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.Abstract 

The unlimited replicative potential of cells is one of the hallmarks of cancer. 

Telomeres, DNA structures found at the ends of chromosomes have attracted a great 

deal of interest in recent years as potential anti-cancer drug targets since they play 

an important role in cancer cell immortality. 

The repetitive TTAGGG sequences of telomeres are complexed to a group of six 

indispensible proteins, one of which is the protection of telomeres 1 (POT1) protein. 

This specialised protein binds to a ten nucleotide single stranded DNA sequence at 

the ends of chromosomes and plays an important role in telomere capping and 

length regulation. It has recently been proposed that the key function of POT1 is to 

suppress a potent DNA damage response at telomeres thereby protecting 

chromosome tips from being recognised as sites of DNA damage. Deletion of POT1 

from telomeres in a variety of organisms including humans results in cytogenetic 

aberrations, senescence and cell death. These results indicate that POT1 is an 

integral telomere end-protection protein which is necessary for continued cellular 

proliferatron and therefore POT1 is becoming a promising new target in cancer. 

Using a structure-based approach, several small molecule inhibitors of POT1 have 

been designed to affect telomere integrity by disrupting the binding interaction of 

human POT1 with its target DNA sequence thereby driving cancer cells into 

senescence/apoptosis. Using a range of computational tools, a suitable drug binding 

pocket in POT1 has been identified and the de novo design of a specific class of 

POT1 inhibitor was completed. Using this novel scaffold, a small focussed library of 



hit-like c?mpounds were synthesised and screened in a new ~OT1 fluorescence 

polarisation displacement assay developed by scientists at the University of 

Nottingham. In total, over 90 small molecule inhibitors based on two different 

scaffolds: pyrido[1,2-a]pyrimidines and sulfathiazoles have been synthesized with 

some inhibitors effectively decreasing POT1-DNA binding between 10-54% at 100~M 

ligand concentration. The biological results have established that electron

withdrawing substituents on the pendent phenyl ring of the pyrimidine core are 

essential for strong binding. These results have the potential to guide future 

development of improved lead compounds as therapeutics for the treatment of 

cancer. 
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Chapter 1: Cancer and Telomeres 

1.1 Introduction 

Cancer is a term used to describe a group of diseases characterised by uncontrolled 

cellular growth. There are currently more than 100 distinct types and subtypes of 

cancer (Hanahan and Weinberg, 2000). Based on GLOBOCAN 2008 estimates, 

around 12.7 million new cancer cases were diagnosed and 7.6 million deaths 

occurred worldwide in 2008 (Ferlay et aI, 2010). The World Health Organization 

estimates that annual global cancer death rate could rise to 15 million by 2020 

(Rastogi et aI, 2004). 

In humans, cancer development is a multistep process in which several genetic and 

epigenetic alterations drive the progressive transformation of normal cells into highly 

malignant cancerous cells (Hanahan and Weinberg, 2000; You and Jones, 2012). 

These malignant cells contain defects in regulatory mechanisms which govern 

normal cell proliferation and homeostasis. In 2000, Hanahan and Weinberg 

proposed six common 'hallmarks' that nearly all cancers share which govern the 

transformation of normal cells to induce malignant growth: 

• Self-sufficiency in growth signals 

• Insensitivity to growth-inhibitory (antigrowth) signals 

• Evasion of programmed cell death (apoptosis) 

• Limitless replicative potential (immortal) 

• Sustained angiogenesis 

• Tissue invasion and metastasis 
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1.1.1 Self-sufficiency in growth signals 

Cell growth and division is governed by various growth signals a cell receives from its 

surrounding cells. The most important of these signals come from hormones called 

growth factors which activate protein kinase receptors in the cell membranes. These 

receptors subsequently induce a signal transduction program leading to the 

transcription of proteins required for cell growth and division (Hanahan and 

Weinberg, 2000). 

The majority of cancers suffer defects in this signalling process which allows them to 

divide continuously. Many cancer cells show a greatly reduced depend~nce on this 

exogenous growth stimulation and have the potential to generate their own growth 

factors and therefore reduce their dependence on stimulation from the local tissue 

microenvironment. For example, glioblastomas and sarcomas produce the platelet

derived growth factor (PDGF) and transforming growth factor a (TGF- a) for growth 

development. In some instances, growth factor receptors can be overexpressed in 

cancer cells allowing the cells to become sensitive to low levels of growth factors. For 

example, in breast, brain and stomach cancers, the epidermal growth factor receptor 

(EGFR) is upregulated. Moreover, the human epidermal growth factor receptor 2 

(HER2) is overexpressed in stomach and mammary carcinomas. Some cancer cells 

can also produce abnormal receptors which are constantly switched on despite the 

lack of growth factors (Hanahan and Weinberg, 2000). 

1.1.2 Insensitivity to growth-inhibitory signals 

In normal cells, multiple anti-proliferative signals exist in the form of soluble growth 

inhibitors and immobilised inhibitors embedded on the surface of neighbouring cells 
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and in the extracellular matrix which maintain normal tissue homeostasis. In order to 

divide, cancer cells must overcome these antigrowth signals (Hanahan and 

Weinberg, 2000). 

The circuitry which allows normal cells to respond to growth inhibitory signals is 

associated with cell cycle regulation. At the molecular level, most of these signals are 

dependent on the retinoblastoma protein (pRb) which is a critical gatekeeper of cell 

cycle progression along with its family members, p107 and p130. In its 

hypophosphorylated form, pRb halts cell proliferation and progression through the 

cell cycle. It does this by inhibiting the E2F family of transcription factors which 

control the expression of genes necessary for progression from G1 to S phase of the 

cell cycle. Evidence suggests that cancer cells suffer defects in the pRb pathway 

allowing E2F transcription factors to be released which activate factors called cyclins 

which move the cell through the cell cycle via the activation of cyclin-dependent 

kinases. This allows cells to continue proliferation and renders cells insensitive to 

antigrowth factors such as transforming growth factor 13 (TGFI3) which normally 

operates along this pathway to prevent the phosphorylation which inactivates pRb 

(Hanahan and Weinberg, 2000). 

1.1.3 Evasion of programmed cell death (apoptosis) 

When normal cells become damaged, they undergo programmed cell death 

(apoptosis) via two distinct pathways: an extrinsic route which involves proteins 

called death activator proteins which bind to death receptors on cell membranes 

initiating a signalling process leading. to apoptosis (Hanahan and Weinberg, 2000). T

lymphocytes generated by the immune system can also perforate the cell membrane 
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of damaged cells releasing an enzyme called granzyme which triggers apoptotic cell 

death (Elmore, 2007). 

DNA damage resulting from exposure to chemicals, drugs or oxidative stress can 

initiate apoptosis via an alternative route: the intrinsic pathway involving the tumour 

suppressor protein p53 which upregulates the expression of Bax. Both the extrinsic 

and intrinsic signals which elicit apoptosis stimulate the mitochondria to release 

cytochrome C which in turn activates protease enzymes called caspases which 

execute the death program. Apoptosis is regulated by a family of proteins such as 

Bad and Bax which promote apoptosis and Bcl-2 and BcI-X which suppress it. 

Cancer cells acquire resistance towards apoptosis via several strategies. In 50% of 

cancers, the gene coding for p53 is mutated hence the lack of apoptosis inducing 

p53 protein. The genes coding for apoptosis supressors BcI-2 and Bcl-X are also 

overexpressed in several tumour types (Hanahan and Weinberg, 2000). 

1.1.4 Limitless replicative potential 

Telomeres, repetitive DNA sequences at the terminal ends of chromosomes play an 

important role in the immortalisation of cancer cells. The function of telomeres is to 

protect and stabilize the ends of chromosomes and its length acts as a mitotic clock 

which dictates the number of times a cell can divide. In normal cells, the inability of 

DNA polymerase to completely replicate the 3' ends of chromosomes results in a 50-

200 base pairs of telomeric DNA being lost from the telomere in each replication 

cycle (Levy ef ai, 1991). As the cells age, the telomeres continue to shorten and 

eventually reach a critical stage where they lose their function and a DNA damage 
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response is triggered resulting in senescence or apoptosis (Hanahan and Weinberg, 

2000). 

In cancer cells, telomere length is maintained above the critical threshold by the 

upregulation of telomerase, an enzyme with reverse transcriptase activity which 

rebuilds and maintains telomere length. This allows cancer cells to divide 

continuously without undergoing telomere shortening and therefore prevents cells 

from undergoing senescence and apoptosis. In most normal cells, the telomerase 

dependent pathway is strongly suppressed preventing normal cells from achieving 

limitless replicative potential (Hanahan and Weinberg, 2000). 

1.1.5 . Sustained angiogenesis 

As tumours grow in size, they require continual supply of oxygen and nutrients for 

cell function and survival. They do this by forming new blood vessels via a process 

known as angiogenesis. Tumour cells release growth factors such as vascular 

endothelial growth factor (VEGF) and fibroblast growth factors (FGF-1/2) which 

interact with receptors on endothelial cells of nearby blood vessels and stimulate 

these cells to divide, leading to the branching and extension of existing capillaries 

(Hanahan and Weinberg, 2000). 

1.1.6 Tissue invasion and metastasis 

Not all tumours are malignant in nature. Benign tumours are growths which remain 

restricted to the place of its origin and do not spread to other areas of the body. 

These tumours are non-malignant and do not develop into a cancer. Malignant 

tumours are cancerous since they begin as a small growth and increase in size. The 
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most important feature of malignant tumours is that malignant cancer cells can grow 

and invade adjacent surrounding tissue and can break away from their origin and 

spread (metastasise) to distant sites to form secondary growths. This stage is critical 

since 90% of human cancer deaths occur due to metastasis (Hanah~n and 

Weinberg, 2000). 

Normal cells contain adhesion molecules which belong to the calcium-dependent 

cadherin family which ensure that cells of the same character adhere to each other. 

Adhesion to the extracellular matrix is also important and necessary for cell survival 

and usually involves molecules called integrins. When a cell becomes detached, it 

stops growing and apoptosis is triggered. Cell adhesion molecules in metastasised 

cancer cells are missing as a consequence of gene mutations thus allowing cells to 

break away from the primary tumour and spread (Hanahan and Weinberg, 2000). 

1.1.7 Hallmarks in cancer therapy 

Each of the hallmarks of cancer represents an alternative route to cancer therapy 

and most drugs which have been developed target specific proteins within key 

hallmark-associated signalling pathways. It is proposed that targeting· multiple 

pathways with a combination of targeted agents may be more beneficial (Hanahan 

and Weinberg, 2011). Some prominent examples of marketed therapies which target 

the various hallmarks and drugs which are currently in the clinical phase are listed in 

Table 1. 
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Hallmark 

Self-sufficiency 
in growth signals 

Insensitivity to 
antigrowth 

signals 

Evasion of 
apoptosis 

Limitless 
replicative 
potential 

Sustained 
angiogenesis 

Tissue invasion 
and metastasis 

Drug and target descriotion 

• EGFR inhibitor: gefitinib (Iressa) 

• HER2 monoclonal antibody: 
traztuzumab (Herceptin) 

• Cyclin-dependent kinase inhibitor: 
flavopiridol (Alvocidib) I Phase II 

• Small molecule drug which 

• 

activates p53: CX-5461 I Phase I 

China has approved the first gene 
therapy approach of introducing 
TP53 gene into humans for the 
treatment of head and neck 
cancers (Peng, 2005). 

• Drug which stimulates apoptosis in 
cancer cells by inhibiting multiple 
BcI-2 family proteins: AT-101 I 
Phase II 

• Telomerase inhibitor: Imetelsat 
(GRN163L) I Phase II 

• Anti-VEGF monoclonal antibody: 
bevacizumab (Avastin) 

• VEGF inhibitor: axitinib (Inlyta) 

• Inhibitor of c-MET which plays 
multiple roles in tissue invasion and 
metastasis: tivantinib (ARQ 197) I 
Phase III 

Table 1: Therapeutic targeting of cancer hallmarks. 
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AstraZeneca IT eva 

Genetech 

Sanofi Aventis 

Cylene 
Pharmaceuticals 

Ascenta 
Therapeutics 

Geron 

Genetech/Roche 

Pfizer 

Arqule 



1.2 Telomeres 

Telomeres have attracted a great deal of interest in recent years as potential anti-

cancer drug targets since they play an important role in the immortality of cancer 

cells . As mentioned previously, telomeres are specialised DNA structures which cap 

the ends of linear eukaryotic chromosomes, first discovered in the 1930s by two 

independent geneticists Hermann MUlier and Barbara McClintock (Figure 1). The 

name 'telomere ' was derived from the Greek words 'telos ' meaning end and 'meros ' 

meaning part (MUlier, 1938; McClintock, 1941). 

Figure 1: Human Chromosomes (red) capped by telomeres (yel/ow). Image provided 

by the courtesy of Professor Jerry Shay, UT Southwestern Medical Center. 

Human telomeres are composed of 15-25 kilobase pairs of short repetitive guanine 

rich sequences (Moyzis et aI, 1988) containing the hexanucleotide repeat TTAGGG 

which are highly conserved in vertebrates (Meyne et aI, 1989). Alternative sequences 

have been found in other species such as TTGGGG in Tetrahymena thermophila 

(Blackburn and Gall , 1978) and TTTTGGGG in Oxytrica nova (Klobutcher et aI, 

1981 ). 
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Whilst most of the telomeric DNA is double stranded, the G-rich strand runs in a 5' to 

3' direction towards the chromosome end and terminates into a short 100-200 

nucleotide 3' single-stranded overhang (Makarov et aI, 1997). The precise 

mechanism of how G-overhangs are generated remains unclear but it is thought that 

the combined action of nucleases which resect the C-strand, the inability of the 

lagging strand synthesis machinery to position the final RNA primers at the very end 

of the chromosome and elongation of the G-strand by telomerase all contribute to G

overhang formation (Dai et aI, 2010). 

Telomeres are critical to chromosome integrity and allow the ends of linear DNA to 

be replicated completely. Telomeres also have a multifunctional role to distinguish 

natural chromosome ends from being recognised as double strand DNA breaks and 

protect chromosome ends from all aspects of the DNA damage response (DDR). It is 

well known that double strand DNA breaks at chromosome ends are catastrophic 

and if not repaired, the chromosome ends can undergo degradation resulting in the 

loss of genetic information and cell death (Campisi et aI, 2001). 

Inappropriate repair of double-strand DNA breaks can also lead to chromosomal end

to-end fusions resulting in dicentric as well as multicentric chromosomes and 

ultimately genomic instability. Therefore without the protective telomere caps, 

chromosome ends are at risk from degradation and recombination by the DNA repair 

machinery (Counter et aI, 1992). 

Telomere shortening acts as a tumour suppressor mechanism and limits the 

proliferation of cells by inducing replicative senescence or apoptosis. However recent 

studies also point to the critical role of telomeres in cellular ageing. Growing evidence 
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suggests that telomere shortening limits stem cell function , tissue regeneration. and 

organ maintenance and therefore may promote cellular aging. Since telomere length 

acts as a mitotic clock wh ich limits the number of cell divisions, it is suggested that 

telomere length may also prove to be an important biomarker of ageing (Jiang et aI, 

2007). 

1.2.1 Shelterin complex 

Human TTAGGG repeats are anchor sites for an array of telomere binding proteins 

wh ich forms a protective complex at the ends of chromosomes known as shelterin 

(Figure 2) . The function of the shelterin complex is to provide protection to the 

chromosome ends by capping the ends and preventing them from eliciting a DDR in 

addition to regulating telomere maintenance by telomerase (Palm and de Lange, 

2008). 

AG-3' 

Figure 2: Mammalian telomeres are composed of TTAGGG repeats and protected by 

the shelterin complex which consists of six proteins: TRF1 , TRF2, RAP1, TlN2, TPP1 

and POT1 (Adapted from Palm and de Lange, 2008). 

In its most abundant form , the complex consists of six proteins, three of wh ich bind 

directly to telomeric DNA including the double-strand DNA binding proteins TRF1 and 

TRF2 and the single-strand DNA binding protein POT1 . The TRF1 and TRF2 
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proteins subsequently recruit three bridging proteins: RAP1, TIN2 and TPP1 to the 

telomeres via protein-protein interactions. It is suggested that the shelterin proteins 

function only at the telomeres and are present at telomeres throughout the cell cycle 

(Palm and de Lange, 2008). 

1.2.1.1 TRF1 and TRF2 

TRF1 and TRF2 (Telomeric Repeat binding Factor 1 and 2) bind to double stranded 

telomeric DNA through their C-terminal SANT/Myb domains which are highly specific 

for the sequence TAGGGTT (Court et aI, 2005). Both proteins bind to DNA as 

homodimers via homotypic interactions in their TRF homology (TRFH) domain. 

However both proteins do not interact directly with each other (Broccoli et aI, 1997). 

The TRFH domain of both proteins recruits several other proteins to the telomeres 

(Chen et aI, 2008). Both proteins adopt a multimeric binding mode and can act as 

architectural proteins which can modify the overall conformation of the telomeric tract 

(Bianchi et aI, 1999). The overexpression of TRF1 results in the gradual shortening of 

telomeres whereas a dominant-negative mutant of TRF1 leads to telomere 

elongation (van Steensel and de Lange, 1997). 

Tankyrase 1, a poly(ADP-ribose) polymerase is known to regulate TRF1 function at 

telomeres. TRF1 ADP-ribosylation by Tankyrase 1 results in the inhibition of TRF1-

DNA binding (Smith et ai, 1998). Overexpression of Tankyrase 1 results in the loss of 

TRF1 from telomeres (Smith and de Lange, 2000) and subsequently TRF1 

degradation and telomere elongation (Chang et aI, 2003). The overexpression of 

TRF2 also results in telomere shortening hence both proteins negatively regulate 

telomere length (Smogorzewska et aI, 2000). 
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Recent electron microscopy studies suggest that TRF2 has the ability to form Hoop 

structures in vitro in which the 3' single stranded overhang loops back into the duplex 

part of the telomeric repeat array to form a lariat- or lasso-like structure referred to as 

the terminal loop (t-Ioop) (Figure 3). 

b Telomere proteins 

! 

O·loop 

Figure 3: (a) Electron micrograph of a Hoop generated in vitro by the human TRF2 

protein (Taken from Griffith et aI, 1999). (b) Diagrammatic structure of the t-Ioop 

complexed to telomere binding proteins in which the overhang invades the double 

stranded repeat array forming the D-Ioop which is bound by POT1 (Taken from de 

Lange, 2004) . 

A displacement loop (D-Ioop) is also formed (Figure 3b) in which the single stranded 

G-rich overhang invades a homologous double stranded region and base pairs with 

the C-rich strand protecting the terminus and creating a structure which is distinct 

from a broken DNA end. In association with TRF2, the shelterin protein POT1 also 

participates in the protection of telomeres by binding to the D-Ioop of the t-Ioop 

configuration. T-Ioop size is dependent on telomere length ; long telomeres tend to 

form larger Hoops than short ones. In vitro t-Ioops have been observed in humans, 

mice (Griffith et aI, 1999) Oxytricha fallax (Murti and Prescott, 1999) and 

Trypanosoma brucei (Jordan et aI, 2001). 

It is not yet clear whether all telomeres exist in the t-Ioop configuration throughout the 

cell cycle. The exact role of t-Ioops in vivo is unknown but it may possibly play an 
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importa~t .role in telomere' protection by hiding the G-overhang from inappropriate 

DNA damage response pathways. This could potentially be the mechanism by which 

the cell caps and protects natural chromosome ends from being recognised as DNA 

breaks (Griffith et aI, 1999). 

1.2.1.2 RAP1 

RAP1 (Repressor/Activator Protein 1) is a poorly characterised component of the 

shelterin complex and its role in telomere biology has remained largely 

uncharacterised to date. Human RAP1 contains 3 domains: a Myb domain, a BRCT 

domain and a C-terminal region which interacts with TRF2 (Palm and de Lange, 

2008). RAP1 does not directly bind to DNA and depends on TRF2 for telomere 

localisation and stability (Li et aI, 2000). It binds TRF2 as a 1:1 complex (Zhu et aI, 

2000) and most of it is depleted upon TRF2 deletion (Celli and de Lange, 2005). 

Inhibition of RAP1 or using a dominant negative mutant of RAP1 in human cells 

leads to telomere elongation and loss of telomere heterogeneity (O'Connor et aI, 

2003; Li and de Lange, 2003). 

1.2.1.3 TIN2 

TIN2 (TRF1 and TRF2 Interacting Nuclear Factor 2) binds to the double stranded 

telomere binding proteins, TRF1 and TRF2 (Ye et aI, 2004). TIN2 is a negative 

regulator of telomere length (Kim et aI, 1999) and connects the DNA binding proteins 

within the'shelterin complex (Palm and de Lange, 2008). It stabilizes TRF1 at 

telomeres and protects it from tankyrase driven degradation (Ye and de Lange, 

2004). TIN2 mutants which can no longer bind to TRF1 and TRF2 have a 
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destabilising effect on shelterin (Kim et aI, 2004). The protein also recruits TPP1 and 

therefore POT1 to telomeres. Little is known whether TIN2 binds to all three proteins 

at once or switches between TRF1, TRF2 or TPP1 (Palm and de Lange, 2008). 

1.2.1.4 TPP1 

TPP1 (also known as TINT1, PTOP or PIP1) interacts with TIN2 and recruits POT1 to 

the six-member complex thereby providing a link which connects single-stranded 

DNA binding proteins to double-stranded DNA binding proteins (Hockemeyer et aI, 

2007). TPP1 has also been shown to enhance POT1-DNA binding activity 

suggesting that POT1 binds to DNA as a heterodimer with TPP1. The heterodimer 

appears to enhance the activity and processivity of telomerase at chromosome ends 

(Wang et aI, 2007). 

It is suggested that the oligonucleotide/oligosaccharide binding (08) domain of TPP1 

interacts with telomerase and TPP1 is involved in telomerase recruitment and 

regulation at telomeres (Abreu et aI, 2010). Depletion of TPP1 results in the loss of 

POT1 from telomeres (Liu et aI, 2004) and knockdown of TPP1 reduces the amount 

of POT1 in the nucleus (Chen et aI, 2007). Furthermore, low levels of TPP1 leads to 

a telomere elongation phenotype that is consistent with POT1 depletion (Ye et aI, 

2004). Surprisingly, a number of studies suggest that mutant POT1 which can no 

longer bind to TPP1 can still localise to telomeres but the exact mechanism of how 

this recruitment occurs is still unclear (Colgin et aI, 2003; He et aI, 2006). 

14 



1.2.1.5 POT1 

POT1 (Protection Of Telomeres 1) is a single-stranded telomere binding protein 

found in a variety of organisms ranging from the fission yeast Schizosaccharomyces 

pombe (Baumann and Cech, 2001), plants (Shakirov et aI, 2009), animals (Palm et 

aI, 2009) and humans (Baumann et aI, 2002). Homologues of POT1 have also been 

found in hypotrichous ciliates as telomeric end binding protein (TEBP) (Horvath et aI, 

1998) and in the budding yeast Saccharomyces cerevisiae as Cdc13 (Nugent et aI, 

1996). 

Human POT1 was initially identified by its sequence similarity to the a-subunit of the 

telomeric end binding protein a/13 complex in Oxytricha nova (Horvath et aI, 1998). 

POT1 binds to telomeres with high sequence specificity for the G-rich single stranded 

DNA overhang. However POT1 does not bind to double stranded telomeric DNA or 

to the complementary C-rich strand (Baumann et aI, 2002). 

Human POT1 has two important domains: an N-terminal OB region which is 

necessary for DNA binding and a C-terminal region which interacts with TPP1. 

Surprisingly, a truncated POT1 mutant lacking the OB domain can still bind to 

telomeres via TRF1 (Loayza and de Lange, 2003). 

In comparison to mice which carry two POT1 proteins, humans contain a single 

POT1 gene which encodes for five splice variants including the full-length POT1, 

NH2-terminally truncated POT1 and COOH-terminally truncated POT1 whose 

functions are poorly understood (Yang et aI, 2007). In human cells, full length POT1 

is involved in telomere length regulation and plays dual roles as positive or negative 

regulator of telomerase activity. The protein inhibits telomerase activity at the 3' end 

15 



of DNA by controlling the accessibility of the telomeric single-stranded DNA substrate 

to telomerase. The exact role of the DNA binding activity of POT1 is unknown, 

however the crystal structure of human POT1 suggests that POT1 physically caps 

the end of chromosomes and buries the last guanine base of DNA into a hydrophobic 

pocket thus rendering it inaccessible to telomerase. The physical capping of 

chromosome ends by POT1 may also prevent the ends from eliciting a DNA damage 

response (Lei et aI, 2004). 

The expression of human POT1 mutant which lacks the DNA binding domain results 

in the extension of telomeres in telomerase positive cells suggesting that the C

terminal region of POT1 is not essential for DNA binding (Kelleher et aI, 2005). POT1 

also acts as a positive regulator of telomere length. In some settings, overexpression 

of full length POT1 in telomerase positive cells leads to the lengthening of telomeres 

(Colgin et aI, 2003). The G-rich overhang can be extended by telomerase if POT1 is 

bound to a site more internal within the telomere leaving at least an eight nucleotide 

free overhang. An overhang with less than eight nucleotides cannot be extended due 

to steric hindrance between POT1 and telomerase (Lei et aI, 2005). It is possible 

therefore that POT1 may have dual roles at telomeres; one is to promote telomere 

elongation and the other being inhibitory to telomerase (Loayza et aI, 2004). 

1.2.1.6 Shelterin accessory factors 

In addition to the six shelterin components, mammalian telomeres bind to additional 

proteins which are thought to be important for chromosome maintenance and 

protection. Most of these proteins have non-telomeric functions and bind only 

transiently and non-exclusively to telomeres and are known as shelterin accessory 
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factors. The majority of these factors have prominent roles in general genome 

maintenance and found less abundant at telomeres compared to the shelterin 

components (Palm and de Lange, 2008). Examples include the DNA damage sensor, 

MRN, a complex consisting of Mre11, Rad50 and Nbs1 (Zhu et aI, 2000), DNA repair 

proteins involved in non-homologous end joining Ku70/80 (Hsu et aI, 2000), the DNA 

excision repair proteins ERCC1/XPF (Zhu et aI, 2003), an exonuclease Apollo 

(Lenain et aI, 2006), a protein involved in homologous recombination, RAD51 D 

(Tarsounas et aI, 2004), WRN and BLM RecQ helicases (Opresko et aI, 2002) and 

tankyrases (Smith et aI, 1998). 

It is surprising that one of the major roles of telomeres is to prevent the activation of 

the DDR yet proteins involved in the DDR are found abundantly at telomeres. The 

exact function of some of these factors at telomeres is not yet clear but they 

presumably function to either sensitize the cell to damage to the telomeres or prevent 

telomeres from being recognised as DNA breaks (Palm and de Lange, 2008). The 

majority of these proteins associate with telomeres by interacting with the shelterin 

proteins TRF1, TRF2 and RAP1 (Chen et aI, 2008). 

1.3 End replication problem 

In 1971, the Russian biologist, Alexey Olovnikov first recognised that chromosome 

ends could not be fully replicated to the end of the base sequence (Olovnikov, 1971). 

In an independent study a year later, James Watson realised that chromosomes lose 

DNA from the ends in each round of cell division because DNA polymerase cannot 

replicate the linear end of the DNA molecule, he termed this as the 'end replication 

problem' (Watson, 1972). 
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According to the semi-conservative model of DNA replication (Figure 4), the two DNA 

strands in the double helix run in opposite orientations , one in the 5'~3 ' direction and 

the other in the 3 '~5 ' direction which act as templates for the synthesis of new DNA 

strands. DNA polymerase requires short RNA primers to initiate replication and can 

catalyse the growth of the DNA chain towards the replication fork in a 5' -- 3' 

direction by add ing deoxyribonucleotides to the 3' hydroxyl end of the polynucleotide 

chain . 

3' 

5' 

Leading strand 
5' 3' • 3' 5' 

5' 

Lagging strand 5' 3' 

Q DNA Polymerase 
., 

3' 5' 

• DNA ligase 

. -~ Okazaki fragments ~3' 
5' 

Figure 4: A diagram to illustrate the end-replication problem. The leading strand is 

replicated completely whereas the lagging strand is incomplete. 

Replication differs between the two strands. The leading strand is usually replicated 

continuously and completely to the end of the telomere in the direction of the fork 

movement to generate a blunt-ended DNA. However, the lagging strand is replicated 

discontinuously in steps from several RNA primers which are elongated by DNA 

polymerase to form short chains of DNA called Okazaki fragments. As DNA 

synthesis continues, the Okazaki fragments are processed whereby the RNA primers 

are removed and replaced by DNA sequences and the Okazaki fragments are 

subsequently ligated by DNA ligase to form a continuous DNA strand. 
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When the last RNA primer attaches on the lagging strand, it cannot be replaced by 

DNA sequences since it requires a DNA sequence in front of the primer. The RNA 

primer is subsequently destroyed and as a result the lagging strand is not fully 

synthesised to the end. Consequently the new DNA molecule is shorter than the 

parent by at least the length of one RNA primer or more depending on where that last 

primer was placed with respect to the end of the chromosome. This results in 

telomere shortening and the loss of 50-200 base pairs of telomeric DNA at the 

chromosome end in each round of cell division (Levy ef aI, 1991). The progressive 

shortening of telomeres through successive cycles of replication eventually limits 

their ability to protect the chromosome ends and a DDR is triggered (d'Adda di 

Fagagna ef aI, 2003). 

1.4 Telomere shortening triggers DDR 

In 1961, Leonard Hayflick noticed that normal human diploid fibroblasts are not 

immortal and stopped dividing after undergoing a limited number of cell divisions in 

culture. Such cells cease to divide after they reach the 'Hayflick limit', usually after 

30-50 doublings and undergo an irreversible arrest of cell division, a state referred to 

as replicative senescence, (Hayflick and Moorhead, 1961). 

In 1990, Harley and colleagues made the initial connection between telomere 

shortening and replicative senescence and showed that the telomeres of human 

fibroblasts shorten as they reach the 'Hayflick limit' (Harley ef aI, 1990). Telomere 

length was shown to be like a 'mitotic clock' which limited the number of cell divisions 

a cell can undergo by acting as a molecular counting mechanism against unlimited 

proliferation. It is now known that when telomeres reach a critical length, usually 4 
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kilo bases, a DNA damage response is triggered via the activation of p53 and 

p16/pRb pathways (Levy et aI, 1991). The cells subsequently enter a stage referred 

to as replicative senescence also known as Mortality stage 1 (M1) (Harley et aI, 

1990; Hayflick, 1965). 

Replicative senescence acts as a potent barrier to limit cellular proliferation in normal 

cells (Wright and Shay, 1992). Senescent cells remain metabolically active and arrest 

in the G1 phase of the cell cycle. Senescent cells also have altered levels of gene 

expression and show distinctive characteristics in cell morphology. The cells are 

large and flat in shape and have increased granularity and ~-galactosidase activity 

(Roninson, 2003; Shelton et aI, 1999). Senescence can also be activated in response 

to various types of stress including' DNA damage, ionizing radiation an'~ oxidative 

stress, where it is called accelerated or stress induced senescence (L1eonart et aI, 

2009). 

1.5 DNA damage response (ODR) 

Telomeres can also trigger a DDR in the absence of telomere shortening when 

proteins of the shelterin complex are ·perturbed. Loss of POT1 results in cell death, 

cell cycle arrest, telomere fusions and G-overhang extension (Churikov et aI, 2006). 

TPP1 knockdown results in a p53 dependent growth arrest (Guo et ai, 2007). Loss of 

TIN2 causes telomere uncapping, telomere dysfunction, growth arrest and cell death 

(Kim et ai, 2008). TRF1 deletion results in rapid cell senescence (Martinez et aI, 

2009). Loss of TRF2 leads to a strong DDR response, degradation of the G-rich 

overhang and chromosomal end-to-end fusions. This data shows how shelterin is 

able to suppress different aspects of the DDR pathway (Celli and de Lange, 2005). 
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The DDR triggered as a result of telomere shortening may be caused due to the loss 

of shelterin bound proteins from telomeric DNA. It is suggested that when telomeres 

reach a critical length, not enough shelterin is recruited to protect chromosome ends 

hence telomeres become dysfunctional and resemble double-strand DNA breaks. 

Such DNA lesions activate the canonical DDR pathway which engages p53 to induce 

senescence or apoptosis depending on cell type (Reviewed in Shiloh, 2003; Palm 

and de Lange, 2008). 

The phosphatidylinositol-3-kinase related protein kinases, ATM (ataxia-telangiectasia 

mutated) and ATR (ataxia-telangiectasia and Rad3 related) play an important role in 

response to DNA lesions (Shay and Wright, 2004). ATM becomes activated as a 

result of double-strand DNA breaks and ATR becomes activated due to lesions in 

single stranded DNA (Palm and de Lange, 2008). 

The initial step in ATM activation involves recognition of double-strand DNA breaks 

by the DNA damage sensor MRN, a trimeric complex consisting of (Mre11, Rad50, 

Nbs1) which recognises double-strand DNA breaks as sites of DNA damage and 

recruits ATM to the site. The ATM kinase subsequently phosphorylates the histone 

variant H2AX on serine 139 to produce y-H2AX which promotes the localisation of 

several DNA damage factors (53BP1, MDC1 and Mre11) to the damaged site (Palm 

and de Lange, 2008). This results in the accumulation of DNA damage foci which 

span several kilo bases from the site of lesion (Takai et aI, 2003). The exact function 

of these DNA foci is poorly understood but they may have important roles in signal 

amplification and DNA repair (Palm and de Lange, 2008). 
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Lesions in single-stranded DNA become recognised as sites of DNA damage by 

replication protein A (RPA) which recruits ATR and its partner protein ATRIP to the 

damaged site. Once activated, both ATM and ATR phosphorylate downstream 

kinases, Chk1 and Chk2 which induce G1/S and G2/M arrest and halt cell cycle 

progression. Chk1 and Chk2 do this by preventing the activation of cyclin-dependent 

kinases (cdk's) through the inhibition of cdc25 phosphatases (Palm and de Lange, 

2008). 

ATM and ATR can also activate the tumour suppressor protein p53 which causes cell 

~ycle arrest by upregulating the cdk inhibitor, p21. After the establishment of growth 

arrest, the levels of p53 and p21 decrease whereby the cdk inhibitor p161nK4A 

becomes upregulated to maintain growth arrest (Shay and Roninson, 2004; 

Roninson, 2003) .. 

It is suggested that cell proliferation is incompatible with ATM and ATR activation. 

Telomeres ensure that the ATM and ATR signalling pathways remain dormant to 

enable cell proliferation and sUNival (Palm and de Lange, 2008). The ATM and ATR 

pathways are suppressed in an independent and specific manner at telomeres 

(Denchi and de Lange, 2007). 

The inhibitions of individual shelterin proteins have shown how telomeres prevent 

ATM and ATR activation. A dominant-negative mutant of TRF2 results in ATM 

activation, degradation of the 3'-overhang, chromosomal fusions and p53 dependent 

apoptosis and senescence (van Steensel et aI, 1998; Karlseder et aI, 1999). The 

ATM-dependent DNA damage foci are also found at telomeres and are called 

telomere dysfunction-induced foci (TIFs) which contain the same factors which are 

induced by double-strand DNA breaks (Celli and de Lange, 2005). 

22 



The mechanism used by TRF2 to inhibit ATM activation is not clear. However two 

models have been proposed: one in which TRF2 through its ability to interact directly 

with ATM might inhibit its action at telomeres (Karlseder et aI, 2004). Secondly, TRF2 

has the ability to form t-Ioops which can sequester the telomere ends from being 

recognised as sites of DNA damage (Griffith et aI, 1999). 

The ATR pathway on the other hand is shown to be suppressed by POT1. Inhibition 

of POT1 triggers ATR activation via the induction of Chk 1 and Chk2 and in the 

accumulation of TIFs at telomeres which contain the DNA damage factors y-H2AX, 

MDC1 and 53BP1 (Denchi and de Lange, 2007). Knockdown of POT1 leads to 

telomere elongation, growth arrest and cell death (Veldman et aI, 2004). 

It is suggested that POT1 suppresses the ATR pathway by inhibiting the binding of 

replication protein A (RPA) to the G-rich overhang. Although RPA is a more abundant 

protein, the interaction of POT1 with TPP1 could enhance the ability of POT1 to act 

as an effective competitor. The binding of RPA upon POT1 delocalisation from 

telomeres results in the recruitment of ATR to the telomere by RPA (Takai et aI, 

2011). Figure 5 summarises how ATM and ATR induce senescence. 
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Figure 5: Senescen'ce program in normal cells (Adapted from Palm and de Lange, 

2008). 

1.6 Dysfunctional telomeres and cancer 

Human cells where pathways responsible for growth arrest have been disabled , for 

instance the inactivation of p53 and pRb via the introduction of viral oncogenes (Ozer 
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et aI, 1996; Dyson et aI, 1989; Scheffner et aI, 1990) or anti-sense oligonucleotides 

allow cells to bypass the senescence checkpoint. Cells continue to divide and their 

telomeres continue to erode further until they reach a second proliferative block 

known as crisis or mortality stage 2 (M2), a state where cell division is balanced by 

cell death (Hara et aI, 1991). 

At crisis, short telomeres lead to the deprotection of chromosome ends. The ends 

subsequently become substrates for repair activities, resulting in chromosomal end

to-end fusions mediated by non-homologous end joining (NHEJ) and homologous 

recombination (HR) pathways. The fusion between chromosome ends results in a 

bridge. The dicentric chromosomes are then broken during anaphase and the 

uncapped extremity will then fuse with another uncapped extremity, initiating 

breakage-fusion-bridge (BFB) cycles. At the beginning only a few short telomeres will 

initiate BFB cycles, eventually the number of de protected chromosome ends 

available for fusion will increase leading to genome instability. BFB cycles induce 

gross chromosome rearrangements via non-reciprocal translocations. BFB cycles 

also cause chromosome arm gains and losses, deletions, mutations and gene 

amplifications. At the end the number of unstable chromosomes will be too high, the 

cells will enter mitotic catastrophe and die (Vallejo, 2008). 

A cell will not survive crisis unless it develops a mechanism to maintain its telomere 

length, a rare cell (1 in 107
) will emerge from crisis and become immortalised by 

exhibiting some form of telomere stabilization usually by reactivating telomerase 

(Wright et aI, 1989; Counter et aI, 1992), an enzyme which· replenishes the telomeres 

or by engaging the alternative lengthening of telomeres (AL T) pathway (Dunham et 

aI, 2000). Telomere stabilization is therefore essential for the continued cellular 

25 



proliferation of cancer cells. The relationship between telomere shortening, 

senescence and cancer is depicted in Figure 6. 

:; 
m c 
CD -e 
CD 
E o 
;! 

M2 

Germ line cells 

hTERT transduced cells 

Senescence ensls 

ee" divisions 

Telomere atatNlization 

TeIo ......... activation 

Figure 6: A diagram showing the link between cellular senescence and 

immortalisation. Most human somatic cells are telomerase-negative and therefore 

with each cell division they experience telomere shortening. Germ cell telomere 

lengths are maintained by telomerase. Telomere length in stem cells is not. 

maintained and therefore stem cell telomeres also shorten but at slower rates 

compared to telomerase-negative cells. Cells with critically short telomeres enter 

senescence at the Hayflick limit, or M1. The inactivation of p53 or pRb/p16 allows 

cells to bypass the M1 proliferative checkpoint. The telomeres of such cells will 

continue to shorten and the cells will ultimately enter crisis or M2 which is 

characterised by widespread cell death. Rare cells emerge from crisis and acquire 

unlimited. proliferative potential through stabilisation of telomere length almost 

universally via telomerase activation (Taken from Gong et aI, 2002). 
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1.7 Telomerase 

In 1985, Elizabeth Blackburn and Carol Greider working on the ciliate Tetrahymena 

thermophila found out that a terminal transferase was adding tandem TTGGGG 

repeats to the ends of the synthetic telomere primers. It is now known that this 

terminal tranferase is a reverse transcriptase enzyme known as Telomerase' which 

compensates for telomere loss due to the end replication problem (Greider and 

Blackburn, 1985). 

In the absence of telomerase activity, normal human cells in culture have a finite 

lifespan and undergo senescence as a result of telomere shortening. Telomerase 

activity is therefore necessary for normal tissue renewal and also for the survival of 

cancer cells since it restores and maintains telomere length (Blackburn, 1992). 

1.7.1 Telomerase activity in cells 

The development of a PCR-based assay known as TRAP (Telomeric Repeat 

Amplification Protocol) has allowed the detection of telomerase in a large number of 

different cell types (Kim et ai, 1994). 

In humans, telomerase activity is not detectable in most normal somatic cells but 

germ line cells (Wright et ai, 1996), hematopoietic cells, lymphocytes (Hiyama et ai, 

1995), stem cells (Hiyama and Hiyama, 2007), specific epithelial cells of the breast 

(Hiyama et ai, 1996), cells of the endometrium (Kyo et ai, 1997), hair follicles, 

epidermis of the skin (Harle-Bachor and Boukamp, 1996; Ramirez et ai, 1997) and 

intestinal crypt cells (Hiyama et ai, 1996) continue to express low levels of 

telomerase activity. In addition, the majority of tumour-derived cell lines possess 
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telomerase activity signifying that the maintenance of telomere length is necessary 

for the unlimited replicative potential of human cells (Kim et a', 1994). It is now known 

that telomerase maintains telomere length stability in 90% of human cancers and the 

enzyme's activity is not found in adjacent normal cells (Kim et a', 1994; Shay and 

Sacchetti, 1997). This makes telomerase a very attractive drug target for cancer 

therapy. 

1.7.2 Structure and function of telomerase 

Human telomerase is a 1000 kiioDalton ribonucleoprotein complex consisting of two 

major components: the functional human telomerase RNA component (hTERC), also 

known as the human telomerase RNA (hTR) which serves as a template for the de 

novo addition of TT AGGG repeats to the 3' end of chromosomes and a catalytic 

protein component with reverse transcriptase activity known as human telomerase 

reverse transcriptase (hTERT) which adds the telomeric repeats onto the end of 

chromosomes (Feng et a', 1995). 

The hTR component is transcribed by RNA polymerase " and its 3' end is 

subsequently processed to generate a mature transcript containing 451 nucleotides. 

The 5' end of the molecule contains the template for reverse transcription which is 

11-base pairs long with the sequence 3'-CAAUCCCAAUC-5' (Cong et ai, 2002; Feng 

et a', 1995). 

The majority of tissues express the hTR component regardless of telomerase activity 

but cancer cells have a five-fold higher expression compared to normal cells (Avillion 

et a', 1996; Yi et a', 1999). It is suggested that the primary determinant of telomerase 

activity is the hTERT subunit since it is upregulated in cancer cells but suppressed in 
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normal cells and its expression is closely correlated with telomerase activity (Counter 

et aI, 1998) .. 

There is compelling evidence to suggest that the active telomerase complex is a 

dimer which consists of two copies of each of hTERT, hTR and dyskerin (Cohen et 

aI, 2007). It is suggested that the telomerase dimer may simultaneously extend the 

telomeres belonging to sister chromatids in parallel (Simonsson, 2003). 

Recent findings demonstrate that telomerase expression in several cell types allow 

these cells to escape crisis and become immortal (Cong et aI, 2002). The expression 

of telomerase in telomerase-negative epithelial cells and fibroblasts leads to the 

bypass of senescence and extension of life-span (Bodnar et aI, 1998). Moreover, the 

expression of telomerase in conjunction with SV40 large T antigen and an oncogenic 

allele of H-ras have shown to induce the tumorigenic conversion of normal human 

cells (Hahn et at, 1999). 

How telomerase becomes activated during immortalization is currently under 

intensive investigation. Several transcription factors have been identified which 

participate in hTERT gene expression. Wang et a/ (1998) have shown that c-Myc (a 

proto-oncogene product with transcriptional activity) induces hTERT expression and 

telomerase activity in normal human primary fibroblasts and mammary epithelial 

cells. Another transcription factor, sp1 can also co-operate with c-myc to activate 

telomerase (Kyo et aI, 2000). Telomerase can also be activated by the human 

papillomavirus 16 E6 protein (Klingelhutz et aI, 1996). 

Telomere elongation by telomerase is a multi-step process which is precisely 

regulated. Cong et a/ (2002) suggests that several processes must occur before 
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telomerase is recruited to the telomeres including gene transcription, splicing of the 

mRNA, maturation and posttranslational modifications of hTR and hTERT, transport 

and subcellular localization of both components and assembly into an active enzyme. 

Several accessory proteins have been identified which interact with hTR and hTERT 

and may play important roles in the regulation of telomerase (Holt et aI, 1999; 

Seimiya et aI, 2000; Harrington et aI, 1997). 

When telomerase is recruited to the telomere end,'it undergoes progressive cycles in 

which it elongates the telomere (Figure 7). It is suggested that in each cell cycle, 

telomerase may display an increasing preference for telomeres as their length 

declines and therefore the enzyme may not act on every telomere. This suggests that 

telomeres may switch between extendible and non-extendible states (Teixeira et aI, 

2004). 

In humans, the shelterin complex negatively regulates telomerase by sequestering its 

DNA substrate into a closed/capped conformation. Since the amount of shelterin 

proteins bound to a telomere is proportional to the telomere length, longer telomeres 

are proposed to have a greater ability of inhibiting telomerase. The progressive 

shortening of telomeres causes the gradual loss of telomere bound shelterin thus 

allowing telomere elongation by telomerase (de Lange, 2005). 
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Figure 7: Schematic representation of how telomerase maintains telomeric DNA 

ends. (a) Telomere extension begins when telomerase is recruited to the telomere 

end and the template region of its RNA component partially anneals with the 

telomeric ssDNA overhang. (b) The region of telomerase RNA template which does 

not base pair with the telomeric DNA is subsequently reverse transcribed where a 

GGTTAG repeat is added to the end. (c) The telomerase enzyme then translocates 

to the end where it adds another GGTTAG repeat. The cycle is repeated several 

times before telomerase dissociates from the end. The conventional DNA replication 

machinery subsequently fills in the C-rich strand, thus preventing any loss of DNA 

(Adapted from Simmonson, 2003). 
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1.7.3 Telomerase Inhibition 

The inhibition of telomerase by its dominant-negative mutant or by antisense 

oligonucleotides induced telomere shortening, senescence and apoptosis in 

telomerase-positive cancer cells (Zhang et aI, 1999; Kondo et aI, 1998). This has 

been taken as a proof of principle that induction of telomere shortening is a viable 

therapeutic strategy. 

1.7.3.1 Reverse transcriptase inhibitors 

Since telomerase is a reverse transcriptase, several nucleoside based analogues 

have been tested on telomerase (Strahl and Blackburn, 1994). Many of these 

nucleoside inhibitors cause telomere shortening in several cancer cell lines. Although 

nucleoside compounds were among the first to be tested as chain terminating 

inhibitors. Evidence suggests that such compounds exert their telomere shortening 

effects not by chain termination as would be expected but rather the compounds bind 

and compete for the nucleoside triphosphate binding site in telomerase (Strahl and 

Blackburn, 1996). 

Azidothymidine (AZT) (Figure 8) also used in the treatment of HIV resulted in 

telomere shortening, increased p14ARF expression and telomerase inhibition (Datta et 

aI, 2006). AZT also triggered apoptosis and inhibited the cell growth of human 

parathyroid cancer cells in culture (Falchetti et aI, 2005). Another potent nucleoside 

inhibitor of telomerase, 6-thio-7-deaza-2'-deoxyguanosine 5'-triphosphate (TDG-TP) 

inhibits telomerase activity with an ICso of 60nM (Figure 8) (Fletcher et aI, 2001). 
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Several non-nucleoside drugs have also been developed and inhibit telomerase 

activity by targeting the hTERT component with some compounds achieving IG50 in 

the submicromolar range. Examples include bisindole derivatives (Sasaki et aI, 

2001), tea catechin epigallocatechin gallate (EGCG) (Figure 8) (Naasani et aI, 1998) 

and its derivative MST-312 (Seimiya et aI, 2002). A small synthetic inhibitor 

BIBR1532 (2-[(E)-3-naphtalen-2-yl-but-2-enoylamino]-benzoic acid) is also worth 

mentioning (Figure 8). It is a mixed type non-competitive and selective inhibitor of 

telomerase (Pascolo et aI, 2002). BIBR1532 inhibits telomerase activity with an IG50 

of 93nM. In several cancer cells, BIBR1532 induced telomere attrition with no acute 

cytotoxicity. The compound triggered senescence and cell cycle arrest after a 

characteristic lag period (Damm et aI, 2001). 
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Figure 8: Chemical structures of nucleosides and non-nucleoside telomerase 

inhibitors. 
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1.7.3.2 Targeting telomerase RNA 

The template region of hTR seems to be an attractive target for complementary 

antisense oligonucelotides. Typical antisense oligonucleotides have DNA bases 

which can form complexes with mRNA. RNase H then recognises these complexes, 

cleaves them and leads to mRNA destruction thus reducing protein expression 

(Baker and Monia, 1999). Such approaches have been used in the inhibition of 

telomerase (Mukai et aI, 2000). However cleavage of hTR is not necessary and 

oligonucleotides can bind to hTR and act as competitive inhibitors (Correy, 2002). 

Conventional chemically unmodified DNA oligomers are too unstable for in vivo 

applications since they are readily degraded by nucleases (Cian et aI, 2008). Various 

modifications have been undertaken by several groups to enhance the stability, 

cellular uptake, potency and half-life of telomerase oligonucleotide inhibitors (Correy, 

2002). 

Peptide nucleic acids (PNAs) were among the first oligomers tested with some 

effectively inhibiting telomerase. in the low nanomolar range (Norton et aI, 1996). 

Since then several modified oligonucleotides have been tested as telomerase 

inhibitors and are presented in Figure 9 including locked nucleic acids (LNA) (Elayadi 

et aI, 2002), 2'-O-methyl RNA (Pitts and Correy, 1998), 2'-O-methoxyethyl RNA 

(Chen et aI, 2003), phosphorothioate (Matthes and Lehmann, 1999) and 

phosphoramidate oligodeoxynucleotides (Asai et ai, 2003). 
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Figure 9: Chemical structures of modified oligonucleotides. 

GRN163 is a 13-mer N3'-P5' thio-phosphoramidate oligonucleotide containing the 

sequence TAGGGTTAGACAA. GRN 163 has recently shown promising anti-cancer 

activity and is a template antagonist which binds to the complementary 13-nucleotide 

long region which overlaps and extends four nucleotides beyond the 5' boundary of 

the hTR template. It inhibits telomerase activity with ICso of O.14nM in the TRAP 

assay and induces telomere shortening, growth arrest and cell death in multiple 

cancer cell lines as well as tumour regression in prostate cancer xenografts. Its lipid-

modified counterpart GRN163L which is attached to a C16 (Palmitoyl) lipid moiety 

has now entered phase 2 clinical trials (Geron Corporation) for the treatment of solid 
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tumors and hematological malignancies and could become the first telomerase 

inhibitor to be available for cancer treatment (Asai et aI, 2003). 

1.7.4 Limitations of telomerase inhibition 

There have been several concerns regarding telomerase as an anticancer target. 

Firstly, direct inhibition of telomerase would have detrimental effects on human cells 

which express telomerase. Although telomerase is not detected in most normal 

tissues, the enzyme is expressed in hematopoietic progenitor cells, germline cells 

and other regenerative tissues as mentioned earlier in section 1.7.1. It is thought, 

however, that side effects would be minimal since telomerase expression is lower 

and infrequent in these cells compared to cancer cells. Furthermore, these 

telomerase positive-normal cells are less susceptible to telomerase· inhibition since 

they maintain much longer telomeres compared to cancer cells and have a lower 

proliferation rate and as a result will incur less telomeric attrition (Shay and Wright, 

2002). Despite this, correlations have been observed between short telomeres and 

human diseases associated with premature ageing syndromes (Vulliamy and Dokal, 

2008), bone marrow failure (Calado, 2009), atherosclerosis (Benetos et aI, 2004), 

Alzheimer'S disease (Panossian et aI, 2003) and liver cirrhosis (Wiemann et aI, 

2002). However it is not fully understood how telomere shortening contributes to 

disease development in affected individuals. 

Telomerase inhibitors might incur a significant lag time before telomere shortening 

induces cell senescence or apoptosis. The lag time will depend on the initial telomere 

length. It is suggested that cells which have much longer telomeres will require more 

replications to erode their telomeric sequences compared to cells with short 
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telomeres which suggests that telomerase inhibition may only be effective against 

tumours with short telomeres (Shay and Wright, 2002). 

Alternative mechanisms for telomere maintenance have also been reported. About 

10-15% of cancers maintain their telomeres via the alternative lengthening of 

telomeres (AL T) pathway (Neumann and Reddel, 2002). The AL T pathway involves 

homologous recombination amongst telomeres but the mechanism by which it occurs 

is not fully understood. A distinguishing feature of AL T cells is the presence of 

exceptionally long and heterogeneous telomeres. Nuclear promyelocytic leukemia 

bodies which contain recombination proteins also tend to associate with AL T cells 

(Morrish and Greider, 2009). Pure telomerase inhibitors will therefore have no effect 

on cancer cells which maintain telomeres via AL T and may result in telomerase 

independent cancer cells which are drug resistant (Shay and Wright, 2002). 
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Chapter 2: Computer aided drug design (CADD) 

2.1 Introduction 

Over the last two decades, due to rapid developments in structural biology and 

computer capabilities, computer-aided drug design (CADD) has evolved very quickly 

and is dramatically changing the strategy and pipeline for drug discovery (Tang et aI, 

2006). The drug development process is challenging, time consuming and 

expensive. It takes 10-15 years and on average between USD 0.8-1.5 billion for a 

drug to enter market from concept (Tamimi and Ellis, 2009). CADD is becoming 

indispensible for major pharmaceutical companies and offers an in silica alternative 

to medicinal chemistry techniques for investigating the structure and predicting the 

biological activity of drugs. For this reason CADD is showing promise and is quickly 

being recognised globally with regard to its advantages of both speed and low cost 

(Huang et aI, 2010). 

There are several successful examples of marketed drugs whose development has 

been dependent on CADD techniques. In 2006, 5 out of 20 approved drugs on the 

market were derived using CADD techniques (Hegde and Schmidt, 2007). Early 

successes included zanamivir (Relenza) which was developed against 

neuraminidase as treatment for influenza (Varghese, 1999) and raltitrexed 

(Tomudex) which was developed against thymidylate synthase for the treatment of 

cancer (Rutenber and Stroud, 1996). Recent examples include imatinib (Gleevec) 

which inhibits the BCR-ABL kinase for the treatment of leukaemia and darunavir 

(Prezista), a protease inhibitor used for the treatment 'Of HIV. However many more 

examples exist, reviewed in Congreve and Marshall (2010). 
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2.2 CADD strategies in drug discovery 

In the design of novel drugs, strategies for CADD vary depending on the information 

available. CADD techniques fall into two broad categories, namely structure-based 

drug design (SBDD) and ligand-based drug design (LBDD). In SBDD, a detailed 

three-dimensional structure of the target is known from x-ray crystallography, NMR or 

homology modelling allowing the design of novel therapeutic agents and 

characterisation of key interactions between ligand and target. LBDD on the other 

hand relies on knowledge of known active ligands which interact with the target of 

interest. This allows scanning of databases for ligands that are similar on the basis of 

shape, structure and physicochemical properties (Meek et aI, 2006). 

2.2.1 Structure-based drug design 

When a detailed structure of the target is known and the pocket of interest has been 

identified, two approaches to drug design can be adopted: virtual high throughput 

screening (vHTS) and de novo drug design. In vHTS also known as in silico 

screening, collections of compound libraries are screened against the target of 

interest. Molecules which tend to bind strongly to the target are then extracted for 

further testing. With computing power becoming cheaper, several million compounds 

can be screened in a matter of days on large clustered computer systems (Dutta et 

al,2010). 

Many compound databases are not structurally novel and are biased towards 

particular classes of compounds (Hert et aI, 2009). For this reason de novo drug 

design is becoming increaSingly important for the discovery of novel compounds. In 

de novo design, the 3D structure of the target is used to design new molecules from 
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scratch (Kalyaanamoorthy and Chen, 2011). Complete molecules can be designed 

from building blocks to fill in the binding site of the target protein. Building blocks can 

be atoms, fragments, functional groups or small molecules. Complete molecules can 

be constructed in two major ways within the binding pocket. In the fragment linking 

approach, entire molecules can be constructed by linking building blocks together by 

first mapping the binding site to identify possible anchor points for functional groups 

and finally joining these groups together using linkers to form complete molecules. In 

the growing approach method, the molecule is grown in the binding pocket from an 

'embryo' molecule under the control of an appropriate search algorithm which 

assesses the growing possibility using a scoring function (Tang et aI, 2006). 

Examples of de novo design programs include BUILDER (Roe and Kuntz, 1995) and 

LUDI (B6hm, 1992). 

2.2.2 Ligand-based drug design 

In some cases where a 3D structure of a target protein is not available, LBDD can be 

used which utilizes known ligands of the target protein as the starting point. LBDD 

relies on the general approach of elucidating the relationship of a compound's 

structure as well as its physicochemical attributes to its biological activity. This 

structure activity relationship (SAR) may then provide the foundation to predict new 

compounds with enhanced biological activities (Shim and MacKerell, 2011). 

LBDD techniques range from pharmacophore models which identify essential 

structural features of a molecule which are required for biological activity, similarity 

searches which screen databases of compounds to find similar compounds to 

quantitative structure-activity relationships (QSAR) which provides quantitative 
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estimates of activities based on physicochemical properties (Shim and MacKerell, 

2011 ). 

2.3 Binding pockets 

The identification and visualization of protein binding pockets is the starting point for 

many SBDD applications. Location of binding pockets is a fundamental step in order 

to investigate the molecular recognition mechanism and function of proteins and 

prerequisite for the docking of small molecule ligands (An et aI, 2005). A major issue 

with binding site analysis is the lack of definition of what constitutes a binding pocket 

since it is not easy to exactly define where a binding pocket ends and free space 

begins (Perot et aI, 2010; Hendlick et aI, 1997). 

Ligands tend to bind to pockets (clefts, grooves) on the surface of proteins, often 

some of the residues of ligand binding pockets are both solvent accessible and deep 

(Tan et aI, 2011). Ligand binding sites vary widely in shape and size from being 

spherical in shape to curved grooves composed of several interconnecting sub 

pockets (Perot et aI, 2010). Empirical studies show that drugs usually tend to bind to 

the largest pocket in the proteins surface since a large pocket provides a large 

surface area thereby increasing the opportunity for the protein to form interactions 

with the ligand (Laskowski et ai, 1996). 

Visual examination of protein surfaces is a remarkably effective approach for 

identifying binding pockets but due to the large increase in the number of protein 

structures becoming available, computer methods to predict ligand binding sites are 

becoming increasingly important (Harris et aI, 2008). A variety of computational 

methods for identifying and characterising binding sites have been reported. Binding 
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pocket detection algorithms can be divided into two categories: geometric algorithms 

. and probe/energy based algorithms. 

2.3.1 Geometric algorithms 

Geometric pocket detection algorithms are fast and simple. Surfnet (Laskowski, 

1995) delineates gap regions as cavities on th~ proteins surface by fitting spheres 

into spaces between atoms. Depth (Tan et aI, 2011) is a web server to predict small 

molecule ligand binding pockets in proteins. Since residues lining a ligand binding 

pocket are solvent exposed and deep, Depth measures the extent of residue burial 

within a protein .by measuring the distance of a protein atom to its nearest water 

molecule from bulk solvent. Ligsite (Hendlich et aI, 1997) is an improved algorithm to 

Pocket (Levitt and Banaszak, 1992) and is sufficiently fast for processing large 

number of proteins. It places a Cartesian grid around the biomolecule of interest and 

scans along the x, y and z axis and the cubic diagonals for areas which are enclosed 

on both sides of the protein. PASS (Brady and Stouten, 2000) identifies binding 

cavities using a set of spheres called active site points. The program coats the 

protein surface with a layer of spheres and filters out spheres which clash with the 

protein and which are not sufficiently buried. 

2.3.2 Probe/energy based algorithms 

Probe mapping and energy based algorithms incorporate some level of protein 

physics. These methods estimate the interaction energy between a specific probe 

molecule and the protein of interest. GRID (Goodford, 1984) places a grid around the 

protein of interest and measures the interaction between different probe groups and 
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protein residues. Qsitefinder (Alasdair et aI, 2005) uses an energy based approach 

to locate binding pockets. It calculates the interaction energy between the protein and 

a methyl probe. Individual probes are subsequently clustered according to their 

spatial proximity and energetically favourable binding sites are then located by 

calculating the total interaction energy of the probes within each cluster. AutoLigand 

(Harris et aI, 2008) uses a grid-based representation of the binding affinity potential 

to identify binding sites of maximum affinity. The program generates affinity potentials 

for hydrogen, carbon, nitrogen, oxygen and sulphur probes and the best binding site 

within the energy grid is calculated. AutoLigand has been tested on a set of 187 

protein-ligand complexes and is found to be successful in 73% of cases in predicting 

the location as well as the approximate volume of the binding site. 

2.4 Molecular docking 

The ability to accurately predict how a small molecule drug binds to its target binding 

pocket is of great importance in rational drug design. In general, docking consists of 

two parts, first the computer program predicts the orientation (pose) of the ligand 

within the binding site of the target protein and secondly it estimates the binding free 

energy (affinity) of the complex formed, a process known as scoring (Kontoyianni et 

aI, 2004). Generally a molecule with a good score is potentially a good binder 

(Kroemer, 2007). 

Docking protocols consist of two components, a search algorithm which generates 

optimum number of ligand conformations which includes the experimentally 

determined binding mode and a scoring function which serves multiple purposes, first 

to differentiate the experimental binding mode from all other binding modes obtained 
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by the search algorithm and then to rank the different ligands according to their 

binding affinity (Taylor et ai, 2002). Currently, there are more than 60 different 

docking programs available which have different search algorithms and scoring 

functions (Reviewed in Moitessier et ai, 2008). Some commonly used docking 

programs include GOLD (Jones et ai, 1997), AutoDock (Morris et ai, 1998), FlexX 

(Rarey et ai, 1996) and Glide (Friesner et ai, 2004). 

2.4.1 Search algorithm 

The search algorithm determines the correct binding mode of a ligand which involves 

finding the correct placement, orientation and conformation of the ligand within the 

target binding site. An accurate search algorithm will find all possible binding modes 

between the ligand and receptor and treat both as flexible by exploring the six 

degrees of translational and rotational freedom of the ligand as well as exploring the 

internal degrees of freedom of both ligand and protein. Due to the large size of the 

search space, this is impractical and only a limited amount of the total conformational 

space can be explored. Hence a balance is required between the search space 

examined and computational expense (Taylor et ai, 2002). 

Early docking programs such as DOCK (Kuntz et ai, 1982) treated both the ligand 

and target as rigid bodies. However most current docking algorithms treat the 

receptor as rigid and take into account the flexibility of the ligand with the exception 

of a few programs which also apply partial flexibility to side chains of the proteins 

(Jones et ai, 1997). Several search algorithms used in molecular docking have been 

developed including Monte Carlo methods, Genetic algorithms, Distance geometry 

methods and Incremental construction methods. 
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2.4.1.1 Monte Carlo methods 

Monte Carlo (MC) simulation methods are based on random sampling and are 

among the most established and widely used stochastic optimisation technique and 

is often used in combination with simulated annealing. The method uses a technique 

called importance sampling to generate states of low energy (Leach, 2001). A 

standard Metropolis MC method involves applying random Cartesian moves to the 

ligand such that the internal conformation of the ligand is changed through the 

rotation of a bond. Molecular mechanics subsequently calculates the energy of the 

ligand within the binding site and the move is either accepted or rejected based on a 

Boltzmann probability (Taylor et ai, 2002). Programs which use MC methods include 

ICM (Abagyan et ai, 1994), DOCK (Ewing and Kuntz, 1997) and MCDOCK (Liu and 

Wang, 1999). 

2.4.1.2 Genetic algorithms 

Genetic algorithms (GA) use ideas based on biological evolution. A population of 

potential solutions is first created by randomly generating conformations of a 

molecule. The population is represented as a chromosome where each member of 

the population encodes a possible solution (Le. a potential ligand conformation within 

the protein binding pocket) to the docking problem. The docked conformation is then 

assigned a fitness score based on the relative merit of the solution (Jones et ai, 

1995). 

The chromosome codes for the values of the torsion angles of rotatable bonds in the 

molecule as well as the information about the mapping of ligand H-bond atoms onto 

complementary H-bond atoms and mapping of ligand hydrophobic points onto protein 
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hydrophobic points. This information is usually stored as a linear string of bits of 0 

and 1 s. After decoding each chromosome, a least squares fitting procedure is used 

to position the ligand within the binding pocket. A fitness score for each member of 

the population is generated. As the population of chromosomes is iteratively 

optimised, a new population is generated. This new population is subjected to 

genetic operators. For example, a mutation may occur in a chromosome at each step 

or two chromosomes may possibly mate to give a child: The population will 

eventually evolve towards better solutions i.e. chromosomes which correspond to 

ligand dockings with good fitness scores since the selection of the parent 

chromosomes is biased towards fitter members of the population (Jones et aI, 1995). 

2.4.1.3 Distance geometry methods 

Distance geometry methods explore the conformational space of a molecule in terms 

of distances between all pairs of atoms. They randomly generate many distance 

matrices which are then converted into conformations in Cartesian space. However it 

is not always possible to obtain low energy ligand conformations by this method 

since it is not always possible to arbitrarily assign values to the inter-atomic distances 

in a molecule. The inter-atomic distances are closely inter-related and many 

combinations of distances are geometrically impossible. Although these methods 

allow fast sampling of the conformational space, they do not always give better 

results (Leach, 2001). 
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2.4.1.4 Incremental construction methods 

Incremental construction based methods are becoming popular due to lower 

computational expense. These methods work by identifying a base or anchor 

fragment in the ligand to construct the conformation of a molecule within the binding 

site. The anchor fragment is usually a rigid moiety such as a ring system which is 

placed into the binding pocket independently of the rest of the ligand. The anchor 

fragment is first docked into the binding pocket and the docked orientation of this 

fragment then represents the starting point for conformational anaylsis of the 

remaining ligand. Incremental construction methods have mainly been used in de 

novo ligand design, however these methods are also gaining widespread attention 

for use in docking. FlexX is a program which uses an incremental construction based 

method to generate ligand conformations in protein binding pockets (Rarey et aI, 

1996). 

2.4.2 Scoring functions 

The second component of molecular docking is the scoring function. The purpose of 

the scoring function is to differentiate the experimental binding mode from all other 

binding modes explored through the search algorithm (Taylor et aI, 2002). The two 

most important aspects of a good scoring function is speed and accuracy and an 

ideal scoring function is computationally reliable and efficient (Huang and Zou, 2010). 

There are three general classes of scoring functions which include: Force field-based 

methods, Empirical free energy scoring functions and Knowledge based functions. 
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2.4.2.1 Force field-based methods 

Molecular mechanics force field scoring functions are based on a simple model of the 

interactions within a system. Force fields methods usually measure the sum of two 

energy values, the receptor-ligand interaction energy which is described using van 

der Waals and electrostatic energy terms and the intemal ligand energy which is 

usually a measure of the steric strain, induced by binding from processes such as 

stretching of bonds, the opening and closing of angles and the rotation about single 

bonds. The majority of force field methods consider only a single protein 

conformation hence the calculation of the internal protein energy is disregarded to 

simplify the scoring (Kitchen et aI, 2004; Leach, 2001). The basic functional form of a 

force field consists of both bonded and non-bonded energies (eq.1): 

Energy (E}rotal = Ebonded + Enon-bonded (eq.1 ) 

The components of the bonded and non-bonded interactions are given by the 

following summations (eq.2 and eq.3). More sophisticated force fields may contain 

additional terms but they always contain these five components. 

Ebonded = Ebond + Eangle + Etorsions 

Enon-bonded = Eelectrostatic + EvanderWaals 

(eq.2) 

(eq.3) 

Where E is termed as the steric energy, Ebond is the energy for bond stretching, Eangle 

is the energy for angle bending, Etorsions is the torsional energy due to twisting about 

bonds, Eelectrostatic is the energy due to electrostatic interactions usually modelled 

using Coulomb's potential and EvanderWaals is the energy due to van der Waals 

interactions usually modelled using a Lennard-Jones potential. 
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In molecular mechanics, atoms are treated as balls with a defined radius connected 

by bonds which are treated as springs. The bond and angle terms are usually 

modelled as harmonic oscillators by applying Hooke's Law (Leach, 2001). Two of the 

most popular force fields used are AMBER (Cornell et aI, 1995) and CHARMM 

(Brooks et aI, 1983). 

2.4.2.2 Empirical free energy methods 

Empirical scoring functions were developed from the pioneering work of B6hm (1994) 

to predict binding affinities between ligands and proteins. The scoring function is 

computationally efficient and estimates protein-ligand receptor binding by summing 

up interaction terms which are derived from weighted structural parameters of 

protein-ligand complexes. These weights are usually the free energy contributions 

from hydrogen bonding, hydrophobic and ionic interactions and are assigned by 

linear regression methods which fit . predicted and experimental binding affinities 

against a given set of training complexes. Entropic contributions are also taken into 

consideration. The individual interactions reflect the way in which a medicinal chemist 

would break down the contributions to binding between protein and ligand (Gohlke 

and Klebe, 2001 ). 

Several empirical scoring functions have been developed which differ in the number 

and nature of terms used to make up the equation, including X-Score (Wang et aI, 

2002) and the ChemScore function implemented in GOLD (Eldridge et aI, 1997). 
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2.4.2.3 Knowledge based methods 

Knowledge based scoring functions were developed from statistical analysis of 

protein-ligand crystal structures and are based on empirical knowledge. The scoring 

function uses structural information stored in databases to derive interaction 

potentials for protein-ligand atom pairs. These interaction potentials are also known 

as potentials of mean force (PM F). It is suggested that binding modes which fit to the 

maxima of distributions of occurrence frequencies among inter-atomic interactions 

between specific atom pairs in experimentally determined structures are the most 

favourable. Based on this notion, the scoring function should be able to rank high all 

ligand conformations which are geometrically similar to the native pose (Gohlke et aI, 

2000). 

The crystal structure represents the optimum placement of the ligand atoms relative 

to the protein atoms and there are millions of observed distances between ligand and 

protein atoms when one considers hundreds of such protein-ligand complexes. This 

observed distance distribution of specific atom type interactions are converted in 

pairwise potentials. The final score is calculated by summing up all the interaction 

pairs between each ligand and protein atom lying within a certain distance. Examples 

of knowledge based methods include ASP score (Mooij and Verdonk, 2005) and 

Drug score (Gohlke et aI, 2000). 

2.4.3 GOLD 

GOLD (Genetic Optimisation for Ligand Docking) is an automated docking program 

which is highly regarded for its accuracy and reliability within the molecular modelling 

community. GOLD takes into account the full conformational flexibility of the ligand 
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and partial flexibility of the protein in all dockings. During docking, GOLD specifically 

rotates the torsion angles of hydroxyl groups, especially those which belong to 

serine, threonine and tyrosine in order to optimise the hydrogen bonding interactions 

of these residues with ligands. Lysine NH3 + groups position is also optimised during 

docking (Jones et aI, 1997). 

GOLD uses a method based on fitting points to place the ligand in the binding site. 

The program first adds fitting points to hydrogen bonding groups on the protein and 

ligand. It then maps donor points on the ligand onto acceptor points in the protein 

and vice versa. Hydrophobic fitting points in the protein are also generated by GOLD 

onto which ligand CH groups are mapped (Verdonk et aI, 2003). 

2.4.3.1 Genetic algorithm 

GOLD uses a Genetic Algorithm (GA) as described in section 2.4.1.2 to explore 

potential ligand binding modes. The ligand ring geometries and all dihedrals of 

ligand rotatable bonds and protein NH3+ and OH groups are modified by the GA 

(Verdonk et aI, 2004). The conformation information is encoded by binary strings 

where each byte in the string encodes an angle of rotation about a rotatable bond. 

Two binary strings are used, one for the ligand and one for the protein. Each torsion 

is rotated between -180° and 180° in step size of 1.4° (Jones et aI, 1997). 

2.4.3.2 Validation and comparison 

The ability to reproduce the experimental ligand binding mode is one of the key 

characteristics of a good docking program. A ligand is taken out of the protein-ligand 

x-ray crystal structure and docked back into the same binding site. The docked 
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binding mode is subsequently compared to the experimental binding mode and if the 

root-mean square deviation (RMSD) between the two structures is below 2.0 A, it is 

regarded as successful (Verdonk et aI, 2003). In this regard GOLD has been 

validated on a large set of 305 protein-ligand complexes from the CCDC/Astex test 

set and achieved an overall 68% success rate (Nissink et aI, 2002). 

The performance of any docking program will not only depend on the core algorithm 

but also in the time invested in parameterisation and optimisation of the methodology 

(Taylor et aI, 2002). Several case studies have compared GOLD to other docking 

programs and have concluded GOLD to be marginally the best performing docking 

program in terms of accuracy and in giving the best enrichment rates (Biisantz et aI, 

2000; Jenkins et aI, 2003; Li et aI, 2010; Kirtay et aI, 2007). Enrichment measures the 

quantity of active compounds which the program has placed at the top of the ranked 

list (Hawkins et aI, 2008). 

2.4.3.3 The fitness function 

GOLD offers a choice of scoring functions, the two major fitness functions used in 

GOLD are GoldScore and ChemScore. Both scoring functions are as equally reliable 

however in certain cases one may perform better than the other. When screening 

large libraries of compounds one may rescore the docking poses with an alternative 

scoring function to improve the overall rank ordering of the ligands (Verdonk et aI, 

2003). 
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2.4.3.3.1 GoldScore 

The GoldScore fitness function is a force field based default scoring function in 

GOLD and is made up of four terms: protein-ligand hydrogen bond energy (external 

H-bond), protein-ligand van der Waals energy (external vdW), ligand internal vdW 

energy (internal vdW) and ligand torsional strain energy (internal torsion). The ligand 

intra-molecular hydrogen bond energy (Internal H-bond) can also be added as a fifth 

component. A covalent term can also be included within the scoring function when 

docking covalently bound ligands. The final fitness score is taken as the sum of 

negative energy terms such that larger fitness scores are better (eq. 4). An empirical 

correction is also made when the total fitness score is computed to encourage 

protein-ligand hydrophobic contact by multiplying the external vdW score by a factor 

of 1.375. 

GoldScore = S(hb_ext) + 1.375*S(vdw_ext) + S(hb_int) + S(vdwJnt) + S(tors) (eq.4) 

Where S(hb_ext) is the protein-ligand hydrogen bond score, S(vdw_ext) is the 

protein-ligand van der Waals score, S(hbjnt) is the score from intramolecular 

hydrogen bond in the ligand, S(vdwjnt) is the score from intramolecular strain in the 

ligand and S(tors) is the score from the ligand torsional strain. 

The GoldScore fitness function has been specifically optimised for the prediction of 

ligand binding positions, however some correlation with the prediction of binding 

affinities have been observed (Jones et ai, 1997). 
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2.4.3.3.2 ChemScore 

ChemScore is an empirical scoring function which was originally developed by 

(Eldridge et aI, 1997) expanding on the work of others and has since then been 

incorporated into GOLD. The fitness function has been empirically derived and 

trained by regression against measured binding affinity data from a set of 82 protein

ligand complexes. However there is no clear evidence that it is superior to GoldScore 

in predicting affinities. 

ChemScore uses simple contact terms in order to estimate hydrogen bonding 

interactions, lipophilic and metal-ligand binding interactions. ChemScore estimates 

the total free energy change which occurs when ligands bind to proteins as shown in 

the equation given below (eq. 5). 

b.Gbinding = b.Go + b.Ghbond + b.Gmetal + b.Glipo + b.Grot (eq. 5) 

Each component in the equation is the result of a term which depends on the 

magnitude of a specific physical contribution to free energy (e.g. hydrogen bonding) 

and a scale factor which is obtained by regression. To prevent against poor internal 

conformations and close contacts in docking, an internal torsion term and a clash 

penalty is added to the equation when the final ChemScore is calculated (Jones et aI, 

1997). 
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Chapter 3: Basis of present investigation 

3.1 Introduction 

Under physiological ionic conditions, telomeric G-rich sequences can adopt other 

secondary structures apart from the Watson and Crick duplex known as G

quadruplexes. Although the exact function of these structures is unknown, they are 

thought to play important roles in key biological processes (Balasubramanian and 

Neidle,2009). 

G-quadruplexes are formed from G-quartets where each quartet consists of four 

guanine bases held together in a cyclic arrangement by Hoogsten hydrogen bonding. 

The G-quartets stack on top of each other in a helical fashion to form the G

quadruplex structure (Figure 10). The formation of G-quadruplexes is dependent on 

the presence of monovalent cations such as potassium (K+) and sodium (Na +) ions 

which sit in a central channel between each pair of G-quartets providing stability to 

the structure (Phan, 2010). 

G-quadruplex structures can fold in a variety of ways and can be formed by a single 

strand (intramolecular) or by several strands (intermolecular). to form monomeric, 

dimeric and tetrameric structures by using one, two or four separate G-rich strands 

(Phan, 2010). The relative orientations of the strands and glycosidic conformations 

(syn/anti) of the guanines give rise to a variety of G-quadruplex structures (Figure 

10). 
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Figure 10: (A) Schematic diagram of a G-tetrad (8, C) Guanine in (8) anti and (C) 

syn glycosidic conformations (D) Four different G-quadruplex structures. Arrows 

indicate the strand orientation from 5' to 3' direction (Adapted from Phan, 2010). 

The presence of G-quadruplex structures at telomeres has attracted a great deal of 

interest in recent years since telomerase requires an unfolded and therefore 

accessible single stranded DNA substrate for telomere elongation. The folding of the 

3' single stranded overhang into a G-quadruplex structure will prevent the effective 

recognition of the telomere overhang by the telomerase RNA template domain since 

it requires it to be single stranded thereby inhibiting telomere elongation by 

telomerase. Ligands which can stabilise G-quadruplex structures therefore have the 

potential to inhibit telomerase activity at telomeres (Zahler et aI, 1991). 
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The abil ity of small ligands to inhibit telomerase activity through G-quadruplex 

stabilization was first demonstrated using a disubstituted anthraquinone derivative 

(Sun et aI, 1997). Since then several telomeric G-quadruplex interactive agents have 

been reported (Cian et aI, 2008). 

Telomeres are not the only DNA sequences in the human genome which can form G-

quadruplex structures. A growing body of evidence suggests that G-quadruplexes 

can be found in gene promoter sequences of specific oncogenes such as c-myc, 

VEGF, c-kit and bcl2 (Qin and Hurley, 2008) suggesting that G-quadruplexes may be 

directly involved in gene regulation at the transcription level (Figure 11). This 

hypothesis offers attractive opportunities for the discovery of small molecules which 

can target disease-related genes by interacting with such DNA G-quadruplexes and 

modulate the expression of the gene regulated by the promoter sequences. In 

support of this hypothesis, genetic point mutations which destabilised the c-myc G-

quadruplex structure led to an increase in transcriptional activity whereas TMPyP4, a 

small-molecule G-quadruplex stabiliser was found to suppress c-myc transcriptional 

activity (Jain et aI, 2002). 

> Transcriptional 

promotor 
activation 

gene 

G-quadruplex U-Q ~ 1 /T /T 
T~'t 

d0 > Altered 
transcription 

promotor gene 

Figure 11: G-quadruplex formation in the gene promoters alters transcription 

(Adapted from Huppert and Balasubramanian, 2007). 
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It was originally hypothesized that G-quadruplex ligands were simple telomerase 

inhibitors which would block telomerase access to the G-overhang resulting in the 

reduction of telomeric DNA and induction of senescence in cancer cells and would 

require an extended time scale before antitumor effects became apparent (Bilsland et 

aI, 2011). Emerging evidence now suggests that G-quadruplex ligands elicit their 

effects at least in part by affecting the telomere capping ability of shelterin proteihs 

and produce more rapid toxic effects leading to rapid senescence and cell death 

(Bilsland et aI, 2011). 

G-quadruplex ligands therefore have the ability to inhibit telomerase-positive cancer 

cells as well as AL T dependent cancer cells. However due to the wide existence of 

G-quadruplex structures in the human genome, there is a concern regarding the 

selectivity and mechanism of these ligands. A new and rational approach is to target 

the shelterin proteins directly which may afford more selective ligands (Bilsland et aI, 

2011 ). 

3.2 Human POT1 as a viable anti-cancer target 

POT1, the shelterin protein which binds and caps the 3' single stranded telomeric 

overhang is becoming an increasingly promising drug target for cancer treatment (Lei 

et aI, 2004). POT1 plays a critical role in ensuring telomere integrity and is 

indispensable for the survival and unlimited replicative potential of cancer cells. The 

capping of chromosome ends by POT1 suppresses ATR signaling. Several studies 

have suggested that telomeres which are no longer protected by POT1 become 

dysfunctional and activate the ATR DNA damage response pathway which triggers 

senescence, including p53-dependent apoptosis (Denchi and de Lange, 2007). 
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Growing evidence also suggests that the anticancer activity of several G-quadruplex 

ligands including Telomestatin (Gomez et aI, 2006), RHPS4 (Salvati et aI, 2007), 

BRACO-19 (Gunaratnam et aI, 2007) and BRACO-19 dimers (Fu et aI, 2009) is 

through the uncapping of POT1 from telomeric DNA. These G-quadruplex ligands 

cause telomere dysfunction not only by telomere shortening as would be expected 

from telomerase inhibition, but also cause telomere injury by disrupting the binding of 

POT1 to telomeric DNA which consequently results in a potent DDR (Salvati et aI, 

2007). 

Telomestatin induces apoptosis in cancer cells via a mechanism which involves the 

uncapping of POT1 from telomeres. However the ligand has no effect on TRF2 

binding (Gomez et aI, 2006). RHPS4 induced short term apoptosis as well as 

senescence in melanoma cell lines when used at high concentrations. However no 

telomere shortening was observed in these cells and the apoptosis phenotype 

correlated with increased incidence of telomere fusions due to the liberation of POT1 

from telomeres. RHPS4 treatment in mice xenografts significantly reduced tumour 

weight due to apoptosis but no telomere erosion was observed. Tumours which 

overexpressed POT1 were resistant to RHPS4 treatment (Salvati et aI, 2007). 

POT1 is expressed in a wide range of tissues (Baumann and Cech, 2001); however 

recent studies on RHPS4 suggest that RHPS4 does not trigger telomere damage in 

normal human fibroblasts. The lack of telomere damage in normal cells correlates 

with the inability of RHPS4 to liberate POT1 from telomeres. It is proposed that the 

shelterin protein composition of cancerous and normal cell telomeres may differ 

(Salvati et aI, 2007). One such possibility is that the shelterin proteins in normal cells 
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are more strongly bound to telomeric DNA than in cancer cells, thereby providing an 

opportunity to selectively target cancer cells without effecting normal cells. 

3.3 Human POT1 function 

The precise role of POT1 varies considerably between organisms. In fission yeast, 

POT1 deletion leads to rapid loss of telomeric sequences and widespread cell death 

(Baumann and Cech, 2001). In mice, two POT1 genes have been found which 

encode two POT1 proteins, POT1 a and POT1 b. It is thought that the two proteins 

have distinct functions at the telomeres. POT1 a suppresses a DNA damage signal at 

telomeres wheras POT1 b regulates the amount of single-stranded DNA at 

chromosome ends (Hockemeyer et aI, 2006). 

Removal of POT1 in vertebrate's results in an ATR mediated checkpoint response 

and rapid cell cycle arrest and cell death (Churikov et aI, 2006). Several phenotypes 

have been observed when human POT1 levels are depleted (Yang et aI, 2005). 

Knockdown of human POT1 in HeLa cells using siRNA results in telomere instability, 

apoptosis, decrease in cell viability and telomere elongation. In HT1080 and IMR90 

cells, a senescent-like growth arrest is induced (Veldman et aI, 2004). 

The inhibition of POT1 using antisense oligonucleotides results in telomere 

shortening and increase in the frequency of anaphase bridges, a telltale sign of 

telomere dysfunction (Kondo et aI, 2004). In another study, reduction of POT1 by 

RNA interference leads to the loss of single strand telomere overhangs, increased 

p53 expression, chromosomal instability, senescence and apoptosis in cancer cells 

(Yang et aI, 2005). The expression of POT1 in gastric cancers is also significantly 

higher compared to adjacent normal tissue and its expression is correlated with 
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tumour stage being higher in late-stage tumours (Gao et aI, 2011). These results 

suggest that POT1 may be a viable anti-cancer target. 

3.4 Human POT1 crystal structure 

The crystal structure of the N-terminal DNA binding domain of human POT1 bound to 

a telomeric single stranded DNA decamer TTAGGGTTAG (Figure 12) has been 

solved at a resolution of 1.73A (Lei et aI, 2004). 

~----------~II ~ ____________ ~ 
OB1 OB2 

Figure 12: Crystal structure of human POT1 (solid ribbon) bound to telomeric DNA 

(CPK sticks) discovered using x-ray crystallography. The N-terminal region of POT1 

consists of two domains: 081 and 082. The f3-sheets are displayed -as yel/ow 

ribbons and the a-helices are displayed as purple coils. 

The N-terminal half of human POT1 contains two oligonucleotide binding (081 & 

082) domains which adopt an extended conformation connected by a short linker. 

The DNA adopts an irregular and extended conformation and binds in a continuous 
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basic concave groove spanning both OB 1 and OB2 domains. The DNA bases are 

completely or partially buried in a total solvent excluded contact area of 900A with its 

backbone exposed to solvent (Lei et aI, 2004). 

In total, 31 H-bonds are observed in the bound complex, with OB1 making a much 

more extensive contact with bases T1-G6 contributing to a total of 22 hydrogen 

bonds with OB 1 residues. A total of 9 H-bonds are observed between OB2 residues 

and bases T7-G10, out of which eight H-bonds are contributed by T7 and G10. Base 

A9 makes no H-bonding interaction with POT1. The DNA is governed by several 

stacking interactions. T1 stacks with T2, A3 with G4, G5 with G6 and T8 with A9. The 

T7 base is sandwiched in a stack of aromatic side chains and the last base G10 at 

the 3' end of DNA is buried within the protein with its edge surrounded by four H

bond interactions thus rendering it inaccessible for telomerase extension (Lei et aI, 

2004). 

POT1 has the ability to accommodate additional 3' nucleotides in its DNA binding 

cleft since the 'terminal G10 base has its 3'-hydroxyl group solvent exposed which is 

consistent with the idea that several human POT1 proteins could bind and coat the 

entire single stranded overhang. The protein can therefore remain in phase with the 

telomeric sequence with a proportion of POT1 in complex with TPP1 (Lei et aI, 2004). 

The presence of a high resolution crystal structure of the N-terminal domain of 

human POT1 provides an insight into the mechanism by which POT1 recognises, 

protects and binds telomeric DNA and therefore provides a good starting point for 

structure-based drug design. 
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Disruption of protein-DNA interactions for a long time has been considered extremely 

challenging. However considerable progress in recent years to identify inhibitors 

which disrupt protein-DNA interactions has been achieved. 

Chan et 81 (2008) have discovered inhibitors of the AIF-DNA interaction with the best 

inhibitor achieving an IC50 of 23jlM using a photonic crystal based assay. Kong et 81 

(2005) have developed compounds to inhibit the interaction between the transcription 

factor HIF-1 and its DNA binding partner. Using an EMSA based assay, a potent 

inhibitor which completely inhibited HIF1-DNA binding at concentrations as low as 

320nM was discovered. Nehar et 81 (2010) have developed inhibitors against the 

xeroderma pigmentosum group A (XPA) protein-DNA interaction and have identified 

an inhibitor which inhibits XPA-DNA interactions at IC50 of 20llM using an ELISA 

based assay. Andrews and Turchi (2004) have discovered several inhibitors which 

perturb RPA-DNA binding using a fluorescence based assay. Several compounds 

have been identified which have IC50 in sub micromolar range. Overall this da!a 

suggests that the approach which is being undertaken to target POT1-DNA 

interactions is feasible. 

According to the literature, no research has been done to identify inhibitors of POT1-

DNA interactions. The aim of this project is to design one of the first novel small 

molecule inhibitors of human POT1 which may have the potential to disrupt the 

binding interaction of POT1 with its single stranded DNA binding partner thereby 

driving cancer cells into senescencelapoptosis. 
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The following guiding principles will be employed to discover POT1 inhibitors: 

• Identify a drug binding site in human POT1 using active site molecular 

modeling techniques. 

• To carry out the de novo design of a specific class of POT1 inhibitor that 

targets the predicted binding site. 

• To design focused virtual compound libraries based on the designed inhibitor 

and carry out docking studies to evaluate top scored structures. 

• Synthesize and characterize compounds using NMR, MS and HPLC. 

• To carry out biological screening of compounds and identify hits which can be 

further optimized to enhance activity. 

• To carry out optimization and build a complete structure-activity relationship 

(SAR) profile of hits in order to identify a potent inhibitor of POT1-0NA 

interaction for further development into an ideal drug candidate. 

The research plan is illustrated in Figure 13. 
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De novo drug 
design 
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Analyse ranked list and pick top structures 

Virtual compound 
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Synthesis of compound and testing for 
binding in biochemical assays ....,.------..., 
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Figure 13: Illustration of research plan. The plan includes protein structure 

preparation, binding-site identification, drug design, compound library preparation, 

docking of compounds against the protein binding pocket and analyses. 
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Chapter 4: Protein-DNA interaction analysis 

4.1 Introduction 

Understanding the nature of protein-DNA interactions is important in drug discovery. 

Alongside the theoretical studies and methods described above, there exist a wide 

range of experimental methods to study this phenomenon. In this chapteF, an 

introduction to some of these techniques will be presented. 

4.2 Filter binding assay 

Filter binding assays were developed in the early 1970's and provide a rapid and 

simple way of measuring protein-DNA interactions. The assay measures the affinity 

between a protein and DNA and is based on a simple process. In a typical 

experiment, both the protein and DNA are mixed and incubated together. The 

mixture is then subjected to electrophoresis separation and blotted onto a negatively 

charged nitrocellulose filter. The protein will bind to the nitrocellulose since it has a 

net positive charge whereas the DNA will not remain on the filter since it contains 

negatively charged phosphate groups. However DNA which is bound to the protein is 

also retained on the nitrocellulose and can be quantified by measuring the 

radioactivity of the label which was introduced to the DNA prior to the incubation with 

the protein (Helwa and Hoheisel, 2010). 
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4.3 EMSA assay 

Electrophoresis mobility shift assay (EMSA) measures the electrophoretic mobility of 

the nucleic acid. The assay is based on the observation that molecules will move 

through the gel at different speeds according to their size and charge hence protein

DNA complexes will migrate more slowly than that of the free DNA fragment. The 

assay is simple and robust to accommodate a range of binding conditions. In a 

typical experiment, the nucleic acid is labelled with a radioisotope such as 32p and 

combined with the protein. Fluorescent and biotin nucleic acid labels are also widely 

used. The mixture is subjected to electrophoresis through either a polyacrylamide or 

agarose gel under native conditions. After completion, the free DNA and DNA which 

is bound to the protein is determined by autoradiography of the labelled nucleic acid 

(Hellman and Fried, 2007). 

4.4 ITC 

Isothermal titration calorimetry (ITe) is a powerful tool for measuring binding affinities 

and provides the thermodynamics of binding between protein and DNA. In a typical 

ITe experiment, a syringe containing DNA is titrated into a sample cell containing 

solution of the protein. As the two binding partners interact, the heat released upon 

their interaction can be measured over time. As successive amounts of DNA are 

titrated into the ITe cell, heat is either released or absorbed. The heat is proposed to 

be in direct proportion to the amount of protein-DNA binding. The protein in the cell 

will eventually become saturated with the added DNA and the heat signal will 

diminish until only the background noise is observed due to the heat of dilution. 

Integration of the heat measurements allows the determination of binding affinity (Kd), 
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stoichiometry (n), binding enthalpy (tJ.H) , entropy (tJ.S), heat capacity (tJ.C) and the 

change in free energy (tJ.G) upon protein-DNA binding (Liang, 2008). 

4.5 SPR assay 

Surface plasmon resonance (SPR) has emerged as a powerful optical detection 

technique for studying label-free protein-DNA interactions in real-time. In a typical 

SPR experiment, a light source is passed thro~h a prism and is reflected off the 

backside of a sensor chip and into a detector.' The sensor chip is usually a metal 

surface made from a thin layer of gold or silver. At a certain incident angle, light is 

absorbed by the electrons of the metal surface causing them to resonate. These 

resonating electrons are also called surface plasmons. The resonance effect causes 

the reflected light from the sensor chip to lose intensity which can be observed as an 

SPR minimum in reflectivity (Ritzefeld and Sewald, 2011). 

The surface plasmons are sensitive to changes in the surrounding environment. In 

order to measure protein-DNA interactions, the DNA is immobilised on the surface of 

the sensor chip. The interacting protein is injected into the running buffer that passes 

the surface at a constant flow. The mass on the sensor chip increases when protein 

molecules bind to DNA. Since the incident angle at which resonance occurs is 

dependent on the refractive index. Protein binding to the other side of the sensor chip 

causes a change in the refractive index resulting in the shift of the SPR minimum 

which can be measured to quantify the amount of binding (Ritzefeld and Sewald, 

2011 ). 
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4.6 Fluorescence Polarisation assay (FP) 

4.6.1 Introduction 

Fluorescence polarisation (FP) is an indispensable technique for studying molecular 

interactions and is widely used to study protein-DNA and protein-protein interactions 

(Moerke, 2009). It has been successfully used to study a range of targets including 

nuclear receptors, G-protein coupled receptors, proteases and kinases. FP is based 

on the principle that when a fluorescently labe"ed molecule becomes excited by 

plane polarised light, the molecule will emit light to a certain degree of polarisation 

which is inversely proportional to the rate of molecular rotation. This property of FP 

can be used to give a direct, nearly instantaneous measure of the interaction 

between a small labelled ligand and a large protein and provides the foundation for 

competition binding assays (Moerke, 2009). 

As an assay technology, FP is widely used in high throughput screening applications 

and has several key advantages. It allows molecular binding events in solution and 

permits true equilibrium analysis in the low picomolar range. Since FP measurements 

are taken in 'real time', kinetic experiments are also widely conducted. FP is readily 

adaptable to low volumes (Le. in the order of 101.11) and is a non-radioactive 

technique. Due to the truly homogeneous nature of FP, it does not require separation 

of bound and free ligand (Moerke, 2009). 

4.6.2 Theory 

The theory of FP was first described in 1926 by Perrin and is based on the concept 

that when a small f1uorescently labe"ed molecule (typica"y <1500 Da) is excited by 
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plane-polarised light, the emitted light will largely be depolarised since the molecule 

is rapidly tumbling in solution during its fluorescence lifetime (the time between 

excitation and emission) which is caused by the Brownian molecular rotation of the 

labelled ligand. However, when the labelled ligand is bound to a much larger protein 

(typically >10kDa), it will tumble less rapidly in solution and reorients to a much 

smaller degree thus allowing the emitted light to be polarised to a significant degree. 

The basic principle of FP is presented in Figure 14. 

polarized light 

excitation of fluorophore 
at t ", 0 

re\ de:i:hl 
VFJ -~ 

largely polarized light 

emission of fluorophore 
at t ", T (excited state lifetime) 

Figure 14: Schematic diagram illustrating the fundamental principle of FP. When a 

small ligand such as a nucleic acid (dark circle) is attached to a fluorescent label 

(white circle) becomes excited by polarised light at the excitation wavelength of the 

fluorophore, the nucleic acid reorients to a considerable degree as a result of 

molecular tumbling during the excited state lifetime of the fluorophore. This tumbling 

effect causes depolarization of the emitted light. However when the nucleic acid is 

bound to a large protein (Gray ellipse), the resulting complex will tumble at a slower 

rate and therefore the emitted light retains its polarisation (Taken from Moerke, 

2009) . 
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To test the ability of compounds to inhibit the POT1-DNA interaction, an FP 

displacement assay was developed by Dr Lodewyk Dekker and his team at the 

University of Nottingham. The basic principle of the POT1 FP assay is depicted in 

Figure 15 and the assay methodology is presented in Chapter 10.3. 

DNA~lone 

Inhibitor @ .Ii 
--•• --... + .... _

r_, DNA 

DNA + Protein DNA~lone 

Figure 15: Schematic graph depicting how the POT1 FP assay works. A 15mer 

oligonucleotide sequence TTAGGGTTAGGGTTA is attached to fluorescein. When 

the fluorescent DNA molecule in solution is excited by plane-polarised light, the 

emitted light will largely be depolarised because the DNA molecule will be tumbling 

and rotating rapidly in solution (Low polarization). However when the labelled DNA is 

bound to the much larger POT1 protein, its rotation slows down considerably, the 

emitted light will thus be polarized to a significant degree (Polarization changes from 

low to high polarization). When a non-fluorescent inhibitor binds to POT1 it will 

displace the DNA into the solution where it will tumble more rapidly thus decreasing 

the FP of the emitted light. By measuring the decrease in the FP signal upon inhibitor 

binding, a competition binding assay can be established to measure the decrease in 

POT1-DNA binding. 
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The rest of the thesis is arranged as follows: Chapter 5 describes how the binding 

site in POT1 was identified. Chapter 6 describes ligand design, hit identification, 

modifications and biological screening results for inhibitors based on the pyrido[1,2-

a]pyrimidin-2-one template. The POT1 library of compounds and their biological 

screening results are presented in Chapter 7. The inhibitors based on the 

sulfathiazole template and their biological results are presented in Chapter 8. In 

Chapter 9, a general conclusion and future work are presented and the key 

methodologies used for this work are described in Chapter 10. 
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Chapter 5: POT1 binding site characterisation 

5.1 Introduction 

Since no co-crystallised structure of human POT1 bound to any inhibitors yet exists, 

the first task was to identify potential binding sites in POT1 since the ligand binding 

site is not known. In this section the different computational tools which were used to 

locate and characterise the ideal binding pocket in POT1 are discussed. 

5.1.1 POT1 potential binding sites 

A tool in SYBYL ® named Molcad Multichannel Surfaces was used to identify potential 

binding pockets (solvent accessible regions) prior to ligand design (Figure 16). 

Figure 16: Structure of POT1 (solid ribbon) bound to telomeric DNA (CPK ball and 

stick) . The magenta, yellow and cyan colours in the figure represent helix, f3-strand 

and loop regions, respectively. Two binding clefts are identified: Site A (Blue region) 

has a surface area of 304.87 A2 and cavity volume of 273.57 A3 and Site B (green 

region) contains a surface area of 1156.84 A2 and cavity volume of 1148.67 A3. 
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From Figure 16, it can be seen that SYBYL ® has identified two major solvent 

accessible clefts, both lying at the OB 1-0B2 interface in POT1. Site A (blue region) 

does not make any contact with DNA and lies away from where the DNA binds. A 

drug targeting site A will not have a direct inhibitory effect on DNA binding but could 

potentially act in an allosteric manner. Site B (green region) has attracted particular 

interest as a potential drug target, not only is it the largest of the two binding clefts 

but is also located near the region of space where the DNA binds to POT1. The 

upper surface of Site B is occupied by the thymidine-7 base of DNA. It is suggested 

that ligands which can disrupt the binding of thymidine-7 may inhibit POT1-DNA 

binding. 

5.1.2 Favourable POT1 binding pocket 

Proteins function by interacting with other bio-molecules through their interfaces. It 

has been found that the binding energies are not uniformly distributed at protein 

interfaces since some critical residues known as hot spots comprising a small 

fraction of the interface account for the majority of the binding energy (Tuncbag et aI, 

2009). Typically a hot spot contributes more than 1-2 kcal/mol to the free energy of 

binding (Recio, 2011). 

The distribution of amino acids in hot spots vary, tryptophan, arginine and tyrosine 

residues are more likely to be found in these regions whereas certain resides are 

found rarely in hot spots including leucine, methionine, serine, threonine and valine 
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(Bogan and Thorn, 1998). Hot spots have therefore become important targets for 

rational drug design and can be found experimentally by evaluating the change in 

binding free energy by mutating a certain residue to an alanine. Since these 

mutagenesis studies require significant experimental effort, there is a need for 

accurate and reliable computational methods to predict hot spots (Tuncbag et aI, 

2010). 

The ten nucleotide DNA sequence of human POT1 binds in an irregular and 

extended conformation along the POT1 surface forming several key interactions with 

several amino acids. It is suggested that only a few residues in the POT1-DNA 

complex may contribute to the binding affinity and therefore are absolutely essential 

for interaction. These hot spot residues may act as potential drug targets such that 

small molecules could be specifically designed to target these regions and have a 

greater ability to disrupt. the complex. The aim is to target regions where the 

interaction between POT1 and DNA are strong to cause maximum effect of liberating 

DNA from POT1. 

One program capable of identifying potential hot spots in protein-DNA complexes is 

Anal, an energy analysis module of AMBER 7 (Case et aI, 2002). Anal carries out the 

energetic analysis of individual structures. The program decomposes the energy 

amongst the different groups of atoms in order to find the interaction energies 

between different parts of the structure. Amino acids having the most favourable 

interaction energy with the DNA, and DNA bases having favourable interaction 

energy with POT1 are calculated (Figure 17). The two most important terms that Anal 

calculates are van der Waals and electrostatic interactions between POT1 and DNA. 
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Site A 

Site B 

Figure 17: Hot spot map showing total energy (sum of van der Waals and 

electrostatic energies) between POT1 (CPK surface) and DNA (CPK sticks) . The 

residues predicted to be hot spots are shown in red which represent regions where 

interaction between POT1 and DNA are strong in terms of total energy. White to blue 

regions represent moderate to weak interaction between POT1 and DNA. 

The hot spot map of POT1 identified two potential drug binding sites (red regions in 

Figure 17: [site Band C]) where interaction between POT1 and DNA are strongest. 

Site A, the solvent accessible pocket which was previously found using SYBYL ® is 

not identified as a hot spot and makes a very weak interaction with DNA since it does 

not lie close to the DNA binding surface. By examining the hot spot map of POT1 , it 

can be seen that certain residues in the POT1-DNA complex contribute more to the 

binding affinity than others. The interaction energies for the top residues in the POT1-

DNA complex are listed in Appendix A. 
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Four DNA nucleotides (G4, G5, T7 and G10) appear to make particularly strong 

interactions with POT1. However it can be seen that the amino acids of POT1 do not 

make an equally strong interaction with G4 and G10 bases of DNA in these regions. 

The POT1 amino acids: L YS-28, TYR-26.6 and ARG-268 are the major contributors 

to the total energy of the complex. Two of these residues, TYR-266 and ARG-268 

are found at Site B which also corresponds to the largest solvent accessible pocket 

previously identified using SYBYL ®. Table 2 lists the amino acids which are found at 

the 3 different binding sites. 

Site A Site B Site C 

TYR-43 PHE-27 LYS-28 

TYR-66 ASN-70 TYR-31 

HIS-228 TYR-156 THR-264 

SER-232 ASP-158 

SER-238 

TYR-266 

ARG-268 

Table 2: List of amino acids which are found at the three binding sites. 

Site B contains a deep pocket which has the potential to accommodate a reasonable 

sized ligand. In the original crystal structure, the T7 base of DNA binds at site B 

where the T7 base is sandwiched in a stack of aromatic side chains (Figure 18). The 

major interaction at Site C is a strong electrostatic interaction between L YS-28 and 
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the phosphate of guanosine-6. Site C is flat and does not contain any solvent 

accessible cleft thereby making it difficult to design small molecules to target this 

specific region . 

Figure 18: Detailed interaction between T7 base of DNA (green CPK sticks) and its 

interacting protein residues (cyan CPK sticks). H-bonds are depicted as yellow dotted 

lines. 

To determine which of the 3 binding sites was more energetically favourable , the 

computational tool GRID (Goodford, 1985) was used. The algorithm uses small 

probe groups which may be an integral part of a larger ligand i.e. a drug with distinct 

chemical entities such as amine nitrogen, carbonyl oxygen and many others which 

move through a regular grid of points around the target POTt protein (Wade et aI, 
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1993). At each point around the grid, the interaction energy between the probe group 

and POT1 is calculated using an empirical energy function (eq. 6). 

E(Energy) =:LEvanderWaals + :LEelectrostic + :LEhydrogen-bond (eq.6) 

The energies calculated at various positions around POT1 may then be displayed by 

computer graphics as three dimensional contours (Figure 19). Energetically 

favourable binding sites can be found by examining contours at large negative 

energies which correspond to regions of attraction between a particular probe and 

POT1. Contours at large positive energies indicate regions of repulsion between 

probe and POT1 (Wade et aI, 1993). 
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Figure 19: GRID contour map of POT1. Several probe groups were used: 

hydrophobic, hydroxyl (OH) , carbonyl oxygen (C=O), water (H20) and neutral amino 

(NH2). The contours are shown between -10 Kcallmol and -13 Kcallmol. 

By analysing the contour map of POT1 (Figure 19), it can be seen that the originally-

identified hotspot Site B is particularly rich in sites that have the possibility of 

favourable interactions with a range of functional groups. Site A (not shown in the 

figure since it lies slightly on the opposite side to Site B) and Site C however do not 

seem to make favourable interactions with the different probe groups. 

Visual examination of site B highlights areas which are not yet exploited by the T7 

base of DNA. Ligands which can target this region have the potential to be extended 

deeper within the pocket to explore the unoccupied space and to pick up additional 
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interactions which the T7 base of DNA cannot. The hydrophobic probe identifies a 

very strong hydrophobic interaction between TYR-156 and TYR-266. Strong 

hydrogen bonding and electrostatic interactions are also observed between hydroxyl 

and amino probes and ASP-158 and ASN-70. A strong H-bond interaction is also 

observed between the carbonyl probe and TYR-156 and TYR-266. However limited 

interaction with the water probe is observed at site B indicating that the site is quite 

hydrophobic and prefers to bind to hydrophobic functional groups. 

5.1.3 Conclusion 

In conclusion, site B contains a deep hydrophobic pocket with a large size and 

volume and the presence of a rich array of functional groups. It was therefore 

decided that site B should be chosen as a potential druggable binding pocket in 

POT1. The important amino acids at site B which may be essential for ligand binding 

have been identified (Figure 20). The aim is to design a small molecule ligand which 

can bind at site B and stack in between TYR-156 and TYR-266 thereby prevent the 

T7 base of DNA from binding. It is suggested that blocking this single nucleotide from 

binding to POT1 may be sufficient to prevent the entire DNA molecule from binding to 

POT1. 
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Site B 

Site B binding site residues 

Figure 20: Site B residues (CPK sticks) which may be essential for ligand binding 

include PHE-27, ASN-70, TYR-156, ASP-158, SER-238, TYR-266 and ARG-268. 
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Chapter 6: Ligand design and hit identification 

6.1 Introduction 

By means of ab initio drug design and docking, the aim of the project was to design a 

specific class of POT1 inhibitor through a series of modifications to an initial core 

fragment. The size of the pocket, lipophilicity and distribution of hydrogen bond 

donors and acceptors within the pocket were used to design a novel ligand which 

targets site B (see Figure 20) in POT1. Care was taken so that the designed ligands 

did not violate Lipinski's rule of five (Lipinski et aI, 2001) which is a rule of thumb for 

drug likeness. The rule states that in general an orally active drug has no more than 

one violation of the following criteria: 

• No more than 5 H-bond donors 

• No more than 10 H-bond acceptors 

• A molecular mass less than 500 daltons 

• A log P value of less than 5 

6.2 Dock and design of POT1 inhibitor 

Several small lipophilic and planar fragments were initially selected manually and 

designed using the sketch molecule tool in SYBYL ® (Table 3). The fragments were 

designed such that they can bind near the surface of the pocket and stack between 

the TT systems of TYR-156 and TYR-266 thereby preventing T7 of DNA from binding 

and stacking into this region. The majority of the fragments were chosen randomly 

based on having a planar ring system and/or the presence of some H-bond donor or 
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acceptor functional groups in order to exploit H-bonding interactions within the 

binding pocket. Fragment 8a on the other hand was discovered using the similarity 

search tool in the Sigma Aldrich compound collection to identify structures similar to 

thymine. The nine fragments (1-9) were subsequently docked into the predicted 

POT1 binding pocket using GOLD and their binding modes and fitness scores were 

evaluated (Table 3). The computational methodology of how the ligands and the 

POT1 structure were prepared prior to docking is presented in section 10.2. 

-I Fragment 1 GoldScore I Fragment I GoldScore Fragment GoldScore 

1 0 0 7 CO 32.54 
25.34 # N 

33.07 
H 

4 

6 
0yyNH2 OH 

28.50 6 8a "u 40.58 
2 34.48 

5 

NJ:N {X) 35.12 HO-o-NH 
3 U 28.43 38.40 

# # 9 'r N 0 

Table 3: Structures of several small fragments with their corresponding GoldScores. 

The majority of these fragments intercalated in between TYR-156 and TYR-266 and 

underwent x-x stacking interaction with them. However based on the obtained 

GoldScores for the nine fragments, fragment 8a ranked the top and was selected for 

further modification. Fragment 8a contains a pyrido[1,2-a]pyrimidin-2-one core with 

similar functional groups as thymine and therefore acted as a good mimic. The 

carbonyl group of fragment 8a participated in H-bond interactions with ARG-268 and 

SER-238 (Figure 21). 
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Figure 21 : Predicted binding mode of fragment Ba (blue CPK sticks) within site B. 

The protein side chains are displayed as green CPK sticks. H-bonds are depicted as 

black dotted lines. 

To explore areas deeper within the cleft where thymidine-7 could not bind and to 

exploit additional interactions within the binding pocket, a series of structural 

modifications (shown in Figure 22) were carried out on fragment 8a . The first task 

was to increase the binding affinity of fragment 8a for the predicted pocket. The 

lipophilic nature of fragment 8a was augmented by fusing an additional aromatic ring 

to it with the intention of increasing the hydrophobic interaction with the binding 

pocket. The redesigned fragment 10 was redocked into the POT1 binding pocket 

which resulted in a higher GoldScore of 46.28 . 
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R Groups GoldScore 

11a CH3 

11b CH2CH3 

11c (CH2hCH3 

11d (CH2hCH3 

118 (CH2)4CH3 

• 

50.22 

50.26 

54.95 

56.99 

60.23 

GS=56.99 

16 
0yyNH2 

N:-.. N 

HO 

GS=77.73 

Figure 22: A simplified diagram showing the series of modifications (highlighted in 

blue) carried out on fragment 8a to produce ligand 17 (shown in the red box) with a 

high predicted affinity for the POr1 pocket. 
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The binding of fragment 10 was further enhanced by incorporating a carbon alkyl 

chain to the fragment. It was anticipated that alkyl chains of different lengths would 

provide a means for the ligand to dig deeper within the hydrophobic pocket exploiting 

lipophilic interactions with the surrounding residues. This was indeed observed and 

the GoldScores for fragments 11 a-e increased with increasing carbon chain length. A 

butyl chain was identified as the ideal length resulting in fragment 11 d. Although 

additional CH2 groups to the alkyl chain via the design of a homologous series 

increased the GoldScore further. It was rationalised that sufficient space should be 

left for the positioning of a phenyl ring to fill unoccupied space within the current 

pocket, thereby resulting in fragment 12 whose GoldScore increased to 69.21. 

To investigate H-bonding interactions between ligand and binding pocket. A hydroxyl 

group was incorporated at the para position of the pendent phenyl ring in order to 

interact with ASN-70 and PHE-27 thereby giving fragment 13 with a GoldScore of 

70.48 when docked into the protein. To optimise the H-bonding interaction with ASP-

158, the propyl chain in fragment 13 was replaced by a sulphonamide group to give 

fragment 14 where the NH group of the sulphonamide was designed to exploit a H

bond with ASP-158. Since the oxygens of the sulphonamide group did not pick up 

any H-bonding interactions, the sulphonamide group was replaced by a heterocyclic 

methyl pyrrole (Fragment 15, GoldScore= 68.40). This moiety occupied space within 

the hydrophobic pocket whilst still retaining the H-bonding interaction with ASP-158. 

An additional H-bond interaction with ASN-70 was also co.nsidered. An amide group 

was incorporated at the ortho position of the phenol ring resulting in fragment 16 with 

GoldScore of 77.73. 
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The 4-amino group of the pyrido[1,2-a]pyrimidin-2-one core did not pick up any 

interactions with the binding site residues pointing outwards towards the solvent and 

away from the binding pocket. Pleasingly, replacement of the amino group with an 

amide resulted in an H-bond interaction with the hydroxyl group of TYR-156. Hence 

through an iterative process of ligand modification and GOLD-based redocking and 

scoring, ligand 17 was obtained which had a high predicted affinity for the POT1 

pocket. 

The binding mode of 17 (Figure 23) indicates that the structure is capable of forming 

7 hydrogen bonds with the binding site residues at site B. The carbonyl of the 

pyrimidine core forms 2 H-bonds with ARG-268 and SER-238. The carbonyl of the 4-

acetamide group on the pyrimidine formed H-bond with the hydroxyl group of TYR-

156. The NH group of pyrrole formed H-bond with ASP-158, while the hydroxyl group 

of the phenol participates in a bidentate interaction with the carbonyl group of ASN-

70 and NH group of PHE-27. The acetamide group of the phenol also shares a H

.bond with the amino group of ASN-70. 
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Figure 23: Binding mode of ligand 17 (blue CPK sticks) . The protein side chains are 

displayed as green CPK sticks. H-bonds are depicted as black dotted lines. 

6.3 Synthetic accessibility dilemma 

There is limited literature information regarding the synthesis of the pyrimido[2,1-

a]isoquinoline acetamide structure of ligand 17 highlighted in blue (Figure 24a). In 

add ition , retrosynthetic analysis suggests that there could be significant issues of 

difficulty, time and cost involved in the synthesis of 17. Therefore a new ligand 

structure 18 (represented in green, Figure 24b) was proposed where the phenyl 

pyrido[1 ,2-a]pyrimidine acetamide core could readily be synthesized by a procedure 

reported by Dorokhov et al (1990). Moreover, the new structure contained as many 

elements of the originally designed scaffold . 
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Ligand 18 was docked into the POT1 pocket and found to mimic the binding mode of 

the tricycl ic pyrimidine ring of 17 (Figure 24c). However a slight twist in the C-C bond 

between the pyrimidine core and the pendent phenyl ring of 18 was observed. An 

emphasis was placed on the novelty of the new designed chemotype which was 

used to generate a focussed library of synthetically feasible ligands of POT1 that 

have never been described in patents or in the published literature. 

Difficult to synthesize 

/ 
oyy~y 

N ~ N 0 

Figure 24: (a) Pyrimido[2, 1-ajisoquinoline acetamide structure of ligand 17. (b) Newly 

designed structure 18. (c) Superimposed docked binding modes of 17 and 18 with 

their corresponding GoldScores. H-bonds are depicted as yellow dotted lines. 
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6.4 Synthetic route for pyrimidine analogues 

The synthesis of pyrido[1 ,2-a]pyrimidine derivatives have been reported by Dorokhov 

et al (1990). They can be directly obtained by reacting various 2-aminopyridine 

derivatives (19a-d) with ethyl cyanoacetate (20) at high pressure in the presence of 

benzene resulting in derivatives of 4-amino-2H-pyrido[1,2-a]pyrimidines (8a-d) in 

yields of 40-85% (Scheme 1). 

19a R=H 
H

2
N'(:J 

0 (i) O~N 0yyNH2 

+ ./"-O~N • 
HN'(:J Nt) 19b R = 3-Me • 

19c R =4-Me R ~I 
19d R = 5-Me R R 

19a-d 20 
21a-d 8a-d 

Scheme 1,' Synthetic scheme for the synthesis of 8a-d. Reagents and conditions (i) 

C6H6, 80-100DC, 14kbar. 

It is suggested that cyanoacetamides (21a-d) are intermediately formed and further 

cyclise into (8a-d). Initial attempts to synthesize 8a using similar conditions with 2-

aminopyridine (19a) as the starting reagent resulted in failure. The synthesis of 

cyanoacetamides (21 a-d) can also be carried out by reacting derivatives of 2-amino 

pyridine (19a-d) with ethyl cyanoacetate (20) in the absence of high pressures as 

reported by Dorokhov et al (1990). The reaction is carried out at 135-165°C with the 

simultaneous distillation of ethanol resulting in cyanoacetamides (21 a-d) in 50% yield 

(Scheme 2). 
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19a R=H 0 
O~N 

H2Ni() (i) HNi() 19b R = 3-Me 
+ /'O~N • 

19c R =4-Me 
19d R = 5-Me R R 

19a-d 20 21a-d 

Scheme 2: Synthetic scheme for the synthesis of 21a-d derivatives in the absence of 

high pressures. Reagents and conditions (i) 135-165DC. 

The cyanoacetamides (21 a-d) then undergo treatment with a solution of hydrogen 

chloride in ethanol under high temperatures to form the hydrochlorides (22a-d) which 

subsequently convert into free bases (Sa-d) by the action of aqueous sodium 

hydrogen carbonate solution (Scheme 3). 

21a R = H 
21b R= 3-Me 
21c R=4-Me 
21d R= 5-Me 

21a~ 

(i) 
• 

22a~ 

0~NH2 
(ii) 1-' 

• NyNIl 
V 

R 

8a~ 

Scheme 3: Synthetic scheme for the synthesis of 8a-d derivatives. Reagents and 

conditions (i) HCI in EtOH, 110DC, 1h (ii) NaHC03(aq). 

Initial attempt to synthesize Sa in the absence of high pressures was successful, 

producing Sa in 16% yield. The reaction was subsequently repeated using 2-amino-

3-bromo pyridine instead of 2-aminopyridine (19a) with ethyl cyanoacetate (20) to 

enable the synthesis of derivatives of S. The resulting reaction failed and the reaction 

scheme was subsequently modified. Ethyl cyanoacetate (20) was replaced by 

cyanoacetic acid (23) and the reaction was carried out in the presence of 

dicyclohexylcarbodiimide (DCC) coupling agent to give 4-amino-9-bromo-2H-

pyrido[1 ,2-a]pyrimidin-2-one (26) in 60% yield (Scheme 4). 
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I '" HO~N .. 
HNJ) 

... 
+ HNU'HCI .0 I '" I '" Br 

Sr .;:;; Sr .0 
1ge 23 24 

O~NH2 

NXJN (iii) 
~ I ....... f---'--'---

Br 

26 25 

Scheme 4: Synthetic scheme for the synthesis of 26. Reagents and conditions (i) 

DCC, DCM, reflux, 2h (ii) 1.25M HCI in EtOH, reflux, 2h (iii) NaHC03(aq). 

To produce derivatives of 18, acetylation of the 4-amino terminus of 26 was carried 

out using acetic anhydride in the presence of anhydrous pyridine to give 27 in 78% 

yield (Scheme 5). Compound 27 then underwent a Suzuki coupling (Miyaura and 

Suzuki, 1995) carbon-carbon bond forming reaction with a range of boronic acids to 

give products of 18 in yields between 8-50%. 

H H 

0-yyNH2 0-yyNy 
ii 

0-yyNy 

NX) NX)0 ~O .. .. 
~I ~I ~I 

Sr Sr I'>:::: 
26 27 --~ 18 

Scheme 5: Synthetic scheme for the synthesis of derivatives of 18. Reaction and 

conditions (i) Ac20, C6H5N, 110°C, 2h (ii) Pd(PPh3h CS2C03, 1,4-Dioxane:DMA 

(10:1), boronic acids, 160°C, 10min, 300w in microwave, 
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6.5 Screening results and discussion 

To determine whether the pyrido[1 ,2-a]pyrimidin-2-one scaffold had the potential to 

inh ibit the interaction between POT1 and its DNA binding partner, four fragments 

were initially synthesised and tested in the POT1 FP assay (Figure 25). The FP 

results are presented in Figure 26. 

Initial Fragments 

0yyNH2 

Ny N
Il N Br 

0yyNH2 

Ny Nil 
V 

8a 8e 26 27 

Figure 25: Chemical structures of four pyrido[1 , 2-aJpyrimidin-2-one fragments. 
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Figure 26: FP results for the four initial fragments. Percentage remaining signal at 

100J,lM compound relative to no compound signal (mean ± standard error) of 3 

determinations. 
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All compounds herein were initially tested at a single dose of 100llM in triplicates to 

detect even the weakest inhibitory activity unless otherwise stated. In Figure 26, no 

compound is given the value of 100% which represents maximum POT1-DNA 

binding in the absence of ligand. 

Potential inhibitors of POT1 will tend to decrease the binding of DNA to POT1 since 

they will compete with the DNA for the POT1 binding pocket. Therefore these 

potential inhibitors will reduce the maximum POT1-DNA signal. A positive control 

was used in the assay which is a non-fluorescently labelled oligonucleotide with the 

same sequence "TT AGGGTT AGGGTT A' as the fluorescently labelled 

oligonucelotide. When the non-fluorescent DNA binds to POT1, it tends to decrease 

the maximum POT1-DNA binding signal back down to the base level at 100llM (IC5o 

of competitive non-fluorescent DNA = 200±15nM). 

The first round of screening identified two hits: 8e and 26 (Figure 26) which showed 

some weak activity in disrupting POT1-DNA interaction. Compound 8a with the 4-

amino group was found to be inactive whereas its derivative 8e with a 4-amide group 

decreased POT1-DNA binding by 16% at 100IJM ligand concentration. The predicted 

binding modes of 8e at site B suggests that the fragment has the ability to stack in 

between the TT-systems of TYR-156 and TYR-266 and the carbonyl group of the 

amide may be important for binding since it participates in a H-bond with TYR-156 

(Figure 27). 
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Figure 27: Predicted binding mode of Be (blue CPK sticks). The protein side chains 

are displayed as green CPK sticks. H-bonds are depicted as black dotted lines. 

The limited activity which is observed for fragment 8a may be due to the structure not 

being able to form the extra H-bond with the hydroxyl group of TYR-156. It is 

proposed that this extra bonding interaction may be necessary for enhanced 

inhibitory activity. However it is currently unclear why Sa is showing more than 100% 

maximum POT1-DNA binding . It is suggested that ligands which increase the signal 

beyond 100% POT1-0NA binding could (1) cause light scattering and as a result the 

scattered light is 100% polarised , (2) the ligand is potentially interacting with the 

fluorescein tag on the DNA and therefore quenching the fluorescence of the tag, (3) 

the ligand is binding to an allosteric site on POT1 thereby causing a conformational 

change which results in a more stable POT1-DNA complex. 

It was anticipated that fragment 27 would show better activity in comparison to 

fragment 26 since the structure contains an amide functional group which could 

potentially exploit the additional H-bond interaction with TYR-156. However 27 was 
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found to be inactive in the assay. Compound 26 on the other hand displayed some 

inhibitory activity against POT1 and decreased POT1 -0NA binding by 17%. The 

docked binding mode of 26 is presented in Figure 28. It can be seen that the amino 

group of 26 is not involved in any interaction within the binding site residues. The 

structure forms 2 H-bonds with SER-238 and ARG-268 and the bromine atom 

participates in vdW interactions with TYR-156. 

Figure 28: Binding mode of 26 (blue CPK sticks). The protein side chains are 

displayed as green CPK sticks. H-bonds are depicted as black dotted lines and vdW 

contacts are displayed as orange dotted lines. 

The results suggest that fragments 8e and 26 have some marginal activity in 

disrupting POT1-0NA interactions and since the fragments are small , they can 

potentially be modified to improve inhibitory activity. Ligand 18 (Table 4) with a 

pendent unsubstituted phenyl ring was next synthesized to further investigate the 
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scaffold as a potential POT1 inhibitor. Ligand 18 was found to be inactive in the 

assay. It was suggested that the pendent phenyl ring may not be picking up any 

interaction within the binding pocket. In order to improve the affinity of 18 for POT1, 

various substituents were positioned around the pendent phenyl ring. This was done 

to determine whether such modifications can enhance the structure's activity and 

participate in additional interactions with the binding site residues. 

When the synthesis of a large number of compounds is difficult and when biological 

testing is readily available, the optimum substitution on the pendent phenyl ring of 

ligand 18 can be found using the Topliss method (Topliss, 1977). The Topliss 

method has been successfully used for the efficient optimisation of the potency of 

compounds with the minimization of the number of compounds that need to be 

synthesized. The only pre-requirement to use this technique is that the compound 

must contain an unfused benzene ring. 

The primary function of the Topliss scheme is to synthesize a series of analogues 

where various substituent groups are positioned around the unfused benzene ring. 

The substituents differ in their physicochemical properties. Commonly used property 

descriptors include the substituent hydrophobicity constant (n) which measures the 

hydrophobicity of a substituent relative to hydrogen, the Hammett substituent 

constant (a) which measures the electron withdrawing and donating properties of a 

substituent and the Taft's steric factor (Es) which measures the steric effects of a 

substituent. In order to maximise the chances of finding the most potent compounds 

in the series as early as possible, the Topliss scheme was implemented and 16 

additional ligands were synthesized and screened in the FP assay (Table 4). 

98 



Compound 

NO. 

18 

18b 

18c 

18d 

18e 

18t 

189 

18h 

18i 

18j 

18k 

181 

18m 

18n 

180 

18p 

18q 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

OMe 

H 

CI 

H 

H 

H 

H 

NHz 

H 

CI 

H 

H 

CI 

OMe 

H 

H 

H 

H 

OMe 

H 

COOH 

H 

OMe 

CI 

NHz 

COOH 

H 

OMe 

CON Hz 

CH3 

F 

H 

H 

CI 

H 

Maximum POT1-0NA 

binding (%) 

108±5 

35±4 

81±6 

86±3 

72±2 

59±3 

93±9 

100±14 

85±10 

94±1 

108±18 

119±5 

46±9 

132±7 

119±8 

103±3 

101±3 

Table 4: FP results for derivatives of 18. Percentage remaining signal at 100j1M 

compound relative to no compound signal (mean ± standard error) of 3 

determinations. The top structures 18m and 18e were screened twice in the assay 

and their mean calculated. Compounds highlighted in the red box are marked as • 
false positives. 
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Examining the data in Table 4 suggests that the substitution pattern on the phenyl 

ring is important for optimum binding. The majority of ligands (18d, 18g-1 & 18n-q) 

showed very little or no effect in disrupting POT1-DNA interaction. Ligands 18b and 

18f displayed some moderate inhibitory activity but were identified as false positives 

since their fluorescence characteristics tended to interfere with the assay. 

The replacement of the hydrogen substituent (18) by a chlorine substituent at the 4-

position of the phenyl ring as in 18c decreased maximum POT1-DNA binding by 

19%. The chlorine substituent is more lipophilic (+TT) and electron withdrawing (+0) 

than hydrogen. Therefore the activity of the substituent can be attributed to either a 

+TT effect, a +0 effect or a combination of both. However when the 3,4-dichloro 

compound (18f) was tested which has a larger +TT and +0 effect, the ligand had no 

effect on POT1-DNA binding and tended to interfere with the assay readout. The 

results suggest that further increase in either +TT or +0 is unfavourable. 

However the replacement of chlorine with a more electronegative fluorine substituent 

(18m) which has a smaller +TT effect than chlorine increased activity more than 2-fold 

and decreased POT1-DNA binding by 54% at 100llM ligand concentration. It is 

suggested that the electron withdrawing properties of these halogens substituents 

may be driving the activity of the ligands. Subsequent modelling studies suggest that 

the halogen atoms in both 18c and 18m interact with the binding site backbone 

fragment (H-Ca-C=O) of P.HE-157. The chlorine and fluorine substituents, both form a 

short orthogonal multipolar C-X-··C=O and C-X···H-Ca where (X= CI or F) 

interactions with PHE-157 within the predicted pocket. The predicted binding mode of 

18m is presented in Figure 29. 
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Figure 29: Binding mode of 1~m (blue CPK sticks). The protein side chains are 

displayed as green CPK sticks. H-bonds are depicted as black dotted lines and 

multipolar interactions are displayed as red dotted lines. 

It is suggested that since fluorine is more electronegative than chlorine , ligand (18m) 

wh ich contains the fluorine substituent is more potent since it forms a stronger 

orthogonal multipolar interaction with PHE-157 backbone. 

Orthogonal multipolar interactions have recently gained attention and have been 

found in numerous prote in-ligand POB complexes. Multiple SAR examples have 

shown that the presence of such interactions can dramatically improve binding 

affinity (MOiler et aI, 2007). However it cannot be assumed that the increase in 

bind ing affinity could be ascribed to the interaction by fluorine alone. Large 

components may also be due to changes in residual mobility and desolvation 

(Bissantz et aI, 2010). 

Ligand 18k with an amide substituent positioned at the 4-position of the phenyl ring 

resulted in no activity. Replacement of the amide group by a diethylacetamide group 

as in ligand 18e decreased POT1-0NA binding by 28%. These results suggest that 
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the liphophilicity of the diethyl chains in 18e may be driving the activity of the 

structure. The predicted binding mode of 18e is presented in Figure 30. The 

diethylacetamide group in 18e participates in a H-bond with the backbone of ASP-

158 and a multipolar interaction with the backbone of PHE-157. Furthermore the two 

ethyl chains in 18e extend outwards and deeper within the hydrophobic pocket. 

LEU·l46 

Figure 30: Binding mode of 18e (blue CPK sticks). The protein side chains are 

displayed as green CPK sticks. H-bonds are depicted as black dotted lines and 

multipolar interactions are displayed as red dotted lines. 

Ligands which contained the acid, amino and amide substituents such as those 

which are found in 18d, 189, 18h, 18k and 18q were synthesised to exploit H-bonds 

and electrostatic interactions within the binding pocket. The docked binding modes of 

these ligands suggested that their substituents are capable of picking up H-bonds 

and electrostatic interactions with ASP-158 within the binding site . However they did 
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seem to produce the expected increase in POT1-DNA inhibition despite binding in 

the predicted manner. It is proposed that due to large desolvation penalties incurred 

by polar and charged groups on binding in aqueous solution (Freire, 2008), the 

interaction between such ligands and POT1 may not be favourable and strong 

enough to compensate for the unfavourable binding enthalpy associated with 

desolvation. Therefore these ligands do not necessarily contribute to binding affinity. 

Ligands with hydrophobic substituents such as the 4-methyl group in 181 as well as 

the bulky methoxy substituents in 18j, 18n and 180 were found to be inactive. The 

predicted binding modes of these structures suggest that these ligands tend to bind 

deeper within the hydrophobic pocket away from TYR-156 and TYR-266. It is thought 

that such structures may be act more like POT1-DNA stabilizers rather than 

destabalizers since some of them show more than 100% POT1-DNA binding. By 

binding deeper within site B, these structures may be causing a conformational 

change which allows the DNA to bind more strongly to POT1. 

An attempt was made to obtain dose-response data in ord~r to predict IC50 values for 

the two potent compounds: 18e and 18m. Both compounds were tested at 5 different 

concentrations of 100j.lM, 10j.lM, 1j.lM, 0.1j.lM and 0.01j.lM. Unfortunately no dose

dependent behaviour was observed over this concentration range. It was therefore 

decided that further compounds should be synthesized to identify ligands with 

improved percentage inhibition at 100j.lM ligand concentration. 

To investigate whether the pendent phenyl ring of 18 was necessary for binding, two 

additional ligands were synthesized in which the pendent phenyl ring was replaced 

by a pyridine moiety and a pyrazole heterocyclic ring (Table 5). 
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Compound No. R Maximum POT1-DNA 

binding (%) 

28 (5 121±3 
..-:N 

29 ~ 82±4 
N-N 

H 

Table 5: FP results for heterocyclic modifications. Percentage remaining signal at 

100f1M compound relative to no compound signal (mean ± standard error) of 3 

determinations. 

The replacement of the unsubstituted phenyl ring in 18 with pyridine (28) had no 

effect on POT1-0NA binding. However replacement with a pyrazole heterocyclic 

structure (29) improved POT1-0NA inhibitory activity whereby the ligand decreased 

maximum POT1-0NA binding by 18% at 100llM ligand concentration. The docked 

binding modes of these compounds suggest that the pyridine ring in 28 does not 

participate in any interaction with the binding site residues. However the hydrogen 

atom of the pyrazole ring participates in a short vdW interaction with the methylene 

group of TYR-156. 
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6.6 Structural modifications of hit compounds 

Since modifications on the pendent phenyl ring were more feasible and since ligands 

18e and 18m achieved the highest inhibitory activity, they were chosen as initial hits 

for further optimisation. 

6.6.1 Modifications of compound 18e 

In order to explore ligand 18e further, the diethyl chains in 18e were replaced by a 

single ethyl chain as in 30a (Table 6). 

Compound R Maximum POT1-DNA binding (%) 

NO. 

30a CH2CH3 71±2 
30b (CH2hCH3 82±13 
30e (CH2hCH3 85±5 
30d (CH2)6CH3 71±3 
30e (CH2)?CH3 91±5 
30f (CH2)aCH3 88f8 
30g (CH2hCH3 94±7 

Table 6: FP results for analogues of ligand 30. Percentage remaining signal at 

100J1M compound relative to no compound signal (mean ± standard error) of 3 

determinations. 
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Substituting the diethyl chains in 18e with a single ethyl chain (30a) decreased 

POT1-DNA binding by 29%. Subsequent modelling studies suggest that ligand 30a 

binds to the pocket in a similar way to 18e. The carbonyl of the ethylamide in 30a 

participates in a H-bond with the backbone of ASP-158 and a dipole-dipole 

interaction with the carbonyl carbon of PHE-157 (Figure 31). 

Figure 31: Binding mode of 30a (blue CPK sticks). The protein side chains are 

displayed as green CPK sticks. H-bonds are depicted as black dotted lines and the 

dipole-dipole interaction is displayed as a red dotted line. 

This data indicates that two ethyl chains are probably not necessary for binding and a 

single ethyl chain is sufficient to retain the same binding activity. A series of 

analogues (30b-g) were synthesized where the ethyl carbon chain was increased 

incrementally (Table 6). It was anticipated that by increasing the alkyl chain length in 

a new cycle of synthesis and evaluation, a structure with an optimum chain length 

and enhanced potency than 18e would be achieved. This would then allow the 

placement of various H-bond acceptors and donor substituents at the end of the alkyl 
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chain to exploit additional H-bonds with the binding pocket and further enhance 

ligand activity. 

The data in Table 6 suggests that incrementally increasing the carbon chain length 

results in a decrease in ligand inhibitory activity. Ligands (30b) with a butyl chain and 

ligand (30e) with a hexyl chain decreased POT1-DNA binding by 18% and 15% 

respectively. Replacement by a heptyl chain (30d)· resulted in similar inhibitory 

activity to 30a where POT1-DNA binding decreased by 29%. Further increase in the 

chain length to octyl (30e), nonyl (30t) and decyl (30g) had very little or no effect on 

POT1-DNA binding. 

The predicted binding model suggests that the heptyl chain length in 30d is optimal 

within the binding pocket (Figure 32a). It is thought that further increase in the chain 

length leads to a steric clash within the binding pocket. In support of this, the docking 

studies suggest that 30e (Figure 30b) as well as 30t and 30g adopt a completely 

different binding mode within the pocket. The pyrimidine core of these ligands tends 

to bind deeper within the pocket and away from TYR-156 and TYR-266. Therefore 

such structures have very little effect in displacing DNA from POT1. 
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Figure 32: Predicted binding modes of (a) 30d and (b) 30e. The protein is displayed 

as a grey CPK surface and ligands are displayed as blue CPK sticks. 

6.6.2 Modification of compound 18m 

To probe the electron withdrawing effect of the fluorine substituent in 18m, several 

additional compounds were synthesized where the electronegative fluorine was 

replaced by a range of different electron-withdrawing substituents. This was done to 

establish whether the electron-withdrawing property of fluorine was important for 

binding (Table 7). 
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R4 
R3 

Compound R2 R3 Maximum POT1-0NA 

NO. binding (%) 

18m H H F 46±9 

31a H H CF3 69±8 

31b H H CN 70±7 

31c H H S02CH3 74±18 

31d H H N02 81±16 

31e H H OCF3 68±1S 

31f H H COCH3 79±8 

31g F H H 6S±5 

31h H F H 117±63 

Table 7: FP results for derivatives of 31. Percentage remaining signal at 100l1M 

compound relative to no compound signal (mean ± standard error) of 3 

determinations. 

Electron withdrawing substituents on the phenyl ring generally performed better in 

decreasing POT1-0NA binding compared to long flexible alkyl chain derivatives of 

18e. The replacement of the 4-fluorine substituent (18m) with a more electronegative 

4-trifluoromethyl substituent (31 a) decreased POT1-0NA binding by 31 %. The 4-

trifluoromethoxy substituent (31e) also showed comparable activity to 31a. 

Replacement of fluorine by other electron withdrawing groups such as 4-CN, 4-

S02CH3, 4-N02 and 4-COCH3 substituents also decreased POT1-0NA binding 
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between 19-30%. It is proposed that the high inhibitory activity observed for 18m may 

be due to the smaller size of the fluorine substituent which allows the ligand to bind 

better with the PHE-157 backbone as compared to other electron-withdrawing 

su bstituents. 

Modelling studies suggest that the 4-CF3 substituent (31a) also forms a short 

orthogonal multipolar interaction with the backbone of PHE-157 (Figure 33). 

Figure 33: Binding mode of 31a (blue CPK sticks). POT1 is displayed as an orange 

solid ribbon. The protein side chains are displayed as grey CPK sticks. H-bonds are 

depicted as black dotted lines and multipolar interactions are depicted as red dotted 

lines. 

Examining the ligand binding modes of 31c and 31f suggest that they are also 

capable of undergoing orthogonal multipolar interactions with the carbonyl carbon 

and H-Ca backbone of PHE-157. These results indicate that the interaction with PHE-

157 is essential for activity. The binding mode of the nitro substituent (31 d) suggests 

that it also forms an interaction with the H-Ca backbone of PHE-157. However the 
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interaction with the C=O group of PHE-157 is lost. The nitrile substituent (31 b) forms 

a H-bond with the NH group of ASP-158 whereas the trifluoromethoxy substituent 

(31e) forms a H-bond with the NH group of ASP-158 and one of the fluorine atoms in 

the trifluoro group also participates in a dipole-dipole interaction with the carbonyl 

carbon of ASP-158 (Figure 34). 

Figure 34: Binding mode of 31e (blue CPK sticks). POT1 is displayed as an orange 

solid ribbon . The protein side chains are displayed as grey CPK sticks. H-bonds are 

depicted as black dotted lines, vdW contacts are displayed as orange dotted lines 

and dipole-dipole interactions are depicted as red dotted lines. 

The results indicate that substituents which are capable of undergoing multipolar 

interactions with PHE-157 and ASP-158 may be essential for strong ligand b·inding. 

In order to identify the optimal position for the fluorine substituent, the substituent 

was moved to the 2- and 3- positions around the pendent phenyl ring resulting in 

ligands 31 9 and 31 h (Table 7). Moving the fluorine substituent to the 2-position (31 g) 

was well tolerated whereby POT1-0NA binding decreased by 35%. The fluorine 
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substituent at this position forms a lipophilic interaction with the methylene CH 2 group 

of TYR-156. However, moving fluorine to the 3-position (31h) resulted in no effect on 

POT1-0NA binding. The binding mode suggests that the fluorine in 31 h is also 

capable of a lipophilic interaction with the methylene CH2 group of SER-238. 

However due to the large standard error in the mean, it cannot be ruled out that 31 h 

may also have the ability to decrease POT1-0NA binding to the same extent as 31 g. 

Currently 31 h seems to be an outlier and needs to be re-tested in the FP assay. 

6.6.3 Probing electron withdrawing substituents 

The top electron withdrawing analogues were elaborated synthetically to enable 

additional interactions within the binding pocket resulting in the development of new 

ligands (Table 8). 

H 0yyNy 
NX)Q 
~, 

R 

32 

Compound No. R Maximum POT1-DNA 

binding (%) 

32a F~F 85±7 

'h-
32b &F I: F 

75±5 
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32c 85±? 

~ 

F 
F 

32d qF 86±14 
I~ 

F 

32e ~OH 84±11 

F 0 
32f C(F 80±10 

I~ 
0 

~ 

Table 8: FP results for electron-withdrawing substituents. Percentage remaining 

signal at 100llM compound relative to no compound signal (mean ± standard error) of 

3 determinations. 

It was expected that an increase in binding affinity would be observed when an 

additional fluorine substituent was placed at the ortho position of the phenyl ring as in 

32a. On the contrary. the results indicated more than 2-fold decrease in POT1 

inhibitory activity compared to 31 9 where a single fluorine substituent is used. 

According to the binding model (Figure 35). the positioning of the extra fluorine 

results in a change in the conformation of the ligand. This conformational change 

causes the pyrimidine amide to lose its H-bond with TYR-156. 
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Figure 35: Binding mode of 32a (blue CPK sticks) . POT1 is displayed as a magenta 

solid ribbon. The protein side chains are displayed as grey CPK sticks. H-bonds are 

depicted as black dotted lines. 

The change in ligand conformation was further supported when the 2-fluorine 

substituent in 31 9 was replaced with a more electron-withdrawing 2-trifluoromethyl 

group (32b) which also resulted in a decrease in activity. However 32b was still more 

active than 32a whereby POT1-0NA binding decreased by 25% as compared to 15% 

for 32a. The decrease in activity is probably due to the steric bulk of the 

trifluoromethyl group which causes a change in the ligands conformation and thus 

the carbonyl of the amide loses its H-bond interaction with TYR-156. 

Structures 32c and 32d were synthesized where the top substituents, 2- and 4-

fluorine substitiuents and the 4-trifluoromethyl substituent were combined into a 
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single structure. It was anticipated that ligands with electron withdrawing groups at 

both the ortho and para positions on the phenyl ring would show better activity than 

the ligands with substituents on just a single position. However 32c and 32d only 

decreased POT1-DNA binding by 15% and 14% respectively. The binding modes of 

these ligands suggested that the reduction in activity is most likely due to the loss of 

the H-bond which the amide forms with TYR-156. These results suggest that placing 

extra substituents on the phenyl ring has a dramatic effect on the conformation of the 

ligand which causes the important H-bond with TYR-156 to be lost and thereby 

results in ligands with reduced POT1-DNA inhibitory activity. 

Ligand 32e (Table 8) was synthesized to enable the fluorine to maintain its multipolar 

interaction with PHE-157 backbone and the acid group to exploit additional 

interactions within the binding pocket. However no increase in binding activity was 

observed compared to 18m and the ligand only decreased POT1-DNA binding by 

16%. Ligand 32f (Table 8) was also synthesized so that ethyl ether moiety at the 3-

position could bind and exploit lipophilic interactions deeper within the pocket. 

However when tested, the compound decreased POT1-DNA binding by 20%. 

Subsequent modelling studies suggest that the placement of the acid group and ethyl 

ether group at the 3- position in 32e and 32f respectively, results in the ligands 

adopting an alternative conformation. According to the docked binding modes, the 

hydroxyl group of the acid moiety in 32e participates in a H-bond with the amino 

group of ASN-70. Docking studies also suggest that the ethyl ether moiety in 32f 

extends deeper with the pocket as anticipated. However it is suggested that the gain 

in POT1 binding affinity is being reduced due to the additional placement of 

functional groups on the pendent phenyl ring. These additional groups cause the 
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ligands to adopt slightly different binding modes within the pocket. Although extra 

interactions are formed by these groups, the change in the conformation causes 

other vital interactions such as the H-bond interaction between the amide group and 

TYR-156 to be lost thus attenuating inhibitory activity. 

6.6.4 Modification of ligand 32e 

To improve the affinity of 32e (Table 8) for the POT1 pocket, the structure. was 

elaborated synthetically resulting in ligands 33a-e (Table 9). It was anticipated that 

fluorine would retain its multipolar interaction with the backbone of PHE-157 and the 

various R groups at the 3-position on the phenyl ring would allow the ligands to 

exploit lipophilic interactions deeper within the pocket. 

F 

Compound R Maximum POT1-0NA 

NO. binding (%) 

33a I ( > 147±15 

33b 

k)~ 
112±4 
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33c ~ 151±57 

N 
H 

33d K}-Y 110±6 
If ~ 0 

33e 153±28 

Table 9: FP results for derivatives of 33. Percentage remaining signal at 100l1M 

compound relative to no compound signal (mean ± standard error) of 3 

determinations. 

The FP data concludes that modifications at the 3-position on the pendent phenyl 

ring results in loss of activity. It is suggested that large bulky modifications leads to 

steric hindrance at the binding pocket and therefore such ligands do not bind to 

POT1. The majority of the ligands show more than 100% POT1-0NA binding 

suggesting that these compounds may be interfering with the assay. One concern is 

that these compounds may be insoluble and therefore likely to cause light scattering 

resulting in the emitted light to be 100% polarised. 

6.6.5 Modification of N-acyl group 

Since further modifications to the pendent phenyl ring were unsuccessful to identify 

superior POT1 inhibitors. A more feasible approach was undertaken to modify the N-

acyl terminal of 18m. According to the binding model, the N-acyl group pointed 

outwards towards the solvent. The carbonyl functional group of the amide was 

important for binding and participated in a H-bond interaction with the hydroxyl group 
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of TYR-1S6. Analogues of 34 (Table 10) were subsequently synthesized where the R 

group was replaced by various amide and sulphonamide groups to exploit additional 

interactions with residues near the surface of the binding pocket. 

Compound R Maximum POT1·DNA 

NO. binding (%) 

18m rNH 46±9 

r 
34a ~NH2 88±S 

34b 

o F 

~H-F NH F 90±? 

0 

34c ~ H 11-0- }--- 144±14 
N-~ _ NH 

0 

34d ~~-~-o--{F o - F 
9?±6 

0 

34e ~~-#-o- 98±2 o -

34f ~~t-O-N02 NH - 11S±13 

Table 10: FP results for derivatives of 34. Percentage remaining signal at 100J1M 

compoun,d relative to no compound signal (mean ± standard error) of 3 

determinations. 
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The majority of phenyl sulphonamides and phenyl amides were found to be inactive 

and had no effect on POT1-DNA binding. It is suggested that such bulky groups may 

lead to a steric clash at the binding pocket. However the smaller R groups such as 

the amino (34a) and trifluoroamide (34b) groups did display some marginal activity 

and decreased POT1-DNA binding by 12% and 10% respectively. 

Modifications to the N-acyl terminal of the initial starting fragment 27 was also 

initiated (Table 11). 

35 

Compound R Maximum POT1-0NA 

NO. binding (%) 

27 CH3 96±13 

35a t-O-N02 
107±6 

35b f-NJ 143±3 

35c ~o 64±4 

OH 

35d KF 
F 

90±7 

Table 11: FP results for derivatives of 35. Percentage remaining signal at 100llM 

compound relative to no compound signal (mean ± standard error) of 3 

determinations. 
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Replacing the methyl group in 27 with a 4-nitiro phenyl group (35a) , a morpholine 

moiety (35b) or a trifluoroamide group (35d) had no effect on POT1-0NA bind ing . 

Surprisingly, the replacement of the methyl group by a more flexible succinic acid 

group (35c) decreased POT1-0NA binding by 36%. The binding mode of 35c (Figure 

36) suggests that the flexibility of the succinic group allows the carbonyl of the acid to 

participate in a H-bond with the hydroxyl group of TYR-266. This H-bond with TYR-

266 may enhance the structure 's bonding affinity for POT1 . It is suggested that 

flexible polar groups capable of exploiting H-bonds with both hydroxyl groups of TYR-

156 and TYR-266 may afford more potent POT1 inhibitors. 

Figure 36: Binding mode of 35c (blue CPK sticks) . The protein side chains are 

displayed as green CPK sticks. H-bonds are depicted as black dotted lines and vdW 

interactions depicted as orange dotted lines. 
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6.6.6 SAR summary 

To summarize, it has been found that electron-withdrawing substituents at the 4- or 

either of the 2- positions on the pendent phenyl ring are prerequisite for binding. 

However placing electron withdrawing groups at both 2- and 4- positions leads to 

loss of activity most likely due to a conformational change in the ligands binding 

mode. Placing polar or charged substituents on the phenyl ring also results in the 

loss of activity. The amide group on the pyrimidine core is essential for activity since 

it participates in a H-bond interaction with TYR-156. It is suggested that if this 

particular H-bond is lost, ligand Inhibitory activity decreases. Replacing the 4-amide 

group with much larger phenyl amides leads to complete loss of activity. 

Furthermore, large hydrophobic groups placed at the 3- position on the pendent 

phenyl ring are also not tolerated and leads to loss of activity. Figure 37 summarizes 

the types of modifications which have been carried out. 

• Electron
withdrawing groups 
increase activity 

• Polar groups result 
in loss of activity 

• Amide group increase activity 

• Large phenyl amides or phenyl 
sulfonyl groups results in loss 

o~ / .f"',,, 

~
N~:I 

• Methoxyhnethyl ____ .~ I 
substituents result in ~ .. _ 
loss of activity 1· Fluorine substituent well tolerated 

• Long flexi::>le alkyl 
amides increase 
activity 

• Large bulky groups nottolerated 

• Polar substituents result in no activity 

Figure 37: Summary of SAR. 
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Chapter 7: Virtual compound libraries 

7.1 Introduction 

Combinatorial chemistry is a powerful approach for the generation and optimisation 

of lead compounds in medicinal chemistry. It promises the synthesis of a large 

number of compounds for high throughput screening applications and involves the 

systematic assembly of a set of 'building blocks' to produce a large library of 

chemically diverse structures. Computational methods have been developed to 

represent combinatorial libraries in silico. Virtual libraries have the advantages of 

saving time and money by reducing the number of compounds to be experimentally 

tested and to eliminate compounds which are unlikely to bind to the target in addition 

to improving the drug discovery success rate (Leach, 2001). To increase the 

probability of finding potent hits against POT1, an in silico based focussed library was 

design~d. 

7.2 Library design 

POT1 in silico compound libraries were enumerated using SMIRKS in the 

ChemOffice package (Mills, 2006) by Dr Marc Hummersone and Dr Mark Frigerio, 

Pharminox Ltd. SMIRKS is a line notation which uses alphanumeric characters to 

specify reaction transforms and enumeration is the process by which the connection 

tables for the product structures in a virtual library are produced. 
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The libraries were based on the pyrido[1 ,2-a]pyrimidine template and were generated 

using a reaction transform approach which reacts the initial reagent structures 

according to the rules of synthetic chemistry to produce the end products. An 

example is illustrated in Figure 38 . When the acid functional group of the pyrido[1 ,2-

a]pyrimidine template reacts with a set of commercially available amines, the 

enumeration engine applies a reaction transform approach which results in an amide 

bond between the two reactants to produce three different end products. 

H H H 
0y-:yNy Oy-:yNy 0y-:yNy 

cCJ° cCJ° Q?O ::,..1 ::,..1 ::,.. 1 

'" '" '" I~ I~ I~ -- 0 -- 0 -- 0 
HN HN HN 

~ b b 

H ~NH2 

0y-:yNy 
Transform cCJ° O NH2 ::,..1 + 1.0 ~ 

"': 

I~ -- 0 
HO NH2 

0 
1 Acid 3 Amines 3 Products 

Figure 38: Reaction based enumeration of pyrido[1 ,2-ajpyrimidine template. 

Using four different intermediate pyrido[1 ,2-a]pyrimidine templates: 36, 37, 38 and 39 

(Figure 39). Eight structurally diverse focussed libraries were generated . 
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Reverse Amides Amides 

H H H H 
O~Ny O~Ny O~Ny 0yyNy ,px?0 ~O OX? ° ~O ~I ~I 

R'~ I: 36 

~ o '<::: ~ '<::: 

1.0 37 RAN I h 38 I h 39 

0 
R'N 0 

H 
HNyO 

H R 

R= 343 Amines R= 249 Benzoic acids 
R= 561 Anilines R= 277 Non-benzoic acids 

Figure 39: Chemical structures of the four pyrido[1,2-a1pyrimidine intermediates. 

Libraries were classified as amides or reverse amides depending on whether the acid 

or amine moieties were directly attached to the pendent phenyl ring. The amine and 

acid groups were placed at the 3- and 4- positions of the phenyl ring which were then 

reacted with their corresponding commercially available complementary partners: 

benzoic acids, non-benzoic acids, amines and anilines. Each intermediate structure 

generated two libraries hence four intermediates generated 8 libraries. For example, 

ligand 36 formed 2 libraries, one with 343 structures containing amine R groups and 

the other library containing 561 aniline R groups structures. The reagent structure 

files were downloaded from the Sigma Aldrich and Acros Organics compound 

collection. 

A total of 2860 ligand structures were generated in silico based on eight focussed 

libraries and docked into predicted POT1 pocket using GOLD. The libraries were 

ranked according to GoldScore and the top 7 structures from each of the eight 

libraries were chosen for synthesis and further evaluation giving a combined total of 

56 structures. These 56 structures are deposited in Appendix B. Libraries were also 

created on modifications at the 2-position of the pendent phenyl ring. However due to 

low GoldScores of these structures, they were not synthesised. It was found that 
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modifications at the 2-position were unfavourable due to steric hindrance between 

the ligands and the binding pocket residues. 

7.3 Library chemistry 

The synthesis of POT1 ligand libraries were carried out using a simple peptide 

coupling reaction involving CDMT (2-chloro-4,6-dimethoxy-1,3,5-triazine). CDMT is 

used as a coupling agent and the procedure is well documented (Garrett et aI, 2002). 

The standard method of making the POT1 amide ligands is to activate the acid using 

CDMT and a base such as N-methylmorpholine (NMM) which generates an active 

ester. The ester is subsequently reacted with the amine coupling partner in the same 

pot (Scheme 6). 

0 

CI O)lR 
0 N~N NMM N~N R2NH2 R-i(° R-i( + • • 
OH 'O)lN~O/ 'O)lN~O/ HN-R2 

Scheme 6: Typical procedure for amide bond formation using CDMT. 

Scheme 7 describes the reaction conditions used to synthesise the POT1 ligand 

libraries. 

(i) 
+ 

Scheme 7: Synthetic scheme for the synthesis of PO T1 inhibitors. Reagents and 

conditions (i) CDMT, 4-methylmorpholine, DMF, 2h, room temperature. 
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7.4 Results and discussion 

A total of 15 structures were selected for synthesis from the 56 ligands deposited in 

Appendix B. Compounds were selected from all four pyrido[1,2-a]pyrimidin-2-one 

library templates. The chemical structures of the 15 ligands are presented in Figure 

40 and their FP results are presented in Figure 41. 
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Figure 40: Chemical structures of the 15 ligands selected for synthesis from the 

library set. 
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Figure 41: FP screening results for POT1 library ligands. Percentage remaining 

signal at 100l1M compound relative to no compound signal (mean ± standard error) of 

3 determinations. 

It was anticipated that structurally diverse R group modifications at the 3- and 4-

positions on the pendent phenyl ring would discover superior POT1 inhibitors. The 

majority of compounds which were tested decreased POT1-0NA binding between 

13-32%. Six ligands were synthesized from the library based on template 36. From 

this library set, two ligands: 36a and 36c had no effect on POT1-0NA binding . It is 

suggested that the high signal received from 36c may be an artefact. Ligand 36d 

decreased POT1-0NA binding by 25% and is predicted to be able to form 3 H-bonds 

with TYR-156 , SER-238 and ARG-268. Ligand 36b and 36e decreased POT1-0NA 

binding by 13% and 16% respectively. Structure 36f also decreased POT1-0NA 

binding by 25% and subsequent modelling studies suggest that its pyrimidine core 

participates in 3 H-bonds with TYR-156, SER-238 and ARG-268 and the NH of 

tryptamine forms an additional H-bond with ASP-158. 

Three structures were synthesized from the library based on template 37. Structures 

37a and 37b decreased POT1-0NA binding by 24% and 15% respectively. The 
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docked binding modes suggest both ligands are able to form 3 H-bonds with nearby 

protein residues and the R-groups extend deeper into the hydrophobic pocket. 

However structure 37c was found to be inactive and had no effect in disrupting 

POT1-DNA interaction. 

Five ligands were synthesized based on template 38. Structures 38a and 38b were 

found to be the top ligands in terms of inhibitory activity from the entire library set and 

decreased POT1-DNA binding by 32% and 29% respectively. The modelling results 

suggest that ligand 38a is able to participate in 4 H-bond interactions with TYR-156, 

ARG-268, SER-238 and ASN-70. The docked binding mode of 38a (Figure 42) 

suggests that although the ligand is extending deeper into the binding pocket, a large 

area of the binding pocket is still not exploited and additional modifications to the 

structure may be necessary for optimal binding. 

Figure 42: Predicted binding mode of 38a (blue CPK surface). POT1 is displayed as 

an orange CPK surface. 
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Ligand 38b on the other hand is able to form 3 H-bonds with TYR-156, ARG-268 and 

SER-238, all of them contributed by the pyrimidine core. The biphenyl ring binds 

deeper within the pocket exploiting lipophilic interactions with the binding site 

residues. Ligand 38d also decreased POT1-0NA binding by 17% and the docking 

results suggest that it forms 3 H-bonds with TYR-156, SER-238 and the amide of the 

phenyl also shares a H bond with ASP-158. Ligands 38c and 38e did not have any 

effect in disrupting POT1-0NA interaction. 

A single structure was synthesized based on template 39. Structure 39a decreased 

POT1-0NA binding by 14%. The binding mode suggests that the entire ligand forms 

only one H-bond interaction with the binding site residues. 

It is suggested that due to the lack of sufficient H-bond donor and acceptor groups in 

the majority of the R groups, not enough H-bonds are being formed between the R 

groups of the ligands and binding site residues. Currently the majority of H-bonds are 

being contributed by the pyrimidine core of the ligands. Therefore R groups which 

contain H-bond donor and acceptor functional groups should be synthesized for 

further investigation. 
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Chapter 8: Sulfathiazole analogues 

8.1 Introduction 

In this chapter a slightly different approach to ab initio drug design was undertaken to 

identify additional chemical scaffolds which have the potential to bind to POT1. 

Instead of designing a molecule from 'scratch', in silico screening techniques were 

used to identify potential structures which could subsequently be synthesized and 

screened against POT1. 

8.2 Selection of sulfathiazole-based inhibitor 

Using ZINC (http://zinc.docking.org/), a free chemical database containing 21 million 

commercially available compounds for virtual screening purposes (Irwin et aI, 2012). 

A pre-chosen subset of 55000 drug like structures was selected with the following 

molecular constraints: xLogP = <5, molecular weight = >150 and <500g/mol, H-bond . 

acceptors = <10, rotatable bonds = <8 and polar surface area = <150A 2. The 

structure library was subsequently docked into the predicted POT1 pocket and the 

top 6 structures with the highest GoldScores were selected for further evaluation. 

The chemical structures of the top 6 compounds are deposited with their 

corresponding GoldScores in Appendix C. 

On the basis of synthetic accessibility, the sulfathiazole-based compound (ZINC ID= 

ZINC09223825) was selected and a substructure search was carried out using the 

Sigma Aldrich compound collection to find similar structures. Succinylsulfathiazole 
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(40). a marketed antibacterial drug used for the treatment of gastrointestinal 

infections was highlighted due to its low cost (Figure 43). 
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Figure 43: Chemical structures of ZINC09223825 which was initially identified 

through virtual screening and succinylsulfathiazole (40) which was identified using 

substructure search. 

8.3 Sulfathiazole modifications 

The docked binding mode of succinylsulfathiazole (40) (Figure 44) suggests that the 

sulfathiazole moiety binds in between TYR-156 and TYR-266 and the phenyl amide 

extends into the pocket where it forms a H-bond with ASP-158 and the hydroxyl 

group of the acid participates in a H-bond with the backbone of PHE-27. 
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Figure 44: Binding mode of succinylsulfathiazole (40) (blue CPK sticks) . POT1 is 

displayed as a green solid ribbon. The protein side chains are displayed as cyan 

CPK sticks. H-bonds are depicted as black dotted lines. 

In order to exploit the TT-TT stacking interaction with PHE-27, subtle modifications 

were carried out on 40. It was decided that simple phenyl amide derivatives should 

be placed at the end of the succinic group to exploit this TT-TT stacking interaction 

resulting in the synthesis of six compounds (Figure 45). 
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Figure 45: Chemical structures of sulfathiazole analogues. 

The FP results of all six analogues as well as succinylsulfathiazoles (40) are 

presented in Figure 46. 
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The results in Figure 46 suggest that succinylsulfathiazole (40) has the ability to 

decrease POT1-DNA binding by 43%. However its derivatives 41d , 41e and 41f were 

found to be inactive and had no effect on POT1-DNA binding. Subsequent modelling 

studies suggest that these ligands bind away from TYR-156 and TYR-266 and 

therefore are ineffective in disrupting the binding and stacking of the T7 base of DNA 

(Figure 47). 

Figure 47: Predicted binding modes of (a) 41d (b) 41e (c) 41f. POT1 is displayed as 

a green solid ribbon and the ligands are displayed as blue CPK sticks. 

Ligands 41a-c had some effect in disrupting POT1-DNA interactions. Ligand 41a with 

an unsubstituted phenyl ring at the R position decreased POT1-DNA binding by 21 %. 

The structure is predicted to form two H-bonds with ASP-158 and THR-144 and its 

binding mode is different to that of 40. It was initially suggested that the phenyl rings 

in 41a-c would exploit IT-IT stacking interactions with PHE-27 however this was not 

observed. The phenyl group instead stacked in between TYR-156 and TYR-266 and 

the sulfathiazole moiety extended deeper into the pocket (Figure 48). 
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Figure 48: Predicted binding mode of (a) 41a (b) 41c (c) 41b. POT1 is displayed as a 

green solid ribbon and the ligands are displayed as blue CPK sticks. H-bonds are 

depicted as black dotted lines. 

The replacement of the unsubstituted phenyl ring with a 2-hydroxyphenyl group (41c) 

decreased POT1-0NA binding by 29%. It was suggested that the hydroxyl group 

may be involved in H-bond interactions with the binding site residues . This was 

indeed observed (Figure 48b) where the 2-hydroxyl group participated in a H-bond 

with SER-238 and the amide of the 2-hydroxyphenyl exploited an additional H-bond 

with SER-238 . When the 2-hydroxyphenyl group was replaced by the 2-

hydroxypyridine group as in 41b, a further increase in ligand inhibitory activity was 

observed whereby POT1-0NA binding decreased by 43%. It was thought that the 

nitrogen atom in the pyridine ring was potentially interacting with neighbouring 

residues . However the binding mode suggested that the pyridine nitrogen formed no 

interactions, instead a minor conformational change in the ligand permitted the ligand 

to pick up 5 H-bonds with the bind ing site residues whereas 41c could only form 4 H-

bonds (Figure 48c). 
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8.4 Succinylsulfathiazole fragments 

The structure of succinylsulfathiazole (40) was broken down into six small fragments 

(Figure 49). Since the fragments were commercially available, they were bought from 

standard commercial suppliers and screened in the POT1 FP assay. The FP results 

of the fragments are presented in Figure 50. The purpose of this was to determine 

whether the individual fragments have the ability to retain the activity of 40. By 

identifying the fragment which is essential for activity would allow the reconstruction 

of the ligand to enhance inhibitory activity. 
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Figure 49: Chemical structures of succinylsulfathiazole fragments. 
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Figure 50: FP results for succinylsulfathiazole fragments. Percentage remaining 

signal at 100l1M compound relative to no compound signal (mean ± standard error) of 

3 determinations. 

The results suggested that individual fragments were not as active as the complete 

structure. The majority of the fragments have weak activity in disrupting POT1-0NA 

interactions. The largest fragment 43 appeared to have the best inhibitory activity 

whereby it decreased POT1-0NA binding by 18%. The least active fragment was the 

smaller 2-aminothiazole fragment (45) which decreased POT1-0NA binding by 7%. 

Fragments 42 and 44 decreased POT1-0NA binding by 10% and fragments 46 and 

47 decreased POT1-0NA binding by 16% and 17% respectively. Given that the 

fragments are small, it is suggested that their affinity for POT1 is not strong enough . 

Furthermore, these small fragments may possibly be occupying different regions of 

space within the binding pocket as compared to the bound fragments in 40 in which 

the structure keeps the fragments locked into an ideal position for optimum binding. 
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8.5 Further modifications 

The decision to carry out further modifications on the succinic moiety of 40 was 

commenced in order to determine whether the succinic group was important for 

biological activity. A range of ligand structures were synthesized to explore the SAR 

of this scaffold (Figure 51). 
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Figure 51: Chemical structures of succinylsulfathiazole modifications. 

The carboxyl hydroxyl group in 40 was replaced by an amino group (40b) . This was 

done to determine whether the hydroxyl group was important for binding and whether 

the amino substituent is able . to retain similar activity. The hydroxyl group was 

converted into an ester (40c) to determine whether the original proton of the hydroxyl 
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group is involved as a H-bond donor. The acid functional group in 40 was also 

removed resulting in 40d in order to determine whether the acid functional group was 

essential for binding. Furthermore, the length of the succinic group was incrementally 

decreased and increased resulting in ligands 40e-g. This was done to determine the 

optimum placement of the acid moiety and whether it is important for binding. The FP 

results for structures 40b-g are presented in Figure 52. 
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Figure 52: FP results for ligand 40b-g. Percentage remaining signal at 100J.lM 

compound relative to no compound signal (mean ± standard error) of 3 

determinations. 

The results suggested that the replacement of the hydroxyl group with an amino 

group or converting it to an ester and removing the acid moiety altogether led to a 

decrease in inhibitory activity. Furthermore, increasing or decreasing the succinyl 

group also led to a decrease in activity where POT1-0NA binding decreased 

between 13-20%. Since the results were unconvincing and inconclusive, 

succinylsulfathiazole (40) was retested again in the FP assay. When tested the 

second time in the POT1 FP assay, 40 decreased POT1-0NA binding by 13% 

(Figure 52). This suggests that 40 is not as active against POT1 as originally thought. 
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There is the possibility that the commercially available compound 40 was not as pure 

as expected. It could be that the first compound batch that was tested was 

satisfactory and the compound in the second batch had decomposed. Another 

possibility is that the material that was tested in the first assay contained an impurity 

that actually caused the biological activity and this impurity was not present in the 

second assay. 
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Chapter 9: Conclusions and Future Work 

In conclusion, the structure based design, synthesis and biological evaluation of 

inhibitors of POT1-DNA interactions have been described. A druggable binding 

pocket in POT1 was successfully identified using a range of computational tools and 

the design of POT1 inhibitors was undertaken to target this pocket. More than 90 

small molecule ligands have been synthesized based on the pyrido[1,2-a]pyrimidin-2-

one and sulfathiazole scaffolds. These compounds have been biologically tested in a 

newly developed POT1 FP displacement assay to confirm whether the structures 

have the ability to disrupt POT1-DNA interactions. 

The majority of compounds tested in the POT1 FP assay decreased POT1-DNA 

binding to some extent, a general 10-54% decrease in binding at 100llM ligand 

concentration was observed. In the case of the pyridop ,2-a]pyrimidin-2-one ligands, 

a clear and logical structure activity-relationship between the inhibitor structure and 

biological activity has been observed. It is found that electron-withdrawing groups at 

the 2- or either at the 4- positions on the pendent phenyl ring are prerequisite for 

binding. Placing further electron-withdrawing groups on the pendent phenyl ring 

leads to a decrease in activity due to a conformational change in the ligands binding 

mode. 

The amide group on the pyrimidine core is also essential for activity since it exploits a 

H-bond with TYR-156. If this H-bond is lost, ligand activity also decreases. 

Replacement of the 4-amide group with much larger phenyl groups lead to complete 

loss of activity. Furthermore, large hydrophobic groups at the 3- position on the 

pendent phenyl ring are not tolerated and leads to loss of activity. The best inhibitor 
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which has been obtained is 18m with a fluorine substituent on the 4- position of the 

pendent phenyl ring. It is suggested that fluorine forms multipolar interactions with 

the backbone of PHE-157 which is possibly why this structure as well as other 

electron-withdrawing groups at the 4- position are showing activity. 

The information gained from the FP assay allowed a better understanding of what 

. modifications are necessary to the pyrido[1,2-a]pyrimidine scaffold and which 

modifications are unfavourable. These results have the potential to guide future 

development of improved lead compounds which could one day be used for the 

treatment of cancer. 

For the sulfathiazole based compounds, the initial succinylsulfathiazole ligand 

decreased POT1-DNA binding by 43%. However when retested second time in the 

POT1 assay, the ligand decreased POT1-DNA binding by merely 13%. Further 

modifications to the succinic acid part of the structure and breaking the structure into 

its constitutive fragments led to no increase in activity hence no clear SAR was 

established. Future work will include the synthesis of the commercially available 

succinylsulfathiazole structure and retesting of the compound to determine biological 

activity. 

Future work on the pyrimidine analogues will include extensive modifications at the 

N-acyl terminal of 18m. It is suggested that flexible groups similar to that of succinic 

acid may be capable of exploiting H-bonds with TYR-156 and TYR-266 thereby 

resulting in new ligands with better biological activities. 
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One of the key limitations of this work was the lack of dose-response inhibition data. 

Although attempts were made .to obtain dose-response data at the top ligand 

concentration of 10011M. Concentrations beyond this range needs to be tested in 

order to acquire ICso values for the ligands. 

The statistical significance of the inhibitory activity of some of the hit compounds is 

also questionable since the majority of compounds were only tested in triplicates in 

the assay. Future work will also need to include further compound testing in order to 

obtain more data repeats and statistical analysis of the data needs to be carried out 

to determine whether the inhibitory activity of some of t~e active compounds is 

statistically significant. 

The majority of the compounds synthesized are large liphophilic compounds, hence 

the solubility of such structures is of concern. Solubility testing needs to be carried 

out to confirm whether such compounds are soluble at the concentration that they 

were tested at and whether they are worth pursuing. Solubility is a major issue in FP 

assays since insoluble compounds tend to cause light scattering and therefore affect 

the assay readout. 

Additional work also needs to be carried out in establishing alternative POT1 

biochemical and cell-based assays. One of the limitations of using the FP 

displacement assay is that one cannot tell whether ligands which decrease POT1-

DNA binding are interacting with POT1 or its DNA binding partner. An alternative 

assay such as ITC needs to be developed to show direct binding of compounds to 

POT1. 
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However there is the possibility that the limited activity that is observed for these 

compounds is linked to an intrinsic limitation in the approach that is being 

undertaken. It is likely that even if one could discover a ligand that binds strongly to 

the space occupied normally by the T7 base, the DNA may still bind with reasonable 

affinity to POT1 by adjusting its conformation. It could be that a significant reduction 

in POT1-DNA interaction, though not complete may still bring about a significant 

biological effect. 
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Chapter 10: Experimental Methods 

10.15ynthesis 

10.1.1 General Experimental 

All solvents and reagents used in the present study were purchased from standard 

commercial sources and used without further purification unless otherwise stated. 

NMR spectra were acquired on Bruker Avance 400MHz and Bruker Avance (III) 

500MHz instruments using deuterated DMSO as solvent. Data analysis for NMR was 

performed using TopSpin® software. Chemical shifts (~) are reported in parts per 

million (ppm), downfield from tetramethylsilane (TMS) internal reference. Coupling 

constants (J) are reported in hertz (Hz). Notations for the 1H-NMR splitting patterns 

includes: singlet (s), doublet (d), triplet (t), quartet (q), broad (br), 

multiplet/overlapping peaks (m), doublet of doublets (dd) and doublet of doublet of 

doublets (ddd). 

Mass spectra were recorded using a Waters 2795 single quadrupole (ESI) 

spectrometer. TLC was performed using Merck Kieselgel 60 F254 plates and spots 

were visualised under UV light. Purification using preparative TLC was carried out 

using in house glass backed plates (200mm x 200mm x 1 mm) coated with Fluka 

silica gel 60 F254 . Flash chromatography was performed using Merck Kieselgel 60 by 

glass column, Biotage argonant flash master II or Biotage flash master personal. 

Melting points were recorded on a Gallenkamp melting pOint apparatus. Microwave 

assisted chemistry was carried out using Discover® CEM microwave synthesizer. 
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Analytical HPLC was carried out using Waters 2525 binary gradient module with a 

Waters 2487 dual" absorbance UV detector. All retention times (tR) are quoted in 

minutes with percentage purity at 254nm. System used: Kromasil C18 column 

(250mm x 4.6mm, 511M particle size) and gradient elution with acetonitrile/water 

containing 0.1% TFA (10% to 100% organic over 10-20 min at a flow rate of 1.00 

mllmin) unless otherwise stated. 

10.1.2 Procedures 

This section describes the general procedures for the synthesis of pyrido[1,2-

a]pyrimidine compounds and sulfathiazole-based compounds. Structures and 

analytical data are presented in section 10.1.3. 

10.1.2.1 General procedure for the synthesis of pyrido[1,2-a]pyrimidine 

compounds 

P1: One molar equivalent of N-(9-bromo-2-oxo-2H-pyrido[1,2-a]pyrimidin-4-

yl)acetamide (27) was dissolved in 5ml mixture of 1,4-dioxane:dimethylacetamide 

(10: 1) and 1.2 molar equivalents of boronic acid, 0.1 molar equivalents of 

tetrakis(triphenylphosphine) pa"adium(O) and 2 molar equivalents of cesium 

carbonate were added. The mixture was heated at 160°C for 1 Omin with continuous 

stirring in a CEM microwave reactor (power= 300watts, pressure= 300psi, ramp 

time= 5min). The resulting mixture was cooled down to room temperature and filtered 

through Celite. The solvent was removed in vacuo and product purified using 
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preparative TLC unless otherwise stated using methanol: dichloromethane (1:10) to 

yield the products as white/cream solids. 

10.1.2.2 General procedure for amide coupling reaction using COMT 

P2: One molar equivalent of acid was dissolved in DMF (10ml). 1.5 molar 

equivalents of 2-chloro,4,6-dimethoxy-1,3,5-triazine (CDMT) and 1.5 molar 

equivalents of 4-methylmorpholine were subsequently added. The reaction mixture 

was stirred at room temperature for 1 h after which 1.2 molar equivalents of amine 

was added. The reaction mixture was stirred at room temperature for further 2h. 

Water (25ml) was added to the mixture. If product precipitated out, the reaction 

mixture was filtered and purified using preparative TLC. If product did not precipitate 

out, the product was extracted using ethyl acetate (2x30ml) and subsequently dried 

over magnesium sulphate and the solvent evaporated in vacuo. The compound was 

subsequently purified by preparative TLC using methanol:dichloromethane (1:10) 

system. 
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10.1.3 Synthesized compounds 

4-amino-2H-pyrido[1 ,2-a]pyrimidin-2-one (Sa): 

To a stirred solution of ethyl cyanoacetate (2.03g, 0.01Bmol) in ethanol (15ml) was 

added 2-aminopyridine (1.41g, 0.015mol). The resulting mixture was heated at 135°C 

for 2h. The reaction was cooled down to room temperature and product subsequently 

filtered and washed using ethanol (10ml) and ether (30ml). This solid product was 

then added to a solution of 1.25M HCI in EtOH (10ml, 0.01 mol) in ethanol (20ml). 

The resulting reaction mixture was heated for 1.5h at 110°C and allowed to cool 

down to RT. The compound was precipitated out and subsequently filtered and 

neutralised using NaHC03. The resulting product was washed using EtOH (20m I) 

and ether (20ml) to afford Sa as a white solid (1.90g, yield 79%) [m.p. dec >150°C] 

Anal. HPLC: tR = 2.8 min, 10-100% MeCN over 10min, purity 100%); 1H NMR (400 

MHz, DMSO-d6): C5/ppm B.19 (1H, dd, Ja=1.40Hz, Jb=7.0BHz, Ar-H), 7.65 (1H, ddd, 

Ja=1.40Hz, Jb=6.60Hz, Jc=8.4BHz, Ar-H), 7.11 (1 H, dd, Ja=1.46Hz, Jb=B.4BHz, Ar-H), 

6.94 (1 H, ddd, Ja=1.40Hz, Jb=6.60Hz, Jc=8.48Hz, Ar-H), 6.81 (2H, br, NH2), 5.83 (1 H, 

s, Ar-H); HRMS (ES) mlz: found 162.0679 (CeHeN30 [M+Hf), requires 162.0667. 
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N-(2-oxo-2H-pyrido[1,2-a]pyrimidin-4-yl)acetamide (8e) 

H 

O~Ny 

NyNIl 0 

o 
To a stirred solution of acetic anhydride (1014mg, 9.94mmol) in anhydrous pyridine 

(20ml) was added compound 8a (200mg, 1.24mmol). The reaction mixture was 

heated at 110°C for 2h and subsequently cooled down to room temperature. The 

product was precipitated out and filtered. The resulting product was washed using 

ether (25ml) to give 8e as a cream solid (125.5mg, yield 50%) (MeOH:DCM 1:10; Rf 

= 0.10) [mp. dec >2500 C); Anal. HPLC: tR = 2.9 min, 10-100% MeCN over 10min, 

purity 96%); 1H NMR (400 MHz, DMSO-d6): ~/ppm 8.97 (1 H, dd, Ja=1.38Hz, 

Jb=7.08Hz, Ar-H), 8.37 (1 H, ddd,Ja=1.38Hz, J b=6.58Hz, Jc=8.50Hz, Ar-H), 7.87 (1 H, 

dd, Ja=1.38Hz, Jb=7.08Hz, Ar-H), 7.58 (1 H, ddd, Ja=1.38Hz, Jb=6.58Hz, Jc=8.50Hz, 

Ar-H), 6.85 (1 H, 5, Ar-H), 6.29 (1 H, br, NH), 2.23 (3H, 5, CH3); 13C NMR (500 MHz, 

DMSO-d6): o/ppm 172.7, 168.8, 154.4, 152.6, 144.5, 135.8, 129.8, 127.4, 112.6, 

21.6; HRMS (ES) m/z: found 204.0786 (CloHl0N302 [M+Ht), requires 204.0773. 
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N-(2-oxo-9-phenyl-2H-pyrido[1,2-a]pyrimidin-4-yl)acetamide (18): 

Following procedure P1, 27 (7Smg, 0.27mmol) was dissolved in dioxane:DMA 10:1 

(4ml). Benzeneboronic acid (38mg, 0.31 mmol), Pd(PPh3)4 (30mg, 0.03mmol) and 

CS2C03 (170mg, 0.S2mmol) were added. Product 18 was purified using preparative 

TLC (MeOH:DCM 1:10; Rf= 0.29) and obtained as a white solid (16.Smg, yield 22%) 

[mp. dec >2S0°C]; Anal. HPLC: tR = 6.7 min, 10-100% MeCN over 11min, purity 

9S%); 1H NMR (400 MHz, DMSO-d6): 5/ppm 10.63 (1 H, br, N-H), 8.31 (1 H, d, 

J=7.08Hz, Ar-H), 7.72 (1 H, dd, Ja=1.S2Hz, J b=7.08Hz, Ar-H), 7.S8 (2H, dd, 

Ja=1.S2Hz, Jb= 8.08Hz, Ar-H), 7.44 (3H, m, Ar-H), 7.03 (1 H, t, J=7.08Hz, Ar-H), 6.33 

(1 H, s, Ar-H), 2.18 (3H, s, CH3); 13C NMR (SOO MHz. DMSO-d6): 5/ppm 170.7. 167.9. 

1S0.8, 142.2. 137.2.136.9.134.4. 130.3.129.2.128.3. 128.8. 112.S. 110.1.23.7; 

HRMS (ES) m/z: found 280.1070 (C16H14N302 [M+Ht). requires 280.1086. 

N-(9-(4-methoxyphenyl)-2-oxo-2H-pyrido[1,2-a]pyrimidin-4-yl)acetamide (18b) 

Following procedure P1. 27 (7Smg. 0.27mmol) was dissolved in dioxane:DMA 10:1 

(4ml). 4-methoxybenzeneboronic acid (40mg. 0.27 mmol). Pd(PPh3)4 (30mg. 
1S0 



· 0.03mmol) and CS2C03 (170mg, 0.52mmol) were added. Product i8b was purified 

using preparative TLC (MeOH:DCM 1:10; R, = 0.33) and obtained as a white solid 

(20mg, yield 24%) [mp. dec >2500C]; Anal. HPLC: tR = 6.9 min, 10-100% MeCN over 

11min, purity 98%); 1H NMR (400 MHz, DMSO-ds): 5/ppm 10.36 (1H, br, N-H), 8.29 

(1 H, d, J=7.08Hz, Ar-H), 7.69 (1 H, dd, Ja=1.52Hz, Jb=7.08Hz, Ar-H), 7.55 (2H, d, 

J=B.B4Hz, Ar-H), 7.01 (3H, m, Ar-H), 6.31 (1 H, s, Ar-H), 3.B2 (3H, s, CH3), 2.19 (3H, 

s, CH3); 13C NMR (500 MHz, DMSO-ds): 5/ppm 170.7, 168.0, 159.5, 150.9, 142.3, 

137.3,136.2,133.9,131.6,129.4,128.6,113.7,112.6, 5S.2, 23.4; HRMS (ES) m/z: 

found 310.1181 (C17H1SN303 [M+Ht), requires 310.1192. 

N-(9-( 4-chlorophenyl)-2-oxo-2H-pyrido[1,2-a]pyrimidin-4-yl)acetamide (i8c) 

H 
O~Ny 

~
N~N 0 

~I 
I~ 

CI ",.:; 

Following procedure Pi, 27 (60mg, 0.21mmol) was dissolved in dioxane:DMA 10:1 

(4ml). 4-chlorophenylboronic acid (40mg, 0.26 mmol), Pd(PPh3)4 (25mg, 0.02mmol) 

and CS2C03 (140mg, 0.43mmol) were added. Product 18c was purified using 

preparative TLC (MeOH:DCM 1:10; Rf= 0.32) and obtained as a white solid (S.7mg, 

yield 13%) [mp. dec >2500 C]; Anal. HPLC: tR = 9.4 min, 10-100% MeCN over 12min, 

purity 100%); 1H NMR (400 MHz, DMSO-ds): 5/ppm 10.76 (1 H, br, N-H), 8.40 (1 H, d, 

J=7.0BHz, Ar-H), 7.73 (1 H, dd, Ja=1.52Hz, Jb=7.0SHz, Ar-H), 7.63 (2H, d, J=S.59Hz, 

Ar-H), 7.51 (2H, d, J=S.59Hz, Ar-H), 7.00 (1 H, t, J=7.0SHz, Ar-H), 6.36 (1 H, s, Ar-H), 
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2.16 (3H, s, CH3); HRMS (ES) m/z: found 314.0686 (C16H13CIN302 [M+Ht), requires 

314.0696. 

N-(9-(3-aminophenyl)-2-oxo-2H-pyrido[ 1,2 -8 ]pyrim idi n-4-yl)acetam ide (18d) 

H 
0yyNy 

~I 
,'-':: ~

N:-"N 0 

~ 

NH2 

Following procedure P1, 27 (500mg, 1.77mmol) was dissolved in dioxane:DMA 10:1 

(15ml). 3-aminobenzeneboronic acid (291mg, 2.13mmol), Pd(PPh3)4 (205mg, 

0.18mmol) and CS2C03 (1156mg, 3.54mmol) were added. Product 18d was purified 

using flash chromatography (MeOH:DCM 1:10; R, = 0.06) and obtained as a cream 

solid (170mg, yield 33%) [mp. 201.2-203.3°C); Anal. HPLC: tR = 3.7 min, 10-100% 

MeCN over 12min, purity 90%); 1H NMR (400 MHz, DMSO-d6): ~/ppm 11.52 (1H, 

br, N-H), 8.86 (2H, br, NH2), 8.71 (1 H, d, J=7.08Hz, Ar-H), 7.60 (1H, m, Ar-H), 7.47 

(1 H, dd, Ja=1.52Hz, Jb=6.82Hz, Ar-H), 7.06 (1 H, d, J=8.84Hz, Ar-H), 6.87 (2H, m, Ar

H), 6.61 (1 H, s, Ar-H), 6.50 (1 H, s, Ar-H), 2.06 (3H, s, CH3); 13C NMR (500 MHz, 

DMSO-d6): ~/ppm 170.2, 169.4, 150.4, 147.3, 144.4, 136.7, 136.3, 132.1, 129.2, 

128.0, 127.9, 123.5, 113.8, 111.5, 111.1, 23.5; HRMS (ES) m/z: found 295.0253 
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4-(4-acetamido-2-oxo-2H-pyrido[1.2-a]pyrimidin-9-yl)-N.N-diethylbenzamide (i8e) 

1 
~N 

Following procedure Pi. 27 (60mg. 0.21mmol) was dissolved in dioxane:DMA 10:1 

(4ml). 4-(N.N-diethylaminocarbonyl)phenylboronic acid (56mg. 0.26mmol). Pd(PPh3)4 

(26mg. 0.02mmol) and CS2C03 (139mg. 0.43mmol) were added. Product i8e was 

purified using preparative !LC (MeOH:DCM 1 :10; R, = 0.33) and obtained as a white 

solid (1B.Bmg. yield 23%) [mp. dec >250DC]; Anal. HPLC: tR = 8.4 min. 10-100% 

MeCN over 11min. purity 96%); 1H NMR (400 MHz, DMSO-ds): t5/ppm 10.74 (1H, br, 

N-H), B.55 (1 H, d, J=7.0BHz, Ar-H), 7.72 (1 H, dd, Ja=1.52Hz, Jb=7.0BHz, Ar-H), 7.67 

(2H, d, J=B.34Hz, Ar-H), 7.40 (2H. d, J=B.34Hz, Ar-H), 6.9B (1 H, t, J=7.0BHz, Ar-H), 

6.43 (1 H, s, Ar-H), 3.45 (4H, br, CH2), 2.14 (3H, s, CH3), 1.15 (6H, br, CH3); 13C NMR 

(500 MHz, DMSO-ds): t5/ppm 171.6, 170.2. 16B.4, 161.6, 150.5, 13B.1, 137.9, 137.1, 

133.4, 130.4, 129.3, 12B.9, 128.3, 126.1, 112.3, 109.4, 43.3, 24.4, 13.3; HRMS (ES) 

mlz: found 379.1768 (C21H23N403 [M+Ht), requires 379.1770. 
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N-(9-(3 ,4-d ich lorophenyl)-2-oxo-2H-pyrid o[ 1,2-a ]pyrim id in-4-yl)acetam ide (18f) 

CI 

CI 

Following procedure Pi, 27 (60mg, 0.21mmol) was dissolved in dioxane:DMA 10:1 

(4ml). 3,4-dichlorobenzeneboronic acid (49mg, 0.26 mmol), Pd(PPh 3)4 (25mg, 

0.02mmol) and CS2C03 (139mg, 0.43mmol) were added. Product 18f was purified 

using preparative TLC (MeOH:DCM 1:10; Rf = 0.33) and obtained as a white solid 

(8mg, yield 11 %) [mp. dec >2300 C); Anal. HPLC: tR = 7.8 min, 10-100% MeCN over 

11 min, purity 95%); 1H NMR (400 MHz, DMSO-d6): 5/ppm 10.52 (1 H, br, N-H), 8.57 

(1 H, d, J=7.08Hz, Ar-H), 7.89 (1 H, d, J=2.02Hz, Ar-H), 7.75 (1 H, dd,' Ja=1.52Hz, 

Jb=7.08Hz, Ar-H), 7.72 (1 H, d, J=8.34Hz, Ar-H), 7.59 (1 H, dd, Ja=2.27Hz, Jb= 

8.34Hz, Ar-H), 6.98 (1 H, t, J= 7.08Hz, Ar-H), 6.44 (1 H, s, Ar-H), 2.13 (3H, s, CH3); 

HRMS (ES) mlz: found 348.0295 (C16H12CbN302 [M+Ht), requires 348.0307. 

N-(9-( 4-aminophenyl)-2-oxo-2H-pyrido[ 1,2-a)pyrimidin-4-yl)acetamide (189) 

Compound 27 (1600mg, 5.67mmol) was added to an Ace sealed pressure tube 

containing dioxane:DMA 10: 1 (20ml). 4-aminophenylboronic acid pinacol ester 
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(1491mg, 6.81mmol), Pd(PPh3)4 (6SSmg, 0.S7mmol) and CS2C03 (3699mg, 

11.34mmol) were added. The reaction mixture was stirred at 110°C for 24h. The 

resulting compound was filtered through Celite and solvent dried in vacuo. Product 

189 was purified using flash chromatography (MeOH: OCM 1: 10; R, = 0.08) and 

obtained as a cream solid (6B3mg, yield 41%) [mp. 224.3-226.1°C]; Anal. HPLC: tR = 

4.3 min, 10-100% MeCN over Bmin, purity 92%); 1H NMR (400 MHz, OMSO-ds): 

<5/ppm 10.88 (1 H, br, N-H), 9.98 (2H, br, NH2), 8.23 (1 H, d, J= 7.08Hz, Ar-H), 7.61 

(1 H, dd, Ja=1.S2Hz, Jb=7.08Hz, Ar-H), 7.32 (2H, d, J=8.34Hz, Ar-H), 6.97 (1 H, t, 

J=7.08Hz, Ar-H), 6.61 (2H, d, J=8.34Hz, Ar-H), 6.32 (1 H, s, Ar-H), 2.19 (3H, s, CH3); 

HRMS (ES) mlz: found 295.0310 (C1sH1SN402 [M+Ht), requires 295.1195. 

4-(4-acetamido-2-oxo-2H-pyrido[1,2-a]pyrimidin-9-yl)benzoic acid (18h) 

HO 

o 

Following procedure P1, 27 (600mg, 2.13mmol) was dissolved in dioxane:OMA 10:1 

(15ml). 4-carboxybenzeneboronic acid (424mg, 2.55mmol), Pd(PPh3)4 (246mg, 

0.21mmol) and CS2C03 (13B7mg, 4.26mmol) were added. Product 18h was purified 

using flash chromatography (MeOH:OCM 1:10; R, = 0.06) and obtained as a cream 

solid (210mg, yield 31%) [mp. dec >2500C]; Anal. HPLC: tR = 6.2 min, 10-100% 

MeCN over Bmin, purity 91%); 1H NMR (400 MHz, OMSO-ds): ~/ppm 10.22 (2H, br, 

N-H, eOOH), 9.07 (1 H, d, J=7.0BHz, Ar-H), 7.94 (2H, d, J=B.34Hz, Ar-H), 7.57 (1 H, 
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dd, Ja=1.52Hz, Jb=7.08Hz, Ar-H), 7.54 (2H, d, J=8.34Hz, Ar-H), 6.86 (1 H, t, 

J=7.08Hz, Ar-H), 6.67 (1 H, s, Ar-H), 2.02 (3H, s, CH3); HRMS (ES) m/z: found 

324.0975 (C17H14N304 [M+Ht), requires 324.0984. 

N-(9-(3-chlorophenyl)-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-4-yl)acetamide (18i) 

H 
O~Ny 

~I 
I~ ~
N~N 0 

.& 

CI 

Following procedure P1, 27 (60mg, 0.21mmol) was dissolved in dioxane:DMA 10:1 

(4ml). 3-chlorobenzeneboronic acid (40mg, 0.26mmol), Pd(PPh3)4 (25mg, 0.02mmol) 

and CS2C03 (139mg, 0.43mmol) were added. Product 18i was purified using 

preparative TLC (MeOH:DCM 1:10; R, =0.35) and obtained as a white solid (7.4mg, 

yield 11%) [mp. dec >2500 C]; Anal. HPLC: tR = 7.3 min, 10-100% MeCN over 10min, 

purity 90%); 1H NMR (400 MHz, DMSO-d6): ~/ppm 10.58 (1 H, br, N-H), 8.35 (1 H, d, 

J=7.08Hz, Ar-H), 7.73 (1 H, dd, Ja=1.52Hz, Jb=7.08Hz, Ar-H), 7.46 (3H, m, Ar-H), 7.28 

(1 H, m, Ar-H), 7.00 (1 H, t, J=7.0BHz, Ar-H), 6.35 (1 H, s, Ar-H), 2.18 (3H, s, CH3); 

HRMS (ES) m/z: found 314.0674 (C16H13CIN302 [M+Hr), requires 314.0696. 
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N-(9-(3,4-dimethoxyphenyl)-2-oxo-2H-pyridop ,2-a]pyrimidin-4-yl)acetamide (18j) 

'0 

Following procedure P1, 27 (60mg, 0.21mmol) was dissolved in dioxane:DMA 10:1 

(4ml). 3,4-dimethoxybenzeneboronic acid (46mg, 0.26mmol), Pd(PPh3)4 (25mg, 

0.02mmol) and CS2C03 (139mg, 0.43mmol) were added. Product 18j was purified 

using preparative TLC (MeOH:DCM 1:10; Rf =0.26) and obtained as a brown solid 

(11.8mg, yield 16%) [mp. dec >2500C]; Anal. HPLC: tR = 6.6 min, 10-100% MeCN 

over 12min, purity 96%); 1H NMR (400 MHz, DMSO-d6): ~/ppm 10.16 (1H, br, N-H), 

9.28 (1H, dd, Ja=1.52Hz, Jb=7.33Hz, Ar-H), 7.50 (1H, dd, Ja=1.52Hz, Jb=6.B2Hz, Ar

H), 7.22 (1 H, d, J=2.02Hz, Ar-H), 7.15 (1 H, dd , Ja=2.02Hz, Jb=B.34Hz, Ar-H), 6.99 

(1 H, d, J=B.34Hz, Ar-H), 6.77 (1 H, t, J=7.0BHz, Ar-H), 6.76 (1 H, s, Ar-H), 3.BO (3H, s, 

OCH3), 3.77 (3H, s, OCH3), 1.95 (3H, s, CH3); HRMS (ES) m/z: found 340.1275 

(C1sH1SN304 [M+Ht), requires 340.1297. 
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4-( 4-acetamido-2-oxo-2H-pyrido[1,2-a]pyrimid in-9-yl)benzamide (18k) 

o 

Following procedure P1, 27 (60mg, 0.21mmol) was dissolved in dioxane:DMA 10:1 

(4ml). 4-aminocarbonylbenzeneboronic acid (42mg, 0.26mmol), Pd(PPh 3)4 (25mg, 

0.02mmol) and CS2C03 (139mg, 0.43mmol) were added. Product 18k was purified 

using preparative TLC (MeOH:DCM 1:10; R, =0.10) and obtained as a white solid 

(12.3mg, yield 18%) [mp. dec >250DC]; Anal. HPLC: tR = 5.8 min, 10-100% MeCN 

over 12min, purity 90%); 1H NMR (400 MHz, DMSO-d6): ~/ppm 10.63 (1H, br, N-H), 

9.27 (2H, br, NH2), 8.51 (1 H, d, J=7.08Hz, Ar-H), 7.68 (1 H, dd, Ja=1.52Hz, 

Jb=7.08Hz, Ar-H), 7.63 (2H, d, J=8.34Hz, Ar-H), 7.45 (2H, d, J=8.34Hz, Ar-H), 7.00 

(1H, t, J=7.08Hz, Ar-H), 6.44 (1H, s, Ar-H), 2.18 (3H, s, CH 3): HRMS (ES) m/z: found 

323.1133 (C17H15N403 [M+Hr), requires 323.1144. 

N-(2-oxo-9-(p-tolyl)-2H-pyrido[ 1,2 -a ]pyrimidin-4-yl)acetamide (181) 

Following procedure P1, 27 (60mg, 0.21mmol) was dissolved in dioxane:DMA 10:1 

(4ml). 4-methylphenylboronic acid (35mg, 0.26mmol), Pd(PPh3)4 (25mg, 0.02mmol) 
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and CS2C03 (139mg, 0.43mmol) were added. Product 181 was purified using 

preparative TLC (MeOH:DCM 1:10; R,=0.31) and obtained as a white solid (19.8mg, 

yield 32%) [mp. dec >2500 C); Anal. HPLC: tR = 13.7 min, 10-100% MeCN over 

20min, purity 100%); 1H NMR (400 MHz, DMSO-d6): Zi/ppm 10.57 (1H, br, N-H), 8.30 

(1 H, d, J=7.08Hz, Ar-H), 7.69 (1 H, dd, Ja=1.52Hz, Jb=7.08Hz, Ar-H), 7.48 (2H, d, 

J=8.08Hz, Ar-H), 7.26 (2H, d, J=B.OBHz, Ar-H), 7.00 (1 H, t, J=7.08Hz, Ar-H), 6.32 

(1H, 5, Ar-H), 2.37 (3H, 5, CH3), 2.18 (3H, 5, CH3); HRMS (ES) mlz: found 294.1236 

N-(9-(4-fluorophenyl)-2-oxo-2H-pyrido[1 ,2-a)pyrimidin-4-yl)acetamide (18m) 

Following procedure Pi, 27 (60mg, 0.21mmol) was dissolved in dioxane:DMA 10:1 

(4ml). 4-fluorophenylboronic acid (36mg, 0.26mmol), Pd(PPh3)4 (25mg, 0.02mmol) 

and CS2C03 (139mg, 0.43mmol) were added. Product 18m was purified using 

preparative TLC (MeOH:DCM 1 :10; Rf =0.35) and obtained as a white solid (13mg, 

yield 21%) [mp. dec >2300 C); Anal. HPLC: tR = 6.9 min, 10-100% MeCN over 12min, 

purity 97%); 1H NMR (400 MHz, DMSO-d6): ~/ppm 10.69 (1 H, br, N-H), B.45 (1 H, d, 

J=7.0BHz, Ar-H), 7.92 (1 H, dd, Ja=1.52Hz, Jb=7.0BHz, Ar-H), 7.73 (2H, d, J=8.36Hz, 

Ar-H), 7.48 (2H, d, J=8.36Hz, Ar-H), 7.02 (1 H, t, J=7.0BHz, Ar-H), 6.41 (1 H, 5, Ar-H), 

2.16 (3H, s, CH3); HRMS (ES) mlz: found 298.09B4 (C16H13FN302 [M+Ht), requires 

298.0992. 
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N-(9-(2-methoxyphenyl)-2-oxo-2H-pyrido[1,2-a]pyrimidin-4-yl)acetamide (18n) 

Following procedure P1, 27 (75mg, 0.27mmol) was dissolved in dioxane:DMA 10:1 

(4ml). 2-methoxybenzeneboronic acid (48mg, 0.32mmol), Pd(PPh3)4 (31mg, 

0.03mmol) and CS2C03 (173mg, 0.53mmol) were added. Product 18n was purified 

using preparative TLC (MeOH:DCM 1:10; Rf =0.29) and obtained as a brown solid 

(18.5mg, yield 23%) [mp. 220.5-222.1°C]; Anal. HPLC: tR = 6.7 min, 10-100% MeCN 

over 12min, purity 96%); 1H NMR (400 MHz, DMSO-d6): ~/ppm 10.78 (1H, br, N-H), 

8.86 (1 H, d, J=7.08Hz, Ar-H), 7.54 (1 H, dd, Ja=1.52Hz, Jb=7.08Hz, Ar-H), 7.39 (1 H, 

m, Ar-H), 7.20 (1 H, dd, Ja=1.78Hz, Jb=7.58Hz, Ar-H), 7.10 (1 H, d, J=7.58Hz, Ar-H), 

6.94 (1 H, t, J=7.33Hz, Ar-H), 6.71 (1 H, t, J=7.08Hz, Ar-H), 6.58 (1 H, s, Ar-H), 3.69 

(3H, s, CH3), 2.14 (3H, s, CH3); 13C NMR (500 MHz, DMSO-d6): ~/ppm 171.7, 169.4, 

157.2,150.9,148.9,139.4,137.2,132.6,129.2,126.8, 120.5, 117.3, 111.9, 111.1, 

108.6, 55.9, 26.7; HRMS (ES) m/z: found 309.9998 (C17H16N303 [M+Ht), requires 

310.1192. 
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N-(9-(3-methoxyphenyl)-2-oxo-2H-pyrido[1,2-a]pyrimidin-4-yl)acetamide (180) 

H 0yyNy 

~I 
I~ QP

N~ N ° 

.0 

0, 

Following procedure P1, 27 (75mg, 0.27mmol) was dissolved in dioxane:DMA 10:1 

(4ml). 3-methoxybenzeneboronic acid (4Bmg, 0.32mmol), Pd(PPh3)4 (31mg, 

0.03mmol) and CS2C03 (173mg, 0.53mmol) were added. Product 180 was purified 

using preparative TLC (MeOH:DCM 1:10; Rf =0.29) and obtained as a cream solid 

(22.2mg, yield 27%) [mp. 245.5-247.1°C]; Anal. HPLC: tR = 6.8 min, 10-100% MeCN 

over 12min, purity 97%); 1H NMR (400 MHz, DMSO-ds): z>/ppm 10.54 (1H, br, N-H), 

8.65 (1 H, d, J=7.0BHz, Ar-H), 7.64 (1 H, dd, Ja=1.52Hz, Jb=7.0BHz, Ar-H), 7.34 (1 H, t, 

J=B.34Hz, Ar-H), 7.13 (2H, m, Ar-H), 6.96 (1H, m, Ar-H), 6.92 (1 H, t, J=7.0BHz, Ar

H), 6.47 (1H, S, Ar-H), 3.79 (3H, s, CH3), 2.09 (3H, S, CH3); 13C NMR (500 MHz, 

DMSO-ds): Z>/ppm 172.3, 16B.7, 159.1, 150.6, 145.3, 138.9, 136.3, 134.0, 129.2, 

129.0, 127.7, 116.3, 113.5, 111.7, 106.7, 55.6, 25.6; HRMS (ES) mlz: found 
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N-(9-(2 ,4-d ichlorophenyl)-2-oxo-2H-pyrido[ 1 ,2-8 ]pyrim id in-4-yl)acetam ide (18p) 

Following procedure P1, 27 (60mg, 0.21mmol) was dissolved in dioxane:DMA 10:1 

(4ml). 2,4-dichlorobenzeneboronic acid (49mg, O.26mmol), Pd(PPh3)4 (25mg, 

0.02mmol) and CS2C03 (139mg, 0.43mmol) were added. Product 18p was purified 

using preparative TLC (MeOH:DCM 1 :10; R, = 0.27) and obtained as a cream solid 

(7.6mg, yield 10%) [mp. dec >2500C]; Anal. HPLC: tR = 7.6 min, 10-100% MeCN over 

12min, purity 99%); 1H NMR (400 MHz, DMSO-d6): ~/ppm 10.39 (1H, br, N-H), B.B9 

(1 H, d, J=7.0BHz, Ar-H), 7.65 (1 H, m, Ar-H), 7.56 (1 H, dd, Ja=1.52Hz, J b=7.0BHz, Ar

H), 7.50 (1 H, m, Ar-H), 7.42 (1 H, d, J=B.34Hz, Ar-H), 6.93 (1 H, t, J=7.0BHz, Ar-H), 

6.54 (1 H, s, Ar-H), 2.09 (3H, s, CH3); HRMS (ES) m/z: found 34B.0294 

3-(4-acetamido-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-9-yl)benzoic acid (18q) 

Compound 27 (500mg, 1.77mmol) was added to an Ace sealed pressure tube 

containing dioxane:DMA 10:1 (15ml). 3-carboxybenzeneboronrc acid (353mg, 
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2.13mmol), Pd(PPh3)4 (205mg, 0.18mmol) and CS2C03 (1156mg, 3.55mmol) were 

subsequently added. The reaction mixture was stirred at 110°C for 5h and filtered 

through Celite and solvent dried in vacuo. Product 18q was purified using flash 

chromatography (MeOH:DCM 1:10; Rf = 0.04) and obtained as a cream solid 

(150mg, yield 26%) [mp. dec >250°C]; Anal. HPLC: tR = 6.3 min, 10-100% MeCN 

over 12min, purity 95%); 1H NMR (400 MHz, OMSO-d6): a/ppm 9.63 (1 H, br, COOH), 

8.58 (1H, br, N-H), 7.93 (1H, d, J=7.08Hz, Ar-H), 7.66 (2H, m, Ar-H), 7.44 (1H, t, 

J=7.83Hz, Ar-H), 7.34 (1 H, m, Ar-H), 7.35 (1 H, S, Ar-H), 6.99 (1 H, t, J=7.08Hz, Ar-H), 

6.43 (1 H, s, Ar-H), 2.16 (3H, s, CH3); HRMS (ES) m/z: found 324.0976 (C17H.14N304 

[M+Ht), requires 324.0984. 

4-amino-9-bromo-2H-pyrido[1,2-a]pyrimidin-2-one (26): 

To a stirred solution of cyanoacetic acid (12.92g, 0.15mol) in OCM (220ml) was 

added 2-amino-3-bromopyridine (21.04g, 0.12mol) and dicyclohexylcabodiimide 

(31.34g, 0.15mol). The resulting mixture was refluxed at 110°C for 2h. The resulting 

reaction was cooled down to room temperature and product subsequently filtered 

and washed using OCM (30m I) and ether (30ml). This solid product was then added 

to a solution of 1.25M HCI in EtOH (52ml, 0.06mol) in ethanol (85ml). The resulting 

reaction mixture was heated for 1.5h at 110°C and allowed to cool down to RT. The 

compound was precipitated out and subsequently filtered and neutralised using 

NaHC03. The resulting product was washed using ethanol (20m I) and ether (20ml) to 
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afford 26 as a cream solid (15.2g, yield 52%) [m.p. 263.1-265.2DC] Anal. HPLC: tR = 

7.9 min, 10-100% MeCN over 10min, purity 100%); 1H NMR (400 MHz, DMSO-ds): 

o/ppm 9.09 (2H, s, NH2), 8.92 (1 H, dd, Ja=0.76Hz, Jb= 7.08Hz, Ar-H), 8.51 (1 H, dd, 

Ja=0.76Hz, Jb=7.33Hz, Ar-H), 7.40 (1 H, t, J=7.33Hz, Ar-H), 6.44 (1 H, s, Ar-H); HRMS 

(ES) m/z: found 239.9764 (CaH7BrN30 [M+Ht), requires 239.9772. 

N-(9-bromo-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-4-yl)acetamide (27): 

To a stirred solution of acetic anhydride (11.9g, 0.12mol) in anhydrous pyridine 

(50ml) was added compound 26 (3.5g, 0.015mol). The reaction mixture was heated 

at 110DC for 2h and subsequently cooled down to room temperature. The product 

precipitated out and was filtered and washed using ether (25ml) to give 27 as a 

cream solid (3.2g, yield 78%) (MeOH:DCM 1:10; Rf = 0.19) [mp. dec >270DC]; Anal. 

HPLC: tR = 6.2 min, 10-100% MeCN over 10min, purity 98%); 1H NMR (400 MHz, 

DMSO-ds): is/ppm 11.28 (1 H, br, N-H), 8.36 (1 H, dd, Ja=1.26Hz, Jb= 7.08Hz, Ar-H), 

8.19 (1 H, dd, Ja=1.26Hz, Jb=7.08Hz, Ar-H), 6.84 (1 H, t, J=7.08Hz, Ar-H), 6.34 (1 H, S, 

Ar-H), 2.19 (3H, s, CH3); 13C NMR (500 MHz, DMSO-ds): o/ppm 170.6, 167.9, 148.9, 

142.3, 140.4, 129.8, 117.4, 112.4, 111.2, 23.6; HRMS (ES) m/z: found 281.9872 

(C1OHgBrN302 [M+Ht), requires 281.9878. 
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N-(2-oxo-9-(pyridin-3-yl)-2H-pyrido[1 ,2-a]pyrimidin-4-yl)acetamide (28) 

H 

O~Ny 

6lJ
N:--' N 0 

~I 
I~ 

/-

N 

Following procedure P1, 27 (60mg, 0.21mmol) was dissolved in dioxane:DMA 10:1 

(4ml). Pyridine-3-boronic acid (31 mg, 0.26mmol), Pd(PPh3)4 (25mg, 0.02mmol) and 

CS2C03 (139mg, 0.43mmol) were added. Product 28 was purified using preparative 

TLC (MeOH:DCM 1:10; Rf= 0.24) and obtained as a cream solid (6.9mg, yield 12%) 

[mp. dec >250°C]; Anal. HPLC: tR = 4.8 min, 10-100% MeCN over 12min, purity 

100%); 1H NMR (400 MHz, DMSO-d6): 5/ppm 10.29 (1 H, br, N-H), 8.76 (2H, m, Ar

H), 8.57 (1 H, dd, Ja=1.52Hz, J b=4.80Hz, Ar-H), 8.03 (1 H, m, Ar-H), 7.75 (1 H, dd, 

Ja=1.26Hz, Jb=6.B2Hz, Ar-H), 7.47 (1 H, m, Ar-H), 6.97 (1 H, t, J=7.0BHz, Ar-H), 6.52 

(1 H, s, Ar-H), 2.11 (3H, s, CH3); 13C NMR (500 MHz, DMSO-ds): 5/ppm 173.3, 169.1, 

150.5,148.9,146.9,137.9,133.6,133.4, 130.B, 129.6, 127.5,123.3,111.4,104.5, 

23.5; HRMS (ES) mlz: found 281.1030 (C1sH13N402 [M+Hr), requires 281.1039. 

N-(2 -oxo-9-( 1 H-pyrazol-4-yl)-2H-pyrido[ 1 ,2 -a ]pyrimid in-4-yl)acetam ide (29) 

Following procedure P1, 27 (60mg, 0.21mmol) was dissolved in dioxane:DMA 10:1 

(4ml). 1 H-pyrazol-3-yl boronic acid (29mg, 0.26mmol), Pd(PPh3)4 (25mg, 0.02mmol) 
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and CS2C03 (139mg, 0.43mmol) were added. Product 29 was purified using 

preparative TLC (MeOH:DCM 1:10; Rf= 0.06) and obtained as a cream solid (9.2mg, 

yield 16%) [mp. dec >2500C]; Anal. HPLC: tR = 5.6 min, 10-100% MeCN over 12min, 

purity 9B%); 1H NMR (400 MHz, DMSO-d6): a/ppm 13.0B (1H, br, N-H), 10.57 (1H, br, 

N-H), B.52 (3H, m, Ar-H), B.04 (1 H, dd, Ja= 1.52Hz, Jb= 7.0BHz, Ar-H), 6.93 (1 H, t, 

J=7.0BHz, Ar-H), 6.50 (1 H, s, Ar-H), 2.13 (3H, s, CH3); HRMS (ES) m/z: found 

270.0977 (C13H12N502 [M+Ht), requires 270.0991. 

4-(4-acetamido-2-oxo-2H-pyrido[1,2-a]pyrimidin-9-yl)-N-ethylbenzamide (30a) 

H 
~N 

o 

Following procedure P2, 18h (60mg, 0.19mmol) was dissolved in DMF (6ml). 

Ethylamine (10mg, 0.22mmol), CDMT (49mg, 0.2Bmmol) and 4-methylmorpholine 

(2Bmg, 0.2Bmmol) were added. Product 30a was purified using preparative TLC 

(MeOH:DCM 1:10; Rf = 0.14) and obtained as a yellow solid (2B.7mg, yield 44%) 

[mp. dec >270°C]; Anal. HPLC: tR = 6.3 min, 10-100% MeCN over 11 min, purity 

95%); 1H NMR (400 MHz, DMSO-d6): a/ppm 10.B2 (1 H, S, N-H), B.56 (1 H, t, 

J=5.54Hz, N-H), B.32 (1H, dd, Ja=1.02Hz, Jb=7.0BHz, Ar-H), 7.90 (2H, d, J=B.44Hz, 

Ar-H), 7.77 (1 H, dd, Ja=1.12Hz, Jb=7.0BHz, Ar-H), 7.67 (2H, d, J=B.44Hz, Ar-H), 7.03 

(1 H, t, J=7.0BHz, Ar-H), 6.31 (1 H, S, Ar-H), 3.30 (2H, m, CH2), 2.20 (3H, S, CH3), 1.15 

(3H, t, J=7.14Hz, CH3); 13C NMR (500 MHz, DMSO-d6): a/ppm 170.B, 167.9, 166.2, 
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150.7,142.1, 139.7; 137.2, 134.4, 133.5, 130.2, 129.5,127.0, 112.6, 111.1,34.5, 

23.6, 15.3; HRMS (ESj m/z: found 351.1473 (C19H19N403 [M+Hn, requires 

351.1457. 

4-(4-acetamido-2-oxo-2H-pyrido[1,2-a]pyrimidin-9-yl)-N-butylbenzamide (30b) . 

H 
~N 

o 

Following procedure P2, 18h (50mg, 0.15mmol) was dissolved in DMF (4ml). 

Butylamine (14mg, 0.18mmol), CDMT (40.5mg, 0.23mmol) and 4-methylmorpholine 

(23mg, 0.23mmol) were added. Product 30b was purified using preparative TLC 

(MeOH:DCM 1:10; Rf = 0.16) and obtained as a cream solid (27.8mg, yield 48%) 

[mp. dec >250°C]; Anal. HPLC: tR = 6.8 min, 10-100% MeCN over 11min, purity 

94%); 1H NMR (400 MHz, DMSO-ds): t5/ppm 10.44 (1H, br, N-H), 8.51 (2H, m, N-H, 

Ar-H), 7.97 (1 H, dd, Ja=1.50Hz, Jb=7.08Hz, Ar-H), 7.92 (2H, d, J=8.48Hz, Ar-H), 7.52 

(2H, d, J=8.48Hz, Ar-H), 6.96 (1 H, t, J=7.08Hz, Ar-H), 6.76 (1 H, s, Ar-H), 3.28 (2H, 

m, CH2), 2.05 (3H, s, CH3), 1.52 (2H, m, CH2), 1.34 (2H, m, CH2), 0.91 (3H, m, CH3); 

13C NMR (500 MHz, DMSO-ds): t5/ppm 170.9, 166.3, 166.1, 149.9, 141.4, 138.1, 

136.2,133.8,133.3,130.3,129.1,128.2,113.6,111.4, 40.5,31.7,24.9,20.1,14.2; 

HRMS (ES) m/z: found 379.1757 (C21H23N403 [M+Ht), requires 379.1770. 
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4-( 4-acetam ido-2-oxo-2H-pyrido[1 ,2-a]pyrim idin-9-yl)-N-hexylbenzamide (30e) 

H 
~N 

Following procedure P2, 18h (60mg, 0.19mmol) was dissolved in DMF (4ml). 

Hexylamine (22.5mg, 0.22mmol), CDMT (49mg, 0.28mmol) and 4-methylmorpholine 

(28mg, 0.28mmol) were added. Product 30e was purified using preparative TLC 

(MeOH:DCM 1:10; Rf = 0.25) and obtained as a cream solid (11.5mg, yield 15%) 

[mp. dec >250°C]; Anal. HPLC: tR = 7.9 min, 10-100% MeCN over 11min, purity 

100%); 1H NMR (400 MHz, DMSO-d6): B/ppm 10.68 (1 H, br, N-H), 8.52 (1 H, t, 

J=5.63Hz, N-H), 8.31 (1 H, d, J=7.08Hz, Ar-H), 7.89 (2H, d, J=8.34Hz, Ar-H), 7.77 

(1 H, dd, Ja=1.50Hz, Jb=7.08Hz, Ar-H), 7.67 (2H, d, J=8.34Hz, Ar-H), 7.03 (1 H, t, 

J=7.08Hz, Ar-H), 6.32 (1H, s, Ar-H), 3.28 (2H, m, CH2), 2.19 (3H, s, CH3), 1.54 (2H, 

m, CH2), 1.30 (6H, m, CH2), 0.88 (3H, t, J=6.57Hz, CH3); HRMS (ES) m/z: found 

407.2070 (C23H27N403 [M+Ht), requires 407.2083. 
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4-(4-acetamido-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-9-yl)-N-heptylbenzamide (30d) 

H 
~N 

Following procedure P2, 18h (100mg, 0.30mmol) was dissolved in DMF (6ml). 

Hepylamine (43mg, 0.37mmol), CDMT (81 mg, 0.46mmol) and 4-methylmorpholine 

(47mg, 0.46mmol) were added. Product 30d was purified using preparative TLC 

(MeOH:DCM 1:10; Rf= 0.23) and obtained as a cream solid (5mg, yield 4%) [mp. dec 

>250DC]; Anal. HPLC: tR = 8.4 min, 10-100% MeCN over 11min, purity 100%); 1H 

NMR (400 MHz, DMSO-ds): B/ppm 10.84 (1H, br, N-H), 8.50 (2H, m, N-H, Ar-H), 7.89 

(2H, d, J=8.48Hz, Ar-H), 7.73 (1 H, dd, Ja=1.48Hz, Jb=7.08Hz, Ar-H), 7.67 (2H, d, 

J=8.48Hz, Ar-H), 6.99 (1 H, t, J=7.08Hz, Ar-H), 6.40 (1H, s, Ar-H), 3.28 (2H, m, CH2), 

2.15 (3H, s, CH3). 1.54 (2H, m, CH2), 1.30 (8H, m, CH2), 0.87 (3H, t, J=6.92Hz, CH3); 

13C NMR (500 MHz, DMSO-ds): B/ppm 170.8, 168.3, 166.2, 150.5, 142,2, 139.9, 

136.8,134.4,133.4,130.2,129.4,127.0,112.1,111.1, 40.5,31.7,29.6,28.9,26.9, 

24.6, 22.5, 14.5; HRMS (ES) m/z: found 421.2253 (C24H29N403 [M+Ht), requires 

421.2240. 
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4-(4-acetamido-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-9-yl)-N-octylbenzamide (30e) 

H 
~N 

Following procedure P2, iSh (60mg, 0.19mmol) was dissolved in DMF (4ml). 

Octylamine (29mg, 0.22mmol), CDMT (49mg, 0.28mmol) and 4-methylmorpholine 

(28mg, 0.28mmol) were added. Product 30e was purified using preparative TLC 

(MeOH:DCM 1:10; Rf = 0.21) and obtained as a cream solid (20.6mg, yield 26%) 

[mp. dec >250°C]; Anal. HPLC: tR = 9.1 min, 10-100% MeCN over 11 min, purity 

92%); 1H NMR (400 MHz, DMSO-d6): 5/ppm 10.70 (1H, br, N-H), 8.52 (1H, t, 

J=5.62Hz, N-H), 8.31 (1 H, d, J=7.08Hz, Ar-H), 7.89 (2H, d, J=8.48Hz, Ar-H), 7.77 

(1 H, dd, Ja=1.50Hz, Jb=7.08Hz, Ar-H), 7.67 (2H, d, J=8.48Hz, Ar-H), 7.03 (1 H, t, 

J=7.08Hz, Ar-H), 6.32 (1H, 5, Ar-H), 3.28 (2H, m, CH2), 2.19 (3H, 5, CH3), 1.54 (2H, 

m, CH2), 1.28 (10H, m, CH2), 0.86 (3H, t, J=6.88Hz, CH3); 13C NMR (500 MHz, 

DMSO-d6): 5/ppm 170.7, 167.9, 166.3, 150.7, 142.1, 139.7, 137.1, 134.5, 133.5, 

130.2,129.5,127.0,112.5,111.1,40.5,31.7,29.6, 29.2, 29.1, 26.9, 23.6, 22.6,14.5; 

HRMS (ES) m/z: found 435.2394 (C25H31N403 [M+Ht), requires 435.2396. 
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4-(4-acetamido-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-9-yl)-N-nonylbenzamide (30t) 

H 
~N 

o 

Following procedure P2, iSh (60mg, 0.19mmol) was dissolved in DMF (4ml). 

Nonylamine (32mg, 0.22mmol), CDMT (49mg, 0.28mmol) and 4-methylmorpholine 

(28mg, 0.28mmol) were added. Product 30f was purified using preparative TLC 

(MeOH:DCM 1:10; Rf = 0.28) and obtained as a cream solid (14mg, yield 17%) [mp. 

dec >250°C]; Anal. HPLC: tR = 9.7 min, 10-100% MeCN over 11min, purity 99%); 1H 

NMR (400 MHz, DMSO-d6): 5/ppm 10.72 (1 H, br, N-H), 8.52 (1 H, t, J=5.62Hz, N-H), 

8.31 (1 H, d, J=7.08Hz, Ar-H), 7.89 (2H, d, J=8.48Hz, Ar-H), 7.77 (1 H, dd, Ja=1.1 OHz, 

Jb=7.08Hz, Ar-H), 7.67 (2H, d, J=8.48Hz, Ar-H), 7.04 (1H, t, J=7.08Hz, Ar-H), 6.32 

(1H, s, Ar-H), 3.28 (2H, m, CH2), 2.19 (3H, s, CH3), 1.53 (2H, m, CH2), 1.26 (12H, m, 

CH2), 0.86 (3H, t, J=6.80Hz, CH3); 13C NMR (500 MHz, DMSO-d6): 5/ppm 170.7, 

167.9,166.3,150.7,142.1,139.7,137.1,134.5, 133.5,130.2,129.5,127.0,112.5, 

111.1, 40.5, 31.7, 29.6, 29.5. 29.3, 29.2, 26.9, 23.6, 22.5, 14.5; HRMS (ES) m/z: 
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4-(4-acetamido-2-oxo-2H-pyrido[1,2-a]pyrimidin-9-yl)-N-decylbenzamide (30g) 

H 
~N 

o 

Following procedure P2, iSh (60mg, 0.19mmol) was dissolved in DMF (4ml). 

Decylamine (35mg, 0.22mmol), CDMT (49mg, 0.28mmol) and 4-methylmorpholine 

(28mg, 0.28mmol) were added. Product 30g was purified using preparative TLC 

(MeOH:DCM 1:10; Rf = 0.29) and obtained as a cream solid (11.8mg, yield 14%) 

[mp. dec >250°C]; Anal. HPLC: tR = 14 min, 10-100% MeCN over 16min, purity 96%); 

1H NMR (400 MHz, DMSO-d6): 5/ppm 8.85 (1 H, br, N-H), 8.51 (1 H, t, J=5.62Hz, N

H), 8.44 (1 H, d, J=7.08Hz, Ar-H), 7.89 (2H, d, J=8.34Hz, Ar-H), 7.74 (1 H, dd, 

Ja=1.50Hz, Jb=7.08Hz, Ar-H), 7.67 (2H, d, J=8.34Hz, Ar-H), 7.01 (1 H, t, J=7.08Hz, Ar-

H), 6.38 (1 H, s, Ar-H), 3.28 (2H, m, CH2), 2.16 (3H, s, CH3), 1.53 (2H, m, CH2), 1.26 

(14H, m, CH2), 0.86 (3H, t, J=6.58Hz, CH3); 13C NMR (500 MHz, DMSO-d6): 5/ppm 

170.7, 167.9, 166.2, 150.7, 142.2, 139.7, 137.0, 134.4, 133.5, 130.2, 129.5, 127.0, 

112.5, 111.1, 40.9, 31.7, 29.6, 29.5, 29.4, 29.3, 29.2, 26.9, 23.6, 22.5, 14.5; HRMS 

(ES) m/z: found 463.2716 (C27H35N403 [M+Ht), requires 463.2709. 
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N-(2-oxo-9-(4-(trifluoromethyl)phenyl)-2H-pyrido[1,2-a]pyrimidin-4-yl)acetamide (31a) 

F 

Following procedure P1, 27 (100mg, 0.35mmol) was dissolved in dioxane:DMA 10:1 

(5ml). 4-trifluoromethylbenzene boronic acid (B1 mg, 0.43mmol), Pd(PPh3)4 (41 mg, 

0.035mmol) and CS2C03 (231mg, 0.71mmol) were added. Product 31a was purified 

using preparative TLC (MeOH:DCM 1 :10; Rf = 0.21) and obtained as a cream solid 

(37.Bmg, yield 31%) [mp. dec >250°C]; Anal. HPLC: tR = 7.7 min, 10-100% MeCN 

over 11 min, purity 97%); 1H NMR (400 MHz, DMSO-d6): is/ppm 10.73 (1 H, br, N-H), 

B.55 (1 H, d, J=7.0BHz, Ar-H), 7.B1 (4H, s, Ar-H), 7.76 (1 H, dd, Ja=1.4BHz, Jb=7.0BHz, 

Ar-H), 7.00 (1 H, t, J=7.0BHz, Ar-H), 6.42 (1 H, s, Ar-H), 2.14 (3H, s, CH3); HRMS (ES) 

m/z: found 34B.0961 (C17H13F3N302 [M+Ht), requires 34B.0960. 

N-(9-( 4-cyanophenyl)-2-oxo-2H-pyrido[1,2-a]pyrimidin-4-yl)acetamide (31 b) 

Following 'procedure P1, 27 (90mg, 0.32mmol) was dissolved in dioxane:DMA 10:1 

(5ml). 4-cyanophenylboronic acid (56mg, 0.3Bmmol), Pd(PPh3)4 (37mg, 0.032mmol) 
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and CS2C03 (20Bmg, 0.64mmol) were added. Product 31b was purified using 

preparative TLC (MeOH:DCM 1:10; Rf= 0.27) and obtained as a white solid (9.Bmg, 

yield 9%) [mp. dec >215°C]; Anal. HPLC: tR = 6.B min, 10-100% MeCN over 11min, 

purity 97%); 1H NMR (400 MHz, DMSO-d6): a/ppm 10.21 (1H, br, N-H), B.37 (1H, d, 

J=7.0BHz, Ar-H), 7.93 (2H, d, J=B.4BHz, Ar-H), 7.B1 (3H, m, Ar-H), 7.05 (1 H, t, 

J=7.0BHz, Ar-H), 6.33 (1H, s, Ar-H), 2.20 (3H, s, CH3); HRMS (ES) m/z: found 

305.1036 (C17H13N402 [M+Ht), requires 305.1039. 

N-(9-(4-(methylsulfonyl)phenyl)-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-4-yl)acetamide (31c) 

Following procedure P1, 27 (90mg, 0.32mmol) was dissolved in dioxane:DMA 10:1 

(5ml). 4-(methanesulfonyl)phenylboronic acid (77mg, 0.3Bmmol), Pd(PPh3)4 (37mg, 

0.032mmol) and CS2C03 (20Bmg, 0.64mmol) were added. Product 31c was purified 

using preparative TLC (MeOH:DCM 1 :10; Rf = 0.16) and obtained as a cream solid 

(4B.7mg, yield 43%) [mp. 193.5-194.2°C]; Anal. HPLC: tR = 6.4 min, 10-100% MeCN 

over 11 min, purity 96%); 1H NMR (400 MHz, DMSO-d6): o/ppm 9.93 (1 H, br, N-H), 

B.37 (1 H, d, J=7.0BHz, Ar-H), B.OO (2H, d, J=B.4BHz, Ar-H), 7.B6 (2H, d, J=B.4BHz, 

Ar-H), 7.B2 (1 H, dd, Ja=1.50Hz, Jb=7.0BHz, Ar-H), 7.06 (1 H, t, J=7.0BHz, Ar-H), 6.34 

(1 H, s, Ar-H), 3.29 (3H, s, CH3), 2.19 (3H, s, CH3); HRMS (ES) m/z: found 358.0849 

(C17H16N304S [M+Hn, requires 35B.OB62. 
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N-(9-(4-nitrophenyl)-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-4-yl)acetamide (31 d) 

Following procedure P1, 27 (75mg, 0.27mmol) was dissolved in dioxane:DMA 10:1 

(5ml). 4-nitrobenzeneboronic acid (53mg, 0.32mmol), Pd(PPh3)4 (31mg, 0.027mmol) 

and CS2C03 (173mg, 0.53mmol) were added. Product 31d was purified using 

preparative TLC (MeOH:DCM 1:10; Rf = 0.26) and obtained as a cream solid (8.6mg, 

yield 10%) [mp. dec >2500 C]; Anal. HPLC: tR = 7.0 min, 10-100% MeCN over 11min, 

purity 96%); 1H NMR (400 MHz, DMSO-ds): a/ppm 10.89 (1H, br, N-H), 8.74 (1H, d, 

J=7.08Hz, Ar-H), 8.29 (2H, d, J=8.48Hz, Ar-H), 7.89 (2H, d, J=8.48Hz, Ar-H), 7.77 

(1 H, dd, Ja=1.50Hz, Jb=7.0BHz, Ar-H), 6.98 (1 H, t, J=7.08Hz, Ar-H), 6.51 (1 H, s, Ar

H), 2.10 (3H, s, CH3); HRMS (ES) m/z: found 325.0919 (C1sH13N404 [M+Ht), 

requires 325.0937. 
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N-(2-oxo-9-(4-(trifluoromethoxy)phenyl)-2H-pyrido[1,2-a]pyrimidin-4-yl)acetamide 

(31e) 

Following procedure P1, 27 (90mg, 0.32mmol) was dissolved in dioxane:DMA 10:1 

(Sml). 4-(trifluoromethoxy)phenylboronic acid (79mg, 0.38mmol), Pd(PPh 3)4 (37mg, 

0.032mmol) and CS2C03 (208mg, 0.64mmol) were added. Product 31e was purified 

using preparative TLC (MeOH:DCM 1:10; Rf = 0.29) and obtained as a white solid 

(9.2mg, yield 8%) [mp. dec >240°C]; Anal. HPLC: tR = 1S.3 min, 10-100% MeCN over 

20min, purity 100%); 1H NMR (400 MHz, DMSO-d6): is/ppm 10.88 (1H, br, N-H), 8.S6 

(1 H, d, J=7.08Hz, Ar-H), 7.72 (3H, m, Ar-H), 7.44 (2H, dd, Ja=0.88Hz, Jb=8.80Hz, Ar

H), 6.98 (1 H, t, J=7.08Hz, Ar-H), 6.43 (1 H, s, Ar-H), 2.13 (3H, s, CH3); HRMS (ES) 

N-(9-( 4-acetylphenyl)-2-oxo-2H-pyrido[ 1,2 -a ]pyrimid in-4-yl)acetamide (31 f) 

o 

Following procedure P1, 27 (90mg, 0.32mmol) was dissolved in dioxane:DMA 10:1 

(Sml). 4-acetylphenylboronic acid (63mg, 0.38mmol), Pd(PPh3)4 (37mg, 0.032mmol) 
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and CS2C03 (20Bmg, 0.64mmol) were added. Product 31f was purified using 

preparative TLC (MeOH: OCM 1: 10; Rf = 0.22) and obtained as a cream solid 

(19.6mg, yield 19%) [mp. dec >2500C]; Anal. HPLC: tR = 6.7 min, 10-100% MeCN 

over 11min, purity 93%); 1H NMR (400 MHz, DMSO-d6): a/ppm 10.69 (1 H, br, N-H), 

8.33 (1H, d, J=7.10Hz, Ar-H), 8.03 (2H, d, J=8.48Hz, Ar-H), 7.79 (1 H, dd, Ja=1.50Hz, 

Jb=7.10Hz, Ar-H), 7.75 (2H, d, J=8.48Hz, Ar-H), 7.05 (1H, t, J=7.10Hz, Ar-H), 6.32 

. (1 H, s, Ar-H), 2.64 (3H, S, CH3), 2.19 (3H, s, CH3); HRMS (ES) m/z: found 322.1165 

(C18H16N303 [M+Ht), requires 322.1192. 

N-(9-(2-fluorophenyl)-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-4-yl)acetamide (31 g) 

H 0yyNy 

cCJ
N~ N ° 
~I 

1"-'::: 

h F 

Following procedure P1, 27 (75mg, 0.27mmol) was dissolved in dioxane:OMA 10:1 

(4ml). 2-fluorobenzeneboronic acid (45mg, 0.32mmol), Pd(PPh3)4 (31mg, 

0.027mmol) and CS2C03 (173mg, 0.53mmol) were added. Product 31g was purified 

using preparative TLC (MeOH:OCM 1 :10; Rf = 0.26) and obtained as a cream solid 

(36mg, yield 46%) [mp. dec >2300 C]; Anal. HPLC: tR = 6.8 min, 10-100% MeCN over 

11min, purity 97%); 1H NMR (400 MHz, OMSO-ds): a/ppm 10.80 (1H, br, N-H), 8.54 

(1H, d, J=7.08Hz, Ar-H), 7.69 (1H, dd, Ja=1.50Hz, Jb=7.08Hz, Ar-H), 7.46 (2H, m, Ar

H), 7.28 (2H, m, Ar-H), 6.99 (1 H, t, J=7.08Hz, Ar-H), 6.39 (1 H, s, Ar-H), 2.14 (3H, s, 

CH3); HRMS (ES) m/z: found 298.0974 (C1sH13FN302 [M+Ht), requires 298.0992. 
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N-(9-(3-fluorophenyl)-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-4-yl)acetamide (31 h) 

H 0yyNy 

::::,...1 
I":: yU

N~ N° ° 

o 

F 

Following procedure P1, 27 (75mg, 0.27mmol) was dissolved in dioxane:DMA 10:1 

(4ml). 3-fluorobenzeneboronic acid (45mg, 0.32mmol), Pd(PPh3)4 (31mg, 

0.027mmol) and CS2C03 (173mg, 0.53mmol) were added. Product 31 h was purified 

using preparative TLC (MeOH:DCM 1 :10; Rf = 0.25) and obtained as a cream solid 

(22.2mg, yield 28%) [mp. dec >240°C]; Anal. HPLC: tR = 6.9 min, 10-100% MeCN 

over 11min, purity 97%); 1H NMR (400 MHz, DMSO-d6): is/ppm 10.64 (1H, br, N-H), 

8.37 (1 H, d, J=7.08Hz, Ar-H), 7.77 (1 H, dd, Ja=1.50Hz, Jb=7.08Hz, Ar-H), 7.49 (2H, 

m, Ar-H), 7.24 (2H, m, Ar-H), 7.02 (1 H, t, J=7.08Hz, Ar-H), 6.34 (1 H, s, Ar-H), 2.16 

(3H, s, CH3); HRMS (ES) m/z: found 298.0013 (C16H13FN302 [M+Ht), requires 

298.0992. 
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N-(9-(2,6-difluorophenyl)-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-4-yl)acetamide (32a) 

Following procedure P1, 27 (75mg, 0.27mmol) was dissolved in dioxane:DMA 10:1 

(4ml) .. 2,6-difluorobenzeneboronic acid (50mg, 0.32mmol), Pd(PPh 3)4 (31mg, 

0.027mmol) and CS2C03 (173mg, 0.53mmol) were added. Product 32a was purified 

using preparative TLC (MeOH:DCM 1:10; Rf= 0.18) and obtained as a brown solid 

(22.3mg, yield 27%) [mp. dec >2000 C]; Anal. HPLC: tR = 7.0 min, 10-100% MeCN 

over 11min, purity 99%); 1H NMR (400 MHz, DMSO-d6): 5/ppm 10.90 (1H, br, N-H), 

8.49 (1 H, d, J=7.08Hz, Ar-H), 8.15 (1 H, d, J=7.32Hz, Ar-H), 7.59 (3H, m, Ar-H), 7.05 

(1 H, t, J=7.08Hz, Ar-H), 6.35 (1 H, 5, Ar-H), 2.13 (3H, 5, CH3); HRMS (ES) m/z: found 

316.0878 (C16H12F2N302 [M+Ht), requires 316.0898. 

N-(2-oxo-9-(2-(trifluoromethyl)phenyl)-2H-pyrido[1 ,2-a]pyrimidin-4-yl)acetamide (32b) 

Following procedure P1, 27 (75mg, 0.27mmol) was dissolved in dioxane:DMA 10:1 

(4ml). 2-trifluoromethylbenzenebororiic acid (61 mg, 0.32mmol), Pd(PPh3)4 (31 mg, 

0.027mmol) and CS2C03 (173mg, 0.53mmol) were added. Product 32b was purified 
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using preparative TLC (MeOH:DCM 1 :10; Rf = 0.29) and obtained as a cream solid 

(13.5mg, yield 15%) [mp. dec >2000 C]; Anal. HPLC: tR = 7.3 min, 10-100% MeCN 

over 11 min, purity 98%); 1H NMR (400 MHz, DMSO-ds): a/ppm 10.64 (1 H, br, N-H), 

8.37 (1 H, d, J=7.08Hz, Ar-H), 7.85 (1 H, d, J=7.74Hz, Ar-H), 7.75 (1 H, m, Ar-H), 7.65 

(2H, m, Ar-H), 7.45 (1 H, d, J=7.76Hz, Ar-H), 7.03 (1 H, t, J=7.08Hz, Ar-H), 6.29 (1 H, 

5, Ar-H), 2.19 (3H, 5, CH3); HRMS (ES) m/z: found 348.0947 (C17H13F3N302 [M+Ht), 

requires 348.0960. 

N-(9-(2-fluoro-4-(trifluoromethyl)phenyl)-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-4-yl) 

acetamide (32c) 

F 

Following procedure P1, 27 (75mg, 0.27mmol) was dissolved in dioxane:DMA 10:1 

(4ml). 2-fluoro-4-trifluoromethylbenzene boronic acid (66mg, 0.32mmol), Pd(PPh3)4 

(31mg, 0.027mmol) and CS2C03 (173mg, 0.53mmol) were added. Product 32c was 

purified using preparative TLC (MeOH:DCM 1 :10; Rf = 0.30) and obtained as a blue 

solid (17.3mg, yield 18%) [mp. dec >2000 C]; Anal. HPLC: tR = 7.8 min, 10-100% 

MeCN over 11min, purity 93%); 1H NMR (400 MHz, DMSO-d6): a/ppm 10.82 (1H, 

br, N-H), 8.45 (1 H, d, J=7.08Hz, Ar-H), 7.81 (2H, m, Ar-H), 7.71 (2H, m, Ar-H), 7.05 

(1 H, t, J=7.08Hz, Ar-H), 6.35 (1 H, 5, Ar-H), 2.18 (3H, 5, CH3); HRMS (ES) m/z: found 

366.0847 (C17H12F 4N302 [M+Ht), requires 366.0866. 
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N-(9-(2,4-difluorophenyl)-2-oxo-2H-pyrido[1,2-a]pyrimidin-4-yl)acetamide (32d) 

Following procedure P1, 27 (75mg, 0.27mmol) was dissolved in dioxane:DMA 10:1 

(4ml). 2,4-difluorobenzeneboronic acid (50mg, 0.32mmol), Pd(PPh3)4 (31 mg, 

0.027mmol) and CS2C03 (173mg, 0.53mmol) were added. Product 32d was purified 

using preparative TLC (MeOH:DCM 1 :10; Rf = 0.28) and obtained as a brown solid 

(18.8mg, yield 22%) [mp. dec >215°C]; Anal. HPLC: tR = 7.0 min, 10-100% MeCN 

over 11min, purity 96%); 1H NMR (400 MHz, DMSO-ds): 5/ppm 9.70 (1H, br, N-H), 

8.37 (1 H, d, J=7.08Hz, Ar-H), 7.76 (1 H, dd, Ja=1.50, Jb=7.08Hz, Ar-H), 7.51 (1 H, m, 

Ar-H), 7.36 (1 H, ddd, Ja=2.53Hz, Jb=9.60Hz, Jc=19.70Hz, Ar-H), 7.20 (1 H, ddd, 

Ja=2.53Hz, Jb=8.59Hz, Jc=17.43Hz, Ar-H), 7.04 (1H, t, J=7.08Hz, Ar-H), 6.32 (1H, s, 

Ar-H), 2.19 (3H, s, CH3); HRMS (ES) mlz: found 316.0888 (C16H12F2N302 [M+Hr), 

requires 316.0898. 
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5-(4-acetamido-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-9-yl)-2-fluorobenzoic acid (32e) 

F 

Compound 27 (400mg, 1.42mmol) was added to an Ace sealed pressure tube 

containing dioxane:DMA 10: 1 (15ml). 4-fluoro-3-carboxybenzeneboronic acid 

(287mg, 1.56mmol), Pd(PPh3)4 (164mg, 0.14mmol) and CS2C03 (925mg, 2.84mmol) 

were added. The reaction mixture was stirred at 100DC for 24h. The resulting 

compound was filtered through Celite and solvent dried in vacuo. Product 32e was 

purified using flash chromatography (MeOH:DCM 1:10; Rt= 0.02) and obtained as a 

cream solid (392mg, yield 81%) [mp. dec >250DC); Anal. HPLC: tR = 4.8 min, 10-

100% MeCN over 11min, purity 90%); 1H NMR (400 MHz, DMSO-d6): a/ppm 10.78 

(1H, br, N-H), 10.20 (1H, br, OH), 9.23 (1H, d, J=7.08Hz, Ar-H), 7.75 (1H, m, Ar-H), 

7.50 (1 H, dd, Ja=1.52Hz, Jb=7.08Hz, Ar-H), 7.43 (2H, m, Ar-H), 7.04 (1 H, t, 

J=7.08Hz, Ar-H), 6.75 (1 H, s, Ar-H), 2.09 (3H, s, CH3); HRMS (ES) m/z: found 

342.0873 (C17H13FN304 [M+Ht), requires 342.0890 . 
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N-(9-(3-ethoxy-2-fluorophenyl)-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-4-yl)acetamide (32f) 

Following procedure P1, 27 (60mg, 0.21mmol) was dissolved in dioxane:DMA 10:1 

(4ml). 3-ethoxy-2-fluorophenylboronic acid (47mg, 0.26mmol), Pd(PPh3)4 (25mg, 

0.02mmol) and CS2C03 (139mg, 0.43mmol) were added. Product 32f was purified 

using preparative TLC (MeOH:DCM 1:10; Rf =0.26) and obtained as a cream solid 

(34.6mg, yield 48%) [mp. dec >2500C]; Anal. HPLC: tR = 7.3 min, 10-100% MeCN 

over 11min, purity 94%); 1H NMR (400 MHz, DMSO-d6): i5/ppm 10.72 (1H, br, N-H), 

8.35 (1 H, d, J=7.08Hz, Ar-H), 7.72 (1 H, dd, Ja=1.08Hz, Jb=7.08Hz, Ar-H), 7.21 (2H, 

m, Ar-H), 7.02 (1 H, t, J=7.08Hz, Ar-H), 6.93 (1 H, m, Ar-H), 6.30 (1 H, s, Ar-H), 4.15 

(2H, q, J=7.08Hz, CH2), 2.19 (3H, s, CH3), 1.40 (3H, t, J=7.0BHz, CH3); HRMS (ES) 

m/z: found 342.1234 (C1sH17FN303 [M+Ht), requires 342.1254. 
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5-(4-acetamido-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-9-yl)-2-fluoro-N-phenylbenzamide 

(33a) 

F O{) ~I 
N 
H 

Following procedure P2, 32e (4Bmg, 0.14mmol) was dissolved in DMF (6ml). Aniline 

(16mg, 0.17mmol), CDMT (37mg, 0.21 mmol) and 4-methylmorpholine (21 mg, 

0.21mmol) were added. Product 33a was purified using preparative TLC 

(MeOH:DCM 1:10; Rf = 0.23) and obtained as a cream solid (15.5mg, yield 26%) 

[mp. dec >250°C]; Anal. HPLC: tR = 7.7 min, 10-100% MeCN over 11min, purity 

99%); 1H NMR (400 MHz, DMSO-d6): is/ppm 10.62 (1H, br, N-H), 10.51 (1H, s, N-H), 

B.35 (1H, d, J=7.0BHz, Ar-H), 7.B3 (3H, m, Ar-H), 7.74 (2H, d, J=7.B3Hz, Ar-H), 7.45 

(1H, t, J=9.21 Hz, Ar-H), 7.36 (2H, t, J=7.83Hz, Ar-H), 7.12 (1H, t, J=7.33Hz, Ar-H), 

7.04 (1 H, t, J=7.0BHz, Ar-H), 6.34 (1 H, s, Ar-H), 2.19 (3H, s, CH3); HRMS (ES) m/z: 

found 417.1360 (C23H1sFN403 [M+Ht), requires 417.1363. 
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5-( 4-acetamido-2-oxo-2H-pyrido[ 1 ,2-a ]pyrim id in-9-yl)-N-( 1-benzylpyrrolidin-3-yl)-2-

fluorobenzamide (33b) 

F 

Following procedure P2, 32e (60mg, 0.18mmol) was dissolved in DMF (8ml). 1-

benzyl-3-aminopyrollidine (37mg, 0.21mmol), CDMT (46mg, 0.26mmol) and 4-

methylmorpholine (27mg, 0.26mmol) were added. Product 33b was purified using 

preparative TLC (MeOH:DCM 1:10; Rf = 0.21) and obtained as a cream solid 

(27.8mg, yield 32%) [mp. 190.1-192.6°C]; Anal. HPLC: tR = 6.8 min, 10-100% MeCN 

over 11min, purity 96%); 1H NMR (400 MHz, DMSO-d6): 5/ppm 10.81 (1H, br, N-H), 

8.75 (1 H, d, J=5.80Hz, N-H), 8.35 (1 H, d, J=7.12Hz, Ar-H), 7.80 (1 H, dd, Ja=0.92Hz, 

Jb=6.97Hz, Ar-H), 7.76 (2H, m, Ar-H), 7.47 (2H, m, Ar-H), 7.35 (4H, m, Ar-H), 7.03 

(1 H, t, J=7.12Hz, Ar-H), 6.33 (1 H, s, Ar-H), 4.16 (1 H, m, CH), 3.98 (2H, s, CH2), 2.77 

(2H, m, CH2), 2.66 (2H, m, CH2), 2.20 (3H, s, CH3), 1.82 (2H, m, CH2); HRMS (ES) 

mlz: found 500.2082 (C2sH27FN503 [M+Ht), requires 500.2098. 
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N-( (1 H-indol-3-yl)methyl)-5-( 4-acetamido-2-oxo-2H-pyrido[ 1 ,2-a ]pyrimid in-9-yl)-2-

fluorobenzamide (33c) 

F 

Following procedure P2, 32e (70mg, 0.21mmol) was dissolved in DMF (Sml). 

Tryptamine (39mg, 0.25mmol), CDMT (54mg, 0.31mmol) and 4-methylmorpholine 

(31mg, 0.31mmol) were added. Product 33c was purified using preparative TLC 

(MeOH:DCM 1:10; Rf= 0.19) and obtained as a white solid (9.6mg, yield 10%) [mp. 

dec >250°C]; Anal. HPLC: tR = 4.S min, 10-100% MeCN over 11min, purity 94%); 1H 

NMR (400 MHz, DMSO-d6): 5/ppm 10.73 (1H, br, N-H), 9.79 (1H, br, N-H), 8.47 (1H, 

t, J=5.58Hz, N-H), 8.32 (1 H, d, J=7.0SHz, Ar-H), 7.76 (1 H, dd, Ja= 1.4SHz, 

Jb=7.0SHz, Ar-H), 7.59 (2H, m, Ar-H), 7.36 (3H, m, Ar-H), 7.20 (1H, d, J=7.20Hz, Ar

H), 7.03 (3H, m, Ar-H), 6.33 (1H, s, Ar-H), 3.55 (2H, m, CH2), 2.90 (2H, t, J=7.07Hz, 

CH2), 2.20 (3H, s, CH3); HRMS (ES) m/z: found 506.1600 (C27H22FN5Na03 [M+Nat), 

requires 506.1604. 
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5-(4-acetamido-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-9-yl)-2-fluoro-N-(4-phenoxyphenyl) 

benzamide (33d) 

F h-~0'O ~ I Ih-
N 
H 

Following procedure P2, 32e (70mg, 0.21 mmol) was dissolved in DMF (8ml). 4-

phenoxyaniline (46mg, 0.25mmol), CDMT (54mg, 0.31mmol) and 4-

methylmorpholine (31mg, 0.31mmol) were added. Product 33d was purified using 

preparative TLC (MeOH:DCM 1:10; Rf = 0.25) and obtained as a cream solid 

(13.2mg, yield 13%) [mp. dec >250~C]; Anal. HPLC: tR = 9.0 min, 10-100% MeCN 

over 11 min, purity 94%); 1 H NMR (400 MHz, DMSO-ds): a/ppm 10.82 (1 H, br, N-H), 

10.55 (1 H, s, N-H), 8.35 (1 H, d, J=7.08Hz, Ar-H), 7.83 (3H, m, Ar-H), 7.76 (2H, d, 

J=9.08Hz, Ar-H), 7.41 (3H, m, Ar-H), 7.12 (1 H, t, J=7.40Hz, Ar-H), 7.05 (3H, m, Ar

H), 6.99 (2H, d, J=7.83Hz, Ar-H), 6.34 (1H, s, Ar-H), 2.19 (3H, s, CH3); HRMS (ES) 

m/z: found 509.1640 (C29H22FN404 [M+Ht), requires 509.1625. 
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5-(4-acetamido-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-9-yl)-2-fluoro-N-heptylbenzamide 

(33e) 

F 

Following procedure P2, 32e (60mg, 0.18mmol) was dissolved in DMF (8m I). 

Heptylamine (24mg, 0.21mmol), CDMT (46mg, 0.26mmol) and 4-methylmorpholine 

(27mg, 0.26mmol) were added. Product 33e was purified using preparative TLC 

(MeOH:DCM 1:10; Rf= 0.21) and obtained as a white solid (15.5mg, yield 20%) [mp. 

dec >2500C]; Anal. HPLC: tR = 8.9 min, 10-100% MeCN over 11min, purity 96%); 1H 

NMR (400 MHz, DMSO-de): a/ppm 10.71 (1H, br, N-H), 8.37 (1H, t, J=5.60Hz, N-H), 

8.31 (1H, d, J=7.08Hz, Ar-H), 7.75 (3H, m, Ar-H), 7.36 (1H, m, Ar-H), 7.02 (1H, t, 

J=7.08Hz, Ar-H), 6.32 (1 H, s, Ar-H), 3.25 (2H, q, J=6.78Hz, CH2), 2.19 (3H, s, CH3), 

1.52 (2H, m, CH2), 1.29 (8H, m, CH2), 0.87 (3H, t, J=6.88Hz, CH3); 13C NMR (500 

MHz, DMSO-d6): a/ppm 170.7, 167.8, 163.8, 160.2, 158.2, 150.7, 142.2, 137.1, 

133.7,131.6,129.5,124.5,124.3,115.9,112.4,110.9, 39.2, 31.7, 29.4, 28.9, 26.8, 

23.7, 22.5, 14.4; HRMS (ES) mlz: found 439.2150 (C24H28FN403 [M+Ht), requires 

439.2145. 
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4-amino-9-(4-fluorophenyl)-2H-pyrido[1 ,2-a]pyrimidin-2-one (34a) 

Compound 18m (300mg, 1.01 mmol) was added to a stirred solution of hydrochloric 

acid:methanol 50:50 (20ml). The reaction mixture was stirred at RT for 24h and 

subsequently neutralised using saturated sodium hydroxide solution. The product 

was precipitated out, filtered and washed using water (25ml) to afford 34a as a brown 

solid (193.6mg, yield 75%) [mp. dec >250DC]; Anal. HPLC: tR = 4.8 min, 10-100% 

MeCN over 11min, purity 100%); 1H NMR (400 MHz, DMSO-d6): a/ppm 9.50 (2H, br, 

NH2), 8.45 (1 H, dd, Ja=1.77Hz, Jb=4.80Hz, Ar-H), 7.84 (1 H, dd, Ja=1.77Hz, 

Jb=7.83Hz, Ar-H), 7.44 (4H, m, Ar-H), 7.26 (1 H, t, J=8.84Hz, Ar-H), 6.54 (1 H, s, Ar

H); HRMS (ES) m/z: found 256.0883 (C14H11FN30 [M+Ht), requires 256.0886. 

2,2,2-trifluoro-N-(9-(4-fluorophenyl)-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-4-yl)acetamide 

(34b) 

To a stirred solution of 34a (50mg, O.19mmol) in DMF (10ml) was added sodium 

hydride (9mg, 0.23mmol). The reaction mixture was stirred at RT for 1 h after which 
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trifluoroacetyl chloride (52mg, 0.39mmol) was added. The reaction mixture was 

stirred further for 2h at RT. Water (20ml) was added to the reaction mixture. The 

product was precipitated out, filtered and purified using preparative TLC (MeOH:DCM 

1:10; Rf= 0.10). Product 34b was obtained as a white solid (2B.4mg, yield 41%) [mp. 

>3000C]; Anal. HPLC: tR = 9.7 min, 10-100% MeCN over 11min, purity 97%); 1H 

NMR (400 MHz, DMSO-d6): a/ppm 10.04 (1 H, br, N-H), 9.0B (1 H, d, J=7.0BHz, Ar-H), 

7.BO (1 H, dd, Ja=1.77Hz, Jb=7.0BHz, Ar-H), 7.70 (4H, m, Ar-H), 7.22 (1 H, t, 

J=7.0BHz, Ar-H), 6.23 (1 H, s, Ar-H); HRMS (ES) mlz: found 352.0702 (C16H1QF4N302 

[M+Ht), requires 352.0709. 

N-(4-(N-(9-(4-fluorophenyl)-2-oxo-2H-pyrido[1,2-a]pyrimidin-4-yl)sulfamoyl)phenyl) 

acetamide (34c) 

To a stirred solution of 34a (50mg, 0.19mmol) in DMF (10ml) was added sodium 

hydride (9mg, 0.23mmol). The reaction mixture was stirred at RT for 1 h after which 4-

acetamidobenzene sulfonyl chloride (46mg, 0.19mmol) was added. The reaction 

mixture was stirred further for 2h at RT. Water (20ml) was added to the reaction 

mixture. The product was precipitated out, filtered and purified using preparative TLC 

(MeOH:DCM 1:10; Rf= 0.15). Product 34c was obtained as a yellow solid (12.6mg, 

yield 14%) [mp. 141.2-142.7°C]; Anal. HPLC: tR = 8.03 min, 10-100% MeCN over 
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11 min, purity 92%); 1 H NMR (400 MHz, DMSO-ds): B/ppm 10.24 (1 H, s, N-H), 9.88 

(1H, br, N-H), 9.15 (1H, d, J=7.0SHz, Ar-H), 7.S1 (1H, m, Ar-H), 7.75 (2H, d, 

J=S.72Hz, Ar-H), 7.67 (2H, d, J=S.72Hz, Ar-H), 7.60 (2H, m, Ar-H), 7.26 (3H, m, Ar

H), 6.07 (1 H, s, Ar-H), 2.06 (3H, s, CH3); HRMS (ES) m/z: found 453.1027 

N-(9-(4-fluorophenyl)-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-4-yl)-4-(trifluoromethyl) 

benzenesulfonamide (34d) 

To a stirred solution of 34a (50mg, 0.19mmol) in DMF (10ml) was added sodium 

hydride (9mg, 0.23mmol). The reaction mixture was stirred at RT for 1 h after which 4-

trifluoromethylbenzene sulfonyl chloride (48mg, 0.19mmol) was added. The reaction 

mixture was stirred further for 2h at RT. Water (20m I) was added to the reaction 

mixture. The product was precipitated out, filtered and purified using preparative TLC 

(MeOH:DCM 1:10; Rf = 0.3S). Product 34d was obtained as a white solid (8mg, yield 

9%) [mp. dec >2500C]; Anal. HPLC: tR = 10.1 min, 10-100% MeCN over 12min, purity 

100%); 1H NMR (400 MHz, DMSO-ds): B/ppm 10.62 (1H, s, N-H), 9.10 (1H, d, 

J=4.54Hz, Ar-H), 7.89 (1H, dd, Ja=1.52Hz, Jb=4.55Hz, Ar-H), 7.67 (4H, m, Ar-H), 7.15 

(1 H, t, J=4.55Hz, Ar-H), 7.09 (2H, d, J=4.29, Ar-H), (2H, d, J=4.29Hz, Ar-H), 5.38 
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(1 H, s, Ar-H); HRMS (ES) m/z: found 464.0701 (C21H14F4N303S [M+Hr), requires 

464.0692. 

N-(9-(4-fluorophenyl)-2-oxo-2H-pyrido[1,2-a]pyrimidin-4-yl)-4-methylbenzene 

sulphonamide (34e) 

To a stirred solution of 34a (50mg, 0.19mmol) in DMF (10ml) was added sodium 

hydride (9mg, 0.23mmol). The reaction mixture was stirred at RT for 1 h after which p-

toluene sulfonyl chloride (37mg, 0.19mmol) was added. The reaction mixture was 

stirred further for 2h at RT. Water (20ml) was added to the reaction mixture. The 

product was precipitated out, filtered and purified using preparative TLC (MeOH:DCM 

1:10; Rf = 0.43). Product 34e was obtained as a cream solid (7.5mg, yield 9%) [mp. 

dec >250°C]; Anal. HPLC: tR = 9.4 min, 10-100% MeCN over 11min, purity 95%); 1H 

NMR (400 MHz, DMSO-d6): a/ppm 10.24 (1 H, br, N-H), 9.10 (1 H, d, J=8.34Hz, Ar-H), 

7.81 (2H, d, J=8.34Hz, Ar-H), 7.71 (2H, d, J=8.34Hz, Ar-H), 7.60 (1 H, m, Ar-H), 7.49 

(2H, d, J=8.08Hz, Ar-H), 7.27 (1 H, t, J= 8.34, Ar-H), (2H, d, J=8.08Hz, Ar-H), 6.54 

(1H, s, Ar-H), 2.29 (3H, 5, CH3); HRMS (ES) m/z: found 410.0964 (C21H17FN303S 

[M+Hr), requires 410.0975. 
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N-(9-(4-fluorophenyl)-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-4-yl)-4-nitrobenzamide (34f) 

To a stirred solution of 34a (50mg, 0.19mmol) in ethyl acetate (10ml) was added 

triethylamine (0.03ml, 0.21 mmol). The reaction mixture was stirred at RT for 0.5h 

after which 4-nitrobenzoyl chloride (38mg, 0.21mmol) was added. The reaction 

mixture was stirred further for 2h at RT. Water (20m I) was added to the reaction 

mixture. The product was precipitated out, filtered and purified using preparative TLC 

(MeOH:DCM 1:10; Rf = 0.34). Product 34f was obtained as a yellow solid (6.4mg, 

yield 8%) [mp. dec >2500C]; Anal. HPLC: tR = 8.9 min, 10-100% MeCN over 11 min, 

purity 100%); 1H NMR (400 MHz, DMSO-ds): <S/ppm 12.08 (1H, br, N-H), 9.55 (1H, d, 

J=7.49Hz, Ar-H), 8.41 (2H, d, J=8.88Hz, Ar-H), 8.26 (2H, d, J=8.88Hz, Ar-H), 7.68 

(3H, m, Ar-H), 7.27 (3H, m, Ar-H), 7.03 (1 H, s; Ar-H); HRMS (ES) m/z: found 

405.0995 (C21H14FN404 [M+Ht), requires 405.0999. 
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N-(9-bromo-2-oxo-2H-pyrido[1 ,2-a)pyrimidin-4-yl)-4-nitrobenzamide (35a) 

H . I P
N02 

0yyN ~ 

NyNIl 0 

~ Br 

To a stirred solution of 26 (50mg, 0.21 mmol) in ethyl acetate (10ml) was added 

triethylamine (2-3 drops) and 4-nitrobenzoyl chloride (41mg, 0.22mmol) at ODC. The 

reaction mixture was stirred in an ice bath at ODC for 2h. Water (20ml) was added and 

the resulting product was extracted using ethyl acetate (3 x 20m I). The organic layers 

were combined and dried over magnesium sulphate and solvent evaporated in vacuo 

to afford 35a as a cream solid (11.9mg, yield 15%) (MeOH:DCM 1:10; Rf= 0.13) [mp. 

dec >250DC); Anal. HPLC: tR = 8.0 min, 10-100% MeCN over 11min, purity 100%); 1H 

NMR (400 MHz, DMSO-d6): a/ppm 12.07 (1 H, br, N-H), 8.41 (2H, d, J=8.70Hz, Ar-H), 

8.32 (1 H, d, J=7.0BHz, Ar-H), 8.27 (2H, d, J=B.70Hz, Ar-H), B.17 (1 H, d, J=7.0BHz, 

Ar-H), 7.01 (1 H, t, J=7.08Hz, Ar-H), 6.54 (1 H, s, Ar-H); HRMS (ES) m/z: found 

410.9693 (C1sHgBrN4Na04 [M+Nat), requires 410.9705. 

N-(9-bromo-2-oxo-2H-pyrido[1 ,2-a)pyrimidin-4-yl)morpholine-4-carboxamide (35b) 

H ('0 
0yyNI(N~ 

NyNIl 0 

~ Br . 

To a stirred solution of 26 (100mg, 0.42mmol) in dimethylformamide (10ml) was 

added sodium hydride (20mg, 0.5mmol). The reaction mixture was stirred at RT for 
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1 h after which 4-morpholinecarbonyl chloride (62mg, 0.42mmol) was added. The 

reaction mixture was stirred further for 2h at RT. Water (30ml) was added to the 

reaction mixture. The product subsequently precipitated out, filtered and purified 

using preparative TLC (MeOH:OCM 1:10; Rf = 0.30). Product 35b was obtained as a 

cream solid (23.6mg, yield 16%) [mp. dec >250DC]; Anal. HPLC: tR = 6.2 min, 10-

100% MeCN over 11 min, purity 99%); 1 H NMR (400 MHz, OMSO-ds): a/ppm 10.62 

(1 H, br, N-H), 9.21 (1 H, d, J=7.20Hz, Ar-H), 8.29 (1 H, dd, Ja=1.04Hz, Jb=7.26Hz, Ar

H), 7.05 (1 H, t, J=7.26Hz, Ar-H), 6.93 (1 H, s, Ar-H), 3.52 (4H, m, CH2), 3.21 (4H, m, 

CH2); HRMS (ES) m/z: found 353.0260 (C13H14BrN403 [M+Ht), requires 353.0249. 

4-«9-bromo-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-4-yl)amino)-4-oxobutanoic acid (35c) 

H 0 

0yyN~OH 
NyNIl 0 

~ Br 

Following procedure P2, succinic acid (100mg, 0.85mmol) was dissolved in DMF 

(15ml). Compound 26 (244mg, 1.02mmol), COMT (221mg, 1.27mmol) and 4-

methylmorpholine (12Bmg, 1.27mmol) were added. Product 35c was purified using 

preparative TLC (MeOH:OCM 1:10; Rf = 0.06) and obtained as a cream solid 

(23.6mg, yield B%) [mp. dec >250DC]; Anal. HPLC: tR = 4.7 min, 10-100% MeCN over 

11min, purity 100%); 1H NMR (400 MHz, OMSO-ds): a/ppm 12.55 (1H, s, O-H), 10.62 

(1 H, br, N-H), 8.30 (1 H, d, J=7.0BHz, Ar-H), 8.02 (1 H, d, J=7.0BHz, Ar-H), 6.95 (1 H, 

m, Ar-H), 6.17 (1 H, s, Ar-H), 2.64 (2H, t, J=7.12Hz, CH2), 2.39 (2H, t, J=7.12Hz, 

CH2); 13C NMR (500 MHz, DMSO-ds): a/ppm 176.0, 175.5, 151.0, 147.4, 141.9, 
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140.5, 124.6, 119.3, 113.9, 110.2, 34.7, 33.2; HRMS (ES) m/z: found 339.9960 

(C12H118rN304 [M+Hn, requires 339.9933. 

N-(9-bromo-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-4-yl)-2,2,2-trifluoroacetamide (35d) 

H F F 

O~N0F 
NyNIl 0 

N Br 

Reaction similar to that of 35b except that compound 26 (200mg, 0.83mmol), 

dimethylformamide (15ml), sodium hydride (40mg, 1mmol) and trifluoroacetyl 

chloride (110mg, 0.83mmol) were used. Product 35d was purified using column 

chromatography (MeOH:DCM 1:10; Rf = 0.02) and obtained as a brown solid 

(106.6mg, yield 38%) [mp. dec >2700 C); Anal. HPLC: tR = 8.9 min, 10-100% MeCN 

over 14min, purity 95%); 1H NMR (400 MHz, DMSO-d6): a/ppm 13.40 (1H, br, N-H), 

9.57 (1 H, dd, Ja=1.28Hz, Jb=7.20Hz, Ar-H), 8.61 (1 H, dd, Ja=1.30Hz, Jb=7.24Hz, Ar

H), 7.72 (1 H, s, Ar-H), 7.47 (1 H, t, J=7.20Hz, Ar-H); 13C NMR (500 MHz, DMSO-d6): 

<5/ppm 168.9, 162.5, 156.8, 148.4, 142.9, 129.6, 119.2, 118.6, 117.6, 94.4; HRMS 

(ES) m/z: found 335.9599 (C10H6BrF3N302 [M+Hr), requires 335.9595. 
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4-( 4-acetamido-2 -oxo-2H-pyrido[ 1 ,2-a ]pyrimid in-9-yl)-N-( 4-phenoxyphenyl) 

benzamide (36a) 

Following procedure P2, 18h (80mg, 0.25mmol) was dissolved in DMF (10ml). 4-

phenoxyaniline (55mg, 0.30mmol), CDMT (65mg, 0.37mmol) and 4-

methylmorpholine (38mg, 0.37mmol) were added. Product 36a was purified using 

preparative TLC (MeOH:DCM 1:10; Rf= 0.25) and obtained as a cream solid (16mg, 

yield 13%) [mp. 148.9-150.5°C]; Anal. HPLC: tR = 12.1 min, 10-100% MeCN over 

14min, purity 99%); 1H NMR (400 MHz, DMSO-d6): 5/ppm 12.25 (1H, br, N-H), 10.39 

(1H, s, N-H), 8.43 (1H, d, J=7.08Hz, Ar-H), 8.02 (2H, d, J=8.44Hz, Ar-H), 7.84 (2H, d, 

J=9.01 Hz, Ar-H), 7.79 (1 H, dd, Ja=1.40Hz, Jb=7.08Hz, Ar-H), 7.75 (2H, d, J=8.44Hz, 

Ar-H), 7.39 (2H, m, Ar-H), 7.12 (1H, m, Ar-H), 7.03 (5H, m, Ar-H), 6.38 (1H, s, Ar-H), 

2.18 (3H, s, CH3); HRMS (ES) m/z: found 491.1690 (C2sH23N404 [M+Ht), requires 

491.1675. 
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N-(2-([1,1'-biphenyl]-4-yl)ethyl)-4-(4-acetamido-2-oxo-2H-pyrido[1,2-a]pyrimidin-9-yl) 

benzamide (3Gb) 

H 
N 

o 

Following procedure P2, 18h (1~Omg, 0.31mmol) was dissolved in DMF (8ml). 2-(4-

biphenyl)ethylamine (73mg, 0.37mmol), CDMT (81mg, 0.46mmol) and 4-

methylmorpholine (47mg, 0.46mmol) were added. Product 3Gb was purified using 

preparative TLC (MeOH:DCM 1:10; Rf = 0.28) and obtained as a cream solid 

(22.6mg, yield 15%) [mp. dec >250°C]; Anal. HPLC: tR = 8.8 min, 10-100% MeCN 

over 11min, purity 97%); 1H NMR (400' MHz, DMSO-d6): a/ppm 8.95 (1 H, d, 

J=7.08Hz, Ar-H), 8.67 (1 H, t, J=6.52Hz, N-H), 8.45 (1 H, s, N-H), 7.88 (2H, d, 

J=8.44Hz, Ar-H), 7.65 (7H, m, Ar-H), 7.45 (2H, m, Ar-H), 7.36 (3H, m, Ar-H), 6.90 

(1 H, t, J=7.08Hz, Ar-H), 6.61 (1 H, s, Ar-H), 3.55 (2H, q, J=7.12Hz, CH2), 2.92 (2H, t, 

J=7.12Hz, CH2), 2.05 (3H, s, CH3); HRMS (ES) mlz: found 503.2086 (C31H27N403 

[M+~r), requires 503.2038. 
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4-(4-acetamido-2-oxo-2H-pyrido[1,2-a]pyrimidin-9-yl)-N-(2-(benzyloxy)phenyl) 

benzamide (36c) 

To a stirred solution of HBTU (211 mg, 0.56mmol) in dichloromethane (Bml) was 

added compound iSh (90mg, 0.2Bmmol). The reaction mixture was stirred at RT for 

1 h after which 2-benzyloxyaniline (67mg, 0.33mmol) was added and the mixture was 

subsequently stirred for a further 1.5h at RT. The solvent was evaporated in vacuo 

and product 36c was purified using column chromatography (MeOH :OCM 1: 10; Rf = 

0.29) and obtained as a cream solid (2B.7mg, yield 29%) [mp. dec >140°C]; Anal. 

HPLC: tR = 6.9 min, 10-100% MeCN over 11min, purity 91%); 1H NMR (400 MHz, 

DMSO-d6): 5/ppm 10.69 (1H, br, N-H), 9.60 (1H, s, N-H), 8.33 (1H, d, J=7.08Hz, Ar

H), 8.03 (2H, d, J=8.47Hz, Ar-H), 7.97 (2H, m, Ar-H), 7.85 (1 H, d, J=8.47Hz, Ar-H), 

7.79 (1H, m, Ar-H), 7.75 (2H, d, J=8.52Hz, Ar-H), 7.71 (1H, m, Ar-H), 7.54 (2H, m, 

Ar-H), 7.41 (2H, m, Ar-H), 7.17 (1H, m, Ar-H), 7.04 (1H, t, J=7.08Hz, Ar-H), 6.32 (1H, 

s, Ar-H), 3.~0 (2H, s, CH2), 2.19 (3H, s, CH3); HRMS (ES) m/z: found 505.1877 

(C30H25N404 [M+Hr), requires 505.1831. 

199 



4-(4-acetamido-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-9-yl)-N-(4-ethylphenethyl)benzamide 

(36d) 

Following procedure P2, 18h (100mg, 0.31mmol) was dissolved in DMF (8ml). 4-

ethylphenethylamine (55mg, 0.37mmol), CDMT (81 mg, 0.46mmol) and 4-

methylmorpholine (47mg, 0.46mmol) were added. Product 36d was purified using 

preparative TLC (MeOH:DCM 1:10; Rf = 0.28) and obtained as a cream solid 

(32.9mg, yield 23%) [mp. dec >250°C]; Anal. HPLC: tR = 8.3 min, 10-100% MeCN 

over 11min, purity 95%); 1H NMR (400 MHz, DMSO-d6): 5/ppm 9.73 (1 H, br, N-H), 

8.65 (1H, t, J=5.58Hz, N-H), 8.40 (1H, d, J=7.10Hz, Ar-H), 7.89 (2H, d, J=8.41Hz, Ar

H), 7.76 (1H, dd, Ja=1.40Hz, Jb=7.10Hz, Ar-H), 7.68 (2H, d, J=8.41 Hz, Ar-H), 7.17 

(4H, m, Ar-H), 7.02 (1H, t, J=7.10Hz, Ar-H), 6.36 (1H, s, Ar-H), 3.49 (2H, q, 

J=7.05Hz, CH2), 2.83 (2H, t, J=7.05Hz, CH2), 2.57 (2H, q, J=7.60Hz, CH2), 2.18 (3H, 

s, CH3), 1.17 (3H, t, J=7.60Hz, CH3); HRMS (ES) mlz: found 455.2088 (C27H27N40 3 

[M+Ht), requires 455.2038. 
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N-([1, 1 '-biphenyl]-4-ylmethyl)-4-(4-acetamido-2-oxo-2H-pyrido[1,2-a]pyrimidin-9-yl) 

benzamide (3Ge) 

H 
N 

o 

H 
O~Ny 
N~ N 0 

~I 

Following procedure P2, 18h (100mg, 0.31mmol) was dissolved in DMF (Bml). 4-

phenylbenzylamine (6Bmg, 0.37mmol), CDMT (B1mg, 0.46mmol) and 4-

methylmorpholine (47mg, 0.46mmol) were added. Product 3Ge was purified using 

column chromatography (MeOH:DCM 1:10; Rf = 0.20) and obtained as a cream solid 

(26.9mg, yield 1B%) [mp. dec >260°C]; Anal. HPLC: tR = 8.5 min, 10-100% MeCN 

over 11min, purity 96%); 1H NMR (400 MHz, DMSO-ds): a/ppm 10.43 (1H, br, N-H), 

9.18 (1 H, t, J=5.9BHz, N-H), B.34 (1 H, d, J=7.0BHz, Ar-H), 7.99 (2H, d, J=8.44Hz, Ar

H), 7.7B (1H, dd, Ja=1.40Hz, Jb=7.0BHz, Ar-H), 7.71 (2H, d, J=8.44Hz, Ar-H), 7.65 

(4H, m, Ar-H), 7.45 (4H, m, Ar-H), 7.36 (1 H, m, Ar-H), 7.04 (1 H, t, J=7.08Hz, Ar-H), 

6.34 (1 H, s, Ar-H), 4.57 (2H, d, J=5.9BHz, CH2), 2.18 (3H, s, CH3); HRMS (ES) m/z: 
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N-(2-(1 H-indol-3-yl)ethyl)-4-(4-acetamido-2-oxo-2H-pyrido[1,2-a]pyrimidin-9-yl) 

benzamide (36f) 

~
H 

~ ~ I N 

HN 0 

Following procedure P2, 18h (100mg, 0.31mmol) was dissolved in DMF (8m I). 

Tryptamine (59mg, 0.37mmol), CDMT (81 mg, 0.46mmol) and 4-methylmorpholine 

(47mg, 0.46mmol) were added. Product 36f was purified using preparative TLC 

(MeOH:DCM 1:10; Rf = 0.14) and obtained as a cream solid (35mg, yield 24%) [mp. 

108.8-109.4°C]; Anal. HPLC: tR = 10.0 min, 10-100% MeCN over 12min, purity 96%); 

1H NMR (400 MHz, DMSO-d6): a/ppm 10.84 (1H, s, N-H), 9.66 (1H, br, N-H), 8.70 

(1 H, t, J=5.62Hz, N-H), 8.46 (1H, d, J=7.08Hz, Ar-H), 7.92 (2H, d, J=8.44Hz, Ar-H), 

7.76 (1 H, dd, Ja=1.40Hz, Jb=7.08Hz, Ar-H), 7.68 (2H, d, J=8.44Hz, Ar-H), 7.61 (1 H, 

d, J=7.84Hz, Ar-H), 7.36 (1 H, t, J=8.28Hz, Ar-H), 7.21 (1 H, dd, Ja= 2.24Hz, 

Jb=15.40Hz, Ar-H), 7.08 (1 H, m, Ar-H), 7.01 (2H, m, Ar-H), 6.39 (1 H, s, Ar-H), 3.58 

(2H, q, J=6.60Hz, CH2), 2.98 (2H, t, J=6.60Hz, CH2), 2.17 (3H, s, CH3); HRMS (ES) 

mlz: found 466.1891 (C27H24N503 [M+Ht), requires 466.1879. 
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· N-(2-([1, 1'-biphenyl]-4-yl)ethyl)-3-(2-oxo-4-(prop-1-en-2-ylamino)-2H-pyrido[1 ,2-a] 

pyrimidin-9-yl)benzamide (37a) 

Following procedure P2, 18q (90mg, 0.28mmol) was dissolved in DMF (8ml). 2-(4-

biphenyl)ethylamine (66mg, 0.33mmol), CDMT (73mg, 0.42mmol) and 4-

methylmorpholine (42mg, 0.42mmol) were added. Product 37a was purified using 

preparative TLC (MeOH:DCM 1:10; Rf= 0.31) and obtained as a white solid (65mg, 

yield 46%) [mp. dec >260°C]; Anal. HPLC: tR = 8.8 min, 10-100% MeCN over 20m in, 

purity 91 %); 1H NMR (400 MHz, DMSO-ds): is/ppm 10.67 (1 H, br, N-H), 8.66 (1 H, t, 

J=5.58Hz, N-H), 8.32 (1 H, d, J=7.10Hz, Ar-H), 7.99 (1 H, m, Ar-H), 7.87 (1 H, m, Ar

H), 7.76 (1 H, m, Ar-H), 7.64 (2H, dd, Ja=1.18Hz, Jb=8.28Hz, Ar-H), 7.61 (2H, d, 

J=8.28Hz, Ar-H), 7.55 (1H, t, J=7.76Hz, Ar-H), 7.45 (2H, t, J=7.62Hz, Ar-H), 7.34 

(3H, m, Ar-H), 7.03 (1 H, t, J=7.10Hz, Ar-H), 6.33 (1 H, s, Ar-H), 3.54 (2H, q, 

J=7.07Hz, CH2), 2.91 (2H, t, J=7.07Hz, CH2), 2.18 (3H, s, CH3); HRMS (ES) m/z: 

found 503.2068 (C31 H27N40 3 [M+Ht), requires 503.2083. 
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N-( 4-ethylphenethyl)-3-(2 -oxo-4-(prop-1-en-2-ylamino )-2H-pyrido[ 1 ,2-a]pyrimid in-9-yl) 

benzamide (37b) 

h-~ ~I 
N 
H 

Following procedure P2, 18q (65mg, 0.20mmol) was dissolved in DMF (6ml). 4-

ethylphenethylamine (36mg, 0.24mmol), CDMT (53mg, 0.30mmol) and 4-

methylmorpholine (30mg, 0.30mmol) were added. Product 37b was purified using 

preparative TLC (MeOH:DCM 1:10; Rf = 0.27) and obtained as a cream solid 

(50.6mg, yield 55%) [mp. 195.5-197.3°C]; Anal. HPLC: tR = 11.4 min, 10-100% 

MeCN over 14min, purity 100%); 1H NMR (400 MHz, DMSO-d6): 5/ppm 10.71 (1H, 

br, N-H), 8.62 (1 H, t, J=5.62Hz, N-H), 8.33 (1 H, d, J=7.08Hz, Ar-H), 7.98 (1 H, m, Ar

H), 7.86 (1H, m, Ar-H), 7.77 (2H, m, Ar-H), 7.54 (1H, t, J=7.58Hz, Ar-H), 7.15 (4H, m, 

Ar-H), 7.05 (1 H, t, J=7.08Hz, Ar-H), 6.33 (1 H, s, Ar-H), 3.47 (2H, q, J=7.05Hz, CH2), 

2.82 (2H, t, J=7.05Hz, CH2), 2.56 (2H, q, J=7.58Hz, CH2), 2.19 (3H, s, CH3), 1.17 

(3H, t, J=7.58Hz, CH3); HRMS (ES) m/z: found 455.2075 (C27H27N403 [M+Ht), 

requires 455.2083. 

204 



N-(2-( 1 H-indol-3-yl)ethyl)-3-(2-oxo-4-(prop-1-en-2-ylamino )-2H-pyrido[1,2-a]pyrimidin 

-9-yl)benzamide (37c) 

~ NH 

o N~ X'h 
H' '-/ U 

Following procedure P2, 18q (65mg, 0.20mmol) was dissolved in DMF (6ml). 

Tryptamine (39mg, 0.24mmol), CDMT (53mg, 0.30mmol) and 4-methylmorpholine 

(30mg, 0.30mmol) were added. Product 37c was purified using column 

chromatography (MeOH:DCM 1:10; Rf = 0.22) and obtained as a white solid (17.6mg, 

yield 19%) [mp. dec >250°C]; 1H NMR (400 MHz, DMSO-d6): <5/ppm 10.82 (1H, s, N-

H), 10.72 (1 H, br, N-H), 8.66 (1 H, t, J=5.62Hz, N-H), 8.33 (1 H, d, J=7.08Hz, Ar-H), 

8.01 (1 H, m, Ar-H), 7.88 (1 H, m, Ar-H), 7.77 (2H, m, Ar-H), 7.59 (1 H, d, J=7.76Hz, 

Ar-H), 7.55 (1 H, t, J=7.70Hz, Ar-H), 7.34 (1 H, d, J=8.03Hz, Ar-H), 7.19 (1 H, d, 

J=7.15Hz, Ar-H), 7.02 (3H, m, Ar-H), 6.33 (1 H, s, Ar-H), 3.56 (2H, q, J=7.23Hz, CH2), 

2.97 (2H, t, J=7.23Hz, CH2), 2.19 (3H, s, CH3); HRMS (ES) m/z: found 466.1871 

(C27H24N503 [M+Ht), requires 466.1879. 
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N-(4-(4-acetamido-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-9-yl)phenyl)-3-(benzyloxy) 

benzamide (38a) 

Following procedure P2, 3-benzyloxyphenyl)acetic acid (80mg, 0.33mmol) was 

dissolved in DMF (9ml). 18g (117mg, 0.39mmol), CDMT (87mg, 0.50mmol) and 4-

methylmorpholine (50mg, 0.50mmol) were added. Product 38a was purified using 

column chromatography (MeOH:DCM 1:10; Rf= 0.27) and obtained as a cream solid 

(19mg, yield 11%) [mp. dec >250°C]; Anal. HPLC: tR = 8.8 min, 10-100% MeCN over 

11min, purity 97%); 1H NMR (400 MHz, DMSO-ds): a/ppm 10.44 (1H, br,'N-H), 10.29 

(1 H, s, N-H), 8.31 (1 H, d, J=7.08Hz, Ar-H), 7.68 (3H, m, Ar-H), 7.56 (2H, d, 

J=8.40Hz, Ar-H), 7.46 (2H, d, J=7.10Hz, Ar-H), 7.37 (3H, m, Ar-H), 7.25 (1 H, t, 

J=7.84Hz, Ar-H), 7.03 (1 H, s, Ar-H), 7.00 (1 H, t, J=7.08Hz, Ar-H), 6.93 (2H, m, Ar-H), 

6.33 (1H, s, Ar-H), 5.10 (2H, s, CH2), 3.65 (2H, s, CH2), 2.17 (3H, s, CH3); HRMS 

(ES) mlz: found 541.1863 (C31 H2SN4Na04 [M+Nar), requires 541.1852. 
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N-(4-(4-acetamido-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-9-yl)phenyl)-[1, 1'-biphenyl]-4-

carboxamide (38b) 

Following procedure P2, biphenyl-4-carboxylic acid (BOmg, 0.40mmol) was dissolved 

in DMF (Bml). 189 (143mg, O.4Bmmol), CDMT (106mg, 0.61mmol) and 4-

methylmorpholine (61mg, 0.61mmol) were added. Product 38b was purified using 

preparative TLC (MeOH:DCM 1:10; Rf = 0.24) and obtained as a brown solid 

(15.7mg, yield B%) [mp. dec >230°C]; Anal. HPLC: tR = 8.7 min, 10-100% MeCN over 

11min, purity 99%); 1H NMR (400 MHz, DMSO-d6): 5/ppm 10.70 (1H, br, N-H), 10.45 

(1 H, s, N-H), 8.29 (1 H, d, J=7.0BHz, Ar-H), 8.11 (2H, d, J=B.34Hz, Ar-H), 7.B9 (4H, 

m, Ar-H), 7.77 (3H, m, Ar-H), 7.63 (2H, d, J=8.59Hz, Ar-H), 7.53 (2H, t, J=7.83Hz, Ar

H), 7.44 (1 H, m, Ar-H), 7.03 (1 H, t, J=7.0BHz, Ar-H), 6.33 (1 H, S, Ar-H), 2.19 (3H, s, 

CH3); HRMS (ES) m/z: found 475.1768 (C29H23N403 [M+Ht), requires 475.1770. 
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N-(4-(4-acetamido-2-oxo-2H-pyrido[1,2-a]pyrimidin-9-yl)phenyl)-3-(pyridin-4-yl) 

benzamide (38c) 

Following procedure P2, 3-(pyridin-4-yl)benzoic acid (80mg, 0.40mmol) was 

dissolved in DMF (8ml). 189 (130mg, 0.44mmol), CDMT (105mg, O.60mmol) and 4-

methylmorpholine (61 mg, 0.60mmol) were added. Product 38c was purified using 

preparative TLC (MeOH:DCM 1:10; Rf = 0.33) and obtained as a cream solid (9.3mg, 

yield 5%) [mp. dec >2500C); Anal. HPLC: tR = 6.4 min, 10-100% MeCN over 11min, 

purity 99%); 1H NMR (400 MHz, DMSO-d6): is/ppm 10.67 (1H, br, N-H), 10.53 (1H, s, 

N-H), 8.71 (2H, d, J=6.08Hz, Ar-H), 8.37 (1 H, s, Ar-H), 8.29 (1 H, d, J=7.08Hz, Ar-H), 

8.07 (3H, m, Ar-H), 7.89 (2H, d, J=8.44Hz, Ar-H), 7.86 (1 H, d, J=6.12Hz, Ar-H), 7.74 

(2H, m, Ar-H), 7.65 (2H, d, J=8.44Hz, Ar-H), 7.02 (1 H, t, J=7.08Hz, Ar-H), 6.32 (1 H, 

s, Ar-H), 2.19 (3H, s, CH3); HRMS (ES) m/z: found 476.1721 (C2sH22N503 [M+Ht), 

requires 476.1723. 
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N-( 4-( 4-acetamido-2-oxo-2H-pyrido[ 1 ,2 -a]pyrimidin-9-yl)phenyl)-5-oxo-1-(th iophen-2-

ylmethyl)pyrrolidine-3-carboxamide (38d) 

H 
O~Ny 

OXJ
N:-'" NI 0 

o ,-,::::::"" 
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N ~ 
o H 

N 

b 
Following procedure P2, 3-oxo-1-(2-thienylmethyl)pyrollidine-3-carboxylic acid 

(90mg, '0.40mmol) was dissolved in DMF (8ml). 189 (141mg, 0.48mmol), CDMT 

(105mg, 0.60mmol) and 4-methylmorpholine (61 mg, 0.60mmol) were added. Product 

38d was purified using preparative TLC (MeOH:DCM 1:10; Rf= 0.13) and obtained 

as a cream solid (10.7mg, yield 5%) [mp. dec >250DC]; Anal. HPLC: tR = 7.1 min, 10-

100% MeCN over 11min, purity 95%); 1H NMR (400 MHz, DMSO-d6): a/ppm 10.65 

(1 H, br, N-H), 10.24 (1 H, s, N-H), 8.27 (1 H, d, J=7.08Hz, Ar-H), 7.70 (1 H, dd, 

Ja=1.40Hz, Jb=7.08Hz, Ar-H), 7.65 (2H, d, J=8.70Hz, Ar-H), 7.56 (2H, d, J=8.70Hz, 

Ar-H), 7.46 (1H, m, Ar-H), 7.05 (1H, dd, Ja=0.86Hz, Jb=3.48Hz, Ar-H), 7.00 (2H, m, 

Ar-H), 6.31 (1 H, s, Ar-H), 4.59 (2H, s, CH2), 3.50 (2H, m, CH2), 2.98 (1 H, m, CH), 

2.59 (2H, d, J=8.34Hz, CH2), 2.18 (3H, s, CH3); HRMS (ES) m/z: found 502.1541 
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N-(4-(4-acetamido-2-oxo-2H-pyrido[1 ,2-a]pyrimidin-9-yl)phenyl)-2-(benzo[dJ[1 ,3] 

dioxol-5-yl)acetamide (38e) 

Following procedure P2, 3,4-methylenedioxyphenylacetic acid (50mg, 0.28mmol) 

was dissolved in DMF (8m I). 189 (98mg, 0.33mmol), CDMT (73mg, 0.42mmol) and 

4-methylmorpholine (42mg, 0.42mmol) were added. Product 38e was purified using 

preparative TLC (MeOH: DCM 1: 1 0; Rf = 0.25) and obtained as a cream solid 

(18.6mg, yield 15%) Imp. dec >2500 C]; Anal. HPLC: tR = 8.2 min, 10-100% MeCN 

over 11min, purity 97%); 1H NMR (400 MHz, DMSO-d6): 5/ppm 10.64 (1 H, br, N-H), 

10.25 (1H, s, N-H), 8.26 (1H, d, J=7.08Hz, Ar-H), 7.69 (1H, dd, Ja=1.05Hz, 

Jb=7.08Hz, Ar-H), 7.66 (2H, d, J=8.58Hz, Ar-H), 7.56 (2H, d, J=8.58Hz, Ar-H), 6.99 

(1 H, t, J=7.0BHz, Ar-H), 6.93 (1 H, s, Ar-H), 6.87 (1 H, d, J=7.85Hz, Ar-H), 6.81 (1 H, 

dd, Ja=1.50Hz, Jb=7.86Hz, Ar-H), 6.31 (1 H, s, Ar-H), 5.99 (2H, s, CH2), 3.59 (2H, s, 

CH2), 2.18 (3H, s, CH3); HRMS (ES) mlz: found 457.1519 (C25H21N405 [M+Ht), 

requires 457.1512. 
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N-(3-( 4-a cetam id 0-2 -oxo-2H-pyrid o[ 1 ,2-8 ]pyrim id i n-9-yl) p henyl)-2 -( 4-ethoxyp henyl) 

acetamide (39a) 

Following procedure P2, 4-ethoxyphenylacetic acid (59mg, 0.33mmol) was dissolved 

in DMF (6ml). 18d (116mg, 0.39mmol), CDMT (B6mg, 0.49mmol) and 4-

methylmorpholine (50mg, 0.49mmol) were added. Product 39a was purified using 

preparative TLC (MeOH:DCM 1:10; Rf = 0.25) and obtained as a cream solid 

(16.8mg, yield 11 %) [mp. dec >2500 C]; Anal. HPLC: tR = 7.8 min, 10-100% MeCN 

over 11min, purity 94%); 1H NMR (400 MHz, DMSO-d6): 5/ppm 10.51 (1H, br, N-H), 

10.39 (1H, s, N-H), 8.33 (1H, d, J=7.08Hz, Ar-H), 7.77 (1H, m, Ar-H), 7.68 (2H, m, Ar

H), 7.36 (1 H, t, J=7.90Hz, Ar-H), 7.25 (2H, d, J=B.60Hz, Ar-H), 7.22 (1 H, d, 

J=7.90Hz, Ar-H), 7.02 (1 H, t, J=7.0BHz, Ar-H), 6.B6 (2H, d, J=B.60Hz, Ar-H), 6.31 

(1 H, s, Ar-H), 3.99 (2H, q, J=7.15Hz, CH2), 3.59 (2H, s, CH2), 2.20 (3H, s, CH3), 1.04 

(3H, t, J=7.15Hz, CH3); HRMS (ES) mlz: found 457.1870 (C26H25N404 [M+Ht), 

requires 457.1876. 
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N1
_( 4-(N-(thiazol-2-yl)sulfamoyl)phenyl)succinam ide (40b) 

To a stirred solution of succinylsufathiazole (1400mg, 3.94mmol) in anhydrous 

toluene (30ml) was added thionyl chloride (939mg, 7.B9mmol). The resulting mixture 

was refluxed at 100°C for 2h. Excess toluene was removed in vacuo and the 

resulting product added to concentrated ammonia solution (20ml) and stirred at OOC 

for 1 h. The product was precipitated out by neutr~lization with dilute hydrochloric acid 

and subsequently filtered and washed using hot ether and dried in vacuo to afford 

40b as a cream powder (39.7mg, yield 5%) [mp. 215.7-216.BOC]; Anal. HPLC: tR = 

7.9 min, 10-100% MeCN over 20min, purity 100%); 1H NMR (400 MHz, DMSO-d6): 

a/ppm 12.75 (1H, br, N-H), 10.45 (1H, s, N-H), 7.72 (4H, m, Ar-H), 7.25 (2H, s, NH2), 

7.23 (1H, d, J=4.54Hz, Ar-H), 6.B1 (1H, d, J=4.54Hz, Ar-H), 2.56 (2H, t, J=7.15Hz, 

CH2), 2.39 (2H, t, J=7.12Hz, CH2); 13C NMR (500 MHz, DMSO-d6): o/ppm 176.B, 

173.7,171.7,143.0,136.4,127.3,124.9, 11B.B, 10B.5, 32.1, 30.3; HRMS (ES) m/z: 

found 355.0502 (C13H1SN404S2 [M+Ht), requires 355.0535. 
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Methyl 4-oxo-4-«4-(N-(thiazol-2-yl)sulfamoyl)phenyl)amino)butanoate (40c) 

JL) 
HN 8 

I 
0=8=0 

¢ 
'oZNH 

To a stirred solution of succinylsulfathiazole (1000mg, 2.82mmol) in anhydrous 

methanol (25ml) at OOC was added concentrated sulphuric acid (276mg, 2.82mmol) 

over a 5min period. The resulting reaction mixture was stirred at RT for 4h and 

subsequently filtered. The compound was washed using saturated sodium 

bicarbonate solution and recrystallised from ethanol to afford 40c as a white powder 

(119.1mg, yield 11%) [mp. 201.3-202.5°C]; Anal. HPLC: tR = 14.5 min, 10-100% 

MeCN over 20min, purity 99%); 1H NMR (400 MHz, DMSO-d6): 5/ppm 12.49 (1H, br, 

N-H), 10.33 (1H, s, N-H), 7.72 (4H, m, Ar-H), 7.23 (1H, d, J=4.54Hz, Ar-H), 6.79 (1H, 

d, J=4.54Hz, Ar-H), 3.60 (3H, s, CH3), 2.63 (4H, m, CH2); 13C NMR (500 MHz, 

DMSO-d6): 5/ppm 173.2, 170.9, 169.2, 142.7, 136.8, 127.4, 125.5, 118.9, 108.5, 

51.8, 31.4, 28.8; HRMS (ES) m/z: found 370.0530 (C14H16N305S2 [M+Hr), requires 

370.0531. 

213 



N-(4-(N-(thiazol-2-yl)sulfamoyl)phenyl)pentanamide (40d) 

1) 
HN S 

I 
o=s=o 

¢ ]NH 
To a stirred solution of sulfathiazole (100mg, 0.39mmol) in DMF (15ml) was added 

sodium hydride (19mg, 0.47mmol) and the resulting mixture stirred at RT for 1h. 

Valeryl chloride (57mg, 0.47mmol) was subsequently added and the reaction mixture 

stirred for a further 2h. Water (40ml) was added to the reaction mixture and . 

compound extracted using ethyl acetate (3 x 50ml). The organic layers were 

combined and dried over magnesium sulphate and solvent evaporated in vacuo to 

give 40d as a white powder (73.7mg, yield 55%) [mp. 219.8-221.3°C]; Anal. HPLC: 

tR= 15.6 min, 10-100% MeCN over 20min, purity 100%): 1H NMR (400 MHz, DMSO-

d6): 5/ppm 12.S8 (1H, br, N-H), 10.20 (1H, s, N-H), 7.72 (4H, s, Ar-H), 7.24 (1H, d, 

J=4.S4Hz, Ar-H), 6.80 (1 H, d, J=4.S4Hz, Ar-H), 2.33 (2H, t, J=7.S4Hz, CH2), 1.S7 

(2H, m, CH2), 1.32 (2H, m, CH2), 0.89 (3H, t, J=7.30Hz, CH3); 13C NMR (SOO MHz, 

DMSO-d6): 5/ppm 172.3,169.2,142.9,136.6,127.4, 12S.2, 118.9, 108.S, 36.6, 27.6, 

22.2, 14.2: HRMS (ES) m/z: found 340.0778 (C14H1SN303S2 [M+Ht), requires 

340.0790. 
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3-oxo-3-«4-(N-(thiazol-2-yl)sulfamoyl)phenyl)amino)propanoic acid (40e) 

JL~ 
HN S 

I 
o=s=o 

¢ 
O~NH 

OH 

Compound 42 (300mg, 0.81 mmol) was added to 2.5% sodium hydroxide solution 

(1 Oml). The resulting mixture was stirred at 90°C for 2h. The product was precipitated 

from the solution by neutralization with dilute hydrochloric acid and subsequently 

filtered and washed using diethyl ether (20m I) to give 40e as a white powder 

(246.6mg, yield 89%) [mp. dec >2500C); Anal. HPLC: tR = 10.1 min, 10-100% MeCN 

over 20min, purity 96%); 1H NMR (400 MHz, DMSO-d6): l>/ppm 11.83 (1 H, s, N-H), 

7.59 (5H, m, Ar-H, N-H), 6.90 (1H, d, J=3.80Hz, Ar-H), 6.42 (1H, d, J=3.80Hz, Ar-H), 

4.23 (1H, br, OH), 2.99 (2H, s, CH2); 13C NMR (500 MHz, DMSO-d6): l>/ppm 171.6, 

170.2,168.9,140.9,140.3,137.7,127.5,118.2,107.5, 31.2; HRMS (ES) m/z: found 

342.0170 (C12H12N305S2 [M+Hr), requires 342.0218. 
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2-oxo-2-( (4-(N-(thiazol-2-yl)su Ifamoyl)phenyl)am ino )acetic acid (40f) 

l~ 
HN S 

I 
o=s=o 

¢ 
°XNH 

HO 0 

Compound 43 (350mg, 0.99mmol) was added to 2.5% sodium hydroxide solution 

(1 Oml). The resulting mixture was stirred at 90°C for 2h. The product was precipitated 

from the solution by neutralization with dilute hydrochloric acid and subsequently 

filtered and washed using diethyl ether (20ml) to give 40f as a white powder 

(284.9mg, yield 88%) [mp. dec >2700C); Anal. HPLC: tR = 1.3 min, 10-100% MeCN 

over 20min, purity 100%); 1H NMR (400 MHz, DMSO-d6): a/ppm 12.61 (1H, br, N-H), 

10.35 (1H, s, N-H), 7.70 (4H, m, Ar-H), 6.90 (1H, d, J=3.74Hz, Ar-H), 6.41 (1H, d, 

J=3.74Hz, Ar-H), 5.43 (1H, s, OH); HRMS (ES) m/z: found 328.0003 (C11H10N305S2 

[M+Ht), requires 328.0062. 
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5-oxo-5-«4-(N-(thiazol-2-yl)sulfamoyl)phenyl)amino)pentanoic acid (409) 

1) 
HN S 

I 
o=s=o 

¢ 
oJNH 

OH 

To a stirred solution of sulfathiazole (100mg, 0.39mmol) in anhydrous 

dichloromethane (20m I) was added glutaric anhydride (54mg, 0.47mmol) and 

triethylamine (48mg, 0.47mmol). The resulting mixture was refluxed at 80°C for 2h 

and solvent evaporated in vacuo. The resulting product was purified using 

preparative TLC (MeOH:DCM 1:10; Rf = 0.02) and obtained as a cream solid 

(89.3mg, yield 62%) [mp. dec >2500C]; Anal. HPLC: tR = 12.2 min, 10-100% MeCN 

over 20min, purity 95%); 1H NMR (400 MHz, DMSO-ds): 5/ppm 10.24 (1H, s, N-H), 

7.75 (1H, s, N-H), 7.67 (4H, m, Ar-H), 7.07 (1 H, d, J=3.75Hz, Ar-H), 6.62 (1 H, d, 

J=3.75Hz, Ar-H), 5.74 (1 H, br, OH), 2.37 (2H, t, J=7.08Hz, CH2), 1.79 (2H, t, 

J=7.08Hz, CH2), 1.70 (2H, m, CH2); 13C NMR (500 MHz, DMSO-ds): 5/ppm 175.1, 

171.8,169.7,142.0,138.4, 127.3, 125.3, 118.7, 108.1,36.0,33.9,20.9; HRMS (ES) 

m/z: found 370.0526 (C14H1SN30SS2 [M+Ht), requires 370.0531. 
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N1-phenyl-rf -( 4-(N-(thiazol-2-yl)sulfamoyl)phenyl)succinamide (41 a): 

Following procedure P2, succinylsulfathiazole (100mg, 0.28mmol) was dissolved in 

DMF (8ml). Aniline (52mg, 0.56mmol), CDMT (74mg, 0.42mmol) and 4-

methylmorpholine (43mg, 0.42mmol) were added. Product 41a was purified using 

preparative TLC (MeOH:DCM 1:10; Rf = 0.49) and obtained as a cream solid 

(23.9mg, yield 20%) [mp. dec >2300 C]; Anal. HPLC: tR = 15.3 min, 10-100% MeCN 

over 20min, purity 98%); 1H NMR (400 MHz, DMSO-d6): 5/ppm 11.93 (1 H, br, N-H), 

10.36 (1H, 5, N-H), 10.01 (1H, 5, N-H), 7.72 (4H, 5, Ar-H), 7.58 (2H, d, J=7.60Hz, Ar

H), 7.28 (2H, t, J=7.64Hz, Ar-H), 7.23 (1 H, d, J=4.56Hz, Ar-H), 7.02 (1 H, t, J=7.63Hz, 

Ar-H), 6.79 (1H, d, J=4.56Hz, Ar-H), 2.67 (4H, t, J=4.48Hz, CH2); 13C NMR (500 

MHz, DMSO-ds): 6/ppm 171.5, 170.7, 169.2, 142.8, 139.8, 136.6, 129.1, 127.4, 

125.4, 123.4, 119.3, 118.8, 108.5, 31.7, 31.4; HRMS (ES) mlz: found 453.0656 
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N1-(3-hydroxypyridin-2-yl)-wt -(4-(N-(thiazol-2-yl)sulfamoyl)phenyl)succinamide (41 b) 

Following procedure P2, succinylsulfathiazole (100mg, 0.28mmol) was dissolved in 

DMF (8ml). 2-amino-3-hydroxypyridine (62mg, 0.56mmol), CDMT (74mg, 0.42mmol) 

and 4-methylmorpholine (43mg, 0.42mmol) were added. Product 41 b was purified 

using preparative TLC (MeOH:DCM 1:10; Rf = 0.31) and obtained as a white solid 

(42.4mg, yield 34%) [mp. dec >2500 C); Anal. HPLC: tR = 7.68 min, 10-100% MeCN 

over 11 min, purity 95%); 1H NMR (400 MHz, DMSO-d6): 5/ppm 10.63 (1 H, br, N-H), 

10.24 (1H, s, N-H), 9.41 (1H, br, N-H), 7.67 (4H, m, Ar-H), 8.21 (1H, dd, Ja=1.52Hz, 

Jb=4.55Hz, Ar-H), 7.30 (1 H, m, Ar-H), 7.09 (1 H, d, J=4.50Hz, Ar-H), 6.82 (1 H, dd, 

Ja=1.52Hz, Jb=7.58Hz, Ar-H), 6.63 (1 H, d, J=4.50Hz, Ar-H), 5.38 (1 H, br, OH), 2.69 

(2H, m, CH2), 2.56 (2H, m, CH2); HRMS (ES) m/z: found 448.0736 (C1sH1SNsOSS2 

[M+Ht), requires 448.0749. 
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N1-(2-hydroxyphenyl)-~ -( 4-(N-(thiazol-2-yl)sulfamoyl)phenyl)succinamide (41 c) 

1~ 
HN S 

I 
o=s=o 

¢ 
~NZNH 

OH H 

Following procedure P2, succinylsulfathiazole (100mg, 0.28mmol) was dissolved in 

DMF (8ml). 2-amino phenol (61 mg, 0.56mmol), CDMT (74mg, 0.42mmol) and 4-

methylmorpholine (43mg, 0.42mmol) were added. Product 41c was purified using 

preparative TLC (MeOH:DCM 1:10; Rf = 0.42) and obtained as a cream solid 

(13.2mg, yield 11%) [mp. dec >250°C] Anal. HPLC: tR = 15.0 min, 10-100% MeCN 

over 20min, purity 96%); 1H NMR (400 MHz, DMSO-ds): 5/ppm 11.19 (1 H, br, N-H), 

10.30 (1H, s, N-H), 9.72 (1H, s, N-H), 7.70 (4H, s, Ar-H), 7.18 (1H, d, J=4.48Hz, Ar

H), 6.87 (4H, m, Ar-H), 6.73 (1 H, d, J=4.48Hz, Ar-H), 3.86 (1 H, br, OH), 2.70 (4H, m, 

CH2); HRMS (ES) m/z: found 447.0795 (ClsH1SN405S2 [M+Ht), requires 447.0797. 
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N1-(3-fluorobenzyl)-~ -(4-(N-(thiazol-2-yl)sulfamoyl)phenyl)succinamide (41 d) 

1~ 
HN S 

I 
o=s=o 

¢ 
o NH 

F 

Following procedure P2, succinylsulfathiazole (100mg, 0.28mmol) was dissolved in 

DMF (8ml). 3-fluorobenzylamine (70mg, 0.S6mmol), CDMT (74mg, 0.42mmol) and 4-

methylmorpholine (43mg, 0.42mmol) were added. Product 41d was purified using 

preparative TLC (MeOH:DCM 1:10; Rf = 0.47) and obtained as a cream solid 

(23.9mg, yield 18%) [mp. dec >2500 C]; Anal. HPLC: tR = 15.2 min, 10-100% MeCN 

over 20m in, purity 96%); 1H NMR (400 MHz, DMSO-d6): ~/ppm 11.93 (1 H, br, N-H), 

10.30 (1H, s, N-H), 8.46 (1H, t, J=S.94Hz, N-H), 7.72 (4H, s, Ar-H), 7.32 (1H, m, Ar

H), 7.22 (1 H, d, J=4.S4Hz, Ar-H), 7.06 (3H, m, Ar-H), 6.79 (1 H, d, J=4.S4Hz, Ar-H), 

4.28 (2H, d, J=S.94Hz, CH2), 2.63 (2H, t, J=6.88Hz, CH2), 2.48 (2H, t, J=6.88Hz, 

CH2); 13C NMR (500 MHz, DMSO-d6): ~/ppm 171.8, 171.5, 169.8, 163.7, 143.2, 

143.1, 142.8, 136.7, 127.4, 125.7, 123.5, 123.4, 118.8, 114.1, 108.5,42.0,32.1, 

30.5; HRMS (ES) m/z: found 463.0914 (C2oH2oFN404S2 [M+Ht), requires 463.0910. 
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N1-(thiazol-2-yl)-~ -( 4-(N-(thiazol-2-yl)sulfamoyl)phenyl)succinamide (41 e) 

1~ 
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Following procedure P2, succinylsulfathiazole (100mg, 0.28mmol) was dissolved in 

DMF (8ml). 2-aminothiazole (56mg, 0.56mmol), CDMT (74mg, 0.42mmol) and 4-

methylmorpholine (43mg, 0.42mmol) were added. Product 41e was purified using 

preparative TLC (MeOH:DCM 1:10; Rf = 0.42) and obtained as a white solid (12.7mg, 

yield 10%) [mp. dec >250°C]; Anal. HPLC: tR = 3.8 min, 10-100% MeCN over 20min, 

purity 100%); 1H NMR (400 MHz, DMSO-d6): <5/ppm 12.14 (1H, br, N-H), 11.15 (1H, 

br, N-H), 10.28 (1H, s, N-H), 7.67 (4H, m, Ar-H), 7.45 (1H, d, J=3.56Hz, Ar-H), 7.18 

(1 H, d, J=3.56Hz, Ar-H), 7.10 (1 H, d, J=4.20Hz, Ar-H), 6.64 (1 H, d, J=4.20Hz, Ar-H), 

2.72 (4H, m, CH2); HRMS (ES) m/z: found 438.0344 (C16H16N504S3 [M+Ht), requires 

438.0364. 
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N1-propyl-tf -( 4-( N-(thiazol-2 -yl)su Ifamoyl)phenyl)succinam ide (41 f) 

1) 
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o=s=o 
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~N 0 
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Following procedure P2, succinylsulfathiazole (100~g, 0.28mmol) was dissolved in 

DMF (10ml). Propylamine (20mg, 0.34mmol), CDMT (74mg, 0.42mmol) and 4-

methylmorpholine (43mg, 0.42mmol) were added. Product 41f was purified using 

preparative TLC (MeOH:DCM 1:10; Rf= 0.42) and obtained as a white solid (15.7mg, 

yield 14%) [mp. dec >2500 C); Anal. HPLC: tR = 13.8 min, 10-100% MeCN over 

20min, purity 100%); 1H NMR (400 MHz, DMSO-ds): 5/ppm 12.38 (1H, br, N-H), 

10.28 (1H, s, N-H), 7.85 (1H, t, J=5.30Hz, N-H), 7.71 (4H, s, Ar-H), 7.24 (1H, d, 

J=4.60Hz, Ar-H), 6.81 (1 H, d, J=4.60Hz, Ar-H), 2.99 (2H, q, J=6.87Hz, CH2), 2.57 

(2H, t, J=7.10Hz, CH2), 2.40 (2H, t, J=7.10Hz, CH2), 1.39 (2H, m, CH2), 0.83 (3H, t, 

J=7.40Hz, CH3); 13C NMR (500 MHz, DMSO-ds): 5/ppm 173.3, 171.6, 171.3, 142.9, 

136.5, 127.4, 125.4, 118.8, 108.5, 40.8, 32.2, 30.5, 22.9, 11.9; HRMS (ES) mlz: 
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Ethyl 3-oxo-3-«4-(N-(thiazol-2-yl)sulfamoyl)phenyl)amino)propanoate (42) 

Sulfathiazole (860mg, 3.37mmol) was added to diethyl malonate (1079mg, 

6.75mmol) and heated under reflux for 2h at 150°C. After cooling the reaction mixture 

to RT, the solid product was filtered and washed using diethyl ether (20ml) and dried 

in vacuo. The product was subsequently recrystallised from ethanol to give 42 as a 

white powder (891.5mg, yield 72%) [mp. 205.3-205.8°C]; Anal. HPLC: tR = 14.9 min, 

10-100% MeCN over 20min, purity 90%); 1H NMR (400 MHz, DMSO-ds): 5/ppm 

12.70 (1H, br, N-H), 10.51 (1H, s, N-H), 7.73 (4H, m, Ar-H), 7.25 (1H, d, J=4.60Hz, 

Ar-H), 6.82 (1 H, d, J=4.60Hz, Ar-H), 4.12 (2H, q, J=7.10Hz, CH2), 3.49 (2H, s, CH2), 

1.20 (3H, t, J=7.10Hz, CH3); HRMS (ES) m/z: found 370.0525 (C14H1SN305S2 

[M+Ht), requires 370.0531. 
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Ethyl 2-oxo-2-((4-(N-(thiazol-2-yl)sulfamoyl)phenyl)amino)acetate (43) 

To a stirred solution of sulfathiazole (1000mg, 3.92mmol) in ethanol (15m!) was 

added diethyl oxalate (1145mg, 7.84mmol). The resulting mixture was stirred under 

reflux for 2h at 110°C. After cooling the reaction mixture to RT, the solid product was 

filtered and washed using diethyl ether (30m I) to give 43 as a cream powder 

(720.9mg, yield 52%) [mp. 244.9-245.2°C]; Anal. HPLC: tR = 7.7 min, 10-100% 

MeCN over 12min, purity 95%); 1H NMR (400 MHz, DMSO-d6): a/ppm 12.73 (1H, br, 

N-H), 11.07 (1 H, s, N-H), 7.85 (4H, m, Ar-H), 7.26 (1 H, d, J=4.54Hz, Ar-H), 6.83 (1 H, 

d, J=4.54Hz, Ar-H), 4.32 (2H, q, J=7.10Hz, CH2), 1.32 (3H, t, J=7.10Hz, CH3); 

HRMS (ES) mlz: found 356.0358 (C13H14N30SS2 [M+Ht), requires 356.0375. 
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10.2Computational procedure 

10.2.1 Docking methodology 

The docking methodology is described in three parts, setting up the protein and 

ligand structures along with setting parameters for the docking procedure. 

10.2.1.1 Protein preparation 

The crystal structure of human POT1 bound to telomeric single stranded DNA (1xjv) 

was downloaded from the Brookhaven protein databank (www.pdb.org). The 

structure contained some missing protein residues (Residues PRO-146, SER-147 

and TRP-148). The structure was processed using SWISS-MODEL (Schwede et aI, 

2003), an automated protein structure homology-modelling server to obtain the 

complete POTt crystal structure. The missing residues obtained using the SWISS

MODEL were then incorporated back into the original crystal structure pdb file. This 

was done to ensure that the structure is kept close to the original pdb structural data. 

The ionisation/tautomeric states of the amino acid side chains were assigned using 

the WHATIF web server (http://swift.cmbLru.nl/servers/html/index.html). Hydrogen 

atoms were added to the protein and the protein structure was subsequently 

minimised in the presence of DNA using the TIP3P explicit solvent model and Amber 

ff03 parameters (Duan et aI, 2003). 
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10.2.1.2 Ligand preparation 

All ligand structures were designed using the 'sketch molecule' tool in SYBYL 8.0 

and assigned appropriate atom and bond types. Hydrogen atoms were subsequently 

added and the full geometry optimisation of the constructed structures was 

performed using the standard Tripos force fi~ld with a distance-dependent dielectric 

function and a 0.001 kcal/(mol*A) energy gradient convergence criterion with 10000 

iterations. Gasteiger-Huckel charges were assigned to each structure for the 

calculation of electrostatic interactions. The lowest energy conformation for each 

structure was obtained and used for docking. For the virtual screening, ligands were 

selected from the ZINC database. A subset of drug-like structures were selected 

resulting in a database of 55000 structures with the following molecular constraints: 

xlogP <5, molecular weight >150 and <500 g/mol, H-bond acceptors <10, rotatable 

bonds <8 and polar surface area <150A2
. The 3D structures of these compounds 

were generated using the Concord module in SYBYL 8.0. 

10.2.1.3 GOLD docking procedure 

Docking runs were carried out using GOLD V3.0.1. The ten nucleotide DNA molecule 

bound to human POT1 was deleted and the binding site was selected using active 

site radius in GOLD. All residues within 10A of serine-238 in POT1 were selected as 

binding site residues which was found to be optimal. In this study, the GOLD default 

genetic algorithm settings were used where GOLD performs 10 docking runs for 

each compound, each consisting of 10 000 genetic algorithm operations. GOLD was 

allowed to terminate early if the top three dockings were within 1.5A RMSD of each 
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other. GOLD allowed the full flexibility of the ligands and partial flexibility of POT1 

which was limited to the hydroxyl groups of serine, tyrosine and threonine. 

10.3Biological screening procedure 

10.3.1 Materials 

The materials for the assay were purchased from the following chemical suppliers: 

The DNA oligonucleotides (15mer) were purchased Sigma Aldrich, United Kingdom 

(Table 12). 

Oligo name Sequence Position of fluorescein 
label 

5"Flou Tel seq FLCNTTAGGGTTAGGGTTA N-terminal serine residue 

Telseq Oligo 2 TTAGGGTT AGGGTTA Unlabelled 

Table 12: DNA olIgonucleotIdes used In thIS study. 

Pierce® centrifuge columns (5ml) were purchased from Thermo Scientific, 

glutathione sepharase beads were purchased from GE Healthcare Bio-Sciences, 

Complete Mini EDTA-free protease inhibitor cocktail tablets were purchased from 

Roche and glutathione reduced was purchased from Fisher scientific. 
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10.3.2 Expression and purification of human POT1 
DNA (hPOT1-0B) binding domain as a GST 
fusion protein 

The pGEX6p-10B based expression construct encoding the hPOT1 OB domain 

containing residues 1-294 with an N-terminal GST tag was generously provided by 

Dr Lodewyk Dekker, University of Nottingham. The constructed plasm ids were 

transformed into Escherichia coli BL21 (DE3) cells (Novagen, USA). Overnight 

growth of Sml cultures with Amphicilin (1 IJllml) in LB broth was carried out at 3rC 

inoculated from a single colony. These overnight cultures were used to inoculate 

larger SOOml cultures and grown at 3rC until 00600 reached 0.6-0.8. The 

temperature was then subsequently decreased to 2SoC. After approximately two 

hours, protein expression was induced using 1mM Isopropyl J3-D-1-

thiogalactopyranoside (IPTG) overnight. Cells were harvested by centrifugation at 

3000 rotations per minute (RPM) for 30 minutes and thawed pellets were 

resuspended in 20ml GST binding buffer (2SmM Tris-HCI, pH 7.S, 1S0mM NaCI, 

1 mM EDTA) containing complete mini EDTA-free protease inhibitor cocktail tablets. 

Cells were lysed by sonication (20 micron amplitude, 12x30 seconds burst with 1 

minute ice rest time in between) and centrifuged at 1S000RPM for SO minutes in a 

Beckman ultracentrifuge. The clear supernatant was incubated with glutathione 

sepharase beads (1 ml) for 2 hours at 4°C with rotation. The beads were 

subsequently poured onto a Sml Pierce® centrifuge column to allow unbound 

material to run through and washed using GST binding buffer (10ml). The beads 

were then incubated with Sml GST elution buffer (SOmM Tris-HCI, pH 8, S% glycerol, 

10mM reduced glutathione) for 15 minutes at room temperature with shaking. The 
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bound protein was subsequently eluted and collected and the glutathione sepharase 

beads were further washed with 5ml GST elution buffer. The homogeneity of the 

protein preparation was analysed by SOS-PAGE. 

10.3.3 Fluorescence Polarisation assay procedure 

The following solutions were prepared: a 200IJM DNA Oligo stock solution was 

prepared in distilled water and diluted to 100nM by adding 11J1 of 200IJM DNA Oligo 

to 2ml reaction buffer (50mM Tris, pH 8, 50mM NaCI, 10mM MgCI2)' A 100IJM 

flourescein stock solution was prepared in distilled water and diluted to 100nM by 

adding 51J1 flourescein (100IJM) to 2501J1 elution buffer and 250IJI reaction buffer. The 

compounds were prepared as 10mM stock solutions in 100% DMSO and 

subsequently diluted 1 in 10 to make 1mM solutions in elution buffer (50mM Tris-HCI, 

pH 8, 5% glycerol, 10% DMSO, and 10mM reduced glutathione). For dose-response 

curves a series of dilutions were carried out to give 100IJM, 10IJM, 1IJM, 0.11JM and 

0.01IJM. 

Fluorescence polarisation (FP) assays were conducted in elution buffer (50mM Tris

HCI, pH 8, 5% glycerol and 10mM reduced glutathione). The fluorescein labelled 

DNA Oligo used was FLCNTTAGGGTT AGGGTT A. The FP assays were carried out 

using 10nM fluorescein labelled oligo. For POT1-DNA inhibitor assay, small 

molecules were pre-incubated with the POT1 protein for 5 minutes. The labelled oligo 

was then added and incubated for 10 minutes. All FP measurements were carried 

out in a 384-well low-volume black round-bottom polystyrene NBS microplate using 
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an EnVision multilabel plate reader. The polarization values are reported in 

millipolarization units (mP) and were measured at an excitation wavelength of 480nm 

and an emission wavelength of 535 nm. The unlabelled DNA Oligo with the 

sequence TT AGGGTT AGGGTT A was used as a positive control. Each test 

compound was tested in triplicate. The final DMSO concentration was maintained at 

1 % in all assays. 

To calculate the percentage inhibition, the difference between the fluorescence 

values of reactions containing DNA and POT1 and reactions containing DNA, POT1, 

and the test compound was divided by the difference between the fluorescence 

values of reactions with DNA with POT1 and the fluorescence of the DNA alone. This 

value was then multiplied by 100 to give percentage inhibition. 
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Appendices 

Appendix A 

POT1-0NA interaction energy graphs 
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Figure A 1. Interaction energies of top 14 POT1 amino acid residues for DNA. 
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Figure A2: Interaction energies of DNA nucleotides for POT1. 
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Appendix 8 

POT1 library chemical structures 
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Figure 81: Chemical structures of pyrido[1,2-aJpyrimidin-2-one library. 
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Figure 82: Chemical structures of pyrido[1,2-a]pyrimidin-2-one library. 
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Appendix C 

ZI NC structures 

Structure Zinc 10 GoldScore 
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Figure C1: Top ligands identified from virtual screening with corresponding ZINC 

identification numbers and GoldScores. 
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