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Abstract

Ultracold mixture experiments hold the promise of providing new insights
into many-body quantum systems as well as ultracold chemistry and few-body
phenomena. The work presented in this thesis dealt with the construction of a new
apparatus for the production and study of ultracold gases of fermionic lithium-6 and
bosonic caesium-133. These isotopes offer a wide tunability in their interaction
strength, both in inter-species and intra-species collisions, through magnetic
Feshbach resonances. Additionally, the widely different resonance frequencies of
lithium and caesium enables independent control of each of the species.

With this apparatus, Bose-Einstein condensates (BEC) containing 104 lithium
Feshbach molecules are routinely produced. The cooling system for caesium
has been developed in parallel and important steps towards producing ultracold
caesium gases have been made. An optical dipole trap has been loaded with
2× 106 caesium atoms and evaporative cooling towards quantum degeneracy can
now be pursued.

Laser, vacuum, magnetic and control systems have been developed for the
implementation of this experiment. Light produced with this laser system was used
to laser cool atoms, create conservative dipole traps as well as to provide means
of imaging atomic clouds. Additionally, a system to produce strong magnetic
fields of up to 1400 G has been established in order to exploit the wide tunability
in the atomic interactions. Software that was developed for the computerised
control system facilitated the coordination of all the components involved in
the experimental sequence. Measurements and calculations that showcase the
functionality of relevant parts of the setup are presented in this thesis.

In this experiment, lithium and caesium atoms are obtained from a novel
type of Zeeman slower [1] and are loaded into a magneto-optical trap (MOT).
The system is capable of doing this independently for each of the atomic species
as well as sequentially. After the MOT has been loaded with atoms, they are
transferred into a conservative far-off-resonance optical dipole trap. By adjusting
the interactions between atoms and lowering the depth of the dipole trap, efficient
evaporative cooling of lithium was carried out from which a molecular BEC was
obtained. Time-of-flight measurements were used to characterise the condensate
and study its expansion dynamics.
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Chapter 1

Introduction

“... experimentalists can actually
make spherical cows.”

Galitski and Spielman [2]

Hói, hoí and aibai are the words the Pirahã, a hunter-gatherer tribe from the
Amazon, use for counting. These words mean “one”, “two” and “many” and make
up the entirety of their counting system [3]. Not unlike the Pirahã, our physical
understanding progresses in this same mindset. Quantum mechanics development
was, at first, a quest to understand one-particle systems (hói). Later, the nature of
interactions were uncovered (hoí). At present, the study of many-body quantum
mechanics is at centre stage (aibai).

The simplest non-trivial system that can be studied with quantum mechanics
is a two-level system. Such a system is represented by a 2-dimensional vector.
When considering a system consisting of n particles, the state must be represented
by a 2n-dimensional vector. Thus, the complexity of simulating a quantum system
grows exponentially with the number of particles, making it intractable for as
low as n = 40 particles. Owing to this complexity, Richard Feynman suggested
using analogous controllable quantum systems to study many-body quantum
phenomena, which grow in complexity themselves in the same way [4].

Ultracold atoms have turned out to be an exceptionally good system for this
purpose, both as an analogous realisation of other systems as well as interesting
systems in their own right. As atoms are cooled (slowed) down, their de Broglie
wavelength becomes larger and consequently their wave-functions overlap. This
causes interference of the probability amplitudes and hence, a quantum-mechanical
description is required.

The power of using ultracold atoms, both bosons and fermions, to study
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2 Chapter 1. Introduction

many-body quantum mechanics lies in their versatility. The methods used are
a bottom-up approach for understanding a complex quantum system. Different
potentials and property-modifying mechanisms are added around the atoms to
produce the sought-after physical system. For example, the strength of the
interaction between the atoms can be modified using an external magnetic field
close to a Feshbach resonance (see Section 2.5).

The potentials to which the atoms can be subjected range from simple harmonic
potentials to arbitrarily shaped ones which can be modified in real time [5]. Very
tight trapping can be engineered so that the dynamics of the system is confined
to two [6, 7] and one dimension [8, 9]. Additionally, using overlapping laser beams
it is possible to produce periodic potentials as a result of light interference [10,
11]. These optical lattices resemble a crystalline structure with no defects.

Adding to the list of techniques that can be used to realise physical systems
with ultracold atoms, are synthetic magnetic fields. Neutral atoms are not
susceptible to the Lorentz force and thus, phenomena that arise from it, such as
the fractional quantum Hall effect, may seem out of reach. However, synthetic
magnetic fields have been created using laser fields that have been arranged to
produce a spatially-varying coupling between internal atomic states [12, 13].

A unique advantage of using ultracold atoms is the capability to probe them.
Using optical imaging (see Section 3.5) their spatial distribution can be directly
measured. Further, atoms in optical lattices can be imaged individually [14, 15].
All this versatility has been exploited with great success since the first quantum
gases of bosons [16, 17] and fermions [18] were created.

Insight into quantum phase transitions, induced by quantum rather than
thermal fluctuations, was gained when studying bosons in optical lattices. By
varying the depth of the lattice wells, the relative weights of tunnelling and on-site
interaction where varied realising the superfluid to Mott insulator transition [11].

Questions of the relation between superfluidity, cooper pairing and Bose-
Einstein condensation were addressed when condensates of paired fermions were
observed [19–21]. In this system, which has been reproduced for this thesis,
changing the interaction strength between the atoms allows experimentalists to
explore the crossover between the Bose-Einstein condensate and degenerate Fermi
gas regimes. Superfluidity had been suspected to occur throughout the crossover
and was confirmed by the observation of quantised vortices [22].

Other prominent lines of research address questions of magnetism. Widely tun-
able classical magnetism simulators have been created using ultracold atoms [23].
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Also, quantum spin systems have been realised with a site-occupation-to-spin
mapping where a path to magnetic domain formation has been demonstrated [24].
Spin-orbit coupling links a particle’s spin to its motional degrees of freedom.
This mechanism is the basis for a wide array of many-body quantum phenomena
such as topological insulators, the spin-Hall effect and Majorana fermions to
name a few [2]. One type of spin-orbit coupling has been realised with ultracold
atomic systems, opening the door to studying these systems with unprecedented
control [25].

The work presented in this thesis deals with the construction of a new apparatus
for the production and study of ultracold gases of bosonic caesium-133 and
fermionic lithium-6. With this system, a new set of tools is added to the already
vastly versatile set. For instance, having such different atomic species allows for
independent control of each of them. Additionally, the large mass ratio between
them opens the door to new regions in the parameter space for studying few-body
physics as detailed below. Furthermore, lithium-6 and caesium-133 have a wide
tunability in their interaction strength, both in inter-species and intra-species
collisions [26–29]. This mechanism can be used to produce LiCs vibrationally-
excited molecules that can be subsequently transferred to their ground state. The
resulting molecule has a permanent electric dipole moment of 5.5 D which is the
largest of all possible alkali-metal combinations [30].

Independent control between the species can be used to delve into impurity
physics. A general class of problems can be described in these terms [31]. Fur-
thermore, exploiting the tunability provided by Feshbach resonances, a gas with
only inter-species (LiCs) interactions may be produced [28].

The large caesium-to-lithium mass ratio presents an opportunity to study
few-body physics such as Efimov states [32]. These are a predicted series of
three-body states that appear while varying the scattering length. The scale of the
separation between these states is theorised to be universal and only dependent
on the mass ratio. With homonuclear trimers it has only been possible to measure
a couple of whereas with the lithium-caesium combination, more states within
this series can be observed and the universality of the scaling tested [33, 34].

The dipole-dipole interaction, exhibited by ground-state LiCs molecules, is long-
ranged and anisotropic. This means that the contact interaction, normally used
to describe ultracold interactions between neutral atoms, is no longer sufficient.
For instance, if placed in an optical lattice, interactions between atoms in different
lattice sites are possible. This creates the possibility of creating a scalable quantum
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computer with long coherence times [35].
This dissertation documents work that was carried out in collaboration with

the members of the ultracold mixtures lab from October 2010 until October 2014.
When the author joined the group, preliminary vacuum and laser systems were
in place and a magneto-optical trap for lithium had been demonstrated. As a
result of this thesis, the first Bose-Einstein condensate (BEC) in Nottingham was
created; this is also the only molecular BEC in the United Kingdom. Additionally,
the constructed apparatus is also capable of cooling and trapping bosonic caesium.
A technical paper about an innovative dual-species cold-atom source, conceived
during the design and construction of this experiment, was published [1].

This newly built apparatus can already be used to explore quantum gases
throughout the BEC-BCS crossover, including the strongly interacting regime.
With its additional capability to produce cold samples of caesium, LiCs Feshbach
molecules and impurity physics can soon be studied. As part of this lab, two
other theses have been produced by Dr. Sonali Warriar [36] and Dr. Matthew D.
Jones [37] which contain details about the experiment which are not covered here.

This being an experimental thesis, it was possible to provide measurements
which illustrate the concepts discussed. The contained chapters are structured as
follows:

• Chapter 2 contains a brief description of important physical concepts about
atoms and their interactions used throughout this work.

• Chapter 3 describes the principles behind the techniques used for cooling,
trapping and imaging atoms.

• Chapter 4 presents an overview of the implementation of this experiment
including technical details and practical considerations of the apparatus.

• Chapter 5 discusses the experimental sequence carried out and the results
obtained with it.

• Chapter 6 summarises this thesis and presents an outlook of experiments
to be carried out with the apparatus in the near future.



Chapter 2

Theoretical Background

In this chapter the basic concepts necessary to understand the building blocks
of this experiment are presented. The atomic structure and the mechanisms
from which it arises are first described. It is then followed by a discussion of
the effect that static magnetic fields have on this structure. Then, important
results regarding the interaction between atoms and light are shown. Finally, the
scattering between pairs of atoms and the possibility of controlling it via Feshbach
resonances is considered. All of the aforementioned processes are the basis for the
techniques used for trapping, cooling and manipulating atomic clouds.

2.1 Atomic Structure

Laser cooling was first observed in 1978 with Mg+ ions [38] and the techniques
were later further developed for alkali atoms [39, 40]. What these atoms have
in common is that they possess a single valence electron together with a core
of electrons that form closed shells. In this section the structure of this kind of
atoms, with a special attention to lithium and caesium, is discussed.

The total angular momentum of a closed shell of electrons is zero and thus,
results in a spherically symmetric distribution which requires a high energy to
disturb. In comparison, the outermost electron has the lowest excitation energy
and therefore, its energy levels are the most relevant. Furthermore, it is this
electron, in conjunction with the nucleus, which determines the magnetic moment
of the atom and its interaction with light.

The gross structure of the energy levels of the valence electron can be well
approximated using a hydrogen-like non-relativistic model. Here, the core electrons
and nucleus add up to create an effective central potential. The Hamiltonian for

5
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this model is given by

H0 =
p2

2me

+ Veff(r),

where p is the momentum of the valence electron, me its mass and Veff the
effective central potential. The solutions will have the familiar form, similar to
the Hydrogen atom, given by the product of a radial and an angular function.
This solutions can be expressed as

|n ` m`〉 ,

where n, ` and m` are the principal, azimuthal and magnetic quantum numbers
respectively. With the exception of Hydrogen, where Veff(r) ∝ 1/r, the energies
of these states will depend on both the principal and azimuthal quantum num-
bers [41]. Nonetheless, this coarse approximation is not sufficient for uncovering
the level structure in the necessary detail used throughout this work. A relativis-
tic framework is required to reproduce the relevant level structure. In such a
framework, additional quantum numbers for the spin S naturally arise and the
weakly relativistic Hamiltonian is given by [42]

H = mec
2 +

p2

2me

+ Veff(r)︸ ︷︷ ︸
H0

− p4

8m3
ec

2
+

1

2m2
ec

2

1

r

dVeff

dr
(r)L ·S+

h̄2

8m2
ec

2
∆Veff(r) + . . . .

The additional terms of the Hamiltonian are smaller than H0 by a factor in the
order of α2 = 1/1372, with α being the fine-structure constant [42]. The term
proportional to L · S, where L is the orbital angular momentum, is noteworthy
because it mixes the orbital m` states and the spin ms states into two separate
manifolds. It arises from the interaction of the electron’s magnetic moment
associated to its spin, with the magnetic field created by its orbit. The level
structure that results from this term is called the fine structure.

The eigenvalues of the fine-structure operator are best expressed in the basis
spanned by the electron’s total angular momentum operator J = L + S. The
eigenstates |n ` m` s ms〉 are then written as linear combinations of |n ` s j mj〉.
The fine-structure operator written as

Afs
L · S
h̄2 =

Afs

2h̄2

(
J2 − L2 − S2

)
,
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with

Afs

2h̄2

(
J2 − L2 − S2

)
|n ` s j mj〉 =

Afs

2
[j(j + 1)− l(l + 1)− s(s+ 1)] |n ` s j mj〉 ,

is already diagonal in this basis.
A further degree of refinement is achieved when considering the interaction

of the magnetic moments of the electron and nucleus. This effect is in the
order of 2000 times weaker than that of the fine structure [42]. Using the nuclear
angular momentum operator I and an atomic species-dependent, hyperfine splitting
constant Ahfs the interaction Hamiltonian can be written as

Hhfs = Ahfs
I · J
h̄2 ,

as long as j remains a good quantum number. This will usually be the case because
the magnetic fields attainable in the laboratory can only produce energy-level
shifts much smaller than the fine-structure splitting. The eigenvalues can again be
found in terms of the total angular momentum operator F = I + J. The atomic
eigenstates can be written in the form

|n ` s j i f mf〉 .

The energy eigenvalues will depend on all indices with the exception of mf .
An anisotropy such as an external magnetic field is necessary to break the mf

degeneracy. The resulting level structures for lithium and caesium are shown in
Figure 2.1.

The typical linewidth for the transitions shown in Figure 2.1 are ∼ 5 MHz.
Such transitions can be precisely addressed with external-cavity diode lasers used
in the experiment, the linewidth of which is below 1 MHz. The exception to this
are the D2 transitions of lithium where the different levels are separated less
than the linewidth, and the total effective linewidth is much broader. This has
consequences, for the cooling mechanisms, which are discussed in Subsection 3.2.1.
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Figure 2.1: Atomic energy structure for lithium and caesium including fine
and hyperfine structure. The separation between the levels is not
to scale. The linewidth of the excited states is ∼ 5 MHz, therefore
all the D2 states of lithium overlap. Data for lithium was obtained
from [43] and for caesium from [44].

2.2 Interaction with Static Magnetic Fields

Static magnetic fields are a frequently used tool for manipulating the atoms. They
are applied to affect the level structure and therefore, understanding the effect
that magnetic fields have on atoms is essential.

A magnetic field (B), external to the atom, will interact with its nuclear (µI),
orbital (µL) and electronic (µS) magnetic moments. The interaction Hamiltonian
is

HZ = −B · (µL + µS + µI) .

Usually the term with µI can be neglected since it is ∼2000 times smaller than
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the remaining two terms [44].

The eigenvectors of HZ are of the form |n ` m` s ms i mi〉. However, this
does not describe the full physical picture because the Zeeman and hyperfine
Hamiltonians may have a comparable magnitude which will cause the eigenstates
to mix. To accurately determine the structure, the magnetic Hamiltonian to
consider is

Hmag =
Ahfs

h̄2 I · J−B · (µL + µS) =
Ahfs

h̄2 I · J− µBB

h̄
(gSSz + gLLz) ,

where µB is the Bohr Magneton and, gS and gL are the corresponding gyromagnetic
ratios. This Hamiltonian may be diagonalised analytically in the subspace of
` = 0. Additionally, good approximations may be obtained for extreme regimes
where either the hyperfine or the Zeeman term dominate. However, for this work
it is of interest to obtain solutions for the entire range of magnetic fields for its
applications to high-field imaging of lithium (see Subsection 4.8.1) and to the
design of a Zeeman slower (see Section 3.1). A method for numerically finding
the levels is therefore outlined.

The method consists in writing the matrix representation of the Hamiltonian
in the |` s j mj i mi〉 basis which can then be numerically diagonalised. First, the
hyperfine term of the Hamiltonian is rewritten with

I · J = IzJz +
1

2
[I+J− + I−J+]

so that it can be directly applied to this basis. Off-diagonal terms result from
I±J∓.

Applying the Lz or Sz operators to the |` s j mj i mi〉 basis is not as straight-
forward. It is done by first writing them as a linear combination of |` m` s ms i mi〉
vectors using their completeness relation. Written as such, the application of Lz
or Sz is immediate. The result, after applying Lz, is

Lz |` s j mj〉 =
∑
m`,ms

m` |` m` s ms〉 〈` m` s ms|` s j mj〉 ,

in which the |i mi〉 ket has been omitted for conciseness. The 〈` m` s ms|` s j mj〉
term is a Clebsch-Gordan coefficient. Evaluating the matrix element for Lz,
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another Clebsch-Gordan coefficient appears

〈
` s j′ m′j |Lz| ` s j mj〉 =

∑
m`,ms

m`

〈
` s j′ m′j|` m` s ms

〉
〈` m` s ms|` s j mj〉 .

The matrix elements for Sz are calculated in the same way.
Bringing all the pieces together, the matrix representation of the Hamiltonian

is obtained. This can then be numerically diagonalised for different values of
the magnetic field. The energy levels are obtained relative to the fine structure
energies. This calculation has been carried out for the range of magnetic fields
that can be produced in the experiment. The results for lithium are shown in
figures 2.2 and 2.3, and for caesium in figures 2.4 and 2.5.

For fields above 200 G, both the ground and excited states of lithium are in the
high field regime. This fact facilitates the implementation of high field imaging
(see Section 4.8.1) as the transitions at this point are closed and, therefore, no
additional re-pumping laser is needed.
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Figure 2.2: Calculated Breit-Rabi diagram of the lithium-6 2P3/2 manifold.
Inset shows a detailed view at low field. The high-field regime is
reached already at a few G.
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Figure 2.3: Calculated Breit-Rabi diagram of the lithium-6 2S1/2 manifold. It
can be seen by the curvature of the levels that above 200 G the
high-field regime is reached.
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Figure 2.4: Calculated Breit-Rabi diagram of the caesium-133 2P3/2 manifold.
It can be seen by the curvature of the levels that above 250 G the
high-field regime is reached.
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Figure 2.5: Calculated Breit-Rabi diagram of the caesium-133 2S1/2 manifold.
The hyperfine term in the Hamiltonian is dominant throughout
the entire range and the external magnetic field could be treated
as a perturbation.
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2.3 Interaction of Atoms with Light

The interaction between atoms and light is a fundamental process that affects
the internal state of the atoms as well as external degrees of freedom by exerting
forces upon them. These processes form the basis of laser cooling and trapping,
which has a central role throughout this work.

As was discussed in the previous sections, atoms have a complex internal
structure. However, in many situations, the frequency of the light is much closer
to a given transition than to the rest and therefore, their effect can be neglected.
Additionally, optical pumping may drive atoms into a stationary state which
effectively has the dynamics of a two-level atom. In this section, relevant results
that arise from a semi-classical two-level-atom model are discussed based on [45]
and [41].

The Hamiltonian for an atom with levels |g〉 and |e〉, separated by an energy
h̄ω0, interacting with a classical electric field E = ε̂

(
E+

0 e
−iωt + E−0 e

+iωt
)
in the

dipole approximation is given by

H = HA +HAF = h̄ω0 |e〉 〈e| − d · E,

where d = −e 〈g |r| e〉 (|e〉 〈g|+ |g〉 〈e|) is the electric dipole moment which we
can write in terms of its positive and negative rotating components d = d+ + d−.
The detuning between the driving field and the atomic resonance frequency is
defined as δ = ω − ω0.

Assuming that the frequency of the driving field is close to the atomic transition,
which has already been partly assumed when simplifying the atom to a two-level
system, the rotating-wave approximation can be made. In this approximation,
fast oscillating terms of the interaction Hamiltonian are averaged out. This
approximation is valid as long as we are only interested in “slow” signals with a
frequency below optical frequencies. After defining the Rabi frequency as

Ω = −1

h̄
2 〈g |ε̂ · d| e〉E+

0 ,

the rotating-frame Hamiltonian can be stated as

H̃ = −h̄∆ |e〉 〈e|+ h̄

2

[
Ω∗σ + Ωσ†

]
. (2.1)

The lowering and raising operators σ = |g〉 〈e| and σ† = |e〉 〈g| respectively have
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been used.

Using the Hamiltonian in Equation 2.1, the time-evolution of the atom can be
solved. Afterwards, its optical response, together with the mechanical effect the
light has on the atom can be determined. These two processes are the basis for
the techniques used for cooling, trapping and imaging the atoms.

The time-evolution of the atomic state can now be calculated in terms of the
density operator

ρ = ρee |e〉 〈e|+ ρge |g〉 〈e|+ ρeg |e〉 〈g|+ ρgg |g〉 〈g|

which evolves according to

∂tρ̃ = − i
h̄

[
H̃, ρ̃

]
, (2.2)

where the tilde (~) indicates it is in the rotating frame. However, this Hamiltonian
does not account for the coupling that the excited state has with a continuum
of states of the field, which is responsible for spontaneous emission. Nonetheless,
the behaviour of this process is well reproduced by including decay terms into the
time evolution equations. For a decay rate of the excited state Γ, the steady-state
solutions to Equation 2.2 take the form

ρ̃ee = ρee =
|Ω|2/Γ2

1 + (2δ/Γ)2 + 2|Ω|2/Γ2
,

and
ρ̃eg = −iΩ

Γ

1 + 2iδ/Γ

1 + (2δ/Γ)2 + 2|Ω|2/Γ2
.

The expected value of the dipole moment, induced by the applied electric field,
can be written as 〈

d+
〉

= α
〈
E+
〉
,

where the atomic polarisability α is a complex proportionality constant. This
quantity is useful for summarising the atom-field interactions. For the two-level
atom, the polarisability takes the form

α = i
cε0h̄Γ

2Isat

1 + i2δ/Γ

1 + (2δ/Γ)2 + I/Isat

, (2.3)

using that the saturation intensity Isat is defined by I/Isat = 2Ω2/Γ2. From this,
the scattering rate Rsc at which absorption-emission processes take place can
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be obtained by multiplying the excited-state decay rate Γ by the excited state
population ρee as follows

Rsc = Γρee =
1

h̄ε0c
Im {α} I =

Γ

2

I/Isat

1 + (2δ/Γ)2 + I/Isat

. (2.4)

Now that the stationary behaviour of the atomic state has been found, the
mechanical effect that light has on the atom can be calculated. For this purpose,
the spatial dependence of the electric field amplitude needs to be taken into
consideration. This is done by allowing the Rabi frequency to be a function of
space such tat Ω = Ω(~r). It is worth noting that in this case, Ω(~r) will, in-general,
be a complex-valued function.

The force, given by the time derivative of the momentum operator, is found to
be

F = ∂tp =
i

h̄
[H, p] = −∇HAF = − h̄

2

[
∇Ω∗(~r)σ +∇Ω(~r)σ†

]
,

Using the polar decomposition of Ω(~r) = |Ω(~r)|eiφ(~r), the expectation value of the
force, time-averaged over an optical period, can be written as

〈F〉 = Tr [Fρ] = 2ρeeh̄Γ

[
− δ

Γ

∇|Ω|
|Ω| +

1

2
∇φ
]

= 〈Fdip〉+ 〈Frad〉 ,

where the spatial dependence of |Ω| and φ has been omitted for compactness.
The term proportional to ∇|Ω| corresponds to the dipole force, while the one
proportional to ∇φ is the radiation-pressure force. Depending on the value of δ,
either 〈Fdip〉 or 〈Frad〉 will be dominant. When δ � Γ, the dipole force term is
most important. Conversely, for δ ∼ Γ, the radiation-pressure term dominates.

The radiation pressure force has the form

〈Frad〉 = Rsch̄∇φ =
Γ

2

I/Isat

1 + (2δ/Γ)2 + I/Isat

h̄∇φ. (2.5)

The vector ∇φ points in the direction of travel of the wave-front. For a plane
wave φ = k · r and therefore, ∇φ = k. This force is the resulting average effect
of multiple absorption and emission events, each of which provides a change of
momentum h̄k. Since the spontaneous emission events occur in a random direction
they average out, leaving only the absorption contribution to the average force.

The detuning indicated in the previous equations is the difference between
the atom’s resonance frequency and the frequency of the driving field. However,
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this is dependent on the frame of reference due to the Doppler shift. In the case
where δ ∼ Γ, this shift will have a significant effect. This velocity dependence of
the radiation-pressure force plays a crucial role in laser-cooling (see Section 3.2).

In contrast, when δ � Γ, not only the radiation term is negligible but also the
velocity dependence of the force. In this case, the dipole force is conservative and
therefore can be derived from a potential. In this regime, the dipole potential
takes the form

Vdip(r) = − 1

2ε0c
Re {α} I(r) ≈ h̄|Ω|2

4δ
=
h̄Γ2

8δ

I(r)

Isat

. (2.6)

However, if the light is far detuned from the transition, the two-level-atom
model may not be accurate and other energy levels should be considered. If the
detuning is large compared to the separation between the levels, considering the
levels as a single one will suffice. Nonetheless, when these are comparable, each
level must be accounted for separately.

In the experiment presented in this work, a potential is created using a
1070 nm laser (see Section 4.6). The detuning of this light from the D2 transition
of caesium is comparable to the separation between the D1 and D2 lines. To
accurately calculate the polarisability, both transitions should be accounted for.
The hyperfine splitting in lithium-6 is much smaller than the detuning from this
optical trap so both manifolds may be considered as a single level. The details
discussed in this section will be important for the calculation of the dipole trapping
potential discussed in sections 3.3 and 4.6.

2.4 Scattering Theory

So far, only properties of single, isolated atoms have been discussed. In this
section, the interaction between pairs of atoms is described based on [46, 47]. This
description is of particular importance because the quantities that parametrise
this process are relevant in the description of macroscopic ensembles of atoms.

The collision between two particles is best described in the centre-of-mass
reference frame. Then, it can be understood as the collision of a particle with a
mass given by the reduced mass mr, wave vector k and a scattering centre at the
origin. Far from the scattering centre, the wave function can be written as

ψk(r) ∼ eik·r + fk(r̂)
eikr

r
.
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That is, an incoming plane wave which is scattered into an outgoing spherical
wave with an angular distribution defined by the scattering amplitude fk(r̂). This
amplitude can be calculated using the Schrödinger equation and is particularly
relevant because it can be directly related to the scattering cross-section which is
an experimentally measurable quantity. The scattering amplitude and differential
cross-section are related by

dσ

dΩ
(r̂) = |fk(r̂)|2.

However, this result is only true for distinguishable particles. For bosons or
fermions, the scattering amplitude must have the corresponding symmetry. There-
fore, the differential scattering amplitudes in each case are

dσboson

dΩ
(r̂) = |fk(r̂) + fk(−r̂)|2 and

dσfermion

dΩ
(r̂) = |fk(r̂)− fk(−r̂)|2. (2.7)

For a central scattering potential (only dependent on the magnitude of the
relative coordinate) the angular (Y ) and radial (R) parts of the Schrödringer
equation can be separately solved. In this manner, the general solution has the
form

ψk(r) =
∞∑
`=0

∑̀
m=−`

c`m(k)Y`m(θ, φ)R`(r). (2.8)

The angular solutions are spherical harmonics Y`m(θ, φ). The radial solutions obey
a 1D-Schrödinger-like equation[

− h̄2

2mr

d2

dr2
+

h̄2

2mr

`(`+ 1)

r2
+ V (r)

]
rR`(r) = ErR`(r),

which has a centrifugal term. An effective potential which includes this term,

Veff(r) =
h̄2

2mr

`(`+ 1)

r2
+ V (r), (2.9)

may be considered. The long range part of V (r) arises from the van der Waals
potential which has the form −C6/r

6. However, at this range the centrifugal
term, proportional to r−2, will dominate over the faster-decaying r−6 term as long
as ` > 0. Hence, in the effective potential there is a barrier as a result of the
centrifugal contribution, the height of which grows quadratically with `.

According to Equation 2.8, the solution from which the scattering amplitude is
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to be obtained is built out of terms with different values of `. However, for there
to be a contribution of angular momentum `, the kinetic energy of the incoming
particle must overcome the corresponding centrifugal barrier. In the limit where
the kinetic energy is below the ` = 1 barrier, only the ` = 0, known as the s-wave
contribution is relevant to the scattering amplitude. In this case, the scattering
amplitude reduces to

fk(r̂) = − a

1 + iak
, (2.10)

where the scattering length a is a real number that summarises the effect of the
scattering potential. The exact value of a is different for each type of colliding
partners and it is often possible to control it using external magnetic fields (see
Section 2.5). The total s-wave scattering cross-section for distinguishable particles
is then

σ =

∫
dσ

dΩ
dΩ =

4πa2

1 + a2k2
. (2.11)

Given that the scattering amplitude in Equation 2.10 does not depend on r̂,
the scattering cross-section for identical fermions is zero. Generally, fermions can
only collide at higher kinetic energies.

The height of the centrifugal barrier for ` = 1 is 8 mK for lithium and 35 µK

for caesium. These values are calculated based on Equation 2.9 using van der
Waals C6 coefficients from [48]. They define a lower-bound in energy for when
the collisions between identical fermions are important as well as determining the
validity for s-wave description for distinguishable bosons, i.e. in different internal
states. For identical bosons, it is the centrifugal barrier for ` = 2 which determines
this validity range.

2.5 Feshbach Resonances

Feshbach resonances are an invaluable tool for controlling the collisional prop-
erties of an ultracold gas using a magnetic field. In this section, the cause and
characteristics of these resonances are discussed.

Given an interaction potential between two atoms, a scattering length may
be calculated. The scattering length would then be enough to fully characterise
an s-wave collision between them. However, in this treatment, several aspects of
the collision have been neglected. A more accurate description includes both the
internal structure of the atoms as well as different interaction potentials that de-
pend on their internal state. Using external magnetic fields, the internal structure
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and, therefore, the related potentials can be altered. Fortunately, the result of
accounting for these effects provides a handle with which the scattering length
may be easily controlled. This feature is known as a Feshbach resonance [49, 50].

In a real system, the interaction between two atoms, at short distances, is
predominantly determined by the valence electrons. In the Born-Oppenheimer
approximation, the interaction potential between the two nuclei is determined as
a result of the electronic state [42]. Their wave functions must be anti-symmetric
with respect to the exchange of labels and therefore, must have one of the following
forms:

ψS(r1, r2)χA(s1, s2) or ψA(r1, r2)χS(s1, s2),

where ψ denotes the spatial part of the wave-function and χ the spin part. The A
and S labels indicate whether the function is symmetric (S) or anti-symmetric (A).
The symmetric spin function corresponds to the triplet while the anti-symmetric
is the singlet state. The Born-Oppenheimer potentials resulting from ψS and ψA
are different. Therefore, a different potential will affect the atoms depending on
the spin state. In general, if two atoms approach a collision in the ground state,
only one of these potentials will be energetically accessible. Thus, the potential
that is accessible is referred to as the open-channel potential while the one which
is out of reach is the closed-channel potential [50].

The energy difference between the two potentials may be controlled by means of
the Zeeman effect. The singlet state has a total magnetic quantum numberMS = 0.
On the other hand, the triplet has three possible values, namely MS = −1, 0, 1.
Therefore, using a magnetic field, the states with non-zero MS of the triplet can
be shifted relative to the singlet state which is not affected by the magnetic field.

An additional relevant term in the Hamiltonian is the hyperfine term, which
for both atoms has the form [51]

Hhfs =
Ahfs

h̄2 [S1 · I1 + S2 · I2] =
Ahfs

2h̄2 [(S1 + S2) · (I1 + I2) + (S1 − S2) · (I1 − I2)] .

The first term inside the square bracket does not change the total spin S = S1 +S2.
On the other hand, the second term couples the singlet and triplet spin states.
This coupling provides a mechanism through which the scattering properties of
the open channel may be altered by the presence of a closed channel energy level.

A simple model using box potentials as shown in Figure 2.6 provides insight
into this mechanism [49]. A two-state atom (|o〉 and |c〉), which is affected by
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Figure 2.6: Simple model for Feshbach resonance. Two box potentials, an
open (Vo) and a closed one (Vc), can be shifted relative to each
other using a magnetic field B as a result of their relative magnetic
moment µ. When the energy of the bound state of the closed
potential intersects the open channel continuum a Feshbach reso-
nance occurs. As a consequence, the scattering length a can be
controlled.

different potentials depending on the internal state, is required. The |o〉 and
|c〉 states are affected by the open and closed channel potentials Vo(r) and Vc(r)
respectively. The separation between the energy continuum and the nearest
eigenstate of the closed-channel potential is Ec when there is no magnetic field.
An external magnetic field B can be used to shift this separation by µB with
µ = µo − µc being the relative the magnetic moment between the open and closed
channels. A coupling Ω > 0 between the open and closed channels is necessary for
the model to exhibit Feshbach resonances. The resulting Schrödinger equation in
the centre of mass reference frame is

E |ψ〉 =

(
− h̄2

2mr

∇2 + V̂ (r)

)
|ψ〉 ,

where mr is the reduced mass and

V̂ (r) =



(
Vo Ω

Ω Vc(B)

)
for 0 ≤ r < r0

(
0 0

0 ∞

)
for r > r0
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is the potential energy operator. With this operator, an atom in the |o〉 state is
affected by an open box potential which has a depth of Vo inside the box and of
0 in the outer region. Conversely, an atom in the |c〉 state is affected by a box
potential of infinite walls. This potential has a magnetic-field-dependent bottom
Vc(B) and it is infinite outside of the box. Additionally, there is a coupling Ω

between the |o〉 and |c〉 states within the 0 ≤ r < r0 region.

The eigenfunctions of this system can be found analytically [49] and the
resulting scattering length calculated. In the limit where Ω� Vo, Vc the scattering
length as a function of magnetic field can be written as

a = abg

(
1− ∆B

B −B0

)
.

The background scattering length abg is the scattering length that results from
the open-channel potential. The position of the resonance is

B0 = −Ec
µ
− ∆B

1− r0/abg

and the resonance width ∆B is proportional to Ω2.

Close to a Feshbach resonance a molecule can form on the side where it is
energetically favourable. In Figure 2.6, this corresponds to the region in the left
of B0. The spatial wave-function of these molecules extends to a large size in the
order of a and their binding energy the vicinity of the resonance is

Eb =
h̄2

2mra2
.

In contrast to the model presented here, real atomic potentials have several bound
states and more possible scattering channels. The full behaviour of the scattering
length as a function of magnetic field is shown in Figure 2.7 for lithium and
Figure 2.8 for caesium. The inter-species Feshbach resonances between lithium-6
and caesium-133 have also been measured [28, 29].
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Figure 2.7: Lithium scattering length for a collision between the two lowest
energy states. Data from [26].
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Figure 2.8: Caesium scattering length for a collision between the two lowest
energy states. Data from [27].



Chapter 3

Atom Cooling, Trapping and
Imaging

The field of ultracold atoms started with the advent of laser cooling [38–40]
which allowed experimentalists to achieve temperatures well below 1 mK . This,
however, was not sufficient to reach the necessary phase-space density required to
observe quantum degeneracy [52]. Therefore, other cooling methods were required.
Evaporative cooling was developed [53, 54] and successfully used to produce the
first quantum degenerate gases [16, 17]. In this work a similar path has been
followed and the principles of the relevant techniques are described in this chapter.

3.1 Zeeman Slower

The path of an atom through the experiment begins when a stream of atoms is
produced by collimating the output of an effusive oven. In order to provide a high
flux of trappable atoms for the magneto-optical trap (MOT) stage that follows,
atoms from the atomic beam are slowed down to the MOT’s capture velocity.

To slow down the atoms in the atomic beam, resonant light is shone onto
them to produce a radiation pressure force opposite to their direction of travel.
However, as an atom slows down, the Doppler shift of the incoming light will
change and it will no longer be resonant with the atom. The clever idea behind
the Zeeman slower [39] is to use a magnetic field to compensate for the change in
Doppler shift as the atoms slow down and, thus, achieve constant deceleration.

The effective laser detuning δ′ including the Doppler and magnetic shifts is

δ′ = δ − µB

h̄
+ kv, (3.1)

23
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where µ is the magnetic moment of the transition, B the magnetic field, δ is the
detuning from the transition of an atom in the lab frame, v is the velocity of the
atoms and k the wave number of the light. For the Zeeman slower to compensate
the Doppler shift, by shifting the energy levels using a magnetic field, the effective
detuning must satisfy δ′ = 0.

For a constant deceleration −a0 in direction z, the velocity of the atoms will
satisfy the following relation:

v(z) =
√
v2

0 − 2a0z, (3.2)

with v0 the initial velocity of the atoms. Thus, combining equations 3.1 and 3.2,
the desired profile for the magnetic field is

B(z) =
h̄

µ

(
δ + k

√
v2

0 − 2a0z

)
.

The value of a0 is determined by the on-resonance radiation pressure force (see
Section 2.3)

ma0 = Fscat =
Γ

2

I/Isat

1 + I/Isat

h̄k.

For the purpose of designing a Zeeman slower, the magnetic field profile should
be chosen in such a way that the deceleration necessary to follow that profile
is guaranteed to be achieved. This will depend on the power of the light used
together with the atomic structure.

3.2 Magneto-Optical Trap

Atoms leaving the Zeeman slower are captured by a magneto-optical trap (MOT) [55].
This trap provides the means to simultaneously trap and cool neutral atoms. Typ-
ically in a MOT, temperatures below 1 mK are achieved [56].

As the name suggests, this technique uses a combination of light and magnetic
fields. Light provides a dissipative force that causes atoms to slow down while a
magnetic field gradient tailors this force so that it also provides spatial confinement.

When a pair of close-to-resonance, counter-propagating laser beams having
wave-number k are overlapped with an atom with velocity v, a so-called “molasses”
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(a) Spatial confinement induced by a compos-
ite effect of the light and magnetic field
gradient. Arrows in the bottom show
the direction of the magnetic field and
quantisation axis.

(b) Spatial arrangement of magnetic
coils and light beams.

Figure 3.1: Magneto-optical trap.

force is exerted on it. This force can be calculated using Equation 2.5, resulting in

Fmol(δ) = Frad(δ − kv)− Frad(δ + kv)

≈ Frad(δ)− kvdFrad

dδ
(δ)− Frad(δ)− kvdFrad

dδ
(δ)

= − 2k
dFrad

dδ
(δ)︸ ︷︷ ︸

γ(δ)

v = −γ(δ)v. (3.3)

Here, an assumption of kv � Γ has been made when calculating the Taylor
expansion of the radiation pressure force and a detuning-dependent function γ has
been defined. The resulting force on the atom is an effective viscous friction with
a detuning-dependent damping coefficient γ(δ). As long as δ < 0, this constant
will be positive and therefore, result in cooling.

Whilst the force from Equation 3.3 is responsible for the cooling, it does not
provide the means for trapping the atoms. The spatial confinement is induced by
a composite effect of the light and a magnetic field gradient. This is illustrated in
Figure 3.1a for a simplified atom with a J = 0→ J = 1 transition. A magnetic
field gradient along the x axis produces a spatially-varying energy shift of the
different magnetic sub-levels. For this figure the quantisation axis is chosen to
be aligned with the local magnetic field. Therefore, the Zeeman-shifted magnetic
sub-state mJ = 1 (mJ = −1) is always above (below) the other excited states.
Also, after σ+ polarised light crosses the zero of the magnetic field, it turns into
σ− and vice versa. For the MOT, the polarisation of the light is arranged such
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that σ+ light always travels away from the magnetic zero while σ− travels towards
it.

When a ground state atom moves away from the centre of the trap, the
magnetic field will cause the |J = 0,mJ = 0〉 → |J = 1,mJ = −1〉 transition to
become resonant. However, only σ− polarised light can drive this transition.
Therefore, as long as ω < ω0, it is always pushed inwards.

The total force affecting the atoms in the MOT can be obtained through a
similar argument as the one from Equation 3.3 as follows

FMOT(δ) = Frad(δ − kv − βx)− Frad(δ + kv + βx)

≈ −2(kv + βz)
dFrad

dδ
(δ) = −γv − γβ

k
x,

where β = (µ/h̄)dB
dx

and µ is the magnetic moment of the transition.
Figure 3.1b shows the full arrangement necessary to produce a MOT in 3D

space. Magnetic coils carry current in opposite directions to create a quadrupole
field which has a gradient along each axis. Three pairs of counter-propagating
light beams are aligned to give confinement and cooling for all spatial degrees of
freedom.

3.2.1 Laser Cooling Limits

The MOT’s working principle is based on the radiation pressure force which is a
time-averaged effective force resulting from many absorption-emission events. If
an atom at its centre is slow enough, absorption from any of the beams is equally
likely. Also, heating occurs both from absorption and emission as a result of
photon recoil. To quantify the heating due to these processes, an atom moving
along one dimension within two opposing light beams is considered [41, 56]. In
this situation, the radiation pressure force of the two beams cancels out while the
fluctuations, in contrast, are cumulative. An atom with momentum p and kinetic
energy p2

2m
can absorb a photon with momentum h̄k. The kinetic energy of the

atom after absorption is

E =
|p± h̄k|2

2m
=

p2

2m
+
h̄2k2

2m
± 2

ph̄k

2m
,

where the sign depends on whether a photon from the right or left beam has
been absorbed. On average, the kinetic energy of the atom increases by one recoil
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energy Er = h̄2k2

2m
in each absorption process. Likewise, when the atom decays and

emits the photon, it gets a recoil kick that, on average, increases the energy again
by Er. Due to both processes, the kinetic energy of the atom increases by 2Er.
The rate of absorption-emission events is given by Equation 2.4 written here as
Rsc = Γρee for a single beam of light. If the intensity is much smaller than the
saturation intensity, then the scattering rate for both beams is 2Rsc. Therefore,
the rate at which the atoms get heated up is

dEheat

dt
= (2Rsc)(2Er).

The rate at which the kinetic energy changes as a result of an applied force is
dE
dt

= F · v. In particular, for the cooling force from Equation 3.3

dEcool

dt
= −γv2.

A steady state is reached when heating and cooling compensate each other and
this sets the temperature limit achievable by Doppler cooling. The equilibrium
velocity is determined by

dEtotal
dt

=
dEcool

dt
+

dEheat

dt
= 0 ⇒ v2

eq =
4ErRsc

γ
.

Using that γ = 2h̄k2 −2δ
δ2+Γ2/4

Rsc, the equilibrium temperature T is

kBT = mv2
eq =

h̄Γ

4

(
2|δ|
Γ

+
Γ

2|δ|

)
.

The absolute minimum of temperature achievable by Doppler cooling TD is called
the Doppler temperature. It is reached when δ = −Γ/2 and is given by

TD =
h̄Γ

2kB
. (3.4)

The Doppler temperatures corresponding to lithium-6 and caesium-133 are
T Li
D = 141 µK and TCs

D = 126 µK respectively.

A significantly lower temperature can be achieved with caesium due to another
cooling mechanism which does not rely on spontaneous emission and therefore,
is not Doppler-limited. This cooling mechanism requires counter-propagating
circularly polarised light as with the MOT with the difference that the magnetic
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field gradient should be switched off, and is referred to as σ+− σ− cooling [57, 58].
The counter-propagating, circularly polarised light creates a linearly polarised wave
that has an oscillation axis that rotates along the propagation direction forming
a helix. This arrangement produces a motion-induced imbalance of population
among the hyperfine states. That is, depending on the direction of motion of an
atom, it is more likely to be in a stretched state as compared to a stationary atom.
Given that the absorption of a light beam with a defined polarisation is state
dependent, this results in an enhanced absorption of light from the beam that
propagates in the direction opposite to the motion. Thus, an effective friction
force emerges from this process that results in lowering the temperature of the
atoms. For this mechanism to work, the detuning must be large compared to the
excited state’s linewidth so that the separation between the dressed state levels is
larger than their corresponding linewidth. In this experiment, temperatures as
low as 16 µK are obtained with caesium at this stage of an experimental run.

For lithium, the excited 2P3/2 levels overlap (see Figure 2.1), which prevents
sub-Doppler cooling mechanisms from working [59]. Moreover, this overlap results
in a broader effective linewidth for the cooling transition which further restricts the
the lowest achievable temperature through laser cooling which, on this experiment,
was 600 µK.

3.3 Dipole Trap

To overcome the phase-space density limitations of the MOT, resulting from the
coarse nature of the momentum changes during absorption-emission processes, a
conservative trap is necessary. In such a trap, evaporative cooling (see Section 3.4)
can be implemented which does not suffer from this limitation.

The dipole potential from Equation 2.6, reproduced here

Vdip(r) =
h̄Γ2

8δ

I(r)

Isat

, (3.5)

is used to produce a conservative trap. However, simplifying the atom-light
interaction to this potential is only valid when the detuning is high and, thus, the
scattering rate

Rsc =
Γ

2

I/Isat

1 + (2δ/Γ)2 + I/Isat

is small compared to the duration of the experiment.
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It is evident from Equation 3.5 that if δ < 0, atoms will be attracted to regions
of high intensity and vice versa. For red-detuned (δ < 0) light, a trap can be
created by concentrating the light in a focus or by crossing multiple beams. In
such traps, when the harmonic approximation can be made, the trap frequency
ωtr will depend on the total light power P with a relation ωtr ∝

√
P .

3.4 Evaporative Cooling

In most experiments with ultracold atoms, evaporative cooling is the final stage
necessary to reach quantum degeneracy1. The basic idea behind it is to allow a
few particles to acquire a significant fraction of the energy and then selectively
remove them from the ensemble. For this process to lead to a degenerate quantum
gas, the removal of energy should be faster than the loss of atoms. Thus, it is
necessary to understand the rate and scaling factors of this process.

In a potential with a finite depth, atoms would not strictly equilibrate to
a thermal distribution since, in equilibrium, there would be no atoms in the
trap. However, if the average energy per particle is much lower than the trap
depth U0 then, inter-atomic collisions shuffle the energy among them leading to a
quasi-thermal distribution [61].

For an atom to leave the trap, it requires an energy greater than U0, namely

U0 + εkBT

where the zero of energy is defined to be at the bottom of the trap and 0 ≤ ε ≤ 1

is the fraction of thermal energy carried away by the atom. The probability for
this to happen is given by the tail of the thermal distribution that extends beyond
the trap depth. Defining the truncation parameter η = U0/kBT , the atom-loss
rate is [61, 62]

Ṅ = −Nn0σv̄ηe
−η,

where n0 is the density, σ the atom-atom scattering cross-section and v̄ the mean
relative velocity of the atoms in the trap. This equation relates the evaporation
rate with the scattering cross-section which, by means of a Feshbach resonance
(see Section 2.5), can be used to optimise the evaporation process.

1A strontium BEC has been created exclusively using laser cooling [60].
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The rate of change of the total energy of the trapped gas is

Ė = Ṅ (U0 + εkBT ) , (3.6)

where the fraction of energy carried out can be found, using kinetic theory, to
be ε = η−5

η−4
for the case of a harmonic trap with energy-independent scattering

cross-section [61].

As evaporation progresses, the temperature decreases and, since Ṅ ∝ e−η and
η increases as temperature decreases, the evaporation rate decreases as well and
eventually reaches stagnation. It is therefore desirable to follow the decrease in
temperature with a decrease in trap depth so that evaporation can continue. For
this purpose, a time dependent potential is considered [63]

U(x, t) = −U(t)g(x),

where U(t) contains the temporal dependence and g(x) describes the trap shape
(g(0) = 1). In this case, Equation 3.6 is no longer valid because the change in the
potential would also affect the total energy. Using the virial theorem, a relation
between the total energy E and the average potential energy 〈U〉 is found for a
harmonic trap

〈U〉 =
E

2
.

If the potential decreases at a rate U̇ , the relative decrease is U̇/U . The change in
energy due to this is then U̇

U
E
2
. Therefore, including this term into Equation 3.6,

the total rate of change of the energy of the gas is

Ė = Ṅ (U0 + εkBT ) +
U̇

U

E

2
. (3.7)

For a fixed value of η, the solution to Equation 3.7 is

N

Ni

=

(
U

Ui

) 3
2(η+ε−3)

, (3.8)

where Ni and Ui are the initial number of atoms and trap depth respectively.
However, the most relevant quantity is the phase-space density (PSD) which, for

a harmonic trap, is ρ = N
(

h̄ω
kBT

)3

. The scaling of this quantity can be calculated
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by substitution in Equation 3.8 resulting in

ρ

ρi
=

(
Ui
U

) 3(η+ε−4)
2(η+ε−3)

=

(
Ni

N

)η+ε−4

.

As long as η + ε > 4, a decrease in atom number would lead to increase in PSD.
For example, with a truncation parameter η = 7 and an initial PSD of 0.0004,
a decrease in trap depth by a factor of 800 would result in a decrease in atom
number by a factor of 8.5 and a PSD of 1. In the experiment, with an initial PSD
of 0.0004, a decrease in trap depth by a factor of 103 results in a decrease in atom
number by a factor of 10 and a PSD close to 1.

The treatment thus far has neglected two important features, namely, the
increase in evaporation rate due to the energy dependence of the scattering cross-
section and the loss of atoms caused by collisions with the background gas. With
a cross-section that does not depend on energy, the runaway evaporation regime,
where the collision rate increases as evaporation progresses, cannot be achieved
with optical traps [62]. In contrast, in the unitarity limit where σ = 4π/k2, the
cross-section increases as the evaporation process decreases the average kinetic
energy in the trap. In this case runaway evaporation can be achieved [64].

If atomic losses were not present, the most efficient evaporative cooling would
consist in maintaining the trap depth high compared to the average energy per
particle, and waiting a long enough time until a single atom attains all of the
energy of the ensemble and carries it away when leaving the trap. However, this
may not be practical since a “long enough time” may be longer than the age of
the universe. Furthermore, this method is not realistic, since atomic losses limit
the maximum time the atoms may remain in the trap.

Atomic losses, caused by collisions with the background gas, can be considered
by including a loss rate Γbg and making the replacement Ṅ = Ṅevap−ΓbgN in the
previous equations, where Ṅevap is the atom loss rate caused only by evaporation.
It can be shown that the scaling laws for the number and phase-space density
versus trap-depth are reduced by a factor exp (−Γbgt), where t is the time over
which the trap is lowered [63].
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3.5 Imaging

Optical imaging is the most important tool for examining the atomic cloud. This
makes it possible to state-selectively measure the density profile of the cloud.
Additionally, by analysing the time dependence of the cloud density during free
fall, the temperature can be determined as described in Subsection 3.5.1.

When probing an atomic cloud with light [65], the effect that atoms have on
the light can be described by the complex index of refraction nref = nr + ini. The
real part nr contains information about the phase shift of the light caused by the
atoms while the imaginary part ni accounts for light absorption. The amplitude
of an electric field propagating through a medium characterised by nref is

E(z, t) = Re
{
E0e

i(kz−ωt)} = Re
{
E0e

i(k0z(nr+ini)−ωt)} = e−k0nizRe
{
E0e

i(k0znr−ωt)} ,
where k0 and k are its wave numbers in vacuum and through the medium respec-
tively. An intensity absorption coefficient a may be defined as a = 2k0ni such that
the intensity through the medium satisfies

dI

dz
= −aI. (3.9)

In this work, imaging is carried out exploiting the imaginary part of nref by
measuring the amount of absorbed light to quantify the density profile. The real
part could also be used by performing phase contrast imaging; this can provide
a way to measure the cloud’s properties non-destructively [66]. The index of
refraction will depend on the density of the atomic cloud, the frequency of the
probe light as well as the internal state of the atoms. Understanding this relation
is essential for extracting the sought-after information from the images.

The refractive index is determined by the medium’s relative permittivity εr and
permeability µr by nref =

√
εrµr. For the case of an atomic cloud, µr is very close

to one at optical frequencies and therefore nref ≈
√
εr =

√
1 + χe with χe being

the electric susceptibility. The polarisation density P defines the susceptibility
by P+ = ε0χeE

+ and the superscript + indicates that it is the positive-rotating
component. On the other hand, P is related to the electric dipole moment of the
atoms that constitute the medium through the number density n by the relation
P = nd. Finally, the dependence of the dipole moment on the electric field of
the probe is contained in the polarisability α, which was calculated before and is



Chapter 3. Atom Cooling, Trapping and Imaging 33

given by Equation 2.3 reproduced here

α = i
cε0h̄Γ

2Isat

1 + i2δ/Γ

1 + (2δ/Γ)2 + I/Isat

.

For a rarefied gas, |χe| � 1 so that

nref =
√

1 + χe ≈ 1 + χe/2 = 1 + nα/2ε0.

The absorption coefficient is then

a = 2k0Im{1 + nα/2ε0} =
nh̄ω0Γ

2Isat

1

1 + (2δ/Γ)2 + I/Isat

= nσsc,

where σsc is the photon-atom scattering cross-section defined as

σsc =
σ0

1 + (2δ/Γ)2 + I/Isat

(3.10)

and σ0 is the on-resonance (δ = 0), small-signal (I � Isat) cross-section

σ0 =
h̄ω0Γ

2Isat

. (3.11)

In general, the density is a function of the spatial coordinates. This dependence
produces a spatially varying absorption which, in turn, results in an intensity
profile which is measured and used to infer the density distribution. If the intensity
of the incoming light Iin satisfies Iin/Isat � 1, Equation 3.9 can easily be integrated
and the intensity of the probe light after passing through the atomic cloud is

Iout(x, y) = Iin(x, y)e−nz(x,y)σsc where nz(x, y) =

∫
extent of cloud

n(x, y, z) dz.

Therefore, the column density is given by

nz = − 1

σsc

ln
Iout

Iin

.

The total atom number N can be calculated according to

N =

∫
nz(x, y) dx dy.
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Details of the practical implementation of this technique can be found in
Section 4.8.

3.5.1 Measuring the Temperature

The temperature of a trapped atomic cloud can be measured by releasing and
imaging it after it has fallen for typically a few milliseconds. This process is
repeated for several realisations of the experiment with different falling times.
Under the assumption that during the measurement all samples start with the
same conditions, the temperature can be measured by looking at how the cloud
expands. The assumption of all clouds starting with the same initial conditions
can be verified by observing the behaviour of multiple repetitions at equal times
of flight.

Regarding their external degrees of freedom, atoms behave classically for the
majority of the cooling process. This means that they can described using a
Maxwell-Boltzmann distribution

f(r,p) ∼ e−E(r,p)/kBT , (3.12)

where f is the probability per unit phase-space volume of finding a particle at
(r,p). Approximating the trap as a harmonic confinement with frequency ω, the
energy becomes2

E(r,p) =
1

2
mω2r2 +

1

2m
p2. (3.13)

The normalised probability distribution inside the trap is

f(r,p) =
1

(2πσ2
r)

3/2
e
− r2

2σ2r
1(

2πσ2
p

)3/2 e− p2

2σ2p , (3.14)

where σ2
r = kBT

mω2 and σ2
p = mkBT . After the cloud has fallen for some time t, the

particles move from r to r′ = r + p
m
t and the distribution becomes

f(r′,p) =
1

(2πσ2
r)

3/2
e
− |r
′− p
mt|2

2σ2r
1(

2πσ2
p

)3/2 e− p2

2σ2p . (3.15)

2Here we ignore gravity which if included, would only shift the position but not the shape.
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Integrating out the momentum dependence we find

f(r′) =
1

(2πσt)
3/2
e
− r′2

2σt , (3.16)

where σt = 1
m2 t

2σ2
p + σ2

r . The result is also a normalised Gaussian with standard
deviation σt which we can write as

σ2
t = t2

kBT

m
+ σ2

r . (3.17)

By measuring σ2
t as a function of time, the coefficient for t2 can be determined

and hence the temperature as well.
Figure 3.2 shows the result of a temperature measurement. Two-dimensional

Gaussian functions are fitted to the density profile that result from the captured
images. The fit provides the Gaussian widths σx(t) and σy(t), as a function of time
of flight. Performing a linear regression of σ2

x and σ2
y as a function of t2, the slope,

which according to Equation 3.17 is kBT/m, is calculated. From this slope the
temperature can be readily obtained. The mismatch between the temperatures
on the x and y axes may indicate that the atoms have not fully thermalised after
being transferred into the dipole trap. Furthermore, in the longitudinal direction,
the cloud has only expanded by 30% and, with a longer time of flight a more
precise determination could be made. However, this becomes challenging because
as the cloud expands the signal-to-noise ratio of the atomic density decreases.

After quantum degeneracy has been reached, the wings of the cloud still have a
Gaussian shape and have the same behaviour as the classical gas described in this
section. Therefore, the temperature may be determined by the same procedure as
long as the analysis is restricted to the wings of the cloud.
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Figure 3.2: Temperature measurement of a lithium sample immediately after
loading into the dipole trap. Top: The strip of images shows a
sequence of absorption images captured at various times of flight
indicated in each image. Bottom: The resulting horizontal (x)
an vertical (y) sizes of the cloud are plotted and fitted. The
calculated temperature resulting from the measurements in each
direction are displayed. The shown data is the average of three
repetitions. Error bars represent the standard deviation out of
three repetitions for each point.



Chapter 4

Experimental Apparatus

The system that has been built throughout this work encompasses a wide variety
of technologies. Most notably, ultra-high vacuum, frequency stabilised lasers and
high-power lasers. The experimental apparatus has been built on top of two
independent optical tables. The first one contains all the lasers, optics and atomic
reference cells to produce light at the required frequencies. This also includes
shutters and modulators to control the intensity of the beams. This part of the
setup is described in Section 4.1. The light from this table is coupled into several
optical fibres to transfer it to the other table and facilitate alignment. The second
optical table is mostly occupied by the vacuum chamber detailed in Section 4.2.
This chamber has been equipped with coils that can generate high magnetic fields
and gradients which are described in Section 4.3. The sections that follow, detail
the parts of the experimental system which have been built to obtain (Section 4.4),
trap and cool (sections 4.5, 4.6 and 4.7), and examine (Section 4.8) the atoms. A
description of the computerised control system, needed to coordinate the operation
of all the different parts of the apparatus is found in Section 4.9. In the last
section of this chapter, an outlook of work to follow is discussed.

4.1 Laser System

The realisation of laser cooling requires precise control of the frequency and
amplitude of several different laser beams. The light is produced by external
cavity diode lasers (ECDLs), where the frequency of the output light is controlled
by varying the length of the cavity using a piezo-electric crystal. The frequency
is further adjusted by means of acousto-optical modulators (AOMs). Moreover,
AOMs, together with mechanical shutters, are used to control the amplitude of

37
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the various light beams. The techniques used to obtain the required frequencies
are described in Subsection 4.1.1. The different nature of the lithium and caesium
atoms demands different approaches in the optical setup of each of them. Thus,
each system is described separately in subsections 4.1.2 and 4.1.3 respectively.
Lastly, the lasers used to produce far-off-resonance optical dipole traps are de-
scribed in Subsection 4.1.4. The laser systems have been described in detail in [36]
and [37], and only a short overview is given here.

4.1.1 Frequency Stabilisation

The transition linewidth for both lithium and caesium is about 5 MHz. This sets
the scale of the requirement of stability and linewidth from the lasers. To achieve
the necessary linewidth, diode lasers are equipped with a holographic grating that
creates an external cavity. This external cavity reduces the emission linewidth
below 600 kHz [67]. However, not only does the laser linewidth need to be below
the atomic linewidth but it is also necessary to avoid drifts in the absolute value
of the frequency to ensure a reliable operation of the experiment. In order to fulfil
the stability requirements, active stabilisation of the frequency is necessary. Using
the absorption of light passing through a vapour cell filled with either lithium or
caesium as a reference, the frequency of the lasers can be fixed as is described in
Subsection 4.1.1.1. Once a laser has been fixed to a given frequency, this can be
used as a reference such that other lasers can be compared to it. In this manner,
the frequency of the second laser can be anchored relative to the reference laser.
This technique is described in Subsection 4.1.1.2.

4.1.1.1 Doppler-free Saturated Absorption Spectroscopy

A straightforward way of ensuring that a laser emits light with the frequency of
an atomic transition, is to use the atoms themselves as a reference [41]. As light
travels through a sample of atoms at rest, it will be scattered depending on its
frequency. By measuring the light transmission as a function of frequency, the
spectrum of the atoms can be found. However, at the temperature necessary to
have enough vapour pressure to practically perform spectroscopy, the motion of
the atoms at velocity v produces a Doppler shift in their resonance frequency ω0

with respect to the lab frame given by δD = ω0 v/c. Since atoms in a thermal gas
have a distribution of velocities, there is a distribution of Doppler shifts. As a
consequence, the transitions are widened and the sought-after details are washed
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(a) Arrangement for DFSAS. The light
that passes twice through the atomic
vapour is detected in the photodiode.

(b) Number of atoms in the ground (Ng)
and excited (Ne) states as a function
of velocity. The velocity class in res-
onance with a field with detuning δ
is depleted from the ground state.

Figure 4.1: Doppler-free saturated absorption spectroscopy.

out. It is for this reason that using Doppler-free saturated absorption spectroscopy
(DFSAS) is necessary.

The setup used in this work to perform DFSAS is illustrated in Figure 4.1a.
A beam of light is made to travel twice through an atomic vapour cell and the
transmitted light is measured in a photodiode. Its principle of operation can easily
be explained considering two-level atoms, as shown in Figure 4.1b, driven by light
with wave vector k and detuning δ = ω − ω0. As light first traverses the vapour
cell, atoms which have a velocity v that satisfies δ = k · v will absorb and then
scatter light. This process promotes atoms with velocity v from the ground state
to the excited state. Similarly, the returning beam has a wave vector −k and
atoms, with a velocity that satisfies δ = −k · v, will again scatter light. In each of
this paths, light is lost from the original beam through scattering. However, in
the case of δ = 0, both k and −k beams address the same velocity class of atoms.
Namely, those with velocity orthogonal to k. In this case, since the first beam
excites some of the atoms, the returning beam encounters fewer scatterers. In this
manner, when the light is on resonance, there is a peak in the transmission versus
frequency signal. It is worth noting that the width of this feature will depend
only on the linewidths of the laser and the transition and is not affected by the
Doppler broadening.

Once this spectroscopic signal is obtained from the photodiode, it can be used
to fix the frequency of the laser to one of the peaks of the spectroscopy. For this
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purpose, the output of the photodiode is fed into a lock-in amplifier to produce a
signal which is the derivative of the original spectroscopy signal. The peaks in
the spectroscopy become zero-crossings of the derivative. The derivative signal
can then be used as an error signal for a proportional-integral-derivative (PID)
feedback loop that can keep the frequency of the laser constant.

4.1.1.2 Offset Lock

With the frequency of a laser fixed using DFSAS (reference laser), a secondary
laser (slave laser) can be anchored with respect to the first one using an offset
lock [68]. One specific task of this thesis was to produce offset locks capable of
achieving large detunings necessary in the cooling process as well as for imaging in
high magnetic fields. This type of lock fixes the frequency difference between the
reference and slave lasers to a value set by a voltage-controlled oscillator (VCO).
Thus, changing the voltage of the VCO changes its frequency and consequently,
the frequency difference between the reference and slave laser is changed. This
provides a straightforward way of adjusting the frequency of the slave laser via a
computer control system during experimental runs. Broadly, an offset lock works
by first measuring the frequency difference using a photodiode and afterwards
producing a DC voltage signal that only depends on this difference. This is
achieved by measuring the phase accumulated by the oscillatory signal while
travelling through an interferometer. For an interferometer arm of fixed length,
the phase accumulated is proportional to the frequency. This signal, which only
depends on the frequency difference between the two lasers, is then used as an
error signal and fed into a PID feedback loop to keep it at a fixed value.

An offset lock is composed of a reference laser with angular frequency ωref

which is overlapped, on a photodiode, with a slave laser with angular frequency ωsl.
It is important that not only both beams are well overlapped on the photodiode
but also that they are parallel to each other so that the interference varies only in
time and not in space along the sensitive area of the photodiode. The result of
superimposing both beams can be understood using the trigonometric identity

cosωreft+ cosωslt = 2 cos

(
ωref + ωsl

2
t

)
cos

(
ωref − ωsl

2
t

)
.

That is, the superposition of two electric fields that oscillate at frequencies ωref

and ωsl can be also understood as an electric field that oscillates with frequency
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Figure 4.2: Schematic of error signal generation for an offset lock.

(ωref + ωsl)/2 modulated with a frequency (ωref − ωsl)/2. However, a photodiode
measures not the amplitude of the field but the intensity which oscillates with
double the frequency, namely ωref +ωsl and ωref−ωsl. Furthermore, the bandwidth
of a photodiode is limited to a few gigahertz and the ωref + ωsl frequency is in
the range of hundreds of terahertz so this oscillation is averaged out and only the
beat frequency ωbt := ωref − ωsl signal is measured.

The purpose of the next stage of the lock is to generate a signal which depends
on ωbt but is constant in time and can be used as an error signal for the feedback
to the slave laser. This is achieved using a radio-frequency interferometer as shown
in Figure 4.2. The photodiode beat signal of frequency ωbt is mixed (multiplied)
with the output from a VCO, which is a sine wave generator whose frequency ωvco

is proportional to an externally applied voltage. According to the trigonometric
identity

cos θ cosφ =
cos(θ − φ) + cos(θ + φ)

2
, (4.1)

the result of mixing the two signals, is a wave of frequency ωbt + ωvco superimposed
with one of frequency ∆ω := ωbt − ωvco. In practice, RF wave mixers are not
perfect and, additionally to the product of the waves, terms with the original
frequencies are obtained. The signal of interest is the one with frequency ∆ω and
therefore, a low-pass filter is used to remove all other components. Afterwards,
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Figure 4.3: Generation of frequencies used in the experiment. Thin arrows
add up to obtain the frequencies represented by the thick ones.

the signal is split and then propagated through an interferometer with two arms
of different lengths. A delay τ is accumulated by the signal travelling through
the longest path after which both signals are mixed a second time. Once again,
we get four frequency components after the mix, however, this time there is a
DC component that depends on τ∆ω. Filtering out all the AC components we
obtain the desired error signal only dependent on τ∆ω, which can be used to
measure ∆ω. When feeding the error signal to a PID loop we ensure that ∆ω

stays constant, thus, changing the frequency of the VCO produces a change in
∆ω which translates into a change in ωbt and therefore in ωsl.

The offset locks in this experiment are implemented using off-the-shelf compo-
nents from Mini-Circuits. They are used to stabilise the lasers for the lithium and
caesium magneto-optical traps (MOTs) with VCO frequencies between 100 MHz

and 200 MHz. For imaging lithium at high magnetic fields, a high frequency offset
lock described in Section 4.8.1 is used. The parts used for the lower frequency
locks are: ZX60-8008E-S+ amplifier, ZX05-1-S+ mixers, SLP-30+ for the first
low-pass filter and ZX95-200-S+ voltage-controlled oscillator. An RC filter is used
as the second low-pass filter and a T-piece splits the signal.
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Figure 4.4: Schematic diagram of the laser setup for lithium.

4.1.2 Lithium Laser Setup

A vapour cell for lithium spectroscopy needs to be well designed and is more
complex than for most alkali atoms. Because of its low vapour pressure at room
temperature, lithium needs to be heated up to 640 K to practically do spectroscopy.
Furthermore, lithium chemically reacts with glass so an evacuated glass cell, as
used with caesium or rubidium, cannot be used. A heated, evacuated steel pipe
containing a chunk of lithium is used. The pipe has glass windows at the ends.
To prevent the lithium from reacting with the windows, the pipe is fitted with
heat sinks to favour condensation on the pipe walls instead of on the windows.
Secondly the pipe contains argon in order to reduce the mean free path of the
lithium atoms. The setup of the spectroscopy cell is discussed with more detail
in [36, Section 4.5.2].

Given the complexity presented by the spectroscopy cell, the lithium laser
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Name Role Output Power
[mW]

HB Reference Used for spectroscopy to anchor the fre-
quency of the other lasers.

12

HB Imaging Exclusively used for absorption imaging
at low and high magnetic fields.

8

Toptica TA pro
(ECDL + TA)

Provides seed light for the homebuilt
TA and re-pumping light for the MOT
and Zeeman slower.

380

HB Tapered Amplifier Generates the cooling light for the MOT
and Zeeman slower.

300

Table 4.1: Homebuilt (HB) and commercial lasers used for cooling and trapping
of lithium. Diodes for the HB tapered amplifier (TA) and the HB
lasers are from Eagleyard. The reported output power is measured
after the necessary optical isolation.

system is based on a single laser referenced to the cell from which all other
necessary frequencies are derived. The hyperfine splitting of lithium-6 is 228 MHz

which allows that other required frequencies can be obtained by means of offset
locks and AOMs.

However, since the 2 2P3/2 states of lithium overlap, the cooling transition F =

3/2→ F ′ = 5/2 cannot be driven without also shuffling atoms into the F = 1/2

ground state. As a consequence, it is necessary to drive the F = 1/2→ F ′ = 3/2

transition with almost as much power as the cooling light in order to keep the
atoms in the absorption-emission cycle. This light is referred to as re-pumping
light. Laser diode amplifiers that work at 670 nm are available up to a power of
500 mW. We use two amplifiers; one produces the cooling light and the other the
re-pumping light.

In total, three different ECDLs together with two tapered amplifiers (TAs) are
used to produce the necessary light as shown in Figure 4.4. The characteristics
of these lasers are detailed in Table 4.1. The full scheme of frequencies used is
illustrated in Figure 4.3. Using DFSAS the reference laser is locked to the crossover
of the transitions from the F = 1/2 and F = 3/2 ground states to the overlapped
D2 excited states. The master ECDLs of the Toptica TA is offset locked with
respect to the reference laser. The majority of the power out of the Toptica TA
(340 mW) is used to produce the re-pumping light. The remaining fraction is used
to seed the homebuilt TA from which the cooling light (300 mW) is produced. The
output of each of the TAs passes through AOMs with a frequency of ±114 MHz
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Figure 4.5: Schematic diagram of the laser setup for caesium.

so that they have a total frequency difference of 228 MHz corresponding to the
hyperfine splitting of lithium. It should be noted that even though the frequency
difference is fixed by the AOMs, the detuning with respect to the transition can
be controlled with the offset lock for approximately 100 MHz limited by the VCO
of the lock.

A homebuilt imaging laser is also offset locked to the reference laser. The
offset lock for this laser can achieve detunings of up to 1.3 GHz. See Section 4.8.1
for details.

4.1.3 Caesium Laser Setup

The overall structure of the caesium setup is similar to the one used for lithium
with a reference laser to which the MOT cooling light is offset locked. However,
the hyperfine splitting for caesium is ∼ 9.2 GHz hence, it is not convenient to
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Name Role Output Power
[mW]

HB Cooler Ref. Used for anchoring the frequency of the
cooling laser and for absorption imag-
ing.

12

Toptica TA pro
(ECDL + TA)

Provides cooling light for the MOT and
Zeeman slower. Also used to produce
Raman sideband cooling lattice (see Sec-
tion 4.10.3 for details).

780

HB Repumper Ref. Generates re-pumping light for the
MOT and Zeeman slower as well as op-
tical pumping.

8

Table 4.2: Homebuilt (HB) and commercial lasers used for cooling and trapping
of caesium. The reported output power is measured after the
necessary optical isolation.

obtain cooling and re-pumping light from the same laser. Nonetheless, caesium
gas reference cells are simple and readily available off the shelf from Thorlabs so
it is straightforward to reference the two lasers separately. Moreover, the excited
states are well separated compared to their linewidth so the probability of an
atom falling out of the cooling cycle is low. This means that much less power is
required for re-pumping the atoms as compared to the lithium system.

The caesium system, depicted in Figure 4.5, is composed of three ECDLs
and one TA described in Table 4.2. A homebuilt reference laser is locked to the
F = 4 → F ′ = 4 ⊗ 5 crossover using DFSAS to which the master diode of the
Toptica TA pro is offset locked. This reference laser is also used for imaging. A
second homebuilt ECDL is locked to the F = 3 → F ′ = 2 ⊗ 3 crossover and it
is used to provide re-pumping power as well as optical-pumping light. The full
scheme of frequencies used is depicted in Figure 4.3.

4.1.4 Dipole Trap Lasers

The dipole trap consists of a narrow, high-power light beam overlapped with a
wide lower power one (for details refer to Section 4.6). This composite beam
is then crossed at the centre of the vacuum chamber. The narrow(wide) beam
has a wavelength of 1070 nm(1064 nm) and a waist radius of 80 µm(300 µm). The
narrow beam is produced by a multi-mode 100 W IPG Yb fibre laser. The wide
trap is produced by a 30 W Nufern amplifier which is seeded by a Mephisto S 200
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single-mode laser from Coherent. These lasers are detuned by several tens of
terahertz, a factor of 107 of the transition’s linewidth, with respect to the atomic
transition so active stabilisation of the frequency is not necessary. More details of
this setup such as how these lasers are being used and specifics about the traps
created by them are found in Section 4.6.

4.2 Vacuum System

Laser cooling experiments need to take place in an ultra-high vacuum (UHV)
environment. Otherwise, collisions with the background gas not only would heat
the cooled atoms but will also eject them for the trap. This requirement implies
that the experiments need to be carried out inside a vacuum chamber. However it
is also necessary to have optical access and to be able to place optics and magnetic
coils as close as possible to the atoms. For this purpose, a vacuum chamber as
shown in Figure 4.6 is used. The chamber is divided into two sections by means
of a differential pumping tube which allows to maintain a pressure of 10−9 mbar

in the oven section while keeping a pressure below 10−11 mbar in the rest of the
experimental chamber.

The pressure in the oven chamber is maintained by a titanium sublimation
pump as well as a 50 L s−1 ion pump. This chamber contains an effusive oven of
lithium as well as caesium dispensers. It also contains a mechanical feedthrough
which allows to shut off the atomic flow into the experimental chamber by using
an external stepper motor. Further details of this part of the chamber can be
found in Section 4.4.

After passing through the differential pumping tube, atoms travel through
the Zeeman slower to arrive into the main experimental chamber. This chamber
has two recessed windows that facilitate the placement of magnetic coils at close
proximity to the atoms. A cross section of this arrangement can be seen in
Figure 4.8. The pressure in the experimental chamber is maintained by a titanium
sublimation pump as well as a 125 L s−1 ion pump.

The pressure in the experimental chamber is measured with a vacuum gauge
(Pfeiffer) to be below 10−11 mbar. However, due to spatial restrictions this gauge
is not directly on the chamber section where the experiments take place. However,
an upper bound on the pressure in this chamber section may be obtained by
measuring the lifetime of atoms inside a trap in the vacuum chamber. This
estimate is obtained by first noting that the probability that a trapped atom
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Figure 4.6: Overview of vacuum apparatus. See text for details.

collides with an atom from the background gas in the vacuum chamber is fixed by
the pressure in the vacuum chamber. Hence, the probability of loosing an atom
from the trap due to these collisions is proportional to the number of atoms in
the trap. Another way of stating this is

dN

dt
= −γN,

with N the number of trapped atoms and γ the loss rate per atom. The solution
is

N(t) = N0e
−γt, (4.2)

with N0 the initial atom number. The loss rate per atom is given by

γ = nbgv̄bgσ,

where nbg is the density of the background gas, v̄bg the mean velocity of the
background gas and σ the collisional cross-section between a trapped atom and
an atom from the background gas. Assuming that the background gas is mostly
hydrogen molecules, at room temperature we get [8]

γ = 3.8× 103 s−1 pbg

10× 10−10 mbar

σ

1 nm2 , (4.3)

in which pbg is the background pressure. The Li− H2 collision cross section is
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Figure 4.7: Decay of the number of lithium atoms in the dipole trap. A
background magnetic field of 528 G is used to set the lithium-
lithium scattering cross-section to zero. This measurement was
carried out with a total dipole laser power of 3.6 W. The green data
points show the average measured values out of three repetitions.
Error bars represent the standard deviation. The blue continuous
line indicates the exponentially decaying function that was fitted
according to a one-body loss model. The 1/e lifetime provides an
upper bound to the pressure in the vacuum chamber.

known to be 2.39 nm2 [69]. Thus, by measuring γ an upper bound for the pressure
can be calculated. It is worth noting that this number is an upper bound because
only losses caused by background-gas collisions have been considered in the model
whilst ignoring losses such as photon absorption from the dipole trap light, plain
evaporation, three-body recombination.

To measure the loss rate per atom, a fixed number of lithium atoms were loaded
into an optical dipole trap and the number of remaining atoms were measured
after various holding times. For this measurement, a magnetic field was used to set
the lithium-lithium scattering cross-section to zero in order to avoid losses caused
by elastic collisions. The result, shown in Figure 4.7, was then fitted with the
exponential decay function presented in Equation 4.2 from which a 1/e lifetime of
τ = 1/γ = 37s is obtained. With this value, an upper bound of 2.9× 10−10 mbar

results for the pressure inside the main experimental chamber.
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4.3 Magnetic Fields

Magnetic fields play an important role in the implementation of this experiment.
They are used to produce an initial stream of cold atoms with a Zeeman slower,
as part of a MOT to provide spatial confinement and to control the interactions
between atoms by means of Feshbach resonances. In this section, the arrangement
of magnetic fields for the last two cases will be detailed while the first one is
detailed in Section 4.4. Additional to these coils, there is a set of six “offset” coils
that produce weak homogeneous magnetic fields in the order of a few gauss which
are used to compensate for earth’s magnetic field, for finely adjusting the position
of the zero-field point, and to provide a quantisation axis during optical pumping.

The magnetic fields are produced for this experiment by passing an electrical
current through various sets of coils. The arrangement of the coils is depicted
in Figure 4.8. Kapton-insulated copper wire from S&W wire company with a
5 mm×5 mm square cross section was used. This wire is hollow to allow for water
cooling; the hole is round and has a diameter of 2.7 mm. All of the coils made
using this wire have been wound using a back-winding technique which ensures
that both leads are together and thus, the magnetic field produced by them cancels
within a short distance. The water cooling allows the use of high currents, which
for the Feshbach coils can be up to 400 A. In this way, fields of 1400 G can be
produced at the position of the atoms.

4.3.1 Quadrupole Coils

The coils around the outer flange of the vertical windows carry currents in opposite
directions, thus producing the magnetic field gradient necessary for the MOT.
These coils have 6 radial and 7 axial windings and a resistance of 50 mΩ each. The
geometry of the field produced by this arrangement was calculated numerically
and is shown in Figure 4.9. The position of these coils was chosen to satisfy an
intermediate condition between producing the maximum gradient and the most
linear gradient at a given current.

The current through these coils can be turned off in less than 1ms using a
FET-based switch. However, a fast change in magnetic flux through the steel
chamber generates eddy currents which subside only after 10ms. The behaviour of
the magnetic field inside the chamber was determined by using absorption imaging
to measure the resonance frequency of atoms placed in the centre of the chamber
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Figure 4.8: Cross section of main experimental chamber. This chamber has
recessed windows (highlighted in black) in which the coils for the
Feshbach field ( ) are contained. Next to the coils that produce
the quadrupole field for the MOT ( ) are the vertical offset coils
( ) for fine adjustment of the background magnetic field.

as a function of time after switching off the current in the coils. The atoms were
placed and held in a 1 mK deep optical dipole trap before switching off the coils
to allow for arbitrary measurement times. The results of this measurement are
presented in Figure 4.10. At the moment the current through the quadrupole coils
is turned off, the generated eddy currents in the steel chamber induce a magnetic
field that shifts the resonance frequency by as much as 30 MHz within 4 ms. When
the eddy currents decay, the resonance frequency of the atoms returns to what is
expected at zero field.

The emergence of eddy currents is an unavoidable consequence of rapidly
changing a magnetic field around a steel chamber. This is relevant not only when
switching off the MOT but at any time the magnetic fields are changed. Therefore,
this type of detailed study is important to work around this constraint.

4.3.2 Feshbach Coils

The coils described in this subsection are utilised to control the interactions
between the atoms using Feshbach resonances. At the time when these coils
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Figure 4.9: Quadrupole field geometry. Both quadrupole coils ( ) and Fes-
hbach coils ( ) are shown. However, the field shown is only
produced by the quadrupole coils and the current through the
Feshbach coils is switched off. Given that the magnetic field scales
proportionally to the current through the coils, the given values
are divided by the current to provide a more general result.
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Figure 4.10: Shift of the atomic resonance frequency due to eddy currents
caused by suddenly switching off the MOT quadrupole field.
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Figure 4.11: Field produced by the coils located inside the recessed windows
( ). These coils are used to control the interactions between the
atoms. Given that the magnetic field scales proportionally to
the current through the coils, the given values are divided by the
current to provide a more general result.

were designed and built, the positions of the lithium-caesium resonances were not
known. Thus, a robust system, capable of producing a wide range of magnetic
fields, was necessary to ensure the resonances would be within reach.

The vertical windows in the main experimental chamber are recessed so that
coils can be placed closer to the atoms and therefore achieve higher magnetic
fields. The polarity of these coils is arranged such that a homogeneous magnetic
field is produced at the position of the atoms. The coils were built with an axially
varying number of windings as can be noted in Figure 4.8. The coils fit so tightly
into these windows that extra care had to be taken during the design and winding
process so that their leads would not obstruct them from fitting. The the magnetic
field produced by this arrangement was calculated numerically and is shown in
Figure 4.11. Fields of up to 1400 G can be reached when passing a current of 400 A

through them. When these coils are operated at 400 A, a stationary maximum
temperature of 70 ◦C is reached. In practice, however, these coils are never used
continuously but rather are only on for a fraction of an experimental sequence.

A magnetic field produced with coils which are finite in size will not be
perfectly homogeneous. The residual curvature of the field results in a magnetic
potential. This potential is trapping in the radial direction of the coils and
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anti-trapping axially for atoms in the F = 1/2 ground state, as can be seen in
Figure 4.12. Furthermore, this potential adds to the one created from the dipole
laser to produce a total trapping potential. To quantify the importance of the
magnetic contribution to the potential, the trapping frequencies associated with
it are calculated and compared with those of the dipole trap. This comparison is
sufficient since the total trapping frequency, together with the atom number and
temperature, determines the extent of the cloud as well as other thermodynamic
properties. Figure 4.13 shows the frequencies of the magnetic trap (an imaginary
frequency is used for the anti-trapping direction given that V (z) ∝ ω2

vert). In
general, the trapping frequencies of the dipole trap are much higher than those of
the magnetic trap. However, at dipole laser powers used at the end of evaporative
cooling, these two frequencies are commensurate and the contribution from the
magnetic trap becomes relevant.

It is important to accurately know the magnetic field at the position of the
atoms as this determines the value of the scattering length. For this purpose, two
different types of calibrations were done. The first one is based on finding the
position of the zero-crossing of the scattering length of lithium which is well known
to be 527 G [26]. Details about this measurement are presented in the following
chapter in Figure 5.13. For the second calibration, the resonance frequency of
lithium atoms was measured using absorption imaging. Since their interaction
with static magnetic fields is well understood, the absolute value of the magnetic
field was obtained from the resonance frequency of the atoms. These two methods
give consistent results.
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4.4 Atom Source

An atomic beam is initially obtained by either heating a chunk of lithium or
passing a current through caesium dispensers. Dispensers have been placed in the
oven chamber as well as in the main experimental chamber to provide flexibility.
Using the dispensers in the experimental chamber provides a higher flux of atoms
at the expense of a degradation of the vacuum pressure. The lithium and caesium
atoms that leave the oven are decelerated by the Zeeman slower on their way
to the main experimental chamber so that they arrive with a velocity below the
MOT’s capture velocity. The magnetic field produced by the Zeeman slower is
tailored independently for each of the atomic species and therefore, these are
loaded sequentially. The reason behind designing the loading to be sequential
stems from the fact that having a simultaneous MOT of lithium and caesium
results in losses resulting from inelastic collisions between ground state lithium
and excited caesium [70].

Figure 4.14 shows a detailed cross-section view of the oven chamber. The
chunks of lithium consist of 95% pure lithium-6 from Sigma-Aldrich. To reach
the necessary vapour pressure, it is heated to 700 K. At this temperature, the
most probable velocity is 1380 m s−1 and 42% of the atoms are below this velocity.
Since the MOT’s capture velocity for lithium is around 200 m s−1, a slower longer
than a metre with fields over 1300 G would be required to slow down atoms with
this initial velocity if 50% of the maximum possible acceleration amax = Γh̄k/2

is assumed. For practical reasons a 40 cm slower was built that only requires a
maximum magnetic field of 860 G but still addresses 17% of the atoms leaving the
oven. After a manual optimisation of the magnetic fields to maximise the MOT
loading, it was found from the resulting fields that a corresponding acceleration
of 0.3amax is more realistic.

A set of four caesium dispensers (SAES; model CS/NF/3.9/12 FT10+10) are
used at a time in order to obtain caesium vapour. A current of typically 4.5 A is
passed through the dispensers to heat them up to 820 K [71]. However, since there
is no direct line-of-sight from the dispensers to the experimental chamber, caesium
atoms undergo several collisions with the oven chamber before leaving towards
the experimental chamber. The caesium oven chamber is heated to 370 K to
avoid condensation on the walls. The most probable velocity for atoms in thermal
equilibrium with the oven chamber is 216 m s−1 with, again, 42% of the atoms
below this velocity. For these velocities, a slower of 80 cm with fields up to 110 G
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Figure 4.14: Oven chamber from which lithium ( ) and caesium ( ) are sourced.
Lithium is obtained from heating a chunk in the upper section
while caesium from running a current through dispensers in the
lower section. Both atomic species leave this chamber towards
the Zeeman slower located to the right of this diagram.

is necessary for an acceleration of 0.5amax. Since the length of 40 cm is already
fixed, we find that an optimum deceleration for caesium can be achieved with a
highest field of 80 G and this would address 21% of the atoms flowing through
the slower. Nonetheless after manual optimization of the fields, an acceleration of
0.8amax better reflects the behaviour of the slower.

After the atoms leave the oven chamber they travel through a series of coils
that generate the magnetic field profile required for the operation of the Zeeman
slower. Figure 4.15 depicts the oven chamber and the Zeeman slower’s coils. These
coils have been wound using Kapton-insulated, 1.72 mm× 3.14 mm copper wire.
The maximum field produced by the largest coil is 900 G. The current in each
of the coils is controlled using a series of field-effect transistors. For the caesium
slower, 30 mW of cooling light is used with 0.6 mW of re-pumping light. The
lithium slower is used with 20 mW of cooling and 14 mW of re-pumping light. The
detunings at which the slower is operated are 95 MHz for cesium and 120 MHz for
lithium for both the cooling and re-pumping transitions. Further details of this
dual-species cold-atom source can be found in [1]. The performance of the slower
with respect to the MOT loading is presented in Section 5.1.
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Figure 4.15: Zeeman slower coils. After atoms leave the oven chamber at the
left of this figure they travel through a set of coils towards the
experimental chamber. The current in each of the coils is tailored
for each of the atomic species as depicted by the arrows shown.

4.5 Magneto Optical Trap

Producing a MOT, as explained in Section 3.2, requires light for confinement in
momentum space as well as a magnetic quadrupole field for spatial confinement.
For a multi-species MOT, different wavelengths of light are required.

As was mentioned in Section 4.1, the light is prepared on a separate optical
table to the one where the vacuum chamber is located and the MOT is created.
Then, it is transferred to the proximity of the vacuum chamber through polarisation
maintaining optical fibres. At the output side of the fibres, outcouplers with 10 mm

lenses are used to collimate the light. The optical fibres used have a numerical
aperture of 0.12 which, with this arrangement, results in beams with a 1/e2 radius
of 12 mm. Three optical fibres are used to obtain the light for each of the atomic
species which is then retro-reflected to make up six beams. In the horizontal
plane, lithium and caesium beams are produced by independent outcouplers. This
arrangement is shown in Figure 4.16a.

The vertical MOT beams for lithium and caesium have been combined because
the Feshbach coils inside the recessed windows constrain the angles of optical
access. Furthermore, it is desirable to image the atoms from this axis for which
the MOT beams are further combined with imaging light for both species. This
arrangement is shown in Figure 4.16b.

For the lithium MOT, cooling and re-pumping light is distributed amongst
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Figure 4.16: Schematic of MOT optics.

all of the beams. Typically 28 mW are used for the cooler and 24 mW for the
re-pumper per beam. The light for the Zeeman slower has 28 mW slowing light
and 15 mW re-pumper.

On the other hand, for the caesium MOT, it is sufficient to provide re-pumping
light through only one of the beams. Each beam has 24 mW of cooling light and
one of them has an extra 2 mW of re-pumping light.

Producing both MOTs together leads to heating and losses due to large inelastic
collisions between ground-state lithium atoms and excited caesium atoms [70]. To
avoid this problem the two MOTs need to be loaded either spatially or temporally
separated. In this work the MOTs are loaded sequentially and the caesium MOT
displaced from lithium atoms loaded into the dipole trap by moving the zero-point
of the magnetic field, where the MOT forms, using a bias field. The detuning of
various beams is changed during the experimental sequence using the offset locks.
Details of the timing and detuning can be found in Chapter 5.
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Figure 4.17: Geometry of the dipole trap beams in the vicinity of the crossing
region where the atoms sit. The 80 µm and 270 µm beams are
co-propagating.

4.6 Dipole Trap

After atoms have been trapped and cooled by the MOT, they are transferred into
a far-off-resonance optical dipole trap for further cooling. This trap is produced
by high-power infra-red lasers described in Section 4.1.4.

At the end of the MOT phase, the temperature of the caesium atoms is typically
40 µK whilst lithium atoms can only be cooled down to typically around 400 µK.
In order to transfer a sufficiently large atomic sample from the MOT to the dipole
trap, a much deeper trap is required for lithium than it is for caesium. However,
having a red-detuned trap that would work for both species requires light with a
frequency which is smaller than the transition frequencies for both the species,
and would necessarily be deeper for caesium. Moreover, a far-off-resonance trap is
desirable for evaporative cooling since this reduces photon scattering which causes
heating. For this reason, lasers that emit with wavelengths around 1064 nm are
used. High power 1064 nm lasers are commercially available together with the
necessary optical components. At this wavelength the polarisabilities of lithium
and caesium are 4.5× 10−39 C m2 V−1 and 19.2× 10−39 C m2 V−1 respectively [72]
because the caesium resonance is closer. This means that a trap created with this
wavelength would be a factor of 4.29 deeper for caesium than it is for lithium.

Given that the output power of the laser used to produce the trap is finite, a
compromise between depth and size of the trap must be made. The large depth
required by lithium imposes an upper bound on the size of the beam waists. On
the other hand, with the larger polarisability and lower temperature achievable
with caesium, a bigger and shallower trap would capture a larger atom number
and avoid excess potential energy. For this reason a composite trap as shown
in Figure 4.17 was implemented using the lasers described in Section 4.1.4. The
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100 W IPG laser is focused down to a waist radius of 80 µm and reflected back
into the experimental chamber to cross it and produce the deep trap. With the
Nufern 30 W amplifier, a shallow trap with a beam of waist radius of 270 µm is
created and is overlapped with the narrow trap.

When a harmonic trap is occupied by atoms, adiabatically changing the shape
of the potential, i.e. the trapping frequency, changes the density and temperature
while keeping the phase-space density constant. In contrast, if the trap resulting
from the combined beams is filled with atoms, a potential which is more complex
than a simple harmonic one is applied on them. This potential can be understood
as a trap with a reservoir and dimple [73]. In this situation, a condensate can
be formed by changing the frequency of the dimple or reservoir. For this to be
possible, it is necessary that the ratio of the trapping volumes between the dimple
and reservoir traps is large [73], which is the case of the presented setup.

An optical system is necessary in order to obtain the required beam sizes as
well as controlling the intensity of the beams in time. The intensity of the beams
is controlled using AOMs and a feedback loop as detailed in Subsection 4.6.1. The
optical system was designed by modelling the Gaussian beam propagation using
transfer matrices. The resulting scheme is shown in figures 4.18 and 4.19 for each
of the lasers. The intensities reached can be high enough to cause thermal lensing
when using conventional BK7 lenses. Instead, most of the lenses used are made of
UV fused silica which has a lower thermal expansion coefficient as well as lower
absorption compared to BK7 glass. The exception are the two lenses right next to
the experimental chamber which are gradient-index lenses designed to withstand
high powers. Using a gradient of index of refraction to make a lens as opposed to
varying the thickness of the material, has the advantage that thinner lenses can
be manufactured which is beneficial to avoid thermal lensing.

Using the polarisabilities of lithium and caesium mentioned before, the poten-
tials created by the far-off-resonance light can be calculated. At high laser powers,
where the forces produced by this potential greatly exceed the gravitational force,
the trap depth U and trap frequency f is related to the power by U = cP and
f = A

√
P respectively, where c and A are proportionality constants. These

parameters, that characterise the trap, have been calculated independently for
each of the lasers and are reported in Table 4.3. These values are valid in the
horizontal plane where gravity does not play a role and thus, the simple functional
forms given are accurate. Vertically, the effect of gravity was estimated using a
truncated harmonic potential. In the case of the IPG laser, the depth decreases
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Figure 4.18: Lens arrangement for the IPG laser. Cylindrical lenses are used
for optimal operation of the AOM. Therefore, the waist is given
for both the side and top views. At the position of the atoms,
an 80 µm beam waist is achieved for both passes of the beam.
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Figure 4.19: Lens arrangement for the Nufern laser amplifier. Cylindrical
lenses are used for optimal operation of the AOM. Therefore, the
waist is given for both the side and top views. At the position of
the atoms, an 270 µm beam waist is achieved.
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by 10% due to gravity at 10 W for caesium and 2 W for lithium. For the Nufern
trap, gravity is always important in the vertical direction for both species.

Trap depth
[µK W−1]

Radial freq.
[HzW−1/2]

Long. freq.
[HzW−1/2]

Lithium
IPG 12.1 525.5 62.7
Nufern 1.1 45.0 5.4

Caesium
IPG 52.1 236.7 28.2
Nufern 4.7 20.3 2.4

Table 4.3: Calculated depth and frequency coefficients for the dipole trap.
Depth U relates to power P as U = cP and the c coefficient is given
in the table. For the trap frequency f the behaviour is f = A

√
P

and the A coefficient is the one reported.

For the dipole trap to operate as intended, it is necessary to cross the two
beams precisely with each other. However, the only way to assess the crossing
is by observing atoms loaded into the trap. This, together with the high powers
involved, makes using manually operated mirror mounts difficult. A mirror mount,
motorised using a picomotor from Newport, facilitates the alignment process.
This alignment is carried out using images from a point of view like the one in
Figure 4.17. Even though the separation between the beams is not apparent from
this point of view, it is obvious when the beams are crossed. Only when they are
crossed is there longitudinal confinement and atoms concentrate in the crossed
region. The crossing of the beams is adjusted by moving the returning beam
vertically, using the pico motor, until an enhancement of the of the number of
atoms in the central region is observed. This process is repeated at lower dipole
powers to more finely adjust the crossing.

The frequencies for the trap created with the IPG laser have been measured
using two different methods. The first method, illustrated in Figure 4.20, is called
parametric heating. For this, the atoms are placed in the dipole trap and held
at the desired trapping power, after which, the intensity of the trap’s light is
modulated at various frequencies. When the modulation frequency is twice the
trap frequency an enhanced loss of atoms is observed due to parametric heating.
The factor of two can be understood by first considering the atoms occupying
harmonic oscillator states |n〉 resulting from the potential V (x) = 1

2
mω2

0x
2. Then,

a perturbation of the form Vp(x, t) = 1
2
mλ2 cos(ωpt)x

2 is applied, where λ is the
strength of the perturbation and ωp its frequency. The important point here is
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Figure 4.20: Parametric excitation trap frequency measurement with lithium.
The number of remaining atoms is measured after modulating
the dipole laser intensity for 100 ms at various frequencies. Loss
resonances can be seen at ∼ 1 kHz and ∼ 9 kHz corresponding to
the longitudinal and radial trap frequencies respectively. For each
frequency, the atom number measurement is repeated three times
and averaged. This measurement was carried out at 68 W of
dipole laser power. Error bars represent the standard deviation.
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Figure 4.21: Breathing-mode radial oscillation trap frequency measurement
with lithium. The size of the atomic cloud is measured as a
function of time after a sudden change in the trap frequency
at t = 0 µs. Each point has been measured three times and
error bars represent the standard deviation. The cloud radius
is determined by fitting a Gaussian to the profile of the cloud
and the standard deviation of the Gaussian is used as the radius.
This measurement was carried out at 24 W of dipole laser power.
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Figure 4.22: Frequencies for the trap created by the IPG laser. Theoretical and
experimental data are compared for both radial and longitudinal
frequencies.

that the perturbation is proportional to x2 which only couple states of equal parity
and therefore, for the perturbation to drive the atoms upwards in the energy
ladder it must provide an energy of twice the level spacing.

The second method begins by suddenly changing the trap frequency which
induces breathing-mode oscillations of the atomic cloud. The size of the cloud
will oscillate as shown in Figure 4.21 at twice the trap frequency. Thus, the
trap frequencies are determined by measuring the size as a function of time. An
overview of the results is shown in Figure 4.22 in which the results for both
methods have been aggregated. We find good agreement between the model and
measured radial frequencies whilst the actual longitudinal frequencies are 68% of
the theoretically predicted ones.

4.6.1 Power Stabilisation

Implementing evaporative cooling requires precise control of the depth of the
dipole trap. For this purpose, the intensity of the light that produces the trap
is actively controlled through a feedback loop. This control not only facilitates
the implementation of evaporation ramps, but it also decreases fluctuations in the
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Figure 4.23: Scheme for power stabilisation of dipole trap lasers. A fraction
of the beam power is collected in a photodiode. The output of
the photodiode is used as feedback in a PID stabilisation system.

intensity that would otherwise lead to heating.

The stabilisation system is shown in Figure 4.23 and the same principle is used
for both of the dipole trap lasers. The output of the laser is passed through an
AOM and the first order of the diffracted light is then used to produce the optical
dipole trap. By, changing the RF power going into the AOM it is possible to
control the amount of light power going into the first order. A small fraction of the
diffracted light is diverted into a photodiode which is used to provide feedback. The
measured power is compared with a set-point provided by the experimental control
system using a differential amplifier. This differential amplifier also increases the
amplitude of the signal by a factor of five to improve the sensitivity of the system.
The amplified signal is then used as an error signal and fed into a PID controller.
The output of this PID controller is connected to the AOM driver and sets the
power of the RF signal going into the AOM.

With this scheme it is straightforward to produce any evaporation ramp, within
the bandwidth of the feedback loop, generated by the experimental control system.
The power of the laser has been sinusoidally modulated with frequencies of up
to 15 kHz with this system, where it has been applied to measure the trapping
frequencies.

A limiting factor of the presented method is that only signals within the range
of the photodiode may be controlled in this way. If the photodiode is set to cover
the full range of laser powers, the sensitivity at the final stages of the evaporation,
where it is most critical, would not be favourable. For the lithium evaporation
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Figure 4.24: Heating rate in the dipole trap produced by the IPG laser. A
lithium sample in an equal mixture of the |F = 1/2, mF = 1/2〉
and |F = 1/2, mF = −1/2〉 ground states is placed in the dipole
trap. Evaporative cooling in then carried out until the laser
power reaches 3.3 W which corresponds to a depth of 40 µK. At
this point the scattering length was set to zero and the sample
was held at various amounts of time, after which the temperature
was measured using time-of-flight images. Error bars represent
statistical standard deviation resulting from three repetitions. A
line was fitted to calculate the heating rate.

sequence, the power of the dipole trap decreases by a factor of 103. Therefore, the
laser current is used to control the output power in the higher end of the range,
from 100 W to 40 W, while the feedback system is only active at the lower end,
from 30 W down to 50 mW, thus, achieving a higher stability is achieved during
operation at low power.

Despite the stabilisation system reducing the noise in the intensity [37], resid-
ual fluctuations of intensity and beam pointing, as well as off-resonant photon
absorption cause heating of the atoms. We measured the heating rate for lithium
atoms and the results are presented in Figure 4.24. For this measurement, an equal
mixture of lithium atoms in the |F = 1/2, mF = 1/2〉 and |F = 1/2, mF = −1/2〉
ground states was placed in the dipole trap and subsequently evaporatively cooled
until a power of 3.3 W was reached. Then, the atoms where held in the dipole
trap for various amounts of time after which the temperature was measured using
time-of-flight images. It is worth noting that this measurement was taken at a
final dipole trap power of 3.3 W and it is not expected that the heating rate should
be the same at all powers of the dipole trap.
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4.7 Total Trapping Potential

While the dipole trap dominates for large laser powers, at the low end of the range
a potential that arises from the magnetic field becomes relevant. As mentioned
in Section 4.3.2, the coils that produce the magnetic field, used to control the
scattering length, generate a magnetic field with a slight gradient. Thus, a
potential arises from the interaction of this field with the atomic spins. The
following analysis shows that this potential is very shallow and it is only relevant
during the final stages of evaporation. The contributions of this magnetic potential
and the optical potential created by the IPG laser are analysed in Figure 4.25.
Each of these mechanisms, which independently produce a trap frequency fi in a
given direction, add up to an effective total trap frequency given by

feff =

√∑
i

f 2
i .

Therefore, the fit to the experimental data of the total frequency ftot was calculated
using a model function of the form

ftot(P ) =
√
A2P + f 2

mag,

where A is a constant determined by the fit and P is the dipole laser power and
fmag is the calculated magnetic trap frequency when the coils produce a field of
780 G. This value for the magnetic field is in the vicinity of the Feshbach resonance
addressed during evaporative cooling. As made clear by the figure, extinguishing
the optical dipole trap does not result in free fall if the magnetic potential still
remains. In the radial direction of the atomic cloud, the optical trap frequency
remains high compared to the magnetic trap and therefore there is practically no
influence of the magnetic component. For the longitudinal direction, the magnetic
contribution is the largest for powers below 1 W. In this case, if the trapping
frequency decreases to 80% of its original value ftot when the dipole laser is turned
off, the cloud would have a size which is 5% smaller than a free expanding one
within ∼ 1 ms. The consequences of this are further discussed in Section 5.4.3.
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Figure 4.25: Analysis of trap frequencies at low laser powers. The basic
contributions to the trap frequency by the optical (opt.) and
magnetic (mag.) potentials are presented for the case where the
Feshbach coils produce a field of 780 G. These contributions were
theoretically calculated and are the same that appear in figures
4.13 (mag.) and 4.22 (opt.). These two contributions add up
to the total theoretical frequencies shown. The experimentally
measured values and their corresponding fits are also displayed.
Here, radial (rad.) and longitudinal (long.) refer to the directions
defined by the elongated atomic cloud in the dipole trap.

4.8 Imaging

A vast majority of the measurements presented in this work have been obtained
through absorption imaging, the principle in which is described in Section 3.5. In
brief, this method consists in shining a beam of light onto an atomic cloud and
quantifying the amount of light that gets absorbed and subsequently scattered.
Regions of higher atomic density lead to higher absorption which results in mapping
the atomic density into a light intensity pattern which is measured using a CCD
camera.

The frequency of the imaging laser is set to be resonant with a cycling atomic
transition and controlled using an offset lock. For lithium this is the F = 3/2→
F ′ = 5/2 transition and for caesium the F = 4 → F ′ = 5 transition is used.
This is convenient since it allows to finely adjust this frequency to optimise the
sensitivity of measurement. The number of detected atoms as a function of probe
light frequency is shown in Figure 4.26. The power of the probe beam is such that



70 Chapter 4. Experimental Apparatus

−60 −50 −40 −30 −20 −10 0 10 20 30

Detuning from resonance [MHz]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
et

ec
te

d
at

om
nu

m
b

er

×105

Figure 4.26: Number of detected lithium atoms through absorption imag-
ing as a function of the frequency of the probing light. This
measurement was carried out at zero magnetic field after hold-
ing the atoms in the dipole trap for 500 ms to avoid effects of
transient electromagnetic fields created by the MOT. The line
shown is a Lorentzian fit that results in a linewidth (FWHM)
of Γ/2π = 11.3 MHz. As the excited states of lithium overlap
(see Figure 2.1) the measured linewidth is larger than the nat-
ural linewidth of the F = 3/2 → F ′ = 5/2 transition which
is Γ/2π = 5.2 MHz [43]. Error bars represent the statistical
standard error resulting from measuring each point four times.

the intensity is much lower than the atoms’ saturation intensity (with a 1 mW

beam of 25 mm in diameter, Iprobe ≈ 0.2Isat). The advantage of using this regime
is that the density measurement depends only on the ratio Iout/Iin and not on the
absolute intensities (see Equation 3.10).

The measurement is performed by capturing three images as shown in Fig-
ure 4.27. A first one (4.27a), which contains the intensity profile after light has
been absorbed by the atoms. The second (4.27b), is captured after the atoms
have left the field of view and only measures the unaltered incoming light. Finally
a picture is taken without atoms and probing light to account for any stray light
(4.27c). The measured density profile resulting from these images is displayed in
Figure 4.27d.

The intensity profiles are imaged onto a CCD (AVT Guppy 038-B) camera



Chapter 4. Experimental Apparatus 71

(a) Atoms (b) Light (c) Dark (d) Density

Figure 4.27: Typical absorption imaging measurement. The three images
captured for absorption imaging (a-c) to measure the distribution
of atoms (d). Images (a-c) are obtained from the CCD camera
and brighter regions indicate higher light intensity. The density
is calculated from these three images and it is shown in (d). In
this, redder regions indicate a higher density.

chip using a two-lens telescope as shown in Figure 4.28. This optical setup is used
with a magnification between 0.5 and 3.3 depending on the scale of interest. When
studying the MOT, a de-magnification is preferred while for observing atoms in
the dipole trap, a magnification of 3.3 is used. The probe light intensity was below
0.4 mW cm−2 and the exposure time used was between 10 µs and 100 µs.

The maximum attainable resolution is determined by the lens closest to the
atoms. Vertically, this is a 25.4 mm diameter lens with a focal length of 75 mm.
The diameter of this lens is constrained because it is placed inside of the coils in
the recessed windows. The constraint in the focal length results from the optics
needed to retro-reflect the MOT beams (see Figure 4.16b). However, replacing
the polarising beam-splitter cube and mirror which are next to the imaging lens
with a reflective polariser, this situation may be improved. The horizontal lens
is a 50 mm diameter gradient-index lens with a focal length of 125 mm also used
to focus down the dipole trap. With this arrangement, the diffraction-limited
achievable resolution is calculated according to the Rayleigh criterion and shown
in Table 4.4.

Lithium Caesium
Horizontal Resolution [µm] 2.0 2.6

Vertical Resolution [µm] 2.5 3.1

Table 4.4: Resolution limit for each of the atomic species for both the vertical
and horizontal imaging axis with the currently used lenses. The
numbers are given in µm.

When imaging without an external magnetic field, the probe light is on
resonance with the F = 3/2 → F ′ = 1/2 transition for lithium and the F =

4→ F ′ = 5 for caesium. As with the MOT, re-pumping light is needed to keep
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Figure 4.28: Geometry of imaging optics setup. The distance between the
lenses chosen as such ensures that the magnification of the sys-
tem will be less sensitive to misalignment. For the horizontal
arrangement the lenses used are f1 = 60 mm and f2 = 125 mm.
Vertically f1 = 250 mm and f2 = 75 mm lenses are used.

the atoms in the desired cycling transition. For this purpose, the re-pumper
light from the MOT is shone while capturing absorption images. For simplicity,
the re-pumping light is not combined with the imaging beam but rather, the
re-pumper from the MOT outcouplers is used.

4.8.1 High Field Imaging for Lithium

The relatively small hyperfine splitting of the lithium-6 ground state implies that
the Paschen-Back regime of the atom-field interactions can be reached at relatively
low magnetic fields above 200 G (see figures 2.2 and 2.3). In this regime, the
transitions become closed and absorption imaging can be performed without the
need of re-pumping light. The transition frequencies required for imaging can be
calculated analytically. The ground state energies as a function of magnetic field
are obtained with the Breit-Rabi formula [45]. For the excited state, treating the
hyperfine splitting as a perturbation to the magnetic interaction µJ ·B is a good
approximation.

When lithium atoms are loaded into the dipole trap they are pumped into the
|F = 1/2,mF = −1/2〉 and |F = 1/2,mF = +1/2〉 ground states to avoid inelastic
collisions with atoms in the F = 3/2 ground state manifold. Additionally, this
mixture is necessary for evaporative cooling, which relies on elastic collisions that
with a single state would not be possible. At high magnetic fields, compared to
the hyperfine splitting, these two states correspond to |mJ = −1/2,mI = 0〉 and
|mJ = −1/2,mI = 1〉. Varying the frequency of the imaging laser it is possible
to observe the population in each of these states as shown in Figure 4.29. The
measured linewidth of Γ/2π = 13 MHz is wider than the natural linewidth Γ/2π =

5.2 MHz. This broadening may be due to the linewidth of the imaging laser. The
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Figure 4.29: High-field spectrum of lithium at 856 G. Number of detected
atoms in the dipole trap through absorption imaging as a function
of the frequency of the probe light. These atoms were optically
pumped into the F = 1/2 ground states while loading them in
the trap. These two states become the |mJ = −1/2,mI = 0〉
and |mJ = −1/2,mI = 1〉 at high magnetic field and are clearly
resolved. The line shown is a fit with a dual-Lorentzian function
that result in a linewidth (FWHM) of Γ/2π = 13 MHz, popu-
lation ratio of 52 ± 1 : 48 ± 1 between them, and a separation
of 78.4 MHz between the two maxima. Error bars show the
statistical standard error resulting from four repetitions.

separation between the levels was measured to be 78.4 MHz and the expected one,
according to the theory described in Section 2.2, is 76.9 MHz.

The desired frequency can be obtained by locking the imaging laser using an
offset lock which works on the principle described in Subsection 4.1.1.2. This
version, capable of higher detuning, is based on previous work [74]. It is able
to cover a wide range of frequencies and thus, magnetic fields. This design is
more complex than the other offset locks used in the experiment. This setup
uses two VCOs (Mini-Circuits ZX-95-200-S+ and ZX95-1700W-S+) which are
switched between (ZX80-DR230-S+) to be able to cover the required frequency
range. Using the high-field VCO, detunings (with respect to the fine-structure
transition) between −600 MHz and −1230 MHz can be reached; this corresponds
to magnetic fields between 450 G and 950 G. Also, for splitting the signal, a splitter
(Mini-Circuits ZFSC-2-1-S+) is used instead of a T-piece to obtain a cleaner signal.
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Figure 4.30: High-field spectrum of lithium. Color pattern shows the number
of detected atoms as a function of probe light detuning and
magnetic field. The lines show theoretically calculated transition
frequencies according to the theory described in Section 2.2.

A coupler (ZFDC-15-5-S) is helpful for measuring the beat frequency directly.
Furthermore, a high-bandwidth photodiode (Hamamatsu G4176 has a bandwidth
of 9 GHz) is used to detect the beat.

With this system, the spectroscopic measurement of Figure 4.29 can be easily
executed. Collecting many of these measurements at different magnetic fields it
was possible to measure the behaviour of the energy levels as in the Breit-Rabi
diagram. The aggregated results of such measurement is shown in Figure 4.30.
The slight mismatch between the measurement and theoretical values may be due
to fluctuations in the magnetic field or technical errors in the determination of
the absolute frequencies.

4.9 Control System

The execution of this experiment requires controlling a vast number of parameters
such as the detuning and intensity of the cooling, re-pumping, Zeeman slower,
optical pumping and optical dipole trap light. Also the current going through
the Zeeman slower, MOT, Feshbach field and offset coils is controlled. Moreover,
multiple devices need operating during an experimental run. These include CCD
cameras, mechanical and acousto-optical shutters for the light, actuators for the
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Figure 4.31: Screenshot of control system client showing the tab used to
visualise the sequence.

alignment of the dipole trap, and atomic dispensers.
The orchestration of all of these components is carried out by a programmable

signal generator. This control system is based on National Instruments’ PXIe-8130
controller and its add-on digital and analogue output cards. With this hardware it
is possible to output signals defined with a temporal resolution of 1 µs and voltage
resolution of 16 bits spanning from −10 V to 10 V.

The software of this system was developed in house and it has a client-server
architecture. The PXIe-8130 runs the server software tasked with synthesising the
signals from the instructions sent by the client. The client and server communicate
through a custom-made TCP/IP protocol.

The client program provides a graphical user interface (GUI) for the devel-
opment and execution of experimental sequences. This piece of software was
developed jointly by Matthew Jones [37] and the author using python and some
of its common libraries (pygtk, numpy and matplotlib). One of the modules
developed by the author is the sequence plotter shown in Figure 4.31. This
allows the visualisation of sequences during their design and execution for a better
understanding of the factors at play, highlighting the advantages of developing a
GUI-based software.

An important feature built into this client is the ability to create modular



76 Chapter 4. Experimental Apparatus

control sequences. This means that blocks of instructions can be invoked into
a sequence making it easy to conceptualise and implement the different stages
involved in an experimental run. Further details of the control system, including
both the client and server, can be found in [37].

4.10 Apparatus Outlook

The experimental apparatus described in this chapter is in continuous evolu-
tion. With it, Bose-Einstein condensates (BEC) containing 104 lithium Feshbach
molecules are routinely produced and important steps towards producing ultracold
caesium gases have been made. Through using and testing the apparatus good
areas of improvement have been identified. In this last section an overview of some
suggested improvements that can be carried out in the near future are presented.

4.10.1 Magnetic Field Curvature Compensation

The Feshbach coils shown in Figure 4.8 (marked with ) produce strong and stable
magnetic fields. The finite curvature in the field results in an undesirable magnetic
potential described in Section 4.3.2. This does not affect in-situ measurements but
makes carrying out time-of-flight studies at and around the Feshbach resonance
challenging. It is thus, convenient to remove this curvature.

A straightforward approach may be to use the MOT coils (marked as ) in
addition to the Feshbach coils, such that the field would add up and cancel the
the curvature. However, the magnetic features produced by these coils would be
too blunt to correct for the inhomogeneity caused by the smaller Feshbach coils.
Alternatively, the larger coils may be used to produce the bulk of the field which,
to start with, would be more homogeneous. Then, the inner coils can further
flatten the magnetic field.

The implementation of this scheme requires that the polarity of one of the
coils is flipped during the experimental sequence. In one configuration it would
be used to produce the quadrupole field for the MOT whilst it would play a part
in generating the homogeneous magnetic field when the polarity is flipped. For
this purpose an H-bridge1 can be used.

In order to use the larger coils to produce a magnetic field with the same
strength as the inner coils can produce, a current which is 16% higher than the

1Electronic circuit that allows changing the polarity of of the supply-to-load connections.



Chapter 4. Experimental Apparatus 77

currently used value Icur is required. With this arrangement, the radial frequency
of the magnetic trap resulting from only using the larger coils is 2.9 times smaller
than if the smaller coils are used.

Using the large and small coils in combination, a current in the large coils
Ilrg which is 30% larger than Icur would be needed. This is because a current
in the small coils found to be Isml = −0.1Ilrg compensates for the curvature
while decreasing the overall field. With this arrangement, the frequency of the
undesirable magnetic trap is decreased twenty-fold with respect to the current
value. With this reduction, when releasing the atoms after evaporative cooling, the
atomic cloud would need to expand for ∼ 10 ms before its size differs more than
5% from a free expanding cloud. This should be compared with the case where
the magnetic field curvature has not been compensated, in which a difference
of 5% in size occurs already within ∼ 1 ms after turning off the optical dipole
trap. Compensating the magnetic field allows carrying out time-of-flight studies
to better determine the atomic sample temperature.

4.10.2 Nufern Amplifier Trap

The dipole trap described in Section 4.6 results from a composite beam made
out of an 80 µm beam produced by an IPG laser and a 270 µm generated with
a Nufern amplifier. However, the Nufern trap was only recently added into the
system and at the time of writing it has not yet been tested.

Once atoms are successfully loaded into this trap it is necessary to characterise
it, mainly to measure the trap frequencies. Furthermore, the procedure of loading
this trap would require optimisation. Additionally, the process of producing a
caesium BEC using a dimple trap may be explored.

4.10.3 Improving the Loading of the Dipole Trap

Evaporative cooling is a very efficient technique for increasing the phase-space
density of an atomic cloud. For each order of magnitude lost in atom number,
three orders or magnitude are gained in phase space density (see Section 5.3.3).
Therefore, lossless cooling methods relying on off-resonant photon scattering are
an attractive prospect since they would allow to load more and colder atoms
into the dipole trap. Consequently, larger and purer degenerate gases could be
obtained.
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For caesium, an often-used method is called resolved-sideband Raman cool-
ing [75–78]. For this scheme, atoms are first loaded into an optical lattice. The
harmonic motion modulates the transition frequency and produces sidebands,
the separation of which is determined by the harmonic oscillator frequency. The
potential wells created by the optical lattice are tight enough that these sidebands
can be resolved. Therefore, it is possible to optically drive a transition between
vibrational states and in this way pump the atoms towards the ground state of
the wells.

A major part of this scheme is already in place and caesium atoms have been
successfully loaded into the Raman cooling lattice. However, at that time, caesium
atoms were obtained from dispensers in the experimental chamber which greatly
limited the lifetime of atoms in the lattice. Now, with a working caesium Zeeman
slower it is possible to hold the atoms for longer times and take the implementation
of this scheme to its conclusion.

Further optical cooling of lithium could also be implemented. It has been
recently demonstrated in other labs using two different methods described below.
The first one exploits a UV transition whose linewidth is seven times narrower than
the typically used transition [79]. This lower linewidth results in a significantly
lower Doppler temperature. The second method is based on the combined effect
of a gray molasses, working on the D1 transition, and velocity-selective coherent
population trapping in a Lambda-type three-level system [80–82]. The latter has
the advantage that the same type of light sources that are already used in the
experiment would be suitable as opposed to using a more expensive UV laser
which would also require special optical components and vacuum windows.



Chapter 5

Experimental Sequence

The experimental sequence, and rationale behind it, used to produce ultracold
samples of caesium-133 and lithium-6 is described in this chapter. Through most
of the construction of this experiment, the techniques for each of the atomic species
have been developed in parallel. This experiment has been advanced into a stage
where degenerate quantum gases of lithium can be created. Additionally, high
magnetic fields are generated around the atomic sample to control the scattering
length of the |F = 1/2, mF = 1/2〉 and |F = 1/2, mF = −1/2〉 states of lithium.
This results in a system which can tuned from being a molecular Bose-Einstein
condensate (BEC) to become an atomic Fermi gas. Caesium has been loaded into
an optical dipole trap at high phase-space density and the system is ready to pursue
evaporative cooling towards quantum degeneracy. Also, the low temperatures
reached with both species allows us to begin the pursuit of ultracold mixtures.

Lithium is first obtained from an effusive oven and decelerated with a Zeeman
slower to be captured by the magneto-optical trap (MOT) as described in Sec-
tion 5.1. This continuous loading process is carried out until enough atoms have
been gathered. An optical dipole trap is overlapped with the atomic cloud. At
the same time the MOT parameters are adjusted to minimise the temperature
and maximise the density to optimally load the dipole trap [83]. At the end of
this phase, the atoms are optically pumped to produce a balanced mixture of the
|F = 1/2,mF = −1/2〉 and |F = 1/2,mF = 1/2〉 states. The process of cooling
and transfer into the dipole trap is described in Section 5.2. At this point the
MOT has been turned off and the atoms are solely contained by the optical dipole
trap. Evaporative cooling is performed on these atoms by decreasing the depth of
the trap. For this cooling process, the strength of interactions between the atoms
is controlled using a Feshbach resonance. The scheme used for evaporative cooling

79
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is detailed in Section 5.3. This process is carried out until quantum degeneracy is
reached. The observation and characterisation of a Bose-Einstein condensate are
discussed in Section 5.4.

The scheme for caesium begins with a dispenser-fed oven from which hot
atoms are obtained. The atoms travel through a Zeeman slower which allows
them to be captured by a MOT as described in Section 5.1. The number of
captured atoms saturates within a couple of seconds after which the transfer into
the dipole trap begins. This transfer consists of using an optical molasses to
sub-Doppler cool the caesium cloud into the optical dipole trap. After turning
off the sub-Doppler cooling light, the atoms are optically pumped to the lowest
hyperfine state |F = 3, mF = 3〉 to avoid inelastic collisions. The transfer into
the dipole trap and optical pumping stage are detailed in Section 5.2.

5.1 Zeeman Slower and MOT Loading

The MOT light is aligned by placing irises in the optical fibre out-couplers and
using paper templates with 1 mm pinholes on both sides of the chamber. This
ensures that all of the beams cross at the centre of the vacuum chamber. Slight,
intentional misalignment of the return beams can lead to an increase of 15% of
atoms in the trap. However, this process leads to instabilities in the MOT number
and keeping the beams aligned proved to result in a more reliable and repeatable
method for transferring the atoms into the dipole trap.

The aim at the beginning of the experimental sequence is to gather a high
number of atoms into the MOT. This is to be done while avoiding an increase
of the overall pressure in the experimental chamber. Also, the duration of the
experimental cycle should be kept to a comfortable length that permits multiple
repetitions to be carried out in a short amount of time.

Once atoms are successfully loaded from the Zeeman slower into the MOT,
several steps of optimisation can take place. The performance of the slower has
been improved by using the MOT loading rate as a figure of merit. In this manner,
the slower light power, slower re-pumper light power and magnetic field in the
slower were adjusted to find the best values to operate on. Figure 5.1 shows the
behaviour of the slower for both lithium and caesium while varying the slower
light power.

With the atomic source adjusted, the next step is to find the operation
parameters for the MOT. With this in mind, the detuning of the light and
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(b) Caesium MOT loading.

Figure 5.1: Rate of loading atoms into the MOT as a function of slower light
power for both species. The parameter Psl/Prp is the ratio of
power of slowing and re-pumping light. The optical setup for
caesium allows to vary this ratio so different ratios are explored.
Error bars show the statistical standard deviation. The shown
lines are moving averages added as a guide to the eye.

magnetic field gradient around the MOT’s position are adjusted to optimise the
number of captured atoms. The measurements summarised in Figure 5.2 show
the behaviour of the number of atoms captured in the MOT as a function of
these parameters. The measurements for each of the species are qualitatively
different because the experimental parameters were varied in different ways. For
the caesium measurement, the MOT was loaded from dispensers next to the
chamber so that it could be optimised independently of the Zeeman slower’s
performance. In contrast, lithium atoms are loaded via the Zeeman slower and,
the lithium optical setup is arranged in such a way that when the MOT detuning
is changed, the detuning of the slower light also changes accordingly. From this
analysis, a detuning of -40 MHz (-6.8Γ) and axial magnetic gradient of 20 G cm−1

are concluded to be optimal loading parameters for the lithium MOT. The optimal
caesium loading values are a -15.5 MHz (-2.9Γ) for the detuning and 12.5 G cm−1

for the axial magnetic gradient.

With both the slower and the MOT adjusted, a typical experimental cycle
begins by loading either caesium for 2 s to 5 s or lithium for 5 s to 10 s. The growth
of the number of captured atoms during the loading process is shown in Figure 5.3.

Usually, the lithium MOT is not loaded to saturation because an increase in
the number of atoms in the MOT does not lead to an increase in the atoms loaded
into the dipole trap. This fact is illustrated in Figure 5.4 where the number of
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Figure 5.2: Number of atoms loaded into the MOT measured with absorption
imaging for various MOT parameters.

atoms loaded into the dipole trap is plotted against MOT loading time. The
reason for this is that the maximum achievable density in the MOT is limited.
This limit arises because spontaneously emitted photons from the atoms in the
MOT get re-absorbed by other atoms, resulting in an effective repulsive force
between them which increases as the density becomes larger [84].
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Figure 5.3: Sequential loading of a caesium and lithium MOT. Atom number
from calibrated photodiode signal. Between 0 s and 2.5 s the
cesium MOT is loaded. Between 2.5 s and 5 s a lithium MOT is
loaded. The curves shown are the average of 6 measured traces.
The inset shows a lithium loading curve measured over a longer
time showing the saturation of the MOT.
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Figure 5.4: Number of lithium atoms loaded into the dipole trap for various
MOT loading times, an upper bound in the density of the MOT
causes the curve to saturate within 12 s even though the MOT is
still increasing in number.
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5.2 MOT Cooling and Transfer Into Dipole Trap

In the initial section of the experimental sequence, the MOT parameters are
adjusted to maximise the collection of atoms into the trap. However, these values
for optimal loading will not result in the coldest nor most dense cloud. In the
following step, the magnetic gradient and light detunings are varied to increase
the phase-space density as much as possible and thus, enhance the transfer into
the dipole trap. This step is significantly different for lithium and caesium. For
caesium, sub-Doppler cooling mechanisms take place while for lithium, the excited
2P3/2 levels overlap (see Figure 2.1) prevents these mechanisms from working [59].

As atoms are transferred into the optical dipole trap, they are optically pumped.
Caesium atoms are pumped into the |F = 3,mF = 3〉 and |F = 3,mF = 2〉
states and eventually only to the |F = 3,mF = 3〉 to avoid inelastic collisions.
Lithium atoms are pumped to an equal mixture of the |F = 1/2, mF = 1/2〉 and
|F = 1/2, mF = −1/2〉 states. For lithium, a mixture of states is required because
collisions, necessary for evaporative cooling, are suppressed for fermions in the
same state. An overview of the timing used for caesium and lithium at this stage
is shown in Figure 5.5 and Figure 5.6 respectively.

5.2.1 Compression and Optical Molasses

The lowest achievable temperature for lithium in the MOT is limited by its
Doppler temperature which is T Li

D =141 µK as calculated by Equation 3.4. This
temperature is reached when the detuning is δ = −Γ/2, where Γ is the transition’s
line width. For this reason, after loading the MOT, the detuning is changed
from -40 MHz (-6.8Γ) to -2.9 MHz (-0.5Γ) within 11 ms. Through this process,
the temperature of the sample drops from 2000 µK to 600 µK. The reason for
this value being significantly higher than the theoretical T Li

D has to do with the
fact that this temperature was calculated with a two-level atom approximation
and using only the linewidth of the F = 3/2 → F ′ = 5/2 transition. In reality,
all the states in the 2P3/2 are overlapped and a much larger linewidth should be
considered. A Doppler temperature of 270 µK results if the linewidth obtained
from the measurement shown in Figure 4.26 is used.

The process with caesium is phenomenologically different since σ+ − σ− sub-
Doppler cooling takes place (see Subsection 3.2.1). To enhance this mechanism
at the end of the MOT-loading phase, the detuning is linearly increased within
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Figure 5.5: Timing sequence for transferring caesium atoms into the optical
dipole trap. The detuning is increased to enhance sub-Doppler
cooling and the atoms are optically pumped afterwards. The
dipole trap is constantly on during this process.
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Figure 5.6: Timing sequence for transferring lithium atoms into the optical
dipole trap. The detuning is decreased while simultaneously de-
creasing the cooling and repumping power to minimise the Doppler
cooling temperature. After, the atoms are pumped to the F = 1/2
ground state. The dipole trap is constantly on during this process.
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Optical pumping time
0 ms 3 ms

Figure 5.7: Optical pumping of caesium. Several density measurements are
shown after 14 ms time of flight. A vertical magnetic gradient is
present during the flight which applies a state-dependent force on
the atoms. For each column, the time that the optical pumping
light is on is different, increasing in duration towards the right side.
The top and bottom rows of images correspond to two different
polarisations of pumping light.

75 ms to -77 MHz (-14.7Γ) which is the largest detuning possible with the present
locking scheme. At the same time the magnetic field gradient is decreased down
to zero. The time scale of the cooling mechanism is determined by the photon
scattering rate. However, the magnetic fields are ramped much slower than this
to avoid generating eddy currents that would distort the atomic cloud. With this
process, temperatures of 16 µK are routinely achieved [36].

It is worth noting that the dipole trap is a conservative trap and a free atom
that enters the trap would promptly leave it, keeping the same kinetic energy it
had initially. Thus, the mere presence of the trap in a region of space will not
capture the atoms that fly through it. Only atoms that have a low enough energy
and are at the location of the trap when the light is turned on are captured if
there is no dissipation mechanism. However, this mechanism can be provided by
the MOT light to increase the number of loaded atoms [85].

5.2.2 State Preparation

As the atoms are loaded into the dipole trap, it is important that they are in the
lowest energy state to avoid inelastic collisions which would cause heating and loss
of atoms. For caesium, this is particularly important since it has a so-called giant
spin relaxation coefficient [86]. In a Cs-Cs collision where spin relaxation occurs
and the state of one or both of the atoms changes from F = 4 to F = 3, the
energy released is at least ∆E = h× 9.2 GHz = kB441 µK. For this reason, it is
not possible to magnetically trap caesium for long times since all the magnetically
trappable states have a high rate of spin-changing collisions [87]. Therefore in
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Figure 5.8: Optical pumping scheme for caesium using the F = 3→ F ′ = 2
transition.

order to cool caesium into quantum degeneracy, optical confinement is necessary
since it only depends very weakly on the internal state of the atoms and allows
trapping them in their absolute ground state.

Inelastic collisions of caesium atoms are avoided by optically pumping them
to the lowest hyperfine state |F = 3,mF = 3〉. As mentioned before, for the
final MOT cooling process, the magnetic quadrupole field is turned off. For state
preparation, a homogeneous bias magnetic field of 1 G is turned on for 1.5 ms

to define a quantization axis. This field is parallel to the optical pumping light
and it is produced using a pair from the set of offset coils (see Section 4.3). At
the same time, 1 mW of σ+ polarized light which is −10 MHz detuned from the
F = 3 → F ′ = 2 transition is shone on the atoms. Optical pumping with this
light causes an accumulation in the |F = 3,mF = 3〉 and |F = 3,mF = 2〉 states
as depicted in Figure 5.8a. The degree of polarisation is analysed using a Stern-
Gerlach technique. Applying a vertical magnetic gradient during time of flight,
the atoms are pushed up or down depending on the internal state. Figure 5.7
shows qualitatively the effect of optical pumping for two different polarisations
of the pumping light. This detection technique is limited by the temperature
of the atoms and the speed at which the magnetic fields can be changed. It is
worth noting, however, that this speed does not only depend on the inductance
of the coils and the capability of the power supply but also is affected by eddy
currents that are induced in the stainless steel experimental chamber. For this
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Figure 5.9: Optical pumping of caesium atoms using two different polarisations
of pumping light. Measuring the number of atoms in the upper
(NU ) and lower (NL) halves, and the total atom number (NT ), the
degree of polarisation is defined as p = NU−NL

NT
. The results shown

in this figure are obtained with the data displayed in Figure 5.7.
Error bars show the standard deviation calculated using three
measurements for each point.

measurement, a gradient of ≈ 150 G cm−1 was used during the first 3 ms of a total
time of flight of 14 ms. These values where chosen so that the largest gradient
could be applied whilst allowing the magnetic field to subside before absorption
imaging takes place.

The detection method used cannot resolve the mF states individually. Nonethe-
less, we can quantify the degree of polarisation by counting the number of atoms
that are shifted in one direction relative to the total number of atoms. The results
of this analysis are shown in Figure 5.9. After implementing evaporative cooling
of caesium, lower temperatures will be achieved which would allow resolving the
different states and fine tune the pumping parameters. Currently, 75% of the
atoms are pumped to the desired state within 1.6 ms.

There are several advantages to using the F = 3→ F ′ = 2 transition for optical
pumping. Firstly, since the F ′ = 2 → F = 4 decay is dipole-forbidden, fewer
atoms would fall into the F = 4 ground state, which then require being pumped
back to the F = 3 ground state resulting in an overall heating of the sample.
Secondly, by rotating the magnetic field with respect to the pumping beam, a small
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Figure 5.10: Pumping efficiency of lithium into the F = 1/2 state. Optical
pumping is carried out by switching off the cooler beam for a
varying amount of time. The number of atoms in this manifold is
obtained by first carrying out absorption imaging without using
any re-pumping light to obtain the number of remaining atoms
in the F = 3/2 ground state manifold. The total atom number
is then measured with re-pumper on. The difference gives the
amount of atoms in the F = 1/2 state.

π-polarised component is added which couples to the |F = 3,mF = 2〉 making it
no longer a dark state. Therefore, all atoms accumulate in the |F = 3,mF = 3〉
states as shown in Figure 5.8b. Having a weak π-component is beneficial for
implementing Raman sideband cooling since it suppresses reabsorption heating in
the final stages of cooling where it is most critical [77].

Optical pumping is carried out differently for lithium. Low-temperature col-
lisions of fermionic particles in the same state are suppressed due to Pauli’s
exclusion principle [88]. However, collisions are necessary for evaporative cool-
ing and therefore, an equal mixture of atoms in the two lowest energy states
|F = 1/2, mF = 1/2〉 and |F = 1/2, mF = −1/2〉 is prepared. This is achieved
by turning off the re-pumping light before the cooling light during the process
in which the MOT light is extinguished and the dipole trap is loaded. This time
interval is called F pumping time in the plot shown in Figure 5.10. In this figure,
the fraction of atoms in the F = 1/2 manifold is measured as a function of the
pumping time. This pumping process is very effective and leads to more than 95%
of the atoms in the F = 1/2 groundstate manifold within 400 µs. Using high-field
imaging, described in Section 4.8.1, the different hyperfine states of lithium can be
resolved. With this system, it can be verified from the relative height of the peaks
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100 µm

Figure 5.11: Absorption image of an equal mixture of lithium atoms in the
|F = 1/2, mF = 1/2〉 and |F = 1/2, mF = −1/2〉 states loaded
into the crossed optical dipole trap. This image was taken after
500 ms of plain evaporation at 700 G with the IPG dipole trap
operating at full power (100 W). The number of atoms in the
crossing region is 4× 105 at a temperature of ≈ 150 µK. The
Rayleigh length of the dipole trap beams is about 2 cm so there
are atoms trapped in the beams for a distance much further than
what is shown in this image. However, the majority of the atoms
occupy the region close to the crossing of the beams.

in Figure 4.29 that the mixture that results from this pumping process is fairly
balance having a 52± 1 : 48± 1 ratio between the population of the mF = 1/2

and mF = −1/2 substates.
In this section the transition process from loading a MOT to cooling and state-

preparing them while transferring into an optical dipole trap has been discussed.
The atoms loaded into the dipole trap can be measured through absorption
imaging. As a result, 2× 106 caesium atoms and 6× 105 lithium atoms have been
loaded into this trap. Figure 5.11 shows lithium atoms in the trap after loading.
The structure of the crossed dipole trap is clearly visible.

5.3 Evaporative Cooling of Lithium

5.3.1 Scattering Cross-Section

Given the crucial role that elastic collisions play in the evaporative cooling process
(see Section 3.4), it is at this point that controlling the scattering properties through
Feshbach resonances starts to become important. In the following, a balanced
mixture of lithium in the |F = 1/2, mF = 1/2〉 and |F = 1/2, mF = −1/2〉 states
has been loaded into the dipole trap and the scattering length of atoms in these
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two states will be controlled. However, even though a Feshbach resonance allows to
set any arbitrary scattering length, it will be shown below that this does not imply
that the cross-section can be controlled arbitrarily but rather, it has an upper
bound determined by the kinetic energy. At high temperatures, the maximum
achievable scattering cross-section is bounded and the exact magnetic field value
is not that important. At low temperatures, the scattering-cross section can be
varied by 10 orders of magnitude as shown in Figure 5.12.

Lithium atoms in the |F = 1/2, mF = 1/2〉 and |F = 1/2, mF = −1/2〉 states
are distinguishable from each other and their s-wave scattering cross-section is
given by Equation 2.11 and reproduced here

σ =
4πa2

1 + a2k2
. (5.1)

This equation is valid as long as the particle’s kinetic energy is small compared
to the height of the centrifugal barrier. For p-wave collisions of lithium-6, this
height is 8 mK. This is much higher than the atoms’ temperature in the dipole
trap which is always below 1 mK (see Section 2.4).

For a given value of the wave number k, the scattering cross-section has an
upper bound, when a→∞, given by

σmax =
4π

k2
,

known as the unitarity-limited scattering cross-section. This means that for
k � 1/a, σmax is an upper bound for the scattering cross-section. Figure 5.12
illustrates how as the temperature decreases below 10 µK, the enhancement of the
cross-section close to the Feshbach resonance starts to become important.

However, there is no lower bound to the scattering cross-section and when
the scattering length approaches zero, the cross-section becomes zero as well. As
a result, it is much easier to observe the zero-crossing of the scattering length,
caused by the presence of a nearby Feshbach resonance, than to observe the
resonance itself [89]. This feature is exploited for the measurement summarised
in Figure 5.13 where the zero-crossing is clearly observed. This measurement
consists of transferring the atoms into the dipole trap and holding them for five
seconds at various values of the magnetic field. After this, the number of remaining
atoms is measured using fluorescence imaging with a field of view large enough
to ensure that also the atoms in the wings of the trap are detected. The finite
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Figure 5.12: Unitarity limited scattering cross section calculated using Equa-
tion 5.1 for the most probable k at various temperatures. The
scattering length was obtained from [26].

depth of the dipole trapping potential allows for the most energetic atoms to
escape. Afterwards, through elastic collisions, the energy is redistributed among
the atoms; those which attain enough energy leave the trap whilst decreasing
the energy per particle of the remaining atoms. If instead, elastic collisions are
suppressed, this prevents the redistribution from happening, thus the mechanism
for atoms to get enough energy to leave the trap is removed. In this way, the
zero-crossing of the scattering length produces a peak in the figure.

5.3.2 Plain Evaporation

The previously described process with constant trap depth through which interact-
ing atoms leave the trap is called plain evaporative cooling. This is advantageous
as it removes the most energetic atoms without the need of decreasing the depth
of the trap. The ability to adjust the scattering cross-section allows us to enhance
or inhibit this mechanism. A comparison of this process with and without elastic
collisions is shown in Figure 5.14 demonstrating the cooling effect of the collisions.
Here, the evaporation rate depends strongly on the truncation parameter (see
Section 3.4). It is worth noting that, as made evident by Figures 5.12 and 5.14,
a magnetic field of several hundreds of gauss is necessary to initiate evaporative
cooling for lithium. However, as the cloud temperature is several hundreds of
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Figure 5.13: Zero-crossing of scattering length measured through plain evap-
oration. Top plot shows the measured number of remaining
atoms after holding them in the dipole trap at maximum power
(100 W) for 5 s at various magnetic fields. During this process
their temperature changes from ≈ 250 µK to ≈ 100 µK. Bot-
tom plot shows the corresponding unitarity-limited scattering
cross-section using the expected value of the scattering length
obtained from [26] and an average k that is consistent with a
temperature of 230 µK. Each point is measured three times and
the error bars show the statistical standard error.

micro kelvin, the specific value of the scattering length is not important (see
Figure 5.12). Usually, a bias magnetic field with values between 700 G and 850 G

is used during plain evaporation and is kept throughout most of the evaporation
process.

A non-interacting trapped gas is only expected to lose atoms due to collisions
with energetic particles from the background gas. This process is known as
“one-body losses”. Interacting particles, on the other hand, have additional loss
mechanisms such as elastic collisions in which after the collision, one of the parters
results with enough kinetic energy to leave the trap. Therefore, the apparent
more rapid loss of non-interacting particles during the evaporation in Figure 5.14
seemly contradicts this fact. An important detail is that this greater loss of
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Figure 5.14: Temperature and atom number during plain evaporation of
lithium for different scattering cross-sections. Scattering length
is set to 104a0 and 0a0 at 698 G and 528 G respectively. The trap
depth is 1 mK and plain evaporation approaches stagnation when
a truncation factor of η ≈ 9 is reached. For this measurement
only atoms close to the region where the beams of the dipole trap
are crossed, as in Figure 5.11, are counted. As atoms from the
wings of the dipole trap evaporate, the remaining ones descend
into the crossed region and thus, replenish it. Therefore, a faster
decay is observed when evaporation does not occur.



Chapter 5. Experimental Sequence 95

field of view

without plain evaporation:

after plain evaporation:

Figure 5.15: Replenishment of atoms at the centre of the trap during plain
evaporation. During plain evaporation, atoms in the wings of
the trap fall into the centre. Only the blue region is within the
field of view and therefore, even though there are fewer total
atoms after evaporation, the number of detected atoms does not
decrease.

non-interacting particles is only observed when measuring the number of atoms in
the crossed region of the dipole trap; counting the atoms throughout the beams
gives the expected result of grater loss for the interacting case (see Figure 5.13).
The explanation for this discrepancy is illustrated in Figure 5.15. As the atoms in
the wings collide and get cooled down they descend towards the region where the
dipole beams cross, thus, replenishing the atoms there. That is, the trap wings
act as a reservoir to the dimple created in the crossing region.

5.3.3 Forced Evaporation

The process of plain evaporation decreases the ensemble temperature which in
turn, makes it less likely for an atom attain enough energy to leave the trap and
therefore, the evaporation rate decreases. This can be quantitatively understood
by considering the truncation parameter η = U/kBT and recalling that the
evaporation rate is proportional to ηe−η (see Section 3.4). It can be seen in
Figure 5.14, that once the temperature reaches a value of 115 µK, corresponding
to a truncation parameter of η ≈ 9, plain evaporation stagnates. In order to lower
the temperature further, it is thus necessary to carry out forced evaporation by
lowering the depth of the trap. This is done by decreasing the power in the dipole
laser which, as consequence, decreases the trap frequency and thus, the atoms’
collision rate. Nonetheless, this is not a problem since the tight dipole trap has
high frequencies from the start and, using a Feshbach resonance, the scattering
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Figure 5.16: The power as a function of time in the optical dipole trap used
for evaporation. In the high ramp, the laser power is controlled
by the input current. In the medium and low ramps, a feedback
loop is used to control the power using an AOM.

cross-section is set to a value such that high scattering rates are achieved. In the
case of lithium, the scattering length can be greatly increased without the risk
of inducing three-body losses because these collisions are suppressed by Pauli’s
exclusion principle [88].

As detailed in Section 4.6, the intensity of the dipole trap light can be controlled
by either changing the current of the IPG laser or by changing the diffracted
power through the acousto-optical modulator (AOM). The evaporation ramp is
depicted in Figure 5.16. The time scale at which the power should be decreased is
dependent on the collision rate. When plain evaporation stagnates after roughly
500 ms (see Figure 5.14), the current of the laser is linearly decreased during
150 ms from the loading value down to 40 W. This value has to be chosen low
enough to ensure that the photodiode of the feedback loop which controls the
AOM has a suitable signal range, but high enough that the laser will operate
stably. The following stage of evaporation is controlled by the dipole laser power
stabilisation system and it consists of two linear ramps with a length of 2.2 s and
2.5 s respectively. As the trap depth is lowered the temperature also decreases
accordingly. These three stages of forced evaporation are depicted in Figure 5.17.
Throughout this process the truncation parameter η varies roughly between 7
and 10, when the evaporation is least and most efficient respectively. With these
values, the phase-space density (PSD) increases by 3 orders of magnitude while
the atom number only decreases by 1 order of magnitude, from 106 to 105.

Evaporatively cooling lithium is a straightforward process because the unitarity
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Figure 5.17: The three different stages of evaporation are shown. The color
of the points match the color for the stages in Figure 5.16. The
statistical error bars are contained within the data points. The
temperature plot also shows a lines where η = U/kBT = 7 and
η = 10 for comparison.

regime can be accessed without significant three-body recombination losses. In
unitarity, the energy dependent cross-section leads to a runaway evaporation
regime. In contrast, with caesium these recombination losses are not suppressed
and, in fact, scale with the scattering length a as a4 [90]. An alternative approach
is to use a magnetic gradient to levitate the atoms out of the trap. In this method,
the frequency of the trap remains constant and a runaway evaporation regime is
also reached [91].

5.3.4 Feshbach Molecules

Feshbach molecules can be formed by two different methods. The first is by
magneto-association, where a cold sample is held in the trap while the magnetic
field is swept across a resonance [50, 92]. An alternative method, which is employed
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in this work, is to keep the atoms at a fixed magnetic field where a molecular
state exists. Then, a molecule is formed through a three-body collision which is
required to conserve energy and momentum in the process. Conversely, when a
molecule collides with an atom, it may dissociate into individual atoms. Both
processes take place simultaneously and for slow enough evaporation ramps, an
atom-molecule equilibrium is reached [93]. The molecule-to-atom ratio is given by

Nmol

Nat

= φate
−Eb/kBT , (5.2)

where Eb = h̄2/ma2 is the binding energy of the Feshbach molecules as obtained
with the model described in Section 2.5, T is the temperature and φat is the
atomic phase-space density [93].

For evaporative cooling to continue after molecule formation takes place, it is
necessary that a high collision rate is maintained. This rate is dependent on the
trap frequency, the density and the molecule-molecule scattering length. The trap
frequency is the same for the molecules as it is for the free atoms despite the mass
being double because the polarisability of the molecules is also double [21]. The
density of molecules is half of the atomic density. Finally, the molecule-molecule
scattering length am is proportional to the atom-atom scattering length a and is
given by [88]

am = 0.6a.

An important loss mechanism of Feshbach molecules occurs in an atom-molecule
collision where a dimer collides with a particle and becomes more tightly bound.
In such a collision the binding energy is converted into kinetic energy and the
collision partners are lost from the trap. Nonetheless, following the analysis in [88]
for a two-component mixture of fermions, which is the case of this work, these
collisions are suppressed due to Pauli’s exclusion principle. Thus, these results
indicate that this system exhibits a remarkable stability as compared to its bosonic
counterparts. While the fermionic suppression of three-body collisions inhibits
the formation of tightly bound dimers through collisions, it does not limit the
formation of Feshbach molecules through the same type of collisions. This is also
analysed in [88] and, to understand why this happens, it is important to note that
Feshbach molecules have a size on the order of the scattering length a. This length
determines the distance the atoms need to approach each other for the collision to
result in the formation of a Feshbach molecule. A deeply bound molecule on the
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other hand has a much smaller size Rd � a and the probability of three atoms
being within this distance is reduced because of to the exclusion principle by a
factor proportional to a power of (Rd/a).

5.4 Bose-Einstein Condensation

Pushing evaporative cooling further causes the molecular gas to undergo a phase
transition in which a macroscopic occupation of the ground state of the confining
potential occurs. Thus, the molecular gas can be understood as having a condensed
fraction, containing all the molecules in the ground state of the trap, and a thermal
one, comprising the rest. In this section, the process of condensation and properties
of this gas are discussed.

5.4.1 Final Stage of Evaporation

The atom number as evaporation progresses is shown in Figure 5.18. This
measurement includes both the condensed and thermal fractions and does not
discriminate between pairs of atoms in a molecular state and single atoms. The
behaviour is similar to previous evaporative cooling stages in that the atom number
decreases linearly, in proportion to the trap depth.

The production of a Bose-Einstein condensate may be detected by observing a
bi-modal distribution [16, 17]. However, as shown in the following subsections,
strong interactions between the molecules decreases the contrast between the
thermal and condensed fraction and hence, the visibility of the latter. A natural
step towards better detection of the condensate would be to decrease the scattering
length before release, in order to improve its visibility. However, decreasing the
scattering length increases the binding energy of the Feshbach molecules according
to Eb = h̄/2ma2, making imaging not possible. Thus, a compromise must be made
between the contrast of the two fractions and the visibility of the individual atoms
during imaging. Setting the magnetic field to 700 G ensures that the molecules
can be imaged [94] while the two fractions can still be distinguished.

In the present scheme depicted in Figure 5.19, evaporative cooling has been
carried out at 800 G after which, the magnetic field is changed to 700 G in order
to make the bimodal distribution most apparent. The field is changed in a span of
at least 40 ms, while the atoms are still held by the dipole trap, to ensure that no
unwanted currents are excited in the vacuum chamber. As a result, the densities
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Figure 5.18: Total atom number as a function of trap depth during evaporative
cooling. Atom number is measured using absorption imaging.
Error bars represent the statistical standard error. Each point
was measured 6 times.
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Figure 5.19: Timing during the final stage of evaporative cooling. The optical
dipole trap is switched off at the end of evaporative cooling
and imaged after some time of flight. Different values for the
final trap depth and magnetic field have been used to vary the
temperature and strength of interactions.
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5ms time of flight

Figure 5.20: Density after time-of-flight at various stages of evaporation. Left:
thermal gas above the transition. Middle: both thermal and
condesate fractions are present. Right: virtually pure condensate.

presented in Figure 5.20 are measured for final evaporation trap depths of 3.7 µK,
2.9 µK and 1.6 µK. For this figure, the optical dipole trap is extinguished and
the atomic distribution is measured after 5 ms of time of flight, allowing for the
bimodal distribution to become discernible. It clearly shows the emergence of a
bimodal distribution with an almost pure BEC for the lowest depth of dipole trap
of 1.6 µK.

To better analyse the presented results, the coming subsections describe the
properties of a bosonic gas containing condensed and thermal fractions mostly
following the theory presented in [65, 95]. It is followed by a more detailed
discussion of the experimental results.

5.4.2 In-trap Density

In the case of a non-interacting gas in a harmonic potential given by

V (r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2),

the condensed fraction density is given by the harmonic oscillator ground state
wave function ψ0(r) =

(
mωho

πh̄

)3/4
exp

[
−m

2h̄
(ωxx

2 + ωyy
2 + ωzz

2)
]
and the number

of atoms in the ground state N0 by

n0(r) = N0|ψ0(r)|2,
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where ωho = (ωxωyωz)
1/3. Thus, the distribution of particles of the condensed

fraction has a Gaussian shape with a width determined by the oscillator length

aho =

√
h̄

mωho

.

It is worth noting that the size of a non-interacting condensate is independent of
the number of atoms. The density of the thermal part can be found using the
Bose-Einstein distribution and is given by

nTh(r) =
1

λT
g3/2(eV (r)/kBT ),

where g3/2(z) is the polylogarithm function of order 3/2 [96], and the thermal

wavelength is λT =
√

2πh̄2/mkBT . The ratio of the square width of the thermal
and condensed part in the direction k = x, y, z is

〈r2
k〉Th

〈r2
k〉0

= 2
ζ(4)

ζ(3)

kBT

h̄ωk
,

with ζ being the Riemann zeta function. Thus, since kBT � h̄ωk, the two fractions
are clearly discernible. Furthermore, the ratio of the densities at the trap centre
of the respective components is

nTh(0)

n0(0)
= ζ

(
3
2

)( kBT
h̄who

)3/2

,

so the contrast between the two fractions is high and this allows them to be clearly
distinguished by measuring the atomic density in the trap.

However, the ideal approximation is far from appropriate for our system and
thus, interactions need to be accounted for. As repulsive interactions come into
play, the distribution of the condensed fraction becomes wider and the peak
density decreases. This does not affect the thermal fraction as much since in this
case the kinetic energy still dominates. The limit in which the interaction energy
dominates the condensate dynamics and the kinetic energy can be neglected is
the Thomas-Fermi regime. The extent to which this approximation is valid is
determined by the Thomas-Fermi parameter

aN

aho

,
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where a is the molecule-molecule scattering length.

In this experiment the Thomas-Fermi parameter is on the order of 103 therefore,
it falls well within the Thomas-Fermi description. In this description the number
density is given by

nTF(r) =
1

g
(µTF − V (r)) ,

where g = 4πh̄2a
m

is the coupling strength and the chemical potential µTF is
determined by a normalisation condition; it has the form

µTF =
h̄ωho

2

(
15Na

aho

)2/5

.

For a harmonic potential, the density takes the form of an inverted parabola

nTF(r) = nTF(0) max

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

, 0

)
, (5.3)

with

Rk = aho

(
15Na

aho

)1/5
ωho

ωk

for k = x, y, x, and

nTF(0) =
1

8πa2
hoa

(
15Na

aho

)2/5

.

The ratios of the sizes and densities of the two fractions can now be calculated
for the interacting case and are both on the order of unity for our experimental
parameters. This means that for a strongly interacting system, it is not easy to
distinguish the condensed and thermal fractions with in-trap measurements. Tak-
ing advantage of the different expansion dynamics for the thermal and condensed
part, time-of-flight images are generally used to study the system [95].

5.4.3 Expansion

In this subsection the expansion dynamics are discussed. First, the theory pre-
sented in [97, 98], which describes the expansion process is outlined. Then, when
comparing with measurements of the release of the cloud from the trap we have
observed interesting behaviour (shown in Figure 5.21), which is analysed in detail
within this framework. It is partly caused by the strong interactions in the cloud
and partly due to the residual magnetic trapping potential.
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Upon release from the trap, the thermal part will undergo ballistic expansion
and therefore, the size of the cloud in the direction k = x, y, z, denoted by σk(t),
will increase according to

σk(t)
2 = σk(0)2 +

kBT

m
t2, (5.4)

as was shown in Section 3.5.1. It is worth noting that the size grows at the
same rate in all directions and for long times defined by kBT

m
t2 � σk(0)2, it

attains a spherically symmetric distribution regardless of the shape of the trapping
potential.

In contrast, for an anisotropic trapping potential, the expansion of the con-
densed part is also anisotropic. This occurs for both an ideal gas and a strongly
interacting one. In both cases an inversion of the aspect ratio is observed. However,
it is for different reasons that this occurs.

The momentum distribution in the trap is the Fourier transform of the spatial
wavefunction. For an ideal gas this distribution does not change during free
fall and thus, the expansion dynamics are determined by this. The uncertainty
relation dictates that where a particle’s spatial wavefunction is tightly confined, the
corresponding momentum wavefunction will have a large spread. Therefore, the gas
will expand faster along the more tightly confined directions [65]. In comparison,
for a condensate in the Thomas-Fermi regime, the anisotropic expansion is a result
of the repulsion, both in-trap and during expansion [65].

In general, the dynamics of an interacting gas in a harmonic trap with time-
dependent frequencies can be described with a classical model in which each
particle experiences a force

F(r, t) = −∇ (U(r, t) + gρ(r, t)) ,

where ρ(r, 0) = nTF(r) as introduced in [97, 98]. In particular, the release from the
trap corresponds to a sudden change in all the trap frequencies to zero. With this
model, the distribution, which is originally an inverted parabola as in Equation 5.3,
will continue to be an inverted parabola that is rescaled according to

Rk(t) = Rkbk(t).

After applying this ansatz to Newton’s second law, the scaling factors bk(t) are
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found to behave according to [97]

b̈k =
ω2
k(0)

bkbxbybz
− ω2

k(t)bk. (5.5)

The initial conditions are bk(0) = 1 and ḃk(0) = 0 since the cloud is initially at
rest. The expansion is well described by this classical approach and does not
depend of the interaction strength. The quantum mechanical aspect is relevant
only in determining the initial density in the trap.

For an axially symmetric, elongated trap where the aspect ratio λ = ωz/ω⊥ � 1,
an analytic approximate solution of Equation 5.5 is available

b⊥(τ) =
√

1 + τ 2

bz(τ) = 1 + λ2
(
τ arctan τ − ln

√
1 + τ 2

)
with the dimensionless time τ = ω⊥t. These results show that the gas expands
rapidly in the directions of strong confinement while in the other direction the
expansion is suppressed by a factor of λ2 [95].

In the Thomas-Fermi regime, the expansion of the condensate does not reflect
the momentum distribution of the system in the trap since it changes during
expansion due to the released interaction energy. However, the in-trap distribution
can be determined through Bragg spectroscopy [99].

5.4.4 Condensate Properties

Using the theory presented in the previous subsections as a framework, the
experimental measurements resulting from releasing the atomic cloud, shown in
Figure 5.21, are discussed. In this figure, a strongly interacting BEC is produced
at 800 G and an oscillation in the aspect ratio of the cloud is observed after it is
released. Regardless of the regime (thermal, ideal or Thomas-Fermi), upon release
from the trap, the previously discussed theory predicts that the cloud size should
increase in every direction albeit not necessarily at the same rate in contrast with
what is observed.

To have a more quantitative description of the observed dynamics, a new
measurement is carried out with an expansion at 700 G where the thermal and
condensed fractions can be distinguished. Then, a bimodal Thomas-Fermi fit is
calculated for each of the shots as described below. For the condensed part, the
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Figure 5.21: Atomic density after release from the optical dipole trap for
different times of flight. Evaporation and expansion takes place
in a magnetic field of 800 G. The final trap depth before release
is U0/kB = 1.1 µK. Time of flight indicated under each image.

Thomas-Fermi distribution, presented in Equation 5.3, is used as a model. For
comparison with the measured density profiles, these are integrated along each
axis and compared separately. The three-dimensional Thomas-Fermi distribution
is twice integrated to obtain a one-dimensional distribution, resulting in

nTF(x) = max

[
15N0

16Rx

(
1− x2

R2
x

)2

, 0

]
,

where N0 is the number of condensed molecules and Rx is the condensate size. The
analysis of the thermal fraction is carried out approximating the distribution of
the thermal fraction by a Gaussian distribution. The one-dimensional distribution
is

nTh(x) =
NTh√
2πσx

exp

(
− x2

2σ2
x

)
.

Here, NTh is the number of thermal molecules and σx determines the width of the
distribution. The total density

n(x) = nTh(x) + nTF(x), (5.6)

is fitted to the measured profile.

The resulting widths for the thermal and condensed fractions are plotted in
Figure 5.22. Here, the sizes are shown as a function of time after extinguishing the
light of the optical dipole trap. While in the x direction, expansion is observed as
expected, it is striking that both the thermal and condensed fractions decrease in
size in the y direction.

The explanation to this and to the observed oscillations in the aspect ratio, lie
in the different contributions to the trapping potential. Recalling Figure 4.25, there
is a magnetic contribution from the field that is used to control the interactions
together with the contribution from the optical dipole trap. At the point where
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Figure 5.22: Release dynamics of thermal and condensed fractions after extinc-
tion of the dipole trap. For each shot, a bimodal fit is calculated
from which the different widths are extracted. The sizes of the
thermal (Th) and Thomas-Fermi (TF) fraction are reported sep-
arately as a function of time. A decrease in size is observed in
the y direction which is not consistent with a free expansion.
Error bars show the standard deviation calculated from three
repetitions. The lines shown are a moving average shown as a
guide to the eye.

the BEC phase transition occurs, the magnetic contribution becomes comparable
to that of the optical dipole trap. Moreover, this field is on during imaging and
therefore, extinguishing the light of the optical dipole trap does not result in a free
expansion of the atomic gas. Thus, care must be taken to analyse this behaviour.

Using Equation 5.5 the residual trap, that arises from the magnetic field, can
be accounted for during the expansion. The plot shown in Figure 5.23 depicts
the evolution of the cloud size for the data shown in Figure 5.21 together with a
numerical solution of Equation 5.5. For this figure, the overall size of the cloud is
used, which includes both the thermal and condensed fractions. The numerical
solution is calculated using the trap frequencies obtained in the analysis shown in
Figure 4.25. The trap frequencies change from (ωx, ωy, ωz) = (867, 245, 804)s−1 to
(236, 236, i322)s−1 (The i =

√
−1 on the frequency indicates that the potential

becomes anti-trapping in that direction since V (z) ∝ ω2
z ). This change corresponds

to turning off the contribution of the light to the potential while leaving the
magnetic contribution. With this model the positions of the maxima and minima
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Figure 5.23: Dynamics of the atomic cloud after release from the optical dipole
trap. The points mark the measured values in each direction.
Solid lines are numerical solutions of Equation 5.5 without any
free parameters. The data shown in this figure was obtained from
the measurements shown in Figure 5.21. There is an agreement
in the positions of the maxima and minima of the theoretical
and experimental data.

are accurately reproduced. However, the amplitude of the oscillation does not
match the predicted value. A reason for this may be that the model only accounts
for the behaviour of the condensed fraction. It is expected that when including
the thermal fraction in this analysis, the minima become less pronounced as it is
seen in the measured data. This is because at the moment of release from the
optical trap, the thermal atoms are moving in random directions and thus, the
arrival times at the centre of the trap will not be the same for all of them. This
spread on initial conditions will limit the minimum cloud size that can be obtained
through these oscillations.

Whilst in the current setup the atomic cloud does not truly undergo free fall,
the expansion in the direction in which the trap frequency changes the most during
release, can be used to estimate some of the parameters such as the temperature
and condensate fraction. In this case, a free expansion may be assumed for short
times (compared to the trapping frequencies).

In order to determine the condensed fraction of the density profiles shown in
Figure 5.20, they are integrated along one direction resulting in the profiles shown
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Figure 5.24: One-dimensional density profiles at various stages of evaporation.
Condensate fraction increases as as the depth of the dipole trap
is decreased. Error bars on the data are statistical. A bimodal
function comprised of a Gaussian and an inverted parabola is
used to fit the data. The trap depth U0/kB at which each profile
is measured is indicated under it.

in Figure 5.24 and fitted with the bi-modal Thomas-Fermi distribution given by
Equation 5.6.

Figure 5.24 has been produced with the same data as the one used for
Figure 5.20 and therefore shows the density after 5 ms of time of flight. Be-
fore and during the expansion, the magnetic field is set to 700 G, corresponding
to a scattering length a ≈ 1600a0.

The temperature is estimated as described in Section 3.5.1 with the difference
that only the thermal fraction’s width is used in this calculation and also, only
the short-time expansion of the tightly confined axis is considered. By doing this
analysis, a semi-ideal approximation has been carried out in which the condensate
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Figure 5.25: Temperature estimate during the final stages of evaporation.
Error bars represent the standard deviation.

and thermal fractions are assumed not to interact with each other. Furthermore,
in this approximation, the condensate fraction is assumed to have contact self-
interaction whilst the thermal part is non-interacting. In reality, this is not the
case and there is interaction among all of the components. To accurately measure
the temperature, interactions would need to be turned off suddenly, fast with
respect to the trap frequencies, before releasing the atoms. Alternatively, using
a Hartree-Fock model [100], interactions between the thermal and condensed
fractions can be accounted for. With this tool, thermodynamical properties such
as the temperature and chemical potential may can be determined more accurately.

Estimated temperatures during the final stage of evaporation, corresponding
to the profiles of Figure 5.24 are reported in Figure 5.25. Here, the temperature at
each point is determined using two absorption images. One in-situ and a second
with a time-of-flight of 5 ms. The temperature is determined using the thermal
width obtained from the bimodal fit and evaluated using Equation 5.4. Only where
there is a sizeable thermal fraction it is possible to determine the temperature,
which is why the pure condensate point has been excluded. Estimating the
temperature assuming a free expansion of the cloud, whilst in reality there is a
residual magnetic potential, results in an under-estimation of the temperature.

One of the parameters obtained from fitting the bimodal distribution is N0:
the number of condensed atoms. With this, the condensed fraction fc can be
readily calculated according to fc = N0/Ntotal, the result of which is shown in
Figure 5.26. The total atom number Ntotal is the one presented in Figure 5.18
measured through absorption imaging.
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Figure 5.26: Condensed fraction at various stages of evaporation. Values
are obtained from the bimodal fit of the data in Figure 5.24.
Reported errors are derived from the fits and the statistical
uncertainty associated to the total atom number. Each point
has been measured 6 times.

With these measurements it is shown that an almost pure condensate with
104 molecules at a trap depth of 1.6 µK was produced.
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Chapter 6

Conclusions and Outlook

A new versatile experimental apparatus capable of cooling both lithium-6 and
caesium-133 has been established. With it, molecular Bose-Einstein condensates
of lithium containing 104 molecules are now routinely produced and important
steps towards producing quantum degenerate caesium gases have been made.

Several aspects involved in an experiment with ultracold atoms have been
developed as part of the work for this thesis. The laser system, for example, is
relevant at all stages of the experimental sequence as it is used for the Zeeman
slower, as part of the magneto-optical trap (MOT), to produce the optical dipole
trap and to perform absorption imaging of the atoms. Additionally, magnetic field
generation is a requirement for implementing some of these techniques as well
as for exploiting the wide tunability of the inter-atomic interactions present in a
lithium-caesium system. Another aspect which was addressed in this work is the
vacuum apparatus which, in spite of playing mostly a passive role, has implications
on both the laser system, by limiting the optical access, and in the magnetic field
generation, by imposing geometrical constraints. Furthermore, the influence of the
stainless steel chamber on the magnetic fields was analysed. The orchestration of
all the components in this experiment is carried out by a computer control system
for which software to realise and execute experimental sequences was developed.

The experimental sequence begins by loading a MOT with atoms using a novel
dual species Zeeman slower, the design of which was published [1]. Afterwards,
the atoms are transferred to a far-off-resonance optical dipole trap in which the
fundamental cooling limits encountered in the MOT can be overcome through
evaporative cooling. This trap is produced by crossing two laser beams at the
centre of the vacuum chamber. After this transfer, evaporative cooling was
performed on lithium by decreasing the dipole trap power and adjusting the
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scattering length using magnetic Feshbach resonances. As evaporation progresses,
the phase-space density increases and individual fermionic atoms bind to form
bosonic Feshbach molecules which, when the phase-space density reaches a critical
value, form a Bose-Einstein condensate (BEC). The resulting condensate has
been analysed with respect to molecule number, condensate fraction, expansion
dynamics and temperature.

A better characterisation of the produced molecular BEC is to be obtained in
the near future by using a Hartree-Fock finite-temperature model. With this model,
the temperature and chemical potential of the strongly interacting condensate
may be determined with in-situ measurement of the density distribution [100].

Moreover, the constructed experimental system is also capable of cooling and
trapping caesium. At present, 2×106 atoms have been loaded into the dipole trap.
An additional laser, which produces a trap that has a large volume, promises to
increase this number and facilitate BEC formation for caesium in a dimple-trap
configuration. After implementing evaporative cooling of caesium, an apparatus,
capable of producing doubly degenerate gases, is within reach.

Whilst the techniques for lithium and caesium have been developed separately
throughout this work, the system has been designed with the prospect of combining
them in mind. Sequential loading of magneto-optical traps of each of them can
already be carried out and it is a sensible technique to use for this mixture [70].
The equipment to control magnetic fields, necessary to combine both species in
the dipole trap, is in place and the control system has the flexibility to readily
add the required steps.

The molecular lithium BEC is a remarkable system. Changing the interaction
strength between the atoms allows exploring the crossover between the Bose-
Einstein condensate and degenerate Fermi gas regimes. A paradigmatic system
in which to study this crossover is in a double well potential. In this, the
scattering length is expected to have an effect on the tunnelling and self-trapping
dynamics [101–104]. Effort to produce this double well potential and include it in
the system is already under way.

Combining both species in the optical dipole trap will open the possibility to
begin exploring impurity physics with a small admixture of caesium in a large
ultracold lithium bath. The wide tunability of interactions between lithium and
caesium allows uncovering a diverse set of phenomena. For instance, a gas with
only inter-species (LiCs) interactions may be produced [28]. This is done by
having a polarised sample of fermionic lithium-6 in which lithium-lithium s-wave
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collisions are suppressed. Furthermore, lithium-caesium Feshbach resonances are
close to a zero-crossing of the caesium-caesium scattering length so the intra-
species interactions may be suppressed while the inter-species are enhanced. A
system like this is well suited to realise and study the Fröhlich polaron Hamiltonian
which describes the interactions between the electrons and ions in a solid [28].

Adding impurities to the double-well potential discussed before, the Dicke
model can be realised [105, 106]. Within this framework, the wide tunability
of interactions, would facilitate the exploration of a quantum phase transition
present in this model [105].

Theoretical investigations of degenerate Bose-Fermi mixtures predict the dis-
appearance of the Bose-Einstein condensate as the coupling between the bosons
and fermions increases [107, 108]. However, in the intermediate coupling regime,
boson-fermion interactions induce a boson-mediated fermion-fermion attraction
which destroys the Fermi sea [107]. These phase transitions have not been observed
yet and the tunability of the system presented in this thesis is an ideal candidate
for their exploration.
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