
Design of Vehicle Routing Problem

Domains for a Hyper-Heuristic

Framework

James Walker

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

December 2015

Abstract

The branch of algorithms that uses adaptive methods to select or tune heuristics,

known as hyper-heuristics, is one that has seen a large amount of interest and

development in recent years. With an aim to develop techniques that can deliver

results on multiple problem domains and multiple instances, this work is getting

ever closer to mirroring the complex situations that arise in the corporate world.

However, the capability of a hyper-heuristic is closely tied to the representation

of the problem it is trying to solve and the tools that are available to do so.

This thesis considers the design of such problem domains for hyper-heuristics.

In particular, this work proposes that through the provision of high-quality data

and tools to a hyper-heuristic, improved results can be achieved. A definition is

given which describes the components of a problem domain for hyper-heuristics.

Building on this definition, a domain for the Vehicle Routing Problem with Time

Windows is presented. Through this domain, examples are given of how a hyper-

heuristic can be provided extra information with which to make intelligent search

decisions. One of these pieces of information is a measure of distance between

solution which, when used to aid selection of mutation heuristics, is shown to

improve results of an Iterative Local Search hyper-heuristic. A further example of

the advantages of providing extra information is given in the form of the provision

of a set of tools for the Vehicle Routing Problem domain to promote and measure

’fairness’ between routes. By offering these extra features at a domain level, it is

shown how a hyper-heuristic can drive toward a fairer solution while maintaining

a high level of performance.

Acknowledgements

I would like to thank my supervisor, Andrew Parkes, and my previous supervi-

sors Edmund Burke, Gabriela Ochoa, Matthew Hyde and Sanja Petrovic for their

support and assistance during the study for this thesis. I would also like to thank

Michel Gendreau for his advice regarding the vehicle routing problem and the

intial HyFlex domain.

I would like to thank my wife, Lizi, for her love and support throughout my

studies.

I would like to express my gratitude to the EPSRC for providing the funding for

this work.

1

Contents

1 Introduction 7

1.1 Introduction . 7

1.2 Contributions of thesis . 8

1.3 Publications Arising from Work within Thesis 9

1.4 Thesis Structure . 10

2 Related Work 11

2.1 Introduction . 11

2.2 Vehicle Routing Problem . 11

2.2.1 Graph Theory and the Travelling Salesman Problem 12

2.2.2 The Vehicle Routing Problem 13

2.3 Hyper-Heuristics . 27

2.3.1 Personnel Scheduling . 30

2.3.2 Timetabling Problems . 31

2.3.3 Vehicle Routing Problem . 33

2.3.4 Cross-domain Optimisation 33

2.4 Conclusion . 36

3 Vehicle Routing Problem Domain and HyFlex Framework 38

3.1 Introduction . 38

3.2 Problem Domain Definition . 38

3.2.1 Problem Representation . 39

3.2.2 Domain Tools . 40

3.3 Discussion of Domain Components 40

3.3.1 HyFlex Framework . 40

3.3.2 Problem Domain Design . 41

3.3.3 HyFlex Algorithm Design 45

3.3.4 Pre-existing HyFlex Domains 47

3.4 VRPTW Domain . 50

3.4.1 Problem Representation . 50

3.4.2 Instance Format and Instance Sets Used 51

2

3.4.3 Initialisation of Solution . 53

3.4.4 Low-level Heuristics . 54

3.5 Conclusion . 68

4 Iterative Local Search Approaches to Cross-domain Optimisation 70

4.1 Introduction . 70

4.2 Previous HyFlex Work . 71

4.2.1 Heuristic Selection Mechanisms 71

4.2.2 Solution Acceptance Criteria 72

4.2.3 Iterated Local Search . 73

4.2.4 Experiments and Results . 73

4.3 Adaptive Iterated Local Search . 74

4.3.1 Approach . 75

4.3.2 Experiments . 81

4.3.3 Results . 82

4.4 Adaptive Iterated Local Search for the Vehicle Routing Problem . . 89

4.4.1 Ordered Local Search Improvement to AdapEV 89

4.4.2 Experiments . 91

4.4.3 Results . 92

4.5 Conclusion . 95

5 An Adaptive Memetic Algorithm and Extensions to the Hyflex

Framework 98

5.1 Introduction . 98

5.2 Improvements to HyFlex framework 99

5.2.1 Additions . 99

5.2.2 Definition of ’Distance’ for HyFlex Domains 103

5.2.3 Implementation of Additions in VRPTW Domain 105

5.3 Population-based Approach to the VRPTW which uses Solution

Distance . 107

5.3.1 Adaptive Iterated Local Search 107

5.3.2 Adaptive Memetic Algorithm 108

5.3.3 Diversity Variant . 112

5.4 Experiments . 114

5.4.1 Instances . 114

5.4.2 Test Details . 114

5.5 Results . 115

5.5.1 Ordinal Data Analysis . 115

5.5.2 Distribution of Objective Function Values 116

3

5.5.3 Comparison to Best-Known Results 117

5.6 CHeSC Competition Analysis . 120

5.6.1 Competition Format and Rules 121

5.6.2 Results and Best Algorithms 122

5.6.3 Experiments and Results . 123

5.7 Conclusion . 125

6 A General Domain for the Vehicle Routing Problem 126

6.1 Introduction . 126

6.2 Motivation . 127

6.3 Definition of Fairness for Initial HyFlex Domains 128

6.3.1 Permutation Flow Shop . 128

6.3.2 Personnel Scheduling . 129

6.3.3 One-dimensional Bin Packing 129

6.3.4 Maximum Satisfiability (MAX-SAT) 129

6.4 General VRP Domain . 129

6.4.1 Additional Features . 130

6.4.2 Construction Heuristic . 134

6.4.3 Low-level Heuristics . 136

6.5 Hyper-heuristic Approach for Minimising Route Cost 145

6.5.1 Experimental Setup . 147

6.5.2 Results . 149

6.6 Conclusion . 151

7 Conclusion and Future Work 152

7.1 Conclusion . 152

7.1.1 Problem Domain Definition and HyFlex VRPTW Domain . 153

7.1.2 Information as a Driver of Hyper-heuristic Performance . . . 154

7.1.3 New Domain Tools . 155

7.1.4 A New VRP Domain with Real-world Features 156

7.1.5 Summary . 157

7.2 Future Work . 158

4

List of Figures

2.1 An example of a VRP solution. 14

3.1 A representation of the domain barrier present in HyFlex. 41

3.2 Class diagrams for the HyFlex framework. 44

3.3 A VRPTW instance file . 51

3.4 Example of two-opt. Customers 1 and 2 are swapped in this route. 55

3.5 Example of or-opt. In this case, customers 3 and 4 are located

so that they are serviced after customer 5, whilst preserving the

ordering between them. 56

3.6 Example of shift. Customer 1 from the green route is relocated to

become the first customer in the black route. 58

3.7 Example of interchange. Customer 1 from the green route is swapped

with customer 1 from the black route. Correct ordering of all other

customers is maintained. 59

4.1 A graph showing the total Borda Count scores across all domains. . 86

4.2 A plot showing the distribution of objective function values for in-

stance 2 of the Flow Shop domain. 86

4.3 A plot showing the distribution of objective function values for in-

stance 2 of the Bin Packing domain. 87

4.4 A plot showing the distribution of objective function values for in-

stance 2 of the Personnel Scheduling domain. 88

4.5 A plot showing the distribution of objective function values for in-

stance 2 of the Maximum Satisfiability domain. 89

4.6 A plot showing the distribution of objective function values for in-

stance 5 of the VRPTW domain. 94

4.7 A plot showing the distribution of objective function values for in-

stance 7 of the VRPTW domain. 95

4.8 A plot showing the distribution of objective function values for in-

stance 8 of the VRPTW domain. 96

4.9 A plot showing the distribution of objective function values for in-

stance 9 of the VRPTW domain. 97

5

5.1 A graph showing the total Borda Count scores for the 4 algorithms

across the 10 instances tested. 116

5.2 A box-plot showing the distribution of objective function values for

instance 5. 117

5.3 A box-plot showing the distribution of objective function values for

instance 6. 118

5.4 A box-plot showing the distribution of objective function values for

instance 7. 119

5.5 A box-plot showing the distribution of objective function values for

instance 8. 120

5.6 A box-plot showing the distribution of objective function values for

instance 9. 121

5.7 A chart showing the scores for the top competitors across each

domain and in general for the CHeSC 2011 competition. 122

5.8 A bar chart showing the Borda Count scores for the 5 algorithms

across the 5 instances. 124

6.1 Example of a fairness experiment using multiple depots and indi-

vidual vehicle capacities. 132

6.2 An example instance file . 134

6.3 Example of 2-opt. Two edges are removed, the edge between cus-

tomers 2 and 3, and the edge between customers 6 and 7. These

edges are replaced by edges between customers 2 and 6, and 3 and

7. The orientation between 3 and 6 is reversed. 140

6.4 First example of 3-opt. Three edges are removed, {2,3}, {5,6} and

{8,9}. These edges are replaced by edges {2,6}, {8,3} and {5,9}. . . 141

6.5 Second example of 3-opt. Three edges are removed, {2,3}, {5,6}
and {8,9}. These edges are replaced by edges {2,6}, {8,5} and

{3,9}. The orientation between 3 and 5 is reversed. 141

6

Chapter 1

Introduction

1.1 Introduction

For many years within optimisation research the development and fine-tuning of

a variety of methods and algorithms has led to increasingly stronger results over a

variety of hard computational search problems. Often, though, these algorithms

have been manually tuned specifically to work well on one problem or even on

one instance of a single problem. The consequences of this are a range of algo-

rithms that work extremely well on particular problem structures but lack the

ability to react well to changes without significant human input. These changes

are an integral aspect of many industrial applications, where shifts can change,

machinery can break down and traffic can delay deliveries, all at very short no-

tice. Within recent years, study has increased on a class of algorithms, known

as hyper-heuristics, that have the potential to adapt to such circumstances with

greater ease than has previously been demonstrated. A hyper-heuristic (simply

put, a heuristic which selects or creates other heuristics[31]) can overcome a lack

of knowledge of problem-specific information to deliver solutions that are of a suf-

ficient quality, without the need for lengthy run-times or excessive human input.

These ‘good enough - soon enough - cheap enough’ [22] solutions are often of far

more practical value than a solution that might be of marginally better quality,

but a quality that is achieved at a far higher cost.

In order to analyse their performance, hyper-heuristics need representations of

combinatorial optimisation problems to be tested on. The relationship between

these problem domains and the hyper-heuristics which operate on them is complex.

The domains must offer a hyper-heuristic the tools it needs to navigate the search

space and improve solution but at the same time may attempt to shield the hyper-

heuristic from problem-specific information. An essential question when designing

7

a problem domain is how much information is appropriate, and useful, to offer

to a hyper-heuristic. This question is the primary motivation behind the work in

this thesis. The issue of designing problem domains for hyper-heuristics will be

explored in detail. It will be explored which pieces of information can benefit a

hyper-heuristic, as well as how the hyper-heuristic must operate in order to unlock

these benefits. This work will also consider how problem domain design might be

tackled to represent some ’real-world’ features, and how a hyper-heuristic can

interact with these features.

1.2 Contributions of thesis

This thesis will contribute to knowledge and understanding in the following ways.

• A definition will be provided for a problem domain for hyper-heuristics.

Elements of domain design will be analysed in detail, including being shown

in practical form through the implementation of a domain for the Vehicle

Routing Problem with Time Windows.

• The thesis will examine the influence of higher numbers of parameters when

performing cross domain optimisation. Two algorithmic heuristic selection

methods will be proposed, which use a different number of parameters. Fol-

lowing testing on 4 different problem domains, it will be established whether

a higher number of parameters makes it more difficult for a hyper-heuristic

to adapt to different problems.

• Evidence will be given of how a hyper-heuristic can use information provided

by the problem domain in order to improve results. This will be achieved

through the use of adaptive heuristic selection mechanisms that use infor-

mation about past performance, as well as other factors, to drive selection.

• Additions to the HyFlex framework will be proposed and implemented for

the VRPTW domain which will provide a greater amount of data to hyper-

heuristics. For all additions, explanations will be given of how they can be

used by the hyper-heuristics. In particular, a new hyper-heuristic will be

proposed which makes use of the new ‘genotypic’ distance feature that will

be added. This hyper-heuristic approach will demonstrate the potential of

a distance measure to improve solution quality and demonstrate further the

need of a domain to provide the correct tools to a hyper-heuristic.

• A new ‘real-world’ vehicle routing domain will be presented for HyFlex which

will show some considerations of domain design for industrial applications,

8

as well as helping to answer the question of whether a solution can be made

more fair whilst maintaining an acceptable level of solution quality. This

domain will include several new constraints and features which will allow

investigation into the relationship between fairness and solution quality, as

well as providing the means to encourage a solution to be fair. Thorough

examples of how these features can be used by a hyper-heuristic to promote

fairness will be given. It shall also be shown that the set of heuristics used

for the VRPTW domain do not perform well on the basic routing problem

of the Travelling Salesman Problem (TSP). A new set of operators will be

proposed for the domain, along with a discussion of what caused different

operators to be successful for different variants of a problem.

1.3 Publications Arising from Work within The-

sis

The following publications have arisen during study for this thesis and are related

to the work herein. They are presented below in chronological order.

• 1) Edmund K. Burke, Michel Gendreau, Gabriela Ochoa, and James D.

Walker. Adaptive iterated local search for cross-domain optimisation. In

Proceedings of the 13th annual conference on Genetic and evolutionary com-

putation, pp. 1987-1994. ACM, 2011.

• 2) James D. Walker, Gabriela Ochoa, Michel Gendreau, and Edmund K.

Burke. Vehicle routing and adaptive iterated local search within the hyflex

hyper-heuristic framework. In Learning and Intelligent Optimization, pp.

265-276. Springer Berlin Heidelberg, 2012.

• 3) Gabriela Ochoa, Matthew Hyde, Tim Curtois, Jose A. Vazquez-Rodriguez,

James Walker, Michel Gendreau, Graham Kendall et al. Hyflex: A bench-

mark framework for cross-domain heuristic search. In Evolutionary Compu-

tation in Combinatorial Optimization, pp. 136-147. Springer Berlin Heidel-

berg, 2012.

• 4) Gabriela Ochoa, James Walker, Matthew Hyde, and Tim Curtois. Adap-

tive evolutionary algorithms and extensions to the hyflex hyper-heuristic

framework. In Parallel Problem Solving from Nature-PPSN XII, pp. 418-

427. Springer Berlin Heidelberg, 2012.

9

1.4 Thesis Structure

The structure of the thesis is as follows.

• Chapter 2 presents descriptions of the problems to be considered by this

thesis, specifically the Travelling Salesman Problem (TSP) and variants of

the Vehicle Routing Problem (VRP). In addition, the relevant work from

the TSP and VRP literature is reviewed and described. Following this, a

literature review is performed for the area of Hyper-heuristics.

• Chapter 3 describes HyFlex (the Hyper-heuristic Flexible framework), a

framework for cross-domain optimisation. Directions are given for the de-

sign of both hyper-heuristics and problem domains within this framework.

This chapter also introduces a new domain for HyFlex, that of the Vehicle

Routing Problem with Time Windows (VRPTW). This domain is described

in detail, with the choice of low-level heuristics being explained and 2 new

crossover heuristics being introduced.

• Chapter 4 proposes several selection hyper-heuristics for use within the

HyFlex framework. Building on previous work within HyFlex, an Iterative

Local Search algorithmic framework is used and improved. Two different

means of heuristic selection are considered, with the aim of investigating

what effect larger numbers of parameters can have on cross-domain optimi-

sation.

• Chapter 5 proposes several extensions to the HyFlex framework. For all

these extensions, the chapter describes how they can be used to implement

new classes of algorithms within HyFlex and improve solution quality. One

of these extensions in particular, that of solution distance, is included in a

memetic algorithm and tested on the VRPTW. Performance of the algorithm

with and without the distance measure is compared and conclusions are

drawn about whether it has potential for improving solutions.

• Chapter 6 introduces a new HyFlex domain with the aim of representing

constraints and features of routing problems that exist in industrial appli-

cations. Specifically, features are introduced which allow investigation into

fairness between routes. The chapter describes how these new features can

be used to promote fairness. To provide a reliable base for these experiments,

a new set of low-level heuristics are described for this domain.

• Chapter 7 summarises the main contributions from each chapter and dis-

cusses future directions the work could take.

10

Chapter 2

Related Work

2.1 Introduction

This chapter will consider the current state of the literature with regards to the

overall aims of this thesis. In particular, a formulation of the Vehicle Routing

Problem will be provided, along with a review of the vast amount of work that

has already been contributed to this problem. By providing this overview of the

literature, it can be assured that work in future chapters is making the best use

possible of state-of-the-art techniques and that there can be confidence in the

quality of the final domain. Furthermore, an exhaustive review of hyper-heuristic

research will be provided. Due to the nature of the work, this necessitates a broader

consideration of meta-heuristic study and the motivation for hyper-heuristics.

2.2 Vehicle Routing Problem

The widely studied combinatorial optimisation problem, the Vehicle Routing Prob-

lem (VRP), was first introduced by Dantzig and Ramser in [46]. The motivation

for this problem derives from the scale and needs of the transportation industry,

specifically the extent to which small improvements in efficiency could lead to

vast savings in expenditure. Indeed, costs attributed to distribution contribute

about half of the total logistics costs [118]. Nowhere is the potential for improve-

ment better stated than in [92] where the annual cost for excess travel in the

United States alone is estimated to be $45 billion. Many routing and scheduling

problems encountered in industry and in personal travel contain a multitude of

complex constraints and variables. To name just a few, traffic levels, road-works

and even weather conditions can impact on which route should be taken and the

overall costs incurred by a journey (be they in time or distance travelled). There

are further issues specific to industrial and corporate problems; examples of these

11

are driver shift limits, which may vary between countries, and specified arrival or

delivery times for services or goods. Typically, the most widely studied academic

VRPs are by comparison quite simplistic, with far fewer constraints. That there

still exists such difficulty in obtaining optimal solutions for even these simplified

versions of the problem(as will be shown below), goes some way to indicating the

difficulty faced in solving such problems. In the following sections, several variants

of the VRP will be described with a comprehensive survey of approaches to the

problems, with particular focus on the best-performing heuristic approaches. The

first of these sections will provide some background in terms of the basics of graph

theory and a short description of the Travelling Salesman Problem, the relevance

of which will be elucidated in later sections.

2.2.1 Graph Theory and the Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is one of the oldest and most widely

known routing problems. Although its origins are not entirely clear, some studies

believe the first formulation of the problem can be found in an 1832 manual for

travelling salesmen[112][2] and one of the first academic studies of the problem

can be seen in [45]. The basic problem that the TSP represents is that of a travel-

ling salesman who has a specified number of cities to visit and needs to know the

optimal order in which to visit these cities in order to minimise the distance to be

travelled (and hence reduce time and cost of the journey). The TSP is an NP-hard

problem[97]. As the TSP is a special case of the VRP, it shall be described briefly

here, with particular focus on certain algorithms that can be successfully applied

to the VRP. In order to describe this problem, it is first necessary to outline some

fundamental concepts of graph theory.

A graph, as a mathematical structure, models the connections between a num-

ber of elements. In the context of a graph, these elements are termed nodes or

vertices and the connection between a pair of these nodes is referred to as an

edge. A complete graph, G, requires both a set of vertices, V and a set of edges,

E. Hence, G = (V,E). In an undirected graph, an edge is shown as an unordered

pair of vertices. In addition, a graph is a weighted graph if each edge has an as-

sociated cost. A path is a certain sequence of a subset of the edges of the graph.

A path must satisfy the condition that each edge (with the exception of the first)

has as its first vertex the second vertex from the previous edge. For example, p1

= {(a,b),(b,c),(c,d)}.
Following on from this, a cycle is a special case of a path where a node can be

visited more than once. An example of a cycle might be c1 = {(a,b),(b,c),(c,a)}.

12

A Hamiltonian path is a path that visits each vertex exactly once and a Hamilto-

nian cycle is a Hamiltonian path that starts and ends at the same vertex.

If considering the Travelling Salesman Problem in graph theory terms, it can

be thought of as the problem of finding the minimum cost Hamiltonian cycle for

the cities given. The graph for a TSP problem is an undirected weighted graph.

Depending on whether an instance of the problem is symmetric or non-symmetric,

the edge weights can be calculated in different ways. Typically, if a symmetric

instance is being considered, edge weights are calculated as the euclidean distance

between two points. That is to say, for cities at the locations i=(x1,y1) and j =

(x2,y2), the following formula is used:

dist(i,j) =
√

(x1 − x2)2 + (y1 − y2)2

Where Euclidean distances are used, it can be said that the triangle inequal-

ity is always satisfied. The triangle inequality states that dist(i,k) ≤ dist(i,j) +

dist(j,k). That is to say, it is always cheaper (in distance terms) to travel directly

to a city, rather than going via one or more other cities.

2.2.2 The Vehicle Routing Problem

The Vehicle Routing Problem (VRP) and its many variants can be seen as gener-

alisations of the aforementioned Travelling Salesman Problem. In the VRP, there

are a number of vehicles(routes) with the task of servicing a set of customers. A

vehicle will begin at a special case of a customer, named the depot, after which

it will visit in turn a subset of customers before returning to the same depot to

complete the route. In some variants of the VRP, there may be multiple depots

to be used. An example of a VRP solution can be seen in figure 2.1.

It can therefore be seen that the TSP is the special case of the VRP where

there is only a single route and the depot location can be any city within the

route. The objective(s) of the VRP can vary, with multiple possibilities, although

the most commonly used objectives are (a)the total number of vehicles utilised

and (b)the total distance travelled across all routes. Many of the commonly used

measures of quality are described in [89] including measures such as balancing

vehicle workload and customer satisfaction. There are many other variants of the

VRP, including pick-up and delivery problems, VRP problems that include back-

hauls amongst others such as the multiple-depot problem previously mentioned.

13

Figure 2.1: An example of a VRP solution.

An extensive description of many of the VRP variants and their formulations is

given in [165], building on earlier work in [50]. Two variants in particular have

received vast amounts of attention from the academic community, these are the

Capacitated Vehicle Routing Problem (CVRP) and the Vehicle Routing Problem

with Time Windows(VRPTW). It is these two problems that will be the main

focus of this literature review.

The Capacitated Vehicle Routing Problem (CVRP) differs from the basic VRP

by means of an additional constraint. This constraint adds a maximum capacity

for each of the vehicles (for the CVRP, this capacity is the same for all vehicles).

Each customer in a CVRP instance has an associated demand and the sum of all

customer demands within a single vehicle/route can not exceed the specified ca-

pacity. This capacity constraints mirrors the VRP’s industrial applications, where

delivery vehicles would be of a certain size and would have a limited amount

of space to carry customer goods. The addition of this constraint turns the as-

signment of customers to vehicles into a Bin-packing problem. The bin-packing

problem has been extensively studied [100] and large instances of the problem can

be solved with minimal use of resources [102].

The Vehicle Routing Problem with Time Windows (VRPTW) adds further

complexity to the CVRP. For the purposes of ease of comprehension, it is impor-

tant to note, for VRPTW instances, the distance value to travel from one customer

to another is identical to the time value in the same action. For the VRPTW,

each customer has a start time and an end time representing the times in between

which the vehicle must begin servicing them. This is a hard constraint for the

TSPTW. However, this does not mean that the vehicle must arrive between these

times - it is permissible for the vehicle to arrive before the start time, but to re-

main inactive for a period (waiting time) before beginning servicing a customer.

14

In addition, each customer now has an associated service time which is the time

taken to service that customer. Note that servicing does not have to be complete

before the end of the time window, but it must have commenced.

As with the TSP, the VRP is an NP-hard problem [97] although it would

be fair to say that the VRP is a considerably harder problem to solve. As such,

heuristic approaches to solving the problem have been some of the most successful.

Traditionally, heuristic approaches are better able to handle larger instances and

are more flexible where complex constraints are concerned. The following sections

will examine in detail the most effective approaches, both for the CVRP and

VRPTW.

Constructive Heuristics

A constructive heuristic is a heuristic which creates or builds an initial solution.

This is usually built one step (i.e. one city/customer) at a time. While con-

structive heuristics can generate solutions of a reasonable standard, they are more

commonly used to generate solutions that can then be iteratively improved by

other classes of heuristic.

One of the first, and most well-known, constructive heuristics is the Clarke and

Wright Savings Heuristic. This heuristic was first proposed in 1964 [36] for the

basic VRP. The first stage of the savings heuristic is to assign a separate route

for each customer in the instance. Then, iteratively, routes are selected to be

combined; chosen by their potential for greatest savings in cost. The saving to be

gained from connecting two customers i and j which reside at the end of two differ-

ent routes is calculated by the following formula; sij = disti0+dist0j-distij where 0 is

the depot city and dist is the euclidean distance calculation mentioned previously.

Although it is the new edge resulting in the greatest saving that is chosen, this

new solution must still be feasible. In [171] and [62], an improvement is suggested

whereby a new formula is used to calculate savings - sij = disti0+dist0j-λdistij.

Here, the new parameter λ is used to affect the ‘shape’ of a route and reduce the

significance of distance from the depot. Further improvements are considered in

[114] where 6 implementation possibilities for the savings heuristic are considered.

Paessens [125] also proposes an improvement which results in a reduction in stor-

age requirements and computation time. Parallel methods of implementing the

heuristic have also been proposed, such as the one in [73]. Despite the popularity

of the method, results for the savings heuristic are generally poor, as can be seen

in the survey by Cordeau et al[38]. The advantage to the method is the speed at

15

which it generates solutions.

The 1987 paper from Solomon [151] suggest an extension to the savings method

that can be used for the VRPTW. The proposed approach uses as its base the par-

allel implementation of Golden et al [73]. To adapt the method for the VRPTW,

Solomon proposes a parameter, W, to be set as the maximum acceptable waiting

time for edges that are being considered. From testing on a dataset introduced by

the same paper, it is shown that the savings heuristic is very poor in comparison

to other constructive heuristics for the VRPTW.

The Solomon paper[151] also described a number of other solution construc-

tion heuristics which operate by iteratively inserting nodes into a solution. The

first of these is a Time-oriented Nearest Neighbour heuristic. A nearest neighbour

heuristic operates by, at each stage, selecting a node (city) for insertion that is

closest (as determined by some distance measure) to the location it is to be in-

serted. For this VRPTW method, closeness is measured in relation to the previous

city to be inserted with the cost calculated as a measure of both the proximity in

terms of distance and in terms of length of time between a potential servicing - as

dictated by each city’s time window constraint. Solomon also proposes 3 insertion

heuristics, similar in concept to a method proposed in [59], which operate in a

similar way to one-another. The basic idea is that a route will be initialised with

the customer evaluated as furthest from the depot. Then, iteratively, all possible

insertion positions for each remaining customer are considered. If there are no

feasible insertions, a new route is initialised and the process repeats. The differ-

ence between the 3 heuristics is the means by which they judge the worth of an

insertion position. The most successful of the 3 is the I1 heuristic which uses a

weighted sum of the distance and time it will take to visit a city when selecting

insertions.

There have been a number of improvements proposed to Solomon’s I1 [151]

heuristic. In [56], Dullaert and Bräysy propose a modification to the I1 heuristic

that calculates a higher time value for potential insertions. Using this modifi-

cation, significant improvements are obtained over Solomon’s I1, although, these

improvements are mostly seen on instances with a lower customer-to-route ratio. A

parallel implementation of Solomon’s algorithm is proposed in [129]. Comparisons

to the I1 heuristic show that the parallel approach yields minor improvements in

how many routes are used for instances where customers are ‘randomly’ located.

However, the inverse is true for ‘clustered’ instances. Ioannou et al. [87] propose

new criteria for the selection and insertion of cities and apply their method to a

16

number of academic problems, as well as an industrial application.

Another approach taken to constructing solutions for the VRP has been to split

the problem into two elements, clustering and routing. These form a class of algo-

rithms known as Cluster first, route second algorithms and also the less common

approach of Route first, cluster second algorithms. One of the most well-known

approaches of this type is the Sweep algorithm. From a concept first discussed in

[170], Gillet and Miller [68] propose a method named the sweep algorithm. The

sweep algorithm uses polar-coordinate angles to assign customers to routes and

produces results that are superior to the savings method, but at a higher compu-

tational cost. It should be noted that, in [68], an iterative improvement method

is applied to the solution following creation of the initial solution. The analogy of

petals of a flower is often used when describing methods of the cluster-first, route-

second class. In this analogy, each route is a petal on the plant. The term was

first used in a VRP context by Ryan et al. in [142] which introduces an algorithm

operating in a similar way to the sweep method, but differs by also considering

non-petal routes. Another method described in terms of the petal analogy is the

algorithm proposed by Renaud et al. [137] which combines elements of the sweep

method and column generation methods to acheive strong results in reasonable

computation times.

The concept of the sweep algorithm is one extended by Solomon [151] for the

variant of the VRP with time windows. The same basic method is used initially

as in the sweep method [68] to partition customers into routes. However, time

window constraints mean that some customers can not feasibly be inserted into

the route. The algorithm repeats the stages of sweep and route until all customers

have been inserted. Experiments performed in the Solomon paper [151] show that

this modified sweep algorithm outperforms the savings method but returns worse

results than the I1 insertion algorithm.

An alternative to the cluster-first, route-second class of algorithms is the Route-

first, Cluster-second class. One of the first examples of this algorithm for the

VRP is the work by Beasley [6]. In his article, Beasley first forms a ‘giant tour’

of all cities in a single route. This route can then be treated as a travelling

salesman problem and improved with the relevant methods. Following this, the

route can then be split into the appropriate number of individual routes. Beasley

uses Djikstra’s algorithm for partitioning the giant route and states that it is

computationally very quick to solve. Results given in the paper show a slight

improvement on the savings method. However, given the presence of an iterative

17

improvement method in the Beasley algorithm, the comparison must be made with

a pinch of salt. In [12] and [11], results for methods of this class are discussed and

it is concluded that performance for these methods is similar to performance for

the bin-packing heuristic Next-fit. These methods are not as effective for instances

of the VRPTW as the time-window constraint means that the initial giant route

can not be treated as a travelling salesman problem.

Solution Improvement Heuristics

Often heuristic and meta-heuristic techniques for solving vehicle routing problems

will employ two main stages. Firstly, one of the methods described in the previ-

ous section will be used to create an initial solution that can be used as a seed

solution. Some methods will create multiple initial solutions, genetic algorithms

are one example. Following this, some form of improvement heuristic/s may then

be applied, often iteratively, until some form of stopping criteria has been met.

These improvement heuristics will typically involve making a simple modification

or move to the solution in order to form a new solution. This section will consider

these solution improvement methods for various forms of vehicle routing problems.

One class of these heuristics concerns the improvement of distance (or time)

within individual routes. Where time window constraints are not present, a single

route can be considered as a travelling salesman problem - a problem for which

many efficient improvement methods exist. The most well-known (and indeed

most successful) of these methods is the set of k-opt or k-exchange algorithms. A

k-exchange move is a move where k edges in a route are replaced with k new edges.

A route is k-optimal if there is no possible k-exchange move to be made that can

improve the route. This approach was first proposed by Lin in [98] where par-

ticular focus is put on 2-opt and 3-opt algorithms, although the first description

of a 2-opt algorithm can be found in [42]. Good results are obtained by Lin on

small instances of the TSP. Usage of larger values of k such as 4 and 5 is present

in work by Christofides and Eilon [35] where strong results are obtained on larger

instances of the TSP (up to 500 cities).

A problem with the above methods can often be how to choose what value

of k should be used in order to find the correct compromise between attaining

acceptable solution quality, in a reasonable amount of computational time. Lin

provides a solution to this problem in [99] where a generalised version of the above

algorithms is proposed which adaptively selects values of k to be used at different

stages of the process. This method manages to obtain optimal results for travel-

18

ling salesman problems up to a size of 110 cities at reasonable time cost. Several

improvements to the implementation of Lin’s method are proposed by Helsgaun

in [76] which allow savings in time and great savings in solution cost. The new

implementation obtains optimal solutions on TSPs up to the size of 13509 cities.

Another operator of this type is the Or-opt method proposed by Or in [120]. The

Or-opt algorithm relocates sequences of consecutive cities and is applicable to both

the CVRP and the VRPTW.

All of the above techniques are concerned with improving individual routes,

whether this improvement is in terms of distance travelled or time taken. Many

of these techniques have been derived from methods for the travelling salesman

problem. Another way that solutions can be improved for vehicle routing problems

is by making modifications that involve several routes. One successful heuristic to

fall into this category is the 2-opt* method of Potvin and Rousseau [130]. Despite

sharing a similar name to the previously described 2-opt heuristic, there are few

similarities between the methods. The 2-opt* approach consists of swapping the

end sections of two routes. As well as the potential to reduce distance/time, this

method can also reduce the number of routes in the special case where the end

section of one of the routes is merely the depot and the end section of the other

route is the entire route after leaving the depot. The Potvin and Rousseau paper

[130] also presents a hybrid approach combining 2-opt* and or-Opt which produces

competitive results for the VRPTW.

In [143], Savelsbergh proposes a number of heuristics which move customers

between routes. These are:

• Relocate This heuristic moves a single customer from one route to another.

• Exchange For this method, a single customer is selected from each of two

routes. These customers are then swapped into each other’s routes. However,

they aren’t necessarily inserted into the same position within the route as

the previous customer.

• Cross The cross heuristic attempts to modify edges in a solution in such

a way as to remove instances of crossed edges within a solution. Although

time window constraints can render the triangle inequality meaningless for

instances of the VRPTW (that is to say, the constraints can often mean it

is impossible to find a feasible solution without any crossed edges), it is still

the case that crossing edges should be avoided where possible.

Building from this work, Van Breedam [166] proposes a classification system

19

for move operators for vehicle routing problems. In this classification, the 3 above

moves are included (relocate, exchange and cross) as well as a fourth category

called mix which allows for a combination between exchange and relocate. In

[132], Prosser and Shaw utilise the 3 heuristics from the Savelsbergh [143] paper

as well as single-route methods such as 2-opt in their approach. Despite using a

simplistic heuristic framework, testing on the Solomon [151] benchmark VRPTW

instances produced strong results, including 4 new best-knowns. Analysis of the

effectiveness of individual heuristics by the Prosser and Shaw paper [132] indicated

that the relocate heuristic was the strongest.

An extension to the relocate operator is proposed by Gendreau et al. in [65].

The heuristic, named GENI, also relocates a customer from one route to another.

The method differs in the way that the customer is inserted into the new route.

For the relocate operator, the customer is inserted in between consecutive cus-

tomers on that route. GENI removes the requirement for these customers to be

consecutive by performing local re-optimisation. In [154], Taillard et al. propose

a new solution improvement heuristic called CROSS (not to be confused with the

Cross method of [143]). This heuristic operates by switching sections of separate

routes, whilst maintaining the sequence of cities. Due to the nature of time win-

dow constraints, the action of maintaining the sequence of cities is one that is

particularly beneficial for instance of the VRPTW.

In [70], Glover proposes the application of an Ejection Chains method for

travelling salesman problems. Ejection chains operate by performing a sequence

of compound moves, where one move can cause another move until some stop-

ping condition is met. This method can be applied to the VRP by repeatedly

removing a customer from one route and attempting insertion into another route.

If insertion is not possible, due possibly to capacity or time window constraints,

another customer is removed from the target route in order to create space for the

customer to be inserted. This process is repeated until a customer can be inserted

without the need to eject another customer. Thompson and Psaraftis extend this

concept in [164] with their Cyclic Transfer algorithm. This method is similar to

the ejection chain method, but attempts to shift several customers from each route

at one time. Using this approach, strong results are obtained on benchmark VRP

instances.

A different approach to improving VRP solutions is proposed by Schrimpf et

al. in [144], called the Ruin-recreate method. The basic idea behind ruin-recreate

has two stages:

20

• Ruin Several customers are removed from the solution. Using a method

named Radial ruin, customers are chosen to be removed according to their

proximity in either distance or arrival time to an arbitrarily chosen base

customer.

• Recreate Following removal of customers in the ruin stage of the algorithm,

these customers are then to be re-inserted into the solution. Iteratively, a

customer is chosen at random from the set of unrouted customers. The ‘best

insertion’ position for this customer is then calculated and the customer is

inserted into this position. A position is determined to be a ‘best insertion’

position through its objective function value in comparison to other possible

insertions. The insertion is only performed if the resulting solution is feasible.

The application in [144] of the ruin-recreate method to the VRPTW produces

results which are stronger than previous heuristic approaches.

Meta-heuristic Approaches

The term Meta-heuristic is used to describe a wide range of search methodologies.

They will often describe the entire search process, including which construction

heuristic is used, the choice and use of improvement heuristics and solution accep-

tance criteria, which determines whether a solution is ‘kept’ following application

of a heuristic. For many combinatorial optimisation problems, meta-heuristics can

be very powerful and provide a flexibility absent from many exact methods. Thus,

they can be particularly effective for variants of the VRP with time windows where

the search space is more constrained. Many meta-heuristics can also be easily un-

derstood on a conceptual level. Indeed many are analogous to methods found in

nature or other scientific disciplines. It is these methods which shall be considered

first.

Ant Algorithms The concept of an Ant Algorithm, or Ant Colony Optim-

sation(ACO) method as it’s also known, was first proposed by Dorigo et al. in

[53]. The later paper by Dorigo et al. in [52] presents a detailed study of the ACO

method and how it can be applied to many well-known combinatorial optimisation

problems. The algorithm is inspired by the real-life behaviours of colonies of ants

with particular focus on the way in which ant colonies determine the shortest path

to a location, e.g. a source of food. This is achieved through the use of pheromones

that are left on trails travelled by ants. Higher levels of pheromones will encourage

more ants to take those trails. Shorter trails accrue greater levels of pheromones

as they take less time to traverse and hence the amount of time for an ant to com-

21

plete a journey both ways is shorter and pheromones are also built up more quickly.

The first instance of an ant algorithm being applied to the VRP can be seen in

[17] where Bullnheimer et al. apply the method to the capacitated vehicle routing

problem. Their method generates solutions by sequentially selecting cities using

their relative pheromone strength, before improving these solutions through the

use of the 2-opt algorithm. Reasonable results are obtained when compared to

other meta-heuristic methods. This method is improved by Bullnheimer et al.

in [18] where reduced candidate lists are used for the selection of cities. Slight

improvements are found in both run time and solution quality.

Gambardella et al. [60] use an ACO method with multiple colonies to solve the

vehicle routing problem with time windows. Competitive results are achieved on

benchmark VRPTW instances with new best-known solutions on some instances.

The work of Bell and McMullen in [7] also uses multiple ant colonies to solve

vehicle routing problems. Further, it considers different sized candidate lists, as

with the work in [18]. Using this approach, strong results are obtained on smaller

instances of VRPs. However, performance is poorer for larger problems. In [134],

Reimann et al. extend their previous work of [135] with a method called D-Ants.

A modification of the aforementioned Savings algorithm is used to generate solu-

tions, before a local search stage comprising 2-opt moves and customer exchanges

is performed. The problem is also simplified by being decomposed into a number

of smaller sub-problems which can be solved more easily. This approach produces

strong results on a number of VRPs with varying constraints, including quite large

instances. In [51], Doerner et al. propose a parallel version of the D-Ant algorithm

for the VRP. Through this parallelisation, an improvement in speed is obtained.

An approach by Hu et al. in [83] proposes a method for adjusting pheromone

levels. When used in combination with solution improvement methods, reason-

able results are found in short time periods for the VRPTW. A hybrid method

is presented in [172] where ant colony optimisation is used in conjunction with a

dynamic sweep method to generate solutions for instances of the VRPTW in the

Solomon dataset. Another example of an ACO method being used to solve the

VRPTW can be found in [159].

Genetic Algorithms A Genetic Algorithm (GA) is a population-based ap-

proach that is designed to partially reflect that natural process of evolution. Key

stages in these algorithms are often combination of solutions and mutation of so-

lutions. The idea of reproducing this natural method in an artificial system was

22

first discussed in [78]. The majority of GAs for vehicle routing problems have been

designed for the VRPTW subset of VRPs. However, there are some examples for

the CVRP. One such example can be found in the work of Baker and Ayechew

[4] where two GA variants are proposed. The first is a basic GA, newly tested in

the context of the CVRP, and the second is a hybrid of this first GA with other

neighbourhood search methods. Results obtained using this second method are

comparable to those obtained with other leading meta-heuristic algorithms.

Berger and Barkaoui also present a hybrid GA for the CVRP in [10]. This ap-

proach maintains two populations which are evolved in parallel. Further, a number

of local search methods from algorithms for the VRPTW are utilised. Testing on

benchmark problems shows strong results for the CVRP using this method. The

work of Prins in [131] also uses a hybrid approach which utilises local search opti-

misation methods to augment the basic GA. By using this method, the algorithm

forgoes the need for a repair mechanism that is present in many other GAs for the

VRP. This new approach proves to be very effective on CVRPs, particularly on

larger instances of the problem. Kubiak [94] focuses on recombination operators

for VRPs. These operators attempt to preserve distance within solutions. Strong

results are obtained when these operators are used in the context of a Genetic

Local Search.

In [1], Alba and Dorronsoro propose the application of a variant of the basic

GA to the capacitated vehicle routing problem. The variant, named the Cellular

Genetic Algorithm includes a population where population members can only in-

teract with a subset of the rest of the population, their ‘neighbours’. By dividing

the population in such a way, a balance between intensification and diversification

is achieved whereby each neighbourhood can be optimised to a locally optimal

level. When tested on a large set of instances including most benchmark prob-

lems within the CVRP literature, the best-known solutions are either matched or

improved in 80% of cases. In the work of Mester et al. [107] the focus is on the

mutation stage of the algorithm. Here, a multi-parametric mutation method is

used to achieve best-known or better results in 42% of tested instances. Another

approach can be found by Mester and Bräysy in [106]. Again, a hybrid approach

proves successful, where a Guided Local Search is used with a genetic algorithm

in a two stage approach. Results from this method match or better best-known

solutions in 70 of 76 tested instances.

The first example of a GA for the vehicle routing problem with time windows

(VRPTW) can be seen in the work of Thangiah et al. in [161] with an extended

23

description in [160]. This genetic algorithm operates in the context of a cluster-

first, route-second method where the GA is used to generate desirable clusters.

Insertion heuristics are used to actually generate the routes before solution im-

provement methods are applied. The application of two evolutionary approaches,

those of Rechenberg [133] and Schwefel [147], is proposed for the VRPTW by

Homberger and Gehring in [80]. Three elements are used in [80] to define the two

algorithms; these are the initialisation, the selection of values for two parameters,

(µ,λ), and the termination criteria. For both algorithms, the construction heuris-

tic is a stochastic method based upon the savings heuristic of Clarke and Wright

[36]. The termination criteria is also the same for both and is in the form of a

time limit for the search. The main difference in algorithms is in the choice of

parameter values. The parameter µ is initially the size of the starting population.

At each generation, a number of offspring, λ are generated, under the condition

that λ > µ. Values of (8,50) and (45,450) for the two algorithms respectively show

the difference in population sizes for the two methods.

Gehring and Homberger present another evolutionary method for the VRPTW

in [63]. It is a two-stage approach, where initially an evolutionary method is used

to reduce the number of routes in a solution. The second stage utilises a tabu search

method (see later) to improve the total distance travelled. Both a sequential and

parallel version of this method are considered. Strong results are achieved on the

Solomon [151] set of benchmark instances. Gehring and Homberger extend their

work in [64] by developing the parallelisation of the previously described method.

The parallel method operates by concurrently applying differently parametised

meta-heuristics to the search space and then exchanging solutions to combine in-

formation. Results imply that this could be a useful method for large scale VRPs.

A parallel approach is also considered by Le Bouthillier and Crainic in [15]. In

that approach, a solution warehouse strategy is used where multiple threads can

exchange information about the best solutions.

Tan et al. [158] achieve strong results on the Solomon benchmark [151] with

the use of a Messy Genetic Algorithm. The concept of a messy GA was first pro-

posed in [71] by Goldberg et al. and is a form of a GA which uses strings of a

variable length as opposed to the standard fixed length. The algorithm in [158]

uses a random technique to generate an initial population and a 1-point crossover.

In what is another hybrid method, Ho et al. [77] combine a GA with a Tabu

Search. By combining desirable qualities of both methods, the hybrid approach

outperforms the individual techniques. The [77] method also utilises several local

24

search methods (2-opt, 2-opt*, exchange, relocate) for solution improvement. A

further hybrid method is presented by Jung and Moon in [90], where solution

improvement methods are used to augment a genetic algorithm. Specifically, 3

solution improvement techniques (or-opt, cross, relocate) are used. The insertion

heuristic, I1, of Solomon [151] is also used to create initial solutions.

Tabu Search The concept of a Tabu Search algorithm was first introduced by

Glover in [69]. A tabu search is a meta-heuristic which repeatedly makes neigh-

bourhood moves to attempt to improve a solution. Its novel feature is the inclusion

of a tabu list which maintains a list of either moves or solutions states which are

temporarily forbidden within the search. One example of how this can be used is

when a neighbourhood move improves a solution. The previous solution can be

added to the tabu list to ensure that the search doesn’t cycle. A tabu list can also

be maintained of operators that are performing poorly at that point in the search.

For elements in a tabu list, whether solution state or operator, they will remain

in the list for a certain amount of time, termed the tabu tenure.

The first application of a tabu search to the capacitated vehicle routing prob-

lem can be seen in the work of Osman [121], where 2 approaches are applied to the

CVRP. The first approach is a tabu search implemented with a new data structure

which the author reports reduces computation time by up to 50%. The second ap-

proach combines this tabu search with a Simulated Annealing method for solution

acceptance. Simulated Annealing is a method which determines whether or not

a solution is accepted following a neighbourhood move. All improving solutions

are accepted and some deteriorating solutions are accepted with a low probabil-

ity. Using these approaches, Osman [121] achieved (at the time) new best-known

results on instances from the literature.

Taillard [153] proposes an approach for the CVRP that attempts to diversify

the nature of moves applied. Taillard observes that the traditional approach of

forbidding reverse moves only can lead to many moves being performed close to

the depot. To remedy this, in [153], the tabu list also includes moves which have

been frequently made, applying an approach that had previously been used in a

scheduling problem in [155]. This tabu search approach is used in the context of

an algorithm which decomposes the VRP into smaller sub-problems and performs

strongly on a new set of proposed instances.

Also for the CVRP, the tabu search method of Gendreau et al. [66] which

penalises vertices which are frequently moved via a penalty term in the objective

25

function. Another point of interest regarding the tabu search of [66] is that moves

are permitted to enter the infeasible search space with respect to capacity and

distance constraints. Further, the algorithm differs in the implementation of a

tabu search in that a tabu list is not explicitly maintained. Instead, each move is

assigned a tag indicating its current tabu tenure. Testing on benchmark instances

shows a strong performance using this method and several new best-known solu-

tions.

The first application of a tabu search to the vehicle routing problem with time

windows was by Garcia et al. in [61]. A parallel algorithm is used, where multiple

moves are applied at the same time to the incumbent solution. The moves consid-

ered are two-opt* and or-opt moves and the tabu search element of the algorithm

is that following a move, the inverse of that move is added to the tabu list. Us-

ing this approach on Solomon’s benchmark instances [151], improved results are

achieved over Solomon’s I1 heuristic [151].

An approach by Rochat and Taillard [139] uses a post-optimisation technique

to improve an initial tabu search algorithm. Using this approach, new best-known

results are gained for VRPTW. In Taillard et al. [154], a tabu search method is

applied to the vehicle routing problem with soft time windows. In this problem,

penalty values are applied to the objective function for cases where the time win-

dows are violated. The neighbourhood move used in [154] is the CROSS heuristic

proposed in the same paper. The tabu search method operates on decomposed

problems which include subsets of routes. Potential moves are added to the tabu

list if they do not yield an improvement in the objective function value. Badeau et

al. [3] provide an extension to the work of [154] by using the same method, but in

a parallel algorithmic framework. This approach leads to results of a comparable

quality to [154] but reduces the amount of computation time needed.

A Reactive Tabu Search is proposed by Chiang and Russel in [34]. The tabu

search is reactive as it adapts the size of the tabu list so as to ensure that cycles are

avoided whilst not constraining the search to a great degree. The method is tested

on real-world routing problems as well as standard benchmark VRPTW instances.

Another parallel tabu search method is proposed by Schulze and Fahle in [145].

As with [66], the method of Schulze and Fahle [145] also allows solutions to tem-

porarily enter the infeasible search space. A customer shift operator is used as

a neighbourhood move operator. This approach is tested on the Solomon [151]

benchmark and returns some of the strongest results using a tabu search method.

26

Tan et al. [157] introduce a tabu search algorithm for the VRPTW. The

method includes a tabu list which maintains two types of elements. The first is

recent neighbourhood moves that have been made. The second is recent solution

states. The tabu search yield strong results when compared to a genetic algorithm

proposed in the same paper. In [39], Cordeau et al. also present a tabu search

for the VRPTW. In addition, the method is tested on the periodic VRP and the

multi-depot VRP. A sweep algorithm [68] is used to initialise solutions. This tabu

search also allows solutions to be in the infeasible search space. The relocate and

GENI heuristics are used as solution improvement methods. Results from using

this approach generate new best known solutions for the tabu search algorithm on

the VRPTW.

2.3 Hyper-Heuristics

Heuristic and meta-heuristic methods have been providing high quality solutions

for a variety of problems for many years. Their successes have been found in di-

verse and well-studied academic problems as well as in complex and constrained

real-world problems. However, whilst often effective for solving the problems they

are designed for, meta-heuristic approaches are often not able to adapt to changes

in a problem structure or even to different problem instances with the same struc-

ture. Hard-coded parameter values and specific algorithmic structures can mean

that methods are tuned, intentionally or otherwise, to work well on specific prob-

lem structures and instances. In industrial applications, an ability to adapt to a

changing problem space with little expense can be very important. The examples

are numerous. Consider a delivery truck which has to change its route due to

a closed road. Or a breakdown in machinery requiring jobs to be re-assigned to

other machines. In these situations, a lengthy tuning process to generate a new

solution would be highly undesirable.

This is an issue which hyper-heuristics attempt to address. Hyper-heuristics

operate on the space of heuristics, rather than the space of solutions. Practically,

this means that a hyper-heuristic doesn’t have specific knowledge of the problem

being operated on; instead it manipulates a set of heuristics in such a way as to

improve a solution. In this way, hyper-heuristics are a more general approach to

solving hard combinatorial optimisation problems. Before reviewing the work in

this area, it is important to consider a definition of hyper-heuristics.

27

The term ‘hyper-heuristic’ was first used in [49] to describe the combination of

a number of AI methods. However, its first use in the context described above can

be seen in the work of Cowling et al. [41] where it’s used to describe an approach to

solve a personnel scheduling problem. In that paper, a hyper-heuristic is described

as ‘a heuristic to choose heuristics’. To find the first full definition/classification

of hyper-heuristics it is necessary to skip forward to the paper of Burke et al. in

[28]. The classification in [28] contains 2 parts. The first describes how the hyper-

heuristic manipulates the heuristic search space and classifies hyper-heuristics as

one of the following. One option is a Heuristic Selection hyper-heuristic which

selects heuristics to be used in a search. The other option, Heuristic Gener-

ation, represents hyper-heuristics which generate new heuristics by combining

elements of previous heuristics. The classification for the options just described is

extended further in [28] by stating whether the hyper-heuristic operates on con-

struction heuristics or perturbation heuristics.

The second part of the above classification describes how a hyper-heuristic

uses feedback from the search. A hyper-heuristic can be classified into one of the

3 categories below.

• Online Learning This is a hyper-heuristic which uses information gained

during the search to adapt the selection/generation of heuristics. For exam-

ple, by observing that a certain heuristic repeatedly improves the solution,

a hyper-heuristic may choose to increase the probability of that heuristic

being selected.

• Offline Learning This type of hyper-heuristic uses results from a set of

instances to determine a set of rules for heuristic selection or generation.

This is performed before the start of a search.

• No feedback This is a hyper-heuristic which doesn’t use any form of feed-

back to select or generate heuristics. An example from this category of

hyper-heuristic would be a method which selected heuristics at random or

applied heuristics in a predefined sequence that wasn’t based on any feed-

back. Although no feedback is used, it can still be considered a hyper-

heuristic as it fits the previously given definition of a heuristic which selects

other heuristics - even if this selection is performed randomly.

The hyper-heuristics to be considered within this literature review are in the

category of Heuristic Selection hyper-heuristics. All 3 options for feedback (or

lack thereof) to hyper-heuristics will be considered.

28

As was mentioned above, the first work to propose a selection hyper-heuristic

using the term ‘hyper-heuristic’ was the work of Cowling et al. [41]. The work

considers 3 types of hyper-heuristic methods for solving a real-world personnel

scheduling problem. These 3 types of hyper-heuristic in [41] are:

• Random Heuristic Selection There are 3 hyper-heuristics within this

set which all select low-level heuristics in a random manner. The 3 hyper-

heuristics are:

– SIMPLERANDOM This hyper-heuristic repeatedly applies a random

low-level heuristic.

– RANDOMDESCENT This hyper-heuristic selects a random low-level

heuristic and then repeatedly applies this heuristic until no improve-

ment in solution quality is found.

– RANDOMPERMDESCENT This hyper-heuristic first defines a ran-

dom ordering of the set of low-level heuristics. Then, each heuristic is

repeatedly applied in turn until it does not yield an improvement in

solution quality, at which point the next heuristic is applied.

• Greedy Heuristic Selection This approach is similar to that name Best

Improvement. At each iteration, all low-level heuristics are independently

applied to a solution, with the heuristic yielding the best result being selected

and applied.

• Choice Function Heuristic Selection The choice function hyper-heuristic

selects a heuristic at each iteration by using online learning to assess the ben-

efits of each heuristic. Three measures of heuristic performance (f1, f2 and

f3) are used in the choice function. These are:

– f1 The first measure, f1, considers the improvements in objective func-

tion achieved from applications of the heuristic under consideration.

– f2 The second measure, f2, considers how the heuristic has previously

performed when applied immediately following the previous heuristic

to be applied. In other words, this measure considers the performance

of pairs of heuristics.

– f3 The third measure, f3, considers the time taken to apply the heuristic

under consideration.

Testing of these hyper-heuristics on the personnel scheduling problem resulted

in all hyper-heuristic approaches beating the previous greedy method that had

29

been used to solve the problem. Of the hyper-heuristics, the choice function pro-

vided the strongest results, implying that there is value in using information gained

from previous heuristic applications to select future heuristic applications.

In the short time that hyper-heuristics have been studied, there have al-

ready been many hyper-heuristic approaches to different combinatorial optimi-

sation problems. Further, there have been approaches that apply the same hyper-

heuristic to several problem domains without manual tuning in between runs.

Recent hyper-heuristic work will now be considered, according to problem domain.

2.3.1 Personnel Scheduling

A description has been given above of the first hyper-heuristic approach [41] for

a personnel scheduling problem. Han, Kendall and Cowling [75] propose a hyper-

heuristic in a genetic algorithm framework. The proposed method uses variable

length chromosomes which represent sets of low-level heuristics. Performance mea-

sures such as heuristic performance and the compatibility of a heuristic with other

low-level heuristics are used to determine whether or not heuristics are removed

from chromosomes. The approach is tested on a trainer scheduling problem and

provides stronger results than a previous method which had fixed chromosome

lengths. An extension to this method is proposed by Han and Kendall in [74].

Here, the addition or removal of heuristics from the adaptive length chromosomes

is better guided as the algorithm identifies when individual chromosomes are of

a length that can be considered too short or too long. This addition provides an

improvement in solution quality when tested against the previous version.

In [40], many hyper-heuristic approaches are considered and applied to a real-

world personnel scheduling problem. In this work, a number of variations of a

hyper-heuristic called Peckish are proposed. Through this approach, a balance is

sought between intensification and diversification and is achieved by selecting low-

level heuristics in both an intelligent manner (using data about previous success)

and a random way. Another set of hyper-heuristics based on the tabu search meta-

heuristic are also described in the same paper. For these methods, a tabu list is

maintained. If a heuristic improves a solution, the resulting new solution is always

accepted. If the solution does not improve, it is only accepted if the heuristic is not

in the tabu list. Finally, a group of simple random and greedy hyper-heuristics are

also considered. Experiments on the aforementioned trainer-scheduling problem

show strongest results for the tabu search methods, particularly when they are

30

starting from a worse initial solution.

Another tabu search method is proposed for rostering problems by Burke et

al. in [29]. For this tabu search, each heuristic has a rank associated with it.

When a heuristic is applied and it yields an improvement in objective function

value, its rank is increased. Conversely, it is decreased if an application worsens

the solution. There is also a tabu list maintained. If an application of a heuristic

worsens a solution, the tabu list is emptied and heuristic is inserted into the list.

The tabu search hyper-heuristic is compared to a genetic algorithm and proves

more able to produce feasible solutions, although at a worse cost.

In [109], Misir et al. propose a hyper-heuristic for the home care scheduling

problem. The proposed method keeps a dynamic heuristic set, by means of a

tabu search mechanism. Low-level heuristics are each given a quality index, QI

which measures their performance over the search. Performance is measured by

3 factors: i) the number of new solutions found by the heuristic, ii) the fitness

improvement achieved relative to execution time, iii) the fitness deterioration rel-

ative to execution time. 3 solution acceptance methods are also used in variants

of the hyper-heuristic. Testing shows that the hyper-heuristic is able to accurately

detect the performance differences of the heuristics.

2.3.2 Timetabling Problems

In [21], Burke et al. present an ant algorithm hyper-heuristic for the project pre-

sentation scheduling problem. In this method, ants visit sequences of heuristics,

laying appropriate amounts of pheromones depending on whether the solution has

been improved or not. The ants operate on 8 low-level heuristics for the problem

and testing uses between 3 and 5 ants. This approach is compared to the Simple

Random and Choice Function hyper-heuristics and produces generally superior

results.

An ant algorithm hyper-heuristic is also presented for the travelling tourna-

ment problem in [33]. In [33], Chen et al. use the same basic concept of ants

‘visiting’ heuristic and laying pheromone trails based on performance as is pro-

posed in [21]. However, due to the differing nature of the problem, in this case the

ants may cycle back to previously visited points. In addition, a measure called

visibility is used to inform ants of how far they are from certain locations. This

visibility is used in this method to represent the execution times of heuristics. The

31

method performs as well as the best-known methods on smaller instances; however

the results are further away for larger instances.

Comprehensive experiments are carried out in [13] by Bilgin et al. on exam

timetabling problems. Multiple hyper-heuristic combinations are tested with 7

heuristic selection mechanisms and 5 solution acceptance methods. The results

over a range of benchmark objective function indicate that while some hyper-

heuristics will perform better on certain functions, none of the tested approaches

can beat all the other methods on all functions. Never-the-less, when considering

the results as a whole, the most successful approach seemed to be the choice func-

tion with a monte carlo solution acceptance mechanism.

In [122], Özcan et al. propose a Late Acceptance hyper-heuristic for an ex-

amination timetabling problem. Late acceptance [23] is a solution acceptance

methodology. Rather than comparing the objective function value for a new solu-

tion to that of the current solution, instead the new value is compared to a value

from L moves previously. Testing using this method showed that it performed

well when used with a simple random hyper-heuristic. However, performance was

poorer when late acceptance was used with hyper-heuristics which had an element

of re-inforcement learning within their selection mechanism.

Another method of solution acceptance is used in the work of Özcan et al.

in [124] where the Great Deluge solution acceptance mechanism is used with a

re-inforcement learning hyper-heuristic on an examination timetabling problem.

The great deluge method [55] simulates a rising water level which represents the

acceptance rate for solutions. Using this method, it is far easier for worsening

solutions to be accepted near the beginning of the search and towards the end

hardly any deteriorating solutions are accepted. It is found that the great deluge

method works better with the re-inforcement learning technique than with a sim-

ple random method.

In [48], Demeester et al. consider a number of examination timetabling in-

stances, including a new real world instance. The performance of tournament-

based hyper-heuristics is analysed and it is found that significantly better results

are achieved using a hyper-heuristic than were achieved manually for the new

instance.

32

2.3.3 Vehicle Routing Problem

In [126], Pisinger and Ropke introduce a solver which is able to operate on many

variants of the vehicle routing problem (for example, multiple depot VRP, capaci-

tated VRP, VRPTW). The algorithm used to solve these problems is an Adaptive

Large Neighbourhood Search (ALNS) and is based on a the Large Neighbourhood

Search(LNS) of Shaw [150]. The ALNS method adds an adaptive layer to the

LNS which selects heuristics which can either intensify or diversify the search.

The method performs well on all the tested VRPs and shows an ability to adapt

to varying problems.

Meignan et al. [105] present a co-operative hyper-heuristic for the vehicle rout-

ing problem. A set of agents attempt to improve a solution in parallel. Heuristics

are selected through a re-inforcement learning technique. This technique takes into

account heuristic performance as observed by that agent. However, the agents also

communicate, meaning that information gathered from other agents can be used

to select heuristics. Strong results are obtained on a number of VRP instances.

In [108], Misir et al. provide a hyper-heuristic approach to some real-world in-

stances of a ready-mixed concrete delivery problem. The approach used is a simple

random heuristic selection mechanism with a new solution acceptance method,

named adaptive iteration limited list-based threshold accepting with a fixed limit

(AILLA-F). The AILLA-F acceptance method operates by maintaining a list of

best solutions in a window of size l. This method is compared to 4 other solution

acceptance methods when combined with the same heuristic selection mechanism.

The AILLA-F method was shown to provide the strongest results.

2.3.4 Cross-domain Optimisation

As was discussed above, the development of hyper-heuristics aims to raise the

level of generality for problem-solving. This means that algorithms operate on

problems without knowing any problem-specific information and operate solely on

the heuristic search space.

The Hyper-heuristic Flexible(HyFlex) framework allows exactly this type of

algorithm to be implemented. The framework, first proposed by Burke et al. in

[20] and with a full description in [116], provides a number of problem domains

which hyper-heuristics can be tested on by means of a common interface. The

hyper-heuristic can access information about how many heuristics a problem do-

33

main has and what category they fall under (mutation, local search, ruin-recreate,

crossover) and can also access objective function values for the population of so-

lutions. However, they do not have to know any problem-specific information and

the same hyper-heuristic could be run on all problem domains without change.

The HyFlex framework was used for a competition, the Cross-domain Heuristic

Search Challenge(CHeSC), in 2011, in which competitors submitted a single hyper-

heuristic which was tested on 4 previously known domains along with 2 ‘hidden’

domains. The strongest performing hyper-heuristic across the competition was

that of Misir et al. [110]. The different elements of the algorithm are described

below.

• Dynamic Heuristic Sets As with the method of [109], this algorithm

maintains dynamic subsets of low-level heuristics for different phases of the

search. In order to determine which heuristics are in the usable set, the

low-level heuristics are first given a value for a performance measurement

metric pi. The pi metric uses the following forms of feedback to calculate a

value for heuristic i.

– A measure of the number of best solutions found by this heuristic.

– A measure of the total solution improvement over the search.

– A measure of the total deterioration of solutions over the search.

– A measure of the total solution improvement during the current phase.

– A measure of the total solution deterioration during the current phase.

Weights are assigned for each of the above measures, with the value of the

weights being in a decreasing order for the order of measure above. Using

this pi performance measure, a quality index QI for a heuristic is generated

according to a normalised ranking of pi values. All heuristic with a QI value

less than that of the average of the full set of heuristics is excluded from

the subset for that phase. The authors of [110] call the length of time that

the heuristic is excluded from the set the tabu duration. This is hardcoded

for the [110] method. Similarly, a pre-determined constant value is used to

determine the length of a phase.

• Selection of Heuristics Probabilities for heuristics within the dynamic set

are determined as normalised values of the number of best improvements

found by a solution with respect to time taken.

• Relay Hybridisation Relay hybridisation is also used within the Misir al-

gorithm to select low-level heuristics. It is concerned with the performance

34

of pairs of heuristics when applied consecutively. Firstly, a random variable

determines the probability of using the relay hybridisation selection mech-

anism. Then, a first heuristic is selected by a learning automaton method

that learns a heuristic’s performance. Then a second heuristic is selected

from a list of possible heuristic to follow the first heuristic. There is a sepa-

rate list maintained for each heuristic with a fixed size. Variables keep track

of the performance of the relay hybridisation selection method and for the

dynamic heuristic set method above.

• HyFlex Parameter Adaptation HyFlex contains 2 parameters, the values

of which can be specified by the user at any point of the search, intensity-

OfMutation and depthOfSearch. These parameters are used to control the

strength of certain low-level heuristics. In [110], their performance is mon-

itored by Misir et al. and their values adapted during the search based on

this performance.

• Solution Acceptance Method The adaptive iteration limited list-based

threshold accepting with a fixed limit (AILLA-F) method described above

for [108] is used again here for solution acceptance.

• Re-initialisation of Heuristic A solution is re-initialised if a certain thresh-

old has been reached in terms of iteration numbers without an improvement

in objective function value. This is done with the aim of promoting diversi-

fication within the search.

The nature of the combination of many adaptive elements seems to be the key

to the success of the algorithm of Misir et al. [110]. In the CHeSC competition’s

points-based scoring system, the method achieved around 35% more total points

than its nearest competitor.

The second place hyper-heuristic was that of Hsiao et al., described in [82].

Their method is a Variable Neighbourhood Search(VNS) approach where two main

stages of ‘shaking’ and local search are iterated between. The shaking stage aims

to disrupt a solution and allow for some diversification. The authors extend the

VNS method by adaptively modifying the length of the local search stage depend-

ing on the state of the search. The population size is also determined dynamically.

A hyper-heuristic based on an analogy of ‘Pearl Hunting’ is present by Chan

et al. in [32]. The pearl hunting method describes a process of diversification and

intensification where a hunter would dive (intensification) to find better solutions

before re-surfacing and moving to a different area (diversification). Two levels of

35

local search intensity are used in the algorithm and are controlled by manipulation

of HyFlex’s depthOfSearch parameter. The level of intensification is also controlled

by only allowing ‘deep diving’ or heavy intensification for the best of the solutions

found. Furthermore, the level of diversification is adaptively determined through

a measure of whether or not the method is stuck in a local optima. The pearl

hunter algorithm placed 4th in the CHeSC competition. Interestingly, it placed

1st in the 2 hidden domains, implying that it is able to adapt to new problems.

In [123], Özcan and Khieri present a multi-stage hyper-heuristic for use in the

HyFlex framework. Initially, a greedy local search stage is applied to allow for

data to be gathered regarding the performance of heuristics. This is then used to

maintain an active heuristic set, which contains heuristics with the potential to

perform well. A heuristic dominance method is then used to maintain this list,

where heuristics that are dominated by other heuristics are excluded from the list.

For the dominance calculation, the magnitude of an improvement and the number

of steps required to find the improvement are considered. The method beats a set

of basic hyper-heuristics when tested on the 4 problem domains of HyFlex.

A hyper-heuristic approach based on the choice function is proposed by Drake

et al. in [54]. This paper extends the method of Cowling et al. [41] by introducing

a technique to automatically determine parameter value used in the choice function

to control the importance of different performance measures. Drake et al. observe

that the original choice function can often suffer from too much diversification

when the search gets stuck. To counter this, a greater emphasis on intensification

is used in [54], with significant rewards attributed for improvements in objective

function value. This method is implemented and tested in the HyFlex framework

and, on the 4 problem domains, returns substantially better results than the orig-

inal choice function.

2.4 Conclusion

The purpose of this chapter has been to identify research questions that can mo-

tivate the work that is to be presented in the remainder of this thesis. In this

literature review, two significant areas have been considered. The first is the Ve-

hicle Routing Problem, for which a problem description has been provided. As

well as detailing early work on the problem, significant contributions to the field

have been discussed in detail. These contributions come from a range of areas and

utilise many differing techniques. Specifically, the variant of the problem known

36

as the Vehicle Routing Problem with Time Windows has been the subject of most

focus, both in the literature and consequentially in this review.

The second area of focus within this review has been that of adaptive search

techniques called Hyper-heuristics. These methods, which operate on the heuristic

space, rather than the solution space, aim to adapt to multiple problems and

problem variants. The relatively recent origins of hyper-heuristics are described

along with a review of work performed so far in this area.

37

Chapter 3

Vehicle Routing Problem Domain

and HyFlex Framework

3.1 Introduction

As is clear from the title and introduction to this thesis, this work is concerned

with the design of Vehicle Routing Problem domains for hyper-heuristics. The

high-level question of how to design domains for hyper-heuristics can be broken

down into several other research questions, as stated in the introductory chap-

ter. One such question is ’What is a problem domain?’. This chapter will set

out to define a basic, but flexible, definition of a problem domain which can be

used to represent a wide range of problems and support a wide range of algorithms.

In addition to having a definition of a problem domain, it is important to

understand what makes a ’good’ problem domain. While this is a more subjective

question than the first, this chapter will aim to provide an answer by considering in

what way the different elements of a domain (as set out in the definition) impact

upon the operation of an algorithm. Specifically, the relationship between the

components of a domain and the workings of a hyper-heuristic will be explored

and analysed. In order to further clarify the points raised, a Vehicle Routing

Problem with Time Windows (VRPTW) domain will be presented, with design

decisions for each domain component being discussed.

3.2 Problem Domain Definition

For a hyper-heuristic or adaptive algorithm to produce solutions to a problem, it

could be argued that 2 things are needed. The first would be a representation

of the problem to be solved. This representation may include the data structure

38

and some instances of the problem. The second aspect needed would then be a

set of tools to manipulate and operate on a solution that uses the representation

of the problem. Included in these tools could be heuristics to modify a solution

and objective functions to evaluate a solution. In the previous chapter, some

frameworks for hyper-heuristics were discussed. One of these, HyFlex, has the

advantage of existing problem domains, as well as a flexibility to implement a

wide variety of algorithms and represent many problems. A fuller description of

HyFlex will be given in the following section. However, it is important to mention

it here as it is from the HyFlex composition of problem domain elements that

the definition for this work is to be derived. Below is a brief summary of the

components that make up a problem domain, split into the sections of problem

representation and domain tools. A more detailed analysis of the relationship

between these problem elements and the algorithms that use them will follow

later in this chapter.

3.2.1 Problem Representation

Base Representation (Data Structure)

This component is the basic representation of the problem. It should contain suf-

ficient information about the problem and inter-relationships within the problem

for a solution to the problem to be modelled. As an example for the vehicle rout-

ing problem, this representation would be a set of routes. Each route would be

an ordered set of customers. If the implementation of this component is being

considered, the data structure to be used will also form part of the definition.

Constraints

The ’Constraints’ component represents a set of specifications that must be met

for a solution to the problem to be valid. The constraints should be defined with

reference to the base representation of the domain.

Instances

As well as the ability to represent a problem, a domain also requires data (or

instances) for the problem. These instances must agree with the defined represen-

tation of the problem, or be considered sub-problems that can be represented in

the domain.

39

3.2.2 Domain Tools

Objective Function

In order for an algorithm to evaluate the success of its operations within a problem

domain, it needs to have some means to measure the quality of a solution. Thus,

each domain should have one or more objective functions which give a represen-

tation of the ’quality’ of a solution. This ’quality’ can be measured in different

ways and it is the objective function which gives the definition of a high or low

quality solution for a particular problem. It is arguable that this should fall into

the ’Representation’ section of the definition. However, the view taken here is

that the objective function is a tool used by the algorithm that operates on the

problem representation.

Low-level Heuristics

For an algorithm to be able to modify and potentially improve upon a solution,

the domain must provide the means to manipulate the represented data. In this

definition, we term these methods ’Low Level Heuristics’. Each of these make

modifications to the data and should provide scope to the hyper-heuristic to modify

a solution in different ways.

3.3 Discussion of Domain Components

Now that a basic definition of a problem domain has been established, the focus

in this chapter turns to a more detailed discussion of the separate components of a

domain. For each component, a number of factors will be considered to determine

what makes that component suitable for usage by a hyper-heuristic or other adap-

tive algorithm. Firstly, a brief overview will be given of the HyFlex framework,

which is to be used for problem domain design within this thesis. Following this,

each of the 5 problem domain components described in the definition above will

be discussed in more detail.

3.3.1 HyFlex Framework

HyFlex (Hyper-heuristic Flexible Framework) is a software framework, imple-

mented in Java, which facilitates the development of hyper-heuristics and other

general purpose algorithms. As has been shown in Chapter 2, there has been an

increasing amount of research into algorithms and areas that can produce results

that are less specialised. This generalisation can take many forms. An algorithm

could be considered more general or adaptive if it works effectively on a variety

40

of instances of a problem. Alternatively, generality can consider approaches that

operate on a number of completely different problem domains, producing consis-

tent results with few manual changes having to be made in between runs. You

can further consider the branch of algorithms that either generate algorithms to

solve specific problems, or that auto-tune parameters for effectiveness on different

instances. A problem often arising when conducting work in this area of research

has been the need for a vast number of instances with which to test algorithms.

Whilst a researcher will often be an expert in a particular problem domain, and

be familiar with a number of other problems, they will not necessarily have the

sufficient level of knowledge of all of these domains that they would need in order

to implement them for testing of their algorithm. Even for the domains in which

they have specialist knowledge, it can still be time consuming to gather a sufficient

number of instances with which to conduct comprehensive tests. The implemen-

tation of these extra domains, and the gathering of instances, can result in time

being unnecessarily used when it could be put towards the further development of

algorithms. It would appear that HyFlex provides a solution to these issues and

will provide a strong base for the work presented in this thesis.

HyFlex [116] is based on the idea of a domain barrier separating problem

specific details from the design of algorithms, as presented in [41]. Due to this

separation, HyFlex can be considered as having two elements; the hyper-heuristic

or adaptive algorithm element, and the problem domain element. The concept is

given a pictoral representation in Figure 3.1. These will be separately described

below.

Figure 3.1: A representation of the domain barrier present in HyFlex.

3.3.2 Problem Domain Design

The problem domain element of HyFlex has several parts to it. Firstly, there is

an interface which designers of the problem domains can use to produce a domain

41

for HyFlex. One element of a problem domain identified in the definition given

above is the representation, or data structure, used to model the problem.

Design of Base Representation of Problem

There are several factors that a domain designer should consider when choosing a

data structure to represent a problem. One such factor is flexibility. If a domain

is being designed for use by hyper-heuristics, then it is likely that multiple low-

level heuristics will be repeatedly modifying one, or several, solutions. Thus, a

representation must allow for easy access to data elements and simple means to

manipulate the ordering of these elements. Linked to this first point is the speed

with which a data structure can be manipulated. Speed is an important factor as,

by allowing more applications of heuristics within a given time, there is greater

potential for improvement in solution quality. Finally, a data structure should be

easily understandable and usable. In order to be kept up-to-date with the best

performing algorithms, it should be simple for a domain designer to add new low-

level heuristics to an existing domain. A simple representation of a problem will

make this onboarding process easier and encourage more improvements to existing

domains.

Management of Constraints in Problem Domain Design

The choice, and enforcement, of constraints for a problem are inevitably linked to

the base representation of a problem. The choice of data structure can determine

whether it is simpler for constraints to be enforced either through a penalty func-

tion in the objective function or through the workings of the low-level heuristics.

As an example, for a hard constraint, the domain could be designed in such a way

that a low-level heuristic would never make a modification to a solution that would

result in that constraint being violated. Alternatively, the domain could allow con-

straint violations, but with a high penalty in the objective function value. One

advantage of this latter mechanism is that the solution could enter the infeasible

search space - a situation which is deliberately used by some other algorithms to

diversify the search. Another consideration of constraint management is whether

constraints should be configurable for different instances of a problem. For exam-

ple, an instance file could specify which constraints should apply for that instance.

A downside to this approach is that it could be more complex to implement the

domain than if there were a constant set of constraints. However, the increase in

flexibility, and the ability to represent a wider range of problems, might make this

extra effort worthwhile.

42

Choice of Low-level Heuristics

The problem domain designer is also responsible for the choice of low-level heuris-

tics for the problem, as well as auxiliary methods to create and copy solutions. In

making the selection of low-level heuristics, there should be a focus on ensuring

that state-of-the-art heuristics are available to the hyper-heuristic. Through offer-

ing these, the algorithm has a greater opportunity to find high quality solutions. In

addition, the domain should look to offer a sufficient number of low-level heuristics.

In the context of a problem domain for hyper-heuristics, this means that there are

enough heuristics to provide meaningful information to the hyper-heuristic when

it is making intelligent decisions about heuristic selection. By constrast, the do-

main should not offer such a surplus of heuristics that the hyper-heuristic does not

have enough time to deduce their relative performance. The low-level heuristics

are split into four categories;

• Mutation Heuristics: Heuristics which make a small perturbation to a solu-

tion. An example of this might be a swap or insert heuristic.

• Local Search Heuristics: These heuristics produce a non-deteriorating solu-

tion by repeatedly applying a low-level heuristic. This low-level heuristic

may be one of the mutation heuristic that is applied in the context of a

best-improvement or first-improvement hill-climbing algorithm.

• Ruin-recreate Heuristics: These are heuristics which will destroy or mutate

part or all of a solution before attempting to re-construct the solution. There

is potential to use the other categories of low-level heuristic within this. For

example, using a mutation heuristic for the ruin element of the heuristic,

then using a local search or constructive heuristic to re-build the solution.

• Crossover Heuristics: These heuristics take two solutions and combine them

to form a third solution.

Full class diagrams are given for HyFlex in Figure 3.2. The software interface

allows the algorithm designer to see which heuristic indices belong to which of

these categories although, as previously stated, the actual names and details of

these heuristics are kept hidden. As can be seen in the class diagrams, the method

getHeuristicsOfType(HeuristicType) makes it easy to identify heuristic categories.

Several algorithms have structures where this knowledge of heuristic ‘type’ be-

comes crucial. For example, an evolutionary algorithm has multiple stages involv-

ing different sorts of low-level heuristics, such as mutation and crossover. HyFlex

allows these branches of algorithms to be implemented, whilst maintaining the

43

Figure 3.2: Class diagrams for the HyFlex framework.

important concept of a domain barrier.

Objective Function Design

The problem domain designer also has responsibility for calculation of the ob-

jective function, and for storage of the current best objective value, as obtained

throughout the current search. This function must represent a minimisation prob-

lem, which ensures consistency and ease-of-use across all HyFlex domains. As only

a single objective value is returned for each solution, there is a potential problem

in representing multi-objective problems. A practical approach to this problem is

to use a weighted sum to calculate the objective value. However, it is important

that, firstly, it is made clear to the algorithm designer how the objective function

is constructed so that they can make informed decisions on the actual value of

their algorithms and, secondly, that where possible the composition of the objec-

tive value mirrors that of the literature standard for best known solutions. Many

designers of algorithms will want to know not only how they perform in relation to

other HyFlex algorithms, but also to the very best results in the literature. After

all, leading the field of HyFlex algorithms is meaningless if the solutions produced

are of a poor quality relative to solutions produced by specialist algorithms. What

could be deemed a sufficient quality of solution is a matter for the hyper-heuristic

or meta-heuristic designer; however, it is important that the tools exist for the

44

necessary comparisons to be made.

Choice of Problem Instances

A further element of designing a problem domain for HyFlex is the choice of in-

stances to be made available. Again, there are factors within this area to consider,

if a HyFlex domain is to be a useful research tool. Where they exist, a domain

should contain the most widely-studied or ‘benchmark’ problem sets for its prob-

lem area. Results for these instances are necessary to provide justification that

an algorithm is performing well, as they will often be widely studied and have a

high quality of best-known solution. The ability to attain strong results for these

instances will be an indicator of an algorithm that works well within the respective

problem domain. On the other hand, if a domain is to serve its purpose in rela-

tion to the philosophy behind HyFlex (that of allowing studies in generality and

development of algorithms that will work across multiple instances and multiple

problems), then there is a need to provide a range of instances for each problem

domain. Of particular interest could be instances with additional constraints or a

differing structure that might more closely represent real-world problems. To per-

form well on one set of instances shows only that an algorithm works well for that

particular representation of the problem. Should that algorithm also then perform

strongly on a new set of instances, particularly one that is more constrained or

of a completely differing structure, without the need for any manual tuning, then

there are indications that the algorithm can show adaptability. The downside to

some ‘real-world’ type instances is that there is a lack of previous work on them,

meaning that strong results on these instances can carry less weight than on more

established instances. Instances are selected in HyFlex through the use of indices.

A user will specify the index of the instance they wish to use and the problem

domain will load this instance using the loadInstance(int) method (see Figure 3.2).

3.3.3 HyFlex Algorithm Design

Designers of algorithms for HyFlex are provided with a software interface to use

to run their algorithm. Although, as mentioned above, problem-specific informa-

tion about the domain is not obtainable through this interface, there still exist

sufficient means for the designer to manipulate the search space and implement

a wide selection of adaptive algorithms. These means relate to the tools given

in the definition of a problem domain earlier in this chapter. This section will

consider how the provision of tools can be used by different hyper-heuristics and

45

what qualities are desirable for these tools to possess.

One such element of control is in the determination of population size for the

search. The setMemorySize(int) (see Figure 3.2) method is used to set the initial

size, which can be altered at any point during the search. Methods also exist to

manage the population of solution, specifically by being able to copy solutions

from one index to another (copySolution(int,int) where the ints represent solution

indices) and through a method allowing a comparison between two solutions to

indicate their equality (compareSolutions(int,int).

Once this population has been established, it can then be operated on in sev-

eral ways. In addition to the methods stated above, a constructive or initialisation

heuristic can be applied to a chosen solution. This is performed through method

initialiseSolution(int) where the int value is the index of the solution to be ini-

tialised. This method can be seen in the class diagrams of Figure 3.2. Following

this, two methods may be called to apply any of the set of low-level heuristics

to any solution within the population. The first of these methods, applyHeuris-

tic(int,int,int), takes as input a heuristic index, a source solution index and a

destination solution index. The heuristic with the specified index is then applied

to the source solution with the resulting new solution being placed at the position

of the destination solution’s index. The second of the methods, applyHeuris-

tic(int,int,int,int) takes as input a heuristic index, two indices for source solutions

and a destination solution index. This method is designed for use mainly with

crossover heuristics, which mostly require two parent solutions.

Crucially, the exact nature of the low-level heuristic is unknown to the algo-

rithm, the only information available is the category of heuristics under which the

heuristic is classified (mutation, ruin-recreate, etc.) and an index associated with

this heuristic. By not revealing exactly which heuristic has been applied, it is

ensured that successful usage of the low-level heuristics can only be attributed to

sophisticated adaptive learning techniques and not through prior domain knowl-

edge. Associated with the application of these low-level heuristics are two user-

determined parameters that subtly affect their running. In the category of Local

Search heuristics, there is a parameter named ‘Depth of Search’ with the variable

name depthOfSearch that some heuristics may use to determine various aspects

of the search. Similarly, the parameter ‘Intensity of Mutation’ with the variable

name intensityOfMutation affects heuristics in the ‘Mutation’ and ‘Ruin-recreate’

categories. The values of the depthOfSearch and intensityOfMutation parame-

ter can be modified using the setDepthOfSearch(double) and setIntensityOfMu-

46

tation(double) methods respectively. These are shown in the class diagrams in

Figure 3.2. The values for these parameters must be between 0 and 1. The do-

main provides information concerning which heuristics use which parameters, but

does not state exactly how they are used.

Further to the application of heuristics to the set of solutions, it is possible to

determine an objective function value for each solution, as well as determining the

lowest objective function value obtained so far during the search. The objective

function value for a particular solution can be accessed through the getFunction-

Value(int) method, where the int represents the index of the solution for which the

objective function is requested. There is also a method, getBestSolutionValue()

which returns the best objective function value found so far in the search. Only

a single value is available for each solution, meaning that if the objective function

is a weighted sum or some other multi-component function then the algorithm

will not know which part of the magnitude of the value can be assigned to which

component of the objective function.

As well as management of the population of solutions and application of low-

level heuristics, the designer also has responsibility for the details of the running

of the algorithm. There are multiple elements to be considered here. Firstly,

an instance must be chosen for the algorithm to run on. A set of instances are

provided with each problem domain and can be loaded through their index. As has

been previously stated, the method loadInstance(int is used for this purpose. The

user can also set a time limit for the run (using the setTimeLimit(long method of

the HyperHeuristic class), as well as a seed value for use with any pseudo-random

elements within the domain. These elements make it simple for the user to run

multiple tests on several instances and with different seed values.

3.3.4 Pre-existing HyFlex Domains

There are four problem domains provided in the initial version of HyFlex. These

are Permutation Flow Shop, Personnel Scheduling, One-dimensional Bin Packing

and the Maximum Satisfiability Problem. The objective functions for all domains

are minimisation problems. These all conform with the framework as described

above and are shown in more detail below.

Permutation Flow Shop

Problem Description The Permutation Flow Shop problem domain represents

the problem of ordering a set of n jobs which have to be processed on a set

47

of m machines in a set sequence. Each job has a processing time associated

with each machine and the sequence of jobs for the first machine must be

maintained across all subsequent machines. In other words, one job cannot

overtake another job. There is no unnecessary waiting time permitted. That

is to say if a machine is free and there is a job waiting to be processed, it

must be processed immediately. A technical report for this domain can be

found in [167].

Objective Function The objective function is to minimise the overall time for

all jobs to be completed, in other words the makespan.

Low-level Heuristics To initialise solutions, a randomised version of the NEH

algorithm [113] is used. For the other heuristic categories, there are 5 mu-

tation, 2 ruin-recreate, 4 local search and 3 crossover heuristics totalling 14

low-level heuristics. The crossover heuristics are based upon some standard

heuristics for permutation representations and the ruin-recreate heuristics

use the same NEH method as initialisation during the ‘recreate’ section of

the method. Inspiration for the mutation and local search heuristics comes

from [140] and [141].

Instances Instances for this domain have been taken from the benchmark Tail-

lard set [152]. These are instances of differing numbers of jobs and machines.

The processing times for jobs have been generated randomly within a spec-

ified interval.

Personnel Scheduling

Problem Description Personnel Scheduling can refer to a wide range of prob-

lems with many constraints and characteristics. In its simplest form, it can

be described as assigning workers to shifts over a set time period. This

HyFlex problem domain makes use of a specialist instance file in order to

allow representation of the wide range of problems that fall under the per-

sonnel scheduling umbrella. A technical report for this domain can be found

at [43].

Objective Function Due to the changeable nature of the problem, different

instances will have different objective functions, which will be specified in

the instance file. Constraints also form an element of the objective function,

with any violations being highly penalised within the objective function.

Low-level Heuristics A simple local search heuristic is used to initialise the

solution. Over the other categories, there are 1 mutation, 3 ruin-recreate, 5

48

local search and 3 crossover heuristics totalling 12 low-level heuristics. Many

of these heuristics are inspired by the literature for nurse rostering problems,

specifically [19], [24], [25] and [26].

Instances The instances for the personnel scheduling domain combine instance

both from the academic community and from real-world problems with a

wide range of constraints and objectives. They are all taken from the ‘Staff

Rostering Benchmark Data Sets’ [44].

One-dimensional Bin Packing

Problem Description The One-dimensional Bin Packing Problem is that of

placing a number of differently sized items into a number of bins. The size

of an item is represented as an integer and each bin has a capacity, also an

integer value. A technical report for this problem domain can be found at

[86].

Objective Function The general objective of bin-packing is to minimise the

number of bins used. For this domain, the objective function measures

fullness of bins in order to drive the search toward reducing the overall

number used.

Low-level Heuristics A randomised version of the ‘first-fit’ heuristic [88] is

used to initialise solutions. For the other heuristic categories, there are 2

mutation, 2 ruin-recreate, 2 local search and 1 crossover heuristic, totalling

7 heuristics across all categories.

Instances The instances are taken from a number of sources and represent bench-

marks for the one-dimensional bin packing problem. Instances come from

sources including [41] and [8].

Maximum Satisfiability (MAX-SAT)

Problem Description The Maximum Satisfiability problem is that of satisfying

as many clauses as possible within a boolean logic formula. To satisfy a

clause means to assign truth values to the variables within a clause in such

a way that the clause as a whole evaluates to true. A technical report for

this problem domain can be found at [85].

Objective Function The objective function is to minimise the number of un-

satisfied clauses within the formula.

49

Low-level Heuristics Solution initialisation is done in a uniformly random

manner, with each variable being assigned either a true or false value. For the

other heuristic categories, there are 2 mutation, 1 ruin-recreate, 4 local search

and 2 crossover heuristics, totalling 9 heuristics across all categories. The

mutation heuristics are simple bit-flip operations, with multiple variables to

be ‘flipped’ chosen at random. Standard crossover methods such as 1-point

and 2-point crossover are used. For the local search heuristics, a number

of advanced methods from the literature are used, including [67], [149] and

[148].

Instances The instances are taken from benchmark sets at [81].

3.4 VRPTW Domain

In the previous sections, a definition of a problem domain has been given along

with an analysis of the qualities needed for a domain to be ’useful’ to hyper-

heuristics. These concepts shall now be demonstrated further through the pre-

sentation of a new HyFlex domain for the Vehicle Routing Problem with Time

Windows (VRPTW). As this thesis is concerned with the design of VRPTW prob-

lem domains for hyper-heuristics, this domain will allow further experimentation

and discussion about the relationship between a hyper-heuristic and vehicle rout-

ing problem domains. A full description of the VRPTW has been given in the

previous chapter. However, in short, it is the problem of satisfying a set of cus-

tomer demands, by creating routes that begin and end at a depot location. Each

route can be seen as a permutation of customers. These routes (or vehicles) are

subject to capacity constraints and each customer has a start and end time-point in

between which their demand must be met. The primary objective of this problem

is to minimise the number of vehicles needed with a secondary objective of min-

imising the total distance travelled. Presented here will be a problem domain for

the VRPTW, implemented within the HyFlex software framework. As they have

been described above in general terms, so will the various aspects of a problem

domain be described here in terms specific to this VRPTW problem domain.

3.4.1 Problem Representation

In general terms, the VRPTW problem has been implemented here as a list(array)

of Route objects, each of which represents a doubly-linked-list, beginning and

ending with a depot location. The routes are stored as a list as they are not ordered

and as such have no need for a more complex data structure. It is thought that a

doubly-linked-list is ideal for a representation of individual routes as manipulation

50

of the solutions within a VRPTW domain will require tracking back through a

route to correct waiting times. The return link provided by the double linked list

makes this process more efficient. The choice of data structures is important as

the operators will be modifying the data so frequently that small improvements

in efficiency will multiply and can contribute to a reduction in processing time for

each operation and, hence, the possibility for an increase in solution quality as it

will be possible to perform a greater number of iterations within a set time limit.

3.4.2 Instance Format and Instance Sets Used

The instance format used for this domain is the standard format for VRPTW

problems. The files have three main elements, which can be explained as follows.

It is important to note that the values of distance and time are the same. As

an example, to travel a distance of 67 would take 67 units of time. An example

VRPTW instance file can also be seen in Figure 3.3.

Figure 3.3: A VRPTW instance file

Name of Instance A single string value giving the name of the instance.

Vehicle Constraints Two values regarding constraints for the vehicles/routes.

51

• No. of Vehicles An integer for the maximum number of vehicles to be

used for the instance.

• Vehicle Capacity An integer representing the maximum capacity of each

vehicle.

Customer Data A number of values regarding the customers in the instance.

• Customer No. An integer representing an index for that customer.

Customer 0 is always the depot location.

• X Coordinate An integer value for the location of the customer on the

x axis.

• Y Coordinate An integer value for the location of the customer on the

y axis.

• Demand An integer value representing the specific demand for that

customer.

• Ready Time An integer value representing the earliest time a customer

can be serviced.

• Due Date An integer value representing the latest time a customer can

begin to be serviced.

• Service Time An integer value representing the amount of time taken

to service that particular customer.

The instances for this domain have been taken from two sources. The first

are Solomon’s 56 benchmark instances [151]. Each of these instances contains 100

customers. The second data set is larger, with 1000 customers in each instance.

This is the Gehring and Homberger dataset, also of 56 instances [79]. For each set

of instances, there are three categories of instance. The first, C, have subsets of

customers which are clustered together in terms of location. The second, R, has

the customers dispersed randomly and the third, RC has a combination of the two.

These instance sets have been chosen as they have been widely used and tested for

many VRPTW approaches. For an algorithm to prove its worth, it has to show

strong results for these instances so their inclusion is necessary in order for this

to be a useful domain. According to the analysis earlier in the chapter, a domain

should have a range of instances that represent sufficiently different permutations

of a problem. With the different categories of instances demonstrated in these

datasets, as well as the different sizes of instances, these datasets would seem to

be a suitable initial choice.

52

3.4.3 Initialisation of Solution

It is a requirement of HyFlex problem domains that the solution initialisation

process is stochastic, in order to ensure that population-based algorithms can have

a diverse initial population with which to begin their search. The requirement to

have a stochastic process means that the method to be used differs from the most

popular literature methods. However, there are also other advantages to this

method, which are discussed following the description below. The pseudocode

for this heuristic can be seen in Algorithm 1. Initially, the depot is extracted

from the list of customers that has been built from the instance data. A single

empty route, r, is generated as the initial solution. The method loops until the

list of unrouted customers, C, is empty. At each iteration, it is first determined

whether any of the currently unrouted customers could be inserted at the end of

r whilst satisfying all constraints (the method feasibleCustExistsForRoute(r,C) is

used in the pseudocode). If there is no feasible customer for r, the route is closed

and a new empty route is created and the algorithm continues. If it’s the case

that there is a feasible customer, then the algorithm must determine which is the

‘best’ feasible customer for insertion. This element is performed by the method

selectBestCustomer(r,cLast) in Algorithm 1. The method operates as follows:

• For each unrouted customer, it is first checked whether it can be feasibly

inserted at the end of the route, r.

• For all feasible customers, a ‘score’ is calculated. This score contains three

elements. The first, distc, is the Euclidean distance between the customer,

c, and the current final customer in the route, cLast. The second, timec, is

the difference in the values of the Ready Time for c and cLast. The third

is a random floating point number between 0 and 1.0, in order to maintain

the required stochastic nature of the element.

• The complete formula for the score is: score = (distc + timec)*randNumber

• The customer, c, with the lowest score value is selected.

Once the customer with the lowest score, customer c, has been selected, it

is inserted at the end of route r. It is then removed from the list of unrouted

customers, C. The process then repeats until this list is empty. The objective

of this initialisation method is to provide a solution of a reasonable quality with

which to start a search. However, it is desirable that the solution quality is not so

high that a) the solution has already found a local minimum or minima and may

be difficult to manipulate in such a way as to move toward the global minimum and

b) that there is not sufficient diversity between solutions as they occupy similar

53

areas within the search landscape. This is enforced through the inclusion of the

stochastic element mentioned above.

Algorithm 1 The Constructive Heuristic algorithm for the VRPTW HyFlex
domain which takes an instance inst as input.

procedure Constructive Heuristic(inst)
List¡Customer¿ C ← extractCustomers(inst)
Customer depot← C[0]
C ← {C[1]...C[n− 1]}
Route r ← createEmptyRoute(depot)
List¡Route¿ R← r
while size(C) > 0 do

if feasibleCustExistsForRoute(r, C) then
Customer cLast← getF inalCustomerInRoute(r)
Customer c← selectBestCustomer(r, cLast)
r ← insertAtEndOfRoute(r, c)
C ← removeFromList(C, c)

else
r ← createEmptyRoute(depot)
R← {R : r}

end if
end while
Solution s← createSolutionFromRoutes(R)

end procedure

3.4.4 Low-level Heuristics

The twelve low-level heuristics for this domain are spread across the four cate-

gories defined by HyFlex, Mutation, Local Search, Ruin-Recreate and Crossover.

They are mostly taken from proven methods in the literature, with the aim be-

ing to provide a domain that has the state-of-the-art tools needed to allow an

algorithm to produce strong solutions. This provides a significant advantage to

the problem domain and an interesting contribution to research as, although it is

mostly existing methods being used here, the combination of these methods and

their categorisation is new and has the potential to add value to the research area.

In compliance with the HyFlex framework, all heuristics will return solutions that

satisfy all hard constraints for the VRPTW, namely vehicle capacity constraints

and time window constraints. For each of the above categories, a general overview

will be given, along with detailed descriptions of the individual operators within

that category.

54

Mutation Heuristics

A mutation heuristic is one that makes a small perturbation or alteration to a

solution. A common reason for the usage of these heuristics is to help escape a

local minimum in order to advance the search. They can also be seen as sim-

ple move operators which can be applied within user-defined acceptance criteria

should they wish to use their own methods rather than apply the local search op-

erators described in the following category. All of these heuristics will return any

constraint-compliant solution, regardless of whether the objective function value

has improved or deteriorated.

Two-opt This is a simplified version of the Two-opt heuristic described in [16].

It provides a minor modification to the solution by swapping two adjacent

customers within a route. Note that, although it shares the same name, it

is not the same method as the 2-opt of Lin[98]. The Lin method consists

of multiple moves in which 2 edges of a route are modified. The method

proposed here is a simplification of the Lin method where the nodes in

the edges to be swapped are adjacent to one-another. This heuristic has

the potential to have an effect on the overall distance travelled, but not

on the number of routes needed. The intensity of mutation parameter is

used within this heuristic in order to determine how many swaps should be

performed in a single application of the heuristic and hence to what extent

the solution has been mutated. An example of Two-opt is given in Figure 3.4

and the pseudocode for the algorithm is at Algorithm 2. As can be seen the

number of iterations is determined as the number of routes multiplied by the

intensityOfMutation parameter value. Then, for each iteration, a route, r, is

selected at random. From r, a customer, cj, is selected at random (although

the first customer in the route is excluded from selection). The next stage is

to swap customer cj with the customer preceding it in the route, customer

cj-1. The route is then checked for feasibility. If feasible, it is accepted into

the solution and the algorithm continues.

Figure 3.4: Example of two-opt. Customers 1 and 2 are swapped in this route.

55

Algorithm 2 The Two-Opt mutation algorithm takes as input a Solution s.

procedure TwoOpt(s)
for i← 0, intensityOfMutation ∗ numOfRoutes do

Route r ← selectRandomRoute(s)
Route r′ ← r
Customer cj ← selectRandomCustomer(r′)
r′ ← swapPositions(cj, cj−1, r

′)
if feasible(r′) then

r ← r′

end if
end for

end procedure

Or-opt The Or-opt algorithm, first presented in [120], has similarities to the

previously described two-opt heuristic. In this case, two sequential customers

are selected in a single route, and moved to another location within that same

route. This can be useful in providing a slightly more significant mutation

than a single two-opt operation. Again, only the distance travelled is affected

and the intensity of mutation parameter is used to determine the number

of operations to be performed. An example of Or-opt is given in Figure 3.5

and the pseudocode in Algorithm 3. Again, the calculation of the number of

routes multiplied by the intensityOfMutation value is used to calculate the

number of iterations to be performed. At each iteration, a random route, r,

is selected from which a random customer, cj is selected (providing it isn’t

the final customer in the route). Customer cj and the customer immediately

following it, customer cj+1 are then removed from the route. A new customer,

ck is then selected at random from r and customers cj and cj+1 are inserted

immediately before ck, whilst preserving their ordering. If the resulting route

is feasible, it is kept and the algorithm moves on to its next iteration.

Figure 3.5: Example of or-opt. In this case, customers 3 and 4 are located so that
they are serviced after customer 5, whilst preserving the ordering between them.

Shift The Shift heuristic, proposed in [143] differs from the two previous muta-

tion heuristics in that it can alter the solution both in terms of the overall

distance travelled and in terms of the number of routes/vehicles needed.

56

Algorithm 3 The OrOpt mutation heuristic takes as input a Solution s.

procedure OrOpt(s)
timesToPerform← (intensityOfMutation ∗ numOfRoutes)
for i← 0, timesToPerform do

Route r ← selectRandomRoute(s)
Route r′ ← r
Customer cj ← selectRandomCustomer(r′)
r′ ← removeCustFromRoute(r′, cj)
r′ ← removeCustFromRoute(r′, cj+1)
Customer ck ← selectRandomCustomer(r′)
r′ ← insertCustBeforeCust(cj, ck, r

′)
r′ ← insertCustBeforeCust(cj+1, ck, r)
if feasible(r′) then

r ← r′

end if
end for

end procedure

The heuristic operates by relocating a single customer from one route to

another. In this mutation version of the heuristic, customers and routes

are chosen randomly, as the aim is simply to mutate the solution, rather

than to directly improve it. The potential for a change in number of routes

comes from the possibility of removing a customer from a route where that

customer had been the only customer in the route. Thereby, its removal

would cause the route to be empty and hence removed. There is also the

chance for the number of routes to increase as if, once a customer has been

removed, it can not be placed in another route in such a way as to satisfy

all constraints, then a new route will be created into which the customer

will be placed. The intensity of mutation parameter is used to determine

the amount of operations to be performed. An example of Shift is shown

in figure 3.6 with pseudocode for the method shown in Algorithm 4. Note

that Algorithm 4 also makes use of a method named insertCust, which can

be seen in Algorithm 5. The heuristic works as follows.

An important consideration when designing mutation heuristics is to ensure

that a wide variety of moves are possible, and that the same customers don’t

continuously get moved. It is important so that diversity can be maintained

within the search. For this reason, the initial choice of a customer to be

removed is made randomly, from a random route. The insertion of this

customer, however, tries to ensure that solution quality doesn’t suffer to too

great an extent. This is why the bestInsertionPosition method is used to

57

find a strong insertion position for the removed customer. The measure used

to determine this best insertion point is the required waiting time should

the customer be inserted at that point. The position with the minimum

waiting time is selected for insertion. This insertion should give a fairly

strong solution but is not necessarily optimal, meaning that there is room

for further optimisation.

Figure 3.6: Example of shift. Customer 1 from the green route is relocated to
become the first customer in the black route.

Algorithm 4 The Shift mutation algorithm takes as input a Solution s.

procedure Shift Mutate(s)
for i← 0, intensityOfMutation ∗ numOfRoutes do

Route r ← selectRandomRoute(s)
Customer c← selectRandomCustomer(r)
r ← removeCustomerFromRoute(c, r)
s← insertCust(s, c) . See Algorithm 18 for workings of insertion.

end for
end procedure

Interchange Also proposed in the Savelsbergh paper [143], Interchange is a

heuristic which performs a swap on two customers from separate routes.

This heuristic can change the overall distance travelled, but not the number

of routes in a solution. An example of the Interchange heuristic can be found

in figure 3.7.

The pseudocode for this method is given in Algorithm 6. For each route, r,

the number of times a move is to be performed is defined as the value of the in-

tensityOfMutation parameter multiplied by the number of routes so that the level

of mutation is proportional to the size of the problem. In the pseudocode, it is

mentioned that the first customer, c1, is selected but does not give the details as to

how this occurs. The customer is selected through use of a metric that measures

how ‘out of place’ each customer is within r. This metric, score, calculates the

58

Algorithm 5 The insertCust(s,c) method which takes as input a solution s and
a customer c.

procedure insertCust(s, c)
if thereExistsFeasibleRoute(s, c) then

Customer,route c′, r ← selectBestInsertionPosition(s, c)
r ← insertBeforeCust(r, c, c′)

else
Routes R← getRoutes(s)
Route r ← createNewRoute()
r ← insertAtEnd(r, c)
R← {R : r}

end if
end procedure

Figure 3.7: Example of interchange. Customer 1 from the green route is swapped
with customer 1 from the black route. Correct ordering of all other customers is
maintained.

difference between the due dates of the customer preceding c1 and the customer

following c1. Then the euclidean distance difference is calculated between these

customers. This is added to the due date difference. Finally, the entire value is

multiplied by a random number between 0 and 1 to ensure that different customers

will be selected in different iterations of the algorithm.

The next element of the algorithm to be explained is how the ‘swap’ route, r2

is to be selected. The aim is to find a route in which the customers are ‘generally’

close to the customer to be inserted. This is to be the route where the second

customer will be selected. To select this route, a calculation is made for each

route, r’ in the solution. This calculation measures the average distance of all

customers within r’ to the previously chosen customer, c1. The route with the

lowest average distance is selected.

59

Following selection of the second route, r2, the second customer must be se-

lected from within r2. The same closeness measure is used to select the second

customer as was used to select the first customer. The customer in route r2 that

has the lowest sum of due date difference and euclidean distance from c1 will be

selected and swapped with c1.

Algorithm 6 The Interchange algorithm takes as input a Solution s.

procedure Interchange(s)
for all Route r in s do

timesToPerform← (numberOfRoutes ∗ intensityOfMutation)
for i← 0, timesToPerform do

Customer c1 ← selectF irstCustomer(r)
Route r2← selectSwapRoute(c1, s)
Customer c2 ← selectBestSwapCustomer(c1, r, r2)
r, r2← swapCustomers(c1, r, c2, r2)

end for
end for

end procedure

Ruin-recreate Heuristics

The concept of a ruin-recreate heuristic was first proposed in [144] by Schrimpf

et al. In that paper was also introduced the idea of radial ruin for the ruin stage

of the method. Using this method, a number of customers are selected to be re-

moved from the solution according to their proximity to a ‘base’ customer. The

rationale behind this approach is to identify customers that are ’close’ in terms of

their value for certain properties. By removing and re-inserting these customer,

an improved solution may be found without the need to substantially modify the

state of a solution every time this heuristic is called. Two proximity measures are

used here, those of euclidean distance and difference in time windows, which were

proposed by Schrimpf et al. [144]. Those measure, as well as the random selection

of a base customer, mirrors the method in [144]. The method here, though, dif-

fers in the selection of how many customers are to be removed from the solution.

Schrimpf et al. select a number at random between 0 and the total number of

customers. For this Hyflex method, customers are removed if their distance from

the base customer falls within a pre-determined limit. The limit in this domain is

chosen in such a way as to remove a large proportion, but not all, of a solution’s

customer when the intensityOfMutation parameter value is 1. If all customers

were removed, it would be no different from re-initialising the solution. This limit

is calculated using the following formula:

60

distanceLimit = intensityOfMutation*4
5
furthestFromDepot

The value of 4
5

is an arbitrarily chosen value which is designed to allow for a

large amount of mutation when required by the intensityOfMutation parameter

value. The value furthestFromDepot is the distance value between the depot of

the base customer and the customer furthest away from that depot. Following

the removal of customers from the solution, the recreate step commences. For

this implementation of the algorithm, in this stage each removed customer is

considered in the order they were removed and inserted back into the solution

using the insertCust(solution,customer) method described in Algorithm 5 above.

The pseudocode for this heuristic can be seen in Algorithm 7.

Algorithm 7 The Location-based Radial Ruin ruin-recreate algorithm takes as
input a Solution s.

procedure locationRR(s)
Customer baseC ← selectRandomCustomer(s)
distLimit← (intensityOfMutation ∗ 4

5
furthestFromDepot(s, baseC))

removedCusts← baseC
for all Customer c in s do

if calcDistance(c, basec) > distLimit then
s← removeCustFromSol(c, s)
removedCusts← c

end if
end for
for all Customer c in removedCusts do

s← insertCust(s, c)
end for

end procedure

Below are presented the two version of ruin-recreate available within this do-

main.

Time-based Radial Ruin [144] This heuristic follows the method given above.

For a proximity value, the difference between the current arrival times of the

benchmark customer and the customer under consideration is used. Where

this value is below the upper bound, which has been calculated as described

above, then the customer is removed from the solution.

Location-based Radial Ruin [144] For this version of a ruin-recreate heuris-

tic, the proximity value is calculated as the euclidean distance between the

benchmark customer and the customer under consideration. All other as-

pects of the method are the same as above.

61

Local Search Heuristics

As with mutation heuristics, local search heuristics are concerned with making

modifications to a solution, often in the form of swaps or insertions. However,

unlike mutation heuristics which will return a solution regardless of whether the

quality has improved or deteriorated, a local search heuristic will only return a

solution whose quality is equal or better than it was to begin with. Also known as

hill climbing heuristics, the methods presented in this category are a combination

of basic process and solution acceptance. All of the heuristics presented here (ex-

cept Two-opt*) follow a means of solution acceptance called ‘first-improvement’,

whereby the operator will accept the first solution found where the objective func-

tion value is superior or equal to the previous un-modified solution. The alternative

to this would be ‘best-improvement’ where all possible moves (or a certain sub-

set of moves) would be considered before choosing the resulting solution which

yielded the most significant improvement in objective function value. There were

two drawbacks seen in this method; firstly that it was more costly to perform

as a greater number of moves were often considered before a new solution was

accepted, secondly that accepting the ‘best’ solution could often lead to getting

stuck in a local optimum and be detrimental to the search as a whole. To clarify,

the ‘first-improvement’ operators used here will iteratively perform basic opera-

tions, be that a swap or otherwise, and will immediately accept any move that has

resulted in an objective function value equal or superior to that of the solution

before the move. It is important to note here that moves which result in an equal

objective function value are accepted, as well as improving moves. The decision to

allow this is motivated by the benefit of so-called ‘lateral’ moves which can have a

positive effect in diversifying the search by moving the search into a different area

and potentially escaping local optimum. All of these operators make use of the

‘depth of search’ parameter in the same way. It is used to determine how many

times the process of moves then acceptance will be repeated. In other words, it

determines how many new solutions will be accepted. The four heuristics in this

category are described in detail below.

Shift The basic mechanics of this heuristic are the same as that described in

the mutation heuristic category, as originally presented in [143]. That is to

say a customer is removed from one route and inserted into another route.

However there are a number of difference between the mutation and local

search versions of this heuristic. The key point for the local search version is

that information from the solution is used to aid selection of the customer for

removal. As before, the first stage of the algorithm is selection of a customer

to be removed. For the mutation heuristic, this is performed in a uniformly

62

random manner. Here, the starting route is still randomly chosen; however

the customer to be removed is selected by a metric that, for each customer

in the route, measures its distance between itself and the customers on ei-

ther side. The metric also includes a small element of randomness achieved

through use of the Java Random class to ensure that the same customer does

not repeatedly get selected. The customer in the route that has the greatest

value for this metric is determined to be most ‘out of place’ and is removed

from the route. The aim behind this is to remove customers that are con-

tributing most to the overall distance and hence hopefully lower the distance.

The method for selecting the insertion position for the removed customer

is the same as in the mutation heuristic as that method is already geared

toward solution improvement. Once a full move has been made, it is only ac-

cepted if it provides an improvement in objective function. This is in contrast

to the mutation version, where the resulting solution is always accepted.

Interchange This heuristic works the same as the mutation version with the

only difference being that a new solution is only accepted if it improves

the objective function value. For the mutation version, the new solution is

always accepted.

Two-opt* This heuristic, introduced in [130] by Potvin and Rousseau, operates

by swapping the end sections of two routes to create two new routes. This

powerful heuristic has the potential to improve the objective function both

in terms of distance travelled and number of routes required. The first stage

of this method is to select the two routes whose end sections are to be

swapped. This is done in a uniformly random way to allow for diversity

in the solutions created. The next stage is to select the start points for

each route. In this context, the start point refers to a customer for which

all customers following this customer will be placed at the end of the other

route. The selection of start points for the routes could be considered as a

‘best-improvement’ process. All possible start points for the two routes are

considered and then, once feasibility has been checked, are scored according

to the new objective function value that would result from swapping at these

points. This approach is used to give the highest quality solutions possible.

The combination of points that would give the best objective function value

is chosen and the swap is then performed. It was mentioned before that it

is possible for this heuristic to alter the number of routes in the solution.

The number of routes can be reduced in the situation where the start point

of one route is selected as the final visit to the depot (i.e. the final stop in

63

the route) and the start point of the other route is the first customer in that

route. The depth of search parameter is utilised here to control the number

of times this process is performed. Specifically, the process will be performed

depthOfSearch*numberOfRoutes times so that the number of applications is

proportional to the size of the solution. Pseudocode for this algorithm can

be seen in Algorithm 8.

Algorithm 8 The Two-opt* algorithm takes as input a Solution s.

procedure Two-opt*(s)
for i← 0, depthOfSearch ∗ numOfRoutes do

Solution s′ ← s
Route r1 ← selectRandomRoute(s)
Route r2 ← selectRandomRoute(s)
bestScore← getMaximumNumber()
Customer bestc1← −1
Customer bestc2← −1
for all Customer c1 in r1 do

for all Customer c2 in r2 do
score = calcSwapScore(c1, c2, r1, r2)
if score < bestScore then

bestScore← score
bestc1← c1
bestc2← c2

end if
end for

end for
s′ ← performSwap(bestc1, bestc2, r1, r2) . Perform swap of customers

following c1 in r1 with customers following c2 iin r2
if objFunc(s′) > objFunc(s) then

s← s′

end if
end for

end procedure

GENI GENI, which was proposed in [65] by Gendreau et al., could be seen as

similar to Shift in that it removes a customer from one route and relocates

that customer to another route. Selection of the routes is performed ran-

domly as with Shift. Selection of the customer to be removed is also similar,

with a metric used to find the most ‘out of place’ customer. The metric is

the same one that selects a customer in the above shift heuristic. Insertion

of this customer into a new route is where the GENI heuristic differs from

Shift. In Shift, a customer is placed into the best possible location in the

route, with ordering between customers being preserved. For GENI, the

customer is placed in between the two other customers in the route that it is

64

closest to (determined using the same metric as used to select the customer

to be removed) For purposes of clarity, these two customers shall be referred

to as c1 and c2 and the customer to be inserted as ic1. It will sometimes be

the case that the two closest customers are not currently sequential within

the route. This will require a re-ordering of customers in the route. The

customer to be inserted will be placed after c1 or c2, whichever occurs ear-

liest in the route sequence. For now, let’s assume it is c1. All customers

before c1 will maintain the same ordering. Customer c2 will be placed after

customer c1. Following this all remaining customers in the route will be

re-inserted into a position following customer c2. At each iteration of this

stage, the customer with closest proximity (again determined by the same

metric as above) is inserted at the end of the route. This process will be

repeated until all customers have been reinserted into the route. Once this

has been performed, the solution is checked for feasibility before being ac-

cepted if providing a superior or equal objective function score, or rejected

otherwise.

Crossover Heuristics

A crossover heuristic in HyFlex is one that takes two solutions as input and returns

a new solution derived from the inputs. This can often be done through methods

such as One-point, Two-point and Uniform crossover where the problem has a

simple binary representation. It would be fair to say that one main purpose of

crossover heuristics is to combine the strongest qualities from the two parents

in order to produce a superior child. This can either be forced, by having an

operator that cherry-picks the best elements of a solution, or through chance,

perhaps when a larger population is present and the expectation is that over time

solution quality will be driven higher. Two new heuristics are proposed for this

domain which between them cover both of these objectives. Each heuristic will be

described below in greater detail.

Combine The Combine heuristic selects a combination of routes from 2 parent

solutions to form a child solution. For this method, Combine determines

a percentage value, x in order to control how many routes are included

from the first solution. The percentage to be chosen, x is determined in a

uniformly random manner but is between the values of 25% and 75%. These

limits are selected arbitrarily to allow for a vast array of different solutions to

be generated by multiple applications of this heuristic. For each route, r, in

solution s1 (the solution to be used first, s1, is also determined randomly),

a random number is generated between 0 and 1. If the random number

65

for r is lower than x expressed as a decimal value, then r is included in

the new solution. Following this, then an attempt is made to insert routes

from the other parent solution into the child solution. The insertion is done

sequentially, from the first route in the solution to the nth. Each route

is inserted into the child solution if and only if it contains no customers

that already exist in that child solution as a result of insertions from the

first parent solution. Therefore all routes from the second solution that

contain no conflicts with previously inserted routes are inserted into the

child solution. Following this process, there will remain a set of customers

who are not currently in the child solution; the next step of the heuristic

is to insert these customers into the solution. These remaining customers

are inserted in the order they appear in their original routes. The insertion

position is determined through use of the insertCust method in Algorithm 5

(see the shift description). The resulting child solution is returned regardless

of whether it improves upon the objective function scores of the parent

solutions. See Algorithm 9 for pseudocode of this method.

Combine Long Combine Long is a crossover heuristic which shares the basic

property of Combine in that it selects routes from both solutions before at-

tempting insertion of remaining customers. The primary difference between

the two is that, where Combine chose routes effectively at random for in-

clusion, Combine Longest selects routes based upon their perceived quality.

In this case their quality is very simply defined by the number of customers

served by that route. The logic behind this is that longer routes are prefer-

able as they are more likely to lead to solutions with a lower overall distance

and less routes needed also. This selection of high quality elements of a

solution has the potential to yield strong child solutions. The first step of

this heuristic is to create a set of all routes from both parent solutions and

order this set by the ‘size’ of route. Following this ordering, the method

works through the list of routes, in decreasing order, and attempts to in-

sert the route into the child solution. As with Combine, a route will be

inserted if and only if there exists no conflicts between that route and the

routes already in the solution. A conflict, as above, is when the same cus-

tomer exists in both routes. After selection of all possible routes, then any

remaining un-inserted customers are inserted into the child solution in the

same manner as for Combine. Hopefully it can be seen that Combine Long

can be an effective heuristic by selecting elements of the parent solutions

which are deemed to have strong qualities. Attempting to pick the longest

routes from both solutions has the potential to create strong child solutions.

66

Algorithm 9 The Combine crossover heuristic which takes as input two solutions,
s1 and s2.

procedure Combine(s1, s2)
Solution first← s1
Solution second← s2
Solution newS ← createEmptySolution()
if randomNumber() < 0.5 then . Determine which solution will be

considered first
first← s2
second← s1

end if
randV al← randomNumberBetween(0.25, 0.75)
for all Route r in first do

if randomNumber() < randV al then
newS ← newS : r

end if
end for
for all Route r in second do

if randomNumber() < randV al then
if noCustomerConflicts(r, newS) then

newS ← newS : r
end if

end if
end for
List UnroutedC ← determineUnroutedCustomers(newS, s1)
for all Customer c in UnroutedC do

newS ← insertCust(c, newS)
end for
return newS

end procedure

67

However, there is a danger that strong routes will share similar properties

and customers and so conflicts could result in a large number of unrouted

customers. As above, the resulting child solution is accepted irrespective of

objective function value. The pseudocode for Combine Long can be seen in

Algorithm 10.

Algorithm 10 The Combine Long crossover heuristic which takes as input two
solutions, s1 and s2.

procedure Combine Long(s1, s2)
Solution newS ← createEmptySolution()
Routes← orderRoutesBySize(s1, s2)
for all Route r in Routes do

if noCustomerConflicts(r, newS) then
newS ← newS : r

end if
end for
List UnroutedC ← determineUnroutedCustomers(newS, s1)
for all Customer c in UnroutedC do

newS ← insertCust(c, newS)
end for
return newS

end procedure

3.5 Conclusion

This chapter has addressed the question of what are the necessary components of

a problem domain for hyper-heuristics. A basic definition of a problem domain

has been given, which splits domain components into 2 categories, Problem Rep-

resentation and Domain Tools. In addition, the question has been addressed of

what constitutes a ’good’ problem domain - in other words a problem domain that

is suitable and powerful for hyper-heuristics to operate on. For this, the different

components of a problem domain have been examined, with their relationships to

the hyper-heuristics that use them being discussed and analysed. From this work,

it has been established that there is a strong link between the tools provided by a

problem domain and the workings of a hyper-heuristic or other adaptive algorithm.

To further demonstrate the factors that influence the design of a problem do-

main for hyper-heuristics, and to provide a base domain for further work within

this thesis, a problem domain for the Vehicle Routing Problem with Time Win-

dows has been presented. The motivation behind the decisions for the various

domain components has been provided. The new contributions of the domain

68

were described, including the combination of many of the most successful low-

level heuristics from the literature, and the inclusion of 2 new crossover heuristics.

69

Chapter 4

Iterative Local Search

Approaches to Cross-domain

Optimisation

4.1 Introduction

The previous chapter began the main work of this thesis, i.e. the design of Ve-

hicle Routing Problem domains to be used by hyper-heuristics. A definition of

a problem domain was given, along with an analysis of the relationship between

a domain’s components and the hyper-heuristic that uses them. In order to al-

low informed designs of problem domains, it is also important to understand how

the workings of a hyper-heuristic can influence how successfully it interacts with

a domain. Hence, this chapter will address the question of ’Which qualities of a

hyper-heuristic can impact on its ability to utilise the tools of a problem domain?’.

In order to answer this, 2 hyper-heuristics will be proposed, with their origins be-

ing in differing research areas.

It is stated in the literature that an advantage to hyper-heuristics is their

ability to adapt to different problems and instances, with minimal manual tuning

needed. This poses an interesting question as to whether the qualities of a hyper-

heuristic can have a different impact on performance when operating on multiple

problems, as opposed to different instances of a single domain. Therefore, the work

in this chapter will focus initially on the operation of hyper-heuristics when tested

across 4 different problem domains. Following this, testing will be performed on

a single problem domain, the VRPTW. Through these 2 approaches, analysis will

be able to be performed on the ability of a hyper-heuristic to access a problem

domain’s tools successfully in both the context of multiple-domain and single-

70

domain testing. The details of these methods, as well as the HyFlex domain

described in the previous chapter, were accepted as a paper at the prestigious

GECCO conference [27].

4.2 Previous HyFlex Work

The first mention of the HyFlex framework can be found in [20]. Part of the article

is concerned with introducing the HyFlex framework and the initial four problem

domains that have been described in the previous chapter, those of Personnel

Scheduling, One-dimensional Bin Packing, Flow Shop and Maximum Satisfiability.

Further to this, several simple hyper-heuristics are proposed and compared to an

Iterated Local Search algorithm. In this case, the hyper-heuristics follow the

definition given in the first chapter of a heuristic which selects other heuristics.

All of the hyper-heuristics apply only the mutation heuristics as they are intended

to represent iterative perturbation hyper-heuristics so other categories of low-level

heuristic with more complicated operation are not required. For these hyper-

heuristics, each iteration of their run requires two stages. Firstly, the selection

and application of a low-level heuristic. From the definition of a hyper-heuristic

given in Chapter 1, that of a heuristic to select heuristics, the method used to

select low-level heuristics could be considered as the real ‘hyper-heuristic’ element

of these algorithms. For the work in [20], two techniques were used, which will

be described in detail below. Once the appropriate technique has chosen a low-

level heuristic, it is applied to the solution. Following this is the second stage,

solution acceptance. Solution acceptance is the task of determining whether a

new solution obtained through the application of a low-level heuristic should be

kept or discarded. Again, a number of methods were proposed, both deterministic

and non-deterministic, which will be described below.

4.2.1 Heuristic Selection Mechanisms

• Simple Random (RN) This selection mechanism simply selects a low-level

heuristic at random. There is no memory kept and no intelligence used.

The authors of [20] used it as a benchmark method, but noted that it can

be effective when paired with the correct solution acceptance criteria.

• Reinforcement Learning with Tabu Search (TS) This method, originally pro-

posed in [29], includes two main elements. One is the tabu search implied

by the name. Here, a tabu list is maintained which includes heuristics that

cannot be considered for selection at that iteration of the algorithm. Low-

level heuristics are placed into the tabu list if their application to a solution

71

results in a deterioration of that solution’s objective function value. The

heuristic will only remain in the tabu list temporarily. In addition to the

tabu search element of this algorithm is the reinforcement learning part. All

the low-level heuristics are ranked, with the highest ranked heuristic being

selected for application (assuming it is not in the tabu list.) As it is always

the highest rank chosen, this method is deterministic and could also be de-

scribed as greedy. Once a heuristic has been selected and applied to the

solution, it will then have its rank either increased or decreased depending

on whether it improved or deteriorated the objective function value for that

solution. As mentioned previously, a reduction in objective function value

will also result in the heuristic being placed in the tabu list.

4.2.2 Solution Acceptance Criteria

• Näıve Acceptance (NV) All improvements to the objective function result

in the solution being accepted. Should there be a deterioration in value, the

solution is accepted with a 50% probability. Again, this is a simple measure

but one that has been effective on many problems.

• Adaptive Acceptance (AA) As with Näıve Acceptance, Adaptive Accep-

tance, which was proposed in [86] will accept all solution showing an im-

provement in objective function value. An element of memory and intel-

ligence is used in determining whether deteriorations are accepted. This

determination is controlled through an acceptance rate, which attempts to

reflect whether or not the search is stuck in a local optimum. After every

0.1 second time period, the acceptance rate is either increased or decreased

by 5%. It is increased if there is no improvement in objective function value,

decreased otherwise.

• Great Deluge (GD) The Great Deluge method, proposed in [55], could be

described as the most complex of the three acceptance criteria. It is anal-

ogous to a rising water level, with the water level broadly representing the

acceptance rate. The level is determined by a formula, comprising elements

including the current iteration of the search, the initial objective function

value and the expected final value. The essence of this method is that ini-

tially almost all solutions are accepted; then, as the search progresses, fewer

solutions are accepted until near the end of the algorithm, when only solu-

tions with a value close to the final expected objective function value are

accepted. This is a deterministic method.

72

4.2.3 Iterated Local Search

As the authors of [20] note, the term Iterated Local Search (ILS) was first proposed

in [101]. The workings of the algorithm are simple to understand. It has three main

elements to each iteration. First is the mutation stage which involves randomly

selecting a low-level heuristic from a pool containing both the mutation and ruin-

recreate categories of heuristics. This heuristic is then applied to a copy of the

initial solution. Following this is the local search stage. For the work in [20]

all of the local search heuristics are applied to the solution. The applications are

performed independently and in a sequence that has been defined before the search.

Once all local search heuristics have been applied to the solution copy, then there is

the final solution acceptance stage. For this stage, the objective function value for

the solution copy is compared to the value for the initial solution before mutation

and local search heuristics were applied. If there has been an improvement in

objective function value, then the new solution is kept. Otherwise the solution is

discarded.

4.2.4 Experiments and Results

For the Burke et al article [20], three of the HyFlex problem domains were used

for testing. These are Flow Shop, One-dimensional Bin Packing and Personnel

Scheduling and for each problem domain 10 instances were chosen. The Iterated

Local Search algorithm was tested against 6 hyper-heuristics. These 6 come from

a combination of the 2 heuristic selection mechanisms and 3 solution acceptance

criteria. For scoring, two methods were used. The first was to simply rank the

algorithms for each instance on each problem domain. Therefore the best per-

forming algorithm for one instance would have the rank 1. The second method

used a score calculated by an equation used in the ROADEF operations research

competition. The equation considers the best and worst scores on each instance

when calculating a value. Full details can be found in [20]. Table 4.1 shows a

summary of the results found from that work.

From the results, it is evident that even this simple version of Iterated Local

Search is effective when compared with some hyper-heuristic approaches. Al-

though it only performs best on one domain, its overall average is significantly

better than the other algorithms’. It is also interesting to note that the adaptive

solution acceptance mechanism works well for the hyper-heuristics. However, the

randomised heuristic selection technique outperforms the tabu search approach,

which could be considered as surprising.

73

Algorithm Personnel Scheduling Bin Packing Flow Shop Average
ILS 3.9 (76.03) 1.7 (88.68) 2.7 (73.54) 2.77 (79.42)

TS+AA 3.5 (65.46) 2.2 (84.61) 4.8 (29.77) 3.50 (59.94)
TS+GD 6.0 (24.65) 2.7 (92.43) 2.9 (70.67) 3.87 (62.58)
TS+NV 3.4 (79.49) 5.0 (60.36) 4.9 (24.09) 4.43 (54.64)
RN+AA 2.5 (87.78) 3.5 (77.32) 3.9 (42.21) 3.30 (69.10)
RN+GD 5.6 (29.26) 6.6 (5.69) 2.1 (87.66) 4.77 (40.87)
RN+NV 2.4 (90.63) 6.3 (8.50) 4.9 (35.70) 4.53 (44.94)

Table 4.1: A table showing the results from the long track of the tests in [20]. The
average rank over the 10 instances of each domain is given, as well as an average
over all three domains. In brackets is the ROADEF score. Bold denotes best
rank/score.

4.3 Adaptive Iterated Local Search

From the work performed in [20], outlined above, it would seem that Iterated

Local Search (ILS) is a powerful algorithm with the potential to deliver robust

performance across multiple problem domains. Given its superior results over the

other hyper-heuristics presented, it would seem to be a good algorithmic frame-

work from which to develop further. It would seem that there is scope to add

greater sophistication to ILS. One such way of doing this would be to modify the

way in which mutation heuristics are selected. In the paper above, the selection

is made at random. However, the tools and information provided by the domain

allow for information about the results of applications of a mutation heuristic to

be used to intelligently select heuristics in future. Specifically, the tools that could

be used are the objective function values returned from applications of heuristics.

In addition the classification of heuristics into categories within HyFlex allows an

algorithm to examine the results of sequences of operations. For example, the re-

sults of the application of a mutation heuristic, followed by a local search heuristic.

There is already precedent for adaptively modifying the mutation stage of ILS

in the literature. In [163] an adaptive operator selection technique called Adaptive

Pursuit [162] is successfully used to adaptively select the scale of perturbation to

be made during the mutation stage of ILS. Although, that approach operated on

the perturbation step size rather than selection of mutation heuristic, it shows the

possibility of introducing adaptive measures into the mutation stage of ILS. In

this chapter, two extensions will be proposed to the ILS presented in [20]. Both

will concern how mutation heuristics are selected in the Iterated Local Search al-

gorithm. The first will utilise a method named Extreme Value Based Adaptive

Operator Selection [58], a method taht has been used in Evolutionary Computa-

tion algorithms, and the second is a hyper-heuristic named the Choice Function

74

[41]. The basic ILS algorithm used will be described in detail below followed by

descriptions of both variants of mutation heuristic selection. The pseudocode for

this ILS method can be seen in Algorithm 11.

4.3.1 Approach

Basic ILS Algorithm

The Iterated Search Algorithm used has the same basic framework as that de-

scribed above. It iterates through the stages of mutation heuristic application,

local search heuristic application and solution acceptance determination. The

stages operate as below.

• Mutation Heuristic Selection There are two variants for this stage. See sec-

tions 4.3.1 and 4.3.1 for further details. For both variants, at each iteration

a single mutation heuristic is selected and applied to a copy of the last so-

lution. This modified copy is then passed to the local search stage of the

algorithm. For this algorithm, a mutation heuristic is interpreted as a low-

level heuristic from a pool containing both the mutation and ruin-recreate

heuristics, as specified by HyFlex.

• Local Search Heuristic Selection In this local search stage of the algorithm,

all of the local search heuristics are independently applied to the mutated

solution from the previous stage. The resulting solution yielding the best

(lowest) objective function score is kept, with the others being discarded.

This method of application is known as Best Improvement although each

individual local search heuristic still operates in a First Improvement man-

ner.

• Solution Acceptance The solution acceptance criterion used for this algo-

rithm is a simple greedy method. If the objective function value of the copy

of the solution following the local search stage is superior (lower) than that

of the original solution before mutation, then the new solution is kept. Oth-

erwise it is simply discarded. The reason more sophisticated methods were

not used is that introducing a number of acceptance criteria would have

complicated analysis of results from testing as the main focus of the work

is to analyse methods for selection of mutation heuristics. Also these more

sophisticated methods have several control parameters that would have to

be tuned, adding complexity to the algorithm and potentially compromising

the robustness of the algorithm.

75

Algorithm 11 An adaptive iterative local search method for use in HyFlex.

procedure Adaptive Iterative Local Search
Solution s← initialiseSolution()
mutHScores← initialiseScores()
while timeHasNotExpired() do

Solution s′ ← s
mutHIndex← selectMutationHeuristic(mutHScores)
s′ ← applyHeuristic(mutHIndex, s′)
Solution s′′ ← s′

for i← 0, numberOfLSHeuristics() do
Solution s′′′ ← s′

s′′′ ← applyHeuristic(lsHeuristici, s
′)

if objFunc(s′′′) < objFunc(s′′) then
s′′ ← s′′′

end if
end for
s′ ← s′′

if objFunc(s′) < objFunc(s) then
s← s′

mutHScores← updateScores()
else

mutHScores← updateScores()
end if

end while
end procedure

76

Extreme Value Based Adaptive Operator Selection

This first method for selecting mutation heuristic comes from the Evolutionary

Computation literature and the area of Adaptive Operator Selection (AOS) [58].

AOS has two main elements, Credit Assignment and the Selection Mechanism.

Credit Assignment has its genesis in the 1980s [47] and is a term used to describe

how an operator may be awarded or punished for their performance. In the con-

text of this algorithm, performance is measured by the change in objective function

value after the application of a mutation heuristic. Typically, the operator may

be awarded or detracted points in proportion to the change in value. The method

used here, Extreme Value Based Adaptive Operator Selection (ExAOS)[58], oper-

ates on the principle that it is preferable to achieve large, if infrequent, gains in

solution quality rather than smaller yet more frequent gains. The method will

now be fully explained. The process is shown in pseudocode in Algorithm 12. The

credit assignment mechanism for ExAOS operates as follows.

For each operator (heuristic), a window of values is kept. Each value repre-

sents the change in objective function value from that application of the heuristic.

The window is of size s representing the preceding s applications of the mutation

heuristic. ExAOS assigns credit by selecting the largest value within the window

of value (i.e. the greatest improvement in objective function value over the last s

applications) and using this value as the credit to be given to that heuristic. The

window size here can control the trade-off between the immediate performance of a

heuristic and its past performance. Where the size is too low, important heuristics

can be overlooked as their strong results are discounted too quickly. To the other

extreme, a window size that is too large can cause single heuristics to dominate by

virtue of having a single very strong iteration and can similarly lead to effective

heuristics being overlooked. The value used for this implementation of ExAOS is

25, a value selected following preliminary testing of a number of possible values.

This value has been obtained through testing of different values and is believed to

provide a fair trade-off between the issues mentioned above. The choice of value

could merit further investigation to establish the extent to which the performance

of the algorithm depends on the value of the parameter.

The second element of the algorithm is the Selection Mechanism. At each it-

eration, this element selects an operator to be applied. The choice of operator

is based upon their credit, as designated by the previous stage of the algorithm.

The challenge for this element is to choose heuristics with a good chance of im-

proving the solution, whilst occasionally allowing heuristics that have previously

77

Algorithm 12 The Extreme-value Adaptive Operator Selection method [58],
which takes as input the current score windows for the mutation heuristics and
returns the index of the heuristic to use.

procedure Extreme Value Adaptive Operator Selec-
tion(mutHWindows)

bestScore← 0
bestMutH ← −1
for i← 0, numOfMutationHeuristics() do

if bestScoreInWindow(mutHWindowsi) > bestScore then
bestScore← bestScoreInWindow(mutHWindowsi)
bestMutH ← i

end if
end for
total← 0
for i← 0, numOfMutationHeuristics() do

if i == bestMutHH then
total← (total + (2 ∗ bestScoreInWindow(mutWindowsi)))

else
total← (total + bestScoreInWindow(mutWindowsi))

end if
end for
mutHProbs← 0
for i← 0, numOfMutationHeuristics() do

if i == bestMutHH then
mutHProbsi ← ((2 ∗ bestScoreInWindow(mutWindowsi))/total)

else
mutHProbsi ← (bestScoreInWindow(mutWindowsi)/total)

end if
end for
mutToUse← rouletteSelection(mutHProbs)
return mutToUse

end procedure

78

performed poorly to be applied. The logic behind this is that some heuristics may

perform poorly toward the start of the search but produce better results when the

search is further on. Therefore, it is not desirable to punish a heuristic for early

poor performance for the duration of the search. In practical terms, a selection

mechanism will usually assign probabilities to the operators proportional to their

credit. From these probabilities, an appropriate method will then be used to make

the final selection of a heuristic. The specific method to be used has been chosen

to fit the same philosophy as that behind the credit assignment mechanism. The

Adaptive Pursuit selection mechanism, adapted to selection of operators in [162],

assigns a higher probability to the operator which has the highest credit of all

operators. The probabilities for the other operators are accordingly assigned as

lower than their relative proportions would suggest. Again, this rewards the best

of the best in terms of objective function improvement. Once these probabilities

have been assigned, there is the question of how they should be used to actually

select an operator. Three methods for this task were proposed in [41]. Of these

the Roulette Wheel selection method is the one used here as it offers a simple but

representative means of selecting operators.

For Roulette Wheel Selection, each of the operators is assigned a chunk of a

figurative roulette wheel that is proportional to their probability value that has

been given by Adaptive Pursuit compared to the other operators. A random

number is then generated which is used to calculate at which point of the roulette

wheel the metaphorical ball should stop at and hence, which heuristic should be

selected for application. The pseudocode for roulette wheel selection can be seen

in Algorithm 13.

Algorithm 13 The Roulette Wheel Selection mechanism which takes as input a
set of probabilities. and returns an index representing the selection.

procedure Roulette Wheel Selection(Probs)
rand← generateRandomNumber() . Generate random number between 0

and 1.
total← 0
for i← 0, sizeOfList(Probs) do

total← (total + Probsi)
if rand < total then

return i
end if

end for
end procedure

79

Choice Function

The second method for mutation heuristic selection is a fairly recent proposal from

the hyper-heuristic literature. Named the Choice Function and first introduced

in [41], this method considers several measures of performance when selecting a

heuristic. They are described below.

• f1 The first of these measures is the recent performance of a heuristic. This

measure, f1, combines the changes in objective function value from the past

n applications of the heuristic. A parameter α controls the balance between

the most recent applications and those further back. The full formula can

be found in [41]. It is not necessary to maintain a list of the result of

previous applications as the information is automatically contained within

the f1 value.

• f2 The second measure is f2 and intends to capture how well pairs of heuris-

tics operate together. That is to say, it may be beneficial to frequently apply

heuristic x followed immediately by heuristic y as the changes they make

to the search space work well together. In practical terms, this requires

maintainance of a matrix of all combinations of heuristics. It is important

to treat the application of heuristic x then y as different to the application

of y then x. As with f1, a parameter is used to control the balance between

recent performance and past performance. This parameter, β, is a floating

point value between 0 and 1.

• f3 The third and final measure is that of the time taken since the last

application of a heuristic. For f3,time is represented as the number of nano

seconds since the last application of the heuristic. This is to ensure that a

heuristic doesn’t get forgotten as it may improve later in the search.

As well as the individual parameters for f1 and f2, there are parameters that

balance the importance of the three selection measures. These parameters, α,

β and ρ are floating point values that represent the importance of f1, f2 and f3

respectively within the final equation F that gives a score for each heuristic. The

parameter values used in the original work of [41] are used again here as they have

been selected carefully through experimentation and should represent a comple-

mentary set of values. These value are {0.9,0.1,1.5} for {α,β,ρ}. Other values

were not tested at this point but could be a subject of future testing.

Once the method described above has generated a score for a heuristic, this

score is then converted into a probability that represents the heuristic’s score

80

proportionally to the other heuristics. This is done in the same way as described

for the AOS method above (see Algorithm 12). When probabilities have been

generated for all operators, the roulette wheel selection mechanism described for

ExAOS and in Algorithm 13 above can be utilised to select a heuristic to apply.

4.3.2 Experiments

Problem Domains and Instances

The four original HyFlex problem domains have been used for testing of these

approaches. They are Personnel Scheduling, One-dimensional Bin Packing, Per-

mutation Flow Shop and Maximum Satisfiability. The Vehicle Routing Problem

with Time Windows domain proposed in the previous chapter is not tested as the

domain was not available at this stage in the testing. For each of these domains,

5 instances have been selected. Tables 4.2, 4.3 and 4.4 show which instances have

been used for 3 of the domains. For the Flow Shop domain, 5 of the more difficult

instances were chosen to provide a strong base for testing.

Instance Name Staff Shift Types Length(Days)
1 BCV-1.8.2 8 5 28
2 BCV-3.46.1 46 3 26
3 BCV-A.12.2 12 5 31
4 ERRVH-B 51 8 48
5 MER-A 54 12 48

Table 4.2: A table showing the instances used for the Personnel Scheduling prob-
lem.

Instance Name and Source Capacity No. Pieces
1 falkenauer/falk500-1[57] 150 500
2 falkenauer/bpt501-1[57] 100 501
3 schoenfield/schoenfieldhard1[8] 1000 160
4 1000/10-30/instance1[30] 150 1000
5 2000/10-50/instance1[30] 150 2000

Table 4.3: A table showing the instances used for the One-dimensional Bin Pack-
ing problem.

Test Details

As mentioned above, for each of the 4 domains, 5 instances have been used for

testing, meaning that 20 instances in all have been used. The instances have

been selected for each domain with reference to their components (e.g. number of

machines) in order to get a varied range of problems. For each of these instances,

81

Instance Name No. Variables No. Clauses
1 uf250-01 250 1065
2 sat05-486.reshuffled-07 700 3500
3 blocksworld/huge 459 7054
4 flat200-1 600 2237
5 s2w100-2 500 3100

Table 4.4: A table showing the instances used for the Maximum Satisfiability
problem.

10 runs have been performed for each algorithm, with the runs having an individual

length of 10 CPU minutes. This value was chosen to give sufficient time for the

algorithms to efficiently manipulate the search space without being so long as to

diminish the number of tests that can be run. The machine used for running these

tests was a PC running the Windows XP operating system. The machine has a

2.33GHz Intel(R) Core(TM)2 Duo CPU and 2GB of RAM. Three algorithms were

tested (two of which are variants of the same method). It is important to note that

no tuning of any sort has taken place in between instances and domains. Therefore

the algorithms are exactly the same versions for all tests. The algorithm variants

are:

• Uniform This is the baseline version of the Iterated Local Search algorithm

proposed in [20] and described in 4.2. The mutation heuristic selection for

Uniform is made uniformly at random.

• Adap-EV This variant of the basic ILS algorithm uses the Extreme Value

Based Adaptive Operator Selection method described in 4.3.1 and Algorithm

12 for the mutation stage of the algorithm.

• Adap-CF This varaint of the basic ILS algorithm uses the Choice Function

method described in 4.3.1 for selecting mutation heuristics in that stage of

the algorithm.

4.3.3 Results

Three forms of data analysis will be performed for the results. These are ordinal

data analysis, distribution of best objective function values and proximity to best

known solutions for the Personnel Scheduling domain.

Ordinal Data Analysis

One problem that can arise when comparing performance across multiple domains

is that the scale of magnitude of objective function values can vary significantly

82

for each domain. This can render many traditional comparison methods insuffi-

cient. Such a problem is discussed in [156] and a solution of scoring methods in

an ordinal way is proposed. In a simplified form, ordinal scoring would result in

algorithms being awarded scores based upon their rankings for each instance. An

advantage of this system is that the magnitude of the objective function value is

not used, only the performance of the algorithm relative to the other algorithms

for the same instance is used. Therefore it is a scoring measure that can be accu-

mulated across several domains and can be of particular use for situations such as

the testing performed here. The actual method of scoring chosen for use here is

the Borda Count method, proposed as a voting method by Jean-Charles de Borda

in 1770. For each instance used for testing, the Borda Count method assigns each

heuristic a score rik where 1 ≤ rik ≤ n. In this equation, rik is the rank for al-

gorithm k for instance i and n is the number of competing algorithms. To get a

total score across all instances, the following formula is used;

m∑
i=0

rik

where m is the number of instances. As this method uses the rank as a score,

the winning algorithm will be the one with the lowest aggregate score. The lowest

possible score across all 20 (m) instances from the 4 domains is 20; that is to

say a rank of 1 on each instance. Breaking it down further, the lowest score per

domain is 5 as there are 5 instances for each domain. To the other extreme, the

maximum possible scores are 15 for a domain and 60 in total. Of the 10 runs for

each instance, it is the average objective function score from these runs that is

used to calculate an algorithm’s rank for that instance. For analysis, the Borda

Count scores for the individual domains will be considered and these can be seen

in tables 4.5, 4.6, 4.7 and 4.8. Furthermore, table 4.9 and figure 4.1 show the total

Borda Count scores for the algorithms over all domains.

Instance Adap-EV Adap-CF Uniform
1 3 1 2
2 2 1 3
3 2 1 3
4 2 1 3
5 3 1 2

Total 12 5 13

Table 4.5: A table showing the Borda Count scores for the Flow Shop domain.

It can be noted from studying these results that the adaptive ILS variant

that uses Extreme Value Based Adaptive Operator Selection to select mutation

heuristics enjoys the overall strongest result. This algorithm has the lowest total

83

Instance Adap-EV Adap-CF Uniform
1 1 2 3
2 2 3 1
3 1 2 3
4 1 3 2
5 1 2 3

Total 6 12 12

Table 4.6: A table showing the Borda Count scores for the Bin Packing domain.

Instance Adap-EV Adap-CF Uniform
1 1 2 2
2 1 3 2
3 2 1 3
4 2 3 1
5 2 1 3

Total 8 10 11

Table 4.7: A table showing the Borda Count scores for the Maximum Satisfiability
domain.

score over the four domain, with 15% less points than the Adap-CF algorithm

and 24.4% less points than the original ILS algorithm, Uniform. Furthermore,

The Adap-EV algorithm demonstrates best performance on 3 of the 4 domains,

performing less well only on the Flow Shop domain. The Flow Shop instances are

taken from a single source, whereas the other domains’ instances are taken from

multiple datasets. Therefore, the poorer performance on this one domain could

be explained by the fact that there is less diversity in the instances and hence less

opportunity for the supposed robustness of Adap-EV to thrive. However, the fact

that the algorithm performs so strongly on the other domains suggests that it is

better able to adapt to changing problems and search landscapes than the other

tested algorithms.

It is now interesting to consider why Adap-EV outperforms the other ap-

proaches. It would seem clear that the addition of an adaptive mutation heuris-

tic selection mechanism improves the algorithm over Uniform by reacting to the

search in an on-line manner and intelligently using the available data to select ap-

propriate heuristics. This demonstrates how a hyper-heuristic can successfully use

the tools provided by a domain to navigate the search space of a problem. How-

ever, the Adap-CF algorithm also adaptively selects mutation heuristics yet still

performs worse than Adap-EV. One difference between the 2 adaptive algorithms

is that Adap-CF has more parameters to tune than Adap-EV. In fact, Adap-EV

only has a single parameter, that of window size. For each parameter, it can be

difficult to find a value that will work well over multiple problem domains. There-

84

Instance Adap-EV Adap-CF Uniform
1 1 3 2
2 1 3 2
3 2 3 1
4 1 2 3
5 3 2 1

Total 8 13 9

Table 4.8: A table showing the Borda Count scores for the Personnel Scheduling
domain.

Domain Adap-EV Adap-CF Uniform
Flow Shop 12 5 13

Bin Packing 6 12 12
MAX-SAT 8 10 11

Pers. Scheduling 8 13 9
Total 34 40 45

Table 4.9: A table showing the total Borda Count scores across all domains.

fore, when there are more parameters, as with Adap-CF, algorithms can become

over or under-tuned to particular domains. Further experimentation should be

done to establish whether different parameter value would lead to a better perfor-

mance for Adap-CF.

As was mentioned previously, the average result over 10 runs was used to

calculate ranks. This measure was chosen in order to fit in with the goals of

generality and robustness. In other words, it is desirable to measure performance

as a whole and not just the odd good result. However, Borda Count results for

the best of the 10 runs can be see in table 4.10. Note that the sum of the totals is

different to before as there were some ties for instances. On the whole, it can be

seen that the same ordering is maintained in terms of results and the magnitudes

are roughly similar.

Domain Adap-EV Adap-CF Uniform
Flow Shop 10 5 14

Bin Packing 7 11 10
MAX-SAT 8 9 9

Pers. Scheduling 8 11 10
Total 33 36 43

Table 4.10: A table showing the total Borda Count scores across all domains when
using the best result over the 10 runs per instance.

85

Figure 4.1: A graph showing the total Borda Count scores across all domains.

Analysis of Distribution of Objective Function Values

Not only is it important to analyse the performance of algorithms in terms of ranks

and their numeric performance, but it can also be useful to visualise the whole

range of results. For the testing performed here box plots have been used to view

the distribution of objective function values for individual instances. One instance

is shown for each problem domain with the plot for each algorithm demonstrating

the distribution of values over the 10 runs performed for the instance. The ‘box’

part of the plot shows the upper and lower quartiles with a line indicating the

median value. These plots can be seen in figures 4.2, 4.3, 4.4 and 4.5.

Figure 4.2: A plot showing the distribution of objective function values for instance
2 of the Flow Shop domain.

The same instance index (instance 2) was chosen for each domain so that the

86

Figure 4.3: A plot showing the distribution of objective function values for instance
2 of the Bin Packing domain.

results have not been cherry-picked. It can be observed that the overall picture is

similar to the results when analysed under the Borda Count method. It is once

again the Flow Shop domain that provides the largest deviation from the perceived

norm, with the Adap-CF method showing the strongest results. However, on the

other domains, it is the Adap-EV algorithm that has the lowest median and lower

quartile values. It is particularly interesting to see that in the Bin Packing domain,

the Adap-EV algorithm has a very narrow box. This indicates that the results for

this instance are within a narrow range which shows a high level of consistency

from the algorithm; a quality that is desirable in terms of achieving robustness.

Of course, the results have to be consistently strong, rather than just consistent

and it is pleasing that, in this case, they are. The reason behind this could, again,

be the lower number of parameters for Adap-EV which make the algorithm less

sensitive to different initial solutions and to different solution landscapes.

Comparison Against Best Known Results for Personnel Scheduling Do-

main

So far, comparison of the algorithms has only been with respect to each other.

Whilst useful, it doesn’t necessarily indicate performance compared to other state-

of-the-art work for the individual domains. It is worth bearing in mind that it

is not entirely the goal of this work to generate new ‘best-known’ solutions on

all problems tested, but more to generate solutions of high quality on a range of

problems with little to zero manual tuning performed in between runs. However,

it is still interesting to view how the performance does compare to the very best.

A single domain has been selected for this comparison; the Personnel Scheduling

87

Figure 4.4: A plot showing the distribution of objective function values for instance
2 of the Personnel Scheduling domain.

domain. There are several reasons for choosing this domain. Firstly, that it

includes a diverse set of complex instances including real world instances that

provide a test for the algorithms. Also, the objective function values for the best

known solutions are readily available (they can be found at [44]) meaning that

comparisons can easily be made. The results for the best performing algorithm

from above, Adap-EV, are compared to the best known results for the 5 Personnel

Scheduling instances in table 4.11.

Instance Name Adap-EV Best-known % Deviation
1 BCV-1.8.2 853 853 0
2 BCV-3.46.1 3301 3280 0.64
3 BCV-A.12.2 2003 1953 2.56
4 ERRVH-B 3177 3177 0
5 MER-A 9888 9915 -0.27

Table 4.11: A table showing the best objective function values for the Adap-EV
algorithm and the current best known results for the Personnel Scheduling domain.

The most interesting aspect of these results is that the Adap-EV algorithm has

obtained a (at the time of presentation of [27]) new best known solution for one

of the instances (MER-A). Being a general purpose algorithm which has not been

specifically tuned for the Personnel Scheduling domain, it would not necessarily

be expected to achieve best known solutions, so this is a promising result. It

should be noted, however, that this result has since been surpassed and is no

longer the best-known solution for this instance. As well as that one particularly

strong result, there are two instance where Adap-EV was able to match the best-

known solutions (BCV-1.8.2 and ERRVH-B.) On the remaining two instances,

88

Figure 4.5: A plot showing the distribution of objective function values for instance
2 of the Maximum Satisfiability domain.

the percentage differences of the objective function values from the best knowns

were low. Reading the results as a whole, there is significant encouragement that

Adap-EV is an adaptable and robust algorithm. Credit must also be given to the

problem domain for providing a strong set of heuristics with which to manipulate

the search space.

4.4 Adaptive Iterated Local Search for the Ve-

hicle Routing Problem

The work presented above showed how hyper-heuristics can utilise problem do-

main tools across multiple problem domains, by introducing an adaptive selection

mechanism for mutation heuristics into an Iterated Local Search algorithm. The

work to be presented now will pursue 2 natural extensions to this. Firstly, to de-

vise a method for selecting local search heuristics that operates adaptively, as with

the mutation heuristic selection. Secondly, to test these adaptive Iterated Local

Search algorithms on the Vehicle Routing Problem with Time Windows(VRPTW)

domain that was described in the previous chapter. This will enable analysis of the

influence of hyper-heuristic design on performance on a single problem domain.

4.4.1 Ordered Local Search Improvement to AdapEV

The base algorithm for all 3 variants to be tested here is the basic Iterated Local

Search algorithm described in section 4.3 above and named there as Uniform. One

of the algorithms tested uses this exact algorithm, with no modifications. Another

89

of them is the Adap-EV method described in the above section. The 3rd method

applies a modification to the local search stage of Adap-EV and is described in

this section.

Ordered Improvement Heuristic Selection within Iterated Local Search

In the previous section and for the first 2 algorithms to be tested here, the Local

Search stage of the ILS algorithm operated in a Best Improvement manner. In

short, all operators are independently applied with the resulting ‘best’ solution

being kept. The modification to be made here uses an adaptive measure to se-

lect local search heuristics based upon past performance with the aim being that

this use of search intelligence will result in improved solutions. Specifically, the

Local Search stage for this method will now apply all operators to a solution in a

particular sequence. This sequence is determined through reference to a heuris-

tic’s ‘score’. As mentioned previously, this score is based upon a heuristic’s past

performance. To be precise, the measure used to calculate a heuristic’s score is

the mean improvement in objective function value yielded from that heuristic over

all of that heuristic’s previous application within the search. The heuristics are

sorted in a decreasing order from the scores. Following creation of this sorted list,

the Local Search heuristics are then sequentially applied to the solution. Each re-

sulting new solution is kept and becomes the incumbent solution. The heuristics

are applied sequentially until one of the applications fails to yield an improvement

in objective function value or until all Local Search heuristics have been applied.

The entire process of the local search stage can be seen in Algorithm 14 and is

described below.

Algorithm 14 The ordered local search stage which takes as input a solution s
and a set of scores, LSScores, for the local search heuristics.

procedure Ordered Local Search(s, LSScores)
List lsOrd← orderV alues(LSScores)
for i← 0, lsOrd do

startScore← objFunc(s)
s← applyHeuristic(lsOrdi, s)
LSScoresi ← updateScore(startScore, i, LSScoresi)
if objFunc(s) >= startScore then

break
end if

end for
end procedure

• Sort all Local Search heuristics into an ordered list according to their mean

improvement in objective function value.

90

• For all heuristics in the list, and in the order of the list, do the following:

– Apply the heuristic to the incumbent solution, s0.

– Store the resulting new solution in s0.

– Update the heuristics score to include information from this previous

application.

– If there has been an improvement in objective function value, continue.

Otherwise, end the Local Search stage.

4.4.2 Experiments

Problem Domain and Instances

The tests performed in the previous section used the 4 original HyFlex problem

domains, Flow Shop, One-dimensional Bin Packing, Personnel Scheduling and

Maximum-Satisfiability. As the Iterated Local Search algorithm was shown to be

effective on these 4 domains, it will now be tested on the Vehicle Routing Problem

with Time Windows (VRPTW) domain that was described in the previous chapter

(chapter 3). As mentioned there, the VRPTW domain contains instances from 2

different sources, the Solomon dataset and the Gehring and Homberger dataset.

The exact instances used are shown in table 4.12.

Instance Name No. Vehicles Vehicle Cap. No. Custs.
0 Solomon/RC/RC207 25 1000 100
1 Solomon/R/R101 25 200 100
2 Solomon/RC/RC103 25 200 100
3 Solomon/R/R201 25 1000 100
4 Solomon/R/R106 25 200 100
5 Homberger/C/C1-10-1 250 200 1000
6 Homberger/RC/RC2-10-1 250 1000 1000
7 Homberger/R/R1-10-1 250 200 1000
8 Homberger/C/C1-10-8 250 200 1000
9 Homberger/RC/RC1-10-5 250 200 1000

Table 4.12: A table showing the VRPTW instances to be used for testing.

Test Details

The three variants of the algorithms to be tested will be run on all 10 instances

in table 4.12. There will be 20 runs for each instance and each run will last for 10

CPU minutes. These details mirror the settings used for the CHeSC competition

and are designed to give an accurate representation of the quality of an algorithm.

Three algorithms are to be tested and these are detailed below.

91

• Rnd-ILS This algorithm is exactly the same as the Uniform algorithm from

the previous section. It is the Basic ILS method with no adaptive selection

used in either the Mutation or Local Search stages.

• Ad-ILS This is the same algorithm as Adap-EV in the previous section. It

uses an adaptive operator selection method to select mutation heuristics in

that stage of ILS.

• AdOr-ILS This algorithm is the same as Adap-EV for all elements except

the Local Search stage. For that stage, the method described above is used

whereby each heuristic is assigned a score and ordered by this score. The

heuristics are then applied in this order.

4.4.3 Results

The results will be analysed in three ways in order to give a complete picture of

the algorithms’ performance. These are described separately below. It should be

noted that these methods haven’t been compared to some of the more advanced

in the literature (i.e. Misir et al. [110]) as many of those methods were proposed

after this work was completed.

Analysis of Mean Objective Function Values

The first form of analysis involves examining the actual objective function values

obtained from the runs. Table 4.13 shows the average objective function value

over all 20 runs for each instance along with the standard deviation.

Instance AdOr-ILS Ad-ILS Rnd-ILS
0 5281.71334.614 5406.48404.159 5292.43337.186

1 21291.89482.56 21212.60509.28 21054.87500.73

2 13605.03451.64 13932.67616.29 13827.54516.39

3 6564.42554.77 7055.26748.15 6760.62597.41

4 14280.79319.54 14549.22449.1 14600.09471.7

5 155305.466154.24 163041.7611226.39 180301.072921.14

6 77302.723384.83 79175.633431.57 82316.662326.49

7 163177.742100.09 164341.161550.06 169729.311721.3

8 158941.932460.71 163332.724314.93 172007.422055.46

9 149447.681500.9 150276.891644.28 153648.661079.4

Table 4.13: A table showing the average and standard deviation values for 20 runs
each of 10 VRPTW instances. Best result for each instance shown in bold.

From these results, it is clear to see that the AdOr-ILS algorithm with adaptive

ordering of the Local Search heuristics returns the best average objective function

values for 9 out of 10 VRPTW instances tested. The only instance where it is

92

outperformed is one of the simpler Solomon instances. On all of the more difficult

Gehring and Homberger instances, it is the fully adaptive AdOr-ILS that performs

best. From these results, it can also be observed that the same pattern is detected

as with the other domains. That is to say, the Ad-ILS algorithm with adaptive

selection of mutation heuristics outperforms the basic ILS algorithm, especially

for the latter 5 more difficult instances. Furthermore, by examining the standard

deviations obtained for all algorithms, it can be seen that the averages for the

best performing AdOr-ILS method are not reliant on single very good values but

in fact reflects a consistently strong performance. As well as producing lower

averages, the AdOrILS algorithm also enjoys a strong performance in terms of the

‘best’ results over the 20 runs, as is shown in table 4.14. As can be observed, the

AdOr-ILS algorithm in fact obtains the best ‘best’ result in all 10 of the instances

tested. It is also noticeable that for the harder Gehring and Homberger instances,

the gaps between the adaptive ILS variants and the original basic version are vast.

Instance AdOr-ILS Ad-ILS Rnd-ILS
0 5090.66 5096.18 5100.01
1 20637.71 20643.08 20651.79
2 13298.17 13353.00 13365.45
3 5316.05 6242.36 6231.25
4 13319.50 14262.90 14266.72
5 145639.37 148627.86 174262.54
6 71574.48 71893.52 77418.49
7 160007.17 161407.06 165921.55
8 154676.61 156902.59 169691.21
9 146929.46 147607.07 151656.56

Table 4.14: A table showing the best values obtained from 20 runs each of 10
VRPTW instances. Best result for each instance shown in bold.

Box Plot Analysis

As with the results for the previous work, a graphical form of analysis will be

presented here in the form of box-plots. These will allow examination of all 20 runs

of an instance as a whole, rather than just viewing the average or best results. 4

instances have been selected for representation in a box-plot. All of these instances

are from the harder Gehring and Homberger dataset. As before, the box plot

includes line representing the lower quartile, median and upper quartile values, as

well as crosses for outliers. The plots can be seen in figures 4.6, 4.7, 4.8 and 4.9.

One thing shown by these plots is the magnitude of the difference between

results for the adaptive ILS algorithms and for the basic ILS method. Furthermore,

if the ‘heights’ of the boxes are examined, it can be seen that the range of results for

93

Figure 4.6: A plot showing the distribution of objective function values for instance
5 of the VRPTW domain.

the AdOrILS algorithm are within a tighter band than for the Ad-ILS algorithm

so it would seem that the addition of an adaptive element for the Local Search

stage has yielded a greater consistency of result as well as a better overall quality.

Statistical Significance Tests

In addition to stating that the improvements made to the Local Search stage

of ILS have resulted in improved results in strict numeric terms, it is useful to

declare whether or not these results are at a level that can be statistically said to

be superior to the previous methods. Specifically, it is of interest as to whether

the newly described AdOr-ILS algorithm is statistically better than the Ad-ILS

algorithm. To test this, the two-sided Wilcoxon Signed Rank test will be used.

The Wilcoxon Signed Rank test is a paired difference test that considers differences

between ranks for pairs of data. In this case, the pairs of data are individual runs

for the 2 algorithms to be examined. The null hypothesis for this test is that there

is no difference between the algorithms. The test will be performed at a 95%

confidence level, meaning that a p value of less than 0.05 results in a rejection of

the null hypothesis. Therefore any instance that returns a p value of less than

0.05 can be said to represent an instance for which the AdOr-ILS algorithm is

statistically superior to Ad-ILS. Table 4.15 ahows the p values for the 10 VRP

instances tested.

From this table, it can be seen that statistical significance has been achieved

in 7 out of the 10 instances tested. This would imply that there is a strong case

for saying that the updated ILS with the addition of an adaptive Local Search

selection mechanism (AdOr-ILS) is superior to the previous version (Ad-ILS).

94

Figure 4.7: A plot showing the distribution of objective function values for instance
7 of the VRPTW domain.

Instance 0 1 2 3 4 5 6 7 8 9
p-value 0.017 0.455 0.023 0.021 0.005 0.04 0.086 0.048 0.005 0.126

Table 4.15: A table showing results from the two-sided Wilcoxon Signed Rank
Test for the 10 VRP instances. A p-value of less than 0.05 indicates a statistical
difference. This is highlighted in bold.

4.5 Conclusion

This chapter turned the tables on the question of problem domain design by con-

sidering how the design of a hyper-heuristic can influence its ability to successfully

utilise the tools provided by a problem domain. This question was sub-divided

to consider design for both multiple-domain and single-domain applications. Two

hyper-heuristics were presented, which demonstrated in different ways how some

domain tools could be used by a hyper-heuristic. The main domain tools utilised

here were the classification and access to low-level heuristics as well as the in-

formation received from the objective functions of domains. From the testing

performed on the 4 original HyFlex domains, it was shown that an Iterative Local

Search approach with an adaptive mutation heuristic selection mechanism based

on an Adaptive Operator Selection method performed better than one which used

a Choice Function method. Both these methods attempted to use information

gained from the search in order to make intelligent heuristic selection decisions.

The largest difference between these methods could be observed in the number

of parameters used for each algorithm. The extra parameters required for the

Choice Function method seemed to make it more difficult for the algorithm to

adapt to different problem domains. This would seem an interesting contribution

- that the number of a parameters used by a hyper-heuristic can impact on its

95

Figure 4.8: A plot showing the distribution of objective function values for instance
8 of the VRPTW domain.

ability to adapt to different problems when performing cross-domain optimisation.

As well as this cross-domain analysis, testing was performed on the VRPTW

domain presented in the previous chapter. For this, the Iterative Local Search

algorithm used for the cross-domain testing was augmented with an adaptive local

search heuristic selection mechanism. The question was whether using this extra

’information’ would allow the hyper-heuristic to better navigate the problem search

space. Results using this new approach demonstrated that the algorithm was able

to do this successfully and improve upon the results obtained by the Iterative Local

Search method which didn’t have the adaptive local search stage. These results

further show the relationship between a problem domain and a hyper-heuristic.

A problem domain must offer the tools, or information, to allow modification and

imporvement of solutions. However, the hyper-heuristic must still be designed in

such a way as to take advantage of these tools. The next chapter will investigate

further how this offering of extra information by a problem domain can benefit a

hyper-heuristic.

96

Figure 4.9: A plot showing the distribution of objective function values for instance
9 of the VRPTW domain.

97

Chapter 5

An Adaptive Memetic Algorithm

and Extensions to the Hyflex

Framework

5.1 Introduction

The previous chapter showed how tools and information offered by a problem do-

main to a hyper-heuristic could be used to navigate the search space and improve

solutions. This chapter will build further on this work by addressing the question

’How can extra tools and information offered by a problem domain be used by

a hyper-heuristic to improve results?’. To this end, a number of new additions

will be proposed for the HyFlex framework, designed to provide more data to

the hyper-heuristic to allow it to make more informed search decisions. One of

these additions in particular, a measure of ’distance’ between two solutions, will

be looked at in detail. By using this feature that is present in some genetic algo-

rithms, we will be able to analyse whether it can be provided in such a way as to

be useful to a hyper-heuristic also. These extensions and the algorithmic approach

described in the chapter were presented at the PPSN conference [117].

So far, the work that has been presented in this thesis has concentrated on

single-point hyper-heuristics. It is important to also consider how domain design

impacts upon performance of population-based approaches. There is a key ques-

tion about whether population-based methods are more, less or equally able to use

the tools provided by a domain during the search. To achieve this, a population-

based hyper-heuristic will be proposed and compared to the Iterative Local Search

of the previous chapter. Analysis will be performed of their interactions with the

domain.

98

5.2 Improvements to HyFlex framework

As was mentioned in chapter 3, one of the main motivations behind the intro-

duction of HyFlex was to provide a means for designers of hyper-heuristics to test

their algorithms across multiple problem domains and over a wide set of instances.

From work previously done that uses HyFlex and from the entrants of the first

CHeSC competition that uses the HyFlex framework (see section 5.6), it can be

seen that the term hyper-heuristic can be used to describe a vast range of meta-

heuristic approaches, from single-point multi-stage algorithms such as Iterated

Local Search to population-based approaches such as Evolutionary Algorithms.

From the definition of a hyper-heuristic given previously, ‘a heuristic which se-

lects other heuristics’, it can be stated that any algorithm that has an element of

heuristic selection (even an extremely simple method such as random selection)

can be considered a hyper-heuristic. The challenge HyFlex has is to ensure that

the correct range of tools are available for all varieties of algorithm. To this end,

a number of improvements and additions to the HyFlex framework are proposed

(originally described in [117]) with the intention of permitting a greater range of

methods to be implemented within the framework and a greater amount of data

to be available to the hyper-heuristics. Below, the modifications will be individu-

ally described with their motivations and practical workings. Following that will

be a full explanation of how the changes have been made for the Vehicle Routing

Problem with Time Windows (VRPTW) domain.

5.2.1 Additions

Distance between Solutions (Solution Diversity)

One branch of algorithms that can be well suited to an implementation in HyFlex

are Evolutionary Algorithms. As well as allowing a population of a size determined

by the user, the separation of different types of heuristics in HyFlex facilitates

development of this type of algorithm where, typically, different stages of the

Evolutionary Algorithm will require a different category of heuristic - for example,

mutation or crossover. However, there is one piece of information commonly used

in such algorithms that has been previously inaccessible in HyFlex, that being

a measure of the genotypic diversity between two solutions. Crucially, this can

be an important piece of information when assessing performance of mutation

heuristics. As its name would suggest, the purpose of a mutation heuristic is to

modify the solution in some way. It is not possible to deduce to what extent it

has done this without some measure of how ‘different’ a solution is to before the

modification. For example, in HyFlex, the intensityOfMutation parameter is used

99

to determine to what extent a mutation heuristic will modify a solution. Using a

distance measure, the relationship can be studied between the parameter value and

the mutation levels achieved by the heuristic. If increasing the parameter value

from 0.1 to 1 only provides a small increase in the extent to which a solution is

mutated, it could be implied that the affect of the parameter is small and its value

could be adjusted appropriately. This information is provided through HyFlex by

the addition of 2 methods to the interface, as described below.

• double getMaxDistance() This method is provided to account for the

fact that various distance measures will return results of different scales, not

neccessarily between 0 and 1. By providing a max value, the hyper-heuristic

designer can accurately analyse the distance value returned. The method

returns the maximum distance value, maxdist that can be returned by the

distanceSolutions method. It is provided to give greater information to

users for domains where distance may not be measured purely between 0

and 1.

• double distanceSolutions(int solutionIndex1, int solutionIndex2)

Returns a value between 0 and maxdist that represents the genotypic dis-

tance between solutions solutionIndex1 and solutionIndex2. A value of 0

indicates identical solutions and a value of maxdist represents the maximum

possible distance between solutions as measured by this method. A full de-

scription of its implementation for this domain will be provided later in the

chapter.

This is the first time a distance measure has been added to HyFlex and, as

such, there is scope for the concept to be extended in the future. One way to

do this would be to allow multiple distance measures to be available for each

domain. The hyper-heuristic could then select which measure to use; possibly in

an adaptive measure akin to those used for heuristic selection. As discussed in the

introduction to this chapter, the key to the success of a hyper-heuristic lies in the

data available to it and how it uses this data. By increasing the amount of data

available to a hyper-heuristic, there is potential for an increase in performance.

Access to Features of Objective Function

Previously in HyFlex, only a single value has been used to judge performance,

that of the objective function. For many problem domains and instances it may

be the case that this objective function has been composed of several measures

or scores for different ‘features’ of a solution. The objective function will often

be a weighted sum or assessed as a hierarchy. A solution feature can be defined

100

here as a non-trivial property of a solution. However, there are several reasons

why the designer of a hyper-heuristic or meta-heuristic may wish to know the

values for individual features. Firstly, should they wish to check the performance

of their algorithm against best known solutions, it is often necessary to break the

objective function down into its various components. As an example, solutions for

the Vehicle Routing Problem with Time Windows(VRPTW) are judged for qual-

ity primarily by examining the number of routes; then by considering the total

distance travelled. For hierarchical objectives such as this, allowing these feature

values to be easily accessed will faciliate assessment of an algorithm’s quality.

A second reason for wishing to access solution features may be in order to

devise different objective functions to the standard one used within a HyFlex do-

main. For some problems, it may be the case that different objective functions are

used for various instances or variations of a single problem. Further, the objective

function can often be used as an important driving force within the search. In [5],

the authors explore how modifications to objective functions and weights within

objective functions can be used to escape local minima within several problem

domains, including approaches in the Travelling Salesman Problem [168] and the

Maximum-Satisfiability Problem [146][91]. Some examples have used individual

solution features in isolation as the objective function for different parts of the

search. As an example, in [9], the first half of the search uses a Simulated Anneal-

ing approach to minimise the number of routes for Pickup and Delivery Vehicle

Routing Problems with Time Windows and Multiple Vehicles. The second half

of the search uses a Large Neighbourhood Search to minimise the total distance

travelled.

Finally, the work of Knowles et al. in [93] demonstrates that, even in a single-

objective problem, local optima can be escaped by transforming a problem into a

multi-objective problem. These examples show how important a new feature this

is and that it is a valuable new addition to the framework.

Two new methods have been added to the HyFlex interface to include these

new features. Again, their exact implementations for the VRPTW domain will be

described in a later section. The methods are:

• int getNumberOfFeatures() This method identifies the number of solu-

tion features available to the hyper-heuristic designer within the problem

domain. It returns an integer which represents the number of features for

this particular problem and instance.

101

• double getFeatureCost(int solutionIndex, int featureIndex) Returns

the value for the specified feature within the specified solution. The problem

domain documentation should state which feature has which index.

External Instances

While individual HyFlex domains aim to provide a wide set of problem instances

from a variety of sources, it is inevitable that they will not contain all instances

from all datasets. Furthermore, it can often be the case that an algorithm de-

signer will create their own variants of instances in order to test their method

on particular search landscapes. Therefore it would be desirable for HyFlex to

include a function which allows a user to upload their own instance for use within

the framework. For this purpose, a single method will be added (see below) that

allows a user to do this. The instance must follow the same file format as the

other instances for the problem domain. The following method is the one to be

used for this new feature:

• boolean loadInstanceFromFile(String fileName) Loads an instance

from the location fileName in the local file system in the same manner as an

instance is loaded by index. This instance becomes the current instance to

be operated on. True is returned if the instance is successfully loaded. False

is returned if the loading has not been successful.

Saving and Loading of Solutions to/from Files

There are several reasons why an algorithm designer may wish to save a solution

to a file and/or load it into a search at a future date. One example may be the case

where one algorithm is originally used to operate on a solution, before a second

algorithm is then utilised. An additional example would be where multiple single

point searches are used to generate a number of solutions to be saved. These

solutions could then be loaded into an Evolutionary or Genetic algorithm as a

seed population. Through methods such as these, this can prove an important

addition to HyFlex which can improve solution quality. Two methods have been

added to the framework to allow this. They are as follows.

• boolean saveSolutionToFile(String fileName, int solutionIndex) This

method will save the solution currently at index solutionIndex within the

HyFlex domain into a file to be saved at location fileName within local

hardware memory. True will be returned if the operation is successful and

false otherwise.

102

• loadSolutionFromFile(String fileName, int solutionIndex) This method

will load a solution from the local file fileName into the domain at index so-

lutionIndex. True will be returned if the operation has been successful and

false otherwise.

5.2.2 Definition of ’Distance’ for HyFlex Domains

The following section of this chapter will describe an implementation of the HyFlex

additions for the VRPTW domain. Firstly, though, this section shall contain a

discussion of how distance could be defined for the initial 4 HyFlex domains -

Permutation Flow Shop, Personnel Scheduling, One-dimensional Bin Packing and

Maximum Satisfiability (MAX-SAT). By providing definitions for all domains, the

contribution to understanding can be extended and future implementation can be

facilitated. These will now be discussed separately below.

Permutation Flow Shop

Permutation Flow Shop is the problem of ordering a set of n jobs which have to

be processed on a set of m machines in a set sequence. Two distance measures

for this problem are proposed by Portmann and Vignier in [128]. One is base on

common edges between solutions. As this problemm is a permutation-based rep-

resentation, an edge can be considered as two consecutive jobs within a solution.

If both solutions have these consecutive jobs in the same order, it is considered

a common edge. The relative position of the jobs is not relevant. The second

method considers precedence of jobs and looks for situations where similar prece-

dence of jobs is maintained between solutions. Both of these measures proposed in

[128] are designed to work on a 2 parent, 1 child situation. However, for distance

in HyFlex we are only comparing two solutions. The second measure described

above has different points awarded depending on whether the child solution has

matching precedence to one, or both of the parents. This points system would

be watered down in the HyFlex version and potentially be less effective. What

we propose for this domain is to use the first method described above to compare

common edges between solutions as this would not be adversly impacted by only

having 2 solutions to compare. The following formula would be used to calculate

a score between 0 and 1 for distance:

distance = totalEdges−commonEdges
totalEdges

103

Personnel Scheduling

The Personnel Scheduling domain in HyFlex is unique in that it allows for repre-

sentation of many different permutations of nurse rostering problems, with many

different constraints and objectives being permitted. As such, it is difficult to

use standard literature methods in this context. A new distance measure for the

HyFlex domain is proposed here. This measure compares the number of common

shifts between 2 solutions. To explain further, a common shift would be a case

where, in both solutions, the same employee has a shift of the same length at the

same time. The formula below (which is similar to that for the Flow Shop domain)

gives a value between 0 and 1:

distance = totalShifts−commonShifts
totalShifts

One-dimensional Bin Packing

The One-dimensional Bin Packing problem is the problem of fitting a number of

items with different weights into bins of a fixed size. It would seem that, as the

ordering of items within a bin is not important, it would not make sense to use

an edge-based approach as above. Instead, it is proposed to consider the weights

of each item within a bin. If a bin in one solution has a set of items with weights

w 0..wk where k is the number of items in the bin, then there is a ’common bin’ if

there is a bin in the other solution with an identical set of items and weights. This

will be quick to compute and give a simple measure of similarity to the hyper-

heuristic. Again, the following formula is used to give a score between 0 and 1:

distance = totalBins−commonBins
totalBins

Maximum Satisfiability (MAX-SAT)

The MAX-SAT problem is that of determining a set of values for boolean vari-

ables to attempt to satisfy the maximum number of boolean clauses. Owing to its

simple representation of boolean string, an ideal distance measure for this domain

may be to follow the approach of Zhang et al. in [173]. There, the Hamming

distance is suggested. The Hamming distance calculates the number of identical

bits in two strings (taking into account position also). This would be useful for

MAX-SAT as the Hamming distance will count the number of variables with the

same boolean variable in bothe solutions. As above, the below formula can be

used to translate the Hamming distance into a value between 0 and 1:

distance = totalV ariables−identicalV ariables
totalV ariables

104

5.2.3 Implementation of Additions in VRPTW Domain

The previous section detailed the additions that have been made to the HyFlex

framework. This section shall explain how these additions have been implemented

for the Vehicle Routing Problem with Time Windows (VRPTW) domain. The

original domain is described in chapter 3.

Distance between Solutions (Solution Diversity)

The aim of the implementation of a distance measure for the VRPTW domain is

to provide an accurate measure of solution distance without the need for lengthy

computation. In [95], several methods are proposed and analysed for measur-

ing the genotypic distance between solutions for the Capacitated Vehicle Routing

Problem (CVRP). Among the proposed methods is one that was originally pro-

posed in the Travelling Salesman Problem (TSP) literature [14]. For the TSP,

this measure evaluates the number of common edges between 2 solutions in order

to give a ‘distance’ value. An edge in the TSP can be defined as a link between

two cities/nodes. This is the same for the CVRP and for the VRPTW with the

slight clarification that it is an undirected link between 2 customers (or possibly

a depot). A slight simplification of the method proposed in [95] is used here, in

order to allow for quick execution during run-time. The formula to calculate the

‘distance’ value is as follows.

distance = totalEdges−commonEdges
totalEdges

This formula gives a value between 0 and 1 (hence the value returned for

maxdist by the getMaxDist() method is 1) for the genotypic distance between two

solutions.

Access to Features of Objective Function

There are three solution features available for this VRPTW domain. They can be

accessed through the getFeatureCost() method with the appropriate index. The

features provided are designed to give an algorithm sufficient data to be able

to control the search and objective function to a desirable level. In addition,

the features provided allow simple comparison to best-known solutions for the

VRPTW instances provided and any external instances that compare performance

using the same measures. The features are as follows.

• No. of Routes (Index 0) This feature represents the number of routes (or

vehicles) used in the current solution. It is included as it is the primary

105

objective to be minimised for the majority of benchmark instances for the

VRPTW.

• Total Distance Travelled (Index 1) This feature is included as the distance

is often used as the secondary objective for the VRPTW. This feature rep-

resents the total distance travelled over all routes, including travel from and

to the depot. As a reminder, the distance between two customers (or a

customer and a depot) within the context of this domain is defined as the

euclidean distance between the co-ordinates of the customers (or depot).

• Length of Shortest Route (Index 2) This feature represents the minimum

length of a route in the current solution. Length here is defined as the number

of customers in a route plus the number of visits to the depot (always 2).

This feature is included as it can be a useful measure in driving the search

through the objective function. By identifying whether a route has a very

low ‘length’, it can be decided whether the search is close to removing a

route.

External Instances

Any VRPTW instance following the Solomon file format can be loaded into this

domain. The format is explained in detail in section 3.4.2 of Chapter 3 but a brief

summary is given below.

• Name of Instance

• Vehicle Constraints Number of vehicles, vehicle capacity.

• Customer Data Customer number, X co-ordinate, Y co-ordinate, demand,

ready time, due date, service time.

Saving and Loading of Solutions

In order to save and load solutions to/from files, the methods described above

(saveSolutionToFile(), loadSolutionFromFile) should be used. The solution will

be saved in a format that, for each customer in each route, stores information

such as the arrival time and waiting time for that customer as well as the general

information such as location id and demand.

106

5.3 Population-based Approach to the VRPTW

which uses Solution Distance

As discussed in the introduction, there will be two main goals for this chapter.

The first will be to show that a population-based algorithm can operate effectively

on the HyFlex framework in general and, in particular, on the VRPTW domain.

This will be judged in reference to its performance when compared to the best

Iterated Local Search (ILS) approach described in the previous chapter. Further

comparisons will be drawn between the new approaches and current best-known

data for the instances used. In addition to these two comparisons, the results from

the algorithms will be pitched against the best-performing competitors from the

first CHeSC hyper-heuristic competition to illustrate whether strong performance

has been obtained against a wide variety of high-quality algorithms. The second

goal is to demonstrate a way in which the additions to the HyFlex framework may

be used to improve performance and to implement a wider range of algorithms.

Specifically, an algorithm variant will be designed that utilises the new measure

of solution distance in order to assess the effectiveness of the mutation heuristics

that have been applied. This is an approach that would not previously have been

possible to implement in HyFlex.

In this section, the algorithms to be tested shall be described. To begin with, a

recap of the workings of the ILS algorithm will be provided. Following this, a new

Adaptive Memetic Algorithm will be proposed and described. Also described shall

be the variant of the memetic algorithm which makes use of the solution distance

measure.

5.3.1 Adaptive Iterated Local Search

The algorithm to be tested here is the Adaptive Iterated Local Search described

in the previous chapter (see section 4.4.1) which includes adaptive techniques for

selection of both the mutation and local search heuristics. The workings of the

algorithm are described there in detail but are summarised briefly below.

• Repeat the following

– Mutation An Extreme Value-based Adaptive Operator Selection mech-

anism is used to select a single Mutation heuristic to be applied based

upon how they have previously impacted objective function values.

This heuristic is applied to the incumbent solution s to create a working

solution s0.

107

– Local Search During this stage, the Local Search heuristics are ini-

tially ordered using a measure of their average performance over pre-

vious applications. Using this ordering, they are then applied in turn

to the working solution, s0, until an application does not yield an im-

provement in objective function value.

– Solution Acceptance The new solution, s0, is accepted if its objective

function value is superior (lower) than that of the solution before the

mutation stage (s).

• Until time limit has been reached.

5.3.2 Adaptive Memetic Algorithm

In order to demonstrate the potential the HyFlex framework has to accommodate

population-based algorithms, methods from the field of Adaptive Memetic Algo-

rithms [119] have been selected. Rather than using a completely different branch

of algorithms, it would be more accurate to state that the memetic algorithms to

be proposed are an extension of the ILS algorithm described previously. These

algorithms follow the same basic structure as ILS, with the additions of a popula-

tion and the use of crossover heuristics. The choice of algorithm is inspired by the

work of the previous chapter, which showed that a simple framework with few pa-

rameters can effectively adapt to differing problems. The use of adaptive selection

mechanisms will remain and is the key element that allows these algorithms to be

considered hyper-heuristics. Below, the separate stages of the Adaptive Memetic

Algorithm will be described. Firstly, though, it must be explained that the algo-

rithm contains a population of size j. The first stage of the algorithm is to initialise

all members of the population after which a loop is entered. This loop continues

until the time limit for the run is met. Preliminary experiments with a small set of

possible population sizes were performed and indicated that a population size of

4 provided a sufficient opportunity for solution diversity without taking up large

amounts of resources at each iteration of the loop.

Crossover Heuristic Application

The crossover stage of this algorithm could be described as a greedy method. A

greedy mechanism is selected as the population size of 4 is low and computation

time will not be affected to a great extent. As mentioned in the initial HyFlex

description, each crossover heuristic receives two solution indices as input. These

could be described as parent solutions. In this crossover stage, for each solution in

the population, the application of a crossover heuristic with every other solution is

108

considered. As an example, for this algorithm where there is a population size of

4, the current working solution separately applies a crossover heuristic with itself

and each of the remaining 3 solutions as inputs. In all current HyFlex domain, the

number of available crossover heuristics is low (¡=2). Therefore a sophisticated

selection mechanism would be somewhat wasted on this stage of the algorithm.

For that reason, for each of these independent applications, a crossover heuristic

is chosen uniformly at random to be applied.

The objective function values for the solution after each heuristic application

are stored. After all applications of a crossover heuristic for a particular solution,

the resulting solution with the lowest(i.e. superior) objective function score is

selected as the solution to be kept. The entire procedure is described in Algorithm

15.

Algorithm 15 The crossover heuristic stage sub-routine for the memetic algo-
rithm which takes as input the set of solutions, S, in the population.

procedure Crossover Stage(S)
for all Solution s in S do

for all Solution s′ in S do
if s! = s′ then . If not the same solution

Solution s′′ ← applyRandomCrossoverHeuristic(s, s′)
if objFunc(s′′) < objFunc(s) then

s← s′′

end if
end if

end for
end for

end procedure

Mutation Heuristic Selection

Following the crossover stage of the algorithm, a loop of the population members

is entered. During this loop, each population member is the subject of an appli-

cation of a mutation heuristic, followed by the local search stage which includes

multiple applications of local search heuristics. Both of these stages use the same

means of rewarding heuristics, but differ slightly in their structures. A conclusion

drawn from the previous chapter was that simple methods of selecting heuris-

tics allowed a high level of adaptability to different problems. For that reason, a

simple method is used here also. Further, it is a deliberately simplistic method

in order to allow basic examination of the feasibility of basic population-based

methodologies for the HyFlex domain. In addition, the simplistic measure allows

for speed of execution, permitting greater numbers of iterations to be performed.

109

The basic method of reward is that a heuristic which yields an improvement in

objective function score receives a single point. A single point is used so that an

operator receives some reward for improving a solution but not so much that it

can overpower other heuristics.

It is important to emphasise a particular point. The application of a mutation

heuristic is not necessarily expected to yield an improvement in objective function

value, but instead to change or mutate the solution. Thus, it would be meaningless

to reward a mutation heuristic for its ability or lack thereof to immediately im-

prove a solution. Instead, the mutation heuristics are, in this algorithm (a variant

will be proposed later in this chapter that uses solution distance as a performance

measure), judged on whether an improvement in objective function value is found

after both the mutation and local search stages. In such a way, the aim is to

reward mutation heuristics that modify solutions in a fashion that provides them

with the potential to improve.

At each iteration, a single mutation heuristic is selected to be applied by us-

ing the scores of all mutation heuristics. The previously mentioned Roulette

Wheel Selection mechanism (see Algorithm 13 in Chapter 4) is used to translate

the scores into a choice of heuristic. This mechanism works by assigning each

heuristic a ‘chunk’ of a figurative roulette wheel, with a size proportional to that

heuristic’s score in relation to the total scores across all heuristics. A random

number generator is then used to navigate around the roulette wheel. The heuris-

tic located at the relevant point of the roulette wheel is selected to be applied.

The final point of interest regarding this scoring and selection mechanism is

that the score for a heuristic must have an initial seed value. If any heuristic

started with a value of 0, it could never be selected under the roulette wheel

selection mechanism. For the mutation heuristics, the initial value is set as 1, so

that there is an equal probability of selecting each heuristic to begin with. The

value is set low as the mutation heuristics are called infrequently and so low values

are required to achieve meaningful results.

Local Search Stage

The local search stage of this algorithm uses the same scoring system for heuristics

as the mutation stage for the same reasons of simplicity and desire for less use

of parameters. However, there are subtle differences in the implementation. The

overriding reason for these differences is the differing way the stages operate. It

110

was explained in the previous section that a single mutation heuristic is selected

and applied at each iteration. The local search stage contains many more appli-

cations of heuristics within a single iteration as the over-riding goal is to improve

a solution, not mutate a solution. The mutation can be necessary to enable im-

provement but when applied too often can hinder improvement.

The goal of the stage is to ensure that a local optimum has been reached.

To this end, a tracker keeps stock of how many local search heuristic applications

have occurred since the last improvement in objective function score. Local search

heuristics are repeatedly selected by the roulette wheel mechanism, then applied

to the solution until the limit (maxIterations) of non-improving applications has

been reached. Following preliminary testing of a variety of values, a value for

maxIterations of 40 has been used, to provide a balance between allowing sufficient

time for improvements to be found, and not using a surplus of processing time.

The seed score given to each of the heuristics is 100 for the local search stage.

This is because there are many more applications of local search heuristics than

mutation heuristics and if the seed value is not sufficiently high then it is easy for

one heuristic to dominate the selection. The values proposed here appear to work

well for the instances tested. However, should the set of instances be expanded,

it could be that they are no longer appropriate. Further investigation could be

undertaken to establish the sensitivity of the values. Pseudocode for the local

search stage can be seen in Algorithm 16.

Algorithm 16 The local search stage sub-routine for the memetic algorithm which
takes as input the a solution, s, in the population and the set of scores, ScoreLS
for the local search heuristics.

procedure Local Search Stage(s, ScoreLS)
intsSinceImprovement← 0
iterationLimit← 40
while intsSinceImprovement < iterationLimit do

LSHeuristic i← rouletteSelection(ScoreLS)
s′ ← applyHeuristic(i, s)
if objFunc(s′) < objFunc(s) then

s← s′

scoreLSi ← scoreLSi + 1
end if

end while
end procedure

111

Overview of Algorithm

The previous sections have described the precise details of the main stages of the

Adaptive Memetic Algorithm. This section will outline how the individual stages

fit in to the algorithm as a whole. As explained previously, the algorithm follows

the same basic structure as for Iterated Local Search, that of a mutation, followed

by a local search stage and a solution acceptance decision. The structure here

is the same with the addition of a population, and a crossover stage. The entire

process is shown in Algorithm 17.

Algorithm 17 A memetic algorithm for use in HyFlex.

procedure Memetic Algorithm
popSize← 4 . Population size
for i← 0, popSize do

Solution si ← initialiseSolution(i)
end for
for i← 0, noOfMutHeuristics do . For the no. of mutation heuristics

scoreMuti ← 1 . The ‘score’ for mut heuristic i
end for
for i← 0, noOfLSHeuristics do . For the no. of local search heuristics

scoreLSi ← 100 . The ‘score’ for LS heuristic i
end for
while timeHasNotExpired() do

for i← 0, popSize do
si ← crossoverStage(S)
Solution tempSol← si
mutHIndex← rouletteSelection(ScoreMut)
tempSol← applyHeuristic(mutHIndex, tempSol)
tempSol← localSearchStage(tempSol, ScoreLS)
if objFunc(tempSol) < objFunc(si) then

si ← tempSol
scoreMutmutHIndex← scoreMutmutHindex+ 1

end if
end for

end while
end procedure

5.3.3 Diversity Variant

The above section has outlined the basic workings of the Adaptive Memetic Al-

gorithm. For the memetic algorithm, a simple reinforcement learning technique

has been utilised to reward successful heuristics. For the ILS described in the

previous chapter, an Adaptive Operator Selection technique has been applied. In

this section, a more sophisticated technique will be described which not only con-

112

siders any improvement in objective function value, but also considers to what

extent a mutation heuristic can modify a solution. To judge the extent to which

a solution has been modified, the newly introduced diversity function of HyFlex

can be used. This method will be used for both the mutation and local search

stages. The idea to consider both diversity and objective function improvement

was proposed initially in [103]; however the method to be used here was proposed

first as the ‘Compass’ mechanism in [104]. In the [104] paper, vectors are used

which represent objective function improvement and diversity along with a vector

representing the direction of the search. In other words, this final vector controls

the balance between exploration and exploitation in the search.

The actual implementation used here differs from that used for ‘Compass’.

A simplified method has been used in order to work better toward the goals of

robustness and flexibility that a hyper-heuristic should demonstrate. In keeping

with the findings of the previous chapter, only a single parameter is used for this

version of the algorithm. The method works by recording the mean objective func-

tion improvement and mean diversity value over all applications of a heuristic. To

calculate a score for a heuristic, which can be used for heuristic selection, a pa-

rameter c is used. This parameter represents the balance between the importance

of objective function improvement and solution diversity for a heuristic and is a

value between 0 and 1. To show the workings explicitly, the following formula is

used to calculate the score for a heuristic.

score = c*meanObjImprovement + (1-c)*meanDiversity

Once these scores have been calculated for all operators, then the previously

described Roulette Wheel Selection mechanism is used to select a heuristic to be

applied. For the mutation heuristics, a value for c of 0.1 was selected, to ensure

that the heuristics were judged almost entirely on their ability to mutate a solution,

with some small regard paid to their potential to improve on objective function

score following the local search stage. For the local search stage, a c value of

0.9 was selected. This value was selected in order that the focus for this set of

heuristics would be on improving objective function value for a solution. The

parameter value is set at a little under 1 as it may be advantageous for the local

search heuristics to show the ability to mutate the solution a little. For example,

a heuristic may modify a solution in such a way that the objective function score

remains the same but the actual solution differs genetically from the previous

solution. In this sort of circumstance, it may then be easier in the future to find

gains.

113

5.4 Experiments

5.4.1 Instances

All testing will be performed on the Vehicle Routing Problem with Time Windows

(VRPTW) domain as the new features of HyFlex are currently only available

for this domain. The same instances will be used that were used for the work

in the previous chapter. That is, 5 instances from the Solomon dataset, and 5

from the Gehring and Homberger dataset. The table from the previous chapter is

reproduced here (table 5.1) for ease of reading. These instances have been selected

to represent a range of instances within the VRPTW.

Instance Name No. Vehicles Vehicle Cap. No. Custs.
0 Solomon/RC/RC207 25 1000 100
1 Solomon/R/R101 25 200 100
2 Solomon/RC/RC103 25 200 100
3 Solomon/R/R201 25 1000 100
4 Solomon/R/R106 25 200 100
5 Homberger/C/C1-10-1 250 200 1000
6 Homberger/RC/RC2-10-1 250 1000 1000
7 Homberger/R/R1-10-1 250 200 1000
8 Homberger/C/C1-10-8 250 200 1000
9 Homberger/RC/RC1-10-5 250 200 1000

Table 5.1: A table showing the VRPTW instances to be used for testing.

5.4.2 Test Details

This section shall consider only the algorithms mentioned above and comparisons

between those algorithms as well as to best-known solutions. A separate section

shall consider the results of the CHeSC hyper-heuristic competition and how these

algorithms would perform within that. For these tests, run-times of 20 CPU

minutes will be used with 10 runs to be made per instance for all 10 instances

shown above. This longer run-time compared to previous tests will ensure that the

full potential of the algorithms will be demonstrated. A machine with a 2.27GHz

Intel(R) Core(TM) i3 CPU and 4GB RAM will be used to run the tests. A total

of 4 algorithms will be tested here (or rather, two algorithms, each with variants)

and the details of these can be seen below.

• AILS The most successful Iterated Local Search algorithm described in the

previous chapter, with an Adaptive Operator Selection mechanism used to

select mutation heuristics and an ordered local search stage.

114

• AILS-C The same algorithm as above, with the exception that the ‘Compass’

mechanism described in section 5.3.3 is used to score and select mutation

heuristics.

• AMA The Adaptive Memetic Algorithm described in section 5.3.2 with a

population of solutions and a crossover stage. A reinforcement learning

technique is used to score and select both the mutation and local search

heuristics.

• AMA-C The same algorithm as above with the exception that the ‘Compass’

mechanism described in section 5.3.3 is used to score and select heuristics

for both the mutation and local search stages.

5.5 Results

Four forms of analysis of results shall be performed for this work. The first is ordi-

nal data analysis and will use the Borda count method mentioned in the previous

chapter to compare the performance of the algorithms over the 10 instances as a

whole. Secondly, analysis shall take place on the distribution of objective func-

tion values for individual instances. This will be done with the use of box-plots

which can represent performance over a number of runs in an easy-to-interpret

fashion. Thirdly, comparisons shall be made to the best-known results for the

10 instances tested. The final form of analysis will determine whether there is

statistical significance between the results.

5.5.1 Ordinal Data Analysis

For this form of analysis, the Borda Count method will be used. As was described

in the previous chapter, the Borda Count method operates by assigning ranks to

each algorithm for each instance and then calculating a score for an algorithm as

the sum of their ranks over all instances. As an example, an algorithm that ranked

first in all 10 instances, would have a Borda score of 10. As there are 4 algorithms

and 10 instances, the worst possible score for these tests is 40(4*10).The measure

of performance used in calculating the score is the median value across the 10

runs. The chart in figure 5.1 shows the results for this testing.

As can clearly be seen from the figure, the Adaptive Memetic algorithms

strongly outperform the Iterated Local Search algorithms over the 10 instances.

This gulf in performance is not replicated when considering the benefits of the

‘Compass’ variants of the algorithms. For the memetic algorithms, there is no

difference at all in Borda score whereas for the ILS algorithms the ‘Compass’

115

Figure 5.1: A graph showing the total Borda Count scores for the 4 algorithms
across the 10 instances tested.

variant actually performs worse than the original version, with 37 and 33 points

respectively.

5.5.2 Distribution of Objective Function Values

Box-plots can be useful tools for analysis as they demonstrate results for an algo-

rithm across all runs for an instance. This information can be viewed in order to

determine how tightly bunched the results are - in other words how consistent the

algorithm is. They can also be useful in demonstrating different patterns between

instances and indeed the scale of differences between algorithms. Box-plots will

now be shown which demonstrate the results for all of the harder Gehring and

Homberger instances. Figures 5.2, 5.3, 5.4, 5.5 and 5.6 show the distribution of

objective function values for the 10 runs for each algorithm on instances 5, 6, 7, 8

and 9 respectively.

The results from the ordinal data analysis in the previous section are also

borne out in the box-plots of these instances. The gap in performance between

the two forms of algorithm are visually obvious with the greatest distinction being

observed in instances 5, 6 and 8. In all instances, it is the AMA algorithms which

are far stronger than the ILS methods on all statistical indicators, i.e. median

and upper and lower quartiles. As well as obtaining stronger results in terms of

objective function value, the AMA algorithms demonstrate a greater consistency

of result over all the instances shown. The range of the ‘boxes’ is far smaller

than for the ILS algorithms, indicating not only that the memetic methods can

produce strong one-off results, but that they are able to repeat the performance

116

Figure 5.2: A box-plot showing the distribution of objective function values for
instance 5.

over several runs. This quality of robustness is particularly important for these

hyper-heuristics which have the explicitly stated aim of providing robust and flex-

ible performance across multiple runs of multiple instances of varying problems.

While the differences noted are relative to the objective function scores of the

tested algorithms, testing to follow in the next section will help establish the

performance of the algorithms in comparison to the best-known results from the

literature.

A further point of interest is the performance of the variants that use the

newly added distance measure. Whilst the median values of the non-distance and

distance variants may be similar, there is a plain difference evident in the diagrams

of a stronger ‘lower end’ performance from the distance variants. There are more

results at the median level and below for the variants using the distance measure.

It must be remembered that this is the first time a distance measure has been

used as a performance metric in a hyper-heuristic. Therefore, these results are

very much preliminary. For the method to show some increase in solution quality

at this early stage demonstrates a potential for distance to be used in different

hyper-heuristic methods. The winner of the CHeSC competition, AdapHH [110],

combines multiple performance measurements when selecting low-level heuristic.

This may be a strong algorithmic framework in which to apply a distance measure.

5.5.3 Comparison to Best-Known Results

From the previous sections, it would seem that the Adaptive Memetic Algorithm

shows a stronger performance than the ILS under these test conditions. Now,

117

Figure 5.3: A box-plot showing the distribution of objective function values for
instance 6.

results must be considered in the context of all work done on these problem in-

stances. The simplest way to achieve this is to compare the results obtained by

the best-performing of the algorithms tested (the memetic algorithm) to the best-

known results for the 10 instances. As the VRPTW is a dual objective problem

with the primary objective being minimisation of the number of routes and the

secondary objective being distance reduction, the results will be considered in this

way also. Table 5.2 shows the best results obtained for each instance by the two

variants of the Adaptive Memetic Algorithm over the 10 runs per instance, as well

as the current best-known results.

Instance No. of Vehicles Distance

Name AMA AMA-C Best-k AMA AMA-C Best-k

0-SRC207 4 3 3 1047.42 1133.83 1061.14

1-SR101 19 19 19 1650.8 1631.82 1645.79

2-SRC103 11 11 11 1276.82 1263.78 1261.67

3-SR201 4 4 4 1261.043 1276.45 1252.37

4-R106 12 12 12 1268.93 1284.23 1251.98

5-HC1-10-1 100 100 100 42481.26 42485.04 42478.95

6-HRC2-10-1 26 26 20 33272.57 32839.49 63373.15

7-HR1-10-1 100 100 100 59020.74 60517.21 53904.23

8-HC1-10-8 101 101 93 44037.96 44120.54 42499.59

9-HRC1-10-5 94 93 90 52581.52 52439.09 46631.89

Table 5.2: A table showing a comparison of the Adaptive Memetic Algorithm best

results to the best-known results.

In the previous sections, analysis of the results has indicated that there is some

difference to be found between the standard Adaptive Memetic Algorithm and the

118

Figure 5.4: A box-plot showing the distribution of objective function values for
instance 7.

variant of the algorithm that uses the ‘Compass’ method; although the scale of

this difference is not large. The data provided in table 5.2 paints a slightly dif-

ferent picture. Examining first the primary objective, the number of vehicles, it

can be seen that the AMA-C method matches the basic AMA on 8 instances and

betters it on 2 instances. Hence, it would seem that using a distance measure

in the context of this algorithm provides an advantage when considering the best

results obtained over a number of runs, even if the median results do not greatly

differ from the standard method. Examining the distances is less meaningful as

improving the primary objective of distance can cause an increase in the distance

travelled. Of the instances where both algorithms achieve the same number of

routes, the basic AMA method obtains a lower distance in 5 out of 8 instances,

implying that the AMA-C variant is less efficient at reducing the distance trav-

elled. However, the ability to improve the primary objective of a solution shows a

real difference can be made by using a distance measure.

The next element to be examined is performance of the algorithms compared to

the current best-known solutions for these 10 instances. For the first 5 instances,

i.e. the Solomon instances, the AMA-C algorithm matches the best-known so-

lutions in terms of routes. When considering the distance travelled, the AMA-C

method actually achieves a new best-known solution for one instance (SR101).

This is a welcome achievement for an algorithm that has more of an emphasis

on being robust and flexible than on achieving strong individual results. For the

Gehring and Homberger instances, the results are more mixed. On two of the

instances, the AMA-C algorithm matches the number of routes with the best-

119

Figure 5.5: A box-plot showing the distribution of objective function values for
instance 8.

known solutions. For the other instances, the difference are 6, 8 and 3 routes

for instances 6, 8 and 9 respectively. The difficulty in judging performance by

referencing distance travelled when the number of routes is different is evident

for instance 6. For this instance, the AMA algorithms both use 6 more routes

than the best-known. For the distance travelled, however, they almost half the

amount of the best-known. This raises an interesting question about how to assess

the worth of a solution. In real-world applications, it might be the case that the

distance travelled for the best-known is so high that it over-powers the benefits

gained from the reduction in routes. Hence, a weighted sum objective function

may be of more use for commercial applications.

5.6 CHeSC Competition Analysis

The Cross-Domain Heuristic Search Challenge (CHeSC) which took place in 2011,

was the first competition to use the HyFlex framework. It was an international

research competition which had the aim of promoting research into algorithms that

demonstrate good general performance on several problem domains and instances.

This section shall briefly describe the format and workings of the competition,

before summarising the best-performing algorithms and, finally, comparing the

best competition results to those obtained by the Adaptive Memetic algorithm

described previously within this chapter of the thesis.

120

Figure 5.6: A box-plot showing the distribution of objective function values for
instance 9.

5.6.1 Competition Format and Rules

All competitors were required to submit a single hyper-heuristic in the form of a

java file. This heuristic would then be tested on 4 ‘seen’ problem domains and 2

‘hidden’ problem domains. The seen domains were Personnel Scheduling, Permu-

tation Flow Shop, One-dimensional Bin Packing and Maximum-Satisfiability, in

other words the original 4 HyFlex domains. From these 4 domains, only a handful

of sample instances were available for testing in advance, with the majority of

instances used for final testing not having been previously seen by the competi-

tors. This helped ensure that algorithms could not be tuned to work particularly

well for these problems and instances. This cause was further aided by the use

of 2 hidden domains, the Vehicle Routing Problem with Time Windows and Trav-

elling Salesman Problem domains. The VRPTW domain was the one described

previously within this thesis. For all of the domains, including seen and hidden

domains, the algorithms were tested on 5 instances, selected by the organisers and

not known in advance. For each of these instances, 31 runs were performed for

each algorithm at a run time of 10 CPU minutes per run. For each instance, the

median result from the 31 runs was taken and used as the measure with which

to calculate an algorithm’s score. Scoring operated using a means of ordinal data

analysis, a type of scoring that provides meaningful results even when the scales

of objective function values differ greatly between problems. The actual method

used is comparable to the scoring system for the Formula 1 World Championship,

with scores of 10, 8, 6, 5, 4, 3, 2 and 1 being rewarded to algorithms ranking 1st,

2nd, 3rd, 4th, 5th, 6th, 7th and 8th respectively. The winner of the competition

was the algorithm with the highest aggregate points score across all 6 instances.

121

5.6.2 Results and Best Algorithms

The full results from the competition can be seen at [115]. A chart summarising

the results for the top 4 competitors can be seen in figure 5.7. A brief description

of each of the top 4 algorithms can be found below.

Figure 5.7: A chart showing the scores for the top competitors across each domain
and in general for the CHeSC 2011 competition.

• Adap-HH The Misir algorithm, as described in [110], includes two main

stages of heuristic selection and solution acceptance. During heuristic selec-

tion, both dynamic heuristic sets and pairs of heuristics are considered in

order to provide the best combination of heuristic applications. The param-

eters used by heuristics in HyFlex, intensityOfMutation and depthOfSearch,

are also adaptively modified. For the solution acceptance element of the

algorithm, an adaptive threshold acceptance mechanism is used. The com-

bination of these various adaptive elements helped Adap-HH to the strong

cross-domain performance that led to an overall victory in the competition.

• VNS-TW The approach presented in [82] is a Variable Neighbourhood Search

that includes a diversification and an intensification stage. An ordering is

given to the mutation heuristics and an adaptive method is used to determine

the value of the depthOfSearch parameter.

• ML An approach very similar to the Adaptive Iterated Local Search method

described previously. A reinforcement learning technique is utilised in heuris-

tic selection and a simple adaptive measure used for solution acceptance.

• PHUNTER Once again this algorithm follows the basic ILS structure but

differentiates itself by combining different ILS techniques. The method uses

122

the metaphor of pearl-hunting to describe the stages of diversification and

intensification. A full description of the algorithm can be found in [32].

It is evident from the graph that the Adap-HH algorithm is the significantly

stronger competitor across the domains as a whole. In addition, it achieves out-

right victory in 2 domains, showing the potential for strong individual perfor-

mances as well as a high level of consistency. However, the results also show a

level of difference between some domains, implying that the approach does in-

deed work better for some problems than others. This comes back to the idea

of the ‘Free Lunch Theorem’ [169] which states that any 2 algorithms would end

up with an indentical mean objective function value if used on all possible opti-

misation problems. In other words, there does not exist a ‘universal’ algorithm,

an algorithm that could solve to optimality all possible problems. Even for the

extremely small subset of possible problems used for the CHeSC competition, it

can be observed that the winning algorithm does not perform best on all problems

or all instances of a problem. However, this does not detract from the idea of an

algorithm that can adapt and perform ‘reasonably well’ for different problems.

Indeed, the motivation behind development of general and robust algorithms is

often to achieve performance within a certain percentage of best-known solution

performance for a variety of problems/instances, rather than to achieve perfection

for every problem encountered.

5.6.3 Experiments and Results

The top results from the competition have been given and the competitors acheiv-

ing these results have been described. Now, these top algorithms will be compared

to the hyper-heuristic algorithms previously proposed in this chapter. Specifically,

the Adaptive Iterated Local Search(AILS) algorithm and the Adaptive Memetic

Algorithm(AMA) will be included in the comparisons, along with the top 3 com-

petition algorithms in the VRPTW domain, PHUNTER, HAEA and KSATS. The

variants of the algorithms which use the ‘Compass’ mechanism can not be included

in these comparisons as the version of HyFlex used for the CHeSC competition

did not include the new features proposed above, including the genotypic distance

measure. In addition, further testing of the AILS and AMA algorithms had to

be performed in order to mirror the conditions of the testing for the CHeSC com-

petitors. That is to say, 31 runs of 10 CPU minutes length for the 5 instances of

the VRPTW domain.

The method used to compare these algorithms will be the Borda Count method,

used in the same fashion as in previous sections and chapters. As there is only

123

a single domain and 5 instances to be tested, the minimum (i.e. best) possible

score is 5 and the worst possible is 25 (as there are 5 algorithms). The graph in

5.8 shows the Borda Count scores as a bar chart.

Figure 5.8: A bar chart showing the Borda Count scores for the 5 algorithms
across the 5 instances.

The results show that the Adaptive Memetic Algorithm is comfortably stronger

than the top competitors from CHeSC. This can be considered a strong result given

the quality of algorithms that were tested. The AMA method also comfortably

beats the method of Misir et al. [110] on the VRPTW. The Misir et al. algorithm

won the CHeSC competition of 2011. The main qualifier to these results is that the

CHeSC algorithms were designed for and tested on 6 problem domains, whereas

the testing of the AMA was only performed on the VRPTW problem domain.

However, it can still be understood that AMA produced a consistent performance

across the many runs for the 5 instances indicating a robustness to the algorithm.

Furthermore the concept of generality and flexibility doesn’t have to be considered

only in a cross-domain context. In a real-world application, it may be desirable for

algorithms to be able to adapt to changing situations. However, the underlying

problem is still essentially the same. The changes to be adapted to may be in the

form of a new constraint or a change in data. Therefore, to show strong, consistent

performance on a set of different problem instances within the same basic problem

can still show generality and adaptability.

In contrast to the AMA method, the Adaptive Iterated Local Search algorithm

produced poorer results, placing last out of the tested algorithms. When consid-

ering the results from this chapter in general, the main point of interest is why

the memetic algorithm produces results that are so much stronger than the ILS

124

algorithm when they share the same basic structure. The first possibility is that

the introduction of a population allows greater diversification within the search, as

there are more solutions and, hence, a greater level of opportunity to be in differ-

ent areas of the search space. A second possibility is that the use of the crossover

heuristics provides a significant advantage for this VRPTW domain. As stated in

the description of the domain in the 2nd chapter, the crossover heuristics used are

newly proposed and are previously untested. The strength of these heuristics in

comparison to standard literature methods may merit further investigation.

5.7 Conclusion

This chapter has introduced several additions to the VRPTW HyFlex domain, all

designed to provide more tools or information to a hyper-heuristic. There has been

a question of whether providing this extra information can allow a hyper-heuristic

to achieve improved results. To address this question, motivations have been

provided behind the design decision for each new component, with explanations

given of how a hyper-heuristic could use the new features. A practical example has

been given of how one of the new components, the measure of distance between

solutions, could be used by a hyper-heuristic. In presenting a population-based

Iterative Local Search, it was shown how the distance measure could be used to

inform selection of mutation heuristics by the hyper-heuristic. It was shown that

using this method could also provide improved results, with a hyper-heuristic that

used the distance measure yielding lower ’best’ objective function values than a

similar hyper-heuristic which didn’t use the distance measure. This is a significant

contribution which demonstrates the potential of using a distance measure in the

context of a hyper-heuristic.

The other element of domain design considered within this chapter was the

differences between single-point and population-based algorithms regarding how

they interact with problem domains. The algorithm above was described in detail

in the chapter, with design decisions being explained with reference to the domain.

Having a population-based approach allowed the hyper-heuristic to access more

tools of the problem domain (e.g. the crossover heuristics) which benefitted it,

as demonstrated through vastly superior result to that of the similar single-point

hyper-heuristic.

125

Chapter 6

A General Domain for the

Vehicle Routing Problem

6.1 Introduction

The work presented in the thesis so far had examined the relationship between a

problem domain (particularly Vehicle Routing Problem domains) and the hyper-

heuristics that use it. The design of the many components of a problem domain

have been considered, as well as the way in which extra information provided by a

problem domain can be utilised by the hyper-heuristic. The problem domain that

has received most focus within this thesis has been the Vehicle Routing Problem

with Time Windows. This a a problem that has many practical, real-world appli-

cations. For example, large delivery companies with significant fleets could save a

substantial amount of money by reducing the distance travelled by its vehicles, or

by reducing the number of vehicles needed. These types of industrial applications

will often be far more complex than the academic problems, with an increase in

constraints and performance metrics. Thus, the design of a real-world domain may

need to be different to before. The question to be answered here is ’What qualities

are required by a problem domain for it to be suitable for real-world problems?’.

This chapter will address this question by proposing a new Vehicle Routing

Problem domain that allows representation of problems more akin to real-world

routing problems. The design decisions will be explored, with reference to what

is needed to address the complexities of these types of problems. One particular

issue will be considered, to demonstrate one factor that may be relevant to such

a problem. This is the issue of fairness between routes, i.e. to attempt to achieve

a balance between the number of customers served by each route, or the distance

travelled by a route. This is a consideration in industrial applications where it

126

would be undesirable to have an employee shift which consisted of only a single

customer visit.

6.2 Motivation

In chapter 2.2.2, the basic Vehicle Routing Problem(VRP) is described; that of

satisfying a set of customer with a fleet of vehicles demands whilst minimising the

number of vehicles needed and the distance travelled. The most widely studied

academic problems were described, namely the Capacitated Vehicle Routing Prob-

lem (CVRP) and the Vehicle Routing Problem with Time Windows (VRPTW).

The CVRP adds a constraint where the vehicles have a capacity which can’t be

exceeded. The VRPTW adds a time window constraint where each customer

has a time window in between which their service must begin. Both of these

constraints represent elements of real-life vehicle routing applications; however

real-world problems often include many other features and constraints that aren’t

currently represented within academic works. There are many examples of real-

world problems being modelled and solved in singularity. Examples of a wide

range of routing problems from different industries are given in [72]. The prob-

lem, though, can be that it is often the case that algorithms are often designed

only for use with a single problem and can’t be easily adapted when constraints

change. The domain presented here will allow for a wide range of VRPs to be

represented, without any need to change the domain.

One real-world routing feature in particular shall be used to demonstrate the

utility of the new features of this domain. This is the concept of ‘fairness’ between

routes within a solution; the issue of ensuring that no single route has too high

or too low a workload. There are several practical motivations for this. Firstly, a

short route can cause problems with respect to the employee who will drive the

vehicle. The company may be required to pay the employee for a full day even if

their workload doesn’t amount to a full days work which is undesirable from an

economic efficiency viewpoint. On the other hand, if the work id paid by the hour,

the company may find it difficult to find staff to work very short shifts. Further-

more, there is the issue of vehicle maintenance. A vehicle with a high load and

which is travelling long distances will experience more wear than a vehicle with

shorter routes and a lighter load. In that case, it would be beneficial to have a

more balanced distribution of work load in order that certain vehicles don’t wear

out quickly, resulting in large repair costs for the company.

127

However, it is unlikely that a ‘fair’ solution will always be an optimal solution.

Often, when customers are in clusters, the optimal solution will be a solution

where each vehicle services one of these clusters of customers. Where these clus-

ters vary in size, a solution of this nature can be a very ‘unfair’ solution. While a

company may want fairer solutions for the reasons mentioned above, using much

worse quality solutions because they are fairer will bring unwanted extra costs.

Herein lies the crux of the fairness problem - can solutions be made fairer without

significantly impacting on solution quality? The following sections will demon-

strate how the additional features added to this domain can be used to investigate

the issue of fairness.

6.3 Definition of Fairness for Initial HyFlex Do-

mains

In the sections following this, the concept of fairness will be covered in detail for the

Vehicle Routing Problem, including a description of an implementation. However,

to understand the benefits of this kind of tool, fairness will also be discussed here

for the original 4 HyFlex domains - Permutation Flow Shop, Personnel Scheduling,

One-dimensional Bin Packing and Maximum Satisfiability (MAX-SAT). This will

contribute to understanding of how seemingly simple problems and representations

can yield significant data to a hyper-heuristic.

6.3.1 Permutation Flow Shop

It would initially seem difficult to define a measure of fairness on the Permutation

Flow Shop problem. All jobs must be processed on all machines so, in any solution

for an instance, all machines will have processed the same load. One way fairness

could be measured would be to consider idle times of machines. For example,

one machine may stand idle for an amount of time at the start and then have a

continuos heavy load later on whereas another machine might have a steady flow

of jobs to be processed throughout. Fairness in this sense could be encouraged

through an objective function term which measured the idle times of machines and

attempted to keep idle times within specified minimum values. The same theory

of fairness could perhaps be applied to the jobs to be processed. As an example,

a job might have a lot of idle time if waiting for another job to finish processing.

However, by minimising the standard objective function of the makespan, this

idle time will inevitable be driven down anyway and so extra measure would be

superfluous in this instance.

128

6.3.2 Personnel Scheduling

With the Personnel Scheduling domain, it is clearer to see how a solution could

be considered ’fairer’. For example, it may be ’unfair’ to have an employee with

multiple shifts in a short period of time. Another example might be the time of

day or period of the week in which an employee has shifts. There is a difficulty

though. In this domain, there are many different problem variations with many

constraints. This makes it difficult to establish a single measure of fairness that

covers all possibilities. One suggestion to represent fairness in this domain may be

for an instance to specify fairness criteria, which may span several factors. This

follows what already happens in this domain, where constraints are represented

as objective function terms. The given fairness criteria could then be calculated

for each employee and used to drive fairness.

6.3.3 One-dimensional Bin Packing

For the One-dimensional Bin Packing problem domain, it is very simple to achieve

a simple definition of fairness. This is because fairness is already being driven from

the objective function of the domain. The objective function currently calculates

the average ’fullness’ of a bin (see [86] for more details). By trying to balance

fullness, an attempt to have a ’fair’ distribution of items is present.

6.3.4 Maximum Satisfiability (MAX-SAT)

The final domain, representing the Maximum Satisfiability problem, demonstrates

that the concept of ’fairness’ may not be applicable to all problems. As the problem

is concerned with maximising the number of ’satisfied’ clauses, there does not seem

a way to represent any sort of fairness. However, the idea that extra data can be

offered to be used by a hyper-heuristic is still relevant and could be used in different

ways. One example would be the distance measure described in Chapter 5.

6.4 General VRP Domain

The version of HyFlex which this domain is implemented for is the version pre-

sented in the previous chapter, which included some new features for HyFlex. One

of these new features was a measure of genotypic distance, accessed by a method

named distanceSolutions. It was demonstrated in the previous chapter that the

use of a distance measurement within a hyper-heuristic framework could result in

improved solutions. For that domain, the distance measure was calculated with

reference to the number of common edges between 2 solutions. The exact formula

129

was distance = totalEdges−commonEdges
totalEdges

. Due to its successful use in the previous

domain, the same measure is used to calculate genotypic distance for this domain.

Another new feature in the previous section was a method, getFeatureCost(int

solutionIndex, int featureIndex), which allows access to the values for individual

terms of the objective function. This feature allows users to apply their own

weights to these terms and hence create their own objective functions within their

hyper-heuristic. In theory, this could be useful for investigating fairness. If the

distance value for each route was available through this method, then the user

could determine how high a workload each route had. In practical terms, though,

this is not possible. The method require a featureIndex, where an index is given

to refer to a solution feature. The index for each solution feature doesn’t change.

The problem is that the number of routes for different instances will change. It is

not possible to say index 4 will return the distance of route 1, index 5 the distance

of route 2 etc. because it is not known in advance how many routes there will

be and therefore how many solution features must be made available. For this

reason, if fairness is to be manipulated through the objective function, it must

be done at the level of the problem domain. In this domain, there are 2 solution

features available, the total distance travelled and the shortest route. The number

of vehicles is not needed here as the number of vehicles for each solution is fixed

by the instance file. This reflects industrial applications where a fleet of vehicles

will be available of a fixed size.

6.4.1 Additional Features

The following new features all offer opportunity to study fairness using various

means. The way this can be done will be explained for each item.

• Capacity Limits A capacity limit has been a constraint that has been

used in the majority of studied vehicle routing problems. Traditionally,

a single value is given which represents the capacity limit for each of the

vehicles. This is indeed a constraint present in the real world, where each

vehicle will have a finite amount of space. However, this concept can be

extended further to better reflect industrial applications where, in reality, a

fleet of non-homogeneous vehicles will be available for use. To this end, the

domain will allow capacities to be specified for each individual vehicle, all of

which can be different or set to be the same in order to represent classical

academic problems. The inclusion of this constraint is very useful from a

fairness viewpoint because vehicles can be given capacities in such a way as

to force the solution to be fair. Consider the example of a small instance of 4

130

customers, each with a demand of 1 and 2 vehicles. If each of these vehicles

is set a capacity of 2, then each vehicle will be forced to service 2 customers

and there will be a balanced solution (at least in terms of customers served

- not necessarily in distance travelled). This approach works well with the

multi-depot feature, which will be described next, along with a thorough

example of how the two features may be used together.

• Multiple Depots The Multi-depot Vehicle Routing Problem is a problem

that has received significant attention in the literature. For examples, see

[96], [138], [37] and [127]. Again, the motivation for this problem is derived

from real-world problems where larger organisations would have multiple

distribution centres, each with a certain number of available vehicles. For

the domain presented here, each vehicle is assigned to a depot (as specified

in the instance file). It is noted in the section above that it can be hard

to find the balance between fairness and solution quality. Using the multi-

depot feature along with the capacity limits for individual vehicles, it can be

measured how solution quality is affected as a solution becomes more or less

fair. In Figure 6.1, there are two depots at opposite ends of a co-ordinate

space. Each depot has a single vehicle serving it and there are 10 customers

dispersed randomly between the two depots. In this example, assume that

all customers have a demand of 1. The capacities of the two vehicles can

be modified to determine how many customers are serviced by each vehicle.

The line in Figure 6.1 shows a situation where the vehicle for depot 1 has a

capacity of 4 and thus services 4 customers. The vehicle for depot 2 has a

capacity of 6 and services 6 customers. For the fairness testing, all possible

capacity values can be considered in turn, starting with values of 0 and 10

for vehicles 1 and 2 respectively, followed by values of 1 and 9 and continuing

until values of 10 and 0. For each pair of capacity values, the solution can be

optimised using the domain’s heuristics. From this, solution quality can be

observed at all different levels of fairness and it can be determined whether

there is a point at which an increase in fairness causes a vast decrease in

solution quality.

• User Input to Objective Function The next feature allows fairness to

be encourage through the objective function. As was stated in the previ-

ous section, the distance values of individual routes are not available to the

hyper-heuristic during the search. Therefore, encouraging fairness through

the objective function can not be done at the hyper-heuristic layer. The

solution proposed here is that a number of ‘additions’ to the objective func-

tion are available to be selected and are to be specified in the instance file.

131

Figure 6.1: Example of a fairness experiment using multiple depots and individual
vehicle capacities.

Here, the user has the possibility to define low and high distance limits and

specify penalty amounts to apply upon violation of these limits. By apply-

ing penalties to routes that are either overly short or long, solutions will be

encouraged to favour routes in between these values. This allows for more

flexibility than controlling fairness explicitly through capacity constraints.

An example of a line in the instance file to utilise this feature is as follows.

OBJECTIVE : key low high penalty

Here, the key refers to the choice of objective function addition (see below)

and the low, high and penalty values are parameter values to be used in

calculation of the objective function. The keys and corresponding additions

are as described below:

– a: This choice takes three parameter values, low, high and penalty.

For each route, the total distance is calculated. Where the distance is

either lower than the low value or higher than the high value, a fixed

amount of penalty is added to the objective function score. The use of

a fixed penalty value discourages violations and can encourage fairness

by keeping routes within a certain range.

– b: This choice is similar to a in that a low and high parameter values

are specified and there is a penalty of penalty for any violation. How-

ever there is also a variable penalty applied which takes into account

the scale of the violation. To calculate this variable penalty, firstly the

difference is calculated between the distance and the violated parame-

ter. This value is then multiplied by 100 to give the penalty score to be

added. The variable nature accounts for the idea that a route violating

132

the range by a small amount will do less damage to fairness than a

route violating the values by a large amount.

– c: The c choice takes 2 parameters, high and penalty. As with a, for

each route that has a total distance of greater than the parameter value,

a penalty of penalty is added to the objective function.

– d : The d choice also takes a high parameter value. As with c, for each

route violating the high distance value, a fixed penalty of penalty is

applied. In addition, a variable penalty is applied in the same manner as

b. That is to say, for each route where a violation occurs, the difference

between the distance and the high value is calculated. This value is

then multiplied by 100 to give the additional penalty value for that

route.

• p-values One of the most widely-used techniques for encouraging fairness of

objective function terms is the sum of squares (sos) method. This method

exaggerates the levels to which a particular term is unfair. It can be an

effective way to force solutions to be fair. However, the effectiveness of the

sum of squares method can vary depending on the nature of the problem

considered. For some problems, sos may be too strong and force fairness at

the expense of solution quality. Conversely, for other problems it may be

insufficient and not lead to any significant increase in fairness. Again, this

returns to the problem of the balance between solution quality and solution

fairness. One means of addressing this is proposed by Muklason et al. [111],

where the authors suggest using the sum of powers (sop) rather than sum

of squares. The required value of p is likely to be different for different

problems and instances. For example, in [111], it is reported that values

as high as p=16 are needed (in that case for an examination timetabling

problem). The proposal for this domain is to allow a power (p) value to

be specified by the user through a method setPValue(double p). It may be

though that the user wants to change the p value throughout the search, for

example initially have a low value that finds a high quality solution, before

gradually increasing the p value to drive the solution toward fairness. In the

domain, the p value can be changed at any time to allow this.

Representation in Instance Files

This section will describe a new instance format to be used to accommodate the

new features and constraints. An example of an instance file in this new format

can be seen in Figure 6.2. There are four main data sections of the instance file.

133

The first is the NODE COORD SECTION which details x and y co-ordinates for

each customer, including the depot(s). A city is identified by an id number. The

second section is the DEMAND SECTION which lists the demand value for each

of the customers. The third section, the DEPOT SECTION, states which depot is

to be used by each vehicle. Finally, the VEHICLE CAPACITY SECTION states

the capacity for each vehicle.

Figure 6.2: An example instance file

6.4.2 Construction Heuristic

The constructive heuristic used in this domain could be described as a Cluster-

first, Route-second method. In this type of method, the customers are firstly

grouped into ‘clusters’ before routes are constructed from these groups. Unlike

traditional methods of this sort, this method must be able to adapt to instances

with multiple depots. The implementation here works as follows.

134

The first stage of the algorithm is to cluster the customers. In the instance

file, the number of available vehicles is stated, along with the depot to be used

for each vehicle. This information is used to create initial empty routes for each

vehicle. Following creation of routes, customers are then assigned to routes (but

not routed). To do this, the following procedure is applied.

• While the set of un-clustered customers C is not empty, perform the follow-

ing.

• Select at random a customer, c1, from C.

• For each route r1 in the set of routes R, calculate the average distance be-

tween c1 and the customers currently assigned to r1 (including the depot).

• Select the route which yielded the lowest average distance to c1 and assign

c1 to that route.

• Remove c1 from C.

The selection of customers is made randomly so that different solutions will

be produced for different seed values, which is important for providing a diverse

range of solutions for population-based approaches. When selecting a route, the

average distance to the customer is considered so that both the location of the

depot and other customers within the route can be considered.

Following this assignment of customers to routes, the routes must then be fully

constructed. This is performed with a Nearest-neighbour algorithm. Whilst near-

est neighbour may not traditionally provide solutions of the highest quality (see

[151]), it is more important for a construction heuristic in this domain to provide

solutions that have good potential for improvement. This method is designed to

give solutions that are of a reasonable quality, without being of so high a quality

that algorithms get easily stuck in local optima. This method operates in the

following manner.

• For each route r1 in the set of routes R, perform the following.

• While the set of un-routed customers Cr1 within route r1 is not empty, do:

• For each customer c1 in Cr1, calculate the distance between c1 and the

current final customer (not the depot) within the route.

• Insert the customer, cbest, which has the lowest distance as calculated in the

previous step into the route. The insertion position is as the final customer

in the route.

135

6.4.3 Low-level Heuristics

In the section above describing the additions to the domain, an example was

given of how 2 domains could be used, with controlled vehicle capacities to study

the affect of enforced fairness on solution quality. However, for that study to

be accurate, it is essential that the individual routes are being optimised to a

high standard. As stated in the introduction, consistent optimisation results are

required so that when fairness is enforced, any changes in the objective function

value can be analysed as being a result of the change in fairness, rather than being a

result of fluctuations in the performance of the domain and heuristics. Therefore, it

must be established whether the low-level heuristics within the domain are strong

enough to deliver consistent high quality solutions for single routes. A single route

in a VRP can be considered as a Travelling Salesman Problem (TSP). Initially, the

set of low-level heuristics from the VRPTW domain was selected for use within this

domain. However, preliminary experiments showed performance on benchmark

TSP instances to be poor and inconsistent, with an average solution quality of

5-10% worse than the optimal solution. From this, it was clear that the current

set of heuristics were insufficient for the required task. To remedy this, 2 actions

will be taken. The first is to extend the set of heuristics available in the domain.

Specifically, heuristics will be added that have the purpose of reducing single

route distance (2-opt, 3-opt, MoveOne, MoveTwo,MoveThree. These additional

heuristics will be described below. The second action will be to modify the set

of existing heuristics to better cope with the new features of the domain. Again,

these changes will be described below.

Mutation Heuristics

The 2 heuristics to be presented here fall in the class of mutation heuristics which

seek to modify a solution through one, or a series of, perturbations or neighbour-

hood moves.

• Shift Random The shift operator, which is included in the previous VRPTW

domain, involves the operation of removing a single customer from a route

and re-inserting it into another route. This heuristic will have had little im-

pact on the poor performance in the TSP as it is concerned with intra-route

moves, rather than the inter-route moves required for improving TSP in-

stances. Given that previous chapters have shown VRPTW performance to

be strong, a success which requires customers to be assigned to, and moved

between, routes in an efficient manner, it can be thought that little needs to

be change with this heuristic. For that reason, the mechanism for selecting

a customer for removal is the same as for the VRPTW shift. That is to say,

136

a random customer is chosen from a randomly selected route. The selection

is random as this is a mutation heuristic and the objective is to diversify a

solution, not improve it directly. Pseudocode for the shift method can be

seen in Algorithm 4 in chapter 3.

There is a difference, however, in the method used to re-insert a customer

into the solution. In the VRPTW shift heuristic, the focus of the sub-routine

to insert a customer is on finding the best position in the solution for that

customer (in terms of ‘proximity’ to neighbour customers). There are 2 rea-

sons that is not suitable for this domain. Firstly, the new operators to be

added to this domain will improve the success of inter-route moves. There-

fore, it is not essential for a customer to be inserted into the best position

in a route as it can be successfully moved by other operators. Indeed, it

may be beneficial to not insert the customer in the ‘best’ position initially

as it may cause a local optimum to be entered. For these reasons, in this

new insertCust method, the customer is inserted at the end of a randomly

selected route (providing it a feasible insertion).

Secondly, the fact that the number of routes are fixed can cause problems as

there may be a situation where they are all equally full. Consider a situation

where the sub-routine is attempting to insert a customer with a demand of

30 into a solution, which has 5 routes; all of which have a remaining space

of 20. Clearly there is sufficient space in the solution for the customer;

however no individual route can accommodate it. This is a situation that

is not encountered in the VRPTW as an extra route can simply be added.

To tackle this situation, a method is proposed whereby, if no route has

sufficient space for the customer to be inserted, then the route with the

highest amount of available space is selected and the customer from that

route with the highest demand is removed. If there still isn’t enough space

for the original customer, then the process is repeated until there is sufficient

capacity. The choice of route and customer are made in order to reduce the

amount of operations needed. Once the original customer has been inserted,

the removed customers are re-inserted into the solution in the same manner

as the original customer. The entire process for the method can be seen in

Algorithm 18.

• Swap The VRPTW domain contains a mutation heuristic, Two-opt which

swaps adjacent customers within a single route. To attempt to give the

method further scope to mutate solutions, a heuristic Swap is proposed for

137

Algorithm 18 The insertCust(s,c) method which takes as input a solution s and
a customer c.

procedure insertCust(s, c)
if thereExistsFeasibleRoute(s, c) then

Route r ← selectFeasibleRouteAtRandom(s, c)
r ← insertAtEnd(r, c)

else
CustomerList C ← c
while size(C) > 0 do

Route r1 ← getRouteWithMostRemainingSpace(s)
r, C ← removeCustomersFromRoute(r, C)
r ← addF irstCustToEndOfRoute(r, C[0])
C ← removeF irstCustFromC(C)

end while
end if

end procedure

this domain which swaps two customers within a route. The difference from

Two-opt is that these customers do not now have to be adjacent. This

heuristic involves a single move within a single route. The pseudocode for the

Swap method can be seen in Algorithm 19. The first stage of the algorithm

is to select a route, r, at random from the solution. Then, two separate

customers, c1 and c2, are chosen at random from r. The positions of these

customers are then swapped. The selections are made randomly in order to

facilitate generation of a wide range of solutions, which may allow a hyper-

heuristic to escape local optima.

Algorithm 19 The Swap mutation algorithm takes as input a Solution s.

procedure swapMutate(s)
Route r ← selectRandomRoute(s)
Customer c1 ← selectRandomCustomer(r)
Customer c2 ← selectRandomCustomer(r)
r ← swapPositions(c1, c2, r)

end procedure

Ruin-recreate Heuristics

A ruin-recreate heuristic will ruin or destroy part of a solution before re-building

it. There is a single heuristic for the domain within this category, which will be

detailed below.

• Location-based Radial Ruin In the VRPTW domain, there are two ruin-

recreate heuristics which partially destroy a solution before rebuilding it.

138

One of those heuristics uses the difference in time windows between cus-

tomers as a measure for determining which customers are to be removed.

As the domain proposed here does not include time window constraints,

that heuristic can not be used. However, the Location-based Ruin-recreate

method of the VRPTW domain will be used for this domain. This method

uses the euclidean distance between customers to determine which customers

to remove. The ‘ruin’ element of the heuristic is the same as that used for

the VRPTW domain as it is compatible with the new features of this do-

main. The pseudocode for this can be seen in Algorithm 7 in Chapter 3. The

re-insertion, however, will now use the insertCust method described above

(Algorithm 18, to account for the fixed numbers of routes.

Local Search Heuristics

The category of local search or hill-climbing heuristics contains the most heuristics

of all classes within this domain. These heuristics make one, or a series of small

moves or perturbations to a solution and only accept improving solutions.

• Shift Random Local Search This heuristic is the same as the Shift Ran-

dom method described in the mutation heuristic category (section 6.4.3).

The only difference in this version is that, at each iteration of the loop, the

new solution resulting from the move is only accepted if it yields an improved

objective function value.

• 2-opt Through the inclusion of the 2-opt algorithm of [98], it is thought that

the quality of individual routes can be greatly improved. The algorithm was

first proposed for the Travelling Salesman Problem(TSP), for which strong

results can be gained. Given that this is the case when 2-opt is used in

isolation, when combined with other local search heuristics, hyper-heuristics

should be able to achieve high quality routes. The general concept is to

remove 2 edges from a solution and replace them with 2 new edges, with the

goal of reducing the distance of the cycle/route. an example of a 2-opt move

can be seen in 6.3. Algorithm 20 shows the entire process used by the 2-opt

implementation of this domain. It differs from the Lin [98] implementation

in that the Lin version includes some reductions of the search. These reduc-

tions are not currently included in the 2-opt of this domain; however, they

would be useful for future implementations in order to improve efficiency

which would be crucial for very large problems.

The aim of this heuristic is to increase the quality of a single route by the

highest level possible. To this end, the 2-opt implemented here considers all

139

Figure 6.3: Example of 2-opt. Two edges are removed, the edge between customers
2 and 3, and the edge between customers 6 and 7. These edges are replaced by
edges between customers 2 and 6, and 3 and 7. The orientation between 3 and 6
is reversed.

possible pairs of edges in a solution. While this may cause issues of process-

ing time for very large problems, it will be of sufficient speed for the vast

majority of real-world instances, where individual routes will not be of a

great enough size to cause issues. Therefore, it seems a worthwhile trade-off.

Algorithm 20 The 2-opt local search algorithm takes as input a Solution s.

procedure Two-opt(s)
Route r ← selectRandomRoute(s)
for all Edge e1(c1, c2)− in− r do . c1 and c2 are consecutive customers

for all Edge e2(c3, c4)− in− r − after − e1 do . c3 and c4 are
consecutive customers

if newEdgesWillY ieldImprovement(e1, e2) then
r ← removeEdges(e1, e2, r)
r ← insertNewEdges(c1, c2, c3, c4, r)

end if
end for

end for
end procedure

• 3-opt The 3-opt heuristic is in the same class of solution improvement meth-

ods, k-opt heuristics [98], as the 2-opt operator described above. In the Lin

paper [98], it is shown to be even more powerful than 2-opt for improving

TSPs (individual routes) and therefore is a logical inclusion in the domain.

The difference from 2-opt is that 3-opt removes and inserts 3 edges, as op-

posed to the 2 of 2-opt. There are 2 possible 3-opt moves for each set of

removed edges. These can be seen in Figures 6.4 and 6.5. Again, the 3-opt

algorithm for this domain differs only from that of Lin through the absence

of a problem reduction stage within this algorithm. The pseudocode for this

version of 3-opt can be seen in Algorithm 21.

140

Figure 6.4: First example of 3-opt. Three edges are removed, {2,3}, {5,6} and
{8,9}. These edges are replaced by edges {2,6}, {8,3} and {5,9}.

Figure 6.5: Second example of 3-opt. Three edges are removed, {2,3}, {5,6} and
{8,9}. These edges are replaced by edges {2,6}, {8,5} and {3,9}. The orientation
between 3 and 5 is reversed.

As with 2-opt, this 3-opt implementation considers all possible combinations

of edges to be removed within a route. With 3-opt, this is even more ineffi-

cient; however still not at a level that would cause problems for the testing

of fairness or for solving real-world problems. One implementation detail

that helps reduce computation time is that, for each possible move, a calcu-

lation is made in advance as to whether the move will result in an improved

solution. Therefore, if the move would not improve the solution, it does not

have to be made and time is saved.

• Interchange In the VRPTW domain, an interchange heuristic is described

which swaps two customers from separate routes. The aim of the heuristic

is to reduce total distance by relocating customers that may not be in the

optimal route. The same heuristic as was described in Algorithm 6 in Chap-

ter 3 is included in this domain. However, due to different features of the 2

domains, the following changes must be made.

– The selection of the first customer to be swapped is made in the VRPTW

version of interchange through use of a measure of that customer’s dis-

tance and time window proximity to other customers of the same route.

However, the lack of a time window constraint in this domain means

141

Algorithm 21 The 3-opt local search algorithm takes as input a Solution s.

procedure Three-opt(s)
Route r ← selectRandomRoute(s)
for all Edge e1(c1, c2)− in− r do . c1 and c2 are consecutive customers

for all Edge e2(c3, c4)− in− r − after − e1 do . c3 and c4 are
consecutive customers

for all Edge e3(c5, c6)− in− r − after − e2 do . c5 and c6 are
consecutive customers

if newEdgesWillY ieldImprovement(e1, e2, e3) then
r ← removeEdges(e1, e2, e3, r)
r ← insertNewEdges(c1, c2, c3, c4, c5, c6, r)

end if
end for

end for
end for

end procedure

that this measure can no longer be used. Instead, only the euclidean

distance from its neighbouring customers shall be considered. The dis-

tance is used as a customer which is far from its neighbouring customers

will drive the total distance value higher, which is undesirable in terms

of the objective function. The formula to be used to determine which

customer will be selected is:

score = (dist(ci-1,ci + dist(ci,ci+1)*randomNumber

In the formula, the distance is calculated between the customer and the

customers both preceding and following it in the route. The random

number is there to ensure that the same customer doesn’t get selected

at every iteration of the algorithm, which could lead the algorithm to

being repeatedly unsuccessful.

– The selection of a second route from which a second customer will be

selected is the same in both domains. However, the selection of the

second customer itself is different. For the VRPTW domain, a measure

of distance and time proximity to the first customer is used. For this

domain, that again isn’t possible. Rather than simply using a distance

proximity measure to select a customer, each possible customer from the

second route is considered with the new objective function calculated

for if the swap is made. This approach is used to attempt to produce

the highest quality solution.

• Swap LS This heuristic performs the same operation as the Swap heuristic

142

in the mutation category (see section 6.4.3 and Algorithm 19). There are two

difference in the local search version of the algorithm, which are described

below.

– In the mutation version of the algorithm, a swap move is performed

only once. In the local search version, the move is performed multiple

times, with the number of times to be performed being determined with

reference to the depthOfSearch parameter (see Chapter 3 for an expla-

nation of this parameter). The formula used to calculate the number

of times the move is to be performed is as follows;

timesToPerform = numberOfRoutes * depthOfSearch

The parameter is multiplied by the number of routes so that the scale

of intensification can adjust to the size of the problem.

– The second difference concerns the acceptance of the new solution fol-

lowing a move. In the mutation version of swap, the resulting solution

is always accepted, regardless of whether the solution is improved or

not. For the local search version of the method, at each iteration the

new solution is only accepted if it has an improved objective function

value.

• MoveOne The MoveOne heuristic is included in the domain with the objec-

tive of improving performance on single routes. It achieves this by removing

a single customer and then inserting it into a different position, but within

the same route. This heuristic provides a different way to manipulate a route

to the heuristics which were previously included and so has the potential to

improve performance. The pseudocode for this algorithm can be seen in

22. As with some of the other local search heuristics, MoveOne performs a

number of moves, determined as the value of the depthOfSearch parameter

multiplied by the number of routes, so that the number of applications is

proportional to the size of the problem. It is important that many possible

moves are considered, so that the method doesn’t get stuck at a local op-

timum. For that reason, at each iteration, a route r is selected at random

from the solution, s. Similarly, from r, a customer c is selected, also at

random, and removed from r. Following removal, the aim is to improve the

solution. To do this, the algorithm enters a First-Improvement stage. In

first-improvement, a series of moves are independently performed until an

improvement in objective function is found, at which point the algorithm

143

stops. First improvement is chosen over the best-improvement method in

order to both save computational time and avoid the local optima that may

arise from a best improvement approach. In the context of this method, the

customer c is sequentially inserted at each possible insertion point within r

(starting with insertion after the vehicle leaves the depot and finishing with

insertion as the final stop before the depot) until an insertion yields an im-

provement in objective function value, at which point the first-improvement

stage stops and the solution is accepted as the current solution. The algo-

rithm then continues until it has been performed the required number of

times.

Algorithm 22 The MoveOne local search algorithm takes as input a Solution s.

procedure MoveOne(s)
timesToPerform← (numberOfRoutes ∗ depthOfSearch)
for i← 0, timesToPerform do

Route r ← selectRandomRoute(s)
Route r′ ← r
Customer c← selectRandomCustomer(r′)
r′ ← removeCustFromRoute(r′, c)
for all Customer c′ in r′ do

r′ ← insertCustBeforeCust(c, c′, r′) . Inserts customer c before c’
in route r’

if objFunc(r′) < objFunc(r) then
r ← r′

break
else

r′ ← removeCustFromRoute(r′, c) . Undo move
end if

end for
end for

end procedure

• MoveTwo MoveTwo follows the same structure and set of operations as

MoveOne. It provides a new means of improving the quality of single routes.

It differs from MoveOne in that it is a pair of customers which are removed

and re-inserted, rather than just a single customer. The pair of customers

are consecutive customers, both in the original route and the new route. The

algorithm for MoveOne can be seen in Algorithm 22.

• MoveThree MoveThree extends the methods of MoveOne and MoveTwo by

removing and re-inserting three consecutive customers at a time to provide

a further way of manipulating a single route. The implementation of the

method is otherwise the same as for MoveOne (Algorithm 22).

144

6.5 Hyper-heuristic Approach for Minimising Route

Cost

The previous section describes how a set of low-level heuristics have been cho-

sen with the goal of improving performance on optimising single routes (in other

words, the TSP). The motivation behind that is the need for high quality routes

in order that testing of solution fairness can be interpreted correctly. This section

will present a hyper-heuristic that successfully utilises the set of low-level heuris-

tics to generate high quality single routes. To demonstrate whether this is the

case, testing will be performed on benchmark instances of the Travelling Sales-

man Problem (TSP).

As the aim of the hyper-heuristic is to demonstrate the performance (or at

least potential) of the low-level heuristics, the algorithm itself will be kept simple

so that any success can be attributed mainly to the set of low-level heuristics.

It will be a population-based algorithm as that proved successful for previous

routing problems (see Chapter 5). It will include a mutation stage to diversify

solutions and escape local minima and a local search stage to intensify the search

and improve solution quality. Full pseudocode for the hyper-heuristic can be seen

in Algorithms 23 and 24. Each stage of the algorithm will also be described below.

• Setup and Variables When considering what size a population must be,

a balance must often be found between the improved solution quality that

results from a large, diverse population and the increase in time taken to

improve this population of solution. From preliminary testing, a population

size of 4 proved to provide the best balance within this hyper-heuristic. As

well as ensuring a level of diversity within solutions, it is also important

to determine when a solution should be intensified and when it should be

diversified. To represent this notion, a new method of adaptation of the

intensityOfMutation HyFlex parameter will be proposed. In this algorithm,

each population member has a separate value for the intensityOfMutation

parameter, a parameter which controls the scale to which a solution is mu-

tated by a mutation heuristic. The variable intOfMuti is used to refer to the

intensityOfMutation value for the solution with index i. When a solution

is still being improved, changes in a solution resulting from the application

of a mutation heuristic should be relatively small. To this end, an initial

intOfMut value of 0.4 is given for all solutions, which will provide enough of

a change to escape small local optima but without changing the solution to

145

such a degree that previous improvements are rendered null. For each solu-

tion, there is also a variable tracking how many iterations it has been since

an improvement in objective function value. This variable is itsSinceImpri,

again with the i referring to the solution index. The final variable, which can

be seen on line 9 of the pseudocode, is lsScorei, which gives the ‘score’ for

the local search heuristic with index i. The score is used to select heuristics

in the local search stage of the algorithm. Initially, all heuristics must be

given a high enough score so that early improvements for certain heuristics

do not overpower other heuristics. Preliminary testing proved that a value

of 100 was suitable for these purposes. Following this setup, a loop is entered

where the following stages are performed for each solution in turn.

• Adjustment of Mutation Strength As mentioned in the previous para-

graph, the intensity of mutation is to be adapted for each solution, depending

on the state of the search. Lines 13-20 of Algorithm 23 show how this is man-

ifested in the hyper-heuristic. Line 13 checks whether there have been 2 or

more iteration since an improvement in objective function value has been

found. 2 is an arbitrary value chosen due to the fact that the strength of

the local search stage can mean that a solution is stuck in a local optima

after even a single iteration. If this is the case, it is then checked whether

the intOfMuti variable is at its maximum allowable value of 1 (as defined

by HyFlex). If it is, then the implication is that several varying levels of

mutations have been performed without an improvement in solution quality.

In order to escape the local optimum it would seem that the solution is in,

the solution is re-initialised and the intOfMuti value is set back to 0.4 (lines

15 and 16). If the intOfMuti variable is not at its maximum level, then it

is increased by 0.1, again an arbitrary value chosen to ensure that several

mutation heuristics can be applied before the solution will be re-initialised

(line 18).

• Mutation Stage As stated at the start of this section, this hyper-heuristic

is deliberately simple in its design. Another consideration for the mutation

stage is that there are only 3 mutation heuristics (including the ruin-recreate

method). Therefore a sophisticated selection mechanism would be rendered

less useful. For these reasons, the selection of a mutation heuristic is made

at random and a single application is made to the solution.

• Local Search Stage The local search stage of the algorithm can be seen

as pseudocode in Algorithm 24. Again, the aim is to maintain simplicity as

far as possible. However, the large number of heuristics in this category (8)

146

means that selecting heuristics at random may be inefficient. To handle this

problem, a re-inforcement learning method will be used for selection of local

search heuristics. The selection method will be simple enough to not add

unwanted complexity to the algorithm whilst allowing for a level of heuristic

intelligence. At each iteration of this method, a local search heuristic is

repeatedly selected and then applied to the current solution. Again, a tracker

is used to record how long it has been since an improvement in objective

function value. It is important to identify how many iterations should be

performed without success before the stage is exited so that a mutation

heuristic can be applied. If the value is too low, potential improvements will

be missed. If too high, computational time may be wasted. Testing of a small

number of various value indicated that a strong, if not necessarily optimal,

number of iterations at which to stop was 30. At each repetition, a heuristic

is selected by the Roulette Wheel Selection Mechanism (see Algorithm 13 in

Chapter 4) which uses the heuristics’ lsScorei scores. If the application of

this selected heuristic results in an improvement in objective function value,

a value of 1 is added to its ‘score’ (the lsScorei variable). The 1 is selected as

a small value that will reward the operator without allowing it to overpower

other operators from a small number of successful applications.

6.5.1 Experimental Setup

The hyper-heuristic described in the previous section is to be tested on the TSP

to demonstrate whether the set of low-level heuristics are suitable for use in ex-

periments into fairness. The experimental setup will be described below. The

memetic algorithm described above shall be referred to as MemAlgReinforce or

MAR, due to the element of reinforcement learning in the local search stage of the

algorithm.

Instances

The instances to be used here can be found in TSPLIB [136], a problem library

which has been widely studied. As well as being a well-known and well-studied

dataset, optimal solutions are available for all instances, allowing for meaningful

comparisons. For the results, the instances will be considered in 2 sets; those with

less than 200 customers and those with 200 customers or more. In the former set,

there are 22 instances and for the latter category 14 instances. The largest instance

has 575 customers, a number of customers far greater than would be present in a

single route of a real-world routing problem. Thus, if successful performance can

147

Algorithm 23 The Memetic Algorithm with Reinforcement Learning hyper-
heuristic
1: procedure Memetic Algorithm
2: popSize← 4 . Population size
3: for i← 0, popSize do
4: Solution si ← initialiseSolution(i)
5: intOfMuti ← 0.4 . intensityOfMutation value for solution i
6: itsSinceImpri ← 0 . Iterations since improvement for solution i
7: end for
8: for i← 0, noOfLSHeuristics do . For the no. of local search heuristics
9: lsScorei ← 100 . The ‘score’ for LS heuristic i
10: end for
11: while timeHasNotExpired() do
12: for i← 0, popSize do
13: if itsSinceImpri ≥ 2 then
14: if intOfMuti == 1 then
15: si ← initialiseSolution(i) . Re-initialise solution
16: intOfMuti ← 0.4 . Re-set intOfMuti
17: else
18: intOfMuti ← (intOfMuti + 0.1) . Increase intOfMuti
19: end if
20: end if
21: Solution tempSol← si
22: mutHIndex← selectRandomMutationHeuristic
23: tempSol← applyHeuristic(mutHIndex, tempSol)
24: tempSol← localSearchStage(tempSol, lsScore) . See Algorithm

24
25: if objFunc(tempSol) < objFunc(si) then
26: si ← tempSol
27: itsSinceImpri ← 0
28: else
29: itsSinceImpri ← (itsSinceImpri + 1)
30: end if
31: end for
32: end while
33: end procedure

148

Algorithm 24 The local Search Stage sub-routine for the Memetic Algorithm
with Reinforcement Learning.

1: procedure Local Search Stage(s, lsScore)
2: itsSinceImpr ← 0
3: itsLimit← 30
4: while itsSinceImpr < itsLimit do
5: Solution s′ ← s
6: ind← rouletteSelection(lsScore) . ind is the index of the heuristic.

See Algorithm 13 in Chapter 4 for rouletteSelection method.
7: s′ ← applyHeuristic(ind, s′)
8: if objFunc(s′) < objFunc(s) then
9: s← s′

10: itsSinceImpr ← 0
11: lsScoreind← (lsScoreind+ 1)
12: else
13: itsSinceImpr ← (itsSinceImpr + 1)
14: end if
15: end while
16: end procedure

be shown on a large instance such as this, then it will be implied that the domain

is suitable to accurately investigate fairness.

Test Details

For each of the instances in the first set of problems (those of 200 customers and

less), 10 runs will be performed of 10 CPU minutes each. For the larger instance,

there will be 10 runs each of 20 CPU minutes length. A machine with a 2.27GHz

Intel(R) Core(TM) i3 CPU and 4GB RAM will be used to run the tests.

6.5.2 Results

As mentioned previously these instances have been split into 2 sets, with instances

of less than 200 customers in one set and instances with 200 and more customers

in a separate set. Each instance set will have a single table representing the re-

sults over those instances. The table gives an instance index as well as a name.

Within the instance name is a number, which represents how many customers are

in that instance. The instances are ordered within the table in increasing order of

the number of customers. Both the median and best-found results are presented

for the Memetic Algorithm with Reinforcement learning (MAR) algorithm. The

known optimal results are also presented for comparison purposed. To aid com-

prehension of the results, the percentage difference between the best result found

by the MAR method and the optimal solution is presented. It is important to

149

note when considering the results that the distance measurement used for the op-

timal solution results rounds the distance for each edge. This is in contrast to the

distance calculation within the domain, which is pure Euclidean distance. Thus,

there are some small anomalies; for instance some results that are lower than the

optimal result. The results for the smaller instances can be found in Table 6.1

and the results for the larger instances can be found in Table 6.2.

Instance Name MAR-median MAR-min Optimal % Diff.
0 eil51 428.87 428.87 426 0.674
1 berlin52 7544.37 7544.37 7542 0.031
2 st70 677.11 677.11 675 0.313
3 eil76 544.37 544.37 538 1.184
4 pr76 108159.44 108159.44 108159 0
5 rat99 1219.24 1219.24 1211 0.68
6 kroA100 21285.44 21285.44 21282 0.016
7 kroB100 22139.07 22139.07 22141 -0.009
8 kroC100 20750.76 20750.76 20749 0.009
9 kroD100 21294.29 21294.29 21294 0.001
10 kroE100 22068.76 22068.76 22068 0.003
11 eil101 641.23 641.21 629 1.941
12 lin105 14383 14383 14379 0.028
13 pr107 44301.68 44301.68 44303 -0.003
14 pr124 59030.74 59030.74 59030 0.001
15 bier127 118370.83 118293.52 118282 0.01
16 pr136 96875.82 96770.92 96772 -0.001
17 pr144 58535.22 58535.22 58537 0.003
18 kroA150 26610.80 26524.86 26524 0.003
19 kroB150 26218.16 26138.70 26130 0.033
20 pr152 73683.64 73683.64 73682 0.002
21 rat195 2360.11 2353.66 2323 1.32

Table 6.1: A table showing the results for the smaller TSP instances.

By considering the results for the smaller instances (Table 6.1), it is evident

that the heuristics and domain are very capable of solving TSP problems of that

size. The percentage difference from the optimal solution is very low for all of the

instances, with the worst difference being 1.32% and only 2 cases being present

where the difference is greater than 1%. By looking at the results for the larger

instances (Table 6.2), it can be seen that the performance of the algorithms holds

up well. Although the highest percentage difference rises to 3.899%, the average

difference is only 1.022%, a level that would be considered as acceptable for real-

world applications. One point that should be noted is that for the largest of the

instances tested, the performance does seem to deteriorate slightly. It is most likely

that this is due to the greater amount of time needed to perform some of the low-

150

Instance Name MAR-median MAR-min Optimal % Diff.
0 kroA200 29478.44 29439.50 29368 0.243
1 kroB200 29827.50 29440.82 29437 0.013
2 ts225 126645.93 126645.93 126643 0.0023
3 pr226 80679.21 80370.26 80369 0.0016
4 gil262 2429.70 2405.21 2378 1.144
5 pr264 49274.18 49135 49135 0
6 a280 2655.15 2622.50 2579 1.687
7 pr299 49120.95 48599.53 48191 0.848
8 lin318 42975.30 42484.27 42029 1.083
9 pr439 111842.73 107924.53 107217 0.66
10 pcb442 52629.85 52139.91 50778 2.682
11 rat575 7127.02 7037.09 6773 3.899

Table 6.2: A table showing the results for the larger TSP instances.

level heuristic operations as the size of the problem grows larger. Specifically, the

2-opt and 3-opt methods could be considered slightly in-efficient. This could be

improved in both cases by implementing the problem reductions proposed by Lin

[98] for these methods. These problem reductions restrict moves to only those that

have the possibility of imporving a solution. However, for the primary motivation

behind this domain, that of investigating and encouraging fairness between routes,

the performance is sufficient to suggest that the domain can provide a strong base

for such testing.

6.6 Conclusion

This chapter has looked at the design decisions that must be considered when

creating problem domains for real-world routing problems. Particular emphasis

has been placed on the issue of ’fairness’ between solutions. An implementation of

this concept has been provided for a Vehicle Routing Problem domain, along with

analysis of how fairness could be represented for the other HyFlex domains. These

fairness definitions across multiple domains are significant as they would allow a

hyper-heuristics to perform fairness experiments in a cross-domain context. The

work in this chapter has shown some of the complexities behind design of real-

world components within problem domains. For fairness within VRP, several

tools had to be added to the domain. These could then be used as needed by a

hyper-heuristic. These varied from enforcing fairness (through vehicle capacities)

to encouraging fairness (using p-value to alter objective function terms).

151

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis has explored the concept that, through informed design of problem

domains and with the provision of sufficient tools and data, a hyper-heuristic can

be made more powerful and flexible. In order to successfully address this idea,

a number of angles have been considered. One of these has been the definition

of what a problem domain for a hyper-heuristic actually is, as it will inevitably

have different requirements to a domain designed with other algorithms in mind.

Following on from this, analysis and discussion of the various domain components

has been given. This analysis has covered how they can be designed to enable

a hyper-heuristic to operate efficiently. The design of a domain also includes

decisions about what information should be available to a hyper-heuristic. This

thesis has explored how a hyper-heuristic can use extra information to more easily

navigate the search space and obtain improved results. Part of this exploration

has included analysis of the hyper-heuristic element of optimisation, as well as

just the problem domain. The work has shown there is a important relationship

between problem domain and hyper-heuristic. The domain must provide sufficient

information and tools but the algorithm must be designed to make use of that

information. The thesis has also considered how domain design can differ for real-

world applications. One particular example of fairness has been examined. The

analysis shows that careful consideration must be given when designing such a

domain to ensure that, not only is the concept of fairness implemented, but that

the tools are available for a hyper-heuristic to achieve improved fairness. The

contributions of each chapter will now be analysed in more detail.

152

7.1.1 Problem Domain Definition and HyFlex VRPTW

Domain

A substantial contribution of Chapter 3 is the definition of a problem domain for

hyper-heuristics. With components divided into 2 categories of Base Representa-

tion and Domain Tools, the definition describes the elements of a problem domain

that are needed for a wide variety of hyper-heuristics to be able to operate on

it. In the chapter, each of the elements of the domain have been analysed and

the design decisions behind them discussed. This discussion has occurred both in

a theoretical manner and also with a practical example. The practical example

was a new domain for the Vehicle Routing Problem with Time Windows for the

HyFlex framework. By presenting this domain, we were able to give concrete ex-

amples of some of the design decisions faced. One of these decisions is the choice

of low-level heuristics to be included in the domain. A key contribution of this

domain is the combination of many of the most used and best performing low-

level heuristics from the literature. In addition, 2 new heuristics were proposed in

the crossover heuristic category. One of these heuristics selects routes randomly

from the 2 parent solutions. The other of these new heuristics attempts to se-

lect ‘long’ routes from the 2 parent solutions, working from the motivation that a

long route is beneficial as, by including more customers in a single route, it may

be possible to reduce the number of routes required and also the distance travelled.

The analysis of design of problem domains raised some interesting points.

Whereas the design of a domain for a meta-heuristic or more exact approach

might concentrate almost exclusively on permitting improved performance on a

single problem and small set of instances, a domain for a hyper-heuristic must

be designed with flexibility in mind. The design decisions discussed in Chapter 3

reflect this. The low-level heuristics are designed to take a short amount of time to

run on each call. This ensures that multiple calls can be made by a hyper-heuristic

and more information can be gathered. Data as a driver of hyper-heuristic perfor-

mance is the driving force of this thesis and is a crucial element of domain design.

The choice of heuristics is also important, with a broad range of ’type’ of heuristic,

allowing many different hyper-heuristics to operate on the domain.

153

7.1.2 Information as a Driver of Hyper-heuristic Perfor-

mance

One of the key contributions from Chapter 3 had been the need for a domain

to provide a hyper-heuristic with the right tools and data. Chapter 4 seeked to

explore this concept further. To achieve this, 2 hyper-heuristics which take inspi-

ration from different research areas were proposed. Both algorithms followed an

Iterative Local Search framework. The first is the Choice Function [41] from the

field of hyper-heuristic research. The choice function considers 3 measures of a

heuristic’s success; its ability to improve objective function, its performance when

it is applied immediately following another heuristic and the time taken for it

to complete its application. The second approach is Adaptive Operator Selection

(AOS) from the research area of evolutionary algorithms. In that research, the

selection mechanism is used to select which heuristic should be used to mutate a

population member. The specific version of AOS used in this chapter (Extreme-

value Adaptive Operator Selection [58]) considers the past successes of heuristics

in the search and favours heuristics which have shown the ability to make single,

large jumps in terms of objective function improvement.

These 2 hyper-heuristics were compared to an ILS algorithm which had a ran-

dom mutation heuristic selection mechanism. They were both able to produce

consistently better performances (in terms of objective function score). The main

difference from the base algorithm was the use of a mutation heuristic selection

mechanism based on past performance data. These results provided a strong indi-

cation of the value that can be added by providing more data to a hyper-heuristic.

This theory was further tested with the proposal for an adaptive mechanism for

the local search stage of the ILS method, as well as for the mutation stage. Us-

ing the insight gained from the previous comparison of selection mechanisms, a

simple method is used which orders the local search heuristic using their average

improvement to objective function value. At each iteration, the heuristics are

repeatedly applied in the determined order until no improvement is found. This

new hyper-heuristic was tested on the new VRPTW domain proposed in Chapter

3 and yielded improved objective function scores compared to the previous ver-

sion. Again, this strengthens the conclusion that the heuristic performance data

offered to the hyper-heuristic is crucial to its performance when used well.

The other interesting contribution to come out of chapter 4 was the analysis

on the role of parameter numbers in hyper-heuristic performance. For the initial

testing and comparison of the two hyper-heuristics with the adaptive mutation

154

heuristic selection mechanisms, there was found to be a measurable performance

difference between the two. The AOS algorithm provided superior (in objective

function values) as well as more consistent results than the Choice Function hyper-

heuristic. Both algorithms had the same underlying structure. The main difference

between them was in the nature of the mutation heuristic selection mechanism.

The AOS method only required a single parameter to be tuned for the mutation

stage. The Choice Function had 3 parameters. The analysis in Chapter 4 postured

that the lower number of parameters in the AOS method allowed it to have more

flexibility in the face of changing problems and instances. The logic behind this

was that parameters will inevitably have optimal settings for different problems.

It will be very unlikely that these values are the same for all problems. Hence, it

could be argued that the greater the number of parameters, the greater the amount

of tuning that is needed when moving between problems. This is an interesting

contribution which would merit further investigation. Suggestions as to how this

could be done are given later in this chapter.

7.1.3 New Domain Tools

Chapter 5 continued the work of Chapter 4, in exploring further how extra data

and tools could be made available to a hyper-heuristic in such a way as to allow

that hyper-heuristic to better navigate the search space and achieve improved so-

lutions. In order to do this, Chapter 5 proposes several additions to the HyFlex

framework, all intended to enhance the framework and provide more options to

hyper-heuristics. One of these improvements is access to solution ‘features’; qual-

ities of a solution that can be used to judge quality or to drive the search a par-

ticular way. Chapter 5 describes how access to these solution features can be used

to generate user-defined objective functions. An example is given of the VRPTW,

where an algorithm may want to first optimise the number of routes before then

optimising the distance. Further improvements include the possibility to save and

load solutions, which means strong solutions can be used as seed members of a

population in an evolutionary algorithm. A further feature is a method which

allows external instances to be imported into a domain. Through this, users can

import their own instances and increase the scope of testing of algorithms. This

element of the work presented in Chapter 5 provides an important contribution in

understanding of how domain tools can be used by hyper-heuristics.

One of the most significant additions is that of a solution ‘distance’ measure

which gives a value representing how ‘different’ 2 solutions are. There are a num-

ber of applications of this feature, for example in hyper-heuristics with genetic

155

algorithm elements where population diversity is desirable. To demonstrate the

utility of this feature in full, definitions of distance for all HyFlex domains were

given, with options considered. In addition, a distance measure was implemented

for the VRPTW domain that combined quick execution time when calculating the

distance value with the need to provide an accurate measure. These definitions

given in the context of distance for use by hyper-heuristics represents a valuable

contribution with the potential for much further work.

In order to directly demonstrate how the use of a distance measure can ben-

efit a hyper-heuristic, an example application is considered and implemented in

Chapter 5. This is the proposal to assess quality of heuristics by the level to which

they ‘change’ a solution as well as whether that solution is improved. Specifically,

a method called Compass [104] is used to find a balance between solution mod-

ification and solution quality. This method is used in the context of a memetic

algorithm and is used to select both the mutation heuristics and the local search

heuristics. The distance measure is compared to a simple reinforcement learning

technique which is inspired by the above conclusions drawn regarding parameter

numbers. Both approaches are tested on the VRPTW domain and are shown to

have similar levels of median performance. However, the best of the results using

the distance measure method are often stronger than the best results for the other

method. It is very interesting that the results show a distance measure can be used

by a hyper-heuristic to provide improved results. However, it is clear that further

work is required to determine more applications of the tool. Finally, the results

also showed that the reinforcement learning technique outperforms all competitors

from the CHeSC competition for the VRPTW domain, indicating once again the

strength of simple techniques with few parameters.

7.1.4 A New VRP Domain with Real-world Features

Chapter 6 considered the issue of domain design and provision of tools for hyper-

heuristics from the perspective of real-world routing problems. A new HyFlex

domain with features designed to represent issues that may be encountered in

industrial routing applications. The specific issue of fairness between routes is

considered, with several features being provided to allow manipulation and analy-

sis of solution fairness. One important contribution of this chapter is a definition

of fairness for each of the HyFlex problem domains. These definitions show how

the concept of fairness is applicable to many different problems. In addition,

practical implementations are given for the new routing domain. All of the new

features in the domain are described, with explanations given as to how they can

be used to investigate fairness. One new feature is individual capacities for each

156

vehicle in a solution. Using this feature, fairness can be forced by manipulating

vehicle capacities to ensure each vehicle has a certain number of customers. In

this manner, it can be investigated how enforced fairness can affect the potential

best objective function value. Another feature is proposed which allows fairness

to be encouraged through the objective function. Through this feature, users can

place soft limits on route distance which are penalised by both fixed and variable

penalties. A further method is included to encourage fairness through the objec-

tive function, a method which calculate the sum of distr
p for all routes r within

the solution. This is a more flexible approach than the sum of squares method.

By providing this analysis and explanations of how these features can be used to

investigate fairness, Chapter 6 makes a strong contribution to knowledge in the

area and provides a solid base for future work.

As mentioned, the new features have the potential to facilitate investigation

into the link between fairness and solution quality. In chapter 6, it is explained that

the quality of solutions generated from the domain must be consistent; otherwise

it is hard to draw conclusions about whether any change in performance is down to

fairness or just the fluctuating performance of the domain’s heuristics. With this

in mind, Chapter 6 mentions that the original set of heuristics for the VRPTW

domain do not provide strong, consistent solutions for single routes. To remedy

this, a new set of heuristics are described and implemented in this new domain,

with a focus on heuristics that are able to make inter-route improvements. Much

stronger results are demonstrated on single routes using these heuristics. This

once again shows how a strong combination of low-level heuristics can be vital to

achieving consistent results.

7.1.5 Summary

The proposition that this thesis has put forward is that, for a problem domain to

be of use to a hyper-heuristic, it must offer enough tools and data for the hyper-

heuristic to effectively navigate a search space. A number of contributions have

been presented over the chapters which show that a hyper-heuristic’s potential to

achieve competitive results can increase as it is offered more data to interpret. The

work done demonstrates how design of problem domains (and particularly Vehicle

Routing Problem domains) for hyper-heuristics requires different factors to be

considered than when designing for other algorithms. This thesis has analysed

these decisions and has provided a firm base for future design of domains for

hyper-heuristics.

157

7.2 Future Work

This section will describe possible work that can be undertaken that builds on the

contributions of this thesis.

• The distance measure introduced in Chapter 5 could be extended by HyFlex.

Firstly, by other domains implementing it (as well as the other changes) so

it can be tested on multiple problems. Secondly, multiple distance mea-

sure could be available for each problem domain. This would increase the

amount of data available to a hyper-heuristic and increase the potential for

manipulation of the search space. On a similar note, a number of differ-

ent distance measures for the VRPTW should be tested within the HyFlex

framework. Currently, only one has been used, that of common edges be-

tween solutions, but it would be interesting to see how this compares to other

standard methods within the literature. All of the suggestions mentioned

here would provide more information to a hyper-heuristic and provide the

potential for improvement.

• Also in Chapter 5, a hyper-heuristic was proposed which used this measure

to select low-level heuristics. The results from using this method showed that

the new feature has the potential to add value to hyper-heuristic methods

and to improve solution quality. It would seem that this feature warrants

further investigation. Currently, it has only been tested in one algorithmic

framework. It would be of interest to see the measure be used in an algorithm

such as the most successful hyper-heuristic from the CHeSC competition,

the AdapHH of Misir [110], an algorithm which demonstrated the capability

to combine multiple measures of heuristic performance.

• It is clear that there is plenty to build on from the new fairness features

introduced by Chapter 6. Suggestions are given in the chapter as to how

these features can be used to investigate fairness. Specifically the example is

given of a 2-depot problem with depots at either end of a ‘grid’. In between

a fixed number, n, of customers are randomly dispersed. Each depot has a

single vehicle. The basic idea is to modify the vehicles’ capacities repeatedly

starting with 1 vehicle servicing all n vehicles, then changing it so that

vehicle serves n-1 whilst the other vehicle serves 1, and working through all

permutations until the first vehicle serves 0 customers and the second vehicle

serves all n. For each of these combinations, the solution can be optimised

and the objective functions recorded. It could then be observed at which

point an increase in fairness causes a large deterioration in solution quality.

158

• Also concerning the issue of fairness, the feature which modifies the p-value

in the objective function can be used to encourage a search toward fair-

ness. A study should be performed examining how the value can be adapted

through the search to find the correct balance between fairness and solution

quality.

• Chapter 6 introduced features which bring the academic vehicle routing

problem closer to real-world applications. This work could be continued by

introducing further features and constraints into the problem domain. These

features may include pickups and deliveries, the need for driver breaks and

consideration of traffic and weather conditions.

• It is mentioned above that the VRPTW HyFlex domain introduces 2 new

crossover heuristics (see Chapter 3). When the memetic algorithm produces

strong results in Chapter 5, it is suggested that the performance of the new

crossover heuristics could be a contributing factor. It would be interesting

to investigate the strength of these heuristics and whether they have real

potential to increase solution quality. To do this, other ‘standard’ crossover

heuristics for the VRPTW should be implemented. The performance of the

different methods could then be compared and conclusions drawn.

• Following the algorithmic experiments of Chapter 4, it is discussed that the

number of parameters in an algorithm may affect that algorithm’s ability

to adapt during cross-domain optimisation. This would be an interesting

area for further investigation as it has the potential to aid understanding

of algorithmic performance when tested on multiple problems. In practical

terms, a sophisticated parameter tuning method (such as ParamILS [84])

could be applied to find suitable parameter value for a hyper-heuristic on

a set number of problems. A new problem could then be added and the

hyper-heuristic tested on this problem. The question would be whether the

parameter values still provide strong results or whether they require more

tuning.

159

Bibliography

[1] Enrique Alba and Bernabé Dorronsoro. A hybrid cellular genetic algorithm

for the capacitated vehicle routing problem. In Engineering Evolutionary

Intelligent Systems, pages 379–422. Springer, 2008.

[2] S Alexander. On the history of combinatorial optimization (till 1960). Hand-

books in Operations Research and Management Science: Discrete Optimiza-

tion, 12:1, 2005.

[3] Philippe Badeau, François Guertin, Michel Gendreau, Jean-Yves Potvin,

and Eric Taillard. A parallel tabu search heuristic for the vehicle routing

problem with time windows. Transportation Research Part C: Emerging

Technologies, 5(2):109–122, 1997.

[4] Barrie M Baker and MA Ayechew. A genetic algorithm for the vehicle

routing problem. Computers & Operations Research, 30(5):787–800, 2003.

[5] Roberto Battiti, Mauro Brunato, and Franco Mascia. Reactive search and

intelligent optimization. 2007.

[6] John E Beasley. Route firstcluster second methods for vehicle routing.

Omega, 11(4):403–408, 1983.

[7] John E Bell and Patrick R McMullen. Ant colony optimization techniques for

the vehicle routing problem. Advanced Engineering Informatics, 18(1):41–

48, 2004.

[8] Gleb Belov and Guntram Scheithauer. A cutting plane algorithm for the one-

dimensional cutting stock problem with multiple stock lengths. European

Journal of Operational Research, 141(2):274–294, 2002.

[9] Russell Bent and Pascal Van Hentenryck. A two-stage hybrid algorithm for

pickup and delivery vehicle routing problems with time windows. Computers

& Operations Research, 33(4):875–893, 2006.

160

[10] Jean Berger and Mohamed Barkaoui. A new hybrid genetic algorithm for

the capacitated vehicle routing problem. Journal of the Operational Research

Society, 54(12):1254–1262, 2003.

[11] Dimitris J Bertsimas and David Simchi-Levi. A new generation of vehi-

cle routing research: robust algorithms, addressing uncertainty. Operations

Research, 44(2):286–304, 1996.

[12] Daniel Bienstock, Julien Bramel, and David Simchi-Levi. A probabilistic

analysis of tour partitioning heuristics for the capacitated vehicle rout-

ing problem with unsplit demands. Mathematics of Operations Research,

18(4):786–802, 1993.

[13] Burak Bilgin, Ender Özcan, and Emin Erkan Korkmaz. An experimental

study on hyper-heuristics and exam timetabling. In Practice and Theory of

Automated Timetabling VI, pages 394–412. Springer, 2007.

[14] Kenneth Dean Boese. Cost versus distance in the traveling salesman problem.

UCLA Computer Science Department, 1995.

[15] Alexandre Le Bouthillier and Teodor Gabriel Crainic. A cooperative parallel

meta-heuristic for the vehicle routing problem with time windows. Comput-

ers & Operations Research, 32(7):1685–1708, 2005.

[16] Olli Bräysy and Michel Gendreau. Vehicle routing problem with time win-

dows, part i: Route construction and local search algorithms. Transportation

science, 39(1):104–118, 2005.

[17] Bernd Bullnheimer, Richard F Hartl, and Christine Strauss. Applying the

ant system to the vehicle routing problem. In Meta-Heuristics, pages 285–

296. Springer, 1999.

[18] Bernd Bullnheimer, Richard F Hartl, and Christine Strauss. An improved

ant system algorithm for thevehicle routing problem. Annals of operations

research, 89:319–328, 1999.

[19] Edmund Burke, Peter Cowling, Patrick De Causmaecker, and Greet Van-

den Berghe. A memetic approach to the nurse rostering problem. Applied

intelligence, 15(3):199–214, 2001.

[20] Edmund Burke, Timothy Curtois, Matthew Hyde, Graham Kendall,

Gabriela Ochoa, Sanja Petrovic, JA Vazquez-Rodriguez, and Michel Gen-

dreau. Iterated local search vs. hyper-heuristics: Towards general-purpose

161

search algorithms. In Evolutionary Computation (CEC), 2010 IEEE

Congress on, pages 1–8. IEEE, 2010.

[21] Edmund Burke, Graham Kendall, D Landa Silva, Ross O’Brien, and Eric

Soubeiga. An ant algorithm hyperheuristic for the project presentation

scheduling problem. In Evolutionary Computation, 2005. The 2005 IEEE

Congress on, volume 3, pages 2263–2270. IEEE, 2005.

[22] Edmund Burke, Graham Kendall, Jim Newall, Emma Hart, Peter Ross,

and Sonia Schulenburg. Hyper-heuristics: An emerging direction in modern

search technology. In Handbook of metaheuristics, pages 457–474. Springer,

2003.

[23] Edmund K Burke and Yuri Bykov. A late acceptance strategy in hill-

climbing for exam timetabling problems. In PATAT 2008 Conference, Mon-

treal, Canada, 2008.

[24] Edmund K Burke, Timothy Curtois, Gerhard Post, Rong Qu, and Bart

Veltman. A hybrid heuristic ordering and variable neighbourhood search

for the nurse rostering problem. European Journal of Operational Research,

188(2):330–341, 2008.

[25] Edmund K Burke, Timothy Curtois, Rong Qu, and G Vanden Berghe. A

time predefined variable depth search for nurse rostering. INFORMS Journal

on Computing, 2007.

[26] Edmund K Burke, Timothy Curtois, Rong Qu, and G Vanden Berghe. A

scatter search methodology for the nurse rostering problem. Journal of the

Operational Research Society, 61(11):1667–1679, 2010.

[27] Edmund K Burke, Michel Gendreau, Gabriela Ochoa, and James D Walker.

Adaptive iterated local search for cross-domain optimisation. In Proceedings

of the 13th annual conference on Genetic and evolutionary computation,

pages 1987–1994. ACM, 2011.

[28] Edmund K Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, En-

der Özcan, and John R Woodward. A classification of hyper-heuristic ap-

proaches. In Handbook of metaheuristics, pages 449–468. Springer, 2010.

[29] Edmund K Burke, Graham Kendall, and Eric Soubeiga. A tabu-search

hyperheuristic for timetabling and rostering. Journal of Heuristics, 9(6):451–

470, 2003.

162

[30] EK Burke, MR Hyde, G Kendall, and JR Woodward. The scalability of

evolved on line bin packing heuristics. In Proceedings of the IEEE Congress

on Evolutionary Computation(CEC 2007), pages 2530–2537, 2007.

[31] Konstantin Chakhlevitch and Peter Cowling. Hyperheuristics: recent devel-

opments. In Adaptive and multilevel metaheuristics, pages 3–29. Springer,

2008.

[32] Ching-Yuen Chan, Fan Xue, WH Ip, and CF Cheung. A hyper-heuristic

inspired by pearl hunting. In Learning and Intelligent Optimization, pages

349–353. Springer, 2012.

[33] Pai-Chun Chen, Graham Kendall, and G Vanden Berghe. An ant based

hyper-heuristic for the travelling tournament problem. In Computational

Intelligence in Scheduling, 2007. SCIS’07. IEEE Symposium on, pages 19–

26. IEEE, 2007.

[34] Wen-Chyuan Chiang and Robert A Russell. A reactive tabu search meta-

heuristic for the vehicle routing problem with time windows. INFORMS

Journal on computing, 9(4):417–430, 1997.

[35] Nicos Christofides and Samuel Eilon. Algorithms for large-scale travelling

salesman problems. Operational Research Quarterly, pages 511–518, 1972.

[36] G u Clarke and John W Wright. Scheduling of vehicles from a central depot

to a number of delivery points. Operations research, 12(4):568–581, 1964.

[37] Jean-François Cordeau, Michel Gendreau, and Gilbert Laporte. A tabu

search heuristic for periodic and multi-depot vehicle routing problems. Net-

works, 30(2):105–119, 1997.

[38] Jean-François Cordeau, Michel Gendreau, Gilbert Laporte, Jean-Yves

Potvin, and Frédéric Semet. A guide to vehicle routing heuristics. Jour-

nal of the Operational Research society, pages 512–522, 2002.

[39] Jean-François Cordeau, Gilbert Laporte, Anne Mercier, et al. A unified tabu

search heuristic for vehicle routing problems with time windows. Journal of

the Operational research society, 52(8):928–936, 2001.

[40] Peter Cowling and Konstantin Chakhlevitch. Hyperheuristics for managing a

large collection of low level heuristics to schedule personnel. In Evolutionary

Computation, 2003. CEC’03. The 2003 Congress on, volume 2, pages 1214–

1221. IEEE, 2003.

163

[41] Peter Cowling, Graham Kendall, and Eric Soubeiga. A hyperheuristic ap-

proach to scheduling a sales summit. In Practice and Theory of Automated

Timetabling III, pages 176–190. Springer, 2001.

[42] GA Croes. A method for solving traveling-salesman problems. Operations

Research, 6(6):791–812, 1958.

[43] T. Curtois, G. Ochoa, M Hyde, and J. A. Vázquez-Rodŕıguez. A hyflex

module for the personnel scheduling problem. Technical report, School of

Computer Science, University of Nottingham, 2011.

[44] Tim Curtois. http://www.cs.nott.ac.uk/ tec/nrp/. Website, 2014.

[45] George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-

scale traveling-salesman problem. Journal of the operations research society

of America, 2(4):393–410, 1954.

[46] George B Dantzig and John H Ramser. The truck dispatching problem.

Management science, 6(1):80–91, 1959.

[47] Lawrence Davis. Adapting operator probabilities in genetic algorithms. In

International Conference on {G} enetic {A} lgorithms\’89, pages 61–69,

1989.

[48] Peter Demeester, Burak Bilgin, Patrick De Causmaecker, and Greet Van-

den Berghe. A hyperheuristic approach to examination timetabling prob-

lems: benchmarks and a new problem from practice. Journal of Scheduling,

15(1):83–103, 2012.

[49] Jörg Denzinger, Marc Fuchs, and Matthias Fuchs. High performance ATP

systems by combining several AI methods. Citeseer, 1996.

[50] Martin Desrochers, Jan Karel Lenstra, and Martin WP Savelsbergh. A

classification scheme for vehicle routing and scheduling problems. European

Journal of Operational Research, 46(3):322–332, 1990.

[51] Karl F Doerner, Richard F Hartl, and Maria Lucka. A parallel version of

the d-ant algorithm for the vehicle routing problem. Parallel Numerics,

5:109–118, 2005.

[52] Marco Dorigo, Gianni Caro, and Luca Gambardella. Ant algorithms for

discrete optimization. Artificial life, 5(2):137–172, 1999.

[53] Marco Dorigo, Vittorio Maniezzo, Alberto Colorni, and Vittorio Maniezzo.

Positive feedback as a search strategy. 1991.

164

[54] John H Drake, Ender Özcan, and Edmund K Burke. An improved choice

function heuristic selection for cross domain heuristic search. In Parallel

Problem Solving from Nature-PPSN XII, pages 307–316. Springer, 2012.

[55] Gunter Dueck. New optimization heuristics: the great deluge algorithm and

the record-to-record travel. Journal of Computational physics, 104(1):86–92,

1993.

[56] Wout Dullaert and Olli Bräysy. Routing relatively few customers per route.

Top, 11(2):325–336, 2003.

[57] Emanuel Falkenauer. A hybrid grouping genetic algorithm for bin packing.

Journal of heuristics, 2(1):5–30, 1996.

[58] Álvaro Fialho, Luis Da Costa, Marc Schoenauer, and Michèle Sebag. Ex-

treme value based adaptive operator selection. In Parallel Problem Solving

from Nature–PPSN X, pages 175–184. Springer, 2008.

[59] Marshall L Fisher and Ramchandran Jaikumar. A generalized assignment

heuristic for vehicle routing. Networks, 11(2):109–124, 1981.

[60] Luca Maria Gambardella, Éric Taillard, and Giovanni Agazzi. Macs-vrptw:

A multiple colony system for vehicle routing problems with time windows.

In New ideas in optimization. Citeseer, 1999.

[61] Bruno-Laurent Garcia, Jean-Yves Potvin, and Jean-Marc Rousseau. A par-

allel implementation of the tabu search heuristic for vehicle routing prob-

lems with time window constraints. Computers & Operations Research,

21(9):1025–1033, 1994.

[62] TJ Gaskell. Bases for vehicle fleet scheduling. OR, pages 281–295, 1967.

[63] Hermann Gehring and Jörg Homberger. A parallel hybrid evolutionary meta-

heuristic for the vehicle routing problem with time windows. In Proceedings

of EUROGEN99, volume 2, pages 57–64, 1999.

[64] Hermann Gehring and Jörg Homberger. Parallelization of a two-phase meta-

heuristic for routing problems with time windows. Journal of heuristics,

8(3):251–276, 2002.

[65] Michel Gendreau, Alain Hertz, and Gilbert Laporte. New insertion and

postoptimization procedures for the traveling salesman problem. Operations

Research, 40(6):1086–1094, 1992.

165

[66] Michel Gendreau, Alain Hertz, and Gilbert Laporte. A tabu search heuristic

for the vehicle routing problem. Management science, 40(10):1276–1290,

1994.

[67] Ian P Gent and Toby Walsh. Towards an understanding of hill-climbing

procedures for sat. In AAAI, volume 93, pages 28–33. Citeseer, 1993.

[68] Billy E Gillett and Leland R Miller. A heuristic algorithm for the vehicle-

dispatch problem. Operations research, 22(2):340–349, 1974.

[69] Fred Glover. Future paths for integer programming and links to artificial

intelligence. Computers & Operations Research, 13(5):533–549, 1986.

[70] Fred Glover. Ejection chains, reference structures and alternating path

methods for traveling salesman problems. Discrete Applied Mathematics,

65(1):223–253, 1996.

[71] David E Goldberg, Bradley Korb, and Kalyanmoy Deb. Messy genetic algo-

rithms: Motivation, analysis, and first results. Complex systems, 3(5):493–

530, 1989.

[72] Bruce L Golden, Arjang A Assad, and Edward A Wasil. Routing vehicles

in the real world: applications in the solid waste, beverage, food, dairy, and

newspaper industries. The vehicle routing problem, 9:245–286, 2002.

[73] Bruce L Golden, Thomas L Magnanti, and Hien Q Nguyen. Implementing

vehicle routing algorithms. Networks, 7(2):113–148, 1977.

[74] Limin Han and Graham Kendall. Guided operators for a hyper-heuristic

genetic algorithm. In AI 2003: Advances in Artificial Intelligence, pages

807–820. Springer, 2003.

[75] Limin Han, Graham Kendall, and Peter Cowling. An adaptive length chro-

mosome hyperheuristic genetic algorithm for a trainer scheduling problem.

In Proceedings of the 4th Asia-Pacific conference on simulated evolution and

learning (SEAL02), pages 267–271, 2002.

[76] Keld Helsgaun. An effective implementation of the lin–kernighan traveling

salesman heuristic. European Journal of Operational Research, 126(1):106–

130, 2000.

[77] Wee-Kit Ho, Juay Chin Ang, and Andrew Lim. A hybrid search alogrithm

for the vehicle routing problem with time windows. International Journal

on Artificial Intelligence Tools, 10(03):431–449, 2001.

166

[78] John H Holland. Adaptation in natural and artificial systems: An introduc-

tory analysis with applications to biology, control, and artificial intelligence.

U Michigan Press, 1975.

[79] Jörg Homberger and Hermann Gehring. A two-phase hybrid metaheuristic

for the vehicle routing problem with time windows. European Journal of

Operational Research, 162(1):220–238, 2005.

[80] Jörg Homberger, Hermann Gehring, et al. Two evolutionary metaheuris-

tics for the vehicle routing problem with time windows. Infor-Information

Systems and Operational Research, 37(3):297–318, 1999.

[81] H Hoos and Thomas Stiitzle. Satllb: An online resource for research on sat.

Sat, page 283, 2000.

[82] Ping-Che Hsiao, Tsung-Che Chiang, and Li-Chen Fu. A vns-based hyper-

heuristic with adaptive computational budget of local search. In Evolution-

ary Computation (CEC), 2012 IEEE Congress on, pages 1–8. IEEE, 2012.

[83] Xiangpei Hu, Qiulei Ding, Yongxian Li, and Dan Song. An improved ant

colony system and its application. In Computational intelligence and secu-

rity, pages 36–45. Springer, 2007.

[84] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle.

Paramils: an automatic algorithm configuration framework. Journal of Ar-

tificial Intelligence Research, 36(1):267–306, 2009.

[85] M Hyde, G Ochoa, T Curtois, and JA Vázquez-Rodŕıguez. A hyflex module

for the boolean satisfiability problem. Technical report, Technical report,

School of Computer Science, University of Nottingham, 2009.

[86] Matthew Hyde, Gabriela Ochoa, T Curtois, and JA Vázquez-Rodŕıguez.

A hyflex module for the one dimensional bin-packing problem. School of

Computer Science, University of Nottingham, Tech. Rep, 2009.

[87] George Ioannou, Manolis Kritikos, G Prastacos, et al. A greedy look-ahead

heuristic for the vehicle routing problem with time windows. Journal of the

Operational Research Society, 52(5):523–537, 2001.

[88] David S. Johnson, Alan Demers, Jeffrey D. Ullman, Michael R Garey,

and Ronald L. Graham. Worst-case performance bounds for simple one-

dimensional packing algorithms. SIAM Journal on Computing, 3(4):299–

325, 1974.

167

[89] Nicolas Jozefowiez, Frédéric Semet, and El-Ghazali Talbi. Multi-objective

vehicle routing problems. European Journal of Operational Research,

189(2):293–309, 2008.

[90] Soonchul Jung and Byung Ro Moon. A hybrid genetic algorithm for the

vehicle routing problem with time windows. In GECCO, pages 1309–1316,

2002.

[91] Sanjeev Khanna, Rajeev Motwani, Madhu Sudan, and Umesh Vazirani. On

syntactic versus computational views of approximability. SIAM Journal on

Computing, 28(1):164–191, 1998.

[92] Gerhart F King and Truman M Mast. Excess travel: causes, extent, and

consequences. Number 1111. 1987.

[93] Joshua D Knowles, Richard A Watson, and David W Corne. Reducing local

optima in single-objective problems by multi-objectivization. In Evolution-

ary Multi-Criterion Optimization, pages 269–283. Springer, 2001.

[94] Marek Kubiak. Systematic construction of recombination operators for the

vehicle routing problem. Foundations of Computing and Decision Sciences,

29(3), 2004.

[95] Marek Kubiak. Distance measures and fitness-distance analysis for the

capacitated vehicle routing problem. In Metaheuristics, pages 345–364.

Springer, 2007.

[96] Gilbert Laporte, Yves Nobert, and Serge Taillefer. Solving a family of multi-

depot vehicle routing and location-routing problems. Transportation science,

22(3):161–172, 1988.

[97] Jan Karel Lenstra and AHG Kan. Complexity of vehicle routing and schedul-

ing problems. Networks, 11(2):221–227, 1981.

[98] Shen Lin. Computer solutions of the traveling salesman problem. Bell

System Technical Journal, The, 44(10):2245–2269, 1965.

[99] Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the

traveling-salesman problem. Operations research, 21(2):498–516, 1973.

[100] Andrea Lodi, Silvano Martello, and Michele Monaci. Two-dimensional

packing problems: A survey. European Journal of Operational Research,

141(2):241–252, 2002.

168

[101] Helena R Lourenço, Olivier C Martin, and Thomas Stutzle. Iterated local

search. arXiv preprint math/0102188, 2001.

[102] Silvano Martello and Paolo Toth. Knapsack problems. Wiley New York,

1990.

[103] Jorge Maturana and Frédéric Saubion. Towards a generic control strategy for

evolutionary algorithms: an adaptive fuzzy-learning approach. In Evolution-

ary Computation, 2007. CEC 2007. IEEE Congress on, pages 4546–4553.

IEEE, 2007.

[104] Jorge Maturana and Frédéric Saubion. A compass to guide genetic algo-

rithms. In Parallel Problem Solving from Nature–PPSN X, pages 256–265.

Springer, 2008.

[105] David Meignan, Abderrafiaa Koukam, and Jean-Charles Créput. Coalition-

based metaheuristic: a self-adaptive metaheuristic using reinforcement

learning and mimetism. Journal of Heuristics, 16(6):859–879, 2010.

[106] David Mester and Olli Bräysy. Active-guided evolution strategies for large-

scale capacitated vehicle routing problems. Computers & Operations Re-

search, 34(10):2964–2975, 2007.

[107] David Mester, Olli Bräysy, and Wout Dullaert. A multi-parametric evolu-

tion strategies algorithm for vehicle routing problems. Expert Systems with

Applications, 32(2):508–517, 2007.

[108] Mustafa Misir, Wim Vancroonenburg, and G Vanden Berghe. A selection

hyper-heuristic for scheduling deliveries of ready-mixed concrete. In Proceed-

ings of the 9th Metaheuristic International Conference (MIC 2011), Udine,

Italy, 2011.

[109] Mustafa Misir, Katja Verbeeck, Patrick De Causmaecker, and Greet Van-

den Berghe. Hyper-heuristics with a dynamic heuristic set for the home

care scheduling problem. In Evolutionary Computation (CEC), 2010 IEEE

Congress on, pages 1–8. IEEE, 2010.

[110] Mustafa Mısır, Katja Verbeeck, Patrick De Causmaecker, and Greet Vanden

Berghe. An intelligent hyper-heuristic framework for chesc 2011. In Learning

and Intelligent Optimization, pages 461–466. Springer, 2012.

[111] Ahmad Muklason, Andrew J. Parkes, Barry McCollom, and Ender Özcan.

Initial results on fairness in examination timetabling. In The 6th Multidis-

169

ciplinary Int. conf. on Scheduling: Theory and Applications (MISTA 2013),

2013.

[112] H Müller-Merbach. Zweimal travelling salesman. DGOR-Bulletin, 25:12–13,

1983.

[113] Muhammad Nawaz, E Emory Enscore Jr, and Inyong Ham. A heuristic algo-

rithm for the¡ i¿ m¡/i¿-machine,¡ i¿ n¡/i¿-job flow-shop sequencing problem.

Omega, 11(1):91–95, 1983.

[114] Marvin D Nelson, Kendall E Nygard, John H Griffin, and Warren E Shreve.

Implementation techniques for the vehicle routing problem. Computers &

Operations Research, 12(3):273–283, 1985.

[115] Gabriela Ochoa and Matthew Hyde. http://www.asap.cs.nott.ac.uk/external/chesc2011/.

Website, 2011.

[116] Gabriela Ochoa, Matthew Hyde, Tim Curtois, Jose A Vazquez-Rodriguez,

James Walker, Michel Gendreau, Graham Kendall, Barry McCollum, An-

drew J Parkes, Sanja Petrovic, et al. Hyflex: a benchmark framework for

cross-domain heuristic search. In Evolutionary Computation in Combinato-

rial Optimization, pages 136–147. Springer, 2012.

[117] Gabriela Ochoa, James Walker, Matthew Hyde, and Tim Curtois. Adaptive

evolutionary algorithms and extensions to the hyflex hyper-heuristic frame-

work. In Parallel Problem Solving from Nature-PPSN XII, pages 418–427.

Springer, 2012.

[118] Institute of Logistics and Distribution Management. The 1985 survey of

distribution costs, 1985. Queens Square, Corby, Northants, UK.

[119] Yew-Soon Ong, Meng-Hiot Lim, Ning Zhu, and Kok-Wai Wong. Classifica-

tion of adaptive memetic algorithms: a comparative study. Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 36(1):141–

152, 2006.

[120] I Or. Traveling salesman-type combinatorial problems and their relation to

the logistics of regional blood banking. PhD thesis, Northweston University,

Evanston, IL, 1976.

[121] Ibrahim Hassan Osman. Metastrategy simulated annealing and tabu search

algorithms for the vehicle routing problem. Annals of operations research,

41(4):421–451, 1993.

170

[122] E Özcan, Yuri Bykov, Murat Birben, and Edmund K Burke. Examination

timetabling using late acceptance hyper-heuristics. In Evolutionary Compu-

tation, 2009. CEC’09. IEEE Congress on, pages 997–1004. IEEE, 2009.

[123] Ender Özcan and Ahmed Kheiri. A hyper-heuristic based on random gra-

dient, greedy and dominance. In Computer and Information Sciences II,

pages 557–563. Springer, 2012.

[124] Ender Özcan, Mustafa Misir, Gabriela Ochoa, and Edmund K Burke.

A reinforcement learning-great-deluge hyper-heuristic for examination

timetabling. International Journal of Applied Metaheuristic Computing

(IJAMC), 1(1):39–59, 2010.

[125] Heinrich Paessens. The savings algorithm for the vehicle routing problem.

European Journal of Operational Research, 34(3):336–344, 1988.

[126] David Pisinger and Stefan Ropke. A general heuristic for vehicle routing

problems. Computers & operations research, 34(8):2403–2435, 2007.

[127] Michael Polacek, Richard F Hartl, Karl Doerner, and Marc Reimann. A

variable neighborhood search for the multi depot vehicle routing problem

with time windows. Journal of heuristics, 10(6):613–627, 2004.

[128] Marie-Claude Portmann and Antony Vignier. Performances’s study on

crossover operators keeping good schemata for some scheduling problems.

In GECCO, pages 331–338, 2000.

[129] Jean-Yves Potvin and Jean-Marc Rousseau. A parallel route building algo-

rithm for the vehicle routing and scheduling problem with time windows.

European Journal of Operational Research, 66(3):331–340, 1993.

[130] Jean-Yves Potvin and Jean-Marc Rousseau. An exchange heuristic for route-

ing problems with time windows. Journal of the Operational Research Soci-

ety, 46(12):1433–1446, 1995.

[131] Christian Prins. A simple and effective evolutionary algorithm for the vehi-

cle routing problem. Computers & Operations Research, 31(12):1985–2002,

2004.

[132] Patrick Prosser and Paul Shaw. Study of greedy search with multiple im-

provement heuristics for vehicle routing problems, 1996.

[133] Ingo Rechenberg. Evolutionsstrategie94, volume 1 of werkstatt bionik und

evolutionstechnik. Frommann Holzboog, Stuttgart, 1994.

171

[134] Marc Reimann, Karl Doerner, and Richard F Hartl. D-ants: Savings based

ants divide and conquer the vehicle routing problem. Computers & Opera-

tions Research, 31(4):563–591, 2004.

[135] Marc Reimann, Michael Stummer, and Karl Doerner. A savings based ant

system for the vehicle routing problem. In GECCO, pages 1317–1326, 2002.

[136] Gerhard Reinelt. Tspliba traveling salesman problem library. ORSA journal

on computing, 3(4):376–384, 1991.

[137] Jacques Renaud, Fayez F Boctor, and Gilbert Laporte. An improved petal

heuristic for the vehicle routeing problem. Journal of the Operational Re-

search Society, pages 329–336, 1996.

[138] Jacques Renaud, Gilbert Laporte, and Fayez F Boctor. A tabu search heuris-

tic for the multi-depot vehicle routing problem. Computers & Operations

Research, 23(3):229–235, 1996.

[139] Yves Rochat and Éric D Taillard. Probabilistic diversification and intensifi-

cation in local search for vehicle routing. Journal of heuristics, 1(1):147–167,

1995.

[140] Rubén Ruiz and Thomas Stützle. A simple and effective iterated greedy al-

gorithm for the permutation flowshop scheduling problem. European Journal

of Operational Research, 177(3):2033–2049, 2007.

[141] Rubén Ruiz and Thomas Stützle. An iterated greedy heuristic for the

sequence dependent setup times flowshop problem with makespan and

weighted tardiness objectives. European Journal of Operational Research,

187(3):1143–1159, 2008.

[142] David M Ryan, Curt Hjorring, and Fred Glover. Extensions of the petal

method for vehicle routeing. Journal of the Operational Research Society,

pages 289–296, 1993.

[143] Martin WP Savelsbergh. The vehicle routing problem with time windows:

Minimizing route duration. ORSA journal on computing, 4(2):146–154,

1992.

[144] Gerhard Schrimpf, Johannes Schneider, Hermann Stamm-Wilbrandt, and

Gunter Dueck. Record breaking optimization results using the ruin and

recreate principle. Journal of Computational Physics, 159(2):139–171, 2000.

172

[145] Jürgen Schulze and Torsten Fahle. A parallel algorithm for the vehicle rout-

ing problem with time window constraints. Annals of Operations Research,

86:585–607, 1999.

[146] Dale Schuurmans and Finnegan Southey. Local search characteristics of

incomplete sat procedures. Artificial Intelligence, 132(2):121–150, 2001.

[147] Hans-Paul Schwefel. Numerische Optimierung von Computer-Modellen mit-

tels der Evolutionsstrategie: mit einer vergleichenden Einführung in die Hill-

Climbing-und Zufallsstrategie. Birkhäuser, 1977.

[148] Bart Selman, Henry A Kautz, and Bram Cohen. Noise strategies for im-

proving local search. In AAAI, volume 94, pages 337–343, 1994.

[149] Bart Selman, Hector J Levesque, David G Mitchell, et al. A new method for

solving hard satisfiability problems. In AAAI, volume 92, pages 440–446,

1992.

[150] Paul Shaw. Using constraint programming and local search methods to

solve vehicle routing problems. In Principles and Practice of Constraint

ProgrammingCP98, pages 417–431. Springer, 1998.

[151] Marius M Solomon. Algorithms for the vehicle routing and scheduling prob-

lems with time window constraints. Operations research, 35(2):254–265,

1987.

[152] Eric Taillard. Benchmarks for basic scheduling problems. European Journal

of Operational Research, 64(2):278–285, 1993.

[153] Éric Taillard. Parallel iterative search methods for vehicle routing problems.

Networks, 23(8):661–673, 1993.

[154] Éric Taillard, Philippe Badeau, Michel Gendreau, François Guertin, and

Jean-Yves Potvin. A tabu search heuristic for the vehicle routing problem

with soft time windows. Transportation science, 31(2):170–186, 1997.

[155] Eric D Taillard. Parallel taboo search techniques for the job shop scheduling

problem. ORSA journal on Computing, 6(2):108–117, 1994.

[156] El-Ghazali Talbi. Metaheuristics: from design to implementation, volume 74.

John Wiley & Sons, 2009.

[157] Kay Chen Tan, Loo Hay Lee, QL Zhu, and Ke Ou. Heuristic methods

for vehicle routing problem with time windows. Artificial intelligence in

Engineering, 15(3):281–295, 2001.

173

[158] KC Tan, TH Lee, K Ou, and LH Lee. A messy genetic algorithm for the vehi-

cle routing problem with time window constraints. In Evolutionary Compu-

tation, 2001. Proceedings of the 2001 Congress on, volume 1, pages 679–686.

IEEE, 2001.

[159] Xuan Tan, Xuyao Luo, WN Chen, and Jun Zhang. Ant colony system for

optimizing vehicle routing problem with time windows. In Computational

Intelligence for Modelling, Control and Automation, 2005 and International

Conference on Intelligent Agents, Web Technologies and Internet Commerce,

International Conference on, volume 2, pages 209–214. IEEE, 2005.

[160] Sam R Thangiah. Vehicle routing with time windows using genetic algo-

rithms. Citeseer.

[161] Sam Rabindranath Thangiah, Kendall E Nygard, and Paul L Juell. Gideon:

A genetic algorithm system for vehicle routing with time windows. In Artifi-

cial Intelligence Applications, 1991. Proceedings., Seventh IEEE Conference

on, volume 1, pages 322–328. IEEE, 1991.

[162] Dirk Thierens. An adaptive pursuit strategy for allocating operator proba-

bilities. In Proceedings of the 2005 conference on Genetic and evolutionary

computation, pages 1539–1546. ACM, 2005.

[163] Dirk Thierens. Adaptive operator selection for iterated local search. In

Engineering Stochastic Local Search Algorithms. Designing, Implementing

and Analyzing Effective Heuristics, pages 140–144. Springer, 2009.

[164] Paul M Thompson and Harilaos N Psaraftis. Cyclic transfer algorithm

for multivehicle routing and scheduling problems. Operations research,

41(5):935–946, 1993.

[165] Paolo Toth and Daniele Vigo. The vehicle routing problem. Siam, 2001.

[166] A Van Breedam. An analysis of the behavior of heuristics for the vehicle

routing problem for a selection of problems with vehicle-related, customer-

related, and time-related constraints. Pch. D., University of Antwerp, 1994.

[167] J. A. Vázquez-Rodŕıguez, G. Ochoa, T. Curtois, and M Hyde. A hyflex

module for the permutation flow shop problem. Technical report, School of

Computer Science, University of Nottingham, 2011.

[168] Christos Voudouris and Edward Tsang. Guided local search and its appli-

cation to the traveling salesman problem. European journal of operational

research, 113(2):469–499, 1999.

174

[169] David H Wolpert and William G Macready. No free lunch theorems for

optimization. Evolutionary Computation, IEEE Transactions on, 1(1):67–

82, 1997.

[170] Anthony Wren and Alan Holliday. Computer scheduling of vehicles from

one or more depots to a number of delivery points. Operational Research

Quarterly, pages 333–344, 1972.

[171] PC Yellow. A computational modification to the savings method of vehicle

scheduling. Operational Research Quarterly, pages 281–283, 1970.

[172] Qiuwen Zhang, Tong Zhen, Yuhua Zhu, Wenshuai Zhang, and Zhi Ma. A

hybrid intelligent algorithm for the vehicle routing with time windows. In

Advanced Intelligent Computing Theories and Applications. With Aspects of

Theoretical and Methodological Issues, pages 47–54. Springer, 2008.

[173] Weixiong Zhang, Ananda Rangan, and Moshe Looks. Backbone guided local

search for maximum satisfiability. In IJCAI, pages 1179–1186. Citeseer,

2003.

175

	Introduction
	Introduction
	Contributions of thesis
	Publications Arising from Work within Thesis
	Thesis Structure

	Related Work
	Introduction
	Vehicle Routing Problem
	Graph Theory and the Travelling Salesman Problem
	The Vehicle Routing Problem

	Hyper-Heuristics
	Personnel Scheduling
	Timetabling Problems
	Vehicle Routing Problem
	Cross-domain Optimisation

	Conclusion

	Vehicle Routing Problem Domain and HyFlex Framework
	Introduction
	Problem Domain Definition
	Problem Representation
	Domain Tools

	Discussion of Domain Components
	HyFlex Framework
	Problem Domain Design
	HyFlex Algorithm Design
	Pre-existing HyFlex Domains

	VRPTW Domain
	Problem Representation
	Instance Format and Instance Sets Used
	Initialisation of Solution
	Low-level Heuristics

	Conclusion

	Iterative Local Search Approaches to Cross-domain Optimisation
	Introduction
	Previous HyFlex Work
	Heuristic Selection Mechanisms
	Solution Acceptance Criteria
	Iterated Local Search
	Experiments and Results

	Adaptive Iterated Local Search
	Approach
	Experiments
	Results

	Adaptive Iterated Local Search for the Vehicle Routing Problem
	Ordered Local Search Improvement to AdapEV
	Experiments
	Results

	Conclusion

	An Adaptive Memetic Algorithm and Extensions to the Hyflex Framework
	Introduction
	Improvements to HyFlex framework
	Additions
	Definition of 'Distance' for HyFlex Domains
	Implementation of Additions in VRPTW Domain

	Population-based Approach to the VRPTW which uses Solution Distance
	Adaptive Iterated Local Search
	Adaptive Memetic Algorithm
	Diversity Variant

	Experiments
	Instances
	Test Details

	Results
	Ordinal Data Analysis
	Distribution of Objective Function Values
	Comparison to Best-Known Results

	CHeSC Competition Analysis
	Competition Format and Rules
	Results and Best Algorithms
	Experiments and Results

	Conclusion

	A General Domain for the Vehicle Routing Problem
	Introduction
	Motivation
	Definition of Fairness for Initial HyFlex Domains
	Permutation Flow Shop
	Personnel Scheduling
	One-dimensional Bin Packing
	Maximum Satisfiability (MAX-SAT)

	General VRP Domain
	Additional Features
	Construction Heuristic
	Low-level Heuristics

	Hyper-heuristic Approach for Minimising Route Cost
	Experimental Setup
	Results

	Conclusion

	Conclusion and Future Work
	Conclusion
	Problem Domain Definition and HyFlex VRPTW Domain
	Information as a Driver of Hyper-heuristic Performance
	New Domain Tools
	A New VRP Domain with Real-world Features
	Summary

	Future Work

