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Abstract

This thesis is concerned with developing techniques for analysing Raman spectroscopic

images. A Raman spectroscopic image differs from a standard image as in place of red,

green and blue quantities for each pixel a Raman image contains a spectrum of light

intensities at each pixel. These spectra are used to identify the chemical components from

which the image subject, for example a tablet, is comprised. The study of these types of

images is known as chemometrics, with the majority of chemometric methods based on

multivariate statistical and image analysis techniques.

The work in this thesis has two main foci. The first of these is on the spectral decomposition

of a Raman image, the purpose of which is to identify the component chemicals and their

concentrations. The standard method for this is to fit a bilinear model to the image where

both parts of the model, representing components and concentrations, must be estimated.

As the standard bilinear model is nonidentifiable in its solutions we investigate the range of

possible solutions in the solution space with a random walk. We also derive an improved

model for spectral decomposition, combining cluster analysis techniques and the standard

bilinear model. For this purpose we apply the expectation maximisation algorithm on a

Gaussian mixture model with bilinear means, to represent our spectra and concentrations.

This reduces noise in the estimated chemical components by separating the Raman image

subject from the background.

The second focus of this thesis is on the analysis of our spectral decomposition results. For

testing the chemical components for uniform mixing we derive test statistics for identifying

patterns in the image based on Minkowski measures, grey level co-occurence matrices

and neighbouring pixel correlations. However with a non-identifiable model any hypothesis

tests performed on the solutions will be specific to only that solution. Therefore to obtain

conclusions for a range of solutions we combined our test statistics with our random

walk. We also investigate the analysis of a time series of Raman images as the subject

dissolved. Using models comprised of Gaussian cumulative distribution functions we are

able to estimate the changes in concentration levels of dissolving tablets between the scan

times. The results of which allowed us to describe the dissolution process in terms of the

quantities of component chemicals.
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Notation convention

Lower case characters are used for scalars, bold and upper case characters are used to

represent matrices and bold and lower case characters are used for vectors. This applies to

both Latin and Greek characters.
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Chapter 1

Introduction

1.1 Raman Spectroscopy

In this thesis we investigate methods for analysing Raman spectroscopic images. We

can separate analysis of this data into two parts, methods for decomposing the data to

identify component chemicals and their concentrations, and methods for analysing the

decomposition results. Alongside investigating the existing methods we devise our own

methods for more accurate decomposition and testing of the decomposition results. Most of

the statistical techniques used for this analysis are well established in the field of mathematics

however were only applied to chemical data from the late 1960s when they were given the

name chemometrics [36].

Before describing the methods of analysis we first define a Raman spectroscopic image.

Raman imaging is a specific type of spectroscopic imaging where Raman spectroscopy is

used to gather the data [82]. Raman spectroscopy is a spectroscopic technique used to

study the molecular vibrations of a scanned object. More specifically these vibrations are

specific to chemical bonds and so can be used to identify individual chemicals present in

the subject. The theory behind Raman spectroscopy was pioneered by George Placzek,

a Czechoslovak physicist, between 1930 and 1934 using Raman scattering [88]. Raman

scattering is an effect discovered by Sir C. V. Raman and K. S. Krishnan in 1928 for

which Raman received a Nobel prize in 1930 [88].

Raman scattering is the inelastic scattering of photons. Inelastic scattering is fundamental

scattering process in physics where, instead of the kinetic energy of a photon being preserved

when it collides with an incident particle, some energy is lost or gained. It is this change that

is measured in Raman spectroscopy. Molecules, the incident particles, can be in a ground

state (minimum energy), vibrational state or virtual state (high energy). When a photon

interacts with a molecule, that molecule gains energy and so is briefly elevated to the high

1



Chapter 1: Introduction

Figure 1.1: The different forms of photon scattering [88].

energy virtual state before a photon is re-emitted or reflected. The reflected molecule has

three energy level possibilities [82], shown in figure 1.1, which can be described as follows

• The first energy level is an elastic process known as Rayleigh scattering. The result

of Rayleigh scattering is a photon re-emitted from the molecule with the same energy

as the initial photon. In this situation the molecule returns from the virtual state to

the initial state. This type of scattering is far more common than the other two and

provides no useful information for Raman spectroscopy. Therefore presenting the

greatest problem in that it must be filtered out by the spectrometer.

• The second type of scattering is a form of inelastic Raman scattering. As with

Rayleigh scattering the photon is absorbed by the molecule which is then elevated

to a virtual state. However now the re-emitted photon has less energy than the

incident photon and so the molecular vibrations fall back down to a higher vibrational

state. This causes the photon to have a longer wavelength and is known as Stokes

scattering.

• The third type of scattering is similar to the second however now the molecule begins

in a vibrational state instead of a ground state. When the photon is re-emitted it

has more energy causing the molecular vibrations to fall to a lower energy state.

This causes the photon to have a shorter wavelength and is known as anti-Stokes

scattering. It is also the least common type of scattering.

A Raman spectrometer is designed such that it can detect the three types of scattering

and filter out the first and third type, the spectrometer used to gather the data in this

thesis is the Horiba LabRAM HR seen in figure 1.2. The Raman spectrometer targets a

2



Chapter 1: Introduction

Figure 1.2: The Horiba LabRAM HR Raman spectrometer.

Figure 1.3: Horiba LabRAM HR lasers, red, green, ultraviolet and infra-red.

3



Chapter 1: Introduction

Figure 1.4: Horiba LabRAM HR laser aperture with tablet.

monochromatic light, usually a laser (as seen in figure 1.3), at a portion of the object, as

seen in figure 1.4. The re-emitted photons from this laser, in the form of reflected light,

are collected using a lens then sent through a monochromator which transmits only the

required wavelengths [37]. For organic molecules this is the range 500-2000cm-1 [37]. At

this stage in the process all three types of scattering are present. Therefore the Rayleigh

scattering and anti-Stokes scattering are filtered out leaving only the Stokes scattered

light to be passed onto a detector. This is the most challenging part of the process as

Raman scattered light usually comprises only about 0.001% of the reflected light [82]. The

detector then produces a Raman spectrum for the molecule using the change in energy

from the initial to the final state. Each spectrum contains the intensity of the light at

the selected set of wavenumbers. Figure 1.5 is an example of the Raman spectra for the

chemical paracetamol plotted against the wavenumbers.

Spectroscopic imaging is a technique in which an object is divided into pixels and the

spectrum at each pixel is measured using any one of a number of forms of spectroscopy

[89]. We see an example of this in figure 1.6 where the grid represents the object divided

into pixels and each pixel has a detected spectrum. This technique is useful in chemical

analysis as it provides both spectral and spatial information relating to the scanned object.

However the spectrum detected at each pixel is a combination of all component chemical

spectra in the sample and must therefore be decomposed.

4



Chapter 1: Introduction

Figure 1.5: The Raman spectrum of paracetamol [75].

Figure 1.6: Graphical representation of Raman imaging.

The combination of spectroscopic imaging and Raman spectroscopy is useful for examining

objects such as pharmaceutical tablets. With the measured spectra at each pixel of the

tablet, investigation into the spread of chemical compounds throughout the tablet is possible.

Raman spectroscopy has several benefits over other forms of spectroscopy. For example

infra-red spectroscopy cannot be performed through glass or water and attenuated total

reflectance (ATR) requires contact with the object, problematic if a powder or dissolving

object is the subject.

1.2 Raman Spectroscopy Data and a Bilinear Model

To describe the form of a Raman spectroscopic image dataset we will define the general

model used for decomposing a Raman image into component parts [62], the first process

required in the analysis of a Raman image. A single pixel of a Raman image containing n

pixels is an observation we denote as yi , a vector of dimension p, where p is the number

of detected wavenumbers; examples of these are shown in figure 1.6. We assume that the

detected spectrum at each pixel is a linear combination of the spectra of each component

5



Chapter 1: Introduction

chemical in the subject. Therefore we define the model as

yi = Sci + ei ei ∼ Np(0, σ2Ip) for i = 1, ..., n (1.2.1)

with

p×r
S =

[
s1 . . . sr

]
and

r×1
ci =


c1

...

cr

 ,
where the sk are the r spectra corresponding to the component chemicals. The vector

ci contains the linear coefficients corresponding to the components of the sk which we

interpret as the concentrations of each component chemical. We include errors, ei , in this

model as Raman spectroscopy is subject to interference from external sources causing noise

in the data. We assume these errors are normal and independent, therefore cov (ei , ei ′) = 0

for all pixels i and i ′, where i 6= i ′. This normality assumption is commonly made as it

is required by some methods of spectral decomposition and post-decomposition analysis.

This assumption is also made as including covariance estimation in the maximum likelihood

estimates, generalised least squares, does not improve results sufficiently to justify the

increase in computation time and the higher number of parameters requiring estimation.

With the Raman image containing n pixels scanned over p wavenumbers we get an n × p
data matrix. We can therefore write model (1.2.1) as

Y = CST + E (1.2.2)

for

n×p
Y =


yT1
...

yTn

 , n×r
C =


cT1
...

cTn

 , n×p
E =


eT1
...

eTn

 , ei ∼ Np(0, σ2Ip),

where we note that the spectra are common to all pixels in the Raman image but there

are concentration parameters specific to each pixel. To decompose our Raman image into

component spectra and their corresponding concentrations we now seek S and C such that

argmin
S,C

∥∥Y − CST∥∥ , (1.2.3)

where ‖ · ‖ is an extension of the Euclidean norm to matrices, i.e.

‖X‖2 = tr
(
XTX

)
. (1.2.4)

We must further restrict this model to ensure results can be estimated and any results we

obtain are physically plausible from a chemistry perspective. To do this we impose three

6



Chapter 1: Introduction

constraints,

1. sTk sk = 1 for all k = 1, ..., r

2. sj,k ≥ 0 for all j = 1, ..., p and k = 1, ..., r

3. ci ,k ≥ 0 for all i = 1, ..., n and k = 1, ..., r

(1.2.5)

where sk =
(
s1,k , ..., sp,k

)T and ck = (c1,k , ..., cn,k)T . The first of these limits the non-

identifiability of (1.2.3) however does not remove it entirely. The second and third enforce

non-negativity as a chemical spectrum should represent light intensities at each wavenumber

and a concentration represents the quantity of a component chemical at pixel i , therefore

neither should be negative. We also note that in the situation where σ, in (1.2.2), is

sufficiently large constraints 2 and 3 may not be entirely possible. In practice however this

does not cause an issue as the non-negatively constraints are usually not enforced as hard

constraints and so some small violations are allowed. This is true when using non-negative

least squares, §2.6.2, as we do for the majority of this thesis. If the measurement error,

σ, is too large and scales with the measured values log transforming the data may prove

useful in reducing this and making constraints 2 and 3 more easy to enforce.

There are a number of methods available for solving (1.2.3) however they can be split into

two groups. The first, including the original method proposed by Lawton and Sylvestre [62],

uses eigendecomposition followed by steps to impose the constraints. The second group

uses least squares solutions including a non-negative least squares variant [61]. However no

method will have a unique solution due to non-identifiability of the model, to be detailed in

§1.2.1. It is also important to note that in the field of chemometrics the process of solving

(1.2.3) subject to (1.2.5) is known as spectral decomposition, in other words identifying S

and C. Therefore in this thesis the term spectral decomposition will always relate to the

solving of (1.2.3) rather than eigendecomposition.

Throughout this thesis we display the results from this problem in two ways. The spectra

are contained in the columns of S and will be plotted against a vector of wavenumbers

to give us component spectra, an example of which is seen in figure 1.5. To illustrate

the concentrations for component chemical k at each pixel we take the k th column of the

matrix C, defined as

n×1
v =


c1,k

...

cn,k


and reshape this vector into a matrix with the dimensions of the original rectangular Raman

7
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image, say x × y , giving

x×y
V =


v1 . . . v(y−1)x+1

...
. . .

...

vx . . . vn

 .
From this matrix we can create a heatmap of the levels of component chemical k at each

pixel.

1.2.1 Model Non-identifiability

We say our model, (1.2.3) is non-identifiable as the solutions are non-unique. For example,

suppose
(
Ĉ, Ŝ

)
are solutions to (1.2.3) subject to (1.2.5), for some invertible matrices R,

from a set of matrices subject to constraints (1.2.5), we can find a range of solutions to

(1.2.3) by writing

Y = ĈŜT + E = ĈR−1RŜT + E = C̃S̃T + E

where C̃ = ĈR−1 and S̃T = RŜT . It is clear that Y − C̃S̃T = Y − CST and so both

are solutions to (1.2.3). However from a chemical perspective they are different solutions

as Ŝ may not show the same chemical spectra as S̃. Whilst this does not effect our

optimisation of (1.2.3) in a mathematical sense it does effect our physical interpretation

of the results. For some model sizes, for example if r = 1, then R = 1 and the model

is identifiable subject to (1.2.5) as R = −1 violates (1.2.5), constraints 2 and 3. Some

methods of spectral decomposition, such as those detailed in §2.5, make use of this benefit

from dimension reduction. The implications of this non-uniqueness, more specifically that

caused by non-identifiability of the solutions, will be dealt with in Chapter 4 and Chapter 5.

In the field of chemometrics this is known as rotational ambiguity [12, 53] in spite of the

fact that R is not necessarily a rotation matrix but could be a more general non-singular

transformation matrix such that constraints (1.2.5) are still met.

1.2.2 Raman Spectroscopy Datasets

Throughout this thesis we use a number of datasets, the majority of which are Raman

images of pharmaceutical tablets. Our first dataset, and the smallest, is taken from Lawton

and Sylvestre [62] and is five observations over 30 wavenumbers of an unspecified material

comprised of two chemical components. This gives us a 5 × 30 data matrix. For some

of our investigations we will also use this dataset solving for 3 spectra, r = 3. Whilst not

chemically sensible the simple nature of the dataset is all we require when testing methods

8
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such as those investigated in Chapter 4, therefore the nature of the third estimated spectra

is of no importance.

Another small dataset, containing a single component spectrum, is a 70 × 75 pixel scan

of a paracetamol tablet over 1600 wavenumbers resulting in a 5250 × 1600 data matrix.

Our third, and slightly larger, dataset is a 269× 57 pixel scan of a human tooth over 1024

wavenumbers. This contains enamel and dentine component spectra. Due to the very small

size of Lawton’s dataset we will use that when testing new methods and when investigating

the original method proposed by Lawton and Sylvestre [62] as the true solutions are known

and there is very little noise in the data. We will use the paracetamol dataset on new

methods as a single component spectrum is present and so solving (1.2.3) is very simple.

The dataset also contains at least one example of the most common anomalies so we will

use it extensively in our testing of pre-processing methods in Chapter 3. Finally the human

tooth dataset contains two spectra which are very similar in structure and so we use this

as a more rigorous test of new methods to ensure they can detect similar spectra.

We also have a large dataset containing 12 scans of tablets of bicalutamide, a drug commonly

used in the treatment of prostate cancer, and copovidone, a filler and binder. The scans in

this set are 86× 86 pixel scans over 1024 wavenumbers giving a 7396× 1024 data matrix

for each scan. There are six tablets in total with the upper and lower faces of each scanned

giving the 12 data matrices. The six tablets are also split into two groups with different

manufacturing processes. Three are made by mixing dry components and forming them

into a tablet with a binder whilst the other three have their component chemicals melted,

mixed and then extruded into the tablet, in theory providing a more thorough mix. We

will use these datasets for hypothesis testing the results of spectral decomposition as we

have repeated scans of each tablet and of tablets which will ideally be almost identical. We

will also use the different production methods in devising tests for the quality of mixing of

component chemicals in a tablet.

Our final two datasets are images recorded at discrete times as the scan subject dissolves.

The first is nine 73 × 21 scans, over 1600 wavenumbers, of a caffeine tablet dissolving

over 211 minutes in water; this results in a 13797× 1600 data matrix comprised of nine

1533 × 1600 individual data matrices for each time point. This is expected to contain

caffeine and caffeine hydrate. The second dataset is fifteen 34 × 34 scans, over 1024

wavenumbers, of a bicalutamide tablet dissolving over 2131 minutes. We therefore have

a 17340 × 1024 data matrix comprised of fifteen 1156 × 1024 individual data matrices.

This data is more complicated than the caffeine dataset as the initial component, the

extrudate, dissolves into either bicalutamide type I or II. Bicalutamide type II then becomes

bicalutamide type I as the process continues. We will use these datasets for modelling how

9
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a tablet dissolves over time with the objective of predicting the dissolution pattern between

the discrete scan times. As the caffeine tablet has concentrations of one component

decreasing whilst the other increases we will use it for the initial testing of a model. We

will then use the more complicated bicalutamide tablet for a more rigorous investigation of

the proposed method.

An important point to note when we fit (1.2.2) to these datasets is that we will sometimes

set r , the number of component chemicals, to be one greater than the number of component

chemicals we expect the subject to contain. We do this with Raman images containing a

large number of background pixels, that is pixels representing only the scan bed not the

scan subject. In these situations we include an extra sk to represent this background signal

as it will account for variance in the data. Selecting the correct number of component

spectra to explain the majority variance is vital to obtaining the most accurate estimates

as detailed in §2.2.

1.3 Thesis Outline

The main contributions to the field of chemometrics in this thesis are contained in Chapters

4 to 7. In Chapters 4 and 5 we apply existing statistical techniques, such as random walks

and bootstrapping, in novel ways to Raman spectroscopy data in order to perform hypothesis

tests on estimators of (1.2.2). In Chapter 6 we define a new model for specifically for

Raman spectroscopy data with a time component. With this model more accurate analyses

and visualisations of dissolution processes are possible. In Chapter 7 we propose a new

method for finding solutions to (1.2.2) by incorporating a clustering technique. This method

provides some of the benefits of unique resolution methods, to be discussed in §2.5, such

as dimension reduction in the estimates without requiring used experience.

In Chapter 2 we outline the more frequently used mathematical techniques in this thesis.

These are split into the methods used for solving (1.2.3), which are either based on principal

component analysis or least squares optimisation, and methods used for analysing the results

of spectral decomposition of a dataset. We also provide a brief comparison of the more

common techniques for solving (1.2.3).

The focus of Chapter 3 is the pre-processing of Raman spectroscopy data. Our objectives

in pre-processing the data are to remove anomalies introduced in the data acquisition stage

or caused by the scanned object. We devise and explore techniques for adjusting the data

in order to improve the clarity of results. The investigation of anomaly removal methods

involves existing statistical techniques such as a Windsorised mean and variance scaling. For
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data adjustment we modify a standard linear model incorporating ideas from the quadratic

penalty method of numerical optimisation. We also work on a method for adjusting small

differences in spectrometer calibration in the data so it can be easily compared to other

datasets. Finally we consider the use of a robust principal component analysis algorithm

in a process called chemical rank analysis, used in estimating the number of component

spectra in a dataset.

In Chapter 4 we look at building on the work of Lawton and Sylvestre [62] who originally

proposed (1.2.2) for decomposing a dataset into a linear combination of two component

spectra. Our aim is to extend their method to data containing more than two component

chemicals. We will first prove the link between the objective functions of the eigendecom-

position based approach of Lawton and the least squares optimisation performed by the

commonly used modern methods. With this link shown our extension of Lawton’s solution

space provides a useful tool for exploring the solutions to the bilinear model (1.2.2). Analyt-

ically defining the solution space used by Lawton is possible up to three dimensions however

further expansion requires numerical methods with only partial analytical bounds. With this

knowledge of the solution space in higher dimensions we then propose a random walk to

explore this region and give us a greater understanding of the range of possible solutions

least squares based methods can obtain. This random walk is useful when hypothesis testing

the solutions estimated with the MCR-ALS least squares method in Chapter 5.

Throughout Chapter 5 we concentrate on the ways in which we can conduct hypothesis

tests on Raman spectroscopy data. The aims of our hypothesis tests are to detect a

difference in the quantities of chemical components between similar tablets and to test

how well mixed the chemical components are in a scan subject. We first describe some

standard statistical methods such as Hotelling’s T2 test and the principle of bootstrapping.

With these defined we initially conduct a simple T2 test on the estimated concentration

matrices for multiple Raman images of tablets containing the same component chemicals.

With non-identifiability in our model having a negative effect on the reliability of our tests

we then incorporate the random walk derived in Chapter 4 to construct a more robust test.

The second area we investigate is how to test the mixing of chemicals in a Raman image, for

example how thoroughly mixed component chemicals in a tablet are. Before we can test this

we derive test statistics for quantifying how uniformly mixed the estimated concentrations of

a component chemical are. Using Minkowski functionals, grey level co-occurrence matrices

and Pearson’s correlation coefficient we suggest and test three potential test statistics.

As with the T2 test we also must deal with the non-identifiability of the solutions and so

incorporate the random walk so we can test a range of possible solutions. We finally test

the combination of our new test statistics and the random walk using simulated data and
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real world images of tablets containing the same chemicals yet produced using different

techniques. With a reliable algorithm we aim to provide a non-destructive test of how well

mixed a tablet is for the purpose of quality control.

In Chapter 6 we work with Raman images gathered over time as the scan subject dissolved.

Our aim is to devise a model capable of predicting how the component chemical concen-

trations change in between the discrete scans and even after the final scan. Using a two

part model we map the dissolution of a simple dataset with one component decreasing

and the other increasing in concentration. For our more complicated data we require a

model capable of fitting to concentrations which increase, decrease or increase and decrease.

We achieve this by combining the separate models used on our simple dataset to form a

continuous model which fits all combinations of concentration change. With our new model

we are able to estimate continuous dissolution times from the discrete Raman images.

For our final area of research in Chapter 7 we investigate modifications of our bilinear model

(1.2.2). With the scan bed appearing around the scan subject in almost all Raman images

we use cluster analysis to split the dataset into pixels containing either the background or

the subject. The motivation behind this is to decrease the level of background signal in the

dataset to improve the clarity of estimated spectra and concentrations. In testing several

clustering methods we conclude that a Gaussian mixture model produces the most accurate

clusters when fit with the expectation-maximisation algorithm, defined in §2.12.1. We

therefore fit a bipartite bilinear model using the clustering results to obtain estimates of the

component spectra displaying less noise. In our dataset containing component chemicals

with very similar spectra we also saw more reliable detection of both spectra compared to

our results using the unclustered data. With our concept proving successful we propose a

single stage algorithm to both cluster and perform spectral decomposition. To achieve this

we combine our bipartite bilinear model with the Gaussian mixture model and recalculate

the steps of the expectation-maximisation algorithm. Whilst the results we obtain from

this algorithm match those from the two stage process we see a reduction in computation

time with no user input required between clustering and fitting the model.

Finally in Chapter 8 we discuss our results from the previous chapters and provide ar-

eas in which future work could be done to further this research and benefit the field of

chemometrics.

12



Chapter 2

Literature Review

2.1 Introduction

In this chapter we will discuss and define the multivariate methods and dimension reduction

techniques commonly used in this thesis. In §1.2 we define the model we wish to solve for

most Raman images,

Y = CST + E (1.2.2)

with solutions

argmin
S,C

∥∥Y − CST∥∥
subject to

1. sTk sk = 1 for all k = 1, ..., r

2. sj,k ≥ 0 for all j = 1, ..., p and k = 1, ..., r,

3. ci ,k ≥ 0 for all i = 1, ..., n and k = 1, ..., r.

(1.2.5)

We can separate the methods for solving (1.2.2) into two groups. The first group indirectly

solves (1.2.2), and is the basis of the very first method for spectral decomposition [36].

This technique, to be discussed in §2.4 and §2.5, first finds a solution to

Y = GHT + E (2.1.1)

by finding

argmin
H,G

∥∥Y − GHT∥∥
for some n × r matrix G and p × r matrix H

p×r
H =

[
h1 . . . hr

]
13
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with the constraints that

1. ‖hk‖ = 1 for all k = 1, ..., r

2. hTk hk ′ = 0 for all k = 1, ..., r and k ′ = 1, ..., r such that k 6= k ′

(2.1.2)

where r is, once again, the number of component spectra in the dataset. Linear combinations

of the hk then construct the sk

S = HR

and ci

C = G
(
R−1

)T
such that they minimise (1.2.2) and still satisfy constraints (1.2.5). The situation may

arrise when constraints (1.2.5)(2,3) cannot be satisfied and so will likely require relaxing.

As previously mentioned these constraints are often not strictly imposed so this should

cause little in the way of problems.

The second group of methods directly solves (1.2.2) subject to (1.2.5), usually using non-

negative matrix factorisations, and currently forms the basis of the most common methods

[89]. In the field of chemometrics the methods using the indirect technique of finding

a solution to (1.2.2) are known as unique resolution methods. The methods using the

direct approach are known as rational resolution methods. Unique resolution methods, an

example of which is defined in Chapter 7.2, are usually more complicated to implement

as they require detailed knowledge of the Raman image to be analysed and therefore

require an experienced analyst. The detailed knowledge is usually around the structure of

the scanned object allowing the analyst to select regions containing a single component

chemical, reducing the dimension of (1.2.2) and removing the non-uniqueness of solutions.

In comparison rational resolution methods require little experience and although the solutions

may not be as clear the ease of implementation often outweighs any improved clarity in the

results [52, 53]. Regardless of the method they are all now known as self-modelling curve

resolution, the name originally given to the first method proposed for solving (1.2.2) [62].

In this chapter we will also define other commonly used methods in this thesis such as

forms of cluster analysis and a technique for estimating the number of component spectra

in a dataset.
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2.2 Chemical Rank Analysis

Whatever chemometric method we select for solving (1.2.2) we must first know the number

of chemical components in a dataset, also known as the chemical rank. For the data used

in this thesis we know the exact components to expect however this may not always be the

case. In these situations a technique known as chemical rank analysis should be used. The

method was first used by Wernimont [99] and has become the usual method of estimating

chemical rank [53].

Chemical rank analysis estimates the number of component spectra in a dataset using

principal component analysis on mean centred data. The theory behind this process is that

the spectra act as bases for the data as each observation is a linear combination of the

component spectra. These spectra usually account for more variance than the standard

subspace and so the number of bases identified by PCA as explaining the majority of variance

should coincide with the number of component spectra in the data as these are the true

bases [32]. Given a set of eigenvalues λ1 ≥ λ2 ≥ ... ≥ λp we calculate the vector, l, of

cumulative sums

lm =

m∑
j=1

λj∑p
J=1 λJ

(2.2.1)

where λj∑p
J=1 λJ

is the proportion of variance explained by eigenvector j [73, §8.2.3]. We

therefore look at the point where vector l begins to plateau and select that as the estimated

number of component chemicals as including further eigenvectors will provide a minimal

increase in explained variance. This method is not perfect however as similar chemical spectra

can appear as a single eigenvector leading us to believe one fewer chemical component is

present.

2.3 Principal Component Analysis

To use the first technique for solving (1.2.2) subject to (1.2.5) we must first solve (2.1.1)

subject to (2.1.2). We can interpret (2.1.1) as defining the yi as a linear combination of

orthonormal vectors hk . We may therefore be able to use principal component analysis to

find these orthonormal vectors. We prove in §4.2 that under the constraints (2.1.2) the

principal component loadings are indeed least squares minimisers of (2.1.1) and can thus

be used in the first step of the solution process.

Principal component analysis (PCA) is a procedure for generating a new set of basis vectors

with the objective of reducing the number of bases required to explain the majority of
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variance in the data. PCA is usually applied to mean centred data which, in the terminology

of this thesis involves setting

ỹi = yi −
1

n

p∑
j=1

yi ,j (2.3.1)

for all i = 1, ..., n to form mean centred data matrix Ỹ of the same form as described in

§1.2. To perform PCA and find new bases for the data we first calculate the covariance

matrix Ã = ỸT Ỹ
n [1]. We then find matrices L̃ and K̃ such that

Ã = K̃L̃K̃T

where

p×p
L̃ =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0

0 . . . 0 λp

 and
p×p
K̃ =

[
k1 . . . kp

]

for eigenvectors, or principal component loadings, kj ordered corresponding to eigenvalues

λ1 ≥ λ2 ≥ ... ≥ λp with

‖kj‖ = 1 for j = 1, ..., p

and

kTj kj ′ = 0 for all j = 1, ..., p and j ′ = 1, ..., p such that j 6= j ′.

The result of this is that we can decompose the data into two matrices such that

Ỹ = W̃K̃T (2.3.2)

where W̃ = ỸK̃ are the principal component scores, the data projected onto the new bases.

From the properties of PCA the amount of variance explained by eigenvector j is proportional

to
(
λj/
∑p
J=1 λJ

)
[73, §8.2.3][79]. Therefore we can use the eigenvectors explaining the

majority of the variance as the new basis vectors. With these new bases we can reduce

the dimension of the data with little loss of information as the later eigenvectors should

explain a minimal amount of variance.

Algorithm 2.3.1. Principal Component Analysis Dimension Reduction

1. Calculate the covariance matrix Ã = ỸT Ỹ
n .

2. Calculate the eigenvectors, K̃, from Ã.
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(b) New bases k1 and k2.

Figure 2.1: An example of new bases, shown in red, compared to standard bases, shown

in black, derived by PCA for random data.

3. Calculate cumulative sum vector l

lm =

m∑
j=1

λj∑p
J=1 λJ

(2.3.3)

and identify the smallest m such that lm ≥ 0.95.

4. Project the data onto new bases using

Ỹ′ = ỸK̃′.

for

K̃′ =
[
k1 . . . km

]
.

This process is equivalent to transforming data from the standard basis vectors to new

basis vectors equal to the eigenvectors, {k1, k2, ..., km}. A transformation easily visualised

in 2-dimensions as shown in figure 2.1.

When dealing with Raman spectroscopy data, and the methods of analysis to be used in

this thesis, dimension reduction is not of interest to us. This is because it will result in fewer

variables which will be a linear combination of the original wavelengths and thus will be harder

to interpret. It is the new bases found by PCA which are of use with Raman spectroscopic

images. As seen in figure 2.1b the new bases closely follow the data structure, therefore

with data which is a linear combination of r spectra the bases explaining the majority of

the variance will likely resemble the spectra [32]. It is this property that was used in the

original method of solving (1.2.2), to be detailed in §2.4.

17



Chapter 2: Literature Review

x
0 5 10

y

0

2

4

6

8

10 yi

ŷi

Figure 2.2: Optimisation performed by PCA on uncentred data for the primary eigenvector

in 2-dimensions The red point denotes yi and the blue point Kwi = ŷi .

2.3.1 Existence of a Single Eigenvector of Constant Sign

Lawton and Sylvestre [62] made one key assumption on the results of PCA when applied

to an entirely positive matrix Y. The assumption was that the eigenvector corresponding

to the largest eigenvalue, i.e. the first principal component, will have components all of the

same sign. As we will be using Lawton’s results in Chapter 4 we will prove this assumption

for data which is uncentred due to the centring process creating negative values. To the

best of our knowledge this proof has not been published or referenced in chemometric

works.

As stated by Hung et al. [49], principal component analysis minimises the objective function

min
K

n∑
i=1

‖yi −Kwi‖2 (2.3.4)

for eigenvectors K of uncentred data Y, defined previously, and scores wi = Kyi . In

2-dimensions we can visualise this as minimising the perpendicular distance between the

eigenvectors and the data points, as shown in figure 2.2. We now define
n∑
i=1

‖yi −Kwi‖2 =

n∑
i=1

d2
i (2.3.5)

for Euclidean norm ‖ · ‖.

As PCA is a dimension reduction technique we wish to reduce the number of kk therefore,

with the definition wi = Kyi , we define ŷi as

ŷi = kkT yi

for single eigenvector k, giving

εi = yi − kkT yi

=
(
Ip − kkT

)
yi
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and thus

d2
i = εTi εi .

We now show that, for entirely positive data Y,
∑n
i=1 d

2
i is minimised by an eigenvector,

k, with all components of the same sign. By considering the data matrix as a whole rather

than by each observation we see

ET =
(
Ip − kkT

)
YT

and

d2 = tr
(
ETE

)
= tr

(
Y
(
Ip − kkT

)
YT
)

= tr
(
YYT

)
− tr

(
YTYkkT

)
(2.3.6)

using the linearity and cyclic invariance properties of trace and the idempotency of kkT .

Minimising (2.3.6) is now a case of maximising tr
(
YTYkkT

)
. We write each diagonal

element of Q = YTYkkT as

Ql ,l =

p∑
j=1

[
kjkl

n∑
i=1

yi ,jyi ,l

]
, (2.3.7)

whose trace we must maximise.

From Mardia et al. [73, Example 8.2.4 (d)], (2.3.6) is minimised when k is the eigenvector

corresponding to the largest eigenvalue of YTY as

E
[
d2
]

= tr
(
YYT

)
−

p∑
j=1

[
kjklλ

]
= tr

(
YYT

)
− λ,

which is therefore minimised when λ is the largest eigenvalue which corresponds to the

first eigenvector. To show all elements of this eigenvector are of the same sign we let the

primary eigenvector of YTY be k̄ with some k̄m < 0 and k̄j > 0 for j 6= m. With Y entirely

positive we know
n∑
i=1

yi ,jyi ,l > 0 for j = 1, ..., p.

Therefore
p∑
j=1

[
k̄j k̄m

n∑
i=1

yi ,jyi ,m

]
<

p∑
j=1

[
k̂j k̂m

n∑
i=1

yi ,jyi ,m

]

for some k̂j = |k̄j | for all j and our true maximiser of (2.3.7) is therefore an eigenvector

with components of the same sign.
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2.3.2 Uncentred Principal Component Analysis

The only area of PCA which may cause problems when applied to Raman spectroscopy data

is the mean centring of the observations, (2.3.1). As detailed in §1.2 Raman spectroscopy

data is almost entirely positive as it represents the intensity of light at specific wavelengths,

a value which, from a physical standpoint, cannot be negative. However mean centring

the data will almost certainly result in negative elements in each observation. Therefore

the eigenvectors calculated as new bases for the data, representing the component spectra,

may not be physically sensible solutions.

As such we may be required to perform uncentred principal component analysis on our

data Y. This simply involves calculating the eigenvectors and eigenvalues of YTY
n which, as

shown by Cadima and Jolliffe [16], has no effect on the method or the objective function.

Our results should therefore still represent component spectra and satisfy our need for

r vectors which are a solution to (2.1.1), proven in §4.2, that can be transformed into

solutions to (1.2.2).

2.3.3 Robust Principal Component Analysis

Principal component analysis can suffer when the data contains anomalies large enough

to effect the eigenvectors. To negate the effects of these anomalies we can implement

robust principal component analysis, a technique suggested by Campbell [17]. The robust

principal component analysis algorithm takes the standard eigenvectors and eigenvalues and

iteratively recalculates them whilst downweighting anomalies that have too large an effect

on the estimated covariance matrix. This algorithm therefore calculates the eigenvectors

and the corresponding eigenvalues on a subset of the data[17]. Aside from being robust

to anomalies in the data a further advantage of this algorithm is that we can halt it when

the required number of eigenvectors have been estimated. This may prove useful for large

Raman spectroscopy datasets as not all the eigenvectors will be required and computing

all p may be computationally expensive since p typically exceeds 1000.

2.4 Lawton’s Method for Self Modelling Curve Resolution

The first method for decomposing a spectroscopic image, initially known as self modelling

curve resolution, was proposed by Lawton and Sylvestre [62] and was the method which

began the field of chemometrics [36]. This method solves (1.2.2), with r = 2, by first

finding a solution to (2.1.1) using uncentred PCA, a solution we prove in §4.2. The
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solutions to (2.1.1) are then transformed, as in §1.2.1, to comply with constraints (1.2.5)

instead of (2.1.2) and thus form a solution to (1.2.2).

SMCR was originally devised to determine the shapes of two overlapping functions, s1(x)

and s2(x), from a set of additive mixtures of these two functions.

y(ω) = c1s1(ω) + c2s2(ω), Ω1 ≤ ω ≤ Ω2 (2.4.1)

where y(ω) is a continuous curve. In (2.4.1) the ω are the wavenumbers over which each

observation is scanned, the sk are the component spectra from which the observation is

comprised and the ck are the concentrations of each component spectra.

When fitting (2.4.1) Lawton defined three assumptions.

1. The sk(ω) are normalised so that ∫ Ω2

Ω1

sk(ω) = 1.

2. The sk(ω) are non-negative and linearly independent.

3. The ck are non-negative.

Although written as functions these three assumptions are clearly equivalent to (1.2.5).

The last two of these ensure the solutions to (2.4.1) are physically and chemically plausible,

as in (1.2.5). The first is a mathematical constraint to ensure we can identify the sk(ω). If

these assumptions are satisfied and there is no region in [Ω1,Ω2] in which both s1(x) and

s2(x) are simultaneously zero then we can construct s1(x) and s2(x) satisfying (2.4.1).

The idea behind the method is to find two functions to act as bases which span the data

and can be combined to form any observation. As an initial estimate for these two functions

Lawton used the first two eigenvectors of the data. Eigenvectors are a sensible starting

point as they explain the greatest proportion of the variance, entirely span the data and

solve (2.1.1) as we will prove in §4.2. Aside from the first eigenvector however they do

not satisfy the non-negativity requirement for the basis functions, shown in §2.3.1. Lawton

therefore used the non-identifiability in the model to transform these eigenvectors into

physically plausible solutions, see §1.2.1.

In practice, when working with a data matrix Y, it is convenient to discretise (2.4.1) giving

yi = ci ,1s1 + ci ,2s2 + ei = Sci + ei , for i = 1, ..., n (2.4.2)

where yi = (yi(ω1), ..., yi(ωp))T , sk = (sk(ω1), ..., sk(ωp))T and ei are the experimental

errors for the i th observation. This model is clearly equal to (1.2.1) in §1.2 with r = 2. All
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three assumptions of (2.4.1) remain and the limit Ω1 ≤ ω ≤ Ω2 is replaced with a known

set of discrete ωj for j = 1, ..., p. The unit area restriction is also discretised and becomes

p∑
j=1

sk(ωj)∆j = 1

with

∆j =


|ω2 − ω1| if j = 1

|ωp − ωp−1| if j = p

|ωk−ωk−1

2 | if 1 < j < p.

Providing the two spectra assumption made by Lawton holds it is also possible to write yi

as

yi = κi ,1k1 + κi ,2k2 + εi (2.4.3)

where the κi ,k are linear combination coefficients and k1 and k2 are the first two eigenvectors

of the second moment matrix M = YTY
n calculated using uncentred PCA as in §2.3. The

definition of (2.4.3) uses the same property of eigenvectors as chemical rank analysis, §2.2,

in that for data comprised of linear combinations of two spectra the two eigenvectors

corresponding to the two largest eigenvalues should explain the majority of variance.

Lawton now uses (2.4.2) and (2.4.3) to write

yi = ci ,1s1 + ci ,2s2 + εi = κi ,1k1 + κi ,2k2 + εi

allowing us to define
s1 = ξ1,1k1 + ξ2,1k2

s2 = ξ1,2k1 + ξ2,2k2

(2.4.4)

which we can write in matrix form as

S = KΞ

for

S = [s1 s2], K = [k1 k2], Ξ =

[
ξ1,1 ξ1,2

ξ2,1 ξ2,2

]
.

Therefore our matrix of component spectra is equivalent to a transformation of the matrix

containing the first two eigenvectors.

We now see, from (2.4.3) and (2.4.4), that both the yi and sk can be expressed as linear

combinations of the eigenvectors, kk . We can therefore represent both the yi and sk on
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Figure 2.3: Reproduced from Lawton and Sylvestre [62]. The (ξ1, ξ2) plane of linear

combinations of ki .

the same (ξ1, ξ2) plane. This of course places the ξl ,k in (2.4.4) as equivalent in purpose

to the κi ,1 and κi ,2 in (2.4.3).

Using Lawton’s original data we have an example of this (ξ1, ξ2) plane in figure 2.3 where

the circles correspond to the linear combination coefficients in (2.4.3). As the linear

combination coefficients to produce the sk in (2.4.4) are unknown and require estimation

Lawton defined boundaries for the region from which the coefficients may be selected.

Lawton first restricted this region, from which we select the ξl ,m, by noting that the si

must be non-negative. Therefore the (ξ1, ξ2) plane is cut down to only those points

satisfying

(ξ1k1 + ξ2k2)j ≥ 0 for j = 1, ..., p (2.4.5)

from the definition of the sk in (2.4.4). For Lawton’s data this region is marked on figure

2.3a as the area between the upper boundary of region A and the lower boundary of region

B. Note that the five observations all lie within this area as they are all non-negative. The

derivation of these boundaries and the following two are provided and proven to always

exist in §4.3.

Lawton further restricted this plane by using the assumption that ci ,1 and ci ,2 in (2.4.2)

must also be non-negative. This restriction adds the lower boundary to region A and the

upper boundary to region B in figure 2.3a. The divide we see between the two feasible

regions comes from the existence of two component spectra, therefore all spectra obtainable
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Figure 2.4: Resulting S from Lawton’s method, §2.4, over a range of possible points on

the line segments identified in figure 2.3.

from one region will look similar. Due to this if (ξ1,1, ξ2,1) were to come from region A

(ξ1,2, ξ2,2) must come from region B in order to avoid two copies of a single spectra when

we calculate (2.4.4).

The final restriction to the plane is derived from the assumption that the sk are normalised

to have unit area. We show an example of this bound in figure 2.3 with line C. Therefore

the line segments from which we can select the two pairs of coordinates, (ξ1,1, ξ2,1) and

(ξ1,2, ξ2,2), are the intersection points between line C and regions A and B in figure 2.3b.

We describe and expand upon these boundaries in §4.3 and §4.4.

The range of possible spectra, sk , cannot be restricted any further using the current

assumptions. The width of the segments from which we select our component spectra

depends on the data being analysed and how close the scanned object is to containing the

pure spectra sk . Figure 2.4 shows the possible range of solutions we obtained for Lawton’s

dataset split by the two line segments. These constraints will be explored further, and the

solution space proved finite, in §4.3 and §4.4.

2.5 Other Indirect Approaches for Spectral Decomposition

Whilst Lawton’s method was the first there are more modern algorithms for indirectly

solving (1.2.2) by first optimising (2.1.1) which further narrow down the possible solution

space. Examples of these are evolving factor analysis (EFA) [71] and window factor analysis

(WFA) [72], which use regions in the spectroscopic image where concentrations are zero,

and heuristic evolving latent projection (HELP) [59], which uses a region in the image

where only a single chemical component is present.
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2.6 Non-Negative Matrix Factorisation

Most methods which directly solve (1.2.2) use some form of non-negative matrix factorisa-

tion to both estimate C and S and enforce (1.2.5) [53]. Non-negative matrix factorisation

(NNMF) is a process which seeks to decompose a matrix with positive elements, Y, such

that

Y ≈ CST (2.6.1)

where both C and S are also matrices with positive elements [90]. The majority of these

methods seek to minimise [90]

f (C,S) = ‖Y − CST ‖. (2.6.2)

We can immediately see that, aside from a lack of unit length constraint on the columns of

C or S, this method is almost identical to our optimisation problem (1.2.2) and constraints

(1.2.5). There are three main branches of methods to perform this factorisation, multi-

plicative update algorithms, gradient descent methods and alternating least squares based

methods. The former two of these methods are not popular in chemometrics for solving

(1.2.2). The multiplicative update algorithm was made popular by Lee and Seung [63, 64],

improved upon by Gonzales and Zhang [39] and proven to converge by Lin [67] however is

still notoriously slow [9]. Gradient descent methods on the other hand are more complicated

to implement as they require extra parameters which can affect the convergence of the

algorithm if not carefully chosen [9].

2.6.1 Alternating Least Squares

The most common form of non-negative matrix factorisation in chemometrics, and the

most simple to implement, is alternating least squares. The algorithm works simply and

quickly by alternately applying least squares optimisation to

Y = CST + E

to refine estimates Ĉ and Ŝ, we detail this algorithm in §2.7.1. The non-negativity constraint

was initially, and still often is, enforced by setting negative values to zero [64]. Whilst this

algorithm is fast Bro and Jong [14] showed that the non-negative projection can lead to a

non-least squares solution.
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2.6.2 NNLS

The final form of NNMF we consider is the one to be predominantly used in this thesis

and one of the most common modifications of the standard ALS algorithm to be used

in chemometrics [89]. Non-negative least squares (NNLS) was suggested by Lawson and

Hanson [61] and minimises

‖Ex− f‖ subject to x ≥ 0 (2.6.3)

which differs from the (2.6.1) in that it requires a vector x in place of one of the matrices.

It is an active set optimisation method [77], see appendix A.2, as it uses a pair of logical

indicator vectors to denote the elements of f which violate or conform to the constraint.

The algorithm solves the problem by first calculating a partial solution using only the

elements which violate the constraint. These elements are then scaled, with the least

negative element scaled first, until they are non-negative. Each time an element is moved

between the active and inactive sets the partial solutions are recalculated. This process

continues until a non-negative solution is found or an iteration limit is reached. A detailed

intuitive explanation can be found in Bro and Jong [14] where standard NNLS was modified

to become fast NNLS (FNNLS). This resulted in a reduction in time of between 80-95%

for different implementations dependent on the exact model being optimised.

When used in place of standard least squares solutions to (2.6.1) this becomes an effective

method for performing ALS based NNMF with convergence proved by Bertsekas [10]. ALS-

NNLS also has a reduced possibility of returning a non-least squares solution when compared

to standard ALS [14]. It does however decrease the speed of the algorithm. Increased

computation time is due to the algorithm finding a vector solution to (2.6.3) where (2.6.1)

uses the entire matrix. Therefore we must estimate each column of W and H individually.

2.7 Karjalainen’s Methods of Spectral Decomposition

Karjalainen [55] proposed two methods of solving (1.2.2) to the field of chemometrics. The

first was a constrained optimisation problem similar to a quadratic penalty method, see

appendix A.4. This method however required numerical optimisation to fit the model and is

therefore slow and expensive to calculate. The second proposed method was a far simpler

least squares based approach using alternating least squares, the same non-negative matrix

factorisation we describe in §2.6.1.
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2.7.1 Alternating Least Squares for Spectral Reconstruction

Karjalainen’s second proposed method is simply an implementation of the alternating least

squares method of non-negative matrix factorisation, §2.6.1, and hence shares the same

name, ALS [74, 85]. Although it is a relatively new method in chemometrics, due to

the speed and simplicity of the algorithm it has has become popular for analysing Raman

spectroscopy data [89]. We can define the full ALS algorithm of §2.6.1 in terms of (1.2.2)

as

Algorithm 2.7.1. Alternating Least Squares

1. Estimate r , the number of component spectra, using chemical rank analysis, §2.4.

2. Fill the n × r matrix C(0) with random numbers.

3. Calculate

ST(t) = (CT(t−1)C(t−1))−1CT(t−1)Y

4. Constrain all sk to unit length by assigning

sk ←
sk
‖sk‖

for k = 1, ..., r

and non-negative elements by setting

sj,k = 0 ∀sj,k ∈ S with sj,k < 0.

5. Calculate

CT(t) = (ST(t)S(t))−1ST(t)Y
T

6. Constrain all elements of C(t) to positive values as in step 4.

7. Calculate the residuals,
∥∥∥Y − C(t)S

T
(t)

∥∥∥, and compare to the previous iteration.

8. If the improvement in fit is above a set tolerance return to step 3.

A more versatile version of ALS, known as multivariate curve resolution-alternating least

squares (MCR-ALS), was proposed by Tauler and Casassas [96], and is the method used

almost exclusively in this thesis. This method is simply a combination of ALS, §2.6.1,

and NNLS, §2.6.2 allowing us to combine steps 3–4 and 5–6, although in practice NNLS

is only required for one of the estimation steps with standard least squares used for the

other. [55] suggested testing the stability of the solutions by adding small levels of noise
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to the observations and recalculating the solutions. This will highlight any instability in the

solutions as a small change in the data should only induce a small change in the solution.

Tauler and Casassas [96] applied the ALS algorithm to a variety of simulated datasets, and

combinations of datasets, to investigate the performance of the algorithm with regards to

spectral decomposition. The conclusions of their investigation were that ALS can easily be

adapted to combined data matrices with two or more spectra in common, a property we

will use in Chapter 5.

We also performed our own comparison of standard ALS against MCR-ALS using the

paracetamol dataset, detailed in §1.2.2. In applying both algorithms we set S to have

dimension p × 2 with the aim of finding the known paracetamol component spectra and

a second spectra containing the background signal from the edges of the Raman image.

Figure 2.5 illustrates the improvements of MCR-ALS over standard ALS. The results

from the original ALS method give two almost identical spectra whereas MCR-ALS gives

the expected results of one clear spectra and one containing background signal. Further

results of this algorithm are shown in figure 2.6 where we see heatmaps of the estimated

concentrations, c1 and c2, relating to the spectra in figures 2.5c and 2.5d respectively.

Here it is clear that whilst the algorithm was given an entirely random starting point

the paracetamol component spectra and corresponding concentrations were detected very

clearly.

2.8 Other Direct Approaches for Spectral Decomposition

Whilst other methods exist for directly solving (1.2.2) they are all based on the ALS

algorithm of non-negative matrix factorisation, §2.6.1. They only differ in the starting

values used for the algorithm where MCR-ALS uses randomly filled matrices for C and

S. Orthogonal projection analysis (OPA) [86, 87] uses observations from the dataset as

initial estimates for the spectra, sk . The SIMPLISMA method (Simple-to-use interactive

self-modelling mixture analysis) [102] uses the dataset, Y, to calculate an initial estimate

for the concentration matrix, C.

2.9 Rational Resolution Method Comparison

To test these rational resolution techniques we applied MCR-ALS, OPA, SIMPLISMA and

SIMPLEX1 [52] and SIMPLEX2 [52] to Lawton’s data [62] and our paracetamol data, both

detailed in §1.2.2. When applying OPA and SIMPLISMA we used the newer algorithms
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Figure 2.5: Results from the original ALS method [55] compared with those from MCR-

ALS [96] when applied to the paracetamol dataset with r = 2. MCR-ALS

returned the correct results of a single paracetamol spectra and background

noise.

29



Chapter 2: Literature Review

20 40 60

10

20

30

40

50

60

70 0

2000

4000

6000

8000

10000

12000

14000

16000

(a) MCR-ALS, c1.

20 40 60

10

20

30

40

50

60

70

#10 4

1

2

3

4

5

6

7

8

9

10

(b) MCR-ALS, c2.

Figure 2.6: Concentration results from MCR-ALS corresponding to the spectra in fig-

ures 2.5c and 2.5d respectively. Given no prior knowledge of the spectra or

concentrations the MCR-ALS algorithm returned very clear results.

MCR-ALS OPA SIMPLISMA SIMPLEX1 SIMPLEX2

Lawton 68.7658 68.7544 68.7383 69737 3070.3

Paracetamol 1.6160×1011 1.5288×1011 1.5280×1011 2.3814×1011 1.8908×1010

Table 2.1: Residual Sums of Squares from (1.2.2) for each of the five tested SMCR

methods when applied to both data from Lawton and Sylvestre [62] and the

Paracetamol dataset.

involving NNLS in the least squares refinement stage so they were directly comparable

to MCR-ALS, only differing in the initialisation of C and S. SIMPLEX1 and SIMPLEX2

however were designed to avoid least squares optimisation of the solutions, instead projecting

the data onto the proposed set of spectra, recalculating the concentrations and iteratively

repeating until (1.2.2) is minimised. Whilst they minimise 1.2.2 there is no guarantee they

achieve a least squares solution.

Table 2.1 shows us the expected result that the three ALS based methods all achieve almost

the same minima whilst the SIMPLEX methods very in their solution. We therefore refer

to figures 2.7 and 2.8 where it is clear that for Lawton’s data all five algorithms detect

s1 however SIMPLEX1 and SIMPLISMA appear to falter in detecting s2. When viewing

the paracetamol data the only algorithm failing to clearly detect the component spectra is

SIMPLEX2. From these simple tests we can see that no single algorithm is more effective,

rather the effectiveness of each algorithm may depend on the dataset being analysed. Due

to the simplicity we will use MCR-ALS for the majority of this thesis.
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Figure 2.7: Comparison of the spectra detected by five SMCR methods when applied to

Lawton’s dataset [62].
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Figure 2.8: Comparison of the spectra detected by five SMCR methods when applied to

the paracetamol dataset, §1.2.2. All algorithms except SIMPLEX2 returned

a clear representation of the known component spectra of paracetamol.
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Figure 2.9: Randomly generated Voronoi diagram.

2.10 k-means Clustering

During our investigation into the methods with which we can analyse spectral decomposition

results we regularly generate repeated samples of component spectra which must be grouped

together, see Chapters 4 and 5. Also in our research into an improved method for solving

(1.2.2) we are required to assign pixels in a Raman image into groups, Chapter 7. Therefore

to achieve this we must implement forms of cluster analysis.

A very common method for partitioning data is k-means clustering. For a set of n ob-

servations k-means assigns observations to clusters based on the distance between the

observation and the mean of each cluster [70]. This is analogous to partitioning the data

into Voronoi cells as seen in figure 2.9 where the means are the cell centroids [7, 78]. We

can write this as an optimisation problem for the objective function

arg min
G

k∑
m=1

∑
xi∈Gm

‖xi − µm‖2 (2.10.1)

for observations (x1, ..., xn) and clusters of observations G = {G1, ..., Gk} such that

Gm = {xi : ‖xi − µm‖2 ≤ ‖xi − µl‖2 ∀l , 1 ≤ l ≤ k}

with means {µ1, ...,µk} calculated as

µm =
1

|Gm|
∑

xi∈Gm

xi .

In practice the Euclidean norm, ‖ · ‖, need not always be used in (2.10.1), for example we

could instead use the L1 norm [92].

However this can prove computationally difficult. The most common algorithm for optimis-

ing (2.10.1) is Lloyd’s Algorithm [69] which iteratively refines the clusters. This algorithm

works as follows
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Algorithm 2.10.1. k-means

1. Initialise means,
{
µ

(1)
1 , ...,µ

(1)
k

}
, set t = 1.

2. Assignment step: Assign each observation to a cluster such that
∥∥∥xi − µ(t)

m

∥∥∥2
is

minimised, to find the sets G(t) =
{
G

(t)
1 , ..., G

(t)
k

}
, defined as

G
(t)
m = {xi :

∥∥∥xi − µ(t)
m

∥∥∥2
≤
∥∥∥xi − µ(t)

l

∥∥∥2
∀l , 1 ≤ l ≤ k}

3. Halt if G(t) = G(t−1) or t = tmax , for iteration limit tmax . Else continue to step 4.

4. Update step: Recalculate the means of the observations in each set, to be used as

the centroids in the next iteration, with

µ
(t+1)
m =

1

|G(t)
m |

∑
xi∈G

(t)
m

xi .

We can calculate initial estimates for the means,
{
µ

(1)
1 , ...,µ

(1)
k

}
, using several methods

[45, 80]. For example the Forgy method uses k randomly chosen observations as the

initial estimates and the Random Partition method randomly assigns a cluster to each

observation [45]. In testing different initialisations Hamerly and Elkan [45] noted that

certain k-means based algorithms perform better when particular initialisation methods are

used. For example the most common k-means algorithm, 2.10.1, is best used alongside

the Forgy method.

2.11 Unweighted Pair Group Method with Arithmetic Mean

Another method for cluster analysis we consider is the unweighted pair group method

with arithmetic mean (UPGMA). This is an agglomerative hierarchical clustering method

proposed by Sokal and Michener [91]. The term agglomerative hierarchical implies this

algorithm works from the bottom up building a hierarchy of clusters. Each observation

begins as a separate cluster, with the algorithm pairing and combining clusters until only

one cluster remains. This pairing is based on the minimum distance between clusters [51].

UPGMA constructs a dendrogram and pairwise similarity matrix which contains pairs of

observations and the distance between them calculated using distance function d(x, y). Our

choices of d(x, y) are any function returning a distance metric between two observations.

To pair the closest two clusters we calculate the average distance between them using

1

|A| · |B|
∑
x∈A

∑
y∈B

d(x, y) (2.11.1)

for sets of observations A and B and set cardinality | · |.
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2.12 Expectation-Maximisation Algorithm

The final clustering method we use is a model assuming the data is composed of two

separate mixtures. Before defining the specific model we will first detail the algorithm with

which it is fit.

The expectation-maximisation (EM) algorithm is an iterative method for finding maximum

likelihood estimates (MLE) for parameters in statistical models containing unobserved

variables. Dempster et al. [26] first generalised the algorithm to work with any MLE and

convergence was proved by Wu [104]. We can use the algorithm on a statistical model

consisting of observed data X, unobserved data Z, the parameters to be estimated, θ, and

the likelihood function L (θ;X,Z). The MLE of the parameters θ is determined using the

marginal likelihood of X.

L (θ;X) = p (X|θ) =
∑

Z

p (X,Z|θ)

As this is often difficult to analytically maximise or even define, the EM algorithm performs

the maximisation iteratively using two steps [11, 26].

• Expectation step (E-step): Calculate the expected value of the log likelihood for the

complete data, with respect to Z given X, under the current parameter estimates

θ(t−1).

Q
(
θ, θ(t−1)

)
= E

[
log p (X,Z|θ) |X, θ(t−1)

]
. (2.12.1)

• Maximisation step (M-step): Find θ such that Q is maximised

θ(t) = arg max
θ

Q
(
θ, θ(t−1)

)
(2.12.2)

2.12.1 Expectation-Maximisation for a Gaussian Mixture Model

A Gaussian mixture model is a statistical model comprised of a number of Gaussian densities

[11]. When applied to data X,

n×d
X =


xT1
...

xTn

 ,
we define the mixture model with m independent component densities as

p (xi |Θ) =

m∑
k=1

αkpk (xi |θk) (2.12.3)

=

m∑
k=1

αkpk (xi |µk ,Σk) (2.12.4)
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where pk is a d-dimensional multivariate normal PDF,
∑m
k=1 αk = 1 and

Θ = (α1, ..., αm,µ1, ...,µm,Σ1, ...,Σm) .

Bilmes [11] shows the incomplete data log likelihood for a Gaussian mixture model to be

log (L (Θ|X)) = log

n∏
i=1

p (xi |Θ) =

n∑
i=1

log

(
m∑
k=1

αkpk (xi |θk)

)
. (2.12.5)

Due to (2.12.5) containing the natural logarithm of a summation this is a difficult equation

to maximise. Therefore we maximise using the EM algorithm giving the name expectation-

maximisation for a Gaussian mixture model (EMGM). The following equations were derived

by Bilmes [11], performing both the E-step and M-step simultaneously, giving the algorithm.

Algorithm 2.12.1. EMGM

1. Initialise group memberships, αk . Commonly performed using k-means, §2.10.

2. Estimate new αk , for k = 1, ..., m, by summing the values of the normal PDF for

each component density over all xi and dividing by n

αnewk =
1

n

n∑
i=1

p
(
k |xi ,Θt−1

)
. (2.12.6)

3. Estimate new µk , for k = 1, ..., m,

µnewk =

∑n
i=1 xip

(
k |xi ,Θt−1

)∑n
i=1 p

(
k |xi ,Θt−1

) . (2.12.7)

4. Estimate new Σk , for k = 1, ..., m,

Σnew
k =

∑n
i=1 p

(
k |xi ,Θt−1

) (
xi − µnewk

) (
xi − µnewk

)T∑n
i=1 p

(
k |xi ,Θt−1

) . (2.12.8)

5. Recalculate the log likelihood (2.12.5), increase iteration t by one and repeat steps

1–3 until the increase in the log likelihood falls below a set tolerance.

With our final estimate of Θ we now calculate the group membership, zi , of each xi with

zi = max
k

(αkpk (xi |θk))

which identifies the Gaussian distribution from which xi is most likely to have come.
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2.12.2 Relationship between EMGM and k-means clustering

A key difference between EMGM and k-means is in their methods of assigning clusters.

Where k-means assigns each ỹi to a cluster based on the distance from the cluster mean

µm, calculated as

‖ỹi − µm‖,

EMGM assigns the ỹi by calculating how likely they are to have come from Gaussian

distribution N
(
µm, σ

2
m

)
. Therefore EMGM will take even small features of a ỹi into

consideration where k-means may ignore them in favour of a lower difference. We can

see this in a simple example with two groups where we assume that k-means and EMGM

find groups with the same means, µ1 and µ2, however EMGM also estimates the variances

of these groups as σ2
1 and σ2

2. If the observations in one group were to represent noise

σ2
1 < σ2

2 as very few, if any, features will be present. Now for an observation displaying a

large amount of noise with weak features, and therefore a low ỹi in (7.2.1) in comparison

to observations mode clearly from group 2, k-means may assign the observation to the

first cluster because

‖ỹi − µ1‖ < ‖ỹi − µ2‖.

However EMGM calculates the likelihoods

l
(
ỹi |µ1, σ

2
1

)
and

l
(
ỹi |µ2, σ

2
2

)
and calculates group assignments as in step 2 of algorithm 2.12.1. Due the first group

observations displaying little in the way of structure σ2
1 may be small enough to render ỹi

extremely unlikely to have come fromN (µ1, σ
2
1). EMGM therefore would assign observation

yi to the second cluster as in spite of a greater difference ‖ỹi − µ2‖ the likelihood of yi

coming from N (µ2, σ
2
2) is larger.
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Pre-processing Raman Spectroscopy

Data

3.1 Objectives of Pre-Processing

Raman spectroscopic images can present a number of anomalies. In this chapter we will

investigate methods of removing or adjusting these outlying elements in a data matrix.

We will classify the types of anomalies into local and global anomalies. Local anomalies

effect a single pixel, yi , or wavenumber of data matrix Y, whilst global anomalies feature

throughout the dataset. Our aims in this chapter are to answer the questions, what can

we do to adjust these anomalies and what effects will this have on the results obtained by

solving our standard bilinear model (1.2.3). We must also be careful not to over adjust the

data by mistaking features of the Raman image as anomalies.

Whilst it is possible to reduce the occurrence of anomalies at the scanning stage this can

extend the data acquisition time, by using the average of multiple scans at each pixel, or

require specialised equipment which in turn increases the cost. For example scanning a

subject through different colours of glass can introduce peaks in the spectra therefore the

effects of coloured glass must be mitigated by specific wavelength lasers [15]. Another

equipment improvement is the use of more sensitive laser receivers less susceptible to

external interference in the light source [76].

Alongside adjusting anomalies we also look at a technique to adjust the wavenumber scale

of similar datasets so we can directly compare them without the risk of misaligned spectral

peaks corrupting our results. This technique will be used in Chapter 5. We also look at

a potential improvement to the method of chemical rank analysis, §2.2, using a robust

principal component analysis algorithm, §2.3.3.
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3.2 Common Types of Anomaly

There are several common types of anomaly which can appear in a Raman spectroscopic

image which we interpret as outliers in the data matrix. The anomalies which we see on a

local level are,

• Cosmic ray - These anomalies occur when external interference alters the light wave

received by the spectrometer. Sources of external interference can vary however one

of the more common is gamma radiation from space, hence the name cosmic ray

anomaly [13]. These anomalies appear in the pixels scanned whilst the interference

was present and only at specific wavenumbers. We therefore see unusually high values

in the data matrix at

yi ,j for i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2 (3.2.1)

where [i1, i2] and [j1, j2] are the pixel and wavenumber ranges effected by the interfer-

ence. We see a cosmic ray anomaly in figure 3.2a where the peaks shown in figure

3.1 are now far exceeded by the peak introduced from the external interference.

• Burnt pixel - If the laser remains on a pixel for too long the surface of the subject

may burn [13]. This leads to unusually high light intensities for that pixel which we

see as a yi with a mean far larger than the dataset mean,

1

p

p∑
j=1

yi ,j >>
1

np

∑
i ,j

yi ,j . (3.2.2)

An example of a burnt pixel is shown in figure 3.2b where we see the intensities are

far greater than those of a correct observation as seen in figure 3.1.

The global anomalies we often encounter are,

• Excessive noise - There are many causes for high levels of noise in a Raman image, one

such cause is known as weak instrument response, a situation where the spectrometer

receives a weak reflection of the light source from the image [13]. High noise is difficult

to immediately detect in the dataset unlike the local anomalies however it is noticeable

after fitting Y = CST + E as the estimated spectra or concentrations will appear

noisy.

• Incorrect baseline - An incorrect baseline in a Raman spectra manifests as a linear

trend in non-peak sections of the spectrum. For example a correct spectrum will

have intensities at, or just above, zero with only the peaks varying from this. If the
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Figure 3.1: The received spectra of a single pixel of Paracetamol with no anomalies.
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Figure 3.2: Comparison of anomalies in the Paracetamol data.

baseline is incorrect the zero intensity values may lie on a gradient. The cause of this

effect can be hardware and the inbuilt processing sources [20] however in the case of

our paracetamol data, §1.2.2, the age of the tablet may have caused the chemical

components to degrade [50].

3.3 Anomaly Trimming

We first consider the local anomalies, the two main types of which are described in §3.2.

Current methods for removing these anomalies only cover the cosmic ray anomaly as a

burnt pixel is irreversible in that the scan subject has been physically altered. Cosmic rays

can be avoided at the scanning stage by using a specialised laser receiver [76] or by simply

taking the average of numerous scans of a single pixel [83, 98]. This latter method works as

cosmic ray interference passes fast enough for successive scans to be unaffected. Current

methods for removing cosmic ray anomalies in datasets involve identification by detecting
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the edges of affected clusters of pixels [98] or by locating pixels which differ too greatly

from the standard deviation of pixels in the image [83].

3.3.1 Cosmic Ray Anomaly Trimming

Cosmic ray anomalies, as described by (3.2.1), are high values for a select number of pixels

and wavenumbers. In correcting cosmic ray anomalies we first consider the very simple

method of removing the affected wavenumbers. For example if a cosmic ray anomaly is

present in wavenumber j we may see that

yi ,j >> yi ,j ′ for 1 ≤ j, j ′ ≤ p, j 6= j ′

and so we remove

yi ,j for i = 1, ..., n.

We may also identify cosmic ray anomalies when viewing the estimated component spectra

in a dataset if an extra peak is present. Whilst we often have over 1000 wavenumbers for

each dataset and this process will only result in a small loss of data we may inadvertently

remove important information such as peaks in the spectra which define a component

chemical.

We therefore propose a process similar to Winsorising [28, 97]. Winsorising at 90% is

defined for ordered data x, with x1 ≤ x2 ≤ ... ≤ xn as

{xi : 1 ≤ i ≤ (|0.05n| − 1)} = x|0.05n|

{xi : (|0.95n|+ 1) ≤ i ≤ n} = x|0.95n|.

All values lying outside the upper and lower 5% of the ordered data are set equal to the

5th and 95th percentile values respectively [28].

We modify this mean to correct cosmic ray anomalies with the following algorithm,

Algorithm 3.3.1. Cosmic ray anomaly trimming

1. Select the |αnp| greatest elements in the data matrix to trim. In testing we found

α = 0.001 is usually enough to remove anomalies whilst leaving the spectral peaks

unaffected.

2. Identify the set, C, of matrix indices, (i , j), corresponding to the largest |αnp| elements

in the dataset.
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(a) Paracetamol Raman spectra
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Figure 3.3: The effects of cosmic ray anomaly trimming with α = 0.001 and β = 0.05

on an observation from the paracetamol data and spectra identified in the

Human Tooth dataset. Both show a reduction in the amplitude of a cosmic

ray anomaly.

3. For m = 1, ..., |C| replace each identified potential anomaly using

ym,j =
1

|Lj |
∑
l∈L

ym,l (3.3.1)

where Lj = {l : j − |βp| ≤ l ≤ j + |βp|, l 6= j, yi ,l /∈ C}. The set L causes each yi ,j to

be replaced by the average of βp values either side, excluding those also identified as

potential anomalies. In practice we found β = 0.05 adequately smooths out cosmic

ray anomalies.

We see the results of this trimming in figure 3.3. In the raw paracetamol data a cosmic

ray anomaly was reduced from over 38000. We can also see the effects on the results

from solving (1.2.3) when applied to the human tooth data, §1.2.2. Here an anomalous

peak in the dentine spectra was reduced resulting in a clearer overall spectra with a more

pronounced peak where expected when compared to the true spectra [38, 105].

3.3.2 Burnt Pixel Anomaly Trimming

The second local anomaly we consider are burnt pixel anomalies. We also remove these

using a method of smoothing similar to the Windsoring as used in §3.3.1. Our process for

removing these anomalies is,

Algorithm 3.3.2. Burnt pixel trimming
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Figure 3.4: Burnt pixel trimming results for the paracetamol data shown as histograms

of the observation means (3.3.2). The trimming has successfully scaled all

the anomalously high values.

1. Calculate the n × 1 vector of observation means, ỹ, with

ỹi =
1

p

p∑
j=1

yi ,j (3.3.2)

2. Identify the set, B, of indices, i , of the αn largest means in vector ỹ. In testing we

found α = 0.0001 is enough to remove any burnt pixels.

3. For i = 1, ..., |B| replace each burnt pixel using

yi =
1

|Mi |
∑
m∈Mi

ym (3.3.3)

whereMi is the set of indices corresponding to pixels surrounding yi in the Raman

image. We exclude some pixels from setM if the pixel of interest, i , lies on the edge

of the Raman image.

We can see results of this averaging in figure 3.4 where the pixels with a mean of over 500

have been scaled

3.4 Variance Scaling

The first global anomaly we investigate is an excess of noise in the dataset. Under the

basic model

yi = Sci + ei
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with

ei ∼ Np(0, σ2Ip) for i = 1, ..., n

a high level of noise, ei , implies σ2 is large. We therefore scale each observation in our

dataset with some estimate of the variance, vi ,

yi√
vi

(3.4.1)

in order to approach

ei ∼ Np(0, Ip) for i = 1, ..., n

for large n. This will emphasise the detected spectra in each observation [32] as the

constraint that sTk s = 1 means

Sci√
vi

will only effect the concentrations, ci , as S cannot be scaled. Therefore if clear spectra are

the intended result the data is scaled as the noise is reduced with no effect on the spectra.

However if clear concentrations are the objective then we do not perform variance scaling

as we also scale the estimated concentrations, losing detail.

3.4.1 Methods of Variance Scaling

In order to scale our data using (3.4.1) we must first estimate the variance, σ2. The

most common estimate, and the most sensible considering our assumption that the ei are

normally distributed, is the standard deviation

vi = s2
i =

1

p − 1

p∑
j=1

(
yi ,j − ȳi

)2 (3.4.2)

where ȳi = 1
p

∑p
i=1 yi ,j .

The second variance estimate we consider is Poisson scaling, also known as square root

mean scaling, which was shown to be effective when used with mass spectra by Keenan

and Kotula [57]. Use of this estimate assumes the noise in our observations is proportional

to the mean of the observation. Therefore we calculate, for each observation yi ,

vi = ỹi =
1

p

p∑
j=1

yi ,j . (3.4.3)
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3.4.2 Variance Scaling Comparison

In comparing these two scaling methods we look at both the effects on S and C after

solving (1.2.3). We also investigate the effects on the results of chemical rank analysis,

described in §2.2. The effects on S and C were as we expected from the results of Ferraro

et al. [32]. Without any scaling applied to the data we see in figure 3.5a that the initial

results of (1.2.2) returned two very similar spectra when only one chemical component

should be detected. The heatmap 3.5b for c1 however, when reshaped into the original

Raman image dimensions as detailed in §1.2, gives a clear indication of the location of the

chemical component in the tablet.

After standard deviation scaling, using (3.4.2) in (3.4.1), we now see in figure 3.5c that

we have one clear paracetamol spectrum, with lower noise when compared to the unscaled

estimates, and a second spectrum now representing only background signal. As expected

though the heatmap of concentrations, 3.5d, now contains little detail aside from an outline

of the tablet.

Poisson scaling, using (3.4.3) in (3.4.1), proved less successful with Raman spectra than it

did for Keenan and Kotula [57] with mass spectra. This difference is presumably because

mass spectroscopy uses electrons in the subject where Raman spectroscopy uses photons

and the models used to decompose these datasets differ. Although the concentration

heatmap, figure 3.5f, remains unaffected the spectra, shown in figure 3.5e, are less clear.

When compared to the spectra in figure 3.5c we see our two estimates after Poisson scaling

are a noisy combination of both the paracetamol spectrum and the background noise.

For our final comparison of scaling techniques we look at the eigenvalues of covariance

matrix, YTY
n , before and after correction to determine chemical rank. With eigenvalues, λj ,

such that λ1 ≥ λ2 ≥ ... ≥ λp we calculate the vector, l, of cumulative sums

lm =

m∑
j=1

λj∑p
J=1 λJ

(3.4.4)

and, as described in §2.2, use the point at which this vector plateaus as our number of

component spectra. Figure 3.6 shows lm, (3.4.4) for m = 1, ..., 5, calculated using unscaled

and scaled data. We see little difference between the three scaling techniques in terms of

or chemical rank analysis results. Unscaled and Poisson scaled data appear to cause the

second eigenvector to explain a little more variance however this is not enough for us to

assume a second component spectra exists.

In this thesis we will use standard deviation scaling if only the estimated spectra are of

interest to us, for example in Chapter 7 we judge our proposed new decomposition method

based on the spectra it detects and therefore scale the data. However in Chapters 5 and 6
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we focus on analysing the estimated concentrations and so do not scale the data.

3.5 Baseline Correction

The second global anomaly we investigate is an incorrect baseline in the pixels, yi , of our

Raman image, as described in §3.2. With chemical identification via spectra performed

by examining the peaks in the spectra, any structure present in the non-peak parts of a

spectra may result in identification errors. We see an example of this in figure 3.7a where

an observation from our paracetamol dataset is plotted against the wavenumbers. There

have been numerous publications on the subject of baseline correction with a large number

focused on chromatography and nuclear magnetic resonance spectroscopy [19, 20, 43].

More recently Zhang et al. [106] proposed a method using iteratively refined least squares

where the data are weighted to discount the effect of peaks on the model fit. However we

propose a more simple method which can be fit using any numerical optimisation routine.

We begin with the definition of an x th order linear model fit to a pixel from a Raman image,

yi = Zθi + εi (3.5.1)

for unknown parameters θi and

Z =


1 w1 . . . w x1
...

... . . .
...

1 wp . . . w xp


where w is a vector of wavenumbers. This model will help us identify an incorrect baseline

as any linear structure in the observations will cause the line fit by this model to have a

non-zero gradient. We see this in figure 3.7a where the 3rd order linear model fit has a

clear positive gradient after the spectral peak.

We may be able to remove this gradient by replacing each spectra with the residuals of the

linear model,

ỹi = εi = yi − Zθi , for i = 1, ..., n. (3.5.2)

however in using these residuals we will cause a large proportion of the data to become

negative. As discussed in §1.2 this would render our data physically implausible as the data

represent light intensities and so cannot be negative. We must therefore take care to avoid

introducing negativity into our data. To avoid this we propose a modification to our linear

model to include a penalty term which promotes positive residuals whilst still minimising
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Figure 3.5: Comparison of scaling techniques on the bilinear model results for paracetamol

data. Spectra, sk , are plotted against wavenumbers and concentrations, c1,

are reshaped into the original Raman image dimensions.
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Figure 3.6: Comparison of (3.4.4) calculated using the eigenvectors of unscaled and scaled

paracetamol data. By chemical rank analysis, §2.2, standard deviation scaled

data indicates two component chemicals however with unscaled and Poisson

scaled data we see the correct result of a single component chemical in the

data.

the errors. Our model remains unchanged,

yi = Zθi + εi (3.5.3)

however is now subject to the constraint that

εi = yi − Zθi > 0

for Euclidean norm ‖ · ‖. We now define our objective function such that the standard least

squares objective function is increased by the magnitude and quantity of negative residuals,

n∑
i=1

‖yi − Zθi‖2 + λ
∑
j :εi ,j<0

|εi ,j | (3.5.4)

where λ controls how severely violations of the constraint are penalised, a technique known

as a quadratic penalty method, detailed in §A.4. We then fit this model using a numerical

optimisation method such as the simplex method [60], used here due to computation speed.

We see the effects of this penalty term on a third order linear model of the form (3.5.1) in

figure 3.7a. The underlying structure in the data is still detected by (3.5.3) however we now

see that the residuals will be largely positive. Another effect of penalising negative residuals

is a lessening of the effects of spectral peaks on the fitted line due to their contribution

to negative residuals as seen in figure 3.7a. Replacing each received spectra in the data

with the residuals of this model, as in (3.5.2), gives us spectra as seen in figure 3.7b. The

incorrect baseline in the data is now removed as there is no obvious linear trend to the

spectrum and the identifying peak of paracetamol remains.
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Figure 3.7: Comparison of linear models (3.5.1) and (3.5.4) when fit to observation 1500,

y1500, from the paracetamol data. (3.5.4) is fit with λ = 100 using the

simplex method. Results show an almost complete removal of the linear trend

in the original spectrum.

3.6 Wavenumber Adjustment

The final method of pre-processing we investigate for Raman spectroscopy data is of use

when datasets are to be compared and will be pooled before analysis, as we do in Chapter

5. Before each use a Raman spectrometer must be calibrated so each element in the

detected spectrum of light intensities, d is associated with the correct value in a vector of

wavenumbers, w. The spectrometer will detect the Raman spectrum at a pixel with no

knowledge of the wavenumbers with which it corresponds, instead pairing d with a default

vector of wavenumbers, w’. Therefore the user must calibrate the machine, altering w’, so

any peaks in the spectrum lie at the correct wavenumbers [50]. For example if we know

spectrum d has a maximum peak at some wavenumber W we must adjust w so

wj = W for j = max dj
j

If the calibration is performed correctly we will have a vector of wavenumbers, w, which when

paired with spectrum d assigns the correct wavenumbers to the features of the spectrum.

However this alignment may not be identical for multiple scans due to the sensitivity of

Raman spectrometers. Therefore for datasets with supposedly identical component spectra

the wavenumbers with which they are associated may not be the same.

With most forms of our analysis, for example estimating the pure spectra by solving (1.2.3),

this has no effect on our results. Providing the wavenumbers are close enough for us to

identify peak locations this also has no effect on the interpretations a chemist may make.
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Figure 3.8: Bicalutamide spectra obtained from applying (1.2.2) to both sides of a bica-

lutamide tablet scan. Algorithm 3.6.1 is then applied to the lower tablet scan

and (1.2.2) refit.

However when concatenating multiple datasets it is important the wavenumbers of each

dataset match up to ensure the spectra we obtain are as clear as possible. In the worst

case misaligned datasets may result in a single component spectra being identified as two

near identical spectra due to a difference in peak location. We see an example of incorrectly

aligned spectra in figure 3.8 where the blue spectrum appears to lie to the left of the red

spectrum.

We propose a simple algorithm to align the wavenumber scales of two datasets. We can

describe the process intuitively as fixing the wavenumber scale of the first dataset then

moving the observations of the second dataset along this scale until the two datasets match

up. A process seen in figure 3.9 where the black spectrum is fixed and the coloured spectra

show the second dataset at various stages of being moved along the wavenumber scale.

Our proposed algorithm for aligning the observations of datasets Y1 and Y2 is as follows,

Algorithm 3.6.1. Wavenumber adjustment

1. Select an observation from each dataset, y1 and y2, to use in estimating the shift

amount (see note below).
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Figure 3.9: Visualisation of the process of wavenumber adjustment by moving one of the

two reference spectra along the wavenumber scale.
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2. Calculate the initial residual sum of squares, (y1 − y2)T (y1 − y2).

3. Extend y1 by repeating the first and final values |αp| times, for α < 1, to give length

2|αp|+ p vector

ỹ1 = [y1,1, ..., y1,1, y1,2, ..., y1,p−1, y1,p, ..., y1,p]T .

In practice we found α = 0.05 to be sufficient to find the best alignment position

between y1 and y2.

4. Calculate the residual sum of squares between ỹ1 and all positions of y2 by pairing

ỹ2,1 with y1,l for l = 1, ..., 2|0.05p| + 1. In calculating the residual sum of squares

elements of ỹ1 without a corresponding element in y2 must be discarded.

5. Select the position with the minimum residual sum of squares as the optimal shift

value L.

6. Adjust dataset Y2

• For L ≤ |0.05p| remove the first |0.05p| −L+ 1 columns and replicate the final

column |0.05p| − L+ 1 times.

• For L = |0.05p|+ 1 no correction is necessary.

• For L ≥ |0.05p|+ 2 remove the final L− |0.05p| − 1 columns and replicate the

first column L− |0.05p| − 1 times.

Note: Care must be taken when selecting spectra y1 and y2 to ensure they show similar

spectra, or linear combinations of spectra. For example if a tablet is the scan subject then

two pixels from the centre of the tablet should meet these criteria.

During the final stage of the algorithm in practice we found replicating the first or final

value to cause no problems during analysis as the required shift was minimal and the tails

of the spectra contained no peaks. However if a peak is close to the edge of a spectrum a

wavenumber shift may cause problems by repeating a part of the spectral peak obscuring

the shape and peak location. In such a situation it may make more sense to modify step 6

to

6. Adjust datasets Y1 and Y2

• For L ≤ |0.05p| remove the first |0.05p| − L + 1 columns of Y2 and the final

|0.05p| − L+ 1 columns of Y1.

• For L = |0.05p|+ 1 no correction is necessary.
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• For L ≥ |0.05p| + 2 remove the final L − |0.05p| − 1 columns of Y2 and the

first L− |0.05p| − 1 columns of Y1.

Returning to figure 3.9 we see the cut regions defined in step 6 of algorithm 3.6.1 as dashed

lines and the extended tails of the coloured spectra. To test algorithm 3.6.1 we applied it

to data from both sides of a bicalutamide tablet, §1.2.2. Our results are shown in figure

3.8 where we have shifted the spectra detected on the lower tablet so peaks align with the

upper tablet.

3.7 Chemical Rank Analysis using Robust Principal Compo-

nents

Whilst not strictly pre-processing chemical rank analysis is an important method we use

before spectral decomposition to estimate the number of component chemicals in a dataset,

as discussed in §2.2. Conventional principal component rank analysis however is susceptible

to anomalies in the dataset and may therefore prove unreliable if pre-processing is not

performed or is not entirely successful. We therefore investigate the possibility of using

the robust principal components analysis algorithm (RPCA), see §2.3.3. As with standard

chemical rank analysis we use the robust PCA algorithm to estimate the eigenvalues of
YTY
n , for data matrix Y. With eigenvalues, λj , such that λ1 ≥ λ2 ≥ ... ≥ λp we calculate

the vector, l, of cumulative sums

lm =

m∑
j=1

λj∑p
J=1 λJ

(3.7.1)

to be used for identifying the number of component chemicals, as detailed in §2.2.

To compare chemical rank analysis using PCA and RPCA we use two datasets for testing.

The first being the bicalutamide tablet dissolving over time and the second the scan of

a human tooth, both described in §1.2.2. The former dataset contains three component

spectra, the initial tablet extrudate, bicalutamide type I and bicalutamide type II. The

latter contains only enamel and dentine, both of which have very similar Raman spectra.

Applying chemical rank analysis to each dataset we expect the variance proportion of the

eigenvectors to plateau after the first three and two eigenvalues respectively. We see in

figure 3.10a that for the bicalutamide data we achieve this plateau after three eigenvalues

using both methods. In figure 3.10b our results for the human tooth show evidence against

using RPCA. Whilst both calculations of (3.7.1) plateaued after a single eigenvalue the

variance proportion attributed to the eigenvectors by RPCA was substantially lower. We

ideally want over 90% of variance to be explained by principal components before we identify
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(a) Bicalutamide dataset
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(b) Human tooth dataset

Figure 3.10: Plots of (3.7.1) for m = 1, ..., 8, when the eigenvalues are calculated using

both PCA, §2.3, and RPCA, §2.3.3. Chemical rank analysis indicates three

spectra in the Bicalutamide dataset with both methods. The human tooth

dataset however is shown to have either one or two spectra, with two being

the correct value, giving evidence against RPCA.

that as the number of component spectra [99]. We also found that in applying the robust

principal component analysis algorithm our computation time was dramatically increased.

3.8 Discussion

Our aim throughout this chapter was to derive techniques to be applied to Raman spec-

troscopy data before any spectral decomposition. Our first area of investigation was on

the removal of specific local anomalies manifesting as unusually large elements or entire

observations in the data matrix. To correct both of these types of anomalies we used

techniques similar to Winsorising. In the case of an unusually large element, or cosmic

ray anomaly, we remove the outlier by taking an average of a small group of values within

the observation and around the anomaly. For an overly high observation, or burnt pixel,

we use the spatial information contained in a Raman image and replace the entire pixel

with an average of the surrounding pixels. Both of these techniques proved very successful

in testing on our paracetamol and human tooth datasets and have the added benefit of

being more simple to implement and requiring less time with the spectrometer than current

methods [76, 83, 98].

We then turned our attention to global anomalies. The first of these, excessive levels of

noise in the image, required the data to be scaled by the variance. We implemented scaling

using both the standard deviation and the square root of the mean, equal to the variance of
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a Poisson distribution. Whilst the latter of these proved unsuccessful in comparison to the

results Keenan and Kotula [57] achieved with mass spectra, scaling by the standard deviation

performed as we expected. Standard deviation scaling produced considerably clearer spectra

obtained after solving (1.2.3) at the expense of detail in our estimated concentrations. The

second global anomaly of interest was an incorrect baseline, or linear trend, in the data,

potentially caused by degradation of the scan subject or interference from background

lighting. A standard linear model proved effective in detecting the shape of the incorrect

baseline however using the residuals of this model as corrected data resulted in a large

proportion of the dataset becoming negative. We therefore modified our linear model to

include a penalty term forcing the residuals to remain largely positive which in turn reduced

the effect of spectral peaks on the model and so reduced any minimisation in peaks after

correction. With this new model fit using numerical optimisation we were able to use the

residuals as corrected data to great effect with very little of the incorrect baseline remaining.

As with the cosmic ray anomaly removal method we proposed our baseline correction method

was more simple to implement than currently published methods [20, 43, 106]. Future

work on baseline correction could include investigations into a method which will still allow

log transformation of the data, discussed in §1.2, due to complete avoidance of negative

values. Whilst this is possible with our current method the extremely large penalisation

parameter that would be required may adversely effect the spectral shape.

Our final two areas for investigation were methods applied to Raman spectroscopy data

before spectral decomposition for reasons other than anomaly removal. We first looked

at adjustments to the wavenumber scale which would make direct comparison of datasets

possible. Although spectrometers are calibrated before each use to align the detected

spectra to the correct wavenumber scale these are not always exact. Therefore two datasets

with identical component chemicals may not show the same wavenumber for peaks in the

spectra. Therefore the accuracy of results obtained from pooled datasets, to be used

in Chapter 5, is drawn into question. We corrected this by moving a reference spectra

along the wavenumber scale and calculating the Euclidean distance between that spectra

and a sample from the other dataset until the minimum was found. This proved to be a

fast and effective process with minimal modification to the data. Finally we looked at a

possible improvement to the technique of chemical rank analysis, the standard method for

estimating the number of component chemicals in a Raman image. Our proposed method

used a robust principal component analysis algorithm in place of conventional PCA with the

idea that it would be less effected by anomalies. However in testing RPCA proved to not

only be slower but also caused a large decrease in the explained variance for each principal

component, meaning we were unable to draw conclusions on chemical rank.
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Exploring the Solution Space

4.1 Objectives of Exploring the Solution Space

Our first form of analysis of a Raman image,
n×p
Y , is usually the decomposition of the image

into r component spectra,
p×r
S , and their concentrations

n×r
C . This is equivalent to directly

finding solutions to

Y = CST + E (1.2.2)

by minimising

argmin
S,C

∥∥Y − CST∥∥
subject to

1. sTk sk = 1 for all k = 1, ..., r

2. sj,k ≥ 0 for all j = 1, ..., p and k = 1, ..., r

3. ci ,k ≥ 0 for all i = 1, ..., n and k = 1, ..., r

(1.2.5)

or by first finding a solution to

Y = GHT + E (2.1.1)

by finding

argmin
H,G

∥∥Y − GHT∥∥ ,
where, H = [h1 . . . hr ] with the constraint that

1. HTH = Ir (2.1.2)

and transforming solutions G and H by some invertible r × r matrix R to give C = GR−1

and ST = RHT conforming to (1.2.5). This process is described in §1.2 and §2.4. We
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also define ‖ · ‖ as the standard Euclidean norm, or an extension of the Euclidean norm to

matrices,

‖X‖2 = tr
(
XTX

)
for row xTi of X.

Due to the non-identifiability of (1.2.2) we have a range of possible solutions, all of which

minimise the function however to a chemist their physical interpretation may vary. Therefore

defining a solution space will allow us greater understanding of the solutions available from

(1.2.2). For example the solution space will prove extremely useful in hypothesis testing

data sets; an area investigated in Chapter 5.

One of the first techniques for solving (1.2.2) was Lawton’s method of self modelling curve

resolution (SMCR) [62], detailed in §2.4. The method was initially defined to only solve

problems for two component spectra, r = 2, however we will expand upon this later in this

chapter. Lawton’s method involves two steps, the first to solve (2.1.1) with the second

transforming these solutions such that they solve (1.2.2). We can write the two steps

mathematically as,

1. Calculate the eigenvectors, k1, ..., kp, of the covariance matrix, YTY
n .

2. Find linear combinations of the two primary eigenvectors, k1 and k2, to give two

spectra

s1 = ξ1,1k1 + ξ2,1k2

s2 = ξ1,2k1 + ξ2,2k2

conforming to the constraints,

• sk,j ≥ 0 for all k ∈ [1, 2] and j ∈ [1, p]

• ‖sk‖ = 1

• ci ,1 and ci ,2 such that yi = ci ,1s1 + ci ,2s2 with ck,i ≥ 0 for all k ∈ [1, 2] and

i ∈ [1, n].

where ‖ · ‖ is the Euclidean norm. The values ξl ,m in step 2 of this process are chosen from

an analytically defined solution space defined as

S =
{
r : R = [r1 . . . rr ] , HR = S, sj,k ≥ 0 ∀ j = 1, ..., p and k = 1, ..., r, . . .

. . . C = G
(
R−1

)T
, ci ,k ≥ 0 ∀ i = 1, ..., n and k = 1, ..., r

}
which we will investigate later in this chapter. However we must first prove that the solution

space defined by Lawton and Sylvestre [62] is actually the solution space for (1.2.2). To
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prove this we must show that the eigenvectors, kr , used in step 1 are a least squares

solution to (2.1.1), with H = [k1 k2] and some G such that Y = GHT . Therefore after

transforming ST = RTHT and C = G
(
R−1

)T the minimisation of (1.2.2) is achieved.

Once we have confirmed that the solution space boundaries defined by Lawton apply to

(1.2.2) we will build on them to define a solution space for datasets with more than two

component spectra.

Tauler [95] and Garrido et al. [35] have worked on the exploration of the solution space

using numerical optimisation. Their methods involve restricting the transformation matrix

R, in Y = CRR−1ST as in §1.2.1, to reduce the range of values it may take. Investigated

restriction methods include forcing a unimodal spectrum, useful if only a single peak is

present, and constraining specific regions of C to equal zero, useful if areas of the scan

subject are comprised of only a single spectrum as the concentrations for the other spectra

will equal zero. Whilst their results give a range of possible solutions to (1.2.2) they are

more restricted than the method we propose in this chapter as they are based on specific

features of the data. Our method will therefore be developed to explore the solution space

of (1.2.2) regardless of the data.

4.2 Proof that Eigenvectors Minimise the Bilinear Model

As described in §4.1 in order to use the solution space defined by Lawton with (1.2.2) we

must first prove that solutions obtained by Lawton’s method are themselves least squares

solutions and so could also be obtained by directly solving (1.2.2). For solutions from

Lawton’s method to be true minimisers of (1.2.2) the eigenvectors on which they are based

must be minimisers of (2.1.1). We therefore first consider the least squares problem of the

form (2.1.1) under constraints (2.1.2).

To show the first r principal components, corresponding to the greatest r eigenvalues,

are the optimal solution to (2.1.1) we must first note that if H are taken to be principal

component loadings then G will be equal to the principal component scores, G = YH, see

§2.3. We now rewrite (2.1.1) as∥∥Y − GHT∥∥ =
∥∥Y − YHHT∥∥ = ‖Y − YP‖ = ‖Y(Ip − P)‖

where P = HHT , and HTH = Ir , is a projection matrix for the new basis vectors hr . We
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now square this to obtain

‖Y(Ip − P)‖2 = tr
(

[Y (Ip − P)]T [Y (Ip − P)]
)

= tr
(

[Ip − P]T YTY [Ip − P]
)

= tr
(

[Ip − P]T YTY
)

= tr
(
YTY

)
− tr

(
PTYTY

)
= tr

(
YTY

)
− tr

(
PTYTYP

)
(4.2.1)

using the cyclic invariance property of trace,

tr (ABC) = tr (BCA) = tr (CAB) ,

and the idempotency of

PPT = HHTHHT = HHT = P

and

(Ip − P)T (Ip − P) = ITp Ip − IpP− PT Ip + PTP

= Ip − P− P+ P

= Ip − P.

We can see this mimics ANOVA as it is of the form SSresidual = SStotal − SSexplained.

Now we calculate the principal components of Y which are the columns of A where YTY =

ADAT . We therefore have eigenvectors A = [a1 ... ap] and eigenvalues d1 ≥ d2 ≥ ... ≥ dp
on the diagonal of D. We can therefore minimise (4.2.1) by maximising

max tr
(
PTYTY

)
= max

H
tr
(
HHTYTYHHT

)
= max

H
tr
(
HTYTYH

)
= max

H
tr
(
HTADATH

)
= max

H
tr
(
ATHHTAD

)
. (4.2.2)

Now to maxmise (4.2.2) we note that, D is diagonal and ATHHTA is square. Therefore

the trace of (4.2.2) can be written as the sum of the diagonal elements of ATHHTA

multiplied by those of D.

tr
(
HTADATH

)
=

r∑
k=1

(
ATHHTA

)
k,k
dk,k . (4.2.3)

With both A and H comprised of orthonormal vectors we know Aj,j ′ ≤ 1 and Hj,k ≤ 1 for

j = 1, ..., p and k = 1, ..., r . We must therefore maximise the diagonal elements of
(
HTA

)
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and
(
ATH

)
which equal hTk ak , for k = 1, ..., r . As the hk and ak are both normalised

vectors the maximum value of hTk ak is equal to 1 which is achieved when hk = ak giving us

H =
[
a1 . . . ar

]
for eigenvectors aj ordered corresponding to the size of the related eigenvalue as usual.

With this we have shown that the r vectors, hk , needed to minimise (2.1.1) are equal to

the r eigenvectors of YTY, ak , corresponding to the r largest eigenvalues.

We can now select some invertible transformation matrix, R, such that S = HR and the

minimisation of (2.1.1) is retained. We use this transformation to replace constraint (2.1.2)

with (1.2.5) giving us physically plausible spectra. Solutions found using Lawton’s method

are therefore least squares solutions to (1.2.2) and we can use the solution space defined

by Lawton with least squares based methods.

A very simple example of the relationship between (1.2.2) and (2.1.1) is the one-spectrum

case where r = 1 in (1.2.2) and (2.1.1) leading to r × 1 vectors s and h and scalars c and

g. We define the models

yi = cs+ εi

yi = gh+ εi

to be fit subject to constraints (2.1.2) and (1.2.5) respectively. Through transformational

ambiguity [12, 53], detailed in §1.2.1, there exists some transformation such that

yi = cs = gt−1th+ εi

such that

s = htT

c = gt−1.
(4.2.4)

We now see that t = 1, i.e. this model is identifiable, using the constraint

‖s‖ = 1

as any t 6= 1 would result in ‖s‖ = t. We therefore have s = h, our single component

spectra is equal to the first principal component of YTY, and c = g.

We can also see the relationship between between (1.2.2) and (2.1.1) from the ALS, §2.6.1,

algorithm for solving (1.2.2). We can show that the alternating steps of this algorithm, in

the most basic case with no thresholding of estimated values below zero, only depend on
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the initial estimate of C and the data Y with the following iterative formulae:

CT(l) = CT0 C0

(
CT0UD

1UTC0

)−1
CT0UD

2UTC0

(
CT0UD

3UTC0

)−1
...

... CT0UD
2l−2UTC0

(
CT0UD

2l−1UTC0

)−1
CT0UD

lUT
(4.2.5)

and

(4.2.6)

ST(l) =



(
CT0 C0

)−1
C0Y if l = 1

(
CT0 C0

)−1
C0UD

1UTC0

(
CT0UD

2UTC0

)−1
CT0UD

3UTC0 ...

...
(
CT0UD

2l−2UTC0

)−1
CT0UD

l−1UTY if l > 1

(4.2.7)

where (l) is the iteration, C(0) is the initial value for C, usually chosen to be random

numbers [55], and U and D come from the singular value decomposition of YYT , such

that D is a diagonal matrix with eigenvalues d1 ≥ d2 ≥ ... ≥ dn on the diagonal and

U = [u1 u2 ... un]

where the ui are orthonormal eigenvectors ordered corresponding to the di .

We can see a simple intuitive limit due to the diagonality of D, the power to which it is

raise and the property that eigenvalues represent the proportion of variance explained by the

corresponding eigenvector [73]. As used in chemical rank analysis, detailed in §2.2, a sample

with r component spectra will have the largest r eigenvalues accounting for the majority

of the variance. Therefore for increasing powers of D the larger eigenvalues will dominate

the matrix giving greater weight in the final solution to the r eigenvectors corresponding to

the r largest eigenvectors. We therefore see that the solution obtained by any alternating

least squares based method finds a solution based on the same r eigenvectors as used by

methods which first solve (2.1.1) such as Lawton’s original method, §2.4.

4.3 Lawton’s Solution Space Bounds

We now investigate the boundaries of the solution space for ξl ,m used in step 2 of Lawton’s

algorithm, §4.1 [62]. We will first summarise the boundaries defined by Lawton and Sylvestre

[62] and then show that

• Boundaries always exist from within which we select ξl ,m such that sj,k ≥ 0 for all

j ∈ [1, p] and k ∈ [1, r ].
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• Boundaries always exist from within which we select ξl ,m such that ci ,k ≥ 0 for all

i ∈ [1, n] and k ∈ [1, r ].

• A region of ξl ,m exists such that both the previous constraints are met.

• This region is bounded so exploration will be viable

for

s1 = ξ1,1k1 + ξ2,1k2

s2 = ξ1,2k1 + ξ2,2k2

and

yi = ci ,1s1 + ci ,2s2 + εi

with kk being the eigenvectors of YTY
n with the largest eigenvalues, ξl ,m linear combination

coefficients and ci ,k concentrations corresponding to the spectra.

4.3.1 Non-negative Spectra

Lawton’s first solution space bound corresponds to the constraint that a spectrum con-

tains no negative elements. Lawton began with the definition of a spectrum as a linear

combination of primary eigenvectors k1 and k2,

sk = ξ1,kk1 + ξ2,kk2 for k ∈ [1, 2]. (4.3.1)

To ensure every element in vector sk is non-negative Lawton restricted the choice of ξ1,k

and ξ2,k from the (ξ1, ξ2) plane such that all linear combinations produce non-negative

vectors. The boundaries of this region were obtained using the knowledge that the first

eigenvector, k1, has elements of the same sign, see §2.3.1, and as a result of this the

second eigenvector, k2 will contain a mixture of positive and negative elements. This is

clear if we assume k2 also has elements of the same sign as we see that
p∑
j=1

k1,jk2,j > 0

and k2 is therefore not an eigenvector. With this Lawton noted that k1 will have a positive

linear combination coefficient, ξ1, otherwise ξ1k1 + ξ2k2 would contain negative elements

due to an entirely negative ξ1k1 and partially negative ξ2k2.

With this Lawton defined that for a given value of ξ1 the greatest negative value ξ2 may

take will be equal to

− min
j∈K+

∣∣∣∣k1,j

k2,j

∣∣∣∣ ξ1
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for K+ = {j : k2,j > 0}. Likewise for a given ξ1 that the greatest positive value ξ2 can

take is equal to

min
j∈K−

∣∣∣∣k1,j

k2,j

∣∣∣∣ ξ1

for K− = {j : k2,j ≤ 0}. This leads to the boundaries

ξ1 ≥ 0 (4.3.2)

and
ξ2 ≥ ζξ1

ξ2 ≤ τξ1

(4.3.3)

where

ζ = − min
j∈K+

∣∣∣∣k1,j

k2,j

∣∣∣∣
τ = min

j∈K−

∣∣∣∣k1,j

k2,j

∣∣∣∣ . (4.3.4)

The constraints (4.3.3) equate to two straight lines on the (ξ1, ξ2) plane, originating from

the origin covering only the positive ξ1 axis.

We now show that these boundaries cannot encompass the entire ξ1 ≥ 0 region as this

implies

ζ →∞

τ →∞

This limit would require k2,j = 0 for some j = 1, ..., p which requires linearly dependent

columns in Y. As our data contains random noise linear dependence between columns will

happen with probability zero. Therefore −∞ < ζ and τ < ∞. For this same reason the

gradients are also unable to equal zero as this would require some k1,j = 0. Examples of

these constraints are the blue region boundaries in figure 2.3a.

4.3.2 Non-negative Concentrations

Lawton derived the set of boundaries for the solution space from the assumption that the

concentration matrix C contains no negative elements. Lawton began by establishing a link

between the linear combination coefficients, (ξ1,k , ξ2,k), for spectra and the concentrations

by defining

S = KΞ
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for

S = [s1 s2], K = [k1 k2], Ξ =

[
ξ1,1 ξ1,2

ξ2,1 ξ2,2

]
.

This gives

yi = Sci = KΞci

⇒ Ξ−1KT yi = ci

⇒
1

|Ξ|

[
ξ2,2 −ξ1,2

−ξ2,1 ξ1,1

][
kT1 yi

kT2 yi

]
= ci

⇒

[
ci ,1

ci ,2

]
=

1

|Ξ|

[
ξ2,2k

T
1 yi − ξ1,2k

T
2 yi

−ξ2,1k
T
1 yi + ξ1,1k

T
2 yi

]
=

1

|Ξ|

[
ξ2,2κi ,1 − ξ1,2κi ,2

−ξ2,1κi ,1 + ξ1,1κi ,2

]
(4.3.5)

Now from (4.3.5) a single coordinate on the solution space, (ξ1,k , ξ2,k), gives separate

concentration values

ci ,1 =
1

|Ξ| (−ξ1,2κi ,2 + ξ2,2κi ,1)

ci ,2 =
1

|Ξ| (ξ1,1κi ,2 − ξ2,1κi ,1) .

From (4.3.5) it is clear that κi ,1 is positive as it is the product of two entirely positive

vectors,

κi ,1 = k1yi .

With this positivity Lawton fixed ξ1,k to limit the values ξ2,k may take using the ratio κi ,2
κi ,1

.

This led to the solution space bounds,

ξ2 ≥ max
1≤i≤n

[
κi ,2
κi ,1

]
ξ1

ξ2 ≤ min
1≤i≤n

[
κi ,2
κi ,1

]
ξ1

(4.3.6)

Finally we show that these bounds will always exist and lie within the boundaries defined in

§4.3.1, i.e.

max
1≤i≤n

[
κi ,2
κi ,1

]
< min
j∈K−

∣∣∣∣k1,j

k2,j

∣∣∣∣
min

1≤i≤n

[
κi ,2
κi ,1

]
< − min

j∈K+

∣∣∣∣k1,j

k2,j

∣∣∣∣ .
We see this by noting that the boundaries (4.3.4) simply give the region of coefficients

from which all linear combinations of the eigenvectors result in entirely positive vectors. As

the data points, yi , are entirely positive and can be written as linear combinations of the
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eigenvectors their coefficients must also lie within the region (4.3.4). Now as the κi ,k are

the data projected onto the space spanned by k1 and k2 the boundaries (4.3.6) are lines

drawn through two projected data points and will therefore lie within the previously defined

region. Examples of these constraints are the black region boundaries in figure 2.3a.

4.3.3 Unit Area Under Spectra

The final constraint Lawton placed on the solution space came from the unit area restriction

on the spectra, sk . It is important to note that whilst Lawton defined this by viewing the

spectra and eigenvectors as functions, as in §2.4, this has been replaced by the unit

norm constraint in all modern methods. However for completeness we will prove that this

constraint is not trivial, as defined by Lawton, before reverting back to the unit norm

constraint.

Lawton defined this final constraint as,∫ Ω2

Ω1

sk(ω) = 1. (4.3.7)

where the Ω1 ≤ ω ≤ Ω2. To obtain a solution space boundary from this Lawton and

Sylvestre [62] used numerical integration to estimate this integral. By viewing the eigen-

vectors as functions over wavenumbers the areas∫ Ω2

Ω1

kk(ω) for k = 1, 2

were first estimated with the trapezium rule,

δk =

p∑
j=1

kj,k∆j , for k = 1, 2

with

∆j =


|ω2 − ω1| if j = 1

|ωp − ωp−1| if j = p

|ωk−ωk−1

2 | if 1 < j < p

,

and so for linear combination coefficients (ξ1, ξ2), for generating a spectrum, the unit area

constraint, (4.3.7), becomes

1 = δ1ξ1 + δ2ξ2

⇒ ξ2 =
1

δ2
−
δ1

δ2
ξ1

= d1 + d2ξ1 (4.3.8)
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for
d1 =

1

δ2

d2 = −
δ1

δ2
.

(4.3.9)

Existence of this non-empty subspace is clear unless we have entirely zero eigenvectors k1

and k2. We show an example of the intersection between the line defined by (4.3.8) and

the previously defined regions (4.3.3) and (4.3.6) in figure 2.3b.

As the unit area constraint (4.3.7) uses a rudimentary numerical integration technique we

replace it with a unit Euclidean norm as defined in (1.2.5), which replaces the line (4.3.8)

with a unit arc,

‖sk‖2 = 1

⇒ ξ2
1,k + ξ2

2,k = 1

for

sk = ξ1,kk1 + ξ2,kk2.

This ensures our estimated spectra will comply with the unit norm constraint with no risk

of numerical estimation errors as may occur with (4.3.7). We are also assured that neither

ξ1 or ξ2 will approach infinity as we will be selecting from an arc around the origin. This

will prove useful later in this chapter when we explore the solution space with a random

walk as we will know our walk will be bounded.

4.4 Lawton’s Solution Space Bounds in Higher Dimensions

Having summarised the solution space defined by Lawton and Sylvestre [62] in §4.3, and

proved that it will always exist for r = 2, we now investigate an extension of them to

accommodate more than two spectra. We first consider the three spectrum case where

the model now being fit is

yi = ci ,1s1 + ci ,2s2 + ci ,3s3 + ei , for i = 1, ..., n (4.4.1)

with the same non-negativity and unit area constraints, (1.2.5). As defined in §4.3.1 and

§4.3.2 the observations and the spectra are all linear combinations of the eigenvectors,

yi = κi ,1k1 + κi ,2k2 + κi ,3k3 (4.4.2)

s1 = ξ1,1k1 + ξ2,1k2 + ξ3,1k3

s2 = ξ1,2k1 + ξ2,2k2 + ξ3,2k3

s3 = ξ1,3k1 + ξ2,3k2 + ξ3,3k3.
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Figure 4.1: Produced using data from Lawton and Sylvestre [62] however now with r = 3

where Lawton used r = 2. The (ξ1, ξ2, ξ3) space containing the solution

volume in which the yi are marked as five circles in terms of the κi ,k in

(4.4.2). The 2-dimensional boundaries of the region resulting in non-negative

sk , (4.4.4) assuming either ξ2 = 0 or ξ3 = 0, are marked by blue and magenta

lines.

4.4.1 Unit Spectra

The most simple constraint to define as a boundary on our three spectra solution space,

(ξ1, ξ2, ξ3), is the unit norm constraint in (1.2.5). With spectra defined as

sk = ξ1,kk1 + ξ2,kk2 + ξ3,kk3

our constraint is

‖sk‖2 = 1

⇒ ξ2
1,k + ξ2

2,k + ξ2
3,k = 1

which is a unit sphere about the origin.
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4.4.2 Non-negative Spectra

Defining the boundaries of the region from which we select our linear combination coeffi-

cients for forming spectra satisfying constraint 2 in (1.2.5) is more difficult. In the three

spectra case, where r = 3, we have

S = KΞ

⇒
[
s1 s2 s3

]
=
[
k1 k2 k3

]
ξ1,1 ξ1,2 ξ1,3

ξ2,1 ξ2,2 ξ2,3

ξ3,1 ξ3,2 ξ3,3

 (4.4.3)

where each column of Ξ is a coordinate on the (ξ1, ξ2, ξ3) volume. We therefore see that

for a single sk our constraint is equal to

ξ1k1,j + ξ2k2,j + ξ3k3,j ≥ 0 for j = 1, ..., p. (4.4.4)

The difficulty we encounter in defining the region boundaries comes from the inclusion of

the third eigenvector. In the two spectrum case we could fix ξ1 and calculate the possible

values ξ2 may take. However we now have a third coefficient, ξ3, and so can no longer

constrain the solution space in this way. Although we can still estimate parts of the region

boundaries using the 2-dimensional formula to give us an indication of the solution space

in the triangular shape we saw in figure 2.3. To obtain these we assume either ξ2 = 0 or

ξ3 = 0 and use

ξ1 ≥ 0

ξ2 ≥ ζ2ξ1

ξ2 ≤ τ2ξ1

ξ3 ≥ ζ3ξ1

ξ3 ≤ τ3ξ1

where

ζ2 = − min
j∈K+

2

∣∣∣∣k1,j

k2,j

∣∣∣∣
τ2 = min

j∈K−2

∣∣∣∣k1,j

k2,j

∣∣∣∣
ζ3 = − min

j∈K+
3

∣∣∣∣k1,j

k3,j

∣∣∣∣
τ3 = min

j∈K−3

∣∣∣∣k1,j

k3,j

∣∣∣∣

(4.4.5)
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where K+
l = {j : kl ,j > 0} and K−l = {j : kl ,j > 0}. Calculating (4.4.5) using Lawton’s

data, described in §1.2.2, gives us the blue and magenta lines respectively in figure 4.1.

When viewed from the perspective of ξ2 = 0 or ξ3 = 0 these are the 2-dimensional

boundaries of a region of the same shape as that in figure 2.3.

With the analytical boundaries incalculable we turn to a numerical estimation of the region

from which a spectrum will be entirely positive. For this we calculate the spectrum at each

point of a 3-dimensional mesh, covering the (ξ1, ξ2, ξ3) volume, with coordinate ranges

ξ1 = (0, 0.001, 0.002, ..., 0.399, 0.4)

ξ2 = (−0.15,−0.149, ..., 0.149, 0.15)

ξ3 = (−0.05,−0.049, ..., 0.149, 0.15).

We then accept points from this mesh as lying in the solution space if the resulting sk = Kξ

has entirely positive elements. We see the results of this trial and error technique in figure

4.2 as layers of the accepted volume with the location of the layer indicated by a green plane

on the 3-dimensional volume plot. The shape of the cross sections show the volume to be

a more complicated multi-faceted structure with borders crossing through the calculable

2-dimensional boundaries.

4.4.3 Non-negative Concentrations

In calculating the region which will result in non-negative concentrations we encounter the

same problems as in §4.4.2 with the non-negative spectra boundaries. The inclusion of ξ3

no longer allows us to fix ξ1 and limit the remaining coefficient values. However we can still

obtain the boundaries of the two spectrum case, assuming either ξ2 = 0 or ξ3 = 0, using

ξ2 ≥ max
1≤i≤n

[
κi ,2
κi ,1

]
ξ1

ξ2 ≤ min
1≤i≤n

[
κi ,2
κi ,1

]
ξ1

ξ3 ≥ max
1≤i≤n

[
κi ,3
κi ,1

]
ξ1

ξ3 ≤ min
1≤i≤n

[
κi ,3
κi ,1

]
ξ1

(4.4.6)

where κi ,k = kTk yi . Using Lawton’s data, described in §1.2.2, we show an example of these

boundaries in figure 4.3 as the red and green lines respectively. When viewed from the

perspective of ξ2 = 0 or ξ3 = 0 these are the 2-dimensional boundaries of a region of the

same shape as that in figure 2.3.

As in §4.4.2 we use a numerical method to estimate the solution space by finding points

which lie within. However we come across a further problem when defining our trial and

68



Chapter 4: Exploring the Solution Space

9
2

-0.1 0   0.1 0.2 

9
3

0.2  

0.15 

0.1  

0.05 

0    

-0.05

(a) Volume boundaries at ξ1 = 0.114.
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(d) Position of layer in volume.

Figure 4.2: Figure produced using data from Lawton and Sylvestre [62], described in

§1.2.2. Layers of the (ξ1, ξ2, ξ3) volume in which the yi are marked as red

circles in terms of the κi ,k , in (4.4.2). The 2-dimensional boundaries of the

region resulting in non-negative sk , (4.4.4) assuming either ξ2 = 0 or ξ3 = 0,

are marked by blue and magenta lines.
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Figure 4.3: Produced using data from Lawton and Sylvestre [62] described in §1.2.2. The

(ξ1, ξ2, ξ3) space containing the volume in which the yi are marked as five

circles in terms of the κi ,k , in (4.4.2). The 2-dimensional boundaries of the

region resulting in non-negative sk , (4.4.4) assuming either ξ2 = 0 or ξ3 = 0,

are marked by green and red lines.

70



Chapter 4: Exploring the Solution Space

error method for narrowing down the solution space. With the spectra it is possible for us

to select a single point on the space, ξ, and calculate a single spectrum, s = Kξ, which we

can check for negative elements. However it is not possible for us calculate concentrations,

which we can check for negative elements, using a single point from the solution space.

We see this in the definition of the model for a single observation,

yi = Sci + εi = KΞci + εi

where to estimate the concentrations using

ci = Ξ−1KT yi

we must have r points from the solution space to obtain Ξ−1. Due to this checking for

negative elements in the concentrations generated by each point of a 3-dimensional mesh,

as in §4.4.2, is not possible. We would instead have to test all possible combinations of

three points on the sub-mesh of non-negative spectra calculated in §4.4.2.

To calculate the region giving non-negative spectra in §4.4.2 for Lawton’s original data

[62], described in §1.2.2, we used the 3-dimensional mesh defined in §4.4.2 which gives 24

million points. To calculate the concentrations given by all combinations of three points

from this mesh we would have 1021 point combinations, calculated with

24× 106!

3!(24× 106 − 3)!
.

We reduce this by first restricting our points giving positive spectra to those also conforming

to the unit area constraint, the plane segment shown in figure 4.4a. In doing so we reduce

the number of combinations to test to 107. The resulting solution plane from this trial and

error method for Lawton’s data is shown in figures 4.4b and 4.5. Also shown in figure 4.5

as a red line is the 2-dimensional region calculated by the constraints detailed in §4.3 and

seen in figure 2.3.

4.4.4 Further Extensions in Dimension

Expanding Lawton’s method to find r = 3 spectra made clear the problems we will encounter

when extending to further dimensions. Any dimension beyond two removes our ability to

calculate the boundaries of the solution space. This intractable space then becomes

extremely expensive to explore with the trial and error method we used in §4.4.2 and §4.4.3.

As such we will consider a more efficient method of exploring this solution space using a

random walk in §4.6.1.
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Figure 4.4: Produced using data from Lawton and Sylvestre [62] described in §1.2.2. The

(ξ1, ξ2, ξ3) volume and unit-S plane intercept generated using a brute force

method comparing all possible combinations of ξ as described in §4.4.1, §4.4.2

and 4.4.3.
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Figure 4.5: Produced using data from Lawton and Sylvestre [62] described in §1.2.2.

The (ξ1, ξ2, ξ3) volume and unit-S sphere intercept, viewed along the ξ1 axis.

Region generated using the trial and error method in §4.4.3 comparing all

possible combinations of ξ as described in §4.4.1, §4.4.2 and 4.4.3. The red

lines show the 2-dimensional solution space as defined in §4.3.
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Figure 4.6: Sample results from two spectrum ALS, §2.7.1, using data from Lawton and

Sylvestre [62], as described in §1.2.2, with the initial C generated as random

integers from [1,10]. Whilst all the solutions are mathematically equal in

terms of minimising (1.2.2) they are visibly very different which may cause

issue when interpreting them as chemical spectra.

4.5 Variability of Results from the Solution Space

Due to the non-identifiability in (1.2.2), and the location of a solution given by any chosen

algorithm depending on the initial values given for S and C as we show with (4.2.5), the

results we obtain can vary. As a simple example of this we applied ALS, §2.7.1, with

randomly generated starting values, to Lawton’s original dataset [62]. We use random

initial values under the assumption that for any starting point the algorithm will converge to

equally good solutions which will differ due to the non-identifiability. By repeatedly solving

(1.2.2) for two and three component spectra, r = 2 and r = 3 we obtained the estimated

spectra shown in figures 4.6 and 4.7. where the instability in the results to (1.2.2) is clear.

We show a simple worst case scenario of the non-identifiability of (1.2.2) using our explo-

ration results of Lawton’s data [62] from §4.4. Figures 4.8 and 4.9 show two possible sets

of solutions to (1.2.2). We see an example of physically plausible results in figure 4.8a

where we have the two true spectra in Lawton’s data [62] and a third which appears to be a

combination of the other two and was only found because we searched for three components

in data containing only two. Figure 4.9 however shows us the problem with selecting three

points close together in the solution space. Here we have three spectra coming from the

solution space of (1.2.2) with none looking like the true component spectra in the data.
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Figure 4.7: Sample results from three spectrum ALS, §2.7.1, using data from Lawton and

Sylvestre [62], as described in §1.2.2, with the initial C generated as random

integers from [1,10]. Whilst all the solutions are mathematically equal in

terms of minimising (1.2.2) they are visibly very different which may cause

issue when interpreting them as chemical spectra.

We will therefore derive an algorithm for exploring this solution space so we can obtain a

range of results from the entire solution space instead of the random selection of results

repeated solutions to (1.2.2) obtain.

4.6 Monte Carlo Random Walk Solution Space Sampling

As shown in §4.1 the boundaries of the solution space have no analytic solution when r > 2,

a common situation with Raman images. The exploration method we use in §4.1 is also

not a viable option due to computational difficulties in testing (1.2.5) for all points, and all

combinations of points, on an r -dimensional mesh. Therefore we will employ Monte Carlo

simulation techniques of random walks and rejection sampling to sample over the solution

space.
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(a) 3-dimensional solution plane with three

linear combination coefficients used to

generate the three spectra in figure 4.8b.
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(b) Spectra corresponding to the coefficients

in figure 4.8a.

Figure 4.8: Potential solutions to (1.2.2) chosen from the solution plane using data from

Lawton and Sylvestre [62]. Spectra calculated using (4.4.3).
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(a) 3-dimensional solution plane with three

linear combination coefficients used to

generate the three spectra in figure 4.9b.
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Figure 4.9: Potential solutions to (1.2.2) chosen from the solution plane using data from

Lawton and Sylvestre [62]. Spectra calculated using (4.4.3).
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4.6.1 Random Walk Algorithm

We propose a simple random walk algorithm for exploring the (ξ1, ..., ξr ) (r ≥ 2) unit

hypersphere, used in 3-dimensions in §4.4.1, defined by

r∑
k=1

ξ2
k = 1 (4.6.1)

where the coordinates on the sphere surface, ξk = (ξk,1, ..., ξk,r )
T , become the columns

of the r × r transformation matrix

Ξ = [ξ1 ξ2 . . . ξr ]

initially defined in §2.4 and used in §4.4.2 and §4.4.3. We construct our random walk

around this hypersphere as it will ensure the unit spectra constraint of (1.2.5) is met. To

generate our step around the unit hypersphere (4.6.1) we take inspiration from the random

walk defined by Hastings [47] and Kac [54] due to the simplicity with which it can be

implemented. Future work in this area may involve a more efficient random walk in higher

dimensions however as we rarely exceed three or four dimensions this causes us no problems

for now. For a point on unit hypersphere (4.6.1) at iteration t, ξ(t), we define our random

walk by letting

ξ(t+1) = Gl ,m(θ)ξ(t) (4.6.2)

for rotation matrix

r×r
Gl ,m (θ) =



1 . . . 0 . . . 0 . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . cos(θ) . . . − sin(θ) . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . sin(θ) . . . cos(θ) . . . 0
...

. . .
...

. . .
...

. . .
...

0 . . . 0 . . . 0 . . . 1


(4.6.3)

with angle θ randomly generated from θ ∼ U(0, 2π). The rotation matrix, Gl ,m(θ), is only

different from the identity matrix at entries (l , l), (l , m), (m, l) and (m,m) where l and m

are chosen such that 1 ≤ l < m ≤ r . This random walk simply rotates ξ around the unit

sphere to obtain a new set of coordinates, ξ′ and therefore a new spectrum s′ = Kξ′.

To obtain our starting coordinate for the random walk, ξ(1) on the unit hypersphere, we

use any method for solving (1.2.2) to obtain estimates of the sk . With our estimates of

the sk we find some ξ such that sk = Kξ, where K = [k1 ... kr ] are the r eigenvectors of
YTY
n corresponding to the r largest eigenvalues.
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We now propose two options for sampling the solution space of acceptable choices for

ξ. The first samples each coordinate point, ξ, individually and calculates s(t) = Kξ(t)

to check for negative elements in the spectrum. Sampling continues until the iteration

limit is reached. A brute force method is then used testing all possible combinations of r

coordinates for negative concentration values by calculating C such that

Y = KΞC

⇒ KTY = ΞC

⇒ C = (Ξ)−1KTY. (4.6.4)

In testing we greatly increased the speed of the brute force part by using parallel computing

as each combination of r ξ to form Ξ may be tested independently of the others.

Algorithm 4.6.1. r Spectra Solution Space Random Walk 1

1. Solve (1.2.2) to obtain S = [s1 ... sr ] and find starting coordinate ξ(1) such that

Kξ(1) = s1.

2. Sample θ from θ ∼ U(0, 2π), l and m from U(1, r) so all possible rotations are equally

likely. Evaluate ξ(t+1) from (4.6.2).

3. Check s = Kξ(t+1) satisfies sj > 0 for j = (1, ..., p).

4. If accepted increase t by 1 and progress to point ξ(t+1), else remain at ξ(t), and

return to step 2.

5. Repeat steps 2–4 until the predefined limit of tMAX is reached.

6. Check all tMAX!
r !(tMAX−r)! combinations of r sampled coordinates, used to form

Ξ = [ξ1, ..., ξr ]

for Ci ,k > 0 for i = (1, ..., n) and k = (1, ..., r). With C calculated using (4.6.4). We

accept or reject each ξ(t) as a point in the solution space using one of the following

criteria,

(a) Accept ξ(t) if at least one of the (tMAX−1)!
(r−1)!(tMAX−r−2)! versions of Ξ in which it

appears generates non-negative concentrations

(b) Accept ξ(t) if all of the (tMAX−1)!
(r−1)!(tMAX−r−2)! versions of Ξ in which it appears

generates non-negative concentrations
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In selecting θ, l and m for (4.6.3) from uniform distributions this random walk will be

equally likely to select any point on the hypersphere. Therefore, for a large enough tMAX,

it will provide an even sampling of points from the volume representing constraints (1.2.5).

This algorithm initially generates tMAX possible points on the solution space which are then

reduced to T points after the rejection of those giving negative values in C. In practice we

use the less severe rejection criteria in step 6a as the more severe criteria resulted in very

few accepted ξ(t). With more powerful computation the more strict criteria could be used

as a very large tMAX would be possible resulting in more accepted points.

The second algorithm avoids step 6 of algorithm 4.6.1 and produces T points on the

solution space but takes longer to complete. In avoiding step 6 of algorithm 4.6.1 this

walk requires a full transformation matrix Ξ as a starting point. We acquire this using any

solution to (1.2.2) and finding Ξ such that S = KΞ.

Algorithm 4.6.2. r Spectra Solution Space Random Walk 2

1. Solve (1.2.2) to obtain S and find starting coordinates Ξ(1) such that KΞ(1) = S.

2. For each column of Ξ(t), ξ(t)
k for k = 1, ..., r , sample θ from θ ∼ U(0, 2π), l and m

from U(1, r) and evaluate ξ(t+1)
k using (4.6.2).

3. Check S = KΞ(t+1) and C, calculated as in (4.6.4), satisfy Sj,k > 0 and Ci ,k > 0 for

i = (1, ..., n), j = (1, ..., p) and k = (1, ..., r).

4. If accepted increase t by 1 and progress to Ξ(t+1), else remain at Ξ(t), and return

to step 2.

5. Repeat steps 2–4 until the predefined limit of T is reached.

The acceptance criterion of this algorithm is the same as using 6b in algorithm 4.6.1

however we now also check the estimated concentrations for negative elements at the same

time. As this algorithm is more strict in accepting a point as lying in the solution space

we selected algorithm 4.6.1 for use in our testing due to computational speed. Algorithm

4.6.1 with acceptance criteria 6a also allows us to rank the accepted points. Rankings are

calculated based on how many times a given point, ξ, appears in an accepted matrix Ξ in

step 6a. These rankings may be useful to weight the selection of points from the solution

space so only those frequently giving non-negative concentrations are used.

Applying algorithm 4.6.1 to Lawton’s data, detailed in §1.2.2, we obtained the plane

estimate shown in figure 4.10. In this figure we also see an example of the point rankings

where the size of the marker for each point corresponds to the number of times a Ξ in
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Figure 4.10: 400 ξi found using algorithm 4.6.1, with acceptance criteria 6a, on data

from Lawton and Sylvestre [62]. Accepted points in blue with point size

corresponding to the proportion of accepted combinations out of the total

combinations in which they appear in step 6a. The bulk of frequently ac-

cepted points around ξ3 = 0 is due to the third eigenvector, to which ξ3 = 0

corresponds, representing background signal. Our random walk algorithm

(4.6.1) returns a solution space very similar to that from §4.4.3 without the

need for a large mesh of points.

which it featured generated non-negative concentrations. For this dataset the grouping of

highly ranked points around ξ3 = 0 is likely because the data contains only two component

chemicals. Therefore the third principal component represents background signal and noise

and so we have no guarantee the corresponding concentrations will be positive.

4.6.2 Clustering Spectra from the Solution Space

With T points on the solution space, generated by algorithm 4.6.1 or 4.6.2, we now look

at creating r groups of points, ξ, to represent the r true component spectra in the data.

This will help us avoid situations such as that seen in figure 4.9b where all r estimated

spectra resemble a single component spectrum as we can select a single spectrum from
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Figure 4.11: Results of UPGMA clustering the spectra generated by points on the solution

space estimated for data from Lawton and Sylvestre [62]. Solution space

estimated using algorithm 4.6.1 with acceptance criteria 6a. Cluster means

shown in black are very close matches to the true spectra in the data [62].

each group.

With our three spectrum solution space for Lawton’s data [62] we applied a variety of

clustering techniques to the st = Kξt , for t = 1, ..., T . These included k-means, §2.10,

EMGM, §2.12.1, and the unweighted pair group method with arithmetic mean clustering

(UPGMA) algorithm, §2.11. For this data the UPGMA method provided us with groups

most closely representing the true component spectra however this will be largely data

dependent. The two clusters of spectra, not including background signal, we found in our

solution space for Lawton’s data are shown in figure 4.11 along with their means.

We can also represent these clusters in our plot of the 3-dimensional volume by colouring

the ξt corresponding to the st = Kξt in each cluster. For Lawton’s data we give an example

of this in figure 4.12. From this volume we can see that the locations of the clusters lie

in areas where the coefficients of two eigenvectors are low, an unsurprising result when we

consider that each eigenvector represents a component spectra as detailed in §2.3.

4.6.3 Applying to more complicated data

We now test random walk algorithm 4.6.1 with more complicated data. The dataset we

select for this is one of the bicalutamide datasets detailed in §1.2.2. We select this dataset

as the group of Raman images to which it belongs will feature heavily in Chapter 5 when

we perform hypothesis testing incorporating random walk algorithm 4.6.1. After baseline

correction and anomaly trimming, see chapter 3, approximately 5% of all yi ,j ∈ Y are
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Figure 4.12: 400 ξi found using algorithm 4.6.1, with acceptance criteria 6a, on data

from Lawton and Sylvestre [62]. Accepted points are coloured based on

their group, detected with UPGMA clustering, with point size corresponding

to the proportion of accepted combinations out of the total combinations in

which they appear in step 6a. The blue and green groups, with the bulk of

the highly ranked points, are around ξ3 = 0 as expected with ξ3 representing

the concentration of background signal. We now have an even clearer picture

of the solution space of (1.2.2) and why the estimated spectra can vary so

much.
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negative resulting in negative values in S, C or both. We must therefore account for these

negative elements to ensure the solution space exists. To achieve this we relax constraints

(1.2.5) by allowing a small number of negative values in steps 3 and 6 of algorithm 4.6.1.

This gives us

Algorithm 4.6.3. Modified Steps for r Spectra Solution Space Random Walk 1

3. Check s = Kξ(t+1) satisfies
p∑
j=1

Isj>0 ≥ p(1− α1)

for indicator function I and proportion of negative elements allowed per spectrum α1.

6. Check all tMAX!
r !(tMAX−r)! combinations of r sampled coordinates, used to form

Ξ = [ξ1, ..., ξr ]

for
n∑
i=1

r∑
k=1

Ici ,k>0 ≥ nr(1− α2)

with C calculated using (4.6.4). We accept or reject each ξ(t) as a point in the

solution space using one of the following criteria,

(a) Accept ξ(t) if at least one of the (tMAX−1)!
(r−1)!(tMAX−r−2)! versions of Ξ in which it

appears generates non-negative concentrations

(b) Accept ξ(t) if all of the (tMAX−1)!
(r−1)!(tMAX−r−2)! versions of Ξ in which it appears

generates non-negative concentrations

Applying this modified random walk to the bicalutamide data we found α1 = 0.01 and

α2 = 0.1 to work well in giving us a good estimation of the solution space without

requiring too great a tMAX. Figure 4.13a shows the two spectrum solution plane for the

bicalutamide data, with the two UPGMA derived clusters represented in red and blue. Three

spectrum random walks for this data, performed with algorithm 4.6.3 and used to estimate

bicalutamide, copovidone and background signal, will be used extensively in Chapter 5. We

use the two spectra case here as a proof of concept only as it causes the copovidone and

background signal spectra to be combined, as seen in figure 4.13b.

4.7 Discussion

With (1.2.2) being non-identifiable in the solutions to S and C we have a solution space

from which we can select columns, ξ, of Ξ such that S = KΞ as defined in §4.4.2. Whilst
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Figure 4.13: Random walk conducted using algorithm 4.6.1 on bicalutamide data, §1.2.2.

For this data the variation in estimated spectra across the solution space

appears minimal so using a single solution to (1.2.2) may provide consistent

results.

not directly used in most modern methods this solution space was identified by Lawton and

Sylvestre [62] in the first published chemometric method for solving (1.2.2). We therefore

began our investigation with the solution space boundaries defined by Lawton. Before

we used Lawton’s constraints however we first proved that Lawton’s solution to (1.2.2)

was indeed a least squares solution. We established this by proving that under appropriate

constraints for eigenvectors, (2.1.2), the eigenvectors provide a least squares solution to

(2.1.1). With a solution to (2.1.1) we are able to transform G and H such that they comply

with constraints (1.2.5) and therefore provide a solution to (1.2.2).

With the foundation of Lawton’s solution space proven we went on to show that they will

always exist for Raman spectroscopy data. With these shown we looked at calculating the

boundaries for higher dimensional models with r > 2. However we were unable to obtain

analytically calculable solution space boundaries as in the r = 2 case. We therefore turned

our attention to Monte Carlo simulation techniques for estimating the shape and boundaries

of the solution space to (1.2.2).

The Monte Carlo technique we used was a random walk which we implemented using a

rotation matrix to move the linear combination coefficients ξ, used to calculate s = Kξ,

about the solution space on a hypersphere whilst testing the constraints (1.2.5). We then

modified this algorithm to allow a small quantity of negative elements in the estimated

spectra and concentrations so noisy and pre-processed data can still be explored. Whilst

effective at exploring the solution space this method suffered with lengthy computation
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times. These were caused by the rotation of the ξ and the selection of any point on the

hypersphere of which only a small region was our solution space. Beneficial future work

on our random walk would focus on the area of calculating the rotation matrix, (4.6.3).

Restrictions in the range of points to which it could move would provide an increase in

speed especially if more constraints could be included in the step selection stage.

With our algorithm locating the solution space of both sample datasets we looked at

clustering the range of possible solutions to (1.2.2), more specifically the spectra generated

by the points, ξ, on the solution space. This enabled us to separate the possible spectra

into groups representing the component spectra in the dataset. Our motivation for this

is that when selecting r points from the solution space we can ensure we obtain a single

spectra for each chemical component, avoiding situations where nearly equal spectra are

returned as in figure 4.9.

Using our random walk we will derive robust hypothesis tests in chapter 5 that take into

account the non-identifiability of (1.2.2) and the arbitrary solution identified by methods

for solving (1.2.2). In comparison to current publications on the non-identifiability of

(1.2.2) [35, 95] our random walk can be applied to any Raman spectroscopic image with

no requirements for specific features in either the scan subject or the component spectra.
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Chapter 5

Multivariate Hypothesis Testing of

Concentration Magnitudes

5.1 Objectives of Testing Concentration Magnitudes

Our initial analysis of a Raman image usually involves finding a solution to

Y = CST + E (1.2.2)

my minimising

argmin
S,C

∥∥Y − CST∥∥
subject to

1. sTk sk = 1 for all k = 1, ..., r

2. sj,k ≥ 0 for all j = 1, ..., p and k = 1, ..., r

3. ci ,k ≥ 0 for all i = 1, ..., n and k = 1, ..., r

(1.2.5)

as we have seen in previous chapters. This model however is non-identifiable, a subject

covered in §1.2.1 and extensively investigated in Chapter 4. It is this non-identifiability

which makes further analysis of the results, for example estimates the concentration matrix

C, difficult as the matrix on which we will be performing hypothesis tests is one of an

infinite number of possible solutions. These hypothesis tests focus on the means of two

sets of concentrations and the spatial information contained within the concentrations.

When performing hypothesis tests on these concentrations our first area of interest is

the magnitudes of the concentrations and whether these can be used to compare the

Raman scans of two subjects. The primary question to be answered by this test is do the

Raman images contain equal quantities of their component chemicals? For example in the
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pharmaceutical industry this may lead us to ask, do all the tablets from a single production

run contain equal quantities of the active ingredients? However as every Raman image is

subject to noise we will never find exact quantities of component chemicals and so we will

test whether the concentrations may have come from distributions with equal means.

The second area we investigate is the spatial information contained in the estimated

concentrations. The question we ask here is how well mixed are the component chemicals

in the subject? Another example from the pharmaceutical industry is the question, do

amorphous production methods produce a more thoroughly mixed product than standard

crystalline methods? (Amorphous tablets are mixed at a molecular level by melting the

component chemicals, in theory producing a more thoroughly mixed product.)

Common methods for testing the mixing of a subject are applied during the production

process. The methods of Koc et al. [58] and Coënt et al. [21] take photographs of the

components during the mixing process, convert them to greyscale and count the number

of pixels representing each gray level either in the entire image or in small sections of the

image. These methods require the components to be different colours and so usually employ

dyed powders as surrogate chemical components. They are also predominantly used to

test the mixing capabilities of equipment on a production line rather than the final product

such as a pharmaceutical tablet. A method close to those we propose in this chapter is by

Lee and Lin [65]. This method uses Fourier-transform infra-red spectroscopy (FT-IR) to

repeatedly scan the product during mixing in the same way our Raman images are gathered.

The spectra are then estimated at each scan location and the uniformity of the mixing is

calculated by comparing the peak intensities of the estimated spectra at each location.

A final question we must ask throughout all of our testing is what effect will the non-

uniqueness of solutions to (1.2.2) have on our results? In answering this we turn to the

solution space random walk, algorithm 4.6.3. This will allow us to obtain a number of

solutions to our bilinear model, (1.2.2), and test each one, giving more confidence that

our test conclusion is not the result of an anomalous model solution. This random walk

component to our hypothesis testing introduces a second layer to the hypothesis test as

each solution chosen from the solution space has a p-value associated with it. We therefore

propose a method for summarising the results of these multiple p-values.

Note: In subsequent sections of this chapter the C we perform hypothesis tests on are

estimates, C̃, of the parameter C in (1.2.2). The tilde is dropped to simplify notation.
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5.1.1 Concatenated Data Model

Before comparing datasets we modify them to ensure we are comparing concentrations of

the same estimated component chemicals. For Raman images Y(1) and Y(2), with n1 and

n2 pixels respectively, in the usual form

nl×p
Y(l)=


y

(l)T
1
...

y
(l)T
nl

 (5.1.1)

we combine these into a single larger image and define the model
(n1+n2)×p[
Y(1)

Y(2)

]
=

(n1+n2)×r[
C(1)

C(2)

]
r×p
ST +E. (5.1.2)

Here we are assuming that both Raman images share estimated component spectra, S =

[s1 ... sr ], but have individual concentration matrices of the standard form

C(l) =


c

(l)T
1
...

c
(l)T
nl

 . (5.1.3)

We fit this model by solving

argmin
S,C(1),C(2)

∥∥∥∥∥
[
Y(1)

Y(2)

]
−

[
C(1)

C(2)

]
ST

∥∥∥∥∥ (5.1.4)

as with (1.2.2) where ‖ · ‖ is an extension of the Euclidean norm to matrices, (1.2.4) in

§1.2.

5.1.2 Defining Submatrices of C

After estimating concentration matrices we may need to modify them further before testing.

For example a Raman image is often not purely the scan subject and usually contains some

background information. Testing the concentration magnitudes and including these regions

where there was none of the subject is clearly going to affect the results. We therefore divide

our estimated concentrations into submatrices representing the concentration magnitudes

at small areas of the Raman image so we can test only parts which are sensible.

To define these submatrices, for some concentration matrix C(l), we first define the columns

of the concentration matrix representing the concentrations of chemical k at each pixel,

v
(l)
k =


c

(l)
1,k
...

c
(l)
n,k

 . (5.1.5)
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For the full heatmap we reshape this vector into a matrix with the dimensions of the original

Raman image, say x × y , giving

x×y
V =


v

(l)
k,1 . . . v

(l)
k,(y−1)x+1

...
. . .

...

v
(l)
k,x . . . v

(l)
k,n

 . (5.1.6)

Therefore to define a submatrix we select specific elements of (5.1.5), c(l)
j,k , such that when

reshaped to form a heatmap, such as (5.1.6), we have only a subset of the full heatmap.

We define this submatrix as

v
(l)
k,m such that j ∈ Im (5.1.7)

where Im is the set of indices, j , of pixels in submatrix m. For example if we were to

reshape vector x = [1, 2, ..., 16] into matrix
1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16


and divide this into four submatrices we would obtain sets

I1 = {1, 2, 5, 6}

I2 = {9, 10, 13, 14}

I3 = {3, 4, 7, 8}

I4 = {11, 12, 15, 16}.

5.2 Established Statistical Tests

For some of the hypothesis testing we perform in this chapter we will use two established

statistical testing methods. These are Hotelling’s two-sample T2 test [48, 73, Chapter 5]

and bootstrap testing [24], which we will now outline.

5.2.1 Hotelling’s Two-Sample T-squared Test

The two-sample T2 test was proposed by Hotelling [48] to test whether two samples

come from population distributions with a common mean. For two p-dimensional datasets,
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X = {x1, ..., xn1} and Y = {y1, ..., yn2}, we assume

xi ∼ Np (µx ,Σ)

yi ∼ Np
(
µy ,Σ

)
and consider the testing problem

H0 : µx = µy vs. H1 : µx 6= µy

The sample means are defined as

x =
1

n1

n1∑
i=1

xi and y =
1

n2

n2∑
i=1

yi (5.2.1)

with the pooled sample covariance matrix

W =

∑n1
i=1(xi − x)(xi − x)T +

∑n2
i=1(yi − y)(yi − y)T

n1 + n2 − 2
. (5.2.2)

The statistic

t2 =
n1n2

n1 + n2
(x− y)TW−1(x− y) (5.2.3)

has a T 2(p, n1 + n2 − 2) distribution under the null hypothesis [48] or equivalently [73,

Section 3.6.1]

F =
n1 + n2 − p − 1

(n1 + n2 − 2)p
t2 ∼ F (p, n1 + n2 − 1− p). (5.2.4)

F will tend to be larger under H1 as ‖x− y‖ will be larger. Thus H0 is rejected in favour

of H1 when the observed F statistic is sufficiently large. In particular H0 is rejected at

the 100(1 − α)% level if F > F1−α,p,n1+n2−1−p, where F1−α,p,n1+n2−1−p is the inverse

cumulative distribution function of the Fp,n1+n2−1−p distribution.

Affine Invariance of the T-squared Test Statistic

The T2 test statistic also has the property of affine invariance. This property means the

value is unchanged for data modified by an invertible matrix R [84]. We demonstrate affine

invariance for data matrices, X and Y, of the form (5.1.1). By transforming our data

RXT and RYT

we now write the pooled sample covariance matrix, (5.2.2), as

W =
RXTc XcR

T + RYTc YcR
T

n1 + n2 − 2
=
R
(
XTc Xc + YTc Yc

)
RT

n1 + n2 − 2
= RWRT ,
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where Xc and Yc are the mean centred data matrices with each yi and xi replaced by yi −y
and xi − x respectively using (5.2.1).

We therefore rewrite test statistic (5.2.3) as

t2 =
n1n2

n1 + n2
(Rx− Ry)T

(
R−1

)T
W−1R−1(Rx− Ry)

=
n1n2

n1 + n2
(x− y)TW−1(x− y)

which is unchanged.

This affine invariance can also nullify the problem of non-unique solutions in (5.1.4) as

when we transform the spectra and concentration estimates with some invertible matrix R,

such that constraints (1.2.5) hold, our model becomes[
Y(1)

Y(2)

]
=

[
C(1)

C(2)

]
RR−1ST + E

=

[
C(1)R

C(2)R

]
R−1ST + E

where we see that both concentration matrices are transformed by the same matrix and so

cancel when calculating the test statistic.

There is however a limitation that causes this property to be inapplicable with our data. For

affine invariance to hold we must use all r columns of a concentration matrix C(l), where the

l ∈ {1, 2} matrices correspond to the concentrations of the two images we are comparing.

We show this by looking at the means being compared by the hypothesis test where we

are testing H0 : µ1 = µ2. Now if we transform each of our concentration matrices,

C(l), to obtain C(l)R we are simply testing whether the linear combination of the means,

µ1R = µ2R, are equal. However if only the first element of each mean were of interest our

hypothesis becomes µ1,1 = µ2,1 which is clearly not equivalent to testing (µ1R)1 = (µ2R)1

as the first elements of the transformed means are now linear combinations incorporating

removed dimensions.

Although seemingly illogical to test only a submatrix of C when this removes the affine

invariance property, we see reason from the perspective of a chemist. When testing

the magnitudes of estimated concentrations we are not interested in testing all linear

combinations of the concentrations for all component spectra as that has no physical

meaning, the reason we place constraints on C in (1.2.2). We are only interested in

comparing a subset of the component chemical concentrations, for example the active

ingredients ignoring the binding agent.
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5.2.2 Bootstrap Sampling

Bootstrap sampling is a technique we use throughout this chapter. Bootstrapping was

suggested by Efron [29] for making inferences about a population from a sample of that

population. Bootstrapping is primarily recommended [2, 24] for use in situations where

1. The theoretical distribution of the test statistic is unknown.

2. The asymptotic distribution of the test statistic is well known but the sample size is

too small for the asymptotic distribution to be accurate.

3. Power calculations for a test statistic need to be performed however only a small

sample from the population distribution is available. Bootstrap sampling allows us to

simulate multiple samples from the population distribution.

In bootstrapping we draw conclusions comparing our sample to random resamples, a process

analogous with comparing samples from the true population to the true population itself.

However as we are estimating the distribution of the test statistic under the null hypothesis

we must take care that the bootstrap resampling is performed under the null hypothesis.

This may not be true in some cases if only the data is resampled and if care is not taken it

can lead to a test with poor power [44].

Although we can normally use Hotelling’s T2 test statistic with data that may not be

multivariate normal, as the central limit theorem gives convergence to normal for a sufficient

sample size, this law of large numbers may not be applicable to our estimated concentrations,

C. This is because the sample size of our estimated concentrations is related to dimension

n in our model, (1.2.2). Therefore the central limit theorem of n → ∞ corresponds not

only with the increasing sample size of C but with an increase in the number of parameters

in (1.2.2) which is defined as n × p × r .

We therefore define a simple algorithm for using the T2 test statistic with no requirement

for an asymptotic distribution, point 2 in the uses for bootstrapping detailed previously. Use

of the variant of Hotelling’s T2 test in this algorithm also requires the assumption of equal

variances between samples. For our data comprised of either pairs of subsets from a single

Raman image or pairs of Raman images of the same subject from the same spectrometer

this assumption should hold. However if the images under comparison were from different

spectrometers or were of subject with different compositions an alternative test statistic

may be required.

Algorithm 5.2.1. Hotelling’s two-sample T2 test for equal means by bootstrap
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1. Calculate the initial test statistic, (5.2.4), for datasets C(1) and C(2) of dimension

n1 × r and n2 × r respectively.

2. Calculate the residuals E(1) = C(1) − 1n1 c̄
(1)T and E(2) = C(2) − 1n2 c̄

(2)T .

3. Calculate the pooled mean of the samples

µp =
1

n1 + n2

[
n1∑
i=1

c
(1)
i +

n2∑
i=1

c
(2)
i

]
. (5.2.5)

4. Resample the residuals, E(1)∗ and E(2)∗, with replacement using

E
(l)∗
i ,k = E

(l)
i ′,k ′ for i ∈ {1, ..., nl}, k ∈ {1, ..., r}, i ′ ∼ U(1, nl) and k ′ ∼ U(1, r)

to give a matrix of the same size however with randomly selected elements.

5. Recalculate the test statistic, (5.2.4), using C(1)∗ = µp+E(1)∗ and C(2)∗ = µp+E(2)∗

to give F (d).

6. Repeat steps 4 and 5 for d = 1, ..., N.

We can now calculate the p-value of the T2 test for equal means, µ1 = µ2, with

1 +
∑N
d=1 I(F (d) > F )

1 + N
. (5.2.6)

where I is the indicator function. In using algorithm 5.2.1 we can now perform the T2

test in spite of the knowledge that the sample distributions, the distributions of estimated

concentrations, may not be multivariate normal.

5.3 Hypothesis Tests for Equal Means in Estimated Concentra-

tion Magnitudes

Our chosen test statistic for this section is Hotelling’s T2, §5.2.1, as it allows us to

compare the mean concentration magnitudes between Raman images. As discussed in §5.1

the motivation for this is to compare the quantities of component chemicals in a number

of subjects. That is, have the estimated concentrations come from distributions with equal

means?

The data we will use in this section are two Raman images representing the upper and lower

face of a single bicalutamide tablet. We therefore use the data pooling method described in

§5.1.1 to combine these images and obtain estimates of concentrations for three component

spectra; copovidone and bicalutamide which are in the tablet, and background signal from

92



Chapter 5: Multivariate Hypothesis Testing of Concentration Magnitudes

the scan bed around the tablet. We also perform the concentration heatmap splitting as

described in §5.1.2 to give the heatmaps in figure 5.1 with concentration subsections v(l)
k,m,

where m = 1, ..., 36 are the image sections, k = 1, ..., r are the chemical components and

l = 1, 2 are the two tablets used in the concatenated data.

5.3.1 Testing a Single Estimate of Concentration Magnitudes

Our first area of investigation is hypothesis tests on concentrations estimated from a single

solution to (5.1.4) which is equivalent to selecting a single solution from the solution space

defined in Chapter 4. We first define the concentrations we will test using submatrices,

(5.1.7),

nt×r ′
Bt =


v

(l)
kα,mα

. . . v
(l)
kβ ,mα

...
. . .

...

v
(l)
kα,mβ

. . . v
(l)
kβ ,mβ

 (5.3.1)

for component spectra 1 ≤ kα ≤ k ≤ kβ ≤ r , giving a total of r ′ spectra, and concentration
submatrices mα ≤ m ≤ mβ defined in §5.1.2 with a total of nt pixels. To perform a T2

test on these concentration subsets we define the models

B1 = 1n1µ
T
1 + E1 (5.3.2)

B2 = 1n2µ
T
2 + E2. (5.3.3)

With these defined we now test the hypotheses

H0 : µ1 = µ2 H1 : µ1 6= µ2

using the method detailed in §5.2.1. Using the standard T2 test however requires our

data, Bt to either follow multivariate normal distributions Nr (µt ,Σ) or be sufficient in

sample size to asymptotically follow this distribution by the central limit theorem. As we

cannot guarantee this to be the case when testing small submatrices of the estimated

concentrations, using the bootstrap T2 test, algorithm 5.2.1, may be more appropriate.

To implement these tests on our bicalutamide data, figure 5.1, we used 200 bootstrap

resamples (N = 200) and selected four regions of the Raman image concentrations which

are comprised of either a single one of the 36 submatrices, v(l)
k,m from (5.1.7), or a collection

of them joined to form a larger vector,

1. Inner 16 submatrices, upper vs. lower face. For B1

• l = 1, upper face concentrations
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• k ∈ [1, 2], bicalutamide and copovidone

• m ∈ {8, 9, 10, 11, 14, 15, 16, 17, 20, 21, 22, 23, 26, 27, 28, 29}

for B2

• l = 2, lower face concentrations

• k ∈ [1, 2], bicalutamide and copovidone

• m ∈ {8, 9, 10, 11, 14, 15, 16, 17, 20, 21, 22, 23, 26, 27, 28, 29}.

This is testing whether the concentrations estimated for the tablet’s upper and lower

faces came from distributions with equal means.

2. Upper vs. lower faces. Same data selection as 1 but with m = 1, ..., 36, therefore B1

is equal to v(1)
1 , (5.1.5), reshaped into (5.1.6) and B2 is created using v(2)

1 . Here we

are testing the entire estimated concentrations from the upper and lower faces.

3. Submatrix 15 vs. 16, lower face. Set l = 1 and k ∈ [1, 2] with m = 15 for B1 and

m = 16 for B2. This is testing a small region of the estimated concentrations on a

single tablet face.

4. Submatrix 19 vs. 24, lower face. Set l = 1 and k ∈ [1, 2] with m = 19 for B1 and

m = 24 for B2. As with the previous region this is testing a different region of a

single tablet face.

Our results from testing for equal means between these four concentration selections are

shown in table 5.1. The first column, F0.05, contains the p-values for a classical T2 test

calculated using (5.2.4). The second column, Fb, contains the p-values calculated using the

bootstrap test algorithm 5.2.1. The conclusions from all the tests are not surprising when

viewed with heatmap 5.1. We have strong evidence against equal means in concentration

selections 1,2 and 4, and no evidence against equal means for selection 3. Histograms

of the bootstrap sample F statistics, shown in figure 5.2, also show that the asymptotic

distribution under H0 was sufficiently accurate.

However whilst both tests performed exactly as expected we only tested one possible solution

to (5.1.4) when there exists an infinite number of other estimates for the concentrations

as shown by the solution space in Chapter 4. We therefore turn our attention in §5.3.3

to an identifiable model and a method of incorporating our solution space random walk,

proposed in Chapter 4, with the hypothesis test.
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Test area F0.05 Fb F0.05,PCA Fb,PCA Fb,RWBS

Inner 16 upper vs. lower 0 0.0010 0.00006 0.0010 0.0010

Upper vs. lower 0 0.0010 0.00006 0.0010 0.0010

Lower 15 vs. 16 0.2345 0.2655 0.37038 0.3513 0.2409

Lower 19 vs. 24 0.0003 0.0010 0.00006 0.0010 0.0511

Table 5.1: Hotelling’s T2 test theoretical and bootstrap p-values for equal population

means, denoted F0.05 and Fb respectively, with second subscripts denoting

testing of PCA data and the random walk bootstrap test (algorithm 5.3.1)
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(a) Lower section 15 vs. section 16.
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Figure 5.2: Histograms of bootstrap resamples, algorithm 5.2.1, with overlaid F-

distributions (5.2.4). Blue lines show the observed F test statistics, (5.2.4),

for the given concentration sections.
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5.3.2 Principal Component Analysis Scores

As an alternative to testing estimated concentrations from (5.1.4) we also consider testing

the G(l) from

argmin
H,G

∥∥∥∥∥
[
Y(1)

Y(2)

]
−

[
G(1)

G(2)

]
HT

∥∥∥∥∥ (5.3.4)

where H = [h1 . . . hr ] with the constraints that

1. ‖hk‖ = 1 for all k = 1, ..., r

2. hTk hk ′ = 0 for all k = 1, ..., r and k ′ = 1, ..., r such that k 6= k ′

(5.3.5)

which, as we show in §4.2, finds the identifiable solution of principal component analysis,

§2.3, that can be transformed such that it solves (5.1.4).

With this model we consider the principal component loadings, hk , to be some linear

combination of the component spectra, S = HR, as detailed in §4.2. Therefore the

principal component scores, the G(l), are of the form (5.1.3) and therefore equivalent to

our concentration estimates. As such we calculate submatrices with (5.1.7) and perform

hypothesis tests as in §5.3.1.

As in §5.3.1 we fit this model to our concatenated bicalutamide Raman images, with

r = 3, and isolate the same submatrices from the G(l). Our results from applying both a

conventional T2 test and a bootstrap test to the concentration subsets are shown in table

5.1 under columns F0.05,PCA and Fb,PCA respectively. We see from these results that they

concur with our testing of concentrations estimated with (5.1.4).

Whilst these results agree with our previous results and do not suffer from non-identifiability

in the model from which they are calculated they are meaningless from a chemical stand-

point. As we detail in §2.3.1 only the first principal component, h1 will always be entirely

non-negative and therefore will be the only potentially correct spectrum estimate. The

corresponding scores, equivalent to concentrations, may be physically plausible but the

scores for the remaining principal components cannot be due to negativity.

5.3.3 Concentration Magnitudes from a Random Walk

As we show in §4.5 selecting a single solution to (1.2.2) can produce extremely varied results.

Performing hypothesis tests on these results may therefore provide unreliable conclusions

because they depend on a specific choice of solution. To combat this we propose an

algorithm for combining our solution space random walk from §4.6.3 with the bootstrap
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T2 test. In doing so we will be testing a random selection of solutions from the solution

space and so will obtain a range of conclusions to our hypothesis test, this will illustrate to

us which of the conclusions are more common among the range of solutions. We propose

a test of the hypotheses

H0 : µ1 = µ2 vs. H1 : µ1 6= µ2

by combining the standard bootstrapping, algorithm 5.2.1, with our random walk algorithm,

4.6.3. This combined algorithm will perform the bootstrap Hotelling’s T2 test on a variety

of solutions to (1.2.2), giving us a p-value for each one. Our interpretation of these p-values

is done by calculating the proportion of them which are below our significance level, for

example 0.05, as this will tell us how many times our null hypothesis is likely to have been

incorrect. It is important to note that there is no set way to interpret this result, unlike

a single p-value, and so the user must decide upon an overall conclusion based upon how

often the null hypothesis was accepted or rejected.

Algorithm 5.3.1. Random walk bootstrap T2 test

1. If two Raman images are being compared concatenate the two data matrices as in

(5.1.2).

2. For data, Y, calculate the eigenvectors of YTY/n and set K = [k1 ... kr ] where the

kk are the eigenvectors corresponding to the r largest eigenvalues.

3. Perform a random walk over the solution space in r -dimensions with algorithm 4.6.3

and cluster the results as in §4.6.2. This clustering step allows us some level or

certainty that the r points we select from the solution space to form our new S will

each represent a different component chemical.

4. Select r coordinates ξk , each from a separate cluster, on the solution space to form

Ξ = [ξ1 ... ξr ]

and calculate spectra S = KΞ.

5. Calculate C using (4.6.4)

C = Ξ−1KTY.

6. Separate the required concentrations from C as in §5.1.2 and combine into testing

matrix (5.3.1).

7. Perform bootstrap T2 test algorithm 5.2.1 and store the p-value, p(t).
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8. Progress to iteration t + 1, return to step (4) and repeat M times.

9. Calculate the proportion of p-values less than α to give an overall result for the test,

p =

∑M
t=1 Ip(t)<α

M

where I is the indicator function. For example setting α = 0.05 gives the proportion

of tests which rejected the null hypothesis at a 5% level.

We apply this algorithm to the bicalutamide data, and concentration submatrices, intro-

duced in §5.3.1. The first stages of the algorithm return us the solution plane shown in

figure 5.3 where the point colour represents the cluster to which they are assigned based

on the spectra they generate. These spectra are shown in figure 5.4 where we see the

Raman spectra for bicalutamide, copovidone and the background signal. In testing the four

concentration subsections used in §5.3.1 we obtain the p-values shown in the final column

of table 5.1, Fb,RWBS. The first three of these p-values concur with all previous methods

of testing however it is in comparing sections 19 and 24 on the lower face of the tablet

where we see a difference, with a 50 times increase in the p-value when compared to the

bootstrap test for a single solution to (5.1.4). We see in figure 5.5 the reason for these

changes in p-value as we show histograms of all 500 p-values estimated during the random

walk bootstrap test. The range of p-values obtained from testing section 19 against 24

shows that certain solutions to (5.1.4) have concentrations which are deemed to be similar

while the others produce significantly different concentrations.

5.4 Testing the Uniformity of Component Mixing in the Sub-

ject of a Raman Image

Our second area of interest for testing is the spatial information contained in the estimated

concentrations, leading us to the question we posed in §5.1. How uniformly mixed is the

subject? For example do amorphous production methods produce a more thoroughly mixed

product than standard crystalline methods?

The mixing of a tablet is of great interest to the pharmaceutical industry because it has

a large effect on the dissolution of the drug, and a consistently dissolving drug provides

the most efficient delivery. We detail current pre and post production mixing testing in

§5.1 however we investigate a potential alternative where we analyse the mixture of the

chemical components from a spectroscopic scan. From this analysis we will be able to

detect poor mixing, which will have a detrimental effect on the dissolution. We also note
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Figure 5.3: Random walk space for bicalutamide data with coordinates resulting in ac-

cepted spectra, non-negative, unit S, with non-negative C. Coordinates

coloured by applying UPGMA clustering, §2.11, to the corresponding spectra,

detailed in §4.6.1. Clusters allow us to select a single one of each component

when selecting a solution to (1.2.2).
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Figure 5.4: A selection of each component spectra obtained by random walk on the solu-

tion space for the bicalutamide data, §4.6.3, clustered by UPGMA. Although

similar in shape the spectra can clearly change depending on their position on

the solution space, this causes different concentration estimates and therefore

potentially different hypothesis test conclusions.
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Figure 5.5: Histograms of p-values from random walk bootstrap testing. Testing 15

against 16 gives a consistent rejection of H1, the test comparing 19 to 24

however shows potential for rejecting either H0 or H1.

that our testing is less likely to suffer from the poor repeatability of the current techniques

[21, 58, 65] as the spectroscopic scan does not involve any flow of the chemicals. This

flow will likely vary between different tablets due to the movement of the solvent where as

a Raman image is static.

5.4.1 Algorithm for Testing the Hypothesis of Perfect Mixing

The method with which we will test our hypothesis of perfect mixing takes into consideration

the bilinear model non-identifiability and is based on algorithm 5.3.1 for testing the means

of concentrations in §5.3. We also note that perfect mixing may appear similar to uniform

i.i.d. values, as all concentration levels of all possible chemical components are equally

likely, or as an image of equal valued pixels if a single chemical component is present. In

this latter case and in the context of our model the concentrations are estimated subject

to random error and will therefore appear similar to random values.

Our data in this test is in the form v(l)
k , (5.1.5), a vector of concentrations of a single

chemical component at each pixel, reshaped into x × y matrix V, (5.1.6), which we can

visualise as a heatmap of concentration levels. In the context of this chapter therefore

our "image" is simply a matrix which we will analyse with image analysis techniques. We

assume V is a random variable from some unknown distribution and define our hypothesis

test as,

H0 : F (E [V]) = F (E [V∗]) vs. H1 : F (E [V]) 6= F (E [V∗]) (5.4.1)

using test statistic F which quantifies how randomly distributed the pixels are in an image.
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Here V is our original concentration matrix and V∗ is a random permutation of our data

calculated with

V ∗q,t = Vq′,t ′ for q ∈ {1, ..., x}, t ∈ {1, ..., y}, q′ ∈ {1, x} and t ′ ∈ {1, y} (5.4.2)

where elements are removed from the sets {1, x} and {1, y} so that each element of V

appears only once in V∗ in a random location. In using this random permutation of our

matrix V any structures or patterns in the original data will be removed and so the test

statistic will change indicating poor mixing.

The following algorithm combines the random walk used in §5.3.3 with the previously

defined permutation test for uniform mixing of elements in a matrix however now uses a

test statistic quantifying any structures in the image V. These test statistics will be defined

in §5.4.3.

Algorithm 5.4.1. Test for perfect mixing

1. For data, Y, calculate the eigenvectors of YTY/n and set K = [k1 ... kr ] where the

kk are the eigenvectors corresponding to the r largest eigenvalues.

2. Perform a random walk over the solution space in r -dimensions with algorithm 4.6.3

and cluster the results as in §4.6.2.

3. Select r coordinates ξk , each from a separate cluster, on the solution space to form

Ξ = [ξ1 ... ξr ]

and calculate spectra S = KΞ.

4. Calculate C using (4.6.4)

C = Ξ−1KTY.

5. Select the required concentrations, vk , as in (5.1.5), and reshape into V with (5.1.6)

to obtain heatmap.

6. Perform a permutation test of perfect mixing using the chosen test statistic F ,

(a) Calculate F (V)

(b) Randomly sample V without replacement, using (5.4.2), to obtain V∗ and

calculate F (V∗) = F (m)

(c) Repeat step (b) for m = 1, ...,M
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(d) Calculate the p-value using the one-sided formulae

pl =
1 +

∑M
m=1 I(F (m) > F )

1 +M
(5.4.3)

or

pl =
1 +

∑M
m=1 I(F (m) < F )

1 +M
(5.4.4)

or two-sided formula

pl =
1 + 2 min

(∑M
m=1 I(F (m) < F ),

∑M
m=1 I(F (m) > F )

)
1 +M

(5.4.5)

where appropriate for the chosen test statistic.

7. Return to step (3) and repeat N times to obtain N p-values.

8. Calculate the proportion of p-values less than α to give an overall result for the test,

p =

∑N
l=1 Ipl<α

N

where I is the indicator function. Again α represents the significance level at which

we wish the null hypothesis to be rejected and so p is the proportion of tests satisfying

that criteria.

As with algorithm 5.3.1 this gives us a proportion of p-values below our significance level

giving us an indication of how often the null hypothesis was rejected.

Before we can implement this algorithm we must first define our test statistic F (·) which

we will do using some existing image and shape analysis techniques for defining features.

A feature extraction method is a function or process such that we quantify elements in an

image, for example regions of similar colour or dependencies between areas of the image.

5.4.2 Feature Extraction Methods

In devising our test statistics for hypothesis (5.4.1) we will consider three methods of

quantifying how well mixed an image is when the image is in the form of matrix (5.1.6)

which we visualise as a heatmap. The first two of these are standard image and shape

analysis techniques with a choice of summary statistics available for each. For these methods

we will need to combine them in such a way as to obtain a single test statistic. The third

method we consider is less widely used in image analysis and involves the correlation between

rows or columns of a matrix. We must therefore devise novel methods of forming this

calculation into a test statistic.
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Minkowski Functionals

The first features we investigate are Minkowski functionals which are functions for describing

distance in a linear space. Certain 2-dimensional Minkowski functionals are commonly used

in image analysis [46] for quantifying features of a binary image such as the perimeter and

area of regions of equal valued pixels, in our interpretation these are poorly mixed regions

comprised of a single component chemical. Three of the possible functionals for any x × y
2-dimensional binary image, X, are defined by Legland et al. [66]

1. Area - the sum of the pixels in the image, A(X) =
∑
i ,j xi ,j .

2. Perimeter - calculated using a discretised version of the Crofton formula, a formula

used to calculate the length of a curve [23]. This results in a formula requiring the

number of pixels connected along orthogonal and diagonal lines by pixels of the same

value. We calculate the number of horizontally connected pixels using

Ph =
∑
i ,j

xi ,j −
∑
i ,j

I
(
xi ,j 6= xi+1,j

)
(5.4.6)

which is easily modified to check for vertical and diagonal pairs of pixels by changing

the indices in the indicator function. Thus the perimeter is equal to

P =
π

4
(Ph + Pv + Pd1

+ Pd2
)

where Pv , Pd1
and Pd2

are the numbers of vertically and diagonally connected pixels

calculated using (5.4.6) with altered indices.

3. Euler-Poincaré characteristic - the standard Euler characteristic is χ(X) = V −E+F

where V , E and F are the numbers of vertices, edges and faces respectively [30].

This function is used to describe a shape regardless of it’s form, for example the

Euler characteristic of a 3-dimensional cube is the same as that cube represented as

a 2-dimensional template. Whilst our images are strictly 2-dimensional it may still

prove useful in forming a test statistic F (·).

Estimates of this function for binary 2-dimensional images require the level of con-

nectivity to be set, this is either 4 or 8 where 4 implies just horizontal and vertical

lines and square faces are used and 8 also includes diagonal lines. For the simple

4-connectivity case the three characteristic elements are

• Vertices - same as the Area functional, V =
∑
i ,j xi ,j

• Edges - number of vertical and horizontal pairs of pixels which are equal, E =∑
i ,j

[
I
(
xi ,j = xi+1,j

)
+ I

(
xi ,j = xi ,j+1

)]
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• Faces - number of groups of 4 pixels all equal,

F =
∑
i ,j I
(
xi ,j = xi+1,j = xi ,j+1 = xi+1,j+1

)
.

As before we can modify this to estimate the Euler-Poincaré characteristic under the

assumption that X is not the full image. In this case we set χ̃(X) = χ(X)−χi(X)−
χj(X) +χi j(X) where χi and χj are the average Euler-Poincaré values calculated for

the first and last rows and columns separately and χi j is the average value for the

corners. The result of this is that the effect of the image border is removed from the

Euler-Poincaré characteristic.

With the Minkowski functionals defined we must now consider how they apply to continuous

data. As they require binary data it is necessary for us to convert our continuous data, V,

into a binary vector. This is most easily achieved by selecting a threshold value, u, and

setting

Vi ,j =

{
1 if Vi ,j > u

0 if Vi ,j ≤ u
. (5.4.7)

Our second method for converting V to binary is to use a clustering technique such as

EMGM, detailed in §2.12.1, and replacing each Vi ,j with the assigned cluster index, 0 or 1.

Using a clustering method to obtain binary data is preferable as it will group based on the

chemical concentrations in the scan subject whereas a simple threshold requires user input

in deciding the threshold value, u.

Grey-level Co-occurence Matrices

The second feature extraction method of interest to us uses a grey-level co-occurance

matrix (GLCM). The advantage of this over the Minkowski functional based test statistic

is that we require greyscale data instead of binary. This introduction of levels may provide

us with a test statistic that is more descriptive of the structure of the image than that

of §5.4.2 as the levels will allow for more detailed structures within the image. Accuracy

should improve as binary data only allows us two levels of chemical concentration and so

may miss areas of high or low concentrations within one of the two groups. Creating a

binary image is a similar process to the thresholding introduced for the Minkowski functional.
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For some threshold values u1 < u2 < ... < ul−1 we replace the vi ,j with,

Vi ,j =



1 if Vi ,j ≤ u1

2 if u1 < Vi ,j ≤ u2

...

l − 1 if ul−1 < Vi ,j ≤ ul−1

l if Vi ,j > ul−1

.

A grey-level co-occurrence matrix takes the form of an l × l matrix where l is the number

of grey levels in the image to be analysed. Entries in a GLCM indicate the frequency with

which grey levels appear next to each other in a given direction. For example in an east

GLCM if a level one appears to the left of a level two the value in the GLCM entry (1, 2)

increases by one. Alongside controlling the direction of the comparison, we can set the

distance from the reference pixel to the neighbouring pixel, known as the offset. The

East-West GLCM with offset one of the simple three level 4 × 4 matrix in figure 5.6 is

shown in table 5.2. Here, for example, we see that a level one pixel appears directly to the

left or right of a level three pixel four times.

1

2

3

Figure 5.6: 4× 4 greyscale matrix.

Neighbour Level

1 2 3

Reference Level

1 2 2 4

2 2 2 2

3 4 2 4

Table 5.2: East-West Grey-level Co-

occurrence Matrix for figure

5.6.

Testing for uniformity of mixing using GLCMs is not immediately simple as a direct com-

parison of GLCMs is difficult to interpret. We will therefore use summary statistics, or

texture measures, of the GLCM to create our test statistic. We have numerous measures

available to us to describe the information contained in a GLCM. A large number of GLCM

properties are detailed by Albregtsen [4], of which we consider eight in this investigation.

For these properties the GLCM, G, must be normalised, meaning each element is divided

by the total sum of the matrix.

107



Chapter 5: Multivariate Hypothesis Testing of Concentration Magnitudes

1. Energy, defined by ∑
i ,j

g(i , j)2,

measures the homogeneity of the image. A homogeneous image will have only a few

grey levels appearing frequently resulting in a high sum of squares for the GLCM.

However an inhomogeneous image will have almost equal GLCM entries and a lower

sum of squares. For the following definitions µi , µj , µ, σi and σj are the row, column

and overall means and standard deviations respectively.

2. Contrast, defined by ∑
i ,j

(i − j)2g(i , j),

measures local intensity variation, upscaling off diagonal entries of G.

3. Local Homogeneity, defined by∑
i ,j

1

1 + (i − j)2
g(i , j),

is similar in principal to energy however uses the scaling factor (i − j) to reduce the

effects of inhomogeneous areas.

4. Entropy, defined by

−
∑
i ,j

g(i , j) log(g(i , j)),

is another measure of homogeneity where an inhomogeneous image will result in small

values in the GLCM and thus a higher entropy, i.e. smaller negative number.

5. Correlation, defined by ∑
i ,j

i jg(i , j)− µiµj
σiσj

,

measures the dependence between pixels using their positions relative to each other.

6. Variance, defined by ∑
i ,j

(i − µ)2g(i , j),

puts higher weights on the elements of G that differ from the average.

7. Cluster Shade, defined by ∑
i ,j

(i + j − µx − µy )3g(i , j),

weights elements differing from the mean, like variance, however includes spatial

information by incororating the coordinates (i , j) of pixel g(i , j) in the formula.
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8. Cluster Prominence, defined by∑
i ,j

(i + j − µi − µj)4g(i , j),

uses an alternate weighting measure to cluster shade in order to increase contributions

from elements of G differing from the spatial means.

Neighbour Correlations

The final method we consider for quantifying pixel mixing involves calculating the correlation

between neighbouring columns of an image, V. The idea behind this is that an image with

little structure to the pixels will have low correlation between the columns. For example in

the context of our tablet data the matrix V will represent the concentrations of a particular

component chemical at each pixel of the Raman image. Therefore a pattern in these

concentrations, for example a region of consistently high concentration, will appear as

correlated columns.

Our motivation for this method was to derive a test statistic requiring no thresholds or

grouping of data into levels. This allows us to totally remove the arbitrary choice of levels

from our testing and fully take advantage of the continuous nature of our data. To describe

the structure of the data will use Pearson’s correlation coefficient, ρ, as comparisons

between two vectors are simplified due to the limits of -1 and 1 and there is a known link

with Student’s t-distribution [73]. This relationship with Student’s t-distribution is possible

if, under the null hypothesis of ρ = 0 the two vectors come from an uncorrelated bivariate

normal distribution, for a large enough sample this may be an asymptotic distribution by

the central limit theorem. Therefore under the null hypothesis

r

√
n − 2

1− r2
∼ tn−2 (5.4.8)

where n is the length of our vectors.

We define our method for an image, V as in (5.1.6), in the form of a matrix of width x

and height y with columns defined as

pi =


V1,i

...

Vy,i

 .
We calculate the correlation between each matrix column and the immediate neighbour

to the right, working our way across the matrix V from left to right, using the two step

process
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Algorithm 5.4.2. 1-step Neighbour Correlation

1. Create two vectors, q1 and q2, by stacking columns (1, ..., x − 1) and (2, ..., x)

respectively,

q1 =


p1

...

px−1

 , q2 =


p2

...

px

 .
Therefore when we calculate correlation the columns p1 and p2 are paired, then p2

and p3 and so on until the penultimate and final columns. This gives us the correlation

between each column and it’s immediate neighbour.

2. Calculate correlation, ρ using

ρ =
(q1 − q̄11x−1)T (q2 − q̄21x−1)√

(q1 − q̄11x−1)T (q1 − q̄11x−1)
√

(q2 − q̄21x−1)T (q2 − q̄21x−1)
. (5.4.9)

Whilst simple to implement and fast to compute we note that this correlation only involves

immediate neighbours. Taking motivation from the offset of the GLCM method in §5.4.2

we modify our calculations to include comparisons of all possible combinations of columns

in matrix V. Results of these calculations are stored in the x × p strictly upper triangular

matrix N, with entries calculated using

Algorithm 5.4.3. Multi-step Neighbour Correlation

1. Select offset, i , from set {1, ..., x − 1}.

2. Create two vectors, q1 and q2, concatenating reference columns and i th neighbour

columns from image V,

q1 =


p1

...

px−i

 , q2 =


pi+1

...

px

 . (5.4.10)

3. Calculate correlation ρi using (5.4.9), with 1x−1 replaced by 1x−i .

4. Return to step 1 until all offsets have been calculated and vector ρ is complete.

Whilst this calculates the correlation of all possible combinations of columns in the image

we see that the length, (x − i)y , of our vectors, q, decreases as the distance between

neighbours, i , increases. An obvious occurrence when at the maximum distance we are

comparing only the leftmost column with the rightmost column. This difference in vector
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length for each offset value means we are unable to reliably compare the values of (5.4.8) for

each ρi . This is because the bivariate normal distribution assumption of the t-distribution

may only be an asymptotic result, therefore differing sample sizes may affect the extent to

which our data follows the required distribution.

We avoid this by defining (5.4.10) as in the previous algorithm but then randomly selecting

y pairs of elements to be used in calculating the correlation. This gives equal sample sizes

for all correlation calculations and gives us our final algorithm.

Algorithm 5.4.4. Multi-step Neighbour Correlation with Fixed Sample Size

1. Select offset, i , from set (1, ..., x − 1).

2. Create two vectors, q1 and q2, concatenating reference columns and ith neighbour

columns from image V,

q1 =


p1

...

px−i

 , q2 =


pi+1

...

px

 .
3. Randomly select y pairs from vectors q1 and q2 to give q′1 and q′2.

4. Calculate correlation ρi using (5.4.9), with 1x−1 replaced by 1y

5. Return to step 1 until all offsets have been calculated and vector ρ is complete.

The result of this algorithm is a vector indicating how the correlation between columns of a

matrix, or image, changes as the gap between columns increases. A perfectly mixed image

should have low correlations throughout however spikes or trends in the correlations will

indicate patterns in the data.

A final and important feature of this method we note is how it will be affected by data

displaying a vertically striped pattern. Due to the method working across columns we will

miss within column correlation, for example a single column of equal valued pixels will not

be detected providing it is uncorrelated with the other columns. To combat this we can

transpose our matrix image V as this does nothing to the structure of the image however

columns become rows and vice versa.

5.4.3 Deriving a Test Statistic from Feature Extraction Methods

Before we can apply our feature extraction methods in algorithm 5.4.1 we must first form

test statistics, F , capable of distinguishing between perfectly and poorly mixed data in our
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hypothesis (5.4.1). For the Minkowski functionals and GLCM properties this will involve

finding the optimal linear combination of the functions for distinguishing between perfectly

and poorly mixed data. To this end we will use linear discriminant analysis (LDA).

The purpose of LDA is to find a linear combination of measures which best characterise

groups of data [73]. For g groups of data with common covariance, Σ, the groups,

(X1, ...,Xg), are defined as

Xh =


xTh,1
...

xTh,nh


where the columns represent our measures and the rows our observations. We calculate

the group means

µh =
1

nh

nh∑
i=1

xh,i

and define

Σb =
1

g

g∑
h=1

(µh − µ)(µh − µ)T

where

µ =
1∑
h nh

g∑
h=1

nh∑
i=1

xh,i

is the overall mean of all the groups combined. We now calculate our linear combination

of features by finding K and Λ such that

Σ−1Σb = KΛKT (5.4.11)

where the columns of K, kj , are eigenvectors and the diagonal entries of Λ follow λ1 >

λ2 > ... > λp. We now select k1, the eigenvector of Σ−1Σb corresponding to the largest

eigenvalue, which gives us the coefficients of our linear combination of measures for best

separating a point of data from our g groups. As Σ is often unknown we can use the

standard sample covariance estimate. The result of this algorithm is similar to that of

principal component analysis, §2.3, as it gives us a new basis for our data. However now

this basis is found such that it maximises the explained variance between different sets of

data, instead of within a single dataset, it gives us the linear combination of measures

which best describe each of our datasets.

To devise these test statistics we simulate data to represent perfectly and poorly mixed

images.
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• Perfectly mixed simulated data: 50 matrices with dimension 50 × 50 and U(0, 1)

entries.

• Poorly mixed: 50 2-dimensional multivariate normal PDFs calculated on a 50 × 50

mesh for poorly mixed data. Images, G, generated by

Gi ,j = f ((i , j)|µ,Σ) for i = {1, ..., 50}, j = {1, ..., 50}

where f (x|µ,Σ) is the probability distribution function of a N2 (µ,Σ) distribution.

Therefore for each combination of coordinate points, (i , j), we obtain the probability

distribution function value, for the 2-dimensional Normal distribution, at that pixel.

This probability becomes the value of pixel (i , j) in our image matrix G. We then add

N (0, 1) noise to the GRF data to more closely simulate real world data.

Examples of these two datasets are shown as heatmaps in figures 5.7b and 5.7d.

Minkowski Functional Test Statistic

The first test statistic we form uses the Minkowski functionals and EMGM for obtaining

a binary image. For each of our 50 simulated uniform and Gaussian datasets, converted

to binary using EMGM groups, we calculate the three Minkowski functionals. This gives

us two 50 × 3 matrices to use in our linear discriminant analysis for finding the best

linear combination of the functionals for distinguishing between perfectly and poorly mixed

data. The result of our linear discriminant analysis, (5.4.11), was the eigenvector k1 =

(−0.1077, 0.9916,−0.0712) giving us our new basis vector, or alternatively the coefficients

of our linear combination. We now define our final test statistic as

Fmink = −0.1077 ∗ A+ 0.9916 ∗ P − 0.0712 ∗ E (5.4.12)

for A, P and E the area, perimeter and Euler-Poincaré characteristics respectively. To

use this in algorithm 5.4.1 we must also take care in selecting the appropriate p-value for

the test statistic, one or two sided. We can see a reason why perimeter dominates the

test statistic, with a coefficient of 0.9916, when we consider that perfect mixing implies

each pixel contributes one to the perimeter whereas the inner pixels of a group of equal

valued pixels add nothing to the total. As perfect mixing will increase the test statistic

value we will therefore use the one sided p-value, (5.4.4), in the permutation test. The

comparatively low values in the linear combination of area and Euler-Poincaré may allow us

to completely exclude them from the test statistic however calculation is simple and fast

so including them for completeness is simple.
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Grey-Level Co-occurrence Matrix Test Statistic

Our second test statistic combines the texture measures of a GLCM. As with the Minkowski

functionals we select the optimum combination for detecting perfectly mixed data using

LDA. However now we include the offset levels in the LDA to give a more complete

representation of the image as looking at an offset of one may miss larger features in the

image. These offset levels are detailed in §5.4.2 and describe the distance from the reference

pixel we look in calculating our GLCM. We calculate the 8 GLCM texture measures over

offsets 1, ..., 5 for each of our simulated datasets. This gives us two 50× (8 ∗ 5) matrices,

representing the perfectly mixed and poorly mixed data.

In calculating all eight GLCM properties at offsets of one to five the result from our LDA

was a vector, k, of length 40. To reduce this and avoid including unnecessary properties

which would contribute little to the test statistic we limited this to values greater than 0.05

as this left us a computationally fast, and more easily interpretable, five measures for our

linear combination. The remaining five measures indicated that in distinguishing between

the datasets energy was important at offsets of 2, 4 and 5 whilst entropy was important

at offsets of 1 and 2. With our optimum linear combination of texture measures we now

define our test statistic,

FGLCM = 0.3520 ∗ E1 + 0.0548 ∗ E2 + 0.3976 ∗ N2 + 0.3340 ∗ N4 + 0.0576 ∗ N5

(5.4.13)

where No and Eo are energy and entropy, at offset o, respectively. For a perfectly mixed

image energy will return it’s lowest value, for example a GLCM with every element equal

will have a lower energy (the sum of the squares of all entries) than a GLCM with all entries

except one equal to zero. The converse of this is true for entropy as a poorly mixed image

will produce a large negative value for entropy getting less negative with better mixing.

Therefore as energy and entropy return lower and higher values respectively for well mixed

images we have no clear upper or lower bound for perfectly mixed data and thus do not

know whether rejecting H0 correseponds to a small or large value of F (·). Therefore we use
the two sided p value formula, (5.4.5), in algorithm 5.4.1. When using this test statistic

however we must bear in mind that we only used offsets 1,...,5. For a large Raman image

an offset of 5 may not be enough to accurately measure patterns in the pixels.

Neighbour Correlation Test Statistic

Unlike our test statistics based on the Minkowski functionals and GLCM texture measures,

we have no clear features of the neighbour correlation calculations on which to base our test
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statistic. Our data from this feature extraction method is in the form of a vector which we

can see as a function of the distance, i , between columns. An example for this is in figure

5.7 where we have plotted our vectors, ρ, against the distance between columns, i , for a

U(0, 1) matrix and a N2 (µ,Σ) matrix as defined in §5.4.3. We see clearly here that the

covariance between the two elements of the Gaussian distribution has introduced a strong

relationship between elements of the matrix and thus pixels of the heatmap. Whereas the

near perfectly mixed dataset has little correlation between columns of the matrix illustrated

by the random pixel values in the heatmap.

To use these values we have devised three possibilities for obtaining a single test statistic

from our vector of correlations, ρ. Two of our proposed test statistics use the link between

correlation coefficient ρ and Student’s t-distribution defined as (5.4.8). Using (5.4.8) and

given a matrix of dimensions x×y we can calculate the critical values of ρ for the hypothesis

test that ρ = 0 [33, 34]. We will therefore have the range of values ρ may take yet still

allow us to accept the null hypothesis. We obtain this range by rearranging (5.4.8) to give

±
ty−2,0.95

y − 2 + t2
y−2,0.95

. (5.4.14)

The first test statistic we define for use in algorithm 5.4.1 is the minimum distance between

columns until the first estimated correlation falls within the 95% acceptance region

Faccept = min {i |ρi ∈ A} . (5.4.15)

We see an example of this in figure 5.7a at a distance of around 12. Our second test

statistic is the number of estimated correlations lying within the confidence region (5.4.14)

Ftotal =

x−1∑
i=1

Iρi∈A. (5.4.16)

where x is the heatmap width and length of ρ. The final test statistic we consider is the

difference between the maximum and minimum estimated correlations

Fdif f =

∣∣∣∣max
i

(ρi)−min
i

(ρi)

∣∣∣∣ . (5.4.17)

For these test statistics both one sided p-value formulae, (5.4.3) and (5.4.4) are required.

The distance between columns value, Faccept , takes values greater than or equal to one

with one corresponding to perfect mixing as immediate neighbours are uncorrelated. We

therefore reject hypotheses of perfect mixing in the case of a high test statistic so use

(5.4.3) to see how likely we are to obtain a value higher than our test statistic value.

We use this same p-value formula for the difference between the maximum and minimum

correlations, Fdif f . This test statistic takes values greater than or equal to zero where zero
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implies perfect mixing as the correlation between columns across the image is constant.

The total acceptances statistic, Ftotal , however is limited above at (x − 1), therefore we

must use (5.4.4), since a low value of the test statistic compared to it’s values under the

null distribution are evidence to reject the hypothesis of perfect mixing.

With these three test statistics we must also take into consideration that two are discrete,

naccept and ntotal , and the other continuous, ndif f . Guerra et al. [41, 42] and Lloyd [68]

investigated permutation testing on discrete values and concluded that whilst it provided

acceptable results the results could be improved by kernel smoothing the values to simulate

resampling from a continuous distribution. Including this smoothing kernel into algorithm

5.4.1 could overcomplicate the test with further variables so ndif f may prove the most

reliable statistic after testing.

5.4.4 Error Rate Estimation

With our test statistics defined we can now use step 6 of algorithm 5.4.1 to estimate the

Type I and II errors for our hypothesis (5.4.1). In order to estimate error rates we require

data generated under the null and alternative hypotheses, therefore we once again use the

U(0, 1) and N2 (µ,Σ) data described in §5.4.3. To estimate the error rates we used the

following method.

Algorithm 5.4.5. Type I and II Error Rate Estimation

1. Select the test statistic F from §5.4.3.

2. Perform the permutation test of perfect mixing, step 6 of algorithm 5.4.1, for each

U(0, 1) dataset to obtain a vector, p0, of p-values calculated under H0.

3. Perform the permutation test of perfect mixing, step 6 of algorithm 5.4.1, for each

N2 (µ,Σ) dataset to obtain a vector, p1, of p-values calculated under H1.

4. Calculate the 10% Type I error rate, probability of rejecting H0 at the 10% level

when it is correct, using

TI =

50∑
i=1

Ip0,i<0.1

5. Calculate the 10% Type II error rate, probability of accepting H0 at the 10% level

when it is incorrect, using

TII =

50∑
i=1

Ip1,i>0.1
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Figure 5.7: Neighbour correlations over distance, ρ, for simulated data as described in

§5.4.2. N2 (µ,Σ) and U(0, 1) data, represented here as heatmaps, used for

poorly and perfectly mixed data respectively as in §5.4. The structure of the

Gaussian field has had a clear affect on the correlations over distance as close

neighbours are correlated however over larger distances the covariance of the

bivariate Gaussian distribution has less of an effect.
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Type I Type II

Fmink 0.1 0

FGLCM 0.02 0

Neighbour

Correlation

Faccept 0.46 0.06

Ftotal 0.22 0.02

Fdif f 0.08 0.12

Table 5.3: Type I and II error rates at a 10% level for our test statistics estimated by

algorithm 5.4.5 using our simulated U(0, 1) and N2 (µ,Σ) data, detailed in

§5.4.3

Performing this for each of our test statistics gave us the results shown in table 5.3. We

see from these results that both the Minkowski and GLCM based tests are extremely strict

in their classification of random mixing. Both reject all GRF datasets and, in the case

of the GLCM test, rarely reject a U(0, 1) dataset in error. The neighbour correlation

statistics produced type II error rates closer to our expectations, incorrectly accepting the

null hypothesis between 2-12% of the time. The type I error rates however give us a clear

indication of which test statistic to use. Both Faccept and Ftotal rejected our hypothesis of

perfect mixing considerably more than the 10% level we desire. Our best performing test

statistic is Fdif f which gives us a type I error rate of 8%.

5.5 Applying the Test Statistics to Real Data

Having calculated the Type I and II error rates of our test statistics we now apply algorithm

5.4.1 to the bicalutamide data used in §5.3. The section we test is the inner 16 submatrices

described in §5.3.1. We limit the test area to these submatrices as this excludes the tablet

border with the background, a feature which would likely be detected as poor mixing by our

test statistics. In figure 5.8 we show the region of the concentration heatmap to be tested

and the results of the clustering and thresholding required for the Minkowski and GLCM

based tests.

We applied algorithm 5.4.1 to our bicalutamide data, to each of 50 possible solutions

identified by the random walk, and obtained the results shown in table 5.4. As we expected

from the the Type II error rates, showing acceptance of only perfectly mixed data, they

both reject the null hypothesis of a well mixed tablet 100% of the time. This is likely due

to the levels in the image causing even minor shapes within the heatmap to be penalised

alongside far more distinct homogeneous patches leading to a very strict test statistic.

Our final test statistics based on correlations allow us to conduct a test with no requirement
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Bicalutamide

Upper Lower

Fmink 1 1

FGLCM 1 1

Neighbour

Correlation

Faccept 0.84 0.78

Ftotal 0.24 0.16

Fdif f 0.36 0.24

Table 5.4: Proportion of tests rejecting the null hypothesis of perfect mixing at a 10%

level. To obtain these results algorithm 5.4.1 was applied to 50 randomly

selected concentration matrices from the solution space of bilinear model

1.2.2 when applied to the bicalutamide data used in §5.3.1. Before testing

the concentration matrices were cut down to only the inner 16 sections as

described in §5.3.1 to exclude the tablet edge as the border between the tablet

and the background would be detected by the test statistics as poor mixing.

for thresholding of the concentration, seen in figure 5.8d. The first two of these test

statistics, Faccept and Ftotal , however performed poorly in type I error estimation, seen in

table 5.3, and as discussed in §5.4.3 may cause problems in the bootstrapping due to their

discrete nature. Without kernel smoothing incorporated into algorithm 5.4.1 the results

obtained using either Faccept or Ftotal may be unreliable [41, 42, 68]. We are therefore left

with Fdif f as our most successfully performing test statistic when taking into consideration

the nature of the data under testing, the performance in error rate estimation and structure

we see in the heatmaps in figure 5.8 (bearing in mind these are only a single example of

the results available in the solution space).

Comparing Amorphous and Standard Data

With our best performing test statistic identified, we return to our original question; do

amorphous production methods produce a more thoroughly mixed product than standard

crystalline methods? To test this we used our random walk, §4.6.1, to identify the solution

spaces of six of our bicalutamide datasets, described in §1.2.2. All six scans were of the

upper face of the tablets with three produced using the amorphous method and three using

the standard crystalline method.

We applied algorithm 5.4.1 to each of our 6 datasets using the Fdif f test statistic and

N = 50, 50 locations on the solution space. We selected the concentrations corresponding

to the bicalutamide spectra and created submatrices with (5.1.6) corresponding to the inner

16 sections described in §5.3.1. Our results show a clear improvement in the quality of
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(a) Full upper face heatmap (b) Upper face inner submatrix converted to

binary with EMGM

(c) Upper face inner submatrix with 5 levels (d) Upper face inner submatrix

Figure 5.8: Examples of the bicalutamide concentrations being tested for well-mixedness.

All are calculated from a vector, vk , of concentrations corresponding to a

single spectra as defined in (5.1.5). This is then reshaped into an 86 × 86

matrix, with the inner submatrices cut down to 57× 57 as defined in §5.1.2.
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Amorphous Crystalline

1 2 3 1 2 3

Fdif f 0.2 0.24 0.22 0.08 0.14 0.12

Table 5.5: Proportion of tests rejecting the null hypothesis of perfect mixing at a 10%

level. To obtain these results algorithm 5.4.1 was applied to 50 randomly

selected concentration matrices from the solution space of bilinear model 1.2.2

when applied to all our bicalutamide datasets as described in §1.2.2. Before

testing the concentration matrices were cut down to only the inner 16 sections

as described in §5.3.1 to exclude the tablet edge as the border between the

tablet and the background would be detected by the test statistics as poor

mixing.

mixing in the crystalline production method, with an average of 11.3% of all tests rejecting

the null hypothesis of perfect mixing at a 10% level in comparison to 22% for the amorphous

method.

5.6 Discussion

Throughout this chapter we have investigated two key areas in the analysis of Raman

spectroscopy data. To test the quantities of component chemicals in Raman images we

applied Hotelling’s T2 test, using tabled values and a bootstrap test, and then incorporated

into this our random walk, detailed in §4.6.1, to account for non-identifiability in the bilinear

model 5.1.2. In testing how randomly mixed the component chemicals were we began with

two existing image analysis techniques for describing features of an image. From these we

created our own test statistic using linear discriminant analysis and simulated data. We

also derived our own test statistic based on Pearson’s correlation coefficient. These were

then incorporated into a permutation test and combined with our random walk and applied

to simulated and real datasets.

In implementing the classical T2 test and the bootstrap test our conclusions were the

same, with the results from the bootstrap test even showing that for our data the classical

test assumptions held, or our sample was sufficiently large for an asymptotic distribution.

However we had not accounted for the range of solutions our concentrations, C, could

take due to the non-identifiability of (1.2.2). Whilst we could perform a similar test with

no issues of a non-identifiable solution by using principal component scores in place of

concentrations, a relationship used in chapter 4 to define the solution space, we could not

physically interpret the principal component scores as we could concentrations from (1.2.2).
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We therefore combined our T2 bootstrap test with our random walk of the solution space,

algorithm 4.6.3. In using this bootstrap test on a variety of solutions we obtained similar

results to those from the standard bootstrap and classical tests however we also saw how

using only a single solution to (1.2.2) can give opposing p-values to our T2 test, most

clearly seen in figure 5.5b.

Our second area of interest in this chapter was testing how well mixed the concentrations

are in a Raman image. Having formed an algorithm incorporating our random walk and

permutation test we required a test statistic capable of extracting and quantifying the

uniformity of mixing in the pixels of an image. The feature extraction methods we considered

began with the Minkowski functionals, a set of three functions for quantifying shapes in

a binary image. We therefore had to convert our images to binary for which we used

expectation maximisation of a Gaussian mixture model clustering. The second method

used eight texture properties of a grey-level co-occurrence matrix. This gave us a potential

improvement over the Minkowski functionals as it allowed for multiple levels of grey in the

image and so incorporated more of the continuous information in the concentrations. The

final method we considered involved Pearson’s correlation coefficient which we applied to

the original concentrations with no need for clustering or thresholding. For this method

we calculated the correlation between columns of the image with an increasing distance

between them, giving us a vector of correlations as seen in figure 5.7. From this vector

we defined our three summary statistics, detailed in §5.4.2, two of which use the known

Student’s t-distribution of the correlation coefficient.

With our three feature extraction methods defined we created test statistics. For the

Minkowski functional and GLCM property based methods we used a linear discriminant

analysis to select the best combination of functionals and properties for distinguishing

between perfectly mixed U(0, 1) datasets and poorly mixed N2 (µ,Σ) datasets. The final

feature extraction methods using Pearson’s correlation coefficient already returned values

we could use as a test statistic in our algorithm. Initial investigation of our test statistics

involved the U(0, 1) and N2 (µ,Σ) data used previously. From this we estimated the Type

I and II error values, where the Minkowski functional and GLCM based approaches had

very low Type II error which we attributed to their penalisation of even minor homogeneous

areas of the image as if they were clear shapes. Our neighbour correlation based approaches

returned Type II error rates between 2-12%, indicating a less strict test statistic yet a low

false negative range. However only one performed at the 10% Type I level we required.

Our final investigation involved applying the test to Raman spectroscopy data. Here the

Minkowski functional and GLCM based methods proved to be as strict in detecting structure

in the images as we anticipated. We finally applied the best performing test statistic, Fdif f
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(5.4.17), to data which allowed us to test our initial question of whether amorphous or

crystalline production methods produce a better mixed product. The results from this led us

to conclude that, for our data at least, the crystalline method produced a more thoroughly

mixed tablet. Future work in this area may include an investigation into the use of ellipsoid

shape analysis methods where ellipsoids are repeatedly placed at random locations in an

image and expanded until they include pixels too dissimilar from those already contained.

The size of these ellipsoids provides an indication of the number of structures within the

image.

In comparison to the current works of Coënt et al. [21], Koc et al. [58], Lee and Lin [65]

our method has several benefits. Two of the previous methods [21, 58] involve counting

the number of pixels per grey level. Not only does this require a greyscale image like our

GLCM based method but it may miss a large group of pixels comprised of a single chemical

component if the surrounding pixels are the other components to even out the quantities.

Our better performing test statistic, Fdif f , does not require greyscale data and would

easily locate a region displaying a group of homogeneous pixels. The third method using

spectroscopy [65] compares more closely with ours however uses the estimated spectra to

judge the quality of mixing. Whilst comparing the spectral peaks between sections of the

product will indicate whether each component is present it says nothing about the spread of

the component chemicals. For example in a two component product each component could

be present but inspection of the estimated concentrations may reveal the components are

in two large separate clusters, a feature our method using neighbour correlations would

detect.
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Analysis of a Spectral

Concentrations through Time

6.1 Objectives of Change Point Analysis

Raman images can be captured over time by leaving the scan subject on the scan bed, whilst

it dissolves for example, and scanning at set intervals. Sequential scans are a particularly

useful area to the pharmaceutical industry as they allow us to perform a detailed analysis

of the dissolution of a tablet over time, an area discussed by Strachan et al. [93]. This is

a vital aspect of the industry, discussed by Bai and Wang [8], as the dissolution of a tablet

has a major effect on the absorption of the chemicals by the body. The current method of

post-production dissolution testing involves dissolving a tablet at body temperature, 37◦C,

and monitoring the spread of the tablet through a fixed quantity of liquid. This method

however is susceptible to significant error and test failures [8].

Uneven dissolution of a tablet will have a negative effect on the efficacy of the tablet.

A potential cause of uneven dissolution may be poor mixing causing a faster dissolving

component to be prominent in one area. Whilst we may be able to pre-empt this cause of

uneven dissolution by examining the uniformity of mixing in a tablet, a topic we considered

in the previous chapter, this is only an examination of the tablet surface. We can therefore

use sequentially gathered Raman images to conduct a more detailed investigation into how

a tablet dissolves. We can perform this investigation by examining the concentrations of

component chemicals at individual pixels as they increase or decrease over a sequence of

time points. We therefore ask ourselves, can we accurately fit a model to these dissolution

patterns? With a suitable model we go on to ask, can this model be used to display

continuous component chemical levels throughout the dissolution process in place of the

discrete scan times?
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Using spectroscopy to image subjects changing over time is a relatively new field of re-

search with very little involving Raman spectroscopy. Chan and Kazarian [18] used Fourier

transform infra-red spectroscopy (FT-IR) to analyse the flow of different chemicals. The

data used however was still in the form of a single static spectroscopic image through which

the chemical was flowing. FT-IR was also used by Kazarian and van der Weerd [56] to

gather images of the same form as our caffeine and bicalutamide datasets, §1.2.2, where a

dissolving tablet was scanned at set time intervals. Their analysis of this data involved using

least squares solutions to (1.2.2) and mapping the edge of the dissolving tablet over time.

Finally Raman spectroscopy has been used in time analysis by [100, 101] where the data is

in the form to be used in this chapter. In [100] investigation of the dissolution was simply

performed by visually examining and comparing heatmaps of the estimated concentrations

for two datasets corresponding to two production methods.

It is in [101] where the analysis begins to resemble what we propose in this chapter

as to perform their analysis Windbergs et al. [101] initially use heatmaps of estimated

concentrations estimated using the same methods we use in this thesis. Windbergs et al.

[101] also use scanning electron micrographs of the dissolving tablet to visually describe the

dissolution process. They then plot the total concentrations of the component chemicals

and their changes over time. There has been no published research yet involving fitting

models to the estimated concentrations of time related Raman images. It is in the model

fitting that our methods differ as we use estimates of the times at which pixels of the

Raman image change component chemical to map the dissolution rather than the total

concentrations.

6.2 Sequential Scan Data

Dissolution scans are performed using the same process as a standard scan at discrete

times for an image with n pixels over p wavenumbers. However, where before the n × p
data matrix Y was of the form

Y =


yT1
...

yTn

 , (6.2.1)

a data matrix for m Raman images captured over time is of the form

nm×p
Y =


Y(1)

...

Y(m)

 , (6.2.2)
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where each Y(l) is of the form (6.2.1). We see this is simply m stacked Raman images.

We also analyse this large data matrix by again finding solutions to

Y − CST (1.2.2)

by minimising

argmin
S,C

∥∥Y − CST∥∥
subject to the same constraints as before for a single image, namely

1. sTk sk = 1 for all k = 1, ..., r

2. sj,k ≥ 0 for all j = 1, ..., p and k = 1, ..., r

3. ci ,k ≥ 0 for all i = 1, ..., n and k = 1, ..., r

(1.2.5)

As p and r are the same for each of our Raman images in the sequence, in using (1.2.2)

we get a single matrix of spectra, S = [s1 ... sr ], for all of our images. However we now

get an nm × r concentration matrix

nm×r
C =


C(1)

...

C(m)

 . (6.2.3)

where each C(l) is a standard concentration matrix

C(l) =


c

(l)T
1
...

c
(l)T
n


of the form described in §1.2.

From this matrix of concentrations, C, we can perform one of the following two transfor-

mations, with these processes shown in figure 6.1.

1. Separate nm× r matrix, C, into m matrices, C(l), of dimension n× r . These contain
the concentrations of the component spectra at each time point l .

2. To obtain a heatmap of chemical k at time l ,

(a) Select the required submatrix, C(l).

(b) Select the kth column of C(l),

c
(l)
k =


c

(l)
1,k
...

c
(l)
n,k

 .
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(c) Reshape column c(l)
k into a matrix with the dimensions of the original Raman

image, say x × y , giving

P =


c

(l)
1,k . . . c

(l)
(y−1)x+1,k

...
. . .

...

c
(l)
x,k . . . c

(l)
n,k

 (6.2.4)

from which we can create a heatmap of the concentrations.

3. To obtain the concentrations at each pixel of a given chemical at all time points,

(a) For chemical of interest, k , select column k of full concentration matrix C

ck =


c1,k

...

cmn,k

 .
(b) Reshape ck into matrix

nr×m
∆k =


c1,k . . . cnm−n,k
...

. . .
...

cn,k . . . cnm,k

 =


δT1,k
...

δTn,k

 (6.2.5)

where the δ i ,k are the concentrations at pixel i of chemical component k over

all m time points.

(c) Plot δ i ,k against the m time points to see how the concentrations for chemical

k change at pixel i . Figure 6.1 shows an example of Raman scans of a tablet

with decreasing concentrations over time.

6.2.1 Sequential Scan Datasets

For the investigations conducted in this chapter we will use two datasets as they demonstrate

two levels of complexity in dissolution patterns. The first is a caffeine tablet dissolving in

water. These Raman images were collected over 211 minutes with nine individual scans.

During this time the caffeine combines with the water to form caffeine hydrate, giving us

one chemical component with decreasing concentration levels and a second component

with increasing levels. Our second dataset is a bicalutamide tablet dissolving in water. This

dataset is the more complicated of the two with the tablet extrudate, the initial substance,

converting to bicalutamide type I either directly or first becoming bicalutamide type II,

as shown in figure 6.2. Therefore this gives us a chemical component with decreasing

concentrations, a component with increasing concentrations and a third that first increases
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Figure 6.1: Transformation processes for a matrix of concentrations, C, of the form

(6.2.3). Matrices used for time series analysis of the form (6.2.5). Matrices

used to obtain a heatmap of the form (6.2.4).

128



Chapter 6: Analysis of a Spectral Concentrations through Time

Extrudate

Bicalutamide I

Bicalutamide II

Figure 6.2: Bicalutamide dissolution process

then decreases in concentration. The scan was conducted over 2131 minutes with 14

individual scans. Throughout the scan the dissolving tablet also disperses outside of the

scan area. As this may cause unusual behaviour in the concentrations of the component

chemicals, for example unexpected increases or decreases as the solution disperses, we omit

the final two scans resulting in a total scan time of 1597 minutes over 12 Raman images.

6.3 Initial Investigations of Sequential Scan Data

Without prior knowledge of the dissolution pattern of a dataset some initial investigations

would be required. The most simple of these is simply looking at the estimated concen-

trations from (1.2.2) in the form of heatmaps generated with (6.2.4), a process described

in §6.2. Applying this to our caffeine data we obtain the heatmaps shown in figure 6.3.

These show the transition of the scanned object from caffeine to caffeine hydrate as we

expect. Using this method with our bicalutamide data however gives us heatmaps, shown

in figure 6.4, which are far less clear due to the more complicated dissolution process.

Whilst the extrudate and bicalutamide type I concentrations shown in figure 6.4 show clear

decreasing and increasing patterns respectively the bicalutamide type II concentrations are

not so obvious.

Therefore for use with more complicated data we require an alternate method for identifying

the dissolution process. A simple intuitive method for describing the dissolution is to use

our r heatmaps of the scan subject and derive a single heatmap showing the location of

each component chemical at each time point. A simple method for doing this involves

taking each C(l) from (6.2.3) and calculating [31, 50]

b(l) =



{
k |maxk c

(l)
1,k

}{
k |maxk c

(l)
2,k

}
...{

k |maxk c
(l)
n,k

}


an r -length vector containing the index, k , of the chemical with the highest concentration

129



Chapter 6: Analysis of a Spectral Concentrations through Time

at every pixel. We then calculate

d(l) =



∑n
i=1 I

{
b

(l)
i = 1

}
∑n
i=1 I

{
b

(l)
i = 2

}
...∑n

i=1 I

{
b

(l)
i = r

}

 .

a vector containing the number of pixels at which each chemical component is the maximum

concentration. Finally we create a matrix combining the d(l) for all time points l = 1, ..., m,

D =
[
d(1) d(2) ... d(m)

]
. (6.3.1)

In figure 6.5 we show a bar chart of (6.3.1) for the bicalutamide data. This bar chart

is created such that each d(l) corresponds to a bar which is split into r sections, the

areas of which are given by the
∑n
i=1 I

{
b

(l)
i = k

}
. Whilst this plot shows the dissolution

process to some extent, with the extrudate levels dropping and type I and II bicalutamide

becoming prevalent, the exact process is still not clear. We also see an unusual pattern

in the bicalutamide type I concentration where levels appear to increase, decrease then

increase again rather than simple increasing as we expect. This may be caused by the

rudimentary way in which we calculated (6.3.1) where we simply ignored the concentration

levels relating to the other spectra.

With heatmaps and the simple calculation (6.3.1) based on the concentration levels pro-

viding vague indications of the dissolution patterns we turn to more detailed analysis by

applying principal component analysis, §2.3, to (6.2.5) to estimate the patterns. First,

using (6.2.5), we define

nr×m
∆ =


∆1

...

∆r

 =



δT1,1
...

δTn,1

δT1,2
...

δTn,2
...

δT1,r
...

δTn,r



(6.3.2)

Where matrix ∆ contains the concentrations over allm time points for all pixels and chemical

components. Using eigendecomposition we now calculate

∆T∆ = KLKT (6.3.3)
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Figure 6.3: Estimated concentrations of caffeine and caffeine hydrate over the time of

the scan, calculated with (1.2.2). Image generated using step 2 of the process

described in §6.2
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Figure 6.4: Estimated concentrations of the extrudate, bicalutamide I and bicalutamide

II over the time of the scan, calculated with (1.2.2). Image generated using

step 2 of the process described in §6.2
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Figure 6.5: Total number of pixels containing each component at every time point. Pixel

primary component chosen based on highest concentration value as in (6.3.1).

The known change patterns are not clear here as bicalutamide type II does

not display the increase then decrease we expect.
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Figure 6.6: Principal component loadings for concentration changes in the caffeine data,

calculated with (6.3.3), interpreted as caffeine and caffeine hydrate respec-

tively.

where K = [k1 ... km] are the orthonormal eigenvectors. Now as each δ i ,k , for i = 1, ..., n,

in (6.3.2) should show, to some extent, the change in the levels of chemical k throughout

the subject during dissolution we expect each ∆k to have some common basis, δ̃k , such

that

δ i ,k ≈ gi δ̃k for i = 1, ..., n

for some constants gi . We should therefore see these bases, δ̃k for k = 1, ..., r , in the

eigenvectors of (6.3.3), k1, ..., kr , corresponding to the r largest eigenvalues.

Applying (6.3.3) to our caffeine and bicalutamide datasets produces the k1, ..., kr we see

in figures 6.6 and 6.7 respectively where they are plotted against the times of the m scans.

In both sets of figures our supposition that each ∆k has some common basis function is

shown to be sensible. In figure 6.6a and 6.6b we see the expected principal components

indicating one chemical decreasing over time, caffeine, and the second increasing, caffeine

hydrate. The deviations from this pattern at around 175 minutes are likely caused by the

dissolving tablet dispersing across the spectrometer scan bed. The principal components

derived from the concentrations of the bicalutamide data in figure 6.7 show the more

complicated dissolution pattern we expect. We have principal components corresponding

to an increasing concentration, a decreasing concentration and a final concentration which

first increases then decreases. These will relate to the tablet extrudate, bicalutamide type

I and bicalutamide type II respectively as described in figure 6.2. With both of our datasets

this method proves to be simple yet effective at describing the patterns of change in the

concentrations, allowing us to select the appropriate model to fit the data.
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Figure 6.7: Principal component loadings for concentration changes in the bicalutamide

data, calculated with (6.3.3), interpreted as the tablet extrudate, bicalutamide

type I and bicalutamide type II respectively.
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6.4 Basic Concentration Change Model

With a method of finding the concentration change patterns, using the eigenvectors of

(6.3.3), we now require a technique for mapping the chemical changes of scan subject in an

easily interpretable format. With the simple summation method of (6.3.1) giving less than

clear results for our bicalutamide data we propose a model which will allow us to estimate

the changes in chemical levels by incorporating previous and future time points.

The first model we propose is for a dataset containing one chemical with decreasing levels

and another with increasing levels. Our caffeine data is an example of this type of data and,

in figure 6.6, we see the change pattern for each chemical component to have a similar

shape to that of a normal cumulative distribution function (CDF). We therefore require

a model allowing us to fit the normal CDF to either an "S" or reverse "S" shape with a

maximum greater than 1. For this purpose we define the model

δ i ,k =

{
αi
(

1−Φ
(
µi , σ

2
i |t
))

if ‖δ i ,k − k∧‖ < ‖δ i ,k − k∨‖
αi
(

Φ
(
µi , σ

2
i |t
))

if ‖δ i ,k − k∧‖ > ‖δ i ,k − k∨‖
(6.4.1)

for Euclidean norm ‖·‖, δ i ,k a row of the matrix defined in (6.2.5) and t a vector containing

the times at which the object was scanned. Φ
(
µi , σ

2
i |t
)
is the normal cumulative distribution

function with mean µi and variance σ2
i evaluated at tl for l = 1, ..., m. Vectors k∧ and k∨ are

calculated using (6.3.3) and represent the decreasing and increasing patterns respectively.

The condition on the eigenvectors in (6.4.1) compare the series of concentrations, δ i ,k , to

the eigenvectors to identify the correct orientation of the normal CDF. The vectors α, µ

and σ contain parameter estimates for each pixel, i , with the former a scaling constant set

to allow the function to achieve a maximum different from one. We fit this model to each

pixel by minimising the residual sum of squares

ri =

{ ∥∥δ i ,k − αi (1−Φ
(
µi , σ

2
i |t
))∥∥2 if ‖δ i ,k − k∧‖ < ‖δ i ,k − k∨‖∥∥δ i ,k − αi (Φ (µi , σ2

i |t
))∥∥2 if ‖δ i ,k − k∧‖ > ‖δ i ,k − k∨‖

. (6.4.2)

In our model we can interpret the mean, µi , as the time of greatest concentration change

and the variance, σ2
i , as the speed of the change.

Fitting this model to our caffeine dataset showed that for pixels with a clear point of change

in concentrations this model provides us a good fit, as shown in figure 6.8. However if

the time at which the concentration changes is less clear, for example figure 6.9a, we see

the model fit is compromised. Large differences between the eigenvectors representing the

change patterns and the concentration change vectors, δ i ,k , have a variety of causes. For

example anomalies in the data such as cosmic rays, detailed in §3.2, may result in incorrectly

elevated concentrations. The dispersion throughout the solvent of the dissolving tablet
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Figure 6.8: Caffeine levels at pixel 458 with model (6.4.1).
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(a) Standard model, (6.4.1).
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(b) Penalty model, (6.4.3).

Figure 6.9: Pixel 1417 from the caffeine data with overlaid model fits.

across the scan bed could also cause an unusual increase or decrease in concentration levels.

After fitting (6.4.1) to all n pixels we reshape our vector µ corresponding to the change

in caffeine, k = 1, into the Raman image dimensions using (6.2.4) to obtain the heatmap

seen in figure 6.10a. This heatmap shows us the time at which each pixel undergoes the

greatest change in concentration and clearly contains values of µi around the edges of the

tablet where the objective function has been unsuccessfully fit to the δ i ,k .

Therefore we propose an improvement to the fit of our model by incorporating model

parameters from the surrounding pixels. We include these neighbouring parameters a

penalty term which will penalise deviation from the neighbouring parameter estimates. For

this penalty term we use a similar method to that of the quadratic penalty method, appendix

A.4. Whilst these types of penalty terms may cause a higher residual sum of squares for

(6.4.1) they allow us to enforce constraints such as similar µi between pixels, reducing the

occurrence of situations such as that seen in figure 6.9a. Using this penalty method we
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Figure 6.10: Heatmaps of µ for the caffeine concentrations, k = 1, created with (6.2.4),

estimated from the caffeine dataset with two levels of smoothing.

propose the objective functions

r ′i =



∥∥δ i ,k − αi (1−Φ
(
µi , σ

2
i |t
))∥∥2

+

+
∑
i ′∈Ni

[
γ1

(
αi−αi ′
|Ni |

)2
+ γ2

(
µi−µi ′
|Ni |

)2
+ γ3

(
σi−σi ′
|Ni |

)2
]

if ‖δ i ,k − k∧‖ < ‖δ i ,k − k∨‖∥∥δ i ,k − αi (Φ (µi , σ2
i |t
))∥∥2

+

+
∑
i ′∈Ni

[
γ1

(
αi−αi ′
|Ni |

)2
+ γ2

(
µi−µi ′
|Ni |

)2
+ γ3

(
σi−σi ′
|Ni |

)2
]

if ‖δ i ,k − k∧‖ > ‖δ i ,k − k∨‖

(6.4.3)

where the γg are constants to set the level of penalisation and Ni is the set of indices

corresponding to pixels surrounding pixel i in the Raman image, defined for a Raman image

of size x × y as

Ni = [(i − y − 1), (i − y), (i − y + 1), (i − 1), ...

(i + 1), (i + y − 1), (i + y), (i + y + 1)]
(6.4.4)

where we exclude some indices if the pixel of interest, i , lies on the edge of the Raman

image. Objective function (6.4.3) clearly requires initial estimates of the parameters for all

pixels so we apply this model using the following algorithm.

Algorithm 6.4.1. Iterative algorithm for modelling simple concentration changes by min-

imising (6.4.3)

1. Set starting parameter values, αi = max(δ i ,k), σi , γg and µ = t|m
2
| where t is the

vector of scan times. In practice we found σi = 50 and γg = 0.001 work well.
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2. Minimise (6.4.2) using a method of numerical optimisation to obtain initial estimates

of parameter vectors α, µ and σ. In practice we found the trust region method to

work well (see appendix A.3).

3. Randomly select a pixel without replacement from i = 1, ..., n and minimise (6.4.3)

for αi , µi and σ2
i .

4. Replace original estimates from step 2 with the new estimates from step 3.

5. Repeat steps 3 and 4 n times until all parameters have been re-estimated with the

penalty model.

We minimise (6.4.3) for pixels in a random order to reduce the risk of a series of parameter

estimates being effected by poor model fits. If the algorithm were to work along columns

or rows erroneous parameters could cause a sequence of errors where parameter estimates

such as those in figure 6.9a could effect each successive model fit along the row or column.

Fitting (6.4.3) to our caffeine data improved the fit we saw in figure 6.9a to that shown in

figure 6.9b. Our model here incorporates the relationship between neighbouring pixels to

give a more spatially consistent result with a greatest concentration change time around

150 minutes.

For data displaying a decrease in one chemical level and an increase in the other chemical

level it is highly likely these two will be linked as the component increasing in concentration

must come from somewhere. With this in mind we extend the penalty term in (6.4.3) to

include neighbouring pixel parameters estimated for the alternate spectra. The idea behind

this modification is that for some δ i ,1 the time of greatest concentration level change

should be similar to that of δ i ,2 as for one to increase the other must decrease. Therefore

we modify the penalty term of (6.4.3) to

∑
i ′∈Ni

[
γ1

(
αi − αi ′
|Ni |

)2

+ γ2

(
µi − µi ′
|Ni |

)2

+ γ3

(
σi − σi ′
|Ni |

)2

+ γ4

(
µi − µ′i ′
|Ni |

)2
]

(6.4.5)

where the µ′i ′ are the neighbouring values of µi for the other spectra.

To test this new penalty term we applied algorithm 6.4.1 to our caffeine data with the

penalty term of (6.4.3) changed to (6.4.5). After reshaping the estimated change times,

µ, as before, with (6.2.4), we obtain the heatmap shown in figure 6.10b. We now have

a clear representation of the caffeine tablet dissolving and beginning to spread across the

scan bed.
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6.5 Concentration Change Model for More Complicated Im-

ages

With our simple model proving successful at mapping the dissolution of our caffeine dataset,

and providing an easily interpretable heatmap of the dissolution, we now propose a more

universal model capable of fitting to more complicated dissolution patterns. As we saw in

figure 6.7 the "S" shaped change patterns may feature alongside an "n" shaped pattern.

Therefore the evolution of (6.4.1) we propose combines the normal CDFs to create a

curve capable of fitting to data displaying decreasing, increasing and both increasing then

decreasing concentrations. Our bicalutamide data is an example of this with the required

change patterns as seen in figure 6.7. We propose the model

δ i ,k = f (t|αi , µi ,1, µi ,2, σ2
i ) =

{
αi
(

Φ
(
µi ,1, σ

2
i |tl
))

if tl ≤ c
αi
(

1−Φ
(
µi ,2, σ

2
i |tl
))

if tl > c
(6.5.1)

where µ1 < µ2 and c = µ1 + µ1+µ2

2 . The parameters αi , µ1, µ2 and σ control the height,

location and width of the curve respectively. The parameter σ is common to both normal

distributions to avoid a discontinuity where the cumulative distribution functions meet. We

show a simple example of this model in figure 6.11. We can fit this model to all three

concentration patterns by adjusting c to translate the curve along the time axis, for example

c = t(1) gives us a model with the shape of decreasing concentrations.

Using the same quadratic penalty method as used for (6.4.3) we modify (6.5.1) to improve

the fit with pixels displaying sporadic concentration changes. As with (6.4.3) we penalise

large differences in change times, µ1 and µ2, between pixel i and the immediate neighbours.

We also induce a penalty on αi for differing too greatly from max(δ i ,k) along with a penalty

on c for lying outside t, this final penalty is to ensure at least one of µi ,1 or µi ,2 lies within

[t(1), t(m)]. Our penalty on αi has been changed from (6.4.5) to use max(δ i ,k) in place

of neighbouring pixel maxima as the presence of three chemical components with a more

complicated dissolution pattern allows for a greater range of concentration levels across

the image. With these modifications we define the objective function

r ′′i = ‖δ i ,k − f (t|αi , µi ,1, µi ,2, σ2
i )‖+ γ1 [αi −max(δ i ,k)]2

+
∑
i ′∈Ni

[
γ2

(
µi ,1 − µi ′,1
|Ni |

)2

+ γ3

(
µi ,2 − µi ′,2
|Ni |

)2
]

+ γ4Ic<t1,c>tm (6.5.2)

where the γg are constants to set the level of penalisation and N is the set of neighbouring

pixels calculated as in (6.4.4).

To fit this model to all pixels of a Raman image we modify algorithm (6.4.1) to fit (6.5.1)

to the concentration change patterns shown in figure 6.7.
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Time
µ1 c µ2

0

β

σ σ

Figure 6.11: Proposed double normal CDF model to fit all three concentration change

patterns displayed by the bicalutamide data, seen in figure 6.7. Specific

shape generated by µ1 = −4, µ2 = 4 and σ = 1.5.

Algorithm 6.5.1. Iterative algorithm for minimising (6.5.2)

1. Estimate concentration change pattern for each set of concentrations by calculating

‖δ i ,k − kk‖ for k ∈ [1, 3], where the kk are principal components derived with (6.3.3)

and ordered such that they represent decreasing, increasing and increasing then

decreasing concentrations respectively.

2. Set starting parameter values, αi = max(δ i ,k), σ2
i = tm−t1

10 and γg. For µi ,1 and µi ,2

we use starting values such that the point(s) of greatest change lie close to where we

expect for that change pattern, for example an increasing concentration will require

µi ,1 close to the median time point and µi ,1 beyond the maximum time to ensure the

correct part of the curve is used.

{µi ,1, µi ,2} =


{t1 − t|m

2
|, t|m

2
|}, if the pattern is decreasing

{t|m
2
|, tm + t|m

2
|}, if the pattern is increasing

{t|m
4
|, t| 3m

4
|}, if the pattern is increasing then decreasing

In the increasing and decreasing cases we respectively set µi ,1 and µi ,2 outside the

range of t to force only half of the model to be fit to our concentrations, δ i ,k . We

also found γg = 0.0001 to perform well in practice.

3. Minimise (6.5.2) without the penalty term to obtain initial estimates of parameter
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vectors α, µ1, µ2 and σ. As before we found the trust region method of numerical

optimisation to perform well.

4. Randomly select a pixel without replacement from i = 1, ..., n and minimise (6.5.2)

for αi , µi ,1, µi ,2 and σ2
i .

5. Replace original estimates from step 3 with those from step 4.

6. Repeat steps 4 and 5 n times until all parameters have been re-estimated with the

penalty model.

Applying this algorithm to our bicalutamide dataset we obtained vectors µ(k)
1 and µ(k)

2 , for

k ∈ [1, 3], corresponding to each component chemical. To obtain the heatmaps shown in

6.12 we performed the following steps,

• For k = 1, decreasing concentrations, ignore µ(k)
1 and set µ(k)

i ,2 /∈ [t(1), t(m)], for

i = 1, ..., n, equal to zero.

• For k = 2, increasing concentrations, ignore µ(k)
2 and set µ(k)

i ,1 /∈ [t(1), t(m)], for

i = 1, ..., n, equal to zero.

• For k = 3, increasing then decreasing concentrations, set µ(k)
i ,1 /∈ [t(1), t(m)] and

µ
(k)
i ,2 /∈ [t(1), t(m)], for i = 1, ..., n, equal to zero.

We then reshape these modified µ(k)
1 and µ(k)

2 vectors as in (6.2.4). From these heatmaps

we see the expected dissolution pattern

• Extrudate decreasing early on.

• Bicalutamide type I increasing throughout the scan.

• Bicalutamide type II increasing early and then decreasing towards the end.

We now also recreate the bar chart seen in figure 6.5 however using the results of our

model in place of the chemical component with the maximum concentration value at each

pixel. To recreate vectors, d(l), used in (6.3.1) we calculate

d̃(l) =


∑n
i=1 I

{
µ

(1)
i ,2 ≥ t(l), µ

(1)
i ,2 6= 0

}
∑n
i=1 I

{
µ

(2)
i ,1 ≤ t(l), µ

(2)
i ,1 6= 0

}
∑n
i=1 I

{
µ

(3)
i ,1 ≤ t(l), µ

(3)
i ,2 ≥ t(l), µ

(3)
i ,1 6= 0, µ

(1)
i ,2 6= 0

}
 . (6.5.3)

The entries in this vector can be interpreted as
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• The number of pixels yet to see a large decrease in extrudate concentrations by time

t(l).

• The number of pixels to have seen a large increase in bicalutamide type I concentra-

tions by time t(l).

• The number of pixels to have seen a large increase in bicalutamide type II concentra-

tions but not yet seen a large decrease by time t(l).

Now to create the matrix from which we plot our bar chart we define

D̃ =
[
d̃(1) d̃(2) ... d̃(m)

]
. (6.5.4)

As before in §6.3 we create the bar chart by taking each d̃(l) as a bar which is split into 3

sections with the areas defined by (6.5.3). The bar chart we obtain from this is shown in

figure 6.13. We now very clearly see the pattern of concentration change as bicalutamide

type II increases then decreases with bicalutamide type I becoming the dominant spectra

by the end of the scan. This is a great improvement over figure 6.5 where we could discern

very little about the behaviour of bicalutamide type II.

6.6 Discussion

Our goal in this chapter has been to develop a model capable of accurately representing the

dissolution of a tablet, a vital element in the effectiveness of a drug. We first demonstrated

methods of preliminary investigation using principal component analysis and a simple visual

inspection and count of the estimated concentrations, (6.3.1). Whilst the latter of these

was only useful for simple datasets the principal component analysis based method proved

effective at representing the patterns of change undergone by the chemical component

concentrations over the course of the scan. For example with the bicalutamide data we saw

a clear indication of decreasing, increasing and increasing then decreasing concentrations,

figure 6.7.

We first defined a simple model to fit datasets with two chemical components where one

increases whilst the other decreases. This led us to require an "S" shaped function such as

the normal cumulative distribution function or the logistic function. Our chosen function

to use was the normal CDF where the two standard parameters, µ and σ, were used

to control the time and speed of the chemical change with a third, α, used to allow a

maximum different from one. This model fitted well to simple chemical concentrations

over time however our parameter estimates proved susceptible to outliers resulting in poor
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Figure 6.12: Heatmaps of change times, µ1 and µ2, for each chemical in the bicalutamide

dataset. Results obtained using algorithm 6.5.1 and heatmaps created with

(6.2.4). These show the dissolution patterns more clearly than figure 6.4 as

we now have obvious times of increase then decrease for bicalutamide II.
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Figure 6.13: Total number of pixels containing each chemical component at every time

point. Pixel primary component chosen based on the results from algorithm

6.5.1 as defined by (6.5.4). The known change patterns are now very clear

as bicalutamide type II displays the expected increase then decrease.
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model fit. To make our model more robust to anomalies we used a penalty term to smooth

the model fit on pixels displaying uneven concentrations, figure 6.9. Due to the simplicity

of a quadratic penalty method we modified our model to penalise large differences from

the parameter estimates of neighbouring pixels in the Raman image. We modified the

model further to exploit the pattern that in a dissolving subject a decrease in one chemical

component would likely lead to an increase in the other. This model proved very effective

when fit to our caffeine dataset and gave us a clear representation of the times at which

areas of the Raman image changed between the discrete scan times.

With a model fit to the more simple data style we turned our focus to a more complicated

model capable of mapping increasing, decreasing and both increasing and decreasing chem-

ical concentrations. We were able to obtain a rough indication of the way a tablet of this

structure dissolved by summing how many pixels at each time point were maximised by

each chemical. However this method suffered as the concentrations of only one component

were taken into consideration. When applied to our bicalutamide dataset this meant identi-

fying that one chemical component increased then decreased was very difficult. To define

our model for images displaying these change patterns we combined the two functions

used previously to form a bell shaped curve capable of fitting all three concentrations. To

incorporate robustness into this new model we used the same quadratic penalty method

to constrain the parameters based on the estimates at neighbouring pixels. We also had

to constrain the location of the peak of this curve to ensure temporally correct results as

during fitting the function is translated along the axis representing time, therefore negative

time estimates had to be avoided. These constraints gave us a reliably fitting model with

the same resistance to inconsistent concentrations as we saw with the previous model.

When applied to our bicalutamide dataset we recreated heatmaps and bar charts which now

showed the pattern of dissolution accurately enough that no prior knowledge was required

to interpret the results. The function used for this method could potentially be extended

to other change patterns, for example a fluctuating chemical concentration requiring a sine

curve shape which could easily be obtained by including a third normal CDF.

Our model demonstrates advantages over the current methods for analysis of spectroscopic

images over time which involve mapping the edge of the subject [56], visual examination of

heatmaps [100] and calculating the total concentrations of each component [101] estimated

using the bilinear model (1.2.2). The model we propose incorporates all pixels in the images,

not just the edge pixels of the dissolving subject. It also gives a single heatmap of the

dissolution rather than requiring inspection of a heatmap per time point and, as we show

in figure 6.13, provides clearer results than simply summing the concentrations.

146



Chapter 7

Analysis of Spectroscopy Data using

Cluster Analysis and Mixture Models

7.1 Objectives of Analysis using Clusters

When capturing a Raman spectroscopic image it is common to scan a region larger than

the subject to ensure we miss nothing important. This background however may have a

detrimental effect on the results. This is because increasing the number of pixels increases

the potential for anomalies, detailed in §3.2, yet in the case of background pixels, containing

no component spectra, add nothing to estimated concentrations and spectra from

Y = CST + E (1.2.2)

my minimising

argmin
S,C

∥∥Y − CST∥∥ .
Therefore we wish to devise a method for solving (1.2.2) on the background and the subject

separately, the motivvation being that this will in theory give us clearer estimated spectra

and concentrations. For performing this analysis we have a choice of methods. The first

involves using cluster analysis such as k-means, §2.10, and EMGM, §2.12.1, to isolate the

background from the subject then using a bipartite model to estimate separate spectra

and concentrations for each group. The second method combines the bipartite model and

Gaussian mixture model of EMGM with the expectation maximisation algorithm to both

cluster and decompose the data. This combined technique may prove more accurate as

each refinement step of the spectra and concentrations should allow for more accurate

clustering of the Raman image pixels.
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7.2 Fitting a Bipartite Bilinear Model

Before we can fit a bipartite model to our data we must first distinguish between the scan

subject and the background which is visually very clear in our results from previous chapters

such as figure 5.1. The most simple option is to sum our data,

n×p
Y =


yT1
...

yTn


over all columns to obtain

ỹ =


∑p
j=1 y1,j

...∑p
j=1 yn,j

 (7.2.1)

and threshold the resulting vector by selecting all ỹi > α for some constant α, with the idea

that pixels representing the subject will have larger ỹi than pixels in the background. This

difference is likely as a large ỹi will be the result of peaks in the pixel spectrum. However

background pixels will display little in the way of peaks due to the materials used on the

spectrometer base, such as etched silver or gold [82], which are textured in such a way as

to reduce reflectivity.

Principal component analysis of YTY
n may provide us with similar results in the scores, defined

in §2.3 and used in Chapter 4, however will take considerably longer as p eigenvectors must

be computed. In the situation where either the background displays some component

spectra or our scan subject is in fact two very different compositions PCA will also provide

us with more detail which may help us distinguish these regions. For example PCA will

return us an eigenvector representing each component spectra, as used in §4.2, and so the

corresponding scores may allow us to locate these two groups that summing the data may

miss.

We used a similar process in chapter 5 when we created binary data in §5.4.2. In this

chapter we saw a benefit in using a cluster analysis method as it required no user input in

grouping the data.

7.2.1 Determining Subject Boundaries Using Cluster Analysis

To cluster our data we consider two methods, k-means and expectation maximisation of

a Gaussian mixture model (EMGM), detailed in §2.10 and §2.12.1 respectively. Of these

two k-means is the more simple technique, grouping the data in relation to cluster means.
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EMGM is more complex, and thus computationally more expensive, as it assumes each

observation in our data has come from one of m Gaussian distributions as defined in §2.12.1.

Whilst both of these methods can be applied to our entire n×p data matrix this will greatly

increase the computation time, especially in the case of EMGM. We therefore sum our

data matrix as in (7.2.1) to give a vector ỹ of dimension n × 1 which we can very quickly

cluster.

We investigate the performance of the clustering methods by applying both to the parac-

etamol and human tooth data, see §1.2.2. For both of these datasets we expect to find a

cluster of background pixels and a cluster of subject pixels. The paracetamol data contains

a single component chemical, therefore a single cluster, and the human tooth contains

two very similar components which we expect to be clustered together. However we must

also consider the border pixels where the laser may have impacted both the subject and

the background potentially giving us a less pronounced version of the subject spectra. We

therefore search for three clusters using our algorithms, allowing us to choose in which

group we place the border pixels. This will be useful as the border pixels may increase noise

in our final results so removing them from the subject group will allow us to obtain the

clearest results possible.

Our results from applying both k-means and EMGM to the datasets are shown in figures

7.1, 7.2 and 7.3. To generate these heatmaps of clusters we simply took our vector of

clusters and reshaped it to the original Raman image dimensions as in §1.2. Figure 7.2

shows little difference in the performance of the two clustering methods. However figure

7.1 shows a benefit of EMGM over k-means in the detection of the border pixels. In figure

7.1a we see k-means has detected differences in the ỹi based on the surface pattern of

the tablet, with the stamp of 500, from the dosage of 500mg, visible. Whilst in some

forms of analysis this may be a useful tool, for our purposes EMGM appears more suitable.

This increased ability of EMGM to detect border pixels and avoid assigning them to the

background group due to higher levels of noise is explained in §2.12.2 where we detail the

assigmnemt steps of the two methods.

Therefore given three EMGM derived groups of ỹi , say H1, H2 and H3, containing subject,

border and background pixels respectively we form our final groups by setting,

• G1=H1 ∪H2, G2=H3, combine border and subject pixels, the method we use in this

chapter.

• G1=H1, G2=H3∪H2, exclude border pixels from the sample set for potentially clearer

results.
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Figure 7.1: Heatmap of clusters generated by applying (6.2.4) to a vector of group num-

bers for each ỹi , from (7.2.1), in the paracetamol dataset.
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Figure 7.2: Heatmap of clusters generated by applying (6.2.4) to a vector of group num-

bers for each ỹi , from (7.2.1), in the human tooth dataset.
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Figure 7.3: Histograms of the ỹi , from (7.2.1), for the human tooth data. Histograms are

coloured using k-means derived groups or have the EMGM Gaussian models

overlaid.

7.2.2 Bipartite Bilinear Model

With a method of separating our Raman image into two groups, background pixels and the

scan subject, we now define our bipartite bilinear model

yi =

{
S′c′i + ei i ∈ S
S′′c′′i + ei i /∈ S

(7.2.2)

for spectra

S′ =
[
s′1 ... s

′
r ′
]

and S′′ =
[
s′′1 ... s

′′
r ′′
]

(7.2.3)

and concentrations c′i and c
′′
i . The number of component spectra in the two groups, r ′ and

r ′′ need not be equal. For EMGM derived clusters G1 and G2, detailed in §7.2.1, the set

S = {ỹi |i ∈ G1} contains the observations, or pixels, assigned to the subject cluster. In the

case of a dataset with no background but a scan subject comprised of regions of different

chemical compositions this model can clearly still be fit by redefining groups G1 and G2.

We can also easily extend the model to accommodate more than two groups of pixels.

We fit this model using the following algorithm and any method for solving (1.2.3).

Algorithm 7.2.1. Bipartite Model Algorithm

1. Use EMGM to cluster the ỹi , from (7.2.1), and obtain G1 and G2 containing sample

and background pixels respectively.
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2. Partition Y into

Y′ = {yi |i ∈ S}

Y′′ = {yi |i /∈ S}

for S = {ỹi |i ∈ G1}

3. Set initial values for

C′ =


c′T1
...

c′Tn1

 and C′′ =


c′′T1
...

c′′Tn2

 ,
where n1 = |S| and n2 = n−|S|, as randomly filled matrices, in practice U(0, 1) data

is a simple choice for the elements.

4. Minimise

argmin
S′,C′

‖Y′ − C′S′T ‖ and argmin
S′′,C′′

‖Y′′ − C′′S′′T ‖ (7.2.4)

where ‖ · ‖ is an extension of the Euclidean norm to matrices,

‖X‖2 = tr
(
XTX

)
.

7.2.3 Applying the Bipartite Model Algorithm to Raman Spectroscopy Data

To illustrate algorithm 7.2.1 we apply it to both the paracetamol and human tooth data

used to investigate the clustering methods in §7.2.1. In implementing algorithm 7.2.1 we

employed the ALS method to solve (7.2.4), detailed in §2.7.1. For the paracetamol data

we set r ′ = 2 in (7.2.2) to allow for two component spectra in the scan subject group and

r ′′ = 1 for a single spectra in the background group. Whilst there is only one component

spectra in this dataset we include a second spectra so remaining background signal can be

detected separately and any structure present will not affect our component spectra. For

the human tooth data we set r ′ = 3as we expect to find the two component chemicals,

enamel and dentin, and a third containing remaining background signal.

Our estimated spectra from algorithm 7.2.1 are shown in figures 7.4 and 7.5 for the

paracetamol and human tooth datasets respectively. Our results for the paracetamol

dataset show a marginal improvement. We see in figure 7.4b the remaining background

signal present in the scan subject pixels. This now has a far less structured spectrum, with

little in the way of peaks, as we expect from the unreflective scan bed. This reduction
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(b) Background Signal, s′′1

Figure 7.4: Estimated spectra from algorithm 7.2.1 and conventional ALS, §2.7.1, for

the paracetamol dataset. Use of the bipartite model (7.2.2) removes the

parabolic structure estimated in the spectra.

in background signal structure has in turn provided us with a clearer paracetamol Raman

spectra.

Our results for the human tooth data show almost no difference in the estimated enamel

spectrum from solving (1.2.2) and (7.2.4), shown in figure 7.5a. However we see a large

improvement in figure 7.5b in the estimated spectrum for dentin. Solving (1.2.2) did

not find the dentin spectrum. This is likely due to it being extremely similar to that of

enamel [38, 105] differing only in the intensity of the single peak [25]. Therefore the

dentin spectrum may explain less variance than the background signal which replaced it as

a result. However in using our bipartite model the majority of the background pixels were

removed from the analysis of the scan subject, reducing the amount of variance in the

data the background signal spectrum could explain. This results in the dentin spectrum

being returned as a solution as it now explains a greater proportion of variance. In the

case of this data where two of the component spectra are very similar it is common in

the chemometrics community to separate the data into ‘training data’ and use a method

such as linear discriminant analysis (LDA) to isolate the two spectra. However without

the knowledge required to separate the Raman image this may not be possible and so an

alternative to conventional rational resolution methods which is capable of distinguishing

between extremely similar spectra will be beneficial.
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Figure 7.5: Estimated spectra from algorithm 7.2.1 and conventional ALS, §2.7.1, for

the human tooth dataset. Use of the bipartite model (7.2.2) allowed the

algorithm to detect the dentin spectrum which differs from that of enamel

only in the intensity of the single peak [25].

7.3 Fitting a Bilinear Gaussian Mixture Model

Whilst our algorithm for separating a Raman image into groups then solving (1.2.2) sepa-

rately for each group is successful in providing us clearer spectra it fixes the groups to which

pixels are assigned where these may be more accurately assigned using estimated spectra

from subsequent stages of the algorithm. We therefore propose a method to both cluster

the Raman image and solve (1.2.2). The goal is to improve the accuracy of the estimated

spectra when compared to algorithm 7.2.1 by allowing the clusters to be adjusted based

on the estimated spectra rather than fixed by the sum of each observation, (7.2.1).

We begin with the definition of a Gaussian mixture model, as defined in §2.12.1, for two

Gaussian distributions,

f (yi) = αf1(yi |µ1i , σ
2
1Ip) + (1− α)f2(yi |µ2i , σ

2
2Ip)

where α is the mixture weight and f1 and f2 are probability density functions of p-dimensional

multivariate Gaussian distributions. We incorporate our bilinear models by defining the

means of the Gaussian distributions as µ1i = S′c′i and µ2i = S′′c′′i respectively. We define

the variance of these distributions as σ2Ip = σ2
1Ip = σ2

2Ip to continue our assumption of

independent and identically distributed errors from §1.2. This gives us two parameters, c

and S, in place of µ and our bilinear Gaussian mixture model

f (yi) = αf1(yi |S′c′i , σ2Ip) + (1− α)f2(yi |S′′c′′i , σ2Ip) (7.3.1)

We immediately see the benefit of this separation of µ when we look at the number
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of parameters in the standard model and in the separated model. Before decomposing

µ1i = S′c′i and µ2i = S′′c′′i our model had np observations and 2np + 2 parameters,

the means and variances. However after decomposition the number of parameters in the

decomposed µ1i and µ2i equals n(r ′+ r ′′) +p(r ′+ r ′′)− (r ′+ r ′′), where the subtraction of

(r ′+ r ′′) comes from the unit constraints on the S. Our total number of parameters is now

n(r ′+ r ′′) + p(r ′+ r ′′)− (r ′+ r ′′) + 2. Therefore if we compare the parameter numbers for

some of our common datasets, where n = 5000, p = 1000 and r = 3 (leading to r ′ = 1

and r ′′ = 2), our parameter numbers fall from a little over 107 to only around 18000.

We now use a vector, z, of indicator variables such that α = P(zi = 1) to augment (7.3.1)

[94] allowing us to define the joint density as a product, instead of the sum (7.3.1),

f (yi , zi) = {αf1(yi)}zi {(1− α)f2(yi)}1−zi

because in the case that zi = 1, the joint likelihood equals αf1(yi) and when zi = 0 we get

(1− α)f2(yi). We therefore define the likelihood,

L (θ|Y, z) =

n∏
i=1

{αf1(yi)}zi {(1− α)f2(yi)}1−zi

and thus the log likelihood

L (θ|Y, z) =

n∑
i=1

{
zi log

[
αf1(yi |S′c′i , σ2Ip)

]
+ (1− zi) log

[
(1− α)f2(yi |S′′c′′i , σ2Ip)

]}
(7.3.2)

for parameter vector θ =
{
α,C′,C′′,S′,S′′, σ2

}
. Augmenting our data using z gives a log

likelihood that is easily differentiable, and therefore easier to maximise, as we can use the

identity log(AB) = log(A) + log(B). If we were to calculate the log-likelihood using (7.3.1)

no such logarithmic identity would be possible.

7.3.1 Expectation Maximisation of the Bilinear Gaussian Mixture Model

With our augmented log likelihood defined we now calculate the update formulae for the

E-step and M-step of the EM algorithm, detailed in §2.12.1. To calculate the E-step of

the expectation maximisation algorithm, from which new estimates of θ can be obtained
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using current estimates θ(t), it can be shown [11]

Q(θ|θ(t),Y) =
∑

z∈{0,1}n
p(z|Y, θ(t))L(θ(t)|Y, z)

= E
z|Y,θ(t) [L(θ|Y, z)]

=

n∑
i=1

E [L(θ|yi , zi)]

=

n∑
i=1

{
P(zi = 1|yi , θ(t)) log

[
αf1(yi |θ(t))

]
+ P(zi = 0|yi , θ(t)) log

[
(1− α)f2(yi |θ(t))

]}
.

Now using Bayes’ theorem, P(A|B) = P(B|A)P(A)
P(B) , we can define posterior class probabilities

w
(t)
i = P(zi = 1|yi , θ(t)) with,

w
(t)
i =

α(t−1)f1(yi |θ(t−1))

α(t−1)f1(yi |θ(t−1)) + (1− α(t−1))f2(yi |θ(t−1))
(7.3.3)

as identifying P (B) with P(yi , θ
(t)) is the same formula as our mixture model (7.3.1),

P(B|A) = P(yi , θ
(t)|zi = 1) = f1(yi |θ(t)) from (7.3.1) and P(A) = α. In this formula we

take the α(t−1) from either the previous iteration of the algorithm or the initial membership

weights, the estimation of which is discussed in algorithm 7.3.1.

Therefore we define our E-step formula as

Q(θ|θ(t),Y) =

n∑
i=1

{
wi log

[
αf1(yi |θ(t))

]
+ (1− wi) log

[
(1− α)f2(yi |θ(t))

]}
=

n∑
i=1

{
wi log(α)−

wip

2
log(2π)−

wip

2
log(σ2) ...

...−
wi

2σ2

(
yi − S′c′i

)T (
yi − S′c′i

)
+ (1− wi) log(1− α)

...−
(1− wi)p

2
log(2π)−

(1− wi)p
2

log(σ2)...

...−
(1− wi)

2σ2

(
yi − S′′c′′i

)T (
yi − S′′c′′i

)}
.

(7.3.4)

We now differentiate (7.3.4) with respect to the parameters in θ to perform the M-step.

By differentiating with respect to α we get

∂Q
∂α

=

n∑
i=1

{
wi
α
−

1− wi
1− α

}

=

n∑
i=1

{
wi − α
α(1− α)

}
= 0

=⇒ α̂ =
1

n

n∑
i=1

wi
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which we write as update formula

α(t) =
1

n

n∑
i=1

w
(t)
i . (7.3.5)

We show this is a maximum by evaluating the second derivative and substituting in α̂ to

give

−
n∑
i=1

{
α̂2 + wi − 2α̂wi
α̂2(1− α̂)2

}
.

As the denominator is clearly positive showing this is negative is equivalent to showing

n

n∑
i=1

wi >

(
n∑
i=1

wi

)2

.

Now in the case that all wi = 1, i.e. there is only one Gaussian distribution in our mixture,

both sides equal n2 and we have a saddle point. However assuming there exists two

distributions in our mixture at least one wi < 1. Therefore
∑n
i=1 wi < n, our inequality

holds and α̂ is our maximum.

Similarly we find the maximum likelihood estimator for σ2 with

∂Q
∂σ2

=
−np
2σ2

+
1

2σ4

n∑
i=1

{
wi
(
yi − S′c′i

)T (
yi − S′c′i

)
...

...+ (1− wi)
(
yi − S′′c′′i

)T (
yi − S′′c′′i

)}
= 0

=⇒ σ̂2 =
1

np

n∑
i=1

{
wi
(
yi − S′c′i

)T (
yi − S′c′i

)
+ (1− wi)

(
yi − S′′c′′i

)T (
yi − S′′c′′i

)}
which becomes update formula

σ2(t) =
1

np

n∑
i=1

{
w

(t)
i

(
yi − S′(t−1)c

′(t−1)
i

)T (
yi − S′(t−1)c

′(t−1)
i

)
+

(1− w (t)
i )

(
yi − S′′(t−1)c

′′(t−1)
i

)T (
yi − S′′(t−1)c

′′(t−1)
i

)}
.

(7.3.6)

Again we calculate the second derivative and substitute in σ̂2 to obtain

npσ̂2 − 2
∑n
i=1

{
wi
(
yi − S′c′i

)T (
yi − S′c′i

)
+ (1− wi)

(
yi − S′′c′′i

)T (
yi − S′′c′′i

)}
2σ̂6

.

As before the denominator is clearly positive and so we require a negative numerator for a

maximum. This is clear when we write the numerator as npσ̂2 − 2npσ̂2 = −npσ̂2. With n,

p and σ̂2 all positive we have a maximum.

Deriving the partial derivatives for c′ and c′′ is a little more difficult as we must differentiate

with respect to vectors. However this is a similar process to deriving the ordinary least
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squares estimator giving us

∂Q
∂c′i

=
−wi
2σ2

(
−2S′T yi + 2S′TS′c′i

)
= 0

=⇒ ĉ′i =
(
S′TS′

)−1
S′T yi

and, by similar calculations,

ĉ′′i =
(
S′′TS′′

)−1
S′′T yi

which lead us to update formulae

c
′(t)
i =

(
S′T (t)S′(t)

)−1
S′T (t)yi (7.3.7)

c
′′(t)
i =

(
S′′T (t)S′′(t)

)−1
S′′T (t)yi (7.3.8)

These estimators are in the same form as the least squares estimator of the ci in yi = Sci

and we found in testing the algorithm that it was possible to substitute in the non-negative

least squares algorithm detailed in §2.6.2.

As analytical differentiation with respect to a matrix is only possible in matrix-by-scaler

situations we must decompose
(
yi − S′c′i

)T (
yi − S′c′i

)
before we are able to differentiate

(7.3.4) with respect to S′ or S′′. We first define sj as a column representation of the j th

row of S and then derive (
yi − S′c′i

)T (
yi − S′c′i

)
=

p∑
j=1

(
yi ,j − c′Ti s′j

)T (
yi ,j − c′Ti s′j

)
=

p∑
j=1

(
y2
i ,j + s′Tj c

′
ic
′T
i s
′
j − 2yi ,jc

′T
i s
′
j

)
(7.3.9)

allowing us to replace differentiation with respect to a matrix, S′ or S′′, by the sum of

derivatives with respect to a vector. By substituting (7.3.9) into (7.3.4) we can now find

the remaining partial derivatives

∂Q
∂s′j

=
1

σ2

n∑
i=1

−wi
(

2c′ic
′T
i s
′
j − 2yi ,jc

′
i

)
= 0

=⇒

(
n∑
i=1

wic
′
ic
′T
i

)
s′j =

n∑
i=1

wiyi ,jc
′
i

=⇒ ŝ′j =

(
n∑
i=1

wic
′
ic
′T
i

)−1 n∑
i=1

wiyi ,jc
′
i .

Using similar substitutions we derive

ŝ′′j =

(
n∑
i=1

(1− wi)c′′i c′′Ti

)−1 n∑
i=1

(1− wi)yi ,jc′′i
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which lead us to update formulae

s
′(t)
j =

(
n∑
i=1

w
(t)
i c

′
ic
′T (t)
i

)−1 n∑
i=1

w
(t)
i yi ,jc

′(t)
i . (7.3.10)

s
′′(t)
j =

(
n∑
i=1

(1− w (t)
i )c

′′(t)
i c

′′T (t)
i

)−1 n∑
i=1

(1− w (t)
i )yi ,jc

′′(t)
i . (7.3.11)

With our update functions for (7.3.1) derived we must address the issue surrounding S and

C before we can implement the EM algorithm for our bilinear Gaussian mixture model. The

issue with these two parameters is that they must simultaneously satisfy (7.3.7), (7.3.8),

(7.3.10) and (7.3.11). However we note that this is the same situation in which we find

ourself when estimating solutions to Y = CST using alternating least squares, §2.6.1, which

also has simultaneous MLEs. It has been shown that alternately updating the MLEs will

provide convergence [64] and so we implement the same process in our EM algorithm.

Algorithm 7.3.1. Expectation Maximisation of a Bilinear Gaussian Mixture Model

1. For iteration t = 0 initialise w (0)
i using one of the following

• Threshold of ỹi ≥ φ, for ỹi from (7.2.1), to give initial membership probabilities

wi =

{
1 if ỹi ≥ φ
0 if ỹi < φ

• Cluster analysis as in §7.2.1 to give mixture weights

wi =

{
1 if i ∈ G1

0 if i ∈ G2

• U(0, 1) random numbers to give random mixture weights for all n pixels.

where the former two methods are very effective with Raman images due to very

clear patterns emerging when the observations are summed. Initialise ĉ′i and ĉ
′′
i with

matrices of random numbers from a non-negative distribution such as the exponential

distribution or absolute values from a distribution such as the normal distribution.

2. For t ≥ 1 calculate w (t)
i in (7.3.3), for i = 1, ..., n.

3. For t ≥ 1 calculate α̂(t) in (7.3.5).

4. Calculate σ̂2(t) in (7.3.6).

5. Calculate µ(t)
1i = c′iS

′T and µ(t)
2i = c′′i S

′′T by separating Y into groups Y′ and Y′′ and

finding solutions to Y′ = C′(t)S′T (t) and Y′′(t) = C′′S′′T (t) with the steps
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(a) Calculate Ŝ′(t) and Ŝ′′(t) with (7.3.10) and (7.3.11) respectively. Normalise such

that ‖ŝ′(t)k ‖ = 1 and ‖ŝ′′(t)k ‖ = 1 for k = 1, ..., r . Use C′(t−1) and C′(t−1) in the

calculations

(b) Calculate ĉ′(t)i and ĉ′′(t)i for i = 1, ..., n with (7.3.7) and (7.3.8) respectively.

We found estimating ĉ′(t)i and ĉ′′(t)i was possible using NNLS, §2.6.2, in spite of

it solving a different model. However as this is not the maximiser of our bilinear

Gaussian model convergence is not guaranteed.

(c) Return to step (a) and repeat as in algorithm 2.7.1 until convergence of the

estimates.

6. Calculate the log-likelihood, (7.3.2), for θ(t) =
{
α̂, Ĉ′, Ĉ′′, Ŝ′, Ŝ′′, σ̂2

}
and check for

convergence by comparing to iteration t − 1 using

Q(θ(t)|θ(t−1), Y )−Q(θ(t−1)|θ(t−1), Y ) > ∆

for some threshold ∆. If the difference between update function values is greater

than ∆ progress to t + 1 and return to step 2 else progress to step 7. This criterion

also ensures the algorithm increases at each iteration, a requirement worth checking

due to the potential sub-optimal estimation of S and C using an alternating, or even

NNLS, method. In practice we found ∆ = 1×10−8 to be sufficient for stable solutions

without excessive iterations.

7. Calculate the final group memberships using

zi =

{
1 if wi > 1

2

0 if wi ≤ 1
2

Assuming NNLS is not used in step 5 convergence of the EM algorithm follows from the

work of Wu [104] if Q(θ|θ(t),Y) is a continuous function and if at each step the parameters

are updated using the maximum of the transfer function Q(θ|θ(t),Y). In this situation the

algorithm will converge to parameters that are a maximum of the likelihood function of

our data. Although this convergence may be a local maximum so Wu [104] recommended

running the algorithm several times with different starting values for θ. The convergence

of the EM algorithm with NNLS substituted is not guaranteed as we are not using the

maximiser of our model but that of a different constrained model. Proof of convergence of

the EM algorithm when applied to this model is an area open for further research. In practice

we found that using the NNLS algorithm still allowed the EM algorithm to converge.
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(b) Final estimates from algorithm 7.3.1 and

true clusters

Figure 7.6: Heatmap of clusters generated by applying (6.2.4) to a vector of group num-

bers for each pixel in the simulated data.
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(b) Cluster 2

Figure 7.7: Component spectra detected in the simulated data using ALS, §2.7.1, the

bipartite model algorithm, 7.2.1, and algorithm, 7.3.1.
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(b) Final estimates from algorithm 7.3.1

Figure 7.8: Heatmap of clusters generated by applying (6.2.4) to a vector of group num-

bers for each pixel in the human tooth data.

7.3.2 Fitting the Bilinear Gaussian Mixture Model to Simulated and Real

Data

To test algorithm 7.3.1 we first simulated a simple dataset with n = 4900, r ′ = r ′′ = 1 and

yi = ci ,1s1 + 0s2 + εi for i = 1, ..., 1225

yi = 0s1 + ci ,2s2 + εi for i = 1226, ..., 4900

with

εi ∼ N (0, 1)

ci ,1 ∼ N (10, 1)

ci ,2 ∼ N (5, 1)

where s1 is a spectrum with a single peak in the centre and s2 is the paracetamol spectrum.

This gives us a dataset where 25% of the pixels are generated by one spectrum and the

remaining 75% are generated by a different spectrum. We see our initial, entirely random,

cluster estimates in figure 7.6 alongside the final clusters identified by algorithm 7.3.1 which

are equal to the original simulated mixture weights. Figure 7.7 also shows an improvement

in the detected spectra over conventional methods of solving (1.2.2) such a ALS, §2.7.1.

The results obtained from our first run with ALS correctly detected s1 however returned an

incorrect estimate of s2, with an anomalous reversed peak. The second ALS run detected

two noisy copies of s2, having selected two different solutions from the solution space defined

in chapter 4. The results from algorithm 7.3.1 however detected both spectra correctly

and clearly with no interference between the two. Our two stage algorithm, 7.2.1, also

correctly identified the clusters, using EMGM, and the component spectra. The advantage
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of algorithm 7.3.1 however is that the spectra and clusters are alternately estimated and

so the clusters can be refined based on the updated spectra estimates.

We then applied algorithm 7.3.1 to the human tooth data used in §7.2.3. For this data we

initialised w using the threshold method with ỹi < 150000 giving the scanned object cluster

estimate we see in figure 7.8a. Due to the clusters being initialised from the data rather

than random U(0, 1) values the difference between the initial and final group estimates

is not as distinct as with the simulated data. However figure 7.8b shows a moderate

improvement in isolating the tooth from the background. The estimated spectra were

also very similar to those found with the bipartite model shown in figure 7.5, with almost

no perceivable change. Throughout our application of this algorithm we noticed that the

choice of initialisation parameters made little difference to the results of the algorithm,

with any small differences likely due to the random selection of a solution from a space of

solutions as with the standard ALS algorithm 2.7.1.

7.4 Discussion

In this chapter our objective was to investigate methods of separating our data into clusters

to provide clearer estimated component spectra and concentrations. We first investigated

k-means and EMGM clustering methods and came to the conclusion that EMGM was more

successful in separating pixels on the border between the scan subject and the background.

We then defined and implemented a bipartite bilinear model which allowed us to reduce the

dimension of parts of the model where there were fewer component spectra. Results from

both the paracetamol and human tooth datasets were promising with estimated component

spectra for paracetamol appearing clearer and with less interference from background signal.

It was with the human tooth data however that we saw the greatest improvement with

the bipartite model detecting both component spectra in spite of their high similarity. This

similarity caused (1.2.2) to detect only a single component chemical when solutions were

estimated with ALS, §2.7.1.

With the EMGM clustering algorithm and our bipartite model proving effective at estimating

results with greater clarity we investigated a combination of the two. We modified the

Gaussian mixture model of EMGM to include our bilinear model estimates of the concentra-

tions and spectra as the distribution means, allowing us to reduce the model dimensions in

parts of the image whilst allowing the clusters to change throughout the algorithm. With

the maximum likelihood estimators of this mixture model derived we calculated the steps of

the EM algorithm to iteratively fit this new model. Our algorithm performed well on both

simulated data and our human tooth dataset, accurately isolating clusters and very similar

163



Chapter 7: Analysis of Spectroscopy Data using Cluster Analysis and Mixture Models

component spectra. Whilst the results obtained were very similar to those generated by

the previous algorithm we noted the key improvement that the iterative refinement of both

the parameter estimates and the mixture weights may allow the algorithm to predict more

accurate clusters based on repeatedly refined parameters.

Our proposed method bears some resemblance to spectral decomposition methods which

use isolated regions of the Raman image to provide clearer estimated spectra, some of

which are detailed in §2.5 and [59, 71, 72]. In comparison to these methods our proposed

algorithm requires no user interaction to isolate regions of the image or specific features in

the dataset where component chemicals are known to be fewer in number.

Future work in this area may investigate the convergence of the estimates of S and C in

algorithm 7.3.1. With the MLEs for these two sets of parameters being simultaneous we

rely on the proof of convergence from the alternating least squares method, §2.6.1. This

proof however may need confirming due to the changing clusters. The same convergence

investigation may also be required if NNLS, §2.6.2, is used in step 5 of algorithm 7.3.1 to

estimate non-negative concentrations. Whilst this algorithm has been proven to converge

the presence of changing clusters could, once again, cause problems.
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Discussion and Further Work

In this thesis we investigated a variety of multivariate techniques for analysing Raman

images. For half of the thesis our focus was on improving the spectral decomposition of

Raman images, as defined in §1.2, using current methods, Chapters 3 and 4, and a new

spectral decomposition method, Chapter 7. For the second half of the thesis we investigate

methods of analysing the results of spectral decomposition, Chapters 5 and 6.

8.1 Improving the Spectral Decomposition

In analysing a Raman spectroscopic image the resulting spectra, S, and concentrations, C,

can often include anomalies from the original data. These can manifest in many ways for

example extra peaks in spectra, linear trends in spectra and pixels with a considerably higher

concentration than others in the image. To improve our results from spectral decomposition

in Chapter 3 we investigated techniques for pre-processing the data. For anomaly removal

we proposed a process similar to a Windsorised mean where the values lying within the

data not including the 5% tails are used to replace the anomalously high or low values. We

used this technique to remove cosmic ray anomalies, manifesting as high elements in the

data matrix, and burnt pixels, appearing as high data matrix rows. We selected potential

anomalies by ordering the data and taking the highest 0.001% and 0.0001% of values for

cosmic rays and burnt pixels respectively. Even using these small values we were able to

almost completely remove visible occurrences of both types of anomalies in our Raman

image of a paracetamol tablet. Removal was judged by comparing the estimated spectra

to a reference spectra [75] and by inspecting the estimated concentrations for unusually

high pixels where a tablet surface would be expected to be smooth. Our methods were

also more simple than currently proposed techniques and required less computation time

and cost. For example the specialised laser receivers required to limit the occurrence of
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cosmic ray anomalies will increase the cost of the already expensive Raman spectrometers

[76] and taking repeated scans at each pixel, another popular method, can greatly increase

scan time and cost [50]. The methods sharing more similarities with our proposed method

use clusters of pixels or the standard deviation of pixels to locate anomalies [83, 98]. It is

here that our method improves on computation time at the expense of requiring user input

for the threshold above which observation intensities are judged to be anomalously high.

Future work on this area could involve automating the identification of the cut threshold.

For example if the distribution of the values in the Raman image were identified removing

cosmic rays, anomalously high observations, could be a matter of removing or smoothing

the values in the upper 95% of the distribution.

To more directly improve the results of spectral decomposition we investigated the effects of

variance scaling the data. With standard variance scaling a common technique in analysing

Raman images [32], used to improve the clarity of estimated spectra, we took the idea of

using Poisson scaling from Keenan and Kotula [57] who applied it to mass spectra. Whilst

conventional scaling performed as expected and was used throughout the thesis when we

required clear spectra our implementation of Poisson scaling was less successful with Raman

images than mass spectroscopy.

We also improved the clarity of our estimated spectra by correcting the baseline of the

Raman image using a modified linear model to enforce positive residuals from the model.

This proved very effective at making spectra appear more physically correct for the purposes

of identifying component chemicals. Currently published methods for achieving this are

primarily focused on chromatography NMR spectroscopy and involve separating the spectra

into parts containing no peaks and calculating how far from zero these are before correcting

[19, 20]. A popular method for Raman spectroscopy data was proposed by Zhang et al.

[106] and uses weighted least squares to correct the baseline whilst preserving peaks. Whilst

our method may not be as effective as these when compared with the results in [19, 20, 106]

it is more simple, as the spectra are corrected as a whole rather than in parts, and can be

applied with a wide range of optimisation techniques.

In Chapter 4 we investigated the non-identifiability of our model (1.2.3) and the resulting

solution space, with the aim of accounting for the infinite range of solutions into any testing

we perform. We began with a more in depth investigation into Lawton’s original method,

extending the two spectra solution space to allow for three or more component spectra.

For three or more component spectra we were unable to calculate analytic solution space

bounds and so defined a random walk about this space. The purpose of this random walk

was to allow us to sample a range of possible solutions to our bilinear model under the

knowledge that our assumptions, (1.2.5), would be met. Our random walk began with
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a known solution, estimated using any method of solving (1.2.3), and randomly moved

this solution about the solution space testing for non-negative spectra. With a region

generating non-negative spectra identified we then tested for non-negative concentrations

to obtain an estimate of the solution space. On our sample data our random walk proved

very effective at identifying the range of possible solutions our model may obtain. We

then combined these results with cluster analysis to group the possible solutions for each

spectra. In comparison to published work on the non-identifiability of (1.2.3) by Tauler [95]

and Garrido et al. [35] our method has no specific requirements on features in the data.

(For example Tauler [95] restricts the transformation matrix Ξ to enforce unimodal spectra

and Garrido et al. [35] restricts Ξ using regions of known concentration values where a

component spectra has zero concentration [35].) However, the random walk we propose

is slower than current methods due to the process with which all transformations of the

solutions must be tested. Whereas the two published methods previously mentioned use

numerical optimisation to find transformation matrices giving component spectra which

differ from each other as much as possible, with difference calculated using the Euclidean

distance between the spectra.

We therefore have scope for further work in our random walk of the solution space to speed

up the process and reduce computation costs. Currently selection of the transformation

matrix Ξ, used to move about the solution space, is entirely random and therefore results

in rejected steps. The only obvious limit we have with regards to the generation of ξ is on

the need for ξ1 > 0. Compliance of this can be obtained by limiting the solution space to

the positive ξ1 hemisphere. Further limitations on the rotation matrix however is difficult

due to the complicated shape of the hypersphere region comprising the solution space. We

may also be able to improve our acceptance rate of proposed points by incorporating prior

information on the Ξ. This prior information may include expected chemical components,

if they are known, or more information regarding the possible spectra and concentrations

generated from the eigenvectors.

Our final area of research into spectral decomposition was to propose an improved spectral

decomposition algorithm in Chapter 7. For this algorithm we began with methods of cluster

analysis for isolating the subject of the scan from the background. In testing k-means and

expectation-maximisation for a Gaussian mixture model we found EMGM to be the most

accurate for our purposes as it was able to detect border pixels where the laser may have

impacted both the subject and the background. The first method we proposed was a two

stage process involving clustering the data then fitting a bipartite model to each cluster

separately. With this method performing well at returning clearer spectrum estimates we

combined the two steps. By modifying the Gaussian mixture model, to incorporate the
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bilinear model into the means, we calculated the expectation-maximisation steps to form

our new algorithm. In practice the spectra returned were similar to those from the two stage

process, with less noise in the estimated spectra when compared to the standard algorithm.

The combined algorithm had the benefits of a shorter computation time and requiring less

user interaction as the algorithm could be initialised with no visual identification of clusters

representing sample and background.

The algorithm we propose has similarities with algorithms known as unique resolution

methods, §2.5, where regions of the Raman image are exploited to provide clearer estimated

solutions. The regions these unique resolution methods use contain zero concentrations for

certain component chemicals [71, 72] or are generated by only a single component chemical

[59]. In the former case zero concentrations of specific chemicals allow r to be reduced

and a separate analysis to be performed on that region with the idea that estimating fewer

component spectra will reduce the range of solutions possible from the solution space. The

latter case is a more extreme version of the former in that r = 1 for the region generated by

a single component. They therefore require specific features in the Raman image and a user

experienced in analysing spectroscopy data [53]. In comparison our method requires no user

interaction or advanced knowledge to obtain clearer estimated spectra than standard least

squares based methods. Results may be further improved if the algorithm were modified

to autonomously detect zero concentration regions and separately analyse these as in the

aforementioned methods. We must also consider the non-identifiability still present in our

model which we explore in Chapter 4. Whilst this will still need to be accounted for in any

testing we perform on results due to only the scan subject being analysed we aim to have

smaller errors in our model leading to less variable solutions and therefore a smaller solution

space.

One area for future work around our EM based method would be a proof of convergence for

the standard estimates of S and C and in the case where the NNLS algorithm was used in

step 5 of algorithm 7.3.1. With the standard estimates being iteratively estimated to achieve

convergence and the NNLS algorithm solving yi = ciS
T however constrained such that

ci ,r > 0 there is no guarantee the EM algorithm will converge as we are not simultaneously

maximising the bilinear Gaussian model parameters. Further to this the initialisation of the

mixture weights may require investigation in the case where the summation of observations

provides little information on the clusters, for example if applied to data other than Raman

images. There is also potential for future research into a clustering method using prior

knowledge on the scan subject, in the case of our data this prior knowledge may incorporate

the known circular shape of the tablet and the central position in the image.
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8.2 Analysing the Results of Spectral Decomposition

Our testing of spectral decomposition results in Chapter 5 involved both Hotelling’s T2

test statistic for sample means and new test statistics we proposed for quantifying how

randomly mixed pixels are in an image. These tests were also combined with the random

walk defined in Chapter 4 allowing us to incorporate some of the infinite range of solutions

available to us.

We began by using the standard T2 test for sample means on concentrations from a

single solution to (1.2.3) allowing us to compare regions of a single image or compare two

separate images. Whilst this conventional test returned sensible results, in applying it to

multiple solutions to our bilinear model we saw a range of p-values sometimes crossing

0.05, the 95% rejection region of the test statistic, giving us conflicting conclusions to

our hypothesis test. We also had to take care that the concentrations being compared

were either independent samples drawn from multivariate normal distributions with equal

covariance matrices or were sufficiently large to asymptotically follow this distribution. This

would ensure the assumptions of the T2 test held and so to check this assumption we

compared the test results from using tabled distribution values to those obtained from a

bootstrap test. Whilst the results from both the conventional test and bootstrap tests

concurred in their conclusions we could not guarantee that for all datasets the assumptions

of the Hotelling’s T2 test would be met. We therefore proposed an algorithm combining

our bootstrap test and random walk to both remove concerns over the assumptions of the

test statistic and to account for non-identifiability of the model.

Our second area of testing was to investigate the mixing in the component chemicals and

identify instances where the components were poorly mixed. Current methods for testing

mixing quality are either performed using substitute component chemicals of different colours

to test the mixing apparatus or use spectroscopy however focus on the estimated spectra.

The methods of Koc et al. [58] and Coënt et al. [21] are of the former type where the

apparatus is set to mix two dyed compounds and photographs of the process are taken.

These are then converted to greyscale with the number of pixels of each level counted to

quantify the mixing. The method of Lee and Lin [65] is more similar to ours in that it uses

spectra repeatedly estimated during the mixing process. The intensities of these spectra are

then compared across several regions of the Raman image to assess the quality of mixing.

However these spectra will only indicate the presence of component spectra in the image

region, not how thoroughly mixed they are, as the estimated spectra are shared across all

pixels of an image and so provide no spatial information.

To devise a method taking into account both the magnitudes of the estimated concen-
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trations and their locations we took the Minkowski functionals, grey-level co-occurrence

matrices and correlations between neighbouring columns of an image to form three test

statistics for quantifying the mixing. To narrow down our test statistics to the most reliable

we simulated two sets of data to represent poorly mixed images and perfectly mixed images

to which we would apply our proposed statistics. The first investigation of our test statistics

involved estimating Type I and II error rates which indicated that the best performing were

the neighbour-correlation-based test statistics, specifically Fdif f , (5.4.17). With this test

statistic applied in a bootstrap test combined with the random walk from Chapter 4 we

compared how thoroughly mixed the component chemicals were in tablets from two produc-

tion methods. For our datasets we concluded that the older crystalline-mixing production

method provided a more thoroughly mixed product, however with only three tablets from

each a larger sample size would be beneficial as the three amorphous tablets may have been

from a development run and so not representative of amorphously produced tablets.

In comparison to the most similar current method of Lee and Lin [65] our test statistic

more thoroughly tests the mixing of components as we test the concentrations in place of

the estimated spectra which contain no spatial data. However both methods are susceptible

to the non-identifiability of estimated solutions and must therefore be combined with our

random walk to provide stable solutions. The importance of this is demonstrated in §5.3.1

and figure 5.2b where the same null hypothesis was both accepted and rejected for multiple

solutions from the solution space. However incorporating this random walk greatly increases

computation time and so future work in this area is tied in with that of Chapter 4 in improving

the speed of the solution space exploration.

Future testing using the random walk from Chapter 4 could involve the point rankings

we are able to calculate during step 6 of algorithm 4.6.1. With these points we would be

able to weight our selection of new spectra from the solution space to use those which

more often meet the non-negative concentration constraint more often in step 6. Using

these points will be preferable to a random selection of points as, whilst a least squares

optimisation method may find a local minima containing some negative concentrations, we

will be able to avoid this. There is also scope for future research into the area of testing

the estimated component spectra. This may be possible using the distributions of the

eigenvectors from which we form our estimated spectra as a linear combination. These

asymptotic distributions were derived by Anderson [5, 6] with the main distribution results

from Anderson [6] summarised in Mardia et al. [73, Theorem 8.3.3]. With the asymptotic

distributions of estimated spectra we may be able to avoid the need for the solution space

as we can sample new spectra which will greatly reduce computation time. We will then be

able to perform hypothesis tests for the presence of component chemicals by comparing
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estimated spectra to reference spectra of chemicals we expect to find.

Our final area of testing is specific to Raman images gathered over time as the subject

changes or dissolves. The current pharmaceutical industry standard for testing dissolution is

to dissolve a produced tablet [8] in human body conditions. The flow rate of the dissolving

tablet is then monitored to ensure the tablet dissolves at a steady rate. However in using

spectroscopy to monitor the dissolution not only can the rate of dissolution be monitored,

using the increase and decrease in chemical concentrations, but the spread of the individual

component chemicals can also be investigated. With this scope for improved methods

of dissolution testing there have been some published methods involving spectroscopy.

In Chapter 6 we propose our own method for mapping and predicting the times at which

chemical levels change as a subject dissolves. Our most basic method of analysis is identifying

the maximum chemical concentration at each pixel and time point and and counting how

many pixels are assigned to each spectra. Whilst simple to calculate, and represent in the

form of a histogram, this method will suffer as the concentrations of only one component

are taken into consideration. To improve upon this we defined a simple two part model

based on the Gaussian cumulative distribution function. This model is applicable to datasets

where one chemical decreases and another increases. We also had to add penalty terms to

correct anomalous chemical changes, for example caused by the flow of the subject about

the scan region. With this model we successfully mapped the chemical levels in our caffeine

dataset as the tablet dissolved allowing us to estimate the process between the discrete

scan times.

We then proposed a more complicated model capable of fitting chemical concentrations

which increased then decreased. To achieve this we combined the separate parts of our

previous model to form a continuous curve capable of fitting to more of dissolution pattern

than a simple increase or decrease. Applying this model to our bicalutamide dataset proved

effective at predicting the times at which chemical levels changed and allowed us to estimate

the level change between the scan times. We also recreated the histogram from the basic

analysis detailed previously and obtained a far clearer representation of the pattern with

which the chemical components changed over time.

In comparing our model to current methods for analysing dissolving subjects with spec-

troscopy we see improvements in most areas. Where the method of Kazarian and van der

Weerd [56] detects the edge of the dissolving subject to map the dissolution pattern our

model identifies the time at which each individual pixel changes, giving a more complete

picture of the process. Although the visual inspection of heatmaps used by Windbergs

et al. [100] was possible for our Caffeine dataset the more complicated bicalutamide data

was more difficult to interpret in such a manner, therefore our single heatmap showing the
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change times is a more accessible format. Finally we saw the method of calculating the

number of pixels dominated by each component chemical [31] give ambiguous results with

the bicalutamide data in figure 6.5. In using the results from our model the clarity of these

results improved to the point where the dissolution process was easily distinguishable. Our

method however is not perfect and there is potential for future work in making the model

applicable to more patterns of concentration change in place of the "S" shaped processes

on which we focused.
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Numerical Optimisation

Numerical optimisation is the minimisation or maximisation of a function, often subject to

constraints on the variables. Numerical methods are particularly useful when an analytic

solution is difficult, or impossible, to find and can provide a close estimate to the true

solution [77]. We have a wide range of numerical optimisation methods available, each

suited to a particular type of problem or model. We may optimise functions subject to

constraints using either strict or soft penalties. The trust region, active set and quadratic

penalty methods will feature in this thesis so we will describe their processes in the following

sections.

A.1 Notation and Definitions

For unconstrained optimisation the problem is usually written in the form

min
x∈Rn

f (x) (A.1.1)

and for constrained optimisation the convention is

min
x∈Rn

f (x) subject to
ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

. (A.1.2)

where

• f is the objective function.

• x ∈ Rn is a vector of parameters.

• ci are constraint functions that define equations and inequalities to be satisfied by x.

• E and I are the indices for equality and inequality constraints respectively.
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There are also more specific functions like quadratic functions

min
x
q(x) =

1

2
xTGx+ xT c subject to

{
aTi x = bi , i ∈ E ,
aTi x ≥ bi , i ∈ I,

(A.1.3)

where c, ai ∈ Rn, G is an n × n matrix for a quadratic function.

Most optimisation methods are iterative where the value of x at the k th iteration is denoted

xk . For simplicity we often drop the iteration subscript k giving

fk = f (xk)

that is fk is the value of f evaluated at xk [77].

A.2 Active Set Methods

Active set methods use sets containing the active and inactive constraints and are applied

to constrained quadratic problems of the form

min
x
q(x) =

1

2
xTGx+ xT c subject to

{
aTi x = bi , i ∈ E ,
aTi x ≥ bi , i ∈ I,

(A.2.1)

where E and I are sets of indices for which the constraints are equalities and inequalities

respectively. If the active set of constraints, A(x) =
{
i ∈ E ∪ I|aTi x = bi

}
, were known

then this would simply be a matter of solving the equality constrained quadratic problem

min
x
q(x) =

1

2
xTGx+ xT c subject to aTi x = bi , i ∈ A(x)

for the solution x∗. However finding this optimal active set of constraints is often difficult.

The active set method starts with an estimate of A known as the working set, Wk . This

set consists of the indices of the equality constraints and those inequality constraints to be

imposed as equalities. Now we define a subproblem to be solved at each iteration as

min
p

1

2
pTGp+ gTk p subject to aTi p = 0, i ∈ Wk

where p = x − xk and gk = Gxk + c. We now have two cases, if p = 0 we compute a

system of Lagrange multipliers that satisfy∑
i∈Wk

ai λ̂i = gk = Gxk + c.

If λ̂i ≥ 0 for all i ∈ Wk ∩I we halt the algorithm with the solution x∗ = xk . If the algorithm

is not halted we set xk+1 = xk and modify W by removing the constraint that minimises

λ̂j for j ∈ Wk ∩ I.
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If p 6= 0 then pk can be thought of as the step direction towards xk+1 where we calculate

the step length αk using

αk = min

(
1, min
i /∈Wk ,a

T
i pk<0

bi − aTi xk
aTi pk

)
. (A.2.2)

With (A.2.2) we update x with xk+1 = xk + αkpk . If αk = 1 then the step is uninhibited

and there are no inactive constraints blocking the minimisation. However if αk < 1 then

the step along pk was blocked by some constraint(s) not in Wk . We identify the blocking

inactive constraint by the i for which the minimum was found in (A.2.2). In this case we

calculate xk+1 as before however now the blocking constraint(s) are added to Wk+1. We

repeat this process until an optimum is found with the proof of convergence shown by

Nocedal and Wright [77].

A.3 Trust-Region

Trust region optimisation was first proposed by Winfield [103] as a method of solving

(A.1.1). The theory behind a trust-region is to use information about f to construct a

model function, m, which behaves similarly to f near the current solution iterate xk . We

then restrict the search region around xk using a candidate step, p, as m may not behave

like f far from xk .

The model mk is usually defined to be a quadratic function of the form

mk(p) = fk + pT∇fk +
1

2
pTBkp (A.3.1)

where Bk is taken to be either the Hessian, ∇2fk , or some approximation to it. These two

choices lead to trust-region Newton and quasi-Newton methods respectively [77].

The basic outline of a trust-region approach to optimisation is to first define our trust

region about the model function m. With our trust region selected we calculate the step

direction p by solving

min
p
mk(p)

where xk + p lies inside the trust-region.

A.3.1 Trust Region Size

We select the size of the trust region, ∆k , for the next iteration using the ratio

ρk =
f (xk)− f (xk + pk)

mk(0)−mk(pk)
(A.3.2)
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This ratio will be close to 1 if there is a good agreement between the model mk and the

function f over the current step. If this optimal ratio occurs it is safe to expand the region

size, ∆k , for the next iteration. However if the ratio is close to 0 or negative the region

size is reduced at the next iteration. A common algorithm using this ratio sets the region

size at the next iteration as

∆k+1 =


1
4 ∆k if ρk <

1
4

min(2∆k , ∆̂) if ρk >
3
4 and ‖pk‖ = ∆k

∆k otherwise

for region bound ∆̂ > 0, initial region size ∆0 ∈ (0, ∆̂] and Euclidean norm ‖ · ‖. We also

use ratio (A.3.2) to decide whether to progress from xk using the conditions

xk+1 =

{
xk + pk if ρk > η

xk otherwise

for η ∈
[
0, 1

4

)
. This algorithm is studied in greater detail by Powell [81], with the conclusion

that with η = 0 the trust-region always takes a step if f decreases.

A.3.2 Step Direction

With our region size, ∆k , calculated we choose the step direction within that region using

one of a number of techniques. These techniques are all based on solving the subproblem

min
p∈Rn

mk(p) = fk + gTk p+
1

2
pTBkp

which often has the iteration subscript k removed for convenience to give

min
p∈Rn

m(p) = f + gTp+
1

2
pTBp

where gk = ∇f (xk) = g and B is the Hessian or an estimate.

A.3.3 Step Direction: Cauchy Point

The Cauchy point algorithm uses the steepest descent direction of mk , denoted −gk , which
we write as the following two minimisation problems

psk = arg min
p∈Rn

fk + gTk p for ‖p‖ ≤ ∆k

τ sk = argmin
τ≥0

mk(τpsk) for ‖τpsk‖ ≤ ∆k .
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(a) The Cauchy point, appendix A.3.3. (b) The dogleg approximation, appendix

A.3.4.

Figure A.1: Contour plots of f (x, y) = x2 + y4

50 with region size ∆k = 8 and the trust

region marked as a dashed ellipse.

We now define pCk = τkp
s
k as the Cauchy point or search direction. Closed-form solutions

to these are

pck = −τk
∆k
‖gk‖

gk (A.3.3)

τk =

 1 if gTk Bkgk ≤ 0

min
(

‖gk‖3

(∆kgTk Bkgk)
, 1
)

otherwise.
(A.3.4)

The step calculated by this method is inexpensive to calculate, as no matrix factorisations

are required, and always lies within the trust region. However this method often performs

poorly by achieving the worst case bound of the solution [3]. Therefore modified methods

based on the Cauchy point were developed. We see an example of the Cauchy point in

figure A.1a.

A.3.4 Step Direction: Dogleg Method

The dogleg method uses two line segments to select the step to take inside the trust region.

The first of these segments runs from the origin along the steepest descent direction, −g,
the same direction used by the Cauchy point, and is defined as

pU = −
gTg

gTBg
g.

The second segment known as the full step follows the trajectory defined by

p̃(τ) =

{
τpU 0 ≤ τ ≤ 1,

pU + (τ − 1)(pB − pU) 1 ≤ τ ≤ 2.
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where pB is the unconstrained minimiser of m given by −B−1g.

In the case that the unconstrained minimiser lies within the trust region, ‖pB‖ ≤ ∆, this is

the optimal value of p. However this is unlikely for all but the step attaining the minimum,

therefore we take the appropriate value of p to be the point of intersection between the

dogleg and the trust-region boundary. In figure A.1b this is the intersection between the

line p(τ) and the dashed ellipse. We fine the appropriate value of τ by solving the quadratic

‖pU + (τ − 1)(pB − pU)‖2 = ∆2. (A.3.5)

More detailed discussions on both the Cauchy point and Dogleg methods can be found in

the works of Nocedal and Wright [77] and Dennis and Schnabel [27].

A.4 Quadratic Penalty Method

Penalty methods are a form of constrained optimisation where we modify the original

problem with a penalty function. This function includes both the original minimisation

problem plus a term for each constraint which is positive when the constraint is violated.

These methods work by increasing the objective function when the constraints are not

met so that not only must the original function be minimised but the constraints are also

satisfied. Unlike the active set method the quadratic penalty method does not strictly

impose the constraints. Depending on the penalty parameter used the minimum possible

value of the function may only partially satisfy them.

Given an equality-constrained problem

min
x
f (x) subject to ci(x) = 0, i ∈ E , (A.4.1)

we define the quadratic penalty function, first proposed by Courant [22], as

Q(x;µ) = f (x) +
1

2µ

∑
i∈E

c2
i (x),

where µ > 0 is the penalty parameter controlling the severity of constraint violations. We

can also define this for a general constrained optimisation problem of the form

min
x
f (x) subject to

{
ci(x) = 0, i ∈ E ,
ci(x) ≥ 0, i ∈ I,

where E and I are sets of indices for which the constraints are equalities and inequalities

respectively. We now define Q as

Q(x;µ) = f (x) +
1

2µ

∑
i∈E

c2
i (x) +

1

2µ

∑
i∈I

(
[ci(x)]−

)2
,

where [ci(x)]− = max(−ci(x), 0). The algorithm for using these formulae is
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(a) Contour plot of Q(x;µ) with µ = 1,

minimum at (-1,-1).
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(b) Contour plot of Q(x;µ) with µ = 10.

Figure A.2: Contour plots of Q(x;µ), for problem (A.4.3), with 30 contour levels and

the constraint plot as a dashed ellipse.

Algorithm A.4.1. Quadratic Penalty Method

1. Choose starting values µ0 > 0, tolerance τ0 > 0 and starting point x0.

2. Find an approximate minimiser, xk , of Q(x;µk).

3. Terminate if |∇Q(xk ;µk)| ≤ τk otherwise set µk+1 ∈ (0, µk), choose a new xk+1

then return to step 2.

The new point xk+1 can be calculated using any unconstrained minimisation technique

such as the trust region method described in appendix A.3. At each iteration we adapt

µk+1 based on how expensive the minimisation of Q was. For example if the minimisation

was expensive we use µk+1 = 1.5µk , however if the minimisation was cheap to compute a

larger reduction may prove possible such as µk+1 = 10µk .

The drawbacks of this method include the difficulty of minimising Q when µk becomes

small and the ill conditioning of ∇Q(x;µk) close to the optimum where a small change in

x may produce a large change in the function. An algorithm to avoid problems caused by

ill conditioning was proposed by Gould [40] however because of the drawbacks augmented

Lagrangian methods [77] are commonly used instead.

A simple example of a quadratic penalty method is the function

min (x1 + x2) subject to x2
1 + x2

2 − 2 = 0 (A.4.2)

which gives

Q(x;µ) = x1 + x2 +
1

2µ

(
x2

1 + x2
2 − 2

)2
. (A.4.3)
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We see how different values for µ effect the optimisation in figure A.2. In figure A.2a

we see the contours of (A.4.3) are only slightly effected by the circular constraint and

the minimisation of (x1 + x2) is still taking priority. However for µ = 10 we now see the

contours of (A.4.3) are largely dominated by the constraint of x2
1 + x2

2 − 2 = 0 in favour

of minimising (x1 + x2). Therefore the true solution of (-1,-1) may not be found in favour

of another point on the ellipse.
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