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GOODNESS OF IMIT QF PiiDICTION MODELS

Abstract

Given a second order staticnary time series Xt it can be shown
that there exists an optimum linear predictor of Xk’ say Xﬁ, which is
constructed from j Xt,t=0,—l,-2...} the mean square error of prediction being

given by

e, = E[IX - x}°]
In some cases however a series can be considered to have started at a point
in the past and an attempt is made to see howwell the optimum linear formof
the predictor behaves in this case.

Using the fundamental result due to Kolmogorov relating the prediction
error e, to the power spectrum f(w)

e = exp{ %_; J log 2Trf(w)dw}
“n
estimates of e, are constructed using the estimated periodogram and power
spectrum estimates. As is argued in some detail the quantity e is a
natural one to look at when considering prediction and estimation problems
and the estimstes obtained are non-parametric,.

The characteristic functions oi these estimates are obtained and it is
shown that asymptotically they have distributions which are approximately
normal. The rate of convergence to normality is also investigated.

A previous author has used a similar estimate as the basis of a teat
of white noise and the published results are extended and in the light of
the simulation results obtained some modifications are suggested.

To increase the value of the estimates e their small sample distribution
is approximated and extensive tables of percentage points are provided. Using

these approximations one can construct a more powerful and versatile test for

white noice and simulation results confirm that the theoretical results work well.



The same approximation technique is used to derive the small sample
distribution of some new estimates of the coefficients in the model
generating ixﬁk . These estimates are also based on the power spectrum.
While it is shovn small sample theory is limited in this situation the
asymptotic results are very interesting and useful.

Several suggestions are made as to further fields of investigetion in

both the univariate and multivariate cases.



IMAGING SERVICES NORTH

oooooooooooooooooo

BEST COPY AVAILABLE.

VARIABLE PRINT QUALITY



IMAGING SERVICES NORTH

Boston Spa, Wetherby
West Yorkshire, LS23 7BQ
www.bl.uk

PAGE NUMBERING AS
ORIGINAL



IMAGING SERVICES NORTH
oooooooooooooooooo

BEST COPY AVAILABLE.

TEXT IN ORIGINAL IS
CLOSE TO THE EDGE OF
THE PAGE



ACKNOWLEDGMENTS

My sincere thanks are due to a number of people who assisted
in the production of this thesis. In particular I owe a great deal
to my supervisor Prof. C. Granger whose kindness and guidence has

been invaluable.

I would like to acknowledge the help of Mr. A. Jack who
helped in the writing of the Fast Fourier Transform routines and to
the members of the Mathematics department who discussed iy problems
with me. My wife Pamela has been an unfailing source of great

encouragement and help.

This research was supported in part by the Sclence Research

Council.



PREFACE

A random or stochastic process may be defined formally as set
of random variables { X(t’} indexed by the parameter t, which is an

element of some index set T.

In many physically useful processes the parameter t represents
time; this is not always so however as may be seen by considering f X(t)}
as a barometric pressure reading and t the distance east from a fixed

reference point.

Thus if we observe, for values of some parameter t, a
quantity ['X(t) } subject to random fluctuation, the "random function"
X(t) obeys probabalistic rather than mathematical laws and we are

observing a random process. Instances of such processes are numerous.

e.g. (i) the observation of a seismograph trace
(ii) "Shot noise" across a vacuum diode
(i1i)  Woolworth's stock prices 1946-1950

(iv) Monthly figures for the production of pig iron
in the U.S.A. 1877-1956

In what follows we shall be mainly concerned with second order
stationary processed. These are processes { X(t)} whose covariance
structure is invariant under a shift of origin in the scale of measure-
ment of t. This is not as severe a restriction as might be thought
at first glance since one can often remove non-stationary trends and

sometimes a non-stationary process can be transformed into a stationary

form.



Clearly the prediction of such processes is of considerable
interest and there is an extensive literature dealing with the prediction
of stochastic processes. 1In addition to the pure prediction problem
there are processes where one is interested in the probabalistic

structure of the process.

If one has a vector stochastic process i XK(k);F: h‘.r\j then
the determination of the structure of the process and the relationships
between the component series is of great interest. For example g X‘(F)j
might be disposable personal income and z Xz(F)} personal consumption

expenditure (Fishman (1969)).

At the present time a good deal of effort is being spent on
the develcopment of forecasting methods and the construction of forecasts.
It would seem essential that attempts be made to assess the value of
individual forecasts and to provide usual diagnotic tools which could
enable one to compare forecasts with some objective criterion. This

is the main raison d'etre for what follows.

Chapter 1 outlines the basic theory required for later use.
In particular the concept of the spectrum is considered in detail. This
is essentially the harmonic decomposition of the variance of the
stochastic process and has a very natural connection with the optimum
linear predictor of the process. Indeed one can consider the spectrum

as being at the heart of the prediction problem.

In chapter 2 we look at a particular optimum predictor and
consider its accuracy in a finite sample case. The minimum prediction

error is also discussed in some detail.



Chapter 3 outlines the estimation of the minimum mean square

error and considers the distribution of spectral estimates.

In chapter 4 we look in detail at a proposed test for '"white
noise", that is a test to determine whether a process is composed only

of independent random variables.

Chapter 5 contains work on the approximation of the minimum
mean square error and its distribution. The theoretically derived
results are compared with those of some simulation experiments, the
agreement is generally good. Of necessity this chapter contains an

outline of approximation methods.

Chapter 6 develops the methods of Chapter 4 further and
removes most of the rather more limiting restrictions: required. An
exact method is developed for hypothesis testing but a suitable approx-

imation isseen to work well.

Chapter 7 describes some alternatives to the methods developed
and demonstrates the drawbacks of using traditional spectral estimates.

The role of the band width of the smoothing window is emphasised.

In Chapter 8 we look at the factored spectrum and show how
one can introduce some distribution theory into forecasting methods
proposed by other authors. We show that one can estimate moving
average and autoregressive parameter from the factored spectrum and

how these estimates can be used.



The last chapter provides some practicle work and discusses
extension of the methodology developed. We also consider briefly the
multivariate problems. Suggestions for the extension of the methods

presented in previous chapters are given in some detail.



CHAPTER I

Introduction

A random or stochastic process may be defined as a set of
random variables ixt} indexed by the parameter t which is an
element of some index set T. Usually the ordering is in time, thus
giving rise to the term Time Series, however there are many cases where
the ordering is spatial. The ordering of the random variables is
crucial as in essence one is interested in the relationship between

the random variables over time.
More formally we define a stochastic process as follows:

Consider a probability spacelfL on which is defined a
© algebra 3"’ of sets S. A real valued function X(w) (WE€ S )
defined on Jbh is called a stochastic variable if it is measurable

with respect to ¥ i i X(M(Qjé 3’ ‘

3

et T = it} be a set of indices, then if for each
the function Xy(w) is a stochastic variable (considered as a function

of w), xt(w) is a stochastic process when t,w vary over T x b

The set T can be finite, countable or uncountable. We shall

discuss sets of the form

(1) T=0,%1, %2, .....

(ii) T is the real line

or their subsets.

In common with the accepted practice we shall often suppress

the argument w.
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Two interpretations of Xt(w) are possible, i Xt(w)‘} can be
regarded as a set of time functions indexed on w in which case each time
function is a sample value or '"realisation' of the process. From the

alternative viewpoint Xt(w) is a collection of random variables

indexed by {tj .

The question arises whether it is possible to determine a
probability measure on fh in such a way that the joint distribution
of Xg,(w) , Xgg(wleoeo. th(w) will be the same as that of X, th....
X ta Where th is defined as a function on MW - That such a measure
can be determined has been shown by Kolmogorov (1950), the condition
being that the initial joint distributions of the i Xti should be
compatible. That is the marginal distribution of any subset of Xt.....
th should be the same as the prescribed distribution of this subset.

For further details see Hannan (1960), Rosenblatt (1962) or Anderson (1971).

Dropping the w we see that we now have in effect a multivariate
problem since 1Xt} can be regarded as a random vector. Thus far we
have made no assumptions about the relationships between the { Xt; ’
these being determined by the phenomenon generating the series. For
most purposes it is convenient to split stochastic processes into two
major clauses, stationary processes which do not exhibit major change

over a change in origin of the time scale and evolutionary processes.

To be more precise we define a strictly stationary process f th
as a process for which, for all n, and h, tj... tn (these latter being
understood to belong to the index set T) the distributions of

x ’sz e . an Ona XL|0‘| > xel*k’ v s Xe"’,l‘

are identical. For more detail see Pitt (1963).



This is a rather severe restriction and can be weakened. We

define stationarity of order m as follows:

A process is staionary to order m if for any admissable subset
ltl...tnﬁ €T all the joint moments of { Xgpooo thl up to and
including those of order m exist and are equal to the corresponding joint

moments of § Xtl+k  Xtosk o th+k k for all values of k.

All processes coniidered subsequently will be assumed to be
second order stationary unless it is explicitly mentioned otherwise.

In this case m = 2 and inconsequence

EL %, ] = Mo

a constant
E [ Xl, Xs]: E‘: Xo)(e,sJ a function

of (s-t) only. We shall define
EL XL- X,] - Rl:--’ <

as the autocovaniance function. We may also define the autocorrelation

function {D‘L

4

Re
P /{{o | 1.1

We can immediately establish for real valued processes
Ry = van(X,) P - !
Rcs Ro : } -clé | .
R.: <« Ko P-v = Pe
Second order stationarity has been referred to as "ngeralised
Stationarity'" by Wold (1938), Weakly Stationary by Doob (1953) and
Covariance stationary by Parzen (1961). Whittle (1963) has also used
the expression "time homogeneous". The concept of stationarity appears

to have been orginated by Khinchine (1934).



We point out that for a Normal process second order stationarity
implies strict stationarity since the normal distribution is completely

specified by its variance covariance matrix.

For out purposes we shall consider the index set to be

T = i O,i‘,izl.--.j

1.2

or some subset. In this case the process is called a discrete stochastic

processes or a stochastic sequence, Yaglom (1962).

Most of the processes we shall consider are discrete and by a
suitable transformation can be considered to have an index set of the
form 1.2 above. However even if T is constructed from the real line
one finds in practise that one is forced to consider sampling values of T

in which case we again have in effect an index set T of the form given

by 1.2

Linear Models

Basic to the study of discrete processes are several models.
The first we consider being the autoregressive model of % th which

may be written

P
)__ Sy Xk-k = ét 1.3
K=

o

or

Ae) X, = & 1.4

P K
where Acz) = l. G, %

K =0
and B denotes the backward shift operator defined on the index where

BXE = XL-'I
The process i iti is considered to be a sequence of independ-

ent random variables, the so called white noise process.



The equation
Acay - © 1.5

is sometimes called the associated equation.

It can be proved that if all the roots of the associated
equation 1.5 are lessthan one in absolute value then Xy can be written
as an infinite linear combination of 6; ,{b_‘,..... and in
addition X is independent of &4, Ecag, ------ For details
see Anderson (1971)

Multiplying 3 by Xt_g we have

P
E— C‘K X&,K Xt-ﬁ = Zk Xk,s S e ')Z..
K s0
and taking expectations
(4
Z;- Gy R‘S—\c =0
K =0

These are often called the Yule-Walker equations, and have often been

used to find the Qj ,330-'-f when the Rg  are known.

Autoregressive processes appear to have been first suggested
and used by Yule (1927), however they have been much used since, perhaps
since they are easily handled and provide simple models. Box & Jenkins

(1970) have used the expression 'partial autocorrelations' for the , au‘] .o

The model

q
XL— = é; by £e-x 1.6

(¢}

. X O(8) ¢,

k

9 k
where 9(?_3 < 2:_. bk_ =

kK=o

h

is called the moving average model of order g when i itii is a white

noise process.
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The autoregressive and moving average models can be combined
to give in the terminology of Box & Jenkins (1972) an autoregressive

moving average model

pry Y, - B(B) £, 1.7

The Spectrum

These models form the basic theoretical models used in the
study of stationary stochastic processes. We now consider the use of
another entity, the power gpectrum. We shall outline the main
results here but for more detail and proofs see Grenander & Szego (1958),

Grenander & Rosenblatt (1957) or Anderson (1971).
We state our main result as a theorem

The covanance function R1; of a stationary stochastic
process with E [-Y‘kl = 0 can be represented as a Fourier-Stieltjes

integral n twl —
R = .[ € d Feo)
T -n 1.8

with a bounded and non-decreasing function F(w).

The function F(w) is uniquly determined at all points of

continuity and is called the spectrum of the process.

It is well known that every bounded and non-decreasing
function F(w) can be written as the sum of three components

F(w) = Fy(w) + Fy(w) + F3(w) 1.9
where
(a) Fl(w) has a derivatve which exists almost everywhere

(b) F2(w) is a step function which is constant except at the

discontinuities of F(w)
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(c) F3(w) is a singular component with zero derivative almost everywhere.

In practical situations we usually consider processes having
an absolutely continuous spectrum, or at most an absolutely continuous

spectrum with a few discontinuities superimposed.

It is worth noting that for a continuous process i.e.

T = ]-no,oo [ one can prove a similar ktheorem with
¢ (wtT
ch\ - j e d Frw) 1.10
- 5

We can also connect the spectrum to the process in an

alternative manner to obtain the spectral representation of the process

by the following theorem due to Cramer.

Any discrete stationary process which is continuous in the

mean can be represented in the form

n ~L
ko
X, - | e d ) 1.11
~n
where Z.Aw) is an orthogonal process i.e. its increments are

uncorrelated and

E[Idzwnl] = dFuw)
E[dZ‘(Q‘)Q‘Z‘(@l)J = 0 W, 4w, . 1.12

In addition to dividing stochastic processes into stationary
and evolutionary types we can also split stationary processes into two

distinct groups, those that are deterministic and those that are non-

deterministic.

Consider the problem of predicting Xi,n given { Xay)n=t¢, l'-l,-'} .
We construct our predictor of xt*“ from some linear combination of
xt, X¢4, -~  and denote it by Xh“ . We shall lock at the mean-

square error of prediction €), vhere

e, - EL | X:+k ‘th 'LJ ,‘

1.13
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If e, = o we clearly have rather an odd process in which there is an
exceptionally strong dependence between Xb&k and Xt— X L-i )
] T

Such processes are said to be deterministic.

Kolmogorov (1939) proved the remarkable theorem that for a

non-deterministic process with an absolutly continuous spectrum

n
! 20V dw
e, - QN E -— j j 1.12
' P n - (¥3€
for the optimum predictor and further that a necessary and sufficient

condition for a process to be deterministic is that
)
j & V—(\«o) t\\o = - & 1.15
S "9

We consider l.14 in more detail at a later stage but for the

moment present another remarkable result due to Wold (1938).

If @,>0 we may decompose the process ixt'] as follows

XE = uk'& Vk =< Z_ (XJf : "Vl,
J=°

t-J
where
(a) EL & C.s.] = D’Lst,s
< ]
(b) Lo=1, 2L < o
J=°
(c) E[ £ \JE] = 0 for all s, t

(d) The \,t process is deterministic.

In addition the Ut process has an absolutely continuous

spectral density function wikh spectral density f(w).
*©

— . . b N

L . o'W

iy - o | ) /e '
lﬂ \":0

while the Vt process has a spectral distribution fuction

‘:v(w\ = Fz lw) + FJ/w)

where these are defined by 1.9.
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When Vt is absent then ixtk is a purely non-deterministic

process. One has an intuitive feelirgthat for processes met in
practice €, 4 0  and one may hope to remove the deterministic

component by regression techniques, Hannan (1960).

Before turning to estimation we consider the effect of linear

filterse.

If zxt S and th 5 are two discrete Porc\me\'ef‘

processes and

t W= -0
Then fyglw) = , le) ll ?yll\)‘ 1. 16
where o4
4 ~fww
| (D) = QZ:_._“ Su

1
\1(\0\ transfer function awd ,V('*))\ H’\t filter

and fx(w), f.,(w) denote the spectra of the ?Xtﬁ and th'}processes.

Filtering is an important and useful tool in spectralA analysis
and many problems can be reduced to constructing the appropriate filter.
Indeed even the problem of finding the optimum linear predictor can be

reduced to a filtering problem.

All the above theory can be extended to multivariate random
processes. For example i X.U'), Xl(”j is called a bivariate
stationary process (of second order)
if
(1) Xl(t) and X2(t) are stationary to order 2 with autocorrelation

and spectral density functions given by R.,lt) ) tn(-o\ ) Rzzlf) ) tu(‘d)

respectively.
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(11) ELG -] X -m]] - Ruco)

is a function only of T

We may then define the cross spectrum fi,(w) by

o™
~tw(
fF10(w) = [ e R, ()d¢C
-®
and the spectral density matrix by
"n 1) Y'u (W)
‘lto) <
Y-llll«\)) Q-ll l(-.\\
Two components of the cross spectrum are of interest, the
coherence Q
' 1 (w) |
Cr) =

J t“luﬂ LLI‘“”

and the phase which is the argument of v.l(bo\ written in complex form.
Much greater discussion of bivariate  and multivariate spectral

analysis can be found in Granger (1964) and Hannan (1970).

From the theoretical outline we now turn our attention to the

important problem of estimation. We have however a problem in that
given a sequence ? ¥y5 we have only one realisation of a whole
possible ensemble, and moreover we will have in practical situations
only a finite set T. In fact one is forced to consider the realisation

ixt(w)\ as being in some sen8e typical of the entire ensemble. We

are forced into a position where one must estimate autocorrelation

co-efficients for a predetermined set of iui} .

Naturally much work has gone into investigating the conditions
for which time averages produce consistent estimates of the population
parameters of the ensemble and many delicate and powerful Ll\eorenns
In essence our time averages provide reasonable

have been proved.

estimates if the ergodic property holds for our process. Sufficient
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conditions for this property to hold are

T»a0
or (b) ? st is fourth order stationary
or (c) The absence of jumps in F(w)
Condition (c) is alsc & necessary condition.

We reter interested readers to Doob (1953), Billingsley (1965)

and Rozancv (1967).

Estimation

As autoregressive, moving average and mixed processes have been

proposed as models for stationary processes our next concern is the

estimation of parameters.

Mann & Wold (1943) developed the maximum likelihood estimates

and asymﬁlotic theory for the model
[ Y

):__ X ¢ Xt—-f ‘:(l- 1.7

feo
for it—ri having zero meanNormal distributions and showed that maximum

likelihood estimates are asymptotically efficient.

The derivabion of the estimates is as follows:
since €, ..... &, are independent of Y,, X_, ..... X-,m
the Conditional p.d.fo of £ v - CN is the same as the

unconditional density and is given by

N
- ) g‘j .
(_;_l.‘T-)“/ld“ @‘Fi 2% é-.—l ¢ 1. 1§

When Xo X_g... are fixed we may use l.17 to give the likelihood

of Yoo Xn oas

é l i"‘exk-r]zj

r=o0

| -
(;i—]-o,l)”/‘- Q)‘P i 20?
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thus the maximum likelihood estimates are obtained by minimising

Q = Zf:_; Z;p:' ¢ Xt—-rjl

which is equivalent to the usual least squares problem.

Writing and setting X , =
N~
C | X, X
h = — t +
N b=\ ¢ \\
f. = Cuflc, h= 12, NI
we have for large N
R« - -¢
R _ r. rl “““ r?—l
- rRB I ryoeeee-
fP_| - - " I
| P G (R Fe), ot'= (oty %, ... <p)
thus giving -
ad = - ( _g ) r ). 19
The structure of R enables one to use simple iterative methods
of evaluating the ® details of which were developed by Durbin (1960W.
There is a considerable body of theory on the asymptotic
behavior of these estimates, perhaps the best account being given by
Anderson (1971).

While there is much asympotic theory the small sample theory
is less well developed. Perhaps the simplest autoregressive process is
process, or first order Markov process given by

I.20

the ARl
Xe - oL XE-I = &

where | &\ <& | for stationarity.
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Hurwicz (1950) studied 1.20 under the condition that Xl was

Normal with zero mean and variance

vowe ( €¢)

| - 2%

and derived the distribution of the maximum likelihood estimate of
for N=3 and 4 with XO=O. He showed that thee¢stimate was biased but

the arguments heused became too complex to pursue for larger N.

Marriot & Pope (1954) again discovered bias in the estimator
and suggested a modification in view of their results and those of

Kendall (1954).

White (1961) gave asymptotic expansions for the mean and

variance of the serial correlation co-efficient for both tases

xo =0 and Xo being N( o , W(::))
'c—

where OY= va~x(€¢) He also showed White (195F), (1959) that for
1< 1> the asymptotic distribution of -2 is Cauchy

Copas (1966) compared various estimates of & in some
simulation experiments and found little difference. He found some
evidence that a mean-likelihood method worked rather well compared to
a least-squares estimate over a limited range. Thornbur (1967) gave
some interesting results from a Baysian viewpoint and pointed out that

the fact o~ 1is constrained did affect the estimation procedure.

Thus it would seem that while the large sample theory is well

known there is still much to be learned in the small sample situation,

see Orcutt et al (1969).
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The estimation of moving average and mixed models is rather
more complex. Perhaps because the autoregressive has proved of rather
more interest there appears to have been less examinatlion of small sample
situations. 9
Let X - 2.—_ [gJ E k _J ' .2 ‘
if the ;Et} are normal then the)ﬁ:are normal and we can consider

estimating the C‘+ |  parameters from { X‘: ) b= h2.... N i

Unfortunately the maximum likelihood estimates cannot be solved directly,

see Anderson (1971).

Walker (1961) used maximum likelihood applied to the sample
A

correlations and used his estimates ,4? to calculate JS . Durbin (1959)

suggested that the autoregressive representations of 1.2
)
€= 2 ¥XeXo.f
C=zo

could be approximated by the finite sum

n
Eo- ARROS T 1.22

r=o
for large n, For suitably large n it can be argued that the EE

. !
are nearly uncorrelated which suggests estimating lg = ( Xl’XQ... Kz\)
by
Ry - -c

For details see Durbin (1959) or Anderson (1971).

In the case of mixed model both Walker (1962) and Durbin (1960b)

have proposed modifications of their methods for dealing with moving

average models.

Clearly we do not have space to go into greater detail in the

estimation of linear model parameters but. mention must be made of Box &
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Jenkins (1972) who make extensive use of such models in their forecasting

techniques. We defer fuller discussion of their methods until we

examine forecasting in greater detail.

It is often the case that our models can be considered to
contain a deterministic component that may be described as some smooth
function such as a polynomlial in t, or even a trigonometricpolynanial.
Grenander (1954) and Grenander & .Rasenblatt (1957) obtain the presant
result that a straight forward least squares procedure is efficient

under quite general conditions. Some additional results may be found

in Hannan (1957).

Spectral Estimation

It is beyond our scope to review the extensive development of
the theory of statistical spectral analysis over the past few years and
we restrict our scope to providing an outline of results. For more
detail there are a number of review papers, see Jenkins (l96i), Parzen
(1961) and Priestley (1962) while the books of Granger (1964) and

Fishman (1968) provide much greater detail.

In early work on time series the series was often envisaged as

satisfying the model
Xy - a, (M(”J"*‘ij)*(l— 1.23

=

<
W

in which the ?fri are white noise and the UJ. ) aj ) ¢J are to be

estimated. A technique known as the periodogram was introduced by

Schuster consisting of the function

= Siwk )1
Tautw) <« 2 , A 1.24
N E=y
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It is easily shown that .Ib(hd) will have a peak at W = Wo if the
model contains a periodic term at =Wy and there will be subsidary
peaks at W= W, + 2 Wo Significance tests for such peaks
have been proposed and a survey can be found in Jenkins & Priestley

(1957). Examples of estimated periodograms can be found in Davis (1941)

and Beveridge (1922).

This technique became somewhat discredited when it became
apparent thet an excessive number of cycles were being found. This

prompted workers in the field to consider other possible models.

However Wieneds (1930) paper enabled the theory to be put into
a more coherent framework by emphasising the link between the auto-
correlations and the spectrum (see 10). The modern spectral estimation

approach was developed from this paper.

Before considering the distributional problems in more detail
we consider the phenomenon of "allasing". Let XX(L\} be a sample
record of length T (ocL{'T) which has been read from a continuous record.
Let } xlrs be a discrete set of readings obtained by sampling at a fixed

interval Ak’ from the continuous trace. Thus

Xt = X(LAl') and At.N=T The sampling of the

discrete sequence has two consequences.

(i) The spectrum of the discrete series is now defined only for

Wee= N being called the Nyquist or Polding

—

t

frequencies up to

frequency.
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(ii) The power at frequencies higher than Wy is superimposed on the

portion of the spectrum lying between 2 e

It is convenient to work in the "standard" frequency range ATV
which corresponds to sampling the record at unit intervals i.e. AL‘ I

¥
The spectrum \" (W) in terms of the original frequency scale being

|
Vo - AL‘(:«).AH lwl<Tl 125
bt
Now for a continuous record the autocorrelations are given by
¥ lwT
Rit) = J e od Qrw) T=o0,21,42, ...
-

£ -~ {Zs‘u)‘n

I e °T d Qe

sz.o0 (25-0)T

iy Jﬂ ez(kuzﬂs)t

J_

Sc-0 -~NA

dQw+2Mls) . T=08,

we have

f_ d Qlw+2ﬂs)

Then writing d F(w\ = S

T s
Vsmx = /. quns) 1.26

where ?‘ s n.o) is the spectrum of the sampled sequence.

To minimise the effect of aliasing it is usual to try and
choose the sampling interval A\" in such a way that for frequencies

higher than the Nyquist "/N\ is small.

From now on we shall consider only discrete series incour

discussion of estimation.

i. ¢

As we have seen in

Ry = 4 ¢" 5 dFw)

-N
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[}
and since we shall assume F(w) is un'-‘ormlj continuous with ‘lw\ =z F/no)

we can write 93

. \
Y(wﬂ h fmw

Rs cem s lwal¢T 1.2
since R'[ and hence “—(uo\ is symmetric.

From 1.27 it would seem that the natural way to estimate v/u)

is A N )
ooy = o ) Risdse o
3 2N
s=-N+l
A
using a suitable estimate of Ks Many estimates of RS have
been suggested the most popular being N-15 )
A -~
Ry = I 2 Xe Xenisl -2
N-1s] &=
and A N- 15|
K - 1 L X t Xl-fl.f' ’ 30
3 N k=1

The form given in 1.29 can be shown to be (asymptotically) unbiased,

however Parzen (1961) has pointed out that the form given in 1.30 has

smaller mean-square error in that

E[ éa-ks]ts E}: KAS'QSJl 1-31

A
while E[ RSJ " (l - Lsﬁ' ) R, , .32

For this reason we shall use the second form almost exclusively.

Thus one form of estimate of c lk)) is

N - A
eslw\ = 3!;1- 2_ RS cnsSa)
.s-‘cnu"'

which can be shown to be intimately connected with J N (u) in that
T/w) >~ 4N 65 Iw)

and in fact ] glw) = z,n@slw\ when Kg429)is used. The

periodogram is very nice to handle from the mathematical viewpoint but

hassome drawbacks as we shall see in Chapter 3 and one [can prove some
SN
very elegent theorems. Good reviews are given by Olsen (1967) and

Walker (1965).
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Fisher (1929) devised a test for jumps in F(w) based on the

periodogram.

A
t
However although $sho\ is an asympptically unbiased estimator
of V—lw\ it is well known that is not a consistent estimator, Priestley

(1965). More generally it is usual to consider estimates for V—(w) of

the form A N -l A
Q(w\ = 1 Z_- >‘5 eSC'CD-S‘\) .33
l'n .S:—M"|

where }%SS is a suitably chosen weighting sequence, sometimes called

the covariance window.

Bartlett (1959) suggested

N, £ - sl Isle ™ 1-3y
s ™M
0 Isiowm
where m is some integer less than M and m/N > O

as both m and N tend to infinity

Tukey (1949) suggested
| - 20 + 2acn IS [s|em

)s = "M -
b, 1.35%
/2 20 18] =™
o Jsi>m
with Q= 0:23 while Daniel (1946) proposed
Ny - Swm 5T/m for all S ).3¢

A somewhat more restricted form of estimate has been discussed in detail

by Parzen (1957a 1957b) is N-l A
v o k( By.s ) Kscensw 1.37

‘LIN\ = }_1_]. S--N4i

where kIU) is a continuous function of u and BN is a sequence: of

constants such that -’uw\ BN =0 In addition Parzen has shown (1957a)

N> oo
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that for estn.mates for the form 1.37
)
L ?—Iw) —V-Iuo\] ~ BN l \(H |t(w)/ r
;)‘r/w)}

where r is the largest positive integar such that

\L”\r _QM | - Wtu)
u->0 "—E'I’r_— exists and is non-zero
and ,
7/
N o) = |2 N
¢
‘»I'\lu)\
where o~
lr\ A \N R
- L. S (NS A go\i
"' (w) 2N .sZ;w Is] s 2
Parzen has also suggested the following form of ¥ (u)
I tu) = { = 6u?a 6lul’ lulco-s
2(1-1ul)3 0-5¢ul< 1.0
0 lul >

the attraction of which is that it ensures positive estimates of the

spectrum, Granger (1964).

)

—m

!

Grenander and Rosenblatt (1957) have shown that for normal

series the variance of “ (w) is given by

M
V() 2ﬂ?cw) [ we)de
-N
where () = Z_ ) Q‘SQ This result has been

modified by Neave (1970) fo: i"\

Vi) = j“_ 21§ w)ll—x‘lo\)\d(a) )
Here Y= E_bf whereas in the traditional case ¥ =0 ’C)

N
The introduction of W(€) the spectral window enables us to

write t( w) in an alternative manner as
A
‘:(u\—’ J _LN(Q)W(QDBC‘Q .

in effect smoothing the periodogram by using a suitable kernal.

To choose the value of the parameter m is a rather vexed

question. Various procedures have been mentioned, the problem being

|.3%

1.39

l.uo

.42

1.u3l
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that ones "resolution" of the spectrum depends on the "bandwidth" of the
spectral window employed. For our purposes we define the bandwidth of
+the width of a rectangle whose height and area correspond to those of

The problems involved are too detailed to be discussed here but we feel

that the approach of Priestley (1965), (1962) is themost.appropriate.

It is perhaps worth mentioning that we have all along implicitly
assumed that }Ytihas a zero meane If this is not true we can of course

modify our autocovarlance estlmates to

ﬁs' —,:,' (Xk'x)(xl--l!sl-)—()

N brl

however this does introduce some bias into our estimates of the spectrum.

Ugually it is assumed tobe negligable however Fishman (1969) has shown

that in this case

E[Vw] b ) %n\?(o\fww)dow ny

This can be compensated for by noting that

B L elo\] ~ Voo [ |- & ] I-45
where Z = ZH—JA w(a\c\g
and using as our estimate \ \ |
Q\Alw\ = ‘V4\4\ A+ ‘ IO\ (\“.%i\_%g ' 1-4b

As it may be imagined estimates of the form 1.37 involve
considerable computational effort and often for long series may prove
too much for a computer. Cooley and Tukey (1965) rediscovered an

algorithm for computing the Fourier co-eff1c1ents

Jriw) = L= Z,. X, ¢ piof

N e
N .lg\()", operations instead of N2 for the usual methods. This

Fast Fourier Transform (FFT) technique enables one to reduce computational

problems considerably by enabling the periodogram to be estimated very
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easily and hence the spectrum by using

elu\-‘ S“ INIB)\\](Q-N\AD .47

-MN

In practice most weighting of the periodogram is carried out by averaging
adjacent periodogram ordinates.  The main drawback of this technique
apart from some rather bad machine implementatians is that one does not
compute the autocorrelations which can be very informative. This

however can be overcome by performing the inverse transformation on the

estimated spectrum using the FFT once again.

Forecasting Time Series

Kolmogorov (1939, 1941) appears to have been the first to
completely solve the problem of finding the optimum linear predictor of
discrete time series although Wiener (1949) independently solved the
problem for continuous processes and later considered the multivariate
case Wiener and Masani (1957,58). We shall be considering the
mathematical theory in detail in Chapter II but before looking at

optional methods we consider some standard techniques that have been

proposed.

One of the earliest methods of forecasting a time series
consisted of a simple decomposition of the series into three parts, these
being a trend, a cycle (usually 12 monthly) and a residual. The basic
idea being that if one can estimate fairly accurately the trend and
cyclical components then one may obtain reasonable forecasts, since one

would expect the contribution to the total variance by the residual term

to be minor.

The usual procedure is to fit various functions to the data

to estimate the trend using regression techniques and then to use the
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residuals from the trend to estimate the seasonal cycle. One method of
determining the cycle being to use aregression technique with dummy

variables. Other techniques are described by Granger (1967).

Another approach mainly investigated by Granger & Newbold (19%71)
is to use a stepwise regression method. To generate a forecasting model
one attempts to explain Xn*; in terms of 5 X n-j o) J = °)""‘j
and possibly } \/ i:"’:J ',J>,b i=1.. '\j where these are a set of
explanatory series. The technique used is a stepwise-regression method.
while generally good results are reported one must bear in mind that there
is no attempt to explain the structure of the process being forecast and
its relation with any explanatory series. In consequence there is some
danger of developing a spurious model and careimust be taken to ensure

that one's regression model is not some artifact arising from some local

behaviour of the process.

Perhaps the most interesting methodg, apart from the optimum
ones to be considered later are the so-called adaptive methods which range

from a simple experimental smoothing technique to the more detailed work of

Box and Jenkins (1972).

Adaptive techniques produce forecasting methods which are,-
above all, quick and easy to apply with a minimum of data storage.
However they do not make use of a great deal of structural *
underlying the process being forecast, which makes them easy to apply

but does restrict the amount of information available to construct

forecasts.
The simplest method is the n"exponential smoothing" or "exponen-

tially weighted moving averages" technique proposed by Holt (1957) which
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has been discussed by many authors notably Winters (1959) (19672

Kalman (1960) Brown (1959,1963) and Harrison (1965).

'
Given a stationary process 31;» ﬁ we define }xl- 5 by

4
XE' = a \(e.,-t(l-a))((,-n , Oo<ac |
by X*L-‘l -+ a( xk_'. X t-1 l-ug

which can be written

X, = o L (l-a)JJY‘L_J’ )9
J:'l

¥
i.e. ; X(, } is a weighted average of past values of S Yti
L

Examination of 1.49 shows that X(, is unbiased. Thus to forecast
¥
Xe.ﬂ one uses )( p+| where

&4

X‘L-u = a Xe +(1-a) X,

= a [__ ('*a)kxe_-t . I-so
K=

0

This method is adaptive in the sense that previous forecasts

are updated by a proportion of previous forecast errors.

If we have a non-stationary process with for example a
trending mean the above procedure must be modifiede One modification

is to try and incorporate an estimate of the trend.

X - a Xy o+ Gima) (X, 4 Ty

where the variable T is our estimate of trend. where

Tt = b ( X:- XJL—I) -+ (" b) T‘-( 6che lg

hS
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This method of adjusting for a trending mean appears to work well as

long as the trend is locally linear.

As well as adjusting the adaptive procedure for trend seasonal
cycles have also been incorporated. If one has a cycle of length n
units then a seasonal factor Ft may be introduced
)
rt & C(xt" Xt + (l'c)r&-“ o<ccel
giving forecasts of the form
d - ) )(“
= - +
Xt nd q( XE“ t '—ﬁ'" * I| “ )( l!“ TP")
One should notice however that these additional factors do complicate
the forecasting method and detract fromits simplicity. In addition

one needs considerable amounts of information to estimate the seasonal

factors accurately.

Crucial to the adaptive methods outlined above is theestimation
of the a, b and c. As one is not fitting a structural model to the‘
series there are no opimium values of these parameters and one needs must
proceed in an empirical fashione. If the values of‘ a, b, c are close
to zero then the constructed series 3%:} has a long memory in that the
contributions from part i *kj contribute significantly even for distant
values, see 1.50. In this case the final forecasts are stable and do

not respond quickly to fluctuations in }Ytj . When the parameter

values tend to one the series has a correspondingly short memory and

reacts to changing circumstances very quickly.

Tt would appear that the most useful method of evaluating

a, b, c is to use a search procedure in which forecasts are made and

errors Q\'! determined from

4 .
Q,j ol xl:+J' "Xk-*J J)M
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using selected values of a,b, ¢ over a sample of é xtj One then

chooses the parameter combination that provides the smallest sum of

squares
L

Ll .
Rs - Z__ QJ

;‘: Mot
One would hope that the sum of squares surface is relatively flat near
its minimum to ensure that slight deviations from the "best" parameter

values do not entail large forecast errors.

¢
The initial values of the predictor series X, ) 1;} [6
may be computed in the same manner if one splits up the sample ? Y|;j

and estimates the set of parameters in differing segments.

Brown (1963) has demonstrated that one can produce very much
the same results using only one parameter. A generalisation of this
approach is general exponential smoothing, in which it is assumed that

the process being forecast ¢am be represented by

Yt - G‘QJ¥\4 qlvz(¥)4 .“;akv““\ vEyL
= a'hn) e

where the "1 “‘\ are known functions of time and the €| are

1.5 |

ch-efficients to be updated. To estimate Q (F\ we use discounted
least squares, minimising )
[ J )
- :)S»:
Q, = L PN, -al (,J))
g=e J o
the solution being

all) = j_l_(l) E__‘{*) 1.52

where

r) - V) 4 Fae) o s



31.

Since l.52 implies that every/time one needs to update the
. o | (+)
El—!¥3 a matrix inverse is needed a more restricted set of ‘l (}

has been suggested in order that there exists a non-singular _L_ such

that

b - LBien)

In this case we can obtain 3 (F)

ﬂ_‘,"\ - X, E_“’\ +,QL-' 5_(1——1)
and a‘(\-) = g_'_“:) ,E"“') can be written

RS

(N = Loalk) « E@EDOX, ’X“e-c ) rss

—

One may assume from 1l.54 for |P } <1 that E_(” will converge
to a stable form independent of t in which case 1.55 is easily updated

as new information becomes available, and in addition only amne inversion

is needed.

It does appear however that if one is using a computer for
producing forecasts that such restrictions are quite unecessary since

there are now fast and accurate matrix inversion routines available.

From the theoretical viewpoint Muth (1960) looked at a model
where
Y t = Ye * 'Vl L

\It = \Ib'\ kft

and

where rlt was a transitory component introduced at each time period
and considered to be normal with zero mean and variance 0’1 .

1
1f the & b are similarly defined with variance O’C Muth showed that
a simple exponential forecast is optimal’ with

2 Lo\ Y
U - 0".1 + 0)01_('40-)1 )l

20" ¢ e
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The problem is however to estimate these variances and no solution has

yet been proposed.

Kalman (1960) considered a much more general model of the form

e = He M« Uy .56

— —

il' = ?_ék _Y_t--' + _‘Ze- \51

and produced optimium forecasts on the assumption that the covariance

matrices of Bl’ and '\'Jt' were known.

A rather more interesting and instructive forecasting
procedure is that due to Box and Jenkins (1970) (1967). Using their

notation they consider fitting mixed models of the form

YK, < OB, 1.5
where L T Jd
Py |+ 98

and 3- \‘ =1 k
Nl x x
Where B is the "backshift operator" B " e - c,“» the use of

~ -

E and t in Hartree (19 58) . In addition it is assumed that the

i( }‘ are a sequence of zero mean independent normal variates with

. 3
common variance ©

Clearly 1.58 does not represent a great variety of series
met in practice and Box & Jenkin suggest that by differencing a series
j’ xtj a sufficient number of times one can obtain a stationary series.
Thus if we introduce the differencing operator

= K- Ko
129

a more general model is

b3y VK, = OB)e, 9
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This model they term an autoregressive integrated moving average model

(ARIMA) of order ( ?, é)‘ﬁ \ They also impose the natural condition

that the roots of

Ocz) =10

must lie outside the unit circle.

The deriving of forecasts from l.59 falls naturally into three
parts, the first being the identification. The identification process
is inexact and later diagnostic checks may require one to modify the

model chosen. To identify a particular model we note

(i) when a series has been differenced until a stationary process if

achieved the high order antocorrelations tend to zero.

(ii) For autoregressive models of order p say the partial autocorrelations

damp down to :* - @3 (B) /)I( =0

(iii) For a moving average process of order ¢ the autocorrelations

of order higher than c‘ are zero, while the partial correlation tend

to zero

(iv) For a mixed process

§(») Pu =0 “ > 9

Using the sample autocorrelation and partial correlation
functions one attempts to identify the model and then estimates the

parameters using the low order sample autocorrelations.

Thus for example in a first order autoregressive

/l—#B)Xt T &y
d >~ &
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while for a model

XE < ( I - 9‘3- DLBI) A%
&, + &nsl 1.60

F\ = - I .
I 4 Ot 0,
r - ba 161

) ~
S 35‘7--0 o,"

Having identified the model one may then turn to estimation.

The parameters of
Fd) X, = BB)cr
are evaluated by minimising the sum of squares using non-linear least

squares techniques or a minimisation procedure of the form used by

Flecher & Powell (1%63)

Having estimated the parameter one must then determine the
adequacy of the model obtained. If }arﬁ denotes the residuals from

the fitted model let

A A
PK: Cm({é)fé"k) '
Following Bartlett (1946) and Anderson (1942) we can show that

A
if the & t are independent normal

>

then oo ( Wk ) -l-N

. . . (1
while the distribution of ‘ K is asympotically Normal. This

is an approximation however since even if the fitted model is appropriate

A
the €& ¢ will be autocorrelated. However for large samples Box and

pierce (197() and Durbin (1971) have shown that
™~

12
n L L 1.42

K=
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L
is approximately 7& with m-s degrees of freedom, where s in the total

number of parameters to be estimated. The choice of m appears to be

quite arbitary.

Box Jenkins and Bacon (1967) have further extended their class

of models to

dS
35) 34 (3%) W (1-8°) K- 0B OUB ) er
dzs) - 1 - i é’*ulk?’

where
Kei

’ a x _kqs
Fz2) - 1 - J_ 6. 2“1 b

where s is the length of the seasonaff-

The methods outlined above have proved very effective and since
we seek to discover the underlying structure of the process there is
less arbitary data minding as in the exponeﬁtial smoothing approach.
However, one does need substantial amounts of data, especially to use
the anymptotic results in the diagnostic stages, otherwise the sampling
behaviour of the sample autocorrelations becomes too dominant. In
addition the identification of various models requires considerable skill
and is not really suitable for automatic forecasting, especially as it

is assumed the underlying model does not change over the series , -

The IBM data quoted by Box and Jenkins (1970) appears to have a changing
model.

It might be added that these procedures also require that one

must perform a considerable amount of computation.

The only extensive trials of forecasting procedures appear to
be by Reid (1969) and Granger and Newbold (1972). From Reid's work it

would appear that the Box-Jenkins method appears to be best under most
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circumstances provided one has sufficient data to obtain reliable estimates
of the model parameters. For short series the Brown method appears to
work rather better. Granger and Newbold also showed that Box Jenkins
techniques worked very well but for long lead times the advantage,

particularly over a stepwise procedure of fitting autoregressives was

very small.

Often one is in a position where one has two or more forecasts
of the same quantity available. ‘Rather than choose one of them Bates &
Granger(1969) have suggested taking a weighted sum of these forecasts
to produce a combined forecast. Thus if one has forecasts 5 F.k } ; F)t}
a combined forecast would be .
A L
Using this form we have unbiased forecasts if F]; and F}y are

unbiased. If one wishes to minimise the variance of the combined forecast

error then

k‘: < 0.;.1 - Fd‘o,z
o t+ ot~ Z,fkﬂ‘jx

oJJ'z= UM(Xt-'FJl—) J

where

and (7 denotes the correlation between the error series produced by
(U"'*S and {szf

Unfortunately the parameters determining kt are unknown. Bates
and Granger (1969) have suggested some practical procedures and Granger
and Newbold (1972) have shown that combining statistical and economic
forecasts can be very effective, especially if ane of the components fore-

casts is based on a persons judgement e.g. a brand managers forecasts of

sales.
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The Evaluation of Forecasts

While we have considered forecasting methods we have not paid
a great deal of attention to the objectives in mind when forecasts are
made. Clearly cne would wish to make the 'best" possible forecast,
the question being what does one mean by best. Given a process } Y}_ j
and a corresponding sequence of forecasts ; Xt?:ne could in principle

assign a cost to the magnitude of the errors

dj= ¥ X 4

If the cost of an error of size Z 195 C(¢z) then the best forecast

will be that which minimises C (2)

The idea of using a cost function is a natural one and gives
us a very reasonable method of ranking forecasts. It 'would appear
reasonable to suppose that Ctol=0  and that C(2) increases
monotonically with Z >0 and Ce z) increases monotonically s #
tends to minus infinity. However one needs must bear in mind that

C(2) need not be symmetric about Z=0  Indeed there are many cases

one can visualise where C(Z,) is markedlY non-symmetric.

Another complication is that Cee) may well change shape
over time . If Cb(l\: A(F)C(E)
for some positive n {I' ) then one can proceed as if the cost function
is C(2) nowever if CQ_( 2) changes shape over time one is in the position
of having to forecast the form of the future cost function. 1In this
case the cost function must be forecast before one can even decide on

what forecast criteria to use.

Granger (1968, 1973) has suggested that a reasonable procedure

is to forecast by least-squares and then to allow for possible non-
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symmetry of C(2) by adding a bias. Gilchrist (1968) has suggested a

similar technique.

In what follows we shall assume that one wishes to minimise
costs at a particular time rather than the sum of costs over a period
and in addition we shall assume a quadratic cost function which arises

from the consideration of a minimum mean square error criteria.

If one uses a mean-square error criteria the obvious measure

of a forecasting method is

D, - 0 i\_ (Yt-x: )1 161

In fact Newbold and Granger (1973) show that the use of any statistic
that is not a monotonic function of I)“ may give rise to misleading

conclusions. In particular they show that the statistic proposed by

Theil (1958)

Dn
{Jﬁz thj l/1+5"a 'Z_X:z}

and used by Kumichika (1971) and Lounguist (1971) is not a minimum when

u

n

" 1LY

one uses the optimal linear predictor of the first order autoregressive

model.
In addition to W, above, Theil (1958) noted that
— - L
Di - (X=X 4(5"-5) 4+ 201-0)S"S 169
and Di = ( XX 4 (sh-se) wci-r?)S .70

—

Wi
where X and )( denote the sample means of the original process and
:
the forecast sequence and S”and S their respective sample standard

deviations while r is the sample correlation.
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1.69 and 1.70 lead Theil to the definition of

- - L
u" - (X‘X*)/D: 171
MS - (S"_S )2/ Dnl 1.72
uc - 201-7)s"S /D 173
where uM + us + MC = |

Granger and Newbold (1972) throw some doubt on the usefulness of these

quantities and suggest from 1.66 the use of

U" o (Xt .
Ut = (s*-es)/p 115
ud - ( 1-r2) S*/Dt 176

as diagnostic checks on a predictors performance. They show that LJM
3 D

and U tend to zero for the optimum predictor while u tends to one

and suggest these quantities be viewed together with a '"prediction

realisation" diagram. This latter 1s a diagram of predicted values

plotted against actual values, or predicted change against actual change.,

We feel however that ideally one should examine the whole
forecast error sequence gdtj and try to obtain some idea of its close-
ness to a "white noise" sequence. Ideally one would wish toperform
a full spectral or correlogram analysis but it seems inevitable that
the 3(‘“}sequences obtained in practice are too short. Granger and

Newbold (1972) suggest a test based on the Von Neuman ratio

- y d, -d, .,
Q- é_;z{e e) 1.71

- n-i

n ")1
% 2 (d, -d
&=
using Harts (1942) tables. We suggest in Chapter 6 an alternative

measure of "randomness'" which would seem applicable here.
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For an overall criteria however it would appear the most
2
attractive approach would be to compare ])n given by ).67 against the
. - 2
theoretical minimum value D ™ LA
Then the quantity
by 1 2
G“ = ID“M 'DD\ l or Fr‘ < DMM
1
Da
gives an intuitively reasonable idea of goodness of fit., A further
1,
attraction is that as we shall show \b."“ can be estimated directly
from the )1&} sequence without any model building. It would thus seem
that one has an objective measure for ranking forecast procedures,

especially when this is used in conjunction with an examination of the

% d “} sequence.

It must be stressed however that even if one has constructed
an adequate prediction process the forecast errors must be monitored to
enable one to pick up changes in the deep structure of the underlying

model which might invalidate ones forecasting approach.

We now turn to consider the optimum linear predictors (in a

mean square sense) and its attrattive mathematical behaviour.
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CHAPTER 2

Optimum Linear Prediction

Given a stationary (discrete) process } xbj with zeré mean
and variance G;l we now consider the problem of predicting Xfuk_given
5 Xe b= wnayn-2 "'} ) We shall derive the optimum
linear predictor and consider its convergence to an exa.ct non-asymptotic

solution. In addition we attempt to bring out the central role of
the spectrum, particularly in view of Kolmogorov's Lkeorens on minimum

mean sguare error.

A
To obtain an estimate X Lan of Xl-un we need a

definition of closeness of fit of our estimate to the true value. In
most published work and in the original papers of Weiner (1949) and

Kolmogorov(1939, 1941) the criterion has been taken to be the minimisation

of the mean square error @, whe re
- ¥ ]

This has perhaps been used as much for its attractive mathematical
properties as for being intuitively reasonable. A furthe compelling

reason can be demonstrated. Clearly the solution of 2.1 is given by

X’.vu.k = E[ XV\fklxs S:n,n-l--- ] 2.2

which is rather att‘r*active. However if } XQ} is aGaussian process then
2.2 implies that XMI( is a linear function of past values of the series.
Thus if one assumes, as is usual, linear predictors,}in the Normal case

one is assured that the optimum predictor is liner. Doocb (1953 sectl.II)

considers the geometric viewpoint..

Consider the linear form

{ T
xn+\l. = L O X"‘E

t=o

243
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where the ; Oi ) L= 0,l... rj are a set of unknown co-~efficients which
must be estimated from our realisation. Then the expected mean square

error of prediction 1is

E[ (X*n,»\c"xn-«\c)l‘) 2.4

gV’
i

'J:o
giving K
Y -
- o.t. 2 q'R . 4 a:a 1k 2.6
€y X 3:—0 I k) {,—Zk— J kN
where 0}1 = Rm denotes the variance of j X;j To minimise the

mean square error we choose a set of ; aJ‘ which satisfy

e .
é___.l =0 J:O)|"” C 2.7
da,

The equations 2.7 can be written in matrix form as

Ro Rl Kz R\“ {qo Rk
K. ﬂo R, ; a,

2.8

Ke Re, KO ) Qe Rur
or _[\j .9—:(_{_ 2.9
Thus taking an autoregressive process of first order
Xb = “X\:—l ¥ Cl_
where the autocorrelation function is given by

i
per = Pl r>o0
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thend9 becomes

r 3
i 3 w? oL ao 4
-1 kal
4 T N a, & 2.10
-\ K4 r
o(r & a | Ur A

The solution in this case being

r
Qo - D<
. ( O
a = 0 ‘{
] J
and the optimum predictor of X1p|k is just
R
(4

Thus for a first order autoregressive process the solution is
simple and easily derived and all one now requires is an estimate of «
As we have seen in Chapter 1 the estimation of & and indeed « « is not
entirely straight forward. For the moment we shall only consider the
form of the predictor, and will assume that the underlying model is known.

In general the equations 2.9 are rather more complex and
analytical solutions are rather difficult to find except for auto-

regressive processes. The one other case we have found quoted in the

literature is for a model of the form
-\

X, = Z__ fk 2.12
JM j=o

by Kozulyaew (1941) who derives the form of the optimum predictor.

It must be pointed out however that the previous derivation
does assume that the entire part of the process is known, as may be seen

from 2.2. As one usually only has a finite sample it would be inter-
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esting to know what kind of error 1s introduced by using the '"semi-
infinite" form of the predictor in a finite sample case. Unforetunately
in the time domain it does appear that considerable problems are
introduced. However by considering the first order autoregressive case
we have managed to obtain some idea of the approximations involved.

We now examine this case.

Finite sample approximations

Consider xl: = "‘XL-—I i b 1C )

which "began" at X, and we shall attempt to predict X nale given ixt_}l»-_-o..nj

Then clearly

E-) t
Yk: £E4d£&‘l*..~'+a‘ Cl-"’( Xo 2.13

and we shall assume

EL Y]

v | ¥o)

o

ot (X)

Naturally we may wish to consider a fixed starting value X_ and this may
o

2
easily be done by setting ¢ (X) to zero

From 2.13 L 2k —k-1
- k1 +2 -k- .
EL Xt)(t_v_].— VA A G L ot ""(ng"l(x)
K 2k-u ) N
s Ao (-« ) . 2t olx) 2.4

l-dt
- lJ .
where E (_Ze e 4 and we have assumed that X, is independent of all

the 2'1_ From 2.14 it is clear that if t is sufficiently large for

2t~ 2(k -k
% X)) >0  and & )So

then

- lc)l
E[ Xr xt’—k] ;x_dz
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which gives the "semi-infinite case autocovariances

Writing 2.14 in the form

R, (k)= "X 2 <%

2415
2k 2 2
where X - ot V- (GJ(X)—O" )
)~ ol V-t
the equation corresponding to 2.8 became ‘ )
YRR XAty L °(rX+o(—r\/ (0‘0 X td Y
d‘y -+ d-‘y N :
Yar -y-f
l G £ X+ o 7
2.16

that is Mo =K

Thus the vector < 1is given by a=-M R
where
r \ \ \
[V PRI S N L " /s
M ¢ ,
- o« Lo
dr \ d—r ...... ‘

"
><
o
+
-~
|

2.17

-1 - - -
mus M7= (XA *Y_B) =LXB(:_[_“‘%B-)] 2.18
- (I+LA'B)(xA)" 2.19

where I denotes the unit matrix.
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Then expanding 2.19, assuming for the moment that’the expansion

converges we have

o Ty pr \ N I -
Mte [ 1-1n'B (%)/jgﬁ.}+ J(xa™)
L I Y R AR
X X! ¥ 2.20

Setting Y = O gives us the asymptotic case in 2.10, the remaining terms

thus provide the finite sample corf‘ec";o«\

The inverse of B is easily obtained by noticing that

i | -« 0 -0 S Al l o -- 0
PAP - \ L
-~ - - I —K o ; -‘ - -

© * . 0-« 0
) 4oLt VLo -
0
1 @]
- o -
= ‘ N =D 2.21
6] 1 - d o -
X |
o)
-\ } '\P
Thus R = P P 3
] -4 O - 0
= ! -k 14dt --
l
bl 6 -4 2.22
o l
-1
and further we can obtain _ﬂ _@ in the form
) |
N K S AL
b = — 1 ,
'_xl O X —‘ ol O N
0 -l o '
¢ \
‘ 4]
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and the second term in the matrix expansion Z.Z0 may be seen to be

A BAT S ot - o o ---- o
) (1-«2) < ( a2-1) -(1-dY) ~ala) .. 0
o -x(a) .o
L o - a(l. 2423
‘xr—3 o(r—l

It is apparent that the other terms in expansion may be evaluated, at the

cost of some algebra.

Thus G 1is given by I

a - MR
from 2.20
-l . -1 -]
Q=ﬁg+_¥_ﬁ‘§ﬂ@-« . 2.24
X X*
Taking only the first term of 2.24 we have
Gy = A
aj - 0 yto J7°
ar - Y( o(-\u ez ’((u-ur)) .
that 1is
k
Gy = K
- 2 ~k-r
ae s X (|+(|—x7)d(x))(jl—l)o(
- ot o’ 2.26
a;= 0 otherwise
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Thus taking only the first term we see that a '"pertubation error" is

introduced in the finite sample case.

Taking a further term we have

o - AR ~\—/~:. A'R AR 2.27

P

Pad
>

K

giving O, = £ = (o(l—l)( s "(-M%) 2.28

X
Jde,04r

Of < j \/a(-k—r(:'(-l—')'* (UHY{( )(l— )/a(z) Z(f‘-l
4 o(l()(.(” y/l(f)}\//xl

the dominant term in the expansion of Gy being the order of

d?(--—k-r—?.

2.29

We would judge that for o & | two terms of the matrix expansion
would provide a sufficiently accurate approximation to the finite sample

predictor especially for small k and t larger than 10.

From the above it would seem apparent that the reascnable sample
sizes the "semi-infinite" case predictor works well as an approximation
when one has a finite sample. However in situations with large o
valuesi.e. | >1&]>0-% and for long term forecasts or indeed value of Xo
with a large variance then it may well be worth checking the order of

magnitude of the error involved.

M-\

All that now remains is to prove that the expansion of L

given in 2.20 is convergent. We do this as follows:

Let || QH denote a norm of a matrix ,A__
ice. JIAIl - (Z:Z-‘”(ijr )/" 2.30
o
where 9 = (dj)
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Then a sufficient condition for 2.20 and hence 2.24to converge
\ -
is for || -){- AR Il < Wilkinson (1965) shows further that a
sufficient condition for convergence is that any su.borqinate norm of the

component matrices in the expansion should have modulus less than 1.

Consider the norm of Z defined by

{
hzh, = jm;w& eigenvakuc ot 2'2
which is subordinate to 2.30

Then I A H—’B”z < Y m'; Bl 2.31
X X

-
and if we donate the maximal eigenvalues by /\A and )B respectively

AR, < Na' Mg 2.32

-1 B )
since ﬂ and P are symmetric.

—

-\ \
From 2.21 the eigenvalues of A are 1 and |- 4 Y thus Ma =_'——-;(—l
Similarly the eigenvalues of B are 1 and | - \/'(1_ thus
- 1 ]
Y oAy, = L2821+ ) (1-41)
X A "B Y 2.33
-
and in consequence H %(. ﬂ )} “l l ] for suitable values of

2
Thus our matrix expansion converges. The dependence on o ( X)
would appear reasonable for a short series while for & > A

convergence is certain.

From the brief outline given above it does seem that the

analytic solution of the prediction problem as presented above is
intractable. One must glso bear in mind that we have assumed that the

correlation structure is known and we have used exact values of the auto-
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correlations, while in practice we can at most expect only sample values.

As an alternative to obtaining an analytic sclution we could
estimate the covaniance matrix in 2.8 and obtaln a solution of the
equation using a numerical equation solving algorithm While it is
quite feasible to handle large matrices in this fashion the errors in
estimation of high order autocorrelation introduce insuperable accuracy

and stability problems.

Spectral Formulation

It is quite possible and as we shall see very convenieht to
reformulate the prediction problem into spectral terms. In what follows
we outline some main results and methods available. It should be noticed
that we assume the spectral density function exists and that it is a
rational function. These restrictions can be lifted if generality is

sought but we confine an outline of the more general methods to

Appendix I.

For algebraic simplicity we reformulate our problem slightly

to consider the prediction of Xh4|¢ given f xn-j , j: UL..H

Then the minimisation equations corresponding to 2.8 become

r

Riyim ~ L as Res m=tz... 0 2.34
5=
and using the spectral represemntation ( 2.11) we have

R [nd .
J“ 3 et(km\\u_ Z_ aje«(m-s)'djylw)c\w

-

2.35

s=i
M = I)Z.-- r

Equivalently

.

Jn eimwi G‘l‘u - é-)u,p (“’)} Y(w\C\b\) =0 2.36
n

- .-
M_\)Z.
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-
08
where @ K, r /'-\3\ = Z—' aj e 2.37

? LER

Our problem is now that of finding the function d“k,r/k)‘

In addition to 2.36 we can also express the mean~square error in terms

1 . ¢
Cue 7 J,, lel,m’ éﬁu,r(“)) Ve i 2.38

of the $k)rlw] as

where Cper = M“n(o)k)r)

Following Yaglom (1962) we let N 3 and consider the

problem of finding the function ék 4 w\ where

o0 Co
S~ SN
@k (W) = Z aJ' e '™J 2.39
J=! c . A
_ a y SETS }
where o I ' éklu)) - Z_ &S e Y”“‘Ac“'\)so2.40
NS> -n S=1i
As is apparent we are assuming the entire part of the sequence is known
and that it may be used to predict future values. The corresponding

mean-square error, at the minimum is given by

vt f“ \ei\uo_ éu’“’)lsz)dw 2.41

e k4
-n

We have thus reduced our problem to finding the function &y/ou)
if it exists. In general this is a very difficult problem, first
solved by Kolmoggrov (19410. The outlines presented in appendix one
give some idea of the difficulties. However if one places restrictions
on C}y/w) and assumes "(‘*’) is a rational function of e« Fonen \-{a\\s
then Yaglom (1962) shows how one may find ék (ao) given the spectral
density. For more general results see Grenander and Szego. (1958),

Doob (1953) or Grenander & Rosenblatt (1957).
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This approach while mathematically appealing does present
formidable difficulties when the spectrum is unknown. However allied
to this approach 1s a result of considerable value upon which much of our

later work is based. This is Kolmogorovs (1939) result that
! ! & & dw
e, = exyp J cer“ (w) 2.42
' J_ﬂ_n

If the process is detministic and can be predicted perfectly by a linear
combination of past values then

e = 0

As can be seen from Appendix I that a necessary and
sufficlent condition for a stationary process with an absolutely
continuous spectrum to be representable as a one sided (backwards in time)

moving average is that it is non-deterministic. See also Anderson (1971).

It may be helpful to consider {Y‘-} written as

Xe = A LDJ (e~J 'D(B)c". 2.43

J:o
For simplicity let bo = | )this does not involve any less of generality.
Then
Lm\ = EL Ble™) 9(6’“0) ' 2.44
20N

J']J 21V dw = j RPSSLIN IR +j jg@(@"“’)&u)
- (‘3 03 4'[ J Q(QM)CI‘\,

Let the polynamials 9(2'\ have zeros at ﬁJ )~j=‘;-" etc.

2.45
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Then
2.46

I deg Bre™)d - L[ de1-pee”)e

If HS\) \L\ for all J then JG\L} 9(1) is analytic in 12]< |
and

-—

n N a (W W\
Jn \,bﬁ (1- oo }duw- ’jﬂ 3 -be “(bs e’ )__.J.J@.Lw
2
Now all the terms of 2.47 involving exponentials vanish giving

_‘ﬂ Bre™ )dw=0 2.48

-n

n '
and similarly J 9(3.“\‘)&‘0‘—'0

Thus J" Joﬁzﬂt:m&m:z“ﬁo’t 2.49

and thus o= QMP } _2_17‘ jq &(ﬂ\?wuﬂ club} 2.50

or equivalently

Fr= 27 o"‘P{ jﬂn Lbos?(k\)clt«) 2.51

Clearly the minimum mean square error of prediction is given in

1
this case by the 'innovation variance' ©' . It is clear that if b, 7 |

then N

\)OLG’l . %F; _;_ﬁj: &0327)?/&3&@} : .52

The moving averadge representation does enable one to obtain the optimium

linear predictor very easily.

Consider 3 Yt’j being non-deterministic, then

)

X, = L B\J CE—J 2.53

J:U
and we assume a linear form of the predictor
o

«
XHM g “Z;‘u ,j“ E&—b\
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This 1s reasonable since we may write

Gow = L ek
- Jz':_() a: ;O by 4 -y
- L 9. 2.5
Then u-o 2.55
E L X:m‘ wa - F| 3 f:o 4, Ee-u 'ia \"“{““‘“jl)
] - bt T et

I
) (g -bu)ote 2 buoY 2.56

Clearly 2.56 is minimised by setting

3 = \:’ua-m h=0,H§L2
“u

and the mean square error of prediction is given by the last term of

2.56
M-l
1 S 1 8
€ - C é—_—o b. 2.57
i.e. e, = 0’1\30

Further if we consider the Fourier expression of Ja:) Qlo\)) ( Jﬁ“'lu))

being bounded \
\J\G'SY“O\: a, + G (v -tal(U)71~3+'~ 2.58

then it may be shown that

1
Q.2 TG, 2 +-- \‘/L
ey 2 LO + bli D ST
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which is the result quoted by Kolmogorov (1939), see also Doob (1953,

p.577).

Froml.58
n

Qr = _r‘r _‘ chzm\cmrw dw

[4

then after some manipulation we can find the moving average co-efficients

bJ.

While much has been written on the subject of linear prediction
when the entire past of a process is known little has been done in the
case when only a finite sample of part values is available. - This is

especially so when the minimum mean square error is considered.

The sharpest large sample results appear to be those of

Grenander & $zego (1958), and we summarise these here.

Let @, denote the minimum mean square error using the whole
part of the series and let @ i, N that when only X| YM are used.
Then
(a) A necessary and sufficient condition that 5 NS e "N -Q‘ decreases
at least exponentially to zero as n tends to infinity is that f(w)
coincides in I: - ) ﬂ] almost everywhére with a function which is
analytic for real w and has no real zeros.

G
(b) Let f(w) be defined a.e. by the expression

s . .
Py = ‘mmTY IG‘U—GM)V

v =1

’2°‘V

where P’ WY20  with k>4 integrable derivatives, &y are

positive integers and Wy are distinct points in L‘n/ ﬂ] .
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Then if S -0 and f(w) has no zeros
s,_y)
Sw = ol N~

and if S >0

o= 00w

In thecase of the first order moving average process they show

that
Su = =
N N"" '
Tbragimov (1964) has shown that SN decreases to zero slower
—U»E)
than N for any & >0 when f(w) has zeros or is unbounded. In

addition Ibragimov & Solev (1967) have shown that for a spectral density

function of the form ™ ; ISR,
Wy
T ef®r-e™ |
- () 'L
?-(ug\ = _F' v =i
where ?.(“J\satisfies a Lipschitz condition of order ¢ > D& and is
strictly positive
then . D ] é
N D %0 /kl N> 0 /N

Neither of these last two papers are of much practical value.

Further results were presented by Davidson (1965) who

considered linear predictors of the form
N

Xt, = 2;— u(r‘X -r

r=!

iw”l
to predict Xo where ?’Iw\ = l 3( e . He showed that
e.u‘ s - ’D—z Qy
where f(w) is expressed as
ik

3 e
‘(hb) s z;_ ’Dz k ¢ o0
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Thus for ‘ 2 a
(1) Froy = | €'U")
en,u = , + O/I/M)

and

iy Frod s | (efo- ‘9)(8 _;g)’z ~-Me Becn

€in = I+ ”g;
! N+
i Yoy s 1 1-be™ |t bl

e|u = |+ 52(N+” (l"hq)

Of rather more interest is his derivation of an upper bound

for Sn . If VIQ)# 0 and if there exists a 3(2)40 for

1< lezleR then
v o N
Su < 2L wax | 30 |0 ] bl
M=0 A=nt) 3(2 TRM
and by= Qk
!
Thus for &1‘0) = l(l—- O-Se“")(l— O-ZSCHO)'
we have

Su € l20(y)"

These results do have the drawback that f(w) must be completely
specified. However it does appear that for reasonable length series we

can fairly assume that

S, - O(N")

We have not touched on the prediction of deterministic processes
so far in our account. In this field little theoretical work has been
done but there are some published results e.g. Rosenblatt (1957) on
prediction when the spectrum is identically zero over an interval. Out

interest is in non-deterministic processes and it is on these we shall

concentrate.



58.

CHAPTER IIT

The Estimation of the Mean Square Error

Time series models are often constructed for the purpose of
making forecasts and indeed it can be argued that the only true assess-
ment of thefit of a particular model is its predictive power. To assess
the predictive power of a model is difficult problem and we feel that
perhaps the only rational criteria is to compare the mean square error
of our fitted model with that of the optimum linear predictor @,
Indeed one can imagine situations when €, is too large to make

prediction worth while at all.

If we wish to proceed on these lines it is clear that we need
some method of producing reliable estimates of Q. for a non-deterministic

process and the construction of such estimates is the next step we

consider.

As we have seen, the minimum mean~square error of prediction

using a linear function of part values of a time series % th can be

expressed as

21 by émﬁ

n
€, = Q*P};‘ﬁjjﬁ 3.1

-0

under suitable regularity conditions. We shall now attempt to exptait
this link between the spectrum and €, by estimating €, using suitable
estimates for the spectrum. As we shall see we can obtain quite
satisfactory estimates of the Ql For simplicity however we shall

concentrate on the estimation of

n
A = Jﬁel = -z‘ﬁ j \‘QSZT\Vtu)c‘w 3.2

-N
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using a sample of a realisation from a second order stationary process

§ XE : k:\,l-- ”} Clearly we must first consider the estimation

of f(w).

As we have seen in Chapter I all the spectral estimates which

have been used to date may be written in the form

\ M A
Piwd = & ) Xs Rsconsw 3.3
210 So M

where m is a parameter and 3 53 a sultable weighting sequence. The
form of the approximation admits at most m independent estimates of f(w)

(Whittaker (1935)) and it is convenient for our purposes to consider these

. ' ' - "
to be at the Wi - 27 (= 0,321,312 .- [2.]
™M
where LX] denotes the largest integer smaller than X ) As a

consequence we need to evaluate the integral in 3.2 using a finite set
of values approximating f(w). Thus we must consider a finite sum
approximating the integral. This can be done in many ways as can be
seen from the literature on numerical analysis, for example Hildebrand
(1956) HMSO (1961) and Clenshaw and Curtis (1960). The obvious
candidates amongst numerical integration methods are Simpson; Rule and
one of theGaussian quaderature methods. The drawback of Simpsoﬁé rule
would appear to be the introduction of rather a complex correlation
struture. The Gaussian expansions appear to be unpredictable for high
order approximations and involve evaluating the spectrum at points which

are not easily calculated.

We must also bear in mind that spectral estimates are them-
selves wildly inaccurate by numerical analysis standards and we feel

that there is much to be gained in simplicity in using the simple

k eimann sum approximations
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[ ]

A\ n 2 %:. \’aﬁguo,a) «)P=2£‘1p P:o---[’gJ?.zL

M

This can be modified to the "extended trapizodal rule"

. 2 13}' e \ ’é ) .D Q(mj'

A == %;_' Jo's Mp\*;% 0)+3 7% 3.5
The advantage of this latter form is that it can provide an explicit
error bound by application of the Euler-Maclaren summation formula as
shown by Whittaker and Watson (1965 p.128). Naturally this bound is
obtained on the assumption that ilkﬂ approximates to f(w) with an
arbitarily high degree of accuracy but nevertheless i1t does provide a

useful guideline.

In addition to the questions of quaderature we also require
estimates of f(w). In addition to the standard estimates using Parzen
or Tukey weights we have the raw periodogram and as we shall see it can
provide consistent estimates. This might be expected since integration
is a smoothing operation while in addition it is generally held that
logarithmic transformations stabilise variances. It might be added that
direct methods of smoothing the periodogram using the fastFournier transform
of Cooley & Tukey (1965) based on the algorithm of Singleton (196§)
are also candidates, although their attraction in their ease of

computation rather than any theoretical advantage.

We shall consider first the properties of the periodogram

IN (‘d)x) given by

, i Xt—e('uo‘- ]1

- Z
Ty (w)x) oLy 3.6

and we consider
15 ]

/
PZ:—-O \JG IN /00?,)() MP=2_2‘J>

k31N

A
A
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where M = N and the prime denotes that the first and last terms have

been divided by 2.

Our Investigation of the behaviour of the periodogram starts
with Kolmogorov's theorem (Appendix I) from which we know that any
non-deterministic process can be represented as a moving average viz:

B
Xt - _Z_o FJ Y—g—J 3.7
3=
where the % g, f process is one of uncorrelated random variables with
zero mean, variance G'L and finite fourth cumulant K,f <. Then if

the periodogram of the i(;s is written

- - dwb [t
JN/‘Q)C)‘ %} Zt:_gt I 3.8
we have Bartletts (1955) result
- -y,
Tut0€) « Zﬂvlu)l,\,/u,f) + O(N Z) )
See Ha"aulnwrSS)
Further Hannan (1960) shows that
- - sz
E Ry FE]- £ L1 Tt - 20V Lt o))
_ O(N'M) 3.10
provided K“ is finite and
5 )
P B )
5—;; lﬁJJJ <% 3.11

Olshen (1967) in a very illuminating paper on the periodogram

derives similar expressions for :TN lw) )() and 3—” /k))z:) where

L —_—
l IN/”)X)} = -lkl"*’)x) . 3.12
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The consequence of 3.10 is that one can in effect work in terms

of the residual series 2{"5 which makes derivations considerably

easier
Now = Lot 2
= - e
EL Iﬁm,:\'_\w- i\l;,‘ e et
- = iwle-s) .
- 2 ) [_ e 7 E] £e€5) = 29t 3.3
N t= $=1
and

Py hg'] Sk N(pr0y)/y

~ ~ .
~N S wA IOP‘t l\.)cl)/z

}

. ho’q; .SVQAM(w?-‘O‘i)/;_

; Sua (0p-199) 1
3.14
and hence if kJJ of the form &{j = EE}J
OUU[ IQ(VO?|£\INIM1\fX} = L}_—lﬁﬂ UP# oq 3.15
N
N [ I,um,(\] - 4o+ 4 Ky w#06,1
N
© Fgte bk waOT . 38
N
Ry 0,11 the variance of

Thus we see that at the points
I,,,/u),t'_) doubles and so does that of _TN /w,)() producing what might
be thought of as an edge effect since the spectrum is undefined outside

It is also clear that when l(q= O the periodogram estimates

[-n,7]

at intervals of Z%} are uncorrelated.
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Further if we define

N
- Z
ﬂ{“‘\) hd ’_':‘ L-Z:‘( {(_ (U)(Ol- 3,17
_ N

£, Sww b
3.18

then if £ [£])=0
EL A(oo)J s E[B(uo)] 0
2 1 2
and ELArY] = EL B{N)J - o 3.21
since A D1 \
A Z__ Sm kax = 1 +0 7)
n K= 2
. A
'?" L (U')l\(a( = A + O(-‘ﬁ)
in addition vt
N
E L Acwoy) Blw.‘\] g L Swa «o?l'cmw,llr
N t=i
= 0
for Oy = 20p We = 270
PooD T S
since n
Z_ swa by - Swa (R41)X Suva WX ceaoc X
T2 2 2

K
Thus when the 3Ct‘i are normally distributed each of the

A(w) and B(w) have independent N( 0,@1 ) distributions and in consequence
— L i
4 n(w, £) = ﬂlw) r B/lo) 3.22
has a 0’ K distribution. From this and 3.9 we see that

has a distribution which approximates Z\I,{ (Az)m’ztx In addition we

see from 3.21 that the -Tn /‘Or) J() are independent.
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Similar results can be obtained under weaker conditions as

to the behaviour of the 3 ik} We state a theorem a proof of which

is given by Olshen (1967).

If ?XES is a second-order stationary process which is non-
deterministic and where represented in the form 3.7 the i {fs obey

the central limit theorem then the joint distribution of

Torwy ) 5 o= 20 J’"" k
J N
tends to that of k independent random variables each having a
L

L . . R . 1

2 nv(w\ d XL distribution ¢f W # O,fﬂ and to & n v,u)x
'

in the special cases ©w =20, N

Having obtained the distribution of Ih;/h),x ) we are

now in a position to look more closely at
A /
A = L Ta fwy X )
nL «bO'jJ.M )
It should be recalled that

P
- /
k=0

Then from 3.9

L
D = —'f' ﬁo [ vvoaznc/w) + JaaIN/wk,f)]
=/ Ay
- _VL‘ '%:o Ja'azﬂVfuﬂ * - ‘2‘_: Jo‘j quwk,.;] 823

To consider the distribution of Yk - 'b I S X)
= ~ K

we require the standard transformation theorem outlined below.

Let Y = g(X) where X is a one dimensional continuous random
variable with a probability density function £(x) and g(x) is a strictly
monotonic function such that 3’(1.> exists and is non-zero everywhere

except possibly at a finite number of points.
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Further let
_QM (Jc) = Q4
XD -0b j
w90 = b
XD

Then Y = g(X) is a continuous random variable with a probability density

function given by

klj} = ?(:c) chcb
53]
d X

o elsewhere

2
Using the above when X is )< then
T
_
ty = € >0

2
and Y = logeX has a probability density function given by

hep - 2% erp[ -3¢ -yl

Since it involves little extra labour we can consider a chi-

squared distribution with V  degrees of freedom, where
(v - -
I e 1) x e X/,

A

In this case Y « log, X has a distribution given by

Vﬂ/L 3
e e*p[’:%e ]

t(x) €70

"\(3\ = —_;/L_ v
21 P(/;_)

This degree of generality will prove useful later.

Since we are dealing with sums of independent random variables
we find it useful to obtain the characteristic function of 3.2{ as
LY .
. J—y j Vﬂ/;_ l(‘j
g ) - eLe ] e e oxp [y et
3 2% iy, ) -
| w o (ibey -1) g
L e da
riv)

3.24

3.26
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Using the substitution 2=, this can be seen to be the

Euler integral of the second kind defining the Gamma function (Whittaker

and Watson (1965).

Thus we have '
G - 28 ke 3-21
(%)

and the characteristic function of the sum of M random variables having

this distribution is
b M
g - 2 [Mrekey)] 5.2
(%)
A

Neglecting for the moment the end points of A and

considering M

[, . L L ijluwuc)

M K=y

then the characteristic function of L is given by
" M
= 2 - )
P(%)

If one considers the end points where the degrees of freedom are halved

one has for

o 2—__/ )0'3 T 10y,€) 3.30

L = M k=g

m-/

don o 2% o) ] 2 k)]

%)
- 3.3)

Where p = 2 if both end points are included and p = 1 if only one is

included.

To find the distribution of L or L! all we require is the

Fourier transform of either 3 21 or 321 + We have been unable to
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evaluate these transformations and are of the opinion that no analytic
form of the inverse can be found. Since we cannot use a direct
approach we are forted to consider some other technique to find the
appropriate distribution function. One possibility is the numerical
inversion of the characterstic function for fixed V and m using a
suitable quaderature technique. In principle this would seem quite
feasible, however for any thecoretical treatment this would seem quite
unsatisfactory, and in addition one is left with the problem of
determining the accuracy of one's solution. We shall pursue alternative
approaches in later chapters, for the moment we shall examine the

moments of the distribution of Lg and L(

Using the well known expansion

4“.): |+ :‘/4‘-4 3-32
this is quite straightforward, however we shall find it convenient to
work in terms of the cumulant generating function

L) = «PU\'J C;/U')

and: the corresponding cumulants Kl)K> . etc.

In the case of Ls we have

KL,“’)" t'LpoJZ+ MJUHJ—F("ﬂZ_)]-.’@ P/Z)

a
™M
... 3.33

Since the gamma function is continuous and possesses continuocus

derivatives of all orders

éj% s ('.Jgj 2 ¢ r7?'%£ ] )

JF 334
NESEY
and hence 7| )
K - \,b 2 + I {vb .
U 03 """WM;) 3.35
‘- _'_51""(%) L[ ) }
S 7 336

7l %)
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X 3.37

To evaluate expressions of the form J3.34 one can use the Weirstraus
71
definition of j as an infinite product.

uan) Py = -%\z)z -¥e - ;Hﬁ(ué)—%} 3.3%

r

where X’ is Buler's constant and obtain

|[5 < \ Z_ {..|)‘s (s—))" S22 3.39
mE e [Py

L .
since \}23 \(1\ is represented by an absolutely and uniformly convergent

sequence of analytic functims.

The Ké can be easily computed from 3.34¢ to any reasonable
accuracy since for large s the series converges quickly. For small s

we can use the Zeta functiam of Reimann
)
- 5 i 3.40
fs)= L.
N=| n
which has been tabulated by Abramowitz and Segun (1968).

Alternatively we can usefully use the Psi-function

Yia) = j—li]: -»o\t] P’"—)] 2.4

and it derivatives, which are tabulated by Abramowitz and Segun (1968).

These polygamma functions give us the very neat relations

K, = \ng 2 7113&) 3. 42
¥ (%)

i Vv,
Ky = —v::\-’ + (/L) 3. b4

\
17 m 3. b3



- (m-1) 1og T (%) = p log 1 (%) +(AEE=LL L 152y 10g 2

+ (m-1) 1ogr(%+-‘21) +p logI‘(%—;?1 + -‘;4’-)

(t) +3it (p-2) lcg 2 +1ogI‘(U/2)"P logr (U/4)

=
LS 2m

it it
-logI‘(—-m—+-§-) + plogT (5= + ;IQ) '
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(r-1)
K, - —:f7:| ‘+ ( %ﬁ \ 3.45

which determine the cumulants of Lg.

For L'we have a similar set of relations. The cumulant

y2nerating function is

As given on the opposite page 3.46
giving as cumulants
Ky = (2@%§~2) log 2 + (yﬁl)w(g) + g% w(g) .
"2 7 (@ﬁ}) v '(%) * ‘(“2%")"2 v b 4¥
Ky = (E%i) vt (5—) + ~(—-%3 U (2‘1_‘) ' 3. b9
Ky L2 (%ﬁ;) p 't (%) + TE&Y*W"' (%) 3. SO
and kg = T‘H‘; ¢,(5"1) (_29) +~(2%: 1;9(5“1) (%) ' 3. 51

Having obtained these cumulants we _an if we wish obtain the

raw moments or central moments by using the relation
. H
K(H J"\'] ${/ 3.52

Kendall and Stuart (1963) provide tables from the expansion of 3.§3

- . 7, 1, 7
e LK) (ljf_z),_,(l‘z:,)m!
Y SRS TIRE N
ee.. 3.5%

where the second summation extends over all non-negative values of the

~
Tl such that JZ;' 'ﬂ:) Py

giving
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or alternatively

I ~ o
ML. il < Vs 3.54

Q\éJ

For convenience we provide some explicit relations for low

order cumulants and moments

For the raw moments
= v,
/"'z’ = I, + M'I
ﬂJ’ = Ky + 3K K l(,3

| G+ b Gk, * 3K KK

M -
Ms'

while for the moments about the mean

ML = W,
Py b

1
/M“ = W, t 3k,
Ms = Ks = 10 K3y 3.5¢

A property of the cumulants we shall use later is that, apart

t

it

1L, + SK, I, t 1610, + 1014 l(.1+ 10K; ¥,
1S K:k' 10k, K,3 +k,s 5

Uy
u\

from the first they are invariant under a change in origin. In fact

for any linear transformation of Z say
W=0at +h

the cumulants of W are given by

Koro) = afRelz) > 357

1
Having: obtained the cumulants of theLsorL we can now obtain

the cumulants
3.5%

"
of A & ZT'?luu) L
R :
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e

or .A\_s g L ' ‘)g ZDY—/'M 1'LS 3.59

Since the cumulants are invariant under a change of origin we need

consider only the first cumulant

For A we have

k| = E[A] - <
™ 7

Z:_i JaszﬂV/w) *E[L] .60

and from 3.47 for L

I :/)«»EZM)»«:)ZP/(‘%)*%‘//%) 3.6

Now we know that IN /o\)’ i) is chi-squared with two degrees of freedom,

that is ¥ = 2

Then for L
K‘ = /l+2_P;A)J032 + '\)'{‘)*7?;\}/\//‘,) 3.62

Letting M™M->® we have

ELAJ - K, =~ Jojz +'\lr/|)+__|5

2

k|
J sz)zanAu 5.43

and A o, - —“\:\-4!(” + f/l"'}‘/'/z)

von~ (N ) 7

which in the limit tends to zero.
A

Thus A is a biased estimator of el and can be seen to be

inconsistent. However, it can be easily modified to
A

A

A. = A - \)0\1}2 - o) 3.64
A
A c is clearly asympotically unbiased and a consistent estimator of Q' .

In fact we shall prefer to use

Bos A= (10 R )dge - - 2 A 345
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A
and we shall in future refer to this estimate as A I The evaluation

of the constant terms in 3.6 5 involves no problems since

NGY = -¥ = -0-577216

and AR -Y~2103&: -1-963s10

where b’denotes Euler's constant which may be defined as

¥ - jw;?l+)£+3L+.-. +_";.—ja:)vxi

n>d

When m is sufficiently large then the terms in _-‘R corresponding

to the "end corrections" of the trapizodal estimate will tend to zero and

as an approximation we may use the expression given in 36!} and

\
vae ( Bp) > HO) o 1 pknasy 366
M n

It is of interest to note that we may write
2
\} I(l\ = ﬂ/é
n) nai
‘\'l (|);{-l) y\}j(n*l) L I TN

where S( ?.\ is the Retmanv\ Zd—a function and

§(2n) = @7 | B, | 3¢

)
2 (1“) ‘.
an being one of the Bernoulli numbers. For details see Abramowitz

since

& Segun (1968).

If we let m > then our estimate 3:65 is in effect the sum
of independent identically distributed random variables and from the
central limit theorem we may deduce that the distribution of & I tends
to that of a normal variate with mean JJJ C‘ and variance given by

N ﬂ/lé ,4
— " 3.48

A x
Thus €, = e would be expected to be log-normal.
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While asympotic results are useful one really needs some
A
information as to how quickly the distribution of .A]; tends to normality.
Indeed one needs to know if the asympotic results can be used at all.
A

For A 1 we can obtain some idea of the rates of convergence by

considering the moments of its distribution, which as we have Seen are

readily available.

Since the odd moments of the normal distribution vanish it

would appear sensible to consider the third moment of our estimate.

Now since /M3 = K3 we have
ey = o) 3.69
M'L

neglecting the terms in m3  in

ity = ¥ + b 3“’"(‘/’) 3.70

(l)
M §

we have from  3.49
Ky = - 2-4owt!

T

[ %]
referring to Abromowitz and Segun (1968).
For m of the order of 100 KB is very small however there does seem to
be a criteria for the "smallness" of MA' Perhaps a more sensible idea

is to consider the Pearson system of probability distributions which are

solutions of

L d 3 - - (x+ C|.) 3.7

J ax Co +C, X 4 oAt

The form of the solutions depends upon the values of the

parameters Co, C., Cy and we can relate these to the moments of the

solution as follows:
2
Let Brs Jo oz M 3.72
M Mt
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then Ce = d*(apz-sf?:.)
2(s5p, -6p -9)
c, - ©oJ[B, (P,*ﬂ
2(spy - 6R,-1)
e - {28 260-6)

205p,- 68,-9)

!
where O°  denotes the variance of the distribution.

The solutions of 3.7l include a wide variety of interesting
distributions amongst which is the Normal distribution. This being
the solution when B, =0 and {52 =3. We can compare our distribution

with the normal by looking at

F’. = [ ”/\)J/[\l,(”]s/,, 3.73

: N0 + )
P Ly ]/H’u)JzM > e

Directly in terms of the cumulants

, < ’[3 = I[‘(
ﬁ ?B’L ﬁl /kll 3.75

Table I contains tables of values of P, and /52. for a range of
values of m and figure 1 provides a diagrammatic representation. The
coefficient (5‘ is generally regarded as being a measure of skewness,
see Kendall & Stuart (1963) and as we can see in table 1 the distribution

A
of AI is skewed but as M- ® tends to a symmetrical distribution.

For a more precise comparison we can consider the published
values of the percentage points of Pearson curves given in Johnson et al
'/
(1963) . These tables give the standardised percentage points of a

number of Pearson curves corresponding to a range of values of J_ Pl and F;_ .
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TABLE 1

- By

0.2548
0.1612
0.1417
0.1362
0.1274
0.1201
0.1140
0.0963
0.0901
0.0849
0.0806
0.0721
0.0658
0.0570
0.0510
0.0465
0.0431
0.0403
0.0380

0.0360

B.

3.1200
3.0480
3.0400
3.0344
3.0300
3.0264
3.0240
3.0172
3.0150
3.0132
3.0120
3,0086¢
3.0080
3.0060
3.0048 .
3.0040
3.0034
3.0030
3.0026

3.0024
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For p,:3 we have given a small set of values in table 2.

TABLE 2

Percentage points of Pearson curves for

Lower Upper

{— 0.5 1.0 2.5 5 C.5 1 2.5 5

-4

0] «2.58 «2.33 -1.96 -1.64 258 2.33 1.96 1l.64
0.1 -2.82 =2.53 =2.10 -1.74 2.21 2.05 1.79 1.55
0.05 -2.76 =2.48 -2.06 -1.71 2.33 2.14 1.84 1.58
0.03 -2.72 -2.44 -2.04 -1.69 2.39 2.19 1.87 1.59
0.01 -2.66 =2.40 -2.01 -1.67 2.48 2.25 1.91 1.62

P )

As can be seen fromTable 2 even for small non-zero values ofJ P'
\
there is a considerable difference in the tails of distributions when
compared with the normal, while forJP|> 0.05 there is a marked difference

in the 5% point. It should also be born. in mind that we have not

considered differences in the PL parameter.

We conclude that while A]: tends to normality for small values
of m, say ™M¢< 300 which corresponds to realisation of less than 600
iﬁ length we cannot expect very accurate approximations using the normal
distributione. Thus it would appear that for realisations of less than

200 in length we require the exact distribution.

For large samples however, we can estimate Jﬂﬁ and @,
A
and we know the distribution of our estimate. Using A]: as we
shall see it is easy to construct a test for white noise against any

specific alternative. In addition estimates of e, are of great value
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if one is interested in the estimation of models of the form

At )X, - O(R) s.7¢

and in comparison of the performance of predictors.

Estimates Using the SpeCtrum

Before looking further into such problems it is worth considering
alternative estimators of A . We can if we wish estimate Jﬂ?, by
using the same numerical form as 3.5 but using a different estimator of
f(w)e Since the usual spectral estimator is a smooth periodogram

(cf.1.28) we shall consider estimates of the form

PVU

A é
- 377
r_{w) = |‘ )\5 s (DS W

21 .~

s

L]

where the ;>5% are a suitably chosen set of weights where
)

~1'S0
w(8) = y As € 37%

Se-*

Of the many suggested sequences we shall concentrate on that suggested

by Parzen (1961) . 3
N =5 - 6(5) 4 6lZ) 15 |<os

2 ( | -’éﬁn 1)3 oﬁg:léi ‘( |

0 ]%\)l]

and adapted from the Jackson-de la Vallee Poussin Kernal used in approx-
imation theory, see Parzen (1963). Our main reason for this is that

while it is one of the most used kernals when combined with autocovariance

estimates of the form N- 18]

A v
K\S = "'J'L‘él xe- Xe+ls)

the resulting estimates of f(w) are non-negative, Granger (1964). Since

we need to consider .){SQ(KJ positive definateness seems a necessary
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requirement. Of course one may adapt ones procedure to use a Tukey
or Bartlett weight function but it is then necessary to impose an
arbitary value on any negative estimates and gives rise to many
complications. For simplicity we shall choose the Parzen weighting
sequence although in principle the same derivations can be carried

through for any sequence which gives rise to positive definate estimates.

We now look at the distributional properties of such spectral
estimates. Now f(w) must be a function of X «... X, and we can write

the function as a quadratic form
A\ [
Y ) = _)_(_ W x

|
where )( = (X] X2 eeee Xn) and the matrix W is non-negative. To
attempt to obtain explicit form of the distribution function we shall
derive the characteristic function. Assuming the ?Xr} are normal
variates then the characteristic function of
Q- L o2y X: X, 3.79
i J J
where W = (a)‘J) is given by

. Y
finr . deb] 320N

as may be seen in Cramer (1946). Here R denotes the autocovariance

matrix. If we denote the eigenvalues of RW by )\. y et )\“ we can
i 0
write 3.% as n ,1,2
doye 1= zean] 551
h v=i(

or

(1-2c2),) 322

M

deg

This is not  very useful since the >V are in general

<
h

)63 da(z) = -3

not known since R is not known. We can however obtain the first moments
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of f(w) from 5-82 as

M = E[e/u)J_— Z‘l,_ N 3. %3

v =1

A 2 e
ot= voa~x( Vi) = 22 Mo 3.%Y
y=Ii

The evaluation of these moments still entails knowledge of the

eigenvalues or alternatively the trace of R W and (R ﬂ)z

However the above has been used to derive some asymptotic results.

Using the fact that

R = ( Rv—ﬂ -

J“ pltv-pMI0

A
2N ~a

P ew) du -,v,/a:')l--"‘)

is a Toeplityz matrix Grenander and Szeg<d (1958) show that if

A
R OEY.
o’
then the characteristic function of Y is given by

./

ya) - 0 |1~ 2c2 %«;_/ ¢ [Ci;‘) (s<

or n . ‘
e £ b L S Rt
Thus
Ja\z)#(z)—- +3L 22+ d, 3.&7
h
and do € Al22 ]3] NP 3.8Y

y=i

and using the analytic theory of Toeplitz forms they show that when
0 < C, < Q () <L C,

o< Wey € 3
)
for some constants C,,C,,Cs then an = O(n- /,_)
and - yz

D i) = € ,

n 6
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Thus the normalised spectral estimate is asymtotically normal. . This

has also been suggested by Grenander and Rosenblatt (1957) and Lomnicki

& Zaremba (1959) amongst others. Grenander and Szego try sharpening~
their approximation and to some extent do achieve this aim, however their
later development cannot be put into a practical framework. Some
closely related work was done by Kac (1954) whose results are closely

paralled by the others mentioned above.

Several authors have looked at the problem of inverting the

characteristic function given by 5.82 that is evaluating the integral.

8 - l l
3(7‘): '2‘_1{ € "21”(I~2«'£/\u5/2c\£ 3-89

Since the integrand of 3.89 is an analytic function of & except
at the branch points the integration contour can be deformed into a set
of circles enclosing pairs of branch points if n is even. By collapsing

the circles one can obtain an expression for g(x) as a sum of finite

integrals, wviz:

[%J (zl\lv)-| n ) ‘/)
e—j)fﬂ (,'23)J ).CJJ )

(x) = L ) 2y
j n y=1i (2/\1\'.4) J 370

This technique has been used to facilitate numerical evaluation by
Slepian (1958). Robbins (1948) has suggested a power series expansion
for 3(2\ as well as a representation as a mixture(ﬁ??(ldistributions
while Gurland (1955) has developed an expression in terms of Laguerre
polynomials. All of these expansions however appear to converge slowly.
Grenander, Pollack and Slepian (1959) discuss an integral equation method
and some further Toeplityz approximations, however in practise one feels

that their results while interesting, are not applicable, in general,
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especially when one wishes to use standard spectral windows.

A common approximation, Blackman & Tukey (195@) or Granger (1964),
2

is to assume that the f(w) have a distribution that is approximately ’)\.

The rational being that since

A N
Vioy = 0 Tareps) W0-w)dp 3.9
and hence
« n
Py x b | Terme) Wis-w)dw 512
n

Now the integral in 3.92 is essentially a weighted sum of 7<1variates
when the & ¢ are normal or at least follow the central limit theorem.
Clearly the integral can, by following the arguments of Welch (1947) can
have its distribution approximated by a )(zdistribution.

2z
Since the number of degrees of freedom V of a X variate
v

is given by
v 2M°
0)?—

we can define the "equivalent degrees of freedom of f(w) as

= A 14 1 -}
(VA 2k L t(‘\-’)] ~~ 2” [sz WIIQ’U)AHJ - 3.9

- A '
vor | Clw)] "

This quantity is also sometimes known as the "stability" of our estimate.

\

It is of some interest that Freiberger and Genander (1959) in a
paper which considers the use of Toeplitz matrices in investigating
1
distributions of quadratic forms also use a x approximation for a

rectangular window V/Q)of the type proposed by Daniel (1946).
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We shall in our future consideration of spectral estimates
use the X% approximationfor its distribution. One further problem we
must consider is the correlation that exists between spectral estimates

at differing frequencies, unlike the case of the periodogram

We may see

A A R 4 A
Cov [ Q(N,)v(“)L)J - ‘;—‘ﬁl 2.2_ /\{ >\$(CJ\5(K(Q5 )[CD (‘,u)(u)s@,_ 39’*

o )
- TT:' | h@)[w(g—w,)+u}/g+u,]1w/9-,ol)ﬁW(pw,]de 35S

-n
'+Z“t(u%) rw)
and asympotically the covariance tends to zero. However for sample

sizes considered in practice one must choose estimates whose arguments
are sufficiently different to minimise correlation. Table 3 gives the
correlation between spectral estimates when the underlying series is
white noise. This table is easily computed since

A 2
Cows [ e/w,)?m,)J.- {2_: /\% cmr‘,o,cwrw,_)//z"—

_ hy aﬁsw)

o -394
Clearly the correlation will depend on the "bandwidth" or how

spiked the function W(®) happens to be as may be seen from 3.95

From table 4 which gives the bandwidth for three differing spectral

windows it is clear that while the Parzen window has smaller variance,

this has to be paid for by accepting a larger bandwidth. Hence one has

a greater degree of correlation and in consequence some loss of

"focusing power" of the spectral window. This is easily seen in the

valves presented in table 3. One might expect that estimates of

f(w) separated by at least one bandwidth would be only very slightly

correlated. As can be seen for the Tukey window with bandwidth T%5

the correlation is 0.1667 while at this value the Parzen estimate has

correlation of 0.4020. Looking@at the bandwidth value for the Parzen
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TABLE 3

This table gives the correlation between spectral estimates for a Normal
white noise process using 3.92 with M = 10. Source Fishman (1969)

Separation Correlation Separation

Tukey Parzen Tukey Parzen
0.0 1.000 1.000
0.1 0.9961 0.9978 2.6 0.0292 0.2100
0.2 0.9843 0.9911 2.7 0.0184 0.1850
0.3 0.9650 0.9802 2.8 0.0101 0.1620
0.4 0.9385 0.9650 3.0 0.0000 0.1410
0.5 0.5054 0.9458 3.1 - 0.0026 0.1219
0.6 0.8663 0.9228 3.2 - 0.0040 0.1048
0.7 0.8220 0.8964 3.3 - 0.0045 0.0894

0.7734 0.8667 3.4 - 0.0044 0.0758
0.9 0.7213 0.8342 3.5 - 0.0038 0.0637
1.0 0.6667 0.7993 3.6 - 0.0030 0.0533
1.1 0.6105 0.7623 3.7 - 0.0021 0.0442
1.2 0.5537 0.7236 3.8 - 0.0013 0.0365
1.3 0.4972 0.6873 3.9 - 0.0006 0.0300
1.4 0.4417 0.6429 4.0 0.0000 0.0202
1.5 0.3881 0.6017 4.1 0.0004 0.0166
1.6 0.3369 0.5605 4.2 0.0006 0.0137
1.7 0.2888 0.5196 4.3 0.0006 0.0114
1.8 0.2442 0.4794 4.4 0.0006 0.0096
1.9 0.2034 0.4401 4.5 0.0005 0.0083
2.0 0.1667 0.4020 4.6 0.0003 0.0013
2.1 0.1340 0.3655 4.7 0.0002 0.0065
2.2 0.1054 0.3306 4.8 0.0001 0.0060
2.3 0.0809 0.2975 4.9 0.0000 0.0057
2.4 0.0602 0.2663 5.0 0.0000 0.0057

245 0.0431 0.2371



Tukey
Wendow,

Parzen Window
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TABLE 4

Bandwidth, Variance and Equivalent degrees of freedom for same
windows W(@). N denotes the length of the realisation and M
the truncation point.

L

W(0) Bandwidth Variance/ Pre) E.D.F.
Unit Tr/(Hf V1_§ 2.000 M/N N/M
Tukey 21/ m 0-750 M/N 27N/

Parzen 8ﬂ/3H 0-539 M/N 3.7 N/H
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window the correlation drops to 0.1830.

From the above one may conclude that if one has spectral
estimates separated by at least one bandwidth then one can assume that

the estimates are approximately uncorrelated.

Having established the results above we can now persue our

estimation of jca e,

™M A
A Z_I jﬂzn?mp\ 3.97

P:O

»
(>
2

where OP‘ g%? P‘ ... ['\%]

where M is chosen such that the correlation between tf‘\)p), P‘[‘\)?H)
is minimised, that is Z,D is at least, the bandwidth of the Parzen
™M

window. Then from 3.9} we have
?—/w): Y/co) Y/U)

l
where Y is a random variable with )‘\/ distribution, V  being

the equivalent degrees of freedom of our estimate. Thus from 3-9 7

1

A U =/

Zz
™M
Notice that as in the case of the periodogram we have a doubling of the
variance at W = O,i'ﬂ

2

\

If we assume the //“P) ]2 =0, 1.. are independent X
A

variates we can proceed in exactly the same way as for A I

Thus if one has a sufficiently large value of M that the

end points of the sum may be ignored then

Hy = 2 ) u\a\v]\/lu)r] 3.99

™ p=0
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has a characteristic function given by

- M
¢A,“) - _{'f l ‘7/-‘-,“—" *%)J 3.100
%
t%],
while using Ll 2 l_ \b y/kyﬂ the characteristic function
=L Y
becomes
3 il’[’" u)"")[‘t/zh“l , P
Gurr) = 20 | PR ) [ 2 Takay) |,
1%) mr%)
where Pf l, 2 depending if one or two end points are included.

As in the case of the periodogram it is clear that the
characteristic function cannot be inverted directly and one needs must

find some indirect approach. The cumulants and consequently the

moments can easily be found as before

For LIJ
K, = Jdog2z e ¥1%)

k). = "lr:‘ .J’I/V/L)

: (r-1)
<, I A

r-1

|

3.l02

while in the case of H we have the rather more complex formulation

¢ = (10 B dmr ) b1 )
K, = _"7‘4'1‘2_) + ZEM‘\},[V/“)
(t-4 r-1)
A A O BRI A S CANEEATE
el "M .
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The computation of the moments is thus quite routine, and given the
equivalent degrees of freedom one can find tabulated values of the

Polygamma functions in Abromowitz and Segun (1968).

As is evident from the above our estimate is biased but as
in the case of our previous estimate AAI we can make the following
modification

A'\ ¢ = 3 - - ¥ 1

where K‘ is defined as in 3.103 above. From now on we shall use

only the unbiased form in 3.104 and for convenience shall denote it

J.104

A
by .A ¢
A
From 3.10 ) the variance of A@ is given by
/ /
KZ: 2 '\;(\fz) + &___‘E. —\'l{‘;q)
™M kR
4 m
) . A
and as Mm-S 0 K,_-B'O implying that 4 ¢ is a consistent estimator
with mean ™y f ( ‘e]k)
_ 2 ) J ZIIY/@P) ’:_‘_I «Pl\"jznv”
K, = o bme T n J

!
since '\}’ 12\ is a bounded functione.

A
For large values of w .Ac_ can be considered as a set of

independent, identically distributed random variables.

A

This follows from the arguments stated above that A;. is approximately

normally distributed and from the results of Grenander and Rosenblatt

(1957) that
A

«
&w'v\ (cw[ ?de?luh\] =0 w, F 10,

"mD &
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Thus we can by appealing to the central 1imit theorem assume that

has an asympotic normal distribution.

This results is not of great interest as it stands for we
really need to know how fast the time distribution converges to a normal
form when M > o0 | As before by considering the third and fourth

moments, or more usefully (3, and [3L where

_ VL "
ﬁl = %/Qz3

= N . ](H
P /it
we have, for large
]
ﬁ‘ ~ 4'/‘//2)

) 3
My (%,) b

L

3.108

B - 34 Y% 3.106
my (%)

where we recall m 1s the number of lags used in the estimation of

For a Parzen window the equivalent degrees of freedom are

given by
V = 3.7 N 3.107
/M

using the classical variance estimate. However if one uses the
modification due to Neave (1966) discussed in Chapter 1 then this needs

to be slightly modified. Since we are using approximations we shall use
the classical result of J3.107 and table 5 gives the values of jTSO and F@

for three values of N for convenient” values of the polygamma functions.

From the table we can see that J{3: tends to zero df\(‘,& to 3

as ™M increases. The other ceomparison we may wish to make is with cut
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A
estimate A T to do so we must bear in mind that ™M is the number of

A
values of &(QQ""\ included in AQ . Using a ”:N_ lags to estimate

3
the spectrum with a separation of say 21 then m= N/é while for
A
the corresponding periodogram estimate A r M= N/L and reference
A
to the table 5 shows that AS is marginally better. It is more
A
realistic to consider a separation of 3,'1_?\ in which case for AS ,‘M= N/f
and the difference is very small. However if one wishes to choose M”M/q_
or less then the position may change completely. We must also remember
that we have not considered the correlation between our estimates.
A
It is of interest to consider the asympotic variance of Al‘,
For a Parzen window, from table 4 V=53 z_'\!_ thus since for large #
M
*/' 'tay -
z
sun ( Ay ) M -
* Zhm 2K m 3.10¢
while
(A \ 16
U i = : =
N KM= N 3.109

Thus if we choose a minimum separation of -3EL' for our smoothed
spectral estimates M~ "}3

vow A(.\ = -3
and A

the implication being that there is little to choose in the efficiency

of the two estimators.

We must however admit some preference towards the estimate j I
It would appear to offer great simplicity and in addition the estimates
of the periodogram are at least independent. For small sample sizes
we have to remember that the smoothed spectral estimates are correlated

and as we shall see the effects of this correlationcan be quite marked.



92.

TABLE 5

Polygamma functions for 3 arguments

hyH

4
3
2

%

14.8
11.1
7.4

Table of values

20
50
80
100
200
250
300
350
400
500
600
700
800
900
1000

V 14.8

0.08495
0.05373
0.04273
0.03799
0.02687
0.02402
0.02193
0.02029
0.01900
0.01700
0.01552
0.01435
0.01342
0.01265
0.01200

N  denotes the sample size

N
0.14468

0.191196
0.31004

of J]z; and

/8

11.1

0.10387
0.06569
0.05193
0.04645
0.03285
0.02938
0.02681
0.02482
0.032322
0.02078
0.01897
0.01755
0.01643
0.01549
0.01470

4"0%)
-0.02089
-0.038846
-0.09540

B.

T4 14.8
0.17411 3.0144
0.11012 3.0058
0.08706 3.0036
0.07787 3.0029
0.05505 3.0014
0.04924 3.0015
0.04496 3.0010
0.04162 3.0008
0.03894 3.0007
0.03483 3.0006
0.03178 3.0005
0.02943 3.0004
0.02753 3.0004
0.02596 3.0003
0.02462 3.0003

V(%)
0.00603

0.01524
0.05828

B

11.1

3.02085
3.00834
3.00521
3.00417
3.00209
3.00167
3.00139
3.00119
3.00104
3.00083
3.00070
3.00060
3.00052
3.00046
3.00042

M the number of lags used to evaluate the spectrum \

W 1is the number of values of

(w) in the summation A‘_

7.4

3.03032
3.01213
3.00758
3.00606
3.00303
3.00243
3.00202
3.00173
3.00152
3.00121
3.00101
3.00087
3.00076
3.00067
3.00061
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,v\"j?\

vaLucs oF NP1 FROM TABLE 5

0.14 1

0.12 1

0.08 1

0.06

0.0u]

0.02

100 200 300 400 500
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CHAPTER 4

A TEST FOR WHITE NOISE

As we have seen in Chapter 3 we may estimate the logarithm
A A

of the minimum mean square error of prediction by AI or As where

2\1 = L Z_ J“'jI /wz)-%az- )

4.1

P ey 2t et
b, - L L Jof)ﬂ‘ tw)s - | «31 - (%)
S M ov=y 4.2
From the forms chosen above it is clear we shall be considering asympotic
results and we shall look at a test for white noise described by Davis and
Jones (1968) based on the asympotic properties of 4.1 . In addition we

point out that one can base an equivalent test on 4.2, and consider some

drawbacks of theilr procedure.

Suppose we have a non-deterministic time series i Xfi which

has the following moving average representation

o)
Xe = £ \-2)_;. FJ' ("'j 4.3
where EE[(—] =0
E[ e, 2] = o E45
ot t=s

Then the variance of the series

0%t = our (%)
can be written in the form

6’z=o’('+L—*lﬁJ)\ 4.4

~=q
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A
A consequence of 4.4 is that O}* = implies B, =0 forall k3|

Using this fact Davis and Jones (1968) attempt to test for

white nolse by deciding between the two hypotheses

! 2
H, o of=o? H, @ o<yl

or equivalently

0
A convenient estimate of Qfﬁl can be obtained by noting that

o, - jﬂ Vo) dw 4.5
Zn 3

since

ki
R - By _[ e'm"v{mc\w
-n

and we use as our estimate of cfhl
u
T \ T
. = —_— /
SP w _Z: ‘L’Q ()”1) ' 4.7
J—"
A

For large values of W it is fairly easy to show that S?

is approximately equivalent to the sample variance since

N -S|

2:!
2 2

T = a0 XX s 4.8
dn /“"))‘} se—ne N {_—;‘ %15 “
37 A
© 2L (1o s Reemse 4
Sz ~N N '

This implies that i" ‘%‘\ >0
"

v 4,10
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However

A
/. cnkx = con laer)y Sua Iy,
s x 3¢ 4.11
SUV\ /Z
\\
(N SO - (@) s )
and hence VZ:" v .
giving
L L
Spo= S» 4.12

kB
where SY denotes the sample variance.

. i T o I
Davis and Jones (1968) use Sy as their estimate of X
1
however 4.12 enables us to consider Sy as being approximately the sum

of periodogram ordinates, which proves to be useful as we shall see later.

T
Using the sample variance we can assume that under "’Io ; Sy

'R h 'S
o e . . _b L
has a o distribution which shows that (ﬁ S¢

1
is a biased estimate of \» o since

e[ oy luys ] o by )

and 5,y [ \9 S:J > ’\"l(ﬁ)—:‘) 4.14
3 5
From the above we can see that

if o . - &‘5("";—‘\ N +(§}_;‘) 4.15
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then &§35}'* b is an unbiased estimator of ~Dq3 s,

Writing
A
1
v - &635*~A1*l’ 4.16
then under on ) has a zero mean and for large "N has a
distribution which is approximately normal. To find the variance of Q

2
we need to lock at the correlation structure between }SS* and A 1

which we now proceed to do.

Now ‘Df3 J
Z—"I (W, x) 4 L Jﬁ—ru/k)w ]

| &

= omr[jda.:_\

4.17

from 4.12 and under PA o the spectrum is a constant function and the

periodogram estimates are identically distributed thus
B PER) b2 T )
rc_rU"L (35,\ AI =CUVv UZJL—&)/‘«.)V)X) 4'31(4-.)'9,1’418
V L ]
where “BP is one of the values of W) at which the periodogram is
evaluated.

We can simplify 4.18 by noticing that
oo | «Qos Z Tyrw, ;%) - ‘h(f:\ N"‘)P”‘)J
S oo [ )cﬁ’ In/@m)‘) } ] s

Z IN/OV))I)
v

jo—ﬁ ZV'_ I, 1wy, % )] t W[jcj In‘“? ,)()]
- 245 [ joa Z_ Iu /u.)v)y)jl'u/u)?)ll)]

4.20
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and since ;{Jii:hiﬁl— is independent of yam -IJhDJ;7L)
%7 IN/Mvﬂd

see Hannan (1960) we have

vuw [ b% .I,\(qu)X)J

Tl s iz due)
4.21

From 4.20, 4.21 we see that

U ]: Do’j ) I /w;n)()] = CW[JLjIMP)X) JonI,,/wv,x)]4.22

or equivalently

Ccru'[ )cg sz)A‘\JJ = W[)ﬂsxlj 4.23

giving

4.25

Consequently as a result of our manipulations we can see that

under Llo the statistic
\y ‘le*—b—ﬁl
!

\] \4-2:) _ \ll {'A%ég )

has a distribution which tends to that of a standard Normal variate as A’

Z =

4.26

(or equivalently N ) tends to infinity. It has been pointed out by
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Davis and Jones (1968) that this is in fact equivalent to Barlett's test

for the homogeneity of variances applied to periodogram ordinates.

A
If one wishes to use .Ap_ then much the same approach can be

used.

T
Defining SQ by

“m A
3p1= i booy) 4.28

for a suitable choice of WM then as m 00 we can show that

SE > S, N Mean S"v“"'

T
where as before Sy denotes the sample variance.

Proceeding as above we can writé
b= - J ('\L;.)+)[/':’_:’) 4.29
7 (g z

and L = \,bga SXL 4,5 _‘?\9_ 4.30

can be used as the basis for a test of white noise. Clearly we need to

evaluate
- \ < A 24
1
cow L Jc@ Sx ) Ag] X rw[ﬁua:] V—fuov)'.)a:};ﬂ.i ?'(")V)}4.31
which following our previous derivation can be written

cow [ jﬁs’l)ﬁi‘-] = cow[ Jﬁ; e(“)v) J@L«)P) 4.32

«

where ‘Qp is one of the points at which ?—', "-’) is estimated. The--
derivation is identical to the periodoaram case if we can show that

t\( *JE) is independent of Z (W)
L Vo))
v
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The independence follows from a theorem due to Pitman (1937)

which states that:- if \/‘ )(u are indepdendent random variables
i1

from a | (/‘Q distribution, then if h (X, .. Xu\ is a random variable

such that for any € >0 the function obeys

Wl oo o 020 = k(c,x‘)cx,_[.....c;(k)

then X,*)(L“""'XV_ and ‘V\{X| XL"“XIL)

are independent.

A
Using this theorem we may show that under I ® twp)  and

z (k)u)

Z_ %f '0?\ are independent and in consequence if we proceed in exactly

the same way as for the periodogram we have
[ 2
vone | &ﬁsxjr_\.- cou [ Jo—t‘S,} L ] } 4.33
J
Using 4.33 and sssuming asymptotic normality then

z' L
J 40 3 liener)
% -

4.34

has a distribution which is approximately standard normal where V

A
denotes the degrees of freedom of the distribution of Blw)

wWhile the above statistics are of interest we really need some
idea of their distributions under ” , Davis and Jones consider the
asymptoticdistribution of 2 wunder the alternative hypothesis that

3 MS is generated by the first order model

Yb: °(Y\L—+€b» I&) < 4.35

however they do state that the distribution of & can be discovered
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under any alternative which uses a model giving rise to a uniformly

bounded spectrum.

Assuming a model of the form &4 .35 we have

LN
OJ\‘L < W(xt.\ = o A.ss
- >
where E[ZL}} =CS)L . Then if we define \/“ as
n
I, 1
\/“ P T Q(NP) b .37
h v=u

it is easily seen from Parceval's theorem that
0
& L
-/ Ktz\, L.8%

és-w

n L
Yo V.= J Feordw
-n

N

-

where Rt denotes the t autocovariance. Using a Taylor.
2 .

e¥pansion for the moments of \’035;( we then find that for N 9%

S TS 31
_ ey Ikl 7-_ 1
and W\_Jo’asyl] = __":_-w('z )—(%N . L.4o

By appealing to the corollary to the Lindberg-Feller condition suggested

1
by Eicker (1963) Davis and Jones show that the distribution of . (+

B [_:_\ 2 I[w.,q is approximately normal with mean and variance given

by b-3‘7, L. LO

A
2

Then if we assume that the correlation between Sy and A T
changes very little the covariance may be expressed in the same way as

for the white noise case and the mean and variance of % defined by
L.26 are
- +
Efz] - —thl—x)

| 2 -vez)
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vor(z) = Jleny o+ (aat) - z\/,’m_;:l)
- Noe] 4.2

Naturally if one wishes to use any other model as an alternative
this is possible provided one can evaluate V and in addition one is
prepared to assume that the correlation between A\L and bg 511 does
not change appreciably.

|
In the case of & where one uses a smoothed spectral estimate

one obtains the same result since we are using the same estimator §0354\'
Again 1f we assume that the correlation is unchanged we have the result
that under Hl , & ( is asymptotically normal withmesm and variance
given by

E[Z’]- —J /l—dL)
[en), - Aimz)

(%), - 2}/ (ns [+a?
v 2') = ki %44 Y T)+ (1-4*)m
) ’/u)
~ P
Thus it may be seen that one has two alternative methods of

testing for whitenoise based on 2 or 2 ', Since from Chapter 3 the rate

4. bl

\
of convergence to normality of 8 1 Oof Ac_ is approximatelytthe same the
choice seems fairly arbitary. If one has computed the spectrum then it
A
is easier to use A(, however if one has no intention of using the
A
spectrum for other purposes it would appear that A, is simpler to use.

This is particularly so if one has very large values of N for

one may then use a fast Fourier transform algorithé?n such as that due to

Singleton (1968).
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We feel that the two statistics have two considerable

disadvantages.

(a) One requires large samples to achieve asymptotic normality, from
Chapter 2 the indications are that a value of 200 would be required for

53; or & { to be approximately normal in the tails of their distribution.
It is just this tail area one would wish to use for any test of

significance.

A
L
(b) The correlation structure between AL and jﬂsl is not clear and

this is especially so when one is locking at the distribution under the

alternative hypothesis.

One alternative procedure which overcomes at least objection (b)

and has considerable intuitive appeal is to split the series into two

parts
1.€. X, )(M and XM-u"' )(ZM
From )(‘ ce YM we estimate JUUQ‘ while from )(M_”, 'XZM

1
we estimate \!030’, using the sample variance.

Consider the two periodogram estimates

| 5 -L'wl- L
I. (o) = 2 |/ e X.| L4S
™M b=
2 A -k L
and IM [M,X) = -2;—1\ } Z__ e XL—+M l bh4b

Then . _
E [ Twtwx) 1:/e,x)] ~ 47 Frorbep) 4T
* E[IL/Q,C)I:(D,U]
and ' ‘
E [ I;m,dl:(&, C)]: E[.&.’_ %_S £ Eg e‘”("'S)L-{ c etQ(u—v)
? g dtm VM
—_— = - iél—-s)aod/u—u)o
e T wntnd
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Then using the result due to Isserlis (1918) for random variables V% X;ﬁ ¢

cow Lwxvz) - ELwx]E[v2] +ELWYJELAZ]+ ELwele[XY]) + K,

4.4 9
where K* denotes the fourth cumulant we have
- \ 2 - M - -
cou [ I, m,z]IM(@,x)J = _lt&‘ w=2Nj P=2mk , 50
A "M ~M

where here Kk is the fourth cumulant of the ;gyf process.
Moreover if ? Yki is a general linear process and the ;iki is a

sequence of independent identically distributed random variables K“ =0

The drawback of the above procedure is that one is halving the
available realisation and in consequence the convergence to normality is

A
L
much slower. However the problems of correlation between 'AI and Jngx

do vanish. When we look at small sample approximations to distributions

we shall find this approach very useful.

While discussing large sample tests on split realisations we

mention a further interesting procedure. If one were to split a

realisation then one can estimate log@, from the first segment while onthe

second segment one can fit a time series model, say

From the fitted model one can obtain residuals 5&)?1 where

a, - Xt—k

and Mann and Wald (1943) and Anderson (1971) have shown that
L]

T
A, -
0’& = \ Z_(ak-a) L. 5|
n-\ o
has a distribution which is approximately normally distributed. By
AL
comparing log O with log QW we can provide a "goodness of prediction"

criteria for the fit of our time series model.
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Davis and Jones outline some brief simulations using # as a
test statistic and report good results using 50 series of 100 standard
normal variates and 50 series of the form

)(k = 0.5 Xe‘. + O

using the original normal deviates as input for the "innovation process"ftzf

We attempted to duplicate their results using the random number

generator described in Appendix 2.

To obtain some idea of the approach to normality figures 3 to 6
A

show sample values of A.I and & for some simple autoregressive
processes. In each case every other sample value has been plotted. As
may be seen from these plots on normal probability paper the discrepencies
in the tails of the distributions can be quite large especially when
the autoregressive parameter moves away from zero.

More detail of each simulation is given in tables 6 - 10.

A
Looking at these tables we have for A.I
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Taewcs 6 and 7

Mean Variance
Simulation Sample Theoretical Sample Theoretical
I -0.0021 0.0 0.01890 0.01644
IT 0.0080 0.0 0.04467 0.03288
I1T 0.0433 0.0 0.01823 0.01644
v ~0.0099 0.0 0.03309 0.03288
\ -0.0441 0.0 0.02917 0.03288

As we can see the simulations have sample means which agree
very closely with the theoretical predictions, the maximum error being
of the order of 4% this being for the larger values of & The sample

variances however are rather inaccuratee.

A
In the case of Zz = A_r + b- -!653‘ we have

TAmLED & and 9

Mean Variance
Simulation Sample Theoretical Sample Theoretical
I 0.0014 0.0 . 0.0129 0.0064
II 0.9471 8.9962 0.1013 1.0945
IIT 1.0039 12.7220 0.0462 2.1584
Iv 0.0119 0.0 0.0193 0.0127
v 0.1499 1.5321 0.0270 1.5440

It is evident that for II, ITI, V the sample values diverge
from the expected values, the remaining cases which are white noise
produce much more accurate results. From this we are inclined to think

b}
that the assumptions made about the covariance between 3_]._ and ,’q SX

are not entirely correct.
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Noting that

our [ Dy ] = Yi(nzt) o 2

—

we have
Tamsce U
Simulation Sample covariances Relative error
( (%age)
I 0.0112% 0.01 12
1T 0.0295 0.02 45
III 0.0128 0.01 28
v 0.0194 0.02 6
Vv 0.0048 0.02 76

From the tabulations above we can see that the rather large
discrepancies in the variance cannot be completely explained by errors
in approximating the covariances. However it is worth noting that the
relative error in the sample covariance estimate is 6% and 12% respectively
for white noise sequences and 28,45 and 76% for the remainder. In
addition ordering the simulations by the relative error in the sample
covariances does give the same ordering as 1s obtained by rank by the

error in variance.

Thus it would appear that when our covariance approximations
are dubious, which seems to be for all white noise cases, then the mean

and variance of 2 and consequently of <2 are not as predicted.

Rather more disturbing is the rather poor agreement with the

percentage points of the normal distribution shown in table 11l.

Our results appear to be at variance with Davis and Jones (1968).
While we would agiee the fit for white noise is perhaps not unreasonable

for small values of * the power seems poOr.
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TABLE 11
Simulation I II III Iv v
n 200 100 200 100 100
o 0.0 0.8 -0.8 0.0 0.4
Percentage point Percentage of sample values less
of Normal Distn. than the percentage point
0.1 1.00 0.00 0.00 1 0.25
0.25 1.25 0.00 0.00 1.5 0.50
0.50 2.00 0.00 0.00 1.75 0.50
1.00 3.00 0.00 0.00 1.75 1.25
2.50 6.00 0.00 0.00 5.25 2.00
5.00 8.25 0.00 0.00 8.0 3.25
10.00 13.5 0.00 0.00 14.75 4.75
25.00 26.5 0.25 0.00 24.5 7.75
50.00 45.0 0.5 0.00 46.25 18.5
75.00 65.25 1.0 0.00 65.75 32.5
90.00 78.50 1.0 0.00 8l.25 41.75
95.00 89.50 1.25 0.00 90.00 575
97.50 94.00 1.5 0.00 95.00 65.5
99.00 96.75 1.75 0.00 96.75 69.75
99.50 97.75 2¢5 0.00 97.25 81l.25
99.75 98.75 2.75 0.00 98.25 86.75

. 99.90 99.75 3.75 0.00 99.75 93.25
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We feel that the principle problems with their test as proposed
is that asymptotic normality requires much longer malisations, and in
addition they advocate discarding the values of IN /u),x) at W =0
and W =1 when N is even. It is our opinion that this makes our
estimates unrealiable when only short realisations are available. We

mention once again that the correlation approximation seems unreliable.

It would seem that we need sharper distributional assumptions

than asympotic normality and we now try to obtain some approximations.



Simulation 1

The model generated was of the form

the &€ being independent, normally distributed random variates.

110.

TABLE 12

400 replications

.- o

Using the periodogram estimate

meart

Sample -0.0021

Theoretical O

Sample 0.0014
Theoretical 0.0

variance

0.01890
0.01644

0.01286
0.00644

Sample correlation between components of

Il

0.74908

)

PN

t

TR

200

Estimation of j{je.

Estimation of

2.
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TABLE 13

Simulation 2 400 replications

The generated model was

X‘_ = 0¥ x"ﬁ + f‘_ L-a ... loo

and the i;r} are independent identically distributed Normal variates

Mean Variance
Sample 0.008 0.04467 )
) Estimation of J e,
Theoretical 0 0.03288 ) qﬂ
Sample 0.9471 0.1073
£
Theoretical 1.01 0.352 j

Sample correlation between compohents of Q

= O.ukOR6
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TABLE 14

Simulation 3

Generated model

K(, = 'OA&XL"'I + ZL,
thejifﬁbeing independent identically distributed normal variates

Using the periodogram estimate

Mean Variance
Sample 0.0433 0.01823 A
Theoretical 0.00 0.01644
Sample 1.003% 0.0462 } 2
Theoretical 1.01 0.352

Sample correlation 0.4415



11

3.

TABLE 15

Simulation 4 400 replications

Model Generated

L: b ... 100

the 3i}i being independent, normally distributed random variates

Mean
Sample -0.0099
Theoretical 0.0
Sample 0.0119
Theoretical 0.0

Correlation =

0.1735%3

=
IS

Variance
0.03309 A
I
0.03288
0.01925
z
0.01270
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TABLE 16

Simulation 5

Model generated
X, - 04X, *cn b0

36}5 being independent, normally distributed random deviates

Periodogram estimates

Mean Variance
Sample -0.0441 0.02917 j AI\
I
Theoretical 0.0 0.03288
Sample 0.1499 0.027028 z
Theoretical 1.5321 1.54397

Correlation between the above variates = 0.23947>
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CHAPTER 5
\ A

As we have seen the distributions of AI and .AL converge
to normality as the length of realisation N of our process tends to
infinity. However we have also seen that convergence to normality is
very slow and for many time series problems we have available only short
series. In consequence we shall now present some approximations to the

A A

exact distributions of AI and B t and as we shall see they do appear

to be very good approximations.

Since we have in effect used the central limit theorem to
involk normality one approach is to look for a sharper approximation using
Edgeworth type expansions. To this end we shall outline some of the

ideas behind the derivation of these expansions.

ILet f(x) be a distribution function, not necessarily Normal,
with characteristic function ‘P( F) and 1et F(x) ve the distribution to be
approximated. We shall assume F(%) has a characteristic function d( l-) ,

Denoting the cumulants by gKrS and fzrs respectively we have the formal

identity o ,.
¢ - W p l Z;:—, (lr'rr)(i;l'.) J 4/#) .

since 'G\LB¢“" = Z‘i;; Kf {_a?__:)rr

and Jo‘s \HH = é_‘ {r Ll;_l:.)

Now if F(x) and all its derivatives vanish as 3 tends to the limits
(cHY Y+
of its range then ¢ ) is the characteristic function of

( e T (¢)
or if we introduce the differential operator D (- [} } ()
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then

GG < 17 2o et d 5.2

In conseqguence we may write

Fix) = @P[—z|11r-xr )(‘_D_)t] 1 o) 5.3
r

Hence one can quite formally construct a distribution with
prescribed cumulants by choosing i?bt\ and formally expanding 5.3. In
the development of such asympotic series the most important distribution
é}(l\ has been the Normal distribution, as one might expect, see for

example Edgeworth (1905) and Charlier (1905).

Charlier expanded 5.3 and collected terms by the order of
derivatives which gives the "Gram-Charlier" A series. It is in fact a
least squares expansion in the derivatives of the Normal integral i[(x)
with respect to a weight function '/f ‘(1) Cramer (1937) and Szego (1939)
have shown that the A series c?nverges for functions Flu) whose tails
tend to zero faster tham[}?x{]gnd that convergence occurs for all
distributions on finite intervals, however Wallace (1958) comments that
non-convergence is common in other cases of interest. We note in
passing that {;113 is usually chosen to have the same mean and variance

as the distribution ﬁ(x\ this having no effect on the convergence or

otherwise.

Edgeworth (1905) followed a slightly different argument by
considering improvements to the central limit theorem. To outline his
development let the distribution Fex) to be approximated b€ the

distribution F;(x\ of the standardised sum
__—-——'——-__.

1, - ;i (X;_-ECX;-‘_M /j iWEX‘} 5.4

s= i
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and let }(1\ be the standard normal distribution

Then in 5.1
K,-¥, = ¥,-¥, =0
and
\l‘
'(F' ]{r: "—/F'——.
n/z.'l

SQQ

where we have assumed that the component variables are independent and

13
jdentically distributed with mean /‘\ and variance < while the higher

moments are given by

Kr = e )r

r=3

5.7

If we now collect terms in the formal expansion of 5.2 according

to powers of N

function of the form

qﬁﬁ(k\ =

=

[+ 2 Putit)

n 7

e1.
]

we obtain an asymptotic expansion of the characteristic

Sy

where 1?.( ¢) is a polynemial of degree 3~ with coefficients depending

on the cumulants of order 3 to I+ Z The corresponding expression for

the distribution function can be shown to be

[,\(x') = ‘_'T:()L) + Z_ ?r('b) ;le)

Thus we are in fact adding approximating terms to the central limit

=1

nfAa

5.9

theorem, for taking terms in r to the power zero we have the familiar

result
F.\(x) > _kr(")
Explicity 5.9 becomes
(3)
Focd = o) - 2 T,

6Jn

L
)

}{&' m(x

PR—

&\

2
) +)\J glz\ ...

72

S.10
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Cramer (1928) proved that the series is valid but gave no
explicit bounds on the errors. Apart from assuming that one more
cumulant existed than is used in any partial sum the proof assumed the
"Cramer" condition that the characteristic function'g(F) of each

compeonent random variable satisfied

Yiw swp ] 19} < >

bl =

in fact this condition is satisfied for all component distributions which
have an absolutely continuous part but is not satisfied for discrete
distributions. Cramer (1937) also showed that the asymptotic expansions
remained valid for sums of non-identically distributed random variables,

however the conditions required are very much more restrictive.

It was also shown by Gnedénke and Kolmogerov (1954) that the

termwise differentiated Edgeworth series is a valid expansion for the

probability density function.

Essen (1945) has studied the problem of developing asymptotic
expansions when the Cramer condition is not satisfied. He showed that

the error in using the first approximation

(3)
Jooy - N ¥ 00 $.13
e,

a{[n

is of smaller order than }/ providing only that the third moment is
h

finite and that the distribution is not a lattice distribution i.e. takes
all probability on a set of equally spaced points. However Wallace (1958)

has pointed out that the usual Edgeworth expansions can be modified by the

addition of discontinuous terms so that the resultant expansion is valid

uniformly for all T.
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Since the Gram-Charlier series is just a rearrangement of the
Edgeworth expansion all the above properties also hold. However for our

purposes it is convenient to use the Edgeworth series.

In a great many statistical applications the problem is the
reverse one in that the percentage points of the distribution are needed.
From the Edgeworth expansions of r.\ l)t) an asymptatic expansion of the desired

quantile Ap can be obtained by formal substitutions and expansions of

the form
X = Z’P t S‘ (Zf) * 51(1"?) 4 ... L,
P f:j??‘ p

where the Si(%) are polynomials and €p is the corresponding quantile
of the Normal distribution. Cornish and Fisher (1937) carried out these
inversions treating each cumulant of E‘{I) according to the size of the
leading term. Abramowitz and Segun (1968) give explicit form to XP

and we follow their description here.

If Ap 1is such that F“(Tp) =l-p then XP is given by
Ap = M 40w 515
where -Z? + f‘\r\‘(l'p)

\(7_\\,_(5?) 4 Yil\“‘(l,’)
(3 1"3(7;?) + Y,\(L lr\,z(z'r) + YIJ l\ou(%f’)

4=

+ xu L"y (}P) + YLL l\nliﬂ + Ynl{z. l‘Hl(%l’) *Y‘q“""{&f’)

4 _
5.16
Mbei_ng the corresponding percentage point of the standard normal

distribution and
ey = L1 r=34,.. 5.17
(Ky) 2
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while

h (X) = .é‘—-l'll(X\

hy, ) = A Hyod)
2u
hy (20 = —- [ 2Hs00 + H"")J
36
120
"‘-.. (x) = . L U.Hh(x)f 19 I—L(x)J
324
l",r()() = [ Hj(z)
/20
\“;,_ (x) = _ __1| )_ 3 Hsx) + él—b(z) +2 H,(x)]
3%y
Ny ) = - [ 2 Hs 00 + 3;—!_3(74)‘]
1 80
Llll()() = L L N Hslx)-t- 37",3 l)t) _(,%Hl(x)]
25%
L"“(x) = - | 252 Hscx) +€32 H, () +227F|,(1)J
7776
S. Iy
where the Hn( )() are the I-;lermite polynomials
7
— m Nn-2m
| - -
I-—I.()() = n. Z— ( ’) X 5. 9
mee | o™ J
m' 2 (V\'ZM“
The drawbacks of the Edgeworth and Cornish-Fisher expansions
are several. The expansions are not easy to evaluate in view of their
complexity and the special functions required. More serious is that the

Edgeworth expansion is not a probability distribution and does not give
rise to monotonic functions. In fact they can give rise to values
outside the unit interval [C% ,] this being particularly so in the

tails of the distribution.
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This does not conflict with the proofs given above since the
proofs of convergence etc., refer only to the absolute value of two functions

approaching zero.

Barton and Dennis (1953) outline the conditions under which the
Edgeworth and Gram Charlier expansions can be expected to give unimodal
and positive definate results. Figure 7 summarises their results giving
regions in the @5,) F;‘ plane for which the expansions are positive

definate and unimodel.

For some practical use of these expansions we refer the

interested reader to Teichroew (19456) and Greary (1947).

As an alternative to the computation of the appropriate
asymptotic expansions another approximation method is to fit the approp-
riate curve from the Pearson system. That is the system of frequency

curves satisfying the differential equation

P - (x.+c,) g.20
A )

:) Jdx C()“’C"I‘(’ Cy X

which can be obtained from the hypergecmetric series, see Kendall and

Stuart (1969).

Examining 5.20 we see the mode of the distribution is at

x =-c6, and if we shift the origin to the mode we can see that
[ - X _
v Siﬁj = 2 5.2)
3 A Cu‘*ca.)(
and
3 fJ _
ars . _ [ Co'(!*c>)" 5.4

Cl)(,l (C°'* Cz I.L)L
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thus the curves have points of inflection at

>ce 2 _Co 5.23
. 1+ Ca
Further if we express Co) ¢, Ca in terms of the moments of the

distribution we have

Cy = G’ ( Q‘Pz.' 3%%L> s.2U
2 s;&,-eﬁ.‘ﬁ)

c, - —G_J_:rﬁ,( ‘5;“’3) 5.25
2(5B, 66, -7)

€ - < F}f— - 315' -6 S.2¢6
—2(5P2- "6@4‘61)

where as before

B V= /}{;//lea
P /““//uf

Thus each curve is uniquely specified by its first four moments. This

i

can be a useful property if one is using sample moments, however in our
case since all the moments are known exactly errors in estimation of high

order moments are not a real consideratione.

Looking at 5.20 we can see that the form of the function
is largely determined by the values of the roots of the quadratic

Cqo + <, 4+ C, % $.27

or equivalently by the ratio

C\l/u co Ca

This latter quantity has been termed the eriterion K by Elderton and

Johnson (1969) and can be written in the altermative form

‘- B /Pl-i}))- N - 5.28
4 (Zﬁz_— 5F’t‘6) (‘iPz‘SF' )
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The three main '"types'" or solutions to $.20 arise as follows

(i) wWhen WO the roots of 9.25 are real and of opposite sign and the
curved obtained is the Pearson type 1l. This is a Beta distribution which

is written

V— \ P-‘ ‘1" -

() = L x (i-x) 0¢xg | 5.29
B(?’C’)

is standardform.

(ii) Wheno<K < | then the roots of 5.2 are complex and we have a

Pearson type 4 which can be written

r \~" T
- X 5
Py = k( I+ Z ) QJL]))_ -V anxclom (%%)} 5.30
[£]
the k, "M,V being parameters determined by [g. ) Fl—
(iii) When ¥ >l both roots of §.27 are real and of the same sign,
giving rise to a Pearson type 6 curve.
9 _ -¥F
i (% - a) XA 5.3
t ) jo
where again the constants 'jo 1 9 P are determined by the moments.

These three curves are the main "Pearson types', however there
are at least 9 further "transitional" types that have been classified,
including the Normal and Gamma distributions. Some of these types are
shown in Table 17 togethér with some brief details of their shape.

For more detail the reader is advised to consult Pearson and Hartley (1970)
or Elderton and Johnson (1969). Figure 7 shows the boundaries of the

various curves on the P. and F?,_ plane.

There are obviously some difficulties in obtaining the

appropriate curve from §. 2§ given values of (5, and F.,: However often
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all we require are percentage points of a probability distribution and

in this case things are made very simple by the extensi&e tables published
by Johnson etal (1963) and the extended version of these given in Pearson
and Hartley (1970). These tables give values of the percentage points

of the standardised deviate for 15 differing percentages. The use of
these tables makes significance testing very straightforward and increases

the use of the Pearson curve approximations considerably.

Pearson curves have been used as approximations to unknown
distributions with considerable success. Stephens (1963) used such
curves to find the distribution of Watsons goodness of fit statistic

and the curves have been used by many other authers.

A further elegent method of approximation is that using the
method of "steepest descents" in evaluating integrals. This technique
has been used in approximating the distribution of the correlation
co—efficient, see Kendall and Stuart(196€) but the method appears to have
orginated in Jefferies and Jefferies (1950). The application of this

technique to statistical problems has been studied by Daniels (1954)

whose approach we now follow.

Let us assume that the distribution to be approximated

comprising component random variableswith a probability distribution

and a moment generating function r1(F]
00 L
M(H = j Q‘lx T o) dac 532

which exists in some non-vanishing interval including the origin as (N
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w

-V M
_q € kaw'x Hll)
3 —jo o a u?
+ S 4
-V -7

TABLE 17

Origin K

Mode iLco

Mean It=0 P 1 =0
pz< 3

Mode le“*SPl

Mean

4 Vo o <K
2m-2

At start

of curve I =i

Limits and Form

- Q'S)(quskew may be U or J or bell

-—a < x£q Symmetrical can be U shaped for

otherwise bell shaped

- & HN<CK Bell or J shaped

_op ¢ x¢e Skew and bell shaped

Bell shaped

T



126.

FIG. 7
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Consider the mean of " independent random variables X, - X“

then its density function V. (2} is given by

v,\(x): A j‘o M“((L)@-(Ling\l— 5. 33

zn 4

or using the Laplace transformation

Teco [ - k5]

booo = 2 | e adF 534
2N T
& F\ being the cumulant generating function.

For N 1large we can approximate the integrand by choosing a
contour of integration to pass through the saddle point of the integrand
so that the contribution to the integral of the part away from the saddle

point is negligable.

By looking at possible paths through the saddle point, given by
] —
iK'(H) = x
Daniels showed that the path of steepest descent gives an asymptotic expan-

sion of the form

[ L NIK)-3 \‘(r,)4...J
V- jn(ﬂj 1+ L | L Ak 5 555
where n ¥, n[Kll-o)-l'oYJ
= e
9,00 l_ 2n K"(+,) 5.36
,\J‘(Hz K('”/F) >3 5.37
Lo Lk )™

and is the saddle point.
A
In addition he showed that only one real root of
| —_
KiF) = x

exists in the same interval as N “’)
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Using in our case the cumulant generating function

KK = ~bv~(|_’(§+‘{/gj)—lh[lr‘/‘&)]+U)uz 5.38
from 3.27 we have to solve
() = e y) - x 5.39

to find the saddle point. The analytic solution to 5.39 is not easily
found, even using the usual Stirling approximation to IQ&J we still must
solve a transcendental equation. We feel that some progress might be
made using the theory of integral equations but feel that the lack of a-
solution necessitates using one of the approximation methods discussed
earlier. This is rather unfortunate since 5-35-is an asymptotic
expansion which converges much faster than the Edgeworth or Charlier series

and has the added attraction of being non-negative.

Having reduced ourselves to Edgeworth series and Pearson curves

A A
we now proceed to apply them to the distributions of AI and A;

To use the Edgeworth expansion as we know all the moments of
the distribution are bounded we need only show that the component

distributions satisfy the Cramer condition that
booo 1 PF) |y 540
Lo » :

with equality if the distribution is a lattice distribution c.f.lukas (1960)

In our case

gir) < 28 Tlekav) >l
(%)
or to be more precise since we are dealing with the consistent estimator
dir) < [(lek+)
(%)

S 42
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A
For V=12 that is for AI we have simply

Fi¥) = T ck+1) - ok Tet)

e
PR

(1) (1)

hence

L gt - T

and clearly

Do | G(H)| < |

lEl >

In general we have to proceed as follows

¢“’) r’/t'L+\//Z)

7y, )

"

and | $ 11| ek + ) /

I"('%)

-1

) ..,.L )-' Z‘f:‘,)‘] ' 543

Now the convergence of $5.43 is completely dominated by the convergence

or otherwise of

i)oj[1+kl L] 5.44

(n-+j&)

Examination of 5.40 and use of the @auss test for absolute convergence
shows that $§-43 is absolutely convergent to zero

and hence

Yo 1 ()] <

t-3%
since

Do | d(F)]eo0

E>%

Thus we can construct Edgeworth type expansions.
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For the Pearsons approximations we see from Chapter 3 that our
values of ﬁ, and Fl_ lie in the range of the tables of Johnson et al

(1963) enabling us to interpolate our percentage points as required.

To see how well these approximations worked we tried some
simulation experiments and compared the sample results for the distribution
of 5:. with Edgeworth and Pearson predictions. To avoid overwhelming
the reader with figures we shall leave discussion of the values for '£L

until Chapter 7 for as we shall see there are some rather tricky problems

involved.

From tables 17 and 18 we can see that the Pearson and Edgeworth
approximations provide reasonable fits to the simulation results. The
Edgeworth expansion does appear to do rather less well in the upper tail,
the reason apparently being that the actual distributimis skewed while
the Edgeworth expansion is rather symmetric. This latter fact is well

illustrated by Figures S and 10.

For this reason together with the fact that the Pearson curve
values are much easier to evaluate we shall from now on use only the
Pearson curve approximation and for convenience the percentage points

of the approximating distribution can be found in Appendix 3.

Another point of interest is the performance of the trapgzoaal
estimate. Davis and Jones (1968) advocate an estimator which has the
periodogram ordinates at frequencies 'O and Tl omitted. We feel that
this i's unnecessary since the distribution of the end points is known and
may possibly introduce errors. To confirm this we attempted some further

comparisons using a very small length of realisation
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TABLE 18

Simulation results using Edgeworth Series for truncated estimator with
no end points.

For various autoreqfessive models of the form )(b = aixé_'+'ft-f-L~MX

the proportion of values of Ax not exceeding the percentage points are
compared with predictions using an Edgeworth expansion to evaluate the
percentage points.

True
Percentage Sample Values
No. of
Replications 400 . 400 400
L3 0.0 0.4 0.8
0.5 0.5 1.0 0.75
1.0 1.25 1.5 1.0
2.5 3.0 3.75 4.25
5.0 5.5 8.0 8.5
10.0 11.0 12.5 13.5
25.0 26425 27.25 26.0
50.0 51.75 61.0 46.0
75.0 76425 63.25 72.0
90.0 91.5 96.0 87.5
95.0 95.0 98.5 94.25
97.5 98.0 100 96.5
99.0 99.0 100 98.15
99.5 100.0 100 99.5

99.75 100.0 100 99.5
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TABLE 19

Simulation results for the fits of Pearson curves using a
truncated estimator AI. with no end points

For various autoregressive models of the form

x‘-'; ’(Xk-l*(l- F=1.-- N

the proportion of values not exceeding the percentage points of the
appropriate Pearson curve are compared with the true percentages

True
Percentage Sample Values
No. of
Replications 400 400 400
X 0.0 0.4 0.8
0.25 0.25 1.0 0.5
0.5 0.5 1.0 0.5
1.0 0.75 1.5 0.75
2.5 2.25 3.5 3.5
5.0 5.0 7.45 8.25
10.0 11.5 12.75 13.5
25.0 28.5 29.5 28.0
50.0 52.75 61.5 52.25
75.0 75.75 85.5 72.25
90.0 89.75 95.75 86.5 i
95.0 94.5 98.0 92.5
97.5 97.5 99.5 96.0
99.0 98.5 100 96.5
99.5 99.0 100 98.75

99.75 99.75 100 99.25 |
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The sample results are given below for the percentage points. For 400
replications of the model

Yo = <Y ., *+ & k-

-1

.. 32

the sample mean ard variance were

Mean Variance
Sample Theoretical Sample Theoretical

-0.0200 0.0000 0.1146 0.1415

the agreement being very much closer for a smaller value of N than in
any of the cases using the Davis and Jones form given in Chapter 4, see
tables 12 - 1l6. Even using the approximate Pearson curve percentage
points for a Davis and Jones estimate the fit as shown below is much

better.

Some additional tables 20, 21, 22 give further evidence of the much

better results using the trapizodal estimate. Clearly for large samples

the superiority is

PERCENTAGE SAMPLE PERCENTAGE SAMPLE
0.25 ©0.25 75.0 75.75
0.5 0.25 90.0 92.25
1.0 1.00 95.0 94.25
2.5 3.25 97.5 98.00
5.0 5.5 99.0 98.50

10.0 10.0 99.5 99,00
25.0 29.0 99.75 99.5
50 52.5

much less marked but it would seem that for all sample sizes met in

practice the trapizodal form should always be used.
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To obtain some idea of the difference in the moments between
the two forms we can show, Abramowitz and Segun (1968).
K (1) = K, = JW LDOJLJ,\}IO-S)}

T K, - 27008
n

d -
an \(.—(T\ = KrL | o~ 271

n

where )(r('T\ denotes the trapizodal form and K¢ the estimate with

truncated end points.

A

Having approximated the distribution of l&; we have in
effect provided ourselves with a method of testing a hypothesis of the
2
form Hof vbcae, = G

X

against H‘ : Jtﬂ e, # o
This test has the useful property of not requiring the order of the model
to be specified. Since it i1s usual to have to fit a model to estimute
)63 €, it would appear that'the use of -&1: is a considerable advantage
especially as it would appear that errors in estimation in the parametric

situation are greatly increased when the model is miss-specified.

While the test above is of interest it is a little restricted
since in most circumstances one would wish to compare differing estimates
of .§q3@| However it may be of interest to users of stepwise regression
techniques in lagged situations who know a priori the minimum mean squared
error. One can always estimate D{33| for the residual series once one

has fitted a time series model, and for a linear model

AB)h, = B(B)z,

- L
with v (ES) = o? then El 31J=c’



135.

when the residuals are obtained from fitting the correct model. If the
A
mean of Ar'differs significantly from the a priori value then one has
a miss-specified model. This does enable one to avoid both under and
overfitting but we feel it will provide more information in the overfitted

CaseEe.

A

What is of more interest however is the comparison of A:_
calculated before the model is fitted and :Sé' the sample variance of
the residual series, for if the correct model is fitted

ELsgl= o

This has in essence been treated in the examination of the test for white

P

noise discussed in the previous chapter. However as we have seen the
test proposed is less than satisfactory and we now turn our attention to

more efficient alternatives.
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TABLE 20

Comparison of theoretical percentages with sample values

AL. using Pearson curves
Model Xe’ < Yoo, +&, E-1,..- 32

0

40\3% x 0.0 0.5 0.9
0.25 0.25 0.0 0.25
0.5 0.25 0.25 0.5
1.0 1.00 1.00 0.75
2.5 3.00 3.75 3.00
3.0 5.00 6.00 5.5
10.0 9.00 12.5 9.25
23.0 25.75 24.75 23.00
50.0 51.25 51.00 54.00
75.0 77.5 76.75 77.5
90.0 91.25 91.25 89.5
95.0 95.25 97.00 95.25
97.5 98.5 97.75 98.75
99.0 99.5 99.25 99.5
99.5 99.75 99.25 99.75

99.75 99.75 99.75 100



137.

TABLE 21

Simulation results for the fit of two moving average models
of the form

Xp = &ose, Ea 1w
Replication 500 400
N 32 64
Percentage
0.25 0.2 0.5
0.5 0.4 0.5
1.0 0.75 1.0
2.5 1.25 2.0
5.0 3.4 4.75
10.0 8.0 8.00
25.0 2l.4 24.75
50.0 49.8 50.0
75.0 77.2 75.0
90.0 92.0 90.25
95.0 96.0 95.0
97.5 98.75 97.0
99.0 99.0 99.0
99.5 100 99.75

99.73 100 100
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CHAPTER 6

As we have seen in Chapter 4 it is possible to devise a test
for white noise by comparing the estimate of the minimum mean square error
of prediction with the sample variance. Unfortunately as was pointed
out this app;oach is unsatisfactory for several reasons and in consequence
we shall now investigate a slightly different approach which appears to be
superior in almost every respect. Our test for white noise will use the

approximations for the distribution of

&1 = -5 i_{joajsm;") ‘»"32’*(

p=o

which we derived in the previocus chapter and this enables us to consider

the small sample as well as the asymptotic case.

Consider a stationary non-deterministic process 5 Xé: le--d>+ﬁ*J:},
Using the first segment of the process X.... XP we
estimate the logarithm of the minimum mean square error of prediction
lzﬁoi using j&r defined above. Then taking the last segment of the
series X?*I*t» XP*I*li <o .XP*Q*I we estimate the variance of the

series using the sample variance.

As we have seen the sample variance can be considered to be a
sum of periodogram ordinates and in addition the periodograms computed

from differing segments of the sequence are uncorrelated, thus
A 2
uow ( A 2 9035,):W{A1)4W(J0\1)5;)

" 6.l

Now let A

D= AI— JOJle-b
where ‘oa‘ - Jq(ﬁ‘%)-b%[ﬁ%!’ 6.2

as in 4.15 when N = °\
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We know that for a truncated estimater

A {
_— 2
"M 6.3
thus as Mm > X we have as an approximation
z = D
6.4

/ !
J4(') +\L/N_:_')
T z
has zero mean and unit variance and has a distribution which is approx-

imately standard normal. If we use the trapizodal form then we replace

/
our approximation \#(l\ by
M

\4 ‘(13 " "I'I{O-S) 6.5
wm ZMl

This use of segments of the total realisation enables us to avoid

estimating the correlation. While the variance of D is inflated by
comparison with the form -Q given by 4.16 we feel that this is not

unreasonable in view of the rather poor estimates of covariance available.

Our next problem is to choose the relative magnitudes of p and q.

One possibility which is intuitively reasonable is to choose p and g such

that
(A) ~ vurldogst)
G eVg T = U\'j 6.6
when 3 xk} is a white noise sequence. Using theeisymptdtix:expansion
'\l,' | of |
(1) = L + 2+ (-—3) 6.7
Zz 2% z

see Erdelyi (1953), and taking the dominant term in the expansion

NNy 4 2

Z ~ |
N~ N
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while I(‘) ~ A
A M
Thus 3.2 _ 2
P q
giving P ~ 1. 6 q 6. %

In view of 6.6 we can choose a suitable p and g, however for short

series the attraction of choosing p and g equal does appear to dominate.

While we can, as we have seen, appeal to the asymptotic results
for the distribution of D it would be preferable to obtain some approx-—
imation to the small sample distribution since in effect we are using half

our sample points for the limiting distributione.

A 2
If we make the not unreasonable assumption that A T and %Sx
can be assumed to be approximately independent, an assumption that
can be made more realistic by choosing I >0 then we can obtain the

following expressions for the cumulants of D

(o) = KI(B) - |<,(Jojs;)

K, (d) = W 8) A ‘41_(«0(135,2)
(D) = 10, (B) - Ki( &0«3 st
C(>) = K, (D) + KQ(JO:)SH ..

and in general

(DY = Mr(£1)+(-u)rrr/ﬁ@s,‘)

K (2) b i stributi
Here s denotes the S cumulant of the distribution of the random

-

variable 2_ . Since the component cumulants in 6.7 are known we can

ovaluate the Y¢(D) for all s

For i x‘,f white noise then

/ Vea -
Ke(D) = ‘L_ﬁ&'_\ + “'(%—') 6.70



141.

(r=1) (r-1) (r-+) _
and Ke (D) = ¥ ) 4 (-V) J (%) b
_—;:F:—

were for algebraic simplicity we have used the approximate forms, however
(r

the modification is minor. Since the \} \( }) are tabulated by

Abramowitz and Segun (1968) or may be computed from the following

asymptotic expansions, see Erdelyi (1953)

tay = -0 o 4+ AT O(é—ej &1z
zx  z> 224 62f
"
(zy = % 3 2 2 +0 J-) 6.13
‘\I ) >3 t i + z—s - 27 [2.9
in general \ o "
{n L - -
ey - (F) ey L (2 ak) 6. 14

w=o
in principle the MJ(DB are easily evaluated for all J ) M, M.

Using the dominant terms in the expansions and setting N =2Zwa

I, (D) ~ @b

M
|(3 (b) ~ - 3.
mi
L) s e s
giving 6.6
Po"® - t.1b
while
. 0:9% N
P - 5 2t 6.1¥
thus in the limit as N = oo B.=zo F,_ =3 which gives

us the same parameters as the normal distribution and it would seem a

reasonable inference that D has a limiting normal distribution.

For convenience table 22 gives the value of the psi-gamma

function '\*( '\L;:|) and its derivatives for a range of values of N.

To construct a test of significance based on D we can as

before consider the null hypothesis

Ho: ucw()(,.) ——0’37':'5"& L.1%
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TABLE 22

The psi-gamma function “}l%) for arguments of the form N-1

2
over a range of values of N.

TN Frinsty o AT

r=

N

32 0.06666 -0.004444 0.00059
64 0.03222 -0.00104 0.00007
128 4.1431 0.01584 -0.00025 0.00001
256 4.8442 0.00784 -0.00006 0.0000
512 3.1781 0.00389 -0.00001 0.0000
50 3.1781 0.04163 -0.00173 0.00014
100 3.8918 0.02038 -0.00042 0.00002
200 4.5941 0.01007 -0.00010 0.00000

300 0.00668 -0.00004 0.00000
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L
o’ being the "innovation variance" against an alternative of the form

H . oot 4o 6. 19
FPor large samples, under Liu‘ D is approximately normal with zero mean
and variance given by 6:5 However if our alternative is that §ka
has the form
AB) X, = & 6.20

that is

bar (X¢) = sauw Cc-) | 6.2
AB)

then we need to find the distribution of D under F*. to have any
idea of the power of the test. Thus in effect we require the distribution

of Jqﬁsi'under Lll

Proceeding in the same manner as in Chapter 4 we can assume that
T
the distribution of ~l03 Sy is capable of being approximated by a

normal distribution with mean and variance given by

/A = \1036,)(1 .22

/Ml i o4 N .23
where % L
V o= 3 g \/N = Z—— Klr ‘ 6.2y
N> %0 =~
Thus for
Re = < Xy = £4 vy L 25
we have
IR x
Sy - o 6.26
| - \
and —
o (dogsdt) = L Re 6.27
03 o4 N
since R\-: = o Qb-l we have

gt - ()

s
N 6.2%



144,

1
and JC&XS) is asymptotically normal with mean
2
J(o‘)
03 -t

‘\.ll(l) <+ l+¢(L

T Cr-<*)N

Even under the assumption of normality it is clear that the

and variance

first order autoregressive is a very simple case, and in general for
higher order autoregressive or mixed models the calculation of the mean

3
and variance of ~l{35, become very much more complicated.

However even in these cases, it is possible to make some

progress provided we can write down the spectral density. For example

consider
ACB) X, = Bi(r)g, 6.29
v 2
with spectrum Prwy) = } B(e~c)} Qf
A(ew) ! 20
Then we can write {30

n
0)"‘ = J Q/‘o)(‘luo
y')

and since ‘(wﬂ is known we can evaluate 6.30 either analytically or
use a suitable numerical integration algorithm such as those given by

Clenshaw and Curtis (1960).

For V we can use Parcevals Theorem to give

V = é?i R‘,L s ~I1 l glua)|1EJuJ 6.31

t= -V -1

Once again the integral in  6.3| can be evaluated analytically since
““°) is a rational function, however we would surmise that for many
classes of functions ¥ﬂd3 some numerical technique would probably prove

more convenient, perhaps even more so thakm in the evaluation of the

variancee.
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As an example we consider the following simple second order

case
(I—-d%)("—ﬁb)xk: £ 6.32
Then
ot - [0 _otde
" 2"1t—ouz“"“‘l’ll'ﬁ’e-w,1
and using the transformation Z= Ctno and Cauchy's residue theorum we
have §
o\t - {1+ «p)e 6.33
(l-dﬁ)(a-dl)(|_f31)
for the stationary case.
The evaluation of V is rather more complex;
vV = ot " dw
a2 \ ; 6.3
(2n> n ,l—dxe—“‘q’“l ’_Few"* b
= c" jui o R - S ]]t]«d
and ctua® o b+ o1 2 cnw 1+@1*2|3f¢/"°
c - (o‘—(,’))(l'olﬁ)d
Writing
_ \
F () | + 4l 2 cnW -
2h - -
Voo ot ] e g T - 24p e dip) ]
2Nl ©
for 6.35
1l <1 aad |(?>|<I
in —
J7 F oy Tp)dw - 20 ( 1+ «B)
) 2 6-36
(l—-cfb)(o—acz)(l—(i)
zn
[ $%u«y s - 20 5 .
o arotl 2/——-,_’:1” 637
giving
v = i a1 4u) + 14 l)
2Net Z,_dn)a (I_Pl)s
- d
2( 14 «B)xP y j | ‘3%
(- 1-a? Y-
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It should be noted that §.3% is real even if the x,P are complex.
Since the o, P are conjugate pairs one can after some algebra show that

the complex part of V vanishes.

Since we have only large sample approximations it is worth
attempting to find an approximation to the distribution of Jaﬁs,"

based on the cumulants of JOSStL under Hl i

"
Now 3"‘ . L 2 le) Iulw)i) 6.39
n K=o
and denoting the cumulants of Sil b\/ K, S,
we have " 1
K, = 2 2 2nRany¥ > <K, l 20 ao) dw
' ™ w=o T
il
— n 2 - 1
o= a2 z0ben] K s 26 [ 2] dw
nt K=o n o
" 3 n 3
0 = s ) Ve > L j [zﬂVm)] da 6. w0
3 »;\—3 k=0 n o
where 10, ¥, --- denote the cumulants of Ja (W, € )
In principle these integrals can be evaluated since Vlw\ is
L
Known. In addition we can obtain the cumulants of \llﬁsx by using a

Taylor series approximation based on the equations 6-40 - 'However this
means our calculations have become very cumbersome and in addition the

chance of making errors has become rather too large.

As an alternative we suggest approximating the distribution of
1
Jdo Sy by & -\\)} where & is a chi-squared variable with V=[ k)_‘_‘]
[ 2
degrees of freedom, the a and b being chosen to match the degrees of

A
freedom. Alternatively since vuel ) wS ,(" \ < vowvl(A ) one could
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A '3
estimate ﬁsl and D{ﬁs‘ from segments of equal length and use the

normal approximation.

To give some idea of the efficiency of the test outlined above

we conducted scme simulation exercises. Several white noise series

= - - 6.4\
Y. = &, L=1--- N
]
were generated and the values of A 3 obtained were compared with those

for some first order autoregressive series

(l -xB)\(b = & E-1... N 642

and with two second order models, these being

(1- osn «078") %, = ¢, bou3
and

(1 -0 5B + o-5B") X,,:Z‘_ - b-Gu
For long series, that is values of N=25(6 the means and variances fit
the theoretical predictions in the white noise case very closely as can
be seen from tables 23 and 24. More interesting however is the very
close fit of the best approximating Pearson curve. Table éé gives the
sample values compared with theoretical values using the Pearson
significance points tabulated in Appendix 3. As can be seen the fit
is very good indeed and it appears that our small sample approximation
for the distribution of D works veryweldl under the assumption that ék’
is white noise. Table 24 also gives the mean and variance of D when
only one end point is included in the estimation of .31_ - As we can
see the sample values in this case are rather poorer t:ms indicating as
we have said before that estimates of J(ﬁf, using 'AI. should make
use of both end points. Thus we can make probability statements and

construct confidence intervals for j<3e\If we are to use these results

in a test of significance thenwe need some idea of the power of ocur test.
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TABLE 23

White Noise Models

Means
Series Length No. of Reps Theoretical Sample
Value Value

128 300 0.0 -0.0022

0.0 0.0107

128 300 0.0 -0.0036

0.0 0.0109
128 300 0.0 -0.00442

0.0 +0.0117

Pooled values for the above 0.0 0.0034
0.0111

64 400 0.0 0.0078

16 400 0.0 0.039¢%

0.0 0.0410

In each case the second value of the sample mean uses an estimate with

the upper end point set to zero.
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TABLE 24

White Noise Models

Variances

Series Length No. of Reps Theoretical Sample

Value Value
128 300 0.0207 0.01%96
0.0207 0.0202
128 300 0.0207 0.0200
0.0199
128 300 0.0207 0.0199
0.0182
64 400 0.0415 0.0423
0.0426
16 400 0.1769 0.1752
0.1798

Pooled values for 128 300 0.0207 0.0199
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Using the Pearson curve approximation for the distribution of D
under H, we decided to examine the distribution of some simulated values
of D based on a variety of first order autoregressive models and some

second order models.

For a model of the form {J- o-sﬁ)x":{‘_ with m=12%
we tabulate below the percentage of simulated values of D which do not

exceed the white noise percentage points ( 600 ﬁ:PllCa¥|0nS )

TABLE 25
White Noise
% points 0.25 0.5 1.0 2e5 5 10 25 50
% of values
of D 24.7 32.3 39.0 52«7 62.7 76.3 87.3 95.0

As we can see from Table 25 the proposed test of significance
works very well for large samples. However M™M= 12Y% implies a total
realisation of 512 when N = 2w . For more realistic values of ™

we have for m = 64 an equivalent set of results as shown below for

models of the form

(l—d&)\ﬂ,: ('
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TABLE

26

The fit of white noise models to Pearson curve approximations

Sample
size

True
Percentage

0.25
045
1.0
2.5
5.0
10.0
25.0
50.0
75.0
90.0
95.0
97.5
99.0
99.5
99.75

Sample Percentages not exceeding the

400
16

0.25
0.25
0.75
2,0
4.0
9.25
23.0
49.0
76.0
88.5
92.75
97.0
99.0
99.5

100

Pearson percentage points

400
64

0.25
0.25
1.00
2.75
6.25
10.5
28.75
52.00
75.75
91.0
94.5
97.75
99.25
99.75
99.75

600
128

0.5
0.67
1.17
2.00
4.33
9.67
24.67
50.17
74.5
90.5
95.33
98.33
99.17
99.67
99.67
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TABLE 27
White noise Percentages ( 4eo YQ?‘wﬂquns\
% of values
o of D 0.25 0.5 1.0 2.5 5 10 25 50

1.3 1.5 3.0 6.0 8.8 16.5 38.0 64.3

3.3 5.5 7.8 16.0 21.8 35.3 53.3 79

8.0 12.7 19.2 28.5 38.5 52.7 71.5 89.2
90.3 92.5 93.8 96.0 98.3 99.5 100 100
0.9 99.3 99.3 99.5 99.8 100 100 100 100

We see from Table 27 the power of the test increases rapidly as
A = | and this is illustrated by Figure 11 which gives the power curves
extrapolated from the above table. Three curves are given corresponding

to Type 1 errors of 0.0l 0.025 and 0.05 respectively.

The total realisation in the above case corresponded to 400
We also considef the case where the total realisation was of length 64 and
N- kW) This was taken as the smallest practicable case since we must in
effect estimate the spectrum from 32 observations. However in view of
the good approximations we have obtained using such small sample sizes it

might be worth looking at some slightly smaller values of M.
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TABLE 28

White Noise Percentage 0.25 0.5 1.0 2.5 5.0 10.0 25.0
M= 16
Sample
A Percentage

0.2 0.5 0.75 1.75 4.0 7.0 12.25 27.25

0.5 1.0 2.5 4.75 8.25 14.25 20.25 44.5

0.8 23.25 29.5 36.5 50.25 57.75 68.75 83.25

0.9 46.5 53 57.5 73.0 79.5 90.75 96.5
-0.9 55 60.5 66.0 74.75 86.5 92,75 97.25

(ueo rQ\)lICu\‘nong\

50.0

55
68.5
96.00

99.0
99.0

As we can see from the Table 28 above the test works well even

with M = 16 and provides a satisfactory alternative toc the method of Davis

and Jones (1968) outlined in Chapter 4.

To make our simulation experiments more comprehensive we also

generated two second order autoregressive models

Model A X(— - O'S'Xb—l +O'7X(.-l S

and Model B )(L' - 0'75)((.-| “’O-SXL.-)_"(p—

and in these cases we find the proportion of rejections is given by Table 29.
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TABLE 29
White Noise Percentages 0.25 0.5 1.0 2.5 5 10 25 50
Sample
Values
Model A 88.0 90.0 93.0 94.5 98.0 98.5 98.5 100
Model B 44.5 50.0 61.0 71.0 79.5 86.5 95 99.5

and these results with M = 64 and a sample size of 600 would appear to

indicate a very powerful test.

We conclude that our method outlined above works well in
discriminating between white noise and non-white noise time series models.
If we could identify the small sample distribution under any alternative
we could also discriminate between alternative time series models. We

feel that it is an avenue that is worth pursuing.

Since we had the sample distribution of D from our simulations
we also compared the mean and variance of our first and second order models
with the values predicted by 6-2%¥ and €-3% The results given in
Taples 30 and 31 show that the theoretical values appear to give very
good predictions and we would hope from these results that the power of a

general test would be reasonable.

Given such good approximations clearly for large M we can use
the Normal approximation, in the small sample case we feel that the chi-

2 . . : .
squared approximation for Sy is worth investigating.
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TABLE 30

FIRST ORDER MODELS

Mean
No. of
mn o Replications Theoretical Sample
64 0.2 600 0.0408 0.0387
64 0.4 400 0.1744 0.1657
64 0.5 400 0.2877 0.2621
64 0.8 400 1.0217 0.9363
64 0.9 400 1.6607 1.4798
128 0.5 500 0.2877 0.2853
16 0.2 400 0.0408 0.0206
16 0.5 400 0.2877 0.2172
16 0.9 400 1.6607 1.4876
SECOND ORDER MODELS
64 Model A 200 0.9234 0.9036

64 Model B 200 0.5744 0.5507



64

64
64
64
64

128

16

16

16

64

64

0.4
0.5
0.8

0.9

0.5

0.9

Model A

Model B

i56.

TABLE 31

FIRST ORDER MODELS

No. of
Replications

600

400
400
400

400

500

400
400

400

Variance

Theoretical

0.04263

0.04728
0.05174
0.09688
0.17455

0.02587

0.15594
0.19314

0.41978

SECOND ORDER MODELS

200

200

006341

0 035934

Sample

0.04206

0.04549
0.05139
0.08764

0.1358

0.02560

0.15478
0.17417

0.41114

0.06220

0.05933
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As we have seen however our test for white noise works well
and we can consider models of higher order than the first unlike the
situation described by Davis and Jones (1968). The simpler correlation
structure of D would also suggest that this approach could be usefully

extended.

It has not escaped our notice that for a first order

autoregressive model

ELD) - —Ddﬁ(l*dl) LS

-€Cp]
so that A = 1 -

and suggesting that for &{| a possible estimate of &K might be

obtained from

K = T | i-e-v ‘. b.46

This is really a very special case and clearly we need additional
information so as to determine the sign of 6.ub
In fact however we are able to estimate the coefficients of
our model directly using a modification of ﬁl_and D. Before proceeding
further we feel it is an appropriate moment to discuss the use of the
A
spectrum estimates in evaluating Jﬁjt' by Ay Thus we shall for a

moment defer our discussion of the estimation of parameters and look

more closely at A(’.
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CHAPTER 7

A
As we have seen it is possible to estimate ‘Pﬁ €, using A

I

and from our various simulation exercises it appears that this estimator

behaves as our thecretical development would predict. Moreover we can
\

use AJ as the basis of hypothesis tests of some interest. However as

we have shown in Chapter 3 one can also construct an estimator

&P— = A éo/ AQQIN)ZTI 7.1

wA
of log e, based on the traditional '"smoothed periodogram" spectral

A
estimate and some of the theory we have developed for A;L carries over

A
to A‘_

It must be born in mind that we cannot assume that adjacent
spectral estimates are independent since our smoothing kernal has a finite
bandwidth and in consequence we are forced to make assmptions when dealing

A
with A‘ about the degree of correlation between estimates of plw)

which are not required when using the periodogram. As a consequence of

\
this the estimate A\, is rather more difficult to construct and use.

A
We now look at A } rather more closely and compare its

theoretical behaviour with behaviour in some simulation experiments.

As we have seen we may define 8(_ as
A 5
A'_ = L L (JQZOVIM?)— J(I’JZ-&'\!(\?]’) 7.2

; P =0
where M is the number of lags used in the estimation of glnﬂ the power

spectrum

We estimate ?lwﬂ in the usual form

> A
ﬁ(w): LH Rgs‘w\{%)w)su

Sa-M
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where X(\L\ is a suitably chosen weighting sequence, see Parzen
(1962). We choose the Parzen (1961) sequence defined as
MYy = o5 bty o)) licl¢o-s

3
200 -1e)) 0.5¢ |1} 40

o otherwise

and a covariance estimate of the form
N -~lIs)

és = Z; *k xb+ml

N
N =1
4

since as we have seen in Chapter 1 the spectral estimates v “0) are

non-negative.

For an estimate of the form 7.1 we have seen that the cumulants

are given by 3.1C%0r for an estimate of the form.
\ 12;_;1J ) |
- ya v,
A, - £ 7 m\]tm)-l(rjli‘f//z)

with mixing end points by 3.J03that is

l(l d \#{Eé)

|
W0, - ,_’_\J Y
15 2= (Y
(r-l\
K, = 7
M-t 2
where
M
m- [ 5]
Thus from these cumulants we Can for given M estimate the
A

distribution of At However the form of 7.2 implies that we have

A
estimated ‘(uﬁﬂ for wp = 20 For some spectral windows this is not
M

unreasonable for one might reasonably assume that adjacent estimates of

‘1,03 are uncorrelated. From Table 4 however we can see that the

bandwidth of the Parzen kernal is %jl and from Table 3 we can see
3N

7.3
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that at Z!Q there is still a fair degree of correlation. The
M

implication therefore is that our estimate should be modified to the

form ],t;‘_] A
\ ) ! PRy
-3 20 20V sy -2 N %) 7.4
B CEEIN AR
where the separation is now %él

In general we require that the minimum separation between
adjacent spectral estimates should be at least as large as the bandwidth
of the spectral window used. If this is not so then the correlation
introduced can swamp our approximations as will be seen in some of the

simulations.

A further complication is introduced by the choice of the
parameter M which must be chosen to balance the resolution against
variance of the spectral estimate. Clearly we would wish to minimise
bandwidth since this reduces the correlation problem and introduces more

terms into the summation 7 4 We feel that one should choose MAN

to be large.

The estimator 2;1 can be viewed as a smoothed function of
the periodogram, rather in the same manner as the spectral estimate €(¢ﬂ .
However &C/ is the result of a double smoothing operation on the
periodograme. This introduction of an extra smoothing operation appears
to introduce an extra degree of complexitye. However we have to bear in

mind the loss of resolution when the ratio “9H is large.

To obtain some idea of the accuracy of our theoretical results

we conducted some simulation experiments. Using first an estimator
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without end points we generated 400 series of length 100, these series
i {rS consisting of independent standard normal deviates. For each
A

series AL was computed and the sample mean on variance of these results

is compared with our theoretical predictions in Table 32 below

TABLE 32
Mean Variance
Sample Theoretical Sample Theoretical
-0.13818 0.0 0.02066 0.01195
In this case the spectrum was evaluated at increments of Zj] where M

M
was chosen as being 33.

A
As is evident from the above the estimator A ( does not

compare well with our periodogram based estimate ‘AI . One may go
further and conduct the same experiment but evaluate the spectrum at
increments of 'ﬂ44 thus giving M terms in the summation. Again we use
M = 33. As we might expect the results for the first two sample moments

\
of AQ, given in Table 33 below are quite at variance with the theoretical

ones.
TABLE 33
Mean Variance
Sample Theoretical Sample Theoretical
-0.14585 0.00000 0.02460 0.00579

Thus as one might expect the values of B}- have inflated variance because

of the correlation between spectral estimates.
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We attempted a similar experiment generating 1000 series of

the form

where the € again were independent standard normal and our results are

tabulated in Table 34

TABLE 34

Mean Variance

Sample Theoretical Sample Theoretical

-0.12910 0.00000 0.04585 0.02380

these being roughly comparable with the results in Table 32.

A
The results above while showing that the variance of A t is
inflated also indicate that for the simulation cases indicate that the

estimator is also biased to some extent. This is rather disturbing since

this is unexpected.

We also tried simulating the models
Y(__ = C)'S)(p"'(‘,

\ n
and computed b;p using a separation of g%; In these cases

the mean and variance were much improved as may be seen from Table 35.
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TABLE 35
Mean Variance
. Model Sample  Theoretical Sample  Theoretical
White Noise 0.0472 0.0000 0.0212 0.0202
Autoregressive 0.0609 0.0000 0.0226 0.0202

These values are quite good and appear to support our
speculation that one requires separations of at least «§%; However
the sample fit to the approximating Pearson curve is exceedingly poor.
Fornexample only 37% of sample values lie to the left of the predicted

mediane.

One would hope that &L_would behave in a more suitable fashion
if alternative values of M and the separation were chosen and in addition
the separation was taken to be at least the bandwidth of the smoothing
window used. The problem then for short series, say N = 100 is that one

reduces the number of terms in the summation 7.1

A\
While much more investigation of Av is possible especially
from the simulation viewpoint we feel that it is probably not worth while

A
since the periodogram based estimate -AJ: works so well,

A
We also considered the case of an estimator OF with end
points included. For 1000 replications of a model

i‘: -~ 0-5 1‘,—| + £ + E=1... s0

—

A
we have sample results for the mean and variance of ﬁw. as given in

Table 35 below where M = i6  and the separation is 21
M
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TABLE 35
Mean Variance
Sample Theoretical ' Sample Theoretical
0.09007 0.00000 ) 0.07279 0.03359

As we sece the addition of the end points decreases the error in the mean,
and since only 16 points are used to compute A I one would expéct the
contribution from the end points to be large. However the sample
variance is still much larger than one would predict from our study of

. \
the estimated moments. Thus even thée full form of A { compares badly

A
with A1

As we indicated earlier this is perhaps to be expected however
in view of our simulations we feel that one is better off considering
For very long realisations however, one has more room to manoeuvre in
choosing "M and the separation between adjacent spectral estimates and
we feel that the estimate -AL— might exhibit more reliable behaviour.

In view of the inflation of the variance we have not included
tables of fit to the appropriate Pearson curve since as one might expect
the fit is poor. However for completeness we have included in the
appendix the percentage points of thée appropriate Pearson curve for a

small set of values of M the number of spectral estimates used in

evaluating AQ,

In Chapter 4 we also outlined some theoretical results which

suggested that
|

A ' ] ;
. = AL&V - ~19355x ,_fg i
| sy e
A g '
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could be used in the same manner as ‘Ax_ to test for white noise and
. |
further indicated that as N>« then 72 is approximately standard

normal when 59,] is a white noise sequence.

However to use ].§ we have to choose m very carefully, for

if M=M then
4

I
since \} (z) = 4.
&

the denominator in 7.5 becomes

)
.Y (%) _ A a-l . 2 .2 7.4
D, v ks T‘ MV Nl
and for a Parzen window vV = 3~7j_\_'!q
thus D, - 2w _ 2 N> 133 7.7
3.7N N

Now it is evident that we require D to be greater than zero . and in

consequence we must choose e 2 L as may be seen from 7.7

Thus to make use of the Davis and Jones form of test we must
choose a separation of Aﬁg which is reasonable provided N is large
but for smaller N it is apparent that the periodogram form described in
Chapter 4 is preferable. In addition we have assumed that m is

1
sufficiently large for 5; to be expressed as a sum of spectral

estimates. We can avoid this assumption as follows .

A 1
Now we know that Kl0) is equivalent to Sx and in addition

from Bartlett (1955)

cov L ﬂt fé\v] ~ —"\-' )-MZ‘—,,U(Q“E“*C"’ + Ru-«»tEM-V ) 7.¥
- + K etﬁv
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thus for ? ij white noise
A A
cor [ K, RtJ~ %fo T=0

T Hy

~ o

Thus

- -
2

A L8
cov [ Rozna(m} . g__so

Now using a Taylor approximation we can find that

cou ( Jo—\c]é,) jﬁzﬂ@m\) ~ __é_
A

thus assuming that Q ““)P\have approximately the same distribution for

all wpe [on]
_ A
CWLJ():)SYLJ A}] 2 _zﬁ_

and in consequence

o
gl J)fjs,z,_,ﬁpj ~ 4';“/’23«»‘}_{"{') -4

which becomes for large samples

uowr | J«ﬂ SIL-A\Q\ ~ NN __ZN
m

which agrees with our earlier formulation.

The use of A b for tests of white noise is thus not altogether
simple and it does seem that one is better using the techniques of
Chapter 3. In view of our small sample approximation of the distribution
of &1 and the tests proposed in Chapter 6 we feel there is little point

A
in pursuing the use of A\‘, and in consequence for the remainder of this

work we shall use only periodogram estimates



167.

We also would conclude that A\L is of use only if one has
very long realisations. However in these cases one would expect that
the periodogram would be far easier and more economical to compute and in
this case once again the estimate A\ [ appears to have powerful advantages.

A
Thus our intuitively appeaking estimate At— appears to be of limited

value if it is of any value at all.
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CHAPTER 8

Having derived statistics involving estimates of the minimum
mean-squared error of prediction for a one step prediétor we now turn our
attention to estimating JSBCM' the corresponding quantity for a k step
predictor. As we have seen previously this latter quantity is intimately
related to the first l parameters of the related moving average
representation of a stationary time series and it follows we must consider

the related problem of evaluating the parameters of a time series model.

The estimation of parameters in the time domain has been
extensively studied by Durbin (1960), Whittle (1953), Box and Jenkins
(1972) and Akaike (196%8) as well as many other authors. We shall
however consider the use of the spectrum in estimating parameters and the

number of approaches from this viewpoint have been much fewer, the principle

reference being Jones (1964).

The principal advantage in using the spectrum is that one need
not specify a priori the order of the model and one avoids one considerable
source of errore. While our approach is necessarily limited we feel that

the methods outlined below are worth pursuing.

Following Jones (1964) we consider a stationary non-deterministic
process iqkj with a power spectrum given by Q‘“O‘.In consegquence we can

assume that %*t—i has a one-sided moving average representation, c.v—

Appendix 2. given by

L&
o - L REe

v
where the weries S‘ZJ i white noise and W(it_)= d for all l:'
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We shall alsc assume there is an autoregressive representation of possibly

infinite order which we write as

S «
2 Q\]YL——J =Tt 8.2

J=e

Now the prediction error for a 3 step predictor @ L is given

!

N 1
e , - o Z_ bJ %.3

N

by

thus to look at the €, we need to determine the \Oo, b, e

If we denote

% J'
Bliz) = /. b2 §.4

yeo
and Pl ‘
J To
then from 8.1 and 8.2 we have
Aray- B
() = (2) 5.4

or equivalently

piz) B(z)=1 §.7

and from 8.6 and 8.7 we find that

—_— o
Z—- Z_ O, \35 2 S 5%
- 3

]

Using & % one can by equating coefficients of powers of ¢ obtain a

series of equations relating the < J. and lDJ these are

O\_S \30 +CAIL;| +c‘|\3a_+ (‘Aob_s-’o 8?
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Thus if we can estimate either the ; LJ )\j=°"' ) or the i aJ-) J= n..j
then one can fairly easily determine the other set of coefficients. In
view of this result we shall concentrate on estimating the coefficients

of B(z) as they are more intimately connected with the € ¢ in 8.3

Now from Kolmogorovs Theorem, ( e b Appendix 2) we have

it V1L
Ytuo\ = | B e H ¢ g.10
px |

and since ?(uu\ is integrable we know it has a Fourier series represent-

ation of the form

o] .
-tV
Jo&?ca\= 2 cye &1t
r= -
From ¥.10 and ¥-‘! we thus conclude that "
- - Wy
2 -0 Lo Cyt@
s [ Bre )|t = exp € i1
2N
which is our starting point for what follows. Writing ¥ .1 in the
form
_ . 2 - WV
ot Ble-=)Blei®) - mr} o + 2 Cye
— ¥={ .
2N - (wv §.13
-\
+ /) cye j
=i

since »(N\ and consequencely J(@tlw\ is symmetric about =0

and noting that

QALP (cy) = g_l
2N
from 2.42 we have
L v
4§(l\ - QA_Pj Z— C\)t ) g0y
Ysl

thus we have factorised the spectrum. Note for convenience we have assumed
that bo = |

that is
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This involves no loss of generality since we can incorporate \Ou into

the €, and write

Jl ‘
where O is the variance with b, o {

Now from ®.! we have the inverse transformation
f Cwv
Cy = £ J j t(,w\e O\v\) 3. 15
TR
v = ‘) T ) T

which becomes

n
Cy = L J J V(u.) cAWV dw
A 0‘3 ) T
since Qtw\ is symmetric. In consequence we can write &.J4 as
|~ ble-u bl_z-_"_,... :?A(P;(C:E*C;_Zl"" )'/7_} ¥i7
which is Kolmogorovs (1939) result since
Jcﬂvlw\\ = Co CLehW + CcN2wW+ ----.
2
and K
Ty = R J jﬂ?(w)cml&o dw % .14
- .
-n

Using %-10 Jones (1964) evaluated the © | and the
corresponding moving average coefficients using estimates of € obtained
from &.1% evaluating the integral as a sum of spectral estimates. His
technique, while well suited for computation and providing useful results,
proves somewhat intractable when one wishes to investigate the underlying
distribution theory. Since ourmaih.interest is in the distribution of

!
the bJ 5 etc., we follow a slightly difference approach.

First we need to obtain the o J' explicitly initerms of the C J N

This can be done by writing ®-17 in the form .
l c, & (] E/Z. 5 19
+ ‘)|2+ b,_z-,l-(--.. = e b C— .a )

g ('*‘:'_}‘+f_'_.lfL)(t+

2
V. 2 —rYzl"'.__ ) &.20
T
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% .21\

[g]
~
—
[a)
1l
-
N

where
¥

M|

This may be written

> R T + ; (Y-ZJ)\L $.22
I by2l - ”.}I L U

s 3" S
and equating coefficients we can see that
b, - ¥,
b, < Y, + Y
2!
b - J,3+ \',_(34— 0:_\_? §.23
3.

This is rather tedious and a simpler method can be used which makes use of
the relations between raw moments and cumulants tabulated in Kendall and

Stuart (1963). As is well known

'E 12
2 }A'I + /Mf__L T-- :WF§ '.(_'-l: + ‘Lzl'-f-- j ¥.24
: . Ul = !
and if we write Rl by = /AQ and Q e = Yy we have ¥-20
Thus using the relations

/AL = ‘(L + k|L

3
/Aj‘ by M3 - Sl(l M\ 4 lél

1 Y S
2 /( s
/A“, c Wy e kMg H 3k A ST
we can obtain the following
b, = T,
b¢ = h/l - b’|L
z!
3 &.26

b3: 63 + YLYL 45_
3
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/
Note that Kendall and Stuart give the moments up to /‘,o in terms of

the corresponding cumulants.

As an alternative one can alsc obtain expressions 8.26 by

evaluating the integral -

" 3 Cem ] ~twle
b, = —;—-nj QAP’ 2 CJ e je dw ¥.27

=1
-n v

using the calculus of residues, however the algebra is rather tedious.

In much the same manner one can evaluate the autoregressive

coefficients. Using ®.4 and ¥.1/ we have

Aay - B—'(e) s o —j/C.awlz‘.-)lzj ¥y
Thus tc evaluate the Q. we use

I+ a ¢ tu,2le-- = e‘/,’_.;‘(Q&.;CI_Z;z,. )IL} ¥.29
and explicit relations between the €| and the &, can be obtained in
the same manner as for the b J' and C, However if the b J are

already known then one can use ¥. 9

We now consider estimates of
n
ru < -\‘—.‘ J 10’3 Vm\) ((D\UA) (‘lw %.3u
©

Given ?{". A N} stationary to second order we can as before

estimate \Xm\.)vuo\ by the periodogram: estimate J(ﬂjulu)r,)l) at w= 217,?
N

P:=o,4 --. [ QJ and then approximate the integral %30 by a
2
finite sum giving ,
A ol -
/
o L & JOZJJ” wps ) ki, .31
N

where N = \C}E] and the IN/w P,x) are computed from X‘ X,J
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Now the cumulants of ja‘g In"*’p;i) are given by 3.42 as
K, = J(ﬂj 2 ‘\,l(l)
ND

n
Ky = ~N'00) % .32
w
Now making use of 3.10 we have

z} = Z\_ g _Poj 2N \)»/u.)?\ + pa‘:) Iﬂ{u’),f)j(m‘(o\)?

A
~ "r.T inijngﬂv(u)](m\(mc\w

wn
+ ,l; Z?_;' chJu/w?\f)“”\‘“)p

k o0 %.33

A
in consequence the moments of \’v_ are given by

n

K, = .

‘ -ln—- é—:l[‘poal *\L(')J((Ayl«)'} ‘trz B .30

"
€, - o 2 cen? kw,
ni \7-‘I
. ZD_ ‘+/r_.l)( ) eon” I w
< | c -
3 F AT pe ' P 8.35

To evaluate these values of the cumulants we evidently heed to
sum series of the form ¥-35 Numerically this poses no problem since
ir)
the + (V) are tabulated by Abromowitz and Segun (1968) or can be

evaluated using

\;tr\(” i (_‘)rn N S/rﬂ) r=14,2,3 .. $.3¢

where S(?\ is the Zeta function of Re\w‘anv\ and Cosines are readily

available on most computers to considerable accuracy. For example on an
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J.C.Le 1906A ©2y» A  has a maximum error of Silo-” using single

precision arithmetic.

However it is quite possible to sum these series analytically

since

B
L e lx
k=

can be transformed into a geometric sum by writing in the form of complex

exponentials. For Y in the range 1 to 4 we have
"
- ced ) X = o (n41)X Sua W g ¢
J=e ) z F = * | 8.37
"
_— L. .
Z__ con J X = .".2‘—. + ((/J(VH')Z Swa n 5 .3%
J=! Z Sua 3¢

L,
L. con’iXx = 5 0 Q10X s nx comee
1= L FX 2 P
A ) ocom An)x S 3nr celn dx § .39
[ 2 2 2

3n + b))y svianxcoaeex

Tv\s
o
S
3
g—.‘
~
{
o J
—

* con2(ner)TSua ZV\rfWCZ)c]
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Now writing 2= TV we have two situations
W

(a) v odd
- &
) o Jj«‘:/ = O LY
v =0
- v n 5. 42
. Py Tz '
A 3.9
con” W= -t
L I 2 543
V=g
n
L et v o oa ,
Vel n 5 & 44
while
(b) v even
"
L. cen jlv = | .45
y=0 A
.'\
/. cotjllv . on ¥ 46
= n 2
- 3 - E.417
7 con 'llV = 0O ‘
%; ]
W

3An &auy



Thus from

while for

then

<N\~

(a)

X . S
" !

s

hY
"

>
i

N

™

Ay
]

(b)

177.

",V
o J'Ln—' 4
(‘U)l( .tﬂ]/ -
N B ég? )

redeVine
n-i
= ‘vl\' %;l l{jl”/"ol”x)KWkk)P

has cumulants given by

E56



K, = XJ $.5¢%
KJ + [Daﬂl*\”“‘l/“ \)OC‘A
K, = +'a) o) 859
2% W
y i 1" ) J eutan %-60
3 n 2
NN :lcc\d
2 n®
G - 33" 4"e) b
Fnd nk
If we consider a full estimator
’?' = ' L:_I Yo Lo 7w,2) cwicq 5.62
J w5 TN P
then the algebra is a little more complex however we find that the
cumulants are given by
K - } X\)' - L ZJOS?_ _L\l-(o)4 \/«(o-S)]/V\ :)QV‘M ¥63
() \) edd
’ i " -
Ky = + e -‘“'L\ + Y (0-3) &. 64
in n 2at
H ]
P (1) (0-5)
" 5 +“5 N “’um J e %65
o)
An3
(e A oy ) et
irn3 n b Enl
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While the expressions for the cumulant above are exceedingly
messy they are easy to compute and for large n can be somewhat simplified.
If we let n—= 4K then we have

F,I-)o (5‘_—-33

'

which would indicate that for large sample sizes the YJ are
approximately normally distributed. This is as we would expect since

for large n Joﬁ—lN(‘*’p)") is approximately normal and ¥-62 is thus a

linear combination of independent normal variates.

Our expressions for the cumulants also show that both forms
of the estimate of YJ are asymptotically unblased and consistent.

A
If we care to redefine the Y for even J as

J
£ - ‘:7( ZIJU I.quo,u)(d):)h)f
- [ 2)03 2+ \/(\) +\l/0-5)}w

¥-67
then all our estimates of the YJ are unbiased since
£Cv;l- 5.6
A
Since we have a sequence of estimates KJ. J =hr..-
another point of interest is the correlation between our estimates.

Consider for simplicity

A A

A A
cow (8, Xj] - € LG -0 )Y - 1))
= 1 Z;.% Jaj Iuw,nc]rmwrlc Jo'nluf'«\.,,()cwwclj

n_
2 hided)

= o ) ccnluopccnjvoP - 69
n* P
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where

C)le = G L. 49(;:) Tu ’Np\fy.\ %‘7Q

Then we can write ¥ .69 as

A A n-t
¢ oy E' § Y = Cj‘l i ]
e 1 ] 2:1 ,,ZZ. 5(u3coP/J+lc) +cmtoP/J-1’]}
- ook Jrk e
Ant

= C) J‘\'lé Ocji

Hence for large values of n

A
corve [ X, (J.-‘) = O(%) J«rlz%
O J‘*k OJ A
and we see that our estimates are asymptoticallyuncorrelated. Since they
are also asymptoticallynormal we can consider them to behave as independent
normal variates for sufficiently large values of n.

The result also holds for estimates of the form $.62 but the algebra is

rather more complex.

To indicate that these results appear to agree well with
practice we devised a small simulation experiment. We generated 400 series

of the form
X" = 6‘, - 0'5{‘_4 E? I -- ‘(. %‘7,

where the ZP were standard normal deviates.

Then comparing the theoretical results for the mean of (3 with the

sample values
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TABLE 36
Mean
Theoretical Sample
Y, —0.5000 ~0.4903
Y, 0.0000 -0.0178
Y, 0.0000 ~0.0340

with the sample covariance matrix is

Y, 0.0527
Y, 0.0026 0.0230
Y, -0.0002 0.0018 0.0245
Y, 0.0039 -0.0030 0.0030 0.0264

The diagonal terms agree well with the predicted values of the

variance which are

A

voarl X,) = 0032¢

vun (€, ) = 0.0257
while the covariances are predicted to be

A
cov [ X’k 3>k ‘] = D lc+h odd
_ A A

and ceous | (u LW } = - 0-000% hall eoenn
Thus it would seem that we can assume our theoretical values for the mean

AN
and variance of Yﬂt [ z0,1._. agree well with practice. The

correlation matrix is, giving only the lower triangle

1.0000
0.0747 1.0000
-0.0056 0.0050 1.0000

0.1046 ~-0.0804 0.0804 1.000
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For the same model except with a changed parameter
XL' > fl’ - O')it_

we have the following results

TABLE 37
Mean
Theoretical Sample
Y, -0.2000 -0.2319
\f ~0.1250 ~0.10969
Yy 0.0000 ~0.02627

while the covariance matrix was given by

0.05278
0.00651 0.02161
-0.00083 0.00247 0.25413
-0.00146 -0.00181 0.00254 0.20639

giving a correlation matrix

1.0000
0.0600 1.0000
-0.0226 0.0676 1.0000
-0.0442 -0.0548 0.0770 1.0000

once again the structure appears to agree well with theoretical ideas.

A
In addition we have compared the sample values of K, with the

theoretical frequences from the best approximating Pearson curve. The

results, as can be seen from table 39 are rather good both for the first
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model described above and for two further models based on longer

realisations.

As can be seen from the tables in Appendix 3 the Pearson curve

rapidly approaches the Normal curve and it would appear that a normal

approximation is adequate in almost all circumstances. The tables of

]’El and f5L below reveal the swiftness of the approach to the asymptotic

case

Sample length

32
64
128

256

TABLE 38

ry
0.00211
0.00046

0.00010

0.00002

Bo

3.00010
3.00000
3.00000

3.00000
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TABLE 39

Pearson curve approximations to the model

These tables give the percentage of values of [&i not exceeding the

percentage point of the best fitting Pearson curve

N 64 128 256
NO REPLICATIONS 400 300 500
Theoretical
Percentage
0.25 0.0 0 0.2
0.5 0.25 0] 0.4
1.0 0.5 0.3 0.8
2.5 1.0 1.7 1.6
5.0 3.75 2.7 - 3.4
10.0 7.0 9.7 10.6
25.0 23.0 23.7 24.0
50.0 52.5 50.0 50.8
75.0 78.0 78.0 75.0
50.0 90.75 90.7 90.0
95.0 95.5 96.0 95.8
97.5 98.0 97.1 98.0
99.0 99.0 99.3 99.2
99.5 99.75 100 100

99.75 100 100 100
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We also considered two - further simulations with larger series

lengths, the model being as before

YL, = ((__ - O'SZL__, E=1--- N

The results are as follows

TABLE 40
Mean
Theoretical Sample
N = 128 N = 256
O
( 0.5000 -0.4982 _ -0.4998
' 0.1250 ~0.0930 -0.1044
(L 0.0000 ~0.0592 -0.0642
while the covariance matrices
N = 128
0.02342
0.00138 0.01451
-0.00005 0.00050 0.01217
0.00110 -0.00127 0.00242 0.01253
N = 256
0.01135
0.00046 0.006042
0.00022 0.00041 0.00564

0.00029 -0.00002 0.00033 . 0.00411
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While the estimation of the KJ' is of interest our main

purpose is the evaluation of the LJJ 3 in the moving average model.

A
Since as we have seen the {j are asymptotically normal the distributional
theory is eased however there are problems in estimating high order bj s
because of non-linear relationships connecting them with the ch
A
The large sample case where the X’u are approximately independent may

well be a reasonable one to handle but it would appear that the

estimation of b) for J} 2 is very complex.

We shall restrict ourselves to the estimation of b| or if
we prefer to work with the autoregressive model @, since the
distribution can be found for our estimate. In addition knowledge of
e, enables us to evaluate

Q, = @, (1+ b’ )
or correspondingly
L&U:B‘EL

Box and Jenkins (1971) have shown that first order moving

average models are of some interest in constructing prediction models

and in addition one can estimate the ratio
&
€1

to determine the increase in variance in predicting two steps into the

future

Since k\ = Y\ we see that the estimation of b. is

straightforward. However for b‘ we have

IR
bl = Yz.“‘ r|/2_
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and similarly
3
- X
b;‘YJ+Y\KL4 ‘/3.
¥-26 . Thus to consider the moments of even E>a we need to

from

evaluate expressions like
., A A
P - EL(Ve-X) (¥ - 0)Y. -Y)]
= L) Jaj L tupc )303-\1(«)7 ,f)\jdjlu)/‘*)m’c)

eentC kJP (Cf)s'k)7 ¢ Lt)n&

ZP— cmrup(w:.uog‘ (‘d))f-u)P

1
=X
(¥

where

N - E f__ paj —In{wf,f).s_]

and after some algebra we can show that

P = - H _‘Z(r75/")
4n3
where ;2[ (r,sb) = 3 r, s, t all odd

3 if one of r, s, t even
0 otherwise

In consequence for n large Y =0 This would appear to indicate that
A

one coudd analyse the correlation structure of ‘7L but the extension

N
to &>‘ > 2 appears to be quite formidable.

J

A

The approximation to the small sample distribution of b,
A A
is equally complex but if we assume that b, and b} are independent

A
then one can at least approximate the cumulants of b

What might be slightly more feasible is a procedure to determine
\ A
whether the bU are zero by successively testing the corresponding K-
J
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For a moving average model of finite length one could repeatedly take
differences until b , = 0. A test for white noise as suggested in
Chapter 6 could be made to confirm if the residuals after differencing

were indeed white noise.

As we have seen one can at least estimate the leading
parameter in a time series model from the spectrum. While the estimation
of other parameters appears to be rather complex it would appear that
their estimation from the coefficients of the factorised spectrum is, in

principle at least, feasible and this approach does seem worth pursuing.

For prediction two steps into the future we can use our

estimate of b. to evaluate

=
I+ b,
A
since the distribution of b| is known and for larger sample sizes we can

A A
show that the estimates A I and b. are approximately independent

thus enabling one to compare €, and @ This is probably more

easily done by examining
N

€2 - I+ \ol
<,
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CHAPTER S

As we have seen we can estimate the minimum mean square error
of prediction @, or rather log e, and we can approximate the distribution
of our estimate very closely. While for our purposes the logarithmic
form has been very convenient one can visualise cases in which the

A
distribution of €, itself would be required.

A
A possible method of approximating the distribution of Cf,

is to obtain its moments and use the Pearson approximation. This may

be done as follows:

Consider Z = D 03)( and let the characteristic function
of 2 be dz “’\
Then . P s
dt/}.\ - EFle j Y ] = ELX }

9.1

and the moments of 2: are related to those of Y by the following
relation

/Mr'()(\ = q’?;["‘r3

8.2

provided the characteristic function exists at this point. Since the

characteristic function in question is essentially a Gamma function with

argumernt
AN
™M
A
it clearly exists and the moments of €, can be found using 9.2.

However as we have stated the logarithmic form has proved convenient.

Since we can estimate -pqne( then we can make decisions as

to whether it is in fact worth trying to predict a series for a given
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cost function. However we see the real use of our estimate of
prediction error as a diagnostic procedure when model fitting in addition

toc the test of white noise outlined in Chapter 6.

As can be seen from Box and Pierce (1970) and Durbin (1970 )
making tests on the residuals of a fitted model can be a troublesome
procedure and in addition the distribution theory derived to date i=s
asymptotice. We feel that a very good criteria for a prediction model
is its mean guare error of prediction compared with the optimium
and we suggest the following procedure.

A

Given *: S qu we estimate ‘j 0‘3?‘ using AJ given
by 3.54 using X, . Xn Having obtained an estimate of -}r\t}e, we now
proceed to fit a prediction model on the same length of series X,-~- Xhl
4 *
Once we have constructed our model we can make forecasts XN_H X N42
® ]
X and obtain the forecast errors
- ANe3 T 4N

L §
de = Kuar = Kaor 9.3

Using the residual series '}C\ti we can evaluate the minimum mean square

error of prediction for the residuals, say J‘Qe')d using A:r,cl say.

Then assuming the model used for prediction is the correct model
- A A
E ,_ 45 - A I,cl_] =0
while A
U= Ay - .40

implies that our model overfits while
A

A
- <
LA = Zl;r - A‘;, d 0

implies the model underfits.
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A
AJ,d

uncorrelated and to be indeed approximately independent. We can easily

A
Under the null hypothesis we expect A 11 to be
approximate the distribution of U under this assumption using our

Pearson approximation.

This procedure would appear to avoid the difficulties described
by Box and Pierce (1970) but needs some use in practice to see how well it

performs.

A slightly different procedure can be obtained by estimating
the samg}e variance of the %C‘k3 series and comparing:this with the
value A; obtained from the first segment of the series X, Xn
For moderatly large sample sizes we know that the sample variance
is approximately Normally distributed, Anderson (1973) and we can then
base a test on

V= D - v\m} Se*

Ideally one would wish for a small sample test but in this
case one need the exact distribution of 561‘ It seems fairly reasonable
to assume that the distribution of ‘541 is approximated by a xc;a .
distribution where ¢ is the number of parameters fitted to the model.
We have however been unable to provide an adequate justification of this
assertion. This does seem worth of further study since our test for
white noise is immediately transferable to this situation. For values
of K which are small compared to N the moments of-kgjé: given by the
polygamma functions \#l{ﬁtﬂﬁ) appear to be insensative to small

2

variations in k since
’\}("‘_7:_“):} -903(%)‘%—‘ ‘—\,\',

(k) = 2
ving) = 2y

i?
2|N
+
Q
N
A
»
S’
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and it would seem that we could use our test of white noise without much

chance of error.

One can also use the minimum mean square error as a measure
of the predictability of different series. This might be of some
use in considering transformations of series before deciding to construct
a model for prediction. This in a sense is the comparison of non-

linear prediction methods when one uses non-linear transformations.

In practice one often has to remove deterministic components
from time series by regression or the successive differencing methods of
Box and Jenkins (1972). In particular one often removes a mean from a
given series. While Grenander and Rosenblatt (1957) énd Granger (1964)
indicate that regression methods can be applied and the residuals from a
regression model can be regarded as a stationary time series there is one

rather interesting effect on the periodogram when one removes a mean.

In this case

T (00,%) =

zin

9.4

Eacne=

and at w =0

N _qu
IM(O)DL) = %lZ_()(k’X)l 9.5

b=y
= 0

This clearly has implications in the construction of A]: and in this

situation we advise the use of a form of estimate with end points deleted

viz

3
1

‘\'x

AI . __|n__ Ja’ﬁ Iﬁ/m,)ﬂ + Y - pa'a 2 o

"
A
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where Y/ is Eulers constant given by

Y- Yo L+ 1 + L —)Q’M] o

A D> DA

= 0-57721 56649...

This property of the periodogram is presumably the cause of some dips in

the estimated power spectrum around zero frequency.

In addition to using just the estimates of jqﬁe\ we have also
derived methods of estimating the coefficients of the moving average

representation of a stationary time series. For a model of the form
X
.
X(- - ¥ t Z_ bg 4 I--1c
k= ]

we have shown that the spectral factorisation enables us to obtain

expressions for the b . 2s the sums of independent normal variates.
While the estimation of \0. is fairly well defined in Chapter 8 we
think that more work could be put into the estimation of the 1) y for )L3 |
Indeed we would like to obtain some results for the simultaneous

estimation of the bl( this would appear to be the crux of the

estimation problem.

A natural extension of our investigations would be to the
multivariate time series situation. As we shall see the extensions are

not immediate and there are as one might expect some additional

complexities.
Let us define a q variate process § X 1 - )(”. thj l—:o,l-- :
which we shall write as a °|‘H vector X € L= .0, and we shall
LA yo
assume

Ef X, ]=0
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Let
RJUS) - kL Kjjeas Xu,t] 9.8
j A '
. rwg
Jll (=) > 52:—“) RJ“(5\C 5.9

and Froy - ( lec“")) 9.10

Zasuhin (1941) has generalised Wold's representation to the multivariate

case giving
]

. = : e L,L-
\(J:" ré‘:—a b\]’u“ i(’,L—-M J‘ ) G’
where the € Pm are uncorrelated and have zero mean.

Whittle (1953) has shown that corresponding to Kolmogorov's result for

the mean-square error of prediction

[ J)rﬁd‘”q[/w)]c‘w]

vV = Q/")’)[;]‘—‘_TO

where V is the "total prediction variance" corresponding to the total
variance defined by Wilks (1932). For a matrix moving average
representation

X = Bo L - E?) Ei-

- - _

it can be shown that

V. - C§‘L I_BoIBI '

In addition one can also perform a spectral factorisation in
the manner of Chapter 8, this has been described in considerable detail

by Wiener and Masani (1957, 58).

One would expect the estimation of V to be much more complex

than the corresponding estimates for the univariate case but it would
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appear that estimates of V could be of considerable use, see Whittle
(1953 b) and Whittle (1953). In addition we feel that estimates of J{jel

for each of the 9 series could prove of use in constructing multivariate

modelse.

The Wiener and Masani approach also appears very fruitful
from a mathematical viewpoint and while these are considerable practical

problems these are presumably not insurmountable.

In short we feel that much remains to be done using the
estimated spectrum for model identification especially in small sample

situations.
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APPENDIX I

Consider a stochastic process 5 XL— /‘U‘j then in the space
6f functions on Jb  which are 3’ measurable and quadratically

integrable with respect to P we introduce the scalar product

(?,33 = EQj = J\ijTM)Q(u))cl—le\

v
The norm being “ p" = {Q;?§ z ) A sequence of functions
converges in the mean "o vlco)é LZ{L_DJ) if ] vn - ‘1 n =2 0

au s n =00

Defining the set of all finite linear combinations

—“ w—
L¢a) = § L ¢y X"u) Lvé‘ ) Cvéc}

v

we find that closing this linear manifold with respect to convergence in

the mean we obtain a space thm) which has all the properties of a

Hilbert space.

We shall now consider only discrete processes which are
stationary. Let us assume we have ébserved ; X(_ ) [— < 05 then the
observed variables span a subspace a C LZ(‘M) and as our predictor
X h,‘ olb Xh we choose an element in (A .  In consequence

we use only linear predictors and suppose the entire part of the process

is knowne.

To construct our forecast we shall seek to minimise
4l ¥ 2
ELIX-x1] = X - X

Such a predictor clearly exists and is unique.
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Consider the set of complex valued functions :jluo)

belonging to

L, Ld Feoy -]

This becomes a Hilbert space LL([:\ if we define the scalar product

‘n ——
[a W) = r) Wiwy d Frw)
(q,%) = |9
It we now define the transformation S
'Lko
e' -
S - X,
and extending it so that

A byw il
3 ZT v e i Z—— Cv X‘w

we can show that
n

R T R DAY

V=) v

b))

Extending S using convergence in the mean we can easily show that S is
a (1-1) isometric mapping of LZ (F) G Lo L‘_{X)
Hence the prediction problem becomes:
e il
In the subspace of L,_(F) spanned by 3 l, e j we seek B(w)

which minimise8

I Gy - e - Jﬁﬂlém) _ e d Fruan

and if this function exists the best predictor is given by

X.d - _Jnné/w) dZao)

(cefe 1.11)

S D X RO, K Xl I

"> R
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where VP( %( X;*_ .. xl4) ) denotes an arbitary linear combination of

the X(}¥('4I»~-X|}J

n
and hoy i L
I X%, - cvx_v”=Jan{€ ))c“:lu)
V=g ~Nn
where T’n () denotes the polynomial
n-t -V
Pnf*) = & - /] cy z
v=o
Then we need to minimise the integral
n - e - . - AR 2
J l I - C‘,QW_C,QZ‘Q~ - Cp.® ) c“:(uo\
-n

The minimum of this integral may be found using the theory of Toeplitz

forms c.f. Granander and Szego (1958 pp 44) and may be shown to be given

oY Q/*P i : Jnjﬁzﬂ Pew) olo.ﬁ

Zn .

if it exists. The minimum can also be shown to be zero if and only if

J " .)qj 2N v lua\ dw = -

-0

To construct the best predictor explicitly we require the following

theorem:

A necessary and sufficient condition for a stationary process
with an absolutly continuous spectrum to be representable as a one-sided

moving average is that it be non-deterministic.

Consider a sequence i.g :'uxkédvﬁ such that
e

2 f f,ng g 55(-
i ELS] -0 ¥+ s

and we construct

)(E = {:s ijk‘.

4
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Assuming convergence in the mean then the covariance function
is

)
¢
.

4
e

Gy Guas-t

<
a
<

or R - DA

——

where E is the matrix given by

Q ={a\/,)4; v-/A;o,‘o,V—/Aéo]]

FProm 1. it follows that
, 1
et (AD
Y— (u3) = ) agle ) I
almost everywhere, the polynomial . @ (Z) being defined as

Q(%\ = 2—_—_ O‘P%P
p=0

Since Cl/'&) belongs to the class l—\,_ we have using the Jaccbi-Jensen
inequality

J‘) Joﬂvm)cxu >-o4
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We now show that it is’sufficient that the process be non-

deterministice.

Since JGJ (\: (W) integrable we have ?lao_) >0 almost

everywhere and we define a new process by

‘0 -
ng(u) = ..Jn [Cf"“ﬂ_] ‘dZ(w)

where \ dloo)ll= D/w) . Now this integral exists and defines an

orthogonal process with

]\ Zf"d)”z= %fﬂ,
27)

Now defining the stationary process

n {L—u
5& = J e C\ Zf{uJ) >,

-N

we can show the igkj are orthogonal and normalised.

Under the assumptions above there exists a function GIM)GL;

[ 4]
such that -tPa\)
Gowr = 4 L Gp @ a.
P

v(u) = l C’I“AJ)IL
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Choosing g{lw\ as G(co) we have
N
X‘: = j e wC‘\(M)C‘le/w)
iy

and since a (w ‘
Gl = L Z_ GPQ P + Pn/“))
Zﬂ Ps()

with |} Pn“ > 0  we have from 2
“
= L) 6o
XL' 2N p=o l §L——p tde

To construct the optimum predictor we must minimise
LY

“ Xl - 2-—- Cy X-y “1 = "x}ﬁea

ry=v
T .
- Cw(li=-) |t
= H LT g e P ndy
where Uy = | uJ‘.- ..E'J-_l |$J<n
and we predict )(. using )(01 \(_I .- X_,,,,l

It can be shown that the minimum /“n is given by

3
= Safo0)= J 14yl
yI0

¥

where i d P ( E\ are the polynomials orthogonal on the unit circle
1zl =1 with respect to the weight function Pro)., e polynomials
n .
Saix = L_ () 4 { \ are the kernal polynomials of ?M\
" ) j pP=v P P

¢.f. Grenandzer & Szego (1958).

The minimum itself accurs when

"
) - i -
Unp () = 2 uPiP" /AV\L a‘u(lﬂ (ﬁp/?-')
p=o ?.:a

and in this case the predictor is
A=t

X, I ev Xy = -_Jﬂne‘“’[u.\/e‘”)-:]a 2ow) |

v =
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Now for W< ™M we can show that Un(2) converges, for
N =

] | Sn/o.EX—SM(oz))?-(w\olw:Z ICZV/O)IL: Spnt 0
-n ‘ VEnAan /AM/‘
where 2 = et and n, m-=> &

In addition

lio) = Juin \fj{r'e_"ﬂ)]l . 4.

r
almost everywhere whew CJ(%\has no zeros inside the unit circle and 3/0)

is real and positive where 3&} belongs to the class H;_

If we write

L, (z) = 3(&) Snio,z)

equation 4 implies that there is an element H(#) in H, such that

R n
L, - HIIT = _.L “:n(e)—-l-lfz)]ldm'*O

as N D™

Thence for any P e J o, 1 [ the function Ew() converge s

uniformily in IZ‘S/) to H(z) so that

- _ He)
«Ev;v; Sa(o2) 5——(23

We can,using the asymptotic formula for 4 p(%) show that
|
Florz) = f_sj (0)]

see Grenander and Szego (1958) and in consequence

bow 71 se0,2) <[ 019023 ] MRy = 0

ne e -0

and since M ’913/0)11

L fn | uatz) - §lo) )“‘Cm\ dw=0

> - 4e2)



Making use of the isometric correspondence between the Hilbert spaces
spanned by the process and by the exponential functionsrespectively we

have for the best predictor

n
X Viw (XY = e‘“[!- 4000 Vdz)
X, oM T )
n >0 3 (€
Notice that the function 3( %\ introduced in 4 corresponds to the function

Grw)  introduced in 3 in that
and making use of the orthogonal process d Z 5 4 Ao) we can show that

X.‘-'—-f_Gvf

zN Y=o -v

giving

s 2 . ] . i
} )(‘ -XI) - nvl&o}" - ‘;%11]:[“ ql‘«.ﬂ(‘lu)l

=

and using the Jacobl-Jensen inequality

1K X = e f [ g B o]

-»"

where

broy = 20 dFmw) = 20d Il d2edll”
dw Nw

One can prove similar results for the h step predictor.

We state the following without proof.

ol .
The predictor X&--W\ for h units of time ahead based on 'KL_'XH'..

can be written as 0
CEvh)w
xg+k ‘_l € ; Gh’”’jcﬁZuo)

G (w)



h-t
- - (Vv
where th( (W) = }_—'ﬁ é:o G.,¢

or in the equivalent form

* _SJ
Yt—-&k - L L G

zn V"k L‘f»\"v

with the minimum prediction error
X lL
1 -
l\ XL-fk’XHkl =

The above outline which has been included for completness
follows the derivation of Grenander and Szeger who provide many more

results both for the continuous case and for finite approximations to

the optimum linear predictor.
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APPENDIX 2

Pseudo random numbers ?)(F} were generated on the I.C.L. 1906A

using a variant of the standard multiplicative congruential generator

Xr.H = \OXr(MO’ClMS

By ) \Lu and M being suitably chosen constants. For the thecretical

background to these generatorssee Knuth (1969) and Newman and Odell (1971).

To minimise correlation in oursequence of pseudo-random numbers

the actual algorithm used combined two generators

X|)r.§| = b, X,)r(MUAM)
X),r+| = LD;, Xz,r(mU'JM‘

in the form

)(Hl = X.,ru + Xl)r‘“ MU_QI{MX A2.1

26 15 . < q )
e M= 2 by=3  , by and K= X, = 1234567

This generator was written by the Nottingham Algorithms Grou§
as part of their effort in building a software library for the I.C.L.1900
series of computers, however the idea of using two generators originated
in Neave (1972). This generator has received a great deal of testing and
the numbers produced have satisfied all the tests devised for random number

generatorse.

Since A2.1 generates variates from a uniform distribution on
fo‘] it is necessary to make a suitable transformation if Normal deviates
are required. Unfortunately, in the case of the normal distribution one

cannot use the transformation

Y = Fry)
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to produce deviates Y having a distribution F(\J ) using X from a

uniform LO, 11 distribution and one requires more specialised methods.

The transformation used is due to Box & Muller (1958)
oY
) Suma ( 20 th-)

)1'1

2y < [“2‘b0'3 XZL-I

SW\\(ln Xu_,)

le-;‘ ('Z -Do’j Xu_-|

where the f }((,3 are from a uniform L[ 0 l] distribution and the 7-&t5

are random numbers from a standard normal distribution.

This method works well with the particular uniform generator
A2.1, however, an alternative due to Marsaglia (1964) may be worth

implementing in future.
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APPENDIX 3

TABLES COF PERCENTAGE POINTS



X
SIGNIFICANCE POINTS OF f\; NEGLECTING END POINTS FOR N =2

A

LOWER TAIL

Percentage 0.0 0.25 0.5 1.0 2.5 5.0 10.0 25.0 50.0
n

8 _28.29365 -1.50842 -1.35988 ~1.20381 ~0.98290 -0.80071 =-0.59945 -0.28440 —0.03483
16 ~21.1152  -1.01834 —0.92239 -0.82100 -0.67614 -0.55540 -0.42068 ~0.20600  0.01743
32 110.89988 -0.69572 ~-0.63244 -0.56517 —-0.46844 —0.38719 -0.29563 -0.14794  0.00871
64 _ 5.50451  ~0.47973  —0.43772 =-0.39190 -0.32634 =0.27092 -0.2080  -0.10566  0.00435
128 ~ 3.99099  —-0.33309 -0.30415 =0.27322 -0.22828 -0.19010 -0.14661 -0.07523  0.00218
_ 3.45626 —-0.23246 —-0.21256 =0.19124 -0.16017 -0.13368 -0.10341 -0.05346  0.00109
512 - 3.05482 -0.16283 -0.14904 -0.13424 -0.11262 -0.09415 -0.07298 -0.03793  0.00055
1024 ~ 2.57817 —-0.11437 -0.10476 -0.09443 -0.07932 -0.06639 -0.05154 -0.0266  0.00027
2048 _ 2.07456 -0.08048 -0.07376 -0.06653 -0.05593 -0.4685  -0.03641 -0.01904  0.00014
4096 _ 1.60825 —-0.05676 ~0.05200 —0.04692 -0.03947 -0.03308 -0.02473 ~0.01348  0.00007
8192 - 1.21347 —0.04001 =0.03669 =0.03311 -0.02787 ~=0.02337 -0.01818 -0.00954  0.00003

°L0C



A3.2

UPPER TAIL
Percentage .5 90 95 97.5 99.0 99.5 99.75 100

8 0.32237  0.55463  0.68197  0.78548  0.89803  0.96990  1.03322  7.46162

16 0.22482  0.39832  0.49611  0.57742  0.66807  0.72706  0.78011  18.28855
32 0.15739  0.28446  0.35753  0.41910  0.48867  0.53471  0.57650  9.76021
64 0.11042  0.20249  0.25610  0.30168  0.35364  0.38836  0.42008  3.45221
128 0.07761  0.14383  0.18270  0.21595  0.25410  0.27973  0.30326  1.96991
256 0.05465  0.10201  0.12998  0.15400  0.18167  0.20034  0.21754  1.93946
512 0.03852  0.07229  0.09230  0.10954  0.12946  0.14291  0.15537  2.09314
1024 0.02718  0.05119  0.06546  0.07778  0.09204  0.10171  0.11064  2.01882
2048 0.01919  0.03623  0.04638  0.05516  0.06533  0.07223  0.07862  1.76562
4096 0.01355  0.02564  0.03285  0.03908  0.04632  0.05124  0.05579  1.44308

8192 0.00958 0.018L4 0.02325 0.02768 0.03281 0.03631 0.03954 1.12702

*80¢



A3.3

SIGNIFICANCE POINTS FOR IQJT NO ENDS
LOWER TAIL
Percentage

n 0.0 0.25 0.5 1.0 245 5.0 10.0 25.0 50.0
50 -6.7383 -0.54714  -0.49825 -0.44617 -0.37098 -0.30755 ~0.23576 -0.11917 0.00557
60 =5,77212 -0.49647 -0.45238 -0.40539 -0.33745 -0.28004 -0.21457 -0.10904 0.00464
70 ~5.18468 -0.45747 -0.41705 -0.37395 -0.31154 -0.25875 -0.19885 -0.10114 0.00398
80 -4.,80013 -0.42629 -0.38878 -0.34876 -0.29076 -0.24165 -0.18587 -0.09474 0.00348
90 -4.,53277 -0.44064 -0.36530 -0.32800 -0.27362 -=0,22572 -=0.17513 -0.09043 +0.00309
100 -4,33727 -0.37905 -0.34591 -0.31052 -0.25916 -0.21560 -0.16606 -0.08493 0.00278
110 -4,18801 -0.36057 -0.32913 -0.29553 -0.24674 -0.20537 -0.15826 ~0.08105 0.00253
120 -4.06976  -0.34452 -0.31454 -0.28250 -0.23597 -0.19646 -0.15146 -0.07766 0.00232
130 -3.97304 ~-0.33041 -0.30171 -0.27104 -0.22647 -0.18861 -0.14547 -0.07466 0.00214
140 -3.89173 -0.31788 -0.29032 -0.26086 -0.21802 -0.18162 -0.14013 -0.07199 0.00199
150 -3.82178 -0.30665 -0.28011 -0.25173 -0.21045 ~0.17536 -0.13535 -0.06959 0.00186

°60¢



A3.4

UPPER TAIL
Percentage
75 90 95 97.5 99.0 99.5 99.75 100
50 0.12525 0.22861 0.22857 0.33941 0.39719 0.43570 0.47081  4.93906
60 0.11411 0.20902 0.26423 0.31114 0.36458 0.40026 0.43284  3.76693
70 0.10549 0.19375 0.24521 0.285900 0.33893 0.37238 0.40293  3.08605
80 0.09855 0.18141 0.22980 0.27104 0.31815 0.34969 0.37857 2.66797
90 0.09282 0.17117 0.21699 0.25609 0.30080 0.33076 0.35821  2.40021
100 0.08798 0.16249 0.20613 0.24338 0.28603 0.31464 0.34087  2.22297
110 0.08382 0.15502 0.19675 0.23242 0.27327 0.30070 0.32586  2.10250
120 0.08020 0.14849 0.18856 0.22282 0.26210 0.28848 0.31270 2.01882
130 0.07701 0.14273 0.18132 0.21033 0.25221 0.27766 0.30103  1.95960
140 0.07417 0.13759 0.17486 0.20676 0.24337 0.26799 0.29060 1.91700
150 0.07162 0.13297 0.16904 0.19993 0.23540 0.25927 0.28119  1.88589

*01¢



A3.5

A
SIGNIFICANCE POINTS FOR ZST NO ENDS

LOWER TAIL
Percentage
n 0.0 0.25 0.5 1.0 2.5 5.0 100 25.0 50.0
200 -3.59882 -0.,26410 -0.24139 -0.21707 -0.18166 -0.,15151 -0.11709 -0.06039 0.00139
250 -3.46%941  -0,23532 -0.21517 -0.19358 -0.16211 ~0.13530 -0.10465 -0.05409 0.00112
300 -3.36891 -0.21421 -0.19593 -0.17633 -0.14774 -0.12336 -0.09548 -0.04943 0.00112
>
400 -3.20569 -0.18478 -0.16908 -0.15223 -0.12765 -0.,10665 -0.08262 -0.04286 0.00070 -
500 -3.06981 -0.16482  -0.15086 -0.13587 -0.11399 -0.09528 -0.07386 -0.03838 0.00056




A3.6

UPPER TAIL
Percentage
75 90 95 97.5 99.0 99.5 99.75 100
200 0.05900 0.10998 0.14005 0.16586 0.19557 0.21559 0.23403 1.89461
250 0.05531 0.10322 0.13151 0.15580 0.18378 0.20266 0.22004 1.93214
300 0.05044 0.09429 0.12026 0.14248 0.16816 0.18550 0.20148 1.98802
400 0.04363 0.08173 0.10429 0.12370 0.14611 0.16126 0.17523 2.06044
500 0.03899 0.07314 0.09339 0.11083 0.13098 0.14460 0.15718 2.09137

*CTcC




A
PERCENTAGE POINTS FOR THE DISTRIBUTION OF AIZ
TAPTZODAL FORM

A3.7

LOWER TAIL
Percentage

" 0.0 0.25 0.5 1.0 25 5.0 10.0 25.0 50.0
16 -16.80002 -1.00588 -0.92066 -0.82915 -0.69546  -0.58121 -0.45033 -0.23368 0.00383
32 -18.07466 -0.67220 -0.61619 -0.55587 -=0.46750 -0.39180 -0.30453 -0.15940 0.0009¢
64 -14.75544 -0.46227 -0.42401 -0,38277 -0.32226 -=0.27027 -=0.21040 -0.11049 0.00027
128 -10.98789 -0.32244 -0.28583 -0.26712 -0.22499 -0.18877 -0.14703 -0.07731 0.00008
256 - 7.92181 -0.22647 -0.20780 -0.18766 -0.15809 -0.13266 -0.10335 -0.05437 0.00002
512 - 5.64312 -0.15961 -~0.14646 -0.,13227 -0.11144 -0,09352 -0.07286 -0.03834 0.00001

R



UPPER TAIL

Percentage

75 90 95 97.5 99 99.5 99.75

16 0.23785 0.44542 0.56820 0.67378 0.79551 0.87773 0.95347

32 0.16048 0.30326 0.38835 0.46193 0.54723 0.60515 0.65873

64 0.11079 0.21005 0.26936 0.32074 0.38040 0.42100 0.45859

128 0.07740 0.14693 0.18851 0.22456 0.26645 0.29497 032139

256 0.05440 0.10332 0.13259 0.15797 0.18747 0.20756 0.22617

512 0.03835 0.07285 0.09350 0.11140 0.13221 0.14639 0.15952

AR



A
PERCENTAGE POINTS FOR THE DISTRIBUTION OF [}1:

TAPTIZODAL FORM

A3.9

LOWER TAIL
Percentage

" 0.0 0.25 0.5 1.0 2.5 5.0 10.0 25.0 50.0
20 -18.10759 -0.87953 -0.80553 -0.72597 -0.60961 -0.51003 -0.39576 -0.20614 0.00246
30 -18.24687 -0.69685 -0.63872 -0,57614 -0.48447 -0.40586 -0.31547 -0.16505 0.00112
40 -17.22413 -0.59455 -0.54515 ~-0.49193 -0.41391 -0.34694 -0.26988 -0.14147 0.00065
50 -16.11673 -0.52707 -=0.48337 =0.43627 -0.36721 -=0.30789 -0.23960 -0.12573 0.00043
60 -15.11793 -0.47831 -0.43871 -0.39602 -0.33340 -0.27960 -0.21764 -0,11427 0.00030
70 -14.24964 -0.44097 -0.40450 -0.36517 -0.30747 -0.2578%9 -0.20077 -0.10546 0.00023
80 -13.49817 -0.41120 -0.37721 -0.34050 -0.28678 -0.24055 -0.18730 -0.09842 0.00018
90 -12.84458 -0.38674 -0.35479 -0.32033 -0.26976 -0.22630 ~-0.17622 -0.09262 0.00015
100 -12.27173 -0.36619 -0.33594 -0.030332 -0.25546 -0.21431 -0.16690 -0.08773 0.00012
110 -11.76555 -=0.34859 -0.31981 -0.28877 -0.24321 -0.20404 -0.15891 -0.0354 0.00010
120 -11.31475 -0.33331 -0,.,30580 -0.27612 -0.23257 -0.19512 -0.15197 -0.07990 0.00009

*GT¢



A3.10

UPPER TAIL
Percentage
" 7540 90.0 95.0 97.5 99 99.5 9%.75
20 0.20882 0.39261 0.50170 0.59574 0.70444 0.77804 0.84596
30 0.16627 0.31404 0.40207 0.47817 0.56636 0.62624 0.68161
40 0414217 0.26905 0.34475 0.41026 0.48626 0.53792 0.58572
50 0.12619 0.23906 0.30645 0.36480 0.43254 0.57861 0.52125
60 0.11460 0.21725 0.27857 0.33168 039335 0.43531 0.47416
70 0.10571 0.20048 0.25711 0.30618 0.36318 0.40194 0.43785
80 0.09861 0.18707 0.34995 0.28576 0.33898 0.37520 0.40875
90 0.09277 0.17603 0.22581 0.26895 0.31906 0.35317 0.38477
100 0.08365 0.15878 0.20370 0.24264 0.28788 0. 31869 0.3655
120 0.0800 0.15186 0.19483° 0.23208 0.27537 0.30484 0.33214

*9T<C



A
PERCENTAGE POINTS FOR Ap ( No ENDS )

™M denotes number of spectral points used

A3.11

Truncation point M =N/
LOWER TAIL
Percentage
™M 0.0 0.25 0.5 1.0 2¢5 5.0 10.0 25.0 50.0
8 -14.93241 -0.51839 -0.47531 -0.4288%9 -0.36086 -0.30247 -0.23527 -0.12331 0.00058
10 -13.80302 -0.44507 -0.41184 -0.37172 -0.31289 -0.26236 -0.20417 -0.10715 0.00035
12 -12.79455 -0.40095 ~0.36777 -0.33199 -0.27951 ~0.23442 -0.18249 -0.90584 0.00024
14 -11.93505 -0.36521 -0.33502 ~0.30246 -0.25469 -0.21363 -0.16633 -0.0873%9 0.00017
16 -11.20610 -0.33739 -0.30951 -0.27945 -0.23534 -0.19742 -0.15373 -0.08080 0.00013
20 -10.04725 -0.29642 -0.27195 -0.24556 -0.20682 -0.17352 -0.13514 -0.07105 0.00008
40 -7.06493 -0.20192 -0.18527 -0.16732 ' -0,14095 -0.11828 =-0.09214 -0.04848 0.00002
60 -5.73877 -0.16274 -0.14933 ~0.13486 -0.11362 -0.09535 - -0.07428 -0.03909 0.00001

*LTC



A3.11

UPPER TAIL
Percentage

™M 75.0 90.0 95.0 87.5 99.0 99.5 99.75
8 0.12394 0.23453 0.30051 0.35759 0.42382 0.46883 0.51048
10 0.10753 0.20372 0.26117 0.31091 0.3685 0.40792 0.44428
12 0.09609 0.18219 0.23363! 0.27819 0.32994 0.36315 0.39775
14 0.08757 0.16612 0.21306 0.25374 0.30098 0.33314 0.36292
16 0.08093 0.15357 0.19699 0.23462 0.27834 0.30810 0.33566
20 0.07114 0.13504 0.17325 0.20638 0.24486 0.27107 0.29334
40 0.04850 0.09212 0.11821 0.14084 0.16714 0.18506 0.20165
60 0.03910 0.07427 0.09532 0.11357 0.13478 0.14923 0.16262

*8T<¢



A3.13

NULL DISTRIBUTION FOR WHITE NOISE TEST, FULL TRAPIZODAL FORM

EQUAL LENGTH SEGMENTS P=Q=2mn
LOWER TAIL
Percentage
n 0.0 0.25 0.5 1.0 245 5.0 10.0 25.0 50.0
16 -32.89607 -1.15642 -1.06117 -0.95749 -0.80553 -0.67512 -0.52509 -0.27514 0.00138
32 -26.26475 -0.81226 -0.74507 -0.67263 -0.56635 -0.47502 -0.36983 -0.19427 0.00042
64 -19.56851 -0,57234 -0.52511 -0.47417 -0.39935 -0.33510 ~-0.26100 -=0.13725 0.00013

*6T¢

128 -14.14675 -0.40606 ~-0.37075 -0.33481 -0.28206 -0.23669 -0.18439 -0.09701 0.00004




A3.14

UPPER TAIL
Percentage
N 75 90 95 9745 99 99.5 99.75
16 0.27664 0.52334 0.67048 0.79779 0.94546 0.104581 1.13867
32 0.19472 0.36928 0.47360 0.56398 0.66895 0.74038 0.80653
64 0.13739 0.26085 0.33468 0439869 0.47307 0.52371 0.57062
128 0.09705 0.18434 0.23656 0.28185 0.33448 0.37033 0.40354

*Qce




A3.15

NULL DISTRIBUTION FOR WHITE NOISE TEST (NO END POINTS)
EQUAL LENGTH SEGMENTS WITH P=@=2u

LOWER TAIL
Percentage
n 0.0 0.25 0.5 1.0 2.5 5.0 10.0 25.0 50
16 -32.92380 -1.19168 -1.09245 -0.98558 -0.82900 -0.69460 -0.54015 -0.28285 +0.0062
32 ~-26.46099 -0.82415 -0.75596 -0.68344 -0.57459 -0.48191 -0.37517 =0.2005 0.0045
64 -19.68193 -0.57751 —~0.52894 -0.47762 -0.40230 -0.33753 -0.2689 -0.14424 0.,0014

*Tce

128 -14.20529 -0.40553 -0.37210 -0.33603 -0.28309 -0.23755 -0.18506 -0.09736 0.00004




A3.16

UPPER TAIL
Percentage
n 75.0 90.0 95.0 97.5 99.0 99.5 99.75
16 0.28461 0.53806 0.68916 0.81985 0.97138 1.07431 1.16954
32 0.19754 0.37458 0.48036 0.57201 0.67744 0.75086 0.82792
64 0.13849 0.26273 0.33709 0.40156 0.47647 0.52747 0.57472 §
128 0.09740 0.18501 0.23742 0.28287 0.33570 0.371€7 0.40500




A3.17

A
PERCENTAGE POINTS FOR THE DISTRIBUTION OF 6k 1€ 2 2ma )

Trapizodal Estimate

LOWER TAIL
Percentage
N 0.0 0.25 0.5 1.0 2¢5 5.0 10.0 25.0 50.0
32 -23.5137 -=0.67562 -0.61991 -0.55980 -0.47158 -0.39571 -0.30825 -0.16215 0.00009
64 -16.44366 -0.46395 -0.42573 -0.38448 -0.32393 -0.27185 -0.21180 -0.11146 0.00001
128 -11.49973 ~0.32315 -0.29654 -0.26781 -0.22564 -0.18936 -0.14754 -0.07765 0.00000

*egee

256 - 8.07647 -0.22676 -0.20808 -0.18793 -0.15834 -0.13288 -0.10353 -0.05449 0.0000




A3.18

UPPER TAIL
Percentage
. 0.75 0.90 0.95 0.975 0.99 0.995 0.9975
Sample Size
32 0.16225 0.30814 0.39542 0.47110 0.55906 0.01896 0.67446
64 0.11147 0.21178 0.27180 0.32386 0.38437 0.4255%9 0.46378
128 0.7765 0.14754 0.18936 0.22563 0.26780 0.29652 0.32313

*ée

256 0.05449 0.1033 0.13288 0.15833 0.18792 0.20808 0.22676
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Pages 44-50

Mr. T. Tisk has pointed out that in the development of the finite sample
annroximations presented on nages 44-50 there is an implicit assumption that
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The estimating equations may be written as
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