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GOODNBSS OF Ii'IT O:~\ P)3.' J)ICTION MODELS 

Abstract 

Given a second order stationary time series it can be shovm 

that there exists an optimum linear predictor of ~, say Xk' which is 

constructed from 1 Xt ,t=O,-l,-2 o 00 t the mean square error of prediction being 

given by 

= 

In some cases hm/ever a series can be considered to have started at a point 

in the past and an attempt is made to see hmn-ell the optimum linear fonnof 

the predictor behaves in this case. 

Using the fundamental result due to KOlmOgoIOV relating the prediction 

error e l to the power spectrum f(w) 
:11' 

exp 1 L J log 2lff(",) dv, l 
l 2Jr -11' 

estimates of e1 are constructed using the estimated periodogram and power 

spectrum estimates. As is argued in some detail the quantity e
l 

is a 

natural one to look at when considering prediction and estimation problems 

and the estimates obtained are non-parametric. 

The characteristic functions 01 these estimates are obtained and it is 

shown that asymptotically they have distributions which are approximately 

normal. The rate of convergence to normality is also investigated. 

A previous author has used a similar estimate as the basis of a test 

of white noise and the published results are extended and in the light of 

the simulation results obtained some modifications are suggested. 

To increase the value of the estimates el their small sample distribution 

is approximated and extensive tables of percentage points are provided. Using 

these approximations one can construct a more powerful and versatile test for 

whi te noice and simulation results confinn that the theoretioal results work well. 
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The same approximation technique is used to derive the small s8nple 

distribution of some nm, estimates 0:::' tho coefficients in the model 

generating 1 Xt \. These estimates are also based on the power spectrum. 

While it is shOlm small sample theory i3 limited in this situation the 

asymptotic results are very interesting and useful. 

Several suggestions are made as to further fields of investigation in 

both the univariate and multivariate cases. 
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1. 

PREFACE 

A random or stochastic process may be defined formally as set 

of random variables \ X( t») 

element of some index set T. 

indexed by the parameter t, which is an 

In many physically useful processes the parameter t represents 

time; this is not always so however as may be seen by considering f X(t») 

as a barometric pressure reading and t the distance east from a fixed 

reference point. 

Thus if we observe, for values of some parameter t, a 

quantity l X( t) J subject to random fluctuation, the "random function" 

X(t) obeys probabalistic rather than mathematical laws and we are 

observing a random process. Instances of such processes are numerous. 

e.g. (i) 

(ii) 

(iii) 

Civ) 

the observation of a seismograph trace 

"Shot noise" across a vacuum diode 

Woolworth's stoCk prices 1946-1950 

Monthly figures for the production of pig iron 

in the D.S.A. 1877-1956 

In what follows we shall be mainly concerned with second order 

stationary processed. These are processes t X(t>} whose covariance 

structure is invariant under a shift of origin in the scale of measure-

ment of t. This is not as severe a restriction as might be thought 

at first glance since one can often remove non-stationary trends and 

sometimes a non-stationary process can be transformed into a stationary 

form. 
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Clearly the prediction of such processes is of considerable 

interest and there is an extensive literature dealing with the prediction 

of stochastic processes. In addition to the pure prediction problem 

there are processes where one is interested in the probabalistic 

structure of the process. 

If one has a vector stochastic process ~ X I(, (,..) ~ ~ = I, .. n J then 

the determination of the structure of the process and the relationships 

between the component series is of great interest. For example f XI(~)J 
might be disposable personal income and ~ Xl(~)~ personal consumption 

expenditure (Fishrnan (1969». 

At the present time a good deal of effort is being spent on 

the development of forecasting methods and the construction of forecasts. 

It would seem essential that attempts be made to assess the value of 

individual forecasts and to provide usual diagnotic tools which could 

enable one to compare forecasts with some objective criterion. This 

is the main raison d'etre for what follows. 

Chapter 1 outlines the basic theory required for later use. 

In particular the concept of the spectrum is considered in detail. This 

is essentially the harmonic decomposition of the variance of the 

stochastic process and has a very natural connection with the optimum 

linear predictor of the process. Indeed one can consider the spectrum 

as being at the heart of the prediction problem. 

In chapter 2 we look at a particular optimum predictor and 

consider its accuracy in a finite sample case. The minimum prediction 

error is also discussed in some detail. 
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Chapter 3 outlines the estimation of the minimum mean square 

error and considers the distribution of spectral estimates. 

In chapter 4 we look in detail at a proposed test for "white 

noise", that is a test to determine whether a process is composed only 

of independent random variables. 

Chapter 5 contains work on the approximation of the minimum 

mean square error and its distribution. The theoretically derived 

results are compared with those of some simulation experiments, the 

agreement is generally good. Of necessity this chapter contains an 

outline of approximation methods. 

Chapter 6 develops the methods of Chapter 4 further and 

removes most of the rather more limiting restrictions" required. An 

exact method is developed for hypothesis testing but a suitable approx­

imation isseen to work well. 

Chapter 7 describes some alternatives to the methods developed 

and demonstrates the drawbacks of using traditional spectral estimates. 

The role of the band width of the smoothing window is emphasised. 

In Chapter 8 we look at the factored spectrum and show how 

one can introduce some distribution theory into forecasting methods 

proposed by other authors. We show that one can estimate moving 

average and autoregressive parameter from the factored spectrum and 

how these estimates can be used. 
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The last chapter provides some practicle work and discusses 

extension of the methodology developed. We also consider briefly the 

multivariate problems. Suggestions for the extension of the methods 

presented in previous chapters are given in some detail. 
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CHAPTER I 

Introduction 

A random or stochastic process may be defined as a set of 

random variables \ XI;' indexed by the parameter t which is an 

element of some index set T. Usually the ordering is in time, thus 

giving rise to the term Time Series, however theIEare many cases where 

the ordering is spatial. The ordering of the random variables is 

crucial as in essence one is interested in the relationship between 

the random variables over time. 

More formally we define a stochastic process as follows: 

Consider a probability space ~ on which is defined a 

d algebra l- of sets S. A real valued function X(w) (~~ J1 ) 

defined on J1 is called a stochastic variable if it is measurable 

with respect to i.e. 

Let T = {l} be a set of indices, then if for each 

the function Xt(w) is a stochastic variable (considered as a function 

of w), Xt(w) is a stochastic process when t,w vary over T x ~ 

The set T can be finite, countable or uncountable. 

discuss sets of the form 

(i) T = 0, ~ 1, ~ 2, 

(ii) T is the real line 

or their subsets. 

We shall 

In common with the accepted practice we shall often suppress 

the argument w. 
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Tvvo interpretations of Xt (w) are possible, 1 Xt (w) J can be 

regarded as a set of time functions indexed on w in which case each time 

function is a sample value or "realisation" of the process. From the 

alternative viewpoint Xt(w) is a collection of random variables 

indexed by { t j . 

The question arises whether it is possible to determine a 

probability measure on ~ in such a way that the joint distribution 

will be the same as that of Xt , Xt,. •••• 

X tit Where Xtj is defined as a function on Jl. That such a measure 

can be determined has been shown by Kolmogorov (1950), the condition 

being that the initial joint distributions of the 1 Xt\ should be 

cO!'llpatible. That is the marginal distribution of any subset of Xt 
I 

Xt should be the same as the prescribed distribution of this subset. 

" 
For further details see Hannan (1960), Rosenblatt (1962) or Anderson (1971). 

Dropping the w we see that we now have in effect a multivariate 

problem since lXt } can be regarded as a random vector. Thus far we 

have made no assumptions about the relationships between the {Xt } 

these being determined by the phenomenon generating the series. For 

most purposes it is convenient to split stochastic processes into two 

major clauses, stationary processes which do not exhibit major change 

over a change in origin of the time scale and evolutionary processes. 

To be more precise we define a strictly stationary process f Xt j 
as a process for which, for all n, and h, tl ... tn (these latter being 

understood to belong to the index set T) the distributions of 

onJ 
are identical. For more detail 

XI:,." ) X~z.t" J •.•••. X~"t"h 
see Pitt (1963). 
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This is a rather severe restriction and can be weakened. We 

define stationarity of order m as follows: 

A process is staionary to order m if for any admissable subset 

all the joint moments of t Xtl··· x~ 1 up to and 

including those of order m exist and are equal to the corresponding joint 

moments of ,Xtl+k for all values of k. 

All processes considered subsequently will be assumed to be 

second order stationary unless it is explicitly mentioned otherwise. 

In this case m = 2 and inconsequence 

EL Xt-J = r LOO 
a constant 

E [ )(~ 'l(s]= E L 'Ao )( ("-5 J a function 

of (s-t) only. We shall define 

R 1;- S 

as the autocovaniance function. We may also define the autocorrelation 

function PT.. 

1.1 

We can immediately establish for real valued processes 

Ro = UtV< ( "'~ ) po :: I 

Rt: S Ro J f-r I ~ I . 

fZ - r ~ Ro P-L := Pt: 
Second order stationarity has been referred to as "Generalised 

Stationarity" by Wold (1938), Weakly Stationary by Doob (1953) and 

Covariance stationary by Parzen (1961). Whittle (1963) has also used 

the expression "time homogeneous". The concept of stationarity appears 

to have been orginated by Khinchine (1934). 
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We point out that for a NODmal process second order stationari ty 

implies strict stationarity since the normal distribution is completely 

specified by its variance covariance matrix. 

For out purposes we shall consider the index set to be 

T = I o,±',±2, .... j 1.2 

or some subset. In this case the process is called a discrete stochastic 

processes or a stochastic sequence, Yaglom (1962). 

Most of the processes we shall consider are discrete and by a 

suitable transformation can be considered to have an index set of the 

form 1.2 above. However even if T is constructed from the real line 

one finds in practise that one is forced to consider sampling values of T 

in which case we again have in effect an index set T of the form given 

by 1.2 

Linear 'I1odels 

Basic to the study of discrete processes are several models. 

The first we consider being the autoregressive model of ~ Xt \ which 

may be written 
-p 

L CA" Xl-:-~ :: t~ 
1.3 

~;o 

or 

A(E,) Xt: z:: E~ 1.4 
.P "-

where J:lCc) ::: L a" l:. 
It.-a 

and B denotes the backward shift operator defined on the index where 

The process t (. t' ~ is considered to be a sequence of independ­

ent random variables, the so called white noise process. 



9. 

The equation 

Ale) "" " 1.5 

is sometimes called the associated equation. 

It can be proved that if all the roots of the associated 

equation 1.5 are lessthan one in absolute value then Xt can be written 

as an infinite linear combination of (~I l,,_, J •••• 

addition Xt is independent of C ~-t, I [~.H, ..... . 

see Anderson (1971) 

Multiplying 
i' 

[ 

3 by Xt-s we have 

" ~o 
and taking expectations 

i' 

L QIe. R. S - k ::: 0 
"-'0 

and in 

For details 

These are often called the Yule-Walker equations, and have often been 

used to find the Q j J j ::0 .. " when the RS are known. 

Autoregressive processes appear to have been first suggested 

and used by Yule (1927), however they have been much used since, perhaps 

since they are easily handled and provide simple models. Box & Jenkins 

(1970) have used the expression 'partial autocorrelations' for the 1 C4", . 

The model '\ 

X~ - L bKt:..~-K 1.6 
"'~o 

or 
X~ :: e( s) t:~ 

9 
bt. 

t 
S( ~) .: L- e. where 

" 11:"0 

is called the moving average model of order q when 1 it ~ is a white 

noise process. 
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The autoregressive and moving average models can be combined 

to give in the terminology of Box & Jenkins (1972) an autoregressive 

moving average model 

1.7 

The Spectrum 

These models form the basic theoretical models used in the 

study of stationary stochastic processes. We now consider the use of 

another entity, the power spectrum. We shall outline the main 

results here but for more detail and proofs see Grenander & Szego (1958), 

Grenander & Rosenblatt (1957) or Anderson (1971). 

We state our main result as a theorem 

The covanance function R '[. of a stationary stochastic 

process with E [ "1. 1:-1 :: 0 can be represented as a Fourier-Stiel tj es 

integral 

1.8 

with a bounded and non-decreasing function F(w). 

The function F(w) is uniquly determined at all points of 

continuity and is called the spectrum of the process. 

It is well known that every bounded and non-decreasing 

function F(w) can be written as the sum of three components 

F(w) = 

where 

(a) Fl(W) has a derivatve which exists almost everywhere 

(b) F2(w) is a step function which is constant except at the 

discontinuities of F(w) 

1.9 
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(c) F
3

(W) is a singular component with zero derivative almost everywhere. 

In practical situations we usually consider processes having 

an absolutely continuous spectrum, or at most an absolutely continuous 

spectrum with a few discontinuities superimposed. 

It is worth noting that for a continuous process i.e. 

one can prove a similar ~"'pore"" with 

1.10 

We can also connect the spectrum to the process in an 

alternative manner to obtain the spectral representation of the process 

by the following theorem due to Cramer. 

Any discrete stationary process which is continuous in the 

mean can be represented in the form 

J11 el' ~IV d ~(&.U) 
-n 

1.11 

where lc"'l) is an orthogonal process i.e. its increments are 

uncorrelated and 

E [ 

1.12 

In addition to dividing stochastic processes into stationary 

and evolutionary types we can also split stationary processes into two 

distinct groups, those that are deterministic and those that are non-

deterministic. 

Consider the problem of predicting Xt+h given 

We construct our predictor of from some linear combination of 

and denote it by We shall look at the mean-

square error of prediction eh where 

E ( I X:+" - )( l-~" IL J 1.13 
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If en = 0 we clearly have rather an odd process in which there is an 

exceptionally strong dependence between and x ~ , • a •• 

Such processes are said to be deterministic. 

Kolmogorov (1939) proved the remarkable theorem that for a 

non-deterministic process with an absolutly continuous spectrum 

e. = 
~p i _I 111 j~ Z.n ~lW) t.\w ~ 

I .z. n -n.J~ j l.ll! 

for the optimum predictor and further that a necessary and sufficient 

condition for a process to be deterministic is that 

1.15 

We consider 1.14 in more detail at a later stage but for the 

moment present another remarkable result due to Wold (1938). 

If Q, > 0 we may decompose the process l 'f... t ~ as follows 
06 

"'le: = U~ ~ V l: .: L QCj Ct-_j '" \j l-
where 

"J=o 

(a) E [ [.t [05 J :- crI. ~ l;,.s 

L 1. 
(b) 0( 0 .:: I J O<J" ~ act 

J=o 
(0) f [ £5 \J l-J s: 0 for all s, t 

(d) The Vt process is deterministic. 

In addition the Ut process has an absolutely continuous 

spectral density function wihh spectral 
eo 

= Cil.. 
.In 

densi ty f( w) • 

akJi ) L 
0('(' .. 

J 

while the V
t 

process has a spectral distribution fuction 

where these are defined by 1.9. 
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process. 

When V t is absent then 1 ~ t \ is a purely non-deterministic 

One has an intuitive feeling that for processes met in 

practice Q I =I- D and one may hope to remove the deterministic 

component by regression techniques, Hannan (1960). 

Before turning to estimation we consider the effect of linear 

filters. 

processes and 

Then f,,(w) 1. Ib .. 
L 

where 

transfer function filter 

and f~(w), f 1 (w) denote the spectra of the and 

Filtering is an important and useful tool in spectral analysis 

and many problems can be reduced to constructing the appropriate filter. 

Indeed even the problem of finding the optimum linear predictor can be 

reduced to a filtering problem. 

All the above theory can be extended to multivariate random 

processes. For example is called a bivariate 

stationary process (of second order) 

if 

(i) x (t) and X (t) are stationary to order 2. with autocorrelation 
1 2 

and spectral density functions given by 

respectively-
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(ii) 

is a function only of L 

We may then define the cross spectrum f12(w) by 
Q) 

f 12 ( w ) = j e -i "" ( R 11.. l () ~ (. 
-Q:» 

and the spectral density matrix by 

( ~" 'k)\ 

Two components of the cross spectrum are of interest, the 

coherence 

Ct"-ll 

J ~"/w' ~ 1.).l '-'» 

and the phase which is the argument of ~ 11. I",,) written in complex form. 

Much greater discussion of bivariate and multivariate spectral 

analysis can be found in Granger (1964) and Hannan (1970). 

From the theoretical outline we now turn our attention to the 

important problem of estimation. We have however a problem in that 

given a sequence we have only one realisation of a whole 

possible ensemble, and moreover we will have in practical situations 

only a finite set T. In fact one is forced to consider the realisation 

1 X
t 

(w) \ as being in some senSe typical of the entire ensemble. We 

are forced into a position where one must estimate autocorrelation 

co-efficients for a predetermined set of f vJ } 

Naturally much work has gone into investigating the conditions 

for which time averages produce consistent estimates of the population 

parameters of the ensemble and many delicate and powerful ~ ~ fore"" S 

have been proved. In essence our time averages provide reasonable 

estimates if the ergodic property holds for our process. Sufficient 
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conditions L:r this pr:-perty to hold are 

(Cl ) J~ R{: -3> 0 

r.oO 

or (b) ) ~d is 10urth order stationary 

or (c) The c::.bsencc of jumps in F (w) 

Condition (c) is "is',,' ,I necessary condition. 

We rei er interested readers to Doob (1953), Billingsley :(1965) 

and Rozanov (1967). 

Estimation 

As autoregressive, moving average and mixed processes have been 

proposed as models for stationary processes our next concern is the 

estimation of parameters. 

Mann & Wold (1943) developed the maximum likelihood estimates 

and asymtlotic theory for the model .. 
L 
'If 0 

for \ £. t' 1 having zero mean Normal distributions and showed that maximum 

likelihood estimates are a&ymptotically efficient. 

The d er .. i "o~.o" of the estimates is as follows: 

since (I __ . _ _ ~". are independent of 

the conditional p.d.f. of (, .-- is the same as the 

unconditional density and is given by 

,. '8" 

When Xc X:.t ... are fixed we may use 1.17 to give the likelihood 

of '/.. iN as p 
~ 

[ X ~-r n , 
~r 1 

I L L C<t-
( ;n 0'1.) NI!. .t cJ! ~"'I 

,-=0 
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thus the maximum likelihood estimates are obtained by minimising 
.. p 

Q L} 
~=I r=, 

:: L 
which is equivalent to the usual least squares problem. 

Writing and setting 0< 0 = 
111-" 

Ch '" 
I L Xt- )(l-." 

N t--=l 

rh C", I C (J h= I J Z, ... ~ -I = 
we have for large N 

& 0( ;: 
_ r 

I f. rz' -.- .. -
R .: 

1"', I ~l ... - ......... 

(' ~-I 
and r' ( r r ) J ( 0{ 4 ..(p) :: C'. fL 01. = , 0( L 

thus giving 
- ( R r' J. " 01. :: r 

The structure of B. enables one to use simple iterative methods 

of evaluating the 0{ details of which were developed by Durbin (l96~. 

There is a considerable body of theory on the asymptotic 

behavior of these estimates, perhaps the best account being given by 

Anderson (1971). 

While there is much asympotic theory the small sample theory 

is less well developed. Perhaps the simplest autoregressive process is 

the ARl process, or first order Markov process given by 

= 1.20 

where ,,,,,\L' for stationarity. 
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Hurwicz (1950) studied 1.20 under the condition that Xl was 

Normal with zero mean and variance 

and derived the distribution of the maximum likelihood estimate of 

for N=3 and 4 with Xo=O. He showed that thecstimate was biased but 

the arguments he used became too complex to pursue for larger N. 

Marriot & Pope (1954) again discovered bias in the estimator 

and suggested a modification in view of their results and those of 

Kendall (1954). 

White (1961) gave asymptotic expansions for the mean and 

variance of the serial correlation co-efficient for both bases 

and '/.." being N ( 0 

where (jL= \J"C.VI"(Ct-) He also showed White (195J), (1959) that for 
~ 

, Cl( , '> the asymptotic distribution of.( is Cauchy 

Copas (1966) compared various estimates of ~ in some 

simulation experiments and found little difference. He found some 

evidence that a mean-likelihood method worked rather well compared to 

a least-squares estimate over a limited range. Tho~ur (1967) gave 

some interesting results from a Baysian viewpoint and pointed out that 

the fact pt... is constrained did affect the estimation procedure. 

Thus it would seem that while the large sample theory is well 

known there is still much to be learned in the small sample situation, 

see Orcutt et a1 (1969). 
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The estimation of moving average and mixed models is rather 

more complex. Perhaps because the autoregressive has proved of rather 

more interest there appears to have been less examination of small sample 

situations. 9 

Let Xc- = 1- ~J' [I:-j 1.21 
Jr"o 

if the f [d are normal then the Xt 
are normal and we can consider 

estimating the ~+ I parameters from [ X ~ J t = \).2 .... N~ 
Unfortunately the maximum likelihood estimates cannot be solved directly, 

see Anderson (1971). 

Walker (1961) used maximum likelihood applied to the sample 
1\ 

correlations and used his estimates.f to calculate 1! Durbin (1959) 

suggested that the autoregressive representations of 
0() 

L '(r~l;-r 
f"'z:o 

could be approximated by the finite sum 

" 
t'1: := L ir X~,,.. 

reo 

1.2\ 

for large n, For suitably large n it can be argued that the ~ I:-

J.Z2 

are nearly uncorre1ated which suggests estimating t J - (V v 'V") _ - 0.) 8L'" or\ 

by 

= 
_ r 

For details see Durbin (1959) or Anderson (1971). 

In the case of mixed model both Walker (1962) and Durbin (1960b) 

have proposed modifications of their methods for dealing with moving 

average models. 

Clearly we do not have space to go into greater detail in the 

estimation of linear model parameters but:. mention must be made of Box & 
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Jenkins (1972) who make extensive use of such models in their forecasting 

techniques. We defer fuller discussion of their methods until we 

examine forecasting in greater detail. 

It is often the case that our models can be considered to 

contain a deterministic component that may be described as some smooth 

function such as a polynomial in t, or even a trigonometricpolynanial. 

Grenander (1954) and Grenander & .RQsenblatt (1957) obtain the presant 

result that a straight forward least squares procedure is efficient 

under quite general conditions. Some additional results may be found 

in Hannan (1957). 

Spectral Estimation 

It is beyond our scope to review the extensive development of 

the theory of statistical spectral analysis over the past rew years and 

we restrict our scope to providing an outline of results. For more 

detail there are a number of review papers, see Jenkins (1961), Parzen 

(1961) and Priestley (1962) while the books of Granger (1964) and 

Fishrnan (1968) provide much greater detail. 

In early work on time series the series was often envisaged as 

satisfying the model 

in which the ~ f t" i are white noise and the fVJJOjJJj are to be 

estimated. A technique known as the periodogram was introduced by 

Schuster consisting of the function 

z 
N 

I. 13 

1.24 
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It is easily shown that It.J (kJ) will have a peak at t.V:;: ..,)0 if the 

model contains a periodic term at f"J:: &UU and there will be subsidary 

peaks at tV :- t.Jo .j. 2 £vu 
N 

Significance tests for such peaks 

have been proposed and a survey can be found in Jenkins & Priestley 

(1957). Examples of estimated periodograms can be found in Davis (1941) 

and Beveridge (1922). 

This technique became somewhat discredited when it became 

apparent thct an excessive number of cycles were being found. This 

prompted workers in the field to consider other possible models. 

However WieneJs (1930) paper enabled the theory to be put into 

a more coherent framework by emphasising the link between the auto-

correlations and the spectrum (see 10). The modern spectral estimation 

approach was developed from this paper. 

Before considering the distributional problems in more detail 

we consider the phenomenon of "aliasing". Let \-Xp .. \ \ be a sample 

record of length T (O( t(' T) which has been read from a continuous record. 

Let l ~ ~ ~ be 

interval 6t 
a discrete set of readings obtained by sampling at a fixed 

from the continuous trace. Thus 

and The sampling of the 

discrete sequence has two consequences. 

(i) The spectrum of the discrete series is now defined only for 

frequencies up to c...>o" 

frequency. 

11 
1* 

being called the Nyquist or Polding 
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(ii) The power at frequencies higher than ~a is superimposed on the 

portion of the spectrum lying between 

It is convenient to work in the "standard" frequency range :!. IT 

which corresponds to sampling the record at unit intervals i.e. A~c I 

The spectrum ~ * (w) in terms of the original frequency scale being 

1 k), f n 1.25 
bl-

Now for a continuous record the autocorrelations are given by 

L J~ ( ~ OiI J .• J • 

-" 
Then writing we have 

_GCI 

where is the spectrum of the sampled sequence. 

To minimise the effect of aliasing it is usual to try and 

choose the sampling interval b~ in such a way that for frequencies 

higher than the Nyquist ~ (&0..1) is small. 

From now on we shall consider only discrete series in(our 

discussion of estimation. 

As we have seen in I . i' 

Jil eic.v c cl j:"f&4.l) 
_n 
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and since we shall assume F(w) is u~~~or~lJ continuous with 

\d 

.l.- L R.5 (" en S II.l ,. 2 ~ 
we can write 

2f\ ~,,_fI.J 

since and hence ~ (v.)) is syrmnetric. 

From 1.27 it would seem that the natural way to estimate ~/~) 

is ~ N -I ~ 
~.s(iJ) or 

, L R IS)rcn 5 ~ -21) s=- -Not I 

" using a suitable estimate of Rs Many estimates of Rs have 

been suggested the most popular being 
N-ls I 

1\ L Xt: XHI~I R~ :: I 
t-l-lsl t', 

and 
~ 

~.IS I 

R~ 1 L X ~ X ~ l' IS I .::: 
N t=, 

The form given in 1.29 can be shown to be (asymptotically) unbiased, 

however Par zen (1961) has pointed out that the form given in 1.30 has 

smaller mean-square error in that 

" ~ [ J1 
E [ R. ~ ~s ] ~ ~ f ~~ ~s 

~ 
( I Is I ) ~s while [ [ R~J '\..0 -N 

For this reason we shall use the second form almost exclusively. 

Thus one form of estimate of ~ t~) is 

~.s/'V' 
... , 

~ 
.: -L L RsC(I)SIoJ 

2(\ ,s=-w of , 

which can be shown to be intimately connected with J N (r,.)) in that 

JN/r.v) ~ 40 f.s/IU) 

and in fact IN t....,\ = 4n ~Sl""') when K$.{;I.2C;) is used. The 

periodogram is very nice to handle from the mathematical viewpoint but 

has some drawbacks as we shall see in Chapter 3 and one can prove some 
I 
1\ 

very elegent theorems. Good reviews are given by Olsen (1967) and 

Walker (1965). 

1·2 rr 

' .29 

1.3cJ 

1.3 I 

1.32. 
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Fisher (1929) devised a test for jumps in F(w) based on the 

periodogram. 

~ 
However although is an asym~otically unbiased estimator 

of ~(....,\ it is well known that is not a consistent estimator, Priestley 

(1965). More generally it is usual to consider estimates for ~W) of 

the form 

= '.33 

where l~~) is a suitably chosen weighting sequence, sometimes called 

the cQvariance wi~dow. 

Bartlett(1999) suggested 

ill Is J~ M ,.3Lf 
M 

o 
where m is some integer less than ~ and 

'3 \ ']M 

M/N -::..> 0 

as both m and N tend to infinity 

Tukey (1949~ suggested 

I 
, 2ct + .2 Q (""Cl) 11 5 

)..~ = M 

!f. 2~ 2 
0 

with Q= 0·23 while Daniel (1946) proposed 

~ S :-
SIM. .511 I~ for all 

.sll/M 

Is/of"" 

151 = IV\ 

151> ~ 

A somewhat more restricted form of estimate has been discussed in detail 

by Parzen (1957a 1957b) is 
~ 

~(I.\l) == 

N-I 

.J.- L 
.z 11 S.: -N·t! 

where k (LA) is a continuous function of u and BrJ is a sequence i of 

constants such that j~ B~:::o In addition Parzen has shown (l957a) 

1 • .1 7 
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that for estimates for the form 1.37 
~ 

B~ I I«rl I ~(",y' ~ r E [ ~ (,..,) - ~ I~)) ....., 
} ArIW} 

t 
where r is the largest positive integar such that 

ktr
\ Ir 1..:.. 11 - Ill"} 1 exists and is non-zero u-')O lul r 

and 
~ ("'-l) Yr 

~ r (Io.l) ;:: 

1 ~("'(-..)\ 
where 00. 

~(r) , L 1511" R~ ((J)s,1oJ \ "0) 
( a.J) :- -2n $=_DIJ 

Parzen has also suggested the following form of \{ (u ) 

k (lA) ~ i 1- {, '-4'14 61Lil3 1 ..... \<=0·5 

~(I- lu})3 O·~ lu 1 < '·0 

0 I u I >, 
the attraction of which is that it ensures positive estimates of the 

spectrum, Granger (1964): 

Grenander and Rosenblatt (1957) have shown that for normal " ,,-

series the variance of \- (IoU) is given by 

V (IV) N 2 n ~ le w) J 1\ W "2. ( & ) cl g 

W (9 \: ~ ~ eisE) N _n This result has been L:) . where 
~..., 

Here '( = B., whereas in the traditional case 

write 

-;J" 

The introduction of wee) the spectral window enables us to 
~ 

~(&.V) in an alternative manner as 
~ 

~(\IJ) .:- Jit I p.J ( s) W (~-t..)) et e 
_n e, 

in effect smoothing the periodogram by using a suitable ke~,al. 

To choose the value of the parameter m is a rather vexed 

question. Various procedures have been mentioned, the problem being 

'.3 S-

\.31 

\.40 

1·41 

1·4 z. 
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that ones "resolution" of the spectrum depends on the "bandwidth" of the 

spectral window employed. For our purposes we define the bandwidth of 

the width of a rectangle whose height and area correspond to those of 

The problems involved are too detailed to be discussed here but we feel 

that the approach of Priestley (1965), (1962) is theroost_appropriate. 

It is perhaps worth mentioning that we have all along implicitly 

assumed that ~ l~ ~ has a zero mean. If this is not true we can of course 

modify our autocovariance estimates to 
,. - IS I ) 

Rs.: ~ L ()!\:-X )()(l-~'$,-i 
b'" 

however this does introduce some bias into our estimates of the spectrum. 

Usually it is assumed tobe negligable however Fishman (1969) has shown 

that in this case 

f l ~ (IV)] = 
I· La la 

This can be compensated for by noting that 

E- [ ~(o)1 ~ (01 

where 

and using as our estimate 
\ 
~ '" Iw\ : 

As it may be imagined estimates of the form 1.37 involve 

considerable computationale£for± and often for long series may prove 

too much for a computer. Cooley and Tukey (1965) rediscovered an 

algorithm for computing the Fourier co-efficients 

- ,~-;"'~ 
Jfw):" -= L- )(~e 

.J N 1;'., 
in N 1 ~~ operations instead of N

2 
for the usual methods. This 

Fast Fourier Transform (FFT) technique enables one to reduce computational 

problems considerably by enabling the periodogram to be estimated very 
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easily and hence the spectrum by using 
:1 (1\ 

~{I.V' = J _T' 

In practice most weighting of the periodogram is carried out by averaging 

adjacent periodogram ordinates. The main drawback of this technique 

apart from some rather bad machine implementations is that one does not 

compute the autocorre1ations which can be very informative. This 

however can be overcome by performing the inverse transformation on the 

estimated spectrum using the FFT once again. 

Forecasting Time Series 

Ko1mogorov (1939, 1941) appears to have been the first to 

completely solve the problem of finding the optimum linear predictor of 

discrete time series although Wiener (1949) independently solved the 

problem for continuous processes and later considered the mUltivariate 

case Wiener and Masani (1957,58). We shall be considering the 

mathematical theory in detail in Chapter 11 but before looking at 

optional methods we consider some standard techniques that have been 

proposed. 

One of the earliest methods of forecasting a time series 

consisted of a simple decomposition of the series into three parts, these 

being a trend, a cycle (usually 12 monthly) and a residual. The basic 

idea being that if one can estimate fairly accurately the trend and 

cyclical components then one may obtain reasonable forecasts, since one 

would expect the contribution to the total variance by the residual term 

to be minor. 

The usual procedure is to fit various functions to the data 

to estimate the trend using regression techniques and then to use the 
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residuals from the trend to estimate the seasonal cycle. One method of 

determining the cycle being to use a regress"ion technique with dummy 

variables. Other techniques are described by Granger (1967). 

Another approach mainly investigated by Granger & Newbold (19~1) 

is to use a stepwise regression method. To generate a forecasting model 

one attempts to explain X 1\. I in terms of 

and possibly ~ ~ t I f"I-J ~ j ~ 6 i = I .. "" j where these are a set of 

explanatory series. The technique used is a stepwise-regression method. 

While generally good results are reported one must bear in mind that there 

is no attempt to explain the structure of the process being forecast and 

its relation with any explanatory series. In consequence there is some 

danger of developing a spurious model and careimus±be taken to ensure 

that one's regression model is not some artifact arising from some local 

behaviour of the process. 

Perhaps the most interesting method$, apart from the optimum 

ones to be considered later are the so-called adaptive methods which range 

from a simple experimental smoothing technique to the more detailed work of 

Box and Jenkins (1972). 

Adepti ve techniques produce forecasting methods which are, "": 

above all, quick and easy to apply with a minimum of data storage. 

However they do not make use of a great deal of structural 

underlying the process being forecast, which makes them easy to apply 

but does restrict the amount of information available to construct 

forecasts. 

The simplest method is the "exponential smoothing" or "exponen-

tially weighted moving averages" technique proposed by Holt (1957) which 
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has been discussed by many authors notably Winters (1959) (1961) 

Kalman (1960) Brown (1959,1963) and Harrison (1965). 

Gi ven a stationary process 1'i to ~ we define 

# 
Q '" t--I ·dl- 0.) )( ~-I 

x.,. ~ _ I 4 Q ( X b- I -= X.t~_1 ) 
0< Q~ I 

which can be written 

:: 

i.e. is a weighted average of past values of 

Examination of 1.49 shows that 
It 

is unbiased. Thus to forecast 

one uses '/.. HI where 

= L k. 
(,-a) Xt-- t 

This method is adaptive in the sense that previous forecasts 

are updated by a proportion of previous forecast errors. 

If we have a non-stationary process with for example a 

trending mean the above procedure must be modified. One modification 

is to try and incorporate an estimate of the trend. 

;:: 

where the variable T is our estimate of trend. where 

"--' 
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This method of adjusting for a trending mean appears to work well as 

long as the trend is locally linear. 

As well as adjusting the adaptive procedure for trend seasonal 

cycles have also been incorporated. If one has a cycle of length n 

units then a seasonal factor Ft may be introduced 

C(~t: _ )(.t~, Oc::'C~' 

giving forecasts of the form 

t 1- ) -4- (I - " ) ( )( ~ _ I .. T,,_,) -r- ~_, t 

One should notice however that these additional factors do complicate 

the forecasting method and detract from:its simplicity. In addition 

one needs considerable amounts of information to estimate the seasonal 

factors accurately. 

Crucial to the adaptive methods outlined above is theestimation 

of the a, b and c. As one is not fitting a structural model to the 

series there are no opimium values of these parameters and one needs must 

proceed in an empirical fashion. If the values of a, b, c are close 

i "tot } to zero then the constructed series I ~ has a long memory in that the 

contributions from part f ~ ~ j contribute significantly even for distant 

values, see 1.50. In this case the final forecasts are stable and do 

not respond quickly to fluctuations in 111: j . When the parameter 

values tend to one the series has a correspondingly short memory and 

reacts to changing circumstances very quickly.-

It would appear that the most useful method of evaluating 

a, b, c is to use a search procedure in which forecasts are made and 

errors ':j determined from 

Q' 
J 
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using selected values of a,b, c over a sample of One then 

chooses the parameter combination that provides the smallest sum of 

squares 

" L e· 1 

J 

One would hope that the sum of squares surface is relatively flat near 

its minimum to ensure that slight deviations from the "best" parameter 

values do not entail large forecast errors. 

t 
The initial values of the predictor series )( f ) To J r d 

may be computed in the same manner if one splits up the sample ~ 'I. t j 
and estimates the set of parameters in differing segments. 

Brown (1963) has demonstrated that one can produce very much 

the same results using only one parameter. A generalisation of this 

approach is general exponential smoothing, in which it is assumed that 

the process being forecast can be represented by 

.: 0, t,H\ ~ ~1.~zn .. ) ~ .... Q~~,,(~, ~ (f-

where the 

::: q' n) ~ + et-
~'l (~\ are known functions of tillDe and the et' , are 

d6-efficients to be updated. To estimate ~ (~) we use discounted 

least squares, minimising 

the solution being 

~) -
where 

--

/. S I 

,. :)J 
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Since 1.52 implies that ever~ime one needs to update the 

~ in) a matrix inverse is needed a more restricted set of -
has been suggested in order that there exists a non-singular L such 

that 

-
In this case we can obtain ~) 

~) z:: y.. t: 1.(0 ) Jr P L -\ -j-l ~ -d 
and a'n) .:: ~) £-'{~) can be written -

I.S4 

C\'l~) L' ",(1--1) [<i)' IJr} ( y. .-4 ) ,& 0\- I: - X ~_, - -
One may assume from 1. 54 for ,~\ <::. I that will converge 

to a stable form independent of t in which case 1.55 is easily updated 

as new information becomes available, and in addition only one inversion 

is needed. 

It does appear however that if one is using a computer for 

producing forecasts that such restrictions are quite unecessary since 

there are now fast and accurate matrix inversion routines available. 

From the theoretical viewpoint Muth (1960) looked at a model 

where 

and 

where ~t was a transitory component introduced at each time period 

and considered to be normal with zero mean and variance 

If the Et- are similarly defined with variance cTC 
1. 

Muth showed that 

a simple exponential forecast is optimal' with 

~l 
~1.. ( .... o-!1. 

Y' C\ =- 't + 'l 

.z~L 0'"'£ 4-G'c. 1-
t: 
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The problem is however to estimate these variances and no solution has 

yet been proposed. 

Kalman (1960) considered a much more general model of the form 

il: ;: }-\ t 'I f: -r U~ I.Sb 

\/ _l"- - 1\ ~ ~-I + .i~ 1.57 

and produced optimium forecasts on the assumption that the covariance 

matrices of ltb and ~ t were known. 

A rather more interesting and instructive forecasting 

procedure is that due to Box and Jenkins (1970) (1967). Using their 

notation they consider fitting mixed models of the form 

<P(B) "'l .: Q{'3)Cf: ,.:Hr 
where 

) 

~'.BJ P (13) ;: + L J 
and <:t ,j =- I 

B~ e (e) = I ~ L Q" 
~;:l 

B "'le: ~ ~ -I cJ Where B is the "backshift operator" the use of 

f 
~ -I 

and t in Hartree (,QS8) . In addition it is assumed that the 

1 (~i are a sequence of zero mean independent hormal variates with 

.J2. 
common variance CJ 

Clearly 1.58 does not represent a great variety of series 

met in practice and Box & Jenkin suggest that by differencing a series 

)' Jt j a sufficient number of times one can obtain a stationary series. 

Thus if we introduce the differencing operator 

X~ - ~~.I 

a more general model is 
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This model they term an 6utoregressive integrated moving average model 

(ARIMA) of order ( r) c:\) ~) They also impose the natural condition 

that the roots of 

6){~) = 0 

must lie outside the unit circle. 

The deriving of forecasts from 1.59 falls naturally into three 

parts, the first being the identification. The identification process 

is inexact and later diagnostic checks may require one to modify the 

model chosen. To identify a particular model we note 

(i) when a series has been differenced until a stationary process if 

achieved the high order autocorrelations tend to zero. 

(ii) For autoregressive models of order p say the partial autocorrelations 

damp down to : . 

(iii) For a moving average process of order 9 the autocorrelations 

of order higher than 9 are zero, while the partial correlation tend 

to zero 

(iv) For a mixed process 

It '> " 

Using the sample autocorrelation and partial correlation 

functions one attempts to identify the model and then estimates the 

parameters using the low order sample autocorrelations. 

Thus for example in a first order autoregressive 
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while for a model 

( I -

r, = 

.: 

Having identified the model one may then turn to estimation. 

The parameters of 

are evaluated by minimising the sum of squares using non-linear least 

squares techniques or a minimisation procedure of the form used by 

Flecher & Powell ( "63) 

Having estimated the parameter one must then determine the 

adequacy of the model obtained. If ) St' ~ denotes the residuals from 

the fitted model let 

r It .: 

1·6 I 

Following Bartlett (1946) and Anderson (1942) we can show that 
1\ 

if the 

then 

[~ are independent normal 

, 
N 

and (' cru ( r ~) r 1£ -+ S) ~ 0 

while the distribution of f11£. is asympotically Normal. This 

is an approximation however since even if the fitted model is appropriate 

" the (t'" will be autocorrelated. However for large samples Box and 

Pierce (I~T~ and Durbin (1971) have shown that 

n 
It ... , 
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I-

is approximately '\ with m-s degrees of freedom, where s in the total 

number of parameters to be estimated. The choice of m appears to be 

qui te arbi tary. 

Box Jenkins and Bacon (1967) have further extended their class 

of models to cl d~ 
Ot B ) e.4{ p/ ) [' '" cf(5) ~.t(BS) \1 (1- BS

) ~t::-
1.6.3 

where q,~(lS) t 
{ d:>~ 2."P,S _ \L. 

" co , 1-J" ( z.s ) BILk l':qs 
.: L t. I· b 4 

1£= I 
where s is the length of the seasonal. 

The methods outlined above have proved very effective and since 

we seek to discover the underlying structure· of the process there is 

less arbitary data minding as in the exponential smoothing approach. 

However, one does need substantial amounts of data, especially to use 

the anymptotic results in the diagnostic stages, otherwise the sampling 

behaviour of the sample autocorrelations becomes too dominant. In 

addition the identification of various models requires considerable skill 

and is not really suitable for automatic forecasting, especially as it 

is assumed the underlying model does not change over the series . ; 

The IBM data quoted by Box and Jenkins (1970) appears to have a changing 

model. 

It might be added that these procedures also require that one 

must perform a considerable amount of computation. 

The only extensive trials of forecasting procedures appear to 

be by Reid (1969) and Granger and Newbold (1972). From Reid's work it 

would appear that the Box-Jenkins method appears to be best under most 
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circumstances provided one has sufficient data to obtain reliable estimates 

of the model parameters. For short series the Brown method appears to 

work rather better. Granger and Newbold also showed that Box Jenkins 

techniques worked very well but for long lead times the advantage, 

particularly over a stepwise procedure of fitting autoregressives was 

very small. 

Often one is in a position where one has two or more forecasts 

of the same quantity available. Rather than choose one of them Bates & 

Granger(1969) have suggested taking a weighted sum of these forecasts 

to produce a combired forecast. Thus if one has forecasts f ~ " .. J ~ r 1 t-J 
a combined forecast would be 

c~ = 
Using this form we have unbiased forecasts if r'l- and 

unbiased. If one" wishes to minimise the variance of the combined forecast 

error then 

k~ 
~l - Eo',d~ :: 1.. 

~l + ~ 1 2 feY. d ~ I l-

0".1. ~('/..~ fJ ~ ) J = I) 2. 
where :: -J 

and ~ denotes the correlation between the error series produced by 

ll="l~) ow\ J ~ ~Lb J 
Unfortunately the parameters determining kt are unknown. Bates 

and Granger (1969) have suggested some practical procedures and Granger 

and Newbold (1972) have shown that combining statistical and economic 

forecasts can be very effective, especially if one of the components fore-

casts is based on a persons judgement e.g. a brand managers forecasts of 

sales. 
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The Evaluation of Forecasts 

While we have considered forecasting methods we have not paid 

a great deal of attention to the objectives in mind when forecasts are 

made. Clearly one would wish to make the "best" possible forecast, 

the question being what does one mean by best. Given a process ) 'K l- j 
and a corresponding sequence of forecast~ I Xt~ne could in principle 

assign a cost to the magnitude of the errors 

d· .: X· X .# ,. '" J J J 
If the cost of an error of size ~ is e(l. ) then the best forecast 

will be that which minimises C ( l) 

The idea of using a cost function is a natural one and gives 

us a very reasonable method of ranking forecasts. It would appear 

reasonable to suppose that C (0) e 0 and that C (l) increases 

monotonically with l) 0 and C (l. ) increases monotonically CA.s l. 

tends to minus infinity. However one needs must bear in mind that 

C ( l) need not be symmetric about 2:: 0 Indeed there are many cases 

one can visualise where C Cl.) is markedly non-symmetric. 

Another complication is that C (e) may well change shape 

over time. • If 

for some positive then one can proceed as if the cost function 

is C ( 2. ) however if C r (e) changes shape over time one is in the position 

of having to forecast the form of the future cost function. In this 

case the cost function must be forecast before one can even decide on 

what forecast criteria to use. 

Granger (1968, 1973) has suggested that a reasonable procedure 

is to forecast by least-squares and then to allow for possible non-
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symmetry of C (l) by adding a bias. Gilchrist (1968) has suggested a 

similar technique. 

In what follows we shall assume that one wishes to minimise 

costs at a particular time rather than the sum of costs over a period 

and in addition we shall assume a quadratic cost function which arises 

from the consideration of a minimum mean square error criteria. 

If one uses a mean-square error criteria the obvious measure 

of a forecasting method is 

I 
n 

I· 6 7 

In fact Newbold and Granger (l97J) show that the use of any statistic 

that is not a monotonic function of D~ may give rise to misleading 

conclusions. In particular they show that the statistic proposed by 

Theil (958) 

::: 

and used by Kurnichika (1971) and Lounguist (1971) is not a minimum when 

one uses the optimal linear predictor of the first order autoregressive 

model. 

In addition to LA I above, Theil (1958) noted that 

D~ ( )(:t _ X ) 1 of ( s ... - 5 ) "" + 2 ( , - r ) s* j 
and b~ = ( )(.t _ X ) L ~ (sot - 5 r t -+ ( , - r 2 ) 5) 

-)( 

and X where X denote the sample means of the original process and 

I 
the forecast sequence and 5 and.5 their respective sample standard 

deviations while r is the sample correlation. 

1.70 
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1.69 and 1.70 lead Theil to the definition of 

U"" ( ~ 
-.1 L 

: - X ) I J)~ I. 7 I 

(AS ::- (SJt_ 5 )1/ D: 1.72 

UC 
'" 

.( ( I - r ) stt 5 I'D r>.2. 1· 73 

where U'1 .... US of LA C .,. 

Granger and Newbold (1972) throw some doubt on the usefulness of these 

quantities and suggest from 1.66 the use of 
\. U..., :: 

Uf{ :: 

( i It _ Y ) / 1),.2. 

(JI )1 2 
5 - r5 / D" 

t. 14 

I. 75 

Ul> :: ( T - r2.) .s ~ / D",L I· 76 

as diagnostic checks on a predictors performance. They show that U
,.. 

l D 
and lA tend to zero for the optimum predictor whi le lA tends to one 

and suggest these quantities be viewed together with a "prediction 

realisation" diagram. This latter is a diagram of predicted values 

plotted against actual values, or predicted change against actual change. 

We feel however that ideally one should examine the whole 

forecast error sequence l~lJ and try to obtain some idea of its close-

ness to a "white noise" sequence. Ideally one would wish toperform 

a full spectral or 

the 1 d 11\ 1 sequences 

Newbold (1972) 

correlogram analysis but it seems inevitable that 

Q 

obtained in practice are too short. 

suggest a test based on the Van Neuman 

'" -L L fdt;-dl:-') 
r\-\ 1;=2 

" ) 1. ~ L(d~-d 
f;-.:I 

Gra~er and 

ratio 

using Harts (1942) tables. We suggest in Chapter 5 an alternative 

measure of "randomness" which would seem applicable here. 

1.17 
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For an overall criteria however it would appear the most 

"'h ",1 attractive approach would be to compare U" 

theoretical minimum value 

Then the quantity 

or 

given by 1.67 against the 

gives an intuitively reasonable idea of goodness of fit. A further 

1\2 . 
attraction is that as we shall show 9~,~ can be estimated directly 

from the )~l~ sequence without any model building. It would thus seem 

that one has an objective measure for ranking forecast procedures, 

especially when this is used in conjunction with an examination of the 

~ d ~J sequence. 

It must be stressed however that even if one has constructed 

an adequate prediction process the forecast errors must be monitored to 

enable one to pick up changes in the deep structure of the underlying 

model which might invalidate ones forecasting approach. 

We now turn to consider the optimum linear predictors (in a 

mean square sense) and its attractive mathematical behaviour. 
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CHAPTER 2 

optimum Linear Prediction 

Given a stationary (discrete) process J XI: J with zero mean 

and variance we now consider the problem of predicting x .,~ k. given 

1:-;:; "', ",_,,11\-2 ... J We shall derive the optimum 

linear predictor and consider its convergence to an exact non-asymptotic 

solution. In addition we attempt to bring out the central role of 

the spectrum, particularly in view of Kolmogorov I s l ~eor~M ~ on minimum 

mean square error. 

To obtain an estimate of we need a 

definition of closeness of fit of our estimate to the true value. In 

most published work and in the original papers of Weiner (1949) and 

Kolmogorov(1939, 1941) the criterion has been taken to be the minimisation 

of the mean square error e " where 

2.1 

This has perhaps been used as much for its attractive mathematical 

properties as for being intuitively reasonable. A furthr compelling 

reason can be demonstrated. Clearly the solution of 2.1 is given by 

J 2.2 

which is rather attractive. 
~ 

However if ~ X ~ 1 is a GilUssian process then 

2.2 implies that X t'\t le: is a linear function of past values of the series. 

Thus if one assumes, as is usual, linear predictor~ in the Normal case 
) 

one is assured that the optimum predictor is liner. 

considers the geometric viewpoint.c 

Consider the linear form 

DOOD (1953 sect.II) 

2.3 
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where the } Cl i) i:: 0 J I... f" J are a set of unknown co-efficients which 

must be estimated from our realisation. Then the expected mean square 

error of prediction is 

£" [ '* X ~~ ~ r J e 1£ .:: ( X V\.\oll 2.4 

r 

E [Xn-4~ )(~-J'J :: ri./ 2. L Cl J' 
J:o ~ I;. CoJ"O / [y. •• ~_j Xft.k 12

_
5 

+ 
giving 

r 
[. L Q 'Ok Rj_~ t 2. LQ' R . + 2.6 

e" = ri.,. -
j=o J k+J J It .J 

t Ra denotes the variance of J ~ .. j minimise where cry ::- To the 

mean square error we choose a set of 1 Cl j \ which satisfy 

= 0 r 2.7 

The equations 2.7 can be written in matrix form as 

Ro RI ~1 RI" qo Ji!t 

f<1 ~o RI Cf. ~ le.' 
2.8 

= 

or 2.9 

Thus taking an autoregressive process of first order 

where the autocorrelation function is given by 

0<. \r I 



thenZ.9 becomes 

0( e("l ol 

0{ cl-. 

(" r-' 
co( 0( 

The solution in this case 

et o .:-

0J" .: 

and the optimum predictor 

.It 

X n~1L := 

43. 

(' 

°0 
a, 

= 

being 

o(r 

0 j :/ 0 

of X f\.Jo It. is 

o<ll.Xn 

just 

o(~ 

k .. , 
0(. 

Itt r 
,J.. 

2.10 

2.11 

Thus for a first order autoregressive process the solution is 

simple and easily derived and all one now requires is an estimate of ~ ~ 
~ 

As we have seen in Chapter 1 the estimation of p( and indeed I( is not 

entirely straight forward. For the moment we shall only consider the 

form of the predictor, and will assume that the underlying model is known. 

In general the equations 2.9 are rather more complex and 

analytical solutions are rather difficult to find except for auto-

regressive processes. The one other case we have found quoted in the 

literature is for a model of the form 
.... - \ 

'/.~ :. -'- L- E b-j 2.12 
J"M j :0 

by Kozulyaev (1941) who derives the form of the optimum predictor. 

It must be pointed out however that the previous derivation 

does assume that the entire part of the process is known, as may be seen 

from 2.2. As one usually only has a finite sample it would be inter-
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esting to know what kind of error is introduced by using the "semi-

infinite" form of the predictor in a finite sample case. Unforetunately 

in the time domain it does appear that considerable problems are 

introduced. However by considering the first order autoregressive case 

we have managed to obtain some idea of the approximations involved. 

We now examine this case. 

Finite sample approximations 

Consider 

which "began" at Xo and we shall attempt to predict X "~k given \ 'X~) ~o .. n } 

Then clearly 

2.13 

and we shall assume 

t [ ~oJ :0 

( X 0 ) = C"l. ( )( ) 

Naturally we may wish to consider a fixed starting value X and this may 
o 

easily be done by setting (l( 'i.) to zero 

From 2.13 
- v J ac! "-d 1 + t>( k .. 2....." l.. E L 'I.~ ,.. ~ , It = u 

:-
I( 2 ( If l--\L ) ) 

~ oJ 1-0( 2.14 

where E L- ~ ,,1 J _- d L c"" and we have assumed that Xc is independent of all 

the E. ~ From 2.14 it is clear that if t is sufficiently large for 

0«'-1( <lc'() "::>0 ~c1 
Z{/:-It) 0 

0( -":> 

then 

E [ 'At ~ r-I£ ] :: 
o(k.~1. 

1_111. 2 
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which gives the "semi-infinite case autocovariances 

Writing 2.14 in the form 

Rs (k) .: 

where x = tr
L 

I _ oiL 

the equation corresponding to 2.8 became 

X ' Y f" X -r'Y '1"'"'/ ,,-\0(- .... 0< -1-0( 

: 

that is tj.9 ::: R 

Thus the vector et is given by 

where 

1. r 
0( .• ' 0/ 

M :: 

....... \ 

~B + "I~ 

Thus Wl ~ (~ A ~ '1 ~ r' ~ [X B (I +{ !'-~ )] -I 
( :! + t 8 -'13 y' { X AI" 

I denotes the unit matrix. where 

2.15 

2.16 

2.17 

2.18 

2.19 
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Then expanding 2.19, assuming for the moment that'the expansion 

converges we have 

M-\ = 
-' 

[ 1 - Y A -I i3 
X - - (

,,) 1 -\ -J J ( ..Jf)-' +; B ~A p ..... XA. 

2.20 

Setting Y = 0 gives us the asymptotic case in 2.10, the remaining terms 

thus provide the finite sample co("'("e c ~;o t\ 

The inverse of A is easily obtained by noticing that 

- - - o 

o 

Thus 

= 

- 0( 0 

-11( 

o 
1-

,- eo( 

o 

o 

olr 

o 
o ) 

- rJ.. 0··· 0 

- "" 14 i 
6 - ~ 

o 

~ f 
~ .•• 0( 

= D 

and further we can obtain n _I~ in the form 

I -
o 
o 

o 

'/ I 
~"-J - ~t' 

o 
o 

I 0 " 0 

_I( , ,,- 0 

0-"( 0 

o .' 

2.21 

2.22 

'/ _ 'J 
/,{ r-I /,.{ r 

\ 

o 
I 
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and the second term in the matrix expansion Z" 20 may be seen to be 

A ~I ~ ~ -I 1 
0( 1. _ , 

0 0 0 
::-

(1-rl. 1)' -(I-Il~) -(/,.("}-I) -P( ( a(1~1) 0 

0 
_-«,(1_ 1) 0 

2.23 
_~ +_,_ 0 

0<. r-3 0( r-I 

It is apparent that the other terms in expansion may be evaluated, at the 

cost of some algebra. 

Thus a is given by 

H -1 D 
CA .;- f'.. 

from 2.20 

= -+ 
n~' -I f)~J D 
f1 ~ ,... 'i"". _ D _ - - 2.24 

Taking only the first term of 2.24 we have 

Yo = 
o(\: 

0" .: 0 j4 0 j =t r 
J 

y( - Il ... r· 2 ( Il'" ( ) ) 
C\r = 0< _ ~ 2.25 

that is 

~o = o(k 

Or ~ ~_~:1 (1+(h<1)~}f))(~1_IVk-r 
2.26 
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Thus taking only the first term we see that a "pertubation error" is 

introduced in the finite sample case. 

CA 

giving 

Taking a further term we have 

.: 
A-I g 

+ " A_'( ~ B-1
/( 

--- ?L X 

C\o .: 0( t -+ _, (c;{l_ d ( 0( t ~ 0(-"- :i. ) 
X X 

Q' = 0 j=iO)J4 r J 

CA r = j Y oC - k - r( ~ ~ _ I) + (A X i ~ )(, - ~l ) ~ r-' 
-+ o(1.(.x" r + Y/ir ) 1 ~{l 

the dominant term in the expansion of C4r being the order of 
I'( H - k - r-2-

2.27 

2.28 

2.29 

We would judge that for ot. '- I two terms of the matrix expansion 

would provide a sufficiently accurate approximation to the finite sample 

predictor especially for small k and t larger than 10. 

From the above it would seem apparent that the reasonable sample 

sizes the "semi-infinite" case predictor works well as an approximation 

when one has a finite sample. However in situations with large c< 

values i.e. I ') J 0<\ :> O· 8' and for long term forecasts or indeed value of Xc 

with a large variance then it may well be worth checking the order of 

magnitude of the error involved. 

of tI -' All that now remains is to prove that the expansion 

given in 2.20 is convergent. We do this as follows: 

Let 11 ~ 11 denote a norm of a matrix a 
i.e. flAil: (~t'O<i/)11 2.30 

IV ~ c r ~ ~ = (0( 'j ) 
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Then a sufficient condition for 2.20 and hence 2.24to converge 

is for I \ Y A -I B 11 <- \ 
X - Wilkinson (1965) shows further that a 

sufficient condition for convergence is that any subordinate norm of the 

component matrices in the expansion should have modulus less than 1. 

Consider the norm of Z defined by 

which is subordinate to 2.30 

Then 11 
<. 

~I 

Y 11 A III " B IL. 
X 

2.31 

\ -I 
and if we donate the maximal eigenvalues by 1\ A and ~8 respectively 

i\ -\ 
since 11 and - B are symmetric. 

From 2.21 the eigenvalues of A are 1 and I _ co( 1. thus 

Similarly the eigenvalues of Bare 1 and I - '/,( 1.. thus 

'I 
X 

and in consequence 

1'l2~~2 ( + 

Thus our matrix expansion converges. 

d~)()('_p{l)) 
~l.. 

for suitable values of 

The dependence 

would appear reasonable for a short series while for 

convergence is certain. 

2.32 

2.33 

From the brief outline given above it does seem that the 

analytic solution of the prediction~oblemas presented above is 

intractable. One must also bear in mind that we have assumed that the 

correlation structure is known and we have used exact values of the auto-
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correlations, while in practice we can at most expect only sample values. 

As an alternative to obtaining an analytic solution we could 

estimate the covaniance matrix in 2.8 and obtain a solution of the 

equation using a numerical equation solving algorithm While it is 

quite feasible to handle large matrices in this fashion the errors in 

estimation of high order autocorrelation introduce insuperable accuracy 

and stability problems. 

Spectral Formulation 

It is quite possible and as we shall see very convenieht to 

reformulate the prediction problem into spectral terms. In what follows 

we outline some main results and methods available. It should be noticed 

that we assume the spectral density function exists and that it is a 

rational function. These restrictions can be lifted if generality is 

sought but we confine an outline of the more general methods to 

Appendix I. 

For algebraic simplicity we reformulate our problem slightly 

to consider the prediction of '/. 11 4 1£ given f '/. n _ j ) j :: I} l. " J 
Then the minimisation equations corresponding to 2.8 become 

I' 

L Ct.s ~M- s 2.34 

and using the spectral representation 2.11) we have 

fl i (M.5) ""J {'I ) cl 
C\.s e \- (14.) W 2.35 

S = I 

r.'\= '}2 .-' (' 

Equivalently 

2.36 
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where 2.37 

Our problem is now that of finding the function 

In addition to 2.36 we can also express the mean-square error in terms 

of the ~I£)r{W) as 

Jll ei ~..:l _ 
l.. 

0\ r =- ~It ((1.0)1 Vtv..)) elL\) 2.38 
) -n ) 

where elL ... ' .:: 
""" n ( C>l.-:) r ) 

Following Yaglom (1962) we let n ~~ and consider the 

problem of finding the function 

oc 
-iwl 

where 

~k (t.V) c:: L C4J e J 2.39 

where 

r 2-

L <is e - iStJ } ~ 1'-V)ch.J = 0 2.40 
oS =, 

As is apparent we are assuming the entire part of the sequence is known 

and that it may be used to predict future values. The corresponding 

mean-square error, at the minimum is given by 

l. 

e \£. .. , 
J1"\ \ e ikkJ _ <i>~(IV) 12~ (w)dw 

2.41 
-I' 

We have thus reduced our problem to finding the function ~~I~) 

if it exists. In general this is a very difficult problem, first 

solved by Kolmogorov (194~. The outlines presented in appendix one 

give some idea of the difficulties. However if one places restrictions 

on and assumes C-rw) is a rational function of ~ 1. pone", ~IClI. \s 

then Yaglom (1962) shows how one may find q; k. ICAJ) given the spectral 

density. For more general results see Grenander and Szego (1958), 

Doob (1953) or Grenander & Rosenblatt (1957). 
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This approach while mathematically appealing does present 

formidable difficulties when the spectrum is unknown. However allied 

to this approach is a result of considerable value upon which much of our 

later work is based. This is Kolmogorovs (1939) result that 

e. = 2.42 

If the process is detministic and can be predicted perfectly by a linear 

combination of past values then 

t2. = 0 

As can be seen from Appendix I that a necessary and 

sufficient condition for a stationary process with an absolutely 

continuous spectrum to be representable as a one sided (backwards in time) 

moving average is that it is non-deterministic. See also Anderson (1971). 

It may be helpful to consider f Y. ,..1 written as 

ob 

[ 2.43 

j=o 

For simplicity let bo = I ,this does not involve any less of generality. 

Then 

Then 

o'L ~ (et't.J) D (e-l'.v) 
In 

Let the polyn8mials fi(?:) 

2.44 
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Then 

~"" j~ [) le
i
'" )c1", : ~ {J,(I -~r l")clJ 2.46 

If I ~ J \ L \ for all J then Jj ~ (l) is analytic in Il: I c::: I 

and 

Now all the terms of 2.47 involving exponentials vanish giving 

2.48 
-n 

and similarly 

Thus 2.49 

and thus 2.50 

or equivalently 

2.51 

Clearly the minimum mean square error of prediction is given in 

1.. 
this case by the 'innovation variance' b' • It is clear that if bo 4 I 

then 

b 1. l-
o d .= 2.52 

The moving average representation does enable one to obtain the optimium 

linear predictor very easily. 

Consider j ~ t ~ being non-deterministic, then 

b j [b-j 
.j=o 

2.53 

and we assume a linear form of the predictor 
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This is reasonable since we may write 

r- ~ 

L 0" L bll£r-j-'( 
j =0 J 1£=0 

O<.J 

L ~u L r-"l 
(,.1=0 

2.54 

Then 2.55 

00 

[ (JL-t - bl~~AA Y"d L 
+ 

.... =0 

2.56 

Clearly 2.56 is minimised by setting 

and the mean square error of prediction is given by the last term of 

2.56 

eM 

i.e. e, 

Further if we consider the Fourier expression of 

being bounded ) 

then it may be shown that 

~ Ct ,t 1- C4 2 ~"l. ~ "" • ) \/~ 
e + b r. .,. """." 

I 

2.57 

2.58 
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which is the result quoted by Kolmogorov (1939), see also Doob (1953, 

p.577). 

From(.58 

et r = \ 

n 

then after some manipulation we can. find the moving average co-efficients 

While much has been written on the subject of linear prediction 

when the entire past of a process is known little has been done in the 

case when only a finite sample of part values is available. - This is 

especially so when the minimum mean square error is considered. 

The sharpest large sample results appear to be those of 

Grenander & Szego (1958), and we summarise these here. 

Let Q. denote the minimum mean square error using the whole 

part of the series and let Q,}~ that when only'/..,.... Y N are used. 

Then 

(a) A necessary and sufficient condition that S N': e ') t..I - e I decreases 

at least exponentially to zero as n tends to infinity is that few) 

coincides in [- n J n 1 almost everywhere with a function which is 

analytic for rea l "l and has no real zeros. 

(b) Let few) be defined a.e. by the expression 
S . '&v , 20<11 

'P fw) ~I I e l 
"-J _ e' V' 

where with k ~4 integrable derivatives, a(v are 

positive integers and tJ V are distinct points in [-nJ 11] 
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Then if S = (j and few) has no zeros 

s; '1\/ = 0 ( N ~/l. - k ) 

and if s ~ 0 

In the case of the first order moving average process they show 

that 

Thragimov (1964) has shown that ~N decreases to zero slower 

-Cl"'£) 
than N for any £>0 when few) has zeros or is unbounded. In 

addition Ibragim::w & Solev (1967) have shown that for a spectral density 

function of the form 

where f' (!....J I satisfies a Lipschi tz condition of order :x ~ Yl. and is 

strictly positive 

then 
0':::"" 

~tJ 
'IN 

Neither of these last two papers are of much practical value. 

Further results were presented by Davidson (1965) who 

considered linear predictors of the form 

to predict X o 

x~ 
o 

where 

where few) is expressed as 

'" 

p_" Q k 

He showed that 



Thus for 

and 

for 

(i) 

.:-

(ii) 

e IJN ::: 

(iii) ~ Iv.)) ::: 

e1r..l :: 

57. 

1'-.) I e -

+ 

-+ 2. 

~+l 

\- bei~ I~ 

\ + b 2(t.I+ l ) 

I b I ~, 
(I-b~) 

Of rather more interest is his derivation of an upper bound 

and if there exists a 

I ~ I l I ~ ({ then 

and b k = ((k,. 

Thus for tIt..)) 

we have 

~N ~ 

AI CO 

L L Ma'lC 
MaO n.::t.l11 

~{o} }l 
..j (l) 

:: I( I - o·Se'~ )(,_ 0·2$ er..;))} 1. 

120{~)~ 

These results do have the drawback that f(w) must be completely 

specified. However it does appear that for reasonable length series we 

can fairly assume that 

~N ::: 

We have not touched on the prediction of deterministic processes 

so far in our account. In this field little theoretical work has been 

done but there are some published results e.g. Rosenblatt (1957) on 

prediction when the spectrum is identically zero over an interval. out 

interest is in non-deterministic processes and it is on these we shall 

concentrate. 
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CHAPTER III 

The Estimation of the Mean Square Error 

Time series models are often constructed for the purpose of 

making forecasts and indeed it can be argued that the only true assess-

ment of the fit of a particular model is its predictive power. To assess 

the predictive power of a model is difficult problem and we feel that 

perhaps the only rational criteria is to compare the mean square error 

of our fitted model with that of the optimum linear predictor Q, 

Indeed one can imagine situations when e I is too large to make 

prediction worth while at all. 

If we wish to proceed on these lines it is clear that we need 

some method of producing reliable estimates of e, for a non-deterministic 

process and the construction of such estimates is the next step we 

consider. 

As we have seen, the minimum mean-square error of prediction 

using a linear function of part values of a time series ~ ~t ~ can be 

expressed as 

e, = 3.1 

under suitable regularity conditions. We shall now attempt to exploit 

this link between the spectrum and e, by estimating e I using suitable 

estimates for the spectrum. As we shall see we can obtain quite 

satisfactory estimates of the e.., For simplicity however we shall 

concentrate on the estimation of 

fj. = 3.2 
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using a sample of a realisation from a second order stationary process 

Clearly we must first consider the estimation 

of f (w). 

As we have seen in Chapter I all the spectral estimates which 

have been used to date may be written in the form 

I 3.3 
]. 11 

where m is a parameter and a suitable weighting sequence. The 

form of the approximation admits at most m independent estimates of few) 

(Whittaker(1935» and it is convenient for our purposes to consider these 

to be at the /.Jj ,: 27L' (~ o,.iI).±2 ...... .:! [ ~ J 
M 

where Lx] denotes the largest integer smaller than X As a 

consequence we need to evaluate the integral in 3.2 using a finite set 

of values approximating few). Thus we must consider a finite sum 

approximating the integral. This can be done in many ways as can be 

seen from the literature on numerical analysis, for example Hildebrand 

(1956~ HMSO (1961) and Clenshaw and Curtis (1960). The obvious 

candidates amongst numerical integration methods are Simpsons Rule and 

one of the Gaussian quaderature methods. The drawback of Simpsons rule 

would appear to be the introduction of rather a complex correlation 

struture. The Gaussian expansions appear to be unpredictable for high 

order approximations and involve evaluating the spectrum at points which 

are not easily calculated. 

We must also bear in mind that spectral estimates are them-

selves wildly inaccurate by numerical analysis standards and we feel 

that there is much to be gained in simplicity in using the simple 

ReiMQY\~ sum approximation: 
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This can be modified to the "extended trapizodal rule" 

The advantage of this latter form is that it can provide an explicit 

error bound by application of the Euler-Maclaren summation formula as 

shown by Whittaker and Watson (1965 p.128). Naturally this bound is 

" obtained on the assumption that \:lk.» approximates to few) with an 

arbitarily high degree of accuracy but nevertheless it does provide a 

useful guideline. 

In addition to the questions of quaderature we also require 

estimates of few). In addition to the standard estimates using Parzen 

or Tukey weights we have the raw periodogram and as we shall see it can 

provide consistent estimates. This might be expected since integration 

is a smoothing operation while in addition it is generally held that 

logarithmic transformations stabilise variances. It might be added that 

direct methods of smoothing the periodogram using the fastEounier transform 

of Cooley & Tukey (1965) based on the algorithm of Singleton(I~68) 

are also candidates, although their attraction in their ease of 

computation rather than any theoretical advantage. 

We shall consider first the properties of the periodogram 

given by 

and we consider 

2.. 
M 

= 3.6 

~ p = 2Jl..r 
M 
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where M = N and the prime denotes that the first and last terms have 

been divided by 2. 

Our investigation of the behaviour of the periodogram starts 

with Ko1mogorov's theorem (Appendix I) from which we know that any 

non-deterministic process can be represented as a moving average viz: 

.: 3.7 

where the I i: ~ J process is one of uncorrelated random variables with 

L 
zero mean, variance G and finite fourth cumulant Kit ' ... Then if 

the periodogram of the ~ ( .. ~ is written 

Z 
N 

we have Bdrt1etts (1955) result 

sc.c. 

Further Hannan (1960) shows that 

provided ~4 is finite and 

2n ~ l'-.l) IN to) tJ )21l J 
O(N- Il

) 

3.8 

3.9 

3.10 

3.11 

Olshen (1967) in a very illuminating paper on the periodogram 

derives similar expressions for J",..JWJ>{) and J~/IV)L) where 

J N (10) X ) ) 1. .: 3.12 
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The consequence of 3.10 is that one can in effect work in terms 

of the residual series ~ ( ... ~ which makes derivations considerably 

easier 

and 

Er 1..., (IV" !) J t.) ("-l 1 ) (" ) ] 

and hence 

(\tf\J 

.:: 4- 11. 4 -t 40'1 ... 
N 

if "-.Jj of the form 

4ti~ ] s~ N{ ~p -t ", ) /l. -N 
S ~ {or<\- "'1)/2 

.s M f.J ( LV P - .v,) h 
oS tM. (IV P - w, ) 11 r 

AJ' .: !Rj 
J ~ 

[ J"" (w y , () J I'J I w , 1 ( ) ) :: 4 Ill4 '-l P =t rv~ 

4 c/ +- 4 ~LI 
N 

N 

.:; ~ t1'L... ~14 
N 

r 
3.14 

3.15 

3.16 

Thus we see that at the points I.J ~ 0 J 11 the variance of 

IN(~)(.) doubles and so does that of It-I(w}x) producing what might 

be thought of as an edge effect since the spectrum is undefined outside 

[-l1 J 1J] It is also clear that when K~= 0 the periodogram estimates 

at intervals of are uncorrelated. 
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Further if we define 
~ 

ArlA.l) : J~ L i"t- ('Cf)~ ~ 
t-.::\ 3.17 

-~ 
~t-.5~W~ Bit>.») = J~ L 

~':I 3.18 

then if £ [£t-]=O E [Ct- [5 ] ~ (!'l. ~ l-J S 

and 3.21 

since 1\ 

o (~) L . l. le ...L ~""" ~ .: !L -+ 
n ~= , 2 

f\ 

D(~ ) I L 'l.. \eX J1. + - (C]) .: 
r\ :J.. 1(.:, 

in addition 

N 

E [ A ( ~1) B ( ~, ) ] = ~: l.. L s"'" CV f ~ l' en W, ~ 
~"'" 

=- 0 

for ) IV'): 

since 

Thus when the 1 Lt- f are normally distributed each of the 

A(w) and B(w) have independent N{O)ct) distributions and in consequence 

3.22. 
1. 

h a JlY distribution. From this and 3.9 we see that as U '\L 

has a di stribulion whi ch approximates 2 n 1,l.",*",'x )(: . In addi lion we 

see from 3.21 that the J NI""" x) are independent. 
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Similar results can be obtained under weaker conditions as 

to the behaviour of the We state a theorem a proof of which 

is given by Olshen (1967). 

If 1Xt~ is a second-order stationary process which is non­

deterministic and where represented in the form 3.7 the ~ (t~ obey 

the central limit theorem then the joint distribution of 

) 
j = , ... k: 

tends to that of k. independent random variables each having a 

2 " ~ (W) dl.. ~L'L . o,tn 4 n r f'V) ~l distribution ctf lV ~ and to , 
in the special cases '-J",o):tTI 

Having obtained the distribution of JN/~))() we are 

now in a position to look more closely at 

" .!' I J, IIoVIt'X) IJ :: .-L L I", n I~ =0 

It should be recalled that 
p 

- I L Cl t :: 
It. :. 0 

p-I 

Ct o + E!..P .,. L et k: 
2. :z. II:=-. 

Then from 3.9 

" I 
L 
1/.=0 

[ 

= 

JjIN(wll)c)] 

.'l I 

~ 1zo J, 1 ~ (w,,' c.) 

To consider the distribution of Y le.: )~ J... I ~J( ,l( ) 

we require the standard transformation theorem outlined below. 

Let Y = g(X) where X is a one dimensional continuous random 

variable with a probability density function f(x) and g(x) is a strictly 

monotonic function such that exists and is non-zero everywhere 

except possibly at a finite number of points. 

~.23 
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Further let 

J~ .j (]() ;::. C\. 

:J( oS) - a6 

J~ j(:X) .:= b 
.A",:>Q() 

Then Y = g(X) is a continuous random variable with a probability density 

function given by 

:: Q~.JLb 

o elsewhere 

..;1.. 
Using the above when X is ~ 

1. 
then 

= 
and Y = l0geX has a probability density function given by 

Since it involves little extra labour we can consider a chi-

squared distribution with V degrees of freedom, where 

e (~2 -\) 'l( -XI 
~ I e L 

~ ()()..:- 2 VIA r ("'ll.. I 
In this case Y • loge X has a distribution given by 

V'jlz.. [ _.J. e ~ J e ~r ]. 

This degree of generality will prove useful later. 

Since we are dealing wi th sums of independent random variables 

we find it useful to obtain the characteristic function of 3.Z b as 

-[ i~'11 t e .: 

tU 

J 
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Using the substitution X = ~/l.. this can be seen to be the 

Euler integral of the second kind defining the Gamma function (Whittaker 

and Watson (1965)1. 

Thus we have 

.t I f7 { (' ~ ~ '?2 ) !>.17 

rf"l2 ) 
and the characteristic function of the sum of M random variables having 

this distribution is 

" Neglecting for the moment the end points of ~ and 

considering 

-,­
M " :./ 

then the characteristic function of L is given by 

3.2') 

If one considers the end points where the degrees of freedom are halved 

one has for 

L = I 

"" 

"'1 
- I 
L 
tS() 

3·30 

J~ (_i ~ )1""·'f 
I'll of ~ 

p 

j'{~"~)J 

Where p = 2 if both end points are included and p = 1 if only one is 

included. 

To find the distribution of L or L! all we require is the 

Fourier transform of either 3.2' or 3. ~ 1 . We have been unable to 
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evaluate these transformations and are of the opinion that no analytic 

form of th~ inverse can be found. Since we cannot use a direct 

approach we are forced to consider some other technique to find the 

appropriate distribution function. One possibility is the numerical 

inversion of the characterstic function for fixed Y and m using a 

suitable quaderature technique. In principle this would seem quite 

feasible, however for any theoretical treatment this would seem quite 

unsatisfactory, and in addition one is left with the problem of 

determining the accuracy of one's solution. We shall pursue alternative 

approaches in later chapters, for the moment we shall examine the 

moments of the distribution of Ls and L~ 

Using the well known expansion 

4t~ ) ~ I ;. i,r ~ of •••• ,3·32 

this is quite straightforward, however we shall find it convenient to 

work in terms of the cumulant generating function 

= 

and: the corresponding cumulants IIi /->. 

In the case of L we have 
s 

etc. 

i~~~2 + "" JDj[ r{~+'o] -)'j rr:t) 
... .3. lJ 

Since the gamma function is continuous and possesses continuous 

derivatives of all orders 

d)( J'J 2 l- t r If J .. Vfz ) 
:: "'" 

Jr r (~ -t ~) 
and hence , 

K, -- Jt7j 2 -t 
/7 (V~) 
f'/~l ) 1·3S 

I~ 2 
: ....!.-) I' I, Ij', 1 . [ p/NJrj 

tv\ /,f'1i) rfVIL) 
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and 

t: r .:-
, 

( I ) ... [ ~. 3 7 

To evaluate expressions of the form 3.34 one can use the Weirstraus 

definition of r as an infinite product. 
t:IQ 

J"j Vt;!.) ~ -~~Z -/(l. fJ~~('t~)-~] .l3i" 

where is Euler's constant and obtain 
oc 

Y\I\ s- I 

- .5 ) L (-I) (5 -) , 

( r i'V~ ).5 
3 . .3<f 

reO 

since is represented by an absolutely and uniformly convergent 

sequence of analytic functions. 

The K.] can be easily computed from 3.,3q to any reasonable 

accuracy since for large s the series converges quickly. 

we can use the Zeta function of Reimann 
to 

S (5) -= I 

~S 

which has been tabulated by Abramowitz and Segun (1968). 

For small s 

03.40 

Alternatively we can usefully use the Psi-function 

112.) = .3·4 , 

and it derivatives, which are tabulated by Abramowitz and Segun (1968). 

These polygamma functions give us the very neat relations 

If. -- J 0 L 1- it'?;,) 3. 42. 
I 

IL L-
t {I (~J.) .:- - 3. 1..3 ~ 

IL;s = "",1 

i " ('i ) 
3. 44 



it u it u + (m-l) log r (m +"2) + p log r (2m + '4) 

=K (t) + it (p-2) leg 2 + logf (uI-
2
)-p log r (u/'4) 

LS 2m . 

- log r (i; + ~) + P log r (~~ + *) , 

. , . 
• • J 
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M (-I 
3. 45 

which determine the curnulants of Ls. 

For L'we have a similar set of relations. The cumulant 

~2nerating function is 

As given on the opposite page 

giving as cumulrtnf-c; 

Kl = (.?_~:!..f~=-~) log 2 + (~-l) t/J ,_\!.) + ...P_ ./, (~) 
2m ill 'l 2m 0/ 4 

K" (£n-.l) V; I I U P (~) - ("2- ) + 1iJ I I ..) rn- TiffiT3 4 

KI1 
(m-I) t/J I I I U -y- (~) - (-- ) + t/J I I I -mli- 2 {2rn)4 4 

3. ,sO 

and n~-' 1 I (s .... l) (u) + _2.._ I (s-l) (~) K ::: "nl-s' ~' --. s 2 (2mr' t;J 
4 

Having obtained these cumulants we _&1 if we wish obtain the 

raw moments or central moments by using the relation 

3·52 

Kendall and Stuart (1963) provide tables from the expansion of 3')2 

giving 

I 

/4r = 

where the second 

IT such that 

L l ( 
/111=0 

f( t·( 
summation extends over all non-negative values of the 

~ 

I. If· PJ· :: r 
j=I J 
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or alternatively , 
"'c­

J fr-j 3.S4 

For convenience we provide some explicit relations for low 

order cumulants and moments 

For the raw moments 
, 

IC. )A. = 

)Al.' = III + ~ l. 
I 

ftJ I 
1 

= /l3 + 3~.l ~, 1" I{, 

,J4 
, 

1'4 c + 4 "3 1(, 
..... 3 U / + b IIJ V, ~ .of ]f, 4 

)As' I b If.) Jl l 
1 l 

.:: IL4 t 5 J/4 Il, 1" l' I OI'J /(1 + 101'3 III 
l. I:: 3 S 

while for the moments about the mec;m 
t I 5 ~l I'; j 0 k:,L KI +~, 3·';S 

?L .: Ill. 

JA~ ~ )£3 

)A~ 
.::: IL ... 1" 3/(1 

l. 

)-As .: JL S 
..,.. 10 "'.3 u~ 3·5' 

A property of the cumulants we shall use later is that, apart 

from the first they are invariant under a change in origin. In fact 

for any linear transformation of Z say 

the cumulants of W are given by 

Il f (~) = Q f" f(r{l:) f"> I 3·57 

f 

Havin<jl obtained the cumulants of theL orL we Can now obtain 
S 

the cumulants 

~ 

JDJl n ~ (..v) of " L L 3.Si' 
h _I -\0 

= 
h'\ It-::."U 
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or . -

Since the cumulants are invariant under a change of origin we need 

consider only the first cumulant 

~ 
For ~ we have 

E [ A] , ~, 

Jj2n~(~) +t[L) K, :: -- - L 
"" "'=0 

and from 3.4.7 for L 

Il I : (I ~ ~ ) }!J 2 +1 ( ~2) ~ ~ '/1 ~4 ) 3. b I 

Now we know that 11\.) (W, f.) is chi-squared with two degrees of freedom, 

that is V = 2 

Then for L 
3.b2 

Letting 111\ -) oQ we have 

1(, 

and 
\ - i Ill) 

which in the limit tends to zerm. 

A 

Thus ~ is a biased estimator of e, and Can be seen to be 

inconsistent. However, it can be easily modified to 

~c 
~ (! ~ A - }~ 2. - ~ (I) 

is clearly asympotically unbiased and a consistent estimator of Q, • 

In fact we shall prefer to use 
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" and we shall in future refer to this estimate as ~r 

of the constant terms in 3.'5 involves no problems since 

- o·57721b 

and 

where ~denotes Euler's constant which may be defined as 

1+~+3t ... -+ -'- -
'" 

The evaluation 

When m is sufficiently large then the terms in corresponding 
M 

to the "end corrections" of the trapizodal estimate will tend to zero and 

as an approximation we may use the expression given in 3.b4 and 

It is of interest to note that we may write 

since 

where 5 ( 1.) is the Re, M Co W'\ W\ t. c ~'" function and 

J ( 1 t'. ) : (211 /)\ I 8}" I 3·' 7 
l(l"')~ 

B2t'. being one of the Bernoulli numbers. For details see Abramowitz 

& Segun (1968). 

If we let M"'::'> PO then our estimate 3 . b 5 is in effect the sum 

of independent identically distL:ibuted random variables and from the 
\ 

central limit theorem we m~y deduce that the distribution of 6 I tends 

to that of a normal variate with mean J~ e l and variance given by 

A '" e..! 
Thus et = would be expected to be log-normal. 
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While asympotic results are useful one really needs some 
i 

information as to how quickly the distribution of AL tends to normality. 

Indeed one needs to know if the asympotic results can be used at all. , 
For 6 1 we can obtain some idea of the rates of convergence by 

considering the moments of its distribution, which as we have seen are 

readily available. 

Since the odd moments of the normal distribution vanish it 

would appear sensible to consider the third moment of our estimate. 

Now since we have 

: "l"{,) 3.1,' 
""L 

neglecting the terms in Y'.I\3 in 

~~) -+ 
~l. 

IL~ .: 3·70 

we have from 

- 2·404 1\ 

referring to Abromowitz and Segun (1968). 

For m of the order of 100 i3 is very small however there does seem to 

be a criteria for the "smallness" of Jl..l- Perhaps a more sensible idea 

is to consider the Pearson system of probability distributions which are 

solutions of 
, - :: 

Co tC',:l ... l".l.~l 
The form of the solutions depends upon the values of the 

parameters Co) C,) et. and we can relate these to the moments of the 

solution as follows: 

~ I -- 3.72. 
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1 
where er' 

C, .: 

C,J .: 
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crL(L! ~2 -3~,) 
2 ( :) ~ 1 - b ~, - 9 ) 

tY 11, (~l +) ) 

2 ($ t>:I - br, - 1 ) 
~2~~- ~~,-6) 
2 ( 5" ~l - b ~, - q ) 

denotes the variance of the distribution. 

The solutions of ~.71 include a wide variety of interesting 

distributions amongst which is the Normal distribution. This being 

the solution when f3 - 0 ,- and ~ l. =.3. We can compare our distribution 

with the normal by looking at 

~ I : 3.13 

~L = 3.74 

Directly in terms of the cumulants 

~, .: 

Table I contains tables of values of ~, and ,.,20 for a range of 

values of m and figure 1 provides a diagrammatic representation. The 

coeffiCient ~, is generally regarded as being a measure of skewness, 

see Kendall & stuart (1963) and as we can see in table 1 the distribution 
~ 

of A J is skewed but as fII\-"':> 00 tends to a symmetrical distribution. 

For a more precise comparison we can consider the published 

values of the percentage points of Pearson curves given in Johnson e~al 
i' 

(1963). These tables give the standardised percentage points of a 

number of Pearson curves corresponding to a range of values of jfl and f L . 
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TABLE 1 

20 0.2548 3.1200 

50 0.1612 3.0480 

60 0.1417 3.0400 

70 0.1362 3.0344 

80 0.1274 3.0300 

90 0.1201 3.0264 

100 0.1140 3.0240 

120 0.0963 3.0172 

160 0.0901 3.0150 

180 0.0849 3.0132 

200 0.0806 3.0120 

250 0.0721 3.0096( 

300 0.0658 3.0080 

400 0.0570 3.0060 

500 0.0510 3.0048. 

600 0.0465 3.0040 

700 0.0431 3.0034 

800 0.0403 3.0030 

900 0.0380 3.0026 

1000 0.0360 3.0024 
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For ~) ~ '3 we have given a small set of values in table 2. 

TABLE 2 

Percentage points of Pearson curves for 

Lower Upper 

0.5 1.0 2.5 5 0.5 1 2.5 5 

-2.58 -2.33 -1.96 -1.64 2.58 2.33 1.96 1.64 

-2.82 -2.53 -2.10 -1.74 2.21 2.05 1.79 1.55 

-2.76 -2.48 -2.06 -1. 71 2.33 2.14 1.84 1.58 

-2.72 -2.44 -2.04 -1.69 2.39 2.19 1.87 1.59 

-2.66 -2.40 -2.01 -1.67 2.48 2.25 1.91 1.62 

As can be seen from Table 2 even for small non-zero values ofJ ~I , 
there is a considerable difference in the tails of distributions when 

compared with the normal, while forJpt) 0.05 there is a marked difference 

in the 5% point. It should also be born in mind that we have not 

considered differences in the ~t.. parameter. 

1\ 

We conclude that while llI. tends to normality for small values 

of m, say f\"\ (, ~()O which corresponds to realisation of less than 600 

in length we cannot expect very accurate approximations using the normal 

distribution. Thus it would appear that for realisations of less than 

200 in length we require the exact distribution. 

For large samples however, we can estimate J ~ e ~ and (? I 

and we know the distribution of our estimate. Using ~~ as we 

shall see it is easy to construct a test for white noise against any 

specific alternative. In addition estimates of et are of great value 
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FIG. 1 

Values of J~, for values of m 
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if one is interested in the estimation of models of the form 

9(8) 

and in comparison of the performance of predictors. 

Estimates Using the Spectrum 

Before looking further into such problems it is worth considering 

alternative estimators of ~ We can if we wish estimate J Gj Q I by 

using the same numerical form as 3.5 but using a different estimator of 

f(w) • Since the usual spectral estimator is a smooth periodogram 

(cf.l.28) we shall consider estimates of 

_I-
3.77 

where the 

= 
ll' 

are a suitably chosen 
~ 

L 
set of weights where 
\ _ •. SD 
I\.s E? 

Of the many suggested sequences we shall concentrate on that suggested 

by Parzen (1961 ) 
{, ( ~ ) ~ .f M ;. }3 I ~ I (D·~ 

As .:: 5 I -

I J.. ( I - 1:Y"1 J ) l o.S' 'll ~ I 

l~ > '1 0 

~.nr 

and adapted from the Jackson-de la Vallee Poussin Kernal used in approx-

imation theory, see Parzen (1963). Our main reason for this is that 

while it is one of the most used kernals when combined with autocovariance 

estimates of the form 

" ~~ - N 

N- Isl 

[ At XI::+ IS / 
~ ... I 

the resulting estimates of few) are non-negative, Granger (1964). Since 

we need to consider J~ ~(&v) positive definateness seems a necessary 
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requirement. Of course one may adapt ones procedure to use a Tukey 

or Bartlett weight function but it is then necessary to impose an 

arbitary value on any negative estimates and gives rise to many 

complications. For simplicity we shall choose the Parzen weighting 

sequence although in principle the same derivations can be carried 

through for any sequence which gives rise to positive definate estimates. 

We now look at the distributional properties of such spectral 

estimates. Now f(w) must be a function of Xl •••• Xn and we can write 

the function as a quadratic form 
~ 

~ (~) 

where 
vI __ 
A (Xl X2 •••• ~) and the matrix ~ is non-negative. To 

attempt to obtain explicit form of the distribution function we shall 

derive the characteristic function. Assuming the 1 Xt J are normal 

variates then the characteristic function of 

Q = L LV " j X " X j 
where W == (~.) is given by 

i J J 
J \ -It 

~I\ ( ~) de~l .!. _ 2 ,'£ 'vJ 1-

-

as may be seen in Cramer (1946). Here R denotes the autocovariance 

matrix. If we denote the eigenvalues of ~ W by AI J •• ' A", we can 

write 3. ~D as 

or 

This is not 

" IT 
_1/ 

I - 2 (l. ~v) 1 

very useful since the f'J are in general 

J. 7e; 

J. to 

not known since ~ is not known. We can however obtain the first moments 
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of few) from 3. S2 as 

E [ e(~)J = 
.!l 

'l'v ",M: 2- ~.tJ 
V=I 

~ 
~ 1. 

et 1. ::: \Tf')../< ( ~ ( LV) ) -- 2 L ,,~ 
j. ill 

).-.:..1 

The evaluation of these moments still entails knowledge of the 

eigenvalues or alternatively the trace of R W and (R W)2 

However the above has been used to derive some asymptotic results. 

Using the fact that 

R .: ( l2v-r = 

is a Toeplitz matrix Grenander and Szeg(o (1958) show that if 

" '/: ~(LV)-l 
er 

then the characteristic function of Y is given by 
-~ . 

~, 1 , - 2 c' ~ ;v)2 ( (~M) 

or 

Thus 

t\ 
and In ~ ~123)o>-3L IAII/J 

y-, 

and using the analytic theory of Toeplit~ forms they show that when 

o <: C, ~ ~ r...,) .::: Cl.. 

05 

for some constants C,) CL, c..3 

and 

then 

::: 

d '" = O( n - Ill. ) 

_ k ZL e 2. 

3.85 
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Thus the normalised spectral estimate is asymtotically normal. This 

has also been suggested by Grenander and Rosenblatt (1957) and Lomnicki 

& Zaremba (1959) amongst others. Grenander and Szego try sharpening 

their approximation and to some extent do achieve this aim, however their 

later development cannot be put into a practical framework. Some 

closely related work was done by Kac (1954) whose results are closely 

paralled by the others mentioned above. 

Several authors have looked at the problem of inverting the 

characteristic function given by ~.&2 that is evaluating the integral. 

3 (]() .:: e - l.l X -J~I ( I _ '~?l \ 2 t ~ /',,) ci l.. 

Since the integrand of 3.8 q is an analytic function of e except 

at the branch points the integration contour can be deformed into a set 

of circles enclosing pairs of branch points if n is even. By collapsing 

the circles one can obtain an expression for g(x) as a sum of finite 

integrals, viz: 

_I_ 

n 

This technique has been used to facilitate numerical evaluation by 

Slepian (1958). Robbins (1948) has suggested a power series expansion 

for ~(l) as well as a representation as a mixture of i\t distributions 

while Gurland (1955) has developed an expression in terms of Laguerre 

polynomials. All of these expansions however appear to converge slowly. 

Grenander, Pollack and Slepian (1959) discuss an integral equation method 

and some further Toeplit? approximations, however in practise one feels 

that their results while interesting, are not applicable, in ~eneral, 



82. 

especially when one wishes to use standard spectral windows. 

A common approximation, Blackman & Tukey (1999) or Granger (1964), 
'1.. 

is to assume that the few) have a distribution that is approximately ~. 

The rational being that since 

~ J" l,../op)x) wre-I0)C'lQ ~ (IA)\ :: 
-f\ 

and hence 
~ 

1'1 

~ (10\.)) "\.. 2Tl~(~) J I t.) flU) C) W IS - £u ) et uJ 
-0 

1. 
Now the integral in 3.c=t l is essentially a weighted sum of "< variates 

when the [~ are normal or at least follow the central limit theorem. 

Clearly the integral can, by following the arguments of Welch (1947) can 

1 
have its distribution approximated by a ~ distribution. 

1.. 

Since the number of degrees of freedom \I of a ~ \I variate 

is given by 

we can define the "equivalent degrees of freedom of few) as 

v = 
" 1-

2. f [ ~(~) 1 
VWV" [e ((jo)) 1 

This quantity is also sometimes known as the "stability" of our estimate. 

It is of some interest that Freiberger and Genander (1959) in a 

paper which considers the use of Toepli~ matri~es in investigating 
L 

distributions of quadratic forms also use a.~ approximation for a 

rectangular window ~/f) )Of the type proposed by Daniel (1946). 
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We shall in our future consideration of spectral estimates 

use the ~ approximation fOr its distribution. One further problem we 

must consider is the correlation that exists between spectral estimates 

at differing frequencies, unlike the case of the periodogram 

We may see 

.= -' 
lInl. 

n J i\ f(&) [ \V (E)-LU,) + W(~-+kJ.J[ ~/9-/'VJ "",\V (P-+tV) J'd e 
N + 1(:4 ~ ("-J. ) ~ (....n. \ 

.. , 3.~S" 

and asympotically the covariance tends to zero. However for sample 

sizes considered in practice one must choose estimates whose arguments 

are sufficiently different to minimise correlation. Table 3 gives the 

correlation between spectral estimates when the underlying series is 

white noise. This table is easily computed since 

A~ (Cl) r,o, eel> rj.)L ) / (~_~ I~ (Js., ) 
.. ~'t , 

Clearly the correlation will depend on the "bandwidth" or how 

spiked the function Wee> happens to be as may be seen from 

From table 4 which gives the bandwidth for three differing spectral 

windows it is clear that while the Parzen window has smaller variance, 

this has to be paid for by accepting a larger bandwidth. Hence one has 

a greater degree of correlation and in consequence some loss of 

"focusing power" of the spectral window. This is easily seen in the 

val \.les presented in table 3. One might expect that estimates of 

few) separated by at least one bandwidth would be only very slightly 

correlated. As can be seen for the Tukey window with bandwidth iY5 
the correlation is 0.1667 while at this value the Parzen estimate has 

correlation of 0.4020. LookingillLthe bandwidth value for the Parzen 
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TABLE 3 

This table gives the correlation between spectral estimates for a Normal 
white noise process using 3.92 with M = 10. Source Fishman (1969) 

Separation Correlation Separation 

Tukey Parzen Tukey Parzen 

0.0 1.000 1.000 

0.1 0.9961 0.9978 2.6 0.0292 0.2100 

0.2 0.9843 0.9911 2.7 0.0184 0.1850 

0.3 0.9650 0.9802 2.8 0.0101 0.1620 

0.4 0.9385 0.9650 3.0 0.0000 0.1410 

0.5 0.9054 0.9458 3.1 - 0.0026 0.1219 

0.6 0.8663 0.9228 3.2 - 0.0040 0.1048 

0.7 0.8220 0.8964 3.3 - 0.0045 0.0894 

0.8 0.7734 0.8667 3.4 - 0.0044 0.0758 

0.9 0.7213 0.8342 3.5 - 0.0038 0.0637 

1.0 0.6667 0.7993 3.6 - 0.0030 0.0533 

1.1 0.6105 0.7623 3.7 - 0.0021 0.0442 

1.2 0.5537 0.7236 3.8 - 0.0013 0.0365 

1.3 0.4972 0.6873 3.9 - 0.0006 0.0300 

1.4 0.4417 0.6429 4.0 0.0000 0.0202 

1.5 0.3881 0.6017 4.1 0.0004 0.0166 

1.6 0.3369 0.5605 4.2 0.0006 0.0137 

1.7 0.2888 0.5196 4.3 0.0006 0.0114 

1.8 0.2442 0.4794 4.4 0.0006 0.0096 

1.9 0.2034 0.4401 4.5 0.0005 0.0083 

2.0 0.1667 0.4020 4.6 0.0003 0.0013 

2.1 0.1340 0.3655 4.7 0.0002 0.0065 

2.2 0.1054 0.3306 4.8 0.0001 0.0060 

2.3 0.0809 0.2975 4.9 0.0000 0.0057 

2.4 0.0602 0.2663 5.0 0.0000 0.0057 

2.5 0.0431 0.2371 
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TABLE 4 

Bandwidth, VGriance and Equivalent degrees of freedom for same 
windows W(9). N denotes the length of the realisation and M 
the truncation point. 

\. 
WCO) Bandwidth Variance/ ~(w) E.D.F. 

Unit 1T Ir ~'H- ~~ ) 2· 000 H /r-J N/M 

Tukey 2n/~ 0·150 H/N J..·7 N/M 

Parzen 8Tl/3H 0·539 M/N 3· 7 N/M 
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window the correlation drops to 0.1830. 

From the above one may conclude that if one has spectral 

estimates separated by at least one bandwidth then one can assume that 

the estimates are approximately uncorrelated. 

Having established the results above we can now per sue our 

estimation of J0 e, 

~I 
1\ 

A j ';j 2 TI ~ I "-'p ) 
Let ~~ .: 2- L 3.'17 

t\I\ p .... o 

where "'r e ~ rei .... l~ ] 
M 

where M is chosen such that the correlation between ~f~f)) ~(~Ptl) 
is minimised, that is ~.JJ is at least, 

"" 
the bandwidth of the Parzen 

window. Then from 3. tj I we have 

~ I~) : \ I~) Y (IV) 

where 1 ~ ~, is a random variable with '\v distribution, v being 

the equivalent degrees of freedom of our estimate. Thus from J·9 7 

2 
M 

+ 1:... 2 I JUf1 Y{~P ) 
M r V 

Notice that as in the case of the periodogram we have a doubling of the 

variance at "'.:- O,:r 11 

If we assume the are 

variates we can proceed in exactly the same way 

independent 
1 

as for ~I 

Thus if one has a sufficiently large value of M that the 

end points of the sum may be ignored then 
~ 

2.. L J4'tf YfvJp) 
M p .. 0 \..l 
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has a characteristic function given by 

.3./00 

while using characteristic function 

becomes 

JIl I )""J! ih ] j> (lJ:.+~ 2721'0\ P(lr'J-+V) 
M l _ ~ 12 .3.101 

r(~ ) 
where p: I, 2 depending if one or two end points are included. 

As in the case of the periodogram it is clear that the 

characteristic function cannot be inverted directly and one needs must 

find some indirect approach. The cumulants and consequently the 

moments can easily be found as before 

For /-l..l 

K, :: J"j 2 1- ~ (~2 ) 

Kl 
I i I { "/L l 

== "'" 
~ Ir- Jl 

" r 
:: - ( ~l ) 

IV\r-1 
3. /02. 

while in the case of 1-\ we have the rather more complex formulation 

\(1 
( , + ~ M ) ~~ 2 ~ -+ (~L ) t ~ r\I\ -+ (~4 ) ~ 

III \ l' ( ~L ) -+ p ~ '(";4 ) 
:-

"" 4M~ 

~ (t·,) ) 04- P -'I (r_I ('1
4 

) , .. 3, /03 
Kr = (Vi /r r 

Mr~1 2 M 
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The computation of the moments is thus quite routine, and given the 

equivalent degrees of freedom one can find tabulated values of the 

Polygamma functions in Abromowitz and Segun (1968). 

As is evident from the above our estimate is biased but as 
1'\ 

in the case of our previous estimate A I we can make the following 

modification 

~. 

where K \ is defined as in .3 . 1 D 3 above. From now on we shall use 

only the unbiased form in ~. 104 and for convenience shall denote it 

by Ae-

From 3. 10 4 the variance of !~ is given by 

I i'(~J.) li ~ I (V ) 1(1 .: .... 14 
M 4 M1. 

~ 
and as 1\1\ -':> {)IJ K 1. ~ 0 implying that 4 '" is a consistent estimator 

with mean 

1(. = 

since +'(r. ') is a bounded function. 

For large values of M can be considered as a set of 

independent, identically distributed random variables. 

3. lott 

This follows from the arguments stated above that ~'" is approximately 

normally distributed and from the results of Grenander and Rosenblatt 

(1957) that 
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Thus we can by appealing to the central limit theorem assume that 

has an asympotic normal distribution. 

This results is not of great interest as it stands for we 

really need to know how fast the time distribution converges to a normal 

form when M ~ 00 . As before by considering the third and fourth 

moments, or more usefully 

we have, for large ~ 

~I 

p-> L where f-> I and 

\L 2-

~3 
l 

It l4 / L 

Jf1 

..,. " (~l) L 

M '-J. I (\I;z. )3,). 

j of -+"I(~.l) 

M '1-' (~ ) 

where we recall M is the number of lags used in the estimation of 

For a Parzen window the equivalent degrees of freedom are 

given by 

using the classical variance estimate. However if one uses the 

J·I 0 5 

3·106 

.5. /07 

modification due to Neave (1966) discussed in Chapter 1 then this needs 

to be slightl¥~odified. Since we are using approximations we shall use 

the classical result of 3. 101 and table 5 gives the values of .J~, and ~t. 

for three values of r~ for convenien~ values of the polygamma functions. 

From the table we can see that S(J, tends to zero df-,d.{!> to ..3 

as M increases. The other a..omparison we may wish to make is with cui: 
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~ 

estimate ~ ~ to do so we must bear in mind that M is the number of 
.. 

values of ~~~'~1 included in ~~- Using a t1 =!L lags to estimate 
.3 

the spectrum with a separation of say 20 then I¥\= Nib while for 

H A the corresponding periodogram estimate IVI: ~/.2.. and reference .r 

to the table 5 shows that & S is marginally better. It is more 

realistic to consider a separation of 3n 
~ 

in which case for 

and the difference is very small. However if one wishes to choose 

or less then the position may change completely. We must also remember 

that we have not considered the correlation between our estimates. 

~ 

It is of interest to consider the asympotic variance of ~~ 

For a Parzen window, from table 4 \I ... ,3-~ thus since for large l: 

while 

+'re )= .J. 
t 

" OTJ.N{~~' = H -.ztolM , 
l}tv(' (~- ) r: '-~~ .I. 

Thus if we choose a minimum separation of 

spectral estimates 

and 
,·5 
~ 

H 

I = 
.l\(M 3. 'O~ 

kM: ~ 

for our smoothed 

the implication being that there is little to choose in the efficiency 

of the two estimators. 

We must however admit some preference towards the estimate lz 
It would appear to offer great simplicity and in addition the estimates 

of the periodogram are at least independent. For small sample sizes 

we have to remember that the smoothed spectral estimates are correlated 

and as we shall see the effects of this correlation can be quite marked. 
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TABLE 5 

polygamma functions for 3 arguments 

tV/M 
\.J """'("l,l.\ 'f 11ft \ i "'{ 112 ) 

4 14.8 0.14468 -0.02089 0.00603 

3 11.1 0.191196 -0.038846 0.01524 

2 7.4 0.31004 -0.09540 0.05828 

Table of values of j-~I and ~l 

.fi>, ~1 

V 14.8 11.1 7.4 14.8 11.1 7.4 
M 

20 0.08495 0.10387 0.17411 3.0144 3.02085 3.03032 

50 0.05373 0.06569 0.11012 3.0058 3.00834 3.01213 

80 0.04273 0.05193 0.08706 3.0036 3.00521 3.00758 

100 0.03799 0.04645 0.07787 3.0029 3.00417 3.00606 

200 0.02687 0.03285 0.05505 3.0014 3.00209 3.00303 

250 0.02402 0.02938 0.04924 3.0015 3.00167 3.00243 

300 0.02193 0.02681 0.04496 3.0010 3.00139 3.00202 

350 0.02029 0.02482 0.04162 3.0008 3.00119 3.00173 

400 0.01900 0.032322 0.03894 3.0007 3.00104 3.00152 

500 0.01700 0.02078 0.03483 3.0006 3.00083 3.00121 

600 0.01552 0.01897 0.03178 3.0005 3.00070 3.00101 

700 0.01435 0.01755 0.02943 3.0004 3.00060 3.00087 

800 0.01342 0.01643 0.02753 3.0004 3.00052 3.00076 

900 0.01265 0.01549 0.02596 3.0003 3.00046 3.00067 

1000 0.01200 0.01470 0.02462 3.0003 3.00042 3.00061 

N denotes the sample size 

H the number of lags used to evaluate the spectrum ~ 

M is the number of values of 11 tU' in the summation A~ 
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V JWJCS OF ~~ I FROM TABU; 5 

0.14 

0.12 

0.10 

0.08 

0.06 
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0.02 

.' 

100 200 300 400 500 
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CHAPTER 4 

A TEST FOR WHITE NOISE 

As we have seen in Chapter 3 we may estimate the logarithm 

" ~ 
Ar or fJ s where error of prediction by of the minimum mean square 

f\ 

L 
4.1 

and 

WV\ v= I 4.2 

From the forms chosen above it is clear we shall be considering asympotic 

results and we shall look at a test for white noise described by Davis and 

Jones (1968) based on the asympotic properties of 4.1 In addi tion we 

point out that one can base an equivalent test on 4.2, and consider some 

drawbacks of their procedure. 

Suppose we have a non-deterministic time series ~ X f" i which 

has the following moving average representation 

where E(L~J =0 

f [ £,. £5 J ~ 

Then the variance of the series 

can be written in the form 

t>': ~ 0" ( I ... ~ I ~j \') · 

4.3 

4.4 
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, l-

A consequence of 4.4 is that o-'x :: c::f implies for all k..) I 

Using this fact Duvis and Jones (1968) attempt to test for 

white noise by deciding between the two hypotheses 

)....\ I : 

or equivalently 

f-to 

A convenient estimate of 
l 

\:T'J. can be obtained by noting that 

4.5 
..2TI 

since 

~c \ f' -i&U~~ )d 
;0 e (u.) W 

.z.n -11 
4.6 

and we use as our estimate of (5'l 
}\ 

~ 
S L = \ L ..L,., / '-1) X ) r V'I j ::' 

4.7 

For large values of n it is fairly easy to show that 

is approximately equivalent to the sample variance since 

1'\ - I ~ - l.sl 

r~ (c..)))() = .2.. 2- _I L Xt X t"c.£>.s ~ 
,5---A+1 N t:-~I 

f: ... ISI 
4.8 

'" -I ~ 
= 1. L (I ~) ~("CI)54J 

5= -t.l +, N 

4.9 

This implies that , \ ~\ -)0 

~ 

S 1 = I 2- I~ /a...liJJL) P -1\. 
If = I 

f'\ N-\ " 
-L L 1. L 'R. s ("CD.s LV" 

4.10 

V\ V-I oS = -~'tl 
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and hence 

giving 

1-

= 

'" 
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C Cl) (II\ -t I J)I :)~ V\ lY.L. 

,sw...)(/, 
2.. 

L (C,/) S'-'.)v - o 

S L 

" 

where 5-.( denotes the sample variance. 

L.. 
Davis and Jones (1968) use S,c as their estimate of 

"\. 

4.11 

4.12 

however 4.12 enables us to consider S~ as being approximately the sum 

of periodogram ordinates, which proves to be useful as we shall see later. 

has a 

Using the 

-x. 1. ()"" lit '\,. 

-\ f1-1 

sample variance we can assume that under 

distribution which shows that 

is a biased est~mate of J ~ cYt..1.. 

E L J, (IV-,)~ J 
since 

Thus 

E C Pc s/ J = ~~tr)t ~ - J~ (~I) ~ -+ ( N; ,) 

and ~[ j~s/ j ::r ~'(~/) 

From the above we can see that 

if 
b ..:: 

4.13 

4.14 

4.15 
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is an unbiased estimator of 

Writing 

4.16 

then under ~ 0 ~ has a zero mean and for large "'- has a 

distribution which is approximately normal. To find the variance of ~ 
tt 2 ~ .,. we need to look at the correlation stIUcture between ..p~ ~~ and .(j ~ 

which we now proceed to do. 

4.17 

from 4.12 and under ~\ 0 the spectrum is a constant function and the 

periodogram estimates are identically distributed thus 

where ~? is one of the values of L.) at which the periodogram is 

evaluated. 

We can simplify 4.18 by noticing that 

<JTAN' L .Qj 2; J ","," ,X ) - ~ 6j 1",., (wp, "n 
~ .nvr [ } ~} I" I., p' ){ ) } 1 

L. .It.:) Ik)"/J ld 
V 

L If.) (I.o)v) ,dJ t \J'OJr [ j~ I tfA:] Jd] 
v -J t-l i» 

.< n% [ j 1 L .I t.:I (c.c)v J)l ) ) J ~ (I.U p) ,t) J 

4.19 

4.20 
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and since I t..l I...))" }(~ 

L .IN IIo\JV) 3d 
is independent of 

v 

see Hannan (1960) we have 

[ ~~ 11\(Wp)XU 

~[ )JI 
4.21 

From 4.20, 4.21 we see that 

or equivalently 

4.23 

giving 

4.24 

::: 
4.25 

Consequently as a result of our manipulations we can see that 

under ~Ib the statistic 

= 
J ~ '~) 

has a distribution which tends to that of a standard Normal variate as N 

4.26 

(or equivalently " ) tends to inf:inity. It has been pointed out by 



99. 

D2vis and Jones (1968) that this is in fact equivalent to Barlett's test 

for the homogeneity of variances applied to periodogram ordinates. 

~ 

If one wishes to use !J ~ then much the same approach can be 

used. 

1-
Defining S~ by 

.: 
, 
IV\. 

L 
A 
~ ( IAJ-.j ') 

for a sui table choice of "'" then as M ~ 00 we can show that 

51-
~ 

where as before .:5 .. 1. denotes the sample variance. 

Proceeding as above we can write 

b ::; 

and 

J~(~) Jrf(~;') 

~ 

j ~ Sl( L -+ b -.A ~ 

4.28 

4.29 

4.30 

can be used as the basis for a test of white noise. Clearly we need to 

evaluate 

which following our previous derivation can be written 

0"" [ j ~ 5,1) d = C<f1J" [ j~'; ~(.Jv) J~ t",p) 4.32 

~ 
where "-J r is one of the points at which ~.IItJ) is estimated. The~ 
derivation 

r( ..l p) 

'" L ~(~v) 
'" 

is identical to the periodo!ram case if we can show that 

is independent of L ~ ( I.\.J ....... ) 
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The independence follows from a theorem due to Pitman (1937) 

which states that:- if '/., ... 'Xk are indepdendent random variables 

from a r (r') distribution, then if h (X \ .. XIt ) is a random variable 

such that for any c..) 0 the function obeys 

)l 1£) :: h ( C, l(, ) c.x l. i . . .. c .x" ) 

then X, i ~ l... -+ .. -+ X Il. and 

are independent. 

Using this theorem we may show that under I~ 0 

~ 
~ /IAJ p) and 

~) 
are independent and in consequence if we proceed in exactly 

the same way as for the periodogram we have 

u-r;.rr [ 1-
5" ) L 1 

Using 4.33 and cssuming asympto.tic normality then 

= L 

J 
has a distribution which is approximately standard normal where V 

~ 

denotes the degrees of freedom of the distribution of ~ (~ ) 

4.33 

4.34 

While the above statistics are of interest we really need some 

idea of their distributions under ~I I Davis and Jones consider the 

asymptotic distribution of ~ under the alternative hypothesis that 

~ '" ~) is generated by the first order model 

10<1<1 

however they do state that the distribution of t Can be discovered 

4.35 
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under any alternative which uses a model giving rise to a uniformly 

bounded spectrum. 

Assuming a model of the form t.. 3 5 we have 

(j ... l. -= Lft.v>r ( )( t;- ) = o-'~ 

l-o("L 

where E [E t1.) r:d L 

Then if we define V.,.. as 
'f\ 

~\c.vp ) Vy\ = _1- L 
h V.:I 

it is easily seen from Parceval's theorem that 
il L Ib Kt... 

J~ \Jy\ J ~('0)clw = L = V 
::: l: 

-0 I: la - OCI 

n ...::;:. aIJ 

where Rl:;- denotes the autocovariance. Using a Taylor'. 
z. 

J ~ 5, we then find that for eXpansion for the moments of 

= 
J 0"" 
Jl-.(2-

~ 

L(-l'~'r= I-Ioll. 

N - 0() Cl _till) N 
and lJ"t.!.X"" [ j ~ '5 / ] ::: 

By appealing to the corollary to the Lindberg-Feller condition suggested 

1. 

by Eicker (1963) Davis and Jones show that the distribution of '-: (T 

J~ [ ~ L I{cJ",)~iS approximately normal with mean and variance given 

by L...3 q) 4 . ~ 0 

S }- : Then if we assume that the correlation between ,. and .£.J I 

changes very little the covariance may be expressed in the same way as 

for the white noise case and the mean and variance of ~ defined by 

4. 2. b are 

f [~) - - J~ (l_oe"L) 

4.41 

j -4'(\) _ -t't ~J) 
V\ 
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(, ~o(L) 
N(I-d."'!) 

2. '" J {~I ) 

i-'{I) _ 'tl{,,>;') 
r\ 

4. L 2. 

Ndturally if one wishes to use any other model as an alternative 

this is possible provided one can evaluate V and in addition one is , 
prepared to assume that the correlation between A I. and } ~ Sj 1. does 

not change appreciably. 

In the case of 
I 

~ where one uses a smoothed spectral estimate 

one obtains the same re suI t since we are using the same estimator ~ ,5.,.~ 

Again if we assume that the correlation is unchanged we have the result 

that under 1-1, is asymptotically normal wi thllneam and variance 

Qjiven by 

ELl'] -

- ~({~') 

Thus it may be seen that one has two alternative methods of 

testing for white noise based on :z or c I Since from Chapter 3 the rate 

of convergence to normality of A I C> r A~ is approximatelyiitre same the 

choice seems fairly arbitary. If one has computed the spectrum then it 

}, 
is easier to use u y however if one has no intention of using the 

spectrum for other purposes it would appear that 
~ 

.lJJ;. is simpler to use. 

This is particularly so if one has very large values of N for 

one may then use a fast Fourier transform algorith~ such as that due to 

Singleton (1968). 
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We feel that the two statistics have two considerable 

disadvantages. 

(a) One requires large samples to achieve asymptotic normality, from 

Chapter 2 the indications are that a value of 200 would be required for 

" or ~ ~ to be approximately normal in the tails of their distribution. 

It is just this tail area one would wish to use for any test of 

significance. 

1\ 
(b) The correlation structure between /j. L and 

this is especially so when one is looking at the 

j ~ SlI L is not clear and 

distribution under the 

alternative hypothesis. 

One alternative procedure which overcomes at least objection (b) 

and has considerable intuitive appeat is to split the series into two 

parts 

i.e. ~I 'f.. ... 
""'-"I 

From ~I··- we estimate while from ~P4"1 J .... X If\o\ 

we estimate using the sample variance. 

Consider the two periodogram estimates 

~ L e.-,.~~ 
~ t-'I 

and 

411 ~(~)~{Q) 4· 41 
-t t [I~ (tJ}C) Il~)£ J] 
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Then using the result due to Isserlis (1918) for random variables VV X Y ! 
J ) J 

('ens- [W)('IlJ.: f[~XJf[YlJ +f[W'lJf[;x.t:]~f[~l]~[XYJ -+ Kt. 

4·4 q 
where t It denotes the fourth cumulant 

CUl.J [ .1.,.,.' tc..l)c)lVoo\2{E})x)J ::: 

we have 

where here K.~ is the fourth cumulant of the ~ £ .. f process. 

Moreover if f ~I:' i is a general linear process and the ~ Lt-- i is a 

sequence of independent identically distributed random variables 1< .. ~ 0 

The drawback of the above procedure is that one is halving the 

available realisation and in consequence the convergence to normality is 

much slower. However the problems of correlation between 
1 • L 

fJ I. and ..f ~S ~ 
do vanish. When we look at small sample approximations to distributions 

we shall find this approach very useful. 

While discussing large sample tests on split realisations we 

mention a further interesting procedure. If one were to split a 

realisation then one can estimate log (2.. from the first segment while onthe 

second segment one can fit a time series model, say 

From the fitted model one can obtain residuals ~q~J where 

Ob == ~f:: ~ 
and Mann and Wald (1943) and Anderson (1971) have shown that 

has a distribution 
'\L 

comparing log O'et 

which is approximately normally distributed. By 

with log e l we can provide a "goodness of prediction" 

criteria for the fit of our time series model. 
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Davis and Jones outline some brief simulations using ! as a 

test statistic and report good results using 50 series of 100 standard 

normal variates and 50 series of the form 

using the original normal deviates as input for the "innovation process" It.} 

We attempted to duplicate their results using the random number 

generator described in Appendix 2. 

To obtain some idea of the approach to normality figures 3 to 6 , 
show sample values of ~ J and t for some simple autoregressive 

processes. In each case every other sample value has been plotted. As 

may be seen from these plots on normal probability paper the discrepencies 

in the tails of the distributions can be quite large especially when 

the autoregressive parameter moves away from zero. 

More detail of each simulation is given in tables 6 - 10. 

" Looking at these tables we have for /j,:r 



Simulation 

I 

II 

III 

IV 

V 

Sample 

-0.0021 

0.0080 

0.0433 

-0.0099 

-0.0441 

106. 

TAI')~L ::, 

Mean 

Theoretical 

0.0 

0.0 

0.0 

0.0 

0.0 

G ,~f\li) 7 

Variance 

Sample Theoretical 

0.01890 0.01644 

0.04467 0.03288 

0.01823 0.01644 

0.Q3309 0.03288 

0.02917 0.03288 

As we can see the simulations have sample means which agree 

very closely with the theoretical predictions, the maximum error being 

of the order of 4% this being for the larger values of ~ The sample 

variances however are rather inaccurate. 

In the case of we have 

Variance 

Simulation Sample Theoretical Sample Theoretical 

I 0.0014 0.0 0.0129 0.0064 

11 0.9471 8.9962 0.1013 1.0945 

III 1.0039 12.7220 0.0462 2.1584 

JV 0.0119 0.0 0.0193 0.0127 

V 0.1499 1.5321 0.0270 1.5440 

It is evident that for 11, Ill, V the sample values diverge 

from the expected values, the remaining cases which are white noise 

produce much more accurate results. From this we are inclined to think 

that the assumptions made about the covariance between h.L and )~ S: 
are not entirely correct. 
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Noting that 

2. 
N 

we have 

Simulation Sample covariances Relative error 
( (%age) 

I 

11 

III 

IV 

v 

0.01129 

0.0295 

0.0128 

0.0194 

0.0048 

0.01 

0.02 

0.01 

0.02 

0.02 

12 

45 

28 

6 

76 

From the tabulations above we can see that the rather large 

discrepancies in the variance cannot be completely explained by errors 

in approximating the covariances. However it is worth noting that the 

relative error in the sample covariance estimate is 6% and 12% respectively 

for white noise sequences and 28,45 and 76% for the remainder. In 

addition ordering the simulations by the relative error in the sample 

covariances does give the same ordering as is obtained by rank by the 

error in variance. 

Thus it would appear that when our covariance approximations 

are dubious, which seems to be for all white noise cases, then the mean 

and variance of ~ and consequently of ~ are not as predicted. 

Rather more disturbing is the rather poor agreement with the 

percentage points of the normal distribution shown in table 11. 

Our results appear to be at variance with Davis and Jones (1968). 

While we would ag~ee the fit for white noise is perhaps not unreasonable 

for small values of the power seems poor. 



Simulation 

Percentage point 
of Normal Distn. 

0.1 

0.25 

0.50 

1.00 

2.50 

5.00 

10.00 

25.00 

50.00 

75.00 

90.00 

95.00 

97.50 

99.00 

99.50 

99.75 

99.90 

I 

200 

0.0 

1.00 

1.25 

2.00 

3.00 

6.00 

8.25 

13.5 

26.5 

45.0 

65.25 

78.50 

89.50 

94.00 

96.75 

97.75 

98.75 

99.75 

11 

100 

0.8 
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TABLE 11 

III 

200 

-0.8 

IV 

100 

0.0 

V 

100 

0.4 

Percentage of sample values less 
than the percentage point 

0.00 0.00 1 

0.00 0.00 1.5 

0.00 0.00 1.75 

0.00 0.00 1.75 

0.00 0.00 5.25 

0.00 0.00 8.0 

0.00 0.00 14.75 

0.25 0.00 24.5 

0.5 0.00 46.25 

1.0 0.00 65.75 

1.0 0.00 81.25 

1.25 0.00 90.00 

1.5 0.00 95.00 

1.75 0.00 96.75 

2.5 0.00 97.25 

2.75 0.00 98.25 

3.75 0.00 99.75 

0.25 

0.50 

0.50 

1.25 

2.00 

3.25 

4.75 

7.75 

18.5 

32.5 

41.75 

57.5 

65.5 

69.75 

81.25 

86.75 

93.25 
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We feel that the principle problems with their test as proposed 

is that asymptotic normality requires much longer realisations, and in 

addi tion they advocate discarding the values of I ~ (If.») )( ) at '-J:: 0 

and ~.::.1l when N is even. It is our opinion that this makes our 

estimates unrealiable when only short realisations are available. We 

mention once again that the correlation approximation seems unreliable. 

It would seem that we need sharper distributional assumptions 

than asyrnpotic normality and we now try to obtain some approximations. 
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TABLE 12 

Simulation 1 400 replications 

The model generated was of the form 

t= 1, ... 20eJ 

the (r being independent, normally distributed random variates. 

Using the periodogram estimate 

mean 

Sample -0.0021 

Theoretical 0 

Sample 0.0014 

Theoretical 0.0 

variance 

0.01890 

0.01644 

0.01286 

0.00644 

Sample correlation between components of 

0.74908 

Estimation of j~ e , 

Estimation of ~. 
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TABLE 13 

Simulation 2 400 replications 

The generated model was 

b- '" I . .. loO 

and the l ( t I are independent identically distributed Normal variates 

Mean 

Sample 0.008 

Theoretical o 

Sample 0.9471 

Theoretical 1.01 

Variance 

0.04467 

0.03288 

0.1073 

0.352 

) 
) 
) 

j 

Sample correlation between components of ! 

= 

Estimation of 
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TABLE 14 

Simulation 3 

Generated model 

the~i~~ being independent identically distributed normal variates 

Using the periodogram estimate 

Sample 

Theoretical 

Sample 

Theoretical 

Mean 

0.0433 

0.00 

1.0039 

1.01 

Sample correlation 0.4415 

Variance 

0.01823 

0.01644 

0.0462 

0.352 } 
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TABLE 15 

Simulation 4 400 replications 

Model Generated 

~ l:- ::: f~ &= I ... ICJ () 

the } (~i being independent, normally distributed random variates 

Mean Variance 

Sample -0.0099 0.03309 

J 6l 
Theoretical 0.0 0.03288 

Sample 0.0119 0.01925 

J t 
Theoretical 0.0 0.01270 

Correlation = 0.17353'11 
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TABLE 16 

Simulation 5 

Model generated 

t- = I· .. lOO 

\[~~ being independent, normally distributed random deviates 

Periodogram estimates 

Sample 

Theoretical 

Sample 

Theoretical 

Mean 

-0.0441 

0.0 

0.1499 

1.5321 

Variance 

0.02917 

0.03288 

0.027028 

1.54397 

J 

Correlation between the above variates = 0.239477 
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CHAPTER 5 

~ 
As we have seen the distributions of . 6..r and converge 

to normality as the length of realisation N of our process tends to 

infinity. However we have also seen that convergence to normality is 

very slow and for many time series problems we have available only short 

series. In consequence we shall now present some approximations to the 

~ exact distributions of Ll;l and A ~ and as we shall see they do appear 

to be very good approximations. 

Since we have in effect used the central limit theorem to 

involk normality one approach is to look for a sharper approximation using 

Edgeworth type expansions. To this end we shall outline some of the 

ideas behind the derivation of these expansions. 

Let Y(x) be a distribution function, not necessarily Normal, 

wi th characteristic function ~(j..) and let ~(x) be the distribution to be 

approximated. We shall assume ~ (X) has a characteristic function cj( 1-) 

Denoting the cumulants by ~ (,. ~ and f ~r \ respectively we have the formal 

identity 

since 

and 

= 

t~4{")~ 

J~~{I-\ -= 

t(J 

L 

r ... , 

~f (I·~)r 
--r '-, 

f (I'~) r 
r ---r­

r, 

5.1 

Now if 'f{~\ and all its derivatives vanish as ')( tends to the limits 

of its range then (i~\{~(~) is the characteristic function of 

or if we introduce the differential operator D 
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then 
5.2 

In consequence we may write 
_ -6 

r ():) ~ ~ p I £ I ( Kr - 'Or )r - D r] {()l) 
r. 

5.3 

Hence one can quite formally construct a distribution with 

prescribed cumulants by choosing :tDl) and formally expanding 5.3. In 

the development of such asympotic series the most important distribution 

~(~\ has been the Normal distribution, as one might expect, see for 

example Edgeworth (1905) and Charlier (1905). 

Charlier expanded 5.3 and collected terms by the order of 

derivatives which gives the "Gram-Charlier" A series. It is in fact a 

least squares expansion in the derivatives of the Normal integral ~(~) 
with respect to a weight function '/ f (1) Cramer (193~) and Szego (1939) 

have shown that the A series converges for functions Ft)l) whose tails 
I~ 

tend to zero faster than [1 (x)] and that convergence occurs for all 

distributions on finite intervals, however Wellace (1958) comments that 

non-convergence is common in other cases of interest. We note in 

passing that ~(~) is usually chosen to have the same mean and variance 

as the distribution ~ (;x, this having no effect on the convergence or 

otherwise. 

Edgeworth (1905) followed a slightly different argument by 

considering improvements to the central limit theorem. To outline his 

development let the distribution ~(~) to be approximated bJ the 

distribution ry' tlt. ) of the standardised sum 

y : 
1\ 5.4 
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and let "i(1~ be the standard normal distribution 

Then in 5.1 

5.5 

and 

,~ r - '(( {'" =- 5.(' 

where we have assumed that the component variables are independent and 
l 

identically distributed with mean ~ and variance d while the higher 

moments are given by 

J( r = (' ~ 3 
5. 7 

If we now collect terms in the formal expansion of 5.2 according 

to powers of " we obtain an asymptot:ic expansion of the characteristic 

function of the form 

?,. ( " ~ ) J e - ~ )z. 
"rh 

[ 
r :., .5'.8' 

where ~(e) is a polynomial of degree 3 {'" with coefficients depending 

on the cumulants of order 3 to r ~ 2. The corresponding expression for 

the distribution function can be shown to be 
DO -L 5.~ 
r==' nr/~ 

Thus we are in fact adding approximating terms to the central limit 

theorem, for taking terms in r to the power zero we have the familiar 

result 

Explicity 5., becomes 

5,10 
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Crarner (1928) proved that the series is valid but gave no 

explicit bounds on the errors. Apart from assuming that one more 

cumulant existed than is used in any partial sum the proof assumed the 

"Crarner" condition that the characteristic function "5 (~\ of each 

component random variable satisfied 

t~ ,s""p 
S. 1'1. 

I 1:-\ ""> 00 

In fact this condition is satisfied for all component distributions which 

have an absolutely continuous part but is not satisfied for discrete 

di stribu tions. Crarner (1937) also showed that the a-symptotic expansions 

remained valid for sums of non-identically distributed random variables, 

however the conditions required are very much more restrictive. 

It was also shown by Gnedenke' and Kolmogerov (1954) that the 

termwise differentiated Edgeworth series is a valid expansion for the 

probability density function. 

Essen (1945) has studied the problem of developing asymptotic 

expansions when the Crarner condition is not satisfied. He showed that 

the~ror in using the first approximation 

:T ()() ".3 ~ ( l) (Jl ) :;. I~ 

crs;\ 
is of smaller order than ~ providing only that the third moment is 

finite and that the distribution is not a lattice distribution i.e. takes 

all probability on a set of equally spaced points. However Wallace (1958) 

has pointed out that the usual Edgeworth expansions can be modified by the 

addition of discontinuous terms so that the resultant expansion is valid 

uniformly for all "l. 



119. 

Since the Gram-Charlier series is just a rearrangement of the 

Edgeworth expansion all the above properties also hold. However for our 

purposes it is convenient to use the Edgeworth series. 

In a great many statistical applications the problem is the 

reverse one in that the percentage points of the distribution are needed. 

From the Edgeworth expansions of r l\ bl) an asyrnptcitic expansion of the desired 

quantile ~f can be obtained by formal substitutions and expansions of 

the form 

J( p : 
-I .,. :J~. '4 

n 

where the 'S; ( e.) are polynomials and t ~ is the corresponding quantile 

of the Normal distribution. Cornish and Fisher (1937) carried out these 

inversions treating each cumulant of ~(x) according to the size of the 

leading term. Abramowitz and Segun (1968) give explicit form to Xp 

and we follow their description here. 

If ::(p is such that then ")( f is given by 

where 
~y + 

-* '<l.hz.(cp) 4 '(1l.~'I{l:p) 
J 

... (J ~J(~r) i- 1'. '(~ k,2.(l,) + Y, ~1I.r~P) 

4 t'q hit (l-p) + (Lt. ~l)(~') + r,l.(L h'l1.f t pl +(,~~'",hp) 
4 ..• 5.ll, 

11being the corresponding percentage point of the standard normal 

distribution and 

5.17 



while 

hlcx; :; 

h 1. ()l) :; 

h" Ix) .:::; 

~ 3 [x) -= 

hilI ()() = 

~ 4- ex) -

hh(.t) = 

~,~ oc.) = 

kill. (x) .::0 

~ /1/1 ('X.) .:=-

120. 

~ ~IL ex) 
6 

....L }-lj(::H) 
2LA 

t [ 2. H,3 ex) f- H.UdJ --
J6 

[ 1-14 (J<) J 
I '2. 0 

I [ 12 J-1 4 pi) T 1'1 J-1l.(x)J --
32.LI 

I 

720 

3%"4 

- -L 
I ~o 

I --
2~k' 

/-J - ct} 
.) 

[ 
[ 

[ 

3 H s (~) t- b ~I.J (x) -+ 2 ri, (:x J J 
2 Hs (?C) + 3 J-G Ol) J 
1 u ~I~ l'}() ~ .3 71-)3 LJd of ls" H, (~) J 

[ ),,'52 Hs(;{.) ~~J2 J-}J(x) + 227"11(~)J 
7776 

The drawbacks of the Edgeworth and Cornish-Fisher expansions 

are several. The expansions are not easy to evaluate in view of their 

5. I<i' 

complexity and the special functions required. More serious is that the 

Edgeworth expansion is not a probability distribution and does not give 

rise to mono tonic functions. In fact they can give rise to values 

outside the unit interval [DJ I ] this being particularly so in the 

tails of the distribution. 
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This does not conflict with the proofs given above since the 

proofs of convergence etc., refer only to the absolute value of two functions 

approaching zero. 

Barton and Dennis (1953) outline the conditions under which the 

Edgeworth and Gram Charlier expansions can be expected to give unimodal 

and positive de fin ate results. Figure 7 summarises their results giving 

regions in the (3,) ~ 1.. plane for which the expansions are positive 

definate and unimodel. 

For some practical use of these expansions we refer the 

interested reader to Teichroew (1~5b) and Greary (1947). 

As an alternative to the computation of the appropriate 

asymptotic expansions another approximation method is to fit the approp-

riate curve from the Pearson system. That is the system of frequency 

curves satisfying the differential equation 

.l- :b:: rx .... cl) 
~ d x. c() -+ CI:r -t C2. xl. 

which can be obtained from the hypergeometric series, see Kendall and 

stuart (1969). 

Examining 5. 20 we see the mode of the distribution is at 

and if we shift the origin to the mode we can see that 

x 
= 

and 

-= 
[ Co - ( I -+ Cl ) X ~J 

5.1.0 

S.2A 
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thus the curves have points of inflection at 

J( = :± 
I -t C, 

Further if we express C Cl l Cl) C 2. in terms of the moments of the 

distribution we have 

C I 4 

where as before 

et (Lt P 1. - .3~1 ) 
<. ( 5 ~l - b ~ I - '1 ) 

QJ J1' ( (>~ + 3 ) 

2. ( 5" ~l. - b ~ I -1) 
2~L-3~,-b 
2 (5 ~l- - 6~, - q ) 

t3, .:: 

Thus each curve is uniquely specified by its first four moments. This 

can be a useful property if one is using sample moments, however in our 

5.23 

5.2/4 

case since all the moments are known exactly errors in estimation of high 

order moments are not a real consideration. 

Looking at 5. Z () we can see that the form of the function 

is largely determined by the values of the roots of the quadratic 

or equivalently by the ratio 

e
l

/ ' I. C ,.. Co 1. 

This latter quantity has been termed the criterion K by Elderton and 

Johnson (1969) and can be written in the alternative form 
1-p, (f1.13) 

S.28" 
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The three main "types" or solutions to 5.20 arise as follows 

(i) When I( <:: 0 the roots of 5.25 are real and of opposite sign and the 

curved obtained is the Pearson type 1. This is a Beta distribution which 

is written 
p-I .,-1 

:( (I-X) S.2tt 

is standardform. 

(ii) WhenO( J( <: I then the roots of 5. 'JS are complex and we have a 

Pearson type 4 which can be written 

/e( J 

the ILl ""I V being parameters determined by (3 I ) fL 

(iii) When l( ') I both roots of S. 2 7 are real and of the same sign, 

giving rise to a Pearson type 6 curve. 

) ~ -f 
~ ()t): Jo ('X - Col X 

where again the constants are determined by the moments. 

These three curves are the main "Pearson types", however there 

are at least 9 further "transitional" types that have been classified, 

including the Normal and Gamma distributions. Some of these types are 

shown in Table 17 together with some brief details of their shape. 

For more detail the reader is advised to consult Pearson and Hartley (1970) 

or Elderton and Johnson (1969). Figure 7 shows the boundaries of the 

various curves on the ~I and ~l. plane. 

There are obviously some difficulties in obtaining the 

appropriate curve from tt. 2 S given values of (3 I and f 1-' However often 
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all we require are percentage points of a probability distribution and 

in this case things are made very simple by the extensive tables published 

by Johnson etal (1963) and the extended version of these given in Pearson 

and Hartley (1970). These tables give values of the percentage points 

of the standardised deviate for 15 differing percentages. The use of 

these tables makes significance testing very straightforward and increases 

the use of the Pearson curve approximations considerably. 

Pearson curves have been used as approximations to unknown 

distributions with considerable success. Stephens (1963) used such 

curves to find the distribution of Watsons goodness of fit statistic 

and the curves have been used by many other authers. 

A further elegent method of approximation is that using the 

method of "steepest descents" in evaluating integrals. This technique 

has been used in approximating the distribution of the correlation 

co-efficient, see Kendall and StuaftCl96~) but the method appears to have 

orginated in Jefferies and Jefferies (ICfSO). The application of this 

technique to statistical problems has been studied by Daniels (1954) 

whose approach we now follow. 

Let us assume that the distribution to be approximated 

comprising component random variableswith a probability distribution 

and a moment generating function H n .. ) 
e" l- x 

which exists in some non-vanishing interval including the origin as 



Type 

1 

2 

3 

4 

5 

Equation Origin 

N\ "1-
!.\ = ~ (I -+ .?::...) I ( I _ ~) Mode 
v J" Cl I Ql.. 

j : jo ( I - :~) '" Mean 

-~x( tG 
J = jo ~ I + ~ ) Mode 

j = j 11 e - v b~-' ~ {I -+ ~~ r""-
-t. ;./ ~ 

J : ~() e -rh J( - P 

Mean 
-+~ 

2 ",,-2. 

At start 
of curve 

TABLE 17 

K 

IL ( 0 

1£ =0 ~I=O 

~l. c:: 3 

~ P2 = 6·d~, 

o ~ Kc I 

It = I 

Limi ts and Form 

- Q,~:>( ~ ~2. Skew may be U or J or bell 
shaped 

-Gc ~"X~ et Symmetrical can be U shaped for 
otherwise bell shaped 

- C4 ~ )( c:: 10 Bell or J shaped 

_ D{J C )( t.. O(J Skew and bell shaped 

OC-J{t-I/O Bell shaped 

I-' 
N 
U1 



o 
'l-
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FIG. 7 
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Consider the mean of (\ independent random variables ",.. X >1\ 

then its density function ~ ... (.,t \ is given by 

J ~ S.JJ 
_00 

or using the Laplace transformation 

T ..-,,"00 

J 5·34 
VI 

e 
T - " ~ 

being the cumulant generating function. 

For n large we can approximate the integrand by choosing a 

contour of integration to pass through the saddle point of the integrand 

so that the contribution to the integral of the part away from the saddle 

point is negligable. 

By looking at possible paths through the saddle point, given by 

Daniels showed that the path of steepest descent gives an asymptotic expan-

sion of the form 

~ .. (1l) .:. jW\ ( ')t ) 

J 
1-+ -!; [ k A..I~o)-z~ gll)... .. J J S.H 

where 

'J~ 
(:x. ) ::: 

Y
1 

Y\ [1(( ~o ) - ~ 0 'f ] 

l- t'\ J e 
2.11 K" (h,) 5.36 

~(j)(~) j)}J 
L kIt 0-) J IlL 

5.37 

bQ 
and is the saddle point. 

A. 

In addition he showed that only one real root of 

KifI-) c i: 

exists in the same interval as N (~) 



128. 

Using in our case the cumulant generating function 

K (~\ =: 

from 3.21 we have to solve 

5.39 

to find the saddle point. The analytic solution to 5·3' is not easily 

found, even using the usual Stirling approximation to Plc) we still must 

solve a transcendental equation. We feel that some progress might be 

made using the theory of integral equations but feel that the lack of a-

solution necessitates using one of the approximation methods discussed 

earlier. This is rather unfortunate since 5.35 is an asymptotic 

expansion which converges much faster than the Edgeworth or Charlier series 

and has the added attraction of being non-negative. 

Having reduced ourselves to Edgeworth series and Pearson curves 
~ ~ 

we now proceed to apply them to the distributions of !J I and Ae, 

To use the Edgeworth expansion as we know all the moments of 

the distribution are bounded we need only show that the component 

distributions satisfy the Cramer condition that 

) q,(j..) I ~ I 5·40 

with equality if the distribution is a lattice distribution c.f.Lukas (1960) , 

In our case 

s. Lt I 

or to be more precise since we are dealing with the consistent estimator 

i' (t"~ ~ ~) 
r ( "12- ) 
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A 
For v -::. 1- that is for h I we have simply 

::: 

hence 

and clearly 

~~ I 4{1-)1 <: I 
al...::>oO 

In general we have to proceed as follows 

4 (~) = r (,./- ~ ~ ) 
I' (~l. ) 

I cPfqlL "1 

J~ and = I (i~tVti) 
e{~) 

IQ 

[ 
-/ 

.:: IT + ,! ] 
.. =CJ ( i -+ '1) z. 5.4-3 

Now the convergence of 5·~3 is completely dominated by the convergence 

or otherwise of 

Examination of 5.40 and use of the {;lausB test for absolute convergence 

shows that S· 43 is absolutely convergent to zero 

and hence 

since 
Q~ I 4-{ .. J/~O 

f; -;> Gel 

Thus we can construct Edgeworth type expansions. 
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For the Pear sons approximations we see from Chapter 3 that our 

values of ~I and ~~ lie in the range of the tables of Johnson et al 

(1963) enabling us to interpolate our percentage points as required. 

To see how well these approximations worked we tried some 

simulation experiments 
I-

and compared the sample results for the distribution 

of 6 x. wi th Edgeworth and Pearson predictions. To avoid overwhelming 
0\ 

the reader with figures we shall leave discussion of the values for ~~ 

until Chapter 7 for as we shall see there are some rather tricky problems 

involved. 

From tables 17 and 18 we can see that the Pearson and Edgeworth 

approximations provide reasonable fits to the simulation results. The 

Edgeworth expansion does appear to do rather less well in the upper tail, 

the reason apparently being that the actual distributinnis skewed while 

the Edgeworth expansion is rather symmetric. This latter fact is well 

illustrated by Figures 9 and la. 

For this reason together with the fact that the Pearson curve 

values are much easier to evaluate we shall from now on use only the 

Pearson curve approximation and for convenience the percentage points 

of the approximating distribution can be found in Appendix 3. 

~ ! 

Another point of interest is the performance of the trapizodal 

estimate. Davis and Jones (1968) advocate an estimator which has the 

periodogram ordinates at frequencies·O and n omitted. We feel that 

this i's unnecessary since the distribution of the end points is known and 

may possibly introduce errors. To confirm this we attempted some further 

comparisons using a very small length of realisation 
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TABLE 18 

Simulation results using Edgeworth Series for truncated estimator with 
no end points. 

For various autoreq,ressive models of the form X E;; .: rX.. X
fr
-, + C ~ te/ ... /I)( 

the proportion of values of AI not exceeding the percentage points are 
compared with predictions using an Edgeworth expansion to evaluate the 
percentage points. 

True 
Percentage Sample Values 

No. of 
Replications 400 400 400 

0( 0.0 0.4 0.8 

0.5 0.5 1.0 0.75 

1.0 1.25 1.5 1.0 

2.5 3.0 3.75 4.25 

5.0 5.5 8.0 8.5 

10.0 11.0 12.5 13.5 

25.0 26.25 27.25 26.0 

50.0 51.75 61.0 46.0 

75.0 76.25 63.25 72.0 

90.0 91.5 96.0 87.5 

95.0 95.0 98.5 94.25 

97.5 98.0 100 96.5 

99.0 99.0 100 98.15 

99.5 100.0 100 99.5 

99.75 100.0 100 99.5 
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TABLE 19 

Simulation results for the fits of Pearson curves using a 
truncated estimator ~:r. with no end points 

For various autoregressive models of the form 

b-=- I··' ~ 

the proportion of values not exceeding the percentage points of the 
appropriate Pearson curve are compared with the true percentages 

True 
Percentage Sample Values 

No. of 
Replications 400 400 400 

0<.. 0.0 0.4 0.8 

0.25 0.25 1.0 0.5 

0.5 0.5 1.0 0.5 

1.0 0.75 1.5 0.75 

2.5 2.25 3.5 3.5 

5.0 5.0 7.45 8.25 

10.0 11.5 12.75 13.5 

25.0 28.5 29.5 28.0 

50.0 52.75 61.5 52.25 

75.0 75.75 85.5 72.25 

90.0 89.75 95.75 86.5 

95.0 94.5 98.0 92.5 

97.5 97.5 99.5 96.0 

99.0 98.5 100 96.5 

99.5 99.0 100 98.75 

99.75 99.75 100 99.25 
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The sample results are given below for the percentage points. For 400 

replications of the model 

the sample mean and variance were 

Mean 

Sample Theoretical 

-0.0200 0.0000 

Sample 

0.1146 

t .. 1 .32. 
0<.. = 0 

Variance 

Theoretical 

0.1415 

the agreement being very much closer for a smaller value of N than in 

any of the cases using the Davis and Jones form given in Chapter 4, see 

tables 12 - 16. Even using the approximate Pearson curve percentage 

points for a Ddvis and Jones estimate the fit as shown below is much 

better. 

Some additional tables 20, 21, 22 give further evidence of the much 

better results using the trapizodal estimate. Clearly for large samples 

the superiority is 

PERCENTAGE SAMPLE PERCENTAGE SAMPLE 

0.25 0.25 75.0 75.75 

0.5 0.25 90.0 92.25 

1.0 1.00 95.0 94.25 

2.5 3.25 97.5 98.00 

5.0 5.5 99.0 98.50 

10.0 10.0 99.5 99.00 

25.0 29.0 99.75 99.5 

50 52.5 

much less marked but it would seem that for all sample sizes met in 

practice the trapizodal form should always be used. 
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To obtain some idea of the difference in the moments between 

the two forms we can show, Abramowitz and Segun (1968). 

K I -t 

I ·270 U 

and 
I( r{ T) :: ] 

where k' r( T) denotes the trapizodal form and I( (" the estimate with 

truncated end points. 

Having approximated the distribution of 
~ 
A~ we have in 

effect provided ourselves with a method of testing a hypothesis of the 

form 

against J-I , 

This test has the useful property of not requiring the order of the model 

to be specified. Since it is usual to have to fit a model to estimute 

" j ~ ~\ it would appear that'the use of .6 I is a considerable advantage 

especially as it would appear that errors in estimation in the parametric 

situation are greatly increased when the model is miss-specified. 

While the test above is of interest it is a little restricted 

since in most circumstances one would wish to compare differing estimates 

of } ~ e I However it may be of interest to users of stepwise regression 

techniques in lagged situations who know a priori the minimum mean squared 

error. One can always estimate ~~ e I for the residual series once one 

has fitted a time series model, and for a linear model 

with then 
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when the residuals are obtained from fitting the correct model. If the 

" mean of ~r differs significantly from the a priori value then one has 

a miss-specified model. This does enable one to avoid both under and 

overfitting but we feel it will provide more information in the overfitted 

case. 

" What is of more interest however is the comparison of ~~ 

calculated before the model is fitted and 
1-

~~ the sample variance of 

the residual series, for if the correct model is fitted 

This has in essence been treated in the examination of the test for white 

noise discussed in the previous chapter. However as we have seen the 

test proposed is less than satisfactory and we now turn our attention to 

more efficient alternatives. 
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TABLE 20 

, Comparison of theoretical percentages with sample values 
of A.L using Pearson curves 

Model 

0/0 GlJe.. 
0.0 0.5 0.9 

0.25 0.25 0.0 0.25 

0.5 0.25 0.25 0.5 

1.0 1.00 1.00 0.75 

2.5 3.00 3.75 3.00 

3.0 5.00 6.00 5.5 

10.0 9.00 12.5 9.25 

23.0 25.75 24.75 23.00 

50.0 51.25 51.00 54.00 

75.0 77.5 76.75 77.5 

90.0 91.25 91.25 89.5 

95.0 95.25 97.00 95.25 

97.5 98.5 97.75 98.75 

99.0 99.5 99.25 99.5 

99.5 99.75 99.25 99.75 

99.75 99.75 99.75 100 
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TABLE 21 

Simulation results for the fit of two moving average models 
of the form 

~& :: C t:-- O'StE /:'_1 t=- I '.- ~ 

Replication 500 400 

N 32 64 

Percentage 

0.25 0.2 0.5 

0.5 0.4 0.5 

1.0 0.75 1.0 

2.5 1. 25 2.0 

5.0 3.4 4.75 

10.0 8.0 8.00 

25.0 21.4 24.75 

50.0 49.8 50.0 

75.0 77.2 75.0 

90.0 92.0 90.25 

95.0 96.0 95.0 

97.5 98.75 97.0 

99.0 99.0 99.0 

99.5 100 99.75 

99.73 100 100 
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CHAPTER 6 

As we have seen in Chapter 4 it is possible to devise a test 

for white noise by comparing the estimate of the minimum mean square error 

of prediction with the sample variance. Unfortunately as was pointed 

out this approach is unsatisfactory for several reasons and in consequence 

we shall now investigate a slightly different approach which appears to be 

superior in almost every respect. Our test for white noise will use the 

approximations for the distribution of 

.: -J.. 
Mo 

which we derived in the previous chapter and this enables us to consider 

the small sample as well as the asymptotic case. 

Consider a stationary non-deterministic process J Xl-: ~ OB I ., . p +'} +I J . 
Using the first segment of the process ~I'" we 

estimate the logarithm of the minimum mean square error of prediction 

" l~Q, using ll.r defined above. Then taking the last segment of the 

series Xp-tr .... t' X p-tI.j.l J X p-tq-t:t we estimate the variance of the 

series using the sample variance. 

As we have seen the sample variance can be considered to be a 

sum of periodogram ordinates and in addition the periodograms computed 

from differing segments of the sequence are uncorrelated, thus 

6.1 

Now let 
1) =- !:r - J '(j S/ - b 

where b= J~(¥)~1(Y) 6.2 

as in 4.15 when 
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We know that for a truncated estimater 

= 
6.3 

thus as we have as an approximation 

6.4 

J _I I{ I) " I ~ + y (N;.' ) 
M 

has zero mean and unit variance and has a distribution which is approx-

imately standard normal. If we use the trapizodal form then we replace 

our approximation -+ I{ I ') by 
fV\ 

i I (d -+ '-l-Ifo -S ) 6.5 

WV\ .2 NI z. 

This use of segments of the total realisation enables us to avoid 

estimating the correlation. While the variance of D is inflated by 

comparison with the form ~ given by 4.16 we feel that this is not 

unreasonable in view of the rather poor estimates of covariance available. 

Our next problem is to choose the relative magnitudes of p and q. 

One possibility which is intuitively reasonable is to choose p and q such 

that 

6.6 

when ~ ~ ~ J is a white noise sequence. Using the a-symptotic expansion 

6.7 

see Erdelyi (1953), and taking the dominant term in the expansion 

.-£ ~ _I_ 
N-I N 
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while -+'(1) I· b 
M. "'" 

Thus 3·2. 2 -- = 
p 9 

giving f::> ~ I. 6 1 6. !' 

In view of b. b we can choose a sui table p and q, however for short 

series the attraction of choosing p and q equal does appear to dominate. 

While we can, as we have seen, appeal to the asymptbti~ resul ts 

for the distribution of D it would be preferable to obtain some approx-

imation to the small sample distribution since in effect we are using half 

our sample points for the limiting distribution. 

" .L Sv1.. If we make the not unreasonable assumption that ~ ~ and .~ ~ 

can be assumed to be approximately independent, an assumption that 

can be made more realistic by choosing I >0 then we can obtain the 

following expressions for the cumulants of D 

tl(D) KJ Aj.) - I<.(J, st ) 
le 1. (D) ::::. 1(2.(6£\ -i "1.( ;~sl) 

1(3 (DJ ::: I{ J (AI.) - K 3 ( j J 5/ ) 

t'4 (D) 
\ 

+ K. 4 ( J~ S _L J :=' /(4 (DJj b.' 
and in general 

1( ... (D) ;:. IL r ( 1 I) -t ( - I) r- r: ... ( j) ~ S/· J 

Here K~ (~) denotes the 5 ~'" cumulant of the distribution of the random 

variable I. . Since the component cumulants in b. ~ are known we can 

evaluate the \l.s(D) for all 6 

For ~ X r 1 white noise then 

:: 
...J. I( I) 

M 
6.,0 
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and 
b.11 

were for algebraic simplicity we have used the approximate forms, however 

the modification is minor. Since the ~(r)(l:) are tabulated by 

Abramowitz and Segun (1968) or may be computed from the following 

asymptotic expansions, see Erdelyi (1953) 

+ I'( ~ '\ I I _1- - o( ~8) &.Il. -+ = -- ---
t..2- l:.~ 2 Z4 6 G 6 

~ "'( l) =- L 
1- 3 2 + 0 (~-'t ) b.13 

7 3 2:4-
+ 

2';5 ~7 
in general QI 

ii"\{e) ( )"+1 \ 'L { b 4 t ffl-U b.14 ::: -I ~. 
1£..::0 

in principle the ILj ( 0) are easily evaluated for all j J~) M . 

Using the dominant terms in the expansions and setting N:: 2'M. 

ILL (D) ~ 0·64 -~ 
1(3 Cb) ~ - 2.:J.t 

MZ, 

"'4 ( J) ) ~ ..ft:41 
"",.3 b.15 

giving 
b·b 0, - - JM 

while 

~ --+ Q.:3<6 b.11 
"(V'\ 

thus in the limit as N -":> 0() f.> I :: U B ..,,:3 
I r L 

which gives 

us the same parameters as the normal distribution and it would seem a 

reasonable inference that D has a limiting normal distribution. 

For convenience table 22 gives the value of the psi-gamma 

function i ( ~) and its derivatives for a range of values of N. 

To construct a test of significance based on D we can as 

before consider the null hypothesis 

~\o: \.1O.N' (X r ) .=- c::i1.1. =~2.. 
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TABLE 22 

The psi-gamma function -i le ) for arguments of the form tJ- \ -
of values of N. z.. 

over a range 

~ ( N -=..' ) 
"). 

+I(~,) 
2-

i"{~' ) 
"Z-

i nl{N~1 ) 

N 

32 0.06666 -0.004444 0.00059 

64 0.03222 -0.00104 0.00007 

128 4.1431 0.01584 -0.00025 0.00001 

256 4.8442 0.00784 -0.00006 0.0000 

512 3.1781 0.00389 -0.00001 0.0000 

50 3.1781 0.04163 -0.00173 0.00014 

100 3.8918 0.02038 -0.00042 0.00002 

200 4.5941 0.01007 -0.00010 0.00000 

300 0.00668 -0.00004 0.00000 
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l 
0" being the "innovation variance" against an alternative of the form 

For large samples, under Wo) D is approximately normal with zero mean 

and variance given by b·5 However if our alternative is that ~~~J 

has the form 

A (B) 'X~ = L~ b.20 

that is 

{.JOH" ( '/.. t ) .: !YON" ( C. L- ) b.II 
(-\(P.lJ 

then we need to find the distribution of D under I-L to have any 

idea of the power of the test. 

of J ~ 5~l under l--\ I 

Thus in effect we require the distribution 

Proceeding in the same manner as in Chapter 4 we can assume that 

the distribution of -\, Sot 1.. is capable of being approximated by a 

normal distribution with mean and variance given by 

y = 1,cS/ 6.22. 

)1'1. = V 
0'/* N 

where 
VtIJ 

~ « L 

V j~ :;. L .: ~ 
,,_";) 00 t-:.- aU 

Thus for 

XI:- .::.. 0<.. X"_ I -to t: ~ I I.. } l I b. 2 S 

we have 

d't-
to O"'l... 

'.2(;, c 

/_oll. 

and 
I.)"t.\rr (J~5"1.1.) ;. 

L Rcl. '.27 
cYlfN 

since f1c- s. 0< (( e-I we have 

1rUN"( J5 S/- ) .; (~~) _I b .2i-
1 - d."l. ~ 
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is asymptotically normal with mean 

and variance 

Even under the assumption of normality it is clear that the 

first order autoregressive is a very simple case, and in general for 

higher order autoregressive or mixed models the calculation of the mean 

and variance of J ~ $) L become very much more complicated. 

However even in these cases, it is possible to make some 

progress provided we can write down the spectral density. For example 

consider 

9(5) E ~ 

with spectrum ere .. "") }l.st...L 

Are'L0) 1n 

Then we can write 6,.30 

cf'/ : 

and since ~ ("'-I \ is known we can evaluate 6· 30 either anal yticall y or 

use a suitable numerical integration algorithm such as those given by 

Clenshaw and Curtis (1960). 

For we can use Parcevals Theorem to give 

V .: 

Once again the integral in b . ~ I can be evaluated analytically since 

'- l..v) is a rational function, however we would surmise that for many 

classes of functions ~(~) some numerical technique would probably prove 

more convenient, perhaps even more so than in the evaluation of the 

variance. 
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As an example we consider the following simple second order 

case 
6.31 

Then 

= 
I -""'-lll I P, _""\)]1 211 1- 01. e 1 - r e 

icv 
and using the transformation l = e and Cauchy's residue theorum we 

have 
(1-+ o(~)O"'L 

(I _ol~)(I_oI1.)(I_pl) 

for the stationary case. 

v = 

and 

Writing 

for 

giving 

The evaluation of V is rather more complex; 

~4 In 
U.lI)1- - (I 

= cr" 
C2..471t 

c.. 

2 n CL. 1 

c .. Lv 

II-O'o..e.-i~/"J 1_~ei""l~ 
\.. 

0( r~ } 
1 -+ oll.40 2 c/..{(/)IAJ 

~ )cl~ 
1 -+ P l. -+ 2 ~ cc!> 1.0 

= ( o(.-~)(I-O(~) 

tX2(,-+,il) 

(l_ot'l)J 

2 n ( I ~ D(~ ) 

(I - .( ~ ) ( , - 01.
2 

) ( 1-01. ) 

f I -+ 2 ( ~ ) 1 I J-"'~ 

b.l3 

, ·.34 

6·36 

1>·37 
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It should be noted that (,. 3 ~ is real even if the 0( I P are complex. 

Since the ~I P are conjugate pairs one can after some algebra show that 

the complex part of V vanishes. 

Since we have only large sample approximations it is worth 

attempting to find an approximation to the distribution of 

based on the cumulants of J OJ SjL under H 1 

Now 4n 
t'\ 

and denoting the cumulants of S I-
~ b,/ 1(1 It .. 

J J,. 

we have ~ 11 
2 n ~ fw) ~I.V 

I( I 2. L 2 n ~ 'IN) It I ~ ~ 1.( I ~ = 
Y" '" .= Cl rr 

11\ z. il 1 

It z :0 ~ L l2n~(",,)J It, ':!.o 2 If L J [2 n ~ (!AI}J ~ w 
V\l.. It :(j jl 0 

~ 13 f'[2n~t~)Jscl~ 8- [ 1211 ~ ("" ) 1(3 ~ LdtJ 
IG = 

~ ,,:cI n () 

where Il K) ... , ) denote the cumulants of 

In principle these integrals can be evaluated since 

6.40 

is 

known. In addition we Can obtain the cumulants of -.\ UJ S '/. L by using a 

Taylor series approximation based on the equations b . 40 . However this 

means our calculations have become very cumbersome and in addition the 

chance of making errors has become rather too large. 

As an alternative we suggest approximating the distribution of 

where 1;- is a chi-squared variable with V= ( N;') 
degrees of freedom, the a and b being chosen to match the degrees of 

freedom. Alternatively since (ffAJ' ( J ~ s / ) C IJO.N ( 6) one could 
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estimate and ~~Slll.. from segments of equal length and use the 

normal approximation. 

To give some idea of the efficiency of the test outlined above 

we conducted some simulation exercises. Several white noise series 

'I c = /:--.:.I.··N 

\ 
were generated and the values of ~ ~ obtained were compared with those 

for some first order autoregressive series 

L- .... /. " N b·£.1. 

and with two second order models, these being 

( I - /:'·43 

and 

(I - (). 75 B + 0·5 is l.) X r .: L t-

For long series, that is values of N::. '2.5& the means and variances fit 

the theoretical predictions in the white noise case very closely as can 

be seen from tables 23 and 24. More interesting however is the very 

close fit of the best approximating Pearson curve. Table 25 gives the 

sample values compared with theoretical values using the Pearson 

significance points tabulated in Appendix 3. As can be seen the fit 

is very good indeed and it appears that our small sample approximation 

for the distribution of D works very weiLunder the assumption that € r 
is white noise. Table 24 also gives the mean and variance of D when 

" only one end point is included in the estimation of 

see the sample values in this case are rather poorer 

we have said before that estimates of J je. using 

11].. 

thus 

" lJ I 

. As we can 

indicating as 

should make 

use of both end points. Thus we can make probability statements and 

construct confidence intervals for j~e\ If we are to use these results 

in a test of significance then we need some idea of the power of our test. 
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TABLE 23 

White Noise Models 

Means 

Series Length No. of Reps Theoretical Sample 
Value Value 

128 300 0.0 -0.0022 

0.0 0.0107 

128 300 0.0 -0.0036 

0.0 0.0109 

128 300 0.0 -0.00442 

0.0 +0.01l7 

Pooled values for the above 0.0 0.0034 

0.011l 

64 400 0.0 0.0078 

16 400 0.0 0.0399 

0.0 0.0410 

In each case the second value of the sample mean uses an estimate with 

the upper end point set to zero. 
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TABLE 24 

White Noise Models 

Variances 

Series Length No. of Reps Theoretical Sample 
Value Value 

128 300 0.0207 0.0196 

0.0207 0.0202 

128 300 0.0207 0.0200 

0.0199 

128 300 0.0207 0.0199 

0.0182 

64 400 0.0415 0.0423 

0.0426 

16 400 0.1769 0.1752 

0.1798 

Pooled values for 128 900 0.0207 0.0199 
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Using the Pearson curve approximation for the distribution of D 

under ~o we decided to examine the distribution of some simulated values 

of D based on a variety of first order autoregressive models and some 

second order models. 

For a model of the form (1- 0'5&) t"'=<£..1- with M:::. 121( 

we tabulate below the percentage of simulated values of D which do not 

( lOO r,> ut !cv.. ~lonS ) exceed the white noise percentage points G '~r 

TABLE 25 

White Noise 
% points 0.25 0.5 1.0 2.5 5 10 

% of values 

25 

of D 24.7 32.3 39.0 52.7 62.7 76.3 87.3 

50 

95.0 

As we can see from Table 25 the proposed test of significance 

works very well for large samples. However ~; 11 %' implies a total 

realisation of 512 when N.:.2 ~, For more realistic values of IV\ 

we have for M~ 64 an equivalent set of results as shown below for 

models of the form 
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TABLE 26 

The fit of white noise models to Pearson curve approximations 

True Sample Percentages not exceeding the 
Percentage Pearson percentage points 

Sample 
size 400 400 600 

m 16 64 128 

0.25 0.25 0.25 0.5 

0.5 0.25 0.25 0.67 

1.0 0.75 1.00 1.17 

2.5 2.0 2.75 2.00 

5.0 4.0 6.25 4.33 

10.0 9.25 10.5 9.67 

25.0 23.0 28.75 24.67 

50.0 49.0 52.00 50.17 

75.0 76.0 75.75 74.5 

90.0 88.5 91.0 90.5 

95.0 92.75 94.5 95.33 

97.5 97.0 97.75 98.33 

99.0 99.0 99.25 99.17 

99.5 99.5 99.75 99.67 

99.75 100 99.75 99.67 
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TABLE 27 

White noise Percentages I .... LO \12 f I1 (Cl \- 1 D ,,\ ':> ) 

% of values 
of D 0.25 0.5 1.0 2.5 5 10 25 50 

0.2 1.3 1.5 3.0 6.0 8.8 16.5 38.0 64.3 

0.4 3.3 5.5 7.8 16.0 21.8 35.3 53.3 79 

0.5 8.0 12.7 19.2 28.5 38.5 52.7 71.5 89.2 

0.8 90.3 92.5 93.8 96.0 98.3 99.5 100 100 

0.9 99.3 99.3 99.5 99.8 100 100 100 100 

We see from Table 27 the power of the test increases rapidly as 

~ -~ I and this is illustrated by Figure 11 which gives the power curves 

extrapolated from the above table. Three curves are given corresponding 

to Type 1 errors of 0.01 0.025 and 0.05 respectively. 

The total realisation in the above case corresponded to "400 

We also consider the case where the total realisation was of length 64 and 

~ '" 4~ This was taken as the smallest practicable case since we must in 

effect estimate the spectrum from 32 observations. However in view of 

the good approximations we have obtained using such small sample sizes it 

might be worth looking at some slightly smaller values of M. 
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TABLE 28 

White Noise Percentage 0.25 0.5 1.0 2.5 5.0 10.0 25.0 50.0 

~ = 16 

Sample 
(j.., Percentage 

0.2 0.5 0.75 1. 75 4.0 7.0 12.25 27.25 55 

0.5 1.0 2.5 4.75 8.25 14.25 20.25 44.5 68.5 

0.8 23.25 29.5 36.5 50.25 57.75 68.75 83.25 96.00 

0.9 46.5 53 57.5 73.0 79.5 90.75 96.5 99.0 

-0.9 55 60.5 66.0 74.75 86.5 92.75 97.25 99.0 

( 1...00 r Q V 11 ( (l t I 01\ S ) 

As we can see from the Table 28 above the test works well even 

with !vI = 16 and provides a satisfactory alternative to the method of Davis 

and Jones (1968) outlined in Chapter 4. 

To make our simulation experiments more comprehensive we also 

generated two second order autoregressive models 

Model A 

and Model B 0·75 ~f:.-I 

and in these cases we find the proportion of rejections is given by Table 29. 
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TABLE 29 

White Noise Percentages 0.25 0.5 1.0 2.5 5 10 25 50 

Sample 
Values 

Model A 88.0 90.0 93.0 94.5 98.0 98.5 98.5 100 

Model B 44.5 50.0 61.0 71.0 79.5 86.5 95 99.5 

and these results with ~ = 64 and a sample size of 600 would appear to 

indicate a very powerful test. 

We conclude that our method outlined above works well in 

discriminating between white noise and non-white noise time series models. 

If we could identify the small sample distribution under any alternative 

we could also discriminate between alternative time series models. We 

feel that it is an avenue that is worth pursuing. 

Since we had the sample distribution of D from our simulations 

we also compared the mean and variance of our first and second order models 

with the values predicted by ~·2~ and ,.~~ The results given in 

Tables 30 and 31 show that the theoretical values appear to give very 

good predictions and we would hope from these results that the power of a 

general test would be reasonable. 

Given such good approximations clearly for large Mwe can use 

the Normal approximation, in the small sample case we feel that the chi-

squared approximation for S~L is worth investigating. 
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TABLE 30 

FIRST ORDER MODELS 

No. of 
Mean 

01.. Replications Theoretical Sample 

64 0.2 600 0.0408 0.0387 

64 0.4 400 0.1744 0.1657 

64 0.5 400 0.2877 0.2621 

64 0.8 400 1.0217 0.9363 

64 0.9 400 1.6607 1.4798 

128 0.5 500 0.2877 0.2853 

16 0.2 400 0.0408 0.0206 

16 0.5 400 0.2877 0.2172 

16 0.9 400 1.6607 1.4876 

SECOND ORDER MODELS 

64 Model A 200 0.9234 0.9036 

64 Model B 200 0.5744 0.5507 
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TABLE 31 

FIRST ORDER MODELS 

No. of 
Variance 

M Replications Theoretical Sample 

64 0.2 600 0.04263 0.04206 

64 0.4 400 0.04728 0.04549 

64 0.5 400 0.05174 0.05139 

64 0.8 400 0.09688 0.08764 

64 0.9 400 0.17455 0.1358 

128 0.5 500 0.02587 0.02560 

16 0.2 400 0.15594 0.15478 

16 0.5 400 0.19314 0.17417 

16 0.9 400 0.41978 0.41114 

SECOND ORDER MODELS 

64 Model A 200 0-06341 0.06220 

64 Model B 200 0.05933 
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As we have seen however our test for white noise works well 

and we can consider models of higher order than the first unlike the 

situation described by Davis and Jones (1968). The simpler correlation 

structure of D would also suggest that this approach could be usefully 

extended. 

It has not escaped our notice that for a first order 

autoregressive model 

t [DJ .: - ~5(,_o(l) '.~5 

so that o(l. 
_ E Cl)] 

.: e 

and suggesting that for P( L I a possible estimate of ,( might be 

obtained from 
.. ;- J I - e-t> ('·4(, co( .:: 

This is really a very special case and clearly we need additional 

information so as to determine the sign of 

In fact however we are able to estimate the coefficients of 
~ 

our model directly using a modification of fl]. and D. Before proceeding 

further we feel it is an appropriate moment to discuss the use of the 
A 

spectrum estimates in evaluating j \l ~I by /), t.- Thus we shall for a 

moment defer our discussion of the estimation of parameters and look 

more closely at !~ 
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CHAPTER 7 

As we have seen it is possible to b ~ 
estimate ,.( ~ e I using D I 

and from our various simulation exercises it appears that this estimator 

behaves as our theoretical development would predict. Moreover we can 

" use 6; as the basis of hypothesis tests of some interest. However as 

we have shown in Chapter 3 one can also construct an estimator 

"" 
:: -'-

- I L 7.1 
'fII\ r =0 

of log e, based on the traditional "smoothed periodogram" spectral 

~T estimate and some of the theory we have developed for u~ carries over 

" to lll-

It must be born in mind that we cannot assume that adjacent 

spectral estimates are independent since our smoothing kernal has a finite 

bandwidth and in consequence we are forced to make assmptions when dealing 

" with /}~ about the degree of correlation between estimates of 

which are not required when using the periodogram. As a consequence of 

~ t this the estimate D~ is rather more difficult to construct and use. 

t. 

We now look at f!l \- rather more closely and compare its 

theoretical behaviour with behaviour in some simulation experiments. 

~ 

As we have seen we may define ~ ~ as 

~J " 
~ ~o ( J, 1 0 ~ ("-lj\) - 7.2 

where M is the number of lags used in the estimation of t (-v\ the power 

spectrum 

We estimate the usual form 

_"1 '\ \ ) L R ~ 5) 1\ (~ (Cl) 5 c.V 
5 .. -1'" 
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where is a suitably chosen weighting sequence, see Parzen 

(1962) • We choose the Parzen (1961 ) sequence defined as 

~/ld = S b J{ 2 -+ 6 I k 13 I III (0·5 

) 
1 ( -lkJ )3 o ·S' I IL I Lj.Q 

0 otherwise 

and a covariance estimate of the form 

-- I 

N 

I'll -Isl 

/;- ... , 
~ 

since as we have seen in Chapter 1 the spectral estimates ~ IIV) are 

non-negative. 

For an estimate of the form 7.1 we have seen that the curnulants 

are given by 3.tC).or for 

with mixing end points by 

1(, ;;: 

I{ 1 = 

I(r :: 

where 

an estimate of the form 

l7 j 
'L f 
M 

3.t()3that 

~(~) 

is 

J ~1(1ft) -Mo 

+ '''-1 ) 
~ r., ("l), ) 

Thus from these cumulants we ('CH\ for given M estimate the 

distribution of 
~ 

estimated ~(IU~\ for 

However the form of 7.2 implies that we have 

For some spectral windows this is not 

unreasonable for one might reasonably assume that adjacent estimates of 

~ l vV) are uncorrelated. From Table 4 however we can see that the 

bandwidth of the Parzen kernal is ~n 
31'1 

and from Table 3 we can see 

1.3 
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there is still a fair degree of correlation. The 

implication therefore is that our estimate should be modified to the 

form liJ 
~ 2-' 
M P =0 

where the separation is now 

In general we require that the minimum separation between 

adjacent spectral estimates should be at least as large as the bandwidth 

of the spectral window used. If this is not so then the correlation 

introduced can swamp our approximations as will be seen in some of the 

simulations. 

A further complication is introduced by the choice of the 

parameter M which must be chosen to balance the resolution against 

variance of the spectral estimate. Clearly we would wish to minimise 

bandwidth since this reduces the correlation problem and introduces mOre 

terms into the summation We feel that one should choose M/N 

to be large. 

The estimator can be viewed as a smoothed function of 

7·4 

~ 
~(.N) the periodogram, rather in the same manner as the spectral estimate 

However ~ ~-U r is the result of a double smoothing operation on the 

periodogram. This introduction of an extra smoothing operation appears 

to introduce an extra degree of complexity. However we have to bear in 

mind the loss of resolution when the ratio is large. 

To obtain some idea of the accuracy of our theoretical results 

we conducted some simulation experiments. Using first an estimator 
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without end points we generated 400 series of length 100, these series 

~ {. t \ consisting of independent 

" 
standard normal deviates. For each 

series f) ~ was computed and the sample mean on variance of these results 

is compared with our theoretical predictions in Table 32 below 

TABLE 32 

Mean Variance 

Sample Theoretical Sample Theoretical 

-0.13818 0 .. 0 0.02066 0.01195 

In this case the spectrum was evaluated at increments of 2n 
M 

was chosen as being 33. 

~ 

where M 

As is evident from the above the estimator ~ ~ does not 

compare well with our periodogram based estimate One may go 

further and conduct the same experiment but evaluate the spectrum at 

increments of n/
M 

thus giving M terms in the summation. Again we use 

M = 33. As we might expect the results for the first two sample moments 

\ 
of /j ~ given in Table 33 below are quite at variance with the theoretical 

ones. 

TABLE 33 

Mean Variance 

Sample Theoretical Sample Theoretical 

-0.14585 0.00000 0.02460 0.00579 

Thus as one might expect the values of 6,.. have inflated variance because 

of the correlation between spectral estimates. 



162. 

We attempted a similar experiment generating 1000 series of 

the form 

where the £~ again were independent standard normal and our results are 

tabulated in Table 34 

TABLE 34 

Mean Variance 

Sample Theoretical Sample Theoretical 

-0.12910 0.00000 0.04585 0.02380 

these being roughly comparable with the results in Table 32. 

-\ 
The results above while showing that the variance of b~ is 

inflated also indicate that for the simulation cases indicate that the 

estimator is also biased to some extent. This is rather disturbing since 

this is unexpected. 

We also tried simulating the models 

~'r: ; Cl-

Yt:: O·5~1-t-(~ 

and computed " ~ ~ using a separation of 

t-::: I.·· 100 

In these cases 

the mean and variance were much improved as may be seen from Table 35. 
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TABLE 35 

Mean Variance 

Model Sample 

White Noise 0.0472 

Autoregressive 0.0609 

Theoretical 

0.0000 

0.0000 

Sample 

0.0212 

0.0226 

Theoretical 

0.0202 

0.0202 

These values are quite good and appear to support our 

speculation that one requires separations of at least However 

the sample fit to the approximating Pearson curve is exceedingly poor. 

For'-~example only 37% of sample values lie to the left of the predicted 

median. 

One would hope that 
~ 
~ ~ would behave in a more suitable fashion 

if alternative values of M and the separation were chosen and in addition 

the separation was taken to be at least the bandwidth of the smoothing 

window used. The problem then for short series, say N = 100 is that one 

reduces the number of terms in the summation 7.1 

, 
While much more investigation of h ~ is possible especially 

from the simulation viewpoint we feel that it is probably not worth while 
~ 

since the periodogram based estimate ~~ works so well. 

We also considered the case of an estimator with end 

points included. For 1000 replications of a model 

'/.1: 0·$ 'f. Is- -I -l- [ ... /;- = 1 ••• So 
4, 

we have sample results for the mean and variance of ~y as given in 

Table 35 below where M 1(;, and the separation is 2D -f1 
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TN3LE 3S 

tJIedn Vari ance 

Sample Theoretical Sampl e Theor etica l 

0.09007 0 . 00000 0 . 07279 0 . 0 3359 

As we sce the addition of the end points decreases tile error in the mean , 
A. 

and since only 10 points are u sed to compute !J ~ one vlOuld expect the 

contribution from the end points to be large . However the s ample 

variance is s till much l arger than one would predict f rom our study of 

\. 
the estimuted moments . Thus even the full form of h C- compares badly 

l'I wi th !.l 

As we indicated earlier this is perhaps to be expe cted however 

in vi ew of our simul ations we fee l that one is better off considering 

For very l ong r ealisations however , one ha s more room to manoeuvre in 

choosil)g • M and the separ ation between adj acent spectral estimates and 
\ 

we feel that the estimate 1J ~ might exhibit more reliable behaviour. 

In view of the inflation of the va riance we have not included 

tables of fit to the appropriate Pearson curve si nce as one might expect 

t he fit is poor . However for completeness we ·have included in the 

appendix the percentage points of the appropri ate Pearson curve for a 

small set of values of M 

evaluating ~~ 
the number of spectr.al estimates used in 

In Chapter 4 we also outlined some theoretical results which 

suggested that ., 
Cl :; ~\'- .t~ S"L ,- ~ 

7- 5 

J "-l- I ( "i) ) - ~/(~/) 
t'-\ 
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could be used in the same manner as to test for white noise and 

... ~I further indicated that as ,,-:> a(J then '- is approximately standard 

normal when f ~ t' ] is a white noise sequence. 

However to use 7.5 we have to choose m very carefully, for 

if M~ M then 
\( 

since 

the denominator in 7.5 becomes 

Uti "I- I (VI; ) 1 I {k'J-1 = 
rv\ 2-

and for a Parzen window V "=' 

thus DY\ = 

) : 2-
MV 

'2.. 

N-I 

3.7 tJ 
M 

'2 
N -I 

Now it is evident that we require D to be greater than zero, and in 

consequence we must choose 1£ ~ '-4 as may be seen from 7· 7 

1·7 

Thus to make use of the Davis and Jones form of test we must 

choose a separation of which is reasonable provided N is large 

but for smaller N it is apparent that the periodogram form described in 

Chapter 4 is preferable. In addition we have assumed that m is 

S 
t 

sufficiently large for ~ to be expressed as a sum of spectral 

estimates. We can avoid this assumption as follows 

" Now we know that KI 0) is equivalent to 
1-

S)l and in addition 

from Bartlett (1955) ~ 

ecru- L Rt: R If] "- i 
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thus for 3 ~t- J white noise 

" \ '1 

C CI\r [ Ro ~ L J 2 ~o "(=0 
"-

N 

() r: =I u 
~ 

Thus 
Ro 2il~(w)) l.. 

2 e ~ " .. - v 21/ 
(' CJ\J L N 

Now using a Taylor approximation we can find that 

" :\) 
C ifl) ( J ~ ~ Q ) J ~ zD ~ It..l\ -:= ~ 

~ 

thus assuming that ~ lc...Jp' have approximately the same distribution for 

all 

and in consequence 

which becomes for large samples 

which agrees with our earlier formulation. 

\ 

2-
N 

The use of ~~ for tests of white noise is thus not altogether 

simple and it does seem that one is better using the techniques of 

Chapter 3. In view of our small sample approximation of the distribution 

of ~! ti and the tests proposed in Chapter 6 we feel there is little point 
~ 

in pursuing the use of A~ and in consequence for the remainder of this 

work we shall use only periodogram estimates 
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We also would conclude that l, u ~ is of use only if one has 

very long realisations. However in these cases one would expect that 

the periodogram would be far easier and more economical to compute and in 
\ 

this case once again the estimate ~I appears to have powerful advantages. 

~. Thus our intuitively appeating estimate ~r appears to be of limited 

value if it is of any value at all. 
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CHAPTER 8 

Having derived statistics involving estimates of the minimum 

mean-squared error of prediction for a one step predictor we now turn our 

attention to estimating j~t~ the corresponding quantity for a k step 

predictor. As we have seen previously this latter quantity is intimately 

related to the first k parameters of the related moving average 

representation of a stationary time series and it follows we must consider 

the related problem of evaluating the parameters of a time series model. 

The estimation of parameters in the time domain has been 

extensively studied by Durbin (1960), Whittle (195j), Box and Jenkins 

(1972) and Akaike (19et) as well as many other authors. We shall 

however consider the use of the spectrum in estimating parameters and the 

number of approaches from this viewpoint have been much fewer, the principle 

reference being Jones (1964). 

The principal advantage in using the spectrum is that one need 

not specify a priori the order of the model and one avoids one considerable 

source of error. While our approach is necessarily limited we feel that 

the methods outlined below are worth pursuing. 

Following Jones (1964) we consider a stationary non-deterministic 

process ~ ~ r J with a power spectrum given by ~ l...u) . In consequence we can 

assume that \ ~ r 1 has a one-sided moving average representation, ~. ~ 

Appendix 2 given by 

8.1 

where the series 'f- 1-1 is white noise and 
1.. 

~ (t: t-)= d for all t-
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We shall also assume there is an autoregressive representation of possibly 

infinite order which we write as 

8.2 

J = 0 

by 

Now the prediction error for a \L step predictor Q I£. is given 

1£-1 

e I£. ~ 

thus to look at the e I we need to determine the b" b .... 
V) I 

If we denote 
~ 

b" t J B (~ I = L 
J ::-C) J 

and "<..l 

:r. J 
A- (~ ) == L Q" 

J =0 
J 

then from 8.1 and 8.2 we have 

or equivalently 

fJ" 7 

and from 8. & and 8. 7 we find that 

Using lr -~ one can by equating coefficients of powers of ~ obtain a 

series of equations relating the CA J and b-
J these are 

C\obo=1 

Cc, '0 0 4- Q u 6 1 .= 0 

~1 b o -+ 0,6. -+ Ct o 62. = 0 

CA~ b o -+ C\2. b, 4~1~Cl.-+ C\o b 3 .: 0 &-'1 
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Thus if we can estimate either the r bj ..; j:::o,"' J or the ~ C4J' j j = ,,"' j 
then one can fairly easily determine the other set of coefficients. In 

view of this reslllt we shall concentrate on estimating the coefficients 

of BC-c.} as they are more intimately connected with the e." in 8'.3 

Now from Kolmogorovs Theorem, (~, ~ Appendix 2) we have 

and since is integrable we know it has a Fourier series represent-

ation of the form 

From %, IU and % ,11 we thus conclude that 

which is our starting point for what follows. 

form 

crL 

'J.n 

Wri ting '8',12. in the 

I() L CVe~ iv.lV 

..... , to ~ 

... L eve '"&U" J 
,.. I 

since and consequencely j~ ~(""') is syrrunetric about 

and noting that 

we have 

8',14 

thus we have factorised the spectrum. Note for convenience we have assumed 

that .ho ~ I 

that is 
ec.\ 

L b' \3 (c) • -t- J j=1 
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This involves no loss of generality since we can incorporate b" into 

the E .... and write 

(j 2. = 
~ "l. 

b() et 

where 
• r:f 1. is the variance with b" ::{ ~ 

Now from 'is." we have the inverse transformation 

Cv :: _l- l~ j cSJ ~(w\ 
''''v e rl~ 8". IS 

71'\ 
-1'\ 

)I'" 1)1.,'" which becomes 

Cv = 
, J1' J, ~ (~) ccflWv clw zn %'/b 

-" 
since CtW) is symmetric. In consequence we can write es· J 4 as 

which is Kolmogorovs (1939) result since 

and i 

-i.~ J~ ~ (~) Cell It...., ~~ 

Using 'l). n Jones (1964) evaluated the b J' and the 

corresponding moving average coefficients using estimates of c~ obtained 

from !. I~ evaluating the integral as a sum of spectral estimates. His 

technique, while well suited for computation and providing useful results, 

proves somewhat intractable when one wishes to investigate the underlying 

distribution theory. Since ourmaib:interest is in the distribution of 

the b· IS J etc., we follow a slightly difference approach. 

First we need to obtain the b J explicitly ihlterms of the CJ c 

This can be done by writing %'. 17 

I ~ b I ~ + bz.. c1. + .. , 

( -+ 

in the form 
(' ,e e -"1 = 

2 
Cl l-/, e. L 

" . 

8·20 

'tr·/7 
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where 
-z. 

This may be written 

= J~, 1 
and equating coefficients we can see that 

L 
'Cl. + Y, 

2' , 
3 0, ~ 

k ;;. I) 2. ... 'is" ·2 I 

~. 22. 

Ys".Z3 

This is rather tedious and a simpler method can be used which makes use of 

the relations between raw moments and cumulants tabulated in Kendall and 

Stuart (1963). As is well known 

I -1 

I'l I. L. = }A,.' and if we write -{ I()~ / ~ and 

Thus using the relations 

)A,' =- 1£', 
I 

/tz.. k: L 
)AI. -=- i" , 
fjl 31(1 1(, 

3 
:- Il J -I .. k::, 

jAl4 • I'll 4 I{J It, -t .:;; ... 

we can obtain the following 

0, 

Y" If: L 
U l -+ , 

.?! 

~ ... '(I. rz' '(' 
-+ ..l-

3' 
I 

3 ll/ 

we have <if.2 0 

~ b J(l "~I 1 .. 1(, ~ 

%'·26 
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I 

Note that Kendall and stuart give the moments up to JA 10 in terms of 

the corresponding cumulants. 

As an alternative one can also obtain expressions ~·16 by 

evaluating the integral 

bit = 

using the calculus of residues, however the algebra is rather tedious. 

In much the same manner one can evaluate the autoregressive 

coefficients. Using tr. (,. and ~ . I I we have 

A (i) = B -I ( b) .: 

Thus to evaluate the et " we use 

/-+ 

and explicit relations between the C· 
~ and the G4~' can be obtained in 

the same manner as for the ~- and c- However if the \0' are 
J L j 

already known then one can use %. 'I 

We now consider estimates of 

-rll : 'it.3U 

Given (Y.. le ~:;. 1- -. N} stationary to second order we can as before 

estimate 1, ~ flv) by the "'::. 2i1p 
N 

,~ : () I I [¥ J and then approximate the integral 11"·30 by a 

finite sum giving 

" (f. ::: 11.3 I 
l'i 

where and the I"Jw r I :Y:) are computed from 'I. , -., XIII 
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Now the cumulants of JClj I,./..v,~)() are given by 3.42-

K, = j~ 2 ~ -VIi) 

I( 2 = --.J ' ( tl 
n 

IL~ = +~) 
VI. 

Now making use of 3· I U we have 

\ 

~t. 
, 

V\ 

= 

~ 

~, J .lOJ 2n ~(.vp' ~], l~{&UI)Ii")J((/) k-!.V j) 

~ In \J<!j 2n~(~)) CCI) \(~cL.'-.l 
10\ 

-' L J Cflf I~ lioVp \ () Cd) ~ LV,) 
1'\ p=. V' r 

" in consequence the moments of '(" IL are given by 

.!\ 
-t --+ ( dJ {(j) Y LVp It I :- ...L l- e J, l -t r~ ;'\ j> :: I 

~ 

It L .: _1- L i'c,) r cJll I, 1.0,.) 
;'\2 ,"'.' 

r\ 1- Ir_I}) r 
"j L It ~p :: _1- (I C(j) 

V' .... p=1 

as 

'ls.jl 

'it. ~J 

~.34 

8"".35" 

To evaluate these values of the cumulants we evidently heed to 

sum series of the form -r. 3 5 Numerically this poses no problem since 

.I,r){ ,) the I are tabulated by Abromowitz- and Segun (1968) or can be 

evaluated using 

'f Ir)(I) :; ,. . rotl (-1) ("+1 I Sf ) "",1)2,3 .. 

where 5 ( l \ is the Zeta function of Rei ~ CA ~ V\ and l'0.5' Y\es are readily 

available on most computers to considerable accuracy. For exarrple on an 
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I.C.L. 1906A o If) ")( -" has a maximum error of 5 i. 10 using single 

precision arithmetic. 

However it is quite possible to sum these series analytically 

since " L CU\ r ~ X 
iI. = I 

can be transformed into a geometric sum by writing in the form of complex 

exponentials. For ~ in the range 1 to 4 we have 

" 
L C(.f) J 

)( .:: re.!) (~)x. ,,~ ~ ,)l ( C1l.tl. ( x I 1-
j .: Q 

, 2- 2- 8·37 

"\ 

L L. !1 (t/) (VH I) X s IM. 11\)( CCI) J .t = T 

j ;: I 
2-

2s~ )( 

t\ 

L l' = 2 (Cl) ~HI)X .5~ n7C. (CIJil c. ~ c:m J x 
J;: I 

4- 2- "2- l.. 

.-t , 
CCT) .3(11\-+ 1):( s~3V\l: ccQgl~ fs . .3't -4- ;z,. 2- 2. 

-2- :: ~[ Jt'\ ... 4(cf)("'-t')~~IM~xrll'J4C)<' 
~ (en 2( ,. -t I ) t s t.M 2 v'\ ~ (' C/lJI ( 2 Jl ] 

8-.£1 0 



Now writing 

Ca) v odd 
of\. 

L 

v= I 

while 

Cb) v even 

11\ 

L- cc/) 
vet:> 

.... 

176. 

we have two situations 

cC/) . Tlv 
J-of\. 

'Tlv J-
11\ 

= 

=-

::: 0 

= 

- , 
:2.. 

L- e (/)1. j n v = rt 
\1\ .2.. v=, 

"-
j nV L (Cf)3 0 = 

"'''"'I ~ 

'" L (C/)4 . TI 11 = ..3rt 
v.:, ~ ~ 

~·41 

'ls·4l 

&-.£1.3 

tt· 45 

rr· 4 G 

fs.41 

~.4 y 
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Thus from (a) 

'" - I 

L C(O 2T/i v .:: 0 f· ~ er 
J ",:=., V\ 

V' -I 

L (cJ)t ¥ ::: !1. - 1 8':>D 
I' =/ 2-

" -I 

L l(J) 3 jE k 8.5/ : 
Y=-I 11'\ l. 

'" - I 

L ("U) 4 jilL(. -= ..3rl -I 2:5.SL 
10'-=/ V\ 6" 

while for (b) 

~ -I 

L COl j ,7v :: - I 11 ·';3 
V'"'"/ V\ 

11'\-1 

L C(/1l. j ~v '" !1. -I %·Slt v=/ :z... 

10\ _I 

L (<f) 3 }nv :: %·5"5 
11'.::::/ III 

V\ -I 

L ((/) 4 . 11 V .:: 3""_1 1r . .)(, 
~ 7f 10'.::/ 

and if .....)C,.. t"C.J~~\",1L 
, "-I 

~a:1.I~ 1<.0,., ) x) ("cl) ~ ~p f
J 

~ I L '6·S 7 (\ j'':' 

" 
then 

(. 
J has cumu1ants given by 
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I( 2 .= 

\(3 = 

IL4 = 
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i ". J 

~. ~ [ ~J 2 -+ ~(')1;i\ 
J 

-+ I (I) {-In) - I'\~ 1..11\ 

{" (d J e.vw-. 
~ 

~~ J odd 
.2 V\ ~ 

'+ ,11 ) .) {I 4-'I/{ I ) 

%-1'\3 (\It 

If we consider a full estimator 

A 

'(­
J "" I 

~ 

~ 

- I 
L 
i' =-0 

J evt.M.. 
'B ·5 'i'" 

j odd 

% .5<t 

<js·60 

~·bl 

then the algebra is a little more complex however we find that the 

cumulants are given by 

K, 

~ 
~. [ .2. .1, 2 .l. t (tl .. ~(O ·5) J IV\. JQ~ ~.(j 3 

= " 
'(. J dJd J 

Ill. .: 4 '( I) -4 '(1 \ {" (o·5} 1t. ~4 + 
2'1\ V\l.. .2 l'\ 1.. 

Il J = 

1 

+"{a) + l"(O·~) 
j~ ~.,~ 

n~ 4- V\ ~ 

i~ 
..:z V\:\ 

U" ::: 3 ~"I( I) _ ~1"ll) 
+ -+ "'l 6·~) 'if. 66 

'lrV\ 3 ",4 ~~4 
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While the expressions for the cumulant above are exceedingly 

messy they are easy to compute and for large n can be somewhat simplified. 

If we let '" ~ IV then we have 

which would indicate that for large sample sizes the 

~ 

'( 
J 

are 

approximately normally distributed. This is as we would expect since 

for large n J,jN(tU~))() is approximately normal and '1·62.. is thus a 

linear combination of independent normal variates. 

Our expressions for the cumulants also show that both forms 

of the estimate of YJ are asymptotically unbiased and consistent. 
A 

If we care to redefine the Y j for even J as 

f\. 

t· 
J 

= 
, 
V\ I r..) Iw,>() rCl) j v..) f 

[ 1 J, 7. ... i(l) ~"/o.j~~ 

then all our estimates of the 

" [; [ (i J 

y. 
J are unbiased since 

(. 
J 

Since we have a sequence of estimates 

another point of interest is the correlation between our estimates. 

Consider for simplicity 

" 
~ 

C'uv- C (I/: (i J : f ( 
~ A 

[ (It - '(" ) { (j - Y j ) ] 

;; ..L LL 
nl. r "1 

JOj .I.., (~~ ) C ) l'(/)t.V,I( J CIj 1.., (~p() e'Cf) l.0,j 

d2. 
I 

n). p-. 
C(J) It' CA,.)p ((/") j \.V P 
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where 

0'-L 

l. 

'is.1Q 

Then we can write 'is'. (; 1 as 

-\ 

YJ J := 

'" -I 

f' "" I 

L 

= 

Hence for large values of n 

c ern- [ = o ( ~ ) 
o 

and we see that our estimates are asymptoticallYuncorrelated. Since they 

are also asymptotically normal we can consider them to behave as independent 

normal variates for sufficiently large values of n. 

The result also holds for estimates of the form ~.6L but the algebra is 

rather more complex. 

To indicate that these results appear to agree well with 

practice we devised a small simulation experiment. We generated 400 series 

of the form 

6· 5 (" (:-_, 

where the f l- were standard normal deviates. 

Then comparing the theoretical results for the mean of (j with the 

sample values 

~. 7/ 
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TABLE 36 

Mean 

Theoretical Sample 

(, -0.5000 -0.4903 

°2 0.0000 -0.0178 

y~ 0.0000 -0.0340 

with the sample covariance matrix is 

{o 0.0527 

(\ 0.0026 0.0230 

)''1 -0.0002 0.0018 0.0245 

(J 0.0039 -0.0030 0.0030 0.0264 

The diagonal terms agree well with the predicted values of the 

variance which are 

= (J.C) 257 

while the covariances are predicted to be 

C Cr\r [ 
1\ 

f~ J Y IL = () It ~ ~ odd 

" 1\ 
and CC!'\f" L ('L- rh 1 .:- - (>. 000 %' k ~ It 

Thus it would seem that we can assume our theoretical values for 
'\ 

and variance of ilL- k:o,I-_. agree well with practice. 

correlation matrix is, giving only the lower triangle 

1.0000 

0.0747 

-0.0056 

0.1046 

1.0000 

0.0050 

-0.0804 

1.0000 

0.0804 1.000 

~ 

the mean 

The 
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For the same model except with a changed parameter 

we have the following results 

TABLE 37 

Mean 

Theoretical Sample 

-0.2000 -0.2319 

-0.1250 -0.10969 

0.0000 -0.02627 

while the covariance matrix was given by 

0.05278 

0.00651 0.02161 

-0.00083 0.00247 0.25413 

-0.00146 -0.00181 0.00254 0.20639 

giving a correlation matrix 

1.0000 

0.0600 1.0000 

-0.0226 0.0676 1.0000 

-0.0442 -0.0548 0.0770 1.0000 

once again the structure appears to agree well with theoretical ideas. 

'\ 
In addition we have compared the sample values of !, with the 

theoretical frequences from the best approximating Pearson curve. The 

resul ts, as can be seen from table 3 ~ are rather good both for the first 
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model described above and for two further models based on longer 

realisations. 

As can be seen from the tables in Appendix 3 the Pearson curve 

rapidly approaches the Normal curve and it would appear that a normal 

approximation is adequate in almost all circumstances. The tables of r I and f 1. below reveal the swiftness of the approach to the asymptotic 

case 

Sample length 

32 

64 

128 

256 

TABLE 38 

J73. 

0.00211 

0.00046 

0.00010 

0.00002 

3.00010 

3.00000 

3.00000 

3.00000 
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TABLE 39 

Pearson curve approximations to the model 

L- '" I· .. N 

"-
These tables give the percentage of values of bl. \. not exceed.ing the 

percentage point of the best fitting Pearson curve 

N 64 128 256 

NO REPLICATIONS 400 300 500 

Theoretical 
Percentage 

0.25 0.0 0 0.2 

0.5 0.25 0 0.4 

1.0 0.5 0.3 0.8 

2.5 1.0 1.7 1.6 

5.0 3.75 2.7 3.4 

10.0 7.0 9.7 10.6 

25.0 23.0 23.7 24.0 

50.0 52.5 50.0 50.8 

75.0 78.0 78.0 75.0 

90.0 90.75 90.7 90.0 

95.0 95.5 96.0 95.8 

97.5 98.0 97.1 98.0 

99.0 99.0 99.3 99.2 

99.5 99.75 100 100 

99.75 100 100 100 
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We also considered two· further simulations with larger series 

lengths, the model being as before 

- () . .::: .. 
.... 'L--I 

The results are as follows 

TABLE 40 

Mean 

Theoretical Sample 

N = 128 N = 256 

(0 0.5000 -0.4982 -0.4998 
C, 

0.1250 -0.0930 -0.1044 
(l.- 0.0000 -0.0592 -0.0642 

while the covariance matrices 

N = 128 

0.02342 

0.00138 0.01451 

-0.00005 0.00050 0.01217 

O.OOllO -0.00127 0.00242 0.01253 

N :::: 256 

0.01135 

0.00046 0.006042 

0.00022 0.00041 0.00564 

0.00029 -0.00002 0.00033 0.00411 
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While the estimation of the t J" is of interest our main 
, 

purpose is the evaluation of the 
1\ 

b" 5 
J in the moving average model. 

Since as we have seen the {­
} are asymptotically normal the distributional 

theory is eased however there are problems in estimating high order 

because of non-linear relationships connecting them with the (I~ 

" The large sample case where the ( ~ are approximately independent may 

well be a reasonable one to handle but it would appear that the 

estimation of h l for j'~ 2. is very complex. 

We shall restrict ourselves to the estimation of 

we prefer to work with the autoregressive model ~, since the 

distribution can be found for our estimate. In addition knowledge of 

Q, enables us to evaluate 

or correspondingly 

Lit) <2,(14 l? 

Box and Jenkins (1971) have shown that first order moving 

average models are of some interest in constructing prediction models 

and in addition one can estimate the ratio 

€.I 
eL 

to determine the increase in variance in predicting two steps into the 

future 

we see that the estimation of b I is 

straightforward. However for b l. we have 

l. 
YJ. 4- '(X 

J.. 
b 1 = 
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and similarly 

from Cj(. 2 6. Thus to consider the moments of even b.a we need to 

evaluate expressions like 

p :-

= 

where N --

and after some algebra we can show that 

p .: 

where 3 r, s, t all odd 

3 if one of r, s, t even 

o otherwise 

In consequence for ~ large r -=.> 0 This would appear to indicate that 
.A. 

one cou,ld analyse the correlation structure of b L but the extension 

to tj ::> 2- appears to be quite formidable. 

1\ 

The approximation to the small sample distribution of b '" 
/I. " 

is equally complex but if we assume that hI and '0.) are independent 
1\ 

then one can at least approximate the cumulants of 10 '1. 

What might be slightly more feasible is a procedure to determine 

1\ " 
whether the bj are zero by successively testing the corresponding ~. 

J 



188. 

For a moving average model of finite length one could repeatedly take 

differences until b , === O. A test for white noise as suggested in 

Chapter 6 could be made to confirm if the residuals after differencing 

were indeed white noise. 

As we have seen one can at least estimate the leading 

parameter in a time series model from the spectrum. While the estimation 

of other parameters appea~s to be rather complex it would appear that 

their estimation from the coefficients of the factorised spectrum is, in 

principle at least, feasible and this approach does seem worth pursuing. 

For prediction two steps into the future we can use our 

estimate of b t to evaluate 

+ 

" since the distribution of b I 
1\ 

show that the estimates IJ:r. 

b "L-
I 

is known and for larger sample sizes we can 

" and b, are approximately independent 

thus enabling one to compare e I and This is probably more 

easily done by examining 
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CHAPTER 9 

As we have seen we can estimate the minimum mean square error 

of prediction Q, or rather log et and we can approximate the distribution 

of our estimate very closely. While for our purposes the logarithmic 

form has been very convenient one can visualise cases in which the 
A 

distribution of e, itself would be required. 

f\ 
A possible method of approximating the distribution of ~, 

is to obtain its moments and use the Pearson approximation. This may 

be done as follows: 

Consider l =- ~ ~ '/. and let the characteristic function 

of i be cJ ~ (I--) 
Then 

9.1 

and the moments of 1 are related to those of ~ by the followm g 

relation 
I 

fi r (y.. ) = 
9.2 

provided the characteristic function exists at this point. Since the 

characteristic function in question is essentially a Gamma function with 

argument 
r + I 
M 

J\ 

it clearly exists and the moments of e I can be found using 9.2. 

However as we have stated the logarithmic form has proved convenient. 

Since we can estimate J'\} e I then we can make decisions as 

to whether it is in fact worth trying to predict a series for a given 
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cost function. However we see the real use of our estimate of 

prediction error as a diagnostic procedure when model fitting in addition 

to the test of white noise outlined in Chapter 6. 

As can be seen from Box and Pierce (1970) and Durbin (1970 .) 

making tests on the residuals of a fitted model can be a troublesome 

procedure and in addition the distribution theory derived to date 1a 

asymptotic. We feel that a very good criteria for a prediction model 

is its mean ~uare error of prediction compared with the optimium 

and we suggest the following procedure. 

Given 'i, Xl N we estimate J UjE', using ~ J given 

by 3.54 using ~ I ., 'XN Having obtained an estimate of J 6j e I we now 

proceed to fit a prediction model on the same length of series ~ I •• - X N 
4( » 

Once we have constructed our model we can make forecasts X"'11 X ~-tl . .. 

)!t ..J~ X ~ and obtain the forecast errors 
.. Nf3·· Jp.& 

9.3 

Using the residual series ~ d t \ we can evaluate the minimum mean square 

~ I)d say. error of prediction for the residuals, say J~elJcl using 

Then assuming the model used for prediction is the correct model 

E L 
'\ 
IJ.r - 1 I

j 
d J .c; 0 

while L1I 
J\ 

U ::: ~ r)d )0 

implies that our model overfits while 
'\ 
A - d (0 

J..} 

implies the model underfits. 
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" :\ Under the null hypothesis we expect ,1 I 1 li.1) d to be 

uncorrelated and to be indeed approximately independent. We can easily 

approximate the distribution of U under this assumption using our 

Pearson approximation. 

This procedure would appear to avoid the difficulties described 

by Box and Pierce (1970) but needs some use in practice to see how well it 

performs. 

A slightly different procedure can be obtained by estimating 

the sample variance of the ~ et ... ~ series and comparing ,this with the 
~ 

value !.J obtained from th2 first segment of the series X. _ .. '/. ~ 

For moderatly large sample sizes we know that the sample variance 

is approximately Normally distributed, Anderson (197*) and we can then 

base a test on 

Ideally one would wish for a small sample test but in this 

case one need the exact distribution of 5 1-
Cl It seems fairly reasonable 

"'l.. ~'l. to assume that the distribution of "5 d is approximated by a 
N-\L. 

distribution where \< is the number of parameters fitted to the model. 

We have however been unable to provide an adequate justification of this 

assertion. This does seem worth of further study since our test for 

white noise is immediately transferable to this situation. For values 

of )( which are small compared to N the moments of )~5d~ given by the 

polygamma functions '" (~H/£.) appear to be insensative to small 
:1. 

variations in k since 

J~ (~) 

Z 
N 

-.1-
N 



192. 

and it would seem that we could use our test of white noise without much 

chance of error. 

One can al so use the minimum mean s quare error as a measure 

of the predictability of different series. Thi s might be of some 

use in considering transformations of series before deciding to construct 

a model for prediction. This in a sense is the comparison of non-

linear prediction methods when one uses non-linear transformations. 

In practice one often has to remove deterministic components 

from time series by regression or the successive differencing methods of 

Box and Jenkins (1972). In particular one often removes a mean from a 

given series. While Grenander and Rosenblatt (1957) and Granger (1964) 

indicate that regression methods can be applied and the residuals from a 

regression model can be regarded as a stationary time series there is one 

rather interesting effect on the periodogram when one removes a mean. 

In this case 

= 2. ) L (~t - X ) e(' ~ ~ ,1-
1::: I 9.4 N 

and at 

9.5 

= {J 

This clearly has implications in the construction of ~I and in this 

situation we advise the use of a form of estimate with end points deleted 

viz 
'I-I 

.:: I - L 
n 9.6 



where { 

r = 

193. 

is Eulers constant given by 

[ I + 

::: 

, ~.l 

2. 3 
-+ _1-

M 9.7 

This property of the periodogram is presumably the cause of some dips in 

the estimated power spectrum around zero frequency. 

In addition to using just the estimates of j(1~r.\ we have also 

derived methods of estimating the coefficients of the moving average 

representation of a stationary time series. 
00 

For a model of the form 

f t -t L 'oil t'1--IL 
"-:1 

we have shown that the spectral factorisation enables us to obtain 

expressions for the b k as the sums of independent normal variates. 

While the estimation of b l is fairly well defined in Chapter 8 we 

think that more work could be put into the estimation of the b ll. for 'k -::> I 

Indeed we would like to obtain some results for the simultaneous 

estimation of the this would appear to be the crux of the 

estimation problem. 

A natural extension of our investigations would be to the 

mUltivariate time series situation. As we shall see the extensions are 

not immediate and there are as one might expect some additional 

complexi tie~. 

Let us define a 9 variate process ~ X I (- '11. ... 
which we shall write as a ~ j. I vector and we shall 

assume 
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Let 

9.8 

~ _ -oeJ 
R ,'"" ~ 

j It (~ ) e 
9.9 

and 9.10 

Zasuhin (1941) has generalised Wold's representation to the multivariate 

case giving 

rfl .: () 

where the '£ Q,",- are uncorrelated and have zero mean. 

Whittle (1953) has shown that corresponding to Kolmogorov's result for 

the mean-square error of prediction 

v = 

where V is the "total prediction variance" corresponding to the total 

variance defined by Wilks (1932). For a matrix moving average 

representation 

it can be shown that 

In addition one can also perform a spectral factorisation in 

the manner of Chapter 8, this has been described in considerable detail 

by Wiener and Masani (1957, 58). 

One would expect the estimation of V to be much more complex 

than the corresponding estimates for the univariate case but it would 
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appear that estimates of V could be of considerable use, see Whittle 

(1953 b) and Whittle (1953). In addition we feel that estimates of J~el 

~ series could prove of use in constructing multivariate for each of the 

models. 

The Wiener and Masani approach also appears very fruitful 

from a mathematical viewpoint and while these are considerable practical 

problems these are presumably not insurmountable. 

In short we feel that much remains to be done using the 

estimated spectrum for model identification especially in small sample 

situations. 
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APPENDIX I 

Consider a stochastic process ~ ~I:- /"0) J then in the space 

of flll1ctions on J1 which are j- measurable and quadratically 

integrable with respect to P we introduce the scalar product 

The norm being 11 ~ 11 :: {~} ~ ) "l. A sequence of flll1ctions 

converges in the mean t- 0 ~ (<Q) t Lz. (JL ) if 

Defining the set of all finite linear combinations 

L{u) -= } 

we find that closing this linear manifold with respect to convergence in 

the mean we obtain a space Ll (::>t) which has all the properties of a 

Hilbert space. 

We shall now consider only discrete processes which are 

stationary. Let us assume we have observed 1 ~ ~ ) ~ s,. 0 J then the 

observed variables span a subspace Cl C L2 ()l ) and as our predictor 

we choose an element in a. In consequence 

we use only linear predictors and suppose the entire part of the process 

is known. 

To construct our forecast we shall seek to minimise 

Such a predictor clearly exists and is lll1ique. 
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Consider the set of complex valued functions .J '10\.) ) 

belonging to 

This becomes a Hilbert space Ll.( r-) if we define the scalar product 

( J I "') : In n 3 I v..d G) d ~ ( IV ) 

It we now define the transformation S 

and extending it so that 

.1 : ~v IAJ 
~ 

L Cv ~ t>/ CS L Cv e .:: 

".:::. I V "" I 

we can show that 

~ " i~\lW)]1. 
1I L Cv xhtll

l 
: 11 I- Cv e 

v'""' 
..... , 

Extending S using convergence in the mean we can easily show that S is 

a (1-1) isometric mapping of 

Hence the prediction problem becomes: 

r) S .1',,-, -2(~ ~ 
In the subspace of LL ( r spanned by I I J e ) e ." J we seek if> ( I.V ) 

which minimise6 

and if this function exists the best predictor is given by 

I
n 
~(tU) dttc.V) 

-t' Cc.f. 1.11) 

Consider 
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where J ( ~ l ~ l ~. "" ~ .. + j) denotes an arbi tary linear combination of 

the 'J... l J ~ (" -i' "" " 'X ,"~ j" 

1I XI 

1\ 

= J I rn(e;~)) Ld Flw) 
-1'1 

and 

where fY\(1;.\ denotes the polynomial 
rt -/ 

P",{1:) L -1/ 
::: l: - Cv t. 

v..:::o 

Then we need to minimise the integral 

The minimum of this integral may be found using the theory of Toeplit~ 

forms c.f. Granander and Szego (1958 pp 44) and may be shown to be given 

by 

if it exists. 

I 

In 
The minimum can also be shown to be zero if and only if 

To construct the best predictor explicitly we require the following 

theorem: 

A necessary and sufficient condition for a stationary process 

with an absolutly continuous spectrum to be representable as a one-sided 

moving average is that it be non-deterministic. 

Consider a sequence f S~ ; -00l~ t. 0() 1 such that 

E [ rs ~l-J : $.s~ 
and f [tJ:O ;Is 

and we construct 
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Assuming convergence in the mean then the covariance function 

is cV 

R,S- ~ .:: L Cl" Clv-+s-t-
..... ;:() 1. 

or R ::: B a. 
where A is the matrix given by 

J V-,l' ~O) 0 ) Y-J"~01 

From 1. it follows that 

almost everywhere, the polynomial _ Q (2:.) being defined as 

L 
Since Cllt:) belongs to the class 1-\1. we have using the Jacobi-Jensen 

inequality 
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We now show that it is sufficient that the process be non-

deterministic. 

Since J ~ ~ ("-l) integrable we have ~ '''') ) 0 almost 

everywhere and we define a new process by 

where 

C:s(..:J) :­

\qll.V)lL:: ~("'l) 

orthogonal process with 

Now this integral exists and defines an 

Now defining the stationa~ process 

we can show the S ( , l)rJ are orthogonal and normalised. 

2. 

Under the assumptions above there exists a functicn G l.u ) eLl 

such that 

3. 
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and since 

with 11 p~ IJ -"'> 0 we have from 2 

'" 
~L- .:: _I L C, P 51,._p ;- ~t-2n -p.=(J 

To construct the optimum predictor we must minimise 
1\ -I 

11 '1:. - L 
y =(1 

where LAJ°': - C.J-I 

and we predict XI using '/. 0 J ){-I 

It can be shown that the minimum ).A r\ is given by 

.1 

fAft 5>1\ ( Cl J 0 ) .= L I 4./ D) r-
where f cl p (c) are the polynomials orthogonal on the unit circle 

I "2: I ::: I wi th respect to the weight function ~,..,)). The polynomials 
Y\ 

S", (X
J 
'j ) :: r.;u q-;;t;1.) 4 P ( J) are the kernal polynomials of ~ (w) 

c.f. Grenandzer & Szego (1958). 

The minimum itself occurs when 
.!) p 

LAn(l;.): L 1A1~-2. -
? .Iq) 

and in this case the predictor is 

L Cy X.V J ne i IV [ IAWl I eilo)) - I J d 2: I~ ) 
_0 



202. 

Now for 1'\ <: vY\ we can show that U", (~ \ converges, for 

M ,(1 

J 5", (or::) - S"" (02;) } ~ (IV )c-1~.: l Iqv/ o) 1~'~'1;' ~ 0 
~.::~~ I 

J -n 

l' "V 
where 2::; e. and 

In addition 

4. 

almost everywhere wheV\ J {1:)has no zeros inside the unit circle and 5 (0 ) 

is real and positive where j(c) belongs to the class l--\2. 

If we write 

equation ~ implies that there is an element H ( .. ) in J..t 1.. such that 

11 b ~ - t.-I J j 1.. -= J 1\ j L, (l;) - 1-1/1.) J \i w -=i> 0 
-n 

as 

Thence for any f ~ J C» I ( the function h~ (~) converge~ 

uniformily to ~I (~ '\ so that 

s~ (0 t ) 
1-1 (7;. ) 

5 (c) 

We can, using the asympto'tic formula for q plc) 

1-/ (c) = [~ {cdJ-
1 

see Grenander and Szego (1958) and in consequence 

show that 

~~ (n I SIl\(OJ~) - [':yO)j(:a)J-lt·~{IN)~~ J j 
1\ "* 00 -f' 

and since /"I" ..::> I J/0J J t. 

~w:,.. f' J Ur../~ ) - :J fo) )l.~{w) d'-V=o 
l\":>OU -" j(-c) 

.. 0 



Making use of the isometric correspondence between the Hilbert spaces 

spanned by the process and by the exponential functionslBspectively we 

have for the best predictor 

.J I( ~. ( 'X ~) :; {n et' (.U [ J - -d~ ] d 1::( 11'.,)) 
"I s -{.L,M 1)'\ .J", ,'.u) 

W\ -"> DO J ( t' 
Notice that the function 5{~) introduced in 4 corresponds to the function 

G IIA) ) introduced in 3 in that 

and making use of the orthogonal process d l $ (IV ) we can show that 

~I _1-
z.n 

giving 

x,~ - XI j' .I 

and using the Jacob~-Jehsen inequality 

where 
~ 1"-.));' 20 cl frw) 

dw 
2 nsL 1/ d C(w) JJ 1-

~"" 

One can prove similar results for the h step predictor. 

We state the following without proof. 

The predictor 

Carl be written as 

for h uni ts of time ahead based on" " I\t-II\ ....... 
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where I -.z.n 

or in the equivalent form 

with the minimum prediction error 

The above outline which has been included for completness 

follows the derivation of Grenander and Szeger who provide many more 

results both for the continuous case and for finite approximations to 

the optimum linear predictor. 
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APPENDIX 2 

Pseudo random numbers Y XI- J were generated on the I.C.L. 1906A 

using a variant of the standard multiplicative congruential generator 

X r; \ -=- ~ Xr (Mcrd H) 

and M being suitably chosen constants. For the theoretical 

background to these generators see Knuth (1969) and Newman and Odell (1971). 

To minimise correlation in our sequence of pseudo-random numbers 

the actual algorithm used combined two generators 

'X1)r~l:: '0, X,)r(~"dt-'\) 

Xl r (NuJ-M) 
I 

in the form 

X r-t 1 
:::: X I),. ... , + X .2.,ii I l\'I a-d (H ) 

A2.l 

with ~ = 2
2b 6

1 
:: 3 \; bl.;or 5 ~ 

and X - ~ :: I 2 3456 7 ) 10 - 1.0 

This generator was written by the Nottingham Algorithms Group 

as part of their effort in building a software library for the I.C.L.1900 

series of computers, however the idea of using two generators originated 

in Neave (1972). This generator has received a great deal of testing and 

the numbers produced have satisfied all the tests devised for random number 

generators. 

Since A2.l generates variates from a uniform distribution on 

[oil it is necessary to make a suitable transformation if Normal deviates 

are required. Unfortunately, in the case of the normal distribution one 

cannot use the transformation 
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to produce deviates Y having a distribution F(j) using X from a 

uniform Co, I J distribution and one requires more specialised methods. 

The transformation used is due to Box & Muller (1958) 

) 
I~ 

Lli:--I: (- 2 ~~ XI~-I SiN\. (2n 'XZI-) 

Zn~ (-2 JOTj l~I--I)Vz..s~(2.nXz.I-) 

where the 1 ~ r- ~ are from a uniform COl J distribution and the r t t j 
are random numbers from a standard normal distribution. 

This method works well with the particular uniform generator 

A2.1, however, an alternative due to Marsaglia (1964) may be worth 

implementing in future. 
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APPENDIX 3 

TABLES OF PERCENTAGE POINTS 



" 
SIGNIFICANCE POINTS OF ilI NEGLECTING END POH-rI'S FOR n = ~k 

LOWER TAIL 

Percentage 0.0 0.25 0.5 1.0 2.5 5.0 10.0 25.0 50.0 
n 

8 -28.29365 -1.50842 -1.35988 -1.20381 -0.98290 -0.80071 -0.59945 -0.28440 -0.03483 

16 -21.1152 -1.01834 -0.92239 -0.82100 -0.67614 -0.55540 -0.42068 -0.20600 0.01743 

32 -10.89988 -0.69572 -0.63244 -0.56517 -0.46844 -0.38719 -0.29563 -0.14794 0.00871 

64 - 5.50451 -0.47973 -0.43772 -0.39190 -0.32634 -0.27092 -0.2080 -0.10566 0.00435 

128 - 3.99099 -0.33309 -0.30415 -0.27322 -0.22828 -0.19010 -0.14661 -0.07523 0.00218 
N 
0 

- 3.45626 -0.23246 -0.21256 -0.19124 -0.16017 -0.13368 -0.10341 -0.05346 0.00109 -.J 
• 

512 - 3.05482 -0.16283 -0.14904 -0.13424 -0.11262 -0.09415 -0.07298 -0.03793 0.00055 

1024 - 2.57817 -0.11437 -0.10476 -0.09443 -0.07932 -0.06639 -0.05154 -0.0266 0.00027 

2048 - 2.07456 -0.08048 -0.07376 -0.06653 -0.05593 -0.4685 -0.03641 -0.01904 0.00014 

4096 - 1.60825 -0.05676 -0.05200 -0.04692 -0.03947 -0.03308 -0.02473 -0.01348 0.00007 

8192 - 1.21347 -0.04001 -0.03669 -0.03311 -0.02787 -0.02337 -0.01818 -0.00954 0.00003 



A3.2 

UPPER TAIL 

Percentage 75 90 95 97.5 99.0 99.5 99.75 100 

8 0.32237 0.55463 0.68197 0.78548 0.89803 0.96990 1.03322 7.46162 

16 0.22482 0.39832 0.49611 0.57742 0.66807 0.72706 0.78011 18.28855 

32 0.15739 0.28446 0.35753 0.41910 0.48867 0.53471 0.57650 9.76021 

64 0.11042 0.20249 0.25610 0.30168 0.35364 0.38836 0.42008 3.45221 

128 0.07761 0.14383 0.18270 0.21595 0.25410 0.27973 0.30326 1.96991 
N 
0 

256 0.05465 0.10201 0.12998 0.15400 0.18167 0.20034 0.21754 1.93946 (Xl . 
512 0.03852 0.07229 0.09230 0.10954 0.12946 0.14291 0.15537 2.09314 

1024 0.02718 0.05119 0.06546 0.07778 0.09204 0.10171 0.11064 2.01882 

2048 0.01919 0.03623 0.04638 0.05516 0.06533 0.07223 0.07862 1. 76562 

4096 0.01355 0.02564 0.03285 0.03908 0.04632 0.05124 0.05579 1.44308 

8192 0.00958 0.01814 0.02325 0.02768 0.03281 0.03631 0.03954 1.12702 



A3.3 

SIGNIFICANCE POINTS FOR A I NO ENDS 

LOWER TAIL 

Percentage 
0.0 0.25 0.5 1.0 2.5 5.0 10.0 25.0 50.0 Y'\ 

50 -6.7383 -0.54714 -0.49825 -0.44617 -0.37098 -0.30755 -0.23576 -0.11917 0.00557 

60 -5.77212 -0.49647 -0.45238 -0.40539 -0.33745 -0.28004 -0.21497 -0.10904 0.00464 

70 -5.18468 -0.45747 -0.41705 -0.37395 -0.31154 -0.25875 -0.19885 -0.10114 0.00398 

80 -4.80013 -0.42629 -0.38878 -0.34876 -0.29076 -0.24165 -0.18587 -0.09474 0.00348 

90 -4.53277 -0.44064 -0.36530 -0.32800 -0.27362 -0.22572 -0.17513 -0.09043 +0.00309 
N 

100 -4.33727 -0.37905 -0.34591 -0.31052 -0.25916 -0.21560 -0.16606 -0.08493 0.00278 0 
\0 . 

no -4.18801 -0.36057 -0.32913 -0.29553 -0.24674 -0.20537 -0.15826 -0.08105 0.00253 

120 -4.06976 -0.34452 -0.31454 -0.28250 -0.23597 -0.19646 -0.15146 -0.07766 0.00232 

130 -3.97304 -0.33041 -0.30171 -0.27104 -0.22647 -0.18861 -0.14547 -0.07466 0.00214 

140 -3.89173 -0.31788 -0.29032 -0.26086 -0.21802 -0.18162 -0.14013 -0.07199 0.00199 

150 -3.82178 -0.30665 -0.28011 -0.25173 -0.21045 -0.17536 -0.13535 -0.06959 0.00186 



A3.4 

UPPER TAIL 

Percentage 
75 90 95 97.5 99.0 99.5 99.75 100 

50 0.12525 0.22861 0.22857 0.33941 0.39719 0.43570 0.47081 4.93906 

60 0.ll411 0.20902 0.26423 0.31114 0.36458 0.40026 0.43284 3.76693 

70 0.10549 0.19375 0.24521 0.28900 0.33893 0.37238 0.40293 3.08605 

80 0.09855 0.18141 0.22980 0.27104 0.31815 0.34969 0.37857 2.66797 

90 0.09282 0.17117 0.21699 0.25609 0.30080 0.33076 0.35821 2.40021 

100 0.08798 0.16249 0.206l3 0.24338 0.28603 0.31464 0.34087 2. :22297 N 
I---' 
0 
• 

llO 0.08382 0.15502 0.19675 0.23242 0.27327 0.30070 0.32586 2.10250 

120 0.08020 0.14849 0.18856 0.22282 0.26210 0.28848 0.31270 2.01882 

130 0.07701 0.14273 0.18132 0.21033 0.25221 0.27766 0.30103 1.95960 

140 0.07417 0.13759 0.17486 0.20676 0.24337 0.26799 0.29060 1.91700 

150 0.07162 0.13297 0.16904 0.19993 0.23540 0.25927 0.28119 1.88589 



Percentage 

f\ 

200 

250 

300 

400 

500 

0.0 0.25 

-3.59882 -0.26410 

-3.46941 -0.23532 

-3.36891 -0.21421 

-3.20569 -0.18478 

-3.06981 -0.16482 

" SIGNIFICANCE POINTS FOR .6 1 NO ENDS 

LCWER trAIL 

0.5 1.0 2.5 5.0 

-0.24l39 -0.21707 -0.18166 -0.15151 

-0.21517 -0.19358 -0.16211 -0.13530 

-0.19593 -0.17633 -0.14774 -0.12336 

-0.16908 -0.15223 -0.12765 -0.10665 

-0.15086 -0.13587 -0.11399 -0.09528 

A3.5 

100 25.0 50.0 

-0.11709 -0.06039 0.00l39 

-0.10465 -0.05409 0.00112 

-0.09548 -0.04943 0.00112 
N 
I--' 

-0.08262 -0.04286 0.00070 I--' 
• 

-0.07386 -0.03838 0.00056 



A3.6 

UPPER TAIL 

Percentage 
75 90 95 97.5 99.0 99.5 99.75 100 

200 0.05900 0.10998 0.14005 0.16586 0.19557 0.21559 0.23403 1.89461 

250 0.05531 0.10322 0.13151 0.15580 0.18378 0.20266 0.22004 1.93214 

300 0.05044 0.09429 0.12026 0.14248 0.16816 0.18550 0.20148 1.98802 

N 
400 0.04363 0.08173 0.10429 0.12370 0.14611 0.16126 0.17523 2.06044 f-' 

N 
• 

500 0.03899 0.07314 0.09339 0.11083 0.13098 0.14460 0.15718 2.09137 



Percentage 
V\ 

16 

32 

64 

128 

256 

512 

0.0 

-16.80002 

-18.07466 

-14.75544 

-10.98789 

- 7.92181 

- 5.64312 

0.25 

-1.00588 

-0.67220 

-0.46227 

-0.32244 

-0.22647 

-0.15961 

A3.7 

\ 
PERCENTAGE POINTS FOR THE DISTRIBUTION OF 1:J.r: 
TAPIZODAL FORM 

LOWER TAIL 

0.5 1.0 2.5 5.0 10.0 25.0 50.0 

-0.92066 -0.82915 -0.69546 -0.58121 -0.45033 -0.23368 0.00383 

-0.61619 -0.55587 -0.46750 -0.39180 -0.30453 -0.15940 0.0009S 

-0.42401 -0.38277 -0.32226 -0.27027 -0.21040 -0.11049 0.00027 

N 

-0.29583 -0.26712 -0.22499 -0.18877 -0.14703 -0.07731 0.00008 I-' 
w . 

-0.20780 -0.18766 -0.15809 -0.13266 -0.10335 -0.05437 0.00002 

-0.14646 -0.13227 -0.11144 -0.09352 -0.07286 -0.03834 0.00001 



A3.8 

UPPER TAIL 

Percentage 
75 90 95 97.5 99 99.5 99.75 

16 0.23785 0.44542 0.56820 0.67378 0.79551 0.87773 0.95347 

32 0.16048 0.30326 0.38835 0.46193 0.54723 0.60515 0.65873 

64 0.11079 0.21005 0.26936 0.32074 0.38040 0.42100 0.45859 

128 0.07740 0.14693 0.18851 0.22456 0.26645 0.29497 0.32l39 N 
I-' 
.p, . 

256 0.05440 0.10332 0.13259 0.15797 0.18747 0.20756 0.22617 

512 0.03835 0.07285 0.09350 0.11140 0.l3221 0.14639 0.15952 



A3.9 

1\ 
PERCENTAGE POINTS FOR THE DISTRIBUTION OF DL 
TAPIZODAL FORM 

LOWER TAIL 

Percentage 

t'\ 0.0 0.25 0.5 1.0 2.5 5.0 10.0 25.0 50.0 

20 -18.10759 -0.87953 -0.80553 -0.72597 -0.60961 -0.51003 -0.39576 -0.20614 0.00246 

30 -18.24687 -0.69685 -0.63872 -0.57614 -0.48447 -0.40586 -0.31547 -0.16505 0.00112 

40 -17.22413 -0.59455 -0.54515 -0.49193 -0.41391 -0.34694 -0.26988 -0.14147 0.00065 

50 -16.11673 -0.52707 -0.48337 -0.43627 -0.36721 -0.30789 -0.23960 -0.12573 0.00043 
N 
I--' 

60 -15.11793 -0.47831 -0.43871 -0.39602 -0.33340 -0.27960 -0.21764 -0.11427 0.00030 
lJl 
• 

70 -14.24964 -0.44097 -0.40450 -0.36517 -0.30747 -0.25789 -0.20077 -0.10546 0.00023 

80 -13.49817 -0.41120 -0.37721 -0.34050 -0.28678 -0.24055 -0.18730 -0.09842 0.00018 

90 -12.84458 -0.38674 -0.35479 -0.32033 -0.26976 -0.22630 -0.17622 -0.09262 0.00015 

100 -12.27173 -0.36619 -0.33594 -0.030332 -0.25546 -0.21431 -0.16690 -0.08773 0.00012 

110 -11.76555 -0.34859 -0.31981 -0.28877 -0.24321 -0.20404 -0.15891 -0.0354 0.00010 

120 -11.31475 -0.33331 -0.30580 -0.27612 -0.23257 -0.19512 -0.15197 -0.07990 0.00009 



A3.10 

UPPER TAIL 

Percentage 
t'\ 75.0 90.0 95.0 97.5 99 99.5 99.75 

20 0.20882 0.39261 0.50170 0.59574 0.70444 0.77804 0.84596 

30 0.16627 0.31404 0.40207 0.47817 0.56636 0.62624 0.68161 

40 0.14217 0.26905 0.34475 0.41026 0.48626 0.53792 0.58572 

50 0.12619 0.23906 0.30645 0.36480 0.43254 0.57861 0.52125 

60 0.11460 0.21725 0.27857 0.33168 0.39335 0.43531 0.47416 N 
I-' 
(j) 

• 70 0.10571 0.20048 0.25711 0.30618 0.36318 0.40194 0.43785 

80 0.09861 0.18707 0.34995 0.28576 0.33898 0.37520 0.40875 

90 0.09277 0.17603 0.22581 0.26895 0.31906 0.35317 0.38477 

100 0.08365 0.15878 0.203,70 0.24264 0.28788 0.31869 0.3655 

120 0.0800 0.15186 0.19483~ 0.23208 0.27537 0.30484 0.33214 



A3.ll 

PERCENTAGE POINTS FOR " ll~ ( NO ENDS ) 

~ denotes number of spectral points used 

Truncation point M = N/,3 

LOWER TAIL 

Percentage 
M 0.0 0.25 0.5 1.0 2.5 5.0 10.0 25.0 50.0 

8 -14.93241 -0.51839 -0.47531 -0.42889 -0.36086 -0.30247 -0.23527 -0.12331 0.00058 

10 -13.80302 -0.44907 -0.41184 -0.37172 -0.31289 -0.26236 -0.20417 -0.10715 0.00035 

12 -12.79455 -0.40095 -0.36777 -0.33199 -0.27951 -0.23442 -0.18249 -0.90584 0.00024 

14 -11.93505 -0'-36521 -0.33502 -0.30246 -0.25469 -0.21363 -0.16633 -0.08739 0.00017 
N 
I-' 

16 
....J 

-11.20610 -0.33739 -0.30951 -0.27945 -0.23534 -0.19742 -0.15373 -0.08080 0.00013 • 

20 -10.04725 -0.29642 -0.27195 -0.24556 -0.20682 -0.17352 -0.13514 -0.07105 0.00008 

40 -7.06493 -0.20192 -0.18527 -0.16732 -0.14095 -0.11828 -0.09214 -0.04848 0.00002 

60 -5.73877 -0.16274 -0.14933 -0.13486 -0.11362 -0.09535 -0.07428 -0.03909 0.00001 



Percentage 
M 

8 

10 

12 

14 

16 

20 

40 

60 

75.0 

0.12394 

0.10753 

0.09609 

0.08757 

0.08093 

0.07114 

0.04850 

0.03910 

90.0 95.0 

0.23453 0.30051 

0.20372 0.26117 

0.18219 0.23363: 

0.16612 0.21306 

0.15357 0.19699 

0.13504 0.17325 

0.09212 0.11821 

0.07427 0.09532 

A3.ll 

UPPER TAIL 

87.5 99.0 99.5 99.75 

0.35759 0.42382 0.46883 0.51048 

0.31091 0.3685 0.40792 0.44428 

0.27819 0.32994 0.36315 0.39775 

0.25374 0.30098 0.33314 0.36292 
N 
f---' 

0.23462 0.27834 0.30810 0.33566 co 
• 

0.20638 0.24486 0.27107 0.29334 

0.14084 0.16714 0.18506 0.20165 

0.11357 0.13478 0.14923 0.16262 



Percentage 
n 

16 

32 

64 

128 

0.0 

-32.89607 

-26.26475 

-19.56851 

-14.14675 

A3.13 

NULL DISTRIBUTION FOR WHITE NOISE TEST, FULL TRAPIZODAL FORM 
EQUAL LENGTH SEGMENTS P = Q = 2 V\ 

LOWER TAIL 

0.25 0.5 1.0 2.5 5.0 10.0 25.0 50.0 

-1.15642 -1.06117 -0.95749 -0.80553 -0.67512 -0.52509 -0.27514 0.00138 

-0.81226 -0.74507 -0.67263 -0.56635 -0.47502 -0.36983 -0.19427 0.00042 

-0.57234 -0.52511 -0.47417 -0.39939 -0.33510 -0.26100 -0.13725 0.00013 
N 
1-' 

-0.40606 -0.37075 -0.33481 -0.28206 -0.23669 -0.18439 -0.09701 0.00004 
~ 
• 



Percentage 
(\ 

16 

32 

64 

128 

75 

0.27664 

0.19472 

0.13739 

0.09705 

90 95 

0.52334 0.67048 

0.36928 0.47360 

0.26085 0.33468 

0.18434 0.23656 

UPPER TAIL 

97.5 99 

0.79779 0.94546 

0.56398 0.66895 

0.39869 0.47307 

0.28185 0.33448 

99.5 99.75 

0.104581 1.13867 

0.74038 0.80653 

0.52371 0.57062 

0.37033 0.40354 

A3.14 

N 
N 
o 



Percentage 
Y\ 

16 

32 

64 

128 

0.0 

-32.92380 

-26.46099 

-19.68193 

-14.20529 

NULL DISTRIBUTION FOR WHITE NOISE TEST (NO END POINTS) 
EQUAL LENGTH SEGMENTS WITH P .: Q = 2 lA 

LOWER TAIL 

0.25 0.5 1.0 2.5 5.0 10.0 

-1.19168 -1.09245 -0.98558 -0.82900 -0.69460 -0.54015 

-0.82415 -0.75596 -0.68344 -0.57459 -0.48191 -0.3751-7 

-0.57751 -0.52894 -0.47762 -0.40230 -0.33753 -0.2689 

-0.40553 -0.37210 -0.33603 -0.28309 -0.23755 -0.18506 

A3.l5 

25.0 50 

-0.28285 +0.0062 

-0.2005 0.0045 

-0.14424 0.0014 N 
N 
I-' . 

-0.09736 0.00004 



Percentage 

" 
16 

32 

64 

128 

75.0 

0.28461 

0.19754 

0.13849 

0.09740 

90.0 95.0 

0.53806 0.68916 

0.37458 0.48036 

0.26273 0.33709 

0.18501 0.23742 

UPPER TAIL 

97.5 99.0 

0.81985 0.97138 

0.57201 0.67744 

0.40156 0.47647 

0.28287 0.33570 

99.5 

1.07431 

0.75086 

0.52747 

0.37167 

99.75 

1.16954 

0.82792 

0.57472 

0.40500 

A3.l6 

N 
N 
N 



A3.17 

1\ 
PERCENTAGE POINTS FOR THE DISTRIBUTION OF 6" \L ::. 2 ...... .., 1 
Trapizoda1 Estimate 

LOWER TAIL 

Percentage 

N 0.0 0.25 0.5 1.0 2.5 5.0 10.0 25.0 50.0 

32 -23.5137 -0.67562 -0.61991 -0.55980 -0.47158 -0.39571 -0.30825 -0.16215 0.00009 

64 -16.44366 -0.46395 -0.42573 -0.38448 -0.32393 -0.27185 -0.2ll80 -0.ll146 0.00001 

128 -ll.49973 -0.32315 -0.29654 -0.26781 -0.22564 -0.18936 -0.14754 -0.07765 0.00000 N 
N 
W 
• 

256 - 8.07647 -0.22676 -0.20808 -0.18793 -0.15834 -0.13288 -0.10353 -0.05449 0.0000 



Percentage 

Sample Size 

32 

64 

128 

256 

0.75 

0.16225 

0.11147 

0.7765 

0.05449 

0.90 0.95 

0.30814 0.39542 

0.21178 0.27180 

0.14754 0.18936 

0.1033 0.13288 

A3.l8 

UPPER TAIL 

0.975 0.99 0.995 0.9975 

0.47110 0.55906 0.01896 0.67446 

0.32386 0.38437 0.42559 0.46378 

0.22563 0.26780 0.29652 0.32313 

[\) 
[\) 

"" 0.15833 0.18792 0.20808 0.22676 • 
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Thjs same result could be obtained 1'1Ore directly hy noting 

that 

But 

A 
-1 

NotinR that 

and so 

we have 

a = (A Z + 1~ Y )-1 R 
n 

Z-l(A + (Y IZ)B)-l n _ 

(A + (Y 12) 
n 

Cn'C)-l 

-1 -1 (Z/Y
n

) - A C 11' CA 
--- --

-1 
1 A = ~1 
a, 

a,2 

r 
a, 

1 'CA-1 
1 = 1 

a, 

a,2 

r 
a, 

n ". 

+ l'CA- l 

1 

Cl 

r 
Cl 

Cl 1-1 
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k • = a J _1 
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