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Abstract

There is a growing interest towards self configuring/tuning automated general-purpose

reusable heuristic approaches for combinatorial optimisation, such as, hyper-heuristics.

Hyper-heuristics are search methodologies which explore the space of heuristics rather

than the solutions to solve a broad range of hard computational problems without re-

quiring any expert intervention. There are two common types of hyper-heuristics in the

literature: selection and generation methodologies. This work focusses on the former

type of hyper-heuristics. Almost all selection hyper-heuristics perform a single point

based iterative search over the space of heuristics by selecting and applying a suitable

heuristic to the solution in hand at each decision point. Then the newly generated so-

lution is either accepted or rejected using an acceptance method. This improvement

process is repeated starting from an initial solution until a set of termination criteria

is satisfied. The number of studies on the design of hyper-heuristic methodologies has

been rapidly increasing and currently, we already have a variety of approaches, each with

their own strengths and weaknesses. It has been observed that different hyper-heuristics

perform differently on a given subset of problem instances and more importantly, a

hyper-heuristic performs differently as the set of low level heuristics vary. This the-

sis introduces a general “multi-stage” hyper-heuristic framework enabling the use and

exploitation of multiple selection hyper-heuristics at different stages during the search

process. The goal is designing an approach utilising multiple hyper-heuristics for a more

effective and efficient overall performance when compared to the performance of each

constituent selection hyper-heuristic. The level of generality that a hyper-heuristic can

achieve has always been of interest to the hyper-heuristic researchers. Hence, a vari-

ety of multi-stage hyper-heuristics based on the framework are not only applied to the

real-world combinatorial optimisation problems of high school timetabling, multi-mode

resource-constrained multi-project scheduling and construction of magic squares, but

also tested on the well known hyper-heuristic benchmark of CHeSC 2011. The empir-

ical results show that the multi-stage hyper-heuristics designed based on the proposed

framework are still inherently general, easy-to-implement, adaptive and reusable. They

can be extremely effective solvers considering their success in the competitions of ITC

2011 and MISTA 2013. Moreover, a particular multi-stage hyper-heuristic outperformed

the state-of-the-art selection hyper-heuristic from CHeSC 2011.
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Chapter 1

Introduction

Currently, most of the decision support systems are developed by experts and they are

often custom tailored to specific application domains. Hence, they cannot be reused

for solving a problem from another domain. Such systems are expensive to build and

maintain. Even a slight change in the same problem could require expert intervention.

On the other hand, there has been some significant scientific progress in developing

automated general purpose systems that can learn, adapt and improve their behaviour

on the fly while solving a given problem. Such systems are applicable to different in-

stances from not only the same domain but also other problem domains. Moreover,

they are easy to build and maintain and so less costly. Hyper-heuristics have emerged

as such general purpose high level search methodologies. A hyper-heuristic performs a

search over the space formed by a fixed set of (meta-)heuristics which operate directly

on the space of solutions, for solving computationally hard problems [2–8]. A class of

hyper-heuristics aims to provide solutions across a range of problem domains by pro-

cessing problem independent information obtained from selecting/mixing a set of low

level heuristics which operate at the problem level during the search process. There are

two main types of hyper-heuristics in the academic literature: methodologies used for

generation or selection of heuristics [2, 4, 9]. Even though the term hyper-heuristic was

coined and introduced recently, the idea of combining the different existing heuristics

(neighbourhood operators) with the goal of exploiting their strengths dates back to the

early 1960s [10, 11]. There has been a growing interest in hyper-heuristics since then.

This study focuses on an iterative selection hyper-heuristic framework based on a single

point search [8, 12].

1



Chapter 1. Introduction 2

Almost all previously proposed selection hyper-heuristics are designed respecting the

concept of a domain barrier which separates the hyper-heuristic from the problem do-

main containing the low level heuristics [12] as illustrated in Figure 1.1. In this frame-

work, the hyper-heuristic layer interacts with the problem domain and heuristic layers

through problem independent measures, such as the quality change in a candidate so-

lution when the selected heuristic is employed. Traditionally, the barrier prohibits any

problem domain specific information to pass through to the hyper-heuristic level. This

type of layered and modular approach to the design of automated search methodologies

supports the development of more general methods than currently there exist, which are

applicable to unseen instances from a single problem domain or even different problem

domains. Moreover, reuse of algorithmic components becomes possible.

 

 

 

 

 
Hyper-heuristic  

Domain Barrier 
Problem Domain 

  Low level heuristics  

Space of solutions 

o Select a heuristic to apply to a solution in 

hand 

o Accept/reject a new solution 

o Book keeping (e.g., remember successful 

heuristics) 

...  

• Representation 

• Cost/evaluation/ 
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• Instance reader 

• Initialisation 

method 

 ... 

Figure 1.1: A selection hyper-heuristic framework and the domain barrier

A selection hyper-heuristic is a high level problem solving framework that can select

and apply an appropriate low level heuristic used to modify a solution in hand at each

decision point, given a particular problem instance and a number of low level heuristics.

The selection hyper-heuristic framework combines two essential components: heuristic

selection and move acceptance methods processes under a single point search framework,

as identified in [3, 7, 8, 12, 13]. Such a hyper-heuristic attempts to improve a solution

(or solutions) by selecting a perturbative or constructive heuristic (or heuristics), each

processing and returning a complete or partial solution when invoked, followed by a

decision to accept or reject the resulting solution at a given step during the search

process. The solution is evaluated according to the objective value (also referred as cost
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or fitness in this thesis). The search process continues iteratively until the termination

criteria are satisfied. Finally, the best solution at hand is returned for a given problem.

Many researchers and practitioners have been progressively involved in hyper-heuristic

studies for solving difficult real world combinatorial optimisation problems ranging from

channel assignment to production scheduling (Table 1.1).

Table 1.1: Some selected problem domains in which hyper-heuristics were used as
solution methodologies

Problem Domain [Reference] Problem Domain [Reference]

Channel assignment [14] Job shop scheduling [10]
Component placement sequencing [15] Sales summit scheduling [12]
Examination timetabling [16] Space allocation [17]
Nurse rostering [18] University course timetabling [18]
Orc quest, logistics domain [19] Vehicle routing problems [20]
Packing [21] Production scheduling [22]

1.1 Research Motivation and Contributions

Although Cowling et al. [12] implied that hyper-heuristics are problem independent ap-

proaches, there is strong empirical evidence showing that the choice of selection hyper-

heuristic components influences its overall performance [13]. Bilgin et al. [23] showed

that different combinations of selection hyper-heuristic components yield different per-

formances on examination timetabling problems. Özcan et al. [8] showed that the move

acceptance is more influential on the performance of a selection hyper-heuristic if the

number of low level heuristics is low and they are mutational. Then, the choice of move

acceptance component becomes more crucial. A recent theoretical study showed that

mixing heuristics could lead to exponentially faster search than using each standalone

heuristic on some benchmark functions [24]. These observations are crucial, since they

imply that another level can be introduced on top of the hyper-heuristics for managing

them. Then the question arises: “How are we going to end this hierarchical growth in

the levels?”.

This situation generates a curiosity and points out a potential modification of the stan-

dard single point-based search framework of selection hyper-heuristics. Multi-stage oper-

ation of multiple selection hyper-heuristics needs to be supported. Then, another hyper-

heuristic level needs to be introduced for managing multiple hyper-heuristics which op-

erate on top of low level heuristics. Considering the recursive hyper-heuristic definition
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of ‘heuristics to choose heuristics’ [12], those hyper-heuristics could require another level

and so on, causing a hierarchical growth in the hyper-heuristic levels like a tree. An

attempt was made in [25] to flatten the hierarchical growth in the hyper-heuristic levels

for the move acceptance via group decision making strategies. The authors suggest com-

bining multiple move acceptance strategies under a group decision making strategy. The

performance of four such group decision making move acceptance methods are analysed

within different hyper-heuristics over a set of benchmark functions. The experimental

results show that the group decision making strategies have potential to significantly

improve the overall performance of selection hyper-heuristics.

In another study, Özcan and Burke [26] provided a general multi-level hierarchical search

methodology by taking advantage of the recursive nature of the hyper-heuristics defi-

nition, ‘heuristics which search the space of heuristics’. Their proposal suggests an

additional level on top of a hyper-heuristic in order to make use of different types of

heuristics (operators) in cooperation. One of the frameworks proposed in [13] that han-

dle a set of mutational and hill climber heuristics by invoking a mutational heuristic

first followed by a hill climber, is actually performing a multi-level search. The higher

level in this framework is managing two different hyper-heuristics allowing to employ

diversifying (exploring of the search space) and intensifying (exploiting the accumulated

search experience) phases. The effectiveness of the multi-level search framework that

combines multiple selection hyper-heuristics suggested by Özcan and Burke [26] has not

been investigated further.

This thesis describes a multi-level framework which allows the use of multiple hyper-

heuristics during the search process. Given that one of the selection hyper-heuristics

would be employed at each stage during the search process, we will refer to the over-

all approach as multi-stage (selection) hyper-heuristic. The additional level on top of

multiple selection hyper-heuristics will be referred to as multi-stage level. The proposed

multi-stage hyper-heuristic framework is general, reusable and useful in relieving the

difficulty of choosing a hyper-heuristic method for solving a problem, by automating the

process of selecting a hyper-heuristic at different point of the search process. Five novel

multi-stage selection hyper-heuristics based on the framework is designed, implemented

and analysed in this thesis:

• MSHH1: A greedy heuristic selection strategy referred to as dominance-based

heuristic selection method reducing the number of low level heuristics consider-

ing the trade-off between improvement achieved by a low level heuristic with a
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given setting and the step it takes to achieve that performance, is combined with

the random descent selection hyper-heuristic.

• MSHH2: The Robinhood (Round-robin neighbourhood) hyper-heuristic contains

a heuristic selection component that allocates equal share from the overall execu-

tion time for each low level heuristic, while the different combined move acceptance

criteria enable partial restarts when the search process stagnates.

• MSHH3: The HySST (Hyper-heuristic Search Strategies and Timetabling) hyper-

heuristic switches between diversification and intensification processes automati-

cally and allows partial restarts via a threshold move acceptance method whose

parameter is also controlled by the proposed method.

• MSHH4: A multi-stage selection hyper-heuristic approach that extends the three

approaches briefly described above. It uses the dominance-based method in MSHH1

combined with the round-robin strategy in MSHH2 to reduce the set of low level

heuristics, and also applies a modified version of the move acceptance method used

in MSHH3.

• MSHH5: A multi-stage selection hyper-heuristic approach that extends the previ-

ous multi-stage hyper-heuristic (MSHH4) and makes use of the relay hybridisation

[27] technique which applies a low level heuristic to a solution generated by apply-

ing a preceding heuristic.

Additionally, the technique used in [28, 29] is implemented as MSHH6 and applied to a

benchmark to test its level of generality.

It is always of interest to researchers and practitioners to find the state-of-the-art ap-

proach for solving a particular problem. Although hyper-heuristic research aims for the

level of generality, still knowing the relative position of hyper-heuristics with respect to

the state-of-the-art for a specific problem domain would be useful. One way of establish-

ing state-of-the-art for a specific problem is through competitions/challenges. Therefore,

Some of the multi-stage hyper-heuristics, briefly described above, are initially designed

for solving some specific problems. This has indeed required design and implementation

of the problem domain layer components, such as domain specific low level heuristics.

High school timetabling is a well-known real-world combinatorial optimisation problem.

The problem is known to be NP-complete [30] even in simplified forms. It requires the

scheduling (assignment) of events and resources, such as courses, classes of students,
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teachers, rooms and more within a fixed number of time slots subject to a set of con-

straints. A competition has been organised on high school timetabling: the Third Inter-

national Timetabling Competition (ITC 2011) to form a benchmark for future studies,

determine the state-of-the-art solution method and promote researchers and practition-

ers to deal with the problems as they are without discarding the real world complexities.

MSHH3 is designed for high school timetabling problem and has entered into the three

Rounds of the competition. This multi-stage hyper-heuristic has generated the best new

solutions for three given instances in Round 1 and gained the second place in Rounds 2

and 3 at ITC 2011.

Project scheduling is a common real world optimisation problem, and has been addressed

by a competition organised together with the MISTA 2013 conference. In the competi-

tion, multiple projects had to be scheduled whilst taking into account the availability of

local and global resources under a set of constraints. MSHH4 is designed for solving the

multi-mode resource-constrained multi-project scheduling problem and eventually has

won the competition becoming the state-of-the-art in this domain.

A magic square is a square matrix that contains distinct numbers in which the summa-

tion of the numbers in each row, column and the two diagonals has the same constant

total known as the magic number [31]. Constructing the magic square has been consid-

ered as a hard computational problem domain [32]. This was topic of a competition and

MSHH5 is used as a method to solve the constrained-version of magic squares.

In order to show that the proposed multi-stage selection hyper-heuristics are sufficiently

general and can be applied to different problem domains without requiring any change,

they are implemented as extension to a public software library, referred to as HyFlex

(Hyper-heuristics Flexible framework) which provides an interface for the implementa-

tion of not only hyper-heuristics but also other (meta)heuristics and problem domains.

HyFlex has been used for benchmarking of hyper-heuristics [33]. The experimental re-

sults indicate the success of the multi-stage selection hyper-heuristics designed under

the proposed multi-stage framework. The framework is more general in the sense that

it is applicable to a variety of problems and more effective than the existing approaches

which frequently ignore the real-world complexities. A selection hyper-heuristic should

be “(1) fast to implement, (2) requiring far less expertise in either the problem domain or

heuristic methods, and (3) robust enough to effectively handle a range of problems” [12].

The proposed multi-stage hyper-heuristic framework in this thesis satisfies all previously

suggested design criteria.



Chapter 1. Introduction 7

1.2 Structure of Thesis

The thesis is structured as follows:

• Chapter 1: Introduces the thesis topic and relevant concepts.

• Chapter 2: Provides the background and literature survey. Selection hyper-

heuristics, problem domains dealt with in this work and the previous approaches

used to solve those problem domains are summarised.

• Chapter 3: Introduces the problem domains in more detail, including the charac-

teristics of the instances, low level heuristics and initialisation methods for each

domain.

• Chapter 4: Describes the novelty and all algorithmic components of multi-stage

hyper-heuristic framework. Additionally, several multi-stage hyper-heuristics to

control a set of perturbative low level heuristics are explained.

• Chapter 5: Presents the competition results of the ITC 2011 and MISTA 2013

competitions, compares the performance of the different proposed multi-stage

hyper-heuristics on HyFlex problems as well as constructing constrained-version

of the magic-square problem; and reports the generality level of selection hyper-

heuristics. The chapter provides the computational results and discussions.

• Chapter 6: Presents the conclusions of the research outcome and points out some

future research directions.

1.3 Academic Publications Produced

The following academic articles, conference papers and extended abstracts have been

produced as a result of this research. It is worthy to mention that the results and

the performance analysis of the multi-stage hyper-heuristics which have been published

on academic papers are revised in this thesis and additional results obtained from the

testing on the different problem domains are reported.

• Ahmed Kheiri and Ender Özcan. Constructing constrained-version of magic squares

using selection hyper-heuristics. The Computer Journal, 57(3):469-479, 2014.

[journal]
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• Murat Kalender, Ahmed Kheiri, Ender Özcan, and Edmund K. Burke. A greedy

gradient-simulated annealing selection hyper-heuristic. Soft Computing, 17(12):2279-

2292, 2013. [journal]

• Ahmed Kheiri, Ender Özcan, and Andrew J. Parkes. A stochastic local search

algorithm with adaptive acceptance for high-school timetabling. Annals of Oper-

ations Research, published online. [journal]

• Ahmed Kheiri and Ender Özcan. A multi-stage selection hyper-heuristic, under

review. [journal]

• Ender Özcan, Mustafa Misir, and Ahmed Kheiri. Group decision making in selec-

tion hyper-heuristics, under review. [journal]

• Shahriar Asta, Daniel Karapetyan, Ahmed Kheiri, Ender Özcan, and Andrew J.

Parkes. Combining monte-carlo and hyper-heuristic methods for the multi-mode

resource-constrained multi-project scheduling problem, under review. [journal]

• Leena N. Ahmed, Ender Özcan, and Ahmed Kheiri. Solving high school timetabling

problems worldwide using selection hyper-heuristics, under review. [journal]

• Ahmed Kheiri and Ender Özcan. A hyper-heuristic with a round robin neighbour-

hood selection. In Martin Middendorf and Christian Blum, editors, Evolutionary

Computation in Combinatorial Optimization, volume 7832 of Lecture Notes in

Computer Science, pages 1-12. Springer Berlin Heidelberg, 2013. [conference]

• Mohd Khaled Yousef Shambour, Ahamad Tajudin Khader, Ahmed Kheiri, and En-

der Özcan. A two stage approach for high school timetabling. In Minho Lee, Akira

Hirose, Zeng-Guang Hou, and Rhee Man Kil, editors, Neural Information Process-

ing, volume 8226 of Lecture Notes in Computer Science, pages 66-73. Springer

Berlin Heidelberg, 2013. [conference]

• Ender Özcan, Mustafa Misir, and Ahmed Kheiri. Group decision making hyper-

heuristics for function optimisation. In 13th UK Workshop on Computational

Intelligence (UKCI2013), pages 327-333. IEEE, 2013. [conference]

• Ender Özcan and Ahmed Kheiri. A hyper-heuristic based on random gradient,

greedy and dominance. In Erol Gelenbe, Ricardo Lent, and Georgia Sakellari,

editors, Computer and Information Sciences II, pages 557-563. Springer London,

2012. [conference]
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• Murat Kalender, Ahmed Kheiri, Ender Özcan, and Edmund K. Burke. A greedy

gradient-simulated annealing hyper-heuristic for a curriculum-based course timetabling

problem. In 12th UK Workshop on Computational Intelligence (UKCI2012), pages

1-8. IEEE, 2012. [conference]

• Shahriar Asta, Daniel Karapetyan, Ahmed Kheiri, Ender Özcan, and Andrew

J. Parkes. Combining monte-carlo and hyper-heuristic methods for the multi-

mode resource-constrained multi-project scheduling problem. In Proceedings of

the 6th Multidisciplinary International Scheduling Conference: Theory & Appli-

cations (MISTA2013), Ghent, Belgium, pages 836-839, 2013. [extended abstract]

• Ahmed Kheiri, Ender Özcan, and Andrew J. Parkes. HySST: hyper-heuristic

search strategies and timetabling. In Proceedings of the 9th International Confer-

ence on the Practice and Theory of Automated Timetabling (PATAT2012), pages

497-499, 2012. [extended abstract]

Additionally, there are two other papers currently being prepared for submission to jour-

nals. There is also a number of abstract submissions produced out of this study and

presented at international conferences, including OR53, OR54, OR56, 3rd Student Con-

ference on Operational Research (SCOR2012), 25th Conference of the European Chapter

on Combinatorial Optimization (ECCO2012), and 20th Conference of the International

Federation of Operational Research Societies (IFORS2014).



Chapter 2

Literature Review

This chapter briefly describes some meta-heuristics commonly used for combinatorial

optimisation and presents a survey of selection hyper-heuristics. In addition, an overview

of the approaches proposed previously for solving the different problems dealt with in

this work are provided.

2.1 Meta-heuristics

Pearl [34] defined heuristic as an intelligent search strategy for computer problem solving.

In the field of optimisation problems, a heuristic can be considered as an educated

guess or a ‘rule of thumb’, which guides the computational search required for finding

a solution. Although the heuristic algorithms are designed to speed up the process

of discovering a solution, yet the optimal solution is not guaranteed to be obtained.

Heuristics are often problem-dependent methods that work well for an instance of a

problem may or may not be used to solve another instance of another problem or even

the same problem. In contrast, a meta-heuristic is a high level methodology which

performs a search for solving any computationally hard problem.

The term meta-heuristic was first used by Glover [35] to describe Tabu Search and

has recently been defined by Sörensen and Glover [36] as: “A meta-heuristic is a high-

level problem-independent algorithmic framework that provides a set of guidelines or

strategies to develop heuristic optimisation algorithms. The term is also used to refer

to a problem-specific implementation of a heuristic optimisation algorithm according to

the guidelines expressed in such a framework.”

10
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Meta-heuristics can be broadly classified into population-based meta-heuristics, also

called multi-point meta-heuristics, and single-solution meta-heuristics, also called single-

point meta-heuristics. The population-based meta-heuristics, such as, Evolutionary Al-

gorithms [37], consist of a collection of individual solutions which are maintained in a

population while the single-solution meta-heuristics, such as, Tabu Search [35], differ

from population-based in that they improve and maintain a single solution.

Meta-heuristics provide “guidelines” for designing heuristic optimisation algorithms [36].

The exploration (diversification), being able to jump to the other regions of the search

space and exploitation (intensification), being able to perform local search within a

limited region using accumulated experience, capabilities and maintaining the balance

between them are important for a metaheuristic, influencing its performance. Different

meta-heuristics have different ways of maintaining that balance. Metaheuristics have to

be tailored for a specific problem domain and often, they are successful in obtaining high

quality solutions for that domain. However, meta-heuristics being a subset of heuristics

come with no guarantee for the optimality of the obtained solutions. Moreover, they can-

not be used for solving an instance from another problem domain. The maintenance of

meta-heuristics could be costly requiring expert intervention. Even a slight modification

in the description of the problem could require maintenance. Almost all meta-heuristics

have parameters and their performance could be sensitive to the setting of those pa-

rameters. There are automated parameter tuning methods, such as F-race [38], REVAC

[39] and ParamILS [40] to overcome this issue. The parameter tuning process increases

the overall computation time of an approach while searching for a high quality solution

to a given problem instance. However, there could be a trade-off and a higher quality

solutions could be obtained for a given problem in the expense of spending more time on

tuning. A selected set of well known meta-heuristics, including Iterated Local Search,

Tabu Search, Simulated Annealing, Great Deluge, Late Acceptance and Evolutionary

Algorithms are briefly described in the following sections.

2.1.1 Iterated Local Search

Local search methods start from a candidate solution, and iteratively move from one

solution to another from its direct neighbourhood [41]. The neighbourhood of a candi-

date solution is the set of solutions that can be generated by making (usually a small)

change to the candidate solution. Hill climbing is a type of local search that iteratively

improves the candidate solution by looking for a better solution to replace it, among the
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ones in its neighbourhood. Although such methods are very easy and straightforward to

be implemented, yet they can easily be trapped in a valley of local optima (local mini-

mum), where the qualities of all neighbouring solutions are equal or worse. An iterated

local search (ILS) method [42] is introduced to escape the search from a local minimum.

In ILS, the current local minimum solution, generated by applying a local search, is

perturbated (changed) leading to a new solution, then the local search is applied to

the modified solution. This cycle of applying perturbation and local search methods is

repeated until a termination criterion is satisfied. Iterated local search maintains the

balance between the exploration and exploitation processes explicitly using perturba-

tion and local search operators, respectively. [43]. An iterated local search algorithm is

illustrated in Algorithm 1.

Algorithm 1: Pseudocode of the iterated local search method

1 Let S represent the candidate solution;
2 Let Sbest represent the best solution;
3 Sinitial ← CreateInitialSolution(); // generate random solution

4 Sbest ← Sinitial;
5 S ← LocalSearch(Sinitial); // generate local optimal solution

6 repeat
7 S′ ← Perturbation(S);
8 S′′ ← LocalSearch(S′);
9 Sbest ← maintainBestSolution(S, S′, S′′);

10 if Accept(S, S′′) then
11 S ← S′′;
12 end

13 until TerminationCriterionSatisfied();
14 return Sbest;

2.1.2 Tabu Search

Tabu search is a meta-heuristic introduced by Glover [35] back in the 1986. The basic

idea of tabu search is to prevent the cyclic repetition of recent moves by maintaining a

memory, called tabu list, to prevent visiting the recently visited solutions. This may help

to guide the search away from local optima. The pseudocode of the tabu search method

is given in Algorithm 2. Hyper-heuristics can employ similar strategy by preventing the

selection of relatively poor performing heuristics.



Chapter 2. Literature Review 13

Algorithm 2: Pseudocode of tabu search

1 Let S represent the candidate solution;
2 Let Sbest represent the best solution;
3 S ← CreateInitialSolution(); // generate random solution

4 Sbest ← S;
5 repeat
6 Generate(S′); /* generate neighbour solution S′ that does not contain

tabu elements */

7 UpdateTabuList(S′);
8 Sbest ← maintainBestSolution(S′);
9 if S′ isBetterThan S then

10 S ← S′;
11 end

12 until TerminationCriterionSatisfied();
13 return Sbest;

2.1.3 Simulated Annealing

Simulated Annealing (SA) [44] is a probabilistic meta-heuristic method, motivated by an

analogy to the process of annealing in solids. At each step a new solution is generated.

The new solution is accepted if it improved the previous solution. The non-improving

solutions are accepted, to attempt escaping from local optimum, with a probability

of p = e−
∆
T , where ∆ is the quality change, and T is the method parameter, called

temperature which regulates the probability to accept solutions with higher objective

value (cost). Generally speaking, the search starts with a high temperature. Then

according to the cooling schedule, the temperature decreases gradually towards the end

of the search process. One way of reducing the temperature is to apply the geometric

cooling schedule: Ti+1 = Ti.β, where β can be empirically tuned for a particular problem

domain [45]. Algorithm 3 shows the basic outline of simulated annealing. Due to its

relatively easy to code and the ability to generate ‘good’ solutions, many papers have

been published presenting simulated annealing applied to several problem domains, like

school timetabling [44] and examination timetabling [46] problems. The disadvantage

of this method is that repeatedly annealing is a slow process, especially if the objective

function value is expensive to compute. Simulated annealing can be used as a move

acceptance method within the selection hyper-heuristics [23].
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Algorithm 3: Pseudocode of simulated annealing

1 Let S represent the candidate solution, and T the temperature;
2 Let Sbest represent the best solution;
3 S ← CreateInitialSolution(); // generate random solution

4 Sbest ← S;
5 T ← Tinitial;
6 repeat
7 Generate(S′); // generate neighbour solution S′ adjacent to S
8 Sbest ← maintainBestSolution(S′);
9 if S′ isBetterThan S then

10 S ← S′;
11 end
12 else

13 p← e−
∆
T ;

14 if p < UniformRandom[0, 1] then
15 S ← S′;
16 end

17 end
18 Update(T ); // update temperature according to cooling schedule

19 until TerminationCriterionSatisfied();
20 return Sbest;

2.1.4 Great Deluge

The Great Deluge (GD) algorithm was first introduced by Dueck [47]. GD is based

on a stochastic framework which allows improving moves by default. Non-improving

moves are accepted if the objective value of the candidate solution is better than an

expected objective value, named as water level at each step. The water level gets updated

according to the ‘rain speed’ parameter. Dueck [47] argued that if the rain speed value

is chosen to be very small then the algorithm produces a high quality solution after a

long time. The objective value of the first generated candidate solution can be used

as the initial level in GD. The pseudocode of the great deluge is given in Algorithm 4.

Dueck [47] proposed two variants of GD named Threshold Accepting (TA) and Record-

to-Record Travel (RRT) methods. The idea of TA is based on that any new solution,

which is not much worse than the old solution, is accepted. While in RRT, any new

solution which is not much worse than the best solution recorded, is accepted. Great

deluge can be utilised as a move acceptance method within the selection hyper-heuristics

[14].
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Algorithm 4: Pseudocode of great deluge

1 Let S represent the candidate solution, B the rain speed and τ the water level;
2 Let Sbest represent the best solution;
3 S ← CreateInitialSolution(); // generate random solution

4 Sbest ← S;
5 f0 ← Evaluate(S); // calculate initial objective function value

6 τ ← f0; // initial level

7 repeat
8 Generate(S′); // generate neighbour solution S′ adjacent to S
9 Sbest ← maintainBestSolution(S′);

10 if Evaluate(S′) isBetterThan Evaluate(S) then
11 S ← S′;
12 end
13 else
14 if Evaluate(S′) isBetterThan τ then
15 S ← S′;
16 end

17 end
18 Update(τ); // update the water level τ = τ ±B

19 until TerminationCriterionSatisfied();
20 return Sbest;

2.1.5 Late Acceptance

The late acceptance hill climbing was recently introduced as a meta-heuristic strategy

[48]. Most of the hill climbing approaches modify the current solution and guarantee an

equal quality or improved new solution at a given step. The late acceptance hill climbing

guarantees an equal quality or improved new solution with respect to a solution which

was obtained fixed number of steps before. Algorithm 5 provides the pseudocode of this

approach. Late acceptance hill climbing requires implementation of a queue of size L

which maintains the history of objective function values of L consecutive visited states

for a given problem. At each iteration, algorithm inserts the solution into the beginning

of the array and removes the last solution from the end. The size of the queue L is

the only parameter of the approach, which reflects the simplicity of the strategy. The

late acceptance can be employed as a move acceptance method within the selection

hyper-heuristics [16]. Jackson et al. [49] reported that the parameter of the method can

influence the performance. If L is too short, the search may quickly converge on a local

optimum, if L is too long the search may stagnate.
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Algorithm 5: Pseudocode of the late acceptance hill climbing

1 Let S represent the candidate solution;
2 Let Sbest represent the best solution;
3 S ← CreateInitialSolution(); // generate random solution

4 Sbest ← S;
5 f0 ← Evaluate(S); // calculate initial objective function value

6 for i← 0, L− 1 do
7 f(i)← f0;
8 end
9 i← 0;

10 repeat
11 Generate(S′); // generate neighbour solution S′ adjacent to S
12 f ′ ← Evaluate(S′); // calculate objective function value

13 Sbest ← maintainBestSolution(S′);
14 c← i mod L;
15 if f ′betterThanf(c) then
16 S ← S′;
17 end
18 f(c)← Evaluate(S); // include objective value in the list

19 i← i + 1;

20 until TerminationCriterionSatisfied();
21 return Sbest;

2.1.6 Evolutionary Algorithms

Evolutionary algorithms (EAs) are a class of population (multi-point) based search

methodologies, inspired from the Darwinian theory of evolution. A genetic algorithm

(GA) meta-heuristic is a subclass of EAs combining principles of natural evolution and

genetics for problem solving [37]. A pool of candidate solutions (individuals) for a given

problem is evolved to obtain a high quality solution at the end. Mate/parent selection,

recombination (crossover), mutation and replacement are the main components of an

evolutionary algorithm. A simple GA is outlined in Algorithm 6.

The candidate solutions, referred to as individuals or chromosomes, go through an evo-

lutionary cycle (each referred to as generation) passing through those phases. First,

parent individuals are selected from the population, often favouring the high quality

solutions, then they are recombined, producing new individuals which are exposed to

mutation perturbing those new solutions further. The usefulness of recombination is

still under debate in the research community [50, 51]. The replacement operator decides

which individuals will survive to the next generation. A memetic algorithm (MA) hy-

bridises a genetic algorithm with local search which is commonly applied after mutation
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Algorithm 6: Pseudocode of the genetic algorithm

1 CreateInitialSolutions(); // create initial population of solutions

2 repeat
3 Evaluate(); // calculate fitness of each solution in the population

4 SelectParents(); // select solutions from the population to breed

5 Crossover(); // apply crossover operator with a given probability

6 Mutate(); // apply mutation operator with a given probability

7 ReplaceSolutions(); // generate new population of solutions

8 until TerminationCriterionSatisfied();

on the new individuals [52, 53]. A ‘meme’ may denote a local search method capable

of local learning. A memetic algorithm is often tailored for the problem dealt with [54].

Many improvements for MAs have been suggested, for example the population sizing

[55] and interleaved mode of operation [56]. MAs have been successfully applied to many

different problems ranging from generalised travelling salesman [57] to nurse rostering

[58].

2.2 Selection Hyper-heuristics

Selection hyper-heuristics were initially defined as “heuristics to choose heuristics” in

[12]. They are capable of selecting and applying an appropriate heuristic given a set of

low level heuristics for a problem instance [3].

Özcan et al. [8] identified two successive stages that are common to most of the single

point based search hyper-heuristics (that is, without the use of populations of solutions)

influencing their performance: heuristic selection and move acceptance, in attempting

to improve a randomly created solution. An initially generated solution is iteratively

improved passing through these stages. At each iteration, a candidate new solution is

produced by selecting and applying a heuristic (neighbourhood operator) from a set of

low level heuristics; A ‘move acceptance’ component then decides whether or not the

candidate should replace the incumbent solution. This cycle continues until a termina-

tion criterion is satisfied as illustrated in Figure 2.1 [8]. The processes indicated with

bold font in Figure 2.1 take place at the hyper-heuristic level, while the rest take place in

the problem domain level. Algorithm 7 illustrates a selection hyper-heuristic framework

pseudocode performing a single point search.
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Figure 2.1: Illustration of how a single point based selection hyper-heuristic operates

Algorithm 7: Pseudocode of the selection hyper-heuristic framework

1 Let Scurrent represent the candidate solution;
2 Let LLH = {LLH1, LLH2, ..., LLHn} represent the set of all low level heuristics;
3 Let Sbest represent the best solution;
4 Sinitial ← CreateInitialSolution(); // construct initial solution

5 Scurrent ← Sinitial;
6 Sbest ← Sinitial;
7 repeat
8 LLHi ← SelectLowLevelHeuristic(LLH);
9 Snew ← ApplyHeuristic(LLHi, Scurrent); /* generate new solution Snew by

applying LLHi to Scurrent */

10 if Accept(Scurrent, Snew) then // decide whether to accept Snew or not

11 Scurrent ← Snew;
12 end
13 Sbest ← updateBestSolution(Scurrent);

14 until TerminationCriterionSatisfied();
15 return Sbest;
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Most of the selection hyper-heuristics in the literature feature a logical boundary filter,

referred to as domain barrier which disallows any domain specific information to be

passed from the problem domain layer to the hyper-heuristic layer during the search

process [2, 12]. Hence, selection hyper-heuristics, once implemented, are reusable general

methods, applicable to different unseen instances from a specific domain as well as

different domains. Even the heuristic selection and move acceptance components of

hyper-heuristics can be reused without requiring any change.

2.2.1 Classification of Selection Hyper-heuristics

Depending on the nature of the low level heuristics, two categories of selection hyper-

heuristics can be defined, namely, selection perturbative hyper-heuristics and selection

constructive hyper-heuristics [2]. Selection perturbative hyper-heuristics process com-

plete solutions, while selection constructive hyper-heuristics process partial solutions.

Selection hyper-heuristics can be further distinguished by their feedback mechanisms

and they could either be with online learning, offline learning or no learning at all [13].

The online learning selection hyper-heuristic is the one that learns from feedback during

the search process, whereas the offline learning selection hyper-heuristic learns before

the actual search starts.

2.2.2 Selection Methods

Cowling et al. [12] presented a variety of selection hyper-heuristics embedding simple

heuristic selection methods. They investigated the performance of Simple Random (SR),

Random Descent (Gradient) (RD(G)), Random Permutation (RP), Random Permuta-

tion Descent (Gradient) (RPD(G)), Greedy (GR) and a more sophisticated one, namely

Choice Function (CF) heuristic selection mechanisms. Two acceptance criteria were used

to combine with the aforementioned heuristic selection mechanisms. The All Moves

(AM) acceptance criterion accepts all the generated solutions, while Only Improving

(OI) accepts only better quality solutions [12]. Improving or Equal (IE) accepts non-

worsening moves.

Simple random selects a low level heuristic randomly based on a uniform probability

distribution at each step, while random descent (gradient) selects a low level heuristic

randomly and applies it to the solution in hand repeatedly as long as the solution is im-

proved. If the solution worsens, then another low level heuristic is selected and the same
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process is repeated. Random permutation applies a low level heuristic in a randomly

generated permutation of all low level heuristics and applies the low level heuristics in

the list one after another at each step sequentially. Random permutation descent (gra-

dient) applies the random permutation but proceeds in the same manner as the random

descent (gradient) approach without changing the order of heuristics. Greedy applies all

low level heuristics to the candidate solution and selects a heuristic, hence a solution,

which generates the largest improvement. The new solution could be still worse than

the current solution, if all heuristics are performing random perturbation. The authors

reported the success of a learning hyper-heuristic; namely, choice function. Greedy also

showed some potential. Choice function utilises a mechanism that scores each low level

heuristic based on its individual performance, pairwise successive performance and the

duration since the last time a heuristic was invoked. The heuristic having the maximum

score is chosen and applied to the candidate solution at each step and the relevant infor-

mation for the chosen heuristic after its application to the current solution are updated.

A hyper-heuristic either utilises a learning mechanism or operates without any learning

at all [4]. Both GR and CF are online learning mechanisms, since they both learn from

their previous experiences by getting and using feedback during the search process. The

memory length of the choice function is determined by means of the limits on the score

values. A larger range for the score indicates a longer term memory as compared to a

lower range. On the other hand, GR has a very short term memory as the feedback

(i.e., best candidate solution among all) is used instantaneously and then forgotten in

the following step. Following that in different regions of the search space, a different

heuristic might operate the best; a good hyper-heuristic is expected to recover the most

appropriate heuristic to utilise in a given region as quickly as possible. Therefore, GR

allows the search to react faster during the transitions from one region to another in

the search space [2]. At the end of the experiments, the authors observed that although

greedy heuristic selection was not the best, it delivered a comparable performance to

some learning heuristic selection methods. Cowling et al. [12] observed that CF−AM

was the most promising hyper-heuristic. The performance strength of CF has been

illustrated in the other studies as well [7, 8, 23].

Nareyek [19] uses Reinforcement Learning (RL) that adaptively selects a heuristic from

a set of low level heuristics according to the utility values associated with each heuristic.

A tabu search based hyper-heuristic ranks the heuristics to determine which heuristic

will be selected to apply to the current solution, while the tabu list maintains a list to

disallow and avoid the use of low level heuristics performing badly has been suggested

by Cowling and Chakhlevitch [59] and Burke et al. [18].
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2.2.3 Move Acceptance Methods

The move acceptance criteria in the selection hyper-heuristic frameworks can be classi-

fied as deterministic or non-deterministic. Deterministic move acceptance criteria always

return the same decision any time (iteration) they are called with a specific set of input

values. Non-deterministic move acceptance criteria depend on the current time or step

to make a decision. The latter category can be characterised as stochastic if a prob-

abilistic framework is considered while making the decision e.g. simulated annealing;

non-stochastic if no probabilistic framework is considered while making the decision e.g.

great deluge [2, 25]. Existing move acceptance criteria fall in one of the three categories

presented in Table 2.1.

Table 2.1: Categorisation of some existing move acceptance methods used within the
selection hyper-heuristics

deterministic non-deterministic
stochastic - Simulated Annealing variants,

EMCQ
non-stochastic Accept all, Improving or Equal,

Only Improving
Great Deluge, Late Acceptance,
AILTA

Accepting all moves and some other simple deterministic acceptance methods are de-

scribed in [12]. There are a number of deterministic and non-deterministic acceptance

methods allowing the acceptance of worsening solutions. Mostly, those methods ac-

cept all improving moves, but they differ in how they treat non-improving moves. The

non-deterministic näıve move acceptance accepts a worsening solution with a certain

probability [60].

Özcan et al. [16] use Late Acceptance [48], which maintains the history of objective values

of previously visited solutions in a list of a given size. Ayob and Kendall [15] compared

different Monte Carlo based move acceptance criteria which allow the acceptance of

non-improving moves using different probability formula. These strategies are similar to

the simulated annealing move acceptance (Section 2.1.3) yet without a cooling schedule.

Exponential Monte Carlo with Counter (EMCQ) [15] uses the probability of e−∆f×m/Q

for accepting non-improving moves, where ∆f is the fitness change at a given step, m

is the duration of the selected heuristic execution and Q is the number of successive

worsening moves. Q is reset whenever there is an improvement. Bilgin et al. [23]

tested 36 different hyper-heuristics by pairing up a range of heuristic selection and

move acceptance methods over a set of examination timetabling problem instances. A
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selection hyper-heuristic using the simulated annealing move acceptance with a linear

cooling rate, denoted as SA (Equation 2.1) performed the best when Choice Function is

used as the heuristic selection method.

pt = e
− ∆f

∆F (1− t
N

) (2.1)

where ∆f is the quality change at step t, N is the maximum number of steps, ∆F is an

expected range for the maximum quality change in a solution after applying a heuristic.

Kendall and Mohamad [14] experimented with a hyper-heuristic with the SR heuristic

selection method and the Great Deluge (GD) (Section 2.1.4) acceptance criterion mech-

anism. The level is updated at a linear rate towards a final objective value as shown in

Equation 2.2.

τt = f0 + ∆F × (1− t

N
) (2.2)

where τt is the threshold level at step t in a minimisation problem, N is the maximum

number of steps, ∆F is an expected range for the maximum fitness change and f0 is the

final objective value.

Misir et al. [61] proposed a new threshold move acceptance, named Adaptive Iteration

Limited List-based Threshold Acceptance (AILLA). AILLA maintains a list of best l

solutions found. Initially, the threshold is set at the level of the previous best found

solution. In case no best new solution can be obtained for a number of iterations, a

worsening solution is accepted based on the current threshold level. If again no best

new solution can be obtained for a number of iterations, then a larger value from the

list is used as the new threshold level, and so on.

Four different group decision making strategies are proposed in [25] as a hyper-heuristic

move acceptance mechanism: G-AND, G-OR, G-VOT, G-PVO. Each one of these move

acceptance mechanisms provides a decision whether a new candidate solution is accepted

or not by evaluating the decisions of their member move acceptance mechanisms. Gen-

erally speaking, improvements are always accepted and a worsening move subject to

the group decision criteria. G-OR and G-AND are biased strategies. G-OR makes an

acceptance oriented decision. If the members willing to admit the new solution are in

the minority, still, it is accepted. Even if there is a single member that admits the new

solution, that member acts as an authority and makes the final decision. On the other

hand, G-AND makes a rejection oriented decision. All the member move acceptance
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mechanisms must be in agreement so that the new solution gets accepted. Even if the

members that reject the new solution are in the minority, it is rejected. G-VOT and G-

PVO are based on the majority rule. G-VOT is based on the traditional voting scheme.

If the majority of members accept the new solution, it is accepted, otherwise it is re-

jected. G-AND, G-OR and G-VOT act under certainty, whereas G-PVO is modelled

favouring uncertainty to a degree using a probabilistic framework while making the final

decision. The probability of acceptance of a new solution dynamically changes propor-

tional to the number of members that vote for acceptance within the group at each step

in G-PVO. For example, assuming that there are ten members in the group and six of

them accept the new solution at a step, then this solution is accepted by G-PVO with a

probability of 0.60. None of the group decision making move acceptance criteria requires

an odd number of members, but it is preferable by G-VOT. The proposed group decision

making move acceptance criteria can be represented by means of a more general model.

In this model, given k move acceptance methods, a move is accepted if the inequality is

satisfied by the Equation 2.3, otherwise it is rejected. The contribution of each member

move acceptance mechanism towards a final decision for the acceptance can be adjusted

through a weight, referred to as strength (si). Assuming that all si values are 1, the

method turns out to be G-AND for α = k and G-OR for α = 0.5. If α = k/2 and all

si values are 1, then the method becomes G-VOT. If α = k × r, where r is a uniform

random number in [0,1] and all si values are 1/k, then the method becomes G-PVO.

k∑
i=1

si ×D(Mi) ≥ α (2.3)

where Mi denotes the ith group member (a move acceptance mechanism), D(x) returns

1, if the strategy x accepts the new solution and 0, otherwise, si is the strength of the

decision made by the ith member move acceptance mechanism and α denotes a threshold

value.

2.2.4 Selection Hyper-heuristic Frameworks

Özcan et al. [13] demonstrate and compare between four selection hyper-heuristic frame-

works discriminating between mutational and hill climbing low level heuristics: FA, FB,

FC and FD. A hyper-heuristic framework without differentiating the low level heuristics

(FA) is presented in [18]. The mutational low level heuristics perturb a given solu-

tion mostly at random and act as a diversification component which enables the search

process to explore the other regions potentially leading to high quality solutions. The
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hill climbing heuristics always produce non-worsening solutions. FB selects a low level

heuristic from a set of mutational and hill climbing low level heuristics. If the selected

heuristic is mutational, then a hill climber is applied further before the move acceptance

decides on accepting or rejecting the new solution. FC selects one of the mutational

heuristics followed by a hill climber before the acceptance decision is made. FD sep-

arates the mutational from the hill climbers. First a mutational heuristic is selected

and applied, the new solution is passed to the acceptance method and an intermediate

solution is generated, which is passed to the hill climbers’ phase where a hill climber

is selected and applied to the intermediate solution. A separate decision is then made

to accept or reject the new solution. The experimental results on a set of benchmark

functions showed that the best performing hyper-heuristic framework applies a prede-

termined hill climber right after a mutational heuristic similar to the process in iterated

local search [13].

2.2.5 Other Trends in Selection Hyper-heuristics

Other recent trends in the domain of selection hyper-heuristics include the application

of selection hyper-heuristics in dynamic environments [62, 63], and multi-objective opti-

misation problems [64, 65]. Selection hyper-heuristics can also be employed to hybridise

search. As an example, the low level heuristics in [66] were different search method al-

gorithms such as breadth-first search, depth-first search, best-first search, hill-climbing

and A* search algorithm. Maashi et al. [65] also employed selection hyper-heuristics to

manage a set of multi-objective evolutionary algorithms. A further development in the

selection hyper-heuristic domain is the use of a unifying ‘mathematical’ formulation as

a blackboard architecture for designing hyper-heuristics [67]. Also, a growing number

of studies focused on running hyper-heuristics in a distributed setting in order to facili-

tate higher performance. Ouelhadj et al. [68] provided an agent-based multi-level search

framework for the asynchronous cooperation of hyper-heuristics.

The idea of applying different hyper-heuristics at different stages has not been well

studied previously. For instance, Chakhlevitch and Cowling [69] proposed a multi-

stage hyper-heuristic by applying one of two hyper-heuristics at each stage. The first

hyper-heuristic employs a Greedy approach which is used to reduce the number of low

level heuristics. In the following stage, a simple random hyper-heuristic accepting non-

worsening moves is used. The authors reported that using both greedy and tabu search

in combination with the aim of linearly reducing the number of the best performing low
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level heuristics, is promising. Lehre and Özcan [24] conducted a theoretical study using

a selection hyper-heuristic on a benchmark function showing that an improved run-time

complexity can be obtained by mixing simple move acceptance criteria rather than us-

ing each move acceptance method on its own. In that study, random choice is used as

a heuristic selection and the algorithmic framework could be viewed as a multi-stage

framework in which two hyper-heuristics with different move acceptance are employed.

In this study, the multi-stage hyper-heuristic framework is investigated.

More on hyper-heuristics including the descriptions of more elaborate selection hyper-

heuristic components as well as other types of hyper-heuristics can be found in [2, 3, 6,

8, 70].

2.3 HyFlex Problem Domains and Cross-Domain Heuris-

tic Search Challenge

There are tools like Hyperion [71] and HyFlex1 [33] which are available for rapid de-

velopment and research of hyper-heuristics or meta-heuristics. Hyperion [71] provides a

general recursive framework for the development of hyper-heuristics (or meta-heuristics),

supporting the selection hyper-heuristic frameworks provided in [8]. HyFlex provides an

excellent controlled environment for evaluating a new hyper-heuristic approach and com-

paring its performance to the other approaches. It provides an object-oriented reusable

hyper-heuristic (meta-heuristic) framework interface written in Java, having the im-

plementation of six problem domains each with different instances and a set of relevant

low level heuristics. HyFlex currently provides implementation of six minimisation prob-

lem domains: boolean satisfiability (SAT), one-dimensional bin-packing (BP), personnel

scheduling (PS), permutation flow-shop (PFS), travelling salesman problem (TSP) and

vehicle routing problem (VRP). The software package includes a set of low level heuris-

tics and a number of instances associated with each domain. There is a growing number

of work on selection hyper-heuristics which have been designed and tested using HyFlex.

HyFlex strictly imposes the domain barrier and does not give users any access to the

problem domain dependent information. In HyFlex, the low level heuristics are per-

turbative heuristics processing and returning complete solutions after their application.

Heuristics are categorised as mutational, which modify a solution in some way with no

guarantee of improvement, ruin and re-create heuristic, which destruct a given complete

1http://www.hyflex.org/
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solution generating a partial solution and then reconstruct a complete solution, hill

climbing, which perform local search returning a solution which has the same or better

quality of the input solution, and crossover, which create a new solution by combining

some parts from two given solutions.

Burke et al. [60] investigated the performance of a range of selection hyper-heuristics

implemented as part of HyFlex. This was a proof of concept study for CHeSC: Cross-

Domain Heuristic Search Competition2 in 2011. The Formula One points scoring system

is used for comparing the performance of hyper-heuristics. The top hyper-heuristic

receives 10 points, the second gets 8 and then 6, 5, 4, 3, 2, 1, respectively. The remaining

approaches get zero points. These points are accumulated as a score for a hyper-heuristic

over all instances. A run terminates after 600 seconds or equivalent to 10 minutes as

the competition requires. The equivalent value can be obtained using the benchmarking

tool provided at the competition website.

Prior to the actual competition of CHeSC 2011, the organisers arranged a mock com-

petition using eight hyper-heuristics (HH1-HH8) across a subset of four CHeSC prob-

lem domains. A single run is performed across 10 instances of boolean satisfiability,

one-dimensional bin-packing, personnel scheduling and permutation flow-shop problem

domains in the mock competition. The maximum overall score that a hyper-heuristic

can achieve is 400. The results of this mock competition were provided for the com-

petitors to form a baseline and assess the performance of their algorithms. The mock

competition hyper-heuristics were designed based on the previously proposed well known

techniques from the literature. The description of the mock hyper-heuristics was not

provided on the competition website, but it is reported in [60] that the iterated local

search which applies a sequence of heuristics in a predefined order has the best per-

formance. This framework is based on the most successful hyper-heuristic framework

reported to perform the best in [8].

In CHeSC 2011, the competing hyper-heuristics are run for thirty one trials on the refer-

ence machine and the median result (16th) is used for comparison of the approaches based

on the Formula One points scoring system. The 20 submitted hyper-heuristics competed

over thirty problem instances, five coming from each of the six problem domains: boolean

satisfiability, one dimensional bin packing, permutation flow shop, personnel scheduling,

travelling salesman problem and vehicle routing problem. Two instances of the mock

problem domains were hidden. The maximum overall score that a hyper-heuristic could

2CHeSC 2011 website: http://www.asap.cs.nott.ac.uk/chesc2011/
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achieve is 300. The results of the twenty participants in the competition (Table 2.2) along

with the description of their algorithms were provided in the website of the competition.

Table 2.2: The CHeSC 2011 competing approaches

Rank Method label Score Reference Rank Method label Score Reference

1 AdapHH 181.00 [27] 11 ACO-HH 39.00 [72]
2 VNS-TW 134.00 [73] 12 GenHive 36.50 [74]
3 ML 131.50 [75] 13 DynILS 27.00 [76]
4 PHUNTER 93.25 [77] 14 SA-ILS 24.25 –
5 EPH 89.75 [78] 15 XCJ 22.50 –
6 HAHA 75.75 [79] 16 AVEG-Nep 21.00 [80]
7 NAHH 75.00 [81] 17 GISS 16.75 [82]
8 ISEA 71.00 [83] 18 SelfSearch 7.00 [84]
9 KSATS-HH 66.50 [85] 19 MCHH-S 4.75 [86]
10 HAEA 53.50 [87] 20 Ant-Q 0.00 [88]

Soon after the competition, CHeSC 2011 became a benchmark for evaluating the per-

formance and generality level of a selection hyper-heuristic. There is a growing number

of studies evaluating the performances of new selection hyper-heuristics on the CHeSC

2011 benchmark. Drake et al. [89] tested a variant of choice function hyper-heuristic

over the CHeSC 2011 benchmark. An adaptive neighbourhood iterated local search is

proposed and applied on HyFlex problem domains [90, 91]. In [92], an iterated local

search method is tested on HyFlex problem domains. Jackson et al. [49] evaluated vari-

ants of late acceptance based selection hyper-heuristics on the CHeSC 2011 benchmark

and points out the best configuration for the late acceptance strategy which accepts the

current solution if its quality is better than the quality of a solution obtained from a

certain number of iterations ago.

2.4 High School Timetabling Problem

The educational timetabling problems, such as university course timetabling, exami-

nation timetabling and high school timetabling, are well known real-world constraint

optimisation problems which have been of interest to researchers as well as practitioners

across operational research, computer science and artificial intelligence since 1960s [93].

Due to the intrinsic difficulty and NP-hard nature of the problems [30, 94], the tradi-

tional exact approaches might fail to find a solution in a given time even for moderately

sized versions of the problem.
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High school timetabling is the focus of this study [95], which requires a search for the best

course schedule and the best allocation of limited resources in an educational institution

subject to a set of constraints. High school timetabling is different from university course

timetabling. The main difference is that the timetable for a student is more packed in

high schools and students are fully occupied throughout a day. Consequently, the shared

resources are more loaded. There are two basic constraint types in timetabling problems:

hard3, and soft. The hard constraints require absolute compliance, whereas the soft

constraints characterise preferences. Types (and categories) of the constraints, number

of the constraints, courses to be scheduled and the resources in a problem might influence

its difficulty level. Timetabling problems have been studied by many researchers [96–99].

Due to the nature of timetabling problems (e.g., unstructured search space, immense

size of the search landscape, constraints etc.), meta-heuristics are preferred in most of

the previous studies. There are a variety of real world timetabling problems exhibit-

ing various characteristics from different countries, and many different meta-heuristic

approaches have been proposed for a particular problem in hand, ranging from single

point based search methods, including simulated annealing (SA) and tabu search (TS)

to population based methods, such as, evolutionary algorithms including genetic algo-

rithm (GA), memetic algorithm (MA) and ant colony optimisation. These methods

are frequently preferred for solving different types of timetabling problems across differ-

ent institutions. The hybrid population based evolutionary algorithms for high school

course timetabling have been growing since the 1990s [98, 100, 101]. Abramson [102]

utilised simulated annealing for course timetabling and proposed a parallel algorithm for

solving some randomly generated problem instances and some Australian high school

data. Colorni et al. [103] evaluated various meta-heuristics based on genetic algorithm,

simulated annealing and tabu search on some Italian high school data. They observed

that memetic algorithm hybridising genetic algorithm with local search performed bet-

ter. Hertz [104] employed tabu search for teacher-course assignment using data from a

Yugoslavian school. In [105], tabu search is employed for obtaining the course schedules

on high schools data. Bello et al. [106] tested a tabu search approach on some instances

from Brazilian high school timetabling problems. Erben and Keppler [98] generated

a weekly timetable for a heavily constraint problem instance using genetic algorithms

with smart operators. They used binary encoding as a representation scheme. Schaerf

3In most of the cases, a feasible solution which satisfies the hard constraints is sought. In the ITC
2011 competition, such constraints are not strictly hard but are simply much more heavily penalised
than the ‘soft’ constraints.
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[107] proposed an interactive interface for timetabling and tested a tabu search based ap-

proach which interleaves different types of moves on some instances from the Italian high

schools. The approach generated schedules that are of better quality than the manually

created ones. Beligiannis et al. [108] presented an evolutionary algorithm which employs

no crossover and multiple mutation operators. A comparison to the previously proposed

approaches of column generation and constraint programming on a Greek school course

timetabling problem revealed the success of the approach. Jacobsen et al. [109] pre-

sented a tabu search algorithm for solving a timetabling problem at German secondary

schools of Gymnasium type and compared its performance to a constraint programming

approach. The results showed that they have a similar performance based on the feasible

solutions obtained for the given instances. Filho et al. [110] formulated a timetabling

problem as a clustering problem and applied a constructive genetic algorithm for solving

timetabling problems of public schools in Brazil. Wilke et al. [111] proposed a hybrid

genetic algorithm using multiple genetic operators and a parameter configuration strat-

egy that randomly chooses from different options during the search process whenever

the algorithm detects that no improvement can be made. The results showed that the

proposed hybrid approach performed better than the traditional genetic algorithm on a

large German high school problem instance. Raghavjee and Pillay [112] compared the

performance of a genetic algorithm, neural network, simulated annealing, tabu search

and greedy search on the problem instances provided by Abramson and Dang [113]. The

experimental results showed that genetic algorithm delivered either a better or similar

performance to the previously proposed methods. Raghavjee and Pillay [114] described

a hybrid evolutionary algorithm with no crossover using a hill climber for solving a South

African high school course timetabling problem along with a primary school timetabling

problem. Kannan et al. [115] applied a graph theoretic approach to a problem from the

New York City public school system, which decomposes a given instance and applies ran-

domised heuristics. Alkan and Özcan [116] hybridised a violation directed hierarchical

hill climbing method (VDHC) using constraint oriented neighbourhood heuristics with

genetic algorithms for solving the university course timetabling problem. Similarly, the

constraint oriented neighbourhood heuristics were found to be effective when used as a

part of a hybrid framework in [56] for solving a variant of a high school course timetabling

problem. In [117], a greedy randomised adaptive search procedure (GRASP) heuristic is

applied Brazilians high schools data. Pillay [118] implemented an evolutionary algorithm

based hyper-heuristic selection method. The study revealed that the incorporation of

local search heuristics with mutation and crossover operators improves the performance.

The approach outperforms the other methods applied to the same problem. Özcan et al.
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[56] introduced a variant of a high school timetabling problem from Turkey and proposed

a genetic algorithm hybridised with hill climbing which interleaves the proposed algo-

rithm with constructive methods while exploiting the underlying hierarchical structure

of a given problem. In this study, rather than attempting to develop tailored solutions

similar to the approaches provided above, we prefer the use of general hyper-heuristic,

and particularly, the developed multi-stage hyper-heuristic framework to solve the prob-

lem. Pillay [119] surveyed the use of hyper-heuristic approaches in solving timetabling

problems.

Due to the variety of existing high school timetabling problems and sometimes lack

of algorithmic details, it is not trivial to implement and compare the performance

of different approaches. The International Timetabling Competitions have been or-

ganised with the goal of encouraging researchers and practitioners to design solution

methods for real world problems incorporating all real world complexities into their

models and form real world benchmark for the timetabling community. The state-of-

the-art methods for a given domain has always been of interest for researchers as well

as practitioners, which has been the case for timetabling as well. The Third Inter-

national Timetabling Competition (ITC 2011)4 was recently organised after ITC 2002

(http://www.idsia.ch/Files/ttcomp2002/) and ITC 2007 [120] which were on educational

timetabling, mainly focusing on university course and examination timetabling.

The challenge on high school timetabling has become increasingly highlighted when a

group of researchers run the Third International Timetabling Competition (ITC 2011) in

2011-2012 [121], with the goal of raising the profile of automated high school timetabling.

The ITC 2011 was run by the Centre for Telematics and Information Technology at

the University of Twente in the Netherlands, aiming to drive a new era of research

of automated high school timetabling. The problem instances, obtained from different

countries across the world used in this competition became a benchmark for further

research in the field. Some of these instances are used to test the methods in the

literature. Briefly, the ITC 2011 problem instances contain 15 types of constraints and a

candidate solution is evaluated in terms of two components: feasibility and preferences.

The evaluation function computes the weighted hard and soft constraint violations for

a given solution as infeasibility and objective values, respectively. For the comparison

of algorithms, a solution is considered to be better than another if it has a smaller

infeasibility value, or an equal infeasibility value and a smaller objective value.

4ITC 2011 website: http://www.utwente.nl/ctit/hstt/
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Out of 17 registered participants to the competition, only 5 teams submitted solutions.

The reason is unknown, but could be due to the large number of imposed constraints

which makes the problem hard to handle in practice [122]. The competition consisted

of three rounds. In the first round, competitors were invited to submit solutions to all

public instances with the goal of finding the best approach that improves upon the best

known solutions from the literature for each instance. No restrictions were placed on

the time limit or how the solutions could be obtained. In the second round, solvers were

compared under uniform conditions. Solvers were allowed to use only freely available

software libraries, and a time limit was imposed as 1000 nominal seconds based on the

organisers’ computer. For each of the hidden instances, ten runs with different random

seeds were conducted considering submission of stochastic algorithms. The solutions ob-

tained from each run for each instance were ranked and then averaged to determine the

winner. Five finalists have been selected up to check the solvers with hidden instances:

HySST, GOAL, HFT, Lectio and VAGOS. Four solvers, each identified by the name

of the designing team were submitted to Round 2 of the ITC 2011 competition [122].

HySST [43] applied a multi-stage hyper-heuristic managing a set of mutational heuris-

tics and two hill climbers. This selection hyper-heuristic incorporates random choice

for the heuristic selection and an adaptive threshold move acceptance method. HFT

[123] used an evolutionary algorithm as a solution method. Lectio [124] employed an

approach based on adaptive large neighbourhood search. GOAL [125] combined iterated

local search based on multiple neighbourhood operators with simulated annealing, which

turned out to be the winner of the second round of the competition.

In the third round, the hidden instances were published and the competitors were invited

to submit the best solutions that they can achieve by any algorithm. The same ranking

strategy as the second round was used during this round to determine the winner. As

for Round 1, no restrictions are placed on how the solutions could be obtained.

For a recent survey of HSTP see [95, 119, 126].

2.5 Multi-mode Resource-constrained Multi-project Schedul-

ing Problem

Project scheduling has been of interest to academics as well as practitioners. The broad

aim is to schedule a set of different and partially interacting projects. Each project
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consists of a set of activities. The activities must respect a set of (hard) precedence con-

straints and project release times. Also the activities use resources and the appropriate

resource limits are also hard constraints. There are a variety of project scheduling prob-

lems and there are many relevant surveys on this topic in the literature [127–134]. The

simplest version of the problem is the resource-constrained project scheduling problem

(RCPSP). In RCPSP, activities (jobs) are respecting given precedence relationships and

often performed simultaneously in only one way, called a single mode. The allocation of

scarce resources among the different project activities to achieve the optimisation of an

objective function is an important consideration for the project planners [128, 135]. In

multi-mode RCPSP which was introduced by Elmaghraby [136], each activity actually

can be performed using any one of a set of ‘modes’. The mode determines the set of

resources used by the activity and the duration of the activity (though note that the

modes do not affect the set of precedences). A solution consists of an assignment of mode

and starting time to every activity and that satisfies all the precedence and resource con-

straints. The multi-mode resource-constrained multi-project scheduling problem (MR-

CMPSP) is a general class of RCPSP. In MRCMPSP, activities of multiple projects are

scheduled, while taking into account given precedence relationships and availability of

limited resources. The RCPSP belongs to the class of NP-hard problems identified by

Blazewicz et al. [137], hence the general form MRCMPSP is also NP-hard. There are ba-

sically two different ways to distinguish resources. Firstly, they can be either renewable

or non-renewable [138]. Renewable resources are ones that are available again at their

full capacity whenever current activities stop using them, for example, they could be

some machine. Non-renewable ones disappear on usage; an example could be fuel where

one can take any amount of fuel, but only until the tank is empty. In particular the

mode can affect the usage of non-renewable resources. The second distinction between

resources is that of ‘local’ resources that are associated with one of the projects, and

‘global resources’ that are shared between different projects.

There have been a growing number of studies concerning the RCPS and RCMPS prob-

lems. The traditional optimisation techniques such as integer programming [139, 140]

and zero-one (0-1) linear programing [141], showed success in solving small sizes of the

multi-project scheduling problems. However, such methods cannot be employed when

the number of projects and activities increase and when several resources are consid-

ered. Instead, researchers have made several efforts to develop efficient heuristic and

meta-heuristic methods to generate the schedules. One of the meta-heuristic methods

used for the scheduling problems is genetic algorithm (GA) [142–144]. Up to 90% of
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projects [145] in Research and Development (R&D) organisations [146] and large con-

struction companies [147] are in the context of MRCMPSP. Tseng [135] employed a

parallel scheduling and genetic algorithms for the MRCMPSP. Can and Ulusoy [148]

developed a two-stage decomposition approach and genetic algorithm to solve the MR-

CMPSP. Xu and Feng [149] utilised a hybrid particle swarm optimisation method and

tested the developed approach in a large scale hydropower construction project. Ju

and Chen [150] developed a design structure matrix to model the MRCMPSP problem

and then applied a modified artificial immune network algorithm (aiNet) to solve the

problem. The approach delivers the best results when compared to genetic algorithm,

simulated annealing and ant colony optimisation methods.

Recently, a challenge in the context of the 6th Multidisciplinary International Scheduling

Conference (MISTA 20135), is run at which competitors are expected to submit solvers to

automate the scheduling of multi-mode resource-constrained multi-project problem. The

participants of MISTA 2013 tackled 30 instances of the MRCMPSP, produced by com-

bining several multi-mode resource-constrained project scheduling problem (MRCPSP)

instances. The MRCPSP instances are generated by the standard project generator

ProGen [151]. The instances are defined by a standard data format based on PSPLIB6

(project scheduling problem library) data format. In the MISTA 2013 Challenge, there

were no global non-renewable resources, and so the only interaction between projects is

from the global renewable resource(s). Each project p in a given solution in MISTA 2013

has an associated makespan MSp which is the time from it being released to the time

the last activity is completed. The primary objective is to minimise the “Total Project

Delay” (TPD), which (up to constant terms) is the sum of the difference between the

critical path durations CPDp and the makespans MSp for each project p. CPDp is the

shortest MSp resource unconstrained duration of project p. The tie-breaking secondary

objective is to minimise the overall “Total Makespan” (TMS), which (up to a constant

term) is the finishing time of the last activity.

During the MISTA challenge, the first set of 10 instances (set-A) was released during

the qualification phase and the participants were invited to submit the solvers and solu-

tions to those instances. The organisers compared the solvers under uniform conditions

where the imposed time limit was five minutes of multi-threaded execution per instance

on the organisers’ computer. A set of qualified teams were determined at the end of

the qualification phase. Subsequent to the qualification phase, a second set of 10 in-

stances (set-B) were published. Again, the finalists were invited to submit the solvers

5MISTA 2013 website: http://allserv.kahosl.be/mista2013challenge/
6PSPLIB benchmark: http://129.187.106.231/psplib/
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and solutions to those instances. The organisers ran the solvers on a set of instances

from set-B and another set of hidden (unpublished) instances (set-X) to decide on the

winner of the challenge. The hidden instances (set-X) were published after the challenge

ended. Ten runs with different random seeds each for 300 seconds were conducted. The

final objective values obtained from each run for each instance were ranked and then

averaged to determine the winner of the MISTA 2013. The team ranking results and

the number of the best solutions, out of the twenty instances, obtained are provided

in Table 2.3 and in the competition website. The winner approach is described in the

thesis. Briefly, it consists of a two-phase construct-and-improve method working on the

sequence in which activities are given to a schedule constructor. The construction of an

initial activity sequence is done by a (novel) hybrid of MCTS and partitioning of the

projects. The improvement phase uses a large number of neighbourhood moves, in a

multi-threaded fashion, and controlled by a mix of ideas from meta-heuristics, memetic

algorithms, and multi-stage hyper-heuristics. The second approach [152] is based on

variable neighbourhood search and iterated local search. The third team proposed an

integer programming approach [153] and soon after the competition, they improved the

approach by hybridising a local search method [154].

Table 2.3: The MISTA 2013 competing approaches

Rank Team ID Score #best solutions Reference

1 11 1.10 17 [155]
2 8 2.55 1 [152]
3 1 3.05 2 [153]
4 20 3.60 0 [156]
5 13 6.75 0 [157]
6 15 6.75 0 [158]
7 17 6.75 0 [159]
8 14 6.85 0 [160]
9 21 7.60 0 [161]

2.6 Constructing Magic Squares

A square matrix of distinct numbers (1, ..., n2) in which every row, column and both

diagonals has the same total is referred to as a magic square. Constructing a magic

square of a given order is considered as a computationally difficult permutation problem,

particularly when additional constraints are imposed. The history of magic squares
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dates back to 2200 B.C. [32]. An unusual numerical pattern found by Emperor Yu on

a tortoise’s shell was the oldest known magic square. The Emperor decided to call this

unique diagram “Lo-Shu” (Figure 2.2).

 

Figure 2.2: The Loh-Shu tortoise and the magic square [1]

The Chinese have used the magic squares in the interpretation of philosophy, human

behaviour, natural phenomena and other areas of study; and interestingly, some of the

porcelain plates in some private collections and museums in China were decorated with

magic squares. It is thought that the magic squares were transmitted to the Arabs from

the Chinese, probably through India. Magic squares were then introduced to Europe,

then journeyed to Japan. Magic squares in India were used in applications other than

only in the traditional mathematical context. A sequence of näıve rules to construct

magic squares were made by Islamic mathematicians. The seventeenth century witnessed

a serious consideration to the study of magic squares when Antoine de la Loubere, a

French aristocrat, studied the theory behind the construction of magic squares. The

extension of magic squares to 3-dimension was brought by Adamas Kochansky in 1686.

Recently, the magic squares attracted researchers and applied in statistics, combinatorial

mathematics, artificial intelligence, graph theory, industrial arts, experiment designs,

location analytics, electronic circuits and more [1, 32].

Kraitchik [31] provided an exact solver to construct the magic squares. A magic square of

an odd order can be generated using the Siamese method (also known as De la Loubére’s

method). An odd order magic square is of the form n = 2m + 1, where m is an integer

greater than 0. In the Siamese method, the number 1 is written in the middle of the

first row. The remaining numbers are placed in ascending order as an upward diagonal

to the empty right square cells. In case the cell is already filled, then the cell below the

previous number is used to place the number. A magic square of a doubly even order

can be generated using cross method. A doubly even order magic square is of the form

n = 4m, where m is an integer greater than 0. The idea is to draw a cross through every

4x4 sub-square and then fill out all the square cells with all numbers in ascending order
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from the top left of the square to the bottom right. Then, each number, aij , along a

diagonal of the cross is replaced by (n2 + 1) − aij . Finally, a magic square of a singly

even order can be generated using the “LUX” method which has been proposed by J.

H. Conway. A singly even order magic square is of the form n = 4m + 2, where m is

an integer greater than 0. The method starts by creating m + 1 rows of L, then 1 row

of U followed by m− 1 rows of X. Then replacing the U in the centre with the L above

it. The resulted letters form a square of an odd order 2m + 1. Constructing the singly

even order magic square is done by using the Siamese method and filling out each set

of square cells surrounding a letter sequentially according to the shape of the letter.

Weisstein [162] reported other methods for generating magic squares.

Although there is at most only one distinct magic square of order less than 4, the number

of magic squares of order 4 is 880 as has been known since the seventeenth century. The

exact number of distinct magic squares of order 5 is 275,305,224 [32]. Researchers

claimed that determining the number of distinct magic squares of order of 6 and more

is a hard unsolved computationally problem [163, 164]. Pinn and Wieczerkowski [164]

used a Monte Carlo method to predict the number of magic squares of order 6 and their

estimate was (0.17745± 0.00016)× 1020.

The exact deterministic methods for constructing magic squares similar to the ones pre-

sented above can only produce a single magic square of a given order. Such methods

may fail when some constraints are imposed. Xie and Kang [32] proposed a stochas-

tic constructor method based on an improved evolutionary algorithm. The constraint

version of the magic squares problem was then the subject of a competition hosted by

SolveIT Software7 with the goal of finding the quickest approach. The winner approach

emerged among hundreds of competing algorithms as a late acceptance hill climbing al-

gorithm [165] which handles a given instance in two separate ways based on its size. The

approach mixes two heuristics with a certain probability for problems larger than a cer-

tain size and uses a different algorithm for smaller instances. The winner approach was

able to construct the constrained version of the 2600x2600 magic square. Geoffrey Chu

developed a solver in which a random square is transformed into the magic square by the

iterative heuristic improvement of rows and columns. Chu’s solver ranked the second

on the competition and it was able to construct the constrained version of a 1000x1000

magic square in one minute. The multi-step iterative local search took the third place

on the competition. It was developed by Xiao-Feng Xie and it was able to construct

7SolveIT competition website: http://www.solveitsoftware.com/competition.jsp
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constrained version of a 400x400 magic square in one minute. The detailed descriptions

of the top three solvers are available online at http://www.cs.nott.ac.uk/~yxb/IOC/.

Kheiri and Özcan [166] extended the framework of the winning approach to enable the

use of selection hyper-heuristics for any given constraint version of the magic square

problem. They presented a range of effective selection hyper-heuristics combining differ-

ent heuristic selection methods and acceptance criteria and mixing the same set of per-

turbative low level heuristics for constructing the constrained version of magic squares.

The seven heuristic selection methods {GR, SR, RD, RP, RPD, CF, TABU} are com-

bined with six move acceptance methods {accepting all moves, accepting only improving

moves, accepting improving or equal moves, simulated annealing, great deluge, näıve

move acceptance} producing a total of 42 selection hyper-heuristics for experimenta-

tion. All selection hyper-heuristics are tested with the goal of detecting the quickest

one. Greedy based hyper-heuristics and any hyper-heuristic using one of the move

acceptance methods in {accepting all moves, accepting only improving moves, accept-

ing improving or equal moves, simulated annealing, great deluge} failed to construct

the constraint-version of magic squares within the time limits. The experiments show

that hyper-heuristics using the näıve move acceptance method, which accepts a wors-

ening solution with a probability of 0.004%, is the most successful approach. The ran-

dom permutation based selection hyper-heuristic combined a näıve acceptance method

(RP −NAM) turns out to be an extremely effective and efficient approach which runs

faster than all other hyper-heuristics using different move acceptance methods. It has

been observed that learning requires time slowing down a selection hyper-heuristic and

so hyper-heuristics with no learning using the näıve acceptance method are more success-

ful than the learning hyper-heuristics regardless of whether the learning occurs within

the heuristics selection or move acceptance component. RP − NAM outperforms the

best known heuristic approach based on late acceptance for constructing a constrained

magic squares.

2.7 Summary

This chapter briefly presented a survey of selection hyper-heuristics; and an overview of

the approaches proposed previously for solving the problems dealt with in this work.

Several studies [8, 13, 23] showed that using different combinations of the selection hyper-

heuristic methods yields to a different performance. On another studies [24, 68, 69],
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it has been suggested to combine several selection hyper-heuristics in a single method.

This situation points out a potential modification of the generic selection hyper-heuristic

framework. In this thesis, the framework that managing a number of selection hyper-

heuristics, referred to as multi-stage hyper-heuristic, is proposed.

The HyFlex problem domains, high school timetabling, multi-mode resource-constrained

multi-project scheduling, and construction of magic squares problem domains are used

as benchmark case studies for the development of multi-stage hyper-heuristic framework.

These problems were subjects of recent competitions, and therefore, we summarised in-

formation relevant to the competitions and the methods entered into these competitions

to test the level of generality of the proposed multi-stage hyper-heuristics in environ-

ments similar to the competitions’ environments.



Chapter 3

Problem Domains

The main goal of the hyper-heuristic researches is to raise the level of generality and

apply them to a wide range of problem domains without additional effort on the hyper-

heuristic side. Therefore, the applicability of the multi-stage hyper-heuristics in this

study has been tested on a set of problem domains. There was not any particular

consideration taken into account while selecting these problem domains. This chapter

describes the studied problem domains including the characteristics of relevant bench-

mark instances and covers some domain level design details, such as, low level heuristics

and solution construction methods. Full descriptions of the problems can be found at

the competitions’ websites (see Table 3.1) and elsewhere; however, for completeness, we

provide a summary of each problem dealt with in this chapter.

3.1 CHeSC 2011: HyFlex Problems

HyFlex currently provides implementation of six minimisation problem domains: boolean

satisfiability (SAT), one-dimensional bin-packing (BP), personnel scheduling (PS), per-

mutation flow-shop (PFS), travelling salesman problem (TSP) and vehicle routing prob-

lem (VRP). The software package includes a set of low level heuristics (LLHs) and a

number of instances associated with each domain. The code for SAT, BP, PS and PFS

is released first along with some public instances, while the code and instances for TSP

and VRP released after the competition.

39
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Any problem domain developed for HyFlex is required to define a set of low level heuris-

tics (neighbourhood operators) which should be classified as mutational (MU), hill climb-

ing (HC), ruin and re-create (RC) or crossover (XO). All heuristics are perturbative. A

mutational heuristic makes a random perturbation producing a new solution and this

process does not necessarily generate an improvement over the input solution. Local

search or hill climbing is often an iterative procedure searching different neighbourhoods

starting from a given solution. A ruin and re-create operator produces a partial solution

from a given complete solution and then rebuilds a new complete solution. Crossover

is a well known operator in evolutionary computation, which takes two solutions and

produces a new solution. In general, crossover yields two new solutions and the best

new solution is returned in HyFlex.

HyFlex provides utilities to control the behaviour of some low level heuristics to a limited

extent. It is possible to increase or decrease the intensity of some mutational and ruin

and re-create operations by adjusting a control parameter from 0.0 to 1.0. Changing

the value of the intensity parameter could mean changing the range of new values that

a variable can take in relation to its current range of values or changing the number of

solution variables that will be processed by a heuristic. There is also another similar

control parameter for some local search operators for changing the depth of search which

relates to the number of hill climbing steps.

The number of the low level heuristics for each heuristic/operator type for each problem

domain is presented in Table 3.2. Currently, there are 12 different instances for the first

four problem domains and 10 for the last two problem domains. What is left for the

researchers and practitioners is to design and implement a general high-level strategy

(hyper-heuristic) that intelligently selects and applies at each decision point suitable low

level heuristics from the set provided to each instant from the given domain to improve

an initially generated solution and to get the minimum objective function value in ten

minutes. The nature of each low level heuristic for each HyFlex problem domain is

summarised in Table 3.3. OPid is used to denote the idth low level heuristic of type OP.

For example, MU0 and MU5 for SAT are the 0th and 5th mutational low level heuristics

in the SAT domain.

HyFlex does not provide any annotation for the low level heuristics in a given domain,

indicating whether they operate on a given solution with a stochastic or deterministic

approach. Although this could be detected with a level of certainty using some initial

tests over the set of heuristics, it is assumed that all operators are stochastic.
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Table 3.2: The number of different types of low level heuristics {mutation (MU), hill
climbing (HC), ruin and re-create (RC), crossover (XO)} used in each problem domain

Domain MU HC RC XO Total

SAT 5 2 1 2 10
BP 3 2 2 1 8
PS 5 4 2 4 15
PFS 1 5 3 3 12
TSP 5 3 1 4 13
VRP 3 3 2 2 10

Table 3.3: The nature of the low level heuristics used in each problem domain. The
bold entries for each problem domain mark the last low level heuristic of each type

LLH IDs LLH0 LLH1 LLH2 LLH3 LLH4 LLH5 LLH6 LLH7

SAT MU0 MU1 MU2 MU3 MU4 MU5 RC0 HC0

BP MU0 RC0 RC1 MU1 HC0 MU2 HC1 XO0

PS HC0 HC1 HC2 HC3 HC4 RC0 RC1 RC2

PFS MU0 MU1 MU2 MU3 MU4 RC0 RC1 HC0

TSP MU0 MU1 MU2 MU3 MU4 RC0 HC0 HC1

VRP MU0 MU1 RC0 RC1 HC0 XO0 XO1 MU2

LLH IDs LLH8 LLH9 LLH10 LLH11 LLH12 LLH13 LLH14

SAT HC1 XO0 XO1

PS XO0 XO1 XO2 MU0

PFS HC1 HC2 HC3 XO0 XO1 XO2 XO3

TSP HC2 XO0 XO1 XO2 XO3

VRP HC1 HC2

3.2 ITC 2011: High School Timetabling Problem

3.2.1 Problem Description

The ITC 2011 problem instances [122] contain four components including times, re-

sources, events (meetings) and constraints [121, 122, 167]. A time component represents

an indivisible interval of time during which an event run. A resource represents the en-

tity which attends an event. For example, teacher, room, student or class are resources.

An event is a meeting between resources. A constraint is the condition that a solution

should satisfy, if possible. In ITC 2011, 15 types of constraints are identified:

• C01 Assign resource: Assign resource to event.
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• C02 Assign time: Assign time to event.

• C03 Split events: Forbid or allow splitting of event into sub-events under specific

constraints.

• C04 Distribute split events: Split event into sub-events and distribute over a

timetable by defining min or max duration time for each sub-event.

• C05 Prefer resources: Assign preferable resources to some events.

• C06 Prefer times: Assign preferable time slots to some events.

• C07 Avoid split assignments: Assign the same resource to set of events and

specify whether a split assignment are desirable or not.

• C08 Spread events: Spread events evenly through the cycle in time between the

given min and max in the solution.

• C09 Link events: Assign the same time to set of events.

• C10 Avoid clashes: Assign resource without having clashes.

• C11 Avoid unavailable times: Avoid assigning resources at unavailable times.

• C12 Limit idle times: Avoid having idle times for resources.

• C13 Cluster busy times: For number of days, resources must be busy.

• C14 Limit busy times: For number of times every day, resources must be busy.

• C15 Limit workload: Schedule the total workload without exceeding a limit.

In a standard fashion, constraints are separated into hard and soft. Each constraint has

a boolean variable called Required to indicate whether the constraint is hard or soft.

In the ITC2011 competition, such constraints are not strictly hard but are simply much

more heavily penalised than the ‘soft’ constraints.

A candidate solution is evaluated in terms of two components: feasibility and preferences.

The evaluation function computes the weighted hard and soft constraint violations for

a given solution, where the weights are pre-defined in the input file representing a given

instance, as infeasibility and objective values, respectively. The quality of a solution is

denoted concatenating those two values as in infeasibility−value.objective−value using

sufficient number of digits in the objective-value part and filling with 0s if necessary. For
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example, 10.000090 represents an infeasibility value of 10 and objective value of 90. For

the comparison of algorithms, a solution is considered to be better than another one, if

it has a smaller infeasibility value, or an equal infeasibility value and a smaller objective

value. The minimum possible cost occurs whenever a perfect solution is obtained with

a cost value of 0.000000, indicating that there are no constraint violations.

3.2.2 Test Instances

The participants of ITC 2011 tackled 35 instances of the high school timetabling problem,

taken from schools in 10 countries. The high school timetabling instances were obtained

across the world based on different education systems, where each problem came with

its particular format. A unified format was required. Post et al. [167] proposed and

used a common XML data format to represent a given problem instance of ITC 2011 as

input. The ITC 2011 instances are therefore defined by a standard data format based

on XML schema called XHSTT (XML High School Timetabling) [122, 167].

As a total of twenty one high school timetabling problem instances were made public

during the first round of the competition. Eighteen hidden instances were used during

the second round of the competition which are then made public and used for the third

round of the competition. Table 3.4 summarises the main characteristics of all problem

instances obtained across the world from different countries. These characteristics give

some rough idea about the size of each instance, yet do not define a given problem fully

as the importance of violating a given constraint is not provided. The ITC 2011 dataset

can be downloaded from the competition website [121].

3.2.3 Low Level Heuristics

Ten low level domain-specific heuristics that are (mostly) fairly simple moves such as

moving a task to a different resource, or swaps of events are designed and implemented to

improve the initially generated solutions. The initial construction of a complete solution

is performed using the general solver implemented by Jeff Kingston in the KHE library1.

Note that the construction phase often gives a solution in which hard constraints are

violated, and so the improvement phase also needs to improve the hard constraints.

The low level heuristics are divided into two sets; 8 mutational operators that do a

randomised move by perturbing a given candidate solution in different ways, and 2

1http://sydney.edu.au/engineering/it/~jeff/khe/
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Table 3.4: Characteristics of the problem instances used during three rounds of the
competition

Round 1

Instance - Country Times Teachers Rooms Classes Students Duration

BGHS98 - Australia 40 56 45 30 1564
SAHS96 - Australia 60 43 36 20 1876
TES99 - Australia 30 37 26 13 806
Instance1 - Brazil 25 8 3 75
Instance5 - Brazil 25 31 13 325
Instance7 - Brazil 25 33 20 500
StPaul - England 27 68 67 67 1227
ArtificialSchool - Finland 20 22 12 13 200
College - Finland 40 46 34 31 854
HighSchool - Finland 35 18 13 10 297
SecondarySchool - Finland 35 25 25 14 306
HighSchool1 - Greece 35 29 66 372
Patras 3rd HS 2010 - Greece 35 29 84 340
Preveza 3rd HS 2008 - Greece 35 29 68 340
Instance1 - Italy 36 13 3 133
GEPRO - Netherlands 44 132 80 44 846 2675
Kottenpark2005 - Netherlands 37 78 42 26 498 1272
Lewitt2009 - South Africa 148 19 2 16 838

Common to All Rounds

Instance4 - Brazil 25 23 12 300
Instance6 - Brazil 25 30 14 350
Kottenpark2003 - Netherlands 38 75 41 18 453 1203

Rounds 2 and 3

Instance2 - Brazil 25 14 6 150
Instance3 - Brazil 25 16 8 200
ElementarySchool - Finland 35 22 21 60 445
SecondarySchool2 - Finland 40 22 21 36 566
Aigio 1st HS 2010 - Greece 35 37 208 532
Instance4 - Italy 36 61 38 1101
Instance1 - Kosovo 62 101 63 1912
Kottenpark2005A - Netherlands 37 78 42 26 498 1272
Kottenpark2008 - Netherlands 40 81 11 34 1118
Kottenpark2009 - Netherlands 38 93 53 48 1301
Woodlands2009 - South Africa 42 40 30 1353
School - Spain 35 66 4 21 439
WesternGreeceUni3 - Greece 35 19 6 210
WesternGreeceUni4 - Greece 35 19 12 262
WesternGreeceUni5 - Greece 35 18 6 184
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hill climbing operators that search their neighbourhoods for better solutions. The mu-

tational heuristics return a solution after processing a given solution with no quality

guarantee, while a hill climbing heuristic always returns a non-worsening solution, even

if the returned solution is the same as the input.

Mutational move operators:

• LLH0 (MU0): swaps the start time of two randomly selected events. For ex-

ample, assuming that the Mathematics class meeting is assigned to the first time

slot on Monday and the History class meeting assigned to the third time slot

on Friday, after the swap operation, History is assigned to the first time slot on

Monday, while Mathematics to the third time slot on Friday.

• LLH1 (MU1): randomly selects an event and reschedules it to a random time.

For example, assuming that the Mathematics class meeting is assigned to the

first time slot on Monday, after applying this heuristic, Mathematics could be

rescheduled to the last time slot on Friday.

• LLH2 (MU2): swaps the time of two randomly chosen events. If both events

have the same duration, this heuristic operates like MH1, but if their durations

are not the same then the first chosen event is moved to the time slot right after

the second event ends. For example, when swapping a Mathematics class meeting

with a duration of one assigned to the first time slot on Friday with a History

class meeting with a duration of two assigned to the second time slot on Friday,

MH3 moves the Mathematics class to the third time slot on Friday, rather than

the second time slot, and moves the History class to the first time slot on Friday.

• LLH3 (MU3): selects a random resource element within an event and modifies

its assignment randomly. For example, assuming that Classroom1 is assigned for

the Physics meeting, after applying this heuristic, Classroom1 can be reassigned

for a meeting of Mathematics.

• LLH4 (MU4): swaps two random resources. For example, assuming that Classroom1

is assigned for Mathematics and Classroom2 is assigned for History, after apply-

ing this heuristic, Classroom1 is assigned for the History lesson while Classroom2

is assigned for the Mathematics lesson.

• LLH5 (MU5): reassigns a randomly chosen resource element of an event to

a random resource. For example, assuming that Teacher1 is assigned to teach

Mathematics, after applying this heuristic, Teacher1 gets replaced by Teacher8.



Chapter 3. Problem Domains 47

• LLH6 (MU6): merges two class meetings of the same event and adjacent in time.

For example, assuming that the Biology class meeting with a duration of two is

assigned to the first time slot on Monday and another Biology class meeting with

a duration of one is assigned to the third time slot on Monday, then after applying

the heuristic, the Biology class meetings are merged into a single meeting with a

duration of three starting at the first time slot on Monday.

• LLH7 (MU7): splits a randomly selected event requiring an assignment of a time

block consisting of multiple time slots into two events with separate times with a

fixed low probability of 0.1%. For example, assuming that a Biology class meeting

is randomly chosen which has an assignment of a time block of two consecutive time

slots, MH7 divides the teaching of Biology into two separate (but still consecutive)

time slots without changing their current assignments allowing future moves to

operate on those two meetings separately.

Unlike most of the mutational operators, the 2 hill-climbing heuristics are capable of

making quite large changes to a solution.

The hill climbing heuristics are themselves slightly non-standard. One of the operators

[LLH7 (HC0)] is designed using neighbourhood structures based on ejection chains

while the other operator [LLH8 (HC1)] is a type of first improvement hill climbing op-

erator. Both hill climbing operators attempt to make moves which respect to a particular

constraint type while hoping to improve upon the other types of constraint violations

but might have a net worsening of the objective, however, then such worsening moves

are rejected. For example, it may remove the violation of assigning a resource, but may

introduce another violations to other constraints and increase the value of the evaluation

function. If the cost of the new solution is improved, the repair terminates successfully.

If not, the method calls itself recursively in an attempt to improve the quality of the

solution; in this way a chain of coordinated changes is built up. If the recursive call fails

to improve the quality, the method undoes the repair and returns the previous solution.
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3.3 MISTA 2013 Challenge: Multi-mode Resource-constrained

Multi-project Scheduling Problem

3.3.1 Problem Description

The problem consists of a set of projects P = {1, 2, . . . , q}, where each project p ∈ P

is composed of a set of activities, denoted as Ap, a partition from all activities A =

{1, 2, . . . , n}. Each project p ∈ P has a release time ep, which is the earliest start time

for the set of activities Ap.

The activities are interrelated by two different types of constraints: the precedence con-

straints, which force each activity j ∈ A to be scheduled after all the predecessor activi-

ties in set Pred(j) are completed; and the resource constraints, in which the processing of

the activities is subject to the availability of resources with limited capacities. There are

three different types of the resources: local renewable, local non-renewable and global

renewable. Renewable resources have a fixed capacity per time unit. Non-renewable re-

sources have a fixed capacity for the whole project duration. Global renewable resources

are shared between all the projects while local resources are specified independently for

each project.

Rρ
p = {1, 2, . . . , |Rρ

p |} is the set of local renewable resources associated with a project

p ∈ P , and Rρ
pk is the capacity of k ∈ Rρ

p , i.e., the amount of the resource k available

at each time unit. Rν
p = {1, 2, . . . , |Rν

p |} is the set of local non-renewable resources

associated with a project p ∈ P , and Rν
pk is the capacity of k ∈ Rν

p , i.e., the amount of

the resource k available for the whole duration of the project. G ρ = {1, 2, . . . , |G ρ|} is

the set of the global renewable resources, and Gρ
k is the capacity of the resource k ∈ G ρ.

Each activity j ∈ Ap, p ∈ P , has a set of execution modes Mj = {1, 2, . . . , |Mj |}. Each

mode m ∈ Mj determines the duration of the activity djm and the activity resource

consumption: rρjkm for each local renewable resource k ∈ Rρ
p , rνjkm for each local non-

renewable resource k ∈ Rν
p and gρjkm for each global renewable resource k ∈ G ρ.

Schedule D = (T,M) is a pair of time and mode vectors, each of size n. For an activity

j ∈ A, values Tj and Mj indicate the start time and the execution mode of j, respectively.

Schedule D = (T,M) is feasible if:

• For each p ∈ P and each j ∈ Ap, the project release time is respected: Tj ≥ ep;
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• For each project p ∈ P and each local non-renewable resource k ∈ Rν
p , the total

resource consumption does not exceed its capacity Rν
pk.

• For each project p ∈ P , each time unit t and each local renewable resource k ∈ Rρ
p ,

the total resource consumption at t does not exceed the resource capacity Rρ
pk.

• For each time unit t and each global renewable resource k ∈ G ρ
p , the total resource

consumption at t does not exceed the resource capacity Gρ
k.

• For each j ∈ A, the precedence constraints hold: Tj ≥ maxj′∈Prec(j) Tj′ + dj′Mj′
.

The objective of the problem is to find a feasible schedule D = (T,M) such that it

minimises the so-called total project delay (TPD), also referred to as fd(D) in this

study:

fd(D) =

∑
p∈P

max
j∈Ap

(
Tj + djMj

)− L , (3.1)

where L is a lower bound (constant) calculated as

L =
∑
p∈P

(CPDp + ep) , (3.2)

and CPDp is a given pre-calculated value.

The tie-breaking secondary objective is to minimise the total makespan (fm(D)), which

is the finishing time of the last activity:

fm(D) = max
j∈A

(
Tj + djMj

)
. (3.3)

The objective functions fd(D) and fm(D) are combined into one function f(D) that

gives the necessary ranking to the solutions:

f(D) = fd(D) + γfm(D) , (3.4)

where 0 < γ ≪ 1 is a constant selected so that γfm(D) < 1 for any solution D produced

by the algorithm. In fact, we sometimes use γ = 0 to disable the second objective.
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3.3.2 Test Instances

Three sets of instances have been used during the MISTA 2013 Challenge. These in-

stances are produced by combining several multi-mode resource-constrained project

scheduling problem (MRCPSP) instances. The MRCPSP instances are generated by

the standard project generator ProGen [151]. Briefly, the construction of the instances

requires a construction of network subject to a set of constraints, resource factor which

reflects the average portion of resources per activity and resource strength to express

the degree of availability of the resources. The format of the MRCMPSP data is based

on the PSPLIB2 MRCPSP data format. More about the generation of the instances can

be found on [151] and the PSPLIB website.

Table 3.5 summarises the main characteristics of these instances. In the table, q is

the number of projects, n is the number of activities, avg. d is the average duration

of activities in all possible modes, avg. |M | is the average number of modes for each

activity, avg. |Pred | is the average number of the predecessor activities for each activity,

avg. |Rρ| is the average number of the local renewable resources per project, avg. |Rν | is
the average number of the local non-renewable resources per project, |G ρ| is the number

of global renewable resources, avg. Rρ is the average renewable resource capacities,

avg. Cν is the average non-renewable resource capacities, avg. Gρ is the average global

renewable resource capacities, avg. CPD is the average CPD per project and H is the

upper bound on the time horizon. The information provided on the table gives some

indication about the size of each instance.

3.3.3 Solution Construction

In designing an algorithm, there are two ‘natural’ representations to be used in the

search for an assignment of activities to times:

Schedule-based: A direct representation using the assignment times of activities.

Sequence-based: This is based on selecting a total order of all the activities.

Given such a sequence then a time schedule is constructed by taking the activities

one at a time in the order of the sequence and placing each one at the earliest time

that it will go in the schedule.

2PSPLIB benchmark: http://129.187.106.231/psplib/



Chapter 3. Problem Domains 51

Table 3.5: Instances characteristics in MISTA 2013

avg. avg. avg. avg. avg. avg. avg. avg. avg.
Instance q n d |M | |Pred | |Rρ| |Rν | |G ρ| Rρ Cν Gρ CPD H

A-1 2 20 5.53 3 1.20 1 2 1 18.5 51.3 16.0 14.5 167
A-2 2 40 4.63 3 1.70 1 2 1 23.5 117.3 23.0 22.5 303
A-3 2 60 5.51 3 1.73 1 2 1 38.5 154.8 49.0 33.5 498
A-4 5 50 4.37 3 1.20 1 2 1 15.2 44.9 12.0 14.2 409
A-5 5 100 5.43 3 1.70 1 2 1 24.0 92.4 13.0 23.0 844
A-6 5 150 5.13 3 1.73 1 2 1 23.8 175.4 13.0 25.6 1166
A-7 10 100 6.03 3 1.20 0 2 2 0.0 48.4 11.5 16.8 787
A-8 10 200 5.67 3 1.70 0 2 2 0.0 110.8 22.5 24.6 1569
A-9 10 300 5.61 3 1.73 1 2 1 27.5 168.0 27.0 29.6 2353
A-10 10 300 5.53 3 1.73 1 2 1 25.9 158.2 15.0 30.7 2472
B-1 10 100 5.33 3 1.20 1 2 1 17.1 44.8 11.0 12.9 821
B-2 10 200 5.67 3 1.70 0 2 2 0.0 94.0 21.0 23.9 1628
B-3 10 300 5.52 3 1.73 1 2 1 28.5 144.4 28.0 29.5 2391
B-4 15 150 5.03 3 1.20 1 2 1 17.5 52.3 10.0 15.8 1216
B-5 15 300 6.02 3 1.70 1 2 1 20.7 99.6 17.0 22.5 2363
B-6 15 450 4.62 3 1.73 1 2 1 25.0 141.8 34.0 31.1 3582
B-7 20 200 4.87 3 1.20 1 2 1 14.7 49.6 10.0 15.4 1596
B-8 20 400 5.48 3 1.70 0 2 2 0.0 104.7 10.0 23.7 3163
B-9 20 600 5.31 3 1.73 1 2 1 26.6 154.8 10.0 30.1 4825
B-10 20 420 5.28 3 1.66 0 2 2 0.0 115.9 18.0 24.5 3340
X-1 10 100 5.53 3 1.20 0 2 2 0.0 47.6 12.5 14.9 783
X-2 10 200 5.53 3 1.70 1 2 1 24.0 105.6 14.0 23.0 1588
X-3 10 300 4.98 3 1.73 1 2 1 27.9 167.0 33.0 29.9 2404
X-4 15 150 5.70 3 1.20 0 2 2 0.0 54.5 13.5 14.9 1204
X-5 15 300 5.52 3 1.70 1 2 1 19.9 100.1 12.0 23.6 2360
X-6 15 450 5.49 3 1.73 1 2 1 24.6 163.7 20.0 29.9 3597
X-7 20 200 5.03 3 1.20 1 2 1 13.9 53.9 10.0 15.0 1542
X-8 20 400 5.53 3 1.70 1 2 1 22.2 104.5 15.0 24.5 3217
X-9 20 600 5.54 3 1.73 1 2 1 23.9 146.3 11.0 28.9 4699
X-10 20 410 5.30 3 1.65 1 2 1 20.0 101.2 10.0 24.1 3221
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The schedule-based representation is perhaps the most natural for a mathematical pro-

gramming approach, but we believe that it could make the search process difficult for a

meta-heuristic method, in particular, generating a feasible solution at each step could

become more challenging. Hence, we preferred the sequence-based representation, since

it provides the ease of producing schedules that are both feasible and for which no

activity can be moved to an earlier time without moving some other activities.

Sequence-based representation is a pair S = (π,M), where π is a permutation of all the

activities A, and M is a modes vector, same as in the direct representation. Permutation

π has to obey all the precedence relations, i.e., π(j) > π(j′) for each j ∈ A and j′ ∈
Pred(j). The modes vector is feasible if Mj ∈ Mj for each j ∈ A and the local non-

renewable resource constraints are satisfied for each project p ∈ P .

In order to evaluate a solution S, it has to be converted into the direct representation D.

By definition, the sequence-based representation S = (π,M) corresponds to a schedule

produced by consecutive allocation of activities π(1), π(2), . . . , π(n) to the earliest

available position. The corresponding procedure is formalised in Algorithms 8 and 9.

Algorithm 8: Schedule construction

1 Let S = (π,M) be the solution;
2 for i← 1, 2, . . . , n do
3 Let j ← π(i);
4 Schedule j in mode Mj to the earliest available position;

5 end

3.3.3.1 Construction Phase

This part describes how we construct an initial solution to be supplied to the later

improvement phase. In the random constructor, the order (permutation) of the set of

activities is randomly generated while respecting the precedence constraints. The set of

modes associated with the activities are set in such a way that the local non-renewable

resource constraints are not violated for any project. However, the constructor method

that we have proposed is designed to not only produce feasible solutions, but also with

the goal that they have a structure similar to that expected in good solutions. We

observed that many such cases had an approximate ordering of the projects. That

is, there would be time periods in the schedule when the general focus would be on

one or few projects and during the schedule this focus would change between projects.

Such a structure naturally arises because the primary objective is the delay-based TPD
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Algorithm 9: Scheduling an activity to the earliest available position

1 Let j be the activity to be scheduled;
2 Let m be the mode associated with j; Let p be an index such that j ∈ Ap;

3 Calculate the earliest start time of j as t0 ← max

{
ep, max

j′∈Prec(j)
(tj + dpjm)

}
;

4 for t← t0, t0 + 1, t0 + 2, . . . do
5 for t′ ← t, t + 1, . . . , t + dpjm − 1 do
6 for k ∈ Rρ

p do
7 Let a be the remaining capacity of k at t′;
8 if rρjkm > a then proceed to the next t

9 end
10 for k ∈ G ρ do
11 Let a be the remaining capacity of k at t′;
12 if rρjkm > a then proceed to the next t

13 end

14 end

15 end
16 Allocate activity j at t in mode m and update the remaining capacities;

rather than the overall makespan. Suppose that we look at the two projects that finish

latest. It can well be that the penultimate project can move its last activities earlier

by adjusting the activities of the last finishing project (except its very last activity)

then this will improve the TPD. Unlike the makespan objective, the TPD objective

encourages unfairness between the finish times of projects, and can drive some projects

to finish as early as possible.

Overall, the structures were only partial orderings of the projects, but with more of a

tendency for the latest projects to be critical. Consequently, our constructor attempts

to create initial sequences that mimic such project (partial) orderings. Furthermore, we

expect that only a partial ordering is needed because we can expect that the subsequent

improvement phase can be expected to make small or medium size adjustments to the

overall project ordering structure. However, the improvement phase would have more

difficulty, and take more iterations, if the general structure of the project ordering were

not good. Consequently, we decided that a reasonable approximation would be to use a

3-way partition of the projects taken to correspond to ‘start’, ‘middle’ and ‘end’ of the

overall project time. We required the numbers of projects in each partition to be equal

or with a difference of at most one when the total number of projects is not a multiple

of 3.

The problem then is how to quickly select a good partition of the projects, and the
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method we selected is a version of Monte-Carlo Tree Search (MCTS) methods [168].

The general idea of MCTS is to search a tree of possibilities, but the evaluation of leaves

is not done using a predefined heuristic, but instead by sampling the space of associated

solutions. The sampling is performed using multiple invocations of a “rollout” which is

designed to be fast and unbiased. It needs to be fast so that multiple samples can be

taken; also rather than trying to produce “best solutions” it is usually designed to be

unbiased - the idea being that it should provide reliable branching decisions in the tree,

but is not directly trying to find good solutions.

In our case, the tree search corresponds to decisions on which projects should be placed

in which partition. The rollout is a fast way to sample the feasible activity sequences

consistent with the candidate choice for the partition of the projects. Specifically, the

tree search works in two levels; firstly to select the projects to be placed in the end

partition and then to select the partition between the start and middle partitions.

The first stage considers 100 random choices for the partition of the projects, and then

selects between these using 120 samples or the rollout. The rollout consists of two main

stages:

1. Randomly select a total ordering of the activities consistent with the precedences

and with the candidate partitioning. Specifically, within each partition we effec-

tively consider a dispatch policy that randomly selects between activities that are

available to be scheduled because their preceding activities (if any) are already

scheduled.

2. Randomly select modes for the activities. If the result is not feasible then this can

only be because of the mode selection causing a shortfall in some non-renewable

resources. Hence, it is repaired using hill climbing on the space of mode selections.

We use moves that randomly flip one mode at a time, and an objective function

that measures the degree of infeasibility by the shortfall in resources. Since the

non-renewable resources are not shared between projects, this search turned out

to be fast and reliable.

The first stage ends by making a selection of the best partitioning, using the quality

of the 25’th percentile of the final solution qualities (the best quartile) of the results of

the rollouts. The ’end’ partition of this best partition is then fixed to that of the best

partition. The decision to fix the ’end’ partition also arose out of the observation that in

good solutions the end projects are least interleaved. The MCTS proceeds to the second
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stage, and follows the same rollout procedure but this time to select the contents of the

middle (and hence start) partitions.

3.3.4 Low Level Heuristics

In this section, all the low level heuristics are described in detail. These heuristics are

restricted, as needed, to only generate feasible sequences. The low level heuristics (also

referred to as neighbourhood operators or simply moves, depending on the algorithm

which makes use of them) are categorised into three groups. This categorisation is mainly

based on the common nature of the strategy the operators employ while manipulating

the solution sequence.

The low level heuristics can be modified to a limited extent through the use of the

“Intensity/Depth of heuristic” parameters. Changing the value of the parameter to a

low level heuristic modifies the behaviour of the low level heuristic. The meaning of the

parameter depends on the low level heuristic in question. For example, it could specify

the extent to which a local search heuristic will modify the solution and the number of

improving steps to be completed by the local search heuristics; or it could mean how

many activities are changed by one call of the heuristic; or could mean the percentage

of the activities that are destroyed and rebuilt.

The following provides the description of each category along with a detailed explanation

of the underlying mechanism in each of the member operators.

3.3.4.1 Swap, Insert and Set Operators

Operators belonging to this category are simple swap, insertion and set operators with

various coverage areas ranging from a single activity to multiple projects. These opera-

tors can be used within local search procedures and mutation operators. The following

is the list of the operators utilised in our algorithm.

• SwapActivities: Swap two activities within the sequence. First a random ac-

tivity j1 is chosen. Positions of the last predecessor (posp) and the first successor

(poss) of j1 are then determined. The last predecessor of j1 is the closest preceding

activity with respect to activity j1. Likewise, the first successor of j1 is the clos-

est succeeding activity of j1. Subsequent to determining posp and poss, a second

activity (j2), is randomly chosen such that posp < posj2 < poss. That is to say
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that the activity j2 is positioned between the two premises posp and poss. The

two activities j1 and j2 are then swapped.

• InsertActivity: Inserts a given activity into a new location in the solution

sequence. Similar to what was described for SwapActivities, an activity is ran-

domly selected and, if feasible, inserted into a location between the last predecessor

and the first successor of the selected activity.

• SetMode: This move is also based on choosing an activity randomly, the mode of

which is set randomly while guaranteeing that the new mode is different from the

previous mode of the selected activity. This is of course the case when the activity

has more than one mode. Otherwise, the move does not perform any operations,

leaving the activity mode intact.

• FILS swapActivities/insertActivity/setMode: These are First Improve-

ment Local Search (FILS) procedures based on the swapping, inserting or mode

changing. Considering the FILS swapActivities, the selection process starts

with choosing a random activity (j1) based on a uniform distribution. The posi-

tions of the last preceding activity (posp) and first succeeding activity (poss) of j1

are determined. A window (W ) of length l is then considered and placed randomly

on the solution sequence such that posWstart > posp and posWend
< poss. Wstart

and Wend are the positions of the start and the end of the window respectively.

Starting from the first activity that falls within the window boundaries and for

each such activity (j2) the operator swap is performed. In case the operation im-

proves the objective value, the solution is accepted and returned. Otherwise, the

operation is undone and we move on to the subsequent position in the window.

The same procedure applies to FILS insertActivity and setMode. The length

(l) of the window is a parameter and can be considered as the search depth.

• SwapTwoProjects: Swaps two randomly selected projects in the sequence.

• SwapNeighbourProjects: This move is similar to SwapTwoProjects with

the difference that the two projects selected for swapping should be neighbouring

in the solution sequence.

3.3.4.2 Project-wise Mutational Operators

The main idea behind the operators belonging to this category is to perturb the position

of a number of activities within the sequence in a project-wise manner. The major
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reason behind designing project-wise operators is that, according to our observations,

good quality solutions roughly tend to cluster the activities of each project in a close

vicinity of each other. Moreover, it is important to have the projects in the right order as

such an order has a tremendous effect on the quality of the solution. Thus, the operators

described below are designed to manipulate the sequence solution to achieve a solution

in which activities are roughly clustered according to the project they belong to as well

as manipulating the order of projects within the sequence.

• MutationOneExtreme: the activities of a randomly selected project are all

collected and squeezed into a randomly-selected position in the sequence. This

way, all the activities which belong to a certain project are placed in adjacency of

each other.

• MutationOne: Shifts all the activities of a randomly selected project by a number

of positions in the sequence. The scale of the shift (the number of positions by

which the activities are shifted) is chosen to be a random number which varies

between the position of the first and last activities of the selected project.

• MoveProjects: Extracts the sequence of the projects in the solution (based

on the positions of the last activities in each project), selects several consequent

projects, and then moves them to either the beginning or end of the sequence.

3.3.4.3 Ruin & Recreate Operators

The Ruin&Recreate (R&R) operators consist of moves in which a list of activities is

selected based on a specific distribution, forming the R&R list. The distribution with

which the activities in the R&R list are chosen varies according to the type of the move

(this is explained later in this section). The selected R&R activities are all guaranteed

to be different. The position of the selected activities on the solution sequence are

considered to be vacant, ready to be occupied as the move completes its operation.

Subsequent to activity selection, each operator performs a move which can be restricted

to moving the selected activities or changing their respective modes or both. That is,

three options are incorporated into the move:

• Moving activities: prior to moving the selected activities, they are reshuffled ran-

domly. Also, a matrix of precedence feasibilities of the activities within the list is
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utilised which is constructed during an earlier pre-processing phase. The prece-

dence relationship of the selected activities in the R&R list constitutes a directed

graph where there is an edge from a node to its successor(s). There are always

nodes without incoming edges (nodes for which no predecessor can be found among

those activities in the list). Thus, when moving activities, the R&R list is scanned

for the first such activity with zero predecessors. This activity is then placed in the

sequence, if feasible, and the graph is updated accordingly where new nodes with-

out any preceding activities emerge. This procedure continues recursively until no

activities remain.

• Changing modes: for each activity in the R&R list, a new random mode is chosen.

In case the list contains one or more activities with infeasible modes (resulting in

negative availability of the local non-renewable resource), the entire sequence of

chosen modes is rejected and another sequence of modes is chosen randomly. This

process continues until a feasible set of modes is found for the activities within the

list.

• Both: changing modes followed by moving activities, both as described above.

A number of variants of R&R operators is designed where the major distinguishing

feature among the variants is the distribution with which the activities of the R&R list

are chosen. Please note that the higher level heuristic which makes its choice among the

move operators of this category, considers each option of an R&R operator as a separate

move. In what follows, the activity selection strategy in each move has been described.

Furthermore, the intuition behind employing such strategies is explained.

• MoveUniform: As the name suggests the R&R activities are selected according

to a uniform distribution, giving each activity an equal chance to move within the

sequence and/or change mode.

• MoveLocal: The activities are selected using a specific and non-uniform distri-

bution centred around a controllable position (p), and with a controllable width

(w), within the sequence. Specifically, a random activity (j) is selected according

to the following probability.

p =
1

tj/T−pos
width + 1

(3.5)

where, tj is the scheduled activity start time and T is the overall time-span.
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• MoveProject: The activity selection of this move is biased towards a randomly

selected project.

• MoveBiasedGlobalResource: While selecting the activities, this move favours

those activities which are scheduled at a time in which remaining capacity on global

resources is higher. Hence, This move aims at avoiding the under-usage of global

resources.

We start by selecting a random activity j by employing a roulette wheel selection

strategy. In other words, the probability of selecting an activity is proportional to

the global resource consumption ratio.

∑|G ρ|
k=1 g

ρ
jkm∑|G ρ|

k=1G
k
ρ

(3.6)

where
∑|G ρ|

k=1 g
ρ
jkm is the available global resources for activity j in mode m.

∑|G ρ|
k=1G

k
ρ

is the sum of global resource capacities.

• MoveEndBiased: Favouring the activities with a position close to the end of

projects, this move aims at polishing the project endings. Consider a project which

is neatly scheduled within the sequence such that the majority of its activities are

adjacent to each other. Often, such a schedule has a lower TDP value compared to

a project whose activities are scattered all over the time horizon. Hopefully, biasing

the activity selection process towards the project endings leads to a sequence in

which a larger number of activities belonging to the same project are adjacently

positioned. MoveEndBiased, employs such an strategy. Selecting activities is

based on the roulette wheel approach. The probability of selecting an activity

j ∈ Ap is proportional to the ratio posjp/|Ap|. posjp is the position of activity j

within the project p while |Ap| is the number of activities in project p. Obviously,

the chances of selecting an activity are higher if it is positioned closer to the project

ending.

3.3.5 Improvement Phase

Most of the time (more than 95% of the given 5 minutes) our algorithm spends on im-

proving the initial solutions. We use a multi-thread implementation of a simple memetic

algorithm with a local search procedure based on a multi-stage hyper-heuristic which

controls low level moves. The multi-stage hyper-heuristics are explained in Chapter 4.
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The improvement phase of our algorithm is controlled by a simple multi-threaded MA

which effectively manages the solution pool and utilises all the cores of the CPU. Our

MA [169] is based on quantitative adaptation at a local level. Within the MA, we use

a powerful local search procedure that takes significant time to converge. To achieve a

sufficient number of generations, we keep the population size small. In particular, we

maintain one solution per CPU core, i.e., 8 solutions, since the test machine has an

Intel i7 CPU with 8 virtual cores. Each local search run takes exactly 5 seconds and

is performed on a dedicated core. Since local search takes virtually all computational

time, this simple parallelisation provides over 95% CPU utilisation.

Because of the small population size and limited number of generations, we decided to

use a simple version of the MA, see Algorithm 10. The population consists of solutions

Si, i = 1, 2, . . . , 8. The memetic algorithm uses the following subroutines:

• Construct() returns a new random solution generated according to the initial par-

tial project sequence as described in Section 3.3.3.1.

• Accept(Si) returns true if the solution Si is considered ‘promising’ and false oth-

erwise. The function returns false in two cases: (1) if f(Si) > 1.05f(Si′) for some

i′ ∈ {1, 2, . . . , 8} or (2) if the solution was created at least three generations ago

and Si is among the worst three solutions. Ranking of solutions is performed ac-

cording to fd(Si) + idle, where idle is the number of consecutive generations that

did not improve the solution Si.

• Select(S) returns a solution from the population chosen with the simple tourna-

ment selection with two individuals.

• Mutate(X) returns a new solution produced from X by applying a mutation op-

erator. The mutation operator to be applied is selected randomly and uniformly

among the available options.

The algorithm contains five mutation operators:

• Apply R&R for both positions and modes using the MoveLocal selection mode.

Repeat the procedure 20 times, each time selecting 3 activities near a randomly

and uniformly chosen position p ∈ [0, 1]. The selection ‘width’ w is 0.1.

• SwapNeighbourProjects.
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• MoveProjects for one project being moved to the end of the sequence.

• MoveProjects for two projects being moved to the beginning of the sequence.

• MoveProjects for three projects being moved to the beginning of the sequence.

Recall that the objective consists of two competing components. Indeed, minimisation

of the total makespan favours solutions with projects running in parallel as such solu-

tions are more likely to achieve higher utilisation of the global resources. At the same

time, minimisation of the TPD favours solutions with the activities grouped by projects.

Hence, the second objective creates a pressure for the local search that pushes the so-

lutions away from the local minima with regards to the first objective. To avoid this

effect, we disable the second objective (γ ← 0) and enable it only after 70% of the given

time is elapsed.

Algorithm 10: Improvement Phase

1 γ ← 0;
2 for i← 1, 2, . . . , 8 do
3 Si ← Construct();
4 end
5 while there is time remaining do
6 if elapsedtime ≥ 0.7giventime then
7 γ ← 0.000001;
8 end
9 for i← 1, 2, . . . , 8 (multi-threaded) do

10 Si ← LocalSearch(Si);
11 end
12 for i← 1, 2, . . . , 8 do
13 if Accept(Si) = false then
14 X ← Select(S);
15 Si ← Mutate(X);

16 end

17 end

18 end

Seventeen low level heuristics are controlled by the multi-stage hyper-heuristics. They

are partitioned into three sets as LLHsmall, LLHmedium, LLHlarge considering the number

of activities processed (e.g., number of swaps) by a given heuristic. Medium moves are

the local search heuristics and ruin & recreate operators.

• LLHsmall: {LLH0 (MU0): SwapActivities, LLH1 (MU1): InsertActivity,

LLH2 (MU2): SetMode}.
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• LLHmedium: {LLH3 (RC0): MoveUniform(changing modes), LLH4 (RC1):

MoveUniform(both), LLH5 (RC2): MoveLocal(changing modes), LLH6

(RC3): MoveLocal(both), LLH7 (RC4): MoveBiasedGlobalResource(both),

LLH8 (RC5): MoveEndBiased(both), LLH9 (RC6): MoveProject(both),

LLH10 (HC0): FILS SwapActivities, LLH11 (HC1): FILS InsertActiv-

ity, LLH12 (HC2): FILS setMode}.

• LLHlarge: { LLH13 (MU3): MoveProjects, LLH14 (MU4): SwapTwoPro-

jects, LLH15 (MU5): MutationOneExtreme, LLH16 (MU6): Muta-

tionOne}.

3.4 SolveIT International Optimisation Competition: Con-

structing Magic Squares

3.4.1 Problem Description

A magic square of order n is a square matrix of size nxn, containing each of the numbers

1 to n2 exactly once, in which the n numbers in all columns, all rows, and both diagonals

add up to the magic number M(n). This constant is given by Equation 3.7:

M(n) = n(n2 + 1)/2 (3.7)

As an example, the magic square of order 3 is shown below:


4 9 2

3 5 7

8 1 6


A formal formulation of the magic square problem is as follows. Given a magic square

matrix A of order n such that

An×n =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

an,1 an,2 · · · an,n
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where ai,j ∈ {1, 2, ..., n2} for 1 ≤ i, j ≤ n and ai,j ̸= ap,q for all i ̸= p and j ̸= q

subject to

n∑
i=1

ai,j = M(n),

n∑
j=1

ai,j = M(n),

n∑
i=1

ai,(n+1−i) = M(n) and

n∑
i=1

ai,i = M(n)

A constraint version of the magic squares problem requires for a given instance of size

n ≥ 10 that the solution matrix must have a contiguous sub-matrix S3×3 to be placed

at a given location (i, j) in An×n:

S3×3 =


1 2 3

4 5 6

7 8 9


The objective (cost) function measures the sum of absolute values of the distance from

the Magic number for each column, row and diagonal. Hence, the problem can be

formulated as a minimisation problem in which the goal is to minimise the objective

function value in Equation 3.8. The magic square is found if the objective function value

is 0.

g(An×n) =

n∑
i=1

∣∣∣∣∣∣
n∑

j=1

ai,j −M(n)

∣∣∣∣∣∣ +

n∑
j=1

∣∣∣∣∣
n∑

i=1

ai,j −M(n)

∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

ai,(n+1−i) −M(n)

∣∣∣∣∣ +

∣∣∣∣∣
n∑

i=1

ai,i −M(n)

∣∣∣∣∣
(3.8)

Equation 3.9 describes the objective function value after imposing the contiguous sub-

matrix S3×3.

f(An×n, i, j) =

{
g(An×n) if S3×3 placed at the position (i, j) in A;

∞ otherwise.
(3.9)

It is possible to obtain different magic squares of a given order. The following squares

are examples of the two constrained version of the magic square of order 10:
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82 46 71 1 2 3 44 72 93 91

69 63 98 4 5 6 94 62 18 86

95 77 33 7 8 9 52 92 74 58

96 45 41 90 31 57 47 17 39 42

56 88 78 36 70 48 79 13 21 16

34 30 24 100 65 76 64 22 55 35

27 61 14 43 68 81 29 97 59 26

12 20 32 73 84 99 37 23 38 87

15 50 60 85 89 75 10 40 28 53

19 25 54 66 83 51 49 67 80 11





80 35 97 1 2 3 98 70 99 20

73 62 53 4 5 6 74 56 88 84

83 38 23 7 8 9 96 77 72 92

52 61 31 95 54 82 29 13 24 64

45 65 91 75 93 66 12 22 17 19

28 37 39 57 89 30 14 76 87 48

41 63 33 21 90 78 11 50 47 71

27 86 55 100 15 79 69 46 10 18

42 26 67 60 68 58 59 51 25 49

34 32 16 85 81 94 43 44 36 40



The International Optimisation Competition hosted by SolveIT for constructing magic

square used the following performance measure to determine the best approach. The

largest magic square that an algorithm constructs in one minute was considered to be

the best algorithm.

All computational experiments are performed on small instances from n=10 up to 23

with increments of 1 and large instances from n=25, 50, 75, 100 up to 2600 with in-

crements of 100, unless mentioned otherwise. 2600 is chosen as the maximum order for

the magic squares problem, as the winning approach of the magic square competition

was able to solve a magic squares problem of order 2600 as the largest instance under a

minute on the competition computer.

3.4.2 Low Level Heuristics

A candidate solution is encoded using a direct representation in the form of a matrix.

The objective (cost) function is described in Equation 3.9.

3.4.2.1 The Late Acceptance Hill Climbing Approach

The winner approach of the magic squares competition is a late acceptance hill climbing

approach, denoted as LAHC, employed two different methods each with a different set of

heuristics based on the size of a given problem. The first set is used on small problems,

where a magic square of odd order less than or equal 23, and a magic square of even
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order less than or equal 18. The second set is used on large problems where a magic

square of order 20, 22 or larger than 23.

Small Problems

L is set to 1000. Initially, the square is filled randomly and the constraint sub-matrix

S3×3 is fixed at its right location (i, j). Only one heuristic is applied and it is designed so

as not to violate the proposed constraint3, which swaps two randomly selected entries.

Large Problems

The approach uses a nested mechanism to construct the magic square. The square is

divided into several sub-matrices called Magic Frames with size of l× l and l ≤ n, where

only the border two rows and two columns are non-zero. The sum of numbers at the

border rows and columns are equal to the magic number M(l). The sum of numbers in

other rows, columns and diagonals are equal to l× l + 1. The magic square constructed

by recursively inserting the magic frames or by placing a smaller magic square inside

the magic frame. Example of magic frame of size l = 4:
7 2 14 11

16 0 0 1

5 0 0 12

6 15 3 10



Initially, the magic frame is filled randomly with the necessary set of numbers and

their counterparts (e.g. 16 and its counterpart 1 as shown in the above example). The

constraint sub-matrix S3×3 is fixed at its right location (i, j) if the frame contains some

of them. The L is set to 50000. The evaluation function of constructing the magic

frames measures the sum of absolute values of the distance from the Magic number from

the sum of the first row and the sum of the first column numbers. The heuristics are

designed so as not to violate the constraint. The heuristics are described as follows:

• H0: swap randomly with its counterpart (e.g. swap 16 and 1 shown in the above

magic frame).

• H1: swap randomly two entries and their counterparts (e.g. swap 3 with 5 and 12

with 14 shown in the above magic frame).

3http://www.cs.nott.ac.uk/~yxb/IOC/LAHC_MSQ.pdf
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The LAHC approach selects one of the two heuristics randomly with H2 has a higher

probability to be selected.

If the contiguous submatrix S3×3 is close to the border, then we only need to construct

magic frames starting from the outer border until we cover the contiguous submatrix,

then apply the well known magic square construction methods to fill the unfilled matrix.

If the contiguous submatrix is placed deeply inside, then the following swap move is appli-

cable. Considering the four vertices of the matrix P1, P2, P3 and P4, if P1+P2=P3+P4

and they are not in any of the both diagonals, then it is possible to swap P1 with P3

and P2 with P4 without violating the magic constraints. By using this property, the

contiguous submatrix S3×3 can be placed close to the border and then moved into the

location (i, j)4.

3.4.2.2 Set of Low Level Heuristics

Similar to the LAHC approach, two different sets of low level heuristics based on the

size of the problem are employed. The first set is applicable to the small size of the

problem (magic square of odd order less than or equal 23, and a magic square of even

order less than or equal 18); and the second set to large size of the problem.

First Set of Low Level Heuristics

Initially, the square is filled randomly and the constraint sub-matrix S3×3 is fixed at

its right location at (i, j). Nine low level heuristics are implemented. The low level

heuristics randomly modify a complete solution in different ways while respecting the

given constraint.

• LLH0 (MU0): swap two entries to fix the magic number violation by trying to

select an entry that is not in a row, column or diagonal satisfying the magic rule.

Then swap this entry with another entry so as to satisfy, hopefully, the magic rule

for the selected row, column or diagonal.

• LLH1 (MU1): select two rows, columns or diagonals randomly to swap as a

whole.

• LLH2 (MU2): select largest sum of row, column or diagonal and smallest sum

of row, column or diagonal and swap the largest element from the first with the

smallest in the second.
4http://www.cs.nott.ac.uk/~yxb/IOC/LAHC_MSQ.pdf
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• LLH3 (MU3): similar to LLH0. The only difference is that the process is repeated

until satisfying the magic rule for the selected row, column or diagonal; or until

no improvement is observed.

• LLH4 (MU4): select two rows randomly k and l, fix violations by swapping

entries on a single column s for the rows [32]. The swap occurs if and only if:

n∑
j=1

ak,j −M(n) = M(n)−
n∑

j=1

al,j = ak,s − al,s, k ̸= l

Similarly, for two randomly selected columns k and l, the swap will occur if:

n∑
i=1

ai,k −M(n) = M(n)−
n∑

i=1

ai,l = as,k − as,l, k ̸= l

• LLH5 (MU5): swap two randomly selected entries which are not on the row,

column or diagonal that satisfy the magic number rule.

• LLH6 (MU6): select two rows randomly k and l, fix the violations by swapping

entries on two columns s and t separately for the rows [32], where k ̸= l, s ̸= t and

a swap occurs if and only if:

n∑
j=1

ak,j −M(n) = M(n)−
n∑

j=1

al,j = ak,s − al,s + ak,t − al,t

Similarly, for two randomly selected columns k and l, the swaps will occur if:

n∑
i=1

ai,k −M(n) = M(n)−
n∑

i=1

ai,l = as,k − as,l + at,k − at,l

• LLH7 (MU7): fix violations on a diagonal as much as possible. Mathematically

[32]: for i, j = 1, 2, ..., N and i ̸= j:

Swap ai,i with aj,i and ai,j with aj,j if:

ai,i + ai,j = aj,i + aj,j and (ai,i + aj,j)− (ai,j + aj,i) =

n∑
i=1

ai,i −M(n)
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Swap ai,j with a(n+1−j),j and ai,(n+1−i) with a(n+1−j),(n+1−i) if:

ai,j + ai,(n+1−i) = a(n+1−j),j + a(n+1−j),(n+1−i) and

(ai,(n+1−i) + a(n+1−j),j)− (ai,j + a(n+1−j),(n+1−i)) =

n∑
i=1

a(n+1−i),i −M(n)

Swap row i and j if:

(ai,i + aj,j)− (ai,j + aj,i) =

n∑
i=1

ai,i −M(n) and

(ai,(n+1−i) + aj,(n+1−j))− (ai,(n+1−j) + aj,(n+1−i)) =
n∑

i=1

a(n+1−i),i −M(n)

Swap column i and j if:

(ai,i + aj,j)− (ai,j + aj,i) =

n∑
i=1

ai,i −M(n) and

(a(n+1−i),i + a(n+1−j),j)− (a(n+1−j),i + a(n+1−i),j) =

n∑
i=1

a(n+1−i),i −M(n)

Swap row i and (n + 1− i) if:

(ai,i + a(n+1−i),(n+1−i))− (ai,(n+1−i) + a(n+1−i),i) =
n∑

i=1

ai,i −M(n)

= M(n)−
n∑

i=1

a(n+1−i),i

• LLH8 (MU8): select the row, column or diagonal with the largest sum and row,

column or diagonal with the lowest sum and swap each entry with a probability

of 0.5.

Second Set of Low Level Heuristics

The second set of low level heuristics has only two low level heuristics and are applicably

to relatively large size of the problems. The same construction and evaluation methods

developed by LAHC are used. The approach uses a nested mechanism to construct the

magic square by dividing the matrix into magic frames just as explained previously. The

same heuristics which are used by LAHC to construct the magic frames are used as a
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low level heuristics for the hyper-heuristic framework, LLH0 (MU0) is H0 and LLH1

(MU1) is H1.

3.5 Summary

This chapter describes the problems dealt with in the study. The cross domain heuristic

search over six HyFlex problem domains, high school timetabling, multi-mode resource-

constrained multi-project scheduling, and construction of magic squares were subjects

of recent competitions of CHeSC 2011, ITC 2011, MISTA 2013 and SolveIT 2011, re-

spectively. Hence, each domain has its own problem instances, each with a different

characteristic. A selection hyper-heuristic performing a single point based search re-

quires design and implementation of high level components, such as heuristic selection

and move acceptance that will operate on the domain. However, it is assumed that

problem domain components, such as, low level heuristics and initialisation method, do

exist for the given domain. CHeSC 2011 comes with the implementation of six prob-

lem domains and relevant instances, hence users can solely focus on the hyper-heuristic

development. As for rest of the problem domains, relevant domain level components

are developed for use by the selection hyper-heuristics. Hence, the formulation of the

problem, design and implementation details, such as, initialisation (initial solution con-

struction) method and low level heuristics for each domain are presented in this chapter.

Multi-stage hyper-heuristics that utilise the domain level components are described in

the following chapter.



Chapter 4

Multi-stage Hyper-heuristics

Under a single point based search framework, a selection hyper-heuristic chooses a heuris-

tic from a predefined set of low level heuristics and applies it on a candidate solution.

The new solution is then considered and a decision is made whether it will be accepted

or not. If accepted, the new solution replaces the current solution and the search con-

tinues iteratively [2]. A hyper-heuristic aims to exploit the strengths (and avoid the

weaknesses) of different heuristics which perform differently on different problem in-

stances by mixing/controlling those heuristics and utilising each heuristic at different

steps of the search process. It has been observed that a selection hyper-heuristic may

perform differently at different stages of the search process and there is a strong em-

pirical evidence indicating that the choice of heuristic selection and move acceptance

combination influences the overall performance of a hyper-heuristic [8, 23]. Hence, this

study attempts to address whether it is viable to mix/control multiple hyper-heuristics

for an improved performance of the overall search methodology. A general multi-stage

hyper-heuristic framework which allows the use of multiple hyper-heuristics at different

stages of the search process is described in this chapter. Additionally, a set of multi-stage

hyper-heuristics designed based on the proposed framework is presented as provided in

Table 4.1. Some of the proposed approaches operate based on the observation that not

all low level heuristics for a problem domain would be useful at any point of the search

process.

70
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4.1 A Multi-stage Hyper-heuristic Framework

The traditional single-stage selection hyper-heuristic framework employs a single heuris-

tic selection and a single move acceptance method. If a different hyper-heuristic com-

ponent is used at any stage during the search process, this constitutes a different stage

enabling the design of multi-stage hyper-heuristics as illustrated in Figure 4.1. Allow-

ing the use of multiple hyper-heuristic components interchangeably under a multi-stage

framework opens up richer design options, such as the possibility of having several hyper-

heuristics controlling different sets of low level heuristics cooperatively. A multi-stage

framework requires inclusion of an additional upper level which will be referred to as

multi-stage level within the selection hyper-heuristic framework as shown in Figure 4.1.

The multi-stage level allows the transition between available hyper-heuristics and their

automated control at different points during the search process. We took into account

the criteria of designing a hyper-heuristic defined in [12] such that, a hyper-heuristic

should “(1) be fast to implement, (2) require far less expertise in either the problem

domain or heuristic methods, and (3) robust enough to effectively handle a range of

problems”. The designed multi-stage hyper-heuristic framework satisfies all these previ-

ously suggested design criteria. The proposed multi-stage hyper-heuristic methodologies

which are described in the following sections mostly combine different ideas from the

literature. Even though the multi-stage hyper-heuristics designed based on the frame-

work are relatively simple, the results indicate their effectiveness as solution methods.

Algorithm 11 provides the pseudocode of a multi-stage hyper-heuristic algorithm based

on the framework in Figure 4.1.

In the following sections, we describe six novel multi-stage hyper-heuristics (Table 4.1)

based on the proposed framework. Each multi-stage hyper-heuristic exhibits a variety

of characteristics reflecting the capability and flexibility of the framework:

(1) The multi-stage level in GGHH, DRD, HySST, DRW and MSHH controls two dif-

ferent hyper-heuristics, while it controls three hyper-heuristics in RHH.

(2) GGHH, DRD, DRW and MSHH control two hyper-heuristics in such a way that

one of them reduces the set of low level heuristics adaptively keeping the ones that are

expected to perform relatively well, while the other hyper-heuristic uses this information

and applies only the reduced set of low level heuristics to improve the candidate solution

at a stage. In RHH and HySST, all the hyper-heuristics controlled at the multi-stage

level use a fixed number of low level heuristics at each stage during the search process.
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Figure 4.1: A multi-stage hyper-heuristic framework

(3) GGHH, DRD, DRW and MSHH methods ignore the nature of the low level heuristics,

while HySST and RHH require that information and make use of the type of the heuristic

whether it is mutational or hill climber while performing search.

(4) Each hyper-heuristic in RHH is applied for a fixed duration of time. The transition

between stages for RHH is static. On the other hand, the transition between stages

in which a different hyper-heuristic is used occurs adaptively in GGHH, DRD, HySST,

DRW and MSHH.

(5) The transition between stages in DRD and MSHH is stochastic, i.e., a set of conditions

has to be satisfied along with a certain probability for the following stage with a different

hyper-heuristic to start. In GGHH, HySST and DRW, the transition is non-stochastic,

i.e., it is sufficient for a stage with a different hyper-heuristic to start its execution given

a set of conditions are satisfied.
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Algorithm 11: Pseudocode of the multi-stage hyper-heuristic framework

1 Let HH = {S1HH,S2HH, ..., SjHH} represent set of all hyper-heuristics;
2 Let Sinput represent set of input solutions;
3 Let Soutput represent set of output solutions;
4 Let sbest represent the best solution;
5 repeat
6 SiHH ← SelectHyperHeuristic(HH);
7 Update1(); /* set/update relevant parameter/variable values before

entering into a stage */

8 while notSatisfied(SiHHTerminationCriteria) do
9 Soutput, sbest ← ApplyHyperHeuristic(SiHH,Sinput);

10 Update2(); /* set/update relevant parameter/variable values during a

stage */

11 end
12 Update3(); /* set/update relevant parameter/variable values after

finishing a stage */

13 until TerminationCriterionSatisfied();
14 return sbest;

In the following sections, we discuss each multi-stage hyper-heuristic in Table 4.1.

4.2 Greedy-gradient - Simulated Annealing Hyper-heuristic

(GGHH)

4.2.1 Origin

An improvement oriented heuristic selection strategy combined with a simulated anneal-

ing move acceptance as a hyper-heuristic utilising a set of low level constraint oriented

neighbourhood heuristics is investigated in 2007 for solving a curriculum based course

timetabling problem at Yeditepe University [28]. The low level heuristics are designed

similarly to the ones designed in [116], and [175] at which they attempt to improve upon

corresponding constraints. The selection method combines a fast reacting greedy and

gradient heuristic selection mechanisms.

The performance of the Greedy-gradient - Simulated Annealing Hyper-heuristic (GGHH)

has been investigated and compared against a set of three simple selection hyper-

heuristics methods, including Simple Random (SR), Greedy (GR) and Choice Function

(CF), on a real world problem obtained from the Computer Engineering Department at

Yeditepe University and eight problem instances which are randomly generated based
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on the definition of the given problem. Table 4.2 summarises the performance of each

hyper-heuristic based on 50 runs for each instance as reported in [28]. The evaluation

measure success rate is used: s.r. = (number of runs for which the perfect solution is

obtained)/50. The rankings of the different hyper-heuristics in Table 4.2 are calculated

according to the success rates. The lower the ranking, the better a hyper-heuristic is.

Table 4.2: Performance ranking of each hyper-heuristic combined with simulated
annealing move acceptance over a set of problem instances

label events lecturers GGHH CF SR GR

rp1 200 64 2.5 2.5 2.5 2.5
rp2 200 64 2 2 2 4
rp3 400 128 2 2 2 4
rp4 400 128 1 2 3 4
rp5 800 256 2 2 2 4
rp6 800 256 1 2 3 4
rp7 1600 512 1 2 3 4
rp8 1600 512 1 2 3 4
cse 200 64 2.5 2.5 2.5 2.5

avr 1.67 2.11 2.56 3.67

The results show that applying different hyper-heuristics (greedy or random gradient) at

different stages, in the overall, performs better than simple random, greedy and choice

function heuristic selection methods as a part of a selection hyper-heuristic embedding

simulated annealing as a move acceptance method. Based on the mentioned results, the

approach can be generalised and applied to different problem domains to investigate the

performance of applying different hyper-heuristics at different stages of the search.

4.2.2 Methodology

In most of the previous applications of reinforcement learning in hyper-heuristics, a

utility value is increased as a reward mechanism and decreased for punishment [19, 176].

It has also been observed in [28] that the memory length affects the performance. The

greedy-gradient hyper-heuristic approach somewhat adapts a similar strategy. Instead

of a predefined scoring mechanism, the fitness change in between the old and current

solution generated after the application of the selected heuristic is used as a utility

value. Whenever the utility value of each heuristic is 0, a greedy-like strategy is invoked

(Algorithm 12, Lines 1-5). Each heuristic is called one by one using the same solution at

hand and the fitness change is recorded as a utility value of the corresponding heuristic.
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If a heuristic causes a worsening move, its utility value is set to 0. Then, a heuristic

is chosen based on the scores (Algorithm 12, Lines 6 and 7). The max function is

employed, choosing an option with the highest value and in this case, choosing a heuristic

that generates the best improvement. After applying the selected heuristic, its score is

updated right away using the fitness change. This strategy neither makes use of a

periodic update of scores as in [177], nor forgets the scores as soon as a heuristic is

selected as in a greedy method [12]. In the case when one heuristic has a non-zero value,

it will be selected as long as the solution improves and the hyper-heuristic will act like

a gradient hill climber.

During the heuristic selection process, utility values of a subset of heuristics returned

by the max function might be the same, necessitating a tie breaking strategy. Two

different cases emerge: a non-zero tie score for some heuristics or all zeros. A random

selection is performed in the former case. For the latter case, a problem dependent

feature is implemented. Another utility array is maintained to keep track of the number

of violations due to each constraint type. Again, max function is used for determining

the highest number of violations and the corresponding constraint type. Hence, the

corresponding heuristic is invoked. Then, the utility values of the selected heuristic are

updated in both arrays using the new solution.

Algorithm 12: Pseudocode of greedy-gradient heuristic selection method

input: scores, current solution

1 if all heuristic scores are 0 then
2 invoke each heuristic using the current solution;
3 record cost change as the score for each heuristic;
4 reset the score of a heuristic to 0 if cost increases;

5 end
6 choose a heuristic based on the scores;
7 in case of a tie, use a tie breaking strategy;
8 return (chosen heuristic id for invocation);

Simulated annealing accepts improving moves and non-improving moves with a proba-

bility provided in Equation 2.1.
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4.3 Dominance-based Random Descent/Gradient Hyper-

heuristic with Näıve Move Acceptance (DRD)

In this approach, either a greedy or random descent heuristic selection method is used

as a heuristic selection method at any stage. Therefore, each stage will be referred to

as greedy or random descent stage depending on the heuristic selection method used.

The greedy stage is used to build a List of Active Heuristics (LAH) that are expected

to perform relatively well. Heuristic selection is followed by a Näıve move acceptance

(NV) strategy [60] to decide whether to accept or reject the new solution considering

its quality. This approach is initially applied to the first four problem domains of the

HyFlex benchmark set and outperformed the default ‘mock’ eight hyper-heuristics pro-

vided by the CHeSC 2011 organisers [170], performing particularly well in the boolean

satisfiability and one-dimensional bin-packing problem domains.

The proposed approach is motivated by the idea of dynamically grouping the low level

heuristics that are expected to perform relatively well into a list of active heuristics; by

(1) reflecting the trade-off between the number of successive steps a low level heuristic is

applied and the objective function value achieved; therefore, a heuristic yielding a large

improvement in the solution quality after a large number of invocations can be considered

as “successful” as one which provides less improvement, but using less invocations. (2)

capturing how frequently a heuristic is successful in a given number of steps and feed

this information as its selection probability into the second hyper-heuristic.

4.3.1 Methodology

Algorithm 13 provides the pseudocode of the proposed hyper-heuristic. The multi-stage

level mechanism starts with a greedy stage. The greedy heuristic selection method allows

all the low level heuristics to process a given candidate solution successively for a number

of steps to build a List of Active Heuristics (LAH) in the greedy stage. LAH is a list of

the low level heuristics that are expected to perform relatively well. This is an opposite

strategy employed by the Tabu Search based hyper-heuristic [59] which utilises a list to

disallow the use of low level heuristics generating worsening results. In the first step of

the greedy stage, LAH contains all low level heuristics. The greedy heuristic selection

method combined with a dominance-based strategy is used to reduce the number of

active heuristics for the next stage. The greedy stage is always followed by a random

descent stage. The best solution found during the greedy stage is used as the current
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solution to be processed by the random descent stage. In this stage, the random descent

heuristic selection method picks a low level heuristic from LAH randomly and applies it

to the solution in hand repeatedly until there is no improvement. In the case of obtaining

a non-improving solution, the multi-stage level triggers to go into the random descent

stage again without accepting the new solution with a probability of Ps; or it will go into

the greedy stage for updating the list of active heuristics with a probability of Pu; or it

will accept the non-improving solution with a probability of (1−Ps−Pu) and continue

with the random descent stage. In [170], and after a set of exhaustive experiments using

different combinations of values, Ps and Pu are assigned to 0.50 and 0.25, respectively.

The following parts explain how the stages interact in more details.

4.3.1.1 Greedy Stage

In the greedy stage, the greedy heuristic selection method is employed for n successive

steps. The best performing heuristics are determined using a strategy inspired from

the concept of Pareto Front [178] in multi-objective optimisation. Given a set of k low

level heuristic points LLH={LLH1, LLH2, . . . , LLHk} in 2-dimensional space, each

represented by its x (Step) and y (Objective) coordinates. At each step, the objective

function value of each solution generated by the corresponding low level heuristic is

calculated. Well performing low level heuristics that have the potential to improve

within the n steps are those points that are not dominated by any other point. A low

level heuristic may make a small improvement in the solution taking a short time and

performance-wise this is as good as a heuristic which improves a solution more taking

a longer time. Assuming a minimisation problem where we are seeking for the low level

heuristics that generate minimum objective function value, a point LLHi is considered to

be dominated by point LLHj if and only if (LLHi.x ≥ LLHj.x) and (LLHi.y ≥ LLHj.y).

Figure 4.2 shows an example on how to build the list of active heuristics for (k=5) low

level heuristics. Note that in the Figure, LLH2 has been added three times to the list

and that makes this heuristic to be selected with higher probability. Note also that in

Step1, LLH2 and LLH3 have been both added to the list, since they have the same

objective function value and they are not dominated by any other point.

As there is a limited time to find the best objective function value, the value of n depends

on the time of applying the greedy method in one step. n decreases when the time needed

to apply the greedy method was high. An exponential function has been considered to

find n, where zero is a possible value. However, in case n equals zero, then the list of
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Algorithm 13: Pseudocode of the dominance-based and random descent hyper-
heuristic

1 Let S represent the candidate solution; Sbest the best solution; Ps and Pu ∈ [0, 1];
2 S ← CreateInitialSolution();
3 Sbest ← S;
4 L← BuildLAH(Sbest);
5 LLH ← SelectRandomlyFrom(L);
6 repeat
7 S′ ← ApplyHeuristic(LLH,S);
8 if S′ isBetterThan Sbest then
9 Sbest ← S′;

10 end
11 if S′ isNotBetterThan S then
12 r ← GenerateUniformRandomNumberIn(0, 1);
13 if r < Ps then
14 LLH ← SelectRandomlyFrom(L);
15 Pa ← 0;

16 end
17 else if r < Ps + Pu then
18 L← UpdateLAH(Sbest);
19 LLH ← SelectRandomlyFrom(L);
20 Pa ← 0;

21 end
22 else
23 Pa ← 1;
24 end

25 end
26 if S′ isBetterThan S then // move acceptance

27 S = S′;

28 end
29 else if with a probability of Pa% then
30 S = S′;
31 end

32 until Exceeded(timeLimit);
33 return Sbest;
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Figure 4.2: An illustration showing how the list of active heuristics is built

active heuristics will contain all the k low level heuristics. The value of n is calculated

before starting the main loop and it should be an integer value. n = Ae−f(t) where A is

the maximum possible value of n. f(t) is the total time of applying the greedy method

for one step divided by the limited time that required to complete the whole process;

the total time of applying the greedy method for one step equals the summation of the

time required to apply each low level heuristic on a given candidate solution. In [170],

A was given the value of 9 after a set of trials while applying the method to the HyFlex

benchmarks.

4.3.1.2 Random Descent/Gradient Stage

The goal of this stage is to improve the solution at hand as much as possible turning

the approach into a hill climber. A low level heuristic is selected randomly from the

list of active heuristics, created during the greedy stage, and applied repeatedly until no

improvement is achieved.
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4.3.1.3 Näıve Move Acceptance

The Näıve move acceptance [60] (Algorithm 13, Lines 26-31) is used as the move ac-

ceptance strategy which accepts all improving moves. In case of non-improving moves

(Pa = 1), the solution accepted with a probability of (1−Ps−Pu); otherwise, the solution

remains unchanged (Pa = 0).

4.4 Robinhood Hyper-heuristic with an Adaptive Thresh-

old Acceptance (RHH)

This section presents a hyper-heuristic based on a round-robin neighbourhood (Robin-

hood) selection mechanism which allocates equal time for each low level heuristic to

process a solution in hand. This multi-stage hyper-heuristic approach aims to give a

fair chance for each low level heuristic in a selected subset of low level heuristics to

execute for a certain duration at a stage. A low level heuristic is chosen in a round robin

fashion. Depending on the strategy, the whole set of low level heuristics can be used

and the order of low level heuristics can be fixed or varied.

Low level heuristics are classified in two groups: mutation and hill-climbing. The al-

gorithm performs sequences of operations. The sequences are chosen randomly and

assigned according to the round robin technique. A sequence is repeated as long as it

makes it possible to improve on the quality of the current solution.

Three move acceptance criteria including only improving, improving or equal, and an

adaptive acceptance methods are used in this approach. In the adaptive acceptance

method, a move that improves the quality of the current solution is always accepted.

Deteriorating moves are accepted according to a probability that is adaptively modified

at different stages throughout the search.

4.4.1 Methodology

The Robinhood hyper-heuristic (Algorithm 14) is composed of components inspired from

previously proposed approaches. The heuristic selection methods presented by Cowling

et al. [12] includes Random Permutation and Random Permutation Descent (Gradient).

This method applies a low level heuristic one at a time sequentially in a randomly

generated permutation order. Random Permutation Gradient operates in the same way



Chapter 4. Multi-stage Hyper-heuristics 82

with a minor change that is as long as the chosen heuristic makes an improvement in

the current solution the same heuristic is employed. Given a time limit of t (Algorithm

14, Lines 2 and 12), and n low level heuristics, the Robinhood hyper-heuristic fixes the

number of stages to k and applies all low level heuristics (Line 4) to the current solution

in a given order for t/(n.k) time unit at a stage (Line 5).

The proposed hyper-heuristic aims to use all low level heuristics assuming that the

domain implementers chose reasonable heuristics which will not be misleading for the

search process. Consequently, in the multi-stage level, the low level heuristics are ran-

domly ordered within each group of heuristics: mutational and hill climbing. Inspired

by well-known algorithms [53, 56], in which solutions are improved through successive

application of mutation and hill climbing, the Robinhood hyper-heuristic uses the same

ordering of groups and randomly fixing the ordering of heuristics within each group at

a stage. There is also strong empirical evidence in the literature that this ordering is a

good choice even for selection hyper-heuristics as reported in [8, 60]. The hyper-heuristic

uses the same ordering in the subsequent stage if there is an improvement in the solution

quality at a given stage. Otherwise, without changing the group ordering, another ran-

dom ordering of low level heuristics within each group is generated for the subsequent

stage.

Three move acceptance criteria, and hence three hyper-heuristics, are used in this ap-

proach. Either only improving, improving or equal, or a modified version of the adaptive

acceptance method in [60] is used for the move acceptance. The latter acceptance method

accepts all improvements as usual, but the deteriorations are accepted with respect to an

adaptively changing rate, denoted as acceptanceRate. Assuming a minimisation prob-

lem, let f(x) denote the quality of a given solution x, then if f(S′) is less than f(S), then

S′ is accepted, otherwise S′ is accepted with a uniform probability of acceptanceRate

(Algorithm 14, Line 7). Initially, only strictly improving moves are accepted. However,

if the solution does not improve for one stage, only the moves generating improving or

equal quality new solutions are accepted. If the solution does not improve for another

following stage, then threshold move acceptance is activated based on acceptanceRate.

A reinforcement learning mechanism is used for adapting the value of acceptanceRate.

If the solution gets stuck at a local optimum for a given stage, then acceptanceRate

is increased by a δ value for the next stage, making it more likely that a worsening

solution is accepted. Conversely, if the solution in hand worsens in a given stage, then

the acceptanceRate is reduced by δ, making it less likely for a worsening solution to be
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accepted. The acceptanceRate value updates are intended to help the search navigate

out of local optima, and focus the search if it is progressing well.

In [171], the proposed method was shown to work well on the HyFlex benchmark problem

domains when k = 200 and δ = 0.01, outperforming the mock hyper-heuristics, and

taking the fourth place with respect to the twenty approaches in CHeSC 2011.

Algorithm 14: Pseudocode of Robinhood hyper-heuristic

1 Initialise();
2 repeat /* e.g., terminate when the given overall execution time is

exceeded */

3 Update1(); /* set/update relevant parameter/variable values before

entering into a stage or no-op */

4 for i = NextLowLevelHeuristicID() do /* entry of the stage */

5 while TerminationCriteriaNotSatisfied2() do /* e.g., terminate when

the given time for a heuristic is exceeded */

6 S′ ← ApplyLLH(i, S); /* S and S′ are the current and new

solutions, respectively */

7 MoveAcceptance(S, S′);

8 end
9 Update2(); /* set/update relevant parameter/variable values after

employing a low level heuristic or no-op */

10 end
11 Update3(); /* set/update relevant parameter/variable values after a

stage or no-op */

12 until TerminationCriterionSatisfied1();

4.5 Selection Hyper-heuristic with an Adaptive Threshold

Acceptance (HySST)

This section describes the stochastic local search approach of the team HySST (Hyper-

heuristic Search Strategies and Timetabling) to high school timetabling which competed

in the three rounds of the Third International Timetabling Competition.

We develop and exploit a generalised selective hyper-heuristic. We build on a previous

study [8] that demonstrated the effectiveness of a generalised version of the iterated

local search approach. Specifically, our hyper-heuristic uses a structured and staged

application of multiple perturbative and hill climbing operators as opposed to simple

selection from a single pool of all operators.
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In [43], a notable difference from standard methods (such as in memetic algorithms)

is that the performance is better if the hill climbing is not applied if the mutational

operators managed to improve the best solution. We suspected that excessive use of

the hill climbing somehow gives over-optimised local solutions that afterwards lead to

restricted movement within the search space. If the hyper-heuristics that control the

mutational and hill climbing heuristics can be distinguished and implemented separately

for this problem domain, an additional improvement could be obtained.

4.5.1 Methodology

Figure 4.3 illustrates how a high level generic single-stage selection hyper-heuristic and

HySST multi-stage hyper-heuristic operate. A selection hyper-heuristic in Figure 4.3(a)

manages a set of perturbative or constructive low level heuristics (move operators) [4] and

often improves an initially generated solution (si) under an iterative process until the

termination criterion is satisfied. A generic selection hyper-heuristic does not differenti-

ate between the types of low level heuristics. The multi-stage approach shown in Figure

4.3(b), separates mutational and hill climbing heuristics. Mutational heuristics are em-

ployed until some criteria are satisfied, which decide that it is time for intensification,

and then a new stage starts employing only hill climbing low level heuristics. The multi-

stage level allows switching back and forth between diversification and intensification

stages.

The search algorithm is implemented as a time contract algorithm which terminates

after a given time, toverall for each instance. The approach consists of an initial solution

construction phase followed by an extensive improvement phase using a multi-stage

hyper-heuristic. The pseudocode of the algorithm is provided in Algorithm 15. The

improvement phase uses the remaining time left (tremaining) after the construction of

the initial solution which takes tinit time.

The multi-stage level divides the search into two main stages: diversification and intensi-

fication. Until the given time limit is reached, the proposed approach switches between a

diversification stage (stage A) which employs a selection hyper-heuristic combining sim-

ple random heuristic selection with an adaptive move acceptance and an intensification

stage (stage B) which employs a strict hill climbing process based on local search heuris-

tics. Each stage takes a prefixed amount of time (tMUstage and tHCstage). Moreover,

stage A controls a small (tunable) threshold value ϵ to relax the degree of consecutive

worsening moves during the search process. The threshold acceptance can accept with
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Figure 4.3: Illustration of a (a) generic and (b) HySST multi-stage selection hyper-
heuristic

factor (1 + ϵ) worse. If no improvement is achieved during a stage, a hill climbing phase

is applied using the hill climbing heuristics. A hill climbing step is always non-worsening

and so can be repeatedly applied in standard fashion until a local minimum is reached.

The diversification stage makes use of all mutational low level heuristics allowing wors-

ening moves to be accepted via a threshold move acceptance method. The usefulness

of restart in randomised search algorithms has already been known and different ap-

proaches have been proposed [179, 180]. In this study, we use an adaptive threshold

move acceptance method to enable acceptance of worsening moves and partial restarts.

The threshold move acceptance method accepts all improved solutions or a worsening

solution with a quality better than (1 + ϵ) of the quality of the best solution obtained

during the search process at a stage. The acceptance of a worsening solution in this

manner could be considered as a partial restart on a given solution. The degree of a

partial restart is indicated by level controlling the threshold value of ϵ. The larger the

threshold is, the lower the quality of solutions that get accepted. The diversification

stage is repeated within the time limits as long as the best solution obtained at the end
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Algorithm 15: Pseudocode of the HySST multi-stage hyper-heuristic

1 S ← CreateInitialSolution(); // takes tinit time

2 tremaining ← toverall − tinit;
3 Sbest ← S;
4 thresholdList[]← {ϵ1, ϵ2, ..., ϵmaxLevel};
5 level← 1;
6 repeat
7 Sbeststage ← S;
8 Sstartstage ← S;
9 ϵ← thresholdList[level];

10 while notExceeded(tMUstage&&tremaining) do // stage A entry using ϵ
11 LLH ← SelectRandomlyFrom(MutationalHeuristics);
12 S′ ← ApplyHeuristic(LLH,S);
13 if S′ isBetterThan Sbest then
14 Sbest ← S′;
15 end
16 if S′ isBetterThan Sbeststage then
17 Sbeststage ← S′;
18 end
19 S ← MoveAcceptance(S, S′, Sbeststage, ϵ); // threshold acceptance

20 end
21 if Sbeststage isNotBetterThan Sstartstage then
22 while notExceeded(tHCstage&&tremaining) do // stage B entry

23 LLH ← SelectRandomlyFrom(HillClimbers);
24 S′′ ← ApplyHeuristic(LLH,S);
25 if S′′ isBetterThan Sbest then
26 Sbest ← S′′;
27 end
28 if S′′ isBetterThan Sbeststage then
29 Sbeststage ← S′′;
30 end
31 S ← S′′; // accept all moves

32 end

33 end
34 if Sbeststage isNotBetterThan Sstartstage then
35 if level == maxLevel then
36 S ← Sstartstage;
37 level← 1;

38 end
39 else
40 level + +;
41 end

42 end

43 until Exceeded(tremaining);
44 return Sbest;
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of a stage (Sbeststage) is of better quality than the best solution in hand at the start of

a stage (Sstartstage). In a way, the diversification stage is parametrised depending on

ϵ. Each diversification stage using a different ϵ is considered as a different stage. If

a diversification stage produces a worsening resultant solution, then the intensification

stage which makes use of hill climbing heuristics kicks in. If a solution cannot be im-

proved even after an intensification stage, the ϵ value is increased to allow even larger

changes in the solution causing larger worsening in its quality in the stage. We have

used a discrete choice for the ϵ values and grabbed the next (previous) item from an

ordered fixed-size threshold list in order to increase (decrease) its value. The minimum

and maximum threshold values are limited with the first and last items in the list.

4.6 Dominance-based Roulette Wheel Hyper-heuristic with

an Adaptive Threshold Acceptance (DRW)

In this approach, two selection hyper-heuristics are combined by employing them suc-

cessively in a structured and staged manner. The approach extends the hyper-heuristics

described in the previous sections. The dominance-based method combined with the

round-robin strategy explained in Sections 4.3 and 4.4 are used to determine the list

of active heuristics. The threshold move acceptance method explained in Section 4.5 is

improved by incorporating a logarithmic equation.

4.6.1 Methodology

The pseudocode of the approach is in Algorithm 16. Lines 6-23 and Lines 25-26 illustrate

the first and second hyper-heuristics, respectively. The first hyper-heuristic randomly

selects a low level heuristic from an active pool of heuristics, denoted as LLH in a score

proportionate manner using a roulette wheel strategy (Line 6). If scorei is the score of

the ith heuristic, then the probability of a heuristic being selected is scorei/
∑

∀j(scorej).

Then the selected heuristic is applied to the solution in hand (Line 7). Initially, each

heuristic has a score of 1, making the selection probability of each heuristic equally

likely. The first hyper-heuristic always maintains the best solution found so far, denoted

as Sbest (Lines 10-12) and keeps track of the time since the last improvement. The move

acceptance component of this hyper-heuristic (Lines 8-19) is a threshold acceptance

method controlled by a parameter, ϵ, accepting all improving moves. A non-improving

solution is accepted only if the quality is better than (1 + ϵ) of the quality of the best
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solution obtained (Line 16). Whenever the best solution can no longer be improved for a

complete timeLimit2 second (Line 20), ϵ gets updated (Line 22) according to Equation

4.1.

UpdateEpsilon(x) =
⌈log(x)⌉+ rand(1, ⌈log(x)⌉)

x
(4.1)

where x = f(Sbest) which is the objective value of the best solution obtained and

rand(lb, ub) returns a random integer in [lb, ub]. If f(Sbest) is 0, the algorithm terminates

and so this case is not considered in the threshold update.

This novel move acceptance method operates in an unusual way while dealing with

non-improving moves. After ϵ gets updated, during the initial iterations of the search

process, moves slightly worse than the best solution which is achieved right before the

update are accepted. At a later stage after the update, if a new best solution is obtained,

the method relaxes the bound on the objective value of worsening solutions further and

starts accepting the ones with larger changes in the objective value.

The second hyper-heuristic dynamically starts operating (Lines 24-27) whenever there

is no improvement in the quality of the solution for timeLimit3 second (Line 24). It

determines the active pool of heuristics (LLH) from the full set of low level heuristics,

denoted as LLHall will be used in the following stage extending the idea of a dominance-

based heuristic selection as introduced in Section 4.3 and adjusts the score of each low

level heuristic dynamically. Firstly, ϵ is updated in the same manner as in the first

hyper-heuristic and never gets changed during this phase. Then a greedy strategy is

employed using all low level heuristics for a certain number of steps, which is fixed to

the number of low level heuristics. Step by step, this hyper-heuristic builds a set of

solutions associating each with the low level heuristic producing that solution reflecting

the trade-off between the objective achieved by each low level heuristic and the number

of steps involved. At the end of this phase, a pareto front is obtained using the non-

dominated solutions from the whole set. The low level heuristics on the pareto front are

used to form the active pool of low level heuristics. If more than one low level heuristic

generates the same objective value which ends up on the pareto front, they all get to

enter into this pool. The number of occurrences of each low level heuristic is assigned

as its score to be used in the first hyper-heuristic.

At each step, each low level heuristic is applied to the same input solution for a fixed

time τ in a round-robin fashion (Section 4.4) while considering the threshold move

acceptance method. Some of the low level heuristics may take more time than the

others and therefore, we used the round-robin approach in order to treat all the low
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Algorithm 16: Pseudocode of the dominance-based and roulette wheel hyper-heuristic

1 Let LLHall = {LLH1, LLH2, ..., LLHM} represent set of all low level heuristics with
each heuristic being associated with a score, initially set to 1;

2 Let Sbest represent the best schedule;
3 S ← Si;Sbest ← Si;LLH ← LLHall;
4 repeat
5 heuristicID ← SelectLowLevelHeuristic(LLH);
6 S′ ← ApplyHeuristic(LLHheuristicID, S);
7 if f(S′) < f(S) then
8 S ← S ′;
9 if f(S′) < f(Sbest) then

10 Sbest ← S ′;

11 end

12 end
13 else
14 UpdateHeuristicSetting(heuristicID);
15 if f(S′) < (1 + ϵ)f(Sbest) then
16 S ← S ′;

17 end

18 end
19 if noImprovement(timeLimit2) then
20 S ← Sbest ;
21 ϵ← UpdateEpsilon(f(Sbest));

22 end
23 if noImprovement(timeLimit3) then
24 ϵ← UpdateEpsilon(f(Sbest));
25 S,LLH ← DecideLowLevelHeuristics(Sbest, LLHall, timeLimit1);

26 end

27 until Exceeded(timeLimit1);
28 return Sbest;

level heuristics equally. In [173], for example, τ is assigned to 5n/q, n/q and 1 iterations

for each heuristic in LLHsmall, LLHmedium and LLHlarge, respectively, where n is the

number of activities and q is the number of projects. If a low level heuristic produces a

solution identical to the input, that invocation is ignored. Otherwise, the objective of

the new solution together with the low level heuristic which produced that solution gets

recorded. If all heuristics cannot generate a new solution, then they are reconsidered all

together. Once all heuristics are applied to the input and gets processed for the step, the

best solution propagates as input to the next greedy step. If the overall given time limit

(timeLimit1) is exceeded, then the second hyper-heuristic terminates before completing

through all steps and uses the solution set in hand.
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Figure 4.4 illustrates a run of the second hyper-heuristic with four low level heuris-

tics (LLHall = {LLH1, LLH2, LLH3, LLH4}). Assuming that the pareto front con-

tains 3 points. The first, second and third points on the front are associated with

{LLH1, LLH2}, {LLH1} and {LLH1, LLH3}, respectively. Hence, in the next stage,

the first hyper-heuristic ignores the fourth low level heuristic (LLH = {LLH1, LLH2,

LLH3}) and scores of LLH1, LLH2 and LLH3 are assigned to 3, 1 and 1, respectively.

Hence, selection probability of LLH1 becomes 60%, while it is 20% for LLH2 and LLH3.
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Figure 4.4: An illustation of how the second greedy hyper-heuristic operates

4.7 Dominance-based Roulette Wheel Multi-stage Hyper-

heuristic using Relay Hybridisation and an Adaptive

Threshold Acceptance (MSHH)

This section introduces a multi-stage hyper-heuristic utilising two hyper-heuristics and

controlled by the multi-stage level as provided in Algorithms 17, 18 and 19. In one stage,

a subset of “useful” low level heuristics, each associated with a score is determined by a

hyper-heuristic embedding a greedy heuristic selection method (Algorithm 17, Lines 12-

28). Only that subset of low level heuristics is then used in the other stage (Algorithm 17,

Lines 9-11) and at each step, a heuristic is selected using a roulette wheel strategy based

on those scores. As a move acceptance component of the multi-stage hyper-heuristic, we

extend the threshold move acceptance method explained in Section 4.6 and use it in both

stages (Algorithm 18, Line 5 and Algorithm 19, Line 6), however the threshold values

are treated in a different way in each stage as explained in this section. Additionally,
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following the previous approach in Section 4.4, any selected low level heuristic is executed

for a certain duration, τ (Algorithm 18, Lines 3-7 and Algorithm 19, Lines 4-8).

In this approach, we assume that a number of low level heuristics for a given problem

domain are already provided. We form “new” heuristics by pairing up each low level

heuristic and invoking them successively. Consequently, given n heuristics, we end up

with (n+n2) low level heuristics in the overall. The technique of combining two heuristics

is also known as relay hybridisation [27] which applies the second low level heuristic to

the solution generated by the preceding low level heuristic. The motivation behind

relay hybridisation is that, although a low level heuristic that does not generate any

improvement, it may still be useful when used in combination with another low level

heuristic.

The relevant parameter (e.g. intensity or depth of the search) setting of any selected

low level heuristic gets updated to a random value in case the move does not improve

the candidate solution, otherwise the same setting is kept.

4.7.1 Stage One Hyper-heuristic

In stage one (S1HH) (Algorithm 18), the roulette wheel selection based hyper-heuristic

chooses and applies randomly a low level heuristic based on a score associated with each

low level heuristic (Algorithm 18, Lines 2 and 4). Given n LLHs, LLHn+1 denotes the

heuristic produced after relay hybridisation of the pair LLH1+LLH1, LLHn+2 of the

pair LLH1+LLH2, and so on. Assuming that the ith low level heuristic LLHi has a score

of scorei, then the probability of that heuristic being selected is scorei/
∑

k(scorek).

Initially, all single heuristics are assigned a score of 1, while the rest of the paired

heuristics are assigned to a score of 0. The stage one hyper-heuristic always maintains

the best solution found during the search process, denoted as Sbeststage and keeps track

of the time since the last improvement (Algorithm 18, Line 6). The move acceptance

approach directly accepts improving moves, while non-improving moves are accepted

if the objective function value of the candidate solution is better than (1 + ϵ) of the

objective function value of the best solution obtained in the relevant stage (Algorithm

18, Line 5). Whenever the best solution during a stage can no longer be improved for a

duration of d, ϵ gets updated according to Equation 4.2.

ϵ =
⌊log(f(Sbeststage))⌋+ ci

f(Sbeststage)
(4.2)
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Algorithm 17: MultiStageLevel

1 LLHall ← {LLH1, ..., LLHn, LLHn+1, ..., LLHn+n2}. Each LLHi is associated with a
scorei;

2 Let Scurrent represent the candidate (current) solution; Sinputstage1 the input solution
to S1HH; Sinputstage2 the input solution to S2HH; Sbestoverall the best solution obtained
so far; Sbeststage the best solution obtained in the relevant stage;

3 Let PS2HH represent the probability to apply S2HH;
4 Let f(x) represent the objective value of a solution x for a given minimisation problem;
5 Scurrent, Sinputstage1, Sinputstage2, Sbestoverall, Sbeststage ← Sinitial;
6 scoreall ← {1, ..., 1, 0, ..., 0}; counter ← 0;
7 Let C be the set of threshold values to be used by the move acceptance;
8 while notSatisfied(terminationCriterion) do
9 while notSatisfied(stageOneTerminationCriteria) do

10 Scurrent, Sbestoverall, Sbeststage ← ApplyStageOneHH(LLHall, scoreall, Sinputstage1,
Sbestoverall, ccounter);

11 end
12 if Random(0, 1) < PS2HH then

// Pre-processing steps of S2HH

13 Sinputstage2 ← Sbeststage;
14 if f(Sbeststage) ≥ f(Sinputstage2) then
15 if counter = (|C| − 1) then
16 Sinputstage2 ← Scurrent;

17 end
18 counter ← (counter + 1) mod |C|;
19 end
20 else
21 counter ← 0;

22 end
23 while notSatisfied(stageTwoTerminationCriteria) do
24 Sbestoverall, Sbeststage, Sbeststep, paretoArchieve←

ApplyStageTwoHH(LLHall, Sinputstage2,
Sbestoverall, ccounter);

25 Sinputstage2 ← Sbeststep

26 end
// Post-processing steps of S2HH

27 scoreall ← computeScoresBasedOnDominance(paretoArchieve);

28 end
29 else
30 scoreall ← {1, ..., 1, 0, ..., 0};
31 end
32 Sinputstage1 ← Sbeststage;

33 end
34 return Sbestoverall;
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Algorithm 18: ApplyStageOneHH

input : LLHall, scoreall, Sinputstage1, Sbestoverall, ccounter
output: Scurrent, Sbestoverall, Sbeststage

1 Scurrent, Sbeststage ← Sinputstage1;
2 hIndex← rouletteWheelSelection (LLHall, scoreall);
3 while notExceeded(τ) & notExceeded(timeLimit) do
4 Snew ← applyHeuristic(LLHhIndex, Scurrent);
5 Scurrent ← moveAcceptance(Scurrent, Snew, ccounter);
6 Sbeststage, Sbestoverall ← updateBestValues(Scurrent);

7 end
8 return Scurrent, Sbestoverall, Sbeststage;

where f(Sbeststage) is the objective value of the best solution obtained during the stage

and ci is an integer value in C={c0, ..., ci, ..., c(k−1)}, where c(i−1) < ci for 0 < i < k and

k = |C|. If f(Sbeststage) is less than 1, ϵ takes a small value ∼ 0.

The value of ci never changes in this stage but it might get updated in stage two as

explained in the following section. In the first execution of stage one, c0 is used by

default.

If the overall given time limit (timeLimit) is exceeded, or there is no improvement in

the quality of the best solution obtained during the stage for a duration of s1, then the

stage one hyper-heuristic terminates (Algorithm 17, Line 9).

4.7.2 Stage Two Hyper-heuristic

Algorithm 19: ApplyStageTwoHH

input : LLHall, Sinputstage2, Sbestoverall, ccounter
output: Sbestoverall, Sbeststage, Sbeststep, paretoArchieve

1 Sbeststage ← Sinputstage2;
2 for i = 0; i < (n + n2); i + + do
3 Scurrent ← Sinputstage2;
4 while notExceeded(τ) & notExceeded(timeLimit) do
5 Snew ← applyHeuristic(LLHi, Scurrent);
6 Scurrent ← thresholdAcceptance(Scurrent, Snew, ccounter);
7 Sbeststage, Sbestoverall, Sbeststep, heurbeststep ← updateBestValues(Scurrent);

8 end
9 paretoArchieve← update(Sbeststep, heurbeststep);

10 end
11 return Sbestoverall, Sbeststage, Sbeststep, paretoArchieve;
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The aim of this stage (S2HH) (Algorithm 19) is to reduce the set of low level heuristics

and adjust their scores according to their “performance” using the idea of the dominance-

based heuristic selection (Section 4.6). A score of 0 indicates that the corresponding

heuristic will not be used in the following stage. The reduced set of low level heuristics

along with the associated score are fed into the stage one hyper-heuristic.

Firstly, ϵ is set using Equation 4.2 for once at the start of this stage. Having a sorted

circular list of values C={c0, ..., ci, ..., c(k−1)} enables adaptive control of the level of

diversification and gives flexibility of relaxing the threshold further whenever necessary

allowing larger worsening moves. Initially, ci takes the value of c0. If the best solution

obtained after applying stage one does not improve for a stage and stage two hyper-

heuristic is applied, the parameter takes the next value on the list, that is, for example,

c1, allowing a larger worsening move to be accepted, and so on. If stage one hyper-

heuristic manages to improve the solution and then stage two hyper-heuristic is gets

applied, the parameter is reset to c0. By default, Sbeststage is fed as an input to the next

stage. There might be a case when even the (c(k−1)) value is not sufficient to escape

from a local optimum and the current (candidate) solution is worse than Sbeststage. If the

second stage gets executed at this point of the search process, then the current solution

is fed into the next stage as input to allow further diversification (Algorithm 17, Lines

13-22). It is possible for a given problem domain that Equation 4.2 could return a value

of 0, then ci is assigned to one of the values in C at random. After ci is updated, it does

not get changed during the execution of the remaining steps of this stage.

A greedy hyper-heuristic is applied using LLHall (Algorithm 19, Lines 2-10) for a fixed

number of steps s2. At each step, all the objective function values obtained by apply-

ing all the low level heuristics are recorded only if they generate solutions different in

quality to the input solution. If all heuristics cannot generate a new solution, then they

considered all to have the worst possible objective value. The greedy approach takes the

best generated solution obtained at a step and feeds it as an input solution to the next

step.

At the end of the stage, the non-dominated solutions each associated with the low level

heuristic that generated them are determined from the archive (Algorithm 17, Line 27).

Then the score of each “non-dominated” low level heuristic is increased by 1. It is

potentially possible that a low level heuristic could produce a non-dominated solution

more than once and so get a higher score indicating the frequency of such success. In

the case of a tie where multiple low level heuristics produce the same non-dominated

solution for a given step, their scores are all incremented.
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Due to the costly run time that the second stage hyper-heuristic introduces, taking

s2.(n + n2) steps in the overall, a relatively low value for s2 is preferred. Additionally,

we have introduced a probability parameter (PS2HH) (Algorithm 17, Line 12) in order

to limit the use of this stage often. The stage terminates if s2 steps are fully executed

or overall given time limit (timeLimit) is exceeded (Algorithm 17, Line 23).

Figure 4.5 provides an example of how the stage two hyper-heuristic operates for n = 2

low level heuristics (LLHall = {LLH1, LLH2, LLH3=LLH1 + LLH1, LLH4=LLH1 +

LLH2, LLH5=LLH2 +LLH1, LLH6=LLH2 +LLH2}) and s2 = 4 steps. The low level

heuristics on the pareto front are {LLH1, LLH2}, {LLH1} and {LLH3}. Hence, the

scores of the fourth, fifth and sixth low level heuristics are zero; and the scores of LLH1,

LLH2 and LLH3 are assigned to 2, 1 and 1, respectively. Therefore, the probability of

selecting LLH1 in stage one hyper-heuristic becomes 50%, while it is 25% for LLH2 and

LLH3.
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Figure 4.5: An example of how the stage two hyper-heuristic works. Note that at
step1: LLH5 and LLH6 generate solutions with the same quality as in Sinput

4.8 Summary

A selection hyper-heuristic is a general-purpose search methodology that mixes and con-

trols a given set of heuristics for solving a computationally hard problem. Such high

level methods do not require any modification while being applied to a new (unseen)

problem domain. Moreover, the component-based design of selection hyper-heuristics

enables re-usability of those components as well. Up to this date, most of the selec-

tion hyper-heuristics performing single point based search contain two key components:

heuristic selection and move acceptance. This chapter presents one of the initial studies
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that explicitly addresses a way to combine multiple hyper-heuristics in a staged-manner.

A general multi-stage hyper-heuristic framework is presented and its main components

are described. This framework is used as a basis to implement several multi-stage hyper-

heuristics with synergistic components embedding several hyper-heuristics.

Kalender et al. [28, 29] applied a multi-stage hyper-heuristic to curriculum-based uni-

versity course timetabling. The proposed approach uses the simulated annealing move

acceptance with two combined hyper-heuristics including Greedy and Random Gradient

hyper-heuristics (GGHH). A multi-stage hyper-heuristic which combines Dominance-

based heuristic selection, aims to detect the active low level heuristics, and the Ran-

dom Descent hyper-heuristic (DRD) is proposed in Section 4.3. A multi-stage hyper-

heuristic known as Robinhood hyper-heuristic (RHH) combining round-robin strategy-

based neighbourhood selection and three move acceptance methods is explained in Sec-

tion 4.4. The selection heuristic method applies the mutational heuristics on the can-

didate solution, then hill climbing heuristics and assigns equal time for each low level

heuristic. Three move acceptance criteria including only improving, improving or equal,

and an adaptive acceptance methods are used in RHH. A multi-stage hyper-heuristic

named Selection Hyper-heuristic with an Adaptive Threshold Acceptance (HySST) com-

bines two hyper-heuristics, Simple Random with Adaptive Threshold move acceptance

and Simple Random with Accept All Moves acceptance methods is described in Section

4.5. The first hyper-heuristic in this approach is applied on mutational operators, and

the second is applied on hill-climbers. A multi-stage hyper-heuristic which combines

two hyper-heuristics, Dominance-based hyper-heuristic and Roulette Wheel selection

with Adaptive Threshold move acceptance (DRW) is proposed in Section 4.6. This ap-

proach makes use of DRD, HySST and RHH approaches. Following that some of the

low level heuristics in Robinhood hyper-heuristic may almost become useless at different

stages of the search process, then by reducing the number of heuristics involved in the

search process at a stage by incorporating the dominance-based method may improve

the performance further. The last multi-stage hyper-heuristic named Dominance-based

Roulette Wheel Multi-stage Hyper-heuristic using Relay Hybridisation and an Adaptive

Threshold Acceptance (MSHH) extends the DRW approach and makes use of the relay

hybridisation [27] technique which applies a low level heuristic to a solution generated by

applying a preceding heuristic. One of the hyper-heuristics aims to reduce the number

of low level heuristics discovering the “potentially” useful ones at a given stage during

the search process and adjust the probability of each low level heuristic being selected

in the following stages. This hyper-heuristic extends the low level heuristic set first

by creating “new” heuristics through relay hybridisation, and then a dominance based
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learning strategy is employed reducing the number of heuristics. This strategy captures

the trade-off between the extent of improvement that a heuristic can generate and the

number of steps it takes to achieve that improvement. Moreover, each chosen low level

heuristic in the “reduced” set is associated with an adaptively decided selection proba-

bility to be used in the following stages. The second hyper-heuristic mixes the “reduced”

set of low level heuristics with the given probabilities during the search process.

We have provided an overview of some combinatorial optimisation problems and previ-

ous approaches used for solving those problems, then discussed the initialisation method

and low level heuristics that can be used by selection hyper-heuristics for solving those

problems. This chapter has introduced a set of multi-stage hyper-heuristics combining

multiple selection hyper-heuristics under a proposed single point based search frame-

work. The following chapter provides the empirical results and analysis from applying

the proposed multi-stage hyper-heuristics to a variety of combinatorial optimisation

problems and their performances with respect to the state-of-the-art hyper-heuristics or

other search methodologies.



Chapter 5

State-of-the-art in Problem

Solving and Multi-stage

Hyper-heuristics

It is always of interest to researchers and practitioners to know the state-of-the-art ap-

proach for solving a specific problem. Although hyper-heuristic research aims for the

level of generality, still knowing the relative position of hyper-heuristics with respect to

the state-of-the-art for a specific domain would be useful. Another curiosity is whether

a hyper-heuristic can outperform all other methods and become state-of-the-art for a

specific domain while still being general. One way of establishing state-of-the-art for a

specific problem is through competitions/challenges. Therefore, we have actively joined

two international competitions, ITC 2011 and MISTA 2013. This chapter summarises

the results of the team HySST (Hyper-heuristic Search Strategies and Timetabling) to

high school timetabling which competed in all three rounds of the Third International

Timetabling Competition ITC 2011. HySST multi-stage hyper-heuristic generated the

best new solutions for three given instances in Round 1 and gained the second place in

Rounds 2 and 3. This chapter also presents the results of the winning approach competed

in MISTA 2013 challenge for the multi-mode resource-constrained multi-project schedul-

ing problem. The approach combines hybrid approaches, and uses the Dominance-based

Roulette Wheel Hyper-heuristic with an Adaptive Threshold Acceptance (DRW) multi-

stage hyper-heuristic method with the ability to exploit the computing power of multi-

core machines. The proposed algorithm significantly outperformed the other approaches

98
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during the competition producing the best solution for 17 out of the 20 test instances

and performing the best in around 90% of all the trials.

The Java implementation of the HyFlex interface was used in a cross-domain heuristic

challenge (CHeSC 2011). The results form this competition and six problem domain

implementations became a benchmark in selection hyper-heuristic studies. The winning

state-of-the-art approach is an elaborate but complicated algorithm1 which makes use of

machine learning techniques [27]. The proposed multi-stage hyper-heuristics presented

in Chapter 4 are tested on HyFlex to examine their level of generality. The Dominance-

based Roulette Wheel Multi-stage Hyper-heuristic using Relay Hybridisation and an

Adaptive Threshold Acceptance (MSHH) outperforms the competing hyper-heuristics

in CHeSC 2011. Moreover, the MSHH is further tested on the magic square problem

domain.

5.1 HySST in an International Timetabling Competition

HySST multi-stage hyper-heuristic has been tested on real world instances as a solver

for the third International Timetabling Competition (ITC 2011). This approach proved

an excellent performance compared to other approaches; in round 1 it generated the

best solution for three given instances, and took the second place of the competition for

rounds 2 and 3 [43].

At the end of the competition, there were four additional teams who were able to submit

solutions for ITC 2011: GOAL, HFT, Lectio and VAGOS. The teams HFT, Lectio and

VAGOS attempted to develop tailored solutions in the given the limited time, while the

HySST team preferred applying a multi-stage hyper-heuristic. Ultimately, our approach

performed better than the approaches proposed by those teams, though could not beat

the approach proposed by GOAL. Moreover, Lectio, GOAL and HFT reported that

they spent more than hundred days on the project while VAGOS and HySST spent

between ten to fifty days (see the competition website for more details). This is an

indication of how fast the algorithm was implemented with less effort and expertise

in the area, considering that Lectio is a team formed of members from a company

and GOAL had expertise in the area of high school timetabling, as they provided the

Brazilian instances. However, the primary point of the work is that it shows the utility

of the multi-stage hyper-heuristic in that it makes better usage of the domain specific

1the publicly available implementation of the winning algorithm counts over 3000 lines of code and
introduces over 45 parameters
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heuristics, and in particular demonstrates the advantages of multi-stage methods with

adaptive relaxations. Note that most of the multi-stage hyper-heuristics described in

Chapter 4 were not proposed by the time of the ITC 2011 competition. Here, we present

the performance analysis and the results of HySST in ITC 2011.

5.1.1 Performance Analysis

The HySST multi-stage stochastic local search hyper-heuristic managing all low level

heuristics and using the adaptive move acceptance for partial restarts turned out to

be very effective in solving high school timetabling problems. If a small value of ϵ

does not provide any improvement in the solution quality in stage A, then its value is

increased which causes acceptance of lower quality solutions and escape from a local

optimum. Figure 5.1 provides a sample run on Instance4-Brazil using ϵ ={0.001, 0.33,

1.99} ignoring the strict hill climbing process in stage B. The plot shows that the reheats

do lead to drastic drops in the cost of a solution, and without the reheats, the search

is clearly stuck. For example, the stage indicated as level 1 in Figure 5.1 (red points)

performing almost strict hill climbing based on ϵ = 0.001 is eventually stuck and even

the stage indicated as level 2 in which ϵ is 0.33 (green points) gets stuck. The blue

points (level 3) in Figure 5.1 are a strong relaxation where ϵ = 1.99, but do lead to later

improvements.
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Figure 5.1: Cost versus iteration plot of a sample run towards the end of the search
process which is obtained by applying the proposed approach to Instance4-Brazil using

the threshold list of {0.001, 0.33, 1.99}
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The hill climbing algorithms fail to produce an improving solution most of the time and

for most of the instances. For example, Figure 5.2 displays a sample run where hill

climbing yields no improvement in any stage. Yet, it has been observed that the stage B

based on hill climbing is useful for achieving high quality solutions; in particular, for the

Australian high school timetabling instances. At the end of a run on those instances, the

proposed approach using hill climbing yields (even if slightly) better results than the one

which does not use hill climbing. Figure 5.3 shows a sample run on the BGHS98 instance

with and without hill climbing (stage B). After the mutational heuristics are employed

at a stage A, regardless of the threshold level, hill climbing generates a non-worsening

feasible solution. Unfortunately, this seems to occur once and no more improvement

could be achieved via hill climbing algorithms.
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Figure 5.2: Cost versus iteration plot of a sample run on WesternGreeceUni5

5.1.2 ITC 2011 Competition Results

The HySST approach successfully improved upon the best previously known solutions

(BKNs) for the Australian high school timetabling instances of BGHS98, SAHS96 and

TES99 in the first round of the competition as shown in Table 5.1.

Table 5.2 summarises the results of Round 2 on the hidden instances. The column

labelled as “KHE” shows the average quality of ten initial solutions produced by the
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Figure 5.3: Cost versus iteration plot for BGHS98 - Australia (a) with and (b) without
hill climbing (stage B)
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Table 5.1: The performance of the HySST approach in Round 1. The quality (cost) of
a solution is indicated as feasibility-value.objective-value and BKN is the best previously

known solution

Dataset BKN HySST

BGHS98 - Australia 7.433 3.494
SAHS96 - Australia 23.044 8.052
TES99 - Australia 26.134 1.140

constructive approach of the KHE library. The best feasibility/objective values over ten

runs for each instance show that HySST performs the best on two instances of Kotten-

park2003 and Kottenpark2005A from the Netherlands and worst on Instance1 - Kosovo.

The results reveal that HFT and Lectio did not use the default constructive approach

and they obtained solutions of quality which are even worse than the constructive ap-

proach achieves for 16 and 6 instances, respectively. Since the GOAL team submitted

the Brazilian timetabling instances they are not considered for ranking for the first four

instances. Table 5.2 provides, also, the average ranks of each approach based on their

ranking for each instance per run. The proposed hyper-heuristic turns out to be the

second best approach.

Table 5.3 summarises the feasibility/objective values obtained by the five competitors’

solvers including the proposed HySST multi-stage hyper-heuristic approach on the hid-

den instances on Round three. Considering the best solution encountered over a large

number of runs with a variety of runtimes and parameter settings, the proposed multi-

stage hyper-heuristic produced the best results in six including three ties out of eighteen

instances. The GOAL team was not considered for the Brazilian instances for ranking

in this round as well. Table 5.3 provides, also, the average ranks of each competing

approach in round 3. Our selection hyper-heuristic became the second best approach.

5.2 A Hybrid Approach Embedding a Multi-stage Hyper-

heuristic

By the time of the MISTA 2013, the Dominance-based Roulette Wheel Hyper-heuristic

with an Adaptive Threshold Acceptance (DRW) multi-stage hyper-heuristic is proposed

and used in a hybrid approach, that won the MISTA 2013 challenge at which the pur-

pose is to solve the multi-mode resource-constrained multi-project scheduling problem
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Table 5.2: The performance comparison of the HySST approach to the other com-
peting approaches over 10 trials showing the best quality (cost) of a solution indicated
as feasibility-value.objective-value in Round 2. The best values are highlighted in bold

Problem KHE HySST GOAL HFT Lectio

Instance2 3.20001 1.00069 1.00051 5.00183 0.00019
Instance3 3.50002 0.00096 0.00087 26.00264 0.00112
Instance4 - Brazil 39.10001 2.00238 16.00104 63.00225 1.00172
Instance6 11.60003 2.00229 4.00207 21.00423 0.00183
ElementarySchool 9.90000 0.00004 0.00003 29.00080 0.00003
SecondarySchool2 1.80017 0.00006 0.00000 28.01844 0.00014
Aigio 1st HS 2010 12.20008 0.00322 0.00006 45.03665 0.00653
Instance4 - Italy 32.60218 0.04012 0.00169 250.05966 0.00225
Instance1 1307.10005 1065.17431 38.09789 986.42437 274.04939
Kottenpark2003 4.40747 0.47560 0.87084 203.87920 34.55960
Kottenpark2005A 32.70292 26.35251 27.37026 393.40463 185.83973
Kottenpark2008 72.51725 32.71562 10.33034 INVALID 84.99999
Kottenpark2009 48.22637 33.99999 25.14030 337.99999 97.96060
Woodlands2009 13.90000 2.00047 2.00012 59.00336 0.00094
School 2.50039 0.01247 0.00597 63.13873 0.01927
WesternGreeceUni3 0.00024 0.00010 0.00005 14.00198 30.00002
WesternGreeceUni4 0.00044 0.00016 0.00005 233.00277 35.00070
WesternGreeceUni5 15.40000 0.00001 0.00000 9.00174 4.00013

Average ranking 2.23 1.18 3.64 2.32

(MRCMPSP). The approach consists of a construction phase followed by an improve-

ment phase using a memetic meta-heuristic method and a multi-stage hyper-heuristic.

The memetic algorithm is used to generate a pool of eight solutions, in which a solution

is improved through successive application of multi-stage hyper-heuristic algorithm.

Some preliminary experimental results are provided in Table 5.4. The entries in the

Comp. columns are taken from the competition website for reference purposes. They

demonstrate the best objective values achieved during the qualification (A instances)

and final (B and X instances) phases of the competition. Furthermore, the Avg. column

gives the mean performance of our approach over 2500 runs per instance under conditions

similar to the competition. For purposes of comparison, the Best column provides the

best values that we ever encountered during all our experiments. The experiments are

performed on a group of identical 64-bit Intel i7 (3.2 GHz) machines where each machine

has 16 GB of RAM operating on Microsoft Windows operating system.

It is worth mentioning that during the final phase where the competing algorithms were

applied on B and X instance classes only, our approach found the best solution for 17
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Table 5.3: The best-of-runs performance comparison of the HySST approach to the
other competing approaches using the quality (cost) of a solution indicated as feasibility-

value.objective-value in Round 3. The best values are highlighted in bold

Dataset HySST GOAL HFT Lectio VAGOS

Instance2 0.00044 0.00032 0.00082 0.00005 0.00026
Instance3 0.00084 0.00101 0.00212 0.00048 0.00047
Instance4 - Brazil 0.00176 1.00136 0.00205 0.00090 0.00078
Instance6 0.00150 0.00160 0.00347 0.00060 0.00074
ElementarySchool 0.00003 0.00003 0.00003 0.00003 ABSENT
SecondarySchool2 0.00000 0.00000 0.00576 0.00000 ABSENT
Aigio 1st HS 2010 0.00218 0.00000 0.00555 0.00076 ABSENT
Instance4 - Italy 0.00052 0.00061 0.08623 0.00078 ABSENT
Instance1 0.01721 0.00003 36.12987 274.00281 ABSENT
Kottenpark2003 0.03919 0.05355 1.88983 0.02918 ABSENT
Kottenpark2005A 15.28693 24.13930 36.36132 198.04845 ABSENT
Kottenpark2008 16.17720 10.27909 167.99999 129.69216 ABSENT
Kottenpark2009 18.08010 19.05590 148.99999 87.09440 ABSENT
Woodlands2009 0.00013 0.00012 8.00206 0.00019 ABSENT
School 0.00920 0.00441 1.08163 0.00762 ABSENT
WesternGreeceUni3 0.00007 0.00005 0.00032 30.00002 0.00005
WesternGreeceUni4 0.00009 0.00008 0.00142 35.00058 ABSENT
WesternGreeceUni5 0.00000 0.00000 0.00064 4.00001 0.00000

Average ranking 2.25 1.64 3.75 2.75 3.86

out of 20 instances and performs the best in around 90% of all the trials. That is, except

for instances B-2, B-4 and X-1, all the Comp. entries in Table 5.4 are achieved by our

approach. Furthermore, it is clear from Table 5.4 (Best entries) that our algorithm

achieved the best solution for all instances during 2500 run per instance experiments.

The proposed algorithm significantly outperformed the other approaches during the

MISTA 2013 challenge with a mean rank of 1.1 for multi-mode resource-constrained

multi-project scheduling.

To illustrate the performance of our approach at various stages of the search, two box-

plots are provided in Figures 5.4 and 5.5 for B-1 and X-10 instances respectively. These

instances have been chosen to demonstrate the performance of our algorithm on rel-

atively small and large instances. However, our experiments show that the algorithm

behaves in a similar manner with respect to other instances in such that, the method

rapidly improves the quality of the solution in hand; after a while, the improvement

process slows down. The central dividing line of each box in each of the figures, presents

the median objective value obtained by our algorithm. The edges of each box refer
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Table 5.4: Summary of experimental results on MISTA 2013 instances. The objective
values are given as ordered pairs of “TPD”, total project delay, and “TMS”, total
makespan. The ‘Comp.’ values are from the competition website for all the entrants in
the qualification and final rounds. ‘Avg.’ values are average values for our algorithm
under time and machine conditions intended to match those of the competition. ‘Best’

is the best solution encountered over a large number of runs

TPD TMS

Instance Avg. Comp. Best Avg. Comp. Best

A-1 1 1 1 23 23 23
A-2 2 2 2 41 41 41
A-3 0 0 0 50 50 50
A-4 65 65 65 42 42 42
A-5 155 153 150 105 105 103
A-6 141 147 133 808 96 99
A-7 605 596 590 201 196 190
A-8 292 302 272 153 155 148
A-9 208 223 197 128 119 122
A-10 880 969 836 313 314 303
B-1 352 349 345 128 127 124
B-2 452 434 431 167 160 158
B-3 554 545 526 210 210 200
B-4 1299 1274 1252 283 289 275
B-5 832 820 807 255 254 245
B-6 950 912 905 232 227 225
B-7 802 792 782 232 228 225
B-8 3323 3176 3048 545 533 523
B-9 4247 4192 4062 754 746 738
B-10 3290 3249 3140 455 456 436
X-1 405 392 386 143 142 137
X-2 356 349 345 164 163 158
X-3 329 324 310 193 192 187
X-4 960 955 907 209 213 201
X-5 1785 1768 1727 373 374 362
X-6 730 719 690 238 232 226
X-7 866 861 831 233 237 220
X-8 1256 1233 1201 288 283 279
X-9 3272 3268 3155 648 643 632
X-10 1613 1600 1573 383 381 373
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to 25th and 75th percentiles while the whiskers (demonstrated by a + marker) are the

extreme objective values which are not considered as outliers. Also, the curve which

passes through the plot demonstrates the average performance of the algorithm.
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Figure 5.4: Performance of the proposed approach on instance B-1

5.2.1 Comparison of Different Approaches

The proposed hybrid approach is evaluated in this section. For convenience, the winning

hybrid approach is denoted as MCTS-DRW. This approach is used as a baseline to

validate the effectiveness and performance of other approaches.

The Monte-Carlo Tree Search (MCTS) constructor method can be replaced by random

constructor (RC) method and the multi-stage hyper-heuristic (DRW) method can be

replaced by a local search/hill climbing (LS) method which chooses a random heuristic

at each step, applies it to the current solution and accepts if the new solution makes a

strict improvement. Additionally, the roulette wheel selection hyper-heuristic (S1HH)

can be employed alone without enabling the second dominance-based hyper-heuristic

(S2HH) turning the multi-stage hyper-heuristic into a simple random hyper-heuristic.

The developed MCTS-DRW approach is compared against a combination of five different

approaches: (1) random constructor and local search (RC-LS), (2) random constructor
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Figure 5.5: Performance of the proposed approach on instance X-10

and simple random hyper-heuristic (RC-S1HH), (3) random constructor and multi-stage

hyper-heuristic (RC-DRW), (4) MCTS constructor and local search (MCTS-LS) and

(5) MCTS constructor and simple random hyper-heuristic (MCTS-S1HH). For each

instance, 10 runs are executed each for 300 seconds, and the average objective, standard

deviation and the best objective values are calculated. All algorithms are ranked based

on the objective values obtained at the end of each run. To compare the pairwise

performance between any given two approaches (A and B) statistically, we used the

Mann-Whitney-Wilcoxon test [181]. Four notations are considered: >, <, ≥ and ≤. A

> (<) B indicates that A (B) is statistically better than B (A) and this performance

difference is statistically significant within a confidence interval of 95% and A ≥ (≤) B

denotes that A (B) is slightly better than B (A) on average.

For the fairness, all the approaches are written in C++ and performed on Intel(R)

Core(TM) i7-3930K with a 3.20 GHz and 16.00GB of RAM. For the first four instances

of set A, all the approaches deliver solutions with the same quality. Such instances are

not reported in the results presented. Table 5.5 summarises the results.
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Examining Table 5.5, it can be observed from the computational results based on the

different experimental scenarios that all of the problem instances solved using the lo-

cal search as a component are worse than those solved by the other approaches and

this performance is statistically significant. Concerning the remaining approaches, the

performance variations are not statistically significant within a confidence interval of

95% based on the Mann-Whitney-Wilcoxon test. However, based on the competition

ranking method, RC-DRW seems to perform the best. Considering both MCTS and

RC constructor methods, DRW performs better than S1HH on 15 (out of 26) instances

on average. Therefore, the incorporation of the dominance-based strategy in the multi-

stage hyper-heuristic appears to play a role of solving the problem in relatively effective

manner in some instances.

5.2.2 Performance Analysis of MCTS-DRW and RC-DRW

In this section, we compare the MCTS-DRW and RC-DRW algorithms on B2 and X1

(in which MCTS-DRW is performing good on average) and on B8 and X4 (in which

RC-DRW is performing good on average) instances. Table 5.6 summarises the results.

In all the cases, the time it takes to construct initial solutions using RC is much faster

than using MCTS; but the quality of the generated solutions is much worse than the

solutions generated by MCTS. By the end of the search, RC-DRW seems to deliver

better quality of solutions than MCTS-DRW on most of the cases.

Table 5.6: The performance comparison of the constructor methods (MCTS and
RC) based on the ‘time’ they take to construct a population of solutions in second,
the average objective values of the initially generated solutions ‘Oinitial’, and the best

objective values obtained after applying the improvement phase ‘Obest’

MCTS-DRW RC-DRW

Instance time Oinitial Obest time Oinitial Obest

B2 0.748 1167.5 445.167 0.000 1763.375 446.165
B8 1.638 9294.875 3358.533 0.015 14221.625 3220.531
X1 0.265 1284.625 410.141 0.000 1645 397.143
X4 0.390 2556.25 979.211 0.000 3746.875 968.218

The behaviour of the DRW multi-stage hyper-heuristic on 8 solutions of the popula-

tion on the selected instances is illustrated in Figures 5.6-5.9. We suspect that using

the MCTS constructor method makes the multi-stage hyper-heuristic somehow to give
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locally optimal solutions faster than in the RC constructor. After this point, the im-

provements to the best obtained solutions slow down. Refreshing the population in the

memetic meta-heuristic method and the fluctuations of the objective values due to the

employment of the threshold move acceptance in the multi-stage hyper-heuristic seem to

help the search process to slightly improve the quality of the solutions after this point.

The figures provide evidence that the RC generates solutions that assists to avoid the

possibility of getting stuck early, and in general, it delivers better quality of solutions

than in MCTS. This conclusion cannot be generalised to all instances where at some

instances, MCTS performs slightly better.

The percentage utilisation with respect to the number of times a low level heuristic

gets selected considering only improving moves is shown in Figures 5.10-5.13. Almost

the same phenomenon is observed in all the selected instances considering the two ap-

proaches. The large set of low level heuristics (LLH13-16) does not seem to provide

consistent improvements to the quality of solutions during the search process. Most of

the improvements are due to LLH1 (InsertJob), LLH2 (SetMode) and the hill climber

LLH12 (FILS setMode), across all instances. The remaining low level heuristics con-

tribute (almost) equally in improving the candidate solutions.

5.3 Testing the Level of Generality of Multi-stage Hyper-

heuristics on HyFlex Problems

We have evaluated the performance of the proposed Dominance-based Roulette Wheel

Multi-stage Hyper-heuristic using Relay Hybridisation and an Adaptive Threshold Ac-

ceptance, denoted as MSHH, across six problem domains of HyFlex. During our exper-

imentation, crossover operators are ignored as low level heuristics, considering that the

multi-stage hyper-heuristics operate under a single point based search framework. The

Mann-Whitney-Wilcoxon test [181, 182] is used as a statistical test for pairwise average

performance of two given algorithms. We have used the following notation: Given two

algorithms; A versus B, > (<) denotes that A (B) is better than B (A) and this perfor-

mance difference is statistically significant within a confidence interval of 95% and A ≥
B (A ≤ B) indicates that A (B) performs slightly better than B (A).

Thirty one runs are repeated using each algorithm unless it is mentioned otherwise. A

benchmarking software tool provided at the CHeSC 2011 website is used to obtain the
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(a) MCTS-DRW
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(b) RC-DRW

Figure 5.6: Plots of the objective values of the solutions in the population versus time
while solving instance B2



Chapter 5. State-of-the-art in Problem Solving and Multi-stage Hyper-heuristics 113

0 50 100 150 200 250 300

3500

4000

4500

5000

5500

6000

time

ob
je

ct
iv

e

 

 
sln0
sln1
sln2
sln3
sln4
sln5
sln6
sln7

(a) MCTS-DRW

0 50 100 150 200 250 300

3500

4000

4500

5000

5500

6000

time

ob
je

ct
iv

e

 

 
sln0
sln1
sln2
sln3
sln4
sln5
sln6
sln7

(b) RC-DRW

Figure 5.7: Plots of the objective values of the solutions in the population versus time
while solving instance B8
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(a) MCTS-DRW
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(b) RC-DRW

Figure 5.8: Plots of the objective values of the solutions in the population versus time
while solving instance X1
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(b) RC-DRW

Figure 5.9: Plots of the objective values of the solutions in the population versus time
while solving instance X4
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Figure 5.10: Average percentage utilisation of the low level heuristics while solving
instance B2
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Figure 5.11: Average percentage utilisation of the low level heuristics while solving
instance B8
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Figure 5.12: Average percentage utilisation of the low level heuristics while solving
instance X1
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Figure 5.13: Average percentage utilisation of the low level heuristics while solving
instance X4

equivalent time value (timeLimit) in the used machines that correspond to 600 seconds

according to the competition rule.

We have fixed the parameter values based on intuition from our previous works [43, 170,

171, 173]: τ = 15ms, d = 9s, s1 = 20s, s2 = 5, PS2HH = 0.3, C = {0, 3, 6, 9}. The ex-

periments are performed using those settings as “regular” settings on all thirty instances

from all domains used at CHeSC 2011. We compare the performance of our approach to

each individual hyper-heuristic used in a stage, the other proposed multi-stage hyper-

heuristics and competing hyper-heuristics of CHeSC 2011 including the state-of-the art

hyper-heuristic (denoted as AdapHH) which won the competition, respectively.

5.3.1 Parameter Settings

A set of experiments is performed on four arbitrarily chosen (first) instances of four

public problem domains to observe the performance of the proposed algorithm under

different parameter settings:

• τ = {10,15, 20, 30} (in milliseconds)

• d = {7,9, 10, 12} (in seconds)

• s1 = {10, 15,20, 25} (in seconds)

• s2 = {3,5, 10, 15} (in steps/iterations)

• PS2HH = {0.1,0.3, 0.6, 0.9, 1.0}
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• C = {{0}, {3}, {6}, {9}, {0, 3, 6, 9}}

While testing a different setting for a given parameter, the remaining parameters are

fixed with the values marked in bold which are our initial settings. MSHH is run with

each setting for 10 trials on the selected instance from each public domain. Table

5.7 summarises the results based on the average performance of MSHH with different

parameter settings. In all cases, MSHH with the “regular” parameter setting wins

against another setting, however, mostly, this performance difference is not statistically

significant. There are a few cases in which MSHH with a setting other than the proposed

one yields a slightly better average performance on the BP and PS instances. For

example, τ = 10 performs slightly better than τ = 15 on the BP instance, and PS2HH =

0.6 is a slightly better choice than PS2HH = 0.3 for the PS instance. MSHH with the

“regular” parameter setting always performs better than another setting on the PFS

and SAT instances. In the overall, MSHH with the “regular” parameter setting based

on intuition turns out to be indeed a good choice and so the same settings are used in

the remaining experiments.

Table 5.7: The average performance comparison of MSHH for different parameter
settings over 10 trials. MSHH with “regular” setting of a given parameter is compared
to MSHH when that setting is changed to a given setting based on Mann-Whitney-

Wilcoxon statistical test for each selected instance from a public domain

Par.: τ d C

Dom. 10 20 30 7 10 12 {0} {3} {6} {9}
SAT ≥ ≥ ≥ > ≥ ≥ > > ≥ ≥
BP ≤ ≥ ≥ ≥ ≥ ≥ ≥ ≤ ≥ ≥
PS ≥ ≥ > ≤ ≥ ≥ ≤ ≥ ≥ ≥
PFS > > > ≥ > ≥ > > ≥ ≥
wins 3 4 4 3 4 4 3 3 4 4

Par.: s1 s2 PS2HH

Dom. 10 15 25 3 10 15 0.1 0.6 0.9 1

SAT ≥ ≥ ≥ ≥ > ≥ > ≥ ≥ ≥
BP ≤ > ≤ ≥ ≥ ≥ ≥ ≥ ≤ ≥
PS ≥ ≥ ≥ ≥ ≥ ≥ > ≤ > ≥
PFS > > > > > > > > ≥ ≥
wins 3 4 3 4 4 4 4 3 3 4
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5.3.2 Performance Comparison to the Constituent Hyper-heuristics

We have experimented with the hyper-heuristics used at each stage, denoted as S1HH

and S2HH, respectively, run on their own and compare their performances to the per-

formance of the proposed multi-stage hyper-heuristic. Tables 5.8 presents the results.

MSHH obtains the best solution in 31 trials for 27 out of 30 of the CHeSC 2011 in-

stances, which include all instances from the SAT, BP and TSP domains and exclude

one instance from the remaining domains. On average, MSHH still performs better

than the constituent hyper-heuristics of S1HH and S2HH run on their own on the 22

instances across all six problem domains. The standard deviation associated with the

average objective function value of MSHH is the lowest in all cases on the SAT and TSP

problem domains.

On average, MSHH outperforms S2HH and this performance is statistically significant

for all instances, except for Inst2, Inst3 and Inst4 from the PS domain and Inst3 from

the VRP domain. On the SAT and TSP domains, MSHH performs still significantly

better than S1HH on all instances. On PS, MSHH is better than S1HH in four instances,

but this performance variation is significant for two out of the four instances. MSHH

performs slightly better than S1HH on the BP, PFS and VRP domains in the overall.

However, S1HH performs better than MSHH only on two instances, Inst1 from BP and

Inst2 from PFS for which the performance difference is statistically significant.

Our study empirically confirms that combining hyper-heuristics under a multi-stage

framework can potentially lead to an improved overall performance.

5.3.3 Performance Comparison to Multi-stage Hyper-heuristics

The performance of the proposed Dominance-based Roulette Wheel Multi-stage Hyper-

heuristic using Relay Hybridisation and an Adaptive Threshold Acceptance (MSHH)

is compared to the performance of the proposed elaborate and successful multi-stage

hyper-heuristics which are described in Chapter 4: Greedy-gradient - Simulated An-

nealing Hyper-heuristic (also known as greedy-gradient) (GGHH) [28], Dominance-based

Random Descent/Gradient Hyper-heuristic with Naïıve Move Acceptance (DRD) [170],

Robinhood Hyper-heuristic with an Adaptive Threshold Acceptance (RHH) [171], Selec-

tion Hyper-heuristic with an Adaptive Threshold Acceptance (HySST) [43] and Dominance-

based Roulette Wheel Hyper-heuristic with an Adaptive Threshold Acceptance (DRW)
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[173]. Table 5.9 presents the results achieved after the application of all those multi-

stage hyper-heuristics to the CHeSC 2011 domains under the same setting. In the

overall, MSHH turns out to be a viable general methodology outperforming the other

multi-stage hyper-heuristic approaches in most of the HyFlex problem domains. The

MSHH consistently performs the best in SAT, BP and TSP problem domains based on

the average and minimum objective values obtained over 31 runs for each instance. Only

for Inst1 from BP, DRD performs better in terms of average and minimum objective

values. MSHH achieves the best average results on three instances on the PS and PFS

problem domains. MSHH performs the best on average only on the Inst1 VRP instance,

while RHH and GGHH perform better on three and one VRP instances, respectively.

This appears to be an indication that application of all low level heuristics and perform-

ing local search and accepting solutions which is the best at any given time potentially a

better approach on the VRP domain. DRD performs the worst on the SAT problem do-

main, but delivers a good average performance on the BP problem domain. GGHH and

DRW manage to provide the best average results on a single instance of VRP and PFS,

respectively. MSHH is better than HySST on all problem instances across all domains

and this performance difference is statistically significant.

5.3.4 Performance Comparison to the Mock Competition Hyper-heuristics

The performance of the Dominance-based Roulette Wheel Multi-stage Hyper-heuristic

using Relay Hybridisation and an Adaptive Threshold Acceptance (MSHH) is compared

to the performances of eight different previous hyper-heuristics (HH1-HH8) across four

problem domains, each with 10 different instances, as provided for the mock competi-

tion2.

The problem domains used in the mock competition are Boolean Satisfiability (SAT),

One Dimensional Bin Packing (BP), Personnel Scheduling (PS) and Permutation Flow

Shop (PFS). A single run is performed using each problem instance in the mock com-

petition. Table 5.10, 5.11, 5.12 and 5.13 compare the performance of the proposed

multi-stage hyper-heuristic (MSHH) to the others (HH1–HH8) over a set of problem in-

stances for SAT, BP, PS and PFS, respectively, based on the objective values obtained

at the end of each run.

MSHH outperforms the mock competition hyper-heuristics with a Formula One points

scoring system of 297.75 in the overall (Figure 5.14). It obtains the best results in

2www.asap.cs.nott.ac.uk/external/chesc2011/defaulthh.html
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22 out of 40 (55%) instances with 6 draws mostly in the SAT and 1D Bin Packing

problems. In the personnel scheduling problem, MSHH produces the best results in 1

instance. It provides the best results in 3 instances and a tie in PFS problem domain.

MSHH is the winner in the SAT, BP and PFS problem domains and looses to the other

hyper-heuristics in the PS problem domain.

Table 5.10: SAT, objective function values obtained by the eight hyper-heuristics and
MSHH on the 10 instances. The last row summarises the number of wins/draws. The

best values for each instance are highlighted in bold

Instance HH1 HH2 HH3 HH4 HH5 HH6 HH7 HH8 MSHH

Inst1 46 33 14 28 119 12 56 40 6
Inst2 40 33 36 50 136 34 38 66 23
Inst3 32 24 28 47 116 29 35 53 24
Inst4 16 13 35 24 60 15 15 25 1
Inst5 9 10 45 37 70 33 9 36 1
Inst6 22 17 52 52 106 51 24 55 3
Inst7 6 6 8 12 18 9 5 15 5
Inst8 6 6 8 11 13 11 6 14 6
Inst9 8 7 11 16 21 12 9 19 7
Inst10 211 211 221 239 259 215 217 239 211

w/d 0/2 0/4 - - - - 0/2 - 5/5

Table 5.11: BP, objective function values obtained by the eight hyper-heuristics and
MSHH on the 10 instances. The last row summarises the number of wins/draws. The

best values for each instance are highlighted in bold

Instance HH1 HH2 HH3 HH4 HH5 HH6 HH7 HH8 MSHH

Inst1 0.0174 0.0176 0.0108 0.0120 0.0541 0.0157 0.0217 0.0714 0.0028
Inst2 0.0163 0.0165 0.0071 0.0077 0.0501 0.0129 0.0214 0.0712 0.0067
Inst3 0.0238 0.0229 0.0247 0.0230 0.0283 0.0231 0.0236 0.0308 0.0210
Inst4 0.0248 0.0249 0.0266 0.0243 0.0308 0.0257 0.0255 0.0327 0.0190
Inst5 0.0064 0.0062 0.0003 0.0046 0.0151 0.0066 0.0073 0.0218 0.0048
Inst6 0.0040 0.0085 0.0036 0.0036 0.0187 0.0089 0.0090 0.0234 0.0031
Inst7 0.1145 0.1047 0.0107 0.0312 0.1715 0.0538 0.1386 0.1666 0.0161
Inst8 0.1337 0.1285 0.0168 0.0640 0.1719 0.0942 0.1506 0.1799 0.0216
Inst9 0.0559 0.0569 0.0562 0.0944 0.0927 0.0608 0.0582 0.1267 0.0457
Inst10 0.0135 0.0128 0.0190 0.0309 0.0344 0.0166 0.0139 0.0428 0.0036

w/d - - 3/0 - - - - - 7/0
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Table 5.12: PS, objective function values obtained by the eight hyper-heuristics and
MSHH on the 10 instances. The last row summarises the number of wins/draws. The

best values for each instance are highlighted in bold

Instance HH1 HH2 HH3 HH4 HH5 HH6 HH7 HH8 MSHH

Inst1 3346 3321 3389 3318 3338 8017 3344 3342 3325
Inst2 2220 2315 2400 2275 2454 21008 2095 2893 2609
Inst3 390 400 495 375 400 905 355 340 420
Inst4 23 17 32 19 16 80 22 16 21
Inst5 23 26 32 24 24 81 19 28 26
Inst6 17 17 32 24 22 81 28 38 29
Inst7 1111 1119 1231 1118 1113 35391 1211 1490 1284
Inst8 2188 2202 2205 2221 2288 46661 2275 3959 2297
Inst9 3163 3255 3465 3360 3354 46952 3414 6905 3430
Inst10 11486 9706 12505 12994 9771 105850 9807 17224 9509

w/d 3/1 0/1 - 1/0 0/1 - 2/0 1/1 1/0

Table 5.13: PFS, objective function values obtained by the eight hyper-heuristics and
MSHH on the 10 instances. The last row summarises the number of wins/draws. The

best values for each instance are highlighted in bold

Instance HH1 HH2 HH3 HH4 HH5 HH6 HH7 HH8 MSHH

Inst1 6365 6380 6399 6312 6393 6297 6375 6323 6279
Inst2 6327 6330 6337 6281 6328 6253 6335 6288 6258
Inst3 6401 6410 6401 6339 6418 6339 6407 6364 6324
Inst4 6388 6408 6366 6327 6373 6366 6371 6363 6325
Inst5 6461 6470 6438 6392 6483 6405 6478 6422 6410
Inst6 10540 10546 10506 10499 10547 10509 10546 10542 10501
Inst7 10976 10965 10965 10923 10980 10923 10965 10956 10923
Inst8 26483 26490 26538 26409 26506 26418 26512 26396 26492
Inst9 26979 26929 26978 26890 26913 26920 26960 26800 26824
Inst10 26755 26794 26833 26731 26755 26715 26811 26716 26754

w/d - - - 2/1 - 2/1 - 2/0 3/1

5.3.5 Performance Comparison to the CHeSC 2011 Hyper-heuristics

MSHH and the twenty competing hyper-heuristics from CHeSC 2011 are ranked un-

der the same criteria used at the time of the competition. The state-of-the-art hyper-

heuristic, denoted as AdapHH is a hyper-heuristic which combines a learning adaptive

heuristic selection method, that identifies poorly performing low level heuristics and

discards them during the search process, with an adaptive iteration limited list-based

threshold move accepting method [27]. AdapHH can be considered as a multi-stage

hyper-heuristic approach, managing two hyper-heuristics. One hyper-heuristic aims to
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Figure 5.14: Comparisons of the different hyper-heuristics over each domain based
on Formula One points scoring system

exclude the relatively poor performing low level heuristics including the relay hybridised

pairs of heuristics. The second hyper-heuristic uses the information provided by the first

hyper-heuristic and combines a roulette wheel selection for choosing a heuristic with an

adaptive move acceptance method. AdapHH introduces over 45 parameters which are

either already set or require control. Moreover, the number of lines of the Java code for

the implementation of the method is over 30003. We believe that our approach (MSHH)

is easier to implement requiring setting of only six parameters and less than 300 lines of

code.

Table 5.14 presents the scores for each algorithm based on the Formula One scoring

system with respect to the median objective values obtained during the 31 trials over all

instances across the six domains. Although MSHH delivers a relatively poor “median”

performance in the PS and VRP problem domains, the overall results reveal that MSHH

is the winner with a total score of 163.60, performing better than AdapHH in the overall.

In general, the heuristic selection and move acceptance components of MSHH interacts

well yielding a better performance with respect to AdapHH. Another reason for the suc-

cess of MSHH against AdapHH could be that the adaptive iteration limited list-based

threshold move accepting method used in AdapHH allows diversification (exploration)

only if the intensification (exploitation) phase does not yield any improvements for a

pre-defined number of steps. Our move acceptance method potentially allows the tran-

sition from intensification to diversification quicker than AdapHH discovering potentially

3http://code.google.com/p/generic-intelligent-hyper-heuristic/
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better regions of the search space leading to higher quality solutions. This observation

seems to hold only for some problem domains, such as SAT and TSP.

Table 5.14: Ranking (performance comparison) of MSHH and the 20 hyper-heuristic
approaches competed at CHeSC 2011 across six problem domains based on the Formula

One scoring system

Label SAT BP PS PFS TSP VRP Overall

MSHH 48.00 38.00 6.00 25.00 42.60 4.00 163.60
AdapHH 27.58 44.00 8.00 33.00 34.60 14.00 161.18
VNS-TW 27.08 2.00 39.50 30.00 13.60 6.00 118.18
ML 10.00 8.00 31.00 36.50 10.00 22.00 117.50
PHUNTER 7.00 2.00 11.50 6.00 21.60 33.00 81.10
EPH 0.00 6.00 10.50 18.00 30.60 12.00 77.10
HAHA 25.58 0.00 24.50 2.83 0.00 14.00 66.92
NAHH 10.50 16.00 2.00 19.50 9.00 6.00 63.00
ISEA 3.50 25.00 14.50 3.50 7.00 4.00 57.50
KSATS-HH 19.00 7.00 8.50 0.00 0.00 22.00 56.50
HAEA 0.00 1.00 1.00 7.33 8.00 27.00 44.33
GenHive 0.00 10.00 6.50 7.00 2.00 6.00 31.50
ACO-HH 0.00 17.00 0.00 6.33 6.00 1.00 30.33
SA-ILS 0.25 0.00 18.50 0.00 0.00 4.00 22.75
AVEG-Nep 9.50 0.00 0.00 0.00 0.00 9.00 18.50
XCJ 3.50 10.00 0.00 0.00 0.00 5.00 18.50
DynILS 0.00 9.00 0.00 0.00 8.00 0.00 17.00
GISS 0.25 0.00 10.00 0.00 0.00 6.00 16.25
SelfSearch 0.00 0.00 3.00 0.00 2.00 0.00 5.00
MCHH-S 3.25 0.00 0.00 0.00 0.00 0.00 3.25
Ant-Q 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Another performance metric is suggested in [80] to give an indication of the relative

variation of each competing hyper-heuristic for each problem domain and to evaluate

and compare the performance of the hyper-heuristics. The median objective function

values of the 31 trials are normalised to a value in [0,1] according to Equation 5.1.

norm(x, i) =
x(i)− xbest(i)

xworst(i)− xbest(i)
(5.1)

where x(i) is the objective function value on instance i, xbest(i) is the best objective

function value obtained by the different methods on instance i and xworst(i) is the worst

objective function value obtained by the different methods on instance i.

Figures 5.15 and 5.16 provide the box plots of the normalised values for the MSHH

and the competitors’ hyper-heuristics for each domain and in overall, respectively. It
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is observed that the MSHH outperforms the other approaches in overall and in SAT,

PFS, and TSP problem domains and taking the second place in BP problem domain.

However, the proposed hyper-heuristic delivers a relatively poor performance on the PS

and VRP problem domains.
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Figure 5.15: Ranking (performance comparison) of MSHH and CHeSC 2011 hyper-
heuristics for each HyFlex problem domain based on the median results converted to

the normalised objective function values. The dots in the box plots are outliers



Chapter 5. State-of-the-art in Problem Solving and Multi-stage Hyper-heuristics 128

 

MSHH

AdapHH

ML

VNS-TW

PHUNTER

NAHH

ISEA

HAEA

EPH

HAHA

KSATS

ShafiXCJ

GenHive

DynILS

ACO-HH

SelfS

SA-ILS

AVEGNep

GISS

MCHH-S

Ant-Q

0.00 0.25 0.50 0.75 1.00

Normalised objective function value

H
y
p
e
r-
h
e
u
ri
s
ti
c

Overall

Figure 5.16: Ranking (performance comparison) of MSHH and CHeSC 2011 hyper-
heuristics in overall based on the median results converted to the normalised objective

function values. The dots in the box plots are outliers

5.3.6 An Analysis of the Proposed Hyper-heuristic

We have repeated some experiments in order to track and interpret the behaviour of

MSHH. Each trial is repeated for 10 times during this set of experiments. The per-

centage utilisation is the ratio of the number of improvements that a low level heuristic

generates over the best solution found so far to the total number of such improvements.

Figure 5.17 shows the average percentage utilisation of the single and combined low level

heuristics while an arbitrarily chosen representative instance from each problem domain

is solved. As one would expect, not all the low level heuristics can generate improve-

ment over the best solution found so far during the search process. For example, in PS,

surprisingly, LLH0 and LLH1 heuristics which are provided as hill climbers do not yield

any improvement neither themselves individually nor in combination with another low

level heuristic on the tested instance. On the other hand, LLH3 and LLH5 are not able

to make any improvement on the best solutions while the BP instance is being solved.

This is not surprising, though, as those low level heuristics are mutational heuristics.
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Figure 5.17: Average percentage utilisation of single/combined low level heuristics
over 10 trials while solving a sample instance representing each problem domain: (a)

SAT, (b) BP, (c) PS, (d) PFS, (e) TSP, (f) VRP
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With the exception on SAT problem domain, most of the improving moves are due

to hill climbers rather than mutational heuristics. The use of the combination of a

mutational heuristic followed by a hill climbing heuristic, like the basic steps of iterated

local search [60], is automatically favoured by our hyper-heuristic in the PFS and TSP

domains (Figure 5.17(d), (e)). Similarly, ruin and re-create followed by a hill climber

is another favourite automatically detected pairing in the TSP problem domain. In

TSP, LLH1 does not seem to be that useful at the first glance, but considering the

relay hybridisation technique, it seems to serve as a ‘good’ diversification component,

improving the performance of the hill climbing heuristic (LLH8) employed afterwards.

In BP, MSHH favours the pairing of a mutational low level heuristic followed by a ruin

and re-create heuristic. The relay hybridisation of low level heuristics seem to be useful,

except for the PS and VRP domains, in which it has been observed that no generated

heuristic pairs contributed towards the improvement of the best solutions. The proposed

hyper-heuristic looses time by testing all pairs of given low level heuristics which could

have been used in the search process. This could be one of the reasons why the proposed

hyper-heuristic performs relatively poor on those domains.

The behaviour of MSHH considering the average threshold value of the move acceptance

method and average objective values of the current solution in time is illustrated in

Figure 5.18 for an arbitrarily selected instance from each problem domain. In some cases,

MSHH improves the quality of the initial solution at the beginning of the search process

rapidly. Then the improvement slows down, but still continues as in the BP and VRP

domains (Figure 5.18(b), (f)). While MSHH solves a given instance, it enters into what

seems to be a “neural” region getting stuck at a local optimum for a while. Then, MSHH

is able to find a way to make improvement (e.g., Figure 5.18(c), (e)). In the overall,

the adaptive move acceptance method successfully supports further improvements by

allowing worsening solutions at different parts of the search process. MSHH seems to

require partial restarts while solving problem instances from the SAT and PFS problem

domains more than the others which definitely works and this could be one of the reasons

for the success of MSHH on those problem domains.

Figure 5.19 depicts the progress of the average number of low level heuristics including

individual and paired low level heuristics used in time over 10 trials for each problem

domain on a selected instance. Interestingly, on average, approximately less than 10% of

the low level heuristics are used for each problem across six problem domains. Stage two

hyper-heuristic ignores most of the low level heuristics including the ones generated as

pairs from the relay hybridisation process as illustrated. A change in that value occurs
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Figure 5.18: Plots of the average objective and threshold level values over 10 trials
versus time while solving a sample instance representing each problem domain
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after the multi-stage level applies the second stage hyper-heuristic. In PS problem

domain, all the single low level heuristics are used and so the whole set of heuristics is

needed during the entire search process. The fluctuations in the number of low level

heuristics used during the search process are very frequent in all the other problem

domains. It has been observed that the number of low level heuristics never decreases

to a single low level heuristic at any time in none of the domains. Figure 5.19 illustrates

that different sets of low level heuristics are useful at different parts of the overall search

process. For example, at the start of the search process, the number of the low level

heuristics stays the same for BP, then it starts decreasing towards the midst of the given

time.

5.4 Experimental Results on Constructing Magic Square

Problem

All computational experiments are performed on small instances from n=10 up to 23

with increments of 1 and large instances from n=25, 50, 75, 100 up to 2600 with in-

crements of 100, unless mentioned otherwise. 2600 is chosen as the maximum order for

the magic squares problem, as the winning approach of the magic square competition

was able to solve a magic squares problem of order 2600 as the largest instance under

a minute on the competition computer. Since the specification of the competition com-

puter is not known, we performed our experiments on an i3 CPU M330 at 2.13GHz with

a memory of 4.00GB and each one is repeated for 50 trials. A trial is terminated, as

soon as a solution is found under one minute on our computer. The placement of the

upper left-hand corner of the sub-matrix S3×3 within the main matrix has been arbi-

trarily selected to be at the position (1,4). A final set of experiments are performed for

some n, using different random locations. Unlike previous studies on hyper-heuristics,

the performance of an approach is measured with its run-time rather than the quality

of solutions obtained for the given problems.

5.4.1 Comparison of MSHH to the Best Known Heuristic Approaches

All approaches are tested with the goal of detecting the quickest one. Table 5.15 sum-

marises the performance comparison of MSHH to the best previously proposed solution

methodologies (LAHC and RP) which are the winner of the magic squares competition

and the quickest-known approach, respectively, on some selected instances of order n.
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Figure 5.19: Plots of the average of changes in the number of single/combined low
level heuristics versus time from 10 trials while solving a sample instance representing

each problem domain
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The table provides the average execution time, the standard deviation and the pairwise

performance comparison in millisecond over 50 trials of arbitrarily chosen 10 sample in-

stances from small and large orders of n for each. The MSHH performs the best on two

instances. Overall, RP seems to perform better than the other approaches on average.

MSHH consistently performs better than LAHC for all instances, except n = 2600, on

average. LAHC performs worse than the other two approaches in most of the instances

and this performance difference is statistically significant.

Table 5.15: The average execution time (avr.) the standard deviation (s.d.) in
milliseconds and the pairwise performance comparison of 50 trials. The best values are

highlighted in bold

MSHH LAHC RP
MSHH MSHH LAHC

vs vs vs
n avg. std. avg. std. avg. std. LAHC RP RP

10 249 215 3825 3221 250 456 > ≥ <
11 249 335 3409 4070 164 142 > ≤ <
13 312 240 4823 4595 241 160 > ≤ <
14 354 294 7841 8284 327 250 > ≤ <
15 473 393 7026 5603 308 231 > < <
16 552 476 8356 8106 397 313 > < <
18 611 392 8268 5905 684 632 > ≤ <
19 1021 1174 11325 10572 659 461 > < <
21 1133 707 16061 12340 819 657 > < <
23 1624 1760 27399 25735 1446 1256 > ≤ <

25 10 7 157 26 14 13 > ≥ <
50 42 22 366 252 39 28 > ≤ <

100 59 31 415 351 56 49 > ≤ <
200 164 112 1249 1140 113 85 > < <
400 524 468 1790 1498 260 188 > < <
800 1337 1125 3960 2722 556 290 > < <

1000 2077 3597 4620 2775 692 464 > < <
1500 5407 5459 5676 3957 1252 649 ≥ < <
2000 5938 5177 6161 3822 2036 881 ≥ < <
2600 11260 9870 8142 4971 3684 1559 ≤ < <

The inclusion of multiple low level heuristics and the stochastic nature of the hyper-

heuristic makes it extremely difficult to compute the running time complexity of the

overall algorithm. Hence, a regression model is formed based on large n. 50 trials to

construct magic square of various orders have been considered for the regression model.

Table 5.16 provides the Root Mean Square Error (RMSE) to indicate the quality of the

fit. All the three approaches run in O(n) time. The constant multiplier is almost similar

in both LAHC and MSHH while RP has a smallest constant coefficient and RMSE

values, showing that RP runs predictably faster than MSHH and LAHC.
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Table 5.16: Regression models to predict the running time complexity of the MSHH,
LAHC and RP approaches

Apprach Model Multiplier RMSE

MSHH a · n a = 3.5 4202
LAHC a · n a = 3.4 2780

RP a · n a = 1.1 712

To test the importance of separating the set of low level heuristics, three different re-

gression models are tested by applying only the first set of low level heuristics. The

regression sum of squares (RSS) from these models show that the hyper-heuristic ap-

proach executes in O(n4) second as illustrated in Figure 5.20, which is way worse than

the results presented in Table 5.16.
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Figure 5.20: The box plot of execution time (in seconds) of the hyper-heuristic ap-
proach constructing a magic square of various orders, n and plots of the regression

models

A final set of experiments are performed to observe the behaviour of MSHH, LAHC and

RP approaches for the instances of orders n=10, 23, 25 and 2600 varying the placement

of the upper left-hand corner of the sub-matrix S3×3 at (i, j). The selected instance

are the smallest and the largest orders of both small and large sets. We generated 200

random locations of (i, j) for small n=10, 23 and large n=25, 2600 instances. Figure

5.21 provides the box plots obtained from MSHH, LAHC and RP for their running times
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showing that MSHH clearly outperforms the LAHC approach for instances of n=10, 23

and 25 and performs slightly better on average than the RP approach.
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Figure 5.21: Box plots of execution time (in milliseconds) from all runs for MSHH,
LAHC and RP approaches constructing a constrained magic square using various ran-

domly decided (i, j) locations for n = (a) 10, (b) 23, (c) 25 and (d) 2600

5.4.2 Performance Analysis of the Multi-stage Hyper-heuristic

Different low level heuristics contribute to the improvement of a solution in hand at

different levels. Figure 5.22 provides the average percentage utilisation of 10 trials of

each low level heuristic considering improving moves only using a sample run for n=10,

23, 25 and 2600. In the first set of low level heuristics, LLH0 and LLH3 are more

successful with high utilisation rates in improving a candidate solution as compared to

others, in general. Similarly, LLH1, LLH2, LLH5, LLH6 and LLH8 perform better than

the rest in this respect. In the second set of low level heuristics, it is observed that LLH1

generates more improving moves as compared to LLH0 when n=25, while the situation
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is vice verse in n=2600. Almost in all cases, no pair of heuristics contributed to the

solving of the problem.
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Figure 5.22: Average percentage utilisation of the low level heuristics obtained from
10 trials based on improving moves only for n = (a) 10, (b) 23, (c) 25 and (d) 2600

We have investigated the behaviour of MSHH based on the proposed acceptance method.

In most of the cases, the MSHH rapidly improves the quality of the solution in hand.

After a while, the improvement process slows down as the approach reaches a local

optimum. Still, it seems that the threshold acceptance method works well as a part of

the proposed approach, allowing further improvement in time even if takes a while to

obtain a magic square of the given order. The proposed move acceptance allows partial

restarts and the extension of these restarts changes if there is no improvement and in

general there is some improvement. This behaviour is illustrated in Figure 5.23 for n=10,

23, 25 and 2600. The designed multi-stage solver is fast-enough to solve the problem

without requiring of applying the S2HH in almost all the cases. This observation is

typical to the previous findings in [166] such that learning requires time slowing down
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a selection hyper-heuristic and so hyper-heuristics with no learning method are more

successful than the learning hyper-heuristics in solving this particular problem.

0 50 100 150 200 250 300
0

1000

2000

 

 
obj vs. time
threshold vs. time

(a)

0 50 100 150 200 250 300 350
0

1

2

3
x 10

4

 

 
obj vs. time
threshold vs. time

(b)

0 5 10 15 20 25 30 35 40 45 50
0

1

2
x 10

4

 

 
obj vs. time
threshold vs. time

(c)

0 500 1000 1500
0

1

2
x 10

10

 

 
obj vs. time
threshold vs. time

(d)

Figure 5.23: Plots of the average of objective values and the threshold level values
versus time in milliseconds from 10 trials for n = (a) 10, (b) 23, (c) 25 and (d) 2600

5.5 Summary

For empirically examining the performance of the multi-stage hyper-heuristics and to

compare their performance to the state-of-the-art, we have participated in ITC 2011 and
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MISTA 2013 competitions. We joined ITC 2011 as the team HySST (Hyper-heuristic

Search Strategies and Timetabling). Despite this being the first attempt in high school

timetabling, HySST generated the best new solutions for three given instances in Round

1 and gained the second place in Rounds 2 and 3 with a fairly standard stochastic search

method but significantly enhanced by a multi-stage hyper-heuristic with an adaptive ac-

ceptance mechanism. The Dominance-based Roulette Wheel Hyper-heuristic with an

Adaptive Threshold Acceptance (DRW) multi-stage hyper-heuristic is used as a compo-

nent in an effective hybrid approach which won the MISTA 2013 challenge with a mean

rank of 1.1 for multi-mode resource-constrained multi-project scheduling problem. A

basic performance analysis of the proposed approach is also provided in this chapter.

The success provides evidence of the utility of carefully designed and controlled hybrids

of mixes of (mostly) pre-existing search concepts.

The proposed learning Dominance-based Roulette Wheel Multi-stage Hyper-heuristic

using Relay Hybridisation and an Adaptive Threshold Acceptance (MSHH) is tested

on a benchmark of problem domains. The results confirm its success when compared

to each constituent hyper-heuristics, the other proposed multi-stage hyper-heuristics as

well as the state-of-the-art hyper-heuristic which won the CHeSC 2011 competition.

The approach is a relatively simple approach which is easy-to-implement and easy-

to-maintain as compared to some previously proposed hyper-heuristics including the

previous state-of-the-art hyper-heuristic, yet, it is extremely effective in cross-domain

search delivering a superior performance.

The MSHH is tested in solving the constrained version of magic squares and compared

to the winner approach of the competition organised by SolveIT Software known as

LAHC, and also compared to RP (random permutation hyper-heuristic) which is the

best and the quickest-known approach in solving the constrained version of magic squares

as reported in [166]. The MSHH performs the best on some instances but overall, RP

performs better on average. MSHH consistently performs better than LAHC for almost

all instances.

In this chapter, we have illustrated the success of multi-stage hyper-heuristics in com-

binatorial optimisation. We argue that the components of the developed multi-stage

hyper-heuristic framework are reusable, and researchers can easily replace them with

any methods of their choices. MSHH is an instance of the proposed framework, which

provides the best general purpose multi-stage hyper-heuristic for heuristic search across

different problem domains. MSHH is capable of generating new heuristics via relay hy-

bridisation and then automatically identifying a useful subset of heuristics at a given
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stage for local search. After associating each low level heuristic with a selection proba-

bility, stochastic local search starts with the incumbent set of low level heuristics using

an adaptive move acceptance.



Chapter 6

Conclusion

6.1 Summary of Work

Search methodologies (i.e., heuristics) are at the core of almost all decision support

systems, particularly while dealing with combinatorial optimisation problems. The state-

of-the-art systems are often tailored for a particular problem by the experts in the area.

Such systems are generally very costly to build and maintain. Since they are custom-

made, it is almost impossible to apply/reuse them to/in another problem domain. Even

a slight change in the problem definition could require an expert intervention. Whenever

exact methods fail, researchers and practitioners resort to heuristics which are ‘rule of

thumb’ methods for solving a given problem. There is a growing interest towards more

general, cheaper and intelligent systems that can automate the heuristic design process.

Humans design and provide the components of such systems while computers either run

those components or use them to build new components while solving a given problem.

Hyper-heuristics are such automated search methodologies that explore the space of

heuristics for solving computationally difficult optimisation problems in decision support

[2]. Hyper-heuristic research has been growing since the initial ideas have emerged in the

1960s [10, 11]. This thesis focuses on selection type hyper-heuristics, which were defined

as ‘heuristics to choose heuristics’, initially [12]. An iterative selection hyper-heuristic

passes a solution through a heuristic selection process to decide on a heuristic to apply

from a fixed set of low level heuristics or move operators and then a move acceptance

process to accept or reject the newly created solution at each step. The use of a logical

interface between the high level hyper-heuristic and problem domain, referred to as

domain barrier makes selection hyper-heuristics more general search methodologies than

141
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the current techniques tailored for a particular domain. This barrier disallows a hyper-

heuristic to retrieve any problem domain specific information. Hence, any selection

hyper-heuristic (or its components) can be reused while solving any given problem,

assuming that problem domain components have already been implemented. A goal

in hyper-heuristic research is to raise the level of generality by providing automated

hyper-heuristic solution methodologies that are able to self-tune/configure themselves

and applicable to different problem domains without requiring any expert intervention

and so additional development cost.

Selection hyper-heuristics are motivated by the reason that each heuristic performs dif-

ferently on different instances and an approach mixing them could yield to a better

overall performance. There is empirical evidence that the performance of selection

hyper-heuristics could vary depending on the choice of heuristic selection and move

acceptance components [8]. Hence, following the same argument, a simple framework

which supports the design of easy-to-implement, easy-to-maintain and effective multi-

stage hyper-heuristics allowing the use of multiple selection hyper-heuristics at different

stages of the search process is proposed in this thesis. Six multi-stage hyper-heuristic

methods are designed based on the framework and tested on a variety of problem do-

mains.

A Dominance-based Random Descent/Gradient Hyper-heuristic with Näıve Move Ac-

ceptance (DRD) is proposed. The two heuristic selection methods are used in an alter-

nating manner at successive stages. Greedy attempts to detect the low level heuristics

with “good” performance and maintains a list of active heuristics considering the trade-

off between the change (improvement) in the solution quality and the number of steps

taken. If a heuristic takes a large number of successive steps and generating a large

improvement in the solution quality, the performance of this heuristic is considered to

be similar to the one which takes less number of successive steps and improves the so-

lution quality less as well. Random descent selects from the (possibly) reduced set of

low level heuristics to improve the solution in hand at each step. Whenever the search

by random descent stagnates, then the greedy stage may restart for detecting new list

of active heuristics.

Another effective multi-stage hyper-heuristic based on a round robin heuristic selection

(Robinhood) (RHH) which allocates equal share from the overall time for each low level

heuristic ordering them randomly within their categories of mutation and local search

to process a solution in hand is proposed. The Robinhood hyper-heuristic operates in

stages and prior to each stage, relevant decisions are made for the ordering of heuristics
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within groups, parameters of the system components and the selection of one of the

three move acceptance criteria.

A multi-stage hyper-heuristic, named Selection Hyper-heuristic with an Adaptive Thresh-

old Acceptance (HySST), to intelligently and effectively exploit a suite of neighbourhood

move operators is proposed. HySST is a stochastic search method which is significantly

enhanced by a selection hyper-heuristic under a generalised iterated local search method.

In HySST, two selection hyper-heuristics are employed operating cooperatively and mix-

ing a set of domain-specific low level heuristics. The diversification-stage selection hyper-

heuristic manages mutational move operators, while the intensification-stage selection

hyper-heuristic mixes the hill climbing low level heuristics.

A multi-stage hyper-heuristic which combines two hyper-heuristics, Dominance-based

hyper-heuristic and Roulette Wheel selection with Adaptive Threshold move acceptance

(DRW) is proposed by extending DRD, RHH and HySST. A novel multi-stage hyper-

heuristic approach which is based on the observation that not all low level heuristics

for a problem domain would be useful at any point of the search process is proposed.

The latter multi-stage hyper-heuristic named Dominance-based Roulette Wheel Multi-

stage Hyper-heuristic using Relay Hybridisation and an Adaptive Threshold Acceptance

(MSHH) extends the DRW approach and makes use of the relay hybridisation technique

which applies a low level heuristic to a solution generated by applying a preceding

heuristic.

A key goal in hyper-heuristic research is to build low cost methods which are general and

can be reused on unseen problem instances as well as other problem domains desirably

with no additional human expert intervention. Hence, the proposed multi-stage hyper-

heuristic approaches are applied to six HyFlex problem domains to test the level of

generality and some are further competed on several problem domains, mostly used in

earlier international competitions leading to the main events ITC 2011, MISTA 2013,

CHeSC 2011 and SolveIT 2011. Determining the state-of-the-art method among modern

approaches for a given problem and providing a real world benchmark for comparison

of approaches were the main deriving ideas behind the competitions.

The proposed multi-stage hyper-heuristics in this study are implemented as an extension

to HyFlex (a software tool for hyper-heuristic development and research). The proposed

learning Dominance-based Roulette Wheel Multi-stage Hyper-heuristic using Relay Hy-

bridisation and an Adaptive Threshold Acceptance (MSHH) is deemed to be the winner.

The results confirm its success when compared to each constituent hyper-heuristic, the
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other multi-stage hyper-heuristics as well as the state-of-the-art hyper-heuristic which

won the CHeSC 2011 competition. This multi-stage hyper-heuristic is a relatively simple

approach which is easy-to-implement and easy-to-maintain compared to some previously

proposed hyper-heuristics including the previous state-of-the-art hyper-heuristic, yet, it

is extremely effective in cross-domain search delivering a superior performance.

High school timetabling problem is a real-world hard combinatorial optimisation prob-

lem. It seeks a search for the best event schedule and the best allocation of resources

including the scheduling of classes, teachers, courses and students in time slots in a high

school institution subject to a set of constraints. In a standard fashion, constraints are

separated into hard and soft. The hard constraints must be satisfied in order to achieve

feasibility, whereas the soft constraints characterise preferences and a solution for a given

problem; solutions are expected to respect all hard constraints and satisfy as many soft

constraints as possible. Hence, the violation of the soft constraint does not destroy the

feasibility but rather affects the quality of the solution. In most of the previous for-

mulations of the high school timetabling problem, infeasible solutions are allowed and

evaluated, differentiating their quality by considering the degree of hard constraint vio-

lations. A unified high school timetabling problem which was a topic of a competition,

referred to as ITC 2011, is described in this study. ITC 2011 provided a collection of

high school timetabling problem instances collected from different countries across the

world. The goal of the competition was to promote researchers and practitioners to deal

with the real world complexities of the problem. As the team HySST (Hyper-heuristic

Search Strategies and Timetabling), we joined the ITC 2011 with HySST multi-stage

hyper-heuristic. Despite this being the first attempt in high school timetabling, the

proposed approach of HySST generated the best new solutions for three given instances

in Round 1 and gained the second place in Rounds 2 and 3.

A square matrix of distinct positive integers in which every row, column and diagonal

has the same sum is called a magic square. The results show that the Dominance-based

Roulette Wheel Multi-stage Hyper-heuristic using Relay Hybridisation and an Adaptive

Threshold Acceptance is efficient enough in constructing the constrained-version of magic

squares.

This study presents also the algorithm winning the MISTA 2013 Scheduling Challenge.

The approach is a hybrid heuristic addressing an extension of the resource-constrained

project scheduling problem. It comprises a Monte-Carlo tree search technique, very

large scale neighbourhoods and applying the Dominance-based Roulette Wheel Hyper-

heuristic with an Adaptive Threshold Acceptance (DRW) and highly optimised schedule
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generator, all in the context of a multi-threaded population-based approach that uses

ideas from memetic algorithms.

6.2 Discussion and Future Work

Overall success. The success of the proposed multi-stage hyper-heuristic approaches

based on the proposed “simple” framework across a variety of domains provide empirical

evidence that utilising and mixing the existing or new selection hyper-heuristics is indeed

a good idea. The multi-stage hyper-heuristics designed based on the framework “(1) fast

to implement, (2) requiring far less expertise in either the problem domain or heuristic

methods, and (3) robust enough to effectively handle a range of problems”. More-

over, the proposed multi-stage hyper-heuristic framework is general, reusable and useful

in relieving the difficulty of choosing a hyper-heuristic method for solving a problem.

Combining multiple hyper-heuristics always requires a decision on how long each stage

should take and when to switch between selection hyper-heuristics at each stage. There

are many ways to handle this, but simple choices seem to have performed really well.

RHH handles both decisions in a static fixed way, while GGHH, DRD, HySST, DRW

and MSHH handle both decisions adaptively, meaning that, if there is no improvement in

consecutive stages while a certain hyper-heuristic is used then the other hyper-heuristic

kicks in. In DRD and MSHH, this transition is probabilistic, while in GGHH, HySST

and DRW another hyper-heuristic is invoked for certain. Adaptive approaches seem to

perform better. MSHH is the current state-of-the-art multi-stage hyper-heuristic which

has been tested on CHeSC 2011 and additional domains.

Reducing the set of low level heuristics. RHH does not reduce the set of low level

heuristics and use all of them. HySST is based on an offline multi-stage hyper-heuristic

managing a reduced set of low level heuristics, with the method employing either only

mutational or only hill climbing low level heuristics at a given stage. The results revealed

the success of HySST in solving the high school timetabling problem. On another hand,

GGHH, DRD, DRW and MSHH methods dynamically reduce the set of heuristics using

a greedy-like approach. This approach is a bi-objective learning approach considering

time versus achieved solution quality trade-off, which discovers the most useful low level

heuristics in improvement and at the same time generates their selection probabilities.
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The results revealed the success of DRW in solving project scheduling problem, and

MSHH in HyFlex. Yet, this approach has two main limitations: (i) it has a high run-

time complexity, and (ii) the approach always favours the best low level heuristic which

makes the largest improvement at any given step. This means that if the number of

low level heuristics gets higher, the use of relay hybridisation could become impractical.

In some problem domains, low level heuristics could have high running times due to

their design. For example, in personnel scheduling of CHeSC 2011, some heuristics

are very time consuming. Most of the algorithms are run as a contract algorithm and

they have to terminate as soon as the time limit is exceeded. Running the greedy-like

approach could use up most portion of that time limit whether relay hybridisation used

or not and leaving less time for the algorithm to use what has been learnt, yielding

to seemingly a “bad” performance of the algorithm. Considering a problem domain,

each heuristic is generally designed with the goal of improving a given solution or get a

given solution jump to the other potentially “good” regions of the search space. So, the

question still remains whether it is always a good idea to focus solely on improvement

and ignoring second best low level heuristics and others. It would be interesting to

perform experiments on the problem domains incorporating a large number of low level

heuristics (or time consuming low level heuristics) and develop a learning mechanism

that overcomes the greedy-like weaknesses as future work.

Intensification and diversification. HySST and RHH use all provided low level

heuristics for a given problem and require the heuristic type information, i.e., whether a

low level heuristic is mutational or hill climbing to balance between diversification and

intensification while selecting the low level heuristics. Iterated local search (ILS) enforces

this balance by making use of two successive steps of perturbation and local search/hill

climbing in its algorithmic framework (see [42] and Section 2.1.1). HySST and RHH

also enforce the diversification and intensification in a different way. The main goal of

a search method is always to make improvement as much as possible on the solution in

hand. If the search stagnates (i.e. no improvement for a duration) then try to make a

move even if worsening which will allow the method to explore different regions of the

search space. HySST and RHH turns the whole framework into a random mutation hill

climbing framework in which diversification is promoted first, but the relevant stages

still attempt to make improvement using perturbative mutational heuristics. This stage

is followed by local search using a set of pure hill climbing low level heuristics. In RHH,

the transition is fixed, while HySST does that adaptively.

The other proposed multi-stage hyper-heuristic methods ignore the nature of the low



Chapter 6. Conclusion 147

level heuristics. Considering the success of MSHH, enforcing greedy local search and so

hill climbing for a short while for intensification purposes and then letting the algorithm

to adaptively determine how to behave is the best strategy. In the latter stage, although

the algorithm uses an adaptive threshold move acceptance, the overall algorithm does not

always act as a diversifying component. Depending on the selected low level heuristic,

the algorithm could behave as an intensification component. Because of this technique, a

low level heuristic which combines a mutational and followed by a hill climbing heuristic

(as observed in the experiments) just like in ILS could be chosen and applied. We

argue that the incorporation of relay hybridisation technique within MSHH is one of the

reasons making it the best multi-stage hyper-heuristic.

Adaptation of parameters. In a multi-stage hyper-heuristic, a low level heuristic,

heuristic selection, move acceptance and multi-stage search control algorithm itself could

introduce parameters. All those parameters should be either fixed via experimentation

or the use of parameter tuning methods, such as F-race [38], REVAC [39], ParamILS [40]

and/or preferably controlled using an appropriate method. Parameter values could be

varied dynamically, changing their values in time using a predetermined strategy (such

as in DRD) or adaptively, changing their values depending on the state of the search

(such as in GGHH, RHH, HySST, DRW and MSHH). Although the multi-stage hyper-

heuristic framework introduces another layer on multiple hyper-heuristics, this does

not mean in any way that the resultant design will be any more complicated than the

existing selection hyper-heuristics. Moreover, more parameters in the design of a hyper-

heuristic could be a consequence of complexity of the search process using the provided

components under a single control mechanism. Considering the success of MSHH, the

use of the proposed multi-stage yielded a simple algorithm with less parameters (6

parameters) when compared to AdapHH [27] (the winning hyper-heuristic at CHeSC

2011) which introduced around 45 parameters1. This could be one of the reasons for

the success of MSHH over AdapHH, because managing large number of parameters may

distract the search process from focusing on finding good solutions and rather making

the search focusing on adapting these parameters. It has been reported in [92] that

the publicly available implementation of AdapHH counts over 3000 lines of code. The

MSHH state-of-the-art multi-stage hyper-heuristic is around 10% the size of the code of

the AdapHH implementation.

Crossover operators. There is still a debate going on the usefulness of crossover

in evolutionary algorithms community [50, 51]. Considering that we have proposed

1This information is retrieved form the publicly available implementation of AdapHH
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a single point based search framework, crossover operators provided in some of the

problem domains are ignored by our multi-stage hyper-heuristics during the experiments,

since crossover operators are mostly binary operators requiring two solutions as input

necessitating another top level mechanism to decide on those solutions. Looking into how

to best utilise all low level heuristics, including crossover operators within multi-stage

hyper-heuristics would be of interest as future work.

Level of generality. Considering that the nature of problem instances could change in

time, designing an algorithm which can handle those changes is crucial. This represents

a level of generality as such an algorithm will be reusable even if the problem instances

change in time. For example, [28] proposes a hyper-heuristic algorithm to handle the

university timetabling problem. The hyper-heuristic design enables the algorithm to be

reused and evaluated on other domains as well. So, the same hyper-heuristic is tested

across CHeSC 2011 problem domains in [29].

Since hyper-heuristics separate adaptive search control from the details of the specific

domain, it is naturally also envisaged the proposed multi-stage hyper-heuristics could

be applied to other problems. In this thesis, we have tested some of our multi-stage

hyper-heuristics on single domains initially, but then evaluated their level of generality

on the six HyFlex problem domains. More importantly, their effectiveness and generality

level can be further investigated on the future problem domains, that are implemented

respecting the HyFlex interface, directly.

The ROADEF/EURO Challenge 2014 put forward a real-world problem of rolling stock

unit management on railway sites subject to a range of constraints, including mainte-

nance. The problem instances are provided by SNCF which is the national state-owned

railway company of France. The goal of the competition is to determine the best ap-

proach which can handle multiple objectives. Rather than only using perturbative low

level heuristics, we would like to study a multi-stage hyper-heuristic approach in or-

der to exploit a set of constructive and perturbative low level heuristics, each of which

attempts to enhance an aspect of the quality of a solution in hand during the search

process. Although the proposed multi-stage hyper-heuristic framework is used with a

set of perturbative low level heuristics in this thesis, it enables the use of constructive

and perturbative low level heuristics separating both processes into stages. An initial

solver based on the development of multi-stage hyper-heuristics was developed to pro-

duce a feasible solution with fairly good quality, and obtained the 3rd prize in the Junior

Category of the ROADEF/EURO Challenge 2014.
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greedy gradient-simulated annealing hyper-heuristic for a curriculum-based course

timetabling problem. In 12th UK Workshop on Computational Intelligence

(UKCI2012), pages 1–8. IEEE, 2012.

[29] Murat Kalender, Ahmed Kheiri, Ender Özcan, and Edmund K. Burke. A greedy
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framework and applications. In Michel Gendreau and Jean-Yves Potvin, editors,

Handbook of Metaheuristics, volume 146 of International Series in Operations Re-

search and Management Science, pages 363–397. Springer US, 2010.
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[72] José Luis Núñez and Alberto Ceballos. A general pur-

pose hyper-heuristic based on ant colony optimization.

http://www.asap.cs.nott.ac.uk/external/chesc2011/, 2011.

[73] Ping-Che Hsiao, Tsung-Che Chiang, and Li-Chen Fu. A VNS-based hyper-

heuristic with adaptive computational budget of local search. In IEEE Congress

on Evolutionary Computation (CEC ’12), pages 1–8, 2012.

[74] Tomasz Cichowicz, Maciej Drozdowski, Michal Frankiewicz, Grzegorz Pawlak,

Filip Rytwinski, and Jacek Wasilewski. Five phase and genetic hive hyper-

heuristics for the cross-domain search. In Youssef Hamadi and Marc Schoenauer,

editors, Learning and Intelligent Optimization, Lecture Notes in Computer Sci-

ence, pages 354–359. Springer Berlin Heidelberg, 2012.



Bibliography 157

[75] Mathieu Larose. A hyper-heuristic for the CHeSC 2011. In The 53rd Annual

Conference of the UK Operational Research Society (OR53), 2011.

[76] Mark Johnston, Thomas Liddle, Joel Miller, and Mengjie

Zhang. A hyperheuristic based on dynamic iterated local search.

http://www.asap.cs.nott.ac.uk/external/chesc2011/, 2011.

[77] C. Y. Chan, Fan Xue, W. H. Ip, and C. F. Cheung. A hyper-heuristic inspired

by pearl hunting. In Youssef Hamadi and Marc Schoenauer, editors, Learning

and Intelligent Optimization, Lecture Notes in Computer Science, pages 349–353.

Springer Berlin Heidelberg, 2012.

[78] David Meignan. An evolutionary programming hyper-heuristic with co-evolution

for CHeSC1́1. In The 53rd Annual Conference of the UK Operational Research

Society (OR53), 2011.

[79] Andreas Lehrbaum and Nysret Musliu. A new hyperheuristic algorithm for cross-

domain search problems. In Youssef Hamadi and Marc Schoenauer, editors, Learn-

ing and Intelligent Optimization, Lecture Notes in Computer Science, pages 437–

442. Springer Berlin Heidelberg, 2012.

[80] Luca Di Gaspero and Tommaso Urli. Evaluation of a family of reinforcement

learning cross-domain optimization heuristics. In Youssef Hamadi and Marc Schoe-

nauer, editors, Learning and Intelligent Optimization, Lecture Notes in Computer

Science, pages 384–389. Springer Berlin Heidelberg, 2012.
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scheduling with finite or infinite number of activity processing modes - a survey.

European Journal of Operational Research, 208(3):177–205, 2011.

[134] Amol Singh. Resource constrained multi-project scheduling with priority rules &

analytic hierarchy process. Procedia Engineering, 69:725–734, 2014.

[135] Ching-Chih Tseng. Two heuristic algorithms for a multi-mode resource-

constrained multi-project scheduling problem. Journal of Science and Engineering

Technology, 4(2):63–74, 2008.

[136] S. E. Elmaghraby. Activity networks: project planning and control by network

models. Wiley-Interscience Publication. Wiley, 1977.

[137] J. Blazewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan. Scheduling subject to

resource constraints: classification and complexity. Discrete Applied Mathematics,

5(1):11–24, 1983.

[138] Roman S lowinski. Multiobjective network scheduling with efficient use of renew-

able and nonrenewable resources. European Journal of Operational Research, 7(3):

265–273, 1981.

[139] R. P. Mohanthy and M. K. Siddiq. Multiple projects-multiple resources-

constrained scheduling: some studies. International Journal of Production Re-

search, 27(2):261–280, 1989.

[140] Richard F. Deckro, E.P. Winkofsky, John E. Hebert, and Roger Gagnon. A decom-

position approach to multi-project scheduling. European Journal of Operational

Research, 51(1):110–118, 1991.

[141] A. Alan B. Pritsker, Lawrence J. Watters, and Philip M. Wolfe. Multiproject

scheduling with limited resources: a zero-one programming approach. Management

Science, 16(1):93–108, 1969.



Bibliography 164

[142] Kwan Woo Kim, Young Su Yun, Jung Mo Yoon, Mitsuo Gen, and Genji Yamazaki.

Hybrid genetic algorithm with adaptive abilities for resource-constrained multiple

project scheduling. Computers in Industry, 56(2):143–160, 2005. Applications of

Genetic Algorithms in Industry.

[143] S. Kumanan, G. Jegan Jose, and K. Raja. Multi-project scheduling using an

heuristic and a genetic algorithm. The International Journal of Advanced Manu-

facturing Technology, 31(3-4):360–366, 2006.

[144] J. F. Gonçalves, J. J. M. Mendes, and M. G. C. Resende. A genetic algorithm for

the resource constrained multi-project scheduling problem. European Journal of

Operational Research, 189(3):1171–1190, 2008.

[145] John H Payne. Management of multiple simultaneous projects: a state-of-the-art

review. International Journal of Project Management, 13(3):163–168, 1995.

[146] Matthew J. Liberatore and George J. Titus. The practice of management science

in R&D project management. Management Science, 29(8):962–974, 1983.

[147] M. Liberatore, B. Pollack-Johnson, and C. Smith. Project management in con-

struction: software use and research directions. Journal of Construction Engineer-

ing and Management, 127(2):101–107, 2001.
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