the imaging of white matter lesions in multiple sclerosis.  

However, QSM as a technique still relies on certain assumptions about the measured 

signal phase.  For example, in some implementations of QSM, the phase measured in 
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a voxel is assumed to be linearly proportional to the product of the local magnetic 

field and echo time.  This assumption is immediately confounded by phase variation 

at 𝑇𝐸 = 0 caused by variation in the phase of 𝐵1, the magnetic component of the RF 

pulse used to excite the sample.  The impact of this may be mitigated by the use of 

high-pass filtering in QSM, or additionally by measuring the phase accumulation 

between echoes of a multi-echo FLASH sequence.  Removing the effect of 𝐵1 phase 

variation does not, however, always result in a consistent linear phase evolution 

being measured in vivo.  Recent studies have observed non-linear, orientation-

dependent phase evolution in the white matter of the brain [1-6].  This effect has 

been attributed to sub-voxel level, compartmentalised contributions to the signal 

from water pools experiencing different magnetic fields due to the structure and 

anisotropic susceptibility of myelinated nerve fibers [1-3, 5, 6], as well as the shape 

of microscopic and mesoscopic susceptibility inclusions, in the form of proteins, 

lipids, deoxyhemoglobin, and other magnetic iron-bearing inclusions [4, 7-10].  The 

observations relating to myelin structure have been exploited in the development of 

novel fiber orientation mapping and tractography techniques [3, 11, 12], while the 

broader effects of susceptibility inclusions and tissue structure have been 

investigated both using theory and simulation and by experiment, and considered as 

a source of frequency contrast in multiple sclerosis [7, 9, 13].  Developing a clear 

understanding of the tissue content and microstructure underlying measured phase 

evolution is evidently key in extracting useful information about tissue at a sub-voxel 

level and driving advances in the development of quantitative MRI techniques. 

In this study we consider the phase evolution of spins surrounding oriented NMR-

invisible spheroids, both in the static regime and in the presence of diffusion.  Such 

structures can exist in vivo in the form of inclusions such as oligodendrocytes, 

myelin sheaths, red blood cells, muscle fibres and extramyocellular lipids.  Here, 

using Monte-Carlo simulations, we consider only a simple model of uniform 

spheroids with susceptibility 𝜒𝑖 orientated along the direction of an applied magnetic 

field 𝐁 = 𝐵0𝐳̂, surrounded by a randomly distributed ensemble of particles.  Using 

this model, we investigate the effect of variations in the shape and volume fraction of 

the perturber, and the rate of diffusion of the particles.  We demonstrate that the rate 

of phase accumulation is non-linear in time, and is strongly dependent upon the 

system parameters.  These results reaffirm the complexity of phase behaviour in 
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media whose content and structure is non-uniform at a sub-voxel level, and show that 

care must be taken in the interpretation of data based on MRI phase measurements. 

7.2 Field Perturbations due to Magnetized Spheroids 

As described in Chapter 6, if a magnetic field 𝐇  is applied to a structure with 

magnetic susceptibility, 𝜒, a magnetization 𝐌 =  𝜒𝐇 is induced in the structure.  The 

magnetic field cause by this magnetization at a position 𝐫 can then be calculated by 

evaluation of the magnetic scalar potential,Φ(𝐫) [14]. 

Φ(𝐫) =  −
1

4𝜋
 ∫

𝛁′ ∙ 𝐌(𝐫′)

|𝐫 − 𝐫′|
𝑑3𝑟′

𝑉

+
1

4𝜋
 ∮

𝐧′ ∙ 𝐌(𝐫′)

|𝐫 − 𝐫′|
𝑑𝑆′     .

𝑆

 

        Eq.  7.1 

This equation may be solved analytically for structures whose surfaces coincide with 

a coordinate surface in a curvilinear coordinate system.  Such solutions for spherical 

and cylindrical shells were described in Chapter 6 using spherical and cylindrical 

polar coordinates, respectively.   

In this study we consider field perturbations due to magnetized spheroids.  A 

spheroid is a 3D object based on the rotation of an ellipse with semi-axes 𝑎 and 𝑐 

about its principal axis, as shown in Figure 7-1 and Figure 7-2.  The scalar potential 

may be solved analytically for a magnetized spheroid using spheroidal coordinates, 

defined relative to the particular shape in question.  Such a solution has previously 

been described by Sukstanskii and Yablonskiy [7]. 

Any point on the surface of a spheroid can be defined in terms of the spheroidal 

coordinates 𝜎, 𝜏, and 𝜑.  These coordinates are related to the Cartesian coordinates 

𝑥, 𝑦, and 𝑧 by  

𝑥 = 𝑙[(𝜎2 ± 1)(1 − 𝜏2)]1 2⁄ cos 𝜑

𝑦 = 𝑙[(𝜎2 ± 1)(1 − 𝜏2)]1 2⁄ sin 𝜑
𝑧 = 𝑙𝜎𝜏                                               

     . 

        Eq.  7.2 

Here, and in the following equations, + and – relate to oblate and prolate spheroidal 

coordinates respectively.    



Chapter 7: Investigating the effects of NMR invisible oriented spheroid perturbers on signal phase 

Matthew John Cronin - December 2015    129 

 

  

Figure 7-1 – An ellipse with semi-axes 𝑎 and 𝑐. 

Figure 7-2 – Rotation of an ellipse to create a spheroid 
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These coordinates cover space via a manifold of confocal spheroids centred on the 

origin of coordinates with rotational symmetry about the  Cartesian z-axis, and with a 

distance between foci of 2𝑙, lying on the z-axis for prolate spheroids and in the x-y 

plane for oblate spheroids [7]. 

The range of the coordinates 𝜎, 𝜏, and 𝜑 is  

1 ≤ 𝜎 ≤ ∞     − 1 ≤ 𝜏 ≤ 1     0 ≤ 𝜑 ≤ 2𝜋 

        Eq.  7.3 

for prolate spheroidal coordinates, and  

0 ≤ 𝜎 ≤ ∞     − 1 ≤ 𝜏 ≤ 1     0 ≤ 𝜑 ≤ 2𝜋 

        Eq.  7.4 

for oblate spheroidal coordinates [7]. 

 

The spheroidal surfaces in Cartesian coordinates at which 𝜎 is constant are given by 

 

𝑥2 + 𝑦2

𝑙2(𝜎2 ± 1)
+

𝑧2

𝑙2𝜎2
= 1     , 

         Eq.  7.5 

 

and if we consider a spheroid based on the rotation about the z-axis of an ellipse with 

semi-axes 𝑎 and 𝑐, 𝑙 = |𝑎2 − 𝑐2|1 2⁄ .   The surface of such a spheroid coincides with 

the σ-surface where 

 

𝜎 = 𝜎0

=

{
 
 

 
 [1 − (𝑎 𝑐⁄ )2]−1 2⁄ ,     {

𝑎 = 𝑙(𝜎0
2 − 1)1 2⁄

𝑐 = 𝑙𝜎0                  
,     𝑐 > 𝑎 (𝑃𝑟𝑜𝑙𝑎𝑡𝑒)

[(𝑎 𝑐⁄ )2 − 1]−1 2⁄ ,     {
𝑎 = 𝑙(𝜎0

2 + 1)1 2⁄

𝑐 = 𝑙𝜎0                  
,     𝑐 < 𝑎 (𝑂𝑏𝑙𝑎𝑡𝑒)

     . 

        Eq.  7.6 
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Coordinates, therefore, lie within the spheroid when 𝜎 < 𝜎0  and outside of the 

spheroid when 𝜎 > 𝜎0. 

The spheroidal coordinates based on a spheroid with dimensions as described above 

may be expressed in terms of Cartesian coordinates, 𝑙, and the radial coordinate 𝑟 =

(𝑥2 + 𝑦2 + 𝑧2)1 2⁄  as follows 

𝜎 =

(

 
 1

2
((1 +

𝑟2

𝑙2
) + ((1 +

𝑟2

𝑙2
)

2

−
4𝑧2

𝑙2
)

1 2⁄

)

)

 
 

1 2⁄

𝜏 =

(

 
 1

2
((1 +

𝑟2

𝑙2
) − ((1 +

𝑟2

𝑙2
)

2

−
4𝑧2

𝑙2
)

1 2⁄

)

)

 
 

1 2⁄

𝜑 = tan−1
𝑦

𝑥

 

        Eq.  7.7 

for prolate spheroidal coordinates, and  

𝜎 =

(

 
 1

2
((
𝑟2

𝑙2
− 1) + ((

𝑟2

𝑙2
− 1)

2

+
4𝑧2

𝑙2
)

−1 2⁄

)

)

 
 

−1 2⁄

𝜏 =

(

 
 1

2
((1 −

𝑟2

𝑙2
) + ((

𝑟2

𝑙2
− 1)

2

+
4𝑧2

𝑙2
)

−1 2⁄

)

)

 
 

−1 2⁄

𝜑 = tan−1
𝑦

𝑥

 

        Eq.  7.8 

 

for oblate coordinates. 

Laplace’s equation for the magnetic scalar potential, Φ, in spheroidal coordinates is 

given by [7] 
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𝜕

𝜕𝜎
[(𝜎2 ± 1)

𝜕Φ

𝜕𝜎
] +

𝜕

𝜕𝜏
[(1 − 𝜏2)

𝜕Φ

𝜕𝜏
] + 

(𝜎2 ± 𝜏2)

(𝜎2 ± 1)(1 − 𝜏2)

𝜕2Φ

𝜕𝜑2
= 0      . 

        Eq.  7.9 

This equation may be solved with appropriate boundary conditions [15], and the MR 

frequency shift 𝛿𝜔 due to the field perturbation outside the spheroid caused by the 

magnetized spheroid with susceptibility 𝜒𝑖  in a uniform background matrix with 

susceptibility 𝜒𝑒, can then be expressed as 

𝛿𝜔± = 𝛿𝜔𝑠𝜎0(𝜎0
2 ± 1)ℎ±     , 

        Eq.  7.10 

where  

𝛿𝜔𝑠 = 𝛾𝐵0(𝜒𝑖 − 𝜒𝑒) 

        Eq.  7.11 

is the characteristic frequency shift, 

 

ℎ+ = cot−1𝜎 −
𝜎

𝜎2 + 𝜏2
     , 

and 

ℎ− =
𝜎

𝜎2 − 𝜏2
− coth−1𝜎     . 

        Eq.  7.12 

 

The frequency offset inside the spheroid is given by 𝛿𝜔 = −𝛿𝜔𝑠(𝐷𝑧𝑒 − 1 3⁄ ), where 

𝐷𝑧𝑒 is the spheroid’s demagnetizing factor [16].  In the case of spheroids with semi-

axes 𝑎 = 𝑏 and 𝑐 = 𝑞𝑎, where q is a scalar multiplier relating the lengths of a and c, 

the demagnetizing factor may be expressed as a function of 𝑞, so that [17] 

 

𝐷𝑧𝑒(𝑞) =
𝑞 ln(𝑞 + √𝑞2 − 1)

(𝑞2 − 1)3 2⁄
−

1

𝑞2 − 1
     . 

        Eq.  7.13 
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𝐷𝑧𝑒  consequently varies from ~0  for a long, thin, prolate spheroid, to 1 3⁄  for a 

sphere and to ~1 for a flat, oblate spheroid.   

A plot of 𝐷𝑧𝑒 vs 𝑞 for the shapes considered in this study is shown in Figure 7-3.  

The mean magnetic field in a spherical region surrounding a spheroidal perturber 

with fixed volume fraction varies linearly with 𝐷𝑧𝑒 − 1 3⁄  .  

 

7.3 Simulating the Effects of Spheroidal Perturbers on MR 

Signal Phase Evolution 

In order to carry out a detailed evaluation of the effect of oriented spheroids on the 

signal phase, Monte Carlo simulations were written in Matlab to simulate the signal 

from 1,000,000 point-like ‘particles’ prescessing at the local Larmor frequency in a 

spherical volume surrounding an impermeable, NMR-invisible, paramagnetic 

spheroid.  A single perturber in a spherical region was used to represent randomly 

distributed perturbers of low volume fraction in a computationally efficient manner. 

Figure 7-3 – The relationship between  𝐷𝑧𝑒 and 𝑞. 



Investigating the effects of microstructure and magnetic susceptibility in MRI 

Matthew John Cronin - December 2015    134 

The field perturbation due to a spheroid perturber centred on the origin of 

coordinates of a 300 × 300 × 300  voxel matrix was calculated with (𝜒𝑖 − 𝜒𝑒) =

0.1 ppm according to Eq.  7.10, an example of which is shown in Figure 7-4.   

A binary spherical mask centred on the origin with a radius of 300  voxels was 

created, with the volume of the perturber excluded.  This mask defined the region 

within which the particles were allowed to exist.  1,000,000 particles were then 

randomly seeded within this volume.  These particles then underwent a random walk.  

At t = 0 s, each particle was assigned a phase of 0.  After each step, each particle 

accumulated a phase increment ∆𝜙 = 𝛾Δ𝐵 Δ𝑡 𝑁⁄ , where Δ𝐵  is the local field 

perturbation t the location of the particle, Δ𝑡 is a time increment and 𝑁 is the number 

of steps per time increment. The complex signal 𝑆 generated by the ensemble was 

then taken to be 

𝑆 = ∑ exp (𝑖𝜙𝑗)

1,000,000

𝑗=1

     , 

        Eq.  7.14 

where 𝜙𝑗  is the cumulative phase of particle 𝑗 , and the amplitude of the signal 

generated by each particle is 1, and remains constant throughout the simulation. The 

signal magnitude and phase were then calculated by taking the magnitude and phase 

of 𝑆.  In order to give an indication of the size of the region within which significant 

signal cancellation due to dephasing had occurred, the maximum radial distance, 𝑟𝜋, 

from the centre of the perturber at which a static particle external to the perturber 

would have accumulated a phase ≥ 𝜋 was recorded after each step.  𝑟𝜋  will also be 

referred to as the dephasing radius. The frequency of the ensemble at each time point 

was calculated by taking the gradient of the phase evolution to find its rate of change 

in time at each step. 

While the volume fraction was set to be a known constant, and the spheroid was 

always oriented parallel to the field, the exact position of surrounding spheroids was 

assumed to be unknown.  To reflect this, when a particle attempted to leave the 

allowed spherical volume surrounding the perturber, it was re-seeded at a random 

point on the outer surface of the volume.   
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In order to maintain generality in our simulations, the diffusion length 𝐷  can be 

defined in terms of the voxel size 𝛿Δ, the radius, 𝑟𝑎, of a spherical perturber with a 

volume equal to that of the spheroid under consideration, and the number of voxels, 

𝑛, across 𝑟𝑎, such that 

𝑟𝑎 = 𝑛𝛿Δ     . 

        Eq.  7.15 

 

The diffusion length 𝐷 for a random walk may then be expressed as 

𝐷 =
𝛿Δ
2𝑁

2Δ𝑡
=

𝑟𝑎
2𝑁

2𝑛2Δ𝑡
      , 

        Eq.  7.16 

where 𝑁 is the number of steps per time interval, Δ𝑡, with a step size of ±𝛿Δ in each 

dimension.  

Figure 7-4 – Field perturbation in ppm due to a magnetized spheroid 

with (𝜒𝑖 − 𝜒𝑒) = 0.1 ppm and 𝑞 = 2.00 /𝐷𝑧𝑒 = 0.1736 

B0 
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We now define a dimensionless variable, 𝛼, so that 

𝛼 =
𝐷

𝛿𝜔𝑠𝑟𝑎2
=

𝑁

2𝑛2𝛿𝜔𝑠∆𝑡
     , 

        Eq.  7.17 

and 𝛽, a dimensionless time variable, where 

𝛽 = 𝛿𝜔𝑠𝑡     . 

        Eq.  7.18 

The RMS displacement 〈𝑟2〉 of a particle at time 𝑡 is then given by 

𝑅 = √〈𝑟2〉 = √6𝐷𝑡 = √6𝛼𝛿𝜔𝑠𝑟𝑎2𝑡 = 𝑟𝑎√6𝛼𝛽     . 

        Eq.  7.19 

Figures 7-5 and 7-6 show the summed phase and frequency evolution from the 

particles surrounding a prolate perturber with 𝑞 = 2.00  / 𝐷𝑧𝑒 = 0.1736  in the 

absence of diffusion.   

 

Figure 7-5– Phase evoluation vs. scaled time for the signal sampled 

from a population of 1,000,000 precessing particles surrounding a 

prolate perturber with 𝑞 = 2.00 /𝐷𝑧𝑒 = 0.1736. 
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In our simulations, 𝛿𝜔𝑠 was fixed at 187.26 s−1 representative of a perturber with a 

susceptibility of 0.1 ppm in a static applied field, where 𝐵0 = 7 T.  The time interval 

∆𝑡 was set at 1 ms, and simulations were run out to times 𝑡 = 500 ms, so that 0 ≤

𝛽 ≤ 93.5.  𝛽  provides a measure of the phase accumulated at the surface of the 

perturber, while 𝛼  provides a measure of the mean squared displacement due to 

diffusion in units of 𝑟𝑎  on a timescale of 1 𝛿𝜔𝑠⁄ .  The scaled RMS displacement 

𝑅 𝑟𝑎⁄  is approximately equal to 4 when 𝛼1 2⁄ 𝛽1 2⁄ = 𝜋. 

To characterise the system, three additional key variables were considered: the 

volume fraction of the perturber relative to the surrounding medium, the diffusion 

rate of the particles precessing in the field, and the shape of the spheroidal perturber, 

characterised by the demagnetizing factor.   

As the radius of the total volume under consideration in these simulations is fixed at 

150 voxels, the volume fraction and diffusion rate may be altered by varying 𝑛 and 

𝑁 respectively.  To investigate the effect of altering the volume fraction, n was set to 

values of 32 and 41, corresponding to volume fractions of 1% and 2% respectively.  

For each volume fraction, 𝑁 was set to 0, 1, 4, 16, 32 and 64. 

The demagnetizing factor 𝐷𝑧𝑒 dictates the average field perturbation in a spherical 

volume surrounding the perturber [18].  This in turn dictates the average frequency 

Figure 7-6 – Instantaneous frequency of the phase evolution shown 

in Figure 7-5. 
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of precession of the individual particles in the field, although it is important to note 

that this is not necessarily the rate of accumulation of the summed signal phase due 

to wrapping of the phase accumulated by individual particles about ±𝜋  when 

expressed in complex form.  To investigate the effect of perturber shape, the 

simulation was repeated for a range of perturbers with 𝑞 values ranging from 0 .25  

to 4.0 for both volume fractions and the range of 𝑁  values.  The full range of 𝑞 

values and the corresponding demagnetizing factors are shown in Table 7-1, and the 

full range of combinations of 𝑛  and 𝑁  and corresponding 𝛼  values are shown in 

Table 7-2. 

For each combination of the 3 parameters, data were plotted against the 

dimensionless time variable 𝛽.   

The phase evolution for 𝑁 = 0, 16, and, 64  was plotted against 𝛽  along with the 

linear phase evolution that would be expected if the phase simply evolved according 

to the mean field perturbation in the volume.  

𝒒 𝑫𝒛𝒆 𝑫𝒛𝒆 − 𝟏 𝟑⁄  

0.25 0.7036 0.3703 

0.33 0.6354 0.3021 

0.40 0.5882 2549 

0.50 0.5272 0.1939 

0.66 0.4459 0.1126 

1.0 0.3333 0.0000 

1.5 0.2330 -0.1003 

2.0 0.1736 -0.1597 

2.5 0.1352 -0.1981 

3.0 0.1087 -0.2246 

4.0 0.0754 -0.2579 

Table 7-1 – Aspect ratio q and demagnetizing factor for the range of prolate (q>1) 

and oblate (q<1) spheroid perturbers considered in this work. 
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 𝒏 = 𝟑𝟐 𝒏 = 𝟒𝟏 

𝑵 = 𝟎 𝛼 = 0.0000 𝛼 = 0.0000 

𝑵 = 𝟏 𝛼 = 0.0026 𝛼 = 0.0016 

𝑵 = 𝟒 𝛼 = 0.0104 𝛼 = 0.0064 

𝑵 = 𝟏𝟔 𝛼 = 0.0418 𝛼 = 0.0255 

𝑵 = 𝟑𝟐 𝛼 = 0.0836 𝛼 = 0.0509 

𝑵 = 𝟔𝟒 𝛼 = 0.1671 𝛼 = 0.1018 

Table 7-2 – Variation of α with diffusion variable N and base perturber radius n. 

A normalised frequency was generated to remove the effect of volume fraction, 𝐵0, 

and (𝜒𝑖 − 𝜒𝑒), defined as 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑁𝐹) =  
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝛿𝜔𝑠 × 𝑉𝐹
     , 

        Eq.  7.20 

to allow comparison of the effects of perturber shape and diffusion rate in isolation, 

and was also plotted against 𝛽. 

The RMS displacement, 𝑅, and dephasing radius, 𝑟𝜋, were also plotted against 𝛽 to 

give an indication of the scale of the average displacement of the particles relative to 

the radius within which the contribution of static particles to the summed phase 

would be significantly diminished due to strong dephasing. 

In order to compare the effect of volume fraction, the non-normalised frequency was 

also plotted against 𝛽 for every shape for 𝑁 = 0. 

Simulations were carried out on a desktop computer with a 64-bit Linux OS, 3.60 

GHz Intel core i7 CPU, and 32 GB of RAM.  Each simulation required ~3.52 GB of 

RAM, and simulation times ranged from ~30 minutes when N = 0 or 1 increasing 

approximately linearly to ~30 hours when N = 64.  The memory- and processor-

intensive nature of these simulations means that extending this model to more closely 
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resemble a biologically realistic in vivo scenario, for example by explicitly 

simulating multiple perturbers of varying shape, size, or distribution in a larger 

volume, is impractical without access to significantly higher performance computers. 

7.4 Results 

7.4.1 Field Perturbations due to Varying Spheroid Shape 

Figure 7-7 shows the imaginary part of the signal measured at t = 250 ms in the 

absence of diffusion.  Rapid variation of the imaginary signal indicates regions in 

which the phase varies rapidly.  𝐵0 runs left to right, and as such the positive poles of 

the dipole-like fields are to the left and right of the perturbers, while the negative 

poles are above and below. 

The relative volume covered by the positive field perturbation reduces progressively 

between the most oblate (q=0.25) and most prolate (q=4.00) perturbers, while the 

rate of variation of the positive field offset near the perturber increases.  Conversely, 

the relative volume covered by the negative field perturbation increases 

progressively between the most oblate (q=0.25) and most prolate (q=4.00) 

perturbers, while the rate of variation of the negative field offset near the perturber 

decreases. 

7.4.2 Evolution of Signal Phase and Frequency with Varying 

Demagnetization Factor and Diffusion Rate 

Figures 7-8 to 7-18 show the variation of phase, normalised frequency, RMS 

displacement and dephasing radius as a function of 𝛽 for perturbers with the full 

range of 𝑞 values (0.25 to 4), and a volume fraction of 2% (n = 41).  The phase is 

displayed for diffusion rates where 𝛼 = 0, 0.0254,  and 0.1018 .  In addition, the 

phase expected from the mean field offset is shown.  The normalised frequency 

evolution is shown for 𝛼 = 0, 0.0016, 0.0064, 0.0254, 0.0509  and 0.1018 .  The 

RMS displacement and is displayed for 𝛼 = 0.0016, 0.0064, 0.0254, 0.0509  and 

0.1018 alongside the dephasing radius.  The distances R and 𝑟𝜋  are expressed in 

units of 𝑟𝑎. 
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Figure 7-7 – Imaginary component of the complex signal measured at t = 250 ms in 

the static regime where N = 0 for perturbers with different q-factors and a VF of 2 %. 
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7.4.2.1 Phase Evolution 

The rate of phase accumulation predicted by the mean field perturbation (and shown 

by the frequency when t = 0 s) is proportional to 𝐷𝑧𝑒 − 1 3⁄ , as expected from theory 

[17] and as shown in Figure 7-21.  For all perturbers, the calculated phase evolution 

differed from that predicted by the mean field perturbation, with the difference 

greatest where there is no diffusion (𝛼 = 0).  The calculated phase evolution tended 

increasingly towards that predicted by the mean field perturbation as the rate of 

diffusion increased (𝛼 = 0.0254 and 𝛼 = 0.1018).  The deviation of the calculated 

phase evolution from the predicted phase is greatest for the flattest oblate spheroid 

perturber with 𝑞 = 0.25 /𝐷𝑧𝑒 = 0.7036, reducing with 𝐷𝑧𝑒  to a minimum with the 

longest prolate perturber with 𝑞 = 4.00 /𝐷𝑧𝑒 = 0.0754.  

 

7.4.2.2 Frequency Evolution 

The normalised frequency (NF) evolution displays a strong dependence on the shape 

of the perturber.  This shape dependence is most pronounced in the static regime 

where 𝛼 = 0.  

The frequency of the subsequent oscillation of the 𝑁𝐹 in the absence of diffusion 

increases as 𝐷𝑧𝑒 decreases, and the perturber becomes more spherical, the magnitude 

of the oscillations decreases and the rate of damping increases, revealing a gradual 

downward trend in the 𝑁𝐹  over time.  In contrast, there is little variation in the 

magnitude of the initial fall in 𝑁𝐹 in the static regime between the sphere and the 

most prolate perturber with 𝑞 = 4.00  / 𝐷𝑧𝑒 = 0.0754 .  The magnitude of the 

subsequent oscillation increases slightly between the sphere and the prolate perturber 

with 𝑞 = 1.50 /𝐷𝑧𝑒 = 0.2330, and then remains fairly constant as 𝐷𝑧𝑒 decreases.  In 

all but the longest prolate perturber, the magnitude of the oscillation is greater than 

that of the initial fall in 𝑁𝐹, causing the 𝑁𝐹 to increase above its initial value at 𝛽 =

0 at some points in time.  The frequency of the oscillation reduces with 𝐷𝑧𝑒 as the 

perturber is progressively elongated. 
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Figure 7-8 Oblate perturber 𝑞 = 0.25  /𝐷𝑧𝑒 = 0.7036 .  When α = 0, the phase 

deviates rapidly from that predicted by the mean field when β > ~10. The frequency 

falls before oscillating with a gradually decreasing magnitude.  A α increases, the 

phase converges on that predicted by the mean field, and the frequency oscillations 

are damped before the normalised frequency begins to converge on its initial value of 

~0.4 when β = 0. 

/ra 
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Figure 7-9 – Oblate perturber 𝑞 = 0.33 /𝐷𝑧𝑒 = 0.6354.  When α = 0, the phase 

deviates rapidly from that predicted by the mean field when β > ~10. The frequency 

falls before oscillating with a gradually decreasing magnitude while continuing a 

slight downwards trend.  A α increases, the phase converges on that predicted by the 

mean field, and the frequency oscillations are damped before the normalised 

frequency begins to converge on its initial value of ~0.3 when β = 0. 

/ra 
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Figure 7-10 – Oblate perturber 𝑞 = 0.40 /𝐷𝑧𝑒 = 0.5882.  When α = 0, the phase 

deviates rapidly from that predicted by the mean field when β > ~10. The frequency 

falls before oscillating with a gradually decreasing magnitude while continuing a 

slight downwards trend.  A α increases, the phase converges on that predicted by the 

mean field, and the frequency oscillations are damped before the normalised 

frequency begins to converge on its initial value of ~0.27 when β = 0. 

/ra 
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Figure 7-11 – Oblate perturber 𝑞 = 0.50 /𝐷𝑧𝑒 = 0.5272.  When α = 0, the phase 

deviates rapidly from that predicted by the mean field when β > ~10. The frequency 

falls before oscillating with a gradually decreasing magnitude while continuing a 

slight downwards trend.  A α increases, the phase converges on that predicted by the 

mean field, and the frequency oscillations are damped before the normalised 

frequency begins to converge on its initial value of ~0.2 when β = 0. 

/ra 
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Figure 7-12 – Oblate perturber 𝑞 = 0.66 /𝐷𝑧𝑒 = 0.4459.  When α = 0, the phase 

deviates from that predicted by the mean field when β > ~10. The frequency falls 

before oscillating with a gradually decreasing magnitude while continuing a 

downwards trend.  A α increases, the phase converges on that predicted by the mean 

field, and the frequency oscillations are damped before the normalised frequency 

begins to converge on its initial value of ~0.1 when β = 0. 
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Figure 7-13 – Spherical perturber 𝑞 = 1.00 /𝐷𝑧𝑒 = 0.3333.  When α = 0, the phase 

deviates from that predicted by the mean field when β > ~10. The frequency falls 

before oscillating with a gradually decreasing magnitude while continuing a slight 

downwards trend.  A α increases, the phase converges on that predicted by the mean 

field, and the frequency oscillations are damped before the normalised frequency 

begins to converge on its initial value of ~0 when β = 0. 

/ra 
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Figure 7-14 – Prolate perturber 𝑞 = 1.50 /𝐷𝑧𝑒 = 0.2330.  When α = 0, the phase 

deviates rapidly from that predicted by the mean field when β > ~10. The frequency 

falls before oscillating with a gradually decreasing magnitude with a slight 

downwards trend when β > ~40.  A α increases, the phase converges on that 

predicted by the mean field, and the frequency oscillations are damped before the 

normalised frequency begins to converge on its initial value of ~-0.1 when β = 0. 

/ra 
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Figure 7-15 – Prolate perturber 𝑞 = 2.00 /𝐷𝑧𝑒 = 0.1736.  When α = 0, the phase 

deviates gradually from that predicted by the mean field when β > ~60.  The 

frequency falls before oscillating with a gradually decreasing magnitude while 

continuing a slight downwards trend.  A α increases, the phase converges on that 

predicted by the mean field, and the frequency oscillations are damped before the 

normalised frequency begins to converge on its initial value of ~-0.16 when β = 0. 

/ra 
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Figure 7-16 – Prolate perturber 𝑞 = 2.50 /𝐷𝑧𝑒 = 0.1352.  When α = 0, the phase 

deviates gradually from that predicted by the mean field when β > ~60.  The 

frequency falls before oscillating with a gradually decreasing magnitude while 

continuing a slight downwards trend.  A α increases, the phase converges on that 

predicted by the mean field, and the frequency oscillations are damped before the 

normalised frequency begins to converge on its initial value of ~-0.2 when β = 0. 

/ra 
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Figure 7-17 – Prolate perturber 𝑞 = 3.00 /𝐷𝑧𝑒 = 0.1087.  When α = 0, the phase 

decreases slightly from that predicted by the mean field when β > ~10. The 

frequency slowly oscillates with a slight downwards trend.  A α increases, the phase 

converges on that predicted by the mean field, and the frequency of the normalised 

frequency oscillations decreases and the downward trend disappears, before the 

normalised frequency begins to converge on its initial value of ~-2.2 when β = 0. 

/ra 
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Figure 7-18 – Prolate perturber 𝑞 = 4.00 /𝐷𝑧𝑒 = 0.0754.  When α = 0, the phase 

deviates gradually from that predicted by the mean field when β > ~10, and the 

frequency slowly oscillates with a slight downwards trend.  A α increases, the phase 

converges on that predicted by the mean field, and the frequency of the normalised 

frequency oscillations decreases and the downward trend disappears, before the 

normalised frequency begins to converge on its initial value of ~-2.5 when β = 0. 

/ra 
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For all perturber shapes, as diffusion increases, the oscillation of the 𝑁𝐹 occurring 

after the initial reduction is damped.  The magnitude of the initial decrease in 𝑁𝐹 is 

also attenuated.  In the case of the oblate perturbers and the sphere, the 𝑁𝐹 reaches a 

steady state when 𝛼 ≥ 0.0254 .  For higher 𝛼  values, the 𝑁𝐹  in the steady state 

converges on the 𝑁𝐹 when 𝛽 = 0.  In the case of the prolate perturber with 𝑞 = 1.50 

/𝐷𝑧𝑒 = 0.2330, the 𝑁𝐹  when 𝛼 = 0.0254 reaches a steady state when 𝛽~40-45.  

When 𝛼 = 0.0509 the 𝑁𝐹 drops slightly initially before reaching a steady state just 

below the 𝑁𝐹  at 𝛽 =0. When 𝛼 = 0.1018 the 𝑁𝐹  remains approximately constant 

throughout the simulation.  For the remaining prolate perturbers, slight oscillation of 

the 𝑁𝐹 is still apparent when 𝛼 = 0.0254.  At short times (𝛽~ 0-40), when 𝛼 =

0.0509 the 𝑁𝐹 falls slightly below that seen when 𝛼 = 0.1018, with this difference 

reducing with 𝐷𝑧𝑒, and vanishing completely for the most prolate perturber.  When 

𝑞 = 3.00 /𝐷𝑧𝑒 = 0.1087 and 𝛼 = 0.1018, and also when 𝑞 = 4.00 /𝐷𝑧𝑒 = 0.0754 

and 𝛼 = 0.0509/0.1018, the 𝑁𝐹 rises slightly at very low 𝛽, before entering a steady 

state. 

Comparison of the evolution of the 𝑁𝐹 with the RMS displacement, 𝑅 = √〈𝑟2〉 at 

each diffusion rate with the dephasing radius shows that the 𝑁𝐹  evolution falls 

broadly into three diffusion-dependent regimes.   

For all perturbers, when 𝛼 = 0, or 0.0016, the low rate of diffusion means that 𝑅 <

𝑟𝜋  throughout the simulation (with the exception of very low𝛽  values, where no 

static particle has yet accumulated a phase ≥ 𝜋).  At these diffusion rates, oscillation 

is apparent in the evolution of the 𝑁𝐹, which does not reach a steady state.   

When 𝛼 = 0.0509 or 0.01018, 𝑅 > 𝑟𝜋 for all but very low 𝛽 values in the case of 

prolate ellipsoids where 𝑞 > 2.00 /𝐷𝑧𝑒 > 0.1736, where the radial distance of the 

strongest field perturbation from the centre of the spheroid is greatest.  At these 

diffusion rates, the 𝑁𝐹  does not oscillate after the initial decrease, and reaches a 

steady state. 

When 𝛼 = 0.0254, 𝑅 > 𝑟𝜋  throughout the simulation for the oblate spheroids and 

the sphere, but for the prolate spheroids, 𝑅 < 𝑟𝜋 when 𝛽~5-20, before , 𝑅 overtakes 

𝑟𝜋.  For the oblate spheroids and sphere, the 𝑁𝐹 does not oscillate after the initial 

decrease, and reaches a steady state.  For the prolate spheroids, slight oscillation is 

evident in the 𝑁𝐹. 
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When 𝛼 = 0.0064, 𝑅~𝑟𝜋  over most of the range of 𝛽 values for the oblate spheroids 

and the sphere, and  𝑅 < 𝑟𝜋  for the prolate spheroids, with a difference which 

increases as 𝐷𝑧𝑒 decreases.  In the case of the most oblate spheroid with 𝑞 = 0.25 

/𝐷𝑧𝑒 = 0.7036, the initial decrease in 𝑁𝐹 is followed by oscillation, however these 

oscillations are rapidly damped as 𝛽 increases.  For the remaining oblate spheroids 

and the sphere, the initial decrease in 𝑁𝐹  is followed by oscillation, however a 

steady state is reached at large 𝛽 values.  For the prolate spheroids with 𝑞 ≤ 2.00 

/𝐷𝑧𝑒 ≤ 0.1736, the evolution of the 𝑁𝐹 follows that observed in the oblate spheroids 

and sphere, with the steady state reached at increasingly large 𝛽 values.  For the 

remaining profdlate spheroids, the oscillation persists throughout the simulation, and 

no steady state is achieved.  

7.4.3 Variation of Initial and Final Frequency with Demagnetizing 

Factor, Diffusion Rate, and Volume Fraction 

Figures 7-19 and 7-20 show the variation of the normalised frequency (𝑁𝐹) as a 

function of 𝐷𝑧𝑒 − 1 3⁄  at 𝑡 = 0 for 𝑁 = 0 and at 𝑡 = 500 ms for 𝑁 = 0, 16 and 64, 

for perturbers with volume fractions of 2% and 1% respectively.  The normalised 

frequency 𝑡 = 0  varies linearly with 𝐷𝑧𝑒 − 1 3⁄  for both volume fractions.  These 

NF values reflect the average field perturbation in the spherical volume surrounding 

the perturber, as expected.  When 𝑡 = 500 ms, the relationship between normalised 

frequency and 𝐷𝑧𝑒 − 1 3⁄  becomes non-linear in the absence of diffusion, due strong 

dephasing of the signal in regions where the field offset is strong and spatially 

varying.  The relationship becomes more linear and approaches the 𝑁𝐹 values at 𝑡 =

0 ms as the rate of diffusion is increased by increasing 𝑁 to 16 and then 64.  For the 

perturbers with a 1% volume fraction and 𝐷𝑧𝑒 − 1 3⁄ ≤ 0, the 𝑁𝐹  at 𝑡 = 500 ms 

with 𝑁 = 64 does not deviate significantly (> 10%) from its value when 𝑡 = 0 ms 

in the static regime.  For perturbers with a 2% volume fraction, the 𝑁𝐹  at 𝑡 =

500 ms deviates more significantly strongly from its value when 𝑡 = 0 ms in the 

static regime for all shapes other than the most prolate perturber with 𝐷𝑧𝑒 − 1 3⁄ =

−0.2579. Figure 7-21 shows the non-normalised frequency of the perturbers with 

both 1% and 2% volume fractions when t = 0 ms.  The frequency offset in both cases 

varies linearly with 𝐷𝑧𝑒 − 1 3⁄  at each volume fraction, and scales in proportion to 

the volume fraction for each shape. 
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Figure 7-19 – Normalised frequency variation for perturbers with 2% VF as a function 

of 𝐷𝑧𝑒 − 1 3⁄  at t = 0 ms for N = 0 and at t = 500 ms for the N = 0, 16 and 64. 

Figure 7-20 – Normalised frequency variation for perturbers with 1% VF as a function 

of 𝐷𝑧𝑒 − 1 3⁄  at t = 0 ms for N = 0 and at t = 500 ms for the N = 0, 16 and 64. 
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Figure 7-21 – Comparison of the variation of signal frequency at t = 0 

ms for perturbers with 1% and 2% volume fractions. 

 

7.4.4 Effect of Varying Volume Fraction 

Figures 7-22 and 7-23 show the absolute (non-normalised) frequency evolution in 

the absence of diffusion for the full range of perturber shapes with volume fractions 

of 1% and 2%.  The frequency when 𝛽 = 0 is proportional to volume fraction as well 

as 𝐷𝑧𝑒 − 1 3⁄ , as shown in Figure 7-21.  While the evolution of the frequency at both 

volume fractions reflects similar trends, they are not simply scaled copies of one 

another.  While the initial decrease in frequency for each shape  appears to simply 

scale with volume fraction, the frequency of the subsequent oscillation appears to 

vary between volume fractions for the two most oblate perturbers ( 𝑞 = 0.25 /𝐷𝑧𝑒 =

0.7036 and 𝑞 = 0.33 /𝐷𝑧𝑒 = 0.6354), where the magnitude of such oscillations is 

greatest.  The frequency of oscillation appears consistent between volume fractions 

for the remainder of the perturbers.  For the perturbers with a 1% volume fraction, an 

initial decrease in frequency is followed by oscillation of the frequency about an 

approximately constant value.  In the case of the prolate perturbers, the initial drop in 

frequency becomes very small and the frequency oscillates slowly about the 

frequency when 𝛽 = 0.  However, for the perturbers with a 2% volume fraction, the 

frequency continues to decline slowly as it oscillates after its initial decrease. 
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Figures 7-24 to 7-26 show the variation of phase, normalised frequency, RMS 

displacement, and 𝑟𝜋 for the most oblate (𝑞 = 0.25 /𝐷𝑧𝑒 = 0.7036), spherical (𝑞 = 1 

/𝐷𝑧𝑒 = 0.3333), and most prolate (𝑞 = 4.00 /𝐷𝑧𝑒 = 0.0754) perturbers with both 

1% and 2% volume fractions.  The normalised frequency should be independent of 

volume fraction when 𝛽 = 0, however it appears slightly lower for a volume fraction 

of 1% when compared to the corresponding spheroid with a volume fraction of 2% 

for the oblate perturbers.  While the 𝑁𝐹  evolution follows similar trends for 

corresponding shapes and diffusion rates at each volume fraction, it is not identical.  

In the case of the oblate perturber, the magnitude of the oscillations in the 𝑁𝐹 are 

reduced when the volume fraction is 1%, and the damping of the oscillations through 

time is greater.  Increasing rates of diffusion cause a more rapid convergence of the 

𝑁𝐹 towards its starting value for the 1% volume fraction when compared to the 2% 

volume fraction.  The pi dephasing radius is reduced for the 1% volume fraction, 

reflecting the smaller size of the perturber.  When 𝛼 = 0.0064 (2%)/0.0104 (1%),  

the difference between 𝑅  and 𝑟𝜋  is significantly increased for the 1% volume 

fraction, and the 𝑁𝐹 reaches a steady state when 𝛽 > 60, whereas no such state is 

achieved for the 2% volume fraction.   

In the case of the sphere, the magnitude of the oscillations remains similar between 

the 1% and 2% volume fractions.  The damping of the oscillations also appears to be 

similar.  The rate at which the 𝑁𝐹 converges on its starting value increases slightly 

for the 1% volume fraction relative to the 2% volume fraction.  When 𝛼 = 0, 

0.0016 (2%)/0.0026 (1%), or 0.0064 (2%)/0.0104 (1%), the downward trend in 

𝑁𝐹  apparent when  𝛽 > ~50 is significantly reduced for the 1% volume fraction 

relative to the 2% volume fraction.   

For the prolate perturber, the initial decrease in 𝑁𝐹 is slightly reduced for the 1% 

volume fraction relative to the 2%.  The amplitude of the oscillation when 𝛼 = 0 or 

0.0016 (2%)/0.0026 (1%) is slightly increased, and they appear to be more centred 

on the initial 𝑁𝐹 for the 1% volume fraction than the 2%.  In both cases, the 𝑁𝐹 

remains in a steady state throughout when 𝛼 = 0.0509 (2%) / 0.0836 (1%)  or 

0.1018 (2%) / 0.1671 (1%) , and oscillate very slightly when 𝛼 = 0.0254 

(2%)/0.0418 (1%). 
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Figure 7-22 – Non-normalised frequency evolution in the absence of diffusion for the 

oblate and spherical perturbers with q ranging from 0.25 to 1.00. 
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Figure 7-23 - Non-normalised frequency evolution in the absence of diffusion for the 

prolate perturbers with q ranging from 1.50 to 4.00. 
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Figure 7-24 – Variation of phase, NF, 𝑟𝜋 and 𝑅 for an oblate perturber with 𝑞 = 0.25 

/𝐷𝑧𝑒 = 0.7036 and varying α-values and β.  Volume fractions of 1% and 2% were 

considered. 

 

 

 

  /ra  /ra 
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Figure 7-25 - Variation of phase, NF, 𝑟𝜋 and 𝑅 for a spherical perturber with 𝑞 =

1.00 /𝐷𝑧𝑒 = 0.3333 and varying α-values and β.  Volume fractions of 1% and 2% 

were considered. 
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Figure 7-26 – Variation of phase, NF, 𝑟𝜋 and 𝑅 for a prolate perturber with 𝑞 = 4.00 

/𝐷𝑧𝑒 = 0.0754 and varying α-values and β.  Volume fractions of 1% and 2% were 

considered. 
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7.5 Discussion 

The results presented in this chapter demonstrate that in a system of oriented NMR 

invisible spheroidal perturbers, the measured phase does not simply reflect the bulk 

susceptibility, governed by the volume fraction, but rather it is also dependent on the 

shape of the perturbers. 

The shape dependence of the frequency is demonstrated in Figures 7-19 and 7-20.  

Considering the static regime, not only does the frequency vary linearly with 𝐷𝑧𝑒 −

1 3⁄  when 𝑡 = 0, but it also deviates from this value over time, with a magnitude 

which correlates approximately with Dze.  This observation may be explained by 

consideration of Figure 7-7.   

For the most oblate perturbers, the field varies rapidly over a large region at the 

positive poles, while the negative poles only correspond to a small region of rapid 

dephasing (here, we refer to positive/negative ‘poles’ to describe the points at the 

surface of the perturber where the magnitude of the positive/negative field 

perturbation is greatest).  For the most prolate perturber, the field varies even more 

rapidly at the positive poles, but over a far smaller volume than for the oblate 

perturber.  In contrast, the field at the negative poles of the prolate perturber is both 

significantly more slowly varying and covers a large volume.  When t = 0 s, no 

dephasing has occurred, and so the frequency reflects the total mean field 

perturbation over the volume.  However, when t=500 ms, significant dephasing has 

occurred in regions close to the poles of the perturbers, meaning that the frequency 

contribution from these areas is not reflected in the measured average frequency.   

The points highlighted above are consistent with the static regime results seen in 

Figure 7-19 and Figure 7-21. For the most oblate perturber, a large number of 

particles reside in the relatively large regions with rapidly-varying, positive field 

perturbations.  Significant dephasing of signal from these regions would result in a 

large net reduction in the mean apparent frequency.  As the perturbers become less 

oblate, the size of these regions reduces, and the negative deviation of the frequency 

from the mean field reduces accordingly, becoming slightly positive in the case of 

the 1 % volume fraction perturbers with 𝐷𝑧𝑒 − 1 3⁄ ≤ 0.1957. 

In the case of the sphere, where the field follows a dipolar pattern, the positive poles 

subtend a smaller volume (~42%) of the spherical region surrounding the dipole than 
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the negative poles, however the phase in these regions still varies more rapidly than 

the slightly larger negative poles, and consequent dephasing of signal from these 

regions dominates and results in a negative deviation of the measured frequency at t 

= 500 ms. This is consistent with the previously reported expectation that at 

sufficiently long times in the static regime, the frequency measured from a volume 

containing spherical perturbers will have a negative offset [19].  This offset would 

correspond to a normalised frequency of -0.053 [19], which is less negative than the 

offsets at t = 500 ms seen in Figures 7-19 and 7-20.  This may be explained by the 

relatively large size of the perturbers in our simulation relative to the restricted 

volume considered.  At long times, the signal will completely dephase throughout the 

volume.  However, this will happen first in the more rapidly varying positive regions, 

causing our results at long times to be negatively biased compared to a simulation 

over a larger volume. 

Such a negative bias in our results at long times would also explain the larger 

negative deviation of the NF at t = 500 ms for the 2 % VF compared to the 1 % VF.  

While the normalisation of the frequency removes the VF dependence of the field 

perturbation, it does not account for the larger relative size of the sample volume 

surrounding the 1 % VF perturbers compared to the 2% VF perturbers. 

In all cases, introducing diffusion reduces the deviation of the NF from its original 

value over time.  This is consistent with our argument, as with increasing diffusion 

each particle will, on average, sample more of the space around the perturber over a 

given time, and the average phase accumulated by each particle will therefore 

converge on that expected from the mean field within the volume. 

The phase and frequency evolutions with 𝛽 may also be explained in terms of the 

mean field perturbation over the volume and the size and rate of signal loss from the 

regions of rapidly varying field at the positive and negative poles.  The phase 

evolution clearly illustrates that diffusion causes convergence of the phase behaviour 

on that expected from the mean field, however the effect of perturber shape is better 

discussed in terms of the frequency evolution, which gives a clearer picture of the 

instantaneous rate of phase accumulation of the signal recorded from the ensemble of 

particles. 
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In their work describing NMR signal from a sample containing a system of randomly 

oriented spheroidal perturbers, Sukstanskii and Yablonskiy [7] describe the 

dephasing of the signal from spins outside of the perturbers as falling broadly into 3 

regimes over time.  They describe a regime at short times where dephasing is 

dominated by spins close to the perturbers, an intermediate time regime where 

dephasing is strongly dependent on the shape of the perturber, and a third regime 

where the remaining coherent spins are at a distance much greater than the 

perturber’s longest dimension, and ‘sense’ the perturber as a point dipole.  In our 

results, we observe frequency behaviour consistent with the first two regimes.  In 

order to observe behaviour corresponding to the third regime, the volume fraction 

would have to be reduced to the point where the radius of the volume under 

consideration was significantly larger than the longest dimension of the perturber, 

and simulations carried out to times where signal from the whole region where the 

field is influenced by the perturber shape had dephased. 

For all perturber shapes and volume fractions, when 𝛽 = 0 the frequency reflects the 

mean field perturbation, which is non-zero for non-spherical perturbers due to the 

deviation of the field near to the perturber from the spherical dipolar form.  This is 

consistent with the first regime described in [7], where dephasing in this region 

dominates.  The NF then deviates from its initial value as the contribution from 

particles very near to the perturber decreases, and evolves in a strongly shape-

dependent manner.  The NF initially decreases, with a magnitude that is greatest for 

the most oblate perturber and least for the most prolate perturber.  This is consistent 

with rapid dephasing at the positive poles, whose relative contribution to the total 

signal is inversely proportional to 𝐷𝑧𝑒.   

The subsequent oscillation of the NF is shape-dependent in both its amplitude and 

frequency of variation, in a manner consistent with the second regime described in 

[7].  This may be explained by the contribution to the measured frequency from 

particles within a region where dephasing is not so rapid that the signal contribution 

is lost, nor so slowly varying that there is no interference of signals from different 

particles.  In such a region, superposition of the signal from spins precessing at 

different frequencies may explain the periodic oscillation observed, in a manner 

analogous to a beat frequency.  The relatively high frequency oscillation observed in 

the case of the oblate perturbers may be explained by the rapid variation of the phase 
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in regions surrounding the positive poles, and the increased damping of this 

oscillation as 𝐷𝑧𝑒 decreases corresponds to the reduction in volume of these regions 

as the perturber becomes more spherical.  The lower frequency oscillation, which 

becomes prominent as the perturber becomes increasingly prolate, may be explained 

by the increasing contribution to the frequency of particles in the increasingly large 

slowly varying volumes surrounding the negative poles. 

A comparison of the effects of varying volume fraction on the non-normalised 

frequency can be seen in Figures 7-22 and 7-23, where the magnitude of the initial 

frequency offset and subsequent fall in frequency scale with the volume fraction.  

The subsequent evolution of the frequency would be expected also to scale with 

volume fraction, however our results show a general downward trend in the case of 

the 2 % VF perturbers relative to that seen in the case of the 1% VF perturbers.  As 

discussed above, this is likely a consequence of the limited volume over which our 

simulation was carried out.   

The effect of diffusion on both the 1% and 2% volume fractions falls broadly into 

two categories.  When the RMS displacement, R, is less than or on order of 𝑟𝜋, the 

maximum radius at which the phase reaches a value of π in the static regime, 

diffusion attenuates the oscillation after the initial decrease in NF. When R                                                 

becomes significantly greater than 𝑟𝜋, the NF reaches a steady state value.  As α 

increases this value tends towards the frequency predicted by the mean field.  This 

may simply be explained by each particle, on average, sampling a greater proportion 

of the total field over a given period of time. 

The main significance of our results lies in our demonstration that in the presence of 

oriented, NMR invisible spheroidal perturbers, the NMR signal from a volume with a 

constant bulk susceptibility will have a phase which is both dependent on the shape-

dependent demagnetizing factor of the perturber, the rate of diffusion of the target 

nuclei, and the time at which the signal is sampled.   

If we consider a fixed apparent diffusion coefficient  𝐴𝐷𝐶 = 0.70 × 10−3 mm s−1, 

which falls within the range of diffusion coefficients found in healthy brain tissue 

[20], we may gain some insight into the relevance of our results in a biological 

system.  Using Eq. 7.16 to find 𝛿∆ for each combination of 𝑛 and 𝑁 and a step time 

∆𝑡 = 1 ms, we find that our results may be used to represent perturbers with a 
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volume fraction of 1% and 𝑟𝑎 = 4.73 − 37.90 μm, and a volume fraction of 2% and 

𝑟𝑎 = 6.06 − 48.50 μm.  These are mesoscopic length scales, of the order of the size 

of biological inclusions such as red blood cells (6-8 μm).  𝛽 is related to the time at 

which phase is measured, as well as the characteristic frequency shift 𝛿𝜔𝑠, which in 

turn is related to the magnetic field strength 𝐵0 and the susceptibility of the inclusion 

relative to its surroundings, (𝜒𝑖 − 𝜒𝑒).   

At 7 T, the echo times typically of interest in a gradient echo based sequence are of 

order 5 − 40 ms, corresponding to 𝛽~1 − 8 when (𝜒𝑖 − 𝜒𝑒) = 0.1 ppm.  As such, 

the phase measured from the system we present here would reflect the behaviour 

observed in the first regime at short echo times when 𝑇𝐸~5 ms, where the frequency 

is representative of the mean field perturbation of a given perturber shape at a fixed 

volume fraction of 1 or 2 %, regardless of the absolute size of the perturber, with an 

increasing dependence on 𝛼  as 𝐷𝑧𝑒  increases.  If the ADC is fixed, this would 

correspond to a dependence on the absolute size of the perturber that increases with 

TE.  If (𝜒𝑖 − 𝜒𝑒)  were increased to 1 ppm , however, the interesting range of 𝛽 

would become of order 10 − 80.  In this case, the measured phase would reflect the 

oscillating behaviour observed in the second regime, and the measured phase would 

be highly 𝛼 -dependent.  This would correspond to a strong dependence on the 

absolute size of the perturber.   

While the results presented here demonstrate interesting and behaviour which 

deviates significantly from that expected from simple models, Yablonskiy et al, 

previously noted that “in many practically important cases of biological systems 

nuclear motion does not substantially affect dephasing of a FID signal caused by 

susceptibility-induced mesoscopic magnetic field inhomogeneities.” [7, 19, 21], as 

relatively large length scale field inhomogeneities dephase the signal before diffusion 

causes the phase accumulated by each spin to average out.  Factors such as externally 

generated field inhomogeneity, and others such as longitudinal relaxation were not 

included in our model, therefore while the signal behaviour observed in these 

simulations may contribute significantly to certain measurements, they only 

represent one contribution to real measurements from such a system. 
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7.6 Conclusions 

In this chapter we used Monte Carlo simulation to demonstrate that the average 

frequency offset produced by orientated, NMR invisible inclusions can be strongly 

dependent on the shape of the inclusions, even in the presence of diffusion, and 

doesn’t therefore simply relate to the bulk magnetic susceptibility.  In the short time 

(𝛽 ≪ 1) and high diffusion (𝑅 ≫ 𝑟𝜋) regimes, the offset has a simple dependence on 

the demagnetizing factor of the oriented spheroidal inclusions.  At longer times and 

lower diffusion rates, a more complex behaviour emerges with little dependence on 

the mean field perturbation.  Considering the system in terms of a fixed, biologically 

realistic diffusion rate, it can be seen that the extent of the observed frequency and 

phase evolution that falls within a relevant range of times is strongly dependent on 

the susceptibility of the perturber relative to the background.  These results give 

detailed insight into the phase and frequency evolution measured from a volume 

containing oriented, NMR-invisible spheroidal inclusions with non-zero magnetic 

susceptibility, and contribute to the body of evidence that the phase measured from 

such volumes is not simple and linear in time, rather it is influenced by a complex 

combination of factors, and as such must be interpreted with care.  
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8 CONCLUSIONS 

8.1 Summary 

The primary focus of the work described in this thesis was to explore the underlying 

mechanisms of magnetic-susceptibility-induced field variations in MRI through the 

measurement of MRI signal phase.  This was achieved through the comparison of 

phase imaging and quantitative susceptibility mapping in the in vivo investigation of 

multiple sclerosis, exploration of the effects of magnetic susceptibility anisotropy 

through macroscopic phantom experiments, and the use of Monte Carlo simulation to 

characterise the effect of shape and diffusion on the signal phase measured from a 

system of particles in a field perturbed by oriented, NMR-invisible spheroidal 

susceptibility inclusions. 

Early interest in phase and susceptibility-weighted imaging suggested that MRI 

signal phase may be a local indicator of tissue magnetic susceptibility, and 

specifically tissue iron content [1-6].  This hypothesis is flawed due to the non-local 

relationship between magnetic susceptibility variation within a volume and the 

resulting perturbation of the applied magnetic field, from which local phase variation 

arises [7, 8].  In the work presented here, isotropic high-resolution, 3D gradient echo 

imaging of white matter lesions in multiple sclerosis was used to show the 

significance of this non-local effect in vivo, and to demonstrate how the application 

of quantitative susceptibility mapping reveals a magnetic susceptibility distribution 

consistent with both T2
*-weighted magnitude images and previously reported 

findings from histology [9].  Lesions were viewed in sagittal, coronal, and axial 

planes, and clear examples of non-local, dipolar contrast were identified in phase 

images, and shown to be corrected by the application of QSM processing to the data.  

The identification and characterisation of peripheral rings around some white matter 
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lesions was compared for both phase and QSM images.   The results of this 

comparison confirm that images based on local phase contrast must be interpreted 

with caution, and support the use of quantitative susceptibility mapping as a means 

of extracting information about local magnetic susceptibility from MRI signal phase.   

This thesis then goes on to consider in greater detail the effect of sub-voxel level 

microstructure on the signal phase measured in MRI.  The practical limitations of the 

resolution achievable in vivo using MRI make the ability to infer information about 

such structure a potentially powerful tool.  Recent studies have shown orientation 

and time-dependence in the frequency and apparent susceptibility recorded from 

some regions of the brain [10-18], which has been attributed to the magnetic 

susceptibility anisotropy exhibited by myelin.  This effect has been used as the basis 

of novel fiber tracking techniques, and as an explanation of the time and orientation 

dependent frequency of the MRI signal from voxels in certain regions.  Mathematical 

representations of this effect have been based on either the assignment of an 

orientation-dependent isotropic susceptibility to anisotropic materials [13], or the 

representation of their magnetic susceptibility by a susceptibility tensor [12, 16, 19].  

The work presented here explored the effect of magnetic susceptibility anisotropy 

using phantoms composed of pyrolytic graphite sheet (PGS), a highly diamagnetic 

and anisotropic material.  The results of this work show novel field perturbations 

produced by macroscopic cylindrical and spherical shells and point-like sources of 

PGS, which can only be explained by the full, tensor-based description of magnetic 

susceptibility anisotropy.  The most important implication of these results is that field 

perturbations due to magnetic susceptibility anisotropy cannot be accurately 

predicted by a simple orientation-dependent isotropic representation of susceptibility, 

but rather the full, tensor-based derivation must be used.  The results are in 

agreement with previously published expressions for the field perturbation inside and 

outside of a cylindrical shell with anisotropic magnetic susceptibility, and further 

demonstrate radius-dependent uniform field offsets inside spherical shells, which are 

consistent with previous studies into the NMR line-position of the signal acquired 

from spherical lipoproteins [20]. 

The final experimental chapter describes how Monte Carlo simulation was used to 

investigate variations in the frequency and phase measured from an ensemble of 
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particles surrounding oriented, NMR-invisible, spheroidal perturbers with shape and 

volume fraction, and in the presence and absence of diffusion.  The results of this 

work show that at very short echo times the signal frequency depends on the shape-

dependent demagnetizing factor of the perturber, however as time goes on the 

measured frequency and phase evolve in a non-linear fashion in the static regime, 

and this variation is damped as the rate of diffusion increases.  The key significance 

of these results lies in the demonstration that in such a system phase accumulation is 

not simply dependent on bulk susceptibility or mean magnetic field within a volume, 

but rather is a complex function of the shape and size of the perturbers, diffusion of 

the target nuclei, and the time at which the signal is sampled.  Consideration of the 

results in the context of realistic diffusion rates in brain tissue and at practically 

relevant echo times showed that effects such as those shown here must be considered 

in the interpretation of local phase and frequency measurements in MRI. 

This research was carried out at a time of increasing interest in the exploitation of 

MRI phase data to provide quantitative insight into the composition and 

microstructure of tissue in vivo.  While the increasing body of literature shows that 

phase-based techniques can indeed provide powerful new insights, the results 

presented here demonstrate that appropriate care must be taken in the interpretation 

of phase-based image contrast, and in the consideration of the theoretical 

representation of the effects of tissue microstructure on such measurements. 

8.2 Future Work 

Considering the numerous recent advances in the exploitation of MRI signal phase 

and frequency, including quantitative susceptibility mapping [7, 8, 21-34], 

susceptibility tensor imaging [12, 35], and other developments in the  observation 

and exploitation the effects of tissue microstructure [11, 14, 15, 17-19, 36-39], it is 

unsurprising that through the work carried out over the course of this thesis, 

questions have arisen which may be answered through future work. 

Investigations into the pathology of multiple sclerosis have long been a prominent 

area of research in MRI, and since the development of quantitative phase-based 

imaging in the form of susceptibility-weighted imaging [1] and subsequently 

quantitative susceptibility mapping, the application of these techniques in MS has 

remained an active field [3, 6, 9, 37, 40-68], particularly due to interest in iron 
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deposition in the brain.  Recently, MRI frequency shifts have been considered as a 

marker of tissue damage in multiple sclerosis [69], and such contrast has been linked 

to the breakdown of tissue microstructure [37].  In their work on fiber orientation-

dependent contrast in white matter [16, 19], Wharton and Bowtell demonstrated that 

the effects of susceptibility anisotropy due to the structure of the myelin sheath 

caused orientation-dependent frequency offsets in the white matter that are non-

linear in time, and they modelled this effect using the tensor form of susceptibility 

anisotropy discussed in Chapter 6 of this thesis.  This orientation and time 

dependence of frequency offsets means that the monitoring of frequency offsets 

measured at a single time point does not constitute a reliable marker of tissue 

integrity.  Future work will investigate longitudinal changes in frequency difference 

measurements during acute MS lesion formation.  Frequency difference 

measurements will be combined with the results of DTI to identify fiber tracts in the 

white matter, to allow the utility of these measurements as a marker of white matter 

tissue integrity to be assessed.  Additionally, high-resolution multi-echo T2
*-

weighted images will allow the calculation of quantitative R2
* maps and quantitative 

susceptibility maps, allowing the comparison of changes in multiple quantitative 

MRI measurements during MS lesion formation. 

The novel field perturbations caused by the spherical shells of PGS presented in 

Chapter 6 also suggest a potential avenue for further research.  Previous research by 

Lounila et al [20] used NMR spectroscopy to demonstrate that shifts in the NMR line 

position of the signals recorded from inside lipoproteins were dependent on the size 

of the lipoprotein particle, attributing this to magnetic susceptibility anisotropy of the 

lipid shell.  The work presented here demonstrated using theory and experiment that 

spherical shells of material with anisotropic magnetic susceptibility generate uniform 

internal magnetic field shifts with a magnitude inversely proportional to their internal 

radius, while generating a very weak external field perturbation.  If this effect were 

reproducible and controllable on the microscale, it could form the basis of a novel 

method of generating tuneable MRI frequency contrast.  Nanoscale, ordered 

mesoporous carbon spheres with graphitic walls have been synthesised by 

researchers interested in applications including catalysts, storage materials, and 

electrode construction [70-72].  If the walls of these shells are suitably ordered, and 
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porous to the extent that exchange could occur between internal and external water 

pools, they tuneable frequency contrast may be achievable.  

While the simulations described in Chapter 7 clearly demonstrate a complex 

relationship between the shape and size of magnetic field perturbers, the diffusion 

rate of precessing particles in the surrounding magnetic field, and the measured 

signal frequency and phase; this work could be further developed by the more 

detailed consideration of how these relationships could affect real measurements 

made in the lab.  Inclusion of T1 and T2 relaxation, as well as background fields from 

other susceptibility sources in more complex simulations would provide a more 

detailed insight into the possible implications of such effects.  It may also be possible 

to validate the simulated results in the laboratory through the measurement of the 

real-world effects observed in the static regime using agar phantoms containing 

macroscopic, doped agar spheroids.   

8.3 Final Conclusions 

Over the last decade, advances in the exploitation of MRI signal phase have opened 

up several fields of quantitative MRI research, allowing in vivo measurement of local 

magnetic susceptibility through quantitative susceptibility mapping [7, 8, 22, 24, 25, 

27, 30-32, 34, 73], novel fiber tracking methods exploiting magnetic susceptibility 

anisotropy [12, 19, 35], and greater insight into tissue microstructure through 

frequency difference measurement [16, 19].  The work presented here has shown that 

care must be taken in the interpretation of local phase measurements, in the 

modelling of magnetic susceptibility anisotropy, and also in any assumption made 

about the rate of phase accumulation in time and its link to bulk susceptibility or 

mean magnetic field in a volume.  Consideration of the results presented and 

contemporary literature suggest potential avenues for future research, including the 

application of frequency difference measurements in the assessment of white matter 

integrity in multiple sclerosis, and the generation of tuneable MRI frequency contrast 

based on structures with anisotropic magnetic susceptibility. 
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