
THE CONTRIBUTION OF CONVEYED COAL 

TO MINE HEAT PROBLEMS 

ANDREW GORDON WATSON, B.Sc. 

Thesis submitted to the University of Nottingham 
for the degree of Doctor of Philosophy, October 1981 



Abstract 

List of figures and tables 

List of plates 

Notation 

- i -

CONTENTS 

CHAPTER 1 RESEARCH OBJECTIVES 

1.1 Introduction 

1.2 History of underground heat problems 

1. 3 Emphasis 

1.4 Layout 

CHAPTER 2 SOURCES OF HEAT IN MINES 

2.1 Introduction 

2.2 Autocompression 

2.3 Strata heat 

2.4 Heat from mined material 

2.5 Machine heat 

2.5.1 Diesel power 

2.5.2 Compressed air power 

2.5.3 Electrical power 

2.6 Other heat sources 

2.6.1 Oxidation 

2.6.2 Personnel 

2.6.3 Rock movement 

2.6.4 Explosives 

2.6.5 Ambient climate 

2.7 Storage effects 

xi 

xii 

xvi 

xvii 

1 

3 

7 

9 

10 

10 

11 

13 

14 

14 

14 

15 

15 

15 

19 

19 

19 

19 

19 



- ii -

2.8 Sources of moisture 

CHAPTER 3 ;PSYCHROMETRY 

3.1 Introduction 

3.2 Composition of air 

3.3 Terminology 

3.4 Properties of air 

3.5 Basic unit 

3.6 Basic psychrometric equations 

3.7 Vapour pressure and wet bulb temperature 

3.8 Heat content of air 

3.8.1 Enthalpy 

3.8.2 Sigma heat 

3.9 Psychrometric programs and charts 

3.9.1 Computer evaluation of psychrometric 
data 

3.9.2 Psychrometric charts 

3.10 Psychrometric processes 

3.10.1 Sensible heating and cooling 

3.10.2 Evaporation and condensation 

3.10.3 Combinations of processes 

3.10.4 Adiabatic processes 

CHAPTER 4 PHYSIOLOGY AND HEAT STRESS 

4.1 The metabolic heat balance 

4.2 Heat exchange equations 

4.2.1 Convection 

4.2.2 Radiation 

4.2.3 Evaporation 

20 

22 

22 

23 

23 

24 

24 

27 

31 

31 

31 

34 

34 

35 

35 

35 

39 

39 

39 

40 

41 

41 

42 

42 



- iii -

4.3 Response to hot conditions 

4.3.1 Equilibrium 

4.3.2 Heat strain 

4.3.3 Heat stroke 

4.4 Heat stress indices 

4.5 Special thermometers 

4.5.1 Wet bulb thermometer 

4.5.2 Kata thermometer 

4.5.3 Wet bulb globe thermometer 

4.6 Systems b~sed on nanograms and formulae 

4.6.1 Effective temperature scales 

4.6.2 Predicted four hour sweat rate 

4.6.3 Specific cooling power 

CHAPTER 5 HEAT TRANSFER 

5.1 Introduction 

5.2 Conduction 

5.2.1 Fouriers Law 

5.2.2 Effect of shape 

5.3 Convection 

5.3.1 The boundary layer 

5.3.2 Convective heat transfer coefficient 

5.4 Radiation 

5.5 Heat transfer at wet surfaces 

CHAPTER 6 PRELIMINARY UNDERGROUND SURVEYS 

6.1 Introduction 

6.2 Bentinck K76's district temperature survey 

6.2.1 Description of district 

Page 

43 

43 

43 

44 

45 

46 

46 

46 

48 

48 

48 

48 

50 

54 

54 

55 

57 

62 

62 

64 

66 

71 

74 

74 

74 



- l.V -

6.2.2 Temperature survey 75 

6.2.3 Sample calculation and results 79 

6.2.4 Discussion 83 

6.3 Bentinck K76's district continuous temperature 
recording 87 

6.3.1 Introduction and method 87 

6.3.2 Installation of instruments 90 

6.3.3 Discussion 91 

6.4 Bentinck colliery survey of coal temperatures 96 

6.4.1 Method 96 

6.4.2 Discussion and estimates of heat load 101 

6.5 Hickleto~ TOl's district survey 103 

6.5.1 Description 103 

6.5.2 Sample calculations and results 106 

6.5.3 Discussion of static conditions 112 

6.5.4 Discussion of production conditions 112 

CHAPTER 7 HEAT EMISSION FROM CONVEYED COAL 

7.1 Introduction 114 

7.2 Qualitative assessment 114 

7.2.1 Coal in the strata 114 

7.2.2 The cutting process 115 

7.2.3 On the conveyors 116 

7.3 Factors affecting heat and moisture transfer 117 

7.3.1 Psychrometric condition of air 117 

7.3.2 Airflow 118 

7.3.3 Belt speed 118 

7.3.4 Shape of coal bed 118 

7.3.5 Temperature and wetness of coal loaded 118 



- v -

7.3.6 Sprays and subsequent wetting 119 

7.3.7 Machine heat distribution 119 

7.3.8 Radiant heat exchange with roadway wall 120 

7.3.9 Thermal characteristics of coal 120 

7.3.10 Size distribution 120 

7.4 Relationship between heat and moisture emission 121 

7.5 Choice of analytical method 122 

7.6 Equations for mass and heat exchange 123 

7.7 Heat exchange at the coal upper surface 124 

7.7.1 Heat exchange by convection 

7.7.2 Heat exchange by evaporation 

7.7.3 Heat exchange by radiation 

7.7.4 Conduction to the surface 

7.7.5 Thermal balance 

7.8 Heat exchange at the lower surface 

7.8.1 Heat exchange by convection 

7.8.2 Heat exchange by radiation 

7.8.3 Conduction through coal 

7.8.4 Conduction through belt 

7.8.5 Thermal balance 

7.9 Consolidation of equations and coefficients 

7.9.1 Upper surface 

7.9.2 Radiative heat transfer 

7.9.3 Latent heat transfer 

7.9.4 Collection of terms for upper and lower 
surfaces 

7.10 Temperature profile within the coal 

7.11 Requirement for experimental investigation 

124 

124 

125 

125 

126 

126 

126 

127 

127 

127 

128 

128 

128 

129 

131 

131 

132 

133 



- vi -

CHAPTER 8 EVALUATION OF THE THERMAL CONDUCTIVITY OF 
BROKEN COAL 

8.1 Introduction 

8.2 Direct measurement of conductivity 

8.2.1 Design of apparatus 

8.2.2 Sample box 

8.2.3 Cold water tank 

8.2.4 Chilled water supply 

8.2.5 Heater 

8.2.6 Sample temperature thermocouple 

8.2.7 Water temperature thermocouple 

8.2.8 Assembly and operation 

8.3 Results and discussion 

8.3.1 Treatment of results 

8.3.2 Sample calculation 

8.3.3 Results 

8.3.4 Discussion 

8.4 Transient measurement of diffusivity 

8.4.1 Theoretical basis 

8.4.2 Equipment 

8.4.3 Operation 

8.4.4 Treatment of results 

8.4.5 Results 

8.4.6 Discussion 

8.5 Theoretical prediction of bulk thermal 
conductivity 

8.5.1 Introduction 

8.5.2 Bounds of conductivity 

8.5.3 Effect of pore fluid 

135 

136 

136 

138 

139 

139 

140 

140 

143 

144 

146 

146 

147 

148 

151 

152 

152 

154 

157 

158 

160 

167 

169 

169 

170 

172 



- vii -

8.5.4 Discussion 

CHAPTER 9 MODEL OF A CONVEYOR IN A DUCT 

9.1 Basic concept 

9.2 Equipment 

9.2.1 Duct 

9.2.2 Conveyor sections 

9.2.3 Inlet heaters 

9.3 Instrumentation 

9.3.1 Air dry bulb temperature 

9.3.2 Air wet bulb temperature 

9.3.3 Air velocity 

9.3.4 Coal temperature 

9.3.5 Infrared thermometer 

9.4 Operation 

9.5 Processing of results 

9.5.1 Classification of results 

9.5.2 Basic information 

9.5.3 Measured values 

9.6 Information derived 

9.6.1 Worked examples 

9.6.2 Heat lost by coal 

9.6.3 Convective heat transfer coefficient 

9.7 Results 

9.7.1 Presentation 

9.7.2 Tables and graphs of results 

9.8 Discussion 

9.8.1 General comments 

Page 

173 

174 

176 

176 

178 

180 

182 

182 

182 

186 

191 

191 

193 

196 

196 

196 

198 

200 

200 

201 

206 

211 

211 

212 

221 

221 



- viii -

9.8.2 Reynolds number and air velocity 

9.8.3 Heat transfer through the belt 

9.8.4 Air heat pick up and wet bulb 
temperature 

9.8.5 Heat lost by coal 

9.8.6 Convective heat transfer coefficient 

9.8.7 Thermal diffusivity and conductivity 

9.8.8 Surface temperature measurement 

9.8.9 Tests using wet coal 

CHAPTER 10 TESTS ON A CONVEYOR AT PYE HILL COLLIERY 

10.1 Choice of site and investigation 

10.1.1 Choice of site 

10.1.2 Description of site 

10.1.3 Choice of survey techniques 

10.2 Continuous temperature record 

10.2.1 Purpose of record 

10.2.2 Equipment and installation points 

10.3 Airflow measurement 

10.4 Temperature surveys 

10.4.1 Position of measuring stations 

10.4.2 Survey in static conditions 

10.4.3 Survey in production conditions 

10.5 Electrical power measurement 

10.6 Coal temperature and moisture content 
measurement 

10.6.1 Bulk temperature measurement 

10.6.2 Surface temperature measurement 

10.6.3 Moisture content measurement 

221 

222 

224 

225 

227 

227 

228 

229 

230 

230 

231 

232 

233 

233 

234 

234 

236 

236 

237 

237 

238 

241 

241 

241 

242 



- ix -

10.7 Results 

10.7.1 Presentation 

10.7.2 Processing 

10.7.3 Continuous temperature record 

10.7.4 Temperature survey non production 
conditions 

10.7.5 Temperature survey production 
conditions 

10.7.6 Power measurements 

10.7.7 Coal bulk temperature 

10.7.8 Surface temperature 

10.7.9 Moisture content of coal 

10.8 Heat distribution and balance 

10.8.1 Heat balance 

10.8.2 Moisture evaporation 

10.9 Discussion and analysis of results 

243 

243 

243 

244 

245 

246 

248 

250 

251 

253 

257 

257 

258 

259 

10.9.1 Errors and estimates 259 

10.9.2 Continuous temperature record 259 

10.9.3 Heat survey in non production 
conditions 260 

10.9.4 Heat survey in production conditions 260 

10.9.5 Electrical power measurement and 
distribution 261 

10.9.6 Coal temperature and heat loss 262 

10.9.7 Surface temperature survey 263 

10.9.8 Moisture content of coal 264 

10.9.9 Heat balance 264 

~HAPTER 11 CONCLUSIONS 

11.1 Sununary 266 



- x -

11.1.1 Laboratory investigations 266 

11.1. 2 Theoretical analysis 266 

11.1.3 Underground investigations 267 

11.2 Further work 267 

11.2.1 Laboratory investigations 267 

11.2.2 Theoretical analysis 268 

11.2.3 Underground investigation 269 

11.3 Estimates of conveyed coal heat transfer rate 269 

11.3.1 Contribution to total mine heat load 270 

11.3.2 Contribution to heat load in intakes 270 

11.3.3 Heat loss rate from coal on conveyors 271 

11.4 Conclusion 

APPENDIX 1 

Vapour pressure table 

!?PENDIX 2 

Hickleton Colliery ventilation survey results 

!!'PENDIX 3 

Calibration curves of thermocouples 

Calibration curves of anemometers 

APPENDIX 4 

Specifications and instructions for infrared 
thermometer 'Infratrace' 

List of references 

Acknowledgements 

272 

274 

276 

278 

280 

283 

288 

290 



- xi -

ABSTRACT 

As coal mines get deeper, more mechanised and more productive 

the heat load on the ventilation system increases. In certain 

cases to the point where serious environmental problems may arise. 

To continue mining in these demanding conditions the sources of 

heat must be identified and evaluated so ameliorative measures may 

be taken. Due to the trend towards mining at greater rates and 

further from the shaft, mined coal on the conveyors is being 

recognised as a heat source of growing importance. This thesis 

describes its investigation. 

Reviews of heat sources, psychrometry,heat stress indices 

and heat transfer are included to provide a background framework. 

The evaluation of the heat released by conveyed coal itself con

sists of theoretical treatment and laboratory investigations of 

heat transfer through broken coal. A model conveyor and its 

instrumentation constructed in a duct are described along with 

underground measurements at mines. fhe information obtained from 

theoretical, laboratory and on site investigations is analysed and 

summarised to provide a basis for future prediction. 
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CHAPTER 1 

RESEARCH OBJECTIVES 

1.1 INTRODUCTION 

Coal will for the forseeab1e future provide a major source of 

energy for Britain and the world. It is relatively plentiful, 

environmentally safe, and available from many politically and 

economically stable areas. The contribution of coal as an energy 

source and its distribution world wide are shown in figures 1.la 

and 1.lb [1] • 

In Britain the National Coal Board's 'Plan for Coal' [2] and later 

'Plan 2000'reflect the confidence of the NCB in the future of the 

coal industry. Estimates for the year 2000 put UK coal production 

at 150-200 million tonnes per year. Comparison with 1980 produc

tion of 109 million tonnes indicates, at least, an additional 40 

million tonnes of new and replacement capacity. To meet future 

requirements the trends are towards mining coal at greater depths, 

rates and distances from surface connections. Workings are becom

ing more concentrated with both more and larger machines installed. 

Many of these characteristics of modern high productivity mining 

are unfortunately those which produce and aggravate underground 

climatic problems. Difficulties are already being encountered at 

some collieries. 

The main environmental problems will be caused by high temp

eratures which adversely affect the health, safety and performance 

of men. The ultimate aim of mine ventilation and air conditioning 

is to provide a climatic environment suitable for men in all under-
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ground work places with due consideration to safety and cost. It 

is therefore important to identify and evaluate contributing causes 

of a heat problem so that ameliorative measures may be taken. With 

regard to the solutions of heat problems these may range from simple 

measures to increase air velocity to, in extreme cases, the install

ation of a large scale air conditioning plant. The following section 

briefly describes the history of measures used to relieve the heat 

problems as mines have become progressively deeper, legislation 

tighter and workers expectations higher. 

1.2 HISTORY OF UNDERGROUND HEAT PROBLEMS 

The first trials of underground air cooling plant in British 

collieries appear to have been carried out as early as 1923 when 

researchers at the University of Birmingham [3] conducted tests at 

Holly Bank and Pendleton collieries in Lancashire. Underground 

refrigeration units of only some 15 kW capacity utilising the 

carbon dioxide cycle were tested and although giving valuable 

results no further work was undertaken until 1952 when investig

ations described by Bromi10w [4] were made at Snowdo~eco11iery in 

Kent. In this case a small direct evaporating air cooler, utilis

ing refrigerant R12 was used in a for.cing ventilation system for a 

heading. 

Since World War II air cooling equipment has been installed 

in some Belgian and West German collieries. Recent demand has 

resulted in the modernisation of the equipment and its use has 

become much more widespread. In response to increasingly hot con

ditions in the Parkgate seam at Bevercotes Colliery, North 

Nottinghamshire Area, a cooling unit of West German design was 
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installed in 1975 [5]. Thi~ system comprised of alSO kW direct 

evaporator unit in conjunction with a chilled water circuit 

feeding air coolers in two headings. Following successful oper-

ation larger systems have been used, the most recent being a 

750 kW refrigeration unit. This provides a chilled water supply 

to a district to give chilled service water via a heat exchanger 

and also an air chiller. Systems used in the future in hotter 

mines will probably be similar but larger with a centralised 

plant providing chilled water for both service water and air cool-

ing. This follows the recent developments in South Africa discussed 

later. 

Localised heat problems in headings and face ends have 

resulted in the development and production of self contained spot 

coolers of 30 kW capacity. Ten of these units are in operation to 

date in British collieries and following satisfactory use, negotia-

tions between the NCB and the manufacturers have resulted in the 

production of a 50 kW model. 

The country with the greatest experience of heat problems is 

South Africa. In 1924 when some mines were at a depth of 1,700 m 

o and virgin rock temperature (VRT) of 30 C+, the first fatal case 

of heat stroke occurred. By 1931 this figure had reached 92. This 

resulted in immediate and increasingly successful research into 

heat physiology and the recognition of the benefits of acclimat-

isation. Also air cooling systems were evaluated and introduced. 

Refrigeration commenced with the installation of surface air cooling 

plant. As to be expected these systems were relatively costly and 

inefficient, mainly due to the poor positional efficiency of 

surface plant. (Positional efficiency increases as the cooling is 
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applied nearer to the place where cooling is required.) Over the 

years better systems have been developed and refrigeration plants 

of up to 40 MW are now installed underground. A typical system 

comprises a centralised refrigeration plant rejecting heat via a 

cooling tower to the upcase shaft. The refrigeration unit supplies 

a chilled water circuit using insulated pipes around the mine with 

air coolers inserted where needed (fig. 1.2a). 

A recent development in South Africa is particularly signif

icant. The research workers at the Chamber of Mines of South 

Africa led by Whillier have found that. chilling the service water 

for underground machinery is very effective. The cooling effect 

of using chilled water is principally due to the high thermal 

capacity of water. positional efficiency is excellent due to 

cooling being applied at the point of work and the amount of water 

used being proportional to the work done. Also no costly water air 

heat exchangers are needed. 

A large scale test was undertaken at Hartebeestfontein Gold 

Mine, South Africa, starting in 1975 (6) which used a cnilled 

service water system and this has given excellent service to date. 

As a result the new Union Corporation 'Unisel' mine will have a 

chilled service water system as described by Howes and Green [7]. 

A similar system using a surface plant to chill water sent 

underground would be suitable for use in British collieries having 

extreme conditions. It is likely that this type of system will 

eventually be used. 



- 7 -

1.3 EMPHASIS 

This study is part of an integrated programme of research 

being carried out in the Department of Mining Engineering at the 

University of Nottingham to increase knowledge of mine environmental 

engineering. By concentrating on specific aspects it has been 

possible to build and improve an overall understanding of the 

problems and characteristics of the mine environment and hence 

make a useful contribution to industry by providing reliable 

predictions, solving existing problems and suggesting ameliorative 

measures, also assisting long term planning and the planning of 

new mines. The research is directed towards producing a suite of 

computer problems which may be used separately or in combinations 

to provide the services previously mentioned. In particular this 

project is a component in an attempt to evaluate the heat balance 

in the airflow around a coal mine. 

With regard to relatively deep coal mines the main sources 

of heat until recently have unquestionably been accepted as strata 

heat and that from machinery. Strata heat was a problem even 

before the intensive mechanisation which has aggravated the situ

ation. This problem is particularly acute on the face where up to 

1 MW of installed power is becoming commonplace. Virtually all 

the electrical power supplied is degraded to heat in the immediate 

area. Since about 1975 though it has become apparent that the 

coal mined has itself contributed to the heat load, potentially on 

a large scale. Rather than the massive amounts of machinery 

installed on a face dissipating heat entirely directly to the air, 

a proportion of this goes to the coal during cutting which may 

already be at a high temperature. 
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On a highly mechanised face with a high rate of advance the 

coal output is high. It is highly fragmented coal, well wetted, 

and travels a long distance out of the mine usually against the 

incoming air. This situation is conducive to a very efficient 

transfer of heat from the coal as it cools from around strata 

temperature to surface ambient temperature on its journey outbye. 

Subsequently air travelling to the working areas of the mine, 

probably along long trunk conveyor roads will arrive at the face 

already well heated. In the future when it is hoped faces will 

frequently produce 1000 tonnesper shift the consequences of the con

veyed coal heat source will be of even greater significance. The 

purpose of this study was to:-

(i) Find the potential magnitude of the heat from conveyed 

coal. 

(ii) Identify and evaluate the heat in the coal. 

(iii) Identify and evaluate variables and mechanisms affecting 

heat transfer from the coal. 

(iv) Attempt to predict the amount of heat released from 

conveyed coal in a mine. 

It is important to note that me~surement and prediction of 

the scale and characteristics of sources of heat in a mine is 

complicated by the dynamic nature of the situation and the 

extremely complex interactions which take place, notably with the 

enormous strata heat sink. 
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1.4 LAYOUT 

This thesis is arranged so that necessary background is 

included first. This is to allow a full understanding of the 

principles used in the research work and familiarise the reader 

with the research philosophy and reasoning. First is a review of 

heat sources found in mines. These are listed and discussed part

icularly with respect to their magnitude and interaction. Not all 

give problems in British collieries, but they illustrate the 

diversity of the problems encountered. 

The most important effect of a poor environment is an adverse 

reaction of workers in it. Consequently human response to excess 

heat and heat stress indices are examined. 

To facilitate understanding of the practical work a thorough 

knowledge of psychrometry, the study of heat in air and air temp

erature measurement is essential as is that of the various types 

of heat transfer which are also included. 

The actual research described consists of a theoretical 

treatment followed by laboratory work to evaluate input parameters. 

Mainly the thermal characteristics of broken coal. Following this 

is a description of a fully instrumented model of a conveyor con

structed in a duct where the air conditions could be controlled. 

The results of this are then examined and compared with data 

collected in underground investigations both before and after the 

laboratory work. The increased understanding of the mechanisms 

and magnitude of the heat transfer from conveyed coal is described 

together with some estimates for different situations. 
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CHAPTER 2 

SOURCES OF HEAT IN MINES 

2.1 INTRODUCTION 

Identification of all the sources from which heat enters mine 

ventilation air is essential before attempting any study of the 

complex subject of heat exchanges with mine air. It must be 

emphasised that the quantities of heat introduced into the air 

current from these sources may vary considerably from one mine, 

or situation to another. The degree of wetness of m1ne airways 

and working areas has a profound influence on heat flow and so a 

brief resume of moisture sources appears at the end of the chapter. 

2.2 AUTOCOMPRESSION 

It is known that the temperature of air can change with 

change in pressure. The expansion of air performing work produces 

cooling, and compression heating. When air descends a mine shaft 

2 it is compressed at a rate of approximately 1200 N/m per 100 m 

vertical travel under its own weight. The potential energy 

possessed by the air at the shaft top is converted to heat energy 

as the air descends. This is termed autocompression. 

The increase in temperature to autocompression is calculated 

as follows: 

gravitational acceleration x vertical distance 
specific heat of air 

For instance air descending a shaft 100 m deep will increase dry 

bulb temperature:-
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9.81 x 100 
1004 

(1) 

The increase in dry bulb temperature in a dry shaft is approximately 

10C per 100 m. Evaporation from the walls of a wet shaft can 

reduce this to 0.4°C per 100 m which corresponds to the wet bulb 

temperature increase (see Chapter 3, Psychrometry). 

2.3 STRATA HEAT 

The temperature of the rocks comprising the earths crust 

increases with increasing depth. 

The temperature gradient varies according to the type of rock 

formations and so varies with iocation. It is inversely propor-

tional to the thermal conductivity of the rock. Geothermal flow 

of heat from the hot core of the earth is about 0.05 W/m2 and is 

practically constant over most of the earth's surface. The temp-

erature of undisturbed strata at any point is known as the virgin 

rock temperature (VRT), or sometimes virgin strata temperature 

(VST). Figvre 2.3a shows the geothermal gradients of some of the 

world's mining areas. It can be seen that coalfields have a steep 

geothermal gradient. This is caused by the carboniferous strata 

having a low thermal conductivity. The South African goldfields 

have, due to the high conductivity of the quartzite, a shallower 

geothermal gradient. In the latter case mines are able to 

penetrate much deeper before high VRTs are encountered. When rock 

is exposed by mining operations, providing the rock is at a higher 

temperature than the air, heat is liberated from the rock to be 

picked up by the ventilating air. The rate and amount of heat 

transferred to the air depends on several factors, some obvious, 
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and some which will become more apparent after reading the chapters 

on psychrometry and heat transfer. These factors are:-

Within the rock 

(i) Physical properties of the rock (thermal conductivity, 

specific heat and density). 

(ii) Local geology. 

(iii) Virgin rock temperature. 

Across the rock air interface 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

Temperature of the rock surface. 

Length of time since exposure. 

Wetness of rock surface. 

Physical parameters of surface (roughness area, size and 

shape of roadway). 

Air flow rate and velocity across surface. 

Psychrometric condition of air. 

Heat from the broken rock in the goaf of a coal face is also 

considered as strata heat within the scope of this thesis. 

2.4 HEAT FROM ROCK BROKEN IN MINING 

The heat within broken rock has two components, the original 

strata heat and heat due to the breaking process whether caused by 

blasting or cutting. It is considered as separate to its component 

sources due to its magnitude and the fact that it does not reduce 

the ability of the strata to transfer heat. 

Successful attempts have been made to theoretically assess 
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the heat derived from broken rock in gold mines by Whillier and 

Van der Walt [8]. With regard to coal mines the situation is 

complicated by machine cutting and extensive conveyor systems. 

This subject is covered in more detail later in the thesis. 

2.5 MACHINE HEAT 

The usual sources of power underground are electricity, diesel 

and compressed air. Apart from the power used, the amount of heat 

generated varies according to the type of work done. 

When work is done against gravity, pumping or hoisting, the 

work appears as increased potential energy of the material raised 

and does not appear as heat. In horizontal workings though all 

the energy supplied to machinery ultimately appears as heat. 

2.5.1 Diesel machines 

The heat produced by a diesel machine is equivalent to the 

calorific value of the fuel multiplied by the amount used. The 

most common users of diesel power are locomotives which generally 

do little work against gravity so most of the power used will 

appear as heat. In general though the amount of heat from a 

diesel locomotive is relatively small but in areas where ventilation 

is poor it could be significant. 

2.5.2 Compressed air 

Compressed air working by expansion does so at the expense of 

its own pressure energy which is reduced by an amount equal to the 

work done. If all of the work done by a compressed air motor is 
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against friction the amount of heat produced is equal to the loss 

of heat due to the air expansion and the two cancel. 

2.5.3 E1ectri~a1 Pow~r 

The heat produced by electrical machinery is equal to the 

power supplied to the machine. This can easily be measured. The 

heat from the machine is dissipated as shown in figure 2.5a. The 

total rated power of machinery on a coal face may often exceed 

1 MW and in the restricted environment of a face this could 

produce intolerable conditions. Fortunately utilisation is seldom 

more than 50% and few motors work at full power for more than a 

few minutes at a time. The heat from a machine may not be dissip

ated in strict relation to the power drawn as large machinery, say 

a shearer, has a lot of thermal inertia. It can store heat as it 

gets hot and release it later as it cools. The effects of storage 

are discussed later. 

The last three mentioned heat sources, strata, broken rock, 

and machinery interact to a large extent on a coal face. The 

situation is best described graphically as figures 2.5b and c. 

2.6 OTHER HEAT SOURCES 

2.6.1 Oxidation 

The heat produced by oxidation of wood, coal or other minerals 

lS difficult to measure or predict as it is usually small. There 

are rare cases of mining in sulphide ores where large problems are 

caused. 
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2.6.2 Personnel 

A man working hard can generate up to 500 W which is small 

compared with other sources. The only place body heat could be a 

problem is in a particularly labour intensive heading or stope. 

2.6.3 Rock movement 

Large amounts of potential energy are dissipated during 

caving of rock. The strata acts as a heat sink though so there 

is little effect on the ventilation air. 

2.6.4 Explosives 

Although explosives have the potential to release large 

amounts of heat, about 4 MJ/kg, no heat problems are caused. On 

mines where explosives are used in large quantities the workings 

are cleared during blasting. 

2.6.5 Ambient climate 

The condition of the air entering the mine naturally affects 

conditions underground. Not a problem in the UK. 

2.7 STORAGE EFFECTS 

If the heat emissions from all sources between two points on 

a ventilation circuit are added they should equal the heat gain by 

the air. Werk or energy balance being achieved. Over recent 

years it has been detected in several cases, particularly districts 

in coal mines)that balance is only attained over a period of time 

["9]. This is due to heat storage mainly in steelwork and the strata 
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immediately around the airway. During peak production the heat 

made from all sources, but mainly machines escalates ra~idly, 

raising the air temperature. Heat is transferred in turn to the 

steelwork over which the air passes. The high thermal conductivity 

and specific heat coupled with the vast quantities of steel on a 

district, possibly a few thousand tons, give a large storage pot

ential. It should be noted that the rate of temperature change 

will determine the storage, and release, rates not the extent of 

the change. 

The strata surrounding an airway stores heat on a similar 

principle, but the magnitudes of the variables are different. 

Conductivity is low, but the masses involved vast. There is an 

added complication of the temperature profiles round certain road

ways changing to give a storage effect even if the heat flow is 

all to the airway but the net result is similar. 

Thermal storage has an advantageous effect in that to a 

certain degree it reduces peaks in the overall heat make, but it 

has little effect in the very short term and close to a large spot 

source. A cutting machine for instance. With respect to this, 

ventilation should still be designed to cope with the worst 

possible conditions until more is known about thermal storage to 

allow confident accurate predictions. 

2.8 SOURCES OF MOISTURE 

To understand the various processes that occur in a mine 

airstream, humidity must be taken into account. Moisture has a 

large effect on the psychrometric condition of the air and hence 

heat flow from the various heat sources, most importantly the mine 
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personnel. Air must be kept reasonably dry for two reasons: 

(i) The human body cools mainly by evaporation, which is 

reduced if the humidity is high. 

(ii) When water evaporates into air it reduces the dry bulb 

temperature, thereby inducing more heat transfer to the 

air. 

Heat transfer is enhanced when a surface is wet due to latent 

heat transfer. In the case of strata heat this can have a consid

erable effect. Sources of moisture in mine air are:-

(i) Ambient atmospheric moisture. 

(ii) Natural ground water. 

(iii) Service water. Dust suppression water, hosing down. 

(iv) Personnel. 

(v) Heat exchangers Cooling towers, spray chambers. 

(vi) Oxidation and chemical processes. 
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CHAPTER 3 

PSYCHROMETRY 

3.1 INTRODUCTION 

Mine environmental engineers have a particular interest in 

psychrometry, the study of moisture and heat in air for two 

reasons. Firstly, humidity must be taken into account to under

stand fully the thermodynamic processes occurring in a mine 

ventilation circuit and psychrometric relationships provide a 

quantitative means of assessing climatic changes. 

Secondly, heat and humidity have considerable effects on the 

human body. The physiological consequences of an unsuitable 

environment are the main reasons for efforts to control heat and 

humidity which would not otherwise be a problem. 

3.2 COMPOSITION OF AIR 

The atmosphere surrounding the earth is a mixture of several 

gases, the main constituents being oxygen, nitrogen and carbon 

dioxide. Other gases are present in small quantities. Under 

normal conditions the proportions of these gases do not vary to 

any significant extent. It is therefore convenient to regard all 

the gases comprising one gas only, commonly called 'air'. However, 

in addition to the above mentioned gases the air also contains a 

certain amount of water vapour. The amount of water vapour can 

vary considerably. For subsequent treatment the proportions of 

all constituents other than water vapour are assumed to be constant. 
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3.3 TERMINOLOGY 

The description of the mixture of air and water vapour is not 

strictly correct. We speak of dry, humid or saturated air. Air 

is none of these. The atmosphere may be dry, humid or saturated; 

if dry it contains only air, if saturated it contains the maximum 

amount of water vapour besides air. This has given rise to terms 

such as vair (vapour air mixture) and mair (moist air) which reflect 

the true situation. However, to avoid repetition, terms such as 

vair velocity etc and allow a standard the term air can be taken 

to mean the vapour air mixture and if in context there could be 

any ambiguity it will be qualified, eg dry air, moist air. 

3.4 PROPERTIES 

An air vapour mixture can be imagined as two constituents 

mixed uniformly but each exerting its own partial pressure to 

form a total pressure (Daltons Law). For a given volume and 

temperature each constituent part of the mixture contribute, to 

the pressure, energy, entropy and total heat of the mixture by 

the same amount as it would if alone in that space. 

Two independent properties are needed to define the state of 

a pure substance. When the values of any two are fixed (defining 

a condition) the values of all other properties for that condition 

can be found. Since moist air consists of water vapour and air, 

four properties are needed but as air and water vapour have a 

common dry bulb temperature only three are required. In psychrom

etric work these three properties are generally the pressure, dry 

bulb temperature and wet bulb temperature. All the work in this 

project was carried out at atmospheric pressure. 
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3.5 BASIC UNIT 

For this project the properties of the vapour air mixture 

are expressed per unit mass of dry air. The kilogram of vapour 

air mixture would not be satisfactory since the mass of water 

vapour in the vapour air mixture changes whereas dry air is a non 

condensable gas at normal temperatures and pressures so its mass 

remains constant. 

3.6 BASIC PSYCHROMETRIC EQUATIONS 

The basic psychrometric equations can be derived by applying 

the perfect gas equation to the air and water vapour separately, 

then combining them by means of Dalton's Law. 

The perfect gas equation is 

Thus for dry air 

and water vapour 

P.V = m.R.T 

P .V 
a 

e.V 

m .R .T 
a a·a 

m .R .T w w w 

Assuming V 1 m3 we obtain for dry air 

and for water vapour 

P 
a 

R .T 
a a 

e 
11\y=R.T 

w w 

(1) 

(2) 

(3) 

(4) 

(5) 
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Combining these two we obtain 

then 

P 
M = _....:a:;

R .T a a 

= M 

e 
+ -:::--""=R .T w w 

(6) 

kg of air (7) 

According to Da1tons Law P = 
Ra 

P + e. Hence P P - e. With 
a a 

s = -- and T = T = T (air 
Rw a w and water have same temperatures) 

we can write 

M 
_- P - e.(l - s) 

Ra·T 
kg of air 

Similarly we obtain 

= 

'Also 

e.s 
P - e 

m 
w -- = 

e Ra·T 
R .T x -P-

w a 

kg of water vapour/kg dry air 

(8) 

(9) 

(10) 

(11) 

e.s 
= ~P---e-:;'.""7(-:-l---s') kg of water vapour/kg of air (12) 

Substituting the known values in the above equations: 

R 0.287 kJ/kg K a 

Rw = 0.461 kJ/kg K 

T = 273.15 + tdb K 

R 
s = ~ = 0.622 
~ 

1 - s = 0.378 
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We obtain the following equations for any temperature and 

pressure:-

Specific volume of dry air 

0.287045 (273.15 + t db) 

P 

Density of dry air 

P 
Pa = 0.287045 (273.15 + t

db
) 

N.B. for dry air e 0, so P P a 

True specific volume of air 

v = 
0.287045 (273.15 + t

db
) 

P - 0.378 e 

True density of air 

P - 0.378 e 
P = ~~~~~~~~----0.287045 (273.15 + t

db
) 

m3/kg of dry air 

kg of dry air/m
3 

3 m /kg of air 

kg of air/m3 

For many calculations the apparent specific volume or density 

based on 1 kg of dry air is more useful than the true specific 

volume. 

Apparent specific volume of air 

v sp = 
0.287045 (273.15 + t db ) 

P - e 

Apparent density of air 

P-.e 
= 0.287045 (273.15 + t db) 

m3/kg dry air 

kg of dry air/m3 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

A more detailed derivation of equations (15) to (18) is given by 

McPherson [10]. 
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Apparent specific humidity, or moisture content (from 10) 

x -
P - e 

0.622 e 
g of water vapour/kg dry air 

Relative humidity 

e 
<P =

e sdb 
x 100% 

3.7 VAPOUR PRESSURE AND WET BULB TEMPERATURES 

(19) 

(20) 

Many of the above formulae include the factor of vapour 

pressure, 'e'. Although the vapour pressure is generally small 

compared with the total barometric pressure (P) it is important 

that it be known accurately because the amount of water vapour in 

the atmosphere is a function of the vapour pressure and since the 

heat content of the water vapour can be large compared with the 

sensible heat of the air, an accurate determination of the amount 

of water vapour present is important in order to obtain an accurate 

value of the content of air. 

Calculation of 'e' is from measurement of the ambient wet and 

dry bulb temperatures. The wet bulb temperature is measured using 

an ordinary thermometer which has a cloth sleeve over the bulb 

which is wetted. Air passes over this becoming saturated as 

evaporation takes place from the wet cloth surrounding the bulb. 

The temperature and consequently the thermometer reading drop 

until the temperature reached is that at which there is equilibrium 

with heat transfer from the air to the thermometer just balancing 

the heat transferred by evaporation of the water. Thus the 

sensible heat lost by the air is equal to the product of the mass, 

specific heat of moist air (C ) and the temperature change. 
pm 
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If 1 kg of dry air has x kg of mositure it may be shown that 

Sensible heat loss (1 + x) C
pm 

(t
db 

- t wb ) (x in kg/kg) (21) 

From accepted relationships between specific heats found in a 

paper by Parkzewski and Hinsley on Hygrometry in Mines [11] it is 

shown that 

C + C .x 
C = pa pw 

pm 1 + x 

where C = Specific heat of water vapour 
pw 

C = Specific heat of dry air pa 

Applying this to (22) we have 

(22) 

Sensible heat loss = (Cpa + Cpw·x) (tdb - t wb ) (23) 

The latent heat transfer from the wet bulb to the air = L (x - x) s 

where L = latent heat of evaporation of water and x = moisture 
s 

content of air at saturation. 

For equilibrium to be maintained 

From (19) in basic psychrometric equations 

x = O.622.e 
P - e 

at saturation equation (25) becomes 

O.622.e 
s x· 

s P - e s 

kg/kg 

L (x . - x} 
s 

(24) 

(25) 
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Therefore, substituting for x and x in the heat balance equation s 

(24) it follows that 

C .0.622.0j [c + EW ( - t ) pa P - e tdb wb 

Re-arranging 

e = (P _ e) [ e~ .l.P - e s 

0.622.L. [p 

1 rc 
0.622.LLpa 

+ 0.622. P 0 0 • Cpw} (tdb - tWb~ 

assuming e and e «P then s 

P.c ~ pa' e 
e = e - --~~-=- - - c s 0.622.L L· pw 

assuming e and C «L we may approximate 
pw 

e = e s 

giving 

P.C 
_~E;.,;:;:a;,,- (t

db 
- t

wb
) 

0.622.L 

e 

oJ s e 
- e P -s 

'a' is called the Psychrometric constant" although it is not 

constant but varies according to 

o -1 
C 

For a more accurate determination of 'e' Barenbrug [12] gives 

e = 
es (371.4 + 0.24 tdb - 0.6 t wb - 0.24 (tdb - t wb ) P kPa 

371.4 + 0.04 tdb - 0.4 t wb 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 
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Within the range of temperature encountered in mining (0-70oe) the 

saturated vapour pressure e may be calculated to within 0.1% 
s 

using 

[ 
l7.27t J es 0.6105 exp 237.3 + t kPa 

A table of saturated vapour pressures appears in the appendix (A. 1). 

3.8 HEAT CONTENT OF AIR 

3.8.1 Enthalpy (total hea~ 

The enthalpy of the air is the sum of the enthalpy of the dry 

air and that of the water vapour. 

H 

= Sensible heat + Sensible heat + Latent heat + Superheat of 
of dry air of water of evaporation water vapour 

= 1.005 tdb + {4.l87 t wb + (2501 - 2.387 t wb ) 

(33) 

3.8.2 Sigma heat 

Of particular importance is a property known as Sigma heat 

which is defined as the enthalpy minus the sensible heat of the 

water which has evaporated to vapour. 

S = Enthalpy - Sensible heat of water evaporated 

= 1.005 tdb +[(2501 - 2.387 t wb ) + 1.884 (tdb - tWb1X kJ/kg 

(34) 
NOTE x is here expressed in kg/kg. 
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Sigma heat differs only slightly in numerical value from 

enthalpy and is an important property of air when changes of 

moisture content occur. Its implications are best illustrated by 

example: 

Consider a long level airway with no heat additions from any 

source and free water covering the floor. Unsaturated air enters 

one end and moves slowly through to allow the air to exit in a 

saturated condition. The liquid water surface will be at wet bulb 

temperature. At inlet the dry bulb temperature will be higher so 

sensible heat transfer from the air to the water occurs. 

Simultaneously mass transfer from the water to the air will take 

place as water evaporates,a latent heat gain by the air. As 

illustrated in figure 3.8a the dry bulb temperature falls but the 

wet bulb temperature remains constant. These heat exchanges 

continue until the air is saturated, wet bulb, dry bulb and water 

temperatures being equal. This is known as an adiabatic saturation 

process. There should be no net flow of heat into or out of the 

system for a truly adiabatic process so in this case a small 

correction must be made. Mass is added to the airstream in the 

form of water which already contains some sensible heat before 

evaporation. Thus if the process is to be considered truly adiab

atic the sensible heat of the water evaporated must be subtracted 

from the enthalpy. Consequently in an adiabatic saturation process 

the sigma heat remains ~dentically constant. The thermal changes 

involved take place internally as sensible heat is transformed to 

latent heat during evaporation 

In a wet bulb thermometer the equilibrium temperature reached 

is that at which the rate of heat reception by the water from the 
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air just balances the loss of heat by evaporation. This equilibrium 

temperature differs negligibly from the adiabatic saturation temp-

erature. Hence it is normally accepted that the sigma heat remains 

constant for a constant wet bulb temperature. 

Using the concept of sigma heat, heat losses and additions to 

mine air can be determined from psychrometric observations. The 

behaviour of the wet bulb thermometer in traversing mine workings 

gives an immediate indication of the heat transferred to the air 

from all sources. 

3.9 PSYCHROMETRIC PROGRAMS AND CHARTS 

To avoid tedious and repeated calculations of psychrometric 

data two aids are available to the engineer. 

3.9.1 Computer evaluation of psychrometric data 

Psychrometric computer programs give instant display of 

relevant information for a given set of input conditions. The 

University of Nottingham, Department of Mining Engineering has a 

program on its mini-computer which was used frequently throughout 

this project. Given wet bulb and dry bulb temperatures and 

atmospheric pressure the program (lp.S.") gives:-

Psychrometric constant o -1 
C 

Vapour pressure kPa 

Relative humidity % 

Dew point temperature °c 

Moisture content g/kg dry air 

Specific volume m3/kg dry air 
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True density kg/m 3 

Vapour enthalpy kJ/kg 

Mixture enthalpy kJ/kg dry air 

Sigma heat kJ/kg dry air 

3.9.2 - Psychrometl"'ic charts 

Psychrometric charts are produced in various forms for a 

range of air pressures. They allow evaluation of various 

psychrometric parameters rapidly and with little calculation. 

Such charts are necessarily less precise than the formulae on 

which they are based but their accuracy is adequate for most 

routine purposes. The charts are also useful in that processes 

on air may be followed graphically. The most comprehensive and 

useful set of charts for mine environmental engineers are those 

by ~'. Barenbrug. An example of a chart appears as figure 3.9a. 

Each chart is confined to a set of conditions at a given pressure, 

but sensitivity analyses show that pressure fluctuations have 

small effect compared with temperatures. More sophisticated, but 

unwieldy charts are produced which will take account of pressure 

changes. The next section illustrates some processes of interest 

to the mining engineer and relates them to a psychrometric charts. 

3.10 PSYCHROMETRIC PROCESSES 

3.10.1 Sensible heating and cooling 

Sensible heating or cooling is a process where no moisture 

content variations take place. Therefore no latent heat is 

exchanged so the heat change is sensible, the temperature changes. 
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FIG 3·9a PSYCHROMETRIC CHART. 
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Such processes follow the horizontal moisture content line 

(figure 3.l0a). 

3.10.2 Evaporation and condensation. 

Evaporation and condensation are typified by changes in 

moisture content of the air. Movement along a constant dry bulb 

line indicates pure latent heating or cooling with evaporation 

or condensation respectively (figure 3.l0b). 

3.10.3 Combinations of processes 

Figure 3.l0c shows changes involving combinations of processes, 

two of which commonly occur in mines. Cooling and dehumidifying 

occurs in an air chiller. Heating and humidifying takes place at 

several heat sources. Wet roadways, cutting machines using water 

and coal conveyors are good examples. 

3.10.4 Adiabatic process 

An adiabatic process takes place at constant wet bulb temp

erature and hence constant sigma heat. Heat is neither added 

nor taken awa~ the only heat transfer being internal between air 

and water. An example of such a process is an evaporative cooler 

where water enters at air wet bulb temperature. 
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CHAPTER 4 

PHYSIOLOGY AND HEAT STRE~S 

4.1 THE METABOLIC HEAT BALANCE 

The heat exchange between any object and its environment takes 

place according to clearly defined physical laws. Heat is 

exchanged by combinations of processes, all oecurring at the 

interface between the object and its environment. Although the 

same laws apply to all living bodies there are noteworthy differ

ences applying to humans. These are of great significance in the 

ability to maintain thermal balance and a fixed body temperature 

(36.SoC) despite widely varying environmental conditions. 

Firstly, there is the continuous and variable production of 

heat from biochemical processes involved in metabolic activity. 

Secondly, physiologically the body can react dynamically, through 

~ardiovascular and sweating mechanisms to changes in the overall 

heat load so as to modify the rate of heat transfer from the body 

core to the peripheral tissues and hence, by changes of surface 

characteristics to the environment. 

The body can be seen as a heat engine taking in food and 

oxygen and by low temperature oxidation producing work andtdue to 

its inefficiencYtlarge amounts of heat. This metabolic heat 

generation varies according to muscular activity, physical and 

mental state and age of the person. It must equate to net heat 

loss to the environment for equilibrium to be maintained. 

The heat balance between the body and the environment can be 

represented as a heat balance equation. 
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MHG ± C ± R - E ± s (1) 

where 

l1HG = Metabolic heat generation 

C = Heat lost or gained by convection 

R = Heat lost or gained by radiation 

E = Heat lost by evaporation 

S Heat gained or lost by storage. 

C + R + E may be collected together into a single term, air 

cooling power (ACP). Although the body rarely achieves precise 

thermal equilibrium over a period storage (s) can be taken as 

negligible. 

4.2 HEAT EXCHANGE EQUATIONS 

With regard to the cooling terms Leithead [13] gives the 

numerical approximations with the following descriptions:-

4.2.1 Convection 

If the air temperature i~ lower than the skin temperature the 

body loses heat by convection. Even in still air slight convection 

currents are caused by hot bodies which allow heat transfer. For 

a nude man 

where 

c = 8.16 IU (t - t ) s a 

U air velocity (m/s) 

ts skin temperature (oC) 

t air temperature (oC) 
a 

(2) 

c = convective heat exchange (W/m2) can be positive or negative. 
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4.2.2 Radiation 

If the body is hotter than any local surface radiant heat may 

be dissipated. 

where 

globe temperature (oC) 

o surface temperature ( C) 

r = radiant heat exchange (W/m2) 

(3) 

r may be positive or negative. In the case of men near machines 

radiant heat transfer to the worker could cause special problems. 

4.2.3 Evaporation 

This is the most powerful cooling mechanism for the human 

body. The latent heat transfer of sweat evaporating is always 

away from the body. Evaporative cooling can only take place whilst 

the wet bulb temperature is above the skin temperature, hence the 

importance of wet bulb temperature and humidity. The determination 

of heat lost by sweating is ~ore complicated than by other means. 

The present interpretation of the situation is that as the demand 

for heat loss by evaporation increases the amount of sweat produc-

tion and area of body wetted increases. Eventually when the whole 

skin area is wetted further sweat production gives no increase in 

cooling but runs off as liquid. (Clifford et al 1959) give the 

rate of heat loss by sweating and evaporation as 

e = 109 UO. 63 (ps - Pa) (4) 
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Ps skin vapour pressure (kPa) 

Pa air vapour pressure (kPa) 

e = evaporative cooling (W/m2) 

U = air velocity (m/s) 

Attention is drawn to the facts that:-

(i) The equations for heat loss are empirical. 

(ii) The equations are converted to SI units from those used 

by the medical profession. 

(iii) The air velocity has a large effect on heat transfer by 

convection and evaporation • 
.. 

(iv) Vapour pressure is 'p' here rather than 'e' used 

elsewhere. 

4.3 RESPONSE TO HOT CONDITIONS 

When a man is forced to work in hot conditions and metabolic 

heat generation exceeds air cooling the body reacts as fo110ws:-

4.3.1 Equilibrium 

The heart rate increases, blood vessels dilate, especially 

near the surface and the sweat rate increases. This results in 

improved heat rejection to the environment with only mild strain 

of the regulatory mechanism. 

4.3.2 Heart strain 

If conditions are such that normal processes cannot maintain 

equi1ibrium,f1uid loss due to sweating reduces the blood volume. 
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This results in circulatory instability as the heart rate increases 

dramatically in response to the reduced blood volume. This situa-

tion cannot be maintained and the blood pressure falls. At this 

stage. the .workman feels considerable discomfort, but if work is 

continued a critical stage is reached. 

4.3.3 Heat stroke 

The blood supply to the skin is cut drastically, sweating 

stops as the glands fail and even less cooling takes place. The 

body core temperature rises and collapse takes place. This is 

heat stroke. 

Acclimatisation and higher states of fitness make the body 

much more able to contain the situation at the first stage. The 

Chamber of Mines of South Africa has refined acclimatisation pro-

cedures over the years to a high level. These are well documented 

by Wyndham [14] who also states that the risk of heat stroke is 

o 
present above 27 C wet bulb, a temperature often exceeded in 

British coal mines. 

The symptoms of heat strain are 1n the primary stages 

psychological, lethargy and lack of care with work. This escalates 

to headaches and nausea and eventually coma and failure of the 

body mechanisms with possible irreversible damage. The next stage 

is death. No cases of heat stroke have yet been reported in the 

UK, but due to the fact that the older or unwell worker is more 

susceptible it is entirely possible that heat stroke has been 

reported as something else, or precipitated it, for example heart 

trouble. The primary symptoms should also be watched for in a hot 

environment to avoid worse problems. It should be noted that they 
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are similar to a hangover. 

It is accepted that environmental conditions have an effect 

on productivity. Several workers over the years have published 

work relationships between reduced productivity and hot conditions 

notably the Chamber of Mines of South Africa, Cooke et a1 1968 

[15]. Apart from the reduced physical performance there are also 

other intangible but costly disadvantages of working in hot con

ditions relating to mental state and performance, increased 

susceptibility to accidents and absenteeism. 

4.4 HEAT STRESS INDICES 

The heat stress of any given situation, is the combination 

of all those factors which result in heat gains to the body or 

which prevent the body from dissipating heat. Physiological 

strain as indicated by sweat rate, heart rate and body temperature 

has been studied in relation to certain heat stress parameters, 

singly and in combination. The relative effects of the various 

parameters differ in different circumstances and their interaction 

upon physiological and psychological reactions is complex. It is 

for this reason that so many different systems have been proposed 

to give a quantitative expression for the heat stress-strain 

relationship. 

Many attempts have been made to devise instruments that would 

integrate all parameters into a single reading usually by imitat

ing the human body. None has so far proved entirely satisfactory 

in all conditions mainly due to their inability to allow for all 

heat exchanges and in the correct proportions. For this reason the 

many systems based on formulae or on nomograms with several input 
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parameters have been devised. Heat stress indices fall into three 

groups:-

(i) Indices based on sUbjective preference. 

(ii) Indices based on physiological observations. 

(iii) Indices based on analysis of heat exchange. 

The following sections deal with heat stress indices used in the 

mining industry. 

4.5 SPECIAL THERMOMETERS 

Three systems have been used in the mining industry:-

4.5.1 Wet bulb thermometer 

Due to the importance of evaporative cooling wet bulb temp

erature still remains the easiest to measure and widely acceptable 

single measure of heat stress. It is of limited value though in 

high air velocities and high radiant temperatures. 

4.5.2 Kata thermometer 

The kat a is similar to a conventional thermometer, but has 

only two graduations. It is heated then allowed to cool so that 

the time may be taken as the fluid falls between the two gradua

tions giving a reading linked to cooling rate. It has limitations 

due to its small size compared with the human body, but was used 

in South Africa in a wet bulb form until quite recently. 
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Plate 1 

Globe and Kata Thermometers 

1 Globe thermometer 

2 Dry bulb Kata thermometer 

3 Wet bulb Kata thermometer 
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4.5.3 Wet bulb globe thermometer 

This device consists of a thermometer whose bulb is central 

in a matt black metal globe. It takes good account of radiant 

heat but is not reputed to be reliable in extremely severe con

ditions. It was devised by the US Army as a simple alternative 

to the ET system. 

4.6 SYSTEMS USING NOMOGRAMS AND FORMULAE 

4.6.1 Effective temperature scales 

This system was devised by the American Society of Heating 

and Ventilation Engineers in 1923 to assess the sUbjective comfort 

of various combinations of wet and dry bulb temperature and air 

velocity. The scales were devised by moving men from one room to 

another at various conditions and recording sUbjective comparisons. 

As the system was devised as a comfort rather than heat stress 

index it has shortcomings in very hot conditions. It does not 

give sufficient weight to the deleterious effects of air velocities 

lower than 0.5 mls or the harmful effects of high air velocities 

at high temperatures. Several derivatives have been designed over 

the years for use in heavy industrial situations but these do not 

only reduce its shortcomings due to use out of context. This 

system nevertheless is widely used in Europe and by the NCB. 

4.6.2 Predicted 4 hour sweat rate 

This system was devised empirically by the British Medical 

Research council in W.W.II specifically to evaluate physiological 

effects of working in severe conditions. The nomogram devised 
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gives the heat stress in sweat units and despite being accurate 

and reliable has not found favour in mining due to its complexity 

rendering it unsuitable for making spot checks. It is used in a 

simplified form at Mount Isa Mine, Australia. 

4.6.3 Specific cooling power 

In 1952-55 Haines, Belding and Hatch devised a system (HSI) 

for the assessment of heat stress based on sound engineering 

principles of heat transfer. This index though, had some short-

comings in the evaluation of heat transfer coefficients and the 

assumption of a skin temperature of 350 C. The Human Sciences 

Laboratory of the Chamber of Mines of South Africa recognised the 

basic soundness of HSI and modified it to avoid some shortcomings. 

Using wind tunnels and sophisticated instrumentation to provide a 

wide variety of conditions they derived heat transfer equations 

for men working in a variety of conditions. These equations are 

presented in a way which has meaning both in terms of the physio-

logical reactions of men and the performance of ventilation 

systems. 

The maximum heat emission q.(W/m2) from a worker is given by 

the following equations:-

r = 

c = 

~x 

17 x 10-8 (t /2 + 290.7)3 (t - t ) r s r 

8.3 x (p /101.3)°·6 x UO. 6 x (t - t ) a a s 

r + C + e max 

(5) 

(6) 

(8) 
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where 

ts mean skin temperature (oC) 
• 

t = mean radiant temperature (oC) 
r 

ta = mean air temperature (oC) 

Pa = air pressure (kPa) 

Pwa = saturated vapour pressure at air temperature (kPa) 

Pws = saturated vapour pressure at skin temperature (kPa) 

cp = relative humidity (%) 

u air velocity (m/s) 

An assumption made is that 75% of the body area is involved in 

radiant heat exchange. 

Studies have shown that the skin temperature of men in heat 

equilibrium exhibiting only mild strain is close to 3So
C in all 

conditions. Also for most underground environments one can 

introduce the following approximations without appreciable errors:-

(i) Pa 

(ii) t 
a 

100 kPa 

t 
r 

(9) 

This allows the constructiorr of the nomogram, figure 4.6b, for 

specific cooling power at 100 kPa. The engineer can use calcula-

tions of SCP to determine most economically particular cooling 

rates for workers. Also values of cooling power can be used in 

conjunction with estimates of metabolic rate to assess the envir-

onmental conditions needed for a man to perform a certain job. 

Neglecting energy leaving the body in other forms a workman will 

attain equilibrium if the cooling power of the environment equals 

or exceeds the metabolic heat generation associated with his task. 

Figure 4.6c shows some examples. 
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CHAPTER 5 

HEAT TRANSFER 

5.1 INTRODUCTION 

In any substance having a temperature above absolute zero 

(0 K,273
0

C) the molecules are not stationary but vibrate. Energy 

is stored in the vibrating motion and when more energy is added, 

when it is heated, providing there is no phase change, the vibra

tion and temperature increase. Hence heat may be regarded as a 

form of energy which passes from one substance to another at lower 

temperature, be it solid or fluid. The study of heat transfer 

deals with the mechanisms of heat exchange and the rate at which 

energy is transferred. Quantitative analysis allows prediction 

of temperatures due to heat flows and also allows assessment of 

measures by which heat flows may be enhanced or reduced. 

Three modes of heat transfer may be distinguished. These are 

conduction, convection and radiation. Common to all types of 

heat transfer is the fact·that a temperature difference is 

necessary and heat flows from the hotter body to the cooler one. 

5.2 CONDUCT! ON 

When temperature differences are present in any matter, heat 

flows from the hot to the cold regions until the temperatures are 

equalised. This heat will also flow across the boundary of two 

substances that are in contact. The heat flows without appreciable 

displacement of the molecules of the matter, hence it is normally 

associated with solids, however it can take place in fluids at rest 
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and fluids in laminar flow. Steady state heat conduction is 

described by Fouriers law of conduction. 

5.2.1 Fouriers Law 

Fouriers law of conduction is based on the empirical obser-

vation of one dimensional steady heat flow through a solid. One 

dimensional implies that the temperature is uniform over surfaces 

perpendicular to the direction (x) of heat conduction and such 

surfaces are called isothermal surfaces. 'Steady' implies that the 

properties at any point, notably temperature, do not vary with 

time; also the flow of heat through successive surfaces is constant. 

Considering a plane layer of thickness dx, with one face 

maintained at a temperature t, and the other at t + dt, the rate 

of heat flow Q, is found to be proportional to the area of flow A, 

and the temperature difference, dt, across the layer. It is 

inversely proportional to the thickness dx. This is Fouriers law 

and it can be expressed by the equation 

Q = _ kA (dt) . dx (1) 

The minus sign arises from the fact that the heat flow is in the 

opposite direction to the temperature gradient. It follows from 

equation 1 that for steady flow (Q independent of x) the temper-

ature will be constant if k is constant. Integrating between 

limits xl and x2 to enable the heat flow to be expressed in terms 

of surface temperatures tl and t2 gives 

Q (2) 
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Heat flow (W) 

Thermal conductivity (W/moC) 

o Temperature ( C) 

x = Distance along x axis (m) 

Figure 5.2b 

Table of typical values of thermal conductivity, k, in W/m2 °c 

Metals Other Solids Fluids 

Copper 380 Quartzite 6 Still Water 0.62 
.. 

Aluminium 190 Concrete 1.7 Still Air 0.028 

Brass 97 Wood 0.17 

Steel 45 Insulation 0.034 

Stainless Steel 16 Coal 0.3 

For many materials k varies with temperature but for the range 

of substances and temperatures found in mining k can be taken as 

constant. Typical k values are shown in table 5.2b. 

5.2.2 Effect of shape 

The above equation for evaluating one dimensional heat conduc-

tion may be expanded to provide solutions to problems in two or 

three dimensions and for various shapes. Cars1aw [16] and Rogers 

and Mayhew [17] give several examples. 
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Cylindrical shapes merit description here as some commonly 

encountered situations in mining engineering involve radial heat 

flow. For example heat flow from the inside to outside of pipes 

or vice versa and radial heat flow into a mine roadway. The 

equation describing radial heat flow may be derived from the basic 

Fourier equation. See Figure 5.2c. 

Q -kA dt 
dr 

Rearranging 4 we have 

Q dr = ...,21T k Q. dt 
r 

Integrating 5 

Q 
-z k Q. Tl (tz - t l ) 

Q.n (:~-J 

5.2.3 Non-steady flow 

(3) 

(4) 

(5) 

(6) 

(7) 

In section 5.2 a solution for steady conduction was presented. 

A more general case involves temperature at a point changing with 

time. For the case of one dimensional flow a solution can be 

derived from first principles similarly to the steady state situa-

tion. Referring to figure 5.Zd the heat flow into a layer dx 

during a time interval dT, through an area A is 
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Q1 = -kA ~ dT QX (8) 

Q is heat quantity (J) here rather than heat flow rate (W). The 

corresponding outflow is 

{at [a2t) } -kA ax + ax2 dx dT (9) 

The difference between the two heat flows must be equal to the 

heat stored by the conducting layer dx, during the time interval 

aT. The temperature rise of the layer during this time is 

(at/aT) dT and hence 

Thus 

p.c (Adx) [~~) dT = kA [::~) dx dT 

If the thermal diffusivity a = k 
-- then p.c 

(10) 

(11) 

(12) 

The above equation may be used as a basis for finite difference 

methods to determine temperature profiles, or diffusivity, of 

conductivity of a material when the relevant parameters are known. 
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5.3 CONVECTION 

The study of heat transfer by convection is concerned with the 

evaluation of heat exchange between fluids and solid boundaries at 

a different temperature. It is accepted that the differential 

equations describing convective heat transfer present considerable 

mathematical difficulties and exact solutions can rarely be 

obtained. This section describes some methods of giving approx

imate solutions to simple, but important cases of steady heat flow. 

5.3.1 The boundary layer 

The concept of the boundary layer is best illustrated by 

example. Consider the case of still fluid against a hot vertical 

surface. If the fluid temperature was taken at increasing but 

small distances away from the surface the temperature would fall 

linearly then stabilise as shown in figure 5.3a. The corresponding 

velocity measurements would indicate zero velocity against the 

wall and at some small distance from the wall. Between these two 

positions the fluid would be moving upwards. This narrow zone of 

movement is known as the boundary layer and it is this which 

exerts a dominating influence in convective heat flow. Measure

ments have shown that the thickness of the boundary layer as deter

mined by temperature measurements is almost identical to that 

determined by velocity. Some methods of evaluating convective 

heat flow make use of this similarity first pointed out by Reynolds. 

The above example is an illustration of natural or free con

vection where the movement of the fluid is caused by buoyancy 

effects, the hot fluid rising due to reduced density. 
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In many situations the fluid is forced to move over a surface 

by a fan or pump giving the velocity and temperature profiles 

shown in figure S.3b. It is known that the faster the flowing 

fluid the easier the heat transfer. This is because the heat is 

conducted across the boundary layer which decreases in thickness 

as the velocity increases. As shown in table 5.2b the conductivity 

of air and water the most common fluids encountered is very low. 

The thickness of the boundary layer at any position depends 

on three factors. These are the shape of the solid surface 

relative to the moving fluid. The velocity and turbulence of the 

moving fluid and the distance along the surface for which the 

boundary layer has been able to grow. With regard to heat trans-

fer from coal on a conveyor it can be seen that all these param-

eters will have high values. 

The Reynolds number (R ) is a dimensionless ratio that e 

characterises the velocity and turbulence of the flow. It is the 

most important parameter in specifying the thickness of the 

boundary layer and hence the· convective heat transfer coefficient. 

Reynolds number is calculated as follows 

R velocity x specified dimension x density/dynamic viscosity 
e 

5.3.2 Convective heat transfer coefficient 

Because the thickness of the boundary layer is generally 

unknown the Fourier heat conduction equation cannot be used to 

derive a convective heat transfer coefficient. Instead the 

following equation is used 

(13) 
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where 

Qc = Heat flow between surface and fluid (W) 

A Area involved in heat transfer (m2) 

t Temperature of surface or fluid (oC) 

h = Convective heat transfer coefficient (W/m2 °C) c 

The convective heat transfer coefficient h , depends mainly on 
c 

the thickness of the boundary layer as mentioned earlier. This 

in turn depends on the Reynolds number for a given situation. 

Generally the relationship between the heat transfer coefficient 

and Reynolds number can be described by 

where 

h = (R )n x C x kiD 
ceo 

k Thermal conductivity of fluid (W/moC) 

(14) 

D = Diameter of pipe or some other representative dimension (m) 

Co = A coefficient (depends on configuration and fluid) 

n = An exponent (depends on configuration) 

Whillier [18] gives some good examples of convective heat transfer 

calculation and has produced various nomograms for situations 

found in mining based on the following formulae 

For forced convection 

Water inside pipes 

h c 
k xD (15) 
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Air inside pipes or airways 

h 0.02 R 0.8 k x-c e D 

Air outside pipes 

h 0.2 R 0.6 k x-c e D 

For natural convection 

Air 

Water 

where 

1 
h = 1. 4 (Llt)T 

c 

h c 

1 
190 (I + 0.012 t ) (Llt)3 s 

h Convective heat transfer coefficient (W/m2 °C) c 

R Reynolds number 
e 

C = Specific heat of fluid (kJ/kg K) 
p 

~ = Dynamic viscosity (kg/m s) 

k = Thermal conductivity of fluid (W/moC) 

D Diameter of pipe (m) 

(16) 

(17) 

(18) 

(19) 

Llt Temperature difference between fluid and surface (oC) 

o Surface temperature ( C) 

5.4 RADIATION 

The amount of heat transferred by radiation is not generally 

large in most coal mining situations, however it must still be 

evaluated and is included here for completeness. 
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In the introduction to this chapter it was stated that the 

heat energy stored in a material above absolute zero is due to 

molecular vibration. This molecular motion in turn produces 

electromagnetic waves some of which are radiated in straight lines 

away from the body. Hence any body above absolute zero emits 

radiant heat energy. 

When this energy impinges on matter it may be totally or 

partially reflected, transmitted through it or absorbed. Practic-

ally all substances encountered in engineering are opaque to 

thermal radiations, even glass is only transparent in a fairly 

narrow waveband, so we can assume thermal radiation is either 

reflected or absorbed at a surface. Thus is it possible to write 

p + a = 1 

p = reflectivity 

a absorptivity 

A material whose absorptivity is 1 is known as a black body. The 

total energy emitted by a black body per unit time by unit area 

of a black surface is 

(20) 

where 

T Absolute temperature ( K) 

Heat emitted from black surfaces (w/m2) 

-9 2 56.7 x 10 {W/m 

o is known as the Stefan-Boltzman constant 
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No real material emits and absorbs radiation according to the 

laws of the black body and few approach ~he black body condition 

closely. This has given rise to the term "grey body" which obeys 

similar laws of energy distribution and whose emissivity does not 

depend on wavelength. The emissivity, E, is defined as the ratio 

of energy emitted by a surface to the energy emitted by a black 

surface at the same temperature. Some materials and emissivity 

values are listed in the appendix.(A.4). 

The table of emissivities shows how clean polished metallic 

surfaces have low emissivities. These are substantially propor

tional to the absolute temperature. Oxidised or greasy metal 

surfaces have emissivities which are several times higher than 

polished surfaces. The emissivity is a property of surface finish 

as well as of the material. Surface irregularities may result in 

rays striking a surface usually not being reflected away after 

one incidence but suffering multiple reflections first, raising 

the emissivity value. 

When two surfaces can 'see' each other each absorbs some of 

the radiation emitted by the other. If the surfaces are at 

different temperatures the net result is a flow of energy from the 

hotter to the colder body. There are several equations available 

for different geometrical orientations [17]. Whillier [18] gives 

an equation for radiative heat transfer combining the effects of 

emissivity and orientation 

(21) 
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Net radiant heat flux (W) 

Absolute temperature ( K) 

Smaller of two surfaces involved (m2) 

Emissivity and view factor 

The emissivity and view factor is calculated 

See figure 5. 4b 

(22) 

Equation 21 may be 1inearised to give a more easily used 

equation of a similar form to those used for forms of heat transfer 

(23) 

where hr is the radiative heat transfer coefficient. The radiat

ive heat transfer coefficient may be determined by equating 21 and 

23. Fortunately, h , remains fairly constaat within the range of 
r 

temperatures which exist in·mining. Much more so than the convec-

tive heat transfer coefficient. Its numerical value depends only 

on the average temperature of the two surfaces involved and is 

calculated thus 

h 
r 0.2268 G~~) 3 (24) 

In mining situations the temperatures involved are usually such 

that equation (24) is accurate to within 0.1%. 
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diffuse reflection. 

FIG S'4a EFFECT OF SURFACE FINISH ON EMISSIVITY 

FIG S'4b RADIATIVE HEAT EXCHANGE 
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5.S HEAT TRANSFER AT WET SURFACES 

Before describing heat transfer at a wet surface it is 

necessary to define the dew point temperature. The dew point 

temperature is the temperature to which an unsaturated atmosphere 

must be cooled at constant pressure for it to become saturated 

and for condensation to begin. 

If a wet surface temperature is higher than dew point evapor

ation will take place and latent heat transfer will be away from 

the surface. If the surface temperature is lower condensation 

will take place and latent heat transfer is to the surface. 

The latent heat transfer is not always in the same direction 

as the convective or radiative heat transfer. For instance on a 

wet bulb thermometer latent heat transfer is away from the surface 

whilst convective and radiative heat transfer is toward the surface. 

The rate of latent heat transfer is simply the product of the 

evaporation or condensation rate and the latent heat of water. 

The latent heat of water is about 2430 kJ/kg within the range of 

conditions encountered in mining. It varies slightly with temp

erature as follows:-

L 2501 - 2.378 t (25) 

where t is the temperature in °c at which evaporation or conden

sation takes place. 

Fortunately condensation and evaporation behave with similar 

boundary considerations as in the case of convection. If careful 

measurements of air moisture content are made at increasing 

distance from a surface at which condensation or evaporation is 
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taking place freely, variations in vapour pressure will be as 

shown in figure 5.5a. 

The thickness of the boundary layer is almost equal to that 

of the thermal boundary layer. Also it has been verified experi-

mentally that the rate of condensation or evaporation is directly 

proportional to the convective heat transfer coefficient (h ). 
c 

The driving force of latent heat transfer is vapour pressure just 

as temperature is the driving force for direct heat flow. Thus 

in the case of condensation and evaporation, when enough 'free' 

water is available 

Rate of condensation (g/s) = hc A [0.7 (~ e
db 

- es}/P] (26) 

where 

P Barometric pressure (k Pa) 

e s Saturated vapour pressure at surface temperature (k Pa) 

e
db 

Saturated vapour pressure at dry bulb temperature (k Pa) 

~ = Relative humidity (%) 

A = Area (m2) 

Multiplying by the latent heat gives the rate of heat transfer due 

to condensation 

(27) 

This equation may also be reversed and used for evaluating 

evaporative heat transfer. It should be noted that ~.edb being 

equal to the vapour pressure of the air e can be calculated using 

(28) 

where a is the psychrometric constant (see Chapter 3.7). 
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CHAPTER 6 

PRELIMINARY UNDERGROUND SURVEYS 

6.1 INTRODUCTION 

This chapter describes the underground work carried out at 

Bentinckand Hickleton collieries in the early stages of the 

project. It was not aimed specifically at evaluating the conveyed 

coal heat load, but was carried out to give experience in selecting 

equipment and making and interpreting measurements. It provided 

also the opportunity to gain a practical understanding of the 

magnitude and characteristics of the many interactive heat sources 

encountered underground. 

6.2 BENTINK K76's TEMPERATURE SURVEY 

6.2.1 Description of district 

This site was chosen for investigation due to its potentially 

hot environmental conditions. At the time of the surveys Bentinck 

K76's was 6.7 km from the shafts and advancing into a previously 

unworked part of the Blackshale seam. The face was 2.1 m high, 

210 m long and had a planned high advance rate of 640 m/year 

through 3 shift working$. The tailgate was 830 m long and dry, 

but badly crushed, probably due to old workings above. The main

gate was 790 m long and in good condition. The depth of cover was 

635 m resulting in a VRT of 29 0 C taken from the local VRT borehole 

profile. 

The installed power of machinery on the district was of the 

order of 1.2 MW comprising of the equipment listed in table 6.2a 



- 75 -

and positioned as is illustrated in figure 6.2b. 

Table 6.2a 

Electrical equipment installed on K76~ district 

position 

Maingate, outbye 

Maingate, inbye 

Face 

Tailgate, inbye 

Description 

2 x 112 kW drive unit for 42" conveyor 

37 kW drive for tandem conveyor 
49 kW stage loader motor 
49 kW Eimco bucket 
37 kW pump 
[500 kVA transformer] 

2 x 112 kW AFC motors 
2 x 150 kW shearers 

2 x 37 kW pumps 
125 kW Dosco ripping machine 
[500 kVA transformer] 

Note, panzer is the commonly used name for the armoured flexible 

conveyor, (AFC) on the face. 

6.2.2 Temperature survey 

A temperature survey was made of K76's district on the morning 

shift 30th November 1978. As the air temperatures on a high 

production district tend to rise through the week the day of the 

survey, Thursday, was chosen to evaluate what was expected to be 

as near as possible the worst conditions encountered. Wet and 

dry bulb temperatures were measured at points around the district 

shown in Figure 6.2b. The survey was carried out as quickly as 

possible to provide a quasi steady state picture of what is an 
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unsteady situation. Later work will be described that illustrates 

how the conditions at a point vary with 'time. As shown in the 

diagram the measuring stations were chosen to include longer 

lengths of airway where strata heat or a linear heat source such 

as a conveyor would be detected, or shorter distances to 'bracket' 

a spot source such as a machine or concentration of machines. 

The wet and dry bulb temperatures of the air were measured using an 

'Assman' hygrometer. The air quantity flowing around the district 

was measured using a vane anemometer traversed using the approved 

procedure described in 'Ventilation in coal mines' [19]. A 

precision aneroid barometer was used to measure the air pressure. 

This was taken at the first and last stations of the survey. 

Using the mean value gave acceptable accuracy for this survey. 

All survey measurements were taken by two operators and repeated 

if any pair of readings did not agree. At- the time of the survey 

all machinery was working. 

Given a wet and dry bulb temperature and air pressure the 

state of the air is fully defined as described in Chapter 3 

(Psychrometry). These three properties were entered as data into 

the pyschrometric program "PS" on the Nottingham University 

Mining Engineering Department minicomputer and hence, for each 

station in turn on the survey all psychrometic data was specified. 

To evaluate the heat and moisture changes as the air passed 

successive stations around the district the sigma heat and moist

ure content for each station were tabulated and the differences 

per kilogram of air noted. The air quantity measured by the 

anemometer traverse at station 1 multiplied by the simultaneous 

local true density of the air gives the mass flow rate of air into 

the district. No air leakage was detected so, assuming conditions 



- 78 -

Plate 2 

Ventilation survey instruments 

1 Assman hygrometer 

2 Vane anemometer 

3 Precision aneroid barometer 
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to be close to steady state there would be a constant mass flow 

rate at all stations. 

Multiplying the mass flow by the differences per kilogram of 

air for each section gives the heat and moisture pick up around 

the district. The results are shown in table 6.2c. Figure 6.2d 

shows the heat and moisture pick ups superimposed on the district 

plan. 

6.2.3 Sample calculation and results 

Sample calculations 

Station 1 Observed- readings 

Wet bulb temperature 

Dry bulb temperature 

Air pressure 

Air quantity 

From computer program "PS":-

Air density 

Sigma heat 

Moisture content 

104.77 k Pa 

10.16 m3 /s 

1.2004 kg/m3 

67.55 kJ/kg 

16.11 g/kg 

To find air mass flow around district:-

Air volume flow x Air density = Air mass flow 

3 3 / 10.16 m / s x 1. 2004 kg/m = 12.196 kg s 



Station 2 Observed readings 

Wet bulb temperature 

Dry bulb temperature 

Air pressure (from 1) 

From computer program "PS":-

Moisture content 

Sigma heat 
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25.2oe 

28.30 e 

104.77 k Pa 

18.30 g/kg 

73.23 kJ/kg 

Moisture gain between stations 1 and 2:-

(Moisture content at 2 - Moisture content at 1) x Air mass flow 

(18.30 g/kg - 16.11 g/kg) x 12.196 kg/s 

26.71 g/s 

Heat gain between stations 1 and 2:-

(Sigma heat at 2 - Sigma heat at 1) x Air mass flow 

(73.23 kJ/kg - 67.55 kJ/kg) x 12.196 kgls 

69.27 k_W 
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Table 6.2c 

Bentinck K76's temperature survey 

Wet bulb Dry bulb Sigma Heat Moisture Moisture 
Station Temperature Temperature heat gain content gain 

(oC) (oC) (kJ/kg) (kW) (g/kg) (g/s) 

1 23.7 27.9 67.55 16.11 

69.27 26.71 

2 25.2 28.3 73.23 18.30 

38.66 11.46 

3 26.0 29.2 76.40 19.24 

9.87 3.05 

4 26.2 29.4 77 .21 19.49 

60.86 25.49 

5 27.4 29.4 82.20 21.58 

12.81 3.29 

6 27.6 29.6 83.05 21.85 

31.95 13.41 

7 28.2 '29.6 85.67 22.95 

43.66 8.90 

8 29.0 31.4 89.25 23.68 

-32.93 -11.83 

9 28.4 31.0 86.55 22.71 

TOTAL 234.15 80.48 

Air pressure 104.77 k Pa 

Air quantity 
3 10.16 m /s 

3 
Air density 1.20039 kg/m 

Air mass flow 12.196 kg/s 
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6.2.4 Discussion 

This district certainly provided the hot conditions expected 

due to the reasons mentioned in section 6.2. At the time of the 

survey, late November, surface temperatures were hovering around 

OoC. It is noticeable that the air entering the district at 

station I was already quite warm, 27.9 0 C. This could be due to 

strata heat or machine activity in the intake which is discussed 

in detail more fully in later sections. 

The maingate may be split into two sections. The first 750 m 

from stations I to 2 containing only the conveyor and a small 

tandem conveyor motor produced heat at a relatively low rate of 

69 kW and there was a correspondingly low moisture pick up. The 

main heat source along this length of road would be the strata 

o and the already high dry bulb temperature of 27.9 C, near VRT would 

result in a low 'driving potential' for heat transfer. The 

importance of keeping intake air as dryas possible should be 

mentioned here. If the air has water evaporated into it due to 

say, excessive use of sprays, leaking pipes or uncovered drains 

the air dry bulb temperature falls. Naturally this will result in 

greater heat flow to the air due to enhanced heat transfer and a 

greater temperature gradient in the strata surrounding the airway. 

The moisture gained by the air would be from both the exposed 

strata and coal on the conveyor. Although the roadway appeared to 

be in a totally dry condition some moisture could have been evap-

orating from them. Due to the vast surface area available in 750 m 

of airway the net mositure contribution could be significant despite 

the small amount of evaporation per unit area. Moisture evaporation 

from coal on the conveyor was recognised as a source, but at this 
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preliminary stage of the study its contribution could not be 

evaluated. 

The section of maingate from stations 2 to 3 contained a 

concentration of machinery. The much higher heat gain per unit 

length can be clearly seen (figure 6.2d). This section being only 

40 m long. From the previous section an indication of the strata 

heat flow can be obtained and by differences it may be shown that 

most of the heat in this section may be attributed to the machinery. 

It is noticeable that the heat gain of 39 kW is only a small frac

tion of the installed power of 135 kW (not including the trans

former). This is a typical situation as the machines tend to run 

intermittently and rarely at full load. A similar situation exists 

on the first section of the face with the rated power of the shearer 

and AFC drive totally 262 kW, but the heat gain being only 10 kW. 

This machinery had only just started as the temperature measure

ments were taken here so despite the machinery producing more than 

10 kW most of the heat produced would be absorbed internally in 

the machines thermal capacity. 

Mining machinery is extremely substantial and the potential 

for large amounts of internal heat storage exists. This storage 

effect which currently is to a large extent unevaluated does 

provide a moderating effect by damping out the fluctuations in 

heat production of machinery by absorbing heat as a machine works 

and releasing it as the machine cools after working. Until these 

mechanisms are more fully understood they should not feature in 

design calculations for ventilation systems which should always 

consider the worst conditions that might arise. If a machine is 

run steadily for a long period, such as on a high production face 
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it will when it gets sufficiently hot, dissipate heat at the rate 

it produces it. 

The section along the face, stations 4 to 5 had a heat gain 

of 61 kW and a high moisture gain of 25 g/s. At first glance it 

would appear that the heat must all be from the strata as the 

section contains no motors, but machine heat is still dissipated 

here. Figure 2.4a shows how a machine dissipates heat from its 

motor-drive unit and along its working length as work against 

friction is performed. Two such cases exist here. The useful 

work performed by the AFC drive is used to overcome friction as 

it moves coal along the face. Also mechanical energy is degraded 

to heat through fluid friction and heat is transferred along and 

dissipated by the fluid in the hydraulic lines on the face. 

The pumps in the face ends provide hydraulic power for the 

face chock supports via an extensive pipe system. The hydraulic 

fluid is heated in the pumps and by turbulence in valves and pipes. 

The pipework becomes hot and heat is dissipated from it even when 

no work is being done by, the rams and chock legs. Heat is also 

dissipated as is a large amount of the moisture from the cut coal 

on the conveyor and that left temporarily in the machine track. 

The evaluation of heat from cut coal is the main objective of this 

study. At this stage its potential was recognised and plans were 

made for a more detailed investigation described later. 

The amount of heat flowing into an airway from the strata is 

a function, amongst other things, of time since exposure. After 

an airway is driven the heat gain from the strata decays from a 

maximum level asymptotically to a base level over a period of up 

to 2 years. A coal face advancing into virgin strata may approach 
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the VRT if its advance rate is high enough to give the coal body 

little time to cool. Also new ground is constantly being exposed, 

keeping heat emission at a high rate. Consequently rapidly 

advancing coal faces release large amounts of heat into the ven

tilating airstream. This section of face is a typical example. 

The section from stations 5 to 6 contained the barrier 

shearer in 5 m of face. Only 12 kW of heat gain were measured 

over a 150 kW machine. The most likely explanation of this 

imbalance is the storage effects described earlier. Other relevant 

factors were that the machine was ploughing back which needs very 

little effort compared with cutting, also badly chosen measuring 

points did not give" the air time to mix thoroughly downstream of 

the machine. 

The last section of face 45 m between station 6 and 7 con

tained the tail motor unit for the AFe. This section had a heat 

and moisture gain per unit length slightly higher, but comparable 

with section 4-5. The higher figure probably arising from electric 

motor heat. 

The first 50 m of tailgate, containing a ripping machine, 

pumps and transformer had a heat gain comparable to that containing 

the maingate machinery, and similar explanations apply. 

As the air passed along the remaining 780 m of tailgate, 

between stations 8 and 9, it lost heat to the strata and the 

moisture content fell slightly. No evidence of condensation was 

seen. A similar but reversed situation to the maingate provides 

a likely explanation. Heat flow into the strata is due in this 

case to the machinery raising the dry bulb temperature above the 



- 87 -

VRT. When the machinery is not used, eg at weekends, the air 

leaves the face at a temperature below VRT resulting in heat flow 

from the strata into the air. Conditions encountered in British 

collieries usually result in a net heat flow from the strata into 

the air, although if for short periods in very hot conditions the 

situation is reversed. In some mines the very low VRTs heat flow 

is usually from the air to the strata. 

The survey was timed to observe what was likely to be the 

worst possible conditions and produced a wet bulb temperature of 

over 270 C half way along the face, 28°C at the tailgate rip and 

29 0 C at 50 m outbye. Reference to Chapter 4 (Heat Stress) will 

illustrate the risks involved. 

This survey was a basic temperature traverse at almost a fixed 

point in time. To extract more information a survey may be 

designed to highlight a particular aspect or heat source by 

measuring changes with time at selected locations. Examples of 

this will be described. 

The temperatures around a longwall district vary considerably 

with time and the variation of temperature with time can reveal 

information about the dynamic interaction of the various heat 

sources. This aspect is described in the next section. 

6.3 CONTINUOUS TEMPERATURE RECORDING ON BENTINCK K76s DISTRICT 

6.3.1 Introduction and method 

It is known that the temperature at a fixed place in a mine 

is rarely steady. Near the shafts it may be expected to vary 

with changing surface conditions. Further inbye the mines heat 
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sources have more effect. The characteristics of the mining system 

and amount of activity have a large effect on some of these heat 

sources and hence cause climatic variations. 

A continuous record of the mine air conditions over a period 

is usually made using an instrument known as a thermohygrograph. 

The thermohygrograph continuously records dr~lbulb temperature 

and relative humidity onto a moving chart. 

As stated in Chapter 3 (Psychrometry) the state of the air is 

specified fully by three independent characteristic properties, 

usually wet and dry bulb temperatures and pressure. Fortunately 

in many places in mines the pressure varies by a small enough 

degree, within about 5%, to assume it is constant otherwise 

continuous pressure record would need to be made. It also has to 

be assumed that the air flow rate is steady if heat gain calcula

tions are to be made or a recording anemometer must also be 

installed. 

The dry bulb temperature is measured using a bimetallic strip 

driving a recording pen via a linkage which allows compensation 

for non linearity of the strip and adjustments of range. Although 

a wet bulb temperature record would be desirable,continuous 

recording of this is extremely difficult due to problems of water 

supply and bulb aspiration. Relative humidity though is easily 

recorded by using a pen connected by a linkage to some material 

sensitive to humidity. In the case of this instrument human hair. 

From the known relative humidity and dry bulb temperature the wet 

bulb temperature may easily be evaluated or read from the slide 

rule supplied with the instrument. 
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Plate 3 

Thermohygrograph and protective- case 
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The records of temperature and humidity are made onto a chart 

carried on a clockwork revolving drum. whose gearing may be changed 

to give one revolution in either one day or one week. For this 

study all records were made onto one week charts. 

Due to the delicate linkages thermomygrographs have given 

trouble in the past due to ingress of dust. Recognising this 

problem Middleton [20] constructed perspex covers which did not 

affect the performance of the instrument but gave a high degree 

of protection from dust. Also a steel cage to allow mounting in 

a roadway and protect from tampering was used on each instrument. 

With dismantling and cleaning before installation~careful calib

ration and adjustment, and checks using an Assman hygrometer whilst 

underground the instruments could be relied upon to give readings , 
within 0.2

0
C and 1% relative humidity. 

6.3.2 Installation at Bentihck 

At the time of this survey three thermohygrographs were 

available. To gain the most useful information the placing of 

the instruments was considered and to correlate with the first 

temperature survey the following sites were chosen (figure 6.2b). 

(i) Instrument 1, maingate outbye at station 1 .. 

(ii) Instrument 2, maingate inbye at station 2 before main-

gate electrical equipment. 

(iii) Instrument 3, tailgate 50 m outbye of rip at station 8. 

The instruments were installed in November 1978 and removed 

in January 1979. This allowed observation of ordinary production 

conditions and also the effect of a break in production over the 
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Christmas holiday. The instruments were visited once a week for 

checking and chart changing. Occasionally a weeks record was lost 

on an instrument when failures occurred due to jamming of pens or 

vibration, but generally they performed well. Figure 6.3a shows 

a typical set of charts. The instrument charts were changed on 

Wednesdays as this coincided with the Colliery Ventilation 

Officers visit to the district. Consecutive sets gave a continuous 

record and for presentation a Monday to Monday cycle was adopted 

as this illustrates more clearly a working week. As mentioned in 

6.3.1, providing pressure and air flow rate are known, any other 

psychrometric data, including heat and moisture gains, may be 

derived from the dry and wet bulb temperatures. 

Many different charts were drawn to show variations in heat 

and moisture content and gain etc. However wet bulb temperature 

records as shown in figure 6.3b combined with the original instru-

ment charts give an excellent portrayal of the situation without 

presenting too much information simultaneously. 

~.3.3 Discussion 

The instrument charts and wet bulb temperature record are 

typical of all the working weeks observed apart from those during 

and after holidays. They show clearly a daily and weekly cycle 

and provide some indications of the contributions of various heat 

sources. 

The dry bulb temperature varied by only a small amount at the 

• 0 0 • b two ma1ngate stations, 3.5 C outbye and 3.0 C 1n yeo This illus-

trates the stabilising influence of the strata. The airstream to 

K76s district had to travel about 7 km from the surface. Most of 
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this distance was through dry roadways which were well established. 

The air then passed through a large mass of rock with a very high 

thermal capacity and at an almost fixed temperature. There were 

fluctuations though which would be caused by machinery and moisture 

evaporation. After the air had traversed the face passing over 

machinery operating intermittently its dry bulb temperature was 

less steady with a 6°e fluctuation over the working week. 

The humidity and wet bulb records are of similar shape. This 

is because for a constant dry bulb temperature the wet bulb temp

erature is proportional to the relative humidity. Figure 6.3b 

illustrates the wet bulb temperature record of all three stations 

for a typical week. 

Starting on Monday morning the district had settled almost 

to a steady wet bulb temperature and hence heat load. The first 

shift started at 6.00 a.m. and the instant sharp rise in humidity, 

temperature and heat in the air can be easily identified. The 

increased heat make over the base level would be almost entirely 

due to machinery as t~ strata responds much more slowly. Each 

shift of the week can be picked out on the weekly chart. The 

fact that the three shifts were not evenly spaced over 24 hours is 

also detectable. After a working shift the temperature begins to 

drop back to a base level until the machinery starts for the next 

shift. The mining activity was such that the temperatures could 

not return to base level between shifts. This indicates a storage 

effect which is thought tobe due to the large quantities and 

thermal capacities of steelwork particularly on the face and also 

that of thin skin of strata around an airway. 
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The storage and hence damping effect produces a slightly 

smoother temperature profile for the instrument after the face, 

(tailgate inbye). The storage effect and continued activity 

result in a gradual worsening of conditions as the working week 

progresses. Conditions can be seen to get gradually hotter each 

day until equilibrium is reached, Thursday and Friday. At this 

stage the machinery, steelwork and possibly small amount of 

strata involved in storage are in equilibrium over a 24 hour 

period. If daily production was held at that level one would 

expect the conditions to be bad, but stable. On figure 6.3b a 

line has been marked at the 270 C wet bulb to show the possible 

heat strain risk periods. With wet bulb temperatures consistently 

above 270 C after Tuesday morning at the tailgate the workers, 

particularly those on heavy tasks could have been at risk. 

When mining stopped at 6.00 p.m. on Saturday conditions 

could be seen to, decay back towards the base heat load. Given 

that the machine heat source ended abruptly at 6.00 a.m. and that 

over a period strata heat is fairly stable the net heat release 

from then to steady state on Sunday would also be due to storage. 

The effects of storage have only recently been recognised and 

following the MRDE study of mine climate [9] more research is 

envisaged. The base heat load reached on Sunday would of course 

be due only to the strata. 

Although the heat sources on the face produce the final 

escalation to intolerable conditions it is noticeable on figures 

6.3a and 6.3b that even well outbye at the start of the maingate 

that the effects of production are recorded. It has been accepted 

in the past that the massive concentrations of machines on high 
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production faces responsible for the hot conditions, but this 

effect is seen in intake air 800 m outbye. This short term fluc

tuation corresponding to production periods could only be due to 

machinery in the intake airways. Mainly conveyors and coal on 

the conveyors which would be an ideal moisture source to give the 

fluctuations in humidity. To assess the potential of the heat 

made from coal on conveyors a separate investigation was necessary. 

6.4 SURVEY OF CONVEYED COAL TEMPERATURES 

6.4.1 Method 

Many attempts have been made to measure the temperature of 

coal on conveyors by various workers eg Middleton [20], MRDE [9], 

Voss [21]. Inherent measurement problems are caused by the nature 

of conveyor systems, intermittent operation, and the solid granular 

coal which is not at uniform temperature such as fluid in a pipe. 

The temperature measurements should ideally be taken on one 

batch of coal on its journey outbye to remove the possibility of 

measuring the temperature of coal which started at different temp

eratures. Due to the speed of conveyors and the number of transfer 

points this would mean many personnel stationed at various points 

on the chosen conveyor system. If one length of conveyor was 

chosen for study the numbers could be reduced, but two teams and 

sets of equipment would be needed. Workers from MRDE have attempted 

this [9]. 

The temperature within the coal bed on a conveyor is known 

to be non uniform. It cools quickly at the surface and retains 

heat inside. Also size variations, particularly large lumps, cause 
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non-uniformity of temperature. Problems of choosing the sample 

are apparent as are those of collecting the sample chosen on a 

fast moving conveyor. 

Several measuring vessels have been used in the past ranging 

from thermos flasks [9]. [20])to buckets. Ideally the measuring 

vessel should be robust, easy to fill, well insulated and make no 

heat contribution itself. The speed of filling could be crucial 

and this is the main pitfall of a thermos flask. The actual 

instrument used to take the temperature should be accurate and 

responsive. It should also be robust or protected during filling. 

Due to the small numbers of helpers available and the tight 

budget the following system was adopted. 

The investigation was timed to take place as the machine was 

cutting before 'snap time' in a period of stable production. This 

gave the best opportunity for uniformity of size and starting 

temperature. Communications with the face were maintained as 

first stations were visited so it was confirmed that production 
. 

was steady. It was noted on previous visits that the coal prod-

uced during cutting was of a fairly small and even size whereas 

whilst the ploughing back was in progress the size of coal varied 

more and its temperature was not uniform due to lying on the face 

for an unspecified period. 

To overcome the problems of actually collecting a sample 

measurements were made at transfer points. At a transfer point 

the coal is well mixed and a sample taken from the receiving belt 

by sliding a scoop into the edge of the coal bed provided a sample 

more safely than trying to catch coal in the chute. Some unpleasant 
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surprises occurred trying this when large lumps came over. 

The actual sample vessel consisted of a polystyrene lined 

wooden box as shown in figure 6.4a. It was cheap, robust and met 

the thermal requirements stated earlier. In use the box, which 

held about 3 kg of coal, was quickly filled using a flat scoop 

slightly narrower than the box. The metal tube normally used to 

carry the thermometer being inserted down the centre during filling. 

The lid was then fitted and the thermometer inserted into the hole 

left by the tube which was carefully removed. The box was then 

jarred slightly to close the hole and give thermal contact between 

the coal and the thermometer. The thermometer was then read at I 

minute intervals. until it started to fall from a maximum which 

occurred within 10 minutes. 

Tests in controlled conditions before the survey showed this 

combination of insulated box and (0-50 x O.loC) thermometer could 

be relied upon to give a temperature reading with _1°C 5 minutes 

and -0.50 C 10 minutes after filling. 

At each measuring station shown on figure 6.4b, 5 samples 

were taken and the mean value recorded. Filling each sample into 

the box took about 10 seconds and temperature measurement 10 

minutes. The first 4 stations starting at the shearer on K76s 

face, K76's stage loader, K76's transfer and K7S's transfer were all 

on coal only from K76's cut before 'snap time'. Subsequent stations 

K74~ transfer to the surface were on coal from several sources. 
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6.4.2 Discussion and estimation of heat load 

The results of a full shifts work shown on figure 6.4b give 

an indication of the time consuming nature of this work. Whilst 

it is accepted that the results of this survey are not of the 

highest accuracy obtainable, with so many unpredictable variables 

affecting the flow of coal a more careful and accurate measuring 

method would have taken too long. 

The results were satisfactory for evaluating likely magnitude 

of the contribution of conveyed coal heat source. In a previous 

attempt at a coal temperature survey the moisture content of the 

coal varied considerably and the belts stopped so frequently that 

the survey results were meaningless. The moisture content of the 

coal was not checked in this survey, although its consistent 

appearance and nature suggested it was satisfactorily constant for 

a preliminary survey of this nature. 

The total heat contribution of conveyed coal to an airstream 

~s the product of its temperature fall, specific heat, and produc

tion rate. 

For an average figure for the whole mine the temperature fall 

of the coal can be taken as lsoC. That is, face coal temperature 

minus temperature at drift exit. The specific heat of coal varies 

around 1.0 kJ/kg K to 1.15 kJ/kg K. A figure of 1.1 kJ/kg K is 

sufficiently accurate for this estimate. The production rate at 

the time of this survey was 17,000 tonnes per week run of mine 

(28.1 kg/s). The average heat load then over the whole week would 

be 

15 x 1.1 x 28.1 464 kW 
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The coal is not run out of the mine continuously though and the 

heat load whilst the conveyors are running is probably several 

times this. 464 kW gives the minimum figure. During peak 

production one face producing 4 tonnes per minute (66.7 kg/s) 

could give a heat load to the whole mine of 

15 x 1.1 x 66.7 = 1100 kW 

It must be remembered that heat sources interact and the net 

effect after some other heat source was reduced could be much 

smaller. The coal produced on K76s at the peak production of 

66.7 kg/s and the temperature falls measured indicate production 

of 56 kW on the race and 34 kW in the maingate. Reference to 

figure 6.Zd heat and moisture gains on K76s district show these 

figures to be quite credible. 

The uneven temperature distribution in the coal could be 

detected by sampling coal from different depths in the coal bed. 

An electronic indicating thermometer probe borrowed from MRDE 

showed that a thin skil1 of le'ss than Z. 5 cm thickness at the 

surface was 1.5-Z.50 C cooler than the interior. If the coal did 

not cross a transfer point no doubt this skin would provide an 

insulating layer to heat and moisture flow. This was investigated 

more fully later in the study. 
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6.5 HICKLETON Tal's DISTRICT HEAT SURVEY· 

6.5.1 Description 

In August 1979 an investigation was undertaken at Hickleton 

Colliery, NCB Doncaster Area. The purpose of the surveys and 

associated predictions was to assess the likely deterioration of 

climatic conditions on the TOls face in the Thorndiffe seam as it advanced. 

On the East side of the pit,faces in the Thorncliffe seam 

had a history of heat problems. TOrs was to be the first face in 

the Thorncliffe seam on the west side. At the time of the survey 

the face had advanced about 100 m and climatic conditions were 

already causing concern. 

Two main surveys of temperature and airflow were carried out. 

One started at the surface and traversed the whole ventilation 

circuit to TOl's and P46's districts then back to surface and the 

second survey was from pit bottom to pit bottom. The first survey 

was carried out in the summer holiday week to assess base heat 

conditions, the second.during peak production. 

At each measuring station the wet and dry bulb temperatures 

were taken using an Assman hygrometer and the pressure was 

measured using a precision aneroid barometer. The colliery vent

ilation officer measured the airflows using vane anemometers, 

usually at designated airflow measuring stations. A continuous 

recording of temperatures was also made using the instruments and 

techniques described in section 6.3 as at Bentinck Colliery. 

Thermohygrographs were sited at either end of TOl's face., 50 m 

outbye and the bottom of the main west intake as shown in figure 

6.5a. The temperature traces with the calculated wet bulb 
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temperature superimposed are shown for comparison with those from 

Bentinck Colliery. 

This survey was carried out on a more complicated ventilation 

circuit than at Bentinck Colliery where there was a steady airflow 

round a single airway. At Hickleton many airways were involved 

with leakage and mixing giving varying airflows around the circuit. 

After station 6, shown on figure 6.Sa, leakage of air direct from 

intake to return and from P46~ return resulted in much mixing and 

this complicated the processing of the observations. 

The results of the whole survey are given in the appendix (A.2). 

Only a section of particular interest is given here. The intake 

from the pit bottom to TOI's face and in the first section of 

return as far as TOI's tailgate end were all free of mixing effects 

as air flows from the high pressure side of a ventilation circuit. 

This part of the ventilation circuit, with stations shown 1 to 6 

on figure 6.5a contained the face where worst conditions were . , 

expected to occur. Also between stations 1 to 4 was a powerful 

conveyor system with a~ installed drive power of 750 kW which 

extended as far as the pit bottom area. The positions and ratings 

of the drives are shown on figure 6.Sa. Face machinery rated 

power totalled 770 kW. 

The results of the surveys carried out in static conditions 

at the end of holiday week and peak production conditions are 

summarised in tables 6.Sb and c. The temperatures measured are 

also displayed on a psychrometric chart in figure 6.Sd. 
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It is fortunate that conditions at station 1 were almost 

identical for each survey as this enables direct comparison to be 

made between the non operating, static conditions and production 

conditions. 

6.5.2 Sample calculation and results 

Sample calculation 

Station 1, 5 m inbye of 24s slit 

Observed readings 

Wet bulb temperature 

Dry bulb temperature 

Pressuie 

Air quantity 

l6.30 C 

22.30 C 

108.15 k Pa 

31.07 m3/s 

From computer program "Ps" 

Air density 

Sigma heat 

Moisture content 

Air mass flow in section 

1.268 kg/m3 

43.07 kJ/kg 

8.35 g/kg 

Air volume flow x Air density = Air mass flow 

31.07 m3/s x 1.268 = 39.4 kg/s 
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Station 2, 5 m inbye of 4bs intake 

Observed readings 

Wet bulb temperature 

Dry bulb temperature 

Pressure 

Air quantity 

From computer program "PS" 

Air density 

Sigma heat 

Moisture content 

107.75 k Pa 

19.12 m3/s 

1.255 kg/m3 

45.37 kJ/kg 

8.43 g/kg 

Moisture gain between stations 1 and 2 

(Moisture content at 2 - Moisture content at 1) x Air mass flow 

(8.43 g/kg - 8.35 g/kg) x 39.4 kg/s 

3.15 g/s 

Heat gain between stations 1 and 2 

(Sigma heat at 2 - Sigma heat at 1) x Air mass flow 

(45.37 kJ/kg - 43.07 kJ/kg) x 39.4 kg/s 

= 90.62 kW 



Airflow 
Station 

kg/s 

1 

39.4 

2 

24.0 

3 

14.1 

4 

14.1 

5 

14.1 

6 
-------- -

Table 6.5b 

Ventilation survey, Hick1eton, T01s district (static conditions) 

Temperature Sigma heat Moisture content Heat gain 

wOe DBoe kJ/kg g/kg kW 

16.3 22.3 43.07 8.35 

90.62 

17.1 24.4 45.37 8.43 

36.00 

17.7 25.9 46.87 8.43 

85.16 

19.3 28.9 52.91 9.35 

94.33 

21.8 30.0 59.60 11.95 

93.34 

23.8 31.9 66.22 13.89 
-- '-------- --- - - - ----

Moisture gain 

g/s 

3.15 

0.0 

12.97 

36.66 

27.37 

, 

~ 
o 
.00 

I 



Table 6.5c 

Ventilation Survey, 'H .ick1eton, T01's district (production conditions) 

Airflow Temperature Sigma heat Moisture content Heat gain 
Station 

kg/s WBoC DBoC kJ/kg g/kg kW 

1 16.5 22.5 43.61 8.49 

39.4 468.46 

2 20.5 25.3 55.50 12.22 

24.0 71. 76 

3 21.5 26.0 58.49 13.16 

14.1 157.36 

4 24.7 29.1 69.65 16.49 

14.1 268.18 

5 29.3 32.3 88.67 23.06 

14.1 -49.49 

6 28.6 32.2 85.16 21.64 
- - - - - - - - -- _ .. _--- ~----- ---- --

Moisture gain 

g/s 

146.9 

22.56 

46.95 

92.64 

-20.02 

t-' 
o 
~ 
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6.5.3 Discussion. Static conditions 

Along the west intak~ in static conditions the only heat 

source is the strata. From stations 1 to 3 a distance of 1350 m 

the heat gain was only 126 kW (93 W per m length). At the time 

of the survey the airway was seen to be dry and this is confirmed 

by the negligible moisture gain along this well established intake. 

Reference to the psychrometric chart figure 6.5d shows graphically 

the sensible, dry, heat transfer to the air as the air passed 

along the intake. Note that stations 1, 2 and 3 are almost on a 

horizontal line of constant moisture content. 

Between stations 3 and 4 the heat and moisture transfer from 

the strata increased due to the airway being more recently driven. 

Although the air quantity here was about one third that in the 

main intake the heat gain was still 85 kW. The face between 

stations 4 and 5 had a heat gain of 94 kW in only 200 m showing 

an even larger strata heat load for newly exposed strata. Along 

the tailgate to station 6 the heat and moisture gain was of the 

same order as the ~ingate which was in similar good condition. 

6.5.4 Discussion. Production conditions 

The survey made in peak production conditions shows much 

greater heat and moisture gains around the ventilation circuit 

apart from in the tailgate. Along the west intake this effect is 

well illustrated with a fourfold increase in the heat gain and a 

massive increase in the moisture pickUp. The differences between 

the production and static figures are due principally to the con

veyor. With motor-drive units working at aroung 50% of rated 

power, estimated from meter readings in the sub station, this 
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produces figures of about 210 kW from the motor-drive units and 

210 kW from the coal and the whole 166 g/s moisture gain from the 

coal. The coal flow from TO~s and P46~ totals about 70 kg/s 

average. 

A similar situation existed in the maingate with an increase 

in the heat and moisture gains of 72 kW and 34 gls to 157 kW and 

47 g/s. These increases are not as pronounced as in the intake 

because of the already high temperature and moisture content of 

the air on entering the maingate at station 3. The heat and 

moisture gains along the face were about 3 times those in static 

conditions. The 268 kW heat gain would be mostly attributable to 

the machinery since at the high temperatures reached in peak prod

uction the strata heat emission is temporarily reduced resulting 

in storage as described earlier. It is notable that the wet 

bulb temperature reached 29.30 C in the tailgate face end. High 

enough for a considerable heat strain risk to workers. 

As was the case at Bentinck K76s district the machinery on 

the face raised the air temperature above strata temperature and 

a slight cooling of the air took place in the tailgate in section 

5-6. 



CHAPTER 7 

HEAT EMISSION FROM CONVEYED COAL 
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CHAPTER 7 
I 

HEAT FROM CONVEYED COAL 

7.1 INTRODUCTION 

The underground investigations at Bentinck and Hick1eton 

Collieries described in Chapter 6 have illustrated the potential 

of conveyed coal as a heat source and given an indication that 

its magnitude is comparable to that of the mining machinery. 

Estimates by the Mine Ventilation Research Department of the 

Federal German Coal Industry attribute in the order of 50% of 

the heat make in maingate conveyor roads and about 10% of the 

total mine heat load to conveyed coal [21]. Recent work by the 

Mining Research and Development Establishment [9] suggest similar 

figures. These are comparable to those measured at Bentinckand 

Hick1eton Collieries. 

This chapter provides a qualitative assessment of the situa-

tion, followed by consideration of some factors which could 

affect the conveyed coal heat contribution and concludes with a 

simple theoretical treatment. 

7.2 QUALITATIVE ASSESSMENT 

7.2.1 Coal in the strata 

Before the approach of any nearby face or airway the coal is 

at virgin rock temperature. As a coal face approaches the temper-

ature falls at an increasing rate as heat is conducted more 

rapidly to the interface with the ventilating air due to the 

steepening temperature gradient. Despite the fact that the strata 
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gives large quantities of heat to the airstream the temperature 

fall is small due to the vast thermal capacity of the mass of 

strata involved. The face temperature is typically within 1-20 C 

of VRT on a fast advancing face. 

7.2.2 The cutting process 

During the cutting process the machine expends a large amount 

of mechanical energy to cut and break the coal. Most of this 

energy is dissipated through friction and heat to the ventilating 

air, machine dust suppression water, and the coal which may be 

o expected to heat up about 0.5-2.0 C depending on cutting efficiency. 

At BentinckK76s a temperature rise of 10C was measured which is of 

the expected order. The shearer would be expending about 50 kW at 

the cutting drum with a coal production rate of 50 kg/so Dividing 

the power input by the rate of production and specific heat of 

coal of I kJ/kg K gives a predicted temperature rise of lOCo The 

temperature fall of the coal before mining and the rise during 

cutting are roughly equal. This results in the temperature of the 

cut _coal leaving the face on the AFC being very close to VRT. 

Goal does not have a large specific heat capacity (1.0 - 1.3 
o 

kJ/kgK) or, in the solid, thermal conductivity (0.1 - 0.5 W/m C) 

but after mining its potential as a heat source is increased 

orders of magnitude. 

During cut1:ing the coal is heated, broken and crushed, wetted 

thoroughly with (usually hot) dust suppression water and well 

mixed. The airflow across, and possibly within, the coal is 

turbulent particularly on the face. This provides ideal conditions 

for convective and evaporative heat transfer. 
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7.2.3 On the conveyors 

The coal is repeatedly mixed and wetted at the face end, 

stage loader and further outbye on the conveyors. Normal practice 

is to convey the coal outbye against the airstream (antitropal 

ventilation) and this results in a large relative velocity between 

coal and air, once again enhancing heat transfer. In this counter

flow situation as the coal cools and dries it meets progressively 

cooler and drier air on its journey outbye. This situation could 

be alleviated to a certain extent by conveying coal in return air 

(homotropal ventilation) as is practised in some mines. The 

reason this system is not commonly adopted is due to firefighting 

safety. Conveyors can catch fire and a conveyor fire in an intake 

sends smoke inbye. This allows firefighting teams access from 

fresh air without having to traverse a face. Also a water supply 

is more easily arranged. 

As the moist coal travels outbye, particularly on the longer 

lengths of conveyor it cools and dries near the surface and a 

layer has been obse,rved to form which insulates the main bed of 

coal on the conveyor belt. Dry coal has a low thermal conductiv

ity as stated earlier and still air also has an extremely low 

conductivity (0.028 W/moC) so the benefits of this relatively 

cool dry skin as heat and moisture transfer are reduced are 

apparent. 

Unfortunately at a transfer point the coal is sometimes 

sprayed and always well mixed so the coal surface temperature and 

wetness returns to a mean value approaching that for the whole 

coal bed. Consequently the heat emission from the coal rises to 

a new maximum to decay back to a lower level as the insulating 
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surface forms once more. Consideration of the number of transfer 

points between any face and pit bottom illustrates how often the 

heat emission is revitalised in this way. 

By the time the coal reaches the surface, possibly after 

spending time in bunkers and losing more heat, it is considerably 

cooler than when it started its journey outbye from the face. 

Some estimates of its potential were given in Chapter 6.4. 

7.3 FACTORS AFFECTING HEAT AND MOISTURE TRANSFER 

There are many variables which could affect the heat and 

moisture transfer within and from the surface of a bed of moist 

broken coal on a conveyor to an airstream. The following sections 

provide a brief summary of the principal parameters affecting the 

situation although these are not arranged in any order of import

ance or magnitude. 

7.3.1 Psychrometric condition of the air 

The wet and dry bulb temperatures and pressure of the air 

specify its condition and heat content. Dry bulb temperature 

affects the convective heat transfer (Chapter 5.3). Wet bulb 

temperature and vapour pressure figure prominently in the latent 

heat transfer (Chapter 5.5). Naturally lower air temperatures 

result in a greater driving potential and hence increase the heat 

and moisture transfer from the coal to the air. 
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7.3.2 Airflow, quantity and velocity 

The quantity of the air absorbing a given amount of heat 

affects the psychrometric condition of the air. -The relative 

velocity of the air to the coal is particularly important in 

evaluating convective heat transfer (Chapter 5.5). 

7.3.3 Belt speed 

This must be considered due to the relative velocity of the 

coal and air as above. 

For coal transported at a certain rate the belt velocity 

dictates the load per unit length and the time a certain amount 

of coal has to transfer its heat. 

7.3.4 Shape of coal bed 

Obviously a thin flat bed of coal will cool faster than a 

narrower, deeper one having the same volume. A greater surface 

area is exposed to the airstream and the percentage of the coal 

cooled to form the insulating layer described in Chapter 7.1.3 

is greater. 

7.3.5 Temperature and wetness of coal loaded 

Coal loaded with a high temperature and moisture content has 

a higher potential to lose heat and moisture to the air. Also 

the driving potential for heat and moisture emission is high. 
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7.3.6 Sprays and subsequent wetting 

Evaporative heat transfer is enhanced by increased wetting of 

the conveyed coal. As little dust suppression water as is 

possible for the required effect should be used. If chilled 

service water systems are eventually installed in British coal 

mines there is a possibility of using the water to cool the coal 

on the conveyors and suppress dust. If cold enough water were 

used it could use the coal clearance system to remove a certain 

amount of hea~as heat would flow from the air to the coal. 

7.3~7 Machine heat distribution 

Although conveyor systems are the most efficient method 

currently available to move coal they still require a large drive 

power. Of the useful work done by the motor-drive unit all but 

that used to lift the coal against gravity is dissipated along 

the operating length of the machine overcoming roller friction. 

It therefore appears as heat which may be conducted through the 

conveyor structure to be transferred to the air or transferred 

to the belt and coal. 

Tests using an infra red thermometer at Pye Hill Colliery, 

an electronic indicating thermometer at BentinckColliery and a 

sensitive infrared thermal imaging device at Daw Mill Colliery 

failed to detect any appreciably warm structure even on heavily 

loaded conveyors. Only failing bearings could be found to be 

hotter than the air dry bulb temperature. None of the instruments 

were accurate to more than 10C so the situation is probably that 

the large area of highly conductive steel structure only needs to 

warm slightly to dissipate a relatively large quantity of heat. 
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7.3.8 Radiant heat exchange with roadway walls 

Radiant heat exchange with the conveyor roadway walls may be 

in either direction. The wall temperature of moSt of the relat

ively dry roadways in British collieries may be taken as being 

equal to the dry bulb temperature. The temperature of the belt 

bottom is also close to dry bulb temperature so radiant heat 

exchange at the bottom surface is small. The temperature of the 

coal surface though could vary from almost VRT down to air wet 

bulb temperature so the coal could have a higher or lower temper

ature than the walls resulting in a heat flow which could be in 

either direction. 

7.3.9 Thermal characteristics of coal 

The thermal characteristics which must be considered are 

those of a mix of coal, air and water in varying ratios. The 

specific heat of the mix may easily be evaluated providing the 

fractions of each constituent are known. The conductivity and 

diffusivity which af.fect the flow and distribution of heat in the 

coal bed are much more difficult to quantify. Chapter 8 describes 

attempts to evaluate some of these parameters. 

7.3.10 Size distribution of coal 

This affects the thermal characteristics of the coal bed due 

to packing differences changing the ratios of air, water and coal. 

The size distribution will also dictate the shape and roughness of 

the coal surface and hence the convective and latent heat transfer. 

The layer of coal near the surface also could be affected due to 

different size distributions allowing air penetration of the coal 
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bed to different extents. 

Due to its low conductivity and smaller surface area in the 

solid it is apparent that a single large lump of coal will take 

much longer to cool than the equivalent mass of fine coal. 

7.4 RELATIONSHIP BETWEEN HEAT AND MOISTURE EMISSION 

Early attempts to quantify the heat emission from conveyors 

were unjustifiably based on the principles of dry heat exchange. 

This enabled the temperature rise in the air to be calculated 

from the heat balance shown below. 

where:-

6t c 

m c 

Cc 

6ta 

~ 

Cpa 

~t 
c 

m c C c 6t m a a C pa 

0 
= Temperature change of coal ( C) 

= Mass flow rate of coal (kg/s) 

= Specific heat of coal (kJ/kg K) 

= Tempera~ure change of air (oC) 

= Mass flow rate of air (kg/s) 

Specific heat of air (kJ/kgK) 

(1) 

This resulted in the prediction of air temperature increases 

which were many times greater than those actually encountered. 

In fact a large amount of heat is transferred from the coal to the 

air by the evaporation of moisture. Reference to the thermohygro-

graph traces (figures 6.3a and 6.5e) and the psychrometric chart 

of conditions in the conveyor road at Hickleton (figure 6.5d) 

will illustrate this. 
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Latent heat transfer is such that moisture may be evaporated 

from a surface into the air without necessarily raising the dry 

bulb temperature. Other moisture is evaporated from conveyed coal 

in significant quantities resulting in large amounts of heat being 

transferred to the air. Thus direct, sensible heat transfer and 

latent heat transfer due to moisture evaporation must both be 

considered when evaluating the total heat emitted. The term heat 

emission may now be taken to include latent heat transfer and 

moisture evaporation. 

7.5 CHOICE OF ANALYTICAL METHOD 

The ultimate object of this exercise is to predict the rate 

of heat flow from the cut coal on a conveyor to the ventilating 

airstream of a mine. The accepted approach for such a study 

would be to start from simple theoretical first principles and 

build up a more representative and complex mathematical model in 

stages. The validity being verified by experiment in different 

conditions as the model was developed and refined. Ideally the 

theoretical model would be based on an analysis of the heat 

exchange between each individual piece of coal in the coal bed and 

the airstream. However the complex interactions taking place 

would result in extremely cumbersome mathematics. Such an analysis 

would be impractical for other reasons, for example assessment of 

the correlation between actual boundary conditions and those 

postulated in theory. 

In an attempt to simplify analysis the coal on the conveyor 

will be treated as a continuous, possibly multi-layered, plane 

parallel slab. Using this composite model would necessitate the 
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measurement of bulk thermal characteristics of a coal-air mixture. 

Information regarding the boundary conditions would still be 

difficult to obtain but the problems were not thought to be insur

mountable. 

A theoretical approach to the problem was needed which could 

also be reproduced in and correlated with a laboratory model. It 

was decided that the configurations of the theoretical and laborat

ory models should be such that the mathematics required was simple 

and already well proven. Also the practical experiment would be 

easy to build and control. 

The theoretical model was designed to use, where possible, 

parameters which were already known, easy to measure directly or 

found from other properties which were easy to measure. 

7.6 EQUATIONS FOR MASS AND HEAT EXCHANGE 

Sections 7.7 and 7.8 state the basic principles of mass and 

heat transfer through and from the conveyed coal. The equations 

used are for steady state conditions. Naturally conditions would 

vary as the coal cooled and dried and different air temperatures 

were encountered, but equations for non steady conditions would 

be extremely complex when gathered together to represent all the 

heat transfer at the surface. It would also be difficult to 

relate these to practical situations. 

It is envisaged that the steady state solutions could be used 

over a short period of time of at present unknown length. After 

such a period and knowing how much heat had left the coal, the 

variables could be reset to provide a new set of input conditions. 
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This process repeated a number of times would provide a series of 

step values which would ideally follow the curve describing the 

actual conditions. Such a method would also be very suitable for 

integration into a computer program. The following equations apply 

to the exchange of heat and water vapour between the warm moist 

coal and surroundings. In most cases they are based on the 

equations in Chapter 5. 

The heat exchange at the upper and lower surfaces is initially 

dealt with in separate sections. 

7.7 HEAT EXCHANGE AT COAL UPPER SURFACE 

7.7.1 Heat exchange by convection 

(2) 

where:-

h cu 

= Convective heat emission from coal upper surface (W/m2) 

= Convective heat transfer coefficient (W/m20C) 

t = Temperature of coal upper surface (oC) 
u 

tdb = Air dry bulb temperature (oC) 

7.7.2 Heat exchange by evaporation 

where:-

= h cu 

(e - e ) 
. 0.7 . L u P a (3) 

qeu = Evaporative heat transfer from upper surface (W/m2) 

L = Latent heat of evaporation of water (J/kg) 

e = Vapour pressure at surface (kPa) 
u 
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ea = Vapour pressure of surrounding air (kPa) 

P = Ambient air pressure (kPa) 

7.7.3 Heat exchange by radiation 

where:-

qru 

hr = 

tr 

Radiative 

Radiative 

= h 
r 

(t - t ) . F 
u r ev 

heat exchange (W/m2) 

heat transfer coefficient 

Temperature of roadway walls (oe) 

(W/m2oC) 

(4) 

F = Em;ssivity and view factor - N.B. This may be either ev 

positive' from the coa1 1or negative to the coal from 

the roadway walls. 

7.7.4 Conduction to the surface 

where:-

= -k 
u 

dt 
• dx 

= Heat conduction to the surface (W/m2) 

= Bulk thermal conductivity of coal (W/moC) 

dt 0 -- = Temperature gradient in coal ( elm) dx 

(5) 

It is envisaged that the bulk thermal conductivity of the broken 

coal, air and water mix would change as the coal dried. 
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7.7.5 Thermal balance 

For heat balance the heat conducted to the surface would equal 

the heat exchange at the surface due to convection evaporation and 

radiation giving:-

(6) 

(7) 

7.8 HEAT EXCHANGE AT THE LOWER SURFACE 

A different set of conditions affect heat transfer through 

F 
ev 

the lower side of the conveyor. The existence of the belt forming 

an impervious barrier results in no latent heat transfer. The belt 

material also forms an extra thermal barrier. 

7.8.1 Heat exchange by convection 

(8) 

where:-

2 - Convective heat emission from belt bottom (W/m ) qcR, -

h = Convective heat transfer coefficient for belt lower cR, 
20 surface (W/m C) 

o 
tR, = Temperature of lower surface ( C) 
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7.8.2 Heat exchange by radiation 

where:-

qri = Radiative heat exchange with roadway (W/m2) 

hri = Radiative heat transfer coefficient 

F = Emissivity and view factor ev 

7.8.3 Conduction through the coal 

where:-

= -k dt 
i dx 

(W/m2oC) 

(9) 

(10) 

qki = Heat conduction through lower layers of coal (W/m2oC) 

-k = Bulk thermal conductivity of coal (W/moC) 
i 

~~ = Temperature gradient in lower layers or coal (oC/m) 

It is expected that the thermal conductivity of coal near the 

bottom of the coal bed would be different to that near the surface 

and more stable as no drying would take place here. 

7.8.4 Conduction through the belt 

where:-

-k 
b 

Heat conduction through the belt (W/m2) 

kb = Thermal conductivity of belt material (W/moC) 

(11) 
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tt = Temperature of lower surface of coal (oC) 

tbt = Temperature of lower surface of belt (oC) 

7.8.5 Thermal balance 

For thermal balance heat conducted through the bottom layers 

of coal will be equal to the heat conducted through the belt 

material which in turn should equal the heat exchange at the 

surface giving:-

(12) 

(13) 

7.9 CONSOLIDATION OF EQUATIONS AND ESTIMATES OF HEAT TRANSFER 

COEFFICIENTS 

7.9.1 Upper surface 

Equation 7.9 (7) summarizes the heat exchange at the top 

surface in a single heat balance equation. Some collection of 

terms and estimation of coefficients is now attempted so that the 

equation may be simplified and important parameters which will 

need experimental evaluation are identified. 

(e - e ) 
u a 

p 

(14) 
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7.9.2 Radiative heat transfer 

The section of the equation dealing with radiative heat 

exchange may be simplified and matched to that dealing with con-

vection by making two assumptions: 

(i) The emissivity and view factor may be approximated to 1 

with only small errors. Referring to equation 5.4 (25):-

where 

F = Emissivity and view factor ev 

E:l = Emissivity of coal surface 

E:2 = Emissivity of roadway walls 

Al = Area of coal surface (m2) 

A2 Area of roadway walls (m2) 

As both the coal surfaces and the roadway wall are rough, 

dull and black an emissivity value of 0.98 is inserted. 

This figure has been checked and found correct as is 

described later. 

2 2 
For each 1 m of coal surface there exists about 10 m of 

roadway in the average roadway. 

Inserting these values in equation (15):-

= 0.9780 

Thus by approximating F ev 1 will give 2.2% error. 
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(ii) The skin temperature of a dry roadway wall has been 

measured by several workers and found to equate very 

closely to air dry bulb temperature (Chapter 10.7.8). 

Insertion of dry bulb temperature for the roadway skin 

temperature is therefore justified. This allows the 

radiative heat transfer equation to use the same 

temperatures as the convective case. 

i.e. 

q = h (t - t ) ru ru u db 
(16) 

For an estimate of the radiative heat coefficient we may 

evaluate h using equation 5.4 (27) 
r 

hr = 0.2268 G~~) 3 (17) 

Tav = Average temperature of the two surfaces involved 

( K). 

Inserting a value of 300 K we obtain:-

hr = 0.2268 (
300) 3 
100 

This is the heat transfer from the coal to the roadway 

walls. When the roadway walls are hotter than the coal 

the emissivity and view factor must be calculated. It 

reduces the heat transfer coefficient by about 20%. 
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7.9.3 Latent heat transfer 

Referring to equation 7.7(3) we find that the latent heat 

transfer coefficient is linked to the convective heat transfer 

coefficient. The justification for this is given in Chapter 5.5 

= h cu 

(e - e ) 
.0.7.L up (17) 

To simplify equation (17) and remove the pressure, vapour pressure 

and latent heat terms on "equivalent temperature difference" is 

used. Whillier [18] gives an equivalent temperature:-

where 

17 (e - e) 
u 

~tL = Equivalent temperature difference (oC) 

e = Vapour pressure at upper surface (kPa) 
u 

e = Vapour pressure of the air (kPa) 

(18) 

The vapour pressures are still needed as input data but we now 

express the latent heat transfer thus: 

7.9.4 Collection of terms 

= h cu 

Equation 14 may now be expressed 

(19) 

k dt = (h + h )(t - t
db

) + h ~L (20) u dx cu r u C\A... -L 

Similarly for the bottom surface 

(21) 



- 132 -

Equations (20) and (21) describe the heat exchange at the surface 

of the coal and the belt bottom. The right hand side is particu-

larly dependent on the convective heat transfer coefficient which 

as stated in Chapter 5.2 is particularly difficult to predict 

accurately. Work was carried out later in the study to evaluate 

this important coefficient and also to check that the latent heat 

transfer coefficient could be based on this coefficient. 

These equations also illustrate the importance of the surface 

temperature. Accurate surface temperature measurement is 

particularly difficult since in most cases the instrument used to 

measure the ~.urface temperature makes a contribution by disturbing 

the conditions on attempting to measure. The next section 

describes a possible method for its prediction. 

7.10 THE TEMPERATURE PROFILE WITHIN THE COAL BED 

The left hand sides of equations describing the conduction of 

heat to the surface from the nearby coal allows a heat balance to 

be attempted as a check. 

The temperature distribution in the interior of the coal on 

the conveyor may be described by the Fourier differential equation 

of conduction. The one dimensional case is illustrated here as it 

is assumed that the coal bed forms a plane parallel faced slab. 

This equation describes the temperature profile perpendicular to 

the surface. 

at k -=- . aT pC 
(22) 



where:-

t = Temperature (oe) 

T = Time (s) 

x = Distance (m) 
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k = Thermal conductivity (W/moe) 

P = Density (kg/m3) 

e = Specific heat (kJ/kg K) 

a = Thermal diffusivity (m2/s) 

This equation does not describe a steady state situation but 

specifies temperature in the coal at a given time and position. 

It could therefore be used to evaluate the temperature gradient 

near the surface and hence the heat conduction to the surface in 

equations (20) and (21). 

It must be stressed that the thermal conductivity and hence 

diffusivity are bulk values for the coal air water mix and that 

they would change as the coal dried. The rates of change being 

at present unknown. 

7.11 REQUIREMENT FOR EXPERIMENTAL INVESTIGATION 

The theoretical treatment described in this chapter may not 

provide an answer in itself to the evaluation of heat transfer 

from the coal on a conveyor, but it has allowed identification of 

important coefficients and characteristics and shows which must be 

evaluated to find a solution to the problem. The main tasks of 

the experimental work were therefore to quantify the convective 

heat transfer coefficient of a rough coal surface and the bulk 

thermal conductivity of broken coal. Chapter 8 describes an 
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attempt at theoretical prediction and experimental evaluation of 

the thermal conductivity of broken coal. 



CHAPTER 8 

EVALUATION OF THE THERMAL CONDUCTIVITY OF BROKEN COAL 
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CHAPTER 8 

THE THERMAL CQNDUCTIVITY OF BROKEN COAL 

8.1 Introduction 

This chapter describes the evaluation of the bulk thermal 

conductivity of a mixture of broken coal, air and water, initial 

work being concerned only with a dry coal air mixture. Very 

little work has been carried out in the past either experimentally 

or theoretically to assess this characteristic. Davis and Byrne 

(1922) and Schuman and Voss (1934) made some measurements of 

thermal conductivity of granulated coal. Their work is not well 

documented and the units used not clearly stated. 

The only other information available about heat transfer in 

granular coal is concerned with the coking and gasification 

processes and is concerned with very high temperatures where the 

heat transfer processes are vastly different. 

Two sets of experiments are described. The object of the 

first was to measure the thermal conductivity directly, the second 

to measure the thermal diffusivity from which the conductivity may 

be evaluated. 

In the last section a theoretical method of calculating the 

bulk thermal conductivity is briefly described and demonstrated. 
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8.2 DIRECT MEASUREMENT OF THERMAL CONDUCTIVITY 

8.2.1 Design of apparatus 

Chapter 5.2 describes the conduction of heat and gives 

Fouriers equation of steady one dimensional heat conduction 

through a plane parallel body. 

where 

Q = Heat transferred by conduction (W) 

k = Thermal conductivity (W/moC) 

o t = Temperature ( C) 

x = Distance (m) 

(Also see figures 5.2a and 8.2a.) 

(1) 

There are several methods for evaluating thermal conductivity which 

are based on equation (1) or use it in some slightly modified form, 

eg divided bar apparatus, but few are suitable for use with 

granular materials. In the interests of simplicity equipment was 

devised which would use the Fourier equation and model the 

situation shown in figure 8.2a. 

The configuration of the apparatus was such that it was a 

model of part of the infinite flat plate on which the Fourier 

equation is based. The temperatures of the end planes being 

maintained constant by a heater a& one end and a cold water tank 

at the other. Insulation around the sample would restrict radial 

heat flow to very low levels so heat could be considered to flow 
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FIG 8·2a STEADY STATE HEAT CONDUCTION 

FIG 8·2b ASSEMBLY OF APPARATUS 

sample box 

retaining plate 
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only axially. Temperature difference across the sample was 

measured using thermocouples and the amount of heat flowing 

through the sample by flow rate and temperature difference through 

the cold water tank. A more detailed description of the main 

components follows. 

8.2.2 Sample box 

This component was cast in the form of a 400 mm cube with a 

150 mm diameter hole through the centre. The material used was an 

insulating foam. This was formed from two liquid resin constit

uents which foamed and expanded rapidly on mixing. Solidification 

of the resultant aerated block took about 5 minutes. The thermal 

conductivity of the solid foam was 0.035 W/moC (manufacturers 

specification). The central cylindrical hole was lined with poly

thene prior to casting and this boruded strongly to provide a 

strong air and water tight liner. 

Thermocouples in two concentric rings around the cylinder 

were also cast in. These were to check for radial heat flow 

which was found to be negligible in use. This was due to the 

conductivity of the coal being much higher than that of the 

insulation and the mean sample temperature being near ambient. 

The sample of coal was retained in the central core at the 'hot 

end' by a steel plate which was painted matt black to enhance 

heat transfer. The other end of the sample was retained by the 

cold water tank. 
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8.2.3 Cold water tank 

To keep the 'cold end' of the sample at a constant temperature 

and allow measurement of the amount of heat passing through the 

sample a cold water tank was used. It was constructed in the form 

of a flat cylinder the same diameter as the sample cylinder and 

held in position by interference fit in a retaining ring. The 

tank was constructed of tinplate with connections for water inlet 

and outlet. Inside the cylinder was a long spiral fin which was 

soldered to the inside surface of the face of the cylinder in 

contact witg the coal sample. This fin improved heat transfer to 

the water by increasing the water velocity as it flowed in a long 

spiral path from inlet to outlet and also increased the effective 

area of the cylinder face. 

8.2.4 Chilled water supply 

The water supply to the cold tank needed to be at constant 

low temperature and have a constant flow. The cold end was main

tained at a constant temperature of just a few degrees centigrade and 

this avoided the hot end having to be dangerously hot in order to 

produce the desired temperature difference across the sample. This 

would allow the mean sample temperature to be kept near the room ambient 

temperature which would reduce radial heat flow to a minimum level. 

Also any heat flow outwards through the insulation at the hot end 

\<lOuld be compensated for by the reverse at the cold end. To 

provide a steady temperature near zero two beer chillers were 

acquired. These took the form of a small refrigeration unit which 

chilled a cold reservoir to a thermostatically controlled temperat-

ure. When the flow rate through the cooling coil in the reservoir 
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was low the outlet temperature of the fluid passing through was 

extremely stable. 

To provide the necessary constant flow rate the water supply 

was taken from a large constant head tank. The flow rate was 

controlled by a needle valve between the tank and the beer 

chillers. Flow rate was measured by timed collection into a 

graduated container. 

8.2.5 Heater 

The heater was constructed from tin plate the same diameter 

as the sample cylinder with a 60 W light bulb as the heat source. 

In order to minimise radiant heat flow in all directions other 

than axially through the sample the heater container was provided 

with a double lining except in the direction towards the sample. 

The heater was held in place at the sample hot end by interfer-

ence fit in a retaining ring. The mains supply voltage to the 

bulb passed through a rheostat which enabled the heat output to 

be regulated and provide a reduced operating voltage to avoid over-

heating and failure of the bulb. No attempt was made to contain 

and measure the heat at this end of the apparatus. No insulation 

was used and excess heat was allowed to escape. 

8.2.6 Sample temperature thermocouple 

To measure the temperature difference across the sample a 

2 x 6 junction thermocouple was constructed. The materials used 

were copper and eureka wire assembled in the configuration shown in 

figure 8.2c. 
o The thermocouple was calibrated to 0.1 C accuracy 

for the temperature range 0-80oC. Each junction was coated in 
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epoxy resin to protect it and the whole circuit was liberally 

varnished to waterproof it. 

To position the thermocouples within the sample the six 

junctions at each end were placed in a ring 80 mm in diameter 

concentric with the cylindrical case as it was filled. The two 

rings of thermocouples were arranged 50 mm from each end giving 

two thermocouple planes 300 mm apart within the sample. The 50 mm 

of sample left at each end was to reduce end effects. 

The voltage of the thermocouple circuit was measured using a 

Pye potentiometer and light spot galvanometer. The system balanced 

the voltage of the thermocouple using a bridge circuit against a 

measured proportion of that from a cell to give voltage readings 

in I ~V increments. 

8.2.7 Water temperature thermocouples 

The water temperature at the inlet and outlet of the water 

tank had to be accurately measured to allow calculation of the 

heat flow through the sample which was expected to be low. 

A thermocouple was constructed which had four junctions at 

each end. As the junctions at each end were inserted into a small 

pipe to measure the water temperature they had to be constructed 

to be as small as possible. Four rather than one junction being 

used to raise the voltage produced by the thermocouple to an 

accurately measurable level despite the low temperature differential 

between the hot and cold junctions. The junctions were each 

sealed separately after joining the wires and then sealed together 

with epoxy resin. 
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The thermocouple was calibrated against two National Physical 

Laboratory certified thermometers graduated in O.Oloe increments. 

The calibration covered a range of 0 - 1.00 e with an accuracy of 

O.Oloe. It was carried out by warming one container of paraffin 

o in a water bath to 2 e above the temperature of a second identical 

container. Each carried a set of junctions and thermometer. As 

the container was warmed both were stirred, temperatures read and 

voltage of the thermocouple noted. The warmed container was then 

allowed to cool so the temperature difference fell back to zero. 

More measurements were made during this period to check for hyst-

erysis effects. None were detected. 

This thermocouple was then installed with one set of junctions 

in the inlet and one in the exit pip~s of the cold water tank. 

Each was sealed in with epoxy resin and gave reliable service. 

8.2.8 Assembly and operation 

The apparatus was assembled and used as shown in figures 8.2b 

and d. The sample cylinder was filled whilst vertical so that the 

sample thermocouples could be accurately placed and the cold tank 

set tight against the sample for good thermal contact. This 

assembly was then lowered to a horizontal position in a large 

outer box. Fibre glass insulation was then placed around the cold 

tank so the only heat reaching it would come through the sample. 

This was verified by testing without the heater on. The check 

showed the increase in water temperature across the cold tank was 

too small to measure reliably and may be neglected. 

Once filled and assembled the heater voltage and water temp-

erature and flow rate were set and the equipment was left to settle 
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to a steady state. Apart from checks for radial heat flow and of 

sample cold end temperature only the following experimental 

measurements needed to be taken.· 

(i) Water flow rate through cold tank by timed collection 

into a large measuring cylinder. 

(ii) Sample temperature, thermocouple voltage. 

(iii) Water temperature, thermocouple voltage. 

The above two differential temperatures being measured using the 

Pye potentiometer set. The temperature difference across the 

sample, also between the cold tank, water at inlet and outlet can 

then be evaluated from the relevant calibration curves. The 

results were processed as shown in section 8.3.1. 

Once set and left to run the apparatus required a surprisingly 

long time to reach a steady state, usually a week. This is shawn 

in the table of results, figure 8.3a. Having recognised that the 

apparatus took so long after filling to attain a steady state the 

apparatus was left for one week to settle after filling before the 

daily readings were taken. 

Tests were carried out on three samples before the equipment 

failed. 

(i) -I" + 1" sized coal, air dried 

(ii) Run of mine, air dried 

(iii) Run of mine, 5% moisture. 
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8.3 RESULTS AND DISCUSSION 

8.3.1 Treatment of results 

Referring to equation (1) 

Q 

where 

o 
t2 - tl = Temperature difference across sample ( C) 

x2 - xl = Thickness of sample (m) 

A = Area of sample (m2) 

Q = Heat conducted through sample (W) 

The heat conducted through the sample is given by 

Q = M x C x ~t w pw w 

where 

M = Mass flow rate of water (kg/s) 
w 

C = Specific heat of water, 4187 (J/kg K) 
pw 

o 
~t = Temperature change of water ( C) 

w 

Rearranging (1) 

or 

k 
Q 0.3 

t2 - tl x 0.0177 

(2) 

(3) 
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8.3.2 Sample calculation 

Water thermocouple voltage 

Temperature increase ( t ) 
w 

Mass flow rate of water (M ) 
w 

Heat flow (Q) 

-5 5.0 x 10 V 

0.27oC (from calibration curve 
in Appendix) 

1.49 g/s 

M x C x ~t = Q 
w p w 

1.49 x 10-3 x 4187 x 0.27 = 1.684 W 

Conductivity (k) 

." 
Sample thermocouple voltage 1.252 x 10-4 

V 

Sample temperature difference (t2 - t l ) 

Sample thickness, fixed (x) 0.3 m 

Sample area, fixed (A) 0.0177 m
3 

Using equation (3) 

k 
Q 0.3 

= x 
t2 - t 0.0177 1 

1.684 0.3 
= x 

48.8 0.0177 

= 0.584 W/moC 



8.3.3 Results 

Figure 8.3a 

Table of observed thermal conductivity of -! x 1" coal (dry) 

Water Thermocouple Temperature Heat Sample Temperature 
Day Flow Voltage Difference Flow Thermo. Difference Voltage g/s V x 10-6 °c W V x 10-3 °c 

1 1.49 50 0.27 1.684 12.52 48.8 

2 0.77 60 0.33 1.064 12.05 47.0 

3 1.45 39 0.20 1.214 13.85 54.0 

4 0.58 50 0.27 0.656 8.85 34.5 

5 0.55 32 0.28 0.645 14.18 55.3 

6 0.56 39 0.20 0.469 20.88 81.4 

7 0.48 47 0.25 0.502 18.98 74.0 

8 0.45 42 0.22 0.414 18.88 73.6 

9 0.35 52 0.28 0.410 18.83 73.4 

10 0.38 50 0.27 0.430 17.95 70.0 

11 0.42 47 0.25 0.440 18.31 71.4 

12 0.36 55 0.30 0.452 19.26 75.0 

Conductivity mean of days 6-12 = 0.102 W/moC 

Conductivity 
W/mOC 

0.584 

0.384 

0.381 

0.322 

0.197 

0.098 

0.115 

0.095 

0.095 

0.104 

0.104 

0.102 
-- - -

I-' 
.p
oe 



Figure 8.3b 

Table of observed thermal conductivity of ROM coal (dry) 

Water Thermocouple Temperature Heat Sample Temperature 
Day Flow Voltage Difference Flow Thermo. Difference 

gls V x 10-6 °c W Voltage °c V x 10-3 

1 0.48 47 0.25 0.502 19.51 76.1 

2 0.61 43 0.23 0.587 20.75 80.9 

3 0.59 43 0.23 0.568 20.37 79.4 

4 0.45 55 0.30 0.565 20.31 79.2 

5 0.37 65 0.36 0.557 20.13 78.5 

6 0.42 50 0.27 0.474 18.52 72.2 
--

Mean Conductivity = 0.118 W/moC 

Conductivity 
W/moC 

0.112 

0.123 

0.121 

0.120 

0.120 

0.111 
~~~ 

I 

I 

~ 
~ 
~ 



Figure 8.3c 

Table of observed thermal conductivity of ROM coal (5% moisture) 

Water Thermocouple Temperature Heat Sample Temperature Thermo. Day Flow Voltage Difference Flow Voltage Difference 
g/s V x 10-6 °c W V x 10-3 °c 

1 0.48 50 0.27 0.542 18.47 72.0 

2 0.42 65 0.36 0.633 17.08 66.6 

3 0.49 57 0.31 0.636 15.35 69.8 

4 0.41 67 0.37 0.635 19.49 76.0 

5 0.52 55 0.30 0.653 19.98 74.0 

6 0.55 59 0.32 0.736 17.90 69.8 
~-

__ L ___ - --- -- -~ .. --~-

Mean Conductivity = 0.156 W/moC 

Conductivity 
W/moC 

0.128 

0.161 

0.180 

0.141 

0.149 

0.179 

t-' 
(n 
o 
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8.3.4 Discussion 

In the early stages of operating the equipment problems were 

encountered with the water supply mainly due to blockages in the 

pipework and freezing at the low flow rates used. Using a higher 

flow rate through a single chiller and putting only the amount 

required through the cold tank and wasting the rest cured the 

problem. o A stable cold water supply at less than 5 C was obtained. 

The ambient temperature in the experimental room was high 

25 - 300 C so with the hot end at 75 0 C and the cold end near OOC 

it can be seen that radial heat flow through the insulation would 

be minimised. None could be detected. The readings taken at all 

stages were repeatable including the low voltages on the water 

temperature thermocouples. Mean values for conductivity were:-

0.102 W/moC for -1 + 1" sized coal 

0.118 W/moC for mixed ROM 

0.156 W/moC for mixed ROM (5% moisture) 

No other work can be found to compare these values with directly 

but they appear to be of the right order. By comparison the 

thermal conductivity of solid coal is 0.2 - 0.3 W/moC and air 

Many factors such as sample size and the experimental temp-

eratures used could influence the values obtained for a given 

coal. These variations might arise from the effects of convection 

currents within the sample. Certainly conditions within the 

sample cylinder were less than uniform when it was opened after 

the test on the moist coal. The water appeared to have all 

migrated to the cold end. Condensation had taken place, not 
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surprisingly, onto the cold tank and the coal at that end was 

certainly moist whilst that at the hot end had dried. For this 

reason the result for the moist coal must be treated with caution. 

Little work has been carried out to measure the bulk thermal 

conductivity of granular materials and for the reasons described a 

definitive value would be difficult to obtain. Probably a 

standardised technique would help, the method described is 

suggested as a basis for this. 

This method is based on steady state readings and therefore 

doubt must be expressed about the application of the same values 

to situations where rapid change is taking place. For this reason 

it was decided to design a method which would use a more represent

ative transient condition. It was hoped that this would result in 

improved accuracy but would require measurement and processing of 

greater complexity. The results obtained so far would be useful 

for comparison. 

Unfortunately before any more tests could be made on the 

steady state apparatus the cold tank ruptured due to icing. It 

was decided not to repair the tank, but to proceed on the transient 

evaluation as this was considered more realistic. 

8.4 TRANSIENT MEASUREMENT OF DIFFUSIVITY 

8.4.1 Theoretical basis 

This experiment modelled part of a plane parallel slab (as 

described in Chapter 7.10) and derived thermal characteristics by 

monitoring how it cooled from a uniform temperature. It was 

assumed that the coal sample formed part of the infinite slab and 



- 153 -

the assumption was made that no heat flowed parallel to the 

surface but only perpendicular to it. In such a situation the 

temperature distribution with time is described by the one 

dimensional Fourier differential equation of conduction:-

(4) 

where 

t = Temperature (oC) 

T = Time (s) 

x = Distance (m) 

k = Thermal conductivity (W/moC) 

p Dens~ty (kg/m3) 

C = Specific heat (kJ/kgK) 

a = Thermal diffusivity (m2/s) 

The two differentials may be evaluated using a finite difference 

method to find the diffusivity. 

The equation on which the experiment was based has the 

following input data. 

Temperature, which varies with both position and time until 

eventually over a long period steady state is reached. For this 

experiment it was measured at several discrete positions and its 

variation with time measured. 

Position, at which the temperature is measured. This was 

facilitated by placing the temperature measuring devices at 

specified fixed points. 
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Time. The two other parameters were recorded against a time 

base. 

8.4.2 Equipment 

The apparatus for this experiment consisted of an insulated 

sample box, temperature probes and a stop watch. The sample box 

was cubic with 200 mm sides and an open top. It was constructed 

of 10 mm polystyrene and insulated with a further 100 mm of fibre 

glass wool. The low specific heat of polystyrene and the good 

insulation would mean that heat would leave the sample hopefully, 

only from the top surface. Thus it was assumed that conditions 

for the Fourier equation were met. 

A coal sample put into the open box would lose heat to the 

air as it was allowed to cool and temperature probes inserted 

during filling at known positions on the central axis gave the 

temperature of the coal continuously at fixed positions. The 

configuration of the apparatus is shown in figure 8.4a. 

The temperature measuring system consisted of a set of small 

thermistor probes on flexible wire to measure the temperature in 

the coal and a thermistor probe to measure air temperature. These 

were led to a multiway switch box and hence to a meter displaying 

the temperature directly in a range 0 - 500 C. The system was 

carefully calibrated before use and found to be within 0.05
0

C of 

a standard thermometer for all probes. The instruments were 

manufactured by the Yellow Springs Instrument Co., Ohio, USA. 



1 YSI model 409 

2 YSI mode1·405 

3 YSI model 403 
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Plate 4 

'YSI' thermistor probes 
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probes within sample on central axis l 
to meter 

I 

I 
I 

I 
I 

I 
__ l----

............. , 

"' .......... 

FIG 8'4a SEMI INSULATED CONTAINER FOR TRANSIENT 

. DIFFUSIVITY MEASUREMENT 
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8.4.3 Operation 

The coal sample spread in a tray was warmed in an oven for 

o 24 hours at 60 C as was the sample box. They were then removed 

and the coal was quickly transferred to the sample box. As it 

was filled the probes were carefully placed in their required 

positions specified by markings on the inside of the box. The 

probe wires were then securely taped to the side of the box to 

avoid moving them within the coal and the thermistor leads were 

connected to the meter. 

The sample was allowed to cool naturally for a period to 

allow the required number of probes to fall within the range of 

the meter. The temperature of each probe in turn was then read 

at regular intervals and the results recorded numerically and 

graphically as shown in figures 8.4b, c and d. From the table of 

results the diffusivity is calculated as described in the next 

section. The table of results is for the first experiment with 

an uncovered sample of -! + A" dry sized coal. Four probes were 

used at depths of 0, 50, 100, 150 mm. 

For any corresponding time, temperature and depth not on the 

edge of the table, the calculated diffusivity reading is Sqown in 

brackets under the temperature. 

The test was repeated four more times on different samples 

and with 0.03 m probe spacings. For all the tests but one the 

coal was filled flush with the top of the box and exposed to the 

air. On one test the top surface of coal was covered with a 

cellophane sheet. 
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8.4.4 Treatment of results 

The Fourier equation is 

(5) 

Therefore 

(6) 

The differentials may be evaluated by finite difference method. 

At the i th line and j th column of the tab1e:-

(7) 

6T is the time between temperature measurements. 

,,2 t. 1 - 2t. + t. 1 
_o~t_._ = J+ J J-

" 2 (Ax)2 
oX (j) U 

(8) 

6x is the distance between temperature measuring probes. 

Therefore 

So for example referring to table figure 8.40 the ~nstantaneous' 

diffusivity of 15000 seconds and 0.05 m depth is 

a = 29.70 - 31.60 ~34.20 - 2 x 30.60 + 25.20 
6000 j/. 0.052 



- 159 -

We can find the conductivity knowing the diffusivity, density and 

specific heat of the broken coal mix. 

where 

k a.p.C 

k Conductivity (W/moC) 

a = Diffusivity (m2/s) 

p = Density (kg/m3) 

C = Specific heat (J/kg K) 

Bulk density of -1 + A" sized coal = 845 kg/m3 

Bulk specific heat 1000 J/kg K 

(10) 

To calculate mean conductivity (apparent) test (table 8.4a). 

Mean diffusivity = 3.27 x 10-7 m2/s 

Mean conductivity k. P • C 

-7 3.27 x 10 x 845 x 1000 

For the ROM coal samples 

Bulk density 1070 kg/m3 

Bulk specific heat = 1000 J/kg K 
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8.4.5 Results 

Figure 8.41:> 

Table of results for transient diffusivity test 

Probe distance from surface (m) 

Time 
0.0 (s) 0.05 0.10 0.15 

Temperature (oe) 

0 27.70 38.75 42.85 43.25 

3000 26.60 36.20 40.90 41.10 
(3.7) (3.4) 

6000 26.10 34.35 39.10 39.20 
(3.9) (3.3) 

9000 25.80 32.90 37.25 37.40 
(4.1) (3.5) 

12000 25.55 31.60 35.60 35.90 
(4.7) (3.4) 

15000 25.20 30.60 34.20 34.50 
(4.4) (3.4) 

18000 25.00 29.70 32.90 33.30 
(5.0) (3.6) 

21000 24.80 28.80 31. 75 32.10 
(6.3) (3.4) 

24000 24.55 28.10 30.80 31.10 

-7 2 
Figures in brackets calculated diffusivity values (x 10 m Is). 

Mean diffusivity = 4.01 x 10-7 m2/s 

Mean conductivity (apparent) = 0.339 W/moe 
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FIG 8·4c COOLING CURVES FOR COAL' SAMPLE 
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. FIG a-4d TEMPERATURE PROFILE IN COAL SAMPLE 
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Figure 8.4e 

Table of results for transient diffusivity test 

-! + ~ dry coal, uncovered 

Probe distance from surface (m) 

Time 
0.0 0.05 0.09 (s) 0.3 

Temperature (oe) 

0 36.80 44.25 45.70 46.60 

1800 34.90 42.80 45.60 45.90 
(1. 92) (2.75) 

3600 33.30 41.10 43.50 45.00 
(1.20) (9.10) 

5400 32.40 39.80 42.30 44.00 
(1.27) (7.19) 

7200 31.50 38.60 41.20 42.90 
(1.33) (6.39) 

9000 30.80 36.30 38.90 40.60 
(1.44) (6.39) 

10800 30.10 36.30 38.90 40.60 
(1.46) (6.11) 

-
12600 29.50 35.30 39.80 39.60 

(1.36) C7 .14) 

14400 29.00 34.50 36.90 38.60 
(1.45) (4.29) 

16200 28.60 33.70 36.00 37.70 

Figures in brackets diffusivity values (x 10-
7 

m2/s) 

d Off 0 0 3 -7 2/ Mean 1 US1V1ty = .80 x 10 m s 

Mean conductivity (apparent) = 0.321 W/moe 
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Figure 8.4f 

Table of results for transient diffusivity test 

-1 + f' dry coal, covered 

Probe distance from surface (m) 

Time 0.0 0.03 0.06 0.09 (s) 

Temperature (oC) 

0 30.90 42.20 45.75 46.60 

1800 29.20 40.20 44.50 45.70 
(1. 45) (2.14) 

3600 28.20 38.30 43.16 44.50 
(1. 65) (1. 90) 

5400 27.40 36.70 41.70 43.40 
(1.69) (1.51) 

7200 26.86 35.46 40.50 42.20 
(1.64) (1.80) 

9000 26.30 34.30 39.25 41.00 
(1. 72) (1. 93) 

10800 25.90 33.30 38.00 39.90 
(1. 76) (2.01) 

12600 25.60 32.40 37.00 38.80 
(1. 82) (2.27) 

14400 25.20 31. 70 36.00 36.80 
(1.59) (1.43) 

16200 25.00 31.00 35.00 35.90 

Figures in brackets diffusivity values (x 10-7 m2/s) 

d Off 0 0 -7 2/ Mean 1 US1V1ty = 0.18 x 10 m s 

Mean conductivity (apparent) = 0.152 W/moC 
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Figure 8.4g 

Table of results for transient diffusivity test 

ROM coal, dry, uncovered 

Probe distance from surface 

Time 0.0 0.03 0.06 (s) 

Temperature (oe) 

0 35.90 41.60 43.60 

1800 33.90 39.80 42.50 
(2.50) (3.60) 

3600 32.30 38.40 41.30 
(1. 80) (3.80) 

5400 31.20 37.10 40.20 
(2.32) (3.09) 

7200 30.35 35.90 39.20 
(3.35) (2.78) 

9000 29.60 34.90 38.20 
(2.25) (2.79) 

10800 29.00 34.10 37.30 
(2.10) (2.65) 

12600 28.50 33.30 36.40 
(2.06) (2.83) 

14400 28.10 32.70 35.60 
(1. 76) (2.88) 

16200 27.70 32.10 34.90 

Figures in brackets diffusivity values (x 10-
7 

m
2

s) 

Mean diffusivity = 2.66 x 10-7 m2/s 

Mean conductivity (apparent) = 0.284 W/moe 

(m) 

0.09 

44.20 

43.60 

42.70 

41.60 

40.70 

39.80 

38.80 

38.00 

37.20 

36.50 
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Figure 8.4h 

Table of results for transient diffusivity test 

ROM coa1,S% moisture, uncovered 

Probe distance from surface (m) 

Time 0.0 0.03 0.06 0.09 
(s) 

Temperature (oC) 

0 3S.70 40.30 43.10 4S.90 

1800 34.S0 38.90 41.90 43.70 
(4.64) (S.OO) 

3600 33.S0 37.70 40.70 42.60 
(4.S8) (S .00) 

S400 32.70 36.70 39.70 41.S0 
(4.7S) (4.38) 

7200 32.00 3S.80 38.60 40.40 
(4.S0) (5.00) 

9000 31.40 34.90 37.70 39.50 
(6.07) (4.S0) 

10800 30.90 34.10 36.80 38.60 
(8.00) (S.OO) 

12600 30.40 33.30 35.90 37.70 
(11.16) (S.31) 

14400 30.00 32.70 35.10 36.80 
(9.17) (S.36) 

16200 29.S0 32.10 34.40 36.00 

Figures in brackets diffusivity values (x 10-
7 

m
2
/s) 

d 'ff '"' S 8 -7 2/ Mean 1 US1V1ty = .7 x 10 m s 

Mean conductivity (apparent) = 0.618 W/moC 
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8.4.6 Discussion 

The test values for apparent thermal conductivity of broken 

coal are as follows 

-! + A" dry 

! + 1" dry (covered) 

ROM + 5% moisture 

0.339 and 0.327 W/moC 

0.152 W/moC 

0.284 W/moC 

0.618 W/moC 

Examination of the temperature profile of the first test (figure 

8.4c) shows that heat did not leave the sample only through the 

top surface. The temperature gradient toward the bottom of the 

container indicates that some heat flowed downwards. It is 

therefore reasonable to assume that heat also flowed radially. 

The temperature gradient towards the base though was much less 

steep than toward the surface indicating less heat flow downwards 

than to the surface. To overcome the problems of radial heat 

flow there are several solutions. Improved insulation and lower 

thermal capacity of sample box would result in less heat transfer 

to and through the container. The sample container used could 

not be made of a significantly better material at reasonable cost 

so this was not a practical solution. 

A much larger sample could have been used which would result 

in heat flow near a plane surface being almost perpendicular to it 

or the same size sample used and a thinner section near the sur-

face monitored as it cooled. This is the approach which was 

adopted and the probe spacing was reduced so that only the top 

90 mm of the sample was monitored. A single test on a large 

sample yielded no better results despite the inconvenience of 
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heating and handling a large~ sample. 

It is noticeable that the values for the conductivity 

measured by this method were higher than the values obtained by 

the steady state method. The conductivity should not vary when 

the measuring method is changed so the values derived by the 

transient method should be qualified as apparent or equivalent 

conductivity as they are the ones less likely to be definitive 

values. The most likely reason for these higher values is due to 

convective heat transfer taking place within the sample and not 

just at the top surface resulting in air movement within the 

sample. It can be seen that when a sample was covered restricting 

convection curren~its apparent conductivity fell by more than 

50% from 0.321 to 0.152 W/moC. The coal sample of -i + i" sized 

coal has a void age ratio in the order of 50% so it is quite likely 

that the air movement within it was significant. 

The ROM sample with 5% moisture had a high apparent conduc

tivity probably due to latent heat transfer as well as the convec

tion effects mentioned. This would result in an unknown moisture 

content and distribution after time zero. 

Although the conductivity values are apparent and varied with 

time and depth within the sample the experiment was still judged 

worthwhile as indications were given of what happens actually in 

the coal bed on a conveyor. Whilst the apparent conductivity is 

not claimed as a definitive value it is more representative of the 

real situation. The next Chapter describes the evaluation of a 

model length of coal and conveyor in a duct which hopefully should 

get closer still to representative results. 
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8.5 THEORETICAL PREDICTION OF VALUES OF BULK THERMAL CONDUCTIVITY 

8.5.1 Introduction 

The problems of measurement of thermal conductivity for a 

multiphase substance have arisen in the past, particularly with 

measurements of conductivity on porous rocks. The effects of 

porosity or voidage in this context is of interest due to changes 

which occur when confining pressure in situ due to overburden is 

released and samples are tested under different conditions in a 

laboratory. Naturally cracks may open when confining pressure on 

a rock is lowered and the effects of varying voidage have to be 

evaluated.-

Research by Walsh and Decker [22] in the USA was carried out 

on the effects of pressure and saturating fluid on the thermal 

conductivity of rock. It was concerned mainly with low porosity 

granite and the equations given here should be used with caution 

on a high porosity broken coal. Nevertheless they are included 

here due to the interesting results the equations yielded. Also 

the work that Walsh and Decker based their study on could yield 

more specialised equations for high porosity materials like broken 

coal. The original study was carried out by Hashim and Schtrikman 

[23] and applied to magnetic permeability, but they claim the 

methods used to predict upper and lower bounds of permeability of 

multiphase substances may also be used for other characteristics, 

thermal conductivity included. 

Walsh and Decker's approach was as follows. For evaluating 

the effect of pure fluid (gas or liquid) the material can be 

approximated to an isotropic material containing pores. Thus the 
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problem is one of finding the effective conductivity of a composite 

material with two isotropic phases,rock and pore fluid. 

Two procedures are possible. Upper and lower bounds on the 

bulk thermal conductivity may be established. Alternatively a 

procedure exists to calculate a discrete value of bulk thermal 

conductivity. 

8.5.2 Bounds of bulk conductivity 

Assuming the rock matrix has a thermal conductivity (k) and 

the pore fluid with volume concentration (voidage, porosity etc) 

(N) has a conductivity (k'). The maximum and minimum values for 

the effective (bulk) conductivity can be expressed as 

k - k 
-~k--...:;..e = 3N (1 - E)/(2 + E + N) 

for the maximum bound, and:-

k - k e 
k 

N (1 + 2E)(1 - E)/(3E + N - NE) 

for the minimum bound 

where 

k' 
E = k 

(11) 

(12) 

The situations represented by equations (11) and (12) are a 

continuous solid phase with fluid inclusions and a continuous 

fluid phase with solid 'inclusions' respectively the latter 

situation being representative of the broken coal. See figure 

8.Sa. 
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eq.(11) U 

0 

rock 

0 

0 0 0 

eq.(12) 

FIG a'Sa PORE CONF IGURAT IONS APPLICABL E TO 

EOUATIONS (11) &(12) 
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An attempt to evaluate the bulk thermal conductivity of 

broken coal by inserting some known values into the equations (11) 

and (12). 

o 
Thermal conductivity of solid coal k = 0.25 W/m C 

Thermal conductivity of air k' = 0.028 W/moC 

Ratio of conductivities k'/k = E = 0.112 

Voidage of -1 + 1 coal = 0.5 

Voidage of ROM coal = 0.3 

The following values for thermal conductivity are given. 

-1 + 1" upper bound k = 0.122 W/moC e 

lower bound k 0 = 0.076 W/m C e 

ROM upper bound 0.167 W/moC 

lower bound 0.115 W/moC 

8.5.3 Actual effect of pore fluid 

As mentioned in section 8.5.1 a second method is available 

which predicts an actual value between the bounds. It is 

described by equation (13). 

k - k 
e 

k 
N/3E + N (13) 

, 

Insertion of the values quoted for sized and ROM coal gives values 

for equivalent conductivity of:-

-1 + A" coal 

ROM coal 

ke = 0.100 W/moC 

k- = 0.132 W/moC 
e 
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Values actually measured (seetion 8.3) 

-1 + 1" sized coal 

ROM coal 

8.5.4 Discussion 

k = 0.102 W/moC 

k = 0.118 W/moC 

Comparison of the results of the steady state tests for 

thermal conductivity of ROM and sized coal with the values pre-

dicted by equations (11), (12) and (13) shows good agreement. 

Despite the equations being designed primarily for low porosity 

rocks the measured values fell between the upper and lower bounds 
0" 

and close to the actual predicted values. 

The original work on prediction of characteristics of multi-

plane substances by Hashim and Shtrickman [23] could yield 

equations which are more applicable to substances with high 

porosity and would hopefully provide more accurate predictions. 

The work so far carried out only applies to a material with one 

fluid in its pores. It cannot include a mixture, of air and water 

simultaneously so to include this some conductivity value for 

air and water must be estimated. Whilst this analytical method 

has yielded good results for dry substances the problems of 

evaluation of some equivalent conductivity for the situation of 

the coal on a conveyor still remain. 



CHAPTER 9 

MODEL OF A CONVEYOR IN A DUCT 
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CHAPTER 9 

MODEL OF A CONVEYOR IN A DUCT 

9.1 BASIC CONCEPT 

The laboratory model of a length of conveyor should be com

patible with the theory so far described, and as representative 

as possible of the veal underground situation. With due consider

ation to the practicalities of building, instrumenting and 

operating such a model at reasonable cost. The configuration 

shown in outline in figure 9.1a was chosen. For compatabi1ity 

with theory the following conditions were assumed. 

The coal was regarded as a plane parallel slab and the sides 

of the slab ignored. 

Heat and mass were assumed to pass only through the end 

planes of the control zone. How these two conditions were met is 

described later. 

Rather than have an actual conveyor in a control zone it was 

judged sufficient to have a stationary model of a section of 

conveyor and provide 'movement' by variation of the airspeed. 

Such a stationary section of conveyor with its coal could easily 

be loaded and instrumented as required. The model conveyor was 

constructed in a duct which allowed almost a full scale model 

thereby overcoming the problems of similarity encountered with 

small scale models. 

The duct which was well insulated had air forced along it by 

a variable speed centrifugal fan. The wet and dry bulb temperatures 
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control volume""\ 
1 

FIG 9-1- a MOGEL OF COAL ON CONVEYOR IN AN AIRSTREAM 



- 176 -

were measured at the inlet and outlet of the control zone and 

these allowed, given a barometric pressure, the heat in the air 

at either end of the duct and hence the heat gain due to the coal 

to be evaluated. This enabled a balance of air heat gain against 

coal heat loss to be attempted. 

The coal could not be loaded and instrumented quickly enough, 

to monitor its cooling, by any practical method available so it 

was left in the duct and heated by passing hot air over it to 

reach a uniform temperature. Cool air was then passed over it 

and the rate of cooling monitored. 

This 'then was the basic model and mode of operation. The 

next section describes the choosing, designing and building of the 

individual components. 

9.2 EQUIPMENT 

9.2.1 Duct 

The model was constructed in a 10 m long by 0.762 m square 

ventilation duct in the University of Nottingham, Mining 

Laboratory. The duct was of plywood on a 50 mm square wooden 

external framework. The construction was modular, the duct being 

bolted together in large sections, hence the top was easily 

removable for access. Four hatches in the sides positioned as 

shown in figure 9.2a allowed quick access whilst the duct top 

sections were bolted down. Each hatch was secured by four quick 

release clamps and sealed by a felt gasket to stop air leakage. 

The insides of the hatches were flush with the inside walls of 

the duct. 
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The air was forced thro'ugh the duct by a 1.5 m diameter 

centrifugal fan. This was powered by a variable speed motor 

which allowed any airflow between 0 to 15 mls to be selected. 

Between the fan transition piece and the duct was a honeycomb 

screen flow straightener. 

Before any experiments the duct which was not designed for 

heat measurement work had to be insulated along the test length. 

This was to ensure that any heat change measured in the air pass

ing through the duct would be attributable wholly to the coal 

rather than having some unknown and difficult to evaluate,. quantity 

of heat passing through the walls. The inside of the duct was 

lined with three layers of 1.5 mm polystyrene sheet and covered 

with polythene. This was held in place with drawing pins which 

were taped over to prevent tearing. The end result was a tight 

smooth 'quilt' of laminated polystyrene. 

The outside of the duct was insulated with 50 mm of fibre 

glass wool contained in the box sections formed by the external 

framework. This was held in place by polythene sheet stapled 

around the whole duct. 

9.2.2 Conveyor sections 

Two 3 m long sections of static model conveyor were construc

ted to carry the coal in the insulated duct. The section length 

was dictated by the 7 m long removable duct top and the require

ments of light weight and ease of handling due to restricted crane 

access to the duct. Each section could easily be lifted into the 

duct by one person at each end. The framework was constructed 

from punched steel strip (Dexion) and the coal was carried on a 
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piece of conveyor belting cut down to 650 mm width. The belt was 

at a height of 250 mm and flat in profile with the edges upswept 

a further 50 mm to retain the coal, whilst allowing a coal bed of 

near constant thickness to be constructed. 

Originally it was intended to allow the air passing over and 

below the belt to mix and measure only one set of temperatures at 

the duct outlet. During construction of the experiment it was 

decided that keeping the airflow above and below the belt separate 

could prove useful. Whilst complicating temperature and velocity 

measurements this would allow the heat flow from the coal surface 

and that from the underside of the belt to be separately evaluated. 

To keep the airflows separate a polythene sheet seal was fitted 

between the belt edges and the duct wall. It was taped to the 

duct walls permanently and at the free side tucked tightly between 

the framework and conveyor belt. This formed an adequate seal to 

separate the airflow but still allowed access to tubes and wires 

running under the belt to the instruments at the inlet to the 

control zone. 

The coal itself was ordinary unsized ROM from a local 

colliery (pye Hill). It was placed on the conveyor as required 

from pre-weighed polythene sacks containing 36 kg each. -The coal 

was then spread on the belt taking care to form the plane parallel 

slab of coal whilst still keeping a naturally rough surface. 
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9.2.3 Inlet heater 

A temperature difference between the air and coal was a 

prerequisite of this experiment. A system was needed which would 

allow air at a lower temperature to be passed over the coal bed. 

A refrigeration system could have been used but would have been 

difficult to procure and set up. It was decided at an early stage 

to use a heater system on the fan inlet to warm incoming air which 

would be passed along the duct over the coal for some period until 

the coal was uniformly warmed. When such a state was reached 

the inlet heaters were switched off and ambient air passed through 

the duct. This resulted in almost a step change in the air temp

erature and the experiment proper could begin. 

For reasons described later the fan inlet was chosen as the 

best location for the heater. A visit to a specialist suppliers 

of heating elements resulted in the purchase of four 2.5 kW 

elements, the maximum safe temporary power supply being 10 kW. 

The elements were contained in asbestos insulation in a flexible 

7 mm diameter, 2 m long steel tube with a terminal at each end. 

These elements were bent into a spiral pattern and mounted on the 

inside of the fan inlet grid using steel and asbestos brackets. 

The power supply for the central element was the 240 V main. The 

outer three elements were connected in 'star' configuration 

supplied from the 3 phase main. 

The elements were mounted in the fan inlet to provide easy 

access and connection. The elements could be easily watched for 

overheating and the fire risk in a steel fan casing was much lower 

than in the wooden duct. Air heated in the fan inlet was also 

well mixed in the fan resulting in an even temperature distribution 

in the duct. 
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9.3 INSTRUMENTATION 

9.3.1 Air dry bulb temperature 

This was measured at the inlet and outlet of the control zone 

above and below the belt level, four places in all. Measurement 

presented no special problems as equipment designed specifically 

for that purpose was available. The transducers used were Yellow 

Springs Instrument Co. thermistor probes. The model YSI 405 (air 

temperature). The thermistors were connnected via the switch box 

to the meter allowing direct reading of the temperature. This 

system has already been described in Chapter 8.4.2. 

The thermistors were mounted in position in the duct on clamp 

stands. Both the dry and wet bulb probes were positioned such 

that the air temperature was measured in the top and bottom halves 

of the duct at the beginning and end of the conveyor length. At 

the inlet end this allowed a constant check that the air was well 

mixed and no temperature stratification was taking place. 

At the downstream end, the probes at upper and lower levels, 

which were close to the end of the conveyor, measured the temper

atures of two separate airstreams to allow evaluation of the heat 

pick up from above and below the conveyor. 

9.3.2 Air wet bulb temperature 

The remote measurement of wet bulb temperature posed many 

problems and several systems were tried before a suitable method 

was found. In Chapter 3.7 it was mentioned that a wet bulb 

temperature measuring device has two important requirements. A 

wet surface and a steady airflow over the probe or thermometer. 
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With regard to the wetting of the wick the water supply must 

be perfectly regulated and at· the right temperature. If water is 

supplied too quickly the water temperature will influence the 

measurement making some unknown contribution. If water is not 

supplied quickly enough, not enough evaporation can take place at 

the transducer or thermometer surface and a temperature somewhere 

between wet and dry bulb is measured. 

The airflow over the wetted wick is necessary to keep evapor

ation at a steady maximum level. Smaller transducers need smaller 

air velocities but generally if the air velocity is not sufficient 

the required rate of evaporation cannot take place and once again 

a temperature between dry and wet bulb is measured. At too high 

an air velocity kinetic effects cause a slight heating effect 

which rises as the velocity increases. The ideal air velocity 

over the well wetted wick is recognised as 2 - 3 m/s. 

The range of air velocities expected in the duct was in the 

region of 0 - 8 m/s. At the higher velocities the air would be 

moving sufficiently fast for full evaporation to take place, but 

at the low velocities, less than 3 mis, the transducers would need 

to be artifically aspirated. In order to satisfy the above, the 

following system was designed. 

The temperature transducer used was the YSI 403 model. This 

was in the form of a thermistor mounted in a stainless steel tube. 

It was mounted into a 10 mm diameter plastic tube using quick fit 

hydraulic pipe 'T' piece. The plastic tube extended 20 mm beyond 

the end of the probe as shown in figure 9.3a. Air was drawn up the 

tube, over the probe and out through the T piece which was connected 

to a pipe from a vacuum pump. Four such devices were connected to 
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the pump, two at the inlet and two at the outlet of the test 

length in the duct. The connecting tubes were all of different 

lengths and so to ensure the same airflow in each a regulating 

device was necessary. This took the form of two pieces of steel 

bolted round the pipes to flatten them to regulate the resistance. 

Tightening the bolts flattened the pipe and reduced the airflow. 
\I L \." ,~,. 

Each pipe was adjusted in turn to give a 3 mls airflow over the 

probe. This was measured using a Wallac thermoanemometer held to 

the intake pipe whilst the adjustment was taking place. Once set 

up and checked the airflow needed no further adjustment. 

The thermistor probe was converted to read air wet bulb temp-

erature by threading a wick over it right to the T pieces. 

Each wick was about 250 mm long. To keep the wick properly 

wetted several designs were tried where water was fed down tubes 

from reservoirs outside the duct. It was hoped to site the water 

reservoirs outside the duct for convenience of filling.and monitor-

ing the levels. However the system proved difficult to regulate 

and unreliable. The water supply to the wicks eventually used 

was a 100 ml plastic bottle of water mounted just below the air 

intake to the measuring device. The wick was dipped into the 

bottle which was narrow necked to minimise evaporation losses. 

Although being inside the duct made the water bottles less access-

ible, once filled they provided water for a whole day in even the 

hottest conditions. The thermistor probe was connected via the 

switch box to the YSI meter and with the water bottle filled and 

vacuum pump running reliable wet bulb temperature reading could 

be taken regardless of air velocity in the duct. 
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9.3.3 Air velocity and quantity 

The air velocity distribution in the duct had to be carefully 

checked before any temperature measurements could be taken. A 

complete set of velocity contours and profiles were measured so 

that the flow characteristics of the duct were fully understood 

and a convenient representative measuring point chosen. 

All velocity measurements were made using thermo-anemometers 

to give instant numerical readouts. Two models were used. For 

the compilation of the velocity contours and profiles an expensive 

and accurate 'Alnor' was used and for the experimental work, where 

only measurements on the duct centre line were required, the 

'Wallac' model. Before and after this work both were calibrated 

against a pitot tube and Betz micromanometer set in a low turbu

lence duct designed expressly for anemometer calibration. 

Reference to figure 9.2a shows that air passing along the 

duct was divided by the conveyor and followed two separate flow 

paths before mixing again downstream of the conveyor. The air 

was deliberately kept separate at the top and underside so that 

the two heat gains could be separately evaluated. Naturally the 

air quantity and velocity above the belt would be greater than 

that travelling through the path below the belt with many supports 

forming obstructions. 

To avoid making a complete set of velocity measurements each 

time the fan was run at a different speed,a series of velocity 

traverses above and below the belt and at the duct end were 

carried out and a single reading on the duct centre line assigned 

to each. Thus a graph was compiled which for a given centre line 
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reading indicated the flow in various parts of the duct. This was 

facilitated as follows. 

The air velocity traverses were carried out in three places, 

at the outlet end of the duct and above and below the belt at the 

first access hatch. The outlet end of the duct was divided into 

100 (10 x 10) equal sized squares by a set of fine wires to aid 

accurate traversing. To make a traverse,the fan speed was set and 

allowed to settle to a steady air flow. Checks of stable fan 

speed were made at intervals using a revolution counter on the 

shaft. In each of the 100 squares of the duct end a velocity 

reading was made and recorded. The squares around the edge having 

a mean reading recorded by subdividing the square into 9 (3 x 3) 

smaller squares to give an accurate value where the velocity 

gradient was greatest. The mean of the readings assigned to each 

of the 100 squares then gave the mean value for the whole duct. 

The anemometer probe was held in a clamp stand which was moved 

about and adjusted to place the measuring tip accurately where 

needed. 

The traversing procedure was repeated inside the duct above 

and below the conveyor at the first access hatch. The probe tip 

was carefully positioned by measurement in imaginary squares as no 

positioning wires existed here. A mean air velocity above and 

below the belt was derived from the mean reading similar to the 

duct end previously described. 

Thus at a single fan speed a mean velocity was found for the 

whole duct where the flow had mixed, and for the paths above and below 

the conveyor. A note was also made of the mean velocity of the four 

squares on the duct centre line. This procedure was repeated for 
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a range of fan speeds and a graph of the duct velocity distribution 

compiled (figure 9.3b). 

The graph is based on a coal bed of 0.5 m width and 0.075 m 

depth on the conveyor giving the following cross sectional area 

eSA of duct 0.5805 m2 

eSA of conveyor and coal 0.0440 m2 

eSA of top air path 0.3515 m2 

eSA of bottom air path 0.1851 m2 

For the rest of the experiments when only the velocity or air 

quantity in the duct was required measurements were taken on the 

four grid squares on the duct centre line and the mean velocity 

calculated. The airflow distribution graph was then used to 

arrive at the velocities present in the various sections of the 

duct. For example 

Centre line mean velocity 5 mls from graph 

Duct mean velocity 

Top path mean velocity 

Bottom mean velocity 

3.87 mls 

5.05 mls 

2.55 mls 

Velocity x eSA Volumetric flow rate 

Top path 5.05 x 0.3515 = 1.775 m3/s 

Bottom path 

Whole duct 

2.55 x 0.1851 = 0.472 m3/s 

3.87 x 0.5806 = 2.246 m
3
/s 

Ideally the volume and velocity should have been corrected for the 

slightly different coal bed depths but the effect was too small 

to measure in a turbulent airstream and a theoretically calculated 
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percentage correction less than the airflow measuring accuracy. 

Whilst the 'Alnor' anemometer was available a detailed study 

of the airflow over the rough coal surface was made. The probe 

on the 'Alnor' was 500 mm long and 3 mm in diameter and so 

allowed readings close to a surface to be made. The air velocity 

profiles are shown in figure 9.3c. 

9.3.4 Coal temperature 

The temperature of the coal was measured using YSI 409 

thermistor probes connecte~via the switch box, to the direct 

reading meter. The probes were buried in the coal where required. 

Great care was taken to accurately position and bury the probes 

in the coal bed. The leads were well taped down to avoid the 

airstream moving the probes near the surface. The probes were 

not placed directly above each other but staggered within the 

coal so that they could be placed accurately without disturbing 

each other and any small contribution such a device would have on 

the heat flow within the coal bed would be well distributed. 

9.3.5 Surface temperature 

Surface temperature measurements on the coal were made using 

an infrared, non-contact thermometer. The specifications and 

instructions for the instrument, the 'Infratrace', are reproduced 

in full in the appendix (A4). Briefly the instrument, resembling 

a pistol in shape measured the temperature of the surface it was 

pointed at when the trigger button was pressed. The temperature 

of the surface was shown on a digital display on the instrument. 
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Plate 5 

Infrared thermometer 'Infratrace' 
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Before use the emissivity* of the target surface was set using the 

dial on the instrument. This necessitated prior knowledge of the 

emissivity of the surface. Previous calibration and checking of 

the instrument before experimental use revealed that the emissivity 

control could be set at 1.0 for use on a rough coal surface. 

Although the instrument displayed in increments of lOC, a scale 

expansion facility could be used to allow measurement of differences 

of 0.2oC by setting the emissivity control at 0.2 for a surface 

with a true emissivity close to 1.0. In such a state the instru

ment would display temperature changes of 0.2oC in 1.OoC increments 

on the display. This meant that the temperature reading was not 

absolute buL this facility was useful to follow closely the temp

erature of a cooling surface. Such readings could be referred to 

on occasional absolute reading with the emissivity control at 1.0. 

In use the 'Infratrace' was mounted on a camera stand and 

aimed down the duct mouth to a particular area of coal surface. 

The target surface being a large elipse, 100 x 600 mm. It was 

connected to the 240 V mains via a transformer and was operated 

continuously for stability of readings whilst experiments were in 

progress. 

9.4 OPERATION 

Before the main experiment could be started the coal was 

warmed until it reached the required temperature. This was carried 

out by using the inlet heaters to blow hot air along the duct. 

The heaters were always run on full power of 10 kW and the temp

erature regulated by changing the fan speed and hence the air 

* See Chapter 5.4 Radiative heat transfer. 
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quantity absorbing the fixed amount of heat. As the coal always 

started the tests dry, the air dry bulb temperature dictated the 

coal temperature. 

The coal was heated until the probes in the coal all showed 

the same temperature within O.5 0 C. Ideally they should eventually 

all have been the same, but this did not always occur, probably 

due to slight air temperature variations in the laboratory and 

hence a slightly fluctuating heating temperature. Where possible 

this system was operated during holiday periods and weekends whilst 

the laboratory was subject to less temperature variations due to 

opening doors and the operation of other equipment"notably fans. 

The coal temperature was generally within the limits stated after 

24 hours of heating. 

Before a cooling run was started all the equipment was 

switched on and checked and wet bulb thermometer reservoirs topped 

up. If all equipment was in order the heaters were switched off 

and the fan quickly reset to give the required airflow. No time 

was available to set the fan exactly to the required air velocity. 

The fan speed control unit gave a rough idea what could be 

expected and a precise check was made later. If cold inlet air 

was needed the large sliding laboratory doors were opened and as 

the tests were conducted in winter temperatures in the order of 

IOoC could be reached. This procedure took 3-5 minutes and partly 

due to air in the laboratories taking time to mix with incoming 

air and also because some heat was stored in the fan causing the 

step change in inlet air temperature was not attained. However a 

large temperature difference was realised quite quickly as shown 

in the results. 
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The temperatures of the coal and air were read and recorded 

as quickly as possible as the coal cooled. Initially the interval 

between readings was five minutes, but as the cooling slowed down 

the time intervals between readings was increased. A set of 

readings took about two minutes and the order of reading was 

reversed each time so that when the results were graphed they 

would straddle a quickly changing curve. Continuous recording 

equipment would have been desirable here but was not available. 

Two sets of experiments were undertaken. One set with a bed 

of coal of 160 kg which was 6 m long x 500 mm wide x 50 mm deep. 

The coal probes were in two sets of three near each end of the 

conveyor at depths of 1, 25 and 50 mm. The second set of experi

ments used 320 kg of coal and had a 100 mm deep bed with the 

length and width being unchanged. For this the probes were 

arranged in a single set at depths of 1, 20, 40, 60, 80 and 99 mm. 

Twelve cooling runs were undertaken with each coal load 

(160 and 320 kg) using a range of air velocities. The number of 

instruments read and frequency of reading generated large amounts 

of data. Rather than present all this data and the cooling curves 

for each experiment, which vary only slightly, one typical run is 

treated in detail complete with its sample calculations. The 

other results are summarised and the various trends and effects 

illustrated with reference to the worked example. 
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9.5 PROCESSING OF RESULTS 

9.5.1 Classification of results 

The results may be divided into three main groups as follows: 

1. Basic information which is fixed for a single experiment. 

Barometric pressure, air velocity, probe placement, specific heat 

of coal etc. 

2. Measured values which varied and were measured through 

the experiment. Air probe temperatures, coal probe temperatures 

etc. 

3. Derived values which are derived from the previous two 

groups. Conductivity, heat flows, heat transfer coefficients etc. 

The worked example which follows is subdivided as above. 

9.5.2 Basic information 

Air conditions 

Barometric pressure 

Air velocity (centre) 

Coal 

Mass 

Bed dimensions 

Probe number 1 

2 

3 

4 

101.1 kPa 

0.951 m/s 

320 kg 

6 x 0.5 

depth 1nnn 

" 20 nnn 

" 40 nnn 

" 60 nnn 

x 0.1 m 



Bulk density 

Specific heat 

5 

6 
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depth 

" 

80 mm 

99 mm 

1070 kg/m3 

1.13 kJ/kg K 

(The specific heat was derived before this experiment in a 

calorimeter using method of mixtures.) 



9.5.3 Measured values 

Time (min) 0 5 

t
wb1 

(oC) 6.4 6.0 

° tdb1 ( C) 14.2 12.5 

° t wb2 ( C) 8.9 7.3 

° tdb2 ( C) 17.3 15.0 

Probes 

1 (oC) 26.6 24.6 

2 (oC) 26.6 25.7 

3 (oC) 26.6 26.3 

4 (oC) 26.6 26.5 

5 (oC) 26.6 26.5 

6 (oC) 26.6 26.5 . 
° Surface ( C) 24.0 20.0 

--

Figure 9.5a 

Table of results for coal cooling in i m/s airstream 

10 15 20 30 40 60 

5.6 5.3 5.2 5.0 5.0 5.1 

11.8 11.2 10.8 10.2 10.0 10.2 

6.9 6.3 6.0 5.8 5.7 5.7 

13.8 12.9 12.3 11.4 11.0 10.5 

22.3 20.9 19.8 18.4 17.3 16.2 

24.5 23.4 22.6 21.0 19.8 18.1 

25.6 25.0 24.5 23.0 22.0 20.3 

26.3 26.0 25.7 25.1 24.3 22.6 

26.4 26.2 26.0 25.7 25.2 24.0 

26.4 26.1 25.9 25.5 25.0 23.8 

17.2 15.6 14.6 13.4 12.6 11.4 
-

" 

80 

5.2 

9.8 

5.6 

10.4 

15.3 

17.0 

19.0 

21.2 

22.7 

22.5 

11.0 
-

100 

5.2 

9.6 

5.4 

9.9 

14.5 

16.1 

17.9 

20.7 

21.4 

21.2 

10.4 

120 

5.2 

9.6 

5.4 

9.7 

14.0 

15.2 

17.0 

18.9 

20.2 

19.9 

10.2 

t-' 
\0 
00 
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FIG 9·Sb COAL COOLING CURVES AND AIR TEMPERATURES 
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9.6 DERIVED INFORMATION (WORKED EXAMPLE) 

9.6.1 Heat pick up by air 

The heat gain of the air travelling over the top of the coal 

and conveyor is dealt with here. The heat gain of air travelling 

underneath the conveyor proved too small to measure reliably (see 

discussion 9.8.3). The heat gain of the air passing over the coal 

is the product of the sigma heat change of the air entering and 

leaving the control zone and the air mass flow rate. The sigma 

heat is specified at a given pressure by the wet bulb temperature 

and was evaluated using the p~ychrometric computer program "PS". 

The air mass flow is derived from the centre line air velocity 

measured and the air density once again taken from "PS". An 

example follows. 

Worked example at time o minutes 

Air mass flow 

Centre line velocity 

Mean velocity above conveyor 
(from duct velocity distribution graph) 

Volume flow rate 

Air density at duct exit 

b 1b 8.90C wet u temperature 

dry bulb temperature 17.30 C 

pressure 101.1 kPa 

from "PS" 

Air mass flow 

volume flow x density 

0.338 x 1.209 

0.951 m/s 

0.963 mls 

3 0.338 m Is 

3 1.209 kg/m 

0.409 kg/s 



- 201 -

Heat gain by air 

Inlet conditions (1) 

Wet bulb temperature 

Dry bulb temperature 

Sigma heat (from "PS") 

Outlet conditions (2) 

Wet bulb temperature 

Dry bulb temperature 

Sigma heat (from "PS") 

Heat gain by air = 

6.4°e 

l4.20 e 

21.26 kJ/kg 

8.90 e 

l7.30 e 

26.52 kJ/kg 

(Sigma heat out - Sigma heat in) x Air mass flowrate 

(26.52 - 21.26) x 0.409 = 2.15 kW 

The heat gain by the air was so derived for all the readings of 

the experiment to yield the results shown in table 9.6a. 

9.6.2 Heat lost by coal 

Several methods of deriving this information were considered. 

Although the answer should be independent of the method used to 

process the raw data consideration had to be given to the amount 

of subsidiary information and its possible use later to derive 

other values. For example taking the mean of the six probe 

readings at each time increment and using this to evaluate the 

rate of cooling could give the heat loss rate. However it would 

give no information on what was happening within the coal bed. 

The method chosen divided the coal bed into 5 layers of equal 
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thickness (20 mm) and found t~e rate of cooling of each layer in 

each time interval. From this the net heat loss rate in each 

layer could be found. Totalling the heat loss for each layer gave 

the heat loss for the whole coal bed. The method is best illus-

trated by example. From table 9.5a the temperatures of the coal 

probes at 5 and 10 minutes are so shown. 

Probe 5 minutes 10 minutes Heat loss (kW) 

1 24.6 22.3 
layer 1 (24.85) (23.4) 0.349 

2 .- 25.7 24.5 
layer 2 (26.0) (25.05) 0.229 

3 26.3 25.6 
layer 3 (26.4) (25.95) 0.108 

4 26.5 26.3 
layer 4 (26.5) (26.35) 0.036 

5 26.5 26.4 
layer 5 (26.5) (26.4) 0.024 

6 26.5 26.4 

TOTAL 0.746 

The mean temperature in each layer is found by interpolating 

between the upper and lower probe temperature giving the temp-

erature shown in brackets. Thus the mean temperature of each 

layer at a given time is known. 

The net heat loss in each layer is equal to the temperature 

fall multiplied by the specific heat and mass. Dividing by the 

time taken gives the rate of heat loss, 
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example 

layer 1 Temperature at 5 minutes 

Temperature at io minutes 

Temperature fall (ilt) 

Mass of coal layer (m) 320/5 = 64 kg 

Specific heat of coal (C) 1.13 kJ/kg K 

Time interval (T) 5 min = 300 s 

Heat loss rate Q m.C.ilt = 
T 

64 x 1.13 x 1.45 = ~~~~30~0~----~ 

... 0.349 kW 

24.850 C 

23.400 C 

1. 450 C 

This procedure is followed for each layer in the coal bed hence 

the heat loss for the whole coal bed may be evaluated by adding 

the net heat loss for all five layers. 

This procedure is repeated at each time interval of the 

cooling run to give a cooling rate for the coal bed for the whole 

120 minute period. The results shown in figure 9.5a were pro-

cessed similarly to give the table, figure 9.6a, and the graph, 

figure 9. 6b . 

The mean heat gain of the air was found from the 11 values 

from 0 to 120 minutes and the mean heat gain of the coal found 

from the 10 relevant values. The purpose of this was to assign a 

single numerical value to the heat transferred to the air and 

from the coal for each experiment. This allowed a comparison of 

the results to be made more easily. 



Figure 9.6a 

Table showing heat pick up by air and heat lost by coal in 1 m/s airstream 

Time (min) 0 5 10 15 20 30 40 60 80 

Sigma heat 1 (kJ/kg) 21.26 20.45 19.66 19.07 18.88 18.49 18.49 18.68 18.89 

Sigma heat 2 (kJ/kg) 26.52 23.11 22.28 21.06 20.46 20.06 19.86 19.86 19.67 

Air heat gain(kW) 2.151 1.088 1.072 0.814 0.646 0.642 0.560 0.483 0.319 

Coal heat loss (kW) 

Probe Layer 
1 . 1 0.422 0.349 0.277 0.253 0.181 0.139 0.084 0.078 
2 

2 0.145 0.229 0.205 0.156 0.187 0.133 0.102 0.073 
3 

3 0.048 0.108 0.108 0.096 0.126 0.108 0.102 0.027 
4 

4 0.024 0.036 0.060 0.060 0.042 0.090 0.087 0.082 
5 

5 0.024 0.024 0.060 0.048 0.042 0.060 0.072 0.078 
6 

TOTAL 0.663 0.746 0.710 0.613 0.578 0.530 0.447 0.338 
---~--- -~-----~--

L- _______ ----- '------- -~-

Mean air heat gain = 0.735 kW Mean coal heat loss = 0.524 kW Balance 71% 
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A percentage heat balance was also produced by dividing the 

mean heat loss from the coal by the heat gained by the air. 

9.6.3 Convective heat transfer coefficient 

A convective heat transfer coefficient was evaluated using 

the information given in tables 9.5a and 9.6a and b together with 

the air dry bulb temperature and cooling rate of coal respectively. 

As described in more detail in the discussion the search for 

temperatures which revealed a pattern on which to base a coefficient 

indicated the air dry bulb and the number 1 probe. The method of 

deriving the coefficient is shown once again by an example. 

Referring to Chapter 5.3 the heat transfer by convection is 

given as 

Q = hc.A (t - t ) c s a 

where 

Qc 
Heat transferred by convection (W) 

h = Convective heat transfer coefficient 
c 

A Area of surface involved (m2) 

t a 
Air temperature (oC) 

t = Surface temperature (oC) 
s 

Rearranging (1) we have 

h c 

(1) 

(W/m20C) 

(2) 

hence the convective heat transfer coefficient may be calculated. 
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For examp1e@ time of 10 minutes. 

Air, mean dry bulb temperature in duct (t ) a 

tdb1 + tdb2 = 11.8 + 13.8 = 12.SoC 
2 2 

Probe temperature (t ) 22.30 C 
s 

Temperature difference (t s - t a) 9.S
o

C 

Heat transfer from coal at 10 minutes (Qc) 0]40 kW 
(from table 9.6a or graph 9.6b) 

Area of surface (A) 3 m2 

Using equation (2) 

h = g 
c A (t - t ) s a 

h 
0.740 = c 3 x 9.5 

= 0.026 kW/m2oC 

Repeating at intervals enables series of values to be calculated. 
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Figure 9.6c 

Heat transfer coefficients at airflow 0.95 mls 

Air Surface Heat 
Heat 

Time Difference transfer 
(min) temperature temperature (oC) Transfer coefficient (oC) (oC) (kW) (kW/m2oC) 

10 12.8 22.3 9.5 0.740 0.026 

20 11.55 19.8 8.25 0.635 0.026 

30 10.8 18.4 7.60 0.540 0.024 

40 10.5 17.3 6.80 0.480 0.023 

60 10.25 16.2 5.95 0.380 0.021 

80 10.1 15.3 5.20 0.330 0.021 
"" 

100 9.75 14.5 4.75 0.310 0.022 

120 9.65 14.0 4.35 0.300 0.022 

V\/~·')C 

Mean convective heat transfer coefficient 0.023 (W/m2o
c) 
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9.6.4 Thermal diffusivity and conductivity 

As stated in Chapter 8 the.thermal diffusivity of coal may be 

evaluated in a dynamic cooling situation and the conductivity 

derived from it. The procedure used to evaluate the diffusivity, 

the finite difference method, was described in Chapter 8. This is 

demonstrated in the following worked example. 

From table 9.5a the temperature readings of probes 2, 3 and 

4 at 10, 15 and 20 minutes are 

Time (min) 

10 15 20 

." 
2 24.5 23.4 22.6 

Probes 3 25.6 25.0 24.5 
(oC) 

4 26.3 26.6 25.7 

The thermal diffusivity a is given as 

where 

~T = Time interval (300 s) 

~x Probe spacing (0.02 m) 

So for probe 3 at 15 minutes the d,~k. sivity is 

& = 24.5 -25.6 ~6.0 - 2 x 25.0 + 23.4 
. 2x300/- 0.022 
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The conductivity (k) is found using 

k a.p.C 

where 

P Bulk density (1070 kg/m3) 

C = Specific heat (1.13 kJ/kg K) 

k = 1.22 x 10-6 x 1070 x 1.13 

This procedur~ was repeated with the remaining readings in the 
I 

column to give the values tabulated below. 

15 minute 

Diffusivity 2 (m /s) Conductivity (W/moC) 

Probe 2 1.41 x 10-6 
1. 70 

3 1.22 x 10-6 
1.47 

4 5.0 x 10-7 
0.60 

5 8.8 x 10-7 1.06 

When the experiments using the 160 kg coal bed were carried 

out the probes were arranged in two groups of three. This meant 

that only a single diffusivity reading for each group could be 

evaluated. In this case the mean of the two groups was recorded 

at time 15 minutes. 
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9.7 RESULTS 

9.7.1 Presentation 

The raw data produced by 24 experiments with about 200 

instrument readings and a similar amount of derived data would be 

too voluminous to comprehend easily. For this reason the most 

important aspects have been grouped and evaluated into a small 

number of representative coefficients and mean readings as des

cribed in sections 9.5 and 9.6. 

The only parameter which was deliberately changed between one 

experiment and the next in each group was the air velocity. Thus 

all data is presented with respect to the mean air velocity over 

the conveyor. 



- 212 -

9.7.2 Results 

Figure 9.7a 

Table of results for cooling experiments (160 kg coal bed) 

Air Air mean Coal mean Heat Coal Peak Convective heat 
Velocity heat gain heat loss balance heat loss transfer coeff. 

mls kW kW % kW W/m20C 

0.505 0.460 0.270 59 0.455 15.5 

0.750 0.400 0.295 74 0.665 15.5 

0.875 0.435 0.300 69 0.830 25.0 

1.120 0.450 0.315 70 0.710 34.0 

1.570 0.420 0.305 62 0.910 26.0 

1.695 0.430 0.305 71 1.100 44.5 

1.980 0.510 0.310 61 0.735 34.5 

2.215 0.515 0.325 63 1.085 31.5 

2.400 0.585 0.315 54 0.925 39.5 

2.500 0.605 0.345 51· 1.080 50.0 

3.450 0.645 0.315 49 1.215 60.5 

4.965 0.635 0.350 55 1.210 64.0 
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Figure 9.7b 

Table of results for cooling experiments (320 kg coal bed) 

Air Air mean Coal mean Heat Coal peak Convective heat 
velocity heat gain heat loss balance heat loss transfer coeff. 

m/s kW kW i. kW W/m20C 

0.305 0.645 0.400 .62 0.410 14.5 

0.495 0.525 0.415 79 0.555 19.0 

0.885 0.845 0.500 59 0.695 20.5 

0.965 0.735 0.525 71 0.745 23.0 

1.325 0.720 0.520 72 0.960 30.5 

1.650 0.855 0.505 59 0.950 35.5 

1.975 0.870 0.530 61 1.265 40.5 

2.485 0.845 0.515 61 1.160 45.0 

2./-925 0.805 0.505 63 1.130 49.0 

3.205 0.855 0.495 58 1.150 52.0 

3.650 0.955 0.505 63 1.185 52.0 

5.005 0.835 0.510 61 1.305 65.0 
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Figure 9.7e 

Table of apparent conductivity values (160 kg coal bed) 

Air velocity Conductivity 
(apparent) 

mls W/moC 

0.505 0.49 

0.750 0.77 

0.875 1.21 

1.120 1.51 

1.570 1.30 

.- 1.695 1.66 

1.980 1.83 

2.215 2.07 

2.400 1.88 

2.500 1.94 

3.450 3.07 

4.965 2.59 
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Figure 9.7f 

Table of apparent conductivity values (320 kg coal bed) 

Air velocity Conductivity (apparent) 

m/s p2 p3 p4 p5 
W/moC 

0.305 0.60 0.0 0.24 0.27 

0.495 0.60 0.95 0.29 0.35 

0.885 1.20 0.99 0.49 0.77 

0.965 1. 70 1.47 0.60 1.06 

1.325 1.66 1.89 1.44 0.68 

1.650 2.51 1.72 1.95 1.50 

1.975 1.97 1.77 2.65 1.21 

2.485 2.29 1.81 1.37 1.27 

2.925 2.18 1.49 3.14 0.53 

3.205 2.10 1.69 1.59 0.83 

3.650 3.01 2.95 1.93 0.98 

5.005 3.10 2.18 1.66 0.77 
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9.8 DISCUSSION 

9.8.1 General comments 

Whilst this series of experiments did not provide all the 

information to the expected accuracy it did provide some valuable 

quantitative information. The basic concept of the insulated duct 

and the pre-heated coal is still considered sound. The shortfalls 

in performance and experimental accuracy were due mainly to the 

limited resolution of the instruments, particularly those measuring 

air wet bulb and coal surface temperatures. Difficulties also 

arose when attempting to produce the required step temperature 

change to the inlet temperature at time zero. Underground tests 

showed a large proportion of the heat from conveyed coal was due 

to latent heat transfer and this is recognised as a major failing 

of this work. This aspect is discussed later in the suggestions 

for further work. 

9.8.2 Reynolds number and air velocity 

The results for the tests are all expressed against the 

average air velocity in the path through the duct over the coal. 

In some cases, for instance the convective heat transfer coeffi

cients, the results should possibly have been displayed against 

the dimensionless characteristic Reynolds number, but to allow 

comparison of results from one set of results to another results 

were expressed against the velocity. 

Reynolds number may be derived in different ways representing 

various situations and giving different answers. In the case of 

these experiments it could have been based on conditions of the 
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rough coal surface with the characteristic length some function 

of surface roughness and air velocity at the actual surface. A 

Reynolds number could also be based on the whole air path through 

the duct. In this case it would vary linearly with air velocity. 

The Reynolds number derived in this way based on the air path over 

the coal taking the mean diameter (d) as 0.675 m, air viscosity 
5 ~r- 3 

(~) as 1. 7 x 10- Ns/m and air density (p) as 1.2 kglm would be 

at velocities 0.5 and 5.0 mls be 2.25 x 104 and 2.25 x 105. 

Turbulent flow is characterised by a Reynolds number of above 

2 x 103 , therefore it may be taken that the air in the duct was 

fully turbulent throughout the range of velocities tested even 

the first run in the 320 kg experiment at 0.3 m/s. This has to be 

verified since if the air flow was laminar, layering could take 

place and a single temperature reading (say) would not be repre-

sentative of the whole cross section. 

9.8.3 Heat transfer through the conveyor belt 

The heat transferred by conduction through the conveyor belt 

material and by convection to the air proved to be too small to 

measure reliably. It can be seen from the distribution of probe 

temperatures within the coal that most of the heat transfer within 

the coal was upward. A probe taped to the bottom surface of the 

conveyor and checks with the infrared thermometer showed that the 

lower surface of the belt was close to the air dry bulb temperature 

confirming the low heat transfer rate. 

It may be shown that the main barrier to heat transfer is the 

coal air mixture itself rather than the belt. 
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The thermal conductivity of conveyor belting is about 

0.15 W/moC, Nylon and PVC the main constituents both having ranges 

of 0.12 - 0.17 W/m9C. The temperature difference between the coal 

and air (dry bulb) was about lSoC average. The belt was 8 rom 

thick and the area involved 6 x 0.5 = 3 m2 .Inserting these 

values into the Fourier equation of conduction we have an estimate 

of the potential heat transfer rate 

Q = -k A dt 
dx 

15 
-0.15 x 3 x 0.008 

= 0.843 kW 

The actual figure was much less than this due to the thin layer of 

coal i~ediatelY above the belt having its own self insulating 

effect due to the very low thermal conductivity and specific heat 

of granular coal. The heat transfer rate predicted would only 

exist for a short period until the thin layer cooled slightly, 

reducing the temperature difference across the belt material and 

hence the 'driving potential' for heat conduction. 

Having recognised that the proportion of heat transferred 

through the belt was small it was decided not to attempt further 

measurement of this, but to concentrate on the evaluation of heat 

flow from the exposed coal surface. 
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9.8.4 Air heat pick up and wet bulb temperature 

The heat pick up was evaluated by measuring the air quantity 

and the wet bulb temperature, which specifies the heat in the air, 

at the inlet and exit to the control volume. The resolution of 

the wet bulb temperature measuring system proved to be insufficient. 

For example, at the higher air velocities, near S mis, the mass 

flow of air was 2.1 kg/so The sigma heat content of air at the 

temperatures reached near the end of each run (~ SoC) varied by 

about 2 kJ/kg per °c wet bulb. Therefore a a.loC change in wet 

bulb temperature between inlet and outlet represents a heat gain 

of 0.42 kW. Thus at the higher air velocities and near the end 

of the cooli~g run the heat pick up and hence wet bulb temperature 

change was smaller than could be detected accurately by the 

measuring system (see figure 9.7i). Although the temperature 

probes were considered to be of acceptable accuracy the meter on 

which the temperature was displayed could only be read to a.loC. 

The heat pick up and temperature increases in the early stages of 

the experiments were large enough to measure with some confidence 

of a lower percentage error. For this reason the overall mean air 

heat pick up was used to compare with the more accurately assessed 

coal heat loss. 

A temperature measuring system accurate to O.aloC would be 

needed for acceptable accuracy. The author has already constructed 

and used such a system based on an eight junction thermocouple but 

this was used in a steady state situation where the time taken to 

use the Pye potentiometer (see Chapter 8.2) was no problem. The 

use of a sensitive multi-channel chart recorder and temperature 

instrumentation by thermocouples is suggested if such experiments 
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are carried out in the future. 

The heat balance figures of between 49 and 79% are thought to 

be due mainly to errors in the air heat pick up measurement rather 

than the heat loss rate of the coal. Heat balances of 100% rarely 

occur and in most industrial tests on heat exchangers 50% balances 

are considered acceptable*. 

9.8.5 Heat lost by coal 

The heat lost by the coal could be measured more accurately 

than the heat given to the air. Despite using equipment of the 

same measuring resolution the treatment of the observed values 

was different. An error in temperature measurement of a probe at 

a given time would, due to the heat loss being evaluated by temp

erature difference, result in two compensating values of heat loss 

over two time intervals. Errors could be caused by placement of 

probes inaccurately at the fixed depth in the coal bed but the 

probes were installed before the experiments and time could be 

taken to ensure accurate positioning. A slight error would be 

caused by the top probe being 1 mm below the surface and the bottom 

probe being 1 mm above the belt resulting in a 19 mm rather than 

20 mm distance to the next probe. This would result in a smaller 

error though than putting the probe on the surface where a large air 

temperature contribution would be made. It is likely that with 

the probe on the surface the temperature value would be very close 

to the air dry bulb temperature. 

Some typical cooling curves for different coal loads and air 

velocities are shown in figure 9.7i. Noticeable features are the 

peaks which occur in every case at between 5 to 10 minutes. If a 

* Dr. M.J. McPherson, Private Communication 
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step fall in temperature could have been arranged this peak would 

not have occurred but the temperature would have fallen sharply 

at time zero. The peaks in the heat gain occurring at 1 and 5 mls 

are not much smaller for the 160 kg coal bed than the 320 kg coal 

bed. This is to be expected since the surface areas and the 

starting temperatures of the coal were the same. Therefore air 

travelling over the surface would initially'gain the same amount 

of heat. The difference between the thermal capacities of the two 

coal beds becomes more apparent with increasing time. 

As expected the higher air velocity results in an increased 

cooling rate earlier in the experiment and a reduced cooling rate 

later, the thermal capacity of the coal being the same regardless 

of air velocity. Eventually coal in a cool airstream will reach 

the temperature of the airstream regardless of the velocity. 

The peak heat loss rate and the heat loss rate for the first 

10 minutes or so are important parameters. These experiments were 

continued over a long period to derive certain information, but 

coal on a conveyor underground is rarely on a single conveyor for 

more than ten minutes before it is transferred to another conveyor 

and the cooling process recommences. The amount of coal on a 

conveyor will affect the peak heat loss rate in the underground 

situation since a heavier coal load will result in a higher 

average coal temperature after mixing at a transfer point. 

The peak heat transfer rate is displayed graphically in 

figure 9.7c and a trend is apparent. Several efforts to fit a line 

through the points were made and the following relationship was 

derived between peak heat loss rate and air velocity (U) 

o = 0.7 /U 'max 3 
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9.8.6 Convective heat transfer coefficient 

The derivation of a convective heat transfer coefficient was 

particularly successful. Latent heat transfer did not take place 

due to the coal being dry and radiative heat exchange with the 

duct wall would be negligible due to the coal surface and duct 

walls both being close to dry bulb temperature. Thus heat trans-

ferred may be attributed wholly to convection. The heat transfer 

coefficients so derived would be as accurate as the heat loss from 

the coal on which they were derived and the spread of the results, 

as shown graphically in figure 9.7d, seems to confirm this. 

Referring back to section 9.6 shows how the coefficients were 

derived and the table 9.6c represents a typical example of the 

spread of results for heat transfer coefficient for a single exp

eriment. A trend is apparent on figure 9.7d which allows the 

following relationship between convective heat transfer coeffic-

ient and air velocity (U) to be expressed 

h = 0.25 UO. 7 
c 

9.8.7 Thermal diffusivity and conductivity 

The thermal diffusivity was derived using a similar process 

to that used in Chapter 8.4. These experiments took place in 

slightly less suitable conditions with time intervals between 

readings being subject to slight variation to which the transient 

method of assessing diffusivity is sensitive. Consequently results 

were not so accurate. The representative results from each run 

display two trends. Firstly, as the velocity increases the 

apparent conductivity increases. Secondly, as shown on figure 9.7b 
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the apparent conductivity falls as depth into the coal bed incre

ases. These two effects are uRdoubtedly due to the limited penet

ration of air into the coal bed which transfers heat as it moves. 

As the velocity increases so will the amount of heat transferred 

resulting in a higher apparent conductivity. The values obtained 

are mostly much higher than those obtained in the experiments 

designed specifically for the purpose (Chapter 8). Only the probes 

well below the coal surface have a low conductivity comparable to 

the previously derived values. This shows that results derived in 

specific situations must be used extremely cautiously outside their 

original context. 

9.8.8 Surface temperature measurement 

The measurement of the actual surface temperature of the coal 

using the 'Infratrace' showed some interesting results. It was 

expected that the convective heat transfer coefficient would need 

to be based on this temperature rather than that measured slightly 

below the surface. Figure 9.Sb shows the variation of surface 

temperature with time. It can be seen that the surface temperature 

quickly fell toward the air dry bulb temperature. At higher air 

velocities the fall was steeper, at lower velocities slightly more 

shallow. The infr~redmeasuring technique gives the temperature of 

the target surface regardless of how thin it may be. A method 

using a probe or thermometer measures some contribution by the air 

itself in the coal. These two implications would suggest that the 

infrared measured temperature would, subject to instrumental 

accuracy, be more reliable. Nevertheless no relationships between 

the surface temperature and heat transfer could be quantified. 
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A likely explanation for the closeness of the surface temp-

erature curve to the air dry bulb temperature in that the very low 

conductivity of the coal allowed the formation of a thin sub skin 

of coal at air temperature rather than that of the coal below. 

The heat transfer coefficients derived from the probe temperature 

seem to bear this out. 

The problems encountered here are typical of the problems of 

assigning representative values to the properties of two phase 

media. 

9.8.9 Tests using wet coal 

~ 

Attempts to evaluate latent heat transfer from wet coal in 

this system were totally unsuccessful. The basic problem being 

to provide a bed of coal with known and uniform moisture content. 

If the air could be humidified to a well controlled degree in the 

inlet a similar concept to that used to provide coal at uniform 

temperature could be used. On the scale of this experimental duct 

with the air volumes involved such humidification would be imprac-

tical at reasonable expense. 

Methods which were tried were quickly removing the top sections 

of the duct and spraying the coal before replacing the sections and 

starting to monitor the cooling but the time involved resulted in 

a large amount of heat being lost before monitoring could begin. 

Spraying water into the coal with access through the hatches was 

tried but in the confined space it was difficult to distribute the 

water evenly. To evaluate latent heat transfer a completely diff-

erent and much smaller system was needed. 
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CHAPTER 10 

TESTS ON A CONVEYOR AT PYE HILL COLLIERY 

10.1 SELECTION OF SITE AND INVESTIGATIONS 

10.1.1 Choice of site 

Due to the difficulties encountered in evaluating the heat 

contribution of conveyed coal in the laboratory a search was made 

for a suitable underground site for an in situ investigation. It 

is accepted that underground climatic conditions are subject to 

large variation and interactions, as described in Chapter 6, and 

not ideal for controlled evaluation of isolated heat sources. 

However careful choice of an underground site of manageable size 

and complexity with the minimum of unwanted interacting heat sources 

would enable meaningful detailed measurements. Until a fairly 

detailed investigation is actually carried out the researcher 

does not know how suitable an apparently promising site is, but 

certain characteristics may give some prior indication. 

For the purposes of this study the ideal site would be a 

conveyor road with no junctions or nearby roadways along its length 

to cause air losses or mixing. The air inlet conditions should be 

as stable as possible. The best site should have no machinery 

installed apart from the conveyor which would hopefully run at a 

steady rate with a uniform load. This important condition means 

that generally such sites would be fed by a bunker system meaning 

it would be well outbye. 

Discussions with the Area Ventilation Engineer NCB South 

Nottinghamshire Area produced a possible site at Pye Hill No~ 2 

Colliery which was then visited and found suitable. 
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10.1.2 Description of site 

The site chosen at Pye Hill No. 2 Colliery was in a length of 

conveyor road known as '5~'. The intake roadway ran from the 

bottom of the main conveyor drift to the surface,a distance of 

1040 m making a right angle junction with another airway containing 

the main bunkers. These bunkers handled most of the coal produced 

from the B1acksha1e seam by both Pye Hill Nos. 1 and 2 Collieries 

and consequently a fairly steady stream of coal from the bunkers 

along '5~' and up the surface drift could be relied upon. The 

fluctuations in production by the faces supplying the coal being 

well damped by the bunker. Fortunately the discharge rate from 

the bunkers was monitored and phoned to the surface control room 

by the bunker operator so coal flow nates were readily available. 

An airway known as the 'old loader' ran from the pit bottom 

to a junction with '5~' conveyor road at a distance of 25 m from 

the drift bottom. The air quantity supplied along this road was 

of the same order as that supplied down the surface drift to '5s' 

and mixing of the two airstreams took place at the junction. 

Consequently the test length in '5's' was arranged to start a suit

able distance downstream (20 m) for full mixing of the two air

streams to take place before entering the test length of roadway. 

No other airways were nearby to affect the airflow by leakage. 

Being well outbye and not subject to fluctuations caused by opening 

and closing of air doors the airflow was volumetrically stable. 

Naturally the temperature was expected to vary in accordance with 

surface conditions. 
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The roadway depths of the test length were 187 m at the con

veyor discharge end and 259 m at the bottom of '5s' where the coal 

was loaded. The mean VRT taken from a local borehole profile was 

l6°C. The roadway was in good condition and appeared to be dry 

and this was confirmed later. The coal was conveyed along '5~' by 

two consecutive conveyors of equal power (3 x 90 kW motors each) 

and were of approximately equal length and speed. The motor-drive 

units and supply transformers for both conveyors fell within the 

test length. The belt was 0.9 m wide and rollers were spaced at 

1.4 m intervals along the top run of belt and 4.2 m intervals on 

the return run. Figure 10.4a shows a schematic plan of the 

district. 

10.1.3 Choice of survey techniques 

The survey techniques used to investigate a particular site 

should be selected carefully to gather the maximum of useful infor

mation and minimise errors. Preliminary visits to the test site 

resulted in a strategy being devised to evaluate the various heat 

sources. The heat sources in '~s' conveyor road could be divided 

into three main categories. 

(i) Strata heat which was expected to be comparatively low 

due to the low VRT at the shallow depth. 

(ii) Machine heat from the 2 conveyors and their associated 

electrical supplies. 

(iii) Heat from the conveyed coal. 

It was decided to evaluate each aspect using subsidiary 

specialised surveys. Then combine the knowledge gained to attempt 

one fast concentrated survey to assess any interactions. 
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Consequently the following surveys and investigations were called 

for. 

(i) A one week continuous temperature record at some point 

on the test length. 

(ii) An airflow survey to evaluate the air flow rates in the 

test length and adjoining airways. 

(iii) Several temperature traverses at various times to include 

peak production and base load conditions to evaluate heat 

and moisture gains by the air. 

(iv) A survey of power supplies, including cable routes con

nections, transformers, and meters etc which would allow 

power measurement to the motors. Also any motors and 

machines using electrical power would be included. 

(v) A coal temperature survey using both sampling and infra

red measurements. Samples would be taken to measure 

moisture content changes along the conveyor. 

10.2 CONTINUOUS TEMPERATURE RECORD 

10.2.1 Purpose or record 

A continuous temperature record for a typical working week 

was needed to find the expected temperatures at certain times of 

the week and also gain some prior knowledge of the scale and rate 

of change of temperature fluctuations. This would allow the times 

of surveys to be chosen to investigate certain aspects and also 

avoid making a survey at an unsuitable time for instance whilst 

the temperature was changing rapidly. Also if any unexpected 

results were obtained it was hoped a continuous record might 

provide some helpful clues to the likely cause. 
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10.2.2 Equipment and installation points 

The continuous temperature record was made using two thermo

hygrographs. A detailed description of the mode of 9peration of 

the instruments and the temperature record produced appears in 

Chapter 6.3. The instruments were sited at the bottom of the 

surface drift and at the inbye end of the test length at the bot

tom of 'S's'. The instruments were installed on a Tuesday and ran 

for one week. Figure 10.7a shows the records produced. 

10.3 AIRFLOW MEASUREMENTS 

The air volume flow was measured at the bottom of the surface 

drift, the 'old loader' roadway and 'Ss' conveyor road near 

stations 1, 2 and 3 in figure 10.4a at designated measuring points 

of known cross sectional area. The standard measuring procedure 

described in reference [19] was used. The instrument used was a 

vane anemometer. Airflow measurements were usually made before 

and after each temperature survey and the volume flow was always 

found to be stable during a survey. The volume flow rate was 

converted to a mass flow rate by mUltiplying by the density of the 

air calculated from the temperatures and pressure at the nearby 

measuring station. The results of the airflow surveys are combined 

with those of the temperature survey to which they relate. 
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10.4 TEMPERATURE SURVEYS 

10.4.1 Position of measuring stations 

The conduction of a temperature traverse has already been 

described in detail in Chapter 6. Once again in these surveys 

the measuring stations were chosen beforehand to include a part

icular length of roadway or concentration of machines. The position 

of the stations is shown in figure 10.4a. 

The last length, was divided into 4 sections by stations 3 to 

7. Two short (50 m) sections 3-4 and 5-6 contained the conveyor 

motor-drive units and the associated electrical sub-stations. 

These sections were deliberately chosen to be as short as possible 

so that the s~rata heat contribution within the length would be 

minimal. Thus all the heat in the section could be attributed 

with little error to the machinery or coal on the conveyor. 

Two long sections 4-5 and 6-7 were lengths of airway contain

ing only conveyor. No electrical energy was present in these 

sections and so any heat gains would be due to the strata, the 

conveyor itself, or its coal load. It should be stressed that the 

heat produced by the conveyor as friction is supplied originally 

as electrical power to motors in the other sections. Therefore 

careful accounting is needed when carrying out heat balances. 

The 'old loader' roadway from station 2 to 8 was included in 

some of the surveys as it was of similar depth and gradient as the 

test length in '5~' conveyor road. Station 8 being 650 m from 

station 2 at a depth of 241 m. The conditions in the 'old loader' 

being similar to '5~' apart from the installed conveyor and airflow 

would allow an estimate of strata heat flow into the test length 

if needed. 
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10.4.2 Temperature survey in static conditions 

A temperature traverse along the test length was made in the 

static non-production period of a Sunday. The survey was carried 

out between 7 and 9 a.m. to coincide with the deputy's inspection 

of the district and cause minimal disruption of colliery routine. 

The previous night was cold and surface temperature was lOC whilst 

the survey was in progress. Temperatures were measured using an 

'Assman' hygrometer at stations 3 to 7. The purpose of this survey 

was to evaluate the heat and moisture pick-up by the air from the 

strata. The heat gain would be at a maximum whilst the machinery 

was not working and the inlet air to the test length was at a low 

temperature. The moisture pick up by the air from the strata is 

affected less by interactions with other sources whilst the air 

is well below saturation as was the case at this site. Consequently 

,the water flow from the strata to the air would be more independent 

of the climatic variations in the airway. This point is treated 

in more detail in the discussion. 

10.4.3 Temperature survey in production conditions 

Several temperature traverses were made in production periods. 

Results obtained were of the same order but varied slightly with 

varying production and inlet conditions. The survey recorded here 

was the last one made. All temperature measuring stations were 

used and an airflow and power consumption survey was combined with 

it. The stations in the test length, 3 to 7, were traversed as 

quickly as possible to obtain a full set of readings over as near 

as possible the same inlet and production conditions. 
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The temperature survey was carried out using an 'Assman' 

hygrometer and the techniques used were those described in 

Chapter 6.2. The pressure at each station was measured using a 

precision aneroid barometer. 

10.5 ELECTRICAL POWER MEASUREMENT 

Before any temperature surveys were made a survey of the 

electrical machinery and power circuits was conducted. The only 

electrical machinery in the roadway designated as the test length 

was associated with the conveyor. The electrical supply to the 

two conveyors (number 2 trunk and number 3 trunk) was taken from 

the main 3.3 kW ring circuit at a sub-section adjacent to the 

motors as shown in figure 10.Sa. The 3.3 kW ring circuit ran down 

the drift from the surface sub station round 'S~' conveyor road and 

the bunker site and back to surface. The current could flow 

either way through the circuit but the direction of current flow 

could be ascertained from the meters in the sub stations. All 

sections of the supply had ammeters and the motor supplies had 

both ammeters and voltmeters. This provided a good estimate of 

the power consumption of the numbers. It could not be measured 

exactly due to no power factor meters being installed. The power 

drawn by a 3 phase motor is given by 

Q 13 x V x I x cos ¢ (1) 

where 

Q Power drawn (W) 

V = Voltage (V) 

I Current (A) 

cos ¢ = Power factor 



sub 2 I---~-
sta. 

sub 
3 sta, I-----l~-

- 239 -

3x90kW motors 

3)( 90kWmotors 

main 3·3kV ring circuit 
(sit to s/f) 

FIG 10'5a ELECTRICAL SUPPLY TO S5 CONVEYORS 



- 240 -

The power factor varies according to the load on the motor. 

Discussions with the Colliery Electrical Engineer who had tested 

the motors suggested the following estimates be made:-

cos ~ = 0.6 running light 

= 0.7 average load 

= 0.8 full rated load 

The circuit section marked 'local' on figure lO.Sa was the supply 

for the lighting and pump circuits at the drift bottom. None of 

this power, apart from the negligible amount used for a few 

fluorescent lights, was expended in the test length. 

The results of the power usage measurements taken simultan

eously with the main temperature survey are shown diagramatica11y 

in figure lO.7d. The distribution of the motor power drawn may 

be apportioned as follows: 

(1) Motor drive losses 

This is usually about 20% of power drawn and the heat appears 

in the vicinity of the motors [9]. 

(2) Work done against gravity 

This is useful work used to raise the potential energy of the 

coal moved. Calculated by the product of mass flow rate, change in 

elevation and gravity. No heat is produced. 
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(3) Friction losses 

This is the power used along the conveyor to overcome roller 

friction. This appears as heat spread over the working length of 

the conveyor the power being transmitted from the motors through 

the belt. This is found by subtracting the power used in the 

motor drive unit and against gravity from the total power consumed. 

10.6 COAL TEMPERATURE AND MOISTURE CONTENT MEASUREMENTS 

10.6.1 Bulk temperature measurement 

Measurements of coal temperature by the method described in 

Chapter 6.4 using the insulated container were made at the three 

transfer points, where No.3 conveyor was loaded, No.3 to No.2, 

and No. 2 to the drift belt. These points corresponded closely 

to stations 7, 5 and 3 respectively. The measurements were made 

during a production shift with five samples taken at each point 

going inbye and five samples at each point going outbye. This was 

to cancel the effect of any temperature .drift during the production 

period. The measurements at each station varied by less than 20 C. 

The mean value was recorded so once again the heat lost by the 

coal could be calculated from the product of the temperature fall 

and specific heat. 

10.6.2 Surface temperature measurement 

Surface temperature measurements were taken using the infra

red non contact thermometer described in Chapter 9 and Appendix 4. 

For use underground the instrument was modified to make it intrin

sically safe and a letter of no objection allowing its use on this 
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specific study obtained. The 'Infratrace', having the ability to 

give an instant temperature reading even of a moving target,was 

used to take the temperature of "the coal on the conveyor or any 

other surface of interest. Although only able to give an absolute 

reading to IOC accuracy it allowed the results of the bulk coal 

temperature survey (previous section) taken on one day to be used 

in conjunction with the results of the main air temperature survey 

taken on a different date. This was facilitated by verifying that 

the coal was at approximately the same temperature at either end 

of the test length on both days. 

10.6.3 Moisture content measurements 

In conjunction with the bulk coal temperature survey (10.6.3) 

samples of coal were taken to evaluate the moisture content of 

the coal at either end of the two conveyors under observation with 

a view to attempting a moisture balance between the air and the 

coal. Six samples of coal of approximately 2 kg each were taken 

in sealed plastic bags, one with each batch of temperature measure

ments. The samples were taken back to the laboratory and were 

weighed, air dried at 3SoC and weighed again to establish the 

moisture content by difference. These samples were also used to 

find the specific heat of the coal by calorimetric method of mix

tures. This was used in conjunction with the bulk coal temperature 

measurements to find the heat lost by the coal on the conveyor. 
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10.7 RESULTS 

10.7.1 Presentation 

As described in the previous section several surveys were 

made to evaluate different aspects of the airway and conveyor 

system. The object of these studies was to quantify the heat from 

all sources in the roadway in order to include them in an overall 

energy balance and relate this to the contribution from conveyed 

coal. As a result the surveys described were all components 

designed to fit together to form an integrated picture. The main 

framework of this integrated picture was the final air temperature 

and power survey conducted in production conditions. The previous 

air temperature, coal temperature and power surveys were used to 

gain an understanding of the variations and interactions taking 

place in the test area. The results given here are for each of 

the surveys described in the previous sections 10.3 to 10.6. They 

are all referred to the final definitive air temperature survey 

and are presented in an order which allows logical arrangement and 

construction of the overall picture rather than strictly in the 

order described. 

10.7.2 Processing of results 

The results of the temperature survey were calculated from 

the observed values using the methods described in Chapter 6.2. 

The electrical power distribution calculations are shown in full 

from observed data to calculated values. The same applies to the 

coal bulk temperature measurements and heat gain. 
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Figure 10.7b 

Table of results for airflow - temperature 

survey in non production conditions 

Wet bulb Dry bulb Sigma Heat Moisture Moisture 
Station temperature temperature heat gain content gain 

°c °c kJ/kg kW g/kg g/s 

3 4.6 6.4 17.48 4.43 

15.20 1.20 

4 4.8 6.7 17.86 4.46 

109.20 6.80 

5 6.2 9.0 20.59 (-15.70) 4.63 

- -
6 6.2 9.0 20.59 4.63 

58.8 2.00 

7 7.0 10.5 22.06 (-12.56) 4.68 

TOTAL 183.2 TOTAL 10.00 

Air mass flow rate 40.0 kg/s 

The figures shown in brackets are the amounts of heat gained by the 

air due to autocompression as it moves to greater depth. They are 

calculated from the mass flow rate, change in level and gravity, 

eg 40.0 x 32 x 9.81 = 12556 

2 kg/s x m x m/s 
Nm 
- = W 
s 

The autocompression (adiabatic compression) is evaluated since it 

is a heat rise which occurs without an external heat source. 
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Figure 10.7c 

Table of results for airflow temperature survey 

in production conditions 

Wet bulb Dry bulb Sigma Heat Moisture Moisture 
Station temperature temperature heat gain content gain 

°c °c kJ/kg 'kW g/kg g/s 

3 12.0 13.7 34.46 8.35 

41.50 3.99 

4 12.4 14.5 35.50 8.45 

86.59 25.54 

5 13.2 13.1 35.67 (-15.66) 9.09 
.' 82.19 19.96 

6 14.0 16.3 39.73 9.44 

88.58 28.33 

7 14.8 16.8 41.95 (-12.52) 10.15 

TOTAL 299.52 TOTAL 71.98 

Air mass flow rate 39.9 kg/s 

'Old Loader' 

8 10.8 13.9 31. 73 7.15 

0.15 7.50 

2 10.9 12.6 31. 74 (+8.16) 7.65 

Air mass flow rate 15.4 kg/s 
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10.7.6 Power measurements 

No. 3 Conveyor (Stations 7-5) 

Power drawn = 13 x V x I x cos ~ 

13 x 3,400 x 22.5 x 0.7 

= 92750W=92.75kW 

Motor drive losses = Power used (1 - Eff~) 

92.75 (1 - 0.8) 

= 18.55 kW (heat to section 5.6) 

(1) 

(2) 

Power to lift coal Mass flow rate x gravity x lift height 

= 125 x 9.81 x 32 

= 39240 W = 39.24 kW (3) 

Power to overcome roller friction = 1 - (2 + 3) 

= 92.75-(18.55 + 39.24) 

= 34.96 kW 

This is dissipated evenly along the conveyor in sections 7-6, 430 m 

and 6-5, 50 m in length. Its distribution is proportional to the 

conveyor length in a given section. 

Section 7-6, 

6-5, 

~~g x 34.96 = 31.32 kW 

;8
0
0 x 34.96 = 3.64 kW 
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No. 2 Conveyor 

Power drawn = 13 x V x I x cos ¢ 

13 x 3~00 x 28 x 0.7 

115423 W = 115.42 kW (1) 

Motor drive losses = Power used (1 - Effy) 

= 115.42 (1 - 0.8) 

23.08 kW (heat to section 3.4) (2) 

Power to lift coal = Mass flow rate x gravity x lift height 

= 125 x 9.81 x 40 

= 49050 W = 49.05 kW (3) 

Power to overcome roller friction = 1 - (2 + 3) 

115.42-(23.08 + 49.05) 

= 43.29 kW 

This is distributed evenly in 3 sections. 

Section 5-4, 440 43.29 35.27 kW 540 x = 

4-3, 
50 

4.01 kW 540 x 43.29 

3-1, 50 43.29 4.01 kW 540 x = 
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10.7.7 Coal bulk temperatures 

(i) Start at No. 3 conveyor, near station 7 

Inbye 

Out bye 

18.8 

18.9 

18.9 

18.7 

18.9 

18.3 

18.4 

19.3 

20.1 

19.0 mean 

(ii) Transfer point No. 3 conveyor to No. 2 conveyor near station 5 

Inbye 

Outbye 

18.1 

17.9 

18.9 

18.7 

18.7 

18.2 

18.4 

18.2 

18.7 

18.9 mean 

(iii) End of No. 2 conveyor between near station 1 

Inbye 

Outbye 

18.7 

17 .8 

17.9 

18.3 

16.8 

17.6 

17.8 

17 .6 

18.4 

18.2 mean 

Heat lost by coal on conveyor No.3 (stations 7 to 5) 

Temperature fall x Specific heat x Mass flow rate of coal 

(18.93 - 18.47) x 1.23 x 125 = 70.72 kW 

Estimated distribution 63.35 kW in section 7-6 

7.37 kW in section 6-5 

Heat lost by coal on conveyor No.2 (stations 5 to 1) 

(18.47 - 17.86) x 1.23 x 125 93.79 kW 

Estimated distribution 76.42 kW in section 5-4 

8.68 kW in section 4-3 

8.68 kW in section 3-1 

The heat from the coal is assumed to be distributed uniformly along 

the conveyor run and is distributed according to length. 
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10.7.8 Surface temperature measurements 

Location No. 2 Conveyor Motors 

Air wet/dry bulb temperatures l2.S/l4.0oC 

Coal surface (light load) 

(medium load) 

(full load) 

Belt underside 

Floor of roadway 

Roof of roadway 

Motor case 

Motor chassis 

Location 30 m below No. 2 motors 

Air wet/dry bulb temperatures l3.0/lS.loC 

Coal (light load) 

(medium load) 

Coal large lump 

Belt, top and bottom both surfaces 

Rollers 

Roof of roadway 

Side of roadway 

Floor of roadway 

Temperature 

13 

14 

14 

14 

13 

12 

39 

17 

14 

14 

17 

14 

15 

13 

13 

14 

°c 
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Location No. 2 belt 30 m above No. 3 motors 

Air wet/dry bulb temperatures l3.5/l5.20C 

Coal (light load) 

Coal internal temperature (belt stopped) 

Location No. 3 belt 30 m below motors 

Air wet/dry bulb temperatures l4.0/l6.20C 

Coal (medium load) 

Location Loading point No. 3 belt (Station 7) 

Air wet/dry bulb temperatures l4.5/15.30C 

Coal 

Roadway walls 

Coal temperatures on No. 3 belt 

Coal onto belt, surface 

Coal onto belt, internal 

At 240 m, surface 

At transfer point, surface 

At transfer point, 25 nun below surface 

At transfer point, 50 nun below surface 

Coal f.10w rate 

115 kg/s at time of survey. 

14 

18 

15-16 

15-16 

16 

17 

17 

17-16 

16 

17 

17 
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10.7.9 Moisture content of coal 

Sample Location Moisture content % Mean % 

1 No. 2 conveyor discharge 4.051 

4.024 

6 No. 2 conveyor discharge 3.998 

2 Transfer point No. 3 to No. 2 4.212 

4.281 

5 Transfer point No. 3 to No. 2 4.350 

3 No. 3 conveyor load point 4.521 

4.567 

4 No • . ' 3 conveyor load point 4.613 

The moisture content percentages of the samples taken are shown 

above. The figures were not used in the heat balance as the heat 

required to evaporate off the amount of moisture measured could 

not have been present. The heat required is calculated from the 

product of the mass flow of coal, change in moisture and latent 

heat of evaporation of water. Inserting the figures obtained for 

either end of the test length we have 

Mass flow of coal x Change in moisture content x Latent heat 

kg/ s (x - x) kJ /kg 

125 x (0.04567 - 0.04024) x 2430 

= 1649 kW 
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Clearly this figure is outside the bounds of acceptable 

results and an order of magnitude too great. These results were 

not used in the final heat balance. 



1 2 
Heat gain Auto 

Section measured compression 
kW kW 

3-4 41.50 -

4-5 86.59 15.66 

5-6 82.19 -

6-7 88.58 12.52 

TOTAL 

3-7 298.86 28.12 
- - L- _____ ~~ __ - -

Figure 10.8a 

Table of heat balances in 5's conveyor road 

3 4 5 6 
Corrected Motor Roller Coal 
heat gain heat heat heat 

(2 - 1) kW kW kW 
kW 

41.50 23.08 4.01 8:68 

70.93 - 35.27 76.42 

82.19 19.55 3.64 7.37 

76.06 - 31.32 63.35 

270.74 42.63 74.24 155.82 
- -------'--

7 
Total conveyor 

heat 
4 + 5 + 6 

kW 

35.77 

111.69 

30.56 

94.67 

272.69 
- -----,---

8 
Balance 

(7/3) 
% 

, 86.2 

157.S 

37.18 

124.5 

100.7 

N 
V1 
V1 



air hea t gain 
(kW)" 
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®-- mIc power (oal heat 
(kW) 1kW) 

41·50 27·09 8'68 

(0--- - -

7099 35-27 76'42 

®-----r-
82·19 23-19 7-37 

CD- -- --

76'06 3132 63-35 

(j)- - - - 116-87 155-82 

270:]4 total 271:69 

FIG 10t3b HEAT BALANCE FOR 55 CONVEYOR ROAD 
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10.8 HEAT DISTRIQUTION AND BALANCE 

10.8.1 Heat balance 

The results of the surveys reported in section 10.7 may be 

grouped together to form a heat balance. This allows comparison 

of the various sets of results obtained and increases understanding 

by presenting a composite integrated result. The balance which is 

attempted is for the test length of conveyor road between stations 

3 and 7 in production conditions. 

Using the information presented in table 10.7c it may be 

assumed that strata heat flow into the test length was negligible. 

This assumption is based on the observations that the dry bulb 

temperature in the test length was very close to VRT and that in 

the'old loader~ a very similar roadway to the conveyor road the 

strata heat was also negligible. 

We may now attempt to balance the heat gain actually measured 

in the air along each section against that estimated from the 

power usage and coal cooling calculations. The results are best 

presented in a single table which includes the sectional values 

for each survey over the entire test length. The table, figure 

10.8a shows the heat gain actually measured in the air in each 

section with a correction for auto compression if applicable. The 

heat dissipated by the electric motors, conveyor rollers and 

conveyed coal are also given for each section and the sum of heat 

estimates for these sources is compared with the heat measured in 

the air. The overall air heat gain in the test length is also 

balanced against the total machine and coal heat dissipated. This 

situation is also shown graphically in figure 10.8b. 
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10.8.2 Moisture evaporation 

It may be seen from table 10.7b that in non production con

ditions water evaporation into the airway at 10.00 gls and from 

table 10.7c in production conditions when the conveyor is carrying 

moist coal, 71.98 gls of water evaporates. 

It may be assumed that during production the moisture evapor

ation from the strata stays at almost the same level as moisture 

sources do not interact so much as heat sources. Due to the VRT 

and hence the strata water temperature being very close to the air 

temperature the strata water evaporates adiabatically as explained 

in Chapter 3.8. The water temperature is close to the air wet' 

bulb temperature and therefore does not change the sigma heat 

content of the air. 

The remaining 61.98 gls of water evaporated is attributable 

to the conveyed coal. The heat required to evaporate 61.98 gls 

is 150.61 kW. (0.06198 kg/s x 2430 kJ/kg). The heat dissipated 

by the coal was 155.82 kW. This indicates that almost all the 

heat transferred from the coal was used to evaporate its own 

moisture. The heat transferred from the coal as it cools is not 

being transferred sensibly to the air but to its own water which 

evaporates. 
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10.9 DISCUSSION AND ANALYSIS OF RESULTS 

10.9.1 Errors and estimates 

In such a complicated survey with many different aspects 

studied in a changing situation estimates must be made. Errors 

will be present in estimations and assumptions as well as in 

actual measurements. All estimates made are justified in the 

authors or other workers experience and are usually based on 

previous detailed measurement. Where possible results were pro

cessed to cause errors of measurement or estimation to counteract 

rather than compound. The errors due to each estimate or measur

ing method are discussed individually in the following sections. 

The overall heat and moisture balances which provide a check 

support the estimates made and methods used. 

10.9.2 Continuous temperature reeord 

The continuous temperature records for either end of the test 

site display the patterns of production and non production a 

surprisingly long way outbye. Once again a daily and weekly pat

tern is discernible on both traces albeit with slightly less 

definition than such records made closer to the workings have 

shown. 

Surface conditions naturally have more influence this far 

outbye and the gradual trend of a working district to heat up 

through the week is not seen here. 

The stabilisation of temperatures at the weekend during non 

production is apparent as is the sudden rise and fluctuation as 

production starts on a Monday. 
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10.9.3 Heat survey in non production conditions 

The reason for this survey ~as to find the moisture pick up 

of air travelling along the test length in conditions when no 

machinery was working and also to measure the strata heat load 

when the air temperatures were well below that of the strata. 

It can be seen in table 10.7b that the strata heat pick up of the 

air is greatly increased at the weekend when no other heat sources 

are present to raise the air temperature. The moisture pick up 

by the air of 10 gls is extremely low for this length of airway 

(1 km) and airflow, and confirmed the visual estimate of a dry 

roadway. 

10.9.4 Heat survey in production conditions 

The results shown in table 10.7c are for the last survey 

carried out which also used the measurements and calculated values 

from earlier surveys to attempt a heat balance. Consequently this 

survey was carried out as quickly and accurately as possible with 

two personnel observing all readings and repeating the readings if 

any pair did not agree. 

The heat and moisture content of air is specified by pressure 

and air wet and dry bulb temperatures. An air volume flow rate 

is needed to find heat and moisture pick up rates. The air 

pressure measurements would contribute negligible errors to the 

results since the measurements were made using a 0.01"Hg,(0.03 kPa) 

barometer and the heat is mainly dependent on temperature. Both 

wet and dry bulb temperaturces were measured using O.loC thermom

eters resulting in a maximum error of 0.25 kJ/kg in sigma heat and 



- 261 -

4 kW heat gain per section and for the whole test length. An error 

of heat gain in one section would have been counteracted by a sim-

ilar error of opposite sign in the next section. 

The air flow was calculated from a mean of three anemometer 

readings at designated measuring stations of known cross sectional 

area. The estimated error here was up to 2.5%. This could affect 

the total heat pick up by up to 7.5 kW. 

The air dry bulb temperatures measured along the test length, 

00· 0 13.7 to 16.8 , were fortunately very close to the VRT of 16 C. 

Indeed the dry bulb temperature of l60 C occurred between stations 

5 and 6 half way along the roadway. Thus a slight heat gain in the 

top sections of the airway would be offset by a slight heat loss 

in the bottom'section. The net effect being a negligible strata 

heat gain. The low strata heat gain in the old loader of only 

8.16 kW in 650 m at a lower dry bulb temperature confirms that 

this assumption is valid. 

10.9.5 Electrical power measurement and distribution 

The electrical power supply to the motors naturally fluctu

ated slightly with the changing coal load. The voltage remained 

stable at 3.4 kV, but the power fluctuated by up to 2 A. It may 

be assumed that there was no long term drift between the readings 

at the two sub stations since the meters on the cable connecting 

No. 2 to No. 3 sub stations read the same at both ends. Past 

experience showed this indicated a stable load. The meter accuracy 

was claimed at 5%. The largest error in assessment of power drawn 

was probably in the estimate of the power factor, cos~. This 

could be up to 15%. 
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The distribution of the power drawn was subject to errors 

also, but these would not compound the errors made in measurement 

of total power drawn but merely in the apportioning of it. The 

estimate of motor drive losses of 20% of power drawn appears in 

the case of both conveyors to be too low probably due to the system 

being run at only one third of its rated load. The effect of under 

estimating the power used to overcome-inefficiencies in the motor-drive 

unit would be an over-estimation of the power used to overcome 

roller friction along the belt length. The table of heat balances 

seems to indicate this in what might have happened. The amount of 

power required to raise the coal load against gravity would be 

sensitive mainly to errors in estimation of coal flow which would 

fluctuate slightly whilst the height of lift was known exactly. 

The coal flow rate was calculated from the tonnage run per hour 

monitored at the bunkers accurate to 1%. Therefore whilst the 

flow rate at a particular instant was not known exactly, the 

average flow rate for a particular hour was available since the 

survey took place over about 1 hour this was not such a problem 

for reasons discussed later • 

. 10.9.6 Coal temperature and heat loss 

The errors on coal temperature measurement are mainly in the 

sample taken. Ideally the same batch of coal should be sampled on 

its trip along the conveyors. This is impossible without a large 

group of operators. Taking a number of samples over a period and 

at a transfer point where mixing takes place, would reduce the 

errors which to a certain extent are unknown. The variation of 

temperatures measured at a particular station was more than the 
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total temperature change along the conveyor. The accuracy of the 

heat balance is the only reliable indicator of the error and this 

appears. good, but the possibility of compensating errors cannot 

be ruled out. The specific heat of the coal was measured in the 

laboratory and is such subject to very low errors « 3%) compared 

with that of sample collection. 

The errors in flow rate used to calculate the rate of heat 

loss have been discussed in the previous section. 

The coal temperature and cooling survey was carried out on a 

different day to the main air temperature survey. However the 

flow rates and surface temperature measurements were similar so 

because of the long time needed to make a coal temperature survey 

and the need for a fast air temperature survey this appeared to be 

the most practical solution. 

10.9.7 Surface temperature survey 

The results of this survey were not used in the heat balance 

but the coal temperature was checked for the reasons described in 

the last section. Other surfaces of interest were measured 

mainly to confirm the observation often quoted that in a dry road

way the wall temperature is often very close to the air dry bulb 

temperature. 

The coal temperatures on No. 3 belt supported the proposal 

given previously of a layer near the surface of the coal bed 

cooling and the temperature of coal within the bed not falling so 

quickly. 
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10.9.8 Moisture content of coal 

The results of these measurements were very poor and not used 

in the heat and moisture balance. There are three reasons for 

this. The samples were too small in size for the required 

accuracy. The moisture content of the coal conveyed probably 

varied at the start of the conveyor road. Also the change in 

moisture content needed would be difficult to measure accurately 

by weighing on a balance robust enough to carry the coal sample. 

The moisture content change in the coal along the conveyor appears 

to have been in the region of 0.5 g/kg of coal. To measure this 

with any accuracy would require extremely good drying and a scale 

measuring to 0.005 g whilst carrying a 1 kg weight. 

10.9.9 Heat balance 

The heat balance between the heat measured in the air and 

that measured independently from the contributing heat source in 

the roadway gives an indication of the overall accuracy and reli

ability of measurement and estimation. The assumption of neglig

ible strata heat seems to be justified by the heat balance. 

The balances are low in sections 3-4 and 5-6 and correspond

ingly high in sections 4-5 and 6-7. This is likely to be the 

result of an overestimation of the efficiency of the conveyor 

motor-drive units causing more power drawn to be apportioned to 

the working lengths of the conveyors as described in section 

10.9.5. The results could have been improved by changing the 

motor-drive efficiency estimated, but the overall balance would 

remain unchanged and such estimates made before processing results 

should not be changed for the sake of minor improvements in presen

tation. 



- 265 -

This heat balance represents in the region of one hours 

production and is a pseudo-steady state interpretation since it 

was impossible to measure everything instantaneously. The error 

in overall heat balance of 0.7 % is considered a good result and 

gives reas.on for some confidence in the individual measurements 

of heat from the machinery and the conveyed coal. The heat from 

the conveyed coal is by far the largest contributor to the air 

heat pick up. In this case 156 kW of a total heat load of 264 kW. 

Naturally it is not possible on the strength of a single invest

igation to predict a contribution of such a scale in all cases, 

but this result and those obtained at other collieries suggest a 

larger contribution than is at present generally accepted. 

The nature of the heat transfer appeared to have been in this 

case totally by evaporation of moisture. Once again there is a 

good correlation between moisture gain in the air, heat required 

to evaporate that moisture and heat lost by the coal. The situ

ation was probably such that the coal transferred its sensible 

heat to the surface moisture which then evaporated. Heat transfer 

by evaporation was expected, but not to this extent. 



CHAPTER 11 

CONCLUSIONS 
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CHAPTER 11 

CONCLUSIONS 

11.1 SUMMARY 

11.1.1 Laboratory investigations 

The laboratory investigations made a valuable contribution 

to this study despite not providing values for characteristics and 

coefficients which could be used innnediately to predict the 

actual underground effects of conveyed coal. The quantitative 

information gained, particularly the convective heat transfer 

coefficients, will be useful when more investigations have been 

carried out to link the latent and convective heat transfer. The 

model in the duct also allowed a quantitative study which should 

provide information which will allow more accurate choice of 

future investigations. Of particular interest are the peak heat 

flow rates from the coal and air penetration into the coal bed. 

11.1.2 Theoretical analysis 

Whilst it is difficult to connnent on untried theoretical 

analyses the original approach is still considered sound. The 

treatment of a continuum rather than separate pieces of coal and air 

spaces appears the most practical approach to analysis and has 

precedents in other areas of fluid mechanics. The complexity of 

the analysis might be reduced by neglecting terms shown to be 

small by the underground survey. Radiative heat exchange for 

example. Possibly a much simplified analysis based on the one_. 

described in Chapter 7 could be of use. This analysis would 
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require less coefficients to be evaluated by laboratory and 

underground work. 

11.1.3 Underground investigations 

The underground investigations were the most rewarding 

aspects of this study. The dynamic nature and interaction in the 

underground climate provided complications but allowed a fuller 

investigation by choice of site and timing to pick out or high

light specific heat sources. A large team of investigators would 

have allowed more accurate measurements in some cases. Notably 

on the conveyed coal investigations and temperature surveys but 

difficulties in matching instruments and techniques and control 

would have introduced some extra problems. 

The adoption of measurement of a survey and analysis in a 

quasi-steady state of approximately one hour duration worked in 

the case study at Pye Hill Colliery, but careful examination of 

continuous temperature records will be necessary before justifying 

its use in other situations. The small error in overall heat 

balance gave confidence in the results and analysis. 

11.2 FURTHER WORK 

11.2.1 Laboratory investigations 

Since underground investigations have highlighted the import

ance of the latent heat transfer it is important that any future 

laboratory work takes account of this. Experiments similar to 

those conducted in the insulated duct should be continued as such 

work allows conditions to be reproduced and carefully controlled. 
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Also examination in detail and safety compared with underground is 

facilitated. To provide firstly the close humidity control over 

a wide range and secondly the step change in temperature at the 

start of an experiment which were the main weaknesses in an other

wise suitable approach, the scale of the model should be vastly 

reduced. This would put the amount of heating, refrigerating and 

humidity control required within the range of that provided by a 

commercially available air conditioning unit. In the case of a 

much smaller model scale effect and similarity will need to be 

analysed. Also the packing and 'loading' of the coal bed would 

need careful consideration. 

11.2.2 Theoretical analysis 

Theoretical analysis should be matched to the accuracy of 

measurement and availability of input parameters. The equations 

used should still be based on well proven heat transfer equations 

or derived from first principles. The empirical approach whilst 

leading to apparent advances in the short term could lead to an 

analysis that breaks down when used outside the range of values 

tested. 

The steady state analysis should be retained for its simpli

city and suitability for inclusion into computer prediction 

programs which already exist. 
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11.2.3 Underground investigations 

Much more underground measurement should be carried out 

initially for primary investigation and later for correlation of 

predictions in a wide range of conditions. The underground invest

igations should be of a similar type to that conducted at Pye Hill 

Colliery. This does not necessarily mean a length of airway with 

only a conveyor and no other machinery with negligible strata heat, 

but all heat sources should be accounted for and evaluated as 

accurately as possible. The results should form a heat balance 

with the conveyor and coal included as components. Such an 

approach, sacrificing quantity for quality will allow results 

which may be Qsed with confidence not only for this work, but in 

the evaluation of other heat sources, heat storage and interactions. 

With regard to conveyors the power distribution between the motor 

drive and rollers would benefit from more detailed measurement 

and analysis. Information presently available is concerned mainly 

with the selection of drive motion rather than heat dissipation. 

Heat storage phenomena particularly that of the strata 

surrounding an airway should be investigated. Strata heat storage 

could explain many anomalies and a quantitative evaluation would 

facilitate more detailed examination of other heat sources. 

11.3 ESTIMATE OF CONVEYED COAL HEAT TRANSFER 

At this stage a detailed prediction of the contribution of 

conveyed coal to the heat problem underground is not possible. 

However the project has produced observations which show the mag

nitude of the contribution at different locations underground and 

that conveyed coal is a significant contributor to the overall 
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heat load. The figures obtained have been found to agree with 

other workers estimates. 

11.3.1 Contribution to total mine heat load 

The contribution of conveyed coal to the total mine heat load 

is of the order of 10% during production periods. The overall 

mean figure for a full week is about 5% (Ref. [9] compare with 

Bentinck Colliery,Chapter 6). 

11.3.2 Contribution to heat load in intakes 

The contribution of conveyed coal to the heat load in intake 

conveyor roads is of the order of 50%. 

This figure was measured at Hickleton and Pye Hill Collieries 

and compares with estimates made by Voss [21] in the Ruhr Coalfield. 

The properties of heat from conveyed coal and from the strata 

remain approximately the same despite the higher VRT in the Ruhr. 

This is probably due to higher temperatures in the strata result

ing in proportionally higher temperatures of mined coal on the 

conveyors. 

The Germans found an estimate of coal cooling rate expressed 

in temperature fall per metre of conveyor which was not in agree

ment with results taken in this study. It was much lower. 
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11.3.3 Heat loss rate from coal on conveyors 

The cooling rate of coal on a conveyor may be estimated by a 

simple empirical equation as follows 

Q = 50 (t - t ) x (1) 
c a 

where 

Q Heat loss rate from coal W 

t Mean c temperature of coal °c 

t = Mean air dry bulb temperature °c a 

x Length of conveyor m 

This equation' takes account of more parameters than is immediately 

apparent since many variables, such as belt speed, do not vary 

greatly (2.5-3.0 m/s) and air velocities are limited by dust pick 

up considerations. Moisture content of the coal is always kept 

high because of dust suppression regulations and this allows 

maximum evaporation to take place. 



- 272 -

11.4 CONCLUSION 

The theoretical, laboratory and underground studies carried 

out in this project have demonstrated the nature and magnitude of 

the contribution of conveyed coal to the total underground heat 

load. In particular it is recognised that much of the heat is 

transferred in the form of latent heat of evaporation from the 

hot, wet coal to the cooler and drier ventilating air. 

A satisfactory heat balance has been achieved using measure

ments from a carefully selected underground site with due account 

being taken of heat flows under operating and non operating con

ditions. 

It has been demonstrated that conveyed coal can make a very 

significant contribution to the overall heat load and should be 

included in a computer program or other model used for the pre

diction of underground climatic conditions. In order to model 

the conveyed coal heat contribution accurately further work is 

required, but it is hoped that this study will provide a useful 

foundation. 
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APPENDIX 1 

VAPOUR PRESSURE TABLE 



Figure A.1a 

Saturated vapour pressure (e) in ki1opasca1s (kPa) 

°c 0 1 2 3 4 5 6 

0 0.610 8 0.656 6 0.705 5 0.757 5 0.813 0 0.871 9 0.934 7 

10 1. 227 2 1. 311 9 1. 401 7 1. 496 9 1. 597 7 1. 704 4 1. 817 3 

20 2,337 3 2.486 1 2.643 1 2.808 6 2.983 2 3.167 2 3.360 9 

30 4.243 1 4.492 8 4.755 2 5.030 8 5.320 1 5.623 8 5.942 3 

40 7.377 8 7.780 3 8.201 6 8.642 4 9.103 4 9.585 6 10.090 

50 12.340 12.965 13.618 14.298 15.007 15.746 16.516 

60 19.926 20.867 21. 845 22.862 23.918 25.016 26.156 
~--- - -------~ -_ .. _--- ----- -- -

7 8 

1.001 3 1.072 2 

1. 936 8 2.063 0 

3.564 9 3.779 7 

6.276 4 6.626 5 

10.616 11.166 

17.318 18.153 

27.341 28.570 
--

9 

1.147 4 

2.196 4 

4.005 5 

6.993 4 

11.740 

19.022 

29.846 
-- -

N ...... 
~ 

I 
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APPENDIX 2 

HICKLETON COLLIERY VENTILATION SURVEY RESULTS 



Figure A.2a 

Ventilation surveys at Hickleton eolliery 

Pressure Quantity Static conditions 
Station Location kPa m3/s 

Temperature 
wOe DBoe 

A u/e shaft top (3) 97.95 206.0* 12.2 14.7 
B u/e shaft bottom (3) 105.50 

* 
16.4 23.3 

e W Return 24s slit 106.50 34.75 21.7 29.6 
D W Return OIB 46s Return 107.75 22.2 30.2 
E 4bs Return 107.75 12.55* 21.0 28.7 
F W Return liB 46·s Return 107.75 22.7 30.9 
6 TOls supply level 108.85 23.8 31.9 
5 TOls TIG 10 m olB 108.10 11.44 21.8 30.0 
4 TOls MIG stage loader 108.50 11.34 19.5 28.9 
3 W Plane at transformers 108.45 17.7 25.9 
2 W Plane liB 46s intake 108.75 18.90 16.3 22.3 
1 W Plane liB 24s slit 108.15 32.38 21.8 29.8 
G Die shaft bottom (2) 108.25 16.3 21. 7 
H Die shaft top (2) 106.60 13.4 15.4 

* Measured by colliery ventilation staff in previous survey 

Production conditions 
Temperature 

wOe DBoe 

24.5 30.2 
26.0 30.7 
24.5 29.5 
26.8 31.3 
28.6 32.2 
29.3 32.3 
24.7 29.1 
21.5 26.0 
20.5 25.3 
16.5 22.5 

I 

N 

" '" 
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APPENDIX 3 

INSTRUMENT CALIBRATION CURVES 
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APPENDIX 4 

SPECIFICATIONS AND OPERATING 

INSTRUCTIONS FOR 'INFRATRACE ' 



INDEX 

Getting the best results from 
INFRATRACE 

APPENDIX - Infra-Red explained 
A1_ Radiant Heat Emission p_7 
A2. Spectral Distribution of Energy p.8 1. Introduction 

2. Basic Principle of Operation 
p.3 
p.3 
p.3 
p.5 

A3_ Selective Filters p.9 
3. General Operating Instructions A4. Measurements with Glass p.10 
4. Establishment of Emissivity Emissivity Tables p.11 

SPECIFICATION INFRATRACE 1000 INFRATRACE2000 
Applications General Industrial Use High Temperature 

Energy Conservation Processes 
Measures glass Metal Foundry 

temperature Measures through glass 

Readout 12.7mm Digital Liquid Crystal Display 

Full Scale Measurement 0-1000oC 600-2000°C 
Range (Temperatures outside (Automatic out-of-range 

this range are displayed indication) 
at reduced accuracy) 

Resolution 1°C 1°C 
Accuracy (Mean)No ... l.2 ±0.7% of reading ± 1 % of reading 

± 0.4 % of full scale ± 0.4% of full scale 
Repeatability No •• 1 ± 0.3% of full scale ± 0.3% of full scale 

Emissivity Compensation 0.2 to 1.0 0.2to 1.0 

Spectral Range 8-14jlm 2-2.5jlm 

Speed of Response 3 readings per second. < lOOms at recorder output 

Minimum Target Size 20mm diameter at 1 metre range 

Field of View 25 milliradians 11 % 0) 

DistancelTarget Dia. 40:1 

Optical Sight Integral. Parallax corrected 

Ambient Temperature 
(Operating) O°C to 45°C 
(Storage) -20°C to 60°C 

Battery Type 9 volt PP3, TR146X, 6F22 (Heavy duty type 
recommended) 

Battery Life 30 hours, representing 3 months typical use 

Dimensions 235 x 90mm (914 x 3% in) 
(excluding handle) 

Weight 980gms (21b 2 ~ oz) 

Notes: 1. Applies at ambient temperature of 18°C to 28°C 
2. Assuming black body target emission. Emissivity = 1. 

2 

Getting the best results from 
INFRATRACE 

1_ Introduction 
INFRATRACE incorporates an optical 

system capable of producing highly 
consistent and accurate measurements. 
This is matched by automatic processing 
features, readily selected by pressing the 
appropriate push button. Errors due to 
atmospheric attenuation and extraneous 
heat sources, such as the sun, are 
rendered negligible in most applications. 

In fact operation could not be simpler
AIM the instrument 
PRESS the trigger, and 
READ the temperature immediately 

in °C. 
The following notes are presented for 

the guidance of the user in obtaining 
the optimum performance from 

INFRA TRACE in a host of diverse appli
cations. 
2. Basic Principle of Operation 

Any surface at a temperature above 
absolute zero emits heat in the form of 
radiated energy. At temperatures above 
600°C some of this energy is visible, but 
much of it is of longer wave length than 
visible light (i.e. infra-red) although it 
behaves in the same manner as visible 
light. It travels in straight lines, and may 
be reflected by mirrors and focused uy a 
system of lenses. The radiant flux from 
the surface is directly related to its 
temperature by known physical laws. 
In a non-contact thermometer, such as 

INFRA TRACE, it is this energy which is 
measured, the value being processed to 
display temperature directly in degrees 
Celsius. 

A more detailed knowledge of these 
physical principles is necessary only in a 
minority of applications and a more 
comprehensive description is therefore 
presented in the Appendix 

3. General Operating Instructions 

3. t. Aim INFRATRACE at the target 
Remember to loop the wrist strap 

around the wrist. INFRATRACE may be 
held and aimed like a pistol. The aperture 
of the front sight should be aligned with 
the appropriate aperture of the rear sight 
forming an extension to the Display I 
Control Panel. The upper of these two 
apertures provides parallax correction 
when the measured object is at the 
optimum distance of 1 metre from the 
instrument. The lower aperture provides 
a parallel sight line suitable for aiming at 
targets at a distance greater than 5 metres. 

INFRATRACE will effectively measure 
surface temperatures at literally any 
distance - from a position almost 
touching the instrument to infinity -
provided that the target fills the small 
field of view of the instrument. (See 
Appendix for explanation of atmospheric 
attenuation effects. ) 

A fixed focus optical system defines 
a minimum target size of 20mm diameter 
at 1 metre distance, and a DIST ANCEl 
TARGET SIZE ratio of 40: 1 at greater 
distances. This is illustrated in figure 1. 
In practice it is desirable to have a target 
diameter twice that specified, or to 
operate at a maximum of half the 
specified distance (but not less than 
1 metre) in order to facilitate correct 
aiming, and to minimise errors due to 
hand movement 

d • 50mmt d": =.. D 
r- I I ==:s' .• 
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3.2. Measure 
Press the trigger button in the handle 

and the temperature reading is displayed 
almost immediately. The reading is 
updated 3 times per second - as fast as 
the eye can easily read it. Provided the 
setting of the emissivity control (Section 
3.61 is correct the reading is displayed 
digitally in °C. Nothing more is required. 
3.3. Memory 

If it is inconvenient to read the digital 
display while concentrating on accurate 
aiming of the instrument, then the 
Memory function may be emP.!gyed. 
Press the appropriate button 1M! on the 
Control Panel. Aim the instrument and 
press the trigger as before. The reading 
updates, as before, 3 times per second. 
When the trigger is released the final 
reading is held for 10 seconds - giving 
ample time to note it without ambiguity, 
after relaxing from the aimed position. 
Normal operation is restored by pressing 
the right-hand reset button 0 (The 
Memory may be used together with the 
Average and Peak functions by pressing 
two buttons simultaneously. I 

3.4. Average 
It is often necessary to measure the 

temperature of a moving surface - a 
rolling drum, or a continuous belt or 
strip process - where the temperature 
is not uniform. A similar situation exists 
with a stationary surface when the 
operator scans the instrument. This 
would often produce rapid fluctuations 
in the high resolution digital display 
which would sometimes be difficult to 
interpret. Simply press the "Averaging" 
button l8YIand INFRATRACE performs 
the mental arithmetic accurately and 
immediately, smoothing Out the peaks 
and troughs to give a mean reading. 

A typical situation is illustrated 
graphically in figure 2. The solid curve 
shows the change in energy detected by 
the instrument over short passage of 
time, as would be shown on a chart 
recorder. The effect on consecutive 
digital readings is shown both with and 
without the averaging facility in 
operation. 

The average function is cancelled by 
operation of the reset button 0 
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3.5. Peak Reading 
Conversely, it may be useful to 

highlight the fluctuations in a dynamic 
process - in fact to seek and measure 
the hottest spot. Since INFRATRACE 
responds in about 50 milliseconds (much 
faster than the eye) a hot spot can be • 
found very quickly. Press the "Peak" 
button ~ and operate INFRATRACE 
normally. The highest temperature seen 
by the instrument is held indefinitely 
until an even higher temperature is 
recorded'- at which point the display 
updates. This also is shown in figure 2. 

When the trigger is released. the 
circuit will reset to below zero, so as to 
be ready to record a new peak 
temperature (which might be lower than 
the previous peak) when the trigger is 
pressed again. The reset button 0 
restores INFRATRACE to the normal mode. 

3.S. Emissivity 
For a full explanation of the meaning 

of emissivity turn to Section 4. In 
practice the Emissivity Compensation 
Control should be set to the value 
established for a particular material and 
surface, before each measurement is 
made. The instrument automatically 
applies any necessary correction. 

The value of emiSsivity may be 
established by reference to tables, as in 
the Appendix, or by a special measure
ment which need be done only once. on 
the surface concerned. 

3.7. Fixed Operation 
The wrist strap may be removed by 

unscrewing from the base of the handle, 
to expose a standard y." BSW Camera 
Tripod Bush. INFRATRACE may then be 
supported on even a lightweight camera 
tripod to monitor a fixed position. 

An analogue output signal may be 
taken from the right-hand 2.5mm jack 
socket to feed a chart recorder or 
remote digital display. An ordinary 
digital voltmeter may be used fOr this 
latter purpose since the output is 
calibrated LlNEARL Y such that 0 volts 
represents O°C and. for example. 
l00mV represents 100°C. The external 
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equipment should have a high input 
resistance (not less than 100 kilohmsL 
The output signal has a time constant of 
only 5OmS, or approximately 1 second 
when the /A'iZ) button is pressed. The 
output is not affected by operation of 
the [fRJ button or lMi button. 

External power may be provided for 
continuous use through the left-hand 
3.5mm jack socket in which the tip is 
positive and the sleeve is negative. The 
power supply required is nominally 
9 volts at up to 15mA, and a standard 
Kane-May adaptor (as used for 
DIGITHERM and other instruments) is 
perfectly suitable. The power supply 
must be floating, I.e. not electrically 
connected to earth or to the Recorder 
output. 

3.S. Battery 
When the loaded battery voltage falls 

below 7 volts, all the decimal points 
show in the digital display. The instrument 
may be used for a few further 
measurements before the accuracy of 
measurement may become affected. 
The battery should be replaced 
immediately. 

The battery is contained in a small 
cartridge at the base of the handle which 
slides out after the large dome-headed 
screw (use a small coin if a screwdriver 
is not available) is removed from the, 
handle'. Replace with a suitable 9 volts 
transistor battery type PP3 (lEC 
designation 6F22) or a manganese 
alkaline equivalent for even longer life. 

4. Establishment of Emissivity 
(see also Appendix A.1J 

The table of emissivities on page 11 
is provided as an approximate guide to 
the correct emissivity settings for a 
variety of materials, Most non-metallic 
substances have an emissivity of around 
0.9, i.e. they are 90% "efficient" in 
emitting energy, and no difficulty should 
be experienced in obtaining accurate 
measurement. Metal surfaces which are 
efficient reflectors are less efficient 
emitters of energy and consequently 
exhibit lower values of emissivity. 
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It should be noted that, due to the 
optical design, INFRATRACE 2000 is less 
sensitive to errors in estimating emissivity. 
As an example consider a metal surface 
at HXJOoC with an emissivity of 0.5. If 
the emissivity was set erroneously to 
0.6, then INFRATRACE 1000 would read 
approximately 930°C, an error of 70°, 
and INFRATRACE 2(0) would read 
965°C, an error of only 35°C. 

Where convenient, if the table gives a 
low value of emissivity, the surface may 
be coated with a thin layer of carbon 
black, or matt black paint. This will not 
interfere with the heat distribution of the 
material, but will render the emissivity 
greater than 0.9 facilitating measurement. 

Alternatively the tabulated value may 
be used. Since it is not possible to give 
precise values for all the materials and 
surface conditions encountered in 
industry, it is desirable to establish the 
value by direct measurement. When this 
has been done - only once - the 
established value may be used for all 
future measurements. 

Using a surface contact thermometer 
if necessary halting a moving process, 
measure the surface temperature 
directly. The measuring instrument must 
be allowed to stabilise, since the speed 
of response is significant using this 
technique. Take away the probe and 
immediately point INFRA TRACE at the 
same area of the surface. Adjust the 
Emissivity Control to obtain the same 
reading as for the contact measurement. 
Read off from the Emissivity Control the 
value appropriate to the material - this 
may be used for all future measurements. 

If only qualitative indications are 
required, e.g. temperature differentials 
and localised hot spots, then the value 
given in the table is quite adequate. 
Alternatively the Emissivity Control may 
beset tol for simplicity. INFRA TRACE 
will,of course, perform consistently from 
day to day provided that the same 
setting of the control is employed on 
every occasion. 
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5. Further hints for best results 
(a) Do not point the instrument at 

heat sources hotter than the stated 
measurement range of the instrument. 
The sensitive infra-red detector may 
become damaged. 

(b) After measuring high temperatures 
at the upper end of the quoted 
temperature range, it may be 
necessary to wait several minutes 
before measuring very low 
temperatures. The sensitive detector 
in INFRATRACE 1000 may absorb 
considerable heat when exposed to 
1000°C which must be dissipated 
before precise measurement of the 
very small energy from room 
temperature sources can be 
undertaken. 

(e) When searching for small 
temperature differences at room 
temperature (e.g. locating faults in 
under-floor heating), and where absolute 
measurement of temperature is not 
required, the sensitivity of the instrument 
may be increased by setting the Emissivity 
Control to 0.2. Temperature differences of 
0.2°C may then be resolved, (as a change 
in the displayed reading of 1°C), 

(d) INFRATRACE 2000 will not 
measure temperatures below 600°C or 
above 2OOO°C. Out of range indications 
of respectively LoQQJ and rr:=J are 
displayed. 

INFRATRACE 1000 will display 
negative temperatures, which are 
repeatable, but are subject to errors 
greater than temperatures within the 
specified range. 

APPENDIX 

The foregoing instructions provide all 
the basic information to enable the 
successful application of INFRATRACE to 
a great variety of measurement tasks. 
This appendix presents further back
ground information, as an introduction 
to infra-red measurement techniques; 
which may prove useful in ensuring the 
best approach to new measurement 
problems. 

A.1. Radiant Heat Emission from a 
surface 

To understand the mechanism of 
infra-red transmission we must answer a 
fundamental question - what is heat? 
In any heated material - that is a 
substance having a temperature above 
absolute zero ( - 273°C) - the molecules 
are not stationary but are vibrating. 
Energy is stored in this vibrating motion, 
and when more energy is added to the 
material (when it is heated to attain a 
higher temperature) the vibration 
increases. In effect when we measure 
its temperature by any method we are 
measuring the magnitude of this vibration. 

This molecular motion in turn 
produces electromagnetic waves, 
similar in nature to radio waves and 
visible light, so that some of the energy 
in the material is radiated in straight lines 
away from the surface of the material. 
INFRATRACE is an instrument which 
uses normal optical principles of reflection 
to sample this radiated energy, which, 
being a function of the molecular 
vibration provides an indirect measure
ment of the surface temperature. 

Infra-red energy behaves in just the 
same way as visible light. It may be 
refracted in a lens or prism, and reflected 
by mirrors. 

The instructions for using INFRATRACE 
describe a procedure for establishing 
the emissivity of a specific material. 
The concept of emissivity may be better 
understood by considering all the sources 

of radiant energy acting over the area 
of the surface viewed by INFRA TRACE 
(see figure 3). 

1. Transmitted energy -
most materials are opaque at infra-red 
wavelengths, so this contributes 
negligible energy. 

2. Reflected energy -
generally this is energy reflected 
from the walls or floor of the building 
and is insignificant. 

3. Emitted energy -
this is the component we are 
interested in measuring to establish 
temperature. 

The efficiency with which these 
contributions are generated by the 
surface is denoted by Transmissivity, 
Reflectivity and Emissivity respectively, 
and when expressed as fractions of 
unity, the sum of the three terms is 
unity. Since we can assume in most 
cases that the transmissivity is zero then 
it is clear that 

Reflectivity + Emissivity = 1 
for any surface 

Thus a material which is a very poor 
reflector has an emissivity of approxi
mately 1. Almost all non-metallic solids 
and liquids are poor reflectors and 
typically have an emissivity between 0.8 
and 1. Highly polished metal surfaces 
however are good reflectors, and a 
mirror-like surface with a reflectivity of 
0.9 (reflection efficiency of 90%) will 
have a very low emissivity of O. 1. 

Fig. 3. REFLEC~ ~~--
EMISSION AND ENERGY 

REFLECTION AT A ~ 
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A rough surface will generally have 
an effective emissivity which is higher 
than a smooth surface of the same 
material. The reason for this is apparent 
in Figure 4. The reflected energy at the 
point viewed by the instrument originates 
at another point on the surface of the 
material. The effect of multiple 
reflections of this kind is to enhance the 
effective emissivity. The same applies 
when measuring the inside surface of a 
tube or cavity, or in woven or tufted 
fabrics. 
A.2. Spectral Distribution of Energy 

The human body makes the distinction 
between heat which can be felt, and 
light which can be seen. In scientific 
terms we say that infra-red energy has a 
wavelength longer than that of visible 
light. 

When a material is heated, the 
molecular vibration increases both in 
magnitude and in frequency - it vibrates 

lal ROUGH SURFACE 

ULTRA VISIBLE 

faster. When the resulting electrp
magnetic energy is transmitted from the 
surface, at the speed of light, its 
wavelength is shorter. 

This is well illustrated by the radiant 
electric heater, or 'bar -fire' consisting of 
a heater element and metal reflector. 
When first switched on a small amount 
of radiant heat may be felt when the 
hand is held close to the reflector. This 
is long wavelength energy. As the 
temperature rises, the radiant heat 
increases steadily, and eventually the 
heater is seen to glow with a red colour 
- shorter wavelength visible light. The 
distribution of energy of different 
waveleng.ths is referred to as the energy 
spectrum. Figure 5, below, shows the 
relationship between visible light 
wavelengths and infra-red wavelengths. 
It may be useful to consider infra-red 
energy as yet other "colours" which 
happen to be invisible to the human eye. 

~ Ibl TUBE OR CAVITY 
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Figure 5 shows the division of the 
spectrum by wavelengths into Visible 
light, infra-red and ultra-violet, Radio 
waves (with a much longer wavelength) 
and X-Rays (with a much shorter 
wavelength) cannot be shown on this 
scale. 

The curves show how the radiated 
energy from the surface of a heated 
solid or liquid is distributed. The total 
area under the curve is a measure of the 
total energy which is radiated, while 
each point on the curve represents the 
energy radiated at a specific wavelength. 

It will be noted, for example, that 
when the temperature reaches 600°C a 
small amount of energy is radiated at the 
red end of the visible spectrum 
("red-hot") while bodies at room 
temperature radiate most of their energy 
at wavelengths above 6 microns. It is 
also apparent that the total energy 
radiated is not proportional to the 
temperature of the surface. A body of 
1000° radiates 250 times the energy it 
would radiate when at 50°C (Mathe
matically the energy is proportional to 
the fourth power of absolute temperature 
E x PI. 

In order to measure temperatures as 
low as O°C it is clearly necessary for the 
non-contact thermometer to respond to 
long wavelength variations. The spectral 
response of INFRATRACE 1000 satisfies 
this requirement. For measuring high 
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temperatures INFRATRACE 2000 senses 
short wavelength radiation. In both 
cases the restricted spectral range of 
the instruments provides significant 
advantages in temperature measurement 
which will now be explained. 
A.3. Selective Filters 

In conventional photography coloured 
filters are commonly used to enhance or 
eliminate the camera's response to 
specific colours in the visible spectrum. 
Similarly the accurate measurement of 
temperature is simplified in INFRATRACE 
by embodying in its design filters which 
substantially eliminate the major sources 
of error often encountered in infra-red 
measurements. 

Figure 6 represents the effect of the 
earth's atmosphere on infra-red 
radiation. As it passes from the heated 
surface to the instrument, some of the 
energy is absorbed, principally in the 
molecules of water vapour and carbon 
dioxide which are always present. 
(Often present in abundance in many 
industrial atmospheres.) It may be seen 
that more than half the energy emitted 
by the surface has been absorbed while 
travelling over 300 metres. The effect 
over just a few metres is significant 
when measuring accurate temperatures, 
and the attenuation will vary from day to 
day and from place to place according 
to the concentrations of water vapour 
and carbon dioxide which are present. 

lb 15 
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Fig .•. ATMOSPHERIC TRANSMISSION OVER 300 METRE PATH. SHADED 
AREAS REPRESENT SPECTRAL RANGE OF INSTRUMENTS. 
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It will be noted that the spectral re
sponse of each INFRATRACE is matched 
to an "atmospnenc window", tnat IS a 
band of wavelengths over which the 
atmosphere transmits energy with 
negligible attenuation - even over long 
distances. 

This means that INFRATRACE will 
measure temperature accurately at any 
distance, unlike the Total Radiation 
Pyrometer which responds to all 
wavelengths. 

When measuring low temperatures 
(below 200°C) using INFRATRACE l0u0 
an even more significant source of error 
is eliminated'. When the measured 
surface is slightly reflective, the 
instrument may receive energy reflected 
at the surface, which originates at an 
extraneous high temperature heat 
source such as the sun. It would not, of 
course, be affected by such a heat 
source at a similar temperature to that 
of the measured surface. However, as 
illustrated in figure 4, the energy from 
such high temperature sources is 
predominantly of short wavelength and 
is rejected by the selective filters in 
INFRA TRACE 1000. 
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A.4. Measurements on or through 
Glass 

The different spectral responses of 
INFRATRACE 1000 and INFRATRACE 2000 
are especially significant wnen measuring 
glass temperature, or when measuring a 
surface behind a glass window. Ordinary 
soda-lime glass transmits energy of a 
wavelength less than 2.5 microns and 
absorbs energy of longer wavelengths. 

Thus when measuring the temperature 
of a glass plate of minimum thickness 
0.5mm, INFRATRACE 1000 may be used 
(with an emissivity setting of 0.95), 
A heat source behind the glass will have 
minimal influence on the reading, since 
its radiated energy will be absorbed by 
the glass. 

Conversely, when a high temPerature 
furnace is viewed through a glass 
window, the spectral response of 
INFRATRACE 2000 corresponds with the 
transmission tnrough the glass so that 
the internal furnace temperature may be 
measured. In practice, some absorption 
will occur in the glass window, but this 
may be compensated using the Emissivitv 
Control on INFRATRACE 2000, to allow 
for the transmission coeffiCients 
tabulated below. 

Soda Ume Glass 

Plate thickness Approximate 
mm Transmission 

0.5 0.00 

1 0.82 

2 0.67 

3 0.55 

5 0.37 

10 0.16 

e.g. A measurement of fire brick 
remperature through 3mm plate glass. 
From the table: 

Glass transmission = 0.55 
Emissivity of Fire Brick = 0.85 
Multiply the two factors 0.55 x 0.85 = 0.47 

Set emissillity control to 0.47 and 
measure in the normal way. 

TYPICAL EMISSIVmES 
-METALS 

Surface 

Iron and Steel 
Cast Iron, polished 
Cast Iron, turned at 100°C 
Cast Iron, turned at l000°C 
Steel, ground sheet 
Mild steel 
Steel plate, Oxidised 
Iron plate rusted 
Cast iron (rough) rusted 
Rough ingot iron 
Molten cast iron 
Molten mild steel 
Stainless steels polished 
Stainless steels, various 

Aluminium 

Emissivity 

0.2 
0.45 
0.6 to 0.7 
0.6 
0.3toO.5 
0.9 
0.7 to 0.85 
0.95 
0.9 
0.3 
0.3 to 0.4 
0.1 
0.2toO.6 

Polished Aluminium 0.1 
Aluminium, heavily oxidised 0.25 
Aluminium oxide at 260°C 0.6 
Aluminium oxide at aoooc 0.3 
Aluminium Alloys, various 0.1 to 0.25 

Brass 
Brass, polished 0.1 
Brass, roughened surface 0.2 
Brass,oxidised 0.6 

Copper 
Copper, polished 
Copper plate, oxidised 
Molten copper 

Lead 
Lead, pure 
Lead, oxidised at 25°C 
Lead, oxidised, heated 

to 200° 

Nickel and Its alloys 
Nickel, pur£:l 
Nickel plate, oxidised 
Nichrome 
Nichrome, oxidised 

Various 
Zinc, oxidised 
Galvanised iron 
Tin plated steel 
Gold, polished 
Silver, polished 
Chromium, polished 

0.05 
0.8 
0.15 

0.1 
0.3 

0.6 

0.1 
0.4toO.5 
0.7 
0.95 

0.1 
0.3 
0.1 
0.1 
0.1 
0.1 

II 

TYPICAL EMISSIVmES 
- NON-METALS 

Surface Emissivity 

Refractory & Building Materials 
Red brick, rough 0.75 to 0.9 
Fire clay 0.75 
Asbestos 0.95 
Concrete 0.7 
Marble 0.9 
Carborundum 0.85 
Plaster 0.9 
Alumina, fine grain 0.25 
Alumina, coarse grain 0.45 
Silica, fine grain 0.4 
Silica, coarse grain 0.55 
Zirconium silicate up to 

500°C 
Zirconium silicate at 

850°C 
Quartz, rough 
Carbon, graphite 
Carbon, soot 

0.85 

0.6 
0.9 
0.75 
0.95 

Glass (using INFRATRACE 
1(00) 0.95 

Glass (using INFRATRACE 
2000) See text 

Timber (various) 0.8 to 0.9 

Miscellaneous 
Enamel (any colour) 
Oil paint (any colour) 
Lacquer 
Matt black paint 
Aluminium lacquer 
Water 
Rubber, smooth 
Rubber, rough 
Plastics, various (solid) 
Plastic films 1.05mm thick) 
Polythene film 1.03mm 

0.9 
0.95 
0.9 
0.95 to 0.98 
0.5 
0.98 
0.9 
0.98 
0.8100.95 
0.5100.95 

thick) 0.2100.3 
Paper & cardboard 0.9 
Silicone polish 1.000m Ihick) 0.7 

·For highly reflective materials, a film of 
black must be applied (see text). 

N· 
ex> 
-...J 



- 288 -

REFERENCES 

1. Shell Briefing Service, The Coal Option, January 1978. 

2. Ezra, D., A review of Plan for Coal, Mining Engineer, Vol. 140, 
January 1981. 

3. Hancock, W., Local air conditioning underground, Transactions 
of IME, Vol. 72, 1926. 

4. Bromilow, J.G., Conditioning of the ventilating air in coal 
mines, Transactions of IME, Vol. 116, 1957. 

5. Aldred, R., NCB report, May 1975. 

6. Whillier, A. and Van der Walt, J., The cooling experiment at 
Hartebeestfontein G.M., C.O.M. Report No. 59177. 

7. Howes, M.J. and Green, N., The design of a surface refriger
ation plant at Unisel Mine. 

8. Whillier, A. and Van der Walt, J., Heat pick up from rock in 
gold.mines, C.O.M. Report No. 27/77. 

9. M.R.D.E. (NCB), A study of mine climate, Research Project 6220 
AD/8/80l. 

10. McPherson, M.J., Psychrometry: The measurement and study of 
moisture in air, University of Nottingham, Mining Depart
ment Magazine 1979. 

11. Parczewski, K. and Hinsley, F. Hygrometry in mines, Mining 
Engineer, Vol. 116, 1963. 

12. Barenbrug, A.W.T., Psychrometry and psychrometric charts, 
Mine Ventilation Soc. of S. Africa, Capetown, 1974. 

13. Leithead, C. and Lind, A., Heat stress and heat disorders, 
Cassell, London, 1964. 

14. Wyndham, C.H., The ventilation of South African gold mines, 
Ch. VII Mine Ventilation Soc. of S. Africa, Capetown, 
1974. 

15. Cooke, H.M. et aI, The effects of heat on the performance of 
men underground, Journal of Mine Ventilation Soc. of 
S. Africa, Vol. 14, 1961. 

16. Carslaw, H.S., Mathematical theory of the conduction of heat 
in solids, MacMillan, London, 1921. 

17. Rogers, G.F. and Mayhew, Y.R., Engineering thermodynamics,work 
and heat transfer, Longman, London, 1970. 

18. Whillier, A., The ventilation of South Africa gold mines, 
Ch. VIII, Mine Ventilation Soc. of S. Africa, Capetown, 
1974. 



- 289 -

19. NCB Mining Department, Ventilation in coal mines, Appendix 3, 
NCB, London, 1979. 

20. Middleton, J.N., Computer simulation of the climate in 
underground production areas, Nottingham University, 
Ph.D. Thesis, 1979. 

21. Voss, J., The influence of heat released by dirt packs and 
conveyed coal on face climate, Gluckhauf 100 (1964) 
pp 327-327. 

22. Walsh, J.B. and Decker, E.R., Effect of pressure and saturating 
fluid on the thermal conductivity of compact rock, Journal 
of ~ophysical Research, Vol. 71, No. 12, 1966. 

23. Hashin, Z. and Shtrickman, S., A variational approach to the 
theory of effective magnetic permeability of mu1tiphase 
materials, Journal of Applied Physics, Vol. 33, No. 10, 
1962. 



- 290 -

ACKNOWLEDGEMENTS 

I would like to sincerely thank the following for their 

valuable assistance: 

Professor T. Atkinson for provision of facilities of the 

Department of Mining Engineering. 

Mr. I. Longson and Dr. M. McPherson for guidance and 

supervision. 

The National Coal Board, Ventilation staff of Doncaster and 

South Nottinghamshire Areas and Hickleton, Bentinck and Pye 

Hill Collieries. 

The Science Research Council for financial support. 

Carol for proof reading and checking. 

Mr. A. Stokes for help with underground work. 

Mr. H. Bailey for the photographs. 

Mrs. Lynnetta Johnson for typing. 


