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Summary

This thesis investigates the use of problem-specific knowledge to enhance a genetic
algorithm approach to multiple-choice optimisation problems. It shows that such
information can significantly enhance performance, but that the choice of information
and the way it is included are important factors for success. Two multiple-choice
problems are considered. The first is constructing a feasible nurse roster that considers
as many requests as possible. In the second problem, shops are allocated to locations in
amall subject to constraints and maximising the overall income. Genetic algorithms are
chosen for their well-known robustness and ability to solve large and complex discrete
optimisation problems. However, a survey of the literature reveals room for further
research into generic ways to include constraints into a genetic algorithm framework.

Hence, the main theme of this work is to balance feasibility and cost of solutions. In
particular, co-operative co-evolution with hierarchical sub-populations, problem
structure exploiting repair schemes and indirect genetic algorithms with self-adjusting
decoder functions are identified as promising approaches. The research starts by
applying standard genetic agorithms to the problems and explaining the failure of such
approaches due to epistasis. To overcome this, problem specific information is added
in a variety of ways, some of which are designed © increase the number of feasible
solutions found whilst others are intended to improve the quality of such solutions. As
well as a theoretical discussion as to the underlying reasons for using each operator,
extensive computational experiments are carried out on a variety of data. These show
that the indirect approach relies less on problem structure and hence is easier to
implement and superior in solution quality. The most successful variant of our
algorithm has a more than 99% chance of finding a feasible solution which is either
optimal or within afew percent of optimality.



Contents

1 INTRODUCTION ...ooiiiiiiiiticeiiesieee et 1
1.1 THENATURE OF THE PROBLEM ...cccviiiiiiiiiiieesieeessieeessseessseessssesssssessssseesnneesssenesns 1
1.2 THE SOLUTION METHOD AND RESULTS ...cuttiiiiieiiieeesieessieessssesssssesssssesssnsessnenesns 2
1.3 THE STRUCTURE OF THE THESIS......tttiitieeiieeeiteeeesieeessteeesseesssneessssesssnseessnnessnsenesns 4

2 INTRODUCTION TO NURSE SCHEDULING........cccoociiiininineceeeecee, 6
2.1 PROBLEM FORMULATION ...cuutiiitteeesiteeasteeesssesesseeesseesssseeesssessssseessssessnsssssnseessnsenes 6
2.2 INTRODUCTION TO NURSESCHEDULING .....uvttiiiiiesreeasireessisesssssesssssessnsnessnseessnnes 14
2.3 CYCLICNURSE SCHEDULING ...cutttietieeeitereeteeesresesseeesssesssssesesssesssssessnssessnssessnnes 15
2.4 LINEAR, INTEGER, CONSTRAINT AND GOAL PROGRAMMING ......covvverrireresinenennnes 16
2.5 HEURISTIC SCHEDULING ....cuttiiitiiesitieessieeesieeesseessseessssesssssesssssessnssessnsanssnsenssnnes 19
2.6 META-HEURISTIC SCHEDULING.....ucttttestirateestessreessesssseessessssesssessssesssessssesssessnns 20
2.7 CONCLUSIONS ... .uuiiiutieeiutisesstesasstesasseeeasseessssaeaassesesseesssseessssessassesssssessnsenssnsenesnes 23

3 GENETIC ALGORITHMSFOR CONSTRAINED OPTIMISATION .......... 25
3.1 GENETIC ALGORITHM INTRODUCTION ....uvvviiiirisiieesssrensssseessssesssssesssssessssenssnsenesns 25
3.2 CONSTRAINED OPTIMISATION WITH GENETIC ALGORITHMS.....ccuveeiiieecreeesineeens 28
3.3 IMPLEMENTING CONSTRAINTSINTO THE ENCODING.....ccctiiiiieiriiee e siiee e 29
3.4 PENALTY FUNCTIONS . ...cctiieciieeeiie e etee st e stee s e e e s e e s snae e esnneesneeesnaeesneeeens 30
3.5 REPAIR .o 33
3.6 SPECIAL OPERATORS.....ccittteittteiteeesiteessseeesseeessesessseesassesssssessssseessssessnsenssnseneans 36
3.7 DECODERS.......cttiittiiiitiieaiteeesiteeesteeestee s ste e s sbe e e ssse e s ssbeesasseesasaeesanseesabeeesneeesneeeans 37
3.8 MISCELLANEOUSIMETHODS.....ccccttiiiteeesreeesresessesssssesssssesssssesssssessssssssnsenssnsenssns 42
3.9 CONCLUSIONS ...cotiiiuteesteeeteesteseteesseeessesssesasseesssessessssesnsesssseensessssesssessnsesssesssenns 46

4 A DIRECT GENETIC ALGORITHM APPROACH FOR NURSE

SCHEDULING ...ttt n e sn e n e e sreenne e 47
4.1 ENCODING OF THE PROBLEM ....cciitiiiiiiiiisiriessieesssieessseessseesssesssssesssssessnsnnssnsenssns 47
4.2 DESCRIPTION OF EXPERIMENTS.....cceiiiieiitieeesieeeesieeeeieeesseeesneesssseessnnessnsnessnsenesns 52

4.3 PARAMETER AND STRATEGY TESTING ..iciuttiiitieeerieiesieeesieesssesssssesssssessnsaessnsenssns 53



CONTENTS VI

4.4 DYNAMICPENALTY WEIGHTS...ii ittt iiiiiesiteessitesssieessieessseesssesssssesssssessnsaessnnenssns 68
A5 CONCLUSIONS....cccutteiteeesteeesteeesseeessesaasseeaasesesssseeasseesasseesssseesssseessssessnsenesnsenesns 73
5 ANENHANCED DIRECT GENETIC ALGORITHM APPROACH FOR
NURSE SCHEDULING ..ot 75
5.1 EPISTASISORWHY HASTHE GENETIC ALGORITHM FAILED SOFAR? ...ccccvviiiieens 75
5.2 CO-OPERATIVE CO-EVOLUTION ..coctiiiiiiie it ctee st sree st s 78
5.3 SWAPSAND DELTA CODING....ccutiitirstiestiraieessesstesssessseessessssesssesssesssesssesssessnns 87
5.4 HILL-CLIMBER, REPAIR AND INCENTIVES .....ciiiitiiiiieeeiieeesreeessesesnseesnsnessneee s 94
5.5 CONCLUSIONS .....cciiiieeeitieeeseeeestteeesseeeaseeessseeesseeesseesasseesssseeessseesaseeesnseeesnsenesns 100
6 ANINDIRECT GENETIC ALGORITHM APPROACH FOR NURSE
SCHEDULING ...ttt 103
6.1 WHATISAN ‘INDIRECT’ APPROACH?.....uttiiitiieiitieestieesieesssiessssnessssaessnnaessneeenns 103
6.2 PERMUTATION CROSSOVER AND MUTATION....cuteeitieeereeeseeeesieeeenseeesneeeeneeeens 105
6.3 THE DECODER FUNCTION .....uttiiiiiieiiriesieeesieessseessseessssesssssesssssessnssessnseessnsenssns 110
6.4 PARAMETER TESTING.....uttiiitieeitieeesiieeeieeesteeesseessseeesssesesssesesssessnssessnssnssnssnsans 119
6.5 DECODER ENHANCEMENTS ....ciiiuiiiiiiiesieeesieeesneessireeesiseesssseessssessnssessneessnneenns 126
6.6 EXTENSIONS OF THE NURSE SCHEDULING PROBLEM.......ccoiiieiiiieeeiireesiieeeieeens 135
6.7 CONCLUSIONS .....ueiiueiiteesueeesteesseeassesssessseesseessesssessssesssesansesssesssesssessnsesssessnsenns 140
7 THE MALL LAYOUT AND TENANT SELECTION PROBLEM .............. 142
7.1 INTRODUCTION TO THE PROBLEM ....ccccuviieeiiiieeeecireeeesssteeeeesnseeeesssnneseensnnneesnnns 142
7.2 SIMPLE DIRECT GENETIC ALGORITHM APPROACH .....ccictiisieeerireessseeesnseessseennns 144
7.3 ENHANCED DIRECT GENETIC ALGORITHM APPROACH ....cccveeeiieeeiieeesineeesieeens 164
7.4 INDIRECT GENETIC ALGORITHM APPROACH ....ccuviiiiiiisirenssiiesssssesssssessnseessnseesnns 173
7.5 FURTHER DECODER ENHANCEMENTS ...utttiiiiiieessiureeeesssreeessssseeessssssnesssnssnessnnns 179
7.6 NURSE SCHEDULING REVISITED ...cocittiiiiiiiiieiesieessieessseessisesssssesssseessneessneeenns 186
7.7 CONCLUSIONS ... .coeiiutiriiutisesitesasisesasseeeassseessseesssseesssseessssesesssesesssessnssnssnssnssnsenesns 187
8 CONCLUSIONSAND FUTURE RESEARCH ......coooiiiiiicccee e 190
8.1 CONCLUSIONS .....ueiiiutireiutirestesesitesesseeeaseeessseesasseesssseeesssesesssesesssessnsseesnsenssnsenesns 190
8.2 FUTURE RESEARCH ....ccciuiiiiiiiiecsiiee ettt e sttt e s teeestee e sseessneeeesneeeennneeenneeesnneesnneeens 194

BIBLIOGRAPHY .o 197



CONTENTS Vi

APPENDIX A GENETIC ALGORITHM TUTORIAL ... 209
APPENDIX B SUMMARY OF DIPLOM THESIS........ccieeeeeeeee 222
APPENDIX C NURSE SCHEDULING DATA ... 225
APPENDIX D ADDITIONAL NURSE SCHEDULING RESULTS........cccceeuee. 232
APPENDIX E MALL PROBLEM DATA ..o 242

APPENDIX F ADDITIONAL MALL PROBLEM RESULTS. ..o 245



List of Figures

FIGURE 4-1: POPULATION SIZE VERSUS AVERAGE AND BEST SOLUTION COST......ccccveennee 57
FIGURE 4-2: POPULATION SIZE VERSUS FEASIBILITY AND SOLUTION COST. ...ccovvrveevennnns 58
FIGURE 4-3: POPULATION SIZE VERSUS SOLUTION TIME. ..eeitviesiieesieessisesesssessnssessseessnnns 58
FIGURE 4-4: PENALTY WEIGHT VERSUSFEASIBILITY AND SOLUTION COST......cccceeeeruveennn. 59
FIGURE 4-5: PERFORMANCE OF DIFFERENT TYPES OF CROSSOVER STRATEGIES. ............... 62

FIGURE 4-6: VARYING THE MUTATION RATE VERSUS FEASIBILITY AND SOLUTION COST. .63

FIGURE 4-7: COMPARISON OF DIFFERENT REPLACEMENT STRATEGIES. ...coovvveeinvieeiveeesanns 65
FIGURE 4-8: STOPPING CRITERIA VERSUS FEASIBILITY AND SOLUTION COST. ......cccvvveennne 66
FIGURE 4-9: STOPPING CRITERIA VERSUS SOLUTION TIME. ..vvviivieesiieessireesssseesnseeesseeesnns 67

FIGURE 4-10: COMPARISON OF VARIOUS TYPES OF DYNAMIC PENALTY WEIGHT
STRATEGIES. ..cen e e 172

FIGURE4-11: DEVELOPMENT OF DYNAMIC PENALTY WEIGHTS UNDER THREE STRATEGIES.

FIGURE 4-12:. COMPARISON OF SIMPLE DIRECT GENETIC ALGORITHMSWITH TABU SEARCH
FOR NURSE SCHEDULING......vtutteteseseesesseseseessssesesessssssssesessssssssesesensssssesesenssssseseses 74
FIGURE 5-1: COMPARISON OF DIFFERENT MIGRATION TYPESWITH NO MIGRATION AND NO
SUB-POPULATIONS. 1.cuvvvvteseseesssesesesesessesesessssssesesessssssssesesenssssesesessssssssesesesssnseseses 87
FIGURE 5-2: RESULTS FOR VARIOUS TYPES OF SWAPPING......cceveveveresesieseseesssnssesesssssenns 90
FIGURE 5-3: COMPARISON OF SOLUTION QUALITY FOR VARIOUS DELTA CODING
PROBABILITIES. 1..vvetevestsisuesesesessssssesesessssssesesessssssesesessssssesesesssssssesessnsssssesessnssssseseses 93
FIGURE 5-4: DIFFERENT INCENTIVES (1), INCENTIVES AND REPAIR (R) AND DISINCENTIVES
() SRS 98
FIGURE 5-5: VARIOUS LOCAL HILLCLIMBING STRATEGIES. ...cccevevereuieiesrereseesesnesesensessnnns 99

FIGURE 5-6: COMPARISON OF NURSE SCHEDULING RESULTS FOR VARIOUS DIRECT

GENETIC ALGORITHM APPROACHES AND TABU SEARCH. ..c.vevveueetirieieesresieeesesse e 102
FIGURE 6-1: EXAMPLE OF ORDER BASED CROSSOVER. ...covvevuetertestessesseeseeeessessessessessenns 106
FIGURE 6-2: EXAMPLE OF PARTIALLY MAPPED CROSSOVER (PMX). ...ocviiieiecieiiece 108
FIGURE 6-3: EXAMPLE OF ORDER BASED UNIFORM CROSSOVER. ......cccvereeriereesseseessensenns 108

FIGURE 6-4: CROSSOVER OPERATORS AND OTHER VARIATIONS FOR THE COVER HIGHEST
DECODER. «.cuct i e e e 122



LIST OF FIGURES IX

FIGURE 6-5: CROSSOVER OPERATORS AND OTHER VARIATIONS FOR THE OVERALL
CONTRIBUTION DECODER. ....ivuiiiiiiiiiiiiiisies s s ssa s s s s s e s eans 123

FIGURE 6-6: WEIGHT RATIOS FOR THE OVERALL CONTRIBUTION DECODER........cccvivveenns 124

FIGURE 6-7: DIFFERENT SHIFT PATTERN ORDERINGS FOR THE OVERALL CONTRIBUTION

DECODER. . .cttiiiii it e e e e 126
FIGURE 6-8: COMBINED DECODER WITH DIFFERENT PREFERENCE WEIGHTS. .....ccveviueens 128
FIGURE 6-9: DIFFERENT TYPES OF CROSSOVER AND MUTATION. ..ccuvteeriieeeveeesieeesneeens 130

FIGURE 6-10: EXAMPLE OF CROSSOVER AND MUTATION BEFORE A BOUNDARY POINT...132
FIGURE 6-11: DIFFERENT WAY S OF USING BOUNDS. ....ccuvvieereresreeesreeesseeeessneessneessnseeeens 134
FIGURE 6-12: RESULTS OF THE EXTENDED NURSE SCHEDULING PROBLEM. ...ccccvveiveens 138
FIGURE 6-13:..COMPARISON OF RESULTS FOR DIFFERENT DATA SETSBETWEEN THE DIRECT

AND INDIRECT GENETIC ALGORITHM, TABU SEARCH AND XPRESSMP.................. 140

FIGURE 6-14: COMPARISON OF GENETIC ALGORITHM APPROACHES WITH TABU SEARCH.

............................................................................................................................... 141
FIGURE 7-1: FLOOR PLAN OF THE CRIBBS CAUSEWAY MALL NEAR BRISTOL. ........c........ 143
FIGURE 7-2: POPULATION SIZE VERSUS FEASIBILITY AND RENT. ...vviviieiieenieesieesieesneeans 159
FIGURE 7-3: POPULATION SIZE VERSUS AVERAGE SOLUTION TIME. ...evivuveeiiiieeeiieesnneens 160
FIGURE 7-4: STOPPING CRITERIA VERSUSFEASIBILITY AND RENT. ..eciteiiiieriiesieeniensneens 160
FIGURE 7-5: STOPPING CRITERIA VERSUS AVERAGE SOLUTION TIME. ..c.vvvviiiieeiieeesvaeens 161
FIGURE 7-6: PENALTY WEIGHT VERSUS RENT AND FEASIBILITY. weviicueeeieeeerineesieeeeneeens 162
FIGURE 7-7: SINGLE BIT MUTATION PROBABILITY VERSUS FEASIBILITY AND RENT. ....... 163
FIGURE 7-8: CROSSOVER OPERATORS VERSUS RENT AND FEASIBILITY. c.veveiieeriieesieeenns 164
FIGURE 7-9: COMPARISON OF VARIOUS TYPES OF DIRECT GENETIC ALGORITHMS. ......... 168

APPROACH. .cei it e 179
FIGURE 7-11: FINAL AVERAGE WEIGHTS FOR TWO INITIALISATION RANGES AND DIFFERENT

DATA SETS. e e e 182
FIGURE 7-12: DIFFERENT CROSSOVER STRATEGIES FOR THE INDIRECT GENETIC

Y I 1 N 8 | 184
FIGURE 7-13: CROSSOVER RATES FOR ADAPTIVE CROSSOVER AND A ‘RELAXED’ FILE. ..185
FIGURE 7-14: CROSSOVER RATES FOR ADAPTIVE CROSSOVER AND A FILE THAT IS‘TIGHT’

ON THE SHOP COUNT . 1uuiittiiituiesi s s sa s s aa s saa s s sa s raa s saa s saan s 185



LIST OF FIGURES X

FIGURE 7-15: CROSSOVER RATES FOR ADAPTIVE CROSSOVER AND A ‘TIGHT’ FILE......... 185
FIGURE 7-16.....VARIATIONS OF THE DECODER WEIGHTS AND CROSSOVER STRATEGIESFOR

THE INDIRECT GENETIC ALGORITHM SOLVING THE NURSE SCHEDULING PROBLEM. 187

FIGURE 7-17:VARIOUS GENETIC ALGOR THMSFOR THE MALL PROBLEM.........ccccuveeen. 189
FIGURE | : ROULETTE WHEEL FOR FIVE INDIVIDUALS. .....vvteiiieecieeesieeesssesessseesssnessnneeeens 213
FIGURE | |: SCHEMATIC FOUR-POINT CROSSOVER. ....ciiutieieesreestenssseessesssesssesssesssesssenns 215

FIGURE | l1: EXAMPLE OF ONE-POINT CROSSOVER GOING WRONG FOR PERMUTATION

ENCODED PROBLEMS. ...cuiiiiiiiiiii s saa s s s ee 215
FIGURE IV : EXAMPLE OF C1 ORDER BASED CROSSOVER. ....uvvviitreessresssssesssssessssnessssenesns 216
FIGUREV: TYPICAL GENETIC ALGORITHM RUNSWITH VARIOUS STRATEGIES. ............... 232

FIGUREVI: COMPARISON OF AVERAGE SOLUTION COST FOR VARIOUS TY PES OF GENETIC
ALGORITHMSAND A TYPICAL DATA SET . ettt na e 233
FIGURE VII: COMPARISON OF BEST FEASIBLE SOLUTION COST FOR VARIOUS TYPES OF
GENETIC ALGORITHMSAND A TYPICAL DATA SET . eviiiiiiiciiinr e, 234
FIGURE VIII: DETAILED RESULTS FOR BASIC GENETIC ALGORITHM. ..ccccveviiiieerieeenineanns 236
FIGURE | X: DETAILED RESULTS FOR A GENETIC ALGORITHM WITH DYNAMIC WEIGHTS
AND OPTIMISED PARAMETERS. ...ttt e 237
FIGURE X: DETAILED RESULTS FOR A CO-OPERATIVE CO-EVOLUTIONARY APPROACH. ..237
FIGURE XI: DETAILED RESULTS FOR A CO-OPERATIVE CO-EVOLUTIONARY APPROACH
WITH REPAIR AND INCENTIVES. ....uiiiiiiiiiiiiiiri i 238
FIGURE X|I: DETAILED RESULTSFOR AN INDIRECT GENETIC ALGORITHM WITH FIXED
DECODER WEIGHTS. .. ciuiiiiiiiiii it s rra s s e s s e na e ne 238
FIGURE XI11: .. DETAILED RESULTS FOR AN INDIRECT GENETIC ALGORITHM WITH DYNAMIC

CROSSOVER RATES AND DECODER WEIGHTS. .....vuvveeeeieesesesesesessssssssssssssssssssssssssnnns 239
FIGURE X1V : QUADRATIC PENALTY WEI GHTS. ...vvvvevverereeeeeteseresesesssesesesesssesssssssssesesns 240
FIGURE XV : MIGRATION OF FIVE BEST INDIVIDUALS OF EACH SUB-POPULATION........... 241
FIGURE XV I: RANDOM MIGRATION BETWEEN SUB-POPULATIONS. .....ocvevvevevereeeeeeererenans 241

FIGURE XV I|: RELATIONSHIP BETWEEN OBJECTIVE FUNCTION VALUE AND SHOP SIZES,

SHOPS IN GROUPS AND SHOPSWITH AN IDEAL SHOP COUNT. ...cuvviruuiiiniirnasennnenanns 245



List of Tables

TABLE4-1:INITIAL PARAMETER SETTINGS FOR THE DIRECT GENETIC ALGORITHM. ......... 54
TABLE 4-2: FINAL PARAMETER VALUES AND STRATEGIES FOR THE DIRECT GENETIC
1 o 68
TABLE 5-1: EXAMPLES OF BALANCED, UNBALANCED AND UNDECIDED SOLUTIONS. ........ 95
TABLE 6-1: PARAMETERSAND STRATEGIES USED FOR THE INDIRECT GENETIC ALGOR THM
AND NURSE SCHEDULING ....iviiiiiiiiiis i s s s s saa s saa e nan s 120
TABLE 7-1: SPECIFICATIONS OF MALL PROBLEM DATA SETS. .vtviiiiririreesniressnssesssenssnnns 152
TABLE 7-2: INITIAL PARAMETERS AND STRATEGIES OF THE DIRECT GENETIC ALGORITHM.

............................................................................................................................... 157
TABLE 7-3: PARAMETERS USED FOR THE INDIRECT GENETIC ALGORITHM . .....covurererenne. 175
TABLE 7-4: THREE TYPES OF WEIGHT SETTINGSFOR THE MALL PROBLEM DECODER.....178
TABLE | : EXAMPLE OF A WEEK ' SDEMAND FOR NURSES. ......cuvuiuieriissesessesesesessesesenens 225
TABLE | |: EXAMPLE OF NURSES’ GENERAL PREFERENCES AND QUALIFICATIONS. .......... 226
TABLE |11 EXAMPLE OF NURSES' WEEKLY PREFERENCES. .....c.cuvurerisesssssssssssnens 227
TABLE |V LIST OF ALL POSSIBLE SHIFT PATTERNS. ...cuvuvereeerereeserssssesssssssssssnens 230
TABLE V: EXAMPLES OF FINAL SHIFT PATTERN COST VALUES. .....uvieieeeresssssssnannns 231
TABLE VI: FULL GENETIC ALGORITHM, TABU SEARCH AND INTEGER PROGRAMMING

RESULTSFORALL DATA SETS. ..vviuiuiueuieetesesesesesesssesesssesssssesesssesssssesesssesesasssesesasesens 235
TABLE V112 PROBLEM SIZE. ..uvueuiuieeeeeeeessssssssssssssssssssssssssssssssssssssssssssssssssssssssssnss 242
TABLE V111 LOCATION DISTRIBUTION. ..ecuvuieiererererssessessssessssssssssesesssssssssssssnens 242
TABLE | X: GROUPMEMBERSHIP OF SHOPTYPES. ...ucuvuiueeeeesesesssssssssssessssssssssssnes 242
TABLE X: LIMITSON THE NUMBER OF SHOPS OF ONE SIZE ....evuvururerereserssssssssessenens 243
TABLE X|: EFFICIENCY FACTOR VERSUS SHOP COUNT. .....evureieiereresssesesessssssssnesnens 243
TABLE X1 ATTRACTIVENESS OF AREAS......curiurreeressrssessssisssossssssesssessssssssssssses 243
TABLE XII1: LIMITSON THE NUMBER OF SHOPS OF ONE TYPE ....ecuvuieieiirsssesssnanens 243
TABLE XIV: FIXED SHOP TYPE AND AREA RENT. ..ecuvuiereeereeesersessssssesesssssssssssnens 244
TABLE XV : GROUP BONUS FACTORS. ....cuururererarsesssssssssssesssssssssssssssssssssssnes 244

TABLE XV|: DETAILED MALL PROBLEM RESULTS. ..eiiteieiiieesreeesreesssneessssessnssessseessnnes 247



1 Introduction
1.1 TheNatureof the Problem

Multiple-choice problems come in many varieties: Choosing one’s lottery numbers,
deciding what to wear in the morning or assigning which shift pattern a nurse should
work. What all these problems have in common is that for each decision, be it alottery
number, piece of clothing or a worker, there is only one object we can assign to it.
Hence, these are known as multiple-choice problems. Also, there are usually a number
of hard and soft constraints of different importance guiding our decisions. For instance,
it is only alowed to choose a particular lottery number once (hard constraint) or one
would like to wear clothes that match each other (soft constraint). This thesis uses
genetic algorithms to optimise multiple-choice problems, with the emphasis on

balancing those soft and hard constraints.

In this research, we will concentrate on two multiple-choice problems with covering
congtraints.  The research was motivated by the first problem to be tackled, which is to
find work schedules for nurses in amajor UK hospital. The hospital operates 24 hours
per day using three shifts and nurses are graded into three bands. The required
schedules have to be calculated weekly and must consider various hard and soft
constraints.  For instance, schedules must be perceived fair by staff and thus the
preferences of nurses, their past working history and other objectives have to be taken
into consideration.  Furthermore, for each grade band and shift, strict covering

reguirements are set which must be met.

This problem was chosen for a variety of reasons. It is alinear problem but difficult to
solve due to the multiple-choice component. Thus, athough computationally
expensive, optimal solutions can be obtained for a comparison of results. Furthermore,
some insight into the problem structure existed from the tabu search approach reported
in Dowdland [55]. Additionally, the existence of a large number of rea-life data sets

allowed for aredlistic optimisation situation. The purpose of this research is not to find
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optimal solutions but to develop and compare new methods of handling constraints,

which can then be applied to more complex problems.

After developing suitable solution methods for this problem, we turn our attention to
mall layout and tenant selection. Although the problem and data in this case are
artificial, it is modelled closely after similar problems in real-life. This problem was
chosen as it is smilar to yet more complex than the nurse scheduling problem. In
particular, the objective is non-linear. The am is to place shops into locations of the
mall such that the overal revenue is maximised. This in turn maximises the rent
generated by the shops, the actual objective, as it is largely proportional to the revenue.
Constraints that have to be taken into account include upper and lower bounds on the
number of shops of one type and restrictions on the number of shops of a certain size
class. Soft constraints include some shops creating more revenue in certain areas of the

mall, synergy effects between similar shops and efficiency savings of larger shops.

1.2 The Solution Method and Results

The methods chosen to solve these multiple-choice problems are genetic algorithms.
They are inspired by evolution in nature and have the ‘survival of the fittest’ idea at
their heart. In contrast to other solution methods, they work with a population of
solutions in parallel and use stochastic crossover and mutation operators similar to those
found in nature. Recently, alot of interest has been shown in using genetic algorithms
to solve rea-life problems because of their flexibility and robustness. However,
canonical genetic algorithms are not function optimisers and in particular, there is no
explicit or generic way to include constraints. Thus, the purpose of this research is to
add to the knowledge in the area of constraint handling in a genetic algorithm
framework.
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In a pilot study to this thesis (Aickelin [4]), it was shown that the nurse scheduling
example is both a difficult and interesting problem to apply genetic agorithms to.
Results for a very limited number of data sets were promising, athough the main
stumbling block was as anticipated the constraints. It was concluded that once this was
overcome, the genetic algorithm would provide a robust and flexible solution method
for this problem. One of the first tasks of this research was to investigate if the results
found during the pilot study carry over for the much more extensive real-life data sets.
For further details of the pilot study, see the full summary, which is contained in

Appendix B.

Since the nurse scheduling problem is linear, optimal solutions for all data files are
known. This alows for a thorough comparison of the results of our various genetic
algorithm approaches. Additionally, Dowsland [55] solved the same problem with tabu
search. Both methods will be compared in terms of solution quality, robustness and
ease of including possible future expansions of the problem. Once successful genetic
algorithms are established, they are tested on the nontlinear mall layout problem. This
alows for more general conclusions to be drawn about the suitability of our ideas for

other scheduling and related problems.

Due to the nature of genetic algorithms, the focus of this thesis is on finding suitable
ways of striking a balance between the soft and hard constraints of the problem. Our
task is to find the best possible solution in terms of the soft constraints without violating
any of the hard constraints. Over the years, many ways of doing this within a genetic
algorithm framework have been suggested: Penalty functions, repair algorithms, special
genetic operators and decoders to name but a few. A comprehensive literature review

of these methods is provided.

In the course of the research, many of these traditional methods are applied to the nurse
scheduling and mall layout problems. In particular, two avenues of research are
followed: Direct genetic agorithms, which solve the actual problem themselves and
indirect genetic algorithms, which solve the problem in combination with externa

decoder functions. Although seemingly making things more complicated, the latter



INTRODUCTION 4

approach isin fact shown to be less complex. Thisis because it lends itself better to the
inclusion of problem-specific knowledge, which is the key to overcoming the problems,

caused by the constraints.

1.3 The Structureof the Thesis

An introduction to genetic algorithms, their operators and the theory behind this type of
meta-heuristic can be found in Appendix A. A summary of the pilot study for the nurse
scheduling problem, assessing its difficulty and suitability to the proposed optimisation
approach, is given in Appendix B. The rest of this work is structured in the following
way.

Chapter 2 introduces the nurse scheduling problem in hand and a corresponding integer
program is set up. The remainder of the chapter looks at various solution methods to
nurse scheduling problems, with particular emphasis on linear programming and meta-
heuristic approaches. The chapter concludes that the approaches described in the

literature are not sufficient to solve the problem.

An overview of current genetic algorithm literature is given in chapter 3. The emphasis
of the chapter is on the treatment of constraints, as the pilot study found that the issue of
implementing constraints into a genetic algorithm framework is the most critical area of
the research. A detailed review of various methods, including penalty functions, repair,

decoders, special operators and others is given.

Chapter 4 details the encoding of our problem and presents the standard direct genetic
algorithm approach. After experimenting with various parameter and strategy settings,
the best values are retained. Then the first enhancement of the direct approach is

presented in the form of adaptive penalty parameters that follow the development of the
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population. The chapter concludes with a summary of results and reasons for failure of
the methods used so far.

After discussing the issue of epistasis and its relevance to our research, chapter 5
presents co-operative and hierarchical sub-populations in an attempt to overcome the
problems encountered. Together with a special crossover operator and migration
between the sub-populations, this method is shown to be very effective at solving the
nurse scheduling problem. To improve upon the results, various further enhancements,
namely delta coding, swaps and a local hillclimber, are introduced next. The chapter

ends with a comparison of al direct genetic algorithm approaches used so far.

Chapter 6 is concerned with the indirect approach to the problem. After explaining the
idea of an indirect genetic algorithm, permutation based genetic operators, made
necessary by this type of genetic algorithm, are introduced. Then, some possible
decoders are detailed and shortened parameter tests are performed.  Further
enhancements of the decoders and a new crossover operator are presented. Finally, the
origina nurse scheduling problem is extended and it is shown that genetic algorithms
are flexible and robust enough to deal with this. The chapter concludes with a summary

and comparison of al nurse scheduling results.

To validate the results found so far, al previous methods are applied to the mall layout
problem in chapter 7. The superiority of the indirect over the direct approach is
confirmed and possible problems with the co-operative co-evolutionary approach are
discovered. Further enhancements of the indirect genetic algorithm are presented,
which after proving to be successful, are applied to the nurse scheduling problem as

well. A final comparison of results concludes the chapter.

The final chapter of this thesis simmarises the findings of this project and makes
various recommendations as to the best way of solving multiple-choice problems with
genetic algorithms. This work is then put into the context of more general scheduling

and areas for future investigation are identified.



2 Introduction to Nurse Scheduling

2.1 Problem Formulation

2.1.1 General Introduction

This chapter gives details of the nurse scheduling problem tackled in this research and
presents an equivalent integer programming formulation. Following on from this, the
many ways in which similar problems have been solved by other researchers are
reviewed. A wide array of different methods has been proposed, all with their own
strengths and weaknesses. However, due to the nature of nurse scheduling problems,
mos approaches described rely heavily on the particular problem structure, making

their use for our problem impossible.

Our task is to create weekly schedules for wards of up to 30 nurses at a major UK
hospital. These schedules have to satisfy working contracts and meet the demand for a
given number of nurses of different grades on each shift, while seen to be fair by the
staff concerned. The latter objective is achieved by meeting as many of the nurses
requests as possible and considering historical information to ensure that unsatisfied
requests and unpopular shifts are evenly distributed. This will be further detailed in
section 2.1.3. For additional details, refer to Dowsland [55] and for exanmple data to
Appendix C.

For scheduling purposes, the day at the hospital is partitioned into three shifts: Two day
shifts known as ‘earlies’ and ‘lates’, and a longer night shift. Note that until the final
scheduling stage, ‘earlies’ and ‘lates' are merged into day shifts. Due to hospital policy,
a nurse would normally work either days or nights in a given week, and because of the
difference in shift length, a full week’s work would normally include more days than
nights. For example, a full time nurse works five days or four nights, whereas typical
part time contracts are for four days or three nights, three days or three nights and three
days or two nights. However, exceptions are possible and some nurses specifically

must work both day- and night-shifts in one week.
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As described in Dowdand [55] the problem can be decomposed into the three
independent stages set out below. This thesis deals with the highly constrained second

step.

1. Ensuring via a knapsack model that enough nurses are on the ward to cover the
demand, otherwise introducing dummy and / or bank nurses to even out the cover.

2. Scheduling the days and nights on and off for a nurse.

3. Splitting the day shifts into early and late shifts using a network flow model.

2.1.2 TheThree Solution Steps

In the following chapters, the nurse scheduling problem is often referred to as being
particularly ‘tight’. In order to understand this ‘tightness’ of the problem, one has to
know that all data is pre-processed by a knapsack routine to smooth out over- and
under-staffing. A knapsack is necessary due to the day / night shift imbalance, i.e.
nurses usually working more day shifts than night shifts. Hence, the knapsack
determines the maximum number of day shifts available subject to the night shifts being
covered. The consequence of this is that there is no slackness in most of the covering

constraints.

More precisaly, the hospital requested that if any over-cover occurred it should be
spread out over day shifts only such that weekdays are covered first and weekends last.
To achieve this, additiona dummy nurses are introduced who work as follows:
Weekend dummies can only work day patterns not including any weekdays. Weekday
dummies can only work day patterns not including any weekend days. They work as

many shifts as necessary to complement the over-cover to five days.

An example of the knapsack’s operation is as follows. Assume that there are 10 nurses

required on each day. Thus, 70 ‘nurse shifts are needed in total. Furthermore, assume



INTRODUCTION TONURSE SCHEDULING 8

that the knapsack has found that 15 full time nurses are available to work days with the
remaining nurse required on nights. Since each full time nurse works five shifts, this
gives atotal of 75 nurse shifts available on days. So overal, there is a surplus of five
nurse shifts. As the hospital requires the overstaffing to be spread over nonweekend
days first, the demand for Monday to Friday is raised by one shift each. This eliminates
the surplus and the knapsack routine is finished.

Now assume that one of the 15 nurses would only work four shiftsin this week due to a
day off work. As before the demand for Monday to Friday will be increased by one
shift. Inthis case, thisleads to an artificial ‘shortage’ of one shift. Thisis met with the
introduction of a weekday dummy nurse who works one day shift. Again the overcover
is smoothed out and the knapsack routine is finished. Situations with other
combinations of over- and under-staffing are met in a similar way. The following list
describes all possibilities grouped by the amount of over staffing, where a ‘unit’ refers

to one single nurse shift:

More than seven units. The demand is raised by one for al seven days until the
over-staffing is by seven units or less.

Seven units: The demand is raised by one for all seven days.

Six units. The demand is increased by one for al seven days and additionally a
weekend dummy nurse is introduced.

Five units: The demand is raised by one unit for weekdays only.

Less than five units: The demand is raised by one unit for weekdays only and
additionally a weekday dummy nurse is introduced.

If the knapsack determines that there are not enough nurses to cover the demand,
then as many bank nurses as necessary are introduced. Bank nurses can only work

one day shift each.

As ‘earlies’ and ‘lates are not yet merged at this stage, the second step of the problem
can be modelled as follows. Each possible shift pattern worked by a given nurse can be
represented as a zero-one vector with 14 elements, where the first seven elements

represent the seven days of the week and the last seven the corresponding nights. A 1in
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the vector denotes a scheduled day or night on and a 0 aday or night off. These vectors

will be referred to as shift patterns and examples can be found in appendix C.4.

Depending on the working hours of a nurse there are a limited number of shift patterns

available to her or him. For instance, afull time nurse working either 5 days or 4 nights
has atotal of 21 (i.e. ’gé) feasible day shift patterns and 35 (i.e. gé) feasible night shift
(%] (%]

patterns. Typically, a nurse has around 40 possible shift patterns available to her / him.
Other data dimensions are between 20 and 30 nurses per ward, three grade-bands, nine

part time options and 411 different shift patterns.

The third step, the network flow algorithm, is of little interest to us. It splits the day
shifts into early and late shifts. The algorithm is always exact and takes little time to
find an optimal solution. Again, more details can be found in Dowsland [55].

2.1.3 Setting Up of the Nurse Shift Pattern Cost pj;

Before setting up this problem, the cost pj; of nurse i working shift pattern j has to be
determined. Thisis done in the following way after close consultation with the hospital.
For each nurse, the number of day and night shifts she must work is given. Each of
these shift patternsis then assigned a ‘cost’ pj; according to their suitability. For sample
data of these costs and the factors that contribute to them, refer to Appendix C. More

precisaly, the cost of a shift pattern is the sum of the following factors:

(1) Each shift pattern has been given a basic cost between one (no problems with
pattern) and four (very unattractive). This cost generally depends on whether the
pattern means that a nurse will have her days off together or separate. Note that
some patterns in which a nurse will work both days and nights are given a cost of
18. This cost isimposed if the shift pattern means that a nurse will work some night
shifts, then a day shift and finaly, further night shifts.
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(2) Nurses may prefer to work days or they may prefer to work nights. A nurse may be
classified as one of the following, depending on her or his contract and general
preferences:

Days Only — in which case night shifts are not considered.
Nights Only — in which case day shifts are not considered.
Days Important — a cost of 12 is added to al night shifts.
Nights Important — a cost of 12 is added to all day shifts.
Days Preferred — a cost of 3 is added to all night shifts.
Nights Preferred — a cost of 3 isadded to all day shifts.

(3) A nurse may request not to work certain shifts and all shift patterns, which do not
satisfy these requests, are given acost. Thus, if a shift pattern means that n requests
are not satisfied, n costs are added. These requests are graded from one (relatively
unimportant) to five (binding). Note that if a nurse requests not to work an early but
does not mind working a late, no cost is imposed as the nurse can be alocated a late
shift in the subsequent network flow phase. Likewise, for a nurse who requests not
to work alate but does not mind working an early. The costs added are:

Grade 1 request — 3
Grade 2 request — 8
Grade 3 request — 12
Grade 4 request — 18
Grade 5 request — 90

(4) Nurses should not work more than seven daysin arow. The cost added is equal to

the number of days above seven that they would have to work in arow.

(5) The shift pattern costs do not include continuity problems with previous schedules.
Thus, if the pattern a nurse worked last week finished 01, i.e. day off, day on; then
any shift pattern which begins with a day off is penalised by three. Likewise, a cost
of three is added if a nurse finished last week working O and starts this week
working 10.
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(6) Nights must be rotated: If a nurse worked nights last week, all night shift patterns
for this week have an additional cost of ten. If a nurse has worked nights the week
before, a cost of five is added.

(7) To rotate weekend work the following cost is added. If a nurse worked Saturday
and Sunday last week, a cost of one is added to each pattern that involves working
Saturday or Sunday this week.

(8) Before the problem is solved, one is deducted from the cost of each shift pattern for
each nurse. Thus, perfect shift patterns have a cost of zero. However, if the cost of
a shift pattern is above 89, it is set to 100. Costs for dummy and bank nurses are
always set to zero.

(9) Findly, the working history of a nurse is taken into account. If a nurse had a cost
for the shift pattern that she worked last week, then this is added to al non-zero cost
shift patterns (but not above 100).

2.1.4 Integer Programming Formulation

The problem can now be formulated as an integer linear program as follows.

Indices:

I = 1..n nurse index.

j = 1..m shift pattern index.

k = 1..14 day and night index (1...7 are days and 8...14 are nights).
s = 1...p grade index.
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Decision variables:

_ 11 nursei worksshift pattern j

%710 dse

Parameter:

n = number of nurses.
m = number of shift patterns.

p = number of grades.

a _ 11 <hift pattern j coversday / night k
k710 dse

q _11 nurseiisof grade sor higher

- } 0 dse
pij = Penalty cost of nursei working shift pattern j.
F(i) = Set of feasible shift patterns for nursei.
Ni = Working shifts per week of nursei if night shifts are worked.
Di = Working shifts per week of nursei if day shifts are worked.
B = Working shifts per week of nursei if both day and night shifts are worked.
Rs = Demand of nurseswith grade s on day respectively night k.
Target function:

Aé p;% ® mn!

i=1 jTF(@)
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Subject to:

1. Every nurse works exactly one shift pattern:

é xj = 1 " @

()

2. The shift pattern corresponds to the number of weekly working shifts of the nurse:
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3. The demand for nurses is fulfilled for every grade on every day and night:

é éqisajkxij * Re "Kks 3

IIORE!

Constraint sets (1) and (2) ensure that every nurse works exactly one shift pattern from
her feasible set, and constraint set (3) ensures that the demand for nurses is covered for
every grade on every day and night. Note that the definition of g;s is such that higher
graded nurses can subgtitute those at lower grades if necessary. This problem can be
regarded as a multiple-choice covering problem. The sets are given by the shift pattern
vectors and the objective is to minimise the cost of the sets needed to provide sufficient
cover for each shift at each grade. The multiple-choice aspect derives from constraint
set (1), which enforces the choice of exactly one pattern (or set) from the aternatives
available for each nurse. Although this problem looks similar to the generalised
assignment problem, it is different due to the additional shift pattern level, i.e. nurses
are assigned to shift patterns, but days and nights must be covered.
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2.2 Introduction to Nurse Scheduling

There are many different ways of solving manpower scheduling and in particular nurse
scheduling problems. However, aimost all solve a smplified version or are otherwise
very problem-specific, for example no grades are taken into account, all nurses are
assumed to be full time, or under- and over-staffing is allowed. During the course of
this research, it therefore became clear, that these methods could not be used to solve

our particular problem.

For the purpose of this chapter, rurse scheduling solution methods are classified into
four types following the recommendation of Bradley and Martin [27]: Exact cyclicd,
heuristic cyclical, exact non-cyclical and heuristic non-cyclical. The problem in hand is
of anoncyclical nature, because the hospital wants high flexibility to allow nurses their
requested days off and requests vary from week to week. Therefore, cyclical scheduling
approaches are only discussed briefly in section 2.3. The remainder of chapter 2 deals

with non-cyclical algorithms.

Exact non-cyclical solution methods, i.e. linear, integer and constraint programming, are
presented in section 2.4. The most commonly used algorithms are heuristic (section
2.5) and meta- heuristic (section 2.6). Although heuristic algorithms do not guarantee to
find the optimal solution, they tend to find very good solutions in a short time. The
term meta- heuristic refers to algorithms that contain a number of simpler heuristics.

This gives them the ability to be used for various problems with only dight
modifications. Examples of these methods are tabu search, smulated annealing and
genetic algorithms. In contrast, the methods of the heuristic section tend to be very

problem specific and not suitable for other problems.

Many of the early approaches to manpower scheduling were of a manual nature. This
usually meart following a set of greedy rules when constructing a suitable roster. Due
to their limitations, they are not reported here in detail. The interested reader is referred
to Tien and Kamiyama [165] who give a good summary and comparison of many such

approaches and Fries [71] who provides an extensive bibliography.
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Bibliographies of more recent staff scheduling algorithms that concentrate on hospital
nurse scheduling are given by Hung [97], Sitompul and Randhawa [151] and Bradley
and Martin [27]. Additionally to the methods reviewed in this thesis, the authors
mention self-scheduling, that is the (manual) scheduling by the nurses themselves. Self-
scheduling is not further referred to in this thesis. The authors of the bibliographies
conclude that most methods surveyed are limited and that decision support systems or

the use of artificial intelligence might be possible future avenues for research.

2.3 Cyclic Nurse Scheduling

Cyclic nurse scheduling, as presented by Rosenbloom and Goertzen [141], is acommon
way of solving the nurse scheduling problem. It first generates all possible basic work
patterns, usually on a weekly basis, by taking into account a variety of labour
constraints (work stretches, weekends off, no isolated days off or on etc). Furthermore,
only patterns that can be part of a larger schedule are allowed. For instance, if basic
patterns are for one week then for work-stretch constraints reasons, certain patterns

cannot be combined with others.

Once all feasible pattern pairs are determined, a linear programming optimisation
decides how often each pattern pair is used. Finally, the patterns are assigned to the
nurses who usually move onto a different pattern in every new planning horizon.
Hence, the name cyclic scheduling as nurses cycle through al patterns. For a practical

application of cyclic nurse scheduling, see Ahuja and Sheppard [3].

The nature of this approach is to regard all nurses as identical and hence no persona
preferences can be taken into account. At best, nurses can choose from the set of
optimal cyclic patterns. Our problem is not cyclic, because nurses preferences, which
will differ from week to week, must be taken into account. Thus, cyclic approaches

cannot be used.
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2.4 Linear, Integer, Constraint and Goal Programming

This section presents classical approaches that guarantee to find the optimal solution to
the non-cyclical problem. However, the drawback of this is the often prohibitively long
execution time. Thus, even though the problem formulation is still aimed at an optimal
solution, the actual execution is often of a heuristic nature, for example cyclic descent or

rounding of fractional variables rather than a full branch and bound approach.

One of the earliest examples of modelling the nurse scheduling problem as a
mathematical program can be found in Warner and Prawda [169]. The authors
formulate a linear program with the decision variables as the number of nurses of one
grade working a particular shift on a specific day. Should a solution become fractional,
asimple heuristic is used to correct it. To facilitate finding a solution, some substitution
between nurses of different grades is allowed. Furthermore, only an absolute lower
limit on the nurses required per shift is set. The target function is then to minimise any
staffing below the required level. No preferences or working constraints are taken into
account and the authors do not explain how to assign the shifts required in a solution to

the actual nurses.

Warner [170] presents an extension of the above. This time the problem is formulated
as an integer program, with the decision variables being the fortnightly shift patterns
worked by a nurse. As in our approach, each shift pattern is given a penalty cost.

However, Warner only bases this cost on work-stretch and isolated day on or off
preferences of the nurses. The number of possible shift patterns for each nurse is kept
small by having a fixed day and night rotation, aternate weekends off and further
restrictions. Limited under-covering of shiftsis aso alowed. The target function is to
minimise the sum of the costs of shift patterns for al nurses. The problem is solved via
a block pivoting heuristic. The solution found is then manualy improved as far as
possible to form the final schedule.

Miller et a. [117] use the same problem formulation as Warner [170]. However, rather

than penalising patterns they restrict the number of shift patterns available to a nurse by
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setting constraints for maximum work-stretches and not allowing any isolated days on.
Nurses may request a particular day off which reduces the number of patterns further.
Moreover, they only consider full time nurses working ten days per fortnight and do not
distinguish between early, late and night shifts. The objective function is to minimise

under-staffing. The problem is solved with a cyclic descent algorithm.

A constraint programming approach to the nurse scheduling problem is given by Well et
a. [171]. Constraint programming is similar to linear programming. However, rather
than a ‘blind’ branch-and-bound on the full domain of the decision variables, the
domains are dynamically reduced via the constraints in accordance with variables
dready fixed. The problem formulation differs from ours, as nurses working a
particular shift on a specific day are the decision variables. The hard constraints are the
same as in our problem. However, Well et al. considerably reduce complexity by only
scheduling full time nurses and not considering grades. Their objective is to minimise
the violation of soft constraints regarding isolated days on or off and work-stretches.
No individua preferences are considered. The authors are able to solve problems of

similar sizes to ours on aworkstation within seconds. No solution quality is reported.

Cheng and Yeung [37] present a hybrid expert system combined with a linear zero-one
goal programming method to schedule full time nurses of one grade. The scheduling of
days on and off is done by the goal programming module. The goals are to satisfy
minimum staff levels, to minimise overtime, to grant requested days off, to limit work-
stretches to maximal six consecutive working days and to prevent off/on/off patterns.
For each goal, an aspiration level is set, for example the minimum required staff level

on aparticular day. Each goal also has a priority level assigned to resolve conflicts.

The actual alocation to early, late and night shifts is done by the expert system
component, taking requests and required staff levels and other fairness measures into
account. An expert system consists of aset of rules of ‘if ... then ... else’ format. These
rules are gained by questioning experts, hence the name. The resulting hybrid system is

able to solve nurse scheduling problems ten times faster than the head nurse, whilst
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halving constraint violations. However, this approach would be unsuitable for us

because al goals have ‘soft’ aspiration levels, which isin conflict with our problem.

A similar goal programming approach is taken by Musa and Saxena [122]. In contrast
to Cheng and Yeung they include three grades and alow for various part time options.
However, they fail to include any preferences apart from the nurses choosing which one
out of two aternative weekends to be off work. The most similar goal programming
approach to our problem is given by Ozkarahan [124]. His problem is amost as
complex as ours, apart from only using two grades of nurses and not alowing any

substitution between the grades.

Arthur and Ravindran [7] present another two-phase goal programming heuristic to
solve their nurse scheduling problem. Only full time nurses are considered and the
three grades of nurses are scheduled independently. Since every other weekend is
strictly scheduled to be off, only five shift patterns are available to each nurse. The
goals are to meet the minimal staffing requirements and the individual preferences of
the nurses. Although the authors propose to extend their model to allow part time
nurses and to schedule al grades at the same time, it is not clear from the paper how
they will achieve this. Furthermore, there is no limit on the work-stretch length and the

model seems to rely on the use of an even number of nurses to function properly.

The nurse scheduling problem tackled in this thesis is also solved by Fuller [72] with
XPRESS MP, a commercial integer programming software package. When solved as
an integer program, as set up in section 2.1.4, optimisation times can be up to overnight.
Using different branching rules and a different formulation with additional variables and
constraints, computation time was reduced such that al files were solved within a
reasonable time frame. Her full results are reported and compared to our genetic
agorithm solutions in appendix D.2. These results show that in principle the problem is
solvable with branch and bound methods. However, sophisticated extensions and

software are necessary to do so.
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2.5 Heuristic Scheduling

Gierl et a. [76] present a knowledge-based heuristic for scheduling physicians. Due to
the nature of their problem, no grades are taken into account. In addition, no personal
preferences are considered. Instead, an overall fairness measure is calculated. Thisis
based on the working history of each physician and aims at spreading out undesired
shifts and overtime. The agorithm then continuously cycles through al physicians,

assigning shifts to maximise the overall fairness.

A simple staff scheduling heuristic for full time nurses of one grade only is presented by
Anzal and Miura [6]. Cyclic descent and 2opt heuristics are used to optimise the
schedule. Schedules of reasonable quality are found after some 90 seconds on an IBM
PC. However, the authors conclude that their model was too simplified which is to be
addressed in a yet unpublished future paper.

Kostreva and Jennings [104] solve the nurse scheduling problem in two phases In the
first phase, groups of feasible schedules are computed. Each group fulfils the minimum
staffing requirements and each individual schedule all major working constraints. Then
in a second stage, the best possible aversion score is calculated for each group of
schedules. The averson score is based on the preferences of each nurse and
corresponds to the p; values as described in section 2.1. The group of schedules with
the lowest score is chosen. In contrast to our model, Kostreva and Jennings schedule al
grades independently from each other. Solution times are reported as approximately ten

minutes to generate one schedule on a Macintosh PC.

Blau and Sear [25] solve the problem using Ull time nurses of three grades, where
higher grades may substitute lower grades. In afirst step they generate all possible shift
patterns over a two week period and evaluate them for al nurses based on their
preferences. The best 60 patterns for each nurse are kept and in a second step a cyclic
descent heuristic is used to find an optimal overal schedule taking both the nurses

preferences and over- or under-staffing into account.
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Decision support systems to solve the nurse scheduling problem are offered by
Randhawa and Sitompol [132] and by Smith et al. [153]. Both work in a similar way:
The usua constraints as well as nurses preferences are taken into account. The user is
asked to provide weights for various objectives. The algorithm then solves the problem
greedily. The focus of these decision support systems is on the interaction between the
user and the software, providing a what-if analysis for various sets of weights, rather

than optimal solutions.

2.6 Meta-Heuristic Scheduling

This section looks at examples of the use of meta-heuristics to solve the nurse
scheduling problem. The term meta- heuristic derives from the fact that these algorithms
contain many smaller heuristics inside them. This makes meta- heuristics very generic
in nature and they can often be used for various problems with only dlight
modifications. The three meta- heuristics presented here are simulated annealing, tabu
search and genetic agorithms. For a concise summary and comparison of these three

approaches see Glover and Greenberg [77].

Simulated annealing is a neighbourhood search method where downhill moves are
aways accepted and uphill moves are allowed under certain conditions to avoid being
trapped in local optima. The probability of an uphill move being accepted depends on
the change in the objective function value and on the temperature parameter. This
parameter controls the search and generally starts out high and then cools down
according to a cooling scheme. A higher temperature makes an uphill move more
likely.

Isken and Hancock [98] use simulated annedling to solve a variant of the nurse
scheduling problem. Their problem is more complex tan the one tackled in this

research since they have to dea with flexible starting times, instead of three fixed daily
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shifts. On the other hand, complexity is reduced by the fact that they only schedule
nurses of one grade and that under- and over-staffing is penalised but alowed. The
problem is modelled as an integer program and then solved with a ssmulated annealing
heuristic. The authors found solutions within 25% of the optimal linear programming

solution in less than 15 minutes on a 386/25MHz personal computer.

Another popular meta-heuristic is tabu search. Tabu search is a neighbourhood search
method that usually accepts the best possible move. This can include uphill moves if no
downhill moves are available. To avoid cycling, a tabu list of the last few moves is
introduced. With every new move, the list is updated and moves currently on the list
must not be made. The main control parameter of tabu search is the length of the tabu
list.

Berrada et a. [21] formulate the nurse scheduling problem as a multi-objective
optimisation problem. The authors decompose the problem such that they schedule
early, late and night shifts separately and do not consider grades. The resulting problem
Is modelled with covering constraints and nurses working their contracted number of
days as hard constraints and all other constraints (work-stretch, off/on/off patterns,
preferences) as soft constraints. The authors use both tabu search and standard
mathematical programming techniques to find pareto optimal solutions with regard to
the soft constraints. The results presented show that tabu search is capable of solving
the problem to the same quality as a commercia software packet (CPLEX), athough

tabu search was much dower.

Burke et al. [32] also use tabu search on their nurse scheduling problem. However, as
their problem is of a very high complexity (planning horizon four weeks with up to 15
possible duties per day), they need to hybridise it with bcal search heuristics. The

results are of better quality than manual solutions and are usually found within minutes.

The same nurse scheduling problem as discussed in this thesis is also solved by
Dowsland [55]. Her tabu search agorithm uses a combination of different

neighbourhood search strategies and strategic oscillation between finding a feasible
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solution and improving it in terms of preference cost. Furthermore, a succession of
problem-specific special neighbourhood moves is used to improve upon solutions
found. The fina results match the quality of solutions produced by a human expert.
Her results and findings will be compared to ours throughout this thesis and full results

are reported in appendix D.2.

The fina meta-heuristics presented in this section are genetic algorithms. As they are
our chosen method of solving the nurse scheduling problem they are explained in detall
in chapter 3 and in Appendix A. In a nutshell, genetic agorithms mimic the
evolutionary process and the idea of the survival of the fittest. Starting with a
population of randomly created solutions, better ones are more likely to be chosen for
recombination into new solutions. In addition to recombining solutions, new solutions
may be formed through mutating, i.e. randomly changing old solutions. Some of the
best solutions of each generation are kept whilst the others are replaced by the newly

formed solutions. The process is repeated until stopping criteria are met.

Easton and Mansour [56] use an enhanced genetic algorithm to solve an employee
staffing and scheduling problem. Their approach includes penalty functions to cope
with constraints (refer to sections 3.4 and 4.4), loca hill climbing to improve solutions
(refer to sections 3.5 and 5.4), rank-based selection (refer to section 4.3.4) and sub-
populations (refer to section 5.2). The authors compare their results with those of
various other heuristics and manage to improve on the best results found so far on a set
of 36 test problems. No direct comparison of their tour scheduling problem to our
rostering problem is possible as their emphasis is on minimising the number of
employees needed to fulfil the schedule and does not take persona preferences into

account.

Tanomaru [164] uses a genetic agorithm based heuristic for a staff scheduling problem
of similar complexity to ours. He aso has aweekly planning horizon and employees of
distinct grades. However, rather than using a three shifts approach (early, late and
night), employees can start at any time on the hour. Thus, solutions are represented by a

list of seven pairs of integers, each pair indicating the start and stop times for each day.
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In contrast to our problem, the number of employees is not fixed and overtime is
allowed. Hence, the author’s objective is to minimise total wage cost. His algorithm
also makes use of penalty functions to cope with constraints such as total workforce

requirements and maximum individual working shifts.

To reduce the number of infeasible solutions, crossover is only allowed such that
‘whole employees are exchanged. The major optimisation work is then done by a set
of nine different heuristic operators. They act as a very sophisticated mutation operator
on a single employee basis. Solutions for moderate sized problems obtained after ten
minutes on a workstation were of similar quality as those of a human expert. Again,
Tanomaru shows the capabilities of genetic algorithms to solve highly complex
problems. However, he fails to report to what extent the nine heuristics used are
responsible for his results, which makes a comparison to our findings difficult. He also
concludes that for real-life problems, his heuristic mutation operators might be too time

consuming and suggests a parallel implementation for speed- up.

2.7 Conclusions

As the literature review shows, a lot of interest has been paid to the area of nurse
scheduling. This indicates that the problem is both interesting and difficult to solve.
However, due to the nature of nurse scheduling problems, problem specific knowledge
was required in most cases to achieve good results. This makesit difficult to impossible
to include any specific ideas into our model. For instance, cyclic models cannot be used
due the importance of the nurses preferences in our example. Nevertheless, it has been
shown that heuristic approaches and in particular genetic algorithms have been

successful at solving similar problems.

Two methods have been suggested to solve the same nurse scheduling problem as is

tackled in this thesis. Tabu search by Dowsland [55] and integer programming by
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Fuller [72]. As has been shown in section 2.1.4, the nurse scheduling problem shares
some similarities with set covering and generalised assignment problems. Fuller takes
advantage of this and uses an advanced integer programming approach to solve our
problem. However, this relies on having access to a sophisticated software package and
can involve up to overnight computer runs. Nevertheless, the results found by Fuller

alow for athorough comparison and assessment of our results.

Results found by Dowsland are also of excellent quality. However, her algorithm is
domain dependent due to the special moves employed. For instance, some moves take
advantage of the fact that if one shift pattern containing a particular day is unfavourable
so are all others containing this day. This reduces the robustness of her agorithm. In

section 6.6, it is shown that this leads to poorer solution quality for more random data.

This leaves room for improvement for the genetic algorithm to capitalise on. As
mentioned earlier, genetic algorithms are well known to be very robust for a variety of
problems and data. In particular, as the section on meta-heuristic approaches has
shown, genetic algorithms have been successful in solving similar manpower problems.
Moreover, an earlier pilot study by Aickelin [4] had shown that using genetic
algorithms is a chalenging but promising approach for this particular problem. The
pilot study concluded that the focus point of any future research into solving the nurse
scheduling problem with genetic algorithms has to be the handling of the problem’s
constraints.  The next chapter will outline current research into genetic algorithms and

then concentrate on this particular aspect detailing various approaches.



3 Genetic Algorithmsfor Constrained
Optimisation

3.1 Genetic Algorithm Introduction

Due to the increasing popularity of genetic algorithms, a vast amount of research has
been published in this area. Thus, no literature review could possibly contain al the
information available. Moreover, as mentioned earlier, it was established in the pilot
study that the focus of future research into solving nurse scheduling problems with
genetic algorithms has to be the successful treatment of constraints. Therefore, this
literature review will concentrate on this area. Throughout this chapter examples of
related problems, such as scheduling, set covering and generalised assignment
problems, are used wherever possible.

However, beforehand this section will introduce the current state of research into
genetic algorithms for optimisation purposes. Note that there will not be an extensive
explanation of their actual workings. A more precise genetic algorithm tutorial based
on Davis [48] and Whitley [174] can be found in Appendix A. Good textbooks on the
topic are Goldberg [81] for earlier work up to 1989 and Michalewicz [115], Mitchell
[119] and Back [9] for more recent research. After a quick summary of the main
features of genetic algorithms, this section will go on to discuss recent research about
the nrerits of using them for function optimisation. The remainder of this chapter will

review the relationship between genetic algorithms and constraints.

Genetic algorithms are generally attributed to John Holland [96] and his students in the
1970s, although evolutionary computation dates back further (refer to Fogel [68] for an
extensive review of early approaches). Genetic agorithms are stochastic meta
heuristics that mimic some features of natural evolution. Canonical genetic algorithms
were not intended for function optimisation, as discussed by De Jong [51]. However,
dightly modified versions proved very successful. For an introduction to genetic

algorithms for function optimisation, see Deb [52]. Many examples of successful
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implementations can be found in Back [8], Chaiyaratana and Zalzala [35], Hedberg [91]
and Ross and Corne [142].

To optimise a function, possible solutions are first encoded into chromosome-like
strings, in order that the genetic operators can be applied to them. Genetic algorithms
start with a population of usually randomly generated solutions. The two main genetic
operators are crossover and mutation, both loosely based on their natural counterparts.
The crossover operator takes (usually) two solutions, the so-called parents, and
recombines them to form one or more new solutions, the so-called children. Parents are
chosen from amongst all the solutions of the current population. However, the selection
Is stochastically biased towards solutions with better objective function values. These
are aso known as solutions with a higher fitness in evolutionary terms. Therefore,

genetic algorithms follow Darwin’s theory of ‘survival of the fittest’.

Mutation takes one solution and modifies it dightly to form a new solution. After
performing a certain number of crossovers and mutations, some of the solutions in the
old population are replaced by new solutions and this concludes one generation of the
algorithm. These generations are then repeated until a stopping criterion is met. Many
additional features are usually necessary in order to optimise real- life problems: Elitism,
I.e. the automatic survival of the x% best solutions, is used to preserve the best solution
throughout generations. Additionally, some form of fitness scaling or ranking is often
necessary for a robust performance. However, one maor problem remains. How does
one optimise constrained functions with genetic algorithms, which were originally
intended for unconstrained problems? This issue will be discussed in more detail in

section3.2.

The inner workings of a genetic algorithm are often described in terms of the building
block hypothesis. The hypothesis says that short low-order solution sub-strings, also
known as schema, with higher than average fitness will be reproduced exponentially
and spread throughout the population. This is because of the Darwinian selection of
parents. The crossover operator then combines such schema or building blocks to form

good full solutions.
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Two articles discussing the merits of genetic algorithms for operational researchers are
Dowsland [54] and Reeves [135]. Dowsland shows how researchers and practitioners
were at first reluctant to use genetic algorithms. She argues that this was due to the lack
of comparisons of results with those of other methods. Further problems mentioned are
the impression that it is difficult to get started with genetic algorithms because of the
biological background and terminology ard the problems of dealing with constraints.
Dowsland continues to point out that more and more of these obstacles are overcome
and as this happens, the interest in genetic algorithms is growing. At the time of
publication in 1996, she concluded that it was yet to be determined whether genetic

agorithms will become a useful part of the operational researcher’ s toolbox.

As the overview of Reeves [135] from 1997 shows, genetic algorithms have become
increasingly popular, especially in solving hard combinatorial optimisation problems.
He summarises their essential attractions as:

Generality: Only the encoding and the fitness function need to be changed from one
problem to another.

Non-linearity: No assumptions of linearity, convexity or differentiability of the
problem are necessary.

Robustness: A wide range of parameter settings will work well.

Ease of modification: Unlike most other heuristics, variations of the origina
problem are modelled quickly.

Parallel nature: Thereisagreat potential for parallel implementation.

One of the most recent discussions surrounding genetic algorithms is the Free Lunch
Theorem, which was originaly presented by Wolpert and Macready [181] for non
revisiting algorithms. Non-revisiting algorithms are defined as not visiting the same
point in the solution space twice during the course of the optimisation. Wolpert and
Macready argue that the performance of all search algorithms on average over al
functions is the same, i.e. there is no such thing as a ‘best’ meta-heuristic or a ‘best’

encoding for all problems. Therefore, choosing a specific heuristic due to its past
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performance on other functions may be misleading and it would be better to model the

search algorithm after the actual function that needs to be optimised.

The theorem is extended to cover evolutionary algorithms by Radcliffe and Surry [130].
They argue in similar fashion to Wolpert and Macready that the role of the problem
representation is central and point to the importance of incorporating problem-specific
knowledge into representation and operators. The authors conclude that a much better

understanding is still needed to establish a methodology and an underpinning theory.

Finaly, a related and interesting observation is made by Ross et a. [144]. After
experimenting with evolutionary agorithms to solve timetabling problems, they found a
niche in the solution space in which these agorithms outperform hillclimbers. This
situation occurred when there was a ‘medium number’ of constraints. If the problem
was too tight, the algorithm had problems escaping local optima, whilst if the problem

had only few constraints there would be many flat and unfriendly plateaux.

3.2 Constrained Optimisation with Genetic Algorithms

As seen from the descriptions in the previous section, there is no pre-defined way of
including constraints into an optimisation using genetic algorithms. This is probably
one of their biggest drawbacks, as it does not make them readily amenable to most real
world optimisation problems. To solve this dilemma, many ideas have been proposed.
These form the remainder of chapter 3. A good overview of most of the techniques
presented in this chapter can be found in Michalewicz [115] and more concisely in
Michalewicz [114].

Many genetic algorithms, including ours, often use a combination of the strategies
described in the following. However, for easier understanding, all methods are

explained independently and presented in the following order. The first method, that of
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including constraints in the encoding, is detailed in Section 3.3. However, as will be
seen, the number and types of constraints that possibly can be implemented in this way
is limited. Two widely applicable methods are presented in the two following sections,
namely penalising in section 3.4, and repairing in section 3.5. Penalising tries to avoid
infeasible solutions by steering the algorithm away from them, whilst repairing tries to
‘fix’ such solutions to become feasible.

The methods in section 3.6 are based on the standard genetic operators of mutation and
crossover. In contrast to repairing, their main use is to preserve rather than to create
feasibility. Anindirect genetic algorithm approach incorporating a decoder is presented
in section 3.7. Finally, section 3.8 gives an overview of other, problem-specific or
otherwise less widely applicable, methods. For the purpose of ssimplicity, all examples
in this chapter, unless otherwise stated, will be for the minimisation of the target
function.

3.3 Implementing Constraintsinto the Encoding

Following the argument that binary alphabets offer a maximum number of schema that
will be simultaneously sampled by a single individual (refer to implicit parallelism in
appendix A.3), binary coding used to be the most common way of encoding strings.
Even with binary coding, some simple constraints can be implicitly implemented. Take
the following example: f(x) = x> - x? + X is to be minimised for O £ x £ 15 and x integer.
If x is encoded as a binary string of length four, then the constraints are implicitly
fulfilled by the encoding because x will automatically be between 0 and 15 and no

genetic operator can disturb this.

In the case of binary encodings, it is very difficult to include al constraints in such a
way, as dightly different constraints like 0 £ x £ 20 would already make this

impossible. In this particular example, it would become easier if higher aphabets were
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used. Both Antonisse [4] and Radcliffe [131] argue that non-binary encodings have
advantages over a binary encoding. Antonisse points out that although individuals
encoded with a higher alphabet contain fewer schemata, each of these schemata is of a
higher ‘power’ as wildcards now stand for more than just two possibilities. Radcliffe
further argues that a binary coding is often inappropriate since similar solutions do not

share many schemata, for example x = 7, i.e. (0111) and x = 8, i.e. (1000).

Nowadays, more and more researchers use nonbinary aphabets, which allow a more
‘natural’ expression of their problem. We aso chose a nontbinary encoding which
allowed us to include constraints (1) and (2) of section 2.1 implicitly. Our solutions are
encoded as a string of shift patterns, such that the ith pattern is worked by nurse i. For

more details of the nurse scheduling encoding refer to section 4.1.

3.4 Penalty Functions

Because of its relative straightforwardness, the penalty function approach is the most
common way of dealing with constraints in a genetic algorithm context. The approach
works by ‘measuring’ the infeasibility of a solution with a suitable penalty function.
For instance, this could be the number of violated constraints, the magnitude of
violation of constraints or any mixture thereof. This penalty is added to the target
function value of the solution, usually after being scaled with a penalty factor. In
genetic agorithm terms, the idea of this approach is to have infeasible solutions in a

population, but to penalise them such that feasible solutions are fitter.

One advantage of penalty functions is that they can accommodate any number and type
of constraints with relative ease. The standard way of doing this is to transform all
congtraints into inequalities of the form f(x) £ 0. All violations, i.e. any positive left-

hand sides, are then summed up and added as a penalty to the target function. Another
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advantage of penalty functions is that infeasible solutions are allowed in a population.

Thus, the information stored in them is accessible to the genetic algorithm.

For example, one can imagine many cases where the successful combination of two
infeasible but otherwise highly fit individuals leads to one feasible and highly fit
solution. In addition, for many real-life optimisation problems, like our nurse
scheduling, the problem is so tight that finding a feasible solution in itself is a very
difficult task. Therefore, there smply must be a facility to evaluate and deal with
infeasible solutions, rather than just discarding them.

However, the penalty function approach has some major drawbacks. For many
problems simply adding up the violations of all constraints and adding this as a penalty
to the target function is not successful as the search is not guided adequately. It is often
necessary to develop more sophisticated penalty functions. For instance, one could rate
the violation of certain constraints differently to the violation of others or introduce a
general penalty weight with which the total violation is multiplied before it is added to
the objective function. Unfortunately, it is highly experimenta and thus time
consuming to find good penalty functions and weights for one's problem as only

genera guidelines exist.

One unresolvable dilemma is that even with a suitable penalty function, finding a
feasible solution is never guaranteed. It is aways possible for a dightly infeasible but
otherwise highly fit solution to dominate the search and for the whole search not to
produce a single feasible solution, particularly if the problem’s constraints are tight. In
many practical cases, this might not matter, but for the nurse scheduling problem a
solution hasto be feasible. Asthe remainder of the thesis will show, thiswill be one of
our main concerns. On the whole, penalty functions are a useful tool to assign afitness
value to infeasible solutions, but they are unlikely to dispense fully with the problems
created by the constraints.

Other researchers have identified some further peculiarities of penalty functions. Hadj-

Alouane and Bean [87] prove that for the Lagrangian relaxation of the general multiple-
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choice integer program there is no set of weights that guarantees to find the optimal
solution with a linear penalty function. This is caused by dual degeneracy due to
multiple optimal solutions, which is often the case in practical problems. The authors
then prove that there must be a set of weights that finds the optimal solution with a
quadratic penalty function. Another interesting observation is made by Johnson et al.
[99] for a graph colouring problem. They prove that for their particular penalty function
there is a constant set of penalty weights that guarantees to find a feasible solution over

al problem instances.

Before presenting more details and examples of penalty functions, we cite Richardson et
al. [138], who were one of the first to set up some general guidelines for the use of
penalty functions. They concluded that penalties should be close to the expected
completion cost and therefore, measuring the distance from feasibility is better than

merely counting the number of violated constraints.

Richardson et al. define completion cost as the cost of transforming an infeasible and
hence incomplete solution into a feasible solution. However, some difficulties arise
from this. Not only are completion costs difficult to calculate, but many infeasible
solutions can also be completed into different feasible solutions at various completion
costs. Even if a satisfactory completion cost function for a problem can be found, it will

often be the case that various stages of the search will need different levels of pressure.

Therefore, to simplify matters the penalty cost is often set equal to the ‘distance’ of an
individual from the feasible region. For instance, this could be measured as the number
of violated constraints or the sum of all constraint violations. Examples of this can be
found in Easton [56], Li et al. [109] and Ross [145] who all use the sum of constraint

violations as the penalty cost. We also use this type of penalty measure in section 4.1.

A survey of penalty functions and their performance on test problems is carried out by

Gen and Cheng [74] and Michalewicz [116]. Amongst them they present and compare:

Penalty functions with variable weights for each constraint.
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Penalty functions with weights depending on the number of iterations.

Penalty functions with weights dynamically scaled depending on the best solution
found so far.

Penalty functions using levels of violations rather than the actual constraint
violation.

Penalty functions that use active and inactive constraints where only active
constraints contribute to the penalty. A separate function decides in every
generation if a constraint is declared active or not.

Penalty functions that use near-feasibility thresholds, i.e. a certain amount of

infeasibility is not penalised.

The authors conclude that a comparison of methods is difficult and the choice is highly
problem-specific. It seems that adaptive penalties outperform static ones, however the
more sophisticated the method the more parameters need to be set which is a difficult
problem in itself. Further information about dynamic penalty functions and their merits

for thisresearch is presented in section 4.4.

3.5 Repair

As mentioned before, many of the methods reviewed in this chapter are used in
combination with one another. This is particularly true for the use of penalty functions
and repair algorithms. The reason for this is that the main weakness of penalty
functions, i.e. not guaranteeing to find a feasible solution, can often be remedied by a
suitable repair function. However, due to their very nature, repair functions are even
more problem-specific than penalty functions so not even general guidelines exist.
Therefore, this section will present various examples of repair algorithms rather than

rules and guidelines.
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Often repair functions are not only used to make an infeasible solution feasible, but also
to improve the fitness of solutions. A common way of achieving this is to choose the
best instance a solution can be repaired into from amongst all feasible possibilities.

Similarly, one could apply such a repair function to already feasible solutions simply to
improve upon their quality. When used in this way repair functions become loca hill-
climbers. Thisis often done to counter the ‘lack of killer instinct’ of genetic algorithms
(De Jong [51]), which refers to their inability to make small changes. However,

towards the end of the search small moves are often required to improve results further

and the mutation and crossover operators are too disruptive to provide these.

When using repair agorithms, the user has a choice: Should the repaired version
substitute the original individual, known as Lamarckian Evolution, or should only the
fitness of the original string be changed, known as the Baldwin Effect? Baldwinian
style repair operators are sometimes also referred to as memetic algorithms. Whitley et
al. [172] investigate this question on some simple functions. Contrary to intuition they
show that functions exist where following the Baldwinian strategy is superior to using
Lamarckian Evolution. However, the authors aso point out that a Baldwinian search is
much slower than a Lamarckian search. Whitley et al. conclude that it was too early for
definite results as to decide which strategy was superior and more research using more
complex functions needs to be carried out first. Note that for the remainder of this

thesis unless otherwise stated, ‘repair’ will refer to Lamarckian Evolution.

Two examples of a successful use of repair functions to find feasible solutions and
improve upon them are Béck et a. [12] and Beasley and Chu [18]. Bé&ck et al. compare
the use of penalty functions with that of a repair scheme on a set covering problem.
They use a graded penalty function, which by itself produces feasible but not high
quality solutions. By repairing solutions, following a minimum cost principle, the
authors manage to improve upon the quality of results significantly. The authors
conclude that incorporating a simple repair method was far superior than using a penalty
function on its own. They also point out that more research into repair functions needs

to be done, particularly into frequency of repair.
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Beasley and Chu [18] also solve the set covering problem using a genetic algorithm
with a repair heuristic. They do not need a penalty function as their repair method
guarantees feasibility. It works by greedily covering uncovered columns following a
simplerule. The rule works by adding missing columns ordered by the cost of a column
divided by the number of uncovered rows that the column would cover. They also have
a loca hill-climbing element in their repair algorithm. After achieving feasibility
through adding columns, now redundant columns are dropped, with higher cost columns
being dropped first. Using this agorithm Beasdey and Chu were able to generate
optimal solutions for smal-size problems and high-quality solutions for large-size

problems.

A dightly different use of the repair operators is made by Burke et a. [33] who apply
genetic algorithms to highly constrained examination timetabling problems. The
penalty function used is a weighted sum of timetable length and the number of conflicts
between exams in adjacent periods. Rather than having a separate repair heuristic, they
combine it with their uniform crossover operator. Instead of choosing exams at random
to go from parents to children as in standard uniform crossover, heuristic rules are
followed. For example, exams are selected according to how many conflicting exams
they have in common with those already placed in the child. Another rule is to select
exams such that the number of conflicts with exams in the previously scheduled period
isminimised. Results are reported to be of good quality.

Further examples of repair algorithms are: Eiben et al. [60] and Eiben et al. [61], who
solve constraint satisfaction problems, like the Zebra and N-Queens problems,
successfully with a combination of genetic algorithms and heuristic-based repair
strategies, Herbert and Dowsland [93], who solve the pallet loading problem using a
genetic algorithm combined with a graphtheoretic based repair heuristic; and Miller et
a. [118], who show that the addition of the right type of local improvement operator
allows a genetic agorithm to solve the NP-hard problem of multiple fault diagnosis to
within 99% of optimality.
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3.6 Special Operators

Although very similar to the repair strategies detailed in section 3.5, the operators
presented here are aimed more at preserving feasibility than at creating it. Moreover,
they are usualy enhancements of standard genetic algorithm operators like mutation
and crosover rather than ‘stand-alon€’ routines. Again, very little is published about
the general case of genetic operators and constraints. Reid [137] presents a theoretical
investigation of the behaviour of two-point crossover on solutions to a constrained
integer optimisation problem. He concludes that more specialised crossover and
mutation operators, which preserve feasibility, are often superior for loosely restricted
problems. However, for highly constrained problems this would be too limiting, as
finding (different) feasible solutions is a difficult task in itself. Thus, there is a danger

of premature convergence in these cases.

Examples of special crossover and mutation operators that preserve feasibility can be
found in the papers of Bilchev and Parmee [23], Levine [108], Tanomaru [164] and
Ross et a. [143]. Bilchev and Parmee solve a loosely constrained fault coverage code
generation problem. After creating al legal templates of possible combinations of test
code, they apply crossover such that the template itself always stays intact.

Levine [108] solves a set partitioning poblem with the help of a specia ‘block’

crossover. Before using the special crossover, the set partitioning matrix is brought into
block ‘staircase’ form. Block B; is then defined as the set of columns, which have their
first onein row i. In any feasible solution, at most one column of each block may be
present. The idea of the block crossover is to help preserve feasibility by setting the

crossover column always to the first column of some block.

Tanomaru [164] uses a genetic algorithm for a staff scheduling problem. He defines a
working shift as the list of shifts a particular employee works within the planning
period. Thus, a chromosome or solution in his case is the list of working shifts for all

employees. A special two-point crossover is then used, such that only whole working
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schedules for employees are exchanged. Within an employee’s schedule, heuristic

operators are applied.

To improve timetabling solutions, Ross et a. [143] use a violation directed mutation.
The key aspect of this new kind of mutation is that both the position of the gene to be
mutated and its new value are chosen such that constraint violations are reduced. In
order to do this, the authors calculate a ‘ violation score’ for each gene, which is equal to
the sum of the violated constraints the gene takes part in. Experiments show that this
type of mutation is highly successful in finding good solutions, in particular when the
selection of the gene and its new value is stochastically biased. For instance,
tournament selection is more successful than basing the mutation on the highest

violation score or on the best improvement.

3.7 Decoders

Decoders offer an interesting option of solving constrained optimisation problems with
agenetic algorithm. Instead of being a‘direct’ solution to the problem as with standard
genetic algorithms, a chromosome is how a set of instructions of how to build a solution
by using another routine, namely the decoder. For instance, the genotype of an
individual could represent a permutation of the items to be processed, for example in the
job shop scheduling case a permutation of the list of jobs to be scheduled. After the
usual genetic algorithm operations, the decoder then picks up the items in the order
given by the permutation and builds a feasible solution from it, following specific rules.
This final solution, i.e. the phenotype, is then assessed and its fitness score is given to
the original permutation based individual.

One idea behind this approach is that ‘difficult’ variables will be moved to the front of
the string and their values decided whilst there is till a high degree of freedom.

‘Easier’ variables follow later when some constraints are already tight. Another type of
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indirect genetic algorithm finds optimal settings of parameters or rules for heuristics
that then solve the actual problem. For instance, these could be priority weights for

various scheduling rules or alist of which sub- heuristics to use.

An advantage of these indirect approaches is that the genetic algorithm can be |eft
amost unchanged from the canonical version presented in appendix A.2. In particular,
there is no need for a penalty function as all solutions are decoded in such a way that
they are feasible. The only difference to a standard implementation is that since the new
chromosomes will be permutations, both crossover and mutation have to take this into
account. Hence, appropriate operators, such as partially mapped crossover and swap
mutation, must be used. For examples of these see appendix A.2.5 and section 6.2. All
the problem specific knowledge is built into the decoder, thus no further separate repair

or hill-climbing heuristic is needed.

Note that the original intention when using a decoder was to ensure that solutions are
guaranteed to be feasible once decoded. This follows the work and ideas of Davis [47]
and Davis [49] who was one of the first to use decoders. This was achieved by making
important constraints soft. In fact, the ‘constraints’ were often part of the objective in
the first place. For example, in the exam scheduling case there is no fixed limit on the
number of dots available. Although solutions are penalised for using more than a
specific number of dots there is no upper limit to the length of the schedule, i.e. exams

can always be placed at the end of the queue.

Thisis different from our approaches presented in chapters 6 and 7, where solutions are
not guaranteed to be feasible and hence a penalty function approach is till needed to
take this into consideration. In contrast, the traditional use of the decoder follows
Pamer and Kershenbaum [125] who set out the following rules between the

relationship of solutionsin the original and in the decoder’ s space:

For each solution in the original space, there is a solution in the encoded space.

Each encoded solution corresponds to one feasible solution in the original space.
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All solutions in the original space should be represented by the same number of
encoded solutions.

The transformation between solutions should be computationally fast.

Small changes in the encoded solution should result in small changes in the solution
itself.

Details of how these rules conflict with the indirect genetic agorithm approach to the
nurse scheduling problem and the nature of our decoder will be shown in section 6.3.3.
However, some general points about using an indirect genetic algorithm with a greedy
decoder can be made. Consider a minimisation problem. The above rules state that all
solutions should be evenly represented in the encoded space. Often with a greedy
decoder, this is not the case, as decoding is biased towards low-cost areas. Thus, large
unattractive parts of the original solution space are cut out speeding up the search.
Similarly, some decoded solutions will be represented more often than others, because
the decoder is biased towards low-cost areas. As long as there is some variety in the
initial population, this should not cause any problems, because children from two

different permutations mapping to the same solution are unlikely to do so as well.

All other rules have some merit. In particular, it is important that an encoded solution
aways maps to the same decoded solution. Otherwise, there is no one-to-one
relationship between fitness value, encoded and decoded solution. This could mislead
the genetic algorithm. Unfortunately, the presence of hard constraints in our problems
will prevent some decoded solutions from being feasible. In contrast to this, the
remainder of this section will present examples of using the decoder in the traditional
way, i.e. mainly following the above rules and guaranteeing feasibility by relaxing or
not having any important constraints. Hence, the difference is that in our case infeasible

solutions are not only penalised but are also unacceptable as final solutions.

One area where such decoders have proved popular is that of job-shop scheduling. Here
it is difficult to maintain a feasible schedule using direct geretic algorithms. This was
first noted by Davis [49]. He explains that using a direct representation, i.e. work
station w performs operation 0 on object x at time t, would lead to severe problems of
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upholding feasibility with standard crossover operators. Thus, he suggests an indirect
representation, which for each work station is a preference list of the order of operations

including the options ‘idle’ and ‘wait’.

A decoding routine then picks up the first legal action from the preference list of each
work station. Crossover works by exchanging preference lists between work stations
and mutation scrambles the members of a preference list. The evaluation function
measures the cost of the whole schedule adding a large penalty if a certain time limit is
not kept to. Using this approach the author finds good solutions and suggests using the
combination of a ‘random’ genetic algorithm with a ‘deterministic’ decoder for other

problems.

Other examples of using decoders for job-shop scheduling problems are described in
Bagchi et al. [13] and in Fang et al. [64]. Bagchi et a. use an indirect encoding
representing order priorities. However, they then point out that such a ssmple encoding
would not be sufficient for their problem. This is because it restricts the search to the
space of al permutations of job orders and does not take into account additional
information. For instance, this additional information could be the possibility that some

orders can be produced with different resources on different machines.

They argue that leaving these decisions to the decoder would be unsatisfactory, as it
would be difficult to implement rules and slow down the search greatly. Therefore,
they add allocated resources to each order in the priority list, making sure the random
initialisation is feasible with respect to resources and orders. They then use a combined
crossover operator, i.e. a partially-mapped crossover for the priority list and a uniform
crossover for the resources. Similarly, two mutation operators are used. Experiments
show that the more extensive encoding is vastly superior to the one based on simple

order priorities.

Also using an indirect encoding representing order priorities, Fang et al. [64] investigate
the convergence speed of different parts of the string. The authors discover that earlier

parts of the string converge much faster than later parts. This is an expected effect due
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to the variation of ‘significance’ across the string. To exploit this and further improve
thelir results they examine dynamic sampling of the convergence rates of different parts
of the string and then use this information to target positions for crossover-points and
mutation. Hence, high variance sections of the string are more likely to be chosen for
crossover and low variance sections for mutation. Results using these enhancements are

significantly better than those found using standard operators.

Two examples of the use of decoders for timetabling are given by Podgorelec and
Kokol [127] and Corne and Odgen [42]. Podgorelec and Kokol use a genetic algorithm
to optimise the ordering of events, in their case patients who have to attend therapies.
Their objectives include minimising overal duration of al therapies, minimising
maximum and average individual waiting times and idle times of devices. The ordering
of eventsis decided by the genetic algorithm with a decoder constructing a timetable by
giving each event the earliest possible slot. A weighted fitness function is used to
measure the quality of a solution against all goals. Reported results are good and are
further improved by dynamically adjusting parameter rates following some simple

machine learning rules.

Corne and Odgen compare the effectiveness of hill-climbing, ssimulated annealing and
genetic algorithms, all with direct and indirect representations, for optimising preaching
timetables. In the direct representation, the first preacher is used for the first sermon,
the second for sermon 2 etc. In the indirect case, the string is a permutation of all
sermons and is then ‘filled” by a decoding timetable builder following problem-specific

heuristics.

They find that for al three methods the indirect approach works better than the direct
approach. However, one could say that the timetable builder was at an advantage using
more problem-specific knowledge. The authors agree, but ague that it would have
been very time consuming in both implementation and use to employ ‘smart’ featuresin
the direct case. However, in their experiments the genetic agorithm is out-performed
by the hill-climber and by simulated annealing, which the authors attribute to the
structure of the solution landscape being multimodal with steep-sided optima.
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Further examples of interest are: Blanton and Wainwright [24], who solve a multiple
vehicle routing problem with time and capacity constraints using an indirect encoding.
They are successful with a problem specific merge crossover operator that is based on a
global precedence matrix of al customers to be visited. Jones and Beltramo [100], who
use a greedy adding heuristic as the decoder for a partitioning problem that has been
encoded as permutations of the objects to be partitioned. Reeves [136], who solves bin-
packing problems by hybridising an indirect genetic algorithm with a heuristic best-fit
decoder. Finaly, a minimum span frequency assignment is dealt with by Vaenzuela et
al. [168] in asimilar fashion to Reeves.

3.8 Miscellaneous M ethods

This section concludes chapter 3 with a further selection of constraint handling methods
that do not easily fit into any of the former categories, athough some methods share
similarities or are derivations of methods presented earlier.

Both Barnier and Brisset [14] and Bruns [29] combine a genetic algorithm with
constraint logic programming techniques. Constraint logic programming is an
advancement over linear programming making active use of constraints whilst
conducting an exhaustive branch-and-bound search of the solution space. When one
variable value is chosen, all other variables domains are dynamically adjusted via the

mutual constraints. This reduces the search space and speeds up the search.

The authors argue that constraint programming is suitable for highly constrained
problems. However, due to its exhaustiveness, it is confined to relatively small search
spaces. Genetic algorithms on the other hand, due to their fast sampling are suitable for
large search domains, but have difficulties dealing with constraints. Hence, Barnier and

Brisset and Bruns suggest hybridising both methods such that the genetic agorithm
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searches the whole problem space for promising sub-spaces and then using constraint

programming techniques to optimise within these promising regions.

Following this approach, Barnier and Brisset successfully solve vehicle routing and
radio frequency assignment problems, outperforming both genetic algorithms and
constraint programming on their own. Bruns solves a job shop scheduling problem to
similar quality as more problem specific heuristics. However, he also points out that by
using this combined approach, the constraint programming step might fail to find
feasible solutions if the domains created by the genetic algorithm were empty with
respect to feasible solutions. This could be the case for harder problems, athough in his
case due to the ‘softness’ of the main constraint it was not. He therefore suggests
adding either a backtracking or otherwise suitable problem-specific operator to prevent

this from happening.

Kowalczyk [105] also combines genetic algorithms and constraint programming.
However, in his paper constraint programming techniques are gplied during uniform
and n-point crossover and also to initiadlise al solutions as feasible. Then, in the
uniform crossover case, after randomly choosing which parent the first gene of the child
comes from, a matrix for all other genes is constructed. This is done via constraint
consistency checking and shows from which parent the other genes might come from to
preserve feasibility. If the matrix contains only one parent then its gene is chosen

automatically, otherwise it is chosen at random. After every gene, the matrix is updated

again.

However, there are two drawbacks to Kowaczyk’s method: By initidising al
individuals via constraint programming, the variety of values for some genes might be
restricted. This can lead to premature convergence. Furthermore, the crossover
operator could lead to a Situation where neither gene from either parent will lead to a
feasible child. In those cases, the author suggests backtracking which again might lead

to premature convergence.
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A different hybridisation approach is presented by Cheung et al. [39]. They combine
their genetic algorithm with a grid search method. The grid search heuristic works by
performing a pattern search around solutions found by the genetic algorithm. Results
are given for the mixed integer non-linear programming problems of the development of
oil fields and the optimisation of a multi-product batch plant. The authors conclude that
their hybrid method successfully handles problematic non-convex constraints but still

needs further refinement.

Chu and Beadey [40] and Chu and Beadley [41] present a variation on penalty
functions. They solve set partitioning and generalised assignment problems with a
genetic algorithm using separate fitness and unfitness measures of individuals. Fitness
is defined as in the standard genetic algorithm, i.e. it is equal to the objective function
value of an individual. Unfitness measures the degree of infeasibility (in relative

terms), i.e. for the set partitioning problem the number of rows covered more than once.

The authors then use the fitness and unfitness scores to divide the population into four
distinct sub-populations. According to Chu and Beadey, these sub-populations allow
for a much better replacement strategy than straightforward strategies, for instance
replacing the solution with the worst fitness or the worst unfitness. Separation of fitness
and unfitness also helps in terms of parent selection. Utilising these properties, they use
a so-caled matching selection method, which results in better quality offspring by
choosing compatible parents. Overall, they achieve much higher feasibility amongst

their solutions than with standard methods.

Wilson [180] also solves the generalised assignment problem. In afirst step, the author
finds the optimal solution by relaxing the capacity constraints. This solution is then
used to seed the genetic algorithm population. This seeding works by randomly
changing the covering row for some columns. The row is only changed if the
corresponding capacity constraint is violated. The seeding results in a population of
near-feasible solutions. The genetic agorithm then runs either for a pre-defined number
of generations or until a feasible solution has been found. The fina solution is then

further improved with a 2-opt local search method. Wilson concludes that the solutions
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found to reasonably sized problems were of near optimal quality, but the genetic

algorithm was outperformed by an older problem-specific heuristic approach.

Le Riche et a. [106] have two populations, each with its own penalty parameter in a
‘segregated’ genetic algorithm. One parameter is chosen to be large whilst the other is
chosen to be small. In an inter-breeding phase in every generation, solutions from both
populations generate children in addition to the standard inter-population crossover.
The authors argue that this method allows them to approach the feasibility border,
which usually holds the optima solutions, from both directions, i.e. from inside and
outside. However, they leave the question unanswered how to ensure that the algorithm

converges to the area of the feasibility border containing the global optimum.

Paredis [126] experiments with a different representation of individuals. Each geneis
alowed to take an additional ‘? value on top of vaues from its domain. A ‘7?7

represents a choice that is still open. Initially, many *? are present in the population.
During the run of the genetic algorithm, more and more ‘? are filled in by using
constraint programming techniques. Thus, individuals are promising search states in the
beginning and solutions later. The fitness of such partially defined individuals is
defined as the objective function value of the best possible completed solution. Using

this method, Paredis solves N-Queens and job shop scheduling problems successfully.

Dechter [53] and Kennedy [101] suggest backtracking. They initialise their populations
with feasible solutions only. Should crossover produce infeasible children, the
backtracking algorithm makes them increasingly similar to one parent until they are
feasible again. Whilst this approach might work if the problem is not very tight or there

IS just one feasible region, for other problems this might lead to premature convergence.

If the solution space is convex and all variables are of numerical type, special geometric
crossover operators and other geometric heuristics can be used to maintain feasibility.
This can be seen in Michalewicz and Attia [112], Michalewicz and Janikov [113],
Schoenauer and Michalewicz [148] and Schoenauer and Michalewicz [149]. As our

problems are of a discrete nature, these methods cannot be used.
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Schoenauer and Xanthakis [150] suggest cycling through the constraints, i.e. only one
constraint is active at any time. Whenever a certain percentage of all solutions fulfil this
constraint, the algorithm moves on to the next one and so on. The authors use thison a
truss structure optimisation problem with hierarchical constraints where good solutions
are found. Although Schoenauer et al. conclude that their method is problem
independent, it seems fair to assume that it works best with problems that have only few

constraints or are of the hierarchical constraints type.

3.9 Conclusions

As this chapter has shown, genetic algorithms have been successfully used to optimise a
variety of problems. Moreover, there are various ways of dealing with constraints.
Some of these are more general, whilst others are problemspecific. In particular, we
have seen many applications to problems closely related to the nurse scheduling
problem.  With direct genetic algorithms these methods include implementing
constraints into the encoding, penalty functions, repair algorithms and problem-specific
crossover and mutation operators. Alternatively, indirect genetic algorithms have been
used. There the problemspecific information is contained with a separate decoding

heuristic.

None of these methods can guarantee feasibility in general and as a result there is no
definitive way to handle congtraints. Thus, the choice of constraint handling method is
very problem dependent. Thisindicates that there is room for improvement and a more
generic constraint handling technique would be of great benefit. In the following
chapters we will look at most of the methods suggested in this chapter and show their
merits and drawbacks for our particular problems. From these dservations, new
operators will be developed to handle the constraints present successfully. Reference to

other relevant research will be made as appropriate.



4 A Direct Genetic Algorithm Approach for
Nurse Scheduling

4.1 Encoding of the Problem

The previous chapter indicated that there are two main avenues for solving problems
such as the nurse scheduling example with genetic algorithms: A direct and an indirect
approach. This chapter concentrates on a straightforward direct encoding of the
problem and experiments with genetic agorithm parameters and different penalty
weights and functions. A more sophisticated direct approach to the problem is
presented in the next chapter and an indirect approach is shown in chapter 6. Parts of
this chapter are based on the results found during the pilot study (Aickelin [4]), which is
summarised in Appendix B. However, due to the pilot study’s limitations (one
encoding, limited types o nurses and only six data sets) further work is necessary.

First, consideration needs to be given to different direct encodings.

There are many different possibilities for encoding this problem. In the pilot study,
good results were found with the encoding being the list of shift patterns worked by the
nurses. As outlined in the remainder of this section, because of its superiority the same
encoding is again used for this research. However, before doing so, the merits of using
a different encoding have to be assessed. Generally, al good encodings should have the

following qualities:

Incorporate as many constraints into the encoding as possible (refer to chapter 3.3
for details).

Allow for afast evaluation of the fitness of the string.

Offer some degree of inheritance by fithess between parents and children.

Make sensible crossover and mutation operators possible.

Berelatively short so there is less conflict with the building block hypothesis.
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One possible direct encoding is to have a string of length equal to the total number of
nurse shifts required in a particular week. Each shift on each day could then be
represented by a sub-string of length equal to the number of nurses required at that time.
Thus, the string would consist of 14 sub-strings, first the seven days then the seven
nights. The values of each gene in the sub-string would then represent the index of the
nurse working that shift. For example, the following would be the beginning of a string
if five nurses were required on for each day shift: (1,13,14,21,5; 2,8,7,3,10...). In this
example, nurses 1, 5, 13, 14 and 21 would work the day shift on Monday, nurse 2, 3, 7,
8 and 10 the day shift on Tuesday etc.

If this encoding was changed dlightly, the three grade bands could also be taken into
account. In order to do this, there have to be three sub-strings for each day and night.
The length of each sub-string is then equal to the number of nurses required of grade
one, two and three respectively. For example (1; 13,21; 5,14...) would be a partia
solution where one nurse of grade one, two nurses of grade two and two nurses of grade
three are required on the first day shift. The next step is then to ensure that only nurses
of the required grade or higher are alowed to fill a‘dot’. Thus, the whole of covering
constraint set (3) of the integer programming formulation in section 2.1 is implicitly

fulfilled by this encoding.

However, there are some drawbacks with this encoding. Firstly, the strings would be of
considerable length. For an average data set, they would consist of some 100 genes.

Thisis calculated as seven days multiplied by the average number of nurses needed on a
day shift, plus seven nights multiplied by the average number of nurses needed per night
shift. Another problem is that the actual shift pattern worked by each nurse needs to be
extracted first, which means that the whole string needs to be scanned for each nurse to
arrive at her day on / off pattern. This is computationally expensive but necessary to

include the ‘cost’ of shift patterns, as given by the p; values defined in section 2.1.

Furthermore, even if initialised correctly, standard crossover and mutation operators are
very likely to disturb each nurse working the correct number of shifts per week as

required by her contract. Moreover, it could happen that a nurse was scheduled to work
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both day and night shifts in one week, although her contract does not alow this. It
could even lead to situations where a nurse possibly works two shifts on the same day

or night.

For instance, consider the following simplified example for two day and two night
shifts, where three nurses are required on each. Two feasible solutions for this example
are (1,2,3; 1,2,3; 45,6, 45,6;) and (4,5,6; 4,5,6; 1,2,3; 1,2,3;). In the first solution
nurses 1, 2 and 3 work the two days and nurses 4, 5 and 6 the two nights. In the second
solution, the situation isreversed. Any standard k-point or uniform crossover with these
two solutions as parents will yield an infeasible solution where at least one nurse will

work both aday and a night shift on the same day.

This disadvantage in particular renders this type of direct encoding awkward for the
problem. Although special operators, similar to those presented in chapter 3.6, might be
able to improve the situation, they will be difficult and time consuming to construct.

Therefore, we chose not to use this type of encoding in the first instance.

A second possible encoding would be a string of as many binary vectors as nurses.

Each vector would be of length fourteen and represent the seven days and nights of the
week. As with the shift patterns, a 1 would represent a day (or night) worked and a0 a
day (or night) off. This encoding has the advantage that the children produced by
crossover are of greater variety than those formed by the encoding used in the pilot
study. In encodings with shift patterns, the child can only take the pattern of either
parent. With this encoding there are many more possibilities if crossover points are

alowed within the vector of a nurse.

However, there is aso a downside to this when used with standard crossover operators.
In amost all cases, this will result in infeasible vectors for a nurse, for instance a nurse
working too many days or working both days and nights in a week. Additionally,
solutions can be infeasible in respect to the covering constraint. Thus, no constraints

are implicitly incorporated. Another disadvantage of this encoding is the considerable
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length of the strings. The first problem in particular led us to think that this type of

encoding is not very practicable for the nurse scheduling problem.

After considering the above encodings, we chose to use the same encoding as in the
pilot study. This encoding follows directly from the integer program formulation in
section 2.1, i.e. an individua is a concatenated string of each nurses’ shift pattern
worked. Each individual thus represents a full one-week schedule and is a string of n
elementswith n being equal to the number of nurses. Theith element of the string is the

index of the shift pattern worked by nurse i.

Such an encoding means that any standard crossover allocates some nurses to the shift
patterns worked in one parent and the remainder to those worked in the other parent. A
bit mutation operator changes the shift pattern of just one nurse. A possible individua
for five nurses would therefore look like (12, 1, 128, 218, 24), indicating that nurse 1
works shift pattern 12, nurse 2 shift pattern 1 etc. For details about the transformation
of a shift pattern into the actual days and nights on or off, see appendix C.4.

This encoding was chosen for the following reasons. Firstly, it builds on the previously
establisned shift patterns and penalty costs pj (for a definition of the p; values, see
section 2.1.3). Hence, with this encoding there is a nice one-to-one relationship
between the penalty costs and the genes and therefore also with the building blocks.

Secondly, it is equivalent to the one successfully used in the pilot study and by Hadj-
Alouane and Bean [87] for general multiple-choice integer programs. Another
advantage of this encoding is its compactness, as the length of the string is equa to the
number of nurses. This again should help the formation of short highly fit schemata, as
stipulated by the building block hypothesis.

Finaly, as outlined in section 3.3, a good encoding should incorporate some of the
problem’s constraints. By using the above encoding, as each nurse corresponds to one
position in the string, it is guaranteed that all child solutions obey the constraints that
each nurse works exactly one shift pattern. This is the multiple-choice constraint set (1)

of the integer programming formulation. As long as the initial values and those allowed
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for mutation of each gene are selected from the values of feasible shift patterns for each
nurse, then constraint set (2) is automatically taken care of by the encoding, too. This
leaves only constraint set (3) to be dealt with further. From our point of view, this last
encoding is superior, asit iseaser to ‘fix’ the covering constraint set (3) than constraint
sets (1) and (2). This view is based on attempts to correct such infeasible solutions by
hand.

The final constraint set (3) can then be incorporated via a penalty function approach as
described in section 3.4. The resulting target function will be used to measure an
individual’ s raw fitness and is as follows. Note that only undercovering is penalised not

overcovering, hence the use of the max function.

g8 & & e 34 oy -
a a p;X; twemngg g MaxgR - a a 4.2,X;; 0y ® min
i=1 j=1 k=1 s=1 é i=l j=1 ]

The parameter Wyemand 1S referred to as the penalty weight in the following. It isused to
adjust the penalty that a solution has added to its raw fitness. Note that a fitter solution
has a lower raw fitness as we are minimising the objective function. For each unit of
undercover, a penalty of the size of Wgemand 1S added to an individual’s raw fitness. For
instance, consider a solution with an objective function value of 22 that undercovers the
Monday day shift by two shifts and the Wednesday night shift by one shift. If the
penalty weight was set to ten, the raw fitness of this solution would be 22 + (2+1)*10 =
52.

We are now ready to apply a canonical genetic algorithm to the problem. This will be
started in the section 4.3 aong with an investigation into the effects of parameter
settings and different genetic algorithm strategies. Beforehand, the next section
describes the data and computer equipment used for the experiments and explains how

the results were evaluated.
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4.2 Description of Experiments

For all experiments, 52 real data sets as given to us by the hospital are available. The
data was collected from three wards over a period of a few months. Unless otherwise
stated, to obtain statistically sound results all experiments were conducted as twenty
runs over all 52 data sets. All experiments were started with the same set of random
seeds, i.e. with the same initial populations. The platform for experiments was a
Pentium 200 MMX based IBM compatible PC, run in DOS 7.0. All algorithms are
coded in Turbo Pascal for Dos 7.01. This programming language was chosen for its
modularity and number crunching speed. At the time of starting this research, Turbo
Pascal proved faster than the then current versions of Fortran and Delphi, which were

the other alternatives available.

Note that in this chapter we do not look at the results to single data sets as we are
searching for overall good strategies and parameter values. To make future reference
easier, the following definitions apply for the measures used in the remainder of the
thesis. ‘Feasibility’ refers to the mean probability of finding a feasible solution averaged
over al data sets and runs. ‘Cost’ refers to the sum of the best feasible solution (or
censored cost as described below) for all data sets averaged over the number of data sets
with at least one feasible solution. Thus, cost measures the unmet requests of the

nurses, i.e. the lower the cost the better the performance of the algorithm.

Should the agorithm fail to find a feasible solution for a particular data set over all
twenty runs, a censored cost of 100 is assigned instead. The value of 100 was used as
this is more than ten times the average optimal solution value and significantly larger
than the optimal solution to any of the 52 data files. Thus, a particular algorithm that
finds feasible solutions of 20 for 50 data sets and fails to solve the other two sets would
have a cost of (20 * 50 + 2* 100) / 50 = 24.

The average of the best solution for each data set, rather than the average over all
feasible solutions, was chosen to measure the performance of agorithms for the

following reasons. As experiments showed, most of the time there was little difference
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which one was used for comparisons from the genetic algorithm’s point of view. An

example of this can be seen in Figure 4-1 in section 4.3.

However as the research progressed, situations where improved agorithms found more
feasible solutions than before were encountered. Although, the best of these was as
good or even better than before, the average was worse as some of the new feasible
solutions were of below average quality. If the average over all feasible solutions was
used in these cases, then it would be misleading. Note that using the average of the best
of each run aso alows for a more realistic comparison of our solutions to those of
Dowsland [55], who also used the best result out of ten runs for each data set.

Furthermore, in a rea-life situation we would always recommend executing the genetic
algorithm several times over a specific data set. To allow for this the solution time is
kept very fast by keeping time critical parameters small. It took on average less than ten
seconds on a personal computer as specified above per optimisation run and data set. |If
for any reason multiple runs for a single data set are not wanted, we recommend
compensating this by increasing the population size and extending the stopping criteria.

This recommendation will become clear from the discussions in this chapter.

4.3 Parameter and Strategy Testing

4.3.1 General Introduction

The last step before running a canonical genetic agorithm is to set its various
parameters and strategies. These are population size and type, initialisation method,
selection strategy, crossover and mutation rate, crossover and mutation type, survival
strategy and stopping criteria.  The sheer number and range of these parameters show

that this is by no means a trivia task. Moreover, as it has been mentioned earlier there
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is not one set of parameters that is superior for all types of problems (see Goldberg [81],
Davis [48], Wolpert and Macready [181] and Radcliffe and Surry [130]).

Nevertheless, where appropriate, literature sources will be cited concerning the
‘optimal’ setting of parameters or the ‘superiority’ of certain strategies. For the purpose
of this chapter, al parameters and strategies will be of a static nature, i.e. once chosen
they will stay the same throughout the optimisation. The only exception of this will be
experiments with a smple dynamic mutation rate. The topic of dynamic and truly
adaptive parameters, as suggested for example by Yeralan and Lin [182], Tuson and
Ross [166] and Tuson and Ross [167], will be further discussed in section 4.4 for the
penalty weight and in section 7.5 for other parameters.

The experiments were conducted as follows. Initially, all parameters and strategies
were set to the values found during earlier research based on a limited number of
experiments and data sets (Aickelin [4]). These values can aso be found in Table 4-1.
Extensive experiments were then conducted for each parameter or strategy in turn. The
parameter or strategy that gave the best results was then kept for all future experiments.
Full results are not given in those cases where much worse results were encountered.

Some of these can be found in Appendix D.

Parameter / Strategy Initial Setting
Population Size 1000
Population Type Generational

Initialisatior Random
Selectior Rank Based
Uniform Crossover Non-parameterised
Parents and Children per Crossover 2
Per String Mutation Probability 5%
Replacement Strategy Keep 20% Best
Stopping Criteria No improvement for 20 generations
Penalty Weight 10

Table 4-1: Initial parameter settings for the direct genetic agorithm.
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We are aware that the order of the experiments will influence the ‘best’ value for each
parameter or strategy. Moreover, as we look at the best performance over all 52 data
sets, we might not find the best parameters for al individual cases. Nevertheless, in
view of the well-reported robustness of genetic algorithms regarding parameter settings,
the parameters and strategies found this way will be amongst the best possible, without
resorting to meta- level algorithms or other more complicated methods.

4.3.2 Population Type, Sizeand Initialisation

The first parameter tested was the population size. It is expected that the bigger the
population the better the results found by the genetic algorithm because of the increased
diversity and number of individuals processed. However, a bigger population also leads
to a longer solution time due to the additional computation time per generation. Some
theory about optimally setting the population size in the case of binary encodings can be
found in Goldberg [82]. However, thisis not directly relevant for our research, as we

do not have the binary encodings assumed by Goldberg.

Before deciding whether to employ a generational or a steady-state population, some
initial experiments with both types were carried out. An extensive discussion of this
guestion can for example be found in De Jong and Sarma [50], Syswerda [160] and
Goldberg and Deb [79]. In line with their findings, neither of the two methods proved
consistently superior to the other. We decided to concentrate on one model to carry out

all future experiments and the generational type population was chosen.

The individuals of the first population were seeded at random, in our case paying
attention to assigning only feasible shift patterns to each nurse with respect to constraint
set (2) of the integer program of section 2.1. However, Bramlette [79] suggests that by
‘intelligently’ seeding the initial population by choosing the best out of n random
individuals, better results can be obtained. We tried this for n=5, n=10 and n=20 and
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found that this in fact degraded solution feasibility and cost by up to 10%, producing

worse results for higher n.

It is conjectured that this is due to the high number and tightness of the constraints in
our problem. An observation of initial solutions showed that athough their mean
fitness value was almost twice as good as before, this was achieved by a strong bias
towards cheaper shift patterns rather than by ‘more feasible’ solutions. This was
because the seeding selection was based on the standard fitness function, which resulted
in high cost, but potentially essential shift patterns, for example weekend and night
patterns, being discriminated against. Thusin our case, it seems more important to have
a good random spread rather than fitter but still infeasible solutions which lack certain
‘unfavourable’ values in the initial population. This is in contrast to Bramlette who
solved unconstrained problems where a solution’s fitness is a more direct representation
of its quality.

This view is supported by results presented in Burke et a. [34]. The authors state that
although seeding the population may result in better quality solutions by providing good
starting points, diversity is also important. They conclude that if the seeding produces
very similar individuals then the loss of genetic diversity might lead to worse find

solutions in comparison to random initialisations.

Having decided on a random initialisation scheme, experiments regarding the best size
of the population were carried out. Figure 4-1 shows how the average cost over all
feasible solutions compares with the average cost over only the best feasible solution for
each data set. As mentioned previously, both behave in avery similar manner and from
now on, the term cost will only refer to the average cost of the best feasible solution for

each data set. For afurther explanation of these definitions refer to section 4.2.
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Figure 4-1: Population size versus average and best solution cost.

As seen from Figure 4-2, a bigger population leads to an increase in feasibility.
However, the cost is only improved up to a population size of 750. Note that the choice
of stopping criterion, i.e. no improvement for 20 generations, is the most likely reason
for the improvement being capped here. If this was extended, larger populations would
perform better because they had the necessary number of generations to converge
further. For the current criterion, the chosen population size of 1000 is a good
compromise between cost, feasibility and the necessary computation time. Figure 4-3
shows the average computation time for a single run of one data set. It grows almost
linearly with the population size indicating an efficient algorithm. For a population size
of 1000, an average solution time of less than 9 seconds is achieved.
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4.3.3 Penalty Weights

The second parameter to be tested is the penalty weight for uncovered demand, Wgemand-
Intuitively, one would think that the higher the penalty weight, the more likely it is that
the solutions are feasible. Figure 4-4 shows the cost and feasibility for various penalty
weights. However contrary to intuition, as shown in the figure, if the weight is set too
high, feasibility is decreased drastically. A possible reason for this is the premature
convergence to a low-cost and almost feasible solution not allowing enough time for a
broader exploration of the search space. A weight in the region of 10 to 30 gives the

best results. For all further experiments, a weight of 20 will be used.
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Figure 4-4: Pendty weight versus feasibility and solution cost.

In view of the results of Hadj-Alouane and Bean [87], concerning the theoretical
impossibility of finding a set of perfect linear penaty weights, it is also worth noting
that a variety of experiments with quadratic penalties failed to improve results. Details
about Hadj-Alouane and Bean’s results are described in chapter 3.4. The experiments

using a quadratic penalty function were performed by squaring the undercover and
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using the same range of penalty weights as above. The results were worse than for the
linear weight. Full results are pictured in appendix D.3. In hindsight, the likely reason
for the failure of the quadratic penalties is that they are too high in the beginning and
thus lead to premature convergence. For instance, for a typical number of uncovered

shifts of 6 thisresultsin a penalty of 36 times the penalty weight.

434 Selection

Following the genetic algorithm paradigm, the probability of selecting an individua for
crossover is proportional to its fitness, i.e. the fitter an individual the more likely it isto
be chosen. This is usually achieved with a roulette-whedl type selection (for further
details see Goldberg [81]). However, if individuals are selected in proportion to their
raw fitness (or in inverse proportion when minimising), then the problems of

domination and lack of selective pressure can occur.

Domination can happen in the early stages of the search when following random
initialisation there are a few individuals with much better fitness than the remainder of
the population. Lack of selective pressure can happen towards the end of the search,
when many individuals have similar fitness values. This could lead to a situation where
the probability of better individuals being selected for crossover is amost the same as
the probability for below average individuals. Further development would therefore be
hampered.

To avoid these problems, some form of fitness scaling is necessary. Whitley [179]
recommends rank-based selection. This avoids any ‘ad hoc’ scaling but still solves the
problems of both domination and lack of selective pressure. Individuals are ®rted
according to their raw fitness, with the best receiving the highest rank equal to the
number of individuas in the population. Selection is then made in proportion to these

ranks, which gives the best individua an average of four children. For more details
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about this type of scaling and the average number of children produced by certain

individual s see the examples in appendix A.2.

435 Crossover

In the preliminary study [4], only one-point and standard uniform crossover, as
originally presented by Syswerda [162], were compared, with uniform crossover giving
better results. Standard uniform crossover is defined as uniform crossover with p =
50% for each gene coming from either parent. In this more extensive comparison, two-
point crossover and parameterised uniform crossover with various parameters are also
included. Parameterised uniform crossover is explained in more detail in Spears and De
Jong [154]. It works as standard uniform crossover, but p, representing the probability
of genes coming form the first parent, can range from 0.5 to 1.

Figure 4-5 shows the results of this study of various crossover operators on the nurse
scheduling problem. As has been observed by many other researchers tackling different
problems (for instance Booker [26], Schaffer et al. [146] and others), two-point
crossover (label ‘2p’) gave superior results to one-point crossover (label ‘1p’). Two-
point crossover also resulted in lower cost and roughly the same feasibility as standard

uniform crossover, i.e. uniform crossover with p = 50%.

However, the real winner is parameterised uniform crossover with p = 80%. In the
graph, the x-axis label indicates the value for p as a percentage. Parameterised uniform
crossover with this value is less disruptive to the strings than standard uniform
crossover, whilst at the same time offering greater variety of possible children than two-
point crossover. In view of the results in Figure 4-5, this combination seems most

suited for our problem and hence this operator will be used for all future experiments.



A DIRECT GENETIC ALGORITHM APPROACH FOR NURSE SCHEDULING 62

Usually only two parents are used for crossover. Eiben et a. [59] conduct a study into
using more than two parents for crossover operators. Their experiments show that for
some problems using more parents per crossover can be beneficial. They conclude that
it is worthwhile using up to four parents, depending on the problem at hand. We also
tried thiswith p = 80% uniform crossover and two, three and four parents. Note that in
the case of three and four parents, there is an 80% probability of a gene to come from

the first parent and a 20% probability to come at random from any other parent.

And indeed four parents (label ‘4 par’) gave slightly better results than two parents with
both cost and feasibility being improved by some 5%. This could be due to two factors:
The increased flexibility, as described by Eiben et a., or the relatively higher number of
samplings better individuals received due to our rank-based selection. The best
individual now participates in on average 8 crossovers (formerly 4), whilst an average
individual takes part in on average 4 crossovers (formerly 2). However, one also has to
take into account that for more than two parents each parent contributes fewer genes
than before. For al further experiments, parameterised uniform crossover with p =

80% and four parents will be used.
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4.3.6 Mutation

In the pilot study of Aickelin [4], a per individual mutation rate of 5% was used. If an
individual was chosen for mutation, exactly one of the genes was changed at random.

In contrast to this, al the genetic algorithms used in this research have a single bit
mutation probability. This gives a higher flexibility, as there is a chance for more than
one gene to be mutated per string. Béack [8] suggests a single bit mutation probability of
[1 / length of string], which in our case would be 3% to 4%. In view of the results of
the experiments, Back’s suggestion is a good guess. Figure 4-5 shows variations of the
single bit mutation rate. Results are as expected for a genetic agorithm, with good
values for under 5% single bit mutation rate. Henceforth, a single bit mutation rate of
1.5% will be used. This vaue, a the lower end of the good range, was chosen as it

requires less mutation operations and hence is computationally faster.
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Figure 4-6: Varying the mutation rate versus feasibility and solution cost.
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An aternative to mutation, as suggested by Ghannadian [75], was aso tried. Rather
than mutating a chosen solution, a completely new individual was introduced into the
population as a substitute. However, this strategy produced worse results than using

1.5% single bit mutation and hence was not pursued further.

Fogarty [67] uses adaptive mutation rates. The general argument runs that in the early
stages of the search, mutation is less important because there is still a good variety of
solutions and big changes are needed which are more efficiently carried out with
crossover. However, in the later stages of the search mutation might not only re-
introduce lost values, but also help fight premature convergence by enabling the genetic
algorithm to escape local optima. Hence, it is suggested that mutation be kept low in

the beginning and made more prominent in the later stages of the search.

This idea was implemented following two different strategies. Both increased the
mutation rate with every generation passed by multiplying it by a factor of 1.1. The
difference between the two methods was whether or not the mutation rate was reset to
its starting value (0.1%) if a better solution than the currently best was found. Neither
of these strategies produced better results than a standard fixed mutation rate. This
could be due to two reasons. Either our function to increase the mutation rate was not

suitable or the idea does not work with our problem.

An example in support of the second argument is the problem of steel truss design
studied by Lee and Takagi [107]. Lee and Takagi experimented with a genetic
algorithm that had a dynamic population size and dynamic crossover and mutation rates
but was otherwise canonical. The authors found that in their particular problem out of
al parameter variation strategies, exponentially decreasing the mutation rate improved

their results the most.
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4.3.7 Replacement

So far, an dlitist strategy with keeping the best 20% in each generation had been used as
the replacement policy. Further experiments were carried out allowing different
proportions to survive. Additionally, experiments with a tournament approach to
survival were carried out. The results of these parameter tests are shown in Figure 4-7,
where the label indicates the percentage of best solutions kept.

One can see that keeping the best 10% is a better strategy than keeping the best 20%.
For the experiments shown in the graph, duplicates were eliminated from the
population. This has been suggested, for example, by Ronald [140] and leads to slightly
better results than keeping the duplicates. A tournament approach to survival (label
‘tourn’), in which one parent competes with one child for the place in the next
generation, gives good results. However, it is inferior to an dlitist strategy keeping the
best 10%, which is the one used hereafter.
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Figure 4-7: Comparison of different replacement strategies.
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4.3.8 Stopping Criteria

The stopping criterion was kept as the number of generations without an improvement
of the best solution found so far. Other criteria are suggested in the literature, for
example Kim et a. [102] use a convergence criterion based on a percentage of all
strings with the same value for certain genes. However, from a practical optimisation
point of view, where solution speed is important, our criterion is simpler and hence
computationally faster. Furthermore, it is anticipated that no improvement for a large
enough number of generations is equivalent to the convergence of the genetic algorithm.
Unfortunately, in circumstances where an almost optimal solution is present in the
starting population, this might not hold. However, judging by the difficulty to create

good solutions by random initialisation, thisis avery unlikely situation.
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Experimenting with different values for the number of generations without
improvement leads to a trade-off between solution time and solution quality. Full

results are shown in Figure 4-8 and Figure 4-9. A good trade-off is achieved for a value
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of 25 to 30 generations without further improvement. Thus, 30 generations without

improvement was the chosen stopping criterion for future experiments.
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Figure 4-9: Stopping criteria versus solution time.

439 Summary of Parameter Tests

Table 4-2 shows a final summary of the values and parameters identified to work best
with the nurse scheduling problem and used in the remainder of this thesis unless
otherwise stated. Overall, feasibility was improved from 31.5% to 37.1% and cost was
down from 54.8 to 38.9. The biggest improvements were made using parameterised
uniform crossover and increasing in the number of generations without improvement for
the stopping criterion. Whilst the latter is trivial, the former is more interesting and will
be looked at more closely in section 5.2 when a new type of crossover is introduced.
Most disappointing was the result of the penalty weight tuning. No major improvement
was achieved. However, it was conjectured that more could be done about the penalty

weights and the next section examines dynamic penalty weights.
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Parameter / Strategy Optimised Setting
Population Size 1000
Population Type Generational
Initialisatior Random
Selectior Rank Based
Uniform Crossover Parameterised with p=0.8
Parents and Children per Crossover 4
Per Bit Mutation Probability 1.5%
Replacement Strategy Keep 10% Best
Stopping Criteria No improvement for 30 generations
Penalty Weight 20

Table 4-2: Fina parameter values and strategies for the direct genetic agorithm.

4.4 Dynamic Penalty Weights

Clearly, the results found so far by the genetic algorithm are very poor. Particularly
disappointing, with regards to increasing the feasibility of solutions, were the tests on
varying the penalty parameter. Even with an ‘optimal’ penalty weight, more than two
thirds of all solutions were infeasible. During the pilot study (Aickelin [4]) it was found
that dynamic penalty weights, adjusting with the number of generations passed,
improved results.

However, it was noted that some dynamic schemes proved better for certain data sets
than others did. To overcome this problem of data specific performance, a more
sophisticated dynamic penalty weight strategy is presented in this section. The penalty
weight used here is truly dynamic or adaptive, as it adjusts itself in proportion to the

actual development of the current popul ation.

The use of such adaptive weights is not uncommon in the genetic algorithm literature.
As pointed out by Reeves[135], several researchers have found that the use of adaptive
or truly dynamic penaty weights can overcome the problems observed with fixed

weights. Hadj-Alouane and Bean [87], who solve a general multiple-choice assignment
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problem, start with a small penalty weight and increase it when the best solution has
been infeasible for several generations. They decrease it again when the best solution
over severa generations has been feasible. Thus, the effect is one of oscillating around
the feasibility boundary. This effect is also referred to as strategic oscillation, a term
derived from tabu search and described fully in Glover et a. [78].

Smith and Tate [152] suggest a penalty weight that is scaled according to the difference
between the fitness of the best feasible solution and the overall fittest solution found so
far. More precisely they use the following formula to determine the penalty p; of
solution i, where n; is the number of constraints violated by solution i, Vieas and Vg are
the values of the best feasible ad best solution found so far and k is a severity

parameter:
an, O
p= Q_I+ (\/feas - Vall)
e2g

The authors chose not to base their penalty on the degree of violation as suggested by
Richardson et a. [138]. They argue that in their particular example, an area facility
layout problem, the total amount of infeasibility is less important than the number of
constraints violated. After extensive tests, Smith et al. conclude that the exact value of
the severity parameter k is not important to achieve significant improvements in

comparison to afixed penalty weight approach.

In the following, experiments with four different adaptive penalty weight strategies are
carried out. In addition to one similar to the weight presented by Hadj-Alouane and
Bean [87] (referred to as Hadj), a variant of Smith and Tate [152] (called Smith) is
tested. Furthermore, a ‘reverse’ of the function used by Hadj-Alouane and Bean and a
dual weight approach are tried. The variation from the method of Smith and Tate is that
we measure the amount of constraint violation as opposed to the number of violated

constraints.
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This was done in agreement with the view of Richardson et al. [138] that thisis a better
measure of infeasibility. For instance, if a solution violates two constraints by four
shifts each then this is far worse than three constraints being violated by one shift only.
In the reverse method, rather than starting with alow weight and then increasing it until
a feasible solution has been found (Hadj weight), we start high and decrease the weight
in line with increased feasibility.

We conjectured that this ‘reverse’ approach is more suitable to our tight problem.
Hence, the penalty weight & high at first, forcing the genetic algorithm into regions
more likely to contain feasible solutions. When solutions improve, the weight is
lowered, alowing for a full exploration of these areas. The fourth approach is a
simplified version of the third method, called dual weight approach in the following.
Whilst the best solution found so far is still infeasible a high penalty weight is used.

Once that solution becomes feasible, the weight is dropped to alow value.

As Smith and Tate concluded that the precise setting of the severity parameter is
unimportant, we follow their example and use k = 1 in the case of the Smith weight.

Hence, the penalty weight becomes

for eras > VaII

: (eras B Vall)
Waemana = 1 2
tn ese

This weight is then multiplied by the sum of al constraint violations, as described in
section 4.1, and this penalty is then added to the objective function value. Should
Weerand 0ECOME Zero, it will be set equal to a small number v. This was done after
observing problems in the behaviour of the genetic agorithm for a weight of zero.
Trying various vaues for v produced little difference in results, hence for our

experiments v = 5 was used because Vieas Was usualy at least ten greater than V.

In the case of the Hadj style weight and its ‘reverse’ the following formula to update the

penalty weight is used:
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_laxq forg>0
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For the reverse type weight, q is the sum of constraint violations by the best solution
found so far. For the original style weight, g is set to ten minus the sum of constraint
violations by the best solution. Ten was chosen as it was larger than the average
maximum violation score observed by the best solution of the first generation
throughout a number of experiments. In other words, q is usualy in the range [O...10].

To adjust severity, a isused as a pre-set severity parameter.

As with the Smith weight, the penalty weight is set to a small number v should the best
solution be feasible and hence g = 0. Again, this was done to avoid problems with a
zero penalty weight. Furthermore, this follows the definition of the Hadj weight, which
decreases once a feasible solution has been found. In our experimentsv = a/ 2 is used

asthisisroughly similar to the above for the tested range of a.

For the computational experiments, the penalty weight was updated once every
generation for all methods. Figure 4-10 shows the results for a fixed penalty weight,
dual penalty, Smith style penalty and reverse style penalty for various a. Note that for
al severity parameters a the results for the Hadj type weight were far worse than for the

fixed penalty. Hence, no results for this penaty weight are given.

Various combinations for the two values of the dual penalty approach were tried, with
the combination 50 and 5 giving best results. These are pictured under the ‘hi/lo’ label
and are worse than the results for the fixed weight. The best results for the ‘reverse
approach were achieved for a= 8. They are a good improvement over the fixed penalty
weight results and notably the number of feasible solutions had been raised by almost a
quarter. The result for the variant of the Smith and Tate type weight was also an
improvement over the fixed penadty and gave the overall best result. Hence, for al
future experiments the variant of the Smith and Tate dynamic penalty weight will be
used.
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Figure 4-10: Comparison of various types of dynamic penalty weight strategies.

Figure 4-11 shows a closer comparison of how the penalty weights actually developed
under the three strategies to try to explain the success or respectively falure of the
methods. The experiment was made for a data set of average difficulty with a = 10 and
v = 5. Predictably, the Hadj style weight starts low and grows bigger with the other two
methods starting high and gradually getting lower. The Hadj type weight fails to find a
feasible solution at al, which would be indicated by the penalty weight reaching 90 and
then dropping to 5. This is not surprising, as it is in line with our findings, that using
high penaty weights hardly finds feasible solutions, which is demonstrated in Figure
4-4,

Both the variant of Smith and Tate and the ‘reverse method behave similarly, with
some subtle differences. The ‘reverse’ method is rigid and hence occasionally tends to
oscillate between two values. This happens in a situation where under a higher weight a
particular solution with less constraint violations is better than a fitter solution with

more constraint violations. Thus, the weight is decreased. Under the new weight, the
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situation is reversed and the weight is increased again. The variant of the Smith and
Tate method makes more subtle changes and therefore avoids this cycling.

Another advantage of the Smith weight is that if no new and better feasible solution is
found, the penalty weight gradually increases, as does the difference between the overall
best and best feasible solution. Hence, more and more pressure is put on the algorithm
to improve feasibility, without using too high weights as the Hadj style strategy does.
This results in the typical behaviour shown in the gaph: The weight slowly edges up
when there is no better feasible solution and then suddenly drops when a new improved
feasible solution has been found. Therefore, its better results are attributed to this

overall greater responsiveness.
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Figure 4-11: Development of dynamic penalty weights under three strategies.

45 Conclusions

Overdl, the smple genetic agorithm fails to solve the nurse scheduling problem
adequately, even with optimised parameters and sophisticated dynamic penalties.
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Figure 4-12 gives a summary of results found so far. The graph shows the results for
the genetic algorithm with (label ‘Optimised’) and without (label ‘Basic’) parameter
optimisation and compares this to the dynamic penalty approach (label ‘Dynamic’). For
further comparison, a summary of the results found by tabu search (label *Tabu') isaso

shown.

Although improvements were made both for feasibility and for cost of solutions in
comparison to the basic approach, results are still far worse than those found for
example by tabu search. Section 5.1 will examine the reasons for this failure, namely
the breakdown of the building block hypothesis due to epistasis caused by the inclusion
of the constraints via a penalty function approach.

The experiments in the area of penalty weights have been exhaustive and no further
improvement is expected in this field. However, many of the other ideas presented in
chapter 3 have not been implemented so far. These include using repair operators and
other local hillclimbers, having more than one population in paralel, employing
problem specific crossover and other ways of including problem-specific information.

The following chapter will look at these avenues.
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Figure 4-12: Comparison of simple direct genetic algorithms with tabu search for nurse
scheduling.



5 An Enhanced Direct Genetic Algorithm
Approach for Nurse Scheduling

5.1 Epistasisor why hasthe Genetic Algorithm failed so far?

The success of a genetic algorithm is usualy attributed to the validity of the Building
Block Hypothesis, which is fully explained in appendix A.3. In brief, the hypothesis
stipulates that genetic algorithms rely on the crossover operator being able to combine
good partial solutions, so-called building blocks, into complete good solutions.
However, it is well recognised (see for example Davidor [44]) that for problems with a
high degree of epistasis this is not guaranteed. Essentially, epistasis is present if the
total fitness of an individual is not a linear combination of the fitness of its elements.
This happens, for instance, if the contribution to fitness of single elements in the
solution string depends on the values of other elements. Hence, epistasis is a measure

of the ‘nontlinearity’ of the relationship between the encoding and the fitness function.

For illustration purposes, consider the following example of binary strings of length 5,
where the fitness is simply the sum of the genes. Two good building blocks are (###11)
and (101##) where a # stands for either a0 or 1. If these two are combined to (10111),
a highly fit solution is formed. Because of the ‘linear’ relationship between encoding
and fitness function, no epistasis is present and the genetic algorithm can successfully

combine good building blocks to highly fit full solutions.

On the other hand consider the same problem, but with the additional constraints that no
more than two adjacent genes can take a value of 1. Although the quality of the
building blocks is till high, their combination is now infeasible. However, hed the first
building block contained the same number of ones but as (110#4#) then the combination
would have been successful again. The genetic algorithm will find this new problem

harder to solve, due to the epistasis created by the additional constraint.
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To arrive at a better understanding of epistasis, Davidor [44] suggests measuring it as
the difference between the sum of the fitness scores of the single genes and the total
fitness of the string. He defines the fitness score of a single gene by averaging the
fitness of al individuals containing this particular gene and comparing this to the

average fitness of the whole population.

Reeves and Wright [134] note that Davidor’s definition of epistasis is flawed because
positive and negative interactions within strings are allowed to cancel each other out.
Reeves and Wright state that more information is needed, for instance the sign and
magnitude of each interaction, which in practice is hardly dbtainable. However, they
also conclude that Davidor’s measure and idea of epistasis still gives some guidance as

to the likely difficulty of a problem with regards to its degree of epistasis.

Obvioudly, the quality of such a measure also depends on the size of the alphabet. In
the binary case, on average half the population has the same value for a particular gene.
This alows for statistically sound results for the mean fitness score for each single gene,
asthe sample sizeislarge. For our nurse scheduling encoding the size of the alphabet is
the number of possible shift patterns for a particular nurse. As explained previoudly,
this can be as high as 75 and averages at around 40 depending on the data
Consequently, on average only 2.5% of the population carry the same value for a
particular gene, which makes for a sample size that is too small to perform a meaningful

analysis. Therefore, we were not able to use Davidor’s epistasis measure.

However, we can say that it is the penalty function approach that renders the nurse
scheduling problem with its particular encoding highly epistatic. If the fitness was just
the sum of the nurses' p; values, then no epistasis would be present. In fact, the
epistasis created by the covering constraints is twofold. The main effect derives from
the fact that the contribution to cover by a nurse working a particular shift depends on
the patterns worked by the other nurses. However, because higher graded nurses are
dlowed to cover for nurses of lower grades there is a second dimension to this
interdependency. It is this second aspect of epistasis that the following modifications

are intended to reduce.
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Our approach follows an idea by Beasley et a. [16] and Beasley et a. [17] who suggest
that epistasis can be reduced by decomposing an epistatic problem into severa sub-
problems. They then overlay these sub-solutions within an individual and eventually
merge them to form a normal solution. This seems counter-intuitive at first as it makes
the search space larger. Nevertheless, the problem is made ssmpler because the epistasis
between the elements, i.e. sub-problems rather than single genes, is reduced. Beasley et
al. find good solutions with this method for a circuit layout problem. However, for a
second problem, a Walsh transform computation, the technique is less successful. The
authors suspect this to be due to the merging algorithm becoming too complex making

an exhaustive search as used for the first problem infeasible.

In this thesis, a similar approach is taken, but instead of overlaying sub-solutions, sub-
populations are built. If the problem could be decomposed into three separate problems,
one for each grade, then this type of epistasis would disappear. However, because of
the interdependencies such a straightforward tactic is not possible. Instead, the ideas
underpinning a parallel genetic algorithm (see appendix A.4) are adopted and we
attempt to breed sub-populations that are highly fit with respect to nurses within specific
grades. These are then combined strategically using a specia fixed-point crossover

operator.

This approach was motivated by an observation made during parameter testing. There it
was noted that one-point crossover sometimes gave better results than uniform
crossover. Thisled usto conjecture that in some cases combining large building blocks,
made up of good partial solutions for one or more grades, aided the solution process.

This hypothesis was further supported by the improvements in the results obtained by
parameterised uniform crossover for parameters significantly larger than 0.5 (see Figure
4-5 for details). The following summarises this new approach which will be detailed in

the next section:

1. Sort the solution strings according to nurses grades (from high to low).
2. Introduce a new type of crossover: afixed-point crossover on grade-boundaries.

3. Split the population into several sub-populations based on grades.
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4. Introduce new (sub-)fitness functions based on a pseudo measure of under-covering
for each grade.

5. Produce some of the children by applying the crossover operator to individuals from
complementary sub-populations.

6. Allow individuals to migrate between sub-populations to overcome limitations.

5.2 Co-Operative Co-Evolution

5.2.1 Introduction

These sections contain a detailed description of the new crossover operator and the new
fitness measure and sub-population structure surrounding it.  First, the grade-based
crossover and its potential for helping to solve the problem are explained in more detail.
Then the need for a different fitness measure to supply the grade-based crossover with
more relevant information is justified. In turn, this new ‘pseudo fitness makes the
creation of sub-populations, each based on one of these new fitness scores, beneficial.
Finally, to overcome a potential drawback of using sub-populations a migration

operator is introduced, which alows individuals to swap sub-populations.

Before the new crossover operator can be applied, the strings need to be sorted in
respect to the nurses' grades. These had actually been sorted before, as the hospital
supplied the data sorted by grades. Although not required by the genetic algorithm so
far, without it the observation that one-point crossover sometimes outperformed other
crossover operators would probably never have been made. Now, however, it becomes
mandatory, because only sorted strings can be regarded as three substrings - one for

each grade.

The new crossover is defined as a one- or two-point crossover on these grade boundary

points. Theidea behind this ‘grade-based’ crossover is to force the genetic agorithm to
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keep good sub-solutions or ‘building blocks, based on the grades, together and
therefore to build up good partial solutions. To ensure a continued variety of different
individuals in the population only some of the crossover operations are performed in
this new way. The rest are done with the parameterised uniform crossover operator as
before.

Similar approaches can be found in Adachi and Yoshida [1] and Hatta et al. [90].
Adachi and Yoshida temporarily protect parts of the strings from crossover and
mutation. They aso use sub-populations, with each sub-population ‘protecting’ some
promising parts of itsindividuals. However, their sole aim is to speed up solution time,
in their case the solving of small to medium sized travelling salesman problems. Hence,
they protect those parts of strings, which have values that appear most frequently in the
sub-populations. The effect of this is to accelerate convergence which is reported as
being twice as fast as before. From our point of view, particularly solving hard
problems, this approach would lead to low quality solutions due to the forced premature

convergence.

Hatta et a. [90] use both uniform and two-point crossover. To decide which operator to
apply to two individuals, they introduce a new measure called the ‘elite degree’. This
elite degree of an individual is measured by the number of recent ancestors with a high
fitness value. If the sum of the elite degrees of both parents is over a certain threshold

value, two-point crossover is applied, otherwise uniform crossover.

Hatta et al. report results on a number of test functions which are solved faster than with
either operator on its own. However, it remains unclear why the authors do not base the
choice of crossover operator directly on the fitness scores of the parents and compare it
to the average fitness of the population. We conjecture that the authors wanted to keep
inherited features that remained fit over a number of generations. Furthermore, it is
possible that some part of the performance gain is due to the fact that two different

crossover operators are used at the same time rather than just one operator on its own.
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5.2.2 Psaudo Constraintsand Pseudo Fitness

To make full use of our new crossover operator and to dispense with the effects of
epistasis, the selection of parents can no longer depend on the fitness of the whole
string. Thus, additional sub-fitness scores according to the ‘building blocks have to be
introduced. This is achieved by partitioning the covering constraints into three
independent groups in order to define a pseudo measure of under-covering. To do this
we define new constantsrig= 1 if nursei isof grade s, ris= 0 otherwise, and Sks as the
demand on day (respectively night) k for grade s only, excluding nurses required at
lower grades.
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Note that (3.1), (3.2) and (3.3) only match (3) if the covering constraints are tight at
each grade. Otherwise, (3) allows higher graded nurses to cover requirements at lower
grades. For example, if there are more than enough grade 1 and grade 2 nurses and the
overal cover istight, constraints (3.1) and (3.2) will be dack, but constraints (3.3) will
never be satisfied. Thus, these new pseudo constraints are not considered binding, but

are merely included to guide the search.
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Now the pseudo fitness of an individua for a particular grade of nurses can be defined.
It is the sum of the nurses' pjj values penalised by any violation of the appropriate
pseudo constraint. Thus, solutions that are close to providing the required cover at a

particular grade will have a higher pseudo fitness than those that are not.

5.2.3 Sub-Populations and Co-Evolution

However, the introduction of these new pseudo fitness scores also creates problems. To
use them in combination with the grade-based crossover, individuals now need to be
given various pseudo fitness values to express how well they cover each of the grades
separately. Thus, since selection is based on rank, multiple rankings have to be done
which is computationally expensive. Furthermore, there is the question as to on which
pseudo fitness score, respectively rank, should selection and replacement be based?
These issues can be resolved if the population is split up into a number of sub-

populations each optimising a different part of the problem based on the nurses’ grades.

However, these sub-populations will have to be different from the standard ‘ competing’
schemes as described in appendix A.4 and used for instance in Spears [156] or
Muhlenbein et al. [121]. There, sub-populations are mainly introduced to speed up the
solution process. Mating only takes place within a sub-population and all sub-
populations follow the same fitness function, hence they are ‘competing’ for the best

solution.

More advanced are the sub-population strategies of Gordon and Whitley [83] (island
models), Starkweather et al. [158] and Whitley and Starkweather [173] (both distributed
genetic algorithms). Although they still only breed within identical sub-populations,
they now alow the exchange of information by letting individuals migrate from one
population into another. Herrera et a. [95] take these ideas one step further: Each sub-

population solves the original problem but to preserve diversity uses different selection,
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crossover and mutation strategies. We will take a closer look at the benefits of
migration towards the end of this section. However, none of these schemes is sufficient
for our endeavours, as we want each sub-population to follow a different fitness
function based only on a part of the problem.

The sub-populations envisaged for our problem will be more similar to the co-operative
co-evolution idea as presented by Handa et al. [88] or Potter and De Jong [129]. Handa
et a. have atwo level system of populations to solve constraint satisfaction problems.
The higher level population works like a standard genetic algorithm, directly optimising
the phenotype level of the problem. The lower level population however is different. It
tries to find good schemata rather than solutions. The fitness of schema is measured by
superimposing them onto full solutions and calculating the resulting difference in
fitness. Good schemata are regularly communicated to the upper level population by a
transmitting operator. Computational results are presented showing the effectiveness of

this approach on graph colouring problems.

Potter and De Jong [129] present a general co-operative co-evolutionary approach to

function optimisation. They summarise their ideas as follows:

Sub-components of solutions are produced in sub-populations called species.
Complete solutions are formed by assembling appropriate sub-components.

The fitness of sub-solutions is defined as the fitness of the complete solution it takes
part in.

Each species evolves as a standard genetic algorithm.

Hernandez and Corne [94] follow the above rules to set up a ‘divide and conquer’
genetic algorithm approach for a set-covering problem where 200 rows had to be
covered by 1000 columns. In their encoding, each gene represents a row and the allele
Is the index of a column covering it. The string is then split up into k chunks of even
size. In their experiments, k isin the range between 5 and 50. Subsequently they use k

ub-populations, each optimising one chunk only.
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The authors calculate the fitness of each chunk by combining it several times with
random chunks from all other sub-populations to form a full solution. In ther
experiments, the average of only five such complete solutions is used to keep
computation time down. To cut computation time even further, the fitness of a chunk is
only updated every five generations. Although one can argue that fitness calculations of
Hernandez and Corne are prone to sampling errors, the computational overhead created
is still immense. The best results are reported to be within 2% of optimality with better
results for higher values of k. However, the average run time of the algorithm is in

excess of one hour.

5.24 Detailsof Sub-Populations

To overcome the vast computational overheads as reported above and to avoid sampling
errors, adifferent approach is proposed to arrive at the fitness of a sub-solution. Rather
than calculating a ‘ compatibility’ score as proposed by Potter and De Jong and used by
Hernandez and Corne, we directly assign a sub-fitness via the above pseudo covering
congstraints to each sub-solution. Thus, the fitness of a sub-solution will be the sum of
the p;; values of the nurses in it plus a possible penalty for a violation of the relevant

pseudo covering constraints.

As a further difference from the model of Potter and De Jong, different levels of sub-
populations forming a hierarchical structure are used. Low level sub-populations that
optimise one grade only, medium level sub-populations that optimise a combination of
grades and high level sub-populations that solve the origina problem. Solution parts
‘flow’ from lower levels to higher level sub-populations due to appropriate crossover
combinations. Another way of looking at this is to describe the lower level sub-

populations as stepping stones towards fuller solutions produced in higher levels.
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The following describes our approach in detail. Firstly, the new pseudo covering

constraints are used to guide the search in seven sub-populations defined as follows:

Individuals in sub-populations 1, 2 and 3 have their fitness based on cover and
reguests only for grade 1, 2 and 3 respectively.

Individuals in sub-populations 4, 5, 6 and 7 have their fitness based on cover and
requests for grades 1+2, 1+3, 2+3 and 1+2+3 respectively.

For example, the fitness functions for populations 1 and 4 become:
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As dynamic weights following the rules of Smith and Tate [152] are used, it is
necessary to decide if Wgemand(B) should be based on the best individua overal or
whether it should be calculated separately for each sub-population B. The pseudo
covering constraints will be slacker for some sub-populations than for others, as for
instance there are more grade one nurses than strictly required. Therefore, a different
penalty weight for each sub-population seems appropriate and the latter option was
adopted. Note that this can result in different values for Wgemand(B) in each sub-
population B at any point in time.

Note also that sub-population 7 does not represent the original optimisation problem as

it s only concerned with the total cover and not with the cover at grades 1 and 2
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independently. It is therefore necessary to maintain a ‘main’ sub-population - sub-
population 8 - whose fitness is the origina fitness as given in section 4.1. This main
sub-population is the most important, as it is the only sub-population that aims to find
solutions to the original problem. This will be reflected when sizing the sub-

populations in terms of the number of individuas in them.

In order to solve the original problem, we also need to strike a balance between
producing highly fit individuals with respect to sub-strings in the sub-populations and
allowing individuals from complementary sub-populations to combine. Additionally,
the total number of individuals in al sub-populations has to be the same as before, i.e.

1000, for afair comparison of results. These issues are achieved by the following rules:

1. Sub-populations 1-3, each with 100 individuals, evolve from parameterised uniform
crossover within themselves for maximum diversity.

2. Sub-populations 47, each with 100 individuals, evolve from 50% parameterised
uniform and 50% grade-based crossover. In the case of grade-based crossover the
parents are selected by rank from sub-populations 1-3 as appropriate and combined
accordingly, for example grade-based children in sub-population 4 would have
parents from sub-populations 1 and 2.

3. Main sub-population 8, with 300 individuals, evolves from 50% parameterised
uniform and 50% grade-based crossover. In the case of grade-based crossover the
parents are picked from sub-populations 1-7 and combined accordingly. For
instance, possible grade-based crossover combinations are individuals from sub-

populations 1+4, 5+2, 1+2+3 or 7 combined with any other.

525 Migration

A well-known drawback with the use of sub-populations is the loss of information due

to the limited choice, in comparison to one big population. To help overcome this
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problem individuals are alowed to swap sub-populations. This operation is called
migration (see Starkweather et a. [158], Tanese [163], Whitley and Starkweather [173]
and Whitley [175]). The migration operator keeps the number of individuals in each
sub-population constant whilst spreading the information they contain across others.
An additional benefit in our caseis that through successful migration an individual may

become ‘fit’ for more than one sub-objective.

Two different kinds of migration with various parameter settings were tried. Thefirst is
random migration in which there is a small chance pu [1%...10%)] in every generation
for any individual to move into another randomly chosen sub-population. The second is
a migration of the best five individuals of each sub-population to a random sub-
population every g [1...20] generations. The swap partner is determined randomly for
al migrations. The difference in results for various parameter settings was only small,
and the best results were achieved for py = 5%, and g = 5. Full results are reported in

appendix D.3. For al future experiments random migration with py = 5% was used.

526 Resaults

Anoveral summary of al results can be seen in Figure 5-1. Clearly the introduction of
the sub-populations based on the nurses grades and the use of the specia fixed point
crossover have improved both feasibility and cost of solutions dramatically over the
original results. As an additional benefit, the average solution time has been reduced
from 12 seconds to less than 10 seconds for a single run. A further good improvement
Is made when random migration is added. However, migration of the best does not
improve results as much as random migration. This is thought to be because of the
‘specialisation’ of each sub-population. Whilst a random migration might introduce
some interesting schemata, the migration of schemata that are aready optimised for

some criteria, proves less helpful.
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Figure 5-1: Comparison of different migration types with no migration and no sub-populations.

5.3 Swapsand Delta Coding

5.3.1 Swaps

The results of the co-operative co-evolutionary approach are an immense improvement
over the origina results found with a standard genetic algorithm in chapter 4. However,
they till fall short in comparison to the quality of solutions found by tabu search or
integer programming software. This section will portray two further enhancements of
our genetic algorithm, namely swaps and Delta Coding. Both ideas try to improve
solutions further by making smal changes not usually achieved by the genetic
algorithm itself.

Together with the approaches portrayed in section 5.4, these are examples of using
problem-specific information to enhance the genetic algorithm. This differs dightly

from the co-evolutionary scheme, where it was more the problem structure that was



AN ENHANCED DIRECT GENETIC ALGORITHM APPROACH FOR NURSE SCHEDULING 88

exploited. Adding problem specific knowledge is a well-known strategy to improve the
performance of genetic algorithms, as suggested for instance by Grefenstette [84], Suh
and Gucht [159] and others.

Swaps — a simple form of repair - try to improve the fitness of individuals by allowing
nurses to swap their shift patterns worked. Note that throughout this section the word
‘swap’ is used loosely for cyclic exchanges rather than in its original meaning of a two-
way exchange. Delta Coding follows the ideas presented in Whitley et al. [178]. The
search starts with a population based on a previous good solution rather than initialising
the algorithm randomly. However, as this section will show, both enhancements are

limited in their ability to improve solution quality further.

Three types of swaps were tried: Chain swaps, special swaps and adjacent swaps. In
chain swaps, up to four nurses can swap their shift patterns amongst themselves. A
swap is alowed if the sum of the nurse-shift pattern costs Sp;; after the swap is smaller
than before. Note that for a single nurse this can lead to a worse shift pattern than
before because it is not necessarily a pareto optimal swap. Only nurses of the same
grade are allowed to take part in the swap. Thisis done so that the cover provided is not
influenced by the swap. The limit of four was set because of the computationally
extensive caculations involved. However, as nurses have to be of the same grade (and
logically of the same number of working days and nights), this is hardly restricting, as

there are rarely more than four ‘identical’ nurses.

Special swaps were introduced after it was noticed that for certain data sets ‘impossible’
solutions were found. This occurred when there were nurses present that could either
work k days or k nights and nurses that could work either k days or (k-1) nights. This
could lead to a situation where there is an overall shortage by one shift. A situation like
this could arise when a nurse of the former type works on days whilst a nurse of the
latter type is on nights.

Normally, this should be sorted out by the genetic algorithm. However, if there are

unfavourable pj; values, resulting in a large penalty on the former nurse working nights
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and on the latter working days, then the genetic algorithm might find it very hard to do
s0. Specia swaps detect such a situation and then force two nurses of the above types
to swap working days and nights irrespective of the p;; values. The swap takes place by
moving the nurse working k days or k nights onto the night shift of the second nurse and

choosing a random day shift for the first nurse.

Adjacent swaps are designed to improve feasibility of solutions without increasing the
penalty too much. Adjacency is defined as two shift patterns that differ only by one
working day (night) being moved to another position. Initialy, a matrix of adjacency is
calculated. Init are all adjacent patterns for each shift pattern. For example, (0111110
0000000) and (1111100 0000000) are adjacent.

The swaps then work as follows: First, all days and nights with surpluses and shortages
are determined. Then for each nurse working on aday (night) with a surplus and not on
aday (night) with a shortage, all her adjacent shift patterns are checked. If one of them
would rectify the situation, then a swap takes place. Only adjacent patterns are allowed,
because they are easily identifiable and usualy only involve a small change in the pj

values. Thisis due to the way pjj values are set up as detailed in section 2.1.3.

A comparison of results with those achieved by co-operative co-evolution with random
migration (label ‘No Swaps') is shown in Figure 5-2. Because of the large amount of
extra computation, all swaps are only applied to the top ten individuals in the main sub-
population. This increases the average solution time from under 10 to about 13
seconds. Experiments applying the swaps to more individuals resulted in an even larger

increase in solution time without giving significantly better results.
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Figure 5-2: Results for various types of swapping.

In general, al three swaps behave as expected. Chain swaps improve the cost of
solutions without affecting feasibility. Special swaps have little effect, just dightly
improving feasibility by overcoming some of the problems of awkward data sets.
Adjacent swaps improve feasibility dightly without making the penalty cost much
worse. All three combined have a dightly lesser effect than the sum of the three single
swaps. Overdl, both feasibility and cost are improved dlightly, but they are still
nowhere near the quality of tabu search. Nevertheless, the benefit was considered

sufficient to use all three types of swaps for al future experiments.

53.2 DdtaCoding

The idea of Delta Coding is taken from Whitley et a. [178]. Delta Coding tries to strike
a balance between diversity by initialising populations at random and preserving
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information by basing new populations on previous good solutions. This is done by
initialising a new population at random hut within a hypercube around a previousy
found good solution. The search starts by performing an initia run with a standard
genetic algorithm. Once that search has terminated, a new genetic algorithm is started.
However, the solution space is reduced to the hypercube around the best solution found
in the initial run via the above mentioned initialisation scheme. This process is then

repeated as often as required with the hypercube gradually becoming smaller.

Whitley et al. use a binary encoding to optimise problems with real variables. After the
initial standard genetic algorithm, their string does not represent the actual parameter
values but rather difference values (i.e. delta values and hence the name ‘Delta
Coding). These differences are always measured from the previous best solution used
for initialisation purposes. To reduce the solution space, in subsequent runs Whitley et
al. alow less and less hits to encode these differences up to a certain lower limit. This
results in smaller and smaller differences from the original solution. The authors then
argue that due to this reduced solution space population sizes can be reduced without

affecting solution quality.

In order to apply Delta Coding to our problem some dlight changes from the original
idea have to be made. In our encoding the genes are the shift patterns worked by the
nurses. Thus, away to measure differences or delta values between shift patterns has to
be found. This can be achieved with the previousdy mentioned adjacency matrices of
similar shift patterns. In order to use these matrices, the degree of adjacency of two
shift patterns is defined as the number of working shifts that have to be moved to

transform one shift pattern into the other one.

For instance, the degree of adjacency between (1100000 0000000) and (0001100
0000000) is two and between (0000000 0100111) and (0000000 0101110), it is one.
For those nurses who work more day shifts than night shifts, the degree of adjacency
between their day and night shift patterns cannot be calculated in thisway. Instead, itis
fixed as the number of working shiftsin the day shift pattern.
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This degree of adjacency is now used as a distance measure between shift patterns.

Therefore, the next step to use delta coding for our problem is to caculate five
adjacency matrices, with different degrees of adjacency. Thus for each shift pattern, all
shift patterns that differ for up to five, four, three, two and one working day(s) or
night(s) are found. To start the Delta Coding optimisation, a standard genetic algorithm
run is performed which is initialised at random as before. Subsequently there are five
delta coding runs, each being initialised using the appropriate adjacency matrix and

based around the best solution found in the most previous run.

Hence, Delta Coding run 1 uses the adjacency matrix for up to five shifts, Delta Coding
run 2 uses the adjacency matrix for up to four shifts and so on. Note that Delta Coding
run 1 uses the same solution space as the standard genetic algorithm. However, due to
the additional Delta Coding probability ppc introduced in the following, the initial

population is less diverse as it is centred around the best previous solution.

Because of the discreteness of our variables, we have to use the concept of adjacency
matrices. However, the difference between two directly ‘adjacent’ solutions is quite
big, as al nurses will have to work a different shift pattern. Thus, for 25 nurses this can
result in up to 50 single shifts being different. Although some of the changes will
cancel each other out, we still felt that the difference created would be too big. Thus, to
be able to fine tune the leve of differences, one further parameter was introduced. It is
called the Delta Coding probability ppc and defined as the probability that a gene is
changed from the value of its counterpart in the previously best solution. So for
instance, if ppc = 10% then there is a 90% probability that a gene is initialised to the
same value as in the previously best solution and a 10% probability that a value from

the appropriate adjacency matrix is chosen.

Figure 5-3 summarises the results for various vaues for the Delta Coding probability
ppoc and compares this to a co-evolutionary genetic algorithm without Delta Coding
(label ‘w/0’). When Delta Coding was used, 24 runs were made per data set. These
were four ‘standard’ genetic algorithm runs plus five Delta Coding runs for each

standard run. The population size of the Delta Coding runs was not reduced, as
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suggested by Whitley et al., since this gave far worse results. This is not surprising, as
unlike for the binary encoding example used by Whitley et al., there is no reduction in

the size of our encoding, only the range of potential values is reduced.

As the graph shows, a co-evolutionary genetic algorithm with Delta Coding produced
worse results for any setting of ppc in comparison to a co-evolutionary genetic
algorithm without (label ‘w/0’). The labels indicate the value of ppc. The results tend
to get worse the ‘more’ Deta Coding is used. For full Delta Coding, i.e. ppc = 100%
the solutions are far worse than before

The most likely reason for this failure is the inadequacy of the adjacency matrix scheme
together with the discreteness of the shift patterns. However, it is difficult to see any
other way to apply the idea of Delta Coding to our problem. Some further
improvements could possibly be achieved by seeding each sub-population around the
best individual of the corresponding sub-population, rather than basing all individuals

on the best overall solution of the previous run. This is an interesting idea for future

research.
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Figure 5-3: Comparison of solution quality for various Delta Coding Probabilities.
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54 Hill-Climber, Repair and I ncentives

5.4.1 Introduction and Definitions

Since the quality of solutions still lags behind the results found by Dowsland [55], we
decided to have a closer look at the failed attempts (i.e. those runs that failed to find
either good cost or feasible solutions). This showed that the remaining problems were
due to the search converging towards solutions that satisfied most, but not al, of the
covering constraints. These infeasible solutions could be further partitioned into two
distinct types, which we shall refer to as balanced and unbalanced solutions.
Additionally, there are undecided solutions, which yet have to converge to either type.

In balanced solutions, the unsatisfied constraints relate to either (but not both) days or
nights, and there is sufficient over-covering on other days or nights respectively to
possibly correct this. In the second type, unbalanced solutions, there is a day and night
shift imbalance, for example one night shift missing and one day shift too many or vice
versa. Both these problems highlight the difficulty of making small changes with our
genetic algorithm implementation, due to the disruptiveness of the crossover operators

and our encoding that only allows moving ‘whol€ nurses.

For the purpose of defining these three classes of infeasible solutions formally, the

following four conditions C1 — C4 are set up:

C1: Thereis at least one day shift with a shortage.
C2: Thereis at least one day shift with a surplus.
C3: Thereis at least one night shift with a shortage.
C4: Thereis a least one night shift with a surplus.

Balanced solutions are those that satisfy both C1 and C2, but not either of C3 or CA4.
Balanced solutions are also those that satisfy both C3 and C4, but not either of C1 or
C2. Unbalanced solutions are those satisfying either C1 but not C2 or C3; and
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furthermore those satisfying C3 but not C1 or C4. All other solutions are defined as
being undecided.

Table 5-1 gives some examples for clarification. Mon — Sun refers to the seven day
shifts and mon — sun to the seven night shifts. A positive number indicates a surplus of
nurses and a negative number a shortage. The first balanced solutions shows a situation
where all over- and under- cover is on day shifts. The second balanced solution shows
a similar situation with all under- and over-coverings on nights. In the two following
unbalanced solutions, the situation is different. Either the surplus is on days and the

shortage on nights or vice versa

The third unbalanced solution is a special case. No over-cover is present to compensate
for the uncovered shift. This can happen if a nurse working an equal number of day and
night shifts is working days and a nurse who works less night shifts than day shiftsis on
nights. A further discussion of this issue can be found in section 5.3.1 where a specia

swap operator was designed to remedy the situation.

Undecided solutions are characterised by usualy allowing for the movement of ‘whole’
nurses, i.e. they have not yet converged to either situation and it is therefore possible
that the genetic agorithm operators will ill turn them into feasible solutions.
However, the second undecided solution looks more likely to develop into an

unbalanced solution, with a surplus on nights and a shortage on days.

Days Nights

Type Mon Tue Wed Thu Fri Sat Sun|mor tue wed thu fri sa sun
Balanced -2 0 1. 0 0 1 OoOfO0 O O O 0 o0 O
Balarced o 0o o 0 0O O OofO0 -2 0 0 0 1 o0
Unbalanced o 0 -1 0 0 O OfO0O 1 O O 0 0 O
Unbalanced o o o 0o 0 2 OfO0 -1 0 -1 0 0 O
Unbalanced o 0 -1 0 0 O OoOfO0 O O O0o 0o o0 o
Undecided o 0o 12 -1 0 2 OfO0 -2 1 -1 0 1 O
Undecided o 1 -1 1 0 O -2y0 0 2 0 2 0 -1

Table 5-1: Examples of balanced, unbalanced and undecided solutions.
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54.2 |Implementation

The problem of balanced solutions could usually be overcome if the algorithm was
allowed to run for long enough, due to the use of mutation or the adjacency swap
operator presented in section 5.3.1. This is because a balanced solution can be made
feasible by moving a single nurse onto a different shift pattern. To achieve this, anurse
has to be moved from a shift pattern that includes some overcovered days to one
covering some uncovered days. Standard mutation and the adjacency swap operator

have a chance of doing this.

On the other hand, the second type of infeasibility (unbalanced solutions) remains a
problem because of the hospital’s policy that al but a few nurses on special contracts
must work either days or nights in any week. Thus, once the ‘wrong’ nurses are on days
respectively nights, the genetic algorithm cannot sort it out, because both crossover and
mutation can only move ‘whole’ nurses in our encoding. Thus, unless a lucky swap
with another nurse is performed, moving a ‘whol€’ nurse is equivalent to moving up to
five shifts which by far overcorrects most situations. Therefore, this would result in
worse solutions, which are unlikely to take part in crossover or survive replacement in

the following generation.

The solution to this dilemma is to look ahead and avoid these unfavourable situations
altogether by rewarding solutions with a ‘future’ potential, i.e. balanced solutions, and
penaising those that are unbalanced. For this purpose, further problem specific

knowledge needs to be incorporated into our algorithm.

In our case, this is achieved as follows: The fitness scores of balanced and unbalanced
solutions are adjusted by adding an incentive or bonus to balanced solutions and a
disincentive or negative bonus to unbalanced solutions. This results in balanced, but
less fit, solutions ranking higher than unbalanced fitter solutions, which is the desired
effect. Both the incentive and disincentive are based on the weights used for the

constraint violation penalties, multiplied by a constant factor. Thus, they change
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dynamically at the same rate as the penalties and are measured in multiples of violated

constraints.

Logically, the result of the above changes will result in more runs converging towards
balanced solutions. As discussed above many of these eventually become feasible as a
result of random mutation and / or swap operators. It makes sense to exploit this
situation by introducing a more intelligent mutation operator that will attempt to repair
these solutions directly. This will not only reduce the number of generations before
such solutions become feasible, but will also counter the disruptiveness inherent in the
crossover operator and ensure that such solutions reach their full potential before being

destroyed by crossover.

In view of the Lamarckian and Baldwinian discussion, as described in section 3.5 and in
Whitley et a. [172], we decided to use a Lamarckian strategy. Hence, our repair
operator is a smple hill-climber and works as follows. A balanced solution is taken
and subjected to an improvement heuristic that cycles through all shift patterns of each
nurse, accepting a new pattern if it improves fitness. This results in the ability to make
only dlight changes in the days and nights worked by a single nurse. Note that this type
of hillclimber is similar to the gradient-like bit-wise improvement operator introduced
by Goldberg [81] and used in Chen and Chen [38] and elsewhere.

However, this repair routine is only applied to the top five balanced solutions of the
main sub-population. This avoids potential problems of premature convergence
resulting from using too much aggressive mutation and saves wasting computation time
repairing and improving large numbers of balanced solutions in later generations. Note
that in the absence of five balanced solutions, the hill-climber is also applied to feasible

solutions. In this case, it aims to improve the penalty score.

Note aso that due to the previously mentioned day / night shift peculiarity (see specia
swaps in section 5.3.1 for more details about this), a solution that is balanced but
overall has a shortage of a shift, till gets the bonus and has a chance to be repaired. For
instance, (0,-1,-1,1,0,0,0; al nights 0) is a solution of thistype. After going through the
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repair operator, this solution will possibly be (0,0,-1,0,0,0,0; al nights 0). Thus, it has
become unbalanced and will be dropped from the population quickly. This is the
desired result, as solutions of this type are difficult to be repaired to feasibility, with

only the specia swap operator offering some chances of achieving this.

543 Resaults

Figure 5-4 shows the outcome of experiments with different magnitudes for incentives
only (label ‘i’), incentives combined with repair (label ‘r’) and disincentives only (label
‘d). The magnitude is measured in terms of violated constraints. For instance, an
incentive of two (label ‘2 i"), nullifies two constraints violated by one unit or ane
congtraint violated by two units. As before, the genetic algorithm is based on the co-

operative co-evolutionary approach.
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Figure 5-4: Different incentives (i), incentives and repair (r) and disincentives (d).
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The graph shows that a small incentive improves results dightly whilst a bigger
incentive biases the search in the wrong direction. However, this bias is exploited once
the repair operator is active and now a bigger incentive gives better results. The
disincentive works on its own to improve feasibility by penalising ‘dead end’ situations
as described above. Within the range examined, the magnitude of the disincentive is
largely unimportant. For all further experiments, both incentive and disincentive is set

to three, i.e. equivalent to three constraints violated by one unit.

A final summary of results is shown in Figure 5-5. If used together, disincentives and
incentives plus repair significantly improve solution quality both in terms of feasibility
and in terms of cost. Solution time remained largely unchanged at on average 13

seconds.
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55 Conclusions

So far this thesis has shown how successive additions of problem-specific information
were able to improve an at first unsuccessful genetic algorithm implementation for the
nurse scheduling problem. This had been done to the point where the genetic algorithm
was able to produce feasible solutions of good quality. A summary of the results is

shown in Figure 5-6. Detailed results for all 52 data sets are reported in appendix D.2.

Given the high degree of epistasis introduced by penalising the covering constraints in
the fitness function, the lack of success of the origina implementation is not surprising
(label ‘Basic’). As mentioned previoudly, the genetic algorithm relies on assembling
good building blocks to form good solutions. Unfortunately, because of the importance
of the covering constraints, there is a strong interdependency between the shifts worked
by the nurses. Therefore, ‘good’ shift patterns in one solution are less useful in another.
This would probably not be such a key issue if the constraints were less tight as this
would move the emphasis away from the covering constraints to the nurse-shift pattern
costs pjj. However, as explained in section 2.1.2, all datais pre-processed by a knapsack

routine to remove slackness before it is optimised with the genetic algorithm.

The use of dynamic penalties was able to increase the number of runs terminating with
feasible solutions, but these improvements were small (label ‘Dynamic’). Again with
hindsight, this is not surprising, as making the penalties more intelligent does not tackle
the main issue of epistasis. Consequently, the biggest single success was obtained by
exploiting the grade based structure of the problem, wsing sub-populations to provide
large building blocks that were then combined using special crossover operators (label

‘Sub-pops’). Thiswas away of circumventing the epistasis problem.

Although the epistasis present in the original problem cannot be reduced since it is inert
in the chosen encoding and problem structure, it is lower in the newly created sub-
problems. This is because the sub-problems only optimise the cover for parts of the
problem by abstracting from some of the grade requirements. Since these could not be

disposed of altogether, they were re-introduced step by step.
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This was done via a hierarchical sub-population structure: lower level sub-populations
optimised the cover for one grade, medium level sub-populations for two grades and the
highest level for al grades. Finadly, a main sub-population combined the information
gathered in all other to solve the origina problem. To improve results further, the
exchange of information between sub-populations was encouraged by the introduction
of a migration operator. This partially overcomes the drawback of using sub-
populations in comparison to one big population, which is the limited choice of
individuals in the selection phase.

Once the sub-populations with special crossovers and migration were in place, failures
appeared to be due to the well-known problem that genetic algorithms ‘lack the killer
ingtinct’ (De Jong [51]). This means that they converge towards good solutions, but are
too disruptive to make the minor changes necessary to improve these. This problem is
frequently overcome by adding problem-specific information, for instance in the form
of a hill-climber to make small improvements to some or al of the population. Two
such approaches, one based on ‘swapping’ shift patterns and the other on Delta Coding
as presented by Whitley et al. [178], were not very successful at doing this.

However, we were finally successful with a more intelligent approach of including
problem-specific knowledge by recognising solution attributes that were likely to lead
to successful hill-climbing, and those that certainly would not. We then repaired and
rewarded the former class and penalised the latter (label ‘Repair’). Although those
solutions with favourable attributes would eventually become good feasible solutions
via mutation or the swap operators, to speed this up they are processed by a hill-

climbing repair routine.

The result is a fast robust implementation, in which all the add-ons remain very much
within the spirit of genetic algorithms and whose solutions are of only marginally worse
quality than those found by tabu search (label ‘Tabu’). A look at the detailed resultsin
appendix D.2 confirms this view: 49 out of 52 data sets are solved to (or close to)

optimality, with the remainder having at least on feasible solution.
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Figure 5-6: Comparison of nurse scheduling results for various direct genetic agorithm
approaches and tabu search.

It is not claimed that the algorithm used so far is necessarily the best genetic algorithm
approach to the problem. In particular the development effort was considerable.
However, rather than adding even more to it, like for example developing a form of
intelligent mutation or extending the number of dynamic parameters, we would like to

take a different approach.

In an early paper, Davis [47] suggested using an indirect coding combined with a
heuristic decoder as an effective means of overcoming epistasis. Since then, this type of
genetic algorithm has been used successfully on a variety of problems. More details
about decoders can be found in section 3.7. This approach has the advantage that all the
problem-specific information is contained within the heuristic decoder, whilst a basic
genetic algorithm works to optimise its parameters, for example, the order in which the
nurses are to be processed. In the next chapter such an indirect approach is developed

for the nurse scheduling problem and compared to the results found so far.



6 An Indirect Genetic Algorithm Approach for
Nurse Scheduling

6.1 What isan ‘Indirect’” Approach?

This section starts with an introduction to indirect genetic algorithms. Then the merits
of this approach for the nurse scheduling problem are investigated. Following on from
this, the differences between our decoder and the decoders usualy found in other
indirect genetic algorithms, like those summarised in section 3.7, are discussed. Before
the decoder used is presented in detail, a variety of order-based crossover and mutation
operators are examined. These are made necessary by the order-based encoding of the
indirect approach.

An indirect genetic algorithm is the hybridisation of a standard genetic algorithm with
other heuristics. For this purpose, the genetic algorithm can be kept almost canonical.
However, rather than representing the problem *directly’, the genotype of an individual

is now fed into a decoding heuristic, which produces a phenotype and its fitness value.

This can be done in a number of ways. One possibility is for the genotype to be a set of
parameters. The decoder then assembles the phenotype following a set of rules guided
by these parameters. For instance, in the nurse scheduling problem, there could be a set
of different scheduling rules, such as ‘maximise preferences’, ‘ spread cover out evenly’,
‘cover days with highest uncovered demand first’ etc. The parameters of the genotype

would then decide in which order to use these rules to form the phenotype.

Unfortunately, this type of encoding would require the decoder to decide who and when
to schedule. This requires very sophisticated rules and leads away from the origina
idea of optimising a nurse scheduling problem with genetic algorithms. Hence, we will
follow a different strategy. The genotype will be a permutation of the nurses whilst the
decoder will take the form of a greedy heuristic, assigning shift patterns to the nursesin

the order given by the genotype.
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Such an indirect approach has the advantage that most of the problem specific
information will be contained within the decoder. Of course, a suitable decoder must be
constructed first. This will be discussed in section 6.3. It is in the co-operation and
counter-balancing between a problem specific and greedy decoder and a generic but
stochastic genetic algorithm that the success of an indirect approach lies. In addition to
the general information on the use of this method, summarised in section 3.7, we refer

to Eiben et al. [58] who focus on the deterministic and stochastic balancing discussion.

Eiben et a. solve constraint satisfaction problems, such as the N-Queens and graph
colouring problems, with genetic algorithms and with deterministic constructive search
algorithms. They argue that in general, the constructive heuristics work well, but
sometimes are misled and fail to give good results. This can be overcome by
diversifying the search, for instance by keeping multiple solutions in paralel or

incorporating random elements into the construction mechanism.

Eiben et al. then note that these are in fact essential principles of genetic agorithms.
Finaly, they show that the combination of a genetic algorithm with a deterministic
construction heuristic gives better results than either method on its own on a number of
problems. The authors conclude that there is vast potential from the amalgamation of
deterministic heuristics and evolutionary agorithms because of the way they
complement each other. Similar conclusions have been found by Davis [48] and
Reeves [136].

However, there is one distinct difference between the indirect approach used in this
research and those usually reported elsewhere. All the examples in section 3.7, and to
our knowledge most others found in literature, are ‘soft’ concerning one of the main
constraints. In fact, often the problems are unconstrained and limiting a particular
resource is part of the objective function. For instance, in a graph colouring problem,
the objective is to minimise the number of colours to be used or there is the option of
not colouring a node. Another example would be timetabling or job shop scheduling
when there is no upper limit on the number of dots or days available. This makes

finding afeasible solution very easy.
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If not part of the objective originally, since they are till important, the number of
colours, dots, days etc. are then optimised simultaneously with the other objectives.
This is usualy done by adding a weighted penalty to the fitness of each string
depending on the amount used. Although this might look similar to a penalty function
approach, there is a key difference. In these approaches, ‘penalised’ solutions are
feasible. In our case, the number of nurses and the demand to be covered are strictly
given. Thus, solutions that violate constraints are invalid because they cannot be used

at all by the hospital.

Therefore, unless we can find a decoder that guarantees feasibility infeasible individuals
will still be encountered. This is in contrast to the standard approaches outlined above
where all solutions are feasible. To assign infeasible solutions a fitness score, the same
penalty function approach as described in section 4.1 will be used. Thus, the fitness of a

solution is calculated as

5 &
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6.2 Permutation Crossover and Mutation

Before discussing how the decoding heuristic is constructed in the next section,
permutation based genetic operators need to be introduced. Due to the difference
between direct and indirect genetic algorithms described in the previous section,
‘standard’ crossover and mutation operators can no longer be used. This is because
crossover operators such as one-point or uniform crossover would in most cases lead to
duplicates in the list of permutations. An example of this is shown in appendix A.2.5

for one-point crossover.
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Hence, new permutation based crossover operators have to be devised. Four of the
most common of these operators are presented here: Order based crossover (similar to
two-point crossover), C1 crossover (similar to one-point crossover), PMX (partially
mapped crossover) and uniform order based crossover (similar to uniform crossovey).
After describing the crossover operators in detail, we will go on to compare their effects

on astring of permutations.

Order based crossover is first presented in Davis [47]. It works with two parents and
creates two children. Similar to two—point crossover, two crossover points are
randomly chosen along the parent strings. The first child inherits the part of the string
between the crossover points of the first parent and the second child the same part
respectively from parent two. These sub-strings are kept in exactly the same position in
the children as they were in the parents. The missing genes are now filled in from the
other parent, that is parent two for child one and vice versa. The genes are taken in the
order in which they appear in the appropriate parent and if not already present in the
child, they are placed in the first free position of the child’s string.

Figure 6-1 is an example of an order based crossover. To create child 2 the values
between the crossover points have been taken from parent 1. This results in the values
1, 2, 8 and 9 missing in child 2. In parent 2, they appear in the order of 18-9-2.
Consequently, child 2 is completed by inserting the missing values in this order. Child
1 is formed by taking the values between the crossover points from parent 2. This
leaves the values 2, 3, 4 and 5 out. As they appear in the order of 2-3-4-5 in the first
parent, they are placed like thisin the empty slots of child 1.

1 2 ' 3 4 5 6 7' 8 9 Parent 1

3 4 7 1 6 8 9 2 5 Parent 2
NEA AN Crossover-Points

1 8 3 4 5 6 7.9 2 Child 1

2 3 7 1 6 8 9 ' 4 5 Child 2

Figure 6-1: Example of order based crossover.
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A variant of order based crossover is C1 crossover as described by Reeves [136] and
used by others without acquiring a definite name. C1 crossover works similarly to order
based crossover but has only one crossover point. Children receive the part before the
crossover point exactly as in one parent and the missing genes as ordered in the other

parent. More details and an example of C1 crossover can be found in appendix A.2.5.

Partially mapped crossover (PMX) was invented by Goldberg and Lingle [80]. It
derives its name from the fact that a portion of one string ordering is mapped onto a
portion of another. Again, PMX uses two parents to create two children and two
random cutting points are chosen. The sub-string between the cutting points is referred
to as the mapping section. The children start asidentical copies of their parents before a
series of swaps is carried out. Then the two mapping sections are exchanged between
the children. This will lead to most of the values in the mapping section being present
twice in the children. To correct this a series of swaps is carried out. Each duplicated
value is replaced by the vaue in the other parent’s mapping section opposite the

duplicate’ s counterpart in this parent’ s mapping section.

This operation is best explained with the example in Figure 6-2. As outlined above,
child 1 starts as an identical duplicate of parent 1 and child 2 as a duplicate of parent 2.
Then the mapping sections are defined, in this example they are 3-4-5and 7-1-6. Next,
the complete mapping sections are swapped between the children. In child 2, this
results in the values of 3, 4 and 5 existing twice in the string. Therefore, they all have to
be swapped in the manner described above. Firstly, 3 needs to be replaced. 7 is
opposite 3 in the mapping section. Hence, the 3 outside the mapping section is replaced
by 7. In the same manner, 4 isreplaced by 1 and 5 is replaced by 6 in child 2. In child
1 thevalues 7, 1 and 6 are duplicated. Thus, the duplicated values outside the mapping
section are replaced asfollows: 7 by 3, 1 by 4 and 6 by 5.
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1 2.3 4 5.6 7 8 9 Parent 1

3 4.7 1 6.8 9 2 5 Parent 2
A SE Cutting Points

4 2,7 1 6.5 3 8 9 Child 1

7 A T T R E A B B B - Child2

Figure 6-2: Example of Partially Mapped Crossover (PMX).

The final operator presented here is uniform order based crossover, as described in
Syswerda [161]. In line with the other two operators, two children are produced from
two parents. However, the mechanism is quite different as it is a mixture of standard
uniform crossover and order based crossover. No crossover points are chosen. Instead,
a uniformly random binary template of the same length as the individuals is created.
Child 1 takes the genes from parent 1 for every position where the binary template is
one. Similarly, child 2 takes al genes from parent 2 when there is a zero in the
template. The remainder of the children is filled in the same way as in order based
crossover: Child 1 receives the missing genes in the order they appear in parent 2 and

for child 2 it isvice versa. Figure 6-3 shows an example for clarification.

1 2 3 4 5 6 7 8 9 Parent 1
3 4 7 1 6 8 9 2 b5 Parent 2
0 0 1 0 1 1 1 0O 1 Binary Template
4 1 3 8 5 6 7 2 9 Child 1
3 4 5 1 6 7 8 2 9 Child 2

Figure 6-3: Example of order based uniform crossover.

A practical comparison of these and other permutation crossover operators is performed
by Fox and McMahon [70] and Poon and Carter [128] for travelling salesman problems,
by Adelsberger et al. [2] for aflow shop scheduling problem, by Bierwirth et al. [22] for
job shop scheduling, and by Starkweather et al. [157] for a warehouse scheduling
application. A more theoretical comparison using forma (i.e. schema in the permutation

encoding case) analysis can be found in Cotta and Troya [43].



AN INDIRECT GENETIC ALGORITHM APPROACH FORNURSE SCHEDULING 109

Most of the authors conclude that as in the case of standard crossover operators, there is
no one ‘best’ crossover operator for all problems. The effectiveness of a crossover
operator depends on the interaction between the problem specific decoder and the
operator’s disruptiveness of the following three types of orderings for genes:. The
relative order of the genes (e.g. A three positions before B), the absolute order of genes
(e.g. A anywhere before B) or the absolute position of genes in the string (e.g. B in

position 5).

Order based crossover preserves the order and position of genes of the first parent in the
ub-sequence between the cutting points and the absolute order of the remaining genes
from the other parent. On average one third of the first parent’'s genes are kept
unchanged both for position and order. A proof of this can be found in Cotta and Troya
[43]. The remaining two thirds keep their absolute order as given in the second parent.
For C1 crossover on average half of the first parent is kept unchanged and the other half

of genes retain their absolute position from the second parent.

In the case of PM X, children are created that preserve the order and position of genesin
the mapping sections from one parent. Again, this is on average roughly one third of
the string. Another third of the string preserves the order and positions of genes from
the other parent, as it remains untouched by the swapping mechanism. The fina third
will have different absolute positions and probably orderings depending on the actual
mapping. One can anticipate that the proportion of genes in the last third becomes less
and less as convergence setsin. This is because strings become increasingly similar and

genes will therefore be more likely to be mapped onto themselves.

Under uniform order based crossover on average half of al genes from each parent
retain their original position and hence order. The other half keeps the absolute order
from the other parent. Although this sounds similar to the effect of C1 crossover, there
is one major difference due to the nature of the binary template. With C1 crossover one
large chunk of either parent is kept. Therefore, there is a strong bias towards keeping
genes together that are close in the string. A similar situation arises when filling the

second half of the string from the other parent. This bias does not exist for uniform



AN INDIRECT GENETIC ALGORITHM APPROACH FORNURSE SCHEDULING 110

order based crossover. Hence, uniform order based crossover is more flexible or

disruptive depending on one's point of view.

Thus, the operators sorted in increasing order of disruptiveness to the absolute string
positions of the genes are: Partially mapped crossover, C1 crossover, uniform order
based crossover and order based crossover. However, this does not take into account
that with the use of PMX one third of the genes retain neither the absolute nor the
relative position of either parent. With all other operators, at least the relative position
Is kept from either parent. Hence, one could also argue that PMX is the most disruptive
crossover. Insection 6.4 all four crossover operators are tested for the nurse scheduling

problem and we try to find an answer for this question in our particular case.

Finally, the mutation operator must also be different from the ones used with canonical
direct genetic algorithms. This again is because genes might otherwise become
duplicated or omitted. Davis [48] suggests two operators. Firstly, a swap mutation,
which is the most common in genetic algorithms with order based encodings. It
operates by swapping the position of two elements. The second operator, called
scramble sublist mutation, is more disruptive. It works by randomly choosing two
points in the string and then randomly reordering the positions of symbols between

these two points. Both strategies will be experimented with in section 6.4.

6.3 TheDecoder Function

6.3.1 Encoding

In this section, we will first describe an indirect genetic algorithm approach whose main
feature is a heuristic decoder that transforms the genotype of a string into its phenotype.
After discussing which type of permutation to choose for our encoding, two different

decoders will be presented and compared. Findly, it is investigated if the rules for
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efficient decoders set up in section 3.7 are fulfilled and explain possible conflicts

between our decoders and the rules.

An indirect genetic algorithm is very similar to a canonical direct genetic algorithm as
described in appendix A.2. In fact, it is identica apart from requiring different
crossover and mutation operators. The need for different operators, because of the
order-based encoding, is explained in detail in section 6.2. One additional step is dso
needed, since the genotype of an individual is no longer the same as the phenotype.

Thus, a decoder is necessary to transform one into the other. One way of looking at this
Is as an extended fitness function calculation. Rather than directly deducting the fithess
of a string, an intermediate step is necessary to transform the genotype of an individual

into an actual solution to the problem.

The first decision, before using a decoder based genetic algorithm, has to be what the
genotype of individuals should represent. Essentially, there are two possibilities in our
case: The encoding can be either a permutation of the nurses to be scheduled or a
permutation of the shifts to be covered. For comparison’s sake, the encoding has to be
similar to the one used in the direct genetic algorithm. The equivalent to that is the
permutation of the nurses, as this would again satisfy the multiple-choice part of the
constraint sets. However, before deciding, consideration needs to be given to the other

possibility, as it might prove more effective.

The decision which of the two to choose, follows a similar pattern to that of deciding on
the encoding for the direct genetic algorithm. In section 4.1, it was explained that using
an encoding which is a list of the shift patterns worked by the nurses is superior to
having an encoding which is alist of the nurses covering the shifts. Thisis becauseitis
easier to fix possible violations of the demand constraints than fixing the constraints

regarding the number of shifts nurses must work.

Here we argue in a similar fashion. If the string was a permutation of the nurses, then
the decoder would have to assign single shifts or whole shift patterns to them. To keep

the decoder simple, al shifts have to be assigned at once to a particular nurse. Because
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anurse must work one of her shift patterns, assigning all her single shifts in one go will
give the same results as assigning a shift pattern. Therefore, one can subsume assigning
single shifts with the more general case of assigning whole shift patterns. This again
has the advantage that the constraint sets (1) and (2) of the integer program formulation
are implicitly fulfilled. As before, the disadvantages of this approach are that there is no
guarantee that the demand is covered and that only whole shift patterns can be changed

resulting in a loss of flexibility.

However, if strings as permutations of the shifts to be covered are used, then the
decoder would have to assign nurses to them. Without any further enhancements, this
would result in the decoder having to overcome the same difficulties as described in
section 4.1 for the similar encoding. In other words, a simple decoder may assign a
nurse to more than one shift per day / night or to too many shifts per week. This
problem can be reduced with an intelligent decoder. For instance, a ‘look-ahead’
operator could address this issue. Such a sophisticated device is necessary, because
simply assigning a nurse to a shift will often result in situations where for the last nurse
no assignable shift leads to a feasible solution. However, this would make this type of

decoder much more complicated than the decoder for the other encoding.

Another argument to consider in the decision is the following. Intuitively, the main
effect of using a permutation based encoding and a decoder is that objects which are
difficult to schedule eventually appear early in the string, when there is still a lot of
flexibility left. This could, for instance, be nurses that can only work a limited number
of shift patterns or shifts that can only be covered by a small number of nurses. In our
problem, some nurses can only work a limited number of shift patterns. This can be due
to shift patterns worked in previous weeks or because of requested days off. On the
other hand, although some shifts are less popular than others, it is difficult to find shifts
that can only be covered by a few nurses. This is because there is dways a surplus of
top graded nurses who by definition are allowed to cover al shifts.

The final argument to consider about which encoding to choose are possible conflicts

with the building block hypothesis due to the length of the string. As mentioned
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previously, the longer the string, the more likely it is that successful building blocks are
split up, as they tend to be longer, too. A permutation of shifts based string would
comprise of 14 genes, calculated as seven days plus seven nights. An individua based
on a permutation of the nurses has as many genes as there are nurses on the ward, i.e. it
is approximately of length 25. Thus, there is little difference between the two
encodings in this respect.

Considering al the points made above, there seems to be an advantage in using the
permutation of nurses over the permutation of shifts. This requires a less sophisticated
decoder and is more in tune with the idea of difficult items appearing early in the string.
Additionaly, it is similar to the encoding chosen for the direct genetic algorithm, which
alows for results to be compared on a more equal footing. Thus, the permutation of

nurses is chosen as an encoding for our indirect genetic algorithm.

6.3.2 Decoder Details

Now that we have decided that our genotypes are permutations of the nurses, a decoder
that builds a schedule from this list has to be constructed. This ‘schedule builder’ needs
to take into account those shifts that are still uncovered. Additional points to consider
are the grades of nurses required, the types and qualifications of the nurses left to be
scheduled and the cost p;; of a nurse working a particular shift pattern. Thus, a good
schedule builder would construct feasible or near-feasible schedules, where most nurses
work their preferred shift patterns.

First, two simple decoders are presented for this task. The first covers those days and
nights with the highest number of uncovered shifts. The second decoder schedules shift
patterns to maximise their overall contribution regarding the covering requirements of
al three grades. A comparison with the decoder rules set up by Pamer and

Kershenbaum [125] in section 3.7 follows and computational experiments (section 6.4)
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will show weaknesses of these decoders. To correct these, a third decoder that
combines elements from the other two is presented in section 6.5.1 and shown to solve

the nurse scheduling problem very successfully.

The first decoder, referred to as ‘cover highest’ in the future, is relatively smple to
construct. Due to the nature of this approach, a nurse's requests or pj; costs are not
taken into account by the decoder. However, they will influence decisions indirectly via
the fitness function, which decides the rank of an individual and the subsequent rank-
based parent selection. The level of influence will obviously depend on the setting of
the penalty weight Waenand.  The higher the weight, the less likely that this effect will
filter through.

The decoder constructs solutions as follows. A nurse works k shifts per week. Usually
these are either all day or al night shifts (standard type). In some specia cases, they are
a fixed mixture of day and night shifts (special type). Therefore, the first step in the
cover highest decoder is to find the shift with the biggest lack of cover. Thiswill decide
whether the nurse will be scheduled on days or nightsif sheis of the standard type. We
then proceed to find the k day or k night shifts with the highest undercover. If sheis of
the special type, we directly find the k shifts with the highest undercover, taking into
account the number of day and night shifts worked by this particular nurse. The nurse is
then scheduled to work the shift pattern that covers these k days or nights.

For nurses of grade s, only the shifts requiring grade s nurses are counted as long as
there is a single uncovered shift for this grade. If al these are covered and s < 3
uncovered grade (s+1) shifts are taken into account. Once those are filled and s < 2,
grade (st 2) shifts are considered. This operation is necessary, otherwise higher graded
nurses might fill lower graded demand, whilst higher graded demand might not be met
at al. Note that if there is more than one day or night with the same number of
uncovered shifts, then the first one is chosen. For this purpose, the days are searched in

Sunday to Saturday order.
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The second decoder, called the ‘overall contribution” decoder, works differently. It
goes through all feasible shift patterns of a nurse and assigns each one a score. The one
with the highest score is chosen. If there is more than one shift pattern with the best
score, the first such shift pattern is chosen. For this purpose, shift patterns are searched
in increasing index order as sorted in appendix C.4, with the search starting at the first
possible day shift pattern of a nurse. Unfortunately, there is a potential flaw in this
simple search order. The first nurses to be scheduled will always be assigned the first of
their shift patterns with the lowest p; value. This seriously reduces the diversity of
solutions created by the decoder. To counter this, other search orders are investigated in
section 6.4.3.

The score of a shift pattern is then calculated as the weighted sum of the nurse’s pj;
value for that particular shift pattern and its overall contribution to the cover of al three
grades. The latter is measured as a weighted sum of grade one, two and three uncovered
shifts that would be covered if the nurse worked this shift pattern, i.e. the reduction in
shortfall. Obvioudly, nurses can only contribute to uncovered demand of their own

grade or below.

More precisely, the score s; of shift patternj for nursei is calculated with the following

parameters:

dis = 1if there are still nurses needed on day k of grade s otherwise dys = O.
a = 1if shift pattern j coversday k otherwise aj = 0.

gis= 1if nursei is of grade s or higher otherwise gis = 0.

Ws is the weight of covering an uncovered shift of grade s.

W, is the weight of the nurse’'s p;; value for the shift pattern.

Finally, (100 - p;j) must be used in the score, as higher p;j values are worse and the
maximum for p; is 100. Note that (-wppjj) could aso have been used, but would have

led to some scores being negative. Thus, the scores are calculated as follows:



AN INDIRECT GENETIC ALGORITHM APPROACH FORNURSE SCHEDULING 116

S st o]
S; :Wp(loo' B; )+ta W,4sca ajkdks+

s=1 ek=1 [}

The ‘overal contribution’ decoder is more complex than the ‘cover highest’ decoder,

but has certain advantages. In contrast to the simpler previous decoder, it considers the
preferences of the nurses and also tries to ook ahead a little. An example of the second
advantage is a Situation where there are more grade two shifts uncovered than could be
covered by grade two nurses yet to be scheduled. Also, suppose that there are ill

enough grade one and two nurses left to cover the demand for grade one and two shifts
together. The cover highest decoder would first cover al grade one demand. If that
was awkwardly spread, some grade one cover might be wasted on days where it is not
required (and where neither grade two cover is required). This could happen because
‘whole€’ nurses are scheduled at atime, i.e. up to five shifts at once. Only once all grade

one demand is fulfilled would it consider uncovered grade two shifts.

The overall contribution decoder on the other hand looks ahead and might cover the
grade two shifts early enough with grade one nurses. However, there is a drawback of
this look-ahead behaviour: The decoder might waste higher graded nurses too early on
shifts where they are not strictly required to work. This could be due to the p;; costs or
due to the weights associated with the uncovered shifts of the three grades. In section

6.4, we will have a closer look at this by experimenting with various weight settings.

6.3.3 Decoder Rules and Counterexample

To judge the efficiency of the two decoders presented above, let us recapitul ate the rules
set up for efficient decoders by Palmer and Kershenbaum [125] and summarised in
section 3.7 as:
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1) For each solution in the original space, there is a solution in the encoded space.

2) Each encoded solution corresponds to one feasible solution in the original space.

3) All solutions in the original space should be represented by the same number of
encoded solutions.

4) The transformation between solutions should be computationally fast.

5) Small changes in the encoded solution should result in small changes in the solution
itself.

It can be proven that the first rule is violated by both decoders. For the cover highest
decoder, imagine that there are only two nurses present and only days have to be
considered. Furthermore, assume that nurse 1 works four days and nurse 2 three days.
If one shift has to be covered on every day, then nurse 1 working (1000111) and nurse 2
working (0111000) would be a feasible solution. However, due to the fixed search
order of shift patterns, the decoder would never construct this solution, nor would it find
many others. The only two solutions it is capable of finding are the following two. If
nurse 1 is scheduled first, she will be given the pattern (1111000), whilst nurse 2
receives (0000111). If nurse 2 is scheduled first, she will work (1110000) and nurse 1
will be scheduled as (0001111).

For the overall contribution decoder suppose that the demand to be covered is the same
for al days. Thus, the first nurse to be scheduled will end up working the shift pattern
with the lowest p; value. This is true for any nurse that would be scheduled first and
hence there is always at least one nurse in any decoded solution that works her cheapest
shift pattern. Thus, a solution where no nurse works any of her shift pattern with the

lowest p;; value would never be constructed.

To visuaise this, consider the example above with two nurses and one shift to be
covered per day. Furthermore, assume that both nurses can only work two patterns.
Nurse 1 can work (1111000) with p;; = 10 or (0001111) with p12 = 1. Nurse 2 can
work (0000111) with p2; = 10 or (0111000) with p22 = 1. Thus, if nurse 1 is scheduled
first she will be given her second pattern because it has alower pj; value whilst covering

the same number of uncovered shifts as her other pattern. Unfortunately, neither of the
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two patterns of nurse 2 will now make the solution feasible. The same is true if nurse 2
Is scheduled first. She will receive her second pattern and again, neither of the patterns
of nurse 1 can complete the solution to feasibility. The optimal solution, i.e. both nurses
working their first pattern, cannot be constructed by the decoder.

The violation of rule 1) by both decoders cannot be taken lightly as this possibly means
that the optimal solution is excluded from the solution space. However, the larger the
number of nurses to be scheduled, the more flexibility is introduced to schedule nurses
onto different patterns. In our problems, there are usually between 20 and 30 nurses.

Although it is still possible to create theoretical counterexamples, practicaly they are
very unlikely to contain the optimal solution. For instance, for the ‘overall contribution’

decoder, this would mean that none of the 20-30 nurses works any of her shift patterns
with the lowest p;; value. Thisis extremely unlikely, as the objective is to minimise the
sum of the p;j; values. Practically, this situation does not occur in any of the 52 data sets.
However, it cannot be ruled out in general and will remain a permanent disadvantage of
our decoders.

Feasibility as in rule 2) can no longer be guaranteed either, as tight constraints have to
be observed. Otherwise, an unlimited supply of nurses, respectively overtime, would be
necessary which is strictly forbidden. This is a problem specific issue and cannot be
changed. Therefore, a penalty function approach is still necessary. The penaty
function used is the same as before and outlined in section 4.1. Nevertheless, because
al decoder operations are deterministic, each permutation still decodes to only one
solution in the origina space as required by the rule. This second aspect is important,
as it ensures a one-to-one relationship between the encoded solution, the decoded
solution and the fitness function value. Without this, the genetic algorithm might run
into difficulties, as the basic principle of alocating more reproductive trials to fitter
individuals would be violated.

Again, rule 3) is not fulfilled by either decoder. Both methods are designed to aim for
feasible solutions, with an additional bias towards cheaper solutions for the second

decoder. Thus, those parts of the solution space containing high-cost or highly
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infeasible solutions are unlikely to be reached by our decoders. As outlined in section
3.7, this is not a problem, as those parts are not of interest to us, since we are indeed

looking for low-cost feasible solutions.

Transformations between decoded and encoded solutions are relatively fast, as
requested by 4). However, particularly for the second more complicated decoder, the
time spent on them is norntnegligible. Thus, to keep the optimisation time in the same
range as before, the population sizes will have to be reduced in comparison to the direct
genetic algorithm. Finally, rule 5) is not observed as small changes in the permutation
might lead to big changes in the actual solution. Only if two identical nurses swap their
positions in the string, will there be no changes to the solution. However, if they are of
a different grade or have different preferences, then there will be a ‘domino effect’ to

the shift patterns worked by all nurses after the first swapping position.

Overadll, it seems that most of the rules are not observed by the decoders. However, as
detailed insection 3.7, this does not render them useless. Since they are purposely
biased to promising regions of the solution space, the exclusion of valuable solutions is
unlikely. Moreover, this can possibly be further corrected with an appropriate choice
for the parameters and weights. This and further issues arising from the decoders, along

with results to the nurse scheduling problem will be looked at in the next section.

6.4 Parameter Testing

6.4.1 General Introduction

For these experiments the replacement and stopping criteria, mutation probability and
penalty weight were maintained as those derived in section 4.3. These parameters still
worked well and it was thought that no significant improvements could be achieved by

further tweaking. One reason for this is that both the string length and fitness function
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are identical to the ones used for the direct genetic algorithm. However, there are some

major differences to the direct algorithm.

Firstly, permutation based crossover and mutation operators must be used as explained
insection 6.2. Secondly, the size of the solution space is different. For n nurses each
working one of 40 possible shift patterns, the solution space size is 40" in the direct and
n! in the indirect genetic algorithm. Typically, there are 25 nurses to be scheduled,
which means that the direct solution space is of size 40%° ~ 10% and the indirect of size
25!~ 2*10?°. Additionally, as explained in the previous section, it isin the nature of the
decoder to be biased towards certain regions of the solution space. Thus, the size of the
actual solution space sampled by the ndirect genetic algorithm is many magnitudes

smaller than for the direct genetic algorithm.

Therefore, smaller population sizes can be used without jeopardising the quality of the
results. On the other hand, there is non-negligible computational effort recessary to
decode solutions. To arrive at comparable run times of around 15 seconds per
optimisation run, the population size has to be reduced from 1000 to 100. In view of the
reduced size of the solution space, this seemed a reasonable setting and was
consequently adapted for all experiments. Hence, the following parameters and

strategies were used for the remainder of this chapter:

Parameter / Strategy Setting
Population Size 100
Population Type Generational
Initialisatior Random
Selectior Rank Based
Crossover Order-Based
Swap Mutation Probability 1.5%
Replacement Strategy Keep 10% Best
Stopping Criteria No improvement for 30 generations
Penalty Weight 20

Table6-1: Parameters and dstrategies used for the indirect genetic agorithm and nurse

scheduling.
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6.4.2 Cover Highest Decoder

The first set of experiments is designed to investigate the cover highest decoder. Three
types of experiments were carried out. Firstly, to establish the extent of work done by
the decoder itself, it was tested on its own without a genetic algorithm. Then the
decoder is combined with a genetic algorithm and experiments with different
permutation based crossover operators are carried out. Finally, the benefits of using a
specia form of seeding are investigated. The results of all tests are shown in Figure

6-4. The average solution time for all experiments was some 15 seconds per single run.

The results under the ‘no GA’ label are for the decoder on its own processing 10000
random solutions. This is equivalent to approximately 100 generations with a genetic
algorithm, which is roughly the length of a typical genetic algorithm run. The results
show that the decoder aone is not capable of solving the problem with less than 5% of

runs finding a feasible solution.

Next, Figure 6-4 shows a comparison of the performance of the four different crossover
operators described in section 6.2 in conjunction with the cover highest decoder.
Ordered by the quality of results, starting with the best, they are PMX, uniform order
based crossover, C1 and order based crossover. This indicates that the higher the
percentage of genes staying in their absolute positions the better. Moreover, in the case
of two operators with the same percentage, i.e. uniform order based and C1 crossover,

the more disruptive and thus more flexible uniform crossover performs better.

These are interesting results and will lead us to develop a new crossover operator based
on a combination of PMX and uniform order based crossover in section 6.5. Overall,
the results are better than those found by the simple direct genetic algorithm (pictured in
Figure 5-6) in terms of feasibility. However, the cost of solutions is much higher. As
stated previously, the pj values are not taken into account by this decoder, but it was
thought that there might be an indirect effect via the fitress function. This has been
proven wrong. In the next section, it will be investigated if the overall contribution

decoder, which considers the pj; values directly, performs better.
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Finally, under the ‘Sorted’ label, the strings are no longer initialised as a random
permutation of the nurses. Instead, they are ‘seeded’ such that grade three nurses appear
first in the string, then grade two nurses and finally grade one nurses. The idea behind
this is that higher graded nurses are more ‘flexible’ than lower graded ones, because
higher graded nurses can cover for lower grades. Thus, because they are more flexible
they can be scheduled later and hence appear towards the end of the string. For this
experiment, C1 crossover was used to maintain the grade order. Note that this operation
Is in fact more than mere ‘seeding’, as it restricts all future children to the same

structure.

As the graph shows, this *seeding’ produces worse results. This might sound surprising
a firgt, but biasing the string by seeding it in the above way seriously reduces diversity
in the population. Moreover, as explained in section 4.3.2, this can reduce solution
quality as had happened in this case. Furthermore, not al higher graded nurses are
necessarily more flexible than lower graded nurses. For instance, some nurses,
irrespective of their grade, can only work a very limited number of shift patterns due to
days off or last week’s schedule. To summarise, this shows that scheduling the nurses

is more complex than just sorting them by ‘flexibility’ and then assigning shift patterns.
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Figure 6-4: Crossover operators and other variations for the cover highest decoder.
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6.4.3 Overall Contribution Decoder

The first tests carried out for this decoder were the same as in the previous section, i.e.
four different crossover operators, a grade-seeded string and the decoder on its own
without a genetic algorithm. Again, for the decoder without a genetic algorithm, 10000
randomly generated solutions were decoded in each optimisation run. Before
conducting a set of experiments concerning the internal decoder weights, these weights
for the contribution of a shift pattern to the four objectives, namely grade one, two ard

three cover and the preferences of the nurses were set intuitively to wi:wo:ws:wp =
4:2:1:1.
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Figure 6-5: Crossover operators and other variations for the overall contribution decoder.

The results of the first set of experiments are shown in Figure 6-5. As the graph shows,
the behaviour of this decoder is similar to the previous one. Again, using the decoder
on its own or seeding the string sorted by grades produces far worse results than a
normal indirect genetic algorithm approach. For the four crossover operators, the
results are also similar to those in Figure 6-4: PM X performs best, followed by uniform,
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order-based and C1 crossover. However, the overall results are poorer than those found
by the cover highest decoder. This could possibly be because of the arbitrary choice of

decoder weights. The next set of experiments is designed to examine this issue.

In Figure 6-6 the results of experiments with different weights are shown. The labels
give the weights used as wi:wo:ws:wp. Clearly the results are very poor for any weight
setting, although the ratio 8:2:1:1 performed dlightly better than the others and will be
used for future experiments. As the results were poor for all weight combinations, the
fault had to be elsewhere. Thus apart from the decoder operation itself, the most likely

reason for the failure was the search order of shift patterns.
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Figure 6-6: Weight ratios for the overall contribution decoder.

We recalled that by definition the decoder searches through the shift patterns of a nurse
starting from her first possible day shift pattern and then follows the order of shift
patterns as given in appendix C.4. One also needs to remember that if there are multiple
shifts with the same score, the first one achieving such a score is picked. Thistypicaly
happens for the first few nurses to be scheduled, as all shifts are uncovered at this stage.

Therefore, until there is at least on fully covered shift, nurses are always given one
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particular low-cost shift pattern. Thus, the search is biased towards assigning patterns
that include the start of the week. This greatly reduces diversity amongst the solutions

and leads to very poor results as shown in Figure 6-6.

Thus, different search orders are introduced to correct this behaviour. Figure 6-7 shows
the results of different types of search orders compared to the ‘lowday’ one used
previoudy. In the following, ‘random’ search orders refer to fixed random orders, i.e.
the shift patterns are shuffled (separately for days and nights) for each nurse before each
optimisation run and then always searched in that order.

The simple random order (label ‘Rand Order’) starts randomly with the first day or
night shift pattern of a nurse. It then follows the order as shuffled, continuing with the
first night (day) shift pattern once the last day (night) pattern is reached. The biased
search order (label ‘Biased’) does the same. However, it starts with a 75% probability
with aday shift pattern. This has been done because approximately 75% of nurses work
day shift patterns rather than night shift patterns, as the demand is much higher on days.

For the final two search orders, a nurse's shift patterns are ordered by increasing pj
values, with the lower index number of a shift pattern as ticbreaker. The cheapest order
(label *Cheapest’) starts the search with the shift pattern with the lowest p;; value, whilst
the random cost (label ‘Rand Cost’) search starts with a random shift pattern and then
follows the cost order. Again, if the highest cost shift pattern is reached by the random
cost ordering, the search continues with the lowest cost shift pattern until the search has
come full circle.

The graph in Figure 6-7 shows that the random search orders achieve much better
results than the ‘ deterministic’ ones following the shift patterns as indexed. Of the three
orderings with random starting points, the biased search does slightly better than the
other two. Overall, random search orders significantly improve the results of the overall
contribution decoder. However, in comparison to previous approaches, the results are
only dlightly better than those found by the ssmple direct genetic algorithm.
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Figure 6-7: Different shift pattern orderings for the overal contribution decoder.

We conjecture that the problems of the two decoders, as described in section 6.3.2,
prevented the results from becoming any better. For the cover highest decoder the
problems were that is does not take the pj; values into account and that there is no
looking ahead. The disadvantage of the overall contribution decoder is the possible
wasting of higher graded nurses when they are not strictly required. Hence, in the next
section a new decoder is developed to overcome these problems by combining the

positive features of both the cover highest and overall contribution decoders.

6.5 Decoder Enhancements

6.5.1 Combined Decoder



AN INDIRECT GENETIC ALGORITHM APPROACH FORNURSE SCHEDULING 127

Both decoders used so far only produced mediocre results because each one had some
drawbacks. In this section, we will try to correct this by merging both attempts into a
new decoder, which is caled the combined decoder. This new decoder takes into
account both the overall contribution of a shift pattern for all three grades, the

preferences of the nurses and the days with the highest number of uncovered shifts.

The combined decoder also calculates a score s; for each shift pattern and assigns the
shift pattern with the highest score to the nurse, breaking ties by choosing the first such
shift pattern. To avoid bias, a fixed random search order will be used. However, this
time a shift pattern scores more points for covering a day or night that has a higher
number of uncovered shifts. Hence, dis is no longer binary but equal to the number of
uncovered shifts of grade s on day k. Otherwise using the same notation as in section

6.3.2, the score s; for nurse i and shift pattern j is calculated as follows:

o ad' 0
§; =w,(100- p;)+a wa.ca a;ds
s=1 €k=1 (%]

As this decoder is very smilar to the overall contribution decoder, no separate
experiments concerning the crossover operator and search order were carried out. Due
to its poor performance, grade-based seeding was not tried and as before the decoder on
its own optimising 10000 random solutions performed very poorly. However, due to
the different nature of the contribution elements, new experiments concerning the
covering and preference weights were necessary. For these, the weights for contribution
to cover were fixed at vaues for wi:wo:ws of 8:2:1. Experiments were then carried out

on arange of values for the preference weight wp.

Figure 6-8 shows the outcome of a series of experiments for different values of wy,
indicated by the x-axis labels. In these experiments PMX crossover and a random
biased search order of shift patterns to break ties were used. These values and strategies
were chosen as they gave best results for the similar overall contribution decoder. As

the graph shows, the results are of excellent quality. For any value of w, in the range



AN INDIRECT GENETIC ALGORITHM APPROACH FORNURSE SCHEDULING 128

tested, cost and feasibility of solutions was better than for the cover highest (label
‘High’) and overall contribution (label ‘Cont’) decoders.

The behaviour for variations of w, is as expected. If itis set too low, then solutions are
very likely to be feasible but are of high cost. If w, is set too high, solution quality
rapidly drops due to the bias towards cheap but infeasible solutions. A value of w, =
0.5 gives the best results, sacrificing only a small amount of feasibility for a good
improvement in cost. With this setting, which is used for future experiments, the
solutions are of higher feasibility than ever achieved with the direct genetic algorithm.
However, the cost of solutions is dightly worse than for the best direct genetic
approach. Thus, further improvements are necessary. These are considered in the

following sections.
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Figure 6-8: Combined decoder with different preference weights.

6.5.2 Parameterised Uniform Order Crossover (PUX)

This section is concerned with experimenting with a new type of crossover and the

scramble mutation operator. This new crossover operator is inspired by the results
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found in sections 6.4.2 and 6.4.3 and displayed in Figure 6-4 and Figure 6-5. There it
was shown that PM X outperformed the other operators. It was conjectured that this was
because of the higher number of genes left in their absolute positions. Amongst the
other operators, uniform order based crossover was best. This was attributed to its

flexibility or disruptiveness.

To capitalise on this, a new crossover operator utilising both these advantages is
introduced. This new operator will be called parameterised uniform order crossover or
PUX for short. PUX works in a similar way to uniform order based crossover as
described in section 6.2. However, when creating the binary template, the probability
for a one will be equal to a parameter p, smilar to standard parameterised uniform
crossover. For instance, if p = 0.66, then there will be a 66% chance for a one ad
hence a 66% chance that a gene will be in the same absolute position as in one of the

parents.

Thus, PUX with p = 0.66 has an equal probability of keeping a gene in the same
absolute position as PMX. Moreover, PUX has an additional advantage. Whilst with
PMX the remaining 33% of genes were positioned without any reference to the parents,
PUX retains the absolute order of these as found in the second parent. However, in line
with other uniform crossover operators, PUX is disruptive in a sense that it does not

transmit large chunks of the parents.

We experimented with various values for p using the new combined decoder with
optimal weights, as described in the previous section. Results for this and a comparison
to C1 and PMX crossover are shown in Figure 6-9. The value after each PUX label
indicates the percentage used for p. As the graph shows, particularly for the cost of
solutions, results are further improved with an appropriate choice for p. For instance,
for p = 0.66 feasibility is as high as for PMX, but solution cost is significantly lower.
This proves that our hypotheses about the necessary qualities of a successful crossover

operator for our problem, as detailed in the first paragraph of this section, were right.
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Another interesting observation is that the higher the value of p the lower the feasibility
of solutions. This indicates that a more disruptive crossover, i.e. p = 0.5, is more
flexible and has the power to create feasible solutions when the other operators fail. On
the other hand, solution cost is best for a medium setting of p, i.e. p= 0.66 or p = 0.8.
This shows that for best results a careful balance has to be struck between flexibility and
a parameter setting, which allows larger chunks to be passed on more frequently. In our

case a setting of p= 0.66 isided.

We also tried the scramble mutation operator, as opposed to the swap mutation operator
used in al other experiments. The scramble mutation operator is described in section
6.2. Here it was tried with PUX 50 (label ‘U Scram’) and C1 crossover (label ‘C
Scram’). The corresponding results are illustrated in the graph and are of worse quality
than using the swap mutation. This could be because the same mutation probability of
1.5% as with the swap mutation had been used. This is probably too high now, as the
scramble mutation operator is far more disruptive. For al future experiments and
unless otherwise stated, PUX 66 and swap mutation will be used.
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Figure 6-9: Different types of crossover and mutation.

6.5.3 Bounds
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The final enhancements of the indirect genetic algorithm are based on the intelligent use
of bounds. Three methods are proposed: Crossing over before bounds, mutating before
bounds and using bounds when assigning a shift pattern with the schedule builder. The
former two are based on ideas taken from Herbert [92] and Nagar et al. [123] and will
be called boundary crossover and boundary mutation in this section. The latter, referred

to as simple bound, is a similar idea to the above and will be discussed afterwards.

Herbert concludes in his research that bin packing results using a genetic algorithm and
decoder can be improved with a new type of crossover operator. In his work, Herbert
maximises value and uses a permutation based encoding and C1 crossover. He argues
that once a lower bound for the solution has been found, only crossover points within
that part of the string with a cumulative fitness of greater than the lower bound should
be used. This is because the ‘mistakes in a particular solution must clearly have
happened before such a boundary point.

When maximising value, the placement of the first k pieces will define a sub-layout for
any k. Subsequently certain areas, for example those surrounded by pieces, will be
unusable. Thus at any point the remaining useable area can be determined. It is aso
known which pieces are left and their respective values. Therefore, one possible upper
bound is the value of the pieces used so far plus the result of a knapsack calculation to

maximise an area-based estimate of the possible future value.

Thus, the agorithm should concentrate on the area before and including the boundary
point, rather than wasting time and optimising ‘tails of strings that later need to be
revised anyway. A similar approach can be imagined using upper bounds when
minimising waste. Note that t is essentia for this approach that cumulative bound
scores of partia strings can be defined and that C1 crossover is used. A similar
argument is brought forward by Nagar et a. who mutate within the part of the string
before the boundary point.

An example of these boundary operators is shown in Figure 6-10. Pictured is a sample

individual (not from the nurse scheduling problem) encoded as a permutation of events.
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Underneath, the cumulative fitness score of the string up to a particular gene is given. If
we were to minimise the problem and knew that a solution of 18 existed, an upper
bound of 18 could be set. This would give us the bound point as shown. Thus, C1
crossover would have its crossing point before the bound, that is between position one
and six of the string. Similarly, swap mutation would have at least one swapping
partner from before this boundary point.

5 2 9 4 1 7' 6 8 3 Individual
3 3 7 9 14 14 21 23 29 Cumulative Lower Bound Score
AEA Boundary Point

Figure 6-10: Example of crossover and mutation before a boundary point.

Note that the boundary crossover and mutation operators are quite different from the
gene variance based operators proposed by Fang et a. [64]. Asoutlined in section 3.7,
Fang et a. concentrate crossover points in slow converging parts of the string, whilst
mutation is more likely to take place in fast converging parts. h encodings with
decreasing significance across the genotype, as in our encoding, gene variance based
operators will typically result in more mutations towards the front of the strings and
more crossovers towards the tails. However, boundary crossover and mutation will
always tend towards the front of the strings following the idea of operating before the
boundary point.

However, when using the boundary crossover and mutation with the nurse scheduling
problem thereis one dilemma. How can cumulative bound scores for parts of the string
be calculated? Unless all nurses are scheduled, one does not know the quality of a
solution. Hence, it makes little sense using a partial fitness based on the cover so far as
a measure for the bound. Instead, we propose to base the bounds on the pj; values.
These are easily summed up for partial strings and make perfect sense in that respect.
The drawback of this is that we can hardly use the lowest cost value found throughout
the population as an upper bound, as this is most probably found in an infeasible

solution. Therefore, the cost of the best feasible solution is used as an upper bound,
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which means until we have found a feasible solution, normal unbounded operators will

apply.

The simple bound is based on a similar idea as the boundary operators described above.
When building a schedule from the genotypes it is easy to calculate the sum of the pj;
costs so far. Once this sum exceeds the bound, set equal to the best feasible solution
found so far, the schedule has ‘gone wrong'. One could now employ backtracking to
try to correct this. However, to guarantee that the solution is improved with the actual
permutation of nurses at hand, a sophisticated algorithm of exponential time complexity
would be necessary. Thisis outside the scope of this piece of research, but might be an

idea for future work.

Instead, a simpler approach is proposed. Once a feasible solution of cost C" has been
found, one knows that in the optimal solution no nurse i can work a shift pattern j with
P > C’. This will be used as a rule when assigning shift patterns. Of course,
particularly in the early stages of optimisation this smple bound is of little use, as C’
>> p;. However, towards the end of the search when good feasible solutions have been
found, the simple bound should prevent wasting time on dead-end solutions by making

sure shift patterns with p;; = C are assigned.

The results of various experiments with all three types of bounds are shown in Figure
6-11. The graph compares C1 crossover without bounds (C1) to the use of either
boundary crossover (C1 Cross), boundary mutation (C1 Mutat) or both boundary
operators (C1 All). The results using the boundary operators are clearly worse than not

using them, which is mainly due to the boundary crossover.

The reason for the failure of the boundary operators is thought to be the inadequate
measure of the upper bounds. The bounds were defined as the cumulative sum of the pj;
values. How good or bad a (partial) solution provided cover was not taken into account.
Hence, low-cost solution parts with a poor cover were kept in one piece by the
boundary crossover. As the results show, this simplified approach is not suitable for the

nurse scheduling problem. Thus, a more problem specific method would be necessary.
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However, this is against the idea of developing a generally applicable indirect approach
that does not rely on the problem structure and hence thisis not pursued further.

For both C1 and PUX crossover, the use of the ssmple bound slightly improved the cost
of solutions whilst leaving the feasibility unchanged. The dight improvement in cost
can be attributed to those runs where good solutions were found which then were
further improved by forcing nurses on even cheaper shift patterns. An additional benefit
of using the smple bound was that average solution time was accelerated from around

15 seconds per single run to less than 10 seconds.
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Figure 6-11: Different ways of using bounds.

The results found by the enhanced indirect genetic algorithm are of excellent quality.
However, as mentioned in the introduction to this thesis, solution quality is only one
aspect why genetic algorithms were chosen to optimise the nurse scheduling problem.
Another reason was the well-known robustness of genetic dgorithm if the problem
changes dightly. In the next section, it is investigated how the algorithms performed

when additional constraints and different data were introduced. The former followed
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requests by the hospital, which shows again how important these issues are for the

practical optimisation of real problems.

6.6 Extensionsof the Nurse Scheduling Problem

6.6.1 Head Nursesand Teams

In this section, two possible extensions of the original nurse scheduling problem as
presented in section 2.1 are presented. Both extensions were suggested by the hospital
and data was provided. However, no solutions of other methods are available to
compare with our results. Nevertheless, we will present the genetic algorithm results,

showing that our mode! is robust and comparatively easy to modify.

The first expansion concerns head nurses of which two are present on each ward. In
terms of grade bands, they are treated like grade one nurses. However, their salary is
different. In particular, the rate of pay for head nurses at the weekends is significantly
higher than for grade one nurses. Thus, to reduce cost, the hospital imposed a new
constraint that on any weekend day a maximum of one head nurse is allowed to work.
This leads to the following new parameters and constraints in the integer programming
model of section 2.1.4:

o _11 if nurseiis ahead nurse

'_%O dse

New congtraint: Only one head nurse is allowed to work on Sunday k = 1, 8 and
Saturday (k= 7, 14):
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Since these new congtraints cannot be included implicitly in the encoding, a penaty
function approach has to be taken. Note that it would be possible to include thisin the
decoder by adding a new component to the score of a shift pattern, but this would not
guarantee feasibility either. Thus, the raw fitness function of section 4.1 must be

expanded by the following term, where Wheqg 1S the respective penalty weight:

|| QJOB

& ?o g g 1_0 ? o o 1 @9
Wheadé e aa Olajkxij T u+ ea a ajkxij - ’OLAJ+
6= &=714i=1 ug

18i=1 j=1

The second expansion concerns nurses working in teams. The hospital requested that at
any one time at least one nurse of each team was present. This is to alow for the
continuous care of patients, as each patient is treated by nurses of one team only.
Therefore, only permanent members of staff and not bank or dummy nurses are in a
team. Thus, two nurses of each team are required on days (one for the early shift and
one for the late shift) and one on nights. At present, the nurses are split into two teams.
To alow for teams, the integer programming model of section 2.1.4 has to be extended

as follows:

h = 1...t teamindex.

il if nurseiisinteamh

h“:%o dse

New Congdraints: At any one time, there must be at least one nurse of each team

present:
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Again, these new constraints cannot be included implicitly in the encoding. Similarly,
including it in the decoder score would not guarantee feasibility either. Hence, the raw
fitness function of section 4.1 must be expanded by the following additional penalty

term, where Wiean is the penalty weight associated with it:

o B 63 X 0 g ub
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The results of using the indirect genetic algorithm with PUX and simple bounds for the
extended nurse scheduling problem can be seen in Figure 6-12. In preliminary
experiments, Wieam and Wheg Were tested in the range between zero and twenty. Both

weights gave best results for a value of five, which was used for the results pictured.

The cost of solutions of the extended nurse scheduling problem is higher than for the
original problem. This is hardly surprising, as fewer nurses will be able to work their
ideal shift patterns with additional constraints in place. Although the new optimal
solutions are unknown, the increase in cost is reasonable. The number of feasible
solutions is aso reduced, more for the inclusion of the teams constraints than for the
head nurses constraints. |If both are included, it is further reduced. Again, this is no
surprise, as these new constraints had to be included via pendty functions. Thus,
solutions are not guaranteed to fulfil the additional constraints. However, the reduction
in feasibility is small compared with results to the original problem, which shows the
robustness of our genetic algorithm approach. As mentioned previously, results could

possibly be further improved by including separate scores in the decoder.
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Figure 6-12: Results of the extended nurse scheduling problem.

6.6.2 Different Data

To test the robustness of both the direct and indirect genetic algorithms further, the
original problem was solved with some different data. These results were then
compared to those found by tabu search and XPRESS MP for the new data. In order to
do this, two new sets of 52 weeks worth of data were generated. Both sets were
identical to the original for the number of nurses, their qualifications and the demand to

be covered. However, they differed in the way the pjj values were calcul ated.

In the first set, called random, the p;; values were set to a random integer between zero
and one hundred for each nurse and shift pattern combination. For the second data set,
referred to as high pattern cost, the rules outlined in section 2.1.3 were followed.
However, one was subtracted from the basic shift pattern cost used in step (1) and the
result was then multiplied with twenty. This leads to basic shift patterns costs of 0, 20,
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40, 60 etc. Thus, a higher priority was put on the quality of the shift pattern in

comparison to the requests of the nurses.

The results for the new and the original data sets are compared in Figure 6-13. The
solutions under the IP label are those found with XPRESS MP and occasionaly
involved an overnight run. More details about this solution method can be found in
Fuller [72]. The graph shows that for the high pattern cost data tabu search (label
‘Tabu’) and the indirect genetic algorithm (label ‘GA (i)’) gave solutions of similar
quality and the direct algorithm (label ‘GA (d)’) performed dightly worse. However,
for the random pattern cost data, the results of both genetic algorithm approaches were
superior to those found with tabu search.

This is thought to be due to some specific neighbourhood moves used with tabu search.
For instance, some of these moves rely on the fact that if one shift pattern including day
d is of high cost for a nurse, so are al other shift patterns including day d. Thisis
usualy true for the origina and for the high pattern cost data, but no longer holds for
the random data. Full details of the special moves are reported in Dowsland [55].

Although the genetic algorithms proved to be more robust than tabu search for the
random data set, all algorithms found it harder to solve than the original or high pattern
cost sets. This can be seen from the fact that they produce worse results than those
found by XPRESS MP. We conjecture the reason for this being the reduced number of
optimal or nearly optimal solutions. Both in the original and high pattern cost sets
nurses usually had some shift patterns with the same cost. This leads to plateau like

areas in the solution space. With random shift pattern costs, thisis no longer true.

However, it is thought that the indirect genetic algorithm could have found better results
by using higher penalty weights in line with the on average higher random shift pattern
costs. Note that the average shift pattern cost was around 30 for the origina data
compared to around 50 with the random data. Thus, to balance these higher p;; values
against constraint violations, higher penalty weights seem justified. However, as we

were testing our algorithm for robustness, penalty weights were not increased. On the
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other hand, an ‘intelligent’ penalty weight setting mechanism, for instance taking the
average p; value of a data set into account and setting the penalty weight accordingly, is

an interesting idea for future research.

O Random Cost ™ High Pattern Cost ® Original Data

Solution Cost
cu b B3RS

GA (d) GA (i) TABU 1P

Figure 6-13: Comparison of results for different data sets between the direct and indirect
genetic agorithm, tabu search and XPRESS MP.

6.7 Conclusions

Overal, excellent results have been achieved with the indirect genetic algorithm plus
schedule builder. Furthermore, this was achieved in less development time than for the
direct genetic algorithm approach. The main benefit of the indirect approach proved to
be the fact that it is easier to adapt the decoder to problem: specific information than the
whole of the genetic algorithm, as is necessary for the direct approach. A comparison
of fina results is shown in Figure 6-14 and detailed results are reported in appendix
D.2.
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Already the simple cover highest decoder (label ‘Highest’) and overall contribution
decoder (label ‘Overal’) produced better results than the simple genetic agorithm.
Once both decoders were combined (label ‘Combo’), the results rivalled those found
with the most sophisticated direct genetic algorithm including all enhancements (label
‘Direct’). However, once the PUX operator and the simple bounds were employed as
well (label ‘PUX’), the results were better than for any direct approach and within 2%
of optimality. A look at the detailed results in appendix D.2 shows that 51 out of 52
data sets are solved to or near to optimality. A feasible solution is found for the

remaining data set.
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Figure 6-14: Comparison of genetic algorithm approaches with tabu search.

These excellent results together with the fact that the indirect genetic algorithm
approach proved to be more flexible and robust than tabu search, makes the genetic
algorithm a good choice to solve the nurse scheduling problem. However, it remains to
be seen how both the direct and indirect approach fare on a different problem with a
nortlinear objective function and larger solution space. This will be investigated in
chapter 7 with the mall layout and tenant selection problem.



7 TheMall Layout and Tenant Selection Problem

7.1 Introduction tothe Problem

7.1.1 General Introduction

In this section, the Mall Layout and Tenant Selection Problem is presented, in future
Mall Problem for short. After explaining the reasons why it was decided to tackle this
new problem, its origins are discussed. Then the problem itself and the data used are
described. A more mathematical description of the problem can be found in sections
7.1.3and 7.1.4. The way our data was created is described in 7.1.5.

So far, we have presented results of the direct and indirect genetic agorithms and all
their enhancements for the nurse scheduling problem only. The flexibility and
robustness of the indirect approach was shown in section 6.6 with possible extensions
and new data. In this chapter, thisis further investigated for both the direct and indirect
genetic algorithms by applying them to a different problem. This problem is of
multiple-choice nature to allow for a like for like comparison, but also sufficiently

different from the nurse scheduling problem to test the robustness of the algorithms.

The idea of using the Mall Problem stems from Hadj-Alouane and Bean [87], who
optimise this multiple-choice problem with their genetic algorithm. More details about
their approach can be found in sections 3.4 and 4.4. The Mall Problem they tackle is
also described in more detail in Bean et al. [15]. However, we were unable to obtain the
full details of their problem and the original data as it was the property of a private
development company. Therefore, we decided to build our own model and new data
was created accordingly. An example of amall layout is shown in Figure 7-1, which is
the floor plan of the Cribbs Causeway Mall near Bristol. This exampleis of similar size
to the problem tackled in this thesis and shows the placement of the big ‘anchor’ stores
(e.g. Marks & Spencer) and of other ‘normal’ shops.
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The Mall Problem differs from the nurse scheduling problem in that it has a nonlinear
objective function and that we constructed our own data. Thus, we were able to control
al characterigtics of the data. These two features make it a very interesting problem to
tackle, as it is both difficult to solve and customisable to our needs. We will take
advantage of the second fact by making the problem similar enough for comparison, but
with a different focus than before. In the nurse scheduling case, achieving feasibility
was the main concern. Here, finding a feasible solution will be easier, but the solution

space will be larger and less uniform.

7.1.2 TheProblem

The principle of the Mall Problem is to maximise the rent revenue of the mall.
Although there is a small fixed rent per shop, a large part of a shop’s rent depends on
the sales revenue generated by it. Therefore, it is important to select the right number,
size and type of tenants and also to place them into the right locations within the mall to
maximise revenue. As outlined in Bean et al. [15], the rent of a shop will depend on the

following factors:

The attractiveness of the area in which the shop is located.

The total number of shops of the same type in the mall.

The size of the shop.

Possible synergy effects with neighbouring shops (not used by Bean et al.).

A fixed amount based on the type of the shop and the areain which it is located.

Before placing shops in the mall, the mall is divided into a discrete number of locations,
each big enough to hold the smallest shop size. Larger sizes can be created by placing a
shop of the same type in adjacent locations. The placement of ‘normal’, shops is done

after placing some large ‘anchor’ stores, for instance big department stores. For the
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remainder of this thesis these anchor stores will be ignored, as in practice, they pay a

predefined rent or even own the mall and their locations are fixed.

For each type of the other shops there will be a minimum, ideal and maximum number
alowed in the mall, as consumers are drawn to a mall by a balance of variety and
homogeneity of shops. For instance, if there are too many record shops in the mall, then
competition will be too high amongst them. On the other hand, if there are too few,
then they will not be able to hold a great variety of records. If they are close to the idedl
number, then the mall will be known as a good place to buy records.

Some locations in the mall are more attractive than others. These could be locations
close to the anchor stores, towards the centre of the mall or near parking facilities. To
facilitate the handling of this, the mall is split into a number of distinct areas with each
location belonging to one of them. For example, these areas could be the north, east,
south, west and centre of the mall or close to an anchor store, close to parking, close to
the centre etc.

Furthermore, some shop types will do better in certain locations than others. For
instance, a newspaper kiosk might be better placed towards the exit of the mall than in
its centre. However, thisisless important than the overall attractiveness of an area. To
tackle this, each location in the mall belongs to an area, and for each area there is an
attractiveness rating. In addition to this and to consider the second point, the fixed
amount of rent a shop has to pay will depend on the type of the shop and the area it is
located in.

The revenue of a shop, and hence its rent, also depends on its actual size. The size of
shops is determined by how many locations they occupy within the same area.  We
decided to group shops into three size classes, namely small, medium and large,
occupying one, two and three locations in one area of the mall respectively. For
instance, if there are two locations to be filled with the same shop type within one area,
then this will be a shop of medium size. If there are five locations with the same shop

type assigned in the same area, then they form one large and one medium shop etc.
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Usually, there is a maximum total number of small, medium and large shops allowed in
the mall.

To determine the rent it is argued that a medium sized shop is more efficient than two
small shops and a large shop is more efficient than three small shops or one medium
and one small shop. This is due to reduced overhead costs, more room because no
partitioning walls are required and other reasons. Therefore, an efficiency rating
depending on the size of the shops is introduced. Note that whenever we refer to a
shop’s rent in the remainder of this thesis, it denotes the rent of one ‘unit’ of the shop.

Thus, alarge shop has to pay ‘three’ rents, one for each of its small units.

To make the problem as realistic as possible, an additional twist is added by assigning
most shop types one or more groups of which they are a member. For instance,
childrenswear, menswear and womenswear are all part of the clothes shop group.
Additionally, women’s wear is part of the women’s shop group to which, for example,
cosmetic shops and jewellers might belong. To account for synergy effects between
shops of one group, a revenue bonus is alocated to certain shops if they are not too far
apart. This bonus is applicable to al shops of one group within one area of the mall, if

at least one small shop of each group member is present within this area.

To ted the robustness and performance of our algorithms thoroughly on this new
problem, 70 data files were created. The data were grouped into seven sets with ten
files each. The seven data sets differ in the dimension of the data, i.e. the number of
locatiors in the mall, the number of areas the locations are grouped in, the number of
shop types and the number of shop groups. A further difference between the setsis in
the tightness of the constraints regarding the minimum and maximum number of shops
of acertain type or size. Full details on how the data was created, its dimensions, the
differences between the sets and the anticipated effects on our algorithms can be found
in section 7.1.4.
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7.1.3 Problem Formulation

In this section, a mathematica model of the Mall Problem is set up. This leads to a
non-linear objective function and numerous constraints. Recall that the problem is that
of assigning one shop to each location in the mall such that the rental revenue (basic
rent plus the rent proportional to sales) is maximised. The following can then be used to
set up a mathematical model:

Indices:

i = 1...N location index.
] = 1...Sshop index.

k = 1...Aareaindex.

| = 1...G group index.

Decision Variables:

_11 if ashopof type jisinlocation i

% 10 dse
Parameters:
& = minimum number of shops of type ] required.

bj = maximum number of shops of typej allowed.
¢, = ideal number of shops of typej to maximise revenue, respectively rent.
t; = total number of shops of typej in the mall.

Nik = number of shops of typej in areak.

number of small shops of type]j.

Nis
nim = number of medium shops of typej.

niL = number of large shops of type].
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ms = maximum number of small shops.
my = maximum number of medium shops.

m_ = maximum number of large shops.

_11 if location i isin area k
10 dse
il if shop type jisamember of group |
9 =i
10 dse
il if group | is complete in areak
=i
10 dse

Ik = basicrentif shopj isallocated in areak.

rx = attraction factor of areak.

B(Bg) = Bonus factor depending whether a group is complete within an area or not.

E(nk = Shop Size Efficiency factor of shops of type j if they occupy njk locations
within area k.

li(g,t;) = Shop Count Efficiency factor of shops of type j, depending on t; and ¢;.

Constraints:

1. The number of shops of type| in areak is calculated as.

N
n, = é. dikXij "]k
i=1

2. The number of shops of each size:

A
N, =aint (n;/3) "]
k=1
£i1 if (n, mod3=2) ,
Ny :é.l, 3 ]

k:]_’[o dse

& 11 if (n; mod 3=1) .
Ns=a i J
kleO dse
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3. The total number of small, medium and large shops in the mall must be less than the

respective maximum number allowed:

[
NL :anjLEmL
j=1
5
Ny =a Nju £m,
j=1
S
NS:aanEmS

j=1

4. The total number of shops of one type must be more than the minimum number and

|ess than the maximum number allowed:

N
a £ xEb "]

i=1

5. There must be exactly one shop in each location:

§x=1 "

=1

6. A group within one areais either complete or not:

[
B, :':"1 if Olnikgi' >0 "
j= )

10 d=e

Target Function:

For one location and shop unit, therent is: [r,” B(B,)" E(n,) " I,(c;,t;))] +r,

Or in other words:

@Attraction Factor of Area” Total Group Bonus of Shop u _
& . - . o g+ Fixed Rent Shop/Area
& Shop Sze Effidenc y Factor © Shop Count Effi ciency Fac tory;
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Thus, the overal target is the sum of this function for al locations. As mentioned
before, this objective function is nortlinear. In the following section, the efficiency

functions used are described and dimensions of the relevant parameters are given.

7.1.4 Efficiency Functionsand Parameter Dimensions

From the information contained in Bean et a. [15], we know that the revenue dependent
amount of rent is a multiple of the fixed amount of rent. In our daa, the revenue
depending rent is approximately ten times as big as the fixed rent. To achieve this, the
following ranges for the parameters of the model are set. The fina rent of a shop unit

can be assumed to be in pounds per year:

If agroup is complete within an area, al shops of that group and area are awarded a
20% synergy bonus. Hence B(1) = 12 and B(0) = 10. Note that in exceptional

circumstances a shop belonging to two groups, which are both complete in an area,
might have a synergy bonus of B(2) = 14.4.

The attractiveness factor of an area ry isin the range [5...25].

The size efficiency factor of shops depending on the number of shops of thistypein
the areais E(1) = 10 for one small shop, E(2) = 11.5 for one medium shop, E(3) =

13 for one large shop, E(4) = (3* 13+ 10) / 4 = 12.25 for asmall and alarge shop
together, E(5) = (3* 13+ 2 * 11.5) /5= 12.4 for a medium and a large shop
together etc.

The shop count efficiency factor is calculated as |, = min( 10- |tj - cj|+; 0). Thus

should the actual number of shops of type j be ten or more away from the ideal
number, the solution is regarded as so bad that its objective function value is 0.

The fixed rent per shop type and areari is in the range [1000...3000].

For clarification, the following are examples on calculating a year’s revenue dependant

rent per location unit, i.e. the total rent for a medium shop occupying two location units
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would be twice as much etc. To obtain the total rent for the location, the fixed rent per

shop type and area the location is in must be added to this.

A small sized shop, located in the least attractive area, whose group is not complete and
whose shop count efficiency indicates that five shops less than the ideal number are

present: 10 [size] * 5[area] * 10 [group] * 5 [count] = 2500 (pounds per year).

A medium sized shop, located in an area of average attractiveness, whose group is
incomplete and whose shop count efficiency indicates that one more shop than ideal is

present: 11 [size] * 15 [area] * 10 [group] * 9 [count] = 14850 (pounds per year).

A large sized shop, located in a prime area, with a complete group present and whose
shop count efficiency isideal: 13 [size] * 25 [area] * 12 [group] * 10 [count] = 39000

(pounds per year).

7.15 DataSets

Thoroughly testing our algorithms for robustness was the main aim when creating our
data. The Mall Problem was chosen because of its similar multiple-choice character, as
this enables us to try similar approaches as before with a similar encoding to the nurse
scheduling problem. However, when choosing the format of the data, it was
implemented in a way that one maor difference would emerge. The intention was to
create an overal much larger solution space, due to both larger problem dimensions and
less tight constraints. This is expected to lead to a situation where all agorithms will
find feasible solutions more frequently than for the nurse scheduling. Therefore, it will
be interesting to see how the various approaches of the past chapters will perform when
the ‘cost’ of solutions is the mgjor factor rather than ‘feasibility’. With this in mind,

seven data sets comprising of ten files each were set up.
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Table 7-1 shows a summary of the specifications and dimensions used for generating

the data. Furthermore, we created the files whereby the following rules were fulfilled:

Each location is randomly assigned one area with at least 5 locations and at most 30
locations in any one area.

Each shop is either assigned none, one or two groups, with a strong bias towards one
group. However, groups must have at least three and at most ten members.

A ‘loose’ shop size constraint means that any number of small, medium and large
shops is allowed. A ‘tight’ constraint stipulates that at most 6 small, 17 medium
sized and 22 large sized shops are alowed. Note that this leaves only six units
dack.

A ‘loose’ shop count constraint indicates that no minimum number of shops for any
shop type is set. With an ‘average’ count constraint, the sum of the minimum
numbers for all shop types equals between 60% and 80% of all locations. With a
‘tight’ constraint, it equals respectively between 95% and 98%.

The minimum, ideal and maximum number of each shop type is set between zero
and ten, with the total subject to the above shop count constraint and obviously such
that minimum = ideal = maximum. In addition, the sum of the maximafor al shops
must be greater or equal to the number of locations in the mall.

The attractiveness of an area and the fixed shop type per area rent is set up in the
ranges as given in section 7.1.4. Areas with a higher index have a dight bias

towards being more attractive and also carry a higher fixed rent.

Data Set | Locations | Areas Shops Groups | Shop Size | Shop Count
1 (01-10) 20 2 12 3 Loose Average
2 (11-20) 50 4 16 4 Loose Average
3 (21-30) 100 5 50 8 Loose Loose

4 (31-40) 100 5 20 5 Loose Average
5 (41-50) 100 5 20 5 Loose Tight

6 (51-60) 100 5 20 5 Tight Average

7 (61-70) 100 5 20 5 Tight Tight

Table 7-1: Specifications of Mall Problem data sets.
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Data sets 1 and 2 were only used for preliminary experiments, hence their reduced size.
No further results are reported on these. Data set 3 represents a situation before the mall
is built. Therefore there are no constraints on sizes and numbers of shops and a variety
of possible shop types exists. In data set 4, the 50 candidates of set 3 have been reduced
to the twenty ‘most promising’, with some estimates of how many of each shop type are
required.

Sets 5 and 6 represent a situation where the mall is built. In set 5, it is largely decided
which shops will be in the mall, but it is not yet known in what sizes. In set 6, the mall
is divided into empty ‘shops’, but it is rot yet known of which type. Finally, set 7
combines the constraints of sets5 and 6. In set 7, it is known how many shops of each
type and how many of each size category there will be. However, it is unknown which
shop will be of what size and where they will be placed in the mall. Examples of data
can befoundin D.3.

To allow for further comparisons, one file in each of data sets 4-7 uses the same group
memberships, idea number of shops, attractiveness ratings and fixed rents. This
guarantees that solutions to set 7 are always achievable with sets 4-6 and solutions to set
5 and 6 could be found with set 4. For instance, the best solution found in file 65 should
be worse than the ones found for files 35, 45 and 55, whilst the best solutions found
with files 45 and 55 should be worse than those found with 35.

Overal, the dimensions of the problem are approximately two to five times as big as for
the nurse scheduling (25 nurses multiplied by 40 shift patterns each compared with 100
locations multiplied by 20 or 50 shop types). The difference between the solution space
sizesis even bigger. It is40%~ 10% for the nurse scheduling and 20'%° ~ 10 or 50'®
~ 10" for the Mall Problem. Although many of these solutions will be infeasible as
there is a maximum of ten shops of one type alowed in the mall, overal the constraints

have been chosen such that they are not as tight as for the nurse problem.

It is conjectured that the larger solution space combined with the slacker constraints will

increase the number of feasible solutions as compared to the nurse scheduling. In the
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nurse scheduling problem, as detailed in section 2.1.2, a pre-switched knapsack routine
made the problem extremely tight. Here, even in the tightest case, there is some
dackness in most congtraints.  Thus, we expect the genetic algorithm to have fewer
problems with feasibility and more with the now non-linear solution ‘cost’ than before.
As mentioned earlier, thisis the desired effect.

7.2 Simple Direct Genetic Algorithm Approach

7.2.1 Description of Experiments

The experiments for the Mall Problem were carried out in a smilar manner to those for
the nurse scheduling problem, as described in section 4.2. For each of the 50 data files
20 runs were made on the same computer equipment as before. The results will be
presented in the same feasibility and ‘cost’ format as before, too. However, in contrast
to the nurse scheduling problem, we are how maximising, so a higher solution rent
value is better than a lower one. The values for the rent displayed in the graphs are in
thousands of pounds. Solution times are only reported if significantly different from

those found during parameter tests.

As before, feasibility denotes the probability of finding a feasible solution. Rent refers
to the target function value of the best feasible solution for each data set averaged over
the number of data sets for which at least one feasible solution was found. Should the
algorithm fail to find a single feasible solution for al 20 runs on one data file, a
censored observation of zero is made instead. As we are maximising the rent, this is

equivalent to a very poor solution.

Unlike for the nurse scheduling problem, the optimal solutions to the Mall problem are
unknown. Thus to get a rough idea as to the quality of solutions found by the

algorithms, the following theoretical upper bound can be used. The best we can hope
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for is that all shops are large, in a group and with an ideal size count. In addition, on
average over al data files the area attractiveness factor should be close to 15 and the
fixed area per shop type rent cannot exceed 3000. This is obviously too optimistic, as
some files do not allow large shops only and many of the other constraints will prevent
an ideal shop count for al shop types to be achieved. For instance, there is no rule
saying that the sum of the ideal shop counts must be equal to the number of locationsin
the mall.

In thisideal case, the rent for amall with 100 locations would be (in thousands):
100(locations) * [12(group) * 13(large) * 10(ideal) * 15(attract) + 3000(fixed)] = 2640.

7.2.2 Encoding

When choosing the encoding, we have to keep in mind that for a meaningful
comparison with the results of the nurse scheduling problem, there must not be too
many differences. For the nurse scheduling, each nurse had to be assigned a shift
pattern. This was reflected in the encoding by gene i representing the shift pattern
worked by nurse i. The equivalent for the Mall Problem would be gene i representing
the type of shop built in location i. Thus, for a true comparison with the nurse

scheduling results, thisis the required encoding.

However, not to dismiss other alternatives immediately, the following two possibilities
were considered. In the first, the string has as many genes as the number of shop types
multiplied by the number of areas. Each gene then denotes the number of shops of a
particular type built in a specific area. The second possibility is a string with as many
genes as the number of locations in the mall. Here, the value of a gene would show the
type of shop built in a specific location. This, as explained above, is the equivalent to
the direct nurse scheduling encoding.
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With the first encoding, there are a number of problems, which led us to discard the
idea. The biggest problem is that after any type of standard crossover, we will almost
certainly end up with infeasible children in respect to the total number of shops used.

Thus, an intensive repair operator would be required. Furthermore, for some data files
we would end up with very long strings of up to 250 genes. This could lead to problems
regarding the formation of successful building blocks. An advantage of this encoding
would be the quicker calculation of the objective function value, as the ny values
(number of shops of one type per areq) are aready known. With the second encoding,
the ny values have to be deducted first.

As mentioned before, the second encoding is very similar to the one used for the direct
nurse scheduling. It was successful then, and again it offers advantages over the other
type for the Mall Problem. First of al, crossover operations will never generate
infeasible children regarding the total number of shops. Solutions can still be infeasible
with respect to the shop size and shop count constraints, but this is the same with the
first encoding. Secondly, strings are no longer than 100 genes for any of the data files.
Thus, for its genera superiority and simplicity the second encoding was chosen. Note
that in order to stay in line with sorting the nurses in grade order, the locations of the

string are sorted in area order.

7.2.3 Genetic Algorithm Set Up

Since only the multiple-choice constraints are implicitly taken care of by the chosen
encoding, the remaining constraints have to be included with a penalty function. These
congtraints are the minimum and maximum number of shops of each type allowed in the
mall and the maximum number of small, medium and large sized shops. To arrive a
the penalty ps of a solution s, we will measure and sum the violations of all these

constraints and then multiply this with a penalty weight Woenayy. If @ congtraint is
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violated, the violation is measured as the difference between the actual number and the

maximum number allowed. Thus, psis as follows:

Qow

DM D

3 J u U

max(Ga; - g X;) +max(G g X; - bj)l:] JI

_ I j=1 i=1 i=1 u i
Ps = Wpenaltyll_ S s S y
.'f+max(0;a n, - m)+ma(0;@ n,, - m,) +ma(0;a ns- my)!

i=1 =1 =1 b

i

Theraw fitness of an individual can now be calculated as its objective function value
minus the above penalty term. With thisin place, the same canonical genetic algorithm
as before and as summarised in appendix A.2 can be used in the first instance. Hence,
those parameter values that have been found to work best with the nurse scheduling in
section 4.3 were chosen for initial experiments. Thus, the genetic algorithm uses the
parameters and strategies as summarised in Table 7-2. These might no longer be ided,

since we are trying to optimise a new problem. Hence, the next section deals with some
limited parameter tests.

Parameter / Strategy Initial Setting
Population Size 1000
Population Type Generational
Initialisatior Random
Selectior Rank Based
Uniform Crossover Parameterised with p=0.8
Parents and Children per Crossover 4
Per Bit Mutation Probability 1.5%
Replacement Strategy Keep 10% Best
Stopping Criteria No improvement for 30 generations
Penalty Weight 20

Table 7-2: Initial parameters and strategies of the direct genetic algorithm.
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7.24 Parameter Tedts

The starting point for the parameter tests is the genetic algorithm as described in Table
7-2. From previous experience with parameter tests (see sections 4.3 and 6.4), we
conjecture that for most parameters there will only be a dight difference in the quality
of the results, as long as parameters are chosen within a sensible range. As mentioned
before, thisis due to the well known robustness of genetic algorithms to a wide range of
parameter settings. Therefore, we concentrate an a selected number of experiments

here.

Firstly, we experiment with the population size, because the increase in the solution
space leads to unacceptably long running times for the previous setting. The parameter
that is most likely to be ‘wrong’ is the penalty weight, as the Mall Problem has a
different objective function and different constraints. Finally, we will experiment with
mutation rate and crossover operators to determine if the previous settings are still best
for the problem. All other parameters and strategies will remain unchanged from those
used before.

The results of varying the population size are shown in Figure 7-2 and in Figure 7-3.
The latter shows aroughly linear increase of solution time with a bigger population size,
which is expected for an efficient algorithm. Note that due to the prolonged running
times, a population of size 1000 was not tested. Although the algorithm is efficient, it is
about ten times slower than for the nurse scheduling. This gives an idea as to how
much the solution space and / or problem dimensions have increased in comparison to

the nurse scheduling.

On the other hand, as the experiments show, a smaller population than for the nurse
scheduling is sufficient to solve the problem. However, reducing the population size
too far runs the risk of producing low quality solutions. This is illustrated by the poor
quality of solutions for a population of size 10. The graph in Figure 7-2 aso shows that
a population of size 50 and above gives much better results with a good feasibility. So

overall in comparison to the nurse scheduling problem, the genetic algorithm converges
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more slowly as the solution space is bigger but finds it ‘easier’ to solve the Mall
Problem. These results are not surprising, as this is exactly how the data files were set

up. The solution space is bigger than before but al constraints contain some slackness.
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Figure 7-2: Population size versus feasibility and rent.

From the results displayed in Figure 7-2, one can see that in line with previous results,
the bigger the population size the higher the rent and feasibility. The best rent is
achieved with a population of size 200. This is attributed to the choice of stopping
criterion, which was set to 30 generations without improvement. Presumably, for this
criterion a population of size 200 isideal, as larger populations do not have enough time
to converge. Thus for other stopping criteria the ‘optimal’ population size might be
different. Nevertheless, we decided to use a population of size 200, which appears to

give agood trade-off between solution quality and speed.
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Figure 7-3: Population size versus average solution time.
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Figure 7-4: Stopping criteria versus feasibility and rent.

When experimenting with the stopping criteria, the number of generations without
iImprovement was kept as the criterion. This measure is easy to caculate and

meaningful from an optimisation point of view. The results of varying the number of
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generations between 10 and 50 are displayed in Figure 7-4 and in Figure 7-5.
Unsurprisingly, the more generations the better the results but the slower the speed of
convergence. For a population of size 200, 30 generations without improvement is a
sensible stopping criteria, with a good trade-off between solution quality and speed.
This setting will be used for future experiments.
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Figure 7-5: Stopping criteria versus average solution time.

As the results so far are aready quite good in terms of feasibility, the pre-set penalty
weight of 20 can be assumed a reasonable choice. The results of further tests on the
penaty weight are displayed in Figure 7-6 and show that a penaty weight of 30
performs best. Two things are of interest here in comparison to the experiments on the
penalty weight for the nurse scheduling problem in section 4.3.3. Firstly, the overal
shape of the graph is similar. This shows again how a penalty weight that is set too high

is detrimental to solution quality, because it restricts the search too much.

Secondly, if one compares the absolute value of the best penaty weight for the nurse
problem, which was 20 with the best value here, then there is little difference. At firgt,

this might look surprising, since the target function values that have to be
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counterbalanced against the penalty function are much higher here. Therefore, one
would expect a higher penaty weight for the Mall Problem. However, this argument
ignores the fact that the Mall Problem has less stringent constraints and penalty weights
should reflect the difficulty in meeting the constraints. Taking both these facts into

account, asimilar penalty weight is optimal.
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Figure 7-6: Penalty weight versus rent and feasibility.

Figure 7-7 shows the results of experimenting with the single bit mutation probability
pv. Thereis no significant difference in the results for the range between 0.5% = py =
2%. To keep in line with the direct genetic algorithm for the nurse scheduling problem,
the same mutation probability of py = 1.5% was chosen for all future experimerts.
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Figure 7-7: Single bit mutation probability versus feasibility and rent.

With all other parameters and strategies in place, the following final experiments tested
the effect of different crossover operators. The results are pictured in Figure 7-8 with
the labels indicating the crossover operator, respectively the setting of p for the
parameterised uniform crossover. As with the nurse scheduling, parameterised uniform
crossover gave the best performance. Interestingly in line with the nurse scheduling
results, parameterised uniform crossover with a higher p was more likely to produce
feasible solutions, whereas with a smaller p solutions were of higher rent. This may be

explained by the amount of disruptiveness present in those operators.

With a p close to 0.5, the disruptiveness is maximal, but so is the flexibility in creating
new solutions. More disruptiveness leads to fewer large chunks being exchanged
between parents, which in turn reduces the chance of a feasible offspring. On the other
hand, the disruptiveness offers the chance of creating the widest possible range of
children, sometimes creating offspring which more conservative crossovers would not.
Hence, this results in higher rent but less feasibility. In contrast, a higher p offers less
disruptiveness and therefore more feasibility, with the trade-off of finding lower rent

solutions. In addition, two-point crossover was shown once more to be better than one-
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point crossover. For all further experiments parameterised uniform crossover with p =

0.66 was chosen.
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Figure 7-8: Crossover operators versus rent and feasibility.

7.3 Enhanced Direct Genetic Algorithm Approach

7.3.1 Co-Operative Co-Evolution

The results found so far with the direct genetic algorithm are of reasonable quality.
Feasibility is over 90% and the rent values only improved dightly over the past
experiments whilst being within 30% of the theoretica bound. This makes it an
interesting situation in which to apply the co-operative co-evolutionary approach with
hierarchical sub-populations, as detailed in section 5.2. There, this approach was very

successful at improving he number of feasible solutions by overcoming epistasis.
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Here, feasibility is not critical and hence it remains to be seen if the co-evolutionary

approach is still capable of improving solutions.

The way in which to apply the sub-population structure and the ‘grade-based’ crossover
is straightforward: In line with splitting the string into partitions with nurses of the same
grade, the string is now split into the areas of the mall. Thus, we will have sub-strings
with all the shops in one area belonging © them. These can then be recombined to
create larger ‘parts of the mall and finally full solutions. However, the question arises

how to calculate the pseudo fitness measure of the partia strings.

With the nurse scheduling, the objective function value of a partia solution was
obtained by summing the p; values of the nurses and shift patterns involved.
Furthermore, we were able to define relatively meaningful sub-fitness scores by
exploiting the ‘cumulative’ nature of the covering constraints due to the grade structure.
Although the new pseudo covering constraints we deducted were not a perfect match to
the original covering constraints, the pseudo fitness scores cal culated with them allowed

for an effective recombination of partial solutions for the nurse scheduling problem.

With the Mall Problem, the situation is more complicated since a large part of the
objective function is a source of epistasis. Most of a solution’s objective function value
is ‘area dependent’, i.e. the size of shops (small, medium or large), whether a shop’s
group is complete or not, the area attractiveness factor and the fixed rent per area and
shop type. The only exception is the shop count efficiency factor, which depends on the
total number of shops of a particular type in the mall.

Apart from the fixed rent per area and shop type, al other objective function
components add to the epistasis present in the problem. Another way to look at this is
to see these objectives as ‘soft’ constraints similar to the use of penalty functions. Thus,
the proposed partitioning of the string will not eliminate the objective function based
epistasis fully.
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The congtraints are a second source for epistasis. In contrast to the objective function,
these depend largely on the whole string, for instance the total number of shops of a
particular size allowed. Only by adding up the shops and sizes for al areas does one
know if a solution is feasible or not. Separating the constraints as before makes no

sense now, because they are no longer of a‘cumulative’ nature.

For instance, if there is atotal of ten shops of one type alowed in the mall and there are
five areas, then it would make no sense setting a maximum of two shops of this type for
each area. This would clearly result in sub-optimal solutions, as for example no large
shops could be built of this type. Equally, it does not make sense to divide the tota
number of small, medium and large shops alowed in total in the mall amongst the

areas.

As explained above, the pseudo fitness of individuals in sub-populations can only be
based on area dependent criteria. Therefore, neither the Shop Count Efficiency Factor
nor any of the constraints can be taken into account. Thus, for each location in the area
the following formula is used and the results are then summed up over al locations in

the areato arrive at the pseudo fitness of a partial string:

gAttraction Factor of Area” Total Group Bonus of Shopyy
& . . i+ Fixed Rent Shop/Area
& Shop Sze Effidenc y Factor 0

Due to the complexity of the fitness calculations and the limited overall population size,
we refrained from using severa levels in the hierarchica design as we did with the
nurse scheduling. Instead a simpler two level hierarchy is used: Five sub-populations
optimising the five areas separately and one main population optimising the original
problem. A specia crossover then selects one solution from each sub-population and

pastes them together to form a full solution.

Alternatively, we could have used a ‘stair-case’ design of hierarchical sub-populations,

sowly building up to full solutions. Counting al possible combinations of five low-
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level sub-strings this would have led to ten pairs, ten triplets, five quadruplets and one
full solution. Altogether, this equals 31 possible sub-strings respectively sub-
populations. With a total population size of 200, implementing this would lead to far
too few individuals in each sub-population. Thus thisideais not pursued any further in
this thesis but may be a possibility for future research in combination with a larger

population.

As for the nurse scheduling problem, within the sub-populations parameterised uniform
crossover is performed to maximise diversity. The main population uses three types of
crossovers. Some individuals are created from the five sub-populations, some are built
from one sub-population and the main population and the remainder are made using
parameterised uniform crossover within the main population. In detail, the model 1ooks

as follows:

Five sub-populations with 25 individuals each, one main population with 75

individuals (Total population of 200 as before).

Sub-population u optimises the rent for area u only (the remainder of the string is

redundant). The above pseudo fitness function is used for this purpose.

The main population uses the original objective.

Crossover within the sub-populations is parameterised uniform with p=0.66.

New individuals of the main population are created in equal parts as:

= Assembled from the five sub-populations with a four-point ‘grade-based’
Crossover.

= Using a fixed point crossover between a member of the main population and an
individual from a sub-population (taken with equal probability from any sub-
population).

= Using parameterised uniform crossover with p=0.66 with individuals from the

main popul ation.

The results of this approach are displayed in Figure 7-9 under the * Sub-Pops' |abel. For
this experiment we used the above model with the remaining genetic parameters and

strategies (rank-based selection, stopping criteria, random initialisation etc.) set as
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before. The results found are clearly disappointing, as they are worse than those

achieved with the standard direct genetic algorithm (label * Standard’).
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Figure 7-9: Comparison of various types of direct genetic algorithms.

However, watching the optimisation runs closely, it was quickly established why there
was such a poor performance. Solutions of the sub-populations were extremely unlikely
to be feasible for the overall problem, as they covered only one fifth of the string, with
the remainder staying as originally initialised. It was equally unlikely for that third of
solutions in the main population, which was formed from the five sub-populations
aone, to be feasible. Although these solutions were of very high rent, because the sub-

populations ignored the main constraints, their combination was unlikely to produce an

overdl feasible solution.

The situation was only slightly better with those solutions formed by a member of the
sub-populations and a member of the main population. Usually, even if the member of
the main population was feasible, the children were not. Again, even though the partia
string from the sub-population member was of high rent, it was usualy incompatible
with the rest of the string, resulting in too many or too few shops of some types.
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This mainly leaves it to the last third of the main population, the part using
parameterised uniform crossover within the main population, to create feasible
solutions. Hence, using this scheme of co-operative co-evolution is in fact smilar to
running a standard genetic algorithm with a population of size 25. This explains the
poor results. In the next section, we will try to improve on this by combining partial

strings more intelligently.

7.3.2 Mating

So far, the use of sub-populations has resulted in solutions of worse quality. As
explained before, this is mainly due to recombining partial solutions that ignore the
overal congtraints and thus resulting in infeasible solutions. Here we propose an
enhancement on the previous method for the middle third of the main population.
Instead of combining any two parents, we let one parent select its ‘mate’ from a
selection of parents. Thus, the first parent is chosen according to its fitness, whilst the

second is chosen to be compatible with the first.

This approach was inspired by an idea presented by Ronald [139]. He solves Royal
Roads and multi-objective optimisation problems using a genetic algorithm where the
first parent is chosenfollowing standard rules, i.e. proportiona to its fitness. However,
the second parent is not chosen according to its fitness, but depending on its

‘attractiveness' to the first parent, which is measured on a different scale.

Our approach will be dightly different and only affect the second third of solutions
created within the main population. This third was chosen, since it seemed to be the
most promising part of the population to apply the following mating rules. The first
parent is still chosen according to its rank from the main population. Then it is
randomly decided from which sub-population the second parent should come.

However, rather than picking one solution from this sub-population as parent, ten
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candidates are chosen, leaving the decision which one of these ten will become the

second parent to a set of rules.

The rules are that the candidate combining best with the first parent regarding the ideal
number of shops of each typeispicked. To find it, the number of shops of each typein
the first parent is added to those in the candidate and the difference of each shop type to
itsideal count is summed up. The candidate with the lowest sum, or in the case of atie,
the first one with the lowest sum is picked. This type of rule rather than a full fitness
calculation for all ten parent-candidate combinations was chosen because of the large
computational cost of the latter. Furthermore, by having shops at their ‘ided’ level,
they are by definition above their minimum and below their maximum level, so those

congtraints should be taken care of implicitly.

Figure 7-9 shows the results of this mating approach under the ‘Ideal’ label. The results
are clearly improved on from the previous ones, but till not as good as those of the
standard direct genetic algorithm approach. Further investigations led us to look more
closely at the solutions created by the mating. We found that although, as postulated
above, the ideal level aimed for is between the minimum and maximum for each shop
type, for many crossovers none of the ten mates was able to provide a feasible solution.
This was due to two reasons. Either the shop size constraints were violated or even
though an ideal number was aimed for, this was not achievable for al shop types and

hence some shop count constraints were still violated.

As afina modification to the co-evolutionary approach, we tried to improve upon these
results by repairing some solutions with regard to the second problem. In order to do
this, asimple repair routine is introduced and applied randomly to 50% of al solutions
created via mating. The repair scans the solution for shop types of which too few are
present. It then substitutes a shop type of which at least the minimum number plus one
IS present, with a shop type whose count is below the minimum. If possible, thisis done
in an area where there is aready a shop of this type, to avoid creating small and

ineffective shops. As can be seen from the graph, the use of the repair algorithm
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improves results further. However, they till fall short both for rent and for feasibility

of the results found by the standard direct genetic agorithm.

7.3.3 Summary of Direct Approaches

Overall, the standard genetic algorithm was able to solve the Mall Problem reasonably
well, once a quick parameter optimisation was performed. Although we do not know
the optimal solutions, an average feasibility of above 90% and only small improvements
for rent for alarge number of experiments seem to indicate that we have found solutions
of at least reasonable quality. Furthermore, the solutions found were within 30% of a
very optimistic upper bound. Overall the constraints were less tight than for the nurse
scheduling and hence the genetic algorithm found it much easier to reach feasible
solutions.  Since this was aready achieved with a simple fixed penalty weight, no

dynamic penalties were used for the Mall Problem.

The results of the co-operative co-evolutionary approach were very disappointing, but
easily explained. In contrast to the nurse scheduling problem, the constraints present in
the Mall Problem are not decomposable according to the structure of the sub-
populations. Hence, we were unable to calculate meaningful pseudo fitness scores.

This led the sub-populations to optimise the rent of their area in isolation of what was
happening in the other areas. So unsurprisingly, a combination of these partia solutions

was unsuccessful because it usually violated the overall constraints.

However, one has to be cautious not to dismiss the idea of using co-operative co-
evolution for the Mall Problem altogether. Because of the population size limit of 200,
the sub-populations used were smaller than in the nurse scheduling case. It is well-
known that once the population falls below a certain (problem-specific) size, genetic
agorithms have great difficulty in solving the problem well. It is possible that the sub-

populations were too small in this instance. At this stage, no answers to this question
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are known and the minimum acceptable size of such sub-populations is an interesting

area for future work.

Furthermore, due to the limited overall population size, a more gradual build-up of sub-
populations was not feasible. This would have led to even more and hence smaller sub-
populations. However, this more gradual approach might have enabled the algorithm to
find good feasible solutions by slowly joining together promising building-blocks. This
Is in contrast to the relatively harsh two-level design where building blocks had to
‘succeed’ immediately. Exploring the exact benefits of a gradual build-up of sub-

solutions would make for another challenging area of possible future research.

Subsequently, the disappointing co-evolutionary results were improved with a mating
and repair scheme. Although, results were still worse than for the standard direct
approach, both ideas have their merits. Mating in combination with co-evolution is a
very interesting concept and as shown is capable of improving results significantly. Itis
therefore quite possible that the failure was due to the underlying problem of the
missing gradual build-up rather than a fault of the mating idea itself. This question can

be answered once the above mentioned further research is carried out.

Of course, a similar argument applies to the results of the repair scheme. However, in
comparison to the nurse scheduling approaches there is a further difference. There we
were able to identify promising search states, i.e. balanced solutions, and then develop
an effective repair mechanism. Additionally, unpromising (unbalanced) solutions were
penalised and then quickly dropped from the population. For the Mall Problem, the
situation is more complex due to the nontlinear objective. Although some repairable
features could be identified, repairing these in isolation does not lead to perfect
solutions. What would be required is a much more comprehensive and sophisticated
repair agorithm, which would possibly result in a stand-alone heuristic to solve the
problem.

In conclusion, the ssmple direct genetic algorithm provided results of reasonable quality

without the need for dynamic penaty weights. On the other hand, the co-operative co-
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evolutionary approach failed to achieve good results. This failure shows that the
underlying structure in the nurse scheduling problem, i.e. the cumulative constraints and
the day / night split, was an important factor in the success of the co-evolutionary
schemes. However, some of the problems can possibly be attributed to the ssimpler two-
level hierarchy and smaller sizes of the sub-populations used, but further research is
necessary to confirm this. In the remainder of this chapter, we will investigate if an
indirect genetic algorithm coupled with a decoder performs better than the direct genetic

agorithms and conduct further work into the underlying structure of the Mall Problem.

7.4 Indirect Genetic Algorithm Approach

74.1 Encoding and Genetic Algorithm Set Up

In this section, we will describe the type of encoding used for an indirect genetic
algorithm approach coupled with a decoder. As for the indirect genetic algorithm
approach for the nurse scheduling problem in chapter 6, it is our intention to let the
genetic algorithm find an optimal permutation of objects which is then fed into a
deterministic decoder. This decoder builds the actual solution, in this case the layout of

the mall, from the given permutations.

When deciding what the genotype of permutations should be, there are four choices:
Shop types, shop groups, locations and areas. The match for the direct encoding would
be a permutation of locations. However, before choosing this encoding, consideration
must be given to the others, as they are potentially more effective encodings. Using
shop groups or areas would be too general, like using grades in the nurse scheduling
case. Thus we can rule shop groups out immediately, as that would leave far too many
decisions for the decoder to make, i.e. choosing which shop type from the group to
place it into which area. Furthermore, we would need extra rules to cope with those

shop types that are in more than one or in no group.
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We also decided against using a permutation of areas. With this encoding, the situation
Is dightly better than in the permutations of shop groups case, because al locations
within one area are the same in our model. Thus, the decoder must only decide which
shop type to place. However, with this permutation, all locations in one area need to be
assigned shops before another area is taken into account. This would require a lot of

forward planning, which again is outside the scope of arelatively ssmple decoder.

This leaves the decision between a permutation of shop types and a permutation of
locations. For the indirect nurse scheduling, an encoding based on the permutation of
shifts (equivalent to shops) would have resulted in a much more complicated decoder
than one based on the permutation of nurses (equivalent to locations). The same is true
here. An encoding based on a permutation of shop types has the advantage of being
shorter (length is equal to maximum number of shop types = 50) than the aternative
(length is equal to the maximum number of locations = 100). However, with a
permutation of shop types, the decoder would have to decide how many shops of a
given type to use and into which areas to place them. A permutation of locations only

leaves the decision which shop type to place for the decoder.

In the former case, the decoder would have to choose from up to % = 3003

possibilities (five areas, maximum ten shops of one type in whole mall, i.e. five ways to
partition 15 objects). In the latter, there are only up to 50 respectively 20 possible
decisions (maximum number of shop types). This is a significant difference much
simplifying and speeding up the second decoder in comparison to the first. Hence, the

second type of decoder was chosen.

Now that we have decided on an encoding, the remainder of our indirect genetic
algorithm can be set up. This will be aong the same lines as for the direct genetic
algorithm for the Mall Problem in section 7.2 and the indirect approach for the nurse
scheduling in chapter 6. In other words, we use those strategies and parameters that in
genera proved best for the indirect genetic algorithm in chapter 6, which are PUX with
p=0.66 and standard swap mutation. All problemspecific parameters and strategies
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used, such as the penalty weight and penalty function, are those that worked best in
section 7.2.4. Full details are shown in Table 7-3. No further parameter testing was

performed.

Parameter / Strategy Setting
Population Size 100
Population Type Generational

Initialisatior Random
Selectior Rank Based
Crossover PUX with p = 0.66
Parents and Children per Crossover 2
Per Bit Mutation Probability 1.5%
Replacement Strategy Keep 10% Best
Stopping Criteria No improvement for 30 generations

Table 7-3: Parameters used for the indirect genetic algorithm.

7.4.2 Decoder

As outlined earlier, the task of the decoder is to assign shop types to locations, which is
equivaent to the nurse scheduling decoder where shift patterns were assigned to nurses.
To decide which shop is best placed into the location currently under consideration, the
decoder will cycle through all possible shop types. Obviously, those shop types for
which the maximum number of shops allowed in the mall are already present will not be
considered. Each candidate shop type is temporarily placed into the location and the

following points are then taken into account to calculate its suitability:

What is the fixed shop type per area rent for this shop type and location?

How many shops of this type are aready present in the mall and how does this
compare to the minimum, ideal and maximum number allowed for this shop type?
Would placing this shop (help) complete a group or isits group already complete?
What shop size would be created by placing the shop and how would this affect the

total number of small, medium and large shops allowed?
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The decoder then assigns a score for each candidate according to its performance on the
above points. The candidate with the highest score, or in the case of atie, the first one
with the highest score is placed into the location. Note that ties are very unlikely due to
the randomness and large range of the fixed rent and therefore no special search orders
are necessary for this decoder. Formally, the score s; of a shop of type i going into

location | is calculated as follows, where wi-wg are appropriate weights:

éw, (medium bonus) + w, (large bonus) + w,(slacknessin Sze constraint )

S :g+ w, (idedl/total number of shop type) + w,(new member) 3
&+ w;, (group complete) +fixed area/shop rent ¢!

Where the meaning of the termsin bracketsis as follows:

The ‘medium bonus and ‘large bonus are set to 1 if the shop would create the
respective shop size, otherwise they are 0.

The *dackness in size constraint’ is measured as the number of shops of the size,
which would be created, that are till allowed in the mall. For instance, if a small
shop was created and there is a total of 5 small shops alowed in the mall, with 3
small shops already present, then the ‘slacknessin size' would be5- 3- 1=1. Note
that this can lead to negative values for unsuitable shop sizes.

The ‘ideal / total number of shop type’ is equal to the difference between the ideal
and the total number for shops of this type if a shop of this type was placed. This
encourages shops of those types to be placed, which are still below their ideal level,
with the further below they are the higher the encouragement. Note that this should
force the shop count for each type to be above the minimum and help it to remain
below the maximum (due to minimum = ideal = maximum).

The ‘new member’ is O if a shop of this type is already present in the area.
Otherwise, it is calculated as (10 — total members of group the shop type isin +
members aready present in area). This encourages shops of those types whose
group is more complete than others to be placed. Ten was chosen, as this is the

largest possible group size. Thus, smaller groups are at an advantage, which is
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intentional as they are more likely to be able to reach completion than large groups.
If a shop type belongs in more than one group, two scores are possible. If a shop
type is in no group, the ‘new member’ score is zero.

The *group complete’ is set to 1 if the group the shop type belongs to is complete in
the area, otherwiseiit is set to 0. For shop types that belong into two groups, a score
of 2ispossible. If the shop typeisin no group, group completeis set to O.

The ‘fixed area/shop rent’ is equal to rik of the shop type i and areak the location is

in.

As for the nurse scheduling decoders used previoudly, let us compare this decoder with
the rules set up by Palmer and Kershenbaum [125] and detailed in section 3.7. Rule one
stipulates that we should be able to create every solution in the original solution space
with the decoder. Analogous to the nurse scheduling decoders (refer to section 6.3.3),
for a fixed set of decoder weights, there will always be a munter example. This is
because the first shop type to be scheduled will always be the same for a specific
location.

For the mall decoder and most weight settings, it will probably be the shop with the
highest fixed area per shop type rent, as al other conditions are the same for most shop
types. Therefore, the decoder will be unable to construct solutions such that all shop
types are in areas where they do not have the highest fixed area per shop type rent.
Although very unlikely as we are maximising the rent, this could prevent us from

finding the optimal solution.

Rule two asks for all decoded solutions to be feasible. As mentioned previously, this
distinguishes our decoder from others, as it is not aways possible to meet al the
covering constraints. For instance, there is a conflict between the shop count and the
shop size congtraints.  Thus, we have to make use of the same penalty function based

fitness as for the direct genetic algorithm in section 7.2.3.
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Aswith the nurse scheduling, it isin the nature of the decoder to bias towards good and
feasible solutions. As long as sensible decoder weights are chosen, al ‘desirable
solutions of the origina space are represented by decoded solutions. However, this
does not mean that the whole solution space is covered evenly and hence rule three is
violated. It remains to investigate sensible weights for this problem. Transformation
between encoded and decoded solutions is reasonably fast as requested by rule four. As
for the nurse scheduling, small changes in the encoded solution may or may not lead to
small changes in the decoded solution (rule five), as domino effects are possible. Thus,
as for the nurse scheduling decoder, most rules are violated. However, as oulined
there, the violations are either intentional or unavoidable and hence do not render the
decoder useless.

Although a powerful scoring mechanism taking all the problem details into account has
been created, we are faced with one dilemma: How are the weights going to be set? Ina
first attempt, we tried the three sets of weights (Low, Medium, High) as detailed in
Table 7-4, which are based on intuition, previous experience and the scatter graphs

shown in Appendix FE Note that the labels refer to the relative ‘magnitude’ of the

weights.

Weight L ow Medium High

Wmedium 500 500 500
Wiarge 1000 1000 1000
Wsize 100 250 1000
Wigeal 200 500 2000

Wmember 200 200 200
Woaroup 2000 2000 2000

Table 7-4: Three types of weight settings for the Mall Problem decoder.

The results for these three weight sets can be seen in Figure 7-10. For the ‘low’ setting
they are about as good as the direct genetic algorithm results, for the ‘medium’ setting,
they are better and for the ‘high’ setting, they are far worse. Clearly, there is potential
in the decoder, if only one could find the ‘best’ weights. Unlike for the nurse

scheduling decoder weights, there are far too many possibilities for these decoder
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weights to conduct empirical tests. Thus, an ‘automatic’ approach will be introduced in
the next section where the genetic algorithm sets the weights simultaneously whilst
optimising the problem. Note that due to the difficulty of finding good manual weights
for the decoder, no stand-alone results for the decoder without a genetic algorithm are

presented.
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Figure 7-10: Variousindirect genetic algorithms compared with the direct approach.

7.5 Further Decoder Enhancements

7.5.1 Automated Decoder Weights

The ability of genetic algorithms to set their own penalty parameters has already been
investigated with adaptive penalty weights in section 4.4. Because of the higher number
of weights, a dightly different approach has to be taken here. When initialised, each
individual has arandom set of weights w;.. W assigned as six extra genes. Crossover is

applied to these six extra genes so that weights producing better results have a better
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chance of being passed on. Similarly, mutation is used to avoid convergence and to re-

introduce random values.

An additional advantage of these flexible weights is that the probability of not being
able to create every solution in the solution space becomes even smaller than for a set of
fixed weights. This is because different individuals will have different weights
producing a greater variety of solutions. Thus, it is even less likely that the decoder will

miss any valuable solutions.

The idea shares some similarities with the evolving schedule builder as suggested by
Hart et al. [89], although our method is not quite as complex. Hart et al., who also solve
a scheduling problem, extend the standard permutation and schedule builder approach
by evolving the schedule builder itself. They do this by ‘building’ a unique schedule

builder for each of their data sets, tailored to the characteristics of the problem.

This is achieved by having two additional sets of heuristics: One set determines how to
split the task to be scheduled into parts and the other set how to assign those parts. For
each task, there are about ten heuristics available. Their string then consists of multiple
parts. First the usual permutation then a list of which heuristics to apply to this
particular string. The heuristics are then evolved with standard crossover. This results
in arobust and flexible system producing high quality solutions.

To execute our idea, a further six genes were attached to each individual which
represent the six decoder weights for this particular individual. However, these extra
genes are not treated as part of the string but have their own crossover and mutation
operator. The values for the weights were randomly initialised in the range between O
and 10000. This large range was chosen, as it was unknown in which region good
values were lying. PUX was applied to the permutation part of the string as before. For
the weights part of the string the following three crossover strategies for the weights of

the children were tried:

Taking the weights of a random parent.
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Taking the weights as rank-weighted averages of both parents

Setting the weights at random in the range between the two weights of the parents.

Experiments showed that the last two methods performed well with the second method
being dlightly better and converging more quickly. The results for the second method
are shown in Figure 7-10 under the ‘Auto’ label. They were the best found so far with
100% feasibility and improved rent. The first method did not produce as good results as
the others, although still better than those found by the direct algorithm. We assume
this was because this method was restricted to keeping to the weight values it was
initialised at, which makes it less flexible than the other two methods.

We aso wanted to make sure that the choice of 10000 as the upper initialisation limit
did not have a negative effect on the optimisation. This could occur because the fixed
area / shop rent component of the score has a fixed weight of one assigned to it.
Therefore, the algorithm was rerun with an initialisation limit of 50000 and a different
random number stream to avoid mere scaling. The results were of the same quality as
before. Taking a closer look at the average weights of the final generations, some
interesting similarities were discovered. In Figure 7-11, these weights are pictured as
summarised by data sets.

As can be seen from the graphs, the weights behave in a very similar fashion for both
choices of initialisation ranges. This indicates that the fixed area/ shop rent has little to
no effect on the decoder assignments. Furthermore, in ‘easier’ data sets, relatively
higher weights were put on rent-increasing rules rather than on rules concerned with
congtraints. For data sets that are more difficult, the picture is different. Now more
emphasis, or relatively higher weights, is put on the slackness and ideal rules, which
both deal with the constraints. These results are very encouraging, as they show that the
decoder behaves as intended, striking a good balance between feasibility and quality of
results.
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Figure 7-11: Fina average weights for two initialisation ranges and different data sets.

7.5.2 Adapting Parametersand Strategies

After the success of the self adjusting decoder weights, to go one step further self
adjusting crossover strategies and mutation rates are introduced. Such genetic
algorithms that set their own parameters ‘online’ are not a new concept. For instance,
Tuson and Ross [166] and Tuson and Ross [167] experiment with co-evolving operator
settings in genetic algorithms.  Further examples of adapting parameter ideas are
presented in Davis[46] and Yeralan and Lin [182].

The system Tuson and Ross use is called COBRA, which is short for cost operator-
based rate adaptation. COBRA is a learning rule method measuring benefit (as the
increase of children’s fitness over their parents’ fitness) and cost (as computational
effort to evaluate a child) of various operator settings. Those operators with a high
benefit to cost ratio are assigned higher probabilities of being selected. After testing
COBRA on anumber of problems, the authors arrive at mixed results. Tuson and Ross
conclude that adaptation is not necessarily a good thing and its success is problem

dependent.

Here, we will follow a much simpler approach. Each individual receives two additional
genes. Thefirst is set to 1, 2 or 3 which indicates that respectively a C1, PMX or PUX

with p=0.66 crossover is performed. The second gene is areal number giving the swap
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mutation rate applied to the individual. The crossover tag is initialised at random, such
that there is an equal probability for each crossover operator. The swap mutation rate is
set randomly between 0% and 5%. When a crossover is performed, the child takes its
crossover tag from the parent with the higher rank and the mutation probability of the

child is set to the rark-weighted averages of the parents.

Figure 7-10 shows the results for adaptive crossover alone (label ‘Cross’) and for
adaptive crossover and mutation (label ‘Mutat’). As can be seen, the use of adaptive
crossover improves results, whilst the addition of adaptive mutation makes them worse.
Whilst the former is investigated in the remainder of this section, the latter can be

explained as follows.

Although a good setting for the mutation rate does help the algorithm as a whole, on an
individual basis the mutation rate does not directly influence a solution such that those
with an ‘optimal’ setting have necessarily a higher fitness. Therefore, what will happen
is that the mutation rate converges to the average of the initialisation range, in our case
2.5%. This was observed to be happening in the experiments. However, for our
particular problem a mutation rate of 1.5% yields better results than a rate of 2.5%.

Thus, the overal worse results with adaptive mutation are due to the mutation

probability being too high.

In Figure 7-12 we have a closer look at the performance of the various crossover
operators. The adaptive setting (label ‘Adapt’) performs better than any of the three
crossovers on their own. Similar to the results found for indirect genetic agorithm
solving the nurse scheduling problem, PUX performs better than PMX and C1 is worst.
We also ran a set of experiments where all three crossovers were used with equal
probability throughout the optimisation (label ‘3 Cross’). This was to show that the
gain in performance of the adaptive crossover was not simply based on the fact that
more than one crossover operator was used at the same time. The graph shows that
using three crossover operators together is better than using any in isolation, however

the adaptive setting performed even better.
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Figure 7-12: Different crossover strategies for the indirect genetic algorithm.

To further investigate what might have caused the better performance of the adaptive
crossover we looked at a single run of three data files, one from set 4, one from set 5
and the last one from set 7. In Figure 7-13, Figure 7-14 and Figure 7-15 respectively,
the average probability of a crossover type against the current generation is plotted.

This reveas some interesting facts and indicates why the strategy works. Towards the
end of the search for al three files, C1 crossover is preferred. Presumably, this is
because the search is close to converging and a less disruptive crossover, which leaves

big chunks of individuals intact, is performing best.

Furthermore, there is a clear tendency in the graphs that the more difficult the file is to
optimise, in our case because of tighter constraints, the longer the more disruptive and
more flexible PMX and PUX operators were used. Particularly for the file of set 7, the
C1 operator hardly features at al during the first haf of the search because its use
would be too ‘conservative’. The graphs also show that generally PUX is preferred

over PMX and that ‘harder’ problems require more generations to be solved.
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7.6 Nurse Scheduling Revisited

The success of the adaptive approaches for the Mall Problem motivated their application
to the indirect genetic algorithm used for the nurse scheduling problem. To do this, the
decoder remained unchanged, as described in section 6.5.1, apart from the decoder
weights. The weight for the preferences w, was set to one and the weights ws of
covering a shift of grade s were initialised at random for each individual in the range
between 0 and 100.

As before, two ways of crossing over the weights were tried. One was to set the weight
of a child equa to the rank-weighted average (label ‘Rank’) of both parents weights.
The other method set it at random in the range between the two parents’ weights (label
‘Range’). We also tried the self-setting crossover approach (label ‘Cross’). As for the
Mall Problem, individuals were initialised with a random crossover operator (C1, PMX
or PUX) and the parent with a higher rank decided which crossover to use and passed
this on to the child. Again, mutating a string also mutates the decoder weights and the
crossover type by re-initiaising them in the full ranges.

The results of the experiments with these new strategies are displayed in Figure 7-16.
When compared with the original results with fixed weights and crossover type (label
‘Fixed’), the outcome is very interesting. Although not clearly dominating the original
results, the new results are at least of the same quality and this was achieved without
having to perform lengthy parameter setting experiments. As br the Mall Problem,
there is little difference between the two ways in which the weights of the children are
calculated. When both self-setting crossover and weights are combined (labels
‘C+Rank’ and ‘ C+Range’), the results are clearly better than those found by the original
approach. These are extremely encouraging results, indicating the general suitability of
the indirect genetic algorithm with self-setting decoder weights and crossover rates for

the optimisation of multiple-choice problems.
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Figure 7-16: Variations of the decoder weights and crossover strategies for the indirect genetic
algorithm solving the nurse scheduling problem.

7.7 Conclusions

As for the nurse scheduling problem, the indirect approach proved to be superior to the
direct genetic algorithm optimisation. However, the differences were |less severe due to
the way the data was created with an emphasis on less tight constraints. Nevertheless,
one might argue that the indirect algorithm and in particular the decoder was supplied
with far more problem-specific information than the direct genetic algorithm. And
indeed, this is true. However, this was done because the indirect approach lends itself
more easily to the inclusion of such information than the direct algorithms. This is an
important lesson to be learnt from this research. A final summary comparing the Mall

Problem’s results is shown in Figure 7-17.

Problem-specific information was included in the direct case, but the attempts at using

co-operative co-evolution were ill-fated. As explained in section 7.3.3, it would be
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premature to discard the co-evolutionary idea as useless for the Mall Problem. The
most likely reason for the failure lies in the population size limit, which denied a
gradua build-up of sub-solutions. Alternatively, it could be that further research into
the problem structure might yield a more promising way of defining the sub-
populations. In any way, further research is necessary to establish the exact relationship
between the hierarchical structure of sub-populations, the build-up of sub-solutions and

the total population size.

Injecting further problem-specific information, n the way of mating, helped, but the
naive direct approach was still superior. A final attempt to improve solutions was made
with a repair operator. As with the genetic agorithm for the nurse scheduling problem,
the operator was aimed at improving the tasibility of solutions. However, unlike for
the nurse scheduling problem, no equivalent balanced or unbalanced situations could be
exploited. Thus, the impact of the repair algorithm was only limited.

With the indirect genetic agorithm and decoder, it was relatively easy to incorporate
problem-specific information, particularly in the form of making active use of
constraints rather than as ‘dumb’ background penalties only. This again showed the
advantages of this type of optimisation in comparison to the traditional genetic
algorithms. The only problem faced was due to the sheer number of problem specific
features that were included in the decoder. Therefore, suitable weights needed to be

found.

This was achieved by having some extra genes representing the weights and leaving the
choice to the genetic algorithm via some specia operators. This idea was extended by
alowing the genetic algorithm to also choose the type of crossover and mutation rate
employed. The results found were of excellent quality with 100% feasibility and further
improved rent, which was within 15% of a very optimistically set upper bound.
Another advantage is that these results were achieved without the need for lengthy and
possibly complicated parameter teststo find ‘ideal’ penalty weights and crossover rates.
Moreover, these dynamic parameters have the benefit to be able to adjust with the

search as has been demonstrated for the crossover rates.
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To prove the general suitability of these ideas, they were re-applied to the indirect nurse
scheduling approach. Again, the results were of better quality than before without any
parameter tests being required. This indicates that there is potentia in using this type of
score assigning decoder plus a permutation based genetic algorithm for other scheduling
and similar problems. The principles used in this decoder are widely applicable:
Schedule one candidate at a time, measure the remaining slackness of constraints,
identify positive and negative contributions to the objective and finally assign a
weighted score. Of course, finding good weights will be difficult, but as shown in this
research it can be left to the geretic algorithm to sort the weights out. This clearly is a

very promising area for further work.



8 Conclusionsand Future Resear ch

8.1 Conclusions

The work described in this thesis has demonstrated that with help, genetic algorithms
are capable of solving constrained multiple-choice problems. In particular, two major
avenues for providing such help by balancing feasibility with solution quality have been
outlined: A direct and problem specific approach exploiting problem structure and a
more generic indirect £heme. The former took the form of specia operators for the
direct genetic algorithm. In particular a co-operative co-evolutionary algorithm with
hierarchical sub-populations was used. The latter used the problem specific information
contained in a set of heuristic rules as part of an indirect genetic algorithm with a self-
adjusting schedule builder. For both the nurse scheduling and the mall layout problems,
the indirect genetic agorithm was easier to implement and more effective. It is
conjectured that this is because this approach does not rely on the problem structure.

Indeed some evidence points to the fact that doing so can also be counter productive, as

seen for seeding or the co-evolutionary approach to the mall layout problem.

At the heart of the direct approaches lies the co-operative co-evolutionary scheme with
hierarchical sub-populations. This approach was chosen after the failure of the
canonical genetic algorithm to solve the nurse scheduling problem adequately. Even
with optimised parameters (as detailed in chapter 4), it was unable to provide good
results to the problem. Particularly disappointing was the poor performance of the
penalty function with a fixed penalty weight. The introduction of more sophisticated
truly adaptive penalty weights improved results somewhat, but nowhere near to those

achieved by tabu search.

The poor results of the genetic algorithm so far were explained with the epistasis created
by the penaty function approach, which is in conflict with the building block
hypothesis. In fact, the epistasis is twofold: One level is due to the covering constraints,

whilst the second level is created by higher graded nurses being allowed to cover for
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nurses of lower grades. It is this secord level of epistasis that the co-operative co-

evolutionary agorithm intended to reduce in chapter 5.

Thus, in this approach lower level sub-populations solve the scheduling problem for one
grade band only, whilst higher level sub-populations solve the problem for a
combination of grades. To make this scheme viable, new sub-fitness functions were set
up based on the origina constraints, which had been split up into sub-constraints. This
approach was chosen over the ‘compatibility’ based sub-string fithess suggested by
Potter and De Jong [129] and used for instance by Hernandez and Corne [94]. The
drawback of thelr method is that either a large number of computationally expensive
fitness calculations have to be made or an unreliable sub-fitness is obtained due to

sampling errors.

To overcome these difficulties we proposed the hierarchical approach: Computationally
fast sub-fitness scores are calculated directly and a dow build-up to more and more
complete solutions improves the compatibility of sub-strings over time. Thus,
information is conveyed from lower level sub-populations to higher level sub-
populations by means of a specia ‘grade-based’ crossover operator. To promote further
information exchange between sub-populations, migration of individuals between sub-
populations was introduced. The results of this approach were very encouraging, with

good solutions for most data sets.

Another conclusion from the direct approaches is that repair and mutation operators are
worth trying, but some intelligence is necessary to make them successful. In particular
the incentive / disincentive approach targeting repair at worthwhile candidates fared
well. This was implemented as a two-way strategy to overcome the ‘lack of killer
instinct’ effect. Firstly, the genetic algorithm was led away from solutions that would
most likely become a dead-end. Secondly and simultaneoudly to the first operation,
promising balanced solutiors were encouraged and exploited.  With these
enhancements in place, the genetic algorithm achieved results that were comparable in

quality to those of tabu search.
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In chapter 7, we applied the same direct techniques to the non-linear mall layout and
tenant selection problem. The data and problem details were set up in away that it was
easier to reach feasbility but more difficult to find an optimal solution than for the
nurse scheduling problem. Predictably, the canonical direct genetic algorithm found the
Mall Problem easier to solve, with results being of reasonable quality. We then turned

our attention to using a co-operative co-evolutionary approach for the Mall Problem.

Again, sub-populations were defined such that they optimised only parts of the problem,
in this case only one area of the mall. As with the nurse scheduling, a higher level main
ub-population gathered the information found by the lower level sub-populations.
Unfortunately, the problem structure did not allow the constraints to be differentiated as
easily as in the nurse scheduling case. Thus, the sub-fitness scores were less
meaningful than for the nurse scheduling problem. More importantly, due to the limited
population size, only a two-level hierarchy of sub-populations was feasible without
making the sub-populations too small. Thus, the approach failed to deliver good results.
Further enhancements of the scheme, namely mating and repair, improved results

somewhat, but not to a satisfactory level.

The fallure of the co-operative co-evolutionary genetic algorithm teaches some
important lessons. Although it is a very powerful approach and was the key to success
for the nurse scheduling problem, it is imperative that meaningful sub-fitness scores are
used and a gradual build-up of sub-solutions is allowed. Intuitively, one can be
substituted for the other, i.e. if good sub-fitness scores are available less hierarchical

levels are required and vice versa.

To find those sub-fitness scores, it is not simply enough to divide the problem into sub-
problems. Furthermore, one must also be able to ‘divide’ the constraints into ‘sub-
constraints such that their ‘reunion’ is similar to those found in the original problem.
Hence reducing the number of sub-population levels at the same time as having worse
ub-fitness scores was the downfall of this approach for the Mall Problem. However,
more research is necessary to establish the precise relationship between the accuracy of

the sub-fitness scores and the number of sub-population levels required.
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The second magjor avenue we followed to solve multiple-choice problems was using
indirect genetic algorithms. For the nurse scheduling, the genetic algorithm was set up
to find permutations of the nurses which where then fed into a decoder that builds the
roster from this list. Following on, three decoders employing deterministic scheduling
rules were proposed in chapter 6. The more sophisticated combined decoder worked
best and, after ®me parameter tests to find good weights for the scheduling rules,
provided better results to the nurse scheduling problem than any of the direct genetic
agorithm approaches.

These better results are directly attributed to the advantages of the ‘two phased’ indirect
approach. With the direct genetic agorithm, it was very difficult to include problem
specific knowledge. For instance, constraints could only be used passively in the
background to penalise solutions. Furthermore, alot of effort was involved when repair
operators and other local improvement heuristics were implemented as not to upset the
general balance between exploitation and exploration. This resulted in long developing

times and numerous parameter tests.

With the indirect approach, the situation is different, since the genetic algorithm can be
left almost unchanged from the canonical version. Problem specific knowledge can be
included easily within the heuristic rules of the decoder. Thus, constraints can play an

active role in guiding the search rather than just being in the background.

When using an indirect approach with a separate decoder, it is important to note that
unlike the relaxed approaches described in the literature, in our case there is no
guarantee that feasible solutions will be found. Hence, this scheme still needs to
balance feasibility and solution quality. Although this and other characteristics of the
decoders violate the decoder rules of Palmer and Kershenbaum [125], we found no
conflict in doing so. In fact, some violations of these rules, for instance biasing towards

promising regions of the solution space, seemed indeed helpful.

Finally, the more complicated the problem, the more scheduling rules or decoder
weights will be needed. This has been demonstrated with the Mall Problem in chapter
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7. There at least six decoder weights were required, making exhaustive parameter tests
very cumbersome. This issue was confronted by proposing self-adjusting decoder
weights. These work in asimilar manner to adaptive penalty weights, i.e. the control of
the decoder weights was handed over to the genetic algorithm. Each individual had its
own set of weights attached and by using an appropriate crossover strategy we ensured
that better individuas and hence better sets of weights contributed more to future

decoder weights.

This approach proved highly effective, eliminating the need for parameter tests and yet
producing better results than ever before for the Mall Problem. As we have shown, a
particular benefit of these self-setting weights is that the weights can adapt with the
differencesin the data sets. Spurred on by this success, we extended the self-regulation
of the genetic algorithm to crossover and mutation. Although no improvements were
made in the mutation case, letting the algorithm decide which crossover to apply further

improved results.

In afina set of experiments, we re-applied the idea of self-setting decoder weights and
self-regulating crossover to the indirect genetic algorithm for the nurse scheduling
problem. Again, the results were better than any others found previously by the genetic
algorithm. This clearly shows the potential of this self-regulating indirect genetic
algorithm for the optimisation of other problems.

8.2 Future Research

There are many avenues of future work arising from this thesis. For the problems
aready solved in this thesis, the genetic algorithms used could be further extended by
the introduction of an intelligent mutation operator or a steady-state reproduction
scheme. Although we do not anticipate a significant improvement in solution quality by

these measures, it would be interesting to see if there are any conflicts between them
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and the enhancements already detailed in this thesis. However, of more interest is
future work into the new schemes of co-operative co-evolution with hierarchical sub-

populations and self- regulating indirect genetic algorithms.

The results so far for the hierarchical sub-population approaches are of mixed quality.
The idea worked well for the nurse scheduling, but it failed for the Mall Problem. As
explained before this was due to the differences of the objective functions and
constraints of the two problems and the limit on the number of sub-populations.
Nevertheless, it would be interesting to apply this approach to other scheduling or
related problems with the am of setting up guidelines under which conditions this type
of algorithm can be successful. In particular the relationship between the number of
sub-population levels required and the ‘accuracy’ of sub-fitness scores needs to be
investigated further.

Areas of other possible future enhancement of this scheme include: A smart migration,
for instance swapping particularly useful information; an extension of the mating idea
presented combining those individuals that are most suitable; coupling Delta Coding
with the use of sub-population based hypercubes and an increase in the number of

‘main’ populations, possibly with different characteristics.

The sdf-regulating indirect genetic algorithm approach has probably even greater
potential because it relies less on a problem’s structure. It can be used for any type of
constrained or unconstrained optimisation problem. A generic way of applying it would
be to use a permutation based encoding and then ‘schedule’ one object at atime, as we

did for the mall layout and nurse scheduling problems.

The schedule builder would then measure the suitability of each object choosing the
best for each dot. This measurement can be based on a mixture of dackness left in the
congtraints if the object was scheduled and its contribution to various target function
terms. All these will have a weight assigned that will be regulated by the genetic
algorithm itself in the way described earlier. Additionally, the control over the
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crossover operator can be left to the algorithm, too. This ‘generic’ indirect algorithm
approach surely has considerable potential to be exploited.

Whilst experimenting with various permutation based crossover operators, a new
operator named PUX was invented. PUX is a combination of standard parameterised
uniform crossover and order based crossover. In this thesis, we have shown this
operator to perform better than its closest rivals uniform order-based crossover and
PMX. Although intuitive reasons were presented for this, more work is needed to

establish the precise behaviour of this operator.

Thus, it would be beneficia to apply PUX to other problems and compare it to other
permutation based operators, as well as perform a forma analysis along the lines of
Cottaand Troya [43]. Additionally, one could imagine a different kind of PUX where p
varies with the generations or is even controlled by the genetic algorithm itself. For
instance, if p would dowly increase from 0.5 to 1 over the generations this would

simulate the observations made for the genetic algorithm controlled crossover rates.

Ancther idea is to combine constraint logic programming with the indirect genetic
algorithm plus a schedule builder. Barnier and Brisset [14], Bruns[29] and others have
done this with good results for the direct standard genetic algorithm. Thus, it seems
there would be good potential for including some constraint programming ideas within
the decoder. For instance, these could be used for an intelligent look-ahead device or to

schedule the last few or some nasty items.

Finaly, there is the still unexplored idea of oscillating fitness functions. Although their
straightforward implementation proved unsuccessful during the pilot study to this thesis,
a more sophisticated approach could yet lead to success. This could for instance take a
form similar to the hierarchical structure of the sub-populations in the co-evolutionary
approach. Rather than just two functions as in the pilot study, there could be a ‘main’
function and some ‘sub’-functions. The genetic algorithm could then oscillate between
the main function and one sub-function a a time, possibly concentrating on certain

functions depending on the course of the optimisation.
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Appendix A Genetic Algorithm Tutorial
A.1 What is a Genetic Algorithm?

This appendix is an introduction to genetic algorithms for a newcomer to the field and is
loosely based on Whitley [174] and Davis [48]. Genetic algorithms are a class of meta-
heuristics, which are modelled on the idea of evolution in nature. Their main

distinctions from other methods are that

No problem-specific information other than the objective function is needed.

The genetic algorithm works with encoded variables, not with the actual variables
themselves.

A number of solutions are processed in parallel at the same time.

Most operators used are stochastic not deterministic.

Before presenting a genetic algorithm in more detail in the next section, we would like
to explain some of the terminology used, which is mainly derived from biology and

evolutionary studies.

A variable is referred to as a gene or allele, whilst a solution is known as an individual,
astring or achromosome. The position of agereis called loci. Usualy, solutions need
to be encoded in order that genetic operators can be applied. This will become clearer
with the example in the next section. An encoded solution is then called genotype
whilst a decoded solution is called phenotype. To measure the quality of a solution the
term fitness is used, i.e. afitter solution is a better solution. All solutions together make

up apopulation and one iteration of a genetic algorithm is known as a generation.
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A.2 How Does a Genetic Algorithm Work?

A.2.1 Introduction

This section will describe a canonical or original genetic algorithm. In particular, the
main genetic operators of selection, crossover, mutation and replacement will be
presented. After giving the following overview of the canonical genetic algorithm

scheme, al steps will be explained in detail:

(a8 Encoding of solutions and random initialisation of first population.

(b) Fitness evaluation of all solutions in the population.

(c) Selection of the parent solutions according to their fitness.

(d) Crossover between parents to form new solutions.

(e) Mutation of a small proportion of these new solutions.

(f) Fitness evaluation of new solutions.

(9) Replacement of old solutions by new ones keeping some of the (best) old solutions.
(h) Returning to step (c) if stopping criteriais unfulfilled.

A.2.2 Encoding of Solutions

It is necessary to encode solutions into a format such that the genetic operators,
described in the following paragraphs, can be applied. The technique for encoding
solutions into chromosomes will vary from problem to problem and from genetic
agorithm to genetic agorithm.  Originally, encoding was carried out using
concatenated bit strings of al variables. However, many other types have been used
and it is probably fair to say that no one technique is best for all problems.

Hence, choosing an encoding that is right for one's problem is often considered to

involve a certain amount of art and experience. Two things to bear in mind are the
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calculation of the fitness via an evaluation function and the inner workings of crossover
and mutation. A good encoding may also be able to include some of the constraints
implicitly (see section 3.3 for a discussion of this). Examples of (not recessarily good)
encodings are:

A list of the citiesin the order visited for a travelling salesman problem.

A concatenated string of all solution variables, either kept in their original format or
transformed into the binary system.

For the nurse scheduling problem, a binary list of the size (number of nurses) ~
(number of days) = (shifts per day), with a 1 indicating a nurse works the shift and a
0 otherwise. For further details on the encodings of the nurse scheduling problem,
refer to sections 4.1 and 6.3.1.

For the shopping mall problem, alist of size equal to the number of shop types, each
element indicating the total number (measured in small units) of shops of that type
present in the mall. For more information on encodings for the shopping mall
problem, see sections 7.2.2 and 7.4.1.

A.2.3 FitnessEvaluation

An evaluation of a solution's fitness is necessary for the selection stage, where fitter
individuals will have a better chance of being selected as parents and can therefore pass
their genes on. The raw fitness of an individua is usually equivalent to its objective
function value, sometimes modified due to constraint violation via penalty functions.

More information about penalty functions can be found in section 3.4.

However, some modification of the raw fitness is necessary to avoid the problem of
domination and lack of selection pressure. Domination can happen if the initial
population contains one or more ‘super individuals with much higher fitness than the

rest of the population. If left unchecked this would lead to premature convergence to a
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region very close to this individual, which might be undesirable. Lack of selection
pressure can happen towards the end of the search when many individuals have similar
raw fitness values. In this situation it would be preferred if the better individuals were
still picked more often than average ones, but because of the similar raw fitness values

thisis unlikely to happen.

The answer to these problems is to use some form of fitness scaling or ranking.
However, fitness scaling has the disadvantage that a problem specific scaling function
has to be found. Assigning ranks is more problem independent and also more
‘naturally’ inspired, but there is the drawback of having to sort the population first
which can be computationally time intensive. Nevertheless, our preferred method is to

assign ranks.

A.24  Sdection of Parents

Once individuals have been assigned an adjusted fitness or in our case a rank, selection
can take place. Selection is necessary to create new solutions via crossover. Depending
on the crossover operator used (more about this in the next section) the appropriate
number of parents needs to be chosen from amongst the whole population. To further
the idea of the ‘survival of the fittest’, the fitter an individual, the more likely it is to be
picked as parent.

The most common method of achieving this is via ‘roulette whedl’ selection. This can
be imagined as spinning a big roulette whedl with as many dots as members in the
population. The wheel is spun once for each parent required. The width of the slot and
thus the chance of an individual being chosen for parenthood is proportional to its
fitness. In the case of ranking, the slot would be proportional to the individua’s rank.

For instance, the best individual out of a population of 100 would have a rank and dlot
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width of 100, the second best would have a rank and slot width of 99 etc. An example
for five individuas, with the label indicating the rank is shown in Figure .

Figure I: Roulette whed for five individuals.

As the best individual is assigned the highest rank N (for a population consisting of N
individuals), this leads to the following number of children per individual. Note that

these figures are on average and are based on two parents being required for one child:

rank of individual
sum of ranks of all individuals

2 xotal number of children to be created x

. rank(i) _ 4xank(i)
(N+DN/2 N +1

|.e. for the best individual (rank = N): 4N1 » 4 children.
+

|.e. for an average individua (rank = N/2):

2'\'1 » 2 children.
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A.25 Crossover

The crossover operator is central to the genetic algorithm as it creates new solutions or
children. It usually works as a cut and splice operator, i.e. two (or possibly more)
parents are taken and cut into pieces. These pieces are then pasted together to form a
new solution. There are a vast number of different crossover operators, differing in

precisely how they cut up the parents and which parts are chosen to be spliced back
together again.

One can now see the close interaction between crossover and encoding. If they work
against each other, for example if the cutting points are in inconvenient or even
infeasible positions, then clearly one has made a bad choice for either the encoding or
for the crossover operator. Although there is a vast number of different crossover
strategies, of which only very few examples will be given here, none can be said to be
generally superior. It very much depends on the interaction between encoding and the
operator and often a successful combination can only be found experimentally or due to

experience. For more information about crossover, also refer to sections 4.3.5 and 6.2.

The simplest crossover operator is the so-called one-point crossover. It uses two
parents (say A and B) and cuts them both at the same point, thus creating four parts (say
Al, A2, Bl and B2). Two new children are now formed by pasting A1 with B2 and B1
with A2. One can imagine a similar crossover operator with two and more crossover

points. Figurell below shows an example with four crossover points.
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Parent 1

Parent 2

Child 1

Child 2

Figure I1I: Schematic four-point crossover.

Note that if there is more than one crossover point, the children need not necessarily be
pasted together by taking pieces alternatively from the parents. Thisis shown in Figure
Il purely for illustrative purposes and is in practice uncommon. A relation of n-point
crossover, with n being the number of genes minus one, is uniform crossover. Here
both parents are split up into al their genes and these are passed on such that for each of
the child’s gene there is a 50 percent chance for it to come from either parent.
Sometimes other percentages than 50 are used to bias the selection; such a strategy is

then called parameterised uniform crossover.

Completely different crossover operators are necessary for strings encoded as
permutations. This is because above crossovers would often lead to solutions which
featured one value more than once and others not at all. This can be seen from the one-
point crossover example in Figure I1l. The children created are invalid as operations 1
and 2 appear twice in child 1 and operations 3 and 4 are missing completely (vice versa
with child 2).

1 2:3 4 5 6 Parent 1
3 4.2 1 6 5 Parent 2
A N Crossover-Point
1 2.2 1 6 5 Child 1
3 4:3 4 5 6 Child 2

Figure 111: Example of one-point crossover going wrong for permutation encoded problems.
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To solve the above dilemma, special permutation crossover operators have been
invented. Three of these operators are presented in section 6.2, another is C1-crossover.
C1-crossover is Similar to one-point crossover, in so far as it splits both parents using
one crossover point. Furthermore and as before, the first half of the new children is
takenidentically from the respective parent. However, the other half is then constructed
by filling in the missing genes only, in the order they appear in the other parent. For the

above example, the result would be as shown in Figure V.

1 2:3 4 5 6 Parent 1
c B S R - B = Parent 2
A N Crossover-Point
1 2.3 4 6 5 Child 1
B B B B R Chiid2

Figure IV: Example of C1 order based crossover.

A.2.6 Mutation

The mutation operator is modelled after mutation in nature. It consists of making small
random changes to one or a few genes in a chromosome. Trandated into genetic
algorithm terms, this means that there is a small chance that the value of a particular
gene or variable is randomly modified. Originally, with binary encoding, a zero would
be changed into a one and vice versa. With aphabets of higher cardinality, there are
more options and changes can be made either at random or following a set of rules. The
latter is often referred to as intelligent mutation. As with other genetic agorithm
parameters, there is no optimal mutation rate for all applications, however an estimated

(per gene) mutation rate of [1/ (length of string)] is often a good starting point.

The purpose of mutation is twofold: Due to the limitation of any given population size,
some variables might have been initialised such that not all instances of the variable’s

alphabet are present. This can prove fatal, as the optimal value of a variable might be
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missing. Hence, it would never be reached by the genetic algorithm. Mutation offers a
chance of rectifying this. Similarly, due to an unfortunate choice of parents or
operators, certain variable values might be ‘lost’ throughout the population. Hopefully,
these will mainly be those variable instances that lead to low fitness values, but
situations are possible where good or even optimal values are lost. Again, mutation can

re-introduce those values.

The second purpose of mutation is to gain the capability to make ‘small’ changes within
a genetic algorithm framework. By design, the crossover operator is disruptive and is
therefore very unlikely to produce children that are very similar to either parent.
However, in the later stages of the search when some convergence towards good
solutions has aready occurred, small changes might prove more efficient than larger
ones. It is here in particular where an intelligent mutation can lead to success rather

than random standard mutation.

A.2.7 Replacement

Once enough children have been created, they replace the parent generation. Many
replacement strategies are possible. One of the mgjor distinctions is whether the whole
(or alarge part) of the population is replaced at once or whether individuals are replaced
one by one. The former iscalled a‘generational’ approach, whilst the latter is known as

‘steady-state’ reproduction.

When a generational approach is used, it is common not to replace the whole
population, but to keep the x% of the best parents. This method is known as elitism and
prevents the algorithm from losing the best solutions found so far. Another replacement
strategy is tournament replacement, where the best k out of n individuals survive. A
variant of thisisto bid children versus their own parents so that the victor proceeds into

the next generation. Further ideas include rules based on similarities between
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individuals, to keep a good spread. Many other rules are possible. With a steady-state
approach, the most common replacement rules are either tournament replacement or
replacing the worst individua with a certain probability (and if that is not replaced then

the second worst and so on).

A.2.8 Stopping Criteria

The topic of stopping criteriais fairly neglected in genetic algorithm literature. Various
and mainly problem-specific methods are used with none being reported to be superior

for al problems. Examples of criteriaare:

Exceeding a certain number of generations or amount of computation time.

Not improving the best solution found so far for a certain number of generations or
amount of computation time.

Convergence of the population, which is often based on a large percentage of the
population being identical and therefore indicates that the search has terminated
naturally.

A.3 Why Does a Genetic Algorithm Work?

It seems intuitively obvious why genetic algorithms can be used to optimise functions
and many real-life examples can be found in support of this, for instance Back [8] and
others. These examples confirm that genetic algorithms are a robust and generic
optimisation method. Nevertheless, not much theory exists to back this up, apart from
work based on the original ideas of Holland [96]. Parts of his work, namely the Schema
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Theorem, the Building Block Hypothesis and Implicit Parallelism, will be described in

the remainder of this section.

Firstly, the term schema needs to be explained. A schema can be understood as a string
with some of its elements having been replaced by a ‘# or ‘don’'t care’ sign. For
instance, in the case of a binary encoding, the # would stand for either O or 1. For a
binary encoding of length five, some possible schemata therefore are (100#1), (##1#0)
and (###1). In generd, a string with L positions and an alphabet of cardinality N
contains (N"--1) schemata and the whole search space is[(N+1)"-1]. (N+1) is used as #
extends the cardinality of the employed alphabet by one, however one is deducted from
the total as the string consisting of # only is not counted. Holland concluded that
genetic algorithms manipulate schemata when they solve a problem, which is described

in Holland' s Schema Theorem.

How can schemata be used to explain the inner workings of a genetic algorithm?
Another way of looking at a schemaisto view it as being one hyperplane of the solution
space. In other words, each individual is a sample point of those hyperplanes it crosses.
By evauating a population of solutions, the number of hyperplanes sampled and
evaluated is far higher than the number of individuals evaluated. This effect is known
as implicit parallelism and explains how a genetic algorithm can sample large areas of

the solution space quickly.

Combining the hyperplane sampling idea with the fact that individuals reproduce
proportiorally more often with higher fitness leads to the building block hypothesis.

Because fitter individuals are reproduced more often, so are their fitter schemata.
However, mutation and crossover tend to disrupt individuals or more precisely long
schemata. Hence, short and fit schemata will tend to occur more and more frequently in
a population. Schemata of this type are known as building blocks, following the idea

that the genetic algorithm can build a good solution by suitably combining them.

Another analogy sometimes used to describe the hyperplane sampling of genetic

algorithms is that of a k-armed bandit. To understand this, imagine the following: In a
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supermarket, there are k checkout tills. At first people will queue evenly at them, but as
we all know, some move faster than others do. This will prompt some people from
dower queues to join faster moving ones. In the first instance, probably too many will
change, making the slower queues a better option. Hence, some people will change

back and so on, until the checkout time at al queues is roughly the same.

Now imagine some people playing a k-armed bandit: A person can only pull one arm
and each arm has a certain pay-off if it is pulled. If more than one person pulls a
specific arm, the pay-off is shared. This leads to a situation that is analogous to the
supermarket, those arms with a higher pay-off will be pulled by proportionally more
people. Thisis exactly what the genetic algorithm does when sampling a binary string.
It will pull those arms (that is set the value of a bit to one) more often that have a higher
pay-off. Of course, initially, some bits will be set to one too often and others not often
enough, just like the queuing in the supermarket. However, after some time, an
equilibrium will be reached with each bit being set to one proportional to its pay-off or

contribution to fitness.

A.4 Common Genetic Algorithm Enhancements

A canonical genetic algorithm as presented in appendix A.2 is often not suitable to solve
a problem to optimality, or as De Jong [51] put it: ‘Genetic Algorithms are NOT
function optimisers’ because ‘they lack the killer instinct’. However, as the literature
shows, modified genetic algorithms can successfully be used as function optimisers.

This section will give avery brief overview of the most common modifications.

Often cited as the foremost drawback of the genetic algorithm is the lack of constraint
support. Possible solutions for this are the inclusion of the constraints into the
encoding, special crossover and mutation operators, penalty functions and repair
operators. As these methods are discussed in detail throughout chapter 3, no further

details are given here.
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Many researchers have found that larger population sizes give better results. Two
reasons for this are that smply more solutions are sampled and that it is less likely for
the agorithm to lose valuable information due to the higher number of individuals ard
schemata at any time. However, a larger population means more computation time per
generation and usually more overall execution time of the optimisation. Using more
than one computer in parallel would speed things up and because of their population
based nature, genetic algorithms are perfectly suited for parallel computing. Hence, the

idea of parallel sub-populations was born.

Sub-populations can also be used for a very different reason on a single computer.

Rather than just being a part of one big population and following the same rules, each
sub-population could follow different strategies and therefore offer more variety. This
Is known as co-evolution. Many researchers have found that this helps combat one of
the genetic algorithm’s main drawbacks, the problem of premature convergence. We
also make use of sub-populations and the reader is referred to section 5.2 for more
details.

Similarly, the concepts of niching and crowding try to fight the same problem. Here,
individuals are constrained such that a certain area of the solution space can only
‘support’ a fixed number of individuals. Hence, if there are too many similar
individuals some are ‘crowded out’. The result of thisis the formation of various niches
around local optima. This has the additional benefit of providing more than one good

solution from a single run.

Another problem of genetic algorithms is due to their lack of being able to make small
changes to an individual. However, this is often required in the later stages of the
search, when solutions are close to an optimum. Crossover is too disruptive to achieve
this, whilst mutation is too random to consistently make the right changes at the right
time. A possible solution to thisis the hybridisation with alocal hillclimber. However,
such a hillclimber will almost always need problem-specific knowledge to succeed.
This leads to the loss of the genera applicability of this then specifically tailored

genetic algorithm. An example of a hillclimber can be found in section 5.4.



Appendix B Summary of Diplom Thesis

This appendix will provide a short summary of the German Diplom Thesis [4]. This
thesis was written at the University of Mannheim (Germany) under the supervision of
Professor Schneeweis from September to December 1996. Its objective was to carry
out a pilot study into solving the nurse scheduling problem with a genetic algorithm.
Only six different data sets relating to one ward in six consecutive weeks were available
and nurses were restricted to work either days or nights in week, i.e. there were only
218 rather than 411 possible shift patterns. The objectives were to show the general
applicability of a genetic algorithm to the problem, the difficulties encountered and to
gauge the possible research potentia for further work into this area. A summary of the

thesis follows.

The first chapter introduced the problem of nurse scheduling and presented the actual
problem at a British hospital. A general introduction into genetic algorithms and their
main operators followed in the second chapter. These were then put into concrete terms
in chapter three with the actual nurse scheduling problem at hand. Chapter four
presented the optimal solutions to the six data sets available as found by CPLEX and
compared these to the results of a standard genetic algorithm with intuitively chosen
parameters and strategies. In the remainder of chapter four some limited parameter and
strategy tests were conducted. The results were dightly improved, however they were
still far inferior to the CPLEX solutions. The optimal parameters found are those used

in section 4.3 as starting values for further parameter tests.

In chapter five, six possible enhancements to the basic genetic algorithm were presented
and their potential examined. The six enhancements were a variety-based replacement,
‘intelligent’ mutation, local optimisation, two oscillating target functions, dynamic

penalty weights and grade based crossover.
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The variety-based replacement policy tried to promote the survival of less similar
individuals. However, the rules used were too strong and only very different

individuals were allowed to survive resulting in worse solutions than before.

The idea of ‘intelligent’ mutation was based on mutating worse individuals more often
than better ones. Additionally, the mutation rate was ‘adapting’ with the search, i.e. the
better the solutions found, the smaller the mutation rate. Small improvements were
made with this approach. However, this was largely due to ‘lucky strikes' because of

the generally much higher mutation probability.

Local optimisation tried to improve the solution value by swapping the shift patterns
worked between two nurses. Thus, it would not improve feasibility by its definition. It

succeeded in improving solution quality dightly, however feasibility was still very low.

Another approach to improve feasibility was to have two ‘oscillating’ fitness functions.
One would try to improve cover, i.e. feasibility, whilst the other one was focused on the
nurses requests, i.e. cost. Only one would be used at a time, with a swap if no further
improvements had been made for a number of generations. If no improvements were
made for either then the search would terminate. Various ratios of one function to the
other were tried, but al failed to improve results. The reasons for this were not fully
clear. Possibly, the difference between the two functions was too big such that good

solutions to one were unfit for the other and vice versa

Adaptive penalty weights were defined as behaving proportionally to the generation
index. Both increasing and decreasing weights and various ‘cooling’ and ‘increasing’

schedules were tried. Some of these did improve both solution cost and feasibility.

However, overall feasibility was still very low. The final idea of grade-based crossover
was specifically addressing this issue. Rather than using uniform crossover al the time
and hence splitting up some (partially) good schedules, a new fixed point crossover was
introduced. This crossover would take place in roughly 20% of al crossovers and

would divide the parents along the grade boundaries and recombine accordingly.
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Beforehand, solutions were sorted by the nurses' grades from high to low. Feasibility
was amost doubled to about 60% following this approach.

The fina chapter of the thesis presented possible future enhancements. These included
an expansion of the actual model (inclusion of al 411 shift patterns and others) and the
introduction of a new fitness score based on the grade-segments of the string.
Moreover, this could possibly be further expanded by the use of sub-populations based
on each segment. The latter idea was further developed during the present research and
IS presented in section 5.2. The thesis concluded that there was a good research
potentia for a PhD.



Appendix C Nurse Scheduling Data
C.1 Demand

This appendix presents some of the data used for the nurse scheduling problem for
illustration purposes. In this first section Table | shows the typical shifts to be covered
for one ward. The shifts are given grouped by day / night and grade of nurses required,

where

Su - Saare the seven days respectively nights of a week.
Q1, Q2 and Q3 are the number of nurses needed per grade. Higher qualified ones

can substitute nurses with a lower grade.

Day Shifts Night Shifts
SU Mo Tu We Th Fr Ss|fSu Mo Tu We Th FH Sa
Q1 2 2 2 2 2 2 211 1 1 1 1 1 1
Q| 2 2 2 2 2 2 211 1 1 1 1 1 1
Q3| 5 5 5 5 5 5 5] 1 1 1 1 1 1 1

Table I: Example of aweek’s demand for nurses.

C.2 Qualifications, Working Hours and General Preferences

Table 1l shows the typica qualifications, working hours and general day / night

preferences of the nurses on one ward. In thetable,

I is the nurse index.

q(i) is the grade of nursei.

w(i) is the weekly working hours of nursei, where 1 = 100%, 2 = 80%, 3 = 60%, 4 =
50%, 5 = 40%, 6 = 20% and 7 = 0% of afull time nurse.
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p(i) is the general day respectively night preference with 1 days preferred, 2 days
important, 3 nights preferred, 4 nights important, 5 days only, 6 nights only and 0

indifference between days and nights.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 189 20 21
oQinyf1 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3
wifz 12 2 1 2 3 2 3 2 1 1 1 1 7 1 1 1 1 1 4 1
P2 1. ¢ ¢ 0 2 3 0 ¢ C 2 0 0 0 0O O G C 0 0 1

Table 11: Example of nurses general preferences and qualifications.

C.3 Preferences

The last information needed to calculate the p; values, following the rules outlined in
chapter 2.1.3, are the weekly requests of the nurses. Examples of these are given in
Table I1l, where

I is the nurse index.
Su - Sa are the seven days respectively nights of a week. The higher the number the

stronger the preference not to work that shift. For a detailed description of the scale
used, see chapter 2.1.3.
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Table 111: Example of nurses’ weekly preferences.

C.4 Table of Shift Patterns

Depending on the working hours and requested days off, a nurse can only work a

certain number of shift patterns. Table 1V shows all possible shift patterns. Altogether,

there are 411 possible shift patterns. In the table,

I isthe shift pattern index.

S- Sis], if shift pattern i covers that shift on this particular day, elseit isO.

The lower the value the ‘nicer’ the shift

V(i) isthe genera value of shift pattern i.

pattern. For more details about this see chapter 2.1.3.

These are required for

&(i) is the firgt, I(i) the last free day of shift pattern i.

maximum work-stretch constraints.
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C.5 Final Penalty Cost

Table V was compiled from the information given in the previous sections following the
rules detailed in section 2.1.3. It shows the ‘cost’ p;j of nurse i working shift pattern j.
In the table,

The firgt lineisthe index i of the nurse.

The second line gives the upper and lower bound, first for day then for night shifts of
possible shift patterns for that nurse, i.e. these are the ranges for .

The following lines show the penalty cost pj; associated with nurse i working a shift

pattern j starting with the lower day shift bound.

Nurse inde 1]
Shift pattern range 1 21| 2 5 |
Penalty Cost 0 2 0 1 2 0 1 1 2 0 2 2 2
2 1 0 1 1 1 2 C |18 20 20 20 19
9 20 20 19 20 19 20 20 20 2 21 20 19
20 20 18 18 20 20 19 20 18 20 20 20 19
2 189 18 20
Nurse inde 2 |
Shiftpatternrange | 57 91 | 92 126 |
Penalty Cost 16 10 10 8 9 10 10 8 10 9 10 10 9
10 11 10 8 9 10 8 8 10 9 8 10 9
6 10 10 10 10 8 8 8 9 | 8 0 S 5
6 0 6 7 7 6 7 7 5 6 5 0 6
6 6 6 6 5 6 6 6 0 7 7 7 6
7 7 6 5 0

Table V: Examples of final shift pattern cost values.



Appendix D Additional Nurse Scheduling Results
D.1 Graphsof Typical Genetic Algorithm Runs

The graphsin Figure V show a single run of various types of genetic algorithms with a
typical data set. The ‘Average’ line shows the development of the population as a
whole, whilst the ‘Best Feasible’ line shows the best feasible member of the population.

A comparison for al genetic algorithm typesis shown in Figure VI and in Figure VII.

— Average = Best Feasble — Average = Best Feasible
§ 400 § 400
< 300 \\’WM c 300
S 200 _ S 200
= 100 > 100 e
8 0 T T T T T T T T 8 0 T T T T T T T T
1 26 51 76 101 126 151 176 1 31 61 91 121 151 181 211
Generations of Basic Genetic Algoritm Generations with Adaptive Penalties
— Average = Best Feasible — Average = Best Feasible
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S a0\ 5 200
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— Average = Bedt Feasible — Average = Best Feasible
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© 3m A O 300
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Generationswith Delta Coding Generationswith Indirect GA

Figure V: Typical genetic agorithm runs with various strategies.
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Some interesting observations can be made from the graphs. For this particular data set,
introducing the dynamic weights already makes a big difference from the basic genetic
algorithm. The first feasible solutions of high quality are found by the co-evolutionary
approach. Once repair and incentives are introduced, the algorithm finds the first
feasible solution much faster. This shows again how effective it is to add a local

hillclimber to counter the ‘lack of killer instinct’ effect of genetic algorithms.

Note that the Delta Coding genetic algorithm seems to perform well, however, this is
only because it is seeded with a good feasible solution from a previous run. Finally, the
population average is much better for the indirect genetic algorithm than for the direct
approaches (apart from delta coding for obvious reasons). This indicates that the actual

solution space explored is smaller due to the bias introduced by the decoder.

e Basic GA Adap Weights Co-Evolve
I ncentives Delta Coding Indirect GA
%2}
@)
@)
c
1=
E
A
o
©
;3 —
< O T T T T T T T T T T T T
O 20 40 60 80 100 120 140 160 180 200 220 240

Generations

Figure VI: Comparison of average solution cost for various types of genetic algorithms and a
typical data set.
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e Basic GA Adap Weights Co-Evolve
I ncentives Delta Coding Indirect GA
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Figure VII: Comparison of best feasible solution cost for various types of genetic agorithms
and atypical data set.
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D.2 Full Genetic Algorithm and Tabu Search Results

Table VI shows the feasibility and cost for al 52 data sets found with the best direct
genetic agorithm, best indirect genetic agorithm, tabu search and XPRESS MP.

Detailed results for other genetic algorithms are shown in Figure VIII to Figure XIII.

Direct GA Indirect GA Tabu Search IP
Week Feasibility Cost Feasibility Cost Iterations Cost Cost
1 1 0 1 0 128 0 0
2 1 12 1 12 67 11 11
3 1 18 1 18 298 18 18
4 1 0 1 0 180 0 0
5 1 0 1 0 169 0 0
6 1 1 1 1 203 1 1
7 05 13 1 11 127 11 11
8 1 11 1 11 549 11 11
9 0.95 3 1 3 138 3 3
10 1 1 1 2 173 1 1
11 1 1 1 1 65 1 1
12 1 0 1 0 141 0 0
13 1 1 1 1 211 1 1
14 1 3 1 3 373 3 3
15 1 0 1 0 91 0 0
16 0.95 25 1 25 283 24 24
17 1 4 1 4 347 4 4
18 1 7 1 6 253 7 6
19 1 1 1 1 89 1 1
20 0.95 5 1 4 261 4 4
21 1 0 1 0 104 1 0
22 1 1 1 1 274 1 1
23 0.95 0 1 0 88 0 0
24 0.75 1 1 1 122 1 1
25 1 0 1 0 463 0 0
26 0.1 0 1 0 278 0 0
27 1 2 1 3 76 2 2
28 1 1 0.95 1 123 1 1
29 0.35 3 1 1 498 2 1
30 1 33 1 33 201 33 33
31 0.8 66 1 36 685 33 33
32 1 21 1 21 404 20 20
33 1 12 1 10 101 10 10
34 1 17 1 16 169 15 15
35 1 9 1 11 103 9 9
36 1 7 1 6 209 6 6
37 1 3 1 3 593 3 3
38 1 3 1 0 70 0 0
39 1 1 1 1 427 1 1
40 1 5 1 4 299 4 4
41 0.95 27 1 27 594 27 27
42 1 5 1 8 68 5 5
43 0.9 8 1 6 132 6 6
44 0.9 45 1 17 154 16 16
45 1 0 1 0 103 0 0
46 0.7 6 1 4 301 3 3
47 1 3 1 3 855 3 3
48 1 4 1 4 71 4 4
49 1 26 0.7 25 236 24 24
50 0.35 38 0.8 36 157 35 35
51 0.45 46 1 45 146 45 45
52 0.75 63 1 46 233 46 46
Average 91% 10.8 99% 9.0 240.1 8.8 8.7
Runtime 15 sec 10 sec ca. 30 sec up to hours

Table VI: Full genetic algorithm, tabu search and integer programming results for all data sets.
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The graphs in Figure VIII to Figure XlIl show detailed results for all 52 data sets and
the main development stages of the genetic agorithm. The bars above the y-axis
represent solution cost, with the black bars showing the number of optimal solutions,
and the total bar height showing the number of solutions within three units of the
optimal value. The value of three was chosen as it corresponds to the penalty cost of
violating the least important level of requests in the original formulation. Thus,
solutions this close to the optimum would certainly be acceptable to the hospital. The
bars below the axis represent the number of times out of 20 that the run terminated
without finding a single feasible solution. Thus, the less the area of the bars below the

axis and the more above, the better the performance of an algorithm.

Basic Genetic Algorithm

20
10 - |
o bl

| | . I l o Al
=L T

-20 4

O No. infeasible m No. Optimal 0O No. within 3

Figure VIII: Detailed results for basic genetic agorithm.

When comparing the results, one can make some interesting observations. Firstly, the
impact of the co-operative co-evolutionary approach was immense, improving the
results significantly from before. Furthermore, there clearly are some data sets that are
more difficult to solve than others, for instance the last three data sets. This can be due
to two reasons. Either those data sets are genuinely more difficult, for example due to

tighter constraints etc. or the choice of genetic parameters, in particular the penalty
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weight, was not very suitable. To investigate this further is one area of future research
as described in section 8.2. Finadly, the graphs show once more the superiority of the

indirect approaches, especially once the self-adjusting weights are introduced.

Dynamic Penalties

[ o
Ao |l . 0 lnan o I 1 1 o no ol .
SRR
10 -

O No. infeasible B No. optimal O No. within 3

Figure IX: Detaled results for a genetic agorithm with dynamic weights and optimised
parameters.

Co-Operative Co-Evolution
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Figure X: Detailed results for a co-operative co-evolutionary approach.
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| ncentives and Repair
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Figure XI: Detailed results for a co-operative co-evolutionary approach with repair and
incentives.

Fixed Weights I ndirect Genetic Algorithm
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Figure XI1: Detailed results for an indirect genetic algorithm with fixed decoder weights.
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Dynamic Weights Indirect Genetic Algorithm
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Figure XI1I: Detailed results for an indirect genetic algorithm with dynamic crossover rates and
decoder weights.

D.3 Additional Resultsfor Chapters4 -6

Figure X1V shows the results for using a quadratic penalty function and different
penalty weights as described in section 4.3.3. The quadratic penalty is calculated by
squaring the constraint violations. As mentioned in section 4.3.3, in the parameter
range tested the results are significantly worse than for the linear penalty function.

Thus, quadratic penalties were not used in this research.
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Figure XIV: Quadratic penaty weights.

Figure XV and Figure XVI show additional results for the migration operator. The
graph in Figure XV shows the effect of varying the frequency of migrating the best five
individuals of each sub-population into another random sub-population. Exchanging
these individuals every five generations gives the best results. However, migrating
random individuals performs better as pictured in Figure XVI. With random migration
the best results are found for a 5% migration probability per individual and generation.
As explained in section 5.2.5, the better performance of the random migration operator

is attributed to the specialisation of the sub-populations.
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Figure XV: Migration of five best individuals of each sub-population.
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Figure XVI: Random migration between sub-populations.
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Appendix E Mall Problem Data

This appendix details a typical data file from data set five, which is characterised by
being tight on minimum, ideal and maximum number for each shop type and loose on
the number of small, medium and large shops allowed. The basic size and areallocation
layout of the mall is defined in Table VII and Table VIII. Table IX indicates which
shop type is a member of which shop group, for instance men’s clothes are part of the

clothing group.

Number of Locations; Number of Areas 10C| 5
Number of Shop Types; Number of Shop Groups| 20 | 5

Table VII: Problem size.

Area 1 2 3 4 5

Bounds of Area | 1-18 | 19-29 | 30-57 | 58-86 | 87-100

Table VIII: Location distribution.

(1 =Member; 0 = Else) Shop Group

Shop Type 2 3 4

Oo|N|oO|O|h~|W[IN|F

10
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13

14
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16
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[=l{=ligd g (el{e] gl ol (el (el |l (o) (o] (o] (o] | D (o] (e

19

OO|0|O(O|0|O(0|0|O(R | |O|0|FR|O|r OO |-
(o] o] (o] (o] (o] (o] o] o] (o] (o] (o] (e | | ] (e} | ]| ] (e} | _} (a] 6]
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20
Table IX: Group membership of shop types.

o

0
0
0
0
0
1
0
0
0
0
0
1
0
1
0
0
0
0
0
0
Y
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Table X shows the maximum number of small, medium and large shops allowed in the
mall. Asthe example istaken from data set five, no limits are set. The efficiency factor
depending on the number of shops of the same type in one area is given in Table XI.
The attractiveness rating for each area is displayed in Table XIl. Table XIII shows the
maximum number of shops of one type alowed in the whole mall. As this data file is
an example for being tight on the maximum number of shops allowed, the sum of the

minimais between 95 and 98.

Shop Size Small M ediunr Large

Maximum Shop Number per Size 100 100 100

Table X: Limits on the number of shops of one size.

Shop Count g 1 2 3 4 5 6 7 8 g 10
Efficiency Factor | 0O 10 1 115) 13 11221124 ) 13 | 125] 126 ] 13 | 12.7

Table XI: Efficiency factor versus shop count.

Area 11213145

Attractiveness Factor [ 12| 16| 11| 12| 13

Table XII: Attractiveness of areas.

Number per Shop Typein Mall
Shop Type [ Min | Ideal | Max
1 6 6 7
2 5 6 6
3 4 5 8
4 6 7 8
5 5 9 9
6 5 5 6
7 4 4 7
8 3 9 9
9 6 6 6
10 4 9 9
11 6 6 9
12 5 8 9
13 4 7 9
14 3 4 6
15 5 7 7
16 6 6 9
17 5 9 9
18 4 5 8
19 6 7 8
20 5 6 6

Table XI1I: Limits on the number of shops of one type.
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The fixed rent of a shop unit, defined by its type and the area it is located in, is shown in

Table X1V. Findly, the bonus for a complete group of shopsisgivenin Table XV.

Fixed Rent per Area
Shop Type|| 1 2 3 4 5
1 1286 | 1670|1761 | 2116|2131
2 1501 | 1742 | 1921 | 2222 | 2987
3 1616 | 1838 | 2039 | 2371 | 2612
4 1858 | 1437 | 2229 | 1833 | 2353
5 1375 | 1527 | 1726 | 2405 | 2200
6 1497 | 1650 | 2554 | 2113 | 2375
7 1758 | 2159 | 1653 | 2303 | 2687
8 1794 | 2339 | 1938 | 2790 | 2327
9 1803 | 1564 | 1891 | 2642 | 2032
10 1758 | 1796 | 2138 | 2589 | 2903
11 2055 | 1453 | 1901 | 2100 | 2689
12 2071 | 1999 | 2265 | 1892 | 2743
13 1292 | 1476 | 1923 | 1888 | 2260
14 1844 | 1676 | 2391 | 2156 | 2478
15 1671 | 1487 | 2085 | 2323 | 2439
16 1635 | 2075 | 1926 | 2548 | 2561
17 1982 | 1428 | 1738 | 1898 | 2357
18 1325 | 1914 | 2078 | 2627 | 2793
19 1979 | 1418 | 2190 | 2636 | 2728
20 1560 | 2302 | 2135 | 2310 | 2686

Table XIV: Fixed shop type and area rent.

Group Status

Two Complete

One Complete

None Compl ete

Group Factor

14.4

12

10

Table XV: Group bonus factors.



Appendix F Additional Mall Problem Results

In the figures below the results of one hundred randomly created solutions to a file of
the fourth data set are displayed. The graphs show the percentage of shops in small,
medium and large sizes as well as the percentage of shops at an ideal count level and in
groups. Theline displayed is alinear approximation of the trend present. It gives us an
idea of the actual workings of the mall objective function and this knowledge was used
when setting the decoder weights intuitively.
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Figure XVII: Relationship between objective function value and shop sizes, shops in groups
and shops with an ideal shop count.
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Table XVI shows detailed results for various approaches to the Mall Problem grouped
by data sets. The labels are ‘Direct’ for the direct genetic algorithm, *Sub-Pop’ for the
simple co-evolution scheme, ‘Repair’ for the co-evolution with mating and repair, ‘I
Medium’ for the indirect genetic agorithm with medium weights, ‘I Auto’ for the
indirect approach with self setting weightsand ‘1 Auto +' for the indirect algorithm that

set its own weights and crossover rates.

In addition to the usual results of feasibility and rent, solution times and some
characteristics of the solutions found are given. These characteristics are the percentage
of shops in groups, the percentage at an ideal shop count level and the ratio of large,
medium and small shops. These percentages clearly show the tightness of the various
congtraints in the data sets. For instance, files 51-60 have tight limits on the number of

small, medium and large shops.

Another interesting observation can be made from the results displayed in Table XVI.
If the data files do not have tight congtraints, then there are clearly two ways to achieve
good results: Either a high percentage of shops in groups or a high percentage at their
ideal level. The direct genetic algorithm schemes take the second route. This can easily
be explained. Without any further problem-specific operators, the direct approach with
its encoding can maintain a full group only with difficulty, as removing one member
aready destroys the group. This happens frequently with most crossover operations, as
different strings will work towards different groups. Thus, the children have fewer
complete groups than their parents. On the other hand, maintaining the ideal shop count

Iseasier, as al individuals work towards the same goals.

For the indirect genetic algorithm, the situation is different. Each solution is built from
scratch, allocating those shops that give the biggest score. Obvioudly, it is not possible
to have all shops at their ideal level and all goups complete. This is because there is
only a limited number of locations in the mall, which are not enough too have al shop
types at their idea level. Thus, the more shop types are at their ideal level the less
shops there will be of the remaining ypes. This makes it harder for groups to be

complete as one missing member destroys the bonus. Hence in the light of this, the
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indirect algorithm decoder completes groups rather than maintain ideal levels, which

gives better results.

Files| Algorithm [ Time[s] | % Feasible Rent % Group | % |deal % Large | % Medium| % Small
Direct 43.1 100 1826.8 15.4 78.1 68.7 11.3 19.9
o Sub-Pop 45.3 100 1764.9 11.0 78.8 52.8 18.5 28.9
@ Repair 59.0 100 1852.8 12.3 80.0 72.7 10.1 17.0
d | Medium 50.3 100 1903.0 73.2 62.3 61.7 18.1 20.3
| Autc 59.1 100 1959.1 89.7 70.9 56.2 22.6 21.1
| Auto + 41.7 100 1965.9 89.6 72.5 56.9 24.6 18.5
Direct 17.1 100 1973.1 76.1 82.3 59.0 15.3 25.9
o Sub-Pop 15.8 100 1916.3 70.9 77.8 50.5 18.7 30.8
5 Repair 24.0 100 2012.7 725 73.1 58.7 19.3 21.9
b= | Medium 25.1 100 1960.8 80.7 46.4 72.4 14.2 13.2
| Autc 24.3 100 2016.7 89.9 42.3 65.4 15.3 19.4
| Auto + 20.6 100 2021.1 90.9 49.4 65.8 15.6 18.7
Direct 11.3 100 1757.3 61.5 45.9 35.6 26.6 37.8
Sub-Pop 12.1 85 1750.7 57.3 46.3 31.9 30.4 37.8
8. Repair 20.6 100 1930.6 74.3 46.5 61.8 18.9 19.4
g | Medium 19.2 100 1911.7 77.1 44.5 69.1 16.6 14.1
| Autc 22.7 100 1932.7 83.6 454 65.2 16.1 18.9
| Auto + 18.5 100 1939.0 86.0 46.1 66.6 15.9 175
Direct 14.7 100 1878.9 32.9 78.2 62.1 32.9 5.0
o Sub-Pop 13.7 100 1855.9 317 65.4 61.7 33.1 5.2
© Repair 27.4 100 1901.8 42.0 77.0 62.9 32.0 5.1
o | I Medium 22.1 100 1916.0 69.8 447 63.0 318 5.2
| Auta 19.3 100 1951.8 85.7 48.9 63.1 313 5.6
| Auto + 17.6 100 1958.5 85.7 51.4 63.0 32.0 5.0
Direct 13.5 70 1796.2 28.4 52.4 62.5 31.5 6.0
o Sub-Pop 15.3 12 1099.4 30.0 52.5 62.3 317 6.0
~ Repair 15.8 31 1786.2 329 50.2 63.0 31.2 59
b | Medium 14.2 94 1836.6 44.3 45.2 65.9 28.3 5.8
| Auta 15.5 100 1887.2 68.7 45.8 65.4 28.9 6.0
| Auto + 15.7 100 1896.9 70.5 46.2 65.8 28.3 59
Direct 19.9 94 1846.5 42.9 67.4 57.6 23.5 18.9
Sub-Pop 20.4 79 1677.4 40.2 64.2 51.8 26.5 21.7
IQI Repair 29.3 86 1896.8 46.8 65.4 63.8 22.3 13.9
PN | Medium 26.2 99 1905.6 69.0 48.6 66.4 21.8 11.7
| Autc 28.2 100 1949.5 83.5 50.7 63.1 22.8 14.2
| Auto + 22.8 100 1956.3 84.5 53.1 63.6 23.3 13.1

Table XVI: Detailed Mall Problem results.



