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Abstract

In transport logistic operations, an efficient delivery plan and better utilisation of vehicles
will result in fuel cost savings, reduced working hours and even reduction of carbon diox-
ide emissions. This thesis proposes various algorithmic approaches to generate improved
performance in automated vehicle load packing and route planning. First, modifications
to best-fit heuristic methodologies are proposed and then incorporated into a simple
but effective “look-ahead” heuristic procedure. The results obtained are very competi-
tive and in some cases best-known results are found for different sets of constraints on
three-dimensional strip packing problems. Secondly, a review and comparison of different
clustering techniques in transport route planning is presented. This study shows that
the algorithmic approach performs according to the specific type of real-world transport
route planning scenario under consideration. This study helps to achieve a better un-
derstanding of how to conduct the automated generation of vehicle routes that meet the
specific conditions required in the operations of a transport logistics company. Finally, a
new approach to measuring the quality of transportation route plans is presented show-
ing how this procedure has a positive effect on the quality of the generated route plans.
In summary, this thesis proposes new tailored and effective heuristic methodologies that
have been tested and incorporated into the real-world operations of a transport logis-
tics company. The research work presented here is a modest yet significant advance to
better understanding and solving the difficult problems of vehicle loading and routing in

real-world scenarios.
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1 Introduction

This chapter provides an introduction to the research presented in this PhD thesis.
Firstly, the background and motivation for investigating the three-dimensional packing
problem and the single-customer multiple-carrier transport planning problem are out-
lined. The scope and objectives of this work are described next. Then, the contributions
to knowledge arising from this PhD thesis are listed. Finally, an outline of the remaining

chapters in this work is presented.

1.1 Background and Motivation

Transport logistics have always been a very important factor in many industrial and
business scenarios. The provision of logistic services is also an extremely large and
competitive market. For example, a 2011 report by the Department for Transport Road
Freight Statistics stated that by the end of 2010 there were nearly 400,000 vehicles of over
3.5 tonnes operating in Great Britain with a turn-over of about £24 billion and 30,149
enterprises in road transportation (DFT (2011)). Even with the significant amount of
resources and investment that are dedicated to transport logistics, maximising the use of
the current infrastructure still requires extensive research. For example, according to the
Barclays Corporate report in 2008, around 29% of Heavy Goods Vehicles (HGVs) were
running empty on the road and this figure has not changed significantly according to a
similar report in 2012 (Team (2012)). With the recent economic changes and increasing

concerns regarding issues such as fuel price, efficiency and environmental impact, the
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1 Introduction

need for optimisation in transport logistics is more crutical than ever. Important aspects
to consider in the optimisation of transport logistics operations include optimising vehi-
cle’s space utilisation, as well as more efficient transport planning through the routing
of vehicles. Therefore, research and development into an automated cutting or packing
method and transport planning tool could bring significant cost savings, improve time
efficiency and reduce environmental impact of transport operations. During the research
period of this PhD, a collaboration between 3T Logistics Ltd and The University of Not-
tingham was established to develop and improve an automated planning system for the
4PL logistics model presented in Landa-Silva et al. (2011). This offered an excellent op-
portunity to receive insightful feedback regarding practical elements of vehicle utilisation

and transport planning.

1.2 Objectives and Scope

The main research focus of this thesis is heuristics and its application to the trans-
port logistics market. The first objective was to improve vehicle utilisation by means of
a more efficient three-dimensional packing methods. There are many different heuristic
approaches proposed in the literature. The best-fit heuristic technique presented in Burke
et al. (2004) and Allen et al. (2011) are shown to be very effective when applied on its own
or as part of some meta-heuristics. One aim of this PhD project was to improve the best-
fit heuristic not only on benchmark packing problems but also, and more importantly for
the scope of this thesis, on problems arising in real-world transport logistics scenarios.
In addition to the problem definition given in previous works cited above, the stability
constraint was also included in the present work. A three-dimensional packing problem
in a real-world scenario was also investigated, heuristics designed and performance eval-
uated using a variety of scenarios. Another aim of this PhD project was to improve the
algorithmic approach to transport planning originally developed through a collaboration

between The University of Nottingham and 3T Logistics Ltd. This required updating
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1 Introduction

the problem description and modelling to meet the current business requirements and
incorporating additional requirements from live operations. The existing approach was
extended to address a number of changes in live operations and improve the performance

of the automated planning approach.

1.3 Contributions:

The following is a list of the major contributions of this PhD thesis:

e An extension of the best-fit heuristic for the three-dimensional strip packing prob-
lem is introduced. The extension includes two block generation variations, block

reallocation and candidate point generation.

e An overhead estimation approach to improve the heuristics result for the three-
dimensional strip packing problem is introduced. It produces good results over a

set of benchmark data sets.

e An improved heuristic with overhead estimation for the three-dimensional strip
packing problem with stability constraint is developed. The proposed approach
achieves competitive results when compared to other approaches from the litera-

ture.

e Arising from live transport logistic operational scenarios, a new problem pallet
space equivalent is presented. This is a real-world problem that incorporates sta-

bility and stability constraint.

e A best-fit heuristic is proposed for a pallet space equivalent problem and positive
results are obtained through computational experiments. The proposed heuristic
has been incorporated into a real-world automated planning system and used in

live operations.
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1 Introduction

e A new quality factor for transport planning is identified to measure inefficient
mileage of a route. A tailored meta-heuristic operator was designed to target this

new factor in order to reduce inefficient mileage.

e A investigation into the compatibility of different clustering algorithms with the
algorithmic approaches for various real-world transport planning profiles was con-
ducted. As a result, better understanding of the influence of the clustering on the

overall approach was also achieved.

1.4 Thesis Outline

This PhD thesis contains seven chapters. The first chapter introduces the background,
objectives and overview of the thesis. Chapter 2 describes the three-dimensional packing
problem and the single-customer multiple-carrier planning problem investigated in this
thesis. The definition and benchmark data sets used in the literature for these problems
are presented in that chapter too, as well as an overview of the different approaches in
the literature to solve related problems. Chapters 3, 4 and 5 address the packing prob-
lems. Chapter 3 presents an extension to best-fit heuristics for the three-dimensional
strip packing problem. Also, different block generation approaches, procedures for block
reallocation and possible block generation are introduced to enhance the used heuristics.
That chapter also presents an overhead approach to improving heuristics as an alternative
to meta-heuristics. Following from chapter 3, chapter 4 focuses on the three-dimensional
strip packing problem with the addition of stability constraint. A variety of heuristics,
including best-fit and best support heuristics, are evaluated for combination with over-
head estimation approaches. Modifications to heuristics for compatibility with stability
constraint are also presented. Experimental results show that the approaches developed
here are very competitive when compared to other approaches found in the literature.

Chapter 5 establishes a variation on the three-dimensional strip packing problem with

16



1 Introduction

stability and stackability constraints arising in real-world transport planning operations.
A pallet space equivalent problem is presented and a constructive heuristic approach
was developed. Chapter 6 focuses on a real-world problem in live transport planning
operations. A new factor in transport planning was identified and a study on the effect
of different clustering approaches using a variety of different scenarios is presented. The
approaches from both chapters 5 and 6 have been implemented on live operations and
their performance evaluated highly by the business management team hence they were

incorporated into the company’s live transport planning operations.
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2 Background and Related Work

2.1 Brief Note on Computational Complexity

A computational problem belongs to class P, this means it can be solved in polynomial
time by a deterministic Turing Machine. A problem belongs to class NP when it can be
solved in polynomial time by a non-deterministic Turing Machine. Then, problems in
P are those that can be solved in polynomial time by some deterministic algorithm (i.e.
solved efficiently) while problems in NP are those that can be solved in polynomial time
by a non-deterministic algorithm. It is not known if P = NP and this perhaps the most
important open question in computational complexity. For many problems proven to be
in NP no efficient algorithm has been found, strengthening the belief that P £ NP but
this conjecture is still not proven (Cormen et al. 2001). There is a class of problems in
NP called the NP-complete class and these are considered the hardest problems to solve
in this class. A problem is in the NP-complete class if there is a polynomial reduction
that can be used to transform that problem into any other problem in this class. NP-
hard problems can be described as those problems that are at least as hard as the hardest
problems in the NP class and therefore it is believed that no efficient algorithm exists
for solving these problems unless P = NP. Some of the NP-hard problems have not yet
been proven to be in NP. Therefore, it is believed that when tackling a problem that is
NP-hard or NP-complete, the focus should not be in finding an efficient algorithm (it is
believed that such an algorithm does not exist) but instead on designing algorithms that

produce high-quality solutions in practical time. Figure 2.1 shows a Euler diagram for
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2 Background and Related Work

NP hard

NP
complete

Figure 2.1: Euler diagram for different classes of complexity

these different classes of complexity.

Since solving NP-hard problems with exact algorithms is not efficient in terms of com-
putational time, non-exact solving methods such as heuristics, meta-heuristics and re-
cently hyper-heuristics have received more attention and their potential revealed. These
approaches do not offer a guarantee of finding optimal solutions. However, it is possible

to produce high-quality solutions in reasonable computational time.

2.2 Three-Dimensional Strip Packing Problems (3D-SPP)

One of the problems investigated in this PhD thesis within the context of freight trans-
port operations is the three-dimensional strip packing problem (3D-SPP) for which some
tailored heuristics have been developed. In the 3D-SPP we are given a container and a set
of rectangle boxes. The problem is to pack all the boxes inside the container in the most
efficient way. The container has fixed width and height but the length can be extended
as needed. Each of the boxes has fixed given dimensions for width, height and length.
The goal when solving the 3D-SPP is to minimise the length of the container required to

pack all the boxes. There are different constraints that arise in the 3D-SPP which impose
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2 Background and Related Work

additional restrictions on how the boxes can be packed into the container, e.g. support
constraint, stability constraint etc. The 3D-SPP is a combinatorial optimisation problem
(Papadimitriou & Steiglitz 1982) which is also NP-hard (Hopper & Turton 2001).

The 3D-SPP is classified as a 3/B/O following the classification proposed by Dyckhoff
(1990). Waéscher et al. (2007) classify this problem as a three-dimensional rectangular
open dimension problem with one variable dimension (3D-R-ODP). The 3D-SPP can be

defined as follows:

e Input:

— A set of rectangular boxes with given fixed dimensions for width, height and

length.
— A container with given fixed width and height, length can be extended as
needed in order to pack all the boxes.
e Output:
— A packing plan showing the position of each rectangular box within the con-
tainer.
e Objective:

— Minimise the length of the total packing or the length of the container used.

e Constraints:
— All boxes must be packed.
— All boxes must be packed fully inside the container.

— All boxes must be placed orthogonally (i.e. the edges of the boxes should be

parallel to the edges of the container)

— Boxes cannot overlap.

20



2 Background and Related Work

One key difference between the 3D-SPP and the related three-dimensional container
packing problem (3D-CPP) is that in container packing, all three dimensions of the
container are pre-defined and fixed. Another difference is that in the 3D-SPP all the
boxes must be packed but this is not always the case in a solution to a 3D-CPP. As
mentioned above, the original objective in 3D-SPP is to minimise the required length of
the container needed for packing all boxes. However, in order to compare different packing
methods for 3D-SPP’s instances, measuring only the container length is not sufficient. For
example, consider an instance with one box, the width and height of the box are the same
as the container and the length of the box is 1. Obviously, this instance has an optimal
solution of length 1. Similarly, an instance with a box of length 100 (same width and
height as the container) will have an optimal solution of 100. The two solutions for these
two different instances have different lengths but both are optimal. When comparing
the performance of packing methods for a collection of instances, the used length is not
always the true reflection of the method’s efficency. Therefore, alternative measurements
are used to assess the quality of the packing. The optimal length is defined as the length
of the container required to accommodate the volume of all the boxes. That is, if we
could melt all the boxes into liquid form and then pour the liquid into the container of
fixed width and height but expandable length, then the length of the container required
to hold all the liquid is called the optimal length. The optimal length is calculated as the
total volume of all boxes divided by the surface area of the container (width multiplied
by height). The formula to calculate the optimal length is as follows:

optimalLength = [>_ b.Volume/C.Width x C.Height]

where b.Volume is the volume of all input boxes, and the width and height of the
container are given by C.Width and C.Height respectively.

The utilisation of the length of the container is calculated by:

utilisation = optimal Length/actual Length

The higher the utilisation achieved, the shorter the optimal length required for packing
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2 Background and Related Work

all boxes in a 3D-SPP instance.

Strip packing problems have many practical applications. In the case of 2D-SPP ap-
plications include material cutting, pallet loading and process scheduling while 3D-SPP
applications include carrier load building, container design and resource allocation (Coff-
man et al. 1978). In the literature, the two-dimensional strip packing problem has re-
ceived considerable attention from researchers, but research on the three-dimensional
problem is limited in comparison. The 3D-SPP can be seen as a generalisation of the
2D-SPP, therefore we can solve the two-dimensional case using a method for 3D-SPP by
assuming that the height of each box and the container is 1.

Bischoff and Ratcliff (1995) introduced many practical requirements for cutting and
packing problems. A number of practical constraints include: orientation constraints,
handling constraints, load stability, grouping of items, multi-drop situations, separation
of items within a container, complete shipment of certain item groups, shipment priorities,
complexity of the loading arrangement, container weight limit and weight distribution
within a container. In the research work described in this thesis, rotation constraints and
stability constraints are taken into account.

Approaches to tackling 3D-SPP include: heuristics and other approximation algo-
rithms, as well as meta-heuristics and hyper-heuristics. The following subsections review
some of these methods and briefly describe some of the most relevant ones for the work
developed in this thesis. For a more detailed discussion of these and other search method-

ologies and optimisation techniques, please refer to Burke & Kendall (2005).

2.2.1 Heuristics and Approximation Algorithms

A heuristic can be described as a “rule of thumb” approach. Based on experience and
knowledge about the problem at hand, such an approach can be developed to produce
a solution. A heuristic approach can generate reasonably good solutions within a short

computational time and moderate memory requirements. These advantages tend to
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2 Background and Related Work

make heuristics a good choice in practice where optimality is not essential. However,
since there is no guarantee about the quality of solution achieved, it is of course possible
for a heuristic to produce poor or even infeasible solutions. Approximation algorithms
also offer good solutions in practice and they also offer some guarantee for the quality of
the solution by providing a bound for the worst case solution. In general, approximation
algorithms are preferred over heuristics because of this quality assurance. However, to
the best of our knowledge, for cutting and packing problems in general, and particularly
for the 3D-SPP, state-of-the-art approximation algorithms only offer solutions with lower
bounds that are very close to the quality of solutions found by simple or sometimes even
inefficient packing algorithms. Therefore, heuristic approaches have received much more
attention in 3D-SPP research.

The Next Fit Decreasing Height (NFDH) approach was proposed by Li & Cheng (1990)
to tackle the 3D-SPP. NFDH first sorts boxes in decreasing order of height. Then, one
box is packed at a time with the next box in the order packed to form horizontal strips.
The next strip is packed on top of the previous strip to form layers of boxes. The process
continues until all boxes have been packed. Li & Cheng (1992) improved their previous
approach and called it LLm. The input boxes are sorted in non-increasing order of
height and then they are split into subsets. The total bottom area of each subset has to
statisfy a range of values. Each subset is packed into the container by a two-dimensional
subroutine. Subsequent approximation algorithms, which concentrate on performance
guarantee, have been introduced such as Miyazawa & Wakabayashi (2007), Miyazawa &
Wakabayashi (2009), Jansen & Solis-Oba (2006) and Bansal et al. (2007).

Many of the heuristics that have been proposed for 3D-SPP are adaptations of ap-
proaches for the 2D-SPP. Most of the heuristics for 3D-SPP are constructive algorithms.
A constructive algorithm starts with an empty container and at each iteration, a box or
a group of boxes is packed into the container until there are no boxes left or a given ter-

mination criterion is reached. Usually, the selection of the next box to pack and where to
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2 Background and Related Work

pack it in the container, are decisions based on experience or knowledge of the problem.
Some of the constructive heuristics proposed in the literature are described next.

Baker et al. (1980) proposed the bottom left (BL) heuristic where input boxes are sorted
according to their bottom area. Boxes are packed by placing them at the top right part
of the container then falling down to the bottom of the container and then moving to
the left as far as possible. Chazelle (1983) improved the BL heuristic by placing the box
at the bottom most position then moving it to the left as far as possible, and called this
approach bottom left most fill (BLF) heuristic. Hopper (2000) used different criteria to
sort the sequence of boxes before placing them into the container. Then, the best result
of all the criteria is selected for actually placing the boxes. The DBLF (deepest bottom
left fill) heuristic chooses the deepest position in the container and then moves to the
bottom or lowest position to finally move to the left as much as possible. The best-fit
heuristic (BF) was introduced by Burke et al. (2004). This BF procedure considers the
bottom most place in the container as candidate position and then considers the box or
shape that is a best-fit for that candidate position. If there is no shape that fits into the
current candidate position, the next candidate position (possible higher position in the
container) is considered. Karabulut & Inceoglu (2005) proposed the deepest bottom left
fill (DBLF) for 3D-SPP based on the BLF heuristic for 2D-SPP (outlined above). Allen
et al. (2011) introduced a three-dimensional best-fit heuristic (3BF) for the 3D-SPP,
based on the BF heuristic for the 2D-SPP. This heuristic is a constructive approach that
finds the boxes that fit the best in the remaining gaps of the container. The gap is defined
as a free-area on the surface parallel to the deepest surface of the container. To cater for
the situation where there might be more than one box that fits in a gap, four different
criteria were proposed to break ties. Similar to the process followed in the 2D-BF, if the
deepest gap cannot be filled, the next deepest gap is considered. This process continues
until there are no boxes left to pack. Other different constructive heuristics have been

proposed in the literature. George & Robinson (1980) proposed a layer approach where
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the container is divided into vertical layers. Each layer is then divided into horizontal
strips and each strip is filled by a row of boxes. Bischoff & Marriott (1990) combined the
2D heuristic from George & Robinson (1980) to fill the layer of boxes. Bortfeldt (1999)
proposed approaches based on algorithms for container loading algorithms.

As stated by Bortfeldt (1999), the first algorithms for tackling the container loading
problem were proposed in Bortfeldt & Gehring (1998) and Bortfeldt & Gehring (2001).
In order to solve the strip packing problem using an algorithm for the container loading
problem, there are two approaches: open container and closed container. In the open
container approach, the algorithm solves a container loading problem considering an
unlimited length for the container. In the closed container approach, the container is
given a certain length large enough for the problem in hand. After each successful feasible
packing is achieved, the length of the container is reduced and the packing repeated. This
process of finding a packing for a container with smaller length is repeated until there is no
feasible packing found. It is important to note that the stability constraint is included
in Bortfeldt (1999). In Bortfeldt & Mack (2007), the container loading algorithm by
Pisinger (2002) was adapted to solve strip packing problems using both open and closed
container approaches. Recursive tree searches are carried out to determine the layer
depth and strip height and weight. In both Bortfeldt (1999) and Bortfeldt & Mack
(2007), the closed container approach produces superior results when compared to the
open container approach. A property that layer building approaches have is that the

quality of the packing depends on the quality of the layer depth selection.

2.2.2 Meta-heuristics

As mentioned in subsection 2.2.1, constructive heuristic approaches for strip packing
problems normally consist of a sequence of boxes being packed into the container or a
sequence of boxes that define the layer depth. It is then very useful to apply meta-

heuristics to improve the result provided by the constructive heuristics. In general, the
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term “meta-heuristic” describes a technique that seeks to generate better candidate solu-
tions from the current solution. It is generally accepted that meta-heuristics are search
techniques that can be applied without much knowledge of the optimisation problem
domain. A number of well-established meta-heuristics are outlined next.
Hill Climbing

Hill climbing is one of the simplest meta-heuristic algorithms. It takes the current
solution and makes a modification to it in order to create a new candidate solution. The
most common modification involves simple local moves like swapping or changing an
item in the current solution. The modification also involves some degree of randomness
to increase the explorative degree of the search. If the new solution is better than the
current solution then the current solution is replaced by the new solution to then continue
with the next iteration of the search. This process is repeated until the algorithm reaches
some termination condition such as fixed computation time or no further improvement to
the current solution for a number of iterations. It is possible that hill climbing generates
more than one new candidate solution from the current one, these are usually called
neighbourhood solutions and typically the best neighbour is selected. Given that hill
climbing explores solutions that are in the neighbourhood of the current solution, it is
common that hill climbing gets stuck in local optima, i.e. best solutions in the current
neighbourhood. However, a local optimum solution might not be the best global solution.
There are different methods to escape local optima. One common approach is to generate
a random solution and use this one as the current solution in order to then explore a
different part of the search space. For this, new solutions generated randomly should not
be reachable from previous solutions by the local moves used in the algorithm to avoid
returning to previously visited solutions.
Simulated Annealing

Simulated annealing (SA) was introduced by Kirkpatrick et al. (1983) and can be con-

sidered as an extension of hill climbing but with the probability of accepting some worse
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solutions. It took inspiration from the annealing process in metal production whereby
metal is heated and cooled a number of times to form a better structure and reduce
defects. SA as a search algorithm starts from a “high temperature” and goes through
a “cooling period” in which, after each iteration, the temperature is reduced gradually.
At each iteration, if a new candidate solution is worse than the current solution, there
is still a chance, based on some probability calculated using the current temperature, to
take the new candidate solution as the current solution. The higher the temperature the
higher the chance to accept a worse candidate solution to become the current solution.
It is also possible for the temperature to be increased again, i.e. re-heating the search,
after a period of cooling. The standard acceptance criteria function in SA is P(Ad,T)
where Ad is the difference in fitness between the new candidate solution and the current
solution, T is the temperature which normally changes with the search time, the longer
the time the lower the value of T (unless re-heating takes place).
Tabu Search

Tabu search was first introduced by Glover & McMillan (1986) and is also a kind of
hill climbing meta-heuristic but incorporates memory. Tabu search maintains a fixed
length tabu list to escape the local optima. The tabu list can contain previously found
solutions, or solution’s attributes, or modifications of solution that are avoided. Tabu
search aims to prevent visiting already seen solutions by constantly updating the tabu list
information. At each iteration, tabu search generates a number of neighbour solutions
and selects one that is not in the tabu list. It is possible that the best of all neighbour
solutions is considered even if it is worse than the current solution. This is to avoid
staying in the current local optimum. Tabu search is often considered as hill climbing
with fixed size memory.
Genetic Algorithms

Genetic algorithms (GA) are inspired by natural evolution. An introduction to GA can

be found in Goldberg & Holland (1988), however the application of GA can be traced
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back to much earlier reports by Fraser (1960) and Bremermann (1962). In GA, a solution
is encoded in the form of a chromosome. The GA starts with an initial process where
a set of solutions is generated. This process normally involves some random generation
of solutions. GA use a fitness function to evaluate the quality of each chromosome or
solution. From the initialisation, GA maintain a selection of solutions called “population”
and evolves this population to obtain better solutions. The evolution process starts with
the selection procedure where a number of chromosomes from the current population are
selected, normally good quality chromosomes are preferred. Genetic operators such as
crossover and mutation are used to generate new chromosomes which are called offspring.
The new offspring are evaluated and some of the best offspring will be selected (survive)
to form the population in the next generation. The evolution process continues until the
termination criteria are reached. Common termination criteria are a specified number
of iterations (generations) or a condition is found. Other factors involved in GA are,
for example, the selection procedure, the parameter values (such as population size),
crossover and mutation probabilities, etc.

The application of meta-heuristics to the 3D-SPP has been reported in many papers
in the literature. Bortfeldt (1999) proposed two meta-heuristics for the 3D-SPP, one
was tabu search and the other one was a genetic algorithm or GA. In that work, a
parallel implementation was also used where multiple settings of meta-heuristics worked
in collaboration. Allen et al. (2011) integrated tabu search with the best-fit (BF) heuristic
to overcome the difficulty at the end of the packing where the sequence of boxes to pack
is critical for the quality of the final result. The initial part of the packing is completed
using 3BF until a certain number of boxes are left to be packed. Then, tabu search is
used to generate packing sequences for the remaining boxes. Each box is packed in the
container using the deepest bottom left fill placement strategy. It is also worth noting
that for packing and cutting problems, solutions are represented by sequences of boxes

and then it becomes difficult to apply genetic algorithms or other evolutionary algorithms.

28



2 Background and Related Work

This is because the genetic operators for generating offspring are very likely to violate
the hard constraints in the 3D-SPP. For example, in two different solutions a box can
be packed at the beginning in one solution and at the end in another solution. Then, a
crossover of these solutions might create two offspring, one with the same box twice, at
the beginning and at the end of the solution, and the other offspring not containing the
box at all. This would clearly violate one of the key constraints in the 3D-SPP hence

repair operators would be needed.

2.2.3 Hyper-Heuristics

A recent research direction that has been explored for tackling optimisation problems are
the so-called “hyper-heuristics” which can be described as “heuristics to choose heuristics”
(Burke et al. 2003). The idea is to automate the design of heuristics which normally re-
quires human experience or knowledge of the problem domain. Designing a very efficient
heuristic or meta-heuristic is likely to involve high cost and a long development time.
A heuristic can be very effective in tackling a certain set of constraints but could have
limited effect when other constraints are introduced. Moreover, there is a demand for
reasonably good solutions to be generated in a reasonable amount of time. Therefore, a
hyper-heuristic framework is based on trying to automate the learning process by com-
bining heuristics or the generation of heuristics. This “hyper-heuristics” approach can
be classified as the automated combination of heuristics or the automated generation of
heuristics (Burke et al. 2010).

Hyper-heuristics have had success in solving other optimisation problems such as pro-
duction scheduling (Tay & Ho 2008, Vazquez-Rodriguez & Petrovic 2010), educational
scheduling (Burke et al. 2006) and vehicle routing problems (Garrido & Riff 2010, Garrido
& Castro 2009) among others. For cutting and packing related problems, hyper-heuristics
have also been applied, for example to one-dimensional packing (Ross et al. 2002, 2003).

For the 3D-SPP in particular, Pham (2011) proposed a univariate marginal distribu-
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tion algorithm-based (UDMA) hyper-heuristic. This algorithm splits the container into
sections and stores a collection of possible heuristics and measures the possibility of
heuristic selection for each section of the container. The basic approach for the packing
is an improved 3BF heuristic. The UDMA approach starts the packing with an empty
container. The modified 3BF selects the smallest gap and the gap belongs to a section of
the container. For each section, a heuristic is selected based on some heuristic selection
probability. The packing is then processed until a full packing plan is completed. In each
iteration, good solutions are collected and the heuristic selection probability is updated.
As the process continues, good heuristics for a particular section will have a higher chance
of being selected leading to a good mapping of which heuristics to choose for different
sections of the container. For example, a box with more restricted rotation should be
packed first to allow a box with more flexibility at the end of the packing. Therefore,
a heuristic which chooses boxes that have a more restricted rotation constraint or less
possible rotation for packing, will have a higher chance of being selected at the beginning

of the packing but less chance of being selected towards the end of the packing.

2.2.4 Benchmark Data Sets

There are different benchmark data sets that have been proposed for packing problems.
One of the most popular is the BR data set introduced by Bischoff & Ratcliff (1995)
which contains 7 data sets (BR1-BR7) for container loading problems each with 100
instances. Each instance includes a set of boxes and a single container. The container
has fixed width, length and height. Each BR data set has a fixed number of box types.
For each box type, the dimensions of the box, the number of boxes and the rotation
constraint are provided. The rotation constraint indicates the rotation ability of the
box type around the x, y or z axes. If a box type has an axis rotation ability then
it can rotate around the corresponding axis. An example of a box type from the BR

data set with z axis rotation ability is shown in Figure 2.2. If a box type has rotation
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ability on all three axes then there are maximum 6 possible rotations. The instance
characteristics of the BR data sets BR1 to BR7 change from weakly heterogeneous to
strongly heterogeneous. A weakly heterogeneous problem can be described as instances
with a “small” range of box types. Whereas the strongly heterogeneous problem has
a “large” range of box types. For example, the number of box types in each instance
of the set BR1 is 3 and this increases to 20 box types in the set BR7. The BR data
set was extended further to sets BR8-B15 by Davies & Bischoff (1999). These data
sets have the same format as sets BR1-BR7 with a single container and 100 instances
per set but the number of box types are increased, each instance in BR8 has 30 box
types and each instance in BR15 has 100 box types. This BR data set is available from
the OR Library (http://people.brunel.ac.uk/~mastjjb/jeb/info.html). To investigate the
3D-SPP, the BR data set can be adapted by keeping the same width and height of the
container but extending the container length to fit all boxes.

In this thesis, in addition to the BR data set, the BRXL data set proposed by Bortfeldt
& Mack (2007) is also used. The BRXL data set is an extension of the BR1-BR10 data
sets to BRXL1-BRXL10 respectively. The container in the BRLX instances has the same
width and height as that in the BR data set, and the length can be extended. However,
the number of each box type is increased by a factor of 1000/n where n is the original
number in the BR data set. Since this can result in a non-integer value, the number of
boxes is rounded and the quantity of the last box type is adapted to have a total box
number of 1000. The rotation constraint of each box type is the same in the BRXL data

set as that in the BR data set.
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Input box Rotated box

Figure 2.2: Box with z axis rotation properties

2.3 Multiple Carrier Transportation

In this section, the transportation planning problem arising in a real-world business
operation at 3T Logistics Litd is described. This problem is identified as a Single-customer
Multiple-carrier Transport Planning problem in section 2.3.1. In Section 2.3.2 we provide
some background about clustering algorithms which are a critical component in the
solution approach for this problem. Section 2.3.3 presents a brief literature review of
the vehicle routing problem with time windows which shares some similarities with the

Single-customer Multiple-carrier Transport Planning problem tackled in this thesis.

2.3.1 Single-Customer Multi-Carrier Transportation Planning

3T Logistics Ltd (3T) is a fourth-party logistics (4PL) company based in Leicester, UK.
The 4PL concept was introduced by Andersen Consulting (now Accenture) in 1997 as
a result of a consultant contract with its customers (AliReza & Mehdi 2010, Bedeman
& Gattorna 2003). In this particular model, customers outsource logistic operations to
a 4PL company. Different to the 3PL model, where the 3PL company owns vehicles
and operates the physical deliveries, 4PL companies only deal with the management of

the logistic operations for the customer. Due to nature of the model, most 4PL compa-
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nies work with intellectual capital and IT systems. 3T provides logistic solutions via its
own transportation management system. A considerable part of the services provided
by 3T is planning the delivery of goods from customers to consignees via a network of
carriers. This problem is identified by Landa-Silva et al. (2011) as a Single-Customer
Multi-Carrier Transportation Planning problem. The problem is to build vehicle loads
(Eilon & Christofides 1971, Agbegha et al. 1998) and plan the routing of vehicles con-
sidering delivery time windows (Berger & Barkaoui 2003, Braysy 2003b, Ibaraki et al.
2002). Landa-Silva et al. (2011) proposed a hybrid method including clustering, heuris-
tic, local search and integer programming which generated significant savings in 3T’s
France operations. After a long process of observation and identification of practical
operational requirements, analysis and modelling, 3T’s transport planning problem was
defined as Single-Customer Multi-Carrier Transportation Planning (SMTP). SMTP can
be described in short as follows: a set of shipments is collected from the same source and
then delivered to a range of destinations using a set of carriers. The basic requirement is
to generate the most cost effective and high-quality transportation plans. The problem
can be described in more detail as follows. From a source location, shipments are to
be sent to customer destinations. Each shipment has different sizes and delivery time
windows. Depending on their size, shipments are classified into Full Truck Load (FTL),
Less Than Truck Load (LTL) and Groupage. It is possible to have multiple shipments
going to the same destination on the same day of delivery. Shipments will be allocated
to a plan with different transportation modes: load mode or parcel mode. A set of
carriers is available to delivery the shipments. Each carrier will have its own pricing
defined according to the transportation mode required and their availability. A common
requirement in the SMTP faced by 3T is that backward mileage is undesirable. Backward
mileage is when the next delivery is closer to the source than the previous delivery, i.e.
it is expected that each delivery is further from the source than the previous one. The

following are the constraints arising in SMTP:

33



2 Background and Related Work
e Vehicle capacity must not be exceeded.
e Carrier availability must be obeyed.
e The working time of each vehicle must not exceed more than 12 hours continuously.
e The starting point of each vehicle must be the source location.
e Backward mileage must not exceed 15 miles.
e For each location, loading time is considered to be 30 minutes.
e Each vehicle can visit up to 6 destinations.

e Delivery must be made during the specified time window.

The quality of a transportation plan is measured by considering carrier cost, time win-
dow violations, driving mileage, driving time, vehicle utilisation and backward mileage.
Due to commercial sensitivity of the information, details of the evaluation function can-
not be published. In summary, it is a weighted sum of a number of factors such as
working hours, distance, etc. However, time window violations and cost are the major
factors and the other factors are then used as tie breakers. The current automated solu-
tion acts as a decision support system and there is no evaluation of the overall quality of
all plans. At the end of the algorithm execution, it is up to the human planner to decide
if there are changes required to the generated plan in order to suit live operations. This
approach is necessary because of the dynamic changes that happen during operations
and such changes are not anticipated in the automated solution process. For example,
the availability of a carrier may change or special and urgent deliveries may arise after
the plans have been generated.

To the best of our knowledge, single-customer multiple-carrier problem was first men-
tioned by Brown & Ronen (1997) and were referred to as consolidation customer order

into truckloads. There are two main differences in that problem by Brown & Ronen
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(1997) from the SMTP problem described by Landa-Silva et al. (2011): the truck may
load from more than one source and there may be a requirement to have flexibility in
the result. Brown & Ronen (1997) approach starts by generating all combinations of
the order into loads. Due to the restriction of tight operational rules, less than 10% of
the combinations are evaluated. From validated combinations, an Elastic Step Partition
model has been used to build the load where no order is assigned onto more than one
load. The use of the Elastic Step Partition model is critical to allow constraint violation
at a cost as described by Brown & Ronen (1997) . This is different to the use of Linear
Programming by Landa-Silva et al. (2011). Caputo et al. (2006) investigate transport
planning with two different modes: full truck load (FTL) and less than truck loads (LTL).
These are two popular costing methods which 3T Logistics Ltd has encountered within
the transport industry. In Caputo et al. (2006), orders are combined into compatible
order group by compatible geographical and cost requirement criteria. An optimisation
process is performed on each group. The optimisation starts with the allocation of a large
order which can only be delivered by full truck load into an optimal carrier. The rest of
the orders are heuristically divided into FTL and LTL groups. Division processes start
with all orders allocated to FTL groups. Then, orders with the highest cost difference to
the average of the FTL group are transfered to LTL group. The division process contin-
ues until the number of FTL is reduced by 2. The core of the remaining process is the
load building from orders in FTL groups. Caputo et al. (2006) use GA to find a solution
by encoding the assignment of each order to each truck into a binary format. There
are two main points which are different to Landa-Silva et al. (2011). These are: order
quantity can be split between trucks and there are no constraints in available quantity
of carrier. Giinther & Seiler (2009) investigate a similar problem compared to Caputo
et al. (2006) with additional constraints such as time windows and temperature specifica-
tions. Giinther & Seiler (2009) propose a two-phase approach. The first phase combines

orders using four combination schemes: bundling, inbound milk run, outbound milk run
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and pick-up delivery. The bundling scheme targets similar orders with the same source
and destination. The milk run schemes combine orders which share either the source or
destination. The pickup delivery scheme combines orders where the source is close to
the destination of other orders. The second phase selects generated order combinations
to maximise cost savings. There are two options: first to use linear programming and
second to use heuristic. The heuristic approach starts by selecting the maximum cost
saving combination until all orders have been selected. The linear programming option
always performs better than the heuristic one, however it was also mentioned in the same
article that heuristics were developed so that it can be integrated into a Transportation
Management System (TMS) environment. There are two major differences to Landa-
Silva et al. (2011): there is no restriction of carrier availability and the orders can come

from different sources.

2.3.2 Clustering Algorithms

The approach described in Landa-Silva et al. (2011) starts with clustering the various
destinations and then building routes based on those clusters. Therefore, good clustering
plays a major role in producing high quality transportation plans. In this section, a
literature review is provided on clustering algorithms that are related or applicable to
the SMTP.

A clustering algorithm is a form of unsupervised learning in which data elements that
do not have pre-defined label are grouped into clusters. A clustering algorithm automat-
ically takes input data and separates it into a finite and discrete number of classes so
that each class contains data elements that share some similarity. In general, there is no
one clustering algorithm that provides a high quality solution for all problem domains.
In the context of this thesis, clustering algorithms are used to classify the destination
locations into geographical clusters. Then, vehicles will make deliveries of shipments to

those destinations that belong to the same cluster or group. For example, shipments
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around Nottingham will be loaded and delivered with the same vehicle. Several surveys
have been published to review different types of clustering algorithms and studying their
advantages as well as disadvantages. Clustering algorithms can work with many types
of data input and similarity measures. In the SMTP context, data input is refered to as
points (locations) on a two-diemensional surface. Comprehensive reviews of clustering
algorithms can be found in Jain et al. (1999), Xu & Wunsch (2005) and Kotsiantis &
Pintelas (2004). Clustering algorithms can be classified into different categories: hierar-
chical method, partition method, density-based method, grid-based method (Kotsiantis
& Pintelas 2004).The fuzzy-based, kernel-based and neural network-based methods are
summarised by Xu & Wunsch (2005). A combination of clustering algorithms is also pos-
sible, for example Strehl & Ghosh (2003) proposed different ways to combine different
clustering techniques.
Hierarchical Clustering

Hierarchical clustering algorithms take data input and build a tree structure of clus-
ters called a dendrogram. There are two major approaches in hierarchical clustering.
The first approach is ameliorative (bottom-up) where data points are merged together
to form larger clusters for the next level up the tree (Jain & Dubes 1988). The other
approach is divisive (top-down) which starts with all data points belonging to a single
large cluster(Kaufman & Rousseeuw 1990). At each level going down from the top, clus-
ters are separated into smaller clusters. The process continues until some termination
condition is met. A typical condition for termination is when the required number of
clusters is found. It is also possible to fully build a tree structure of clusters so that
different clusters can be identified at different levels of the tree. One of the most popular
algorithms in hierarchical clustering is linkage metrics. As mentioned above, hierarchical
clustering involves splitting or merging data points to form clusters. The mechanism
of merging and splitting clusters depends on cluster similarity or distance measurement.

The similarity of the clusters is called linkage metrics. Using different linkages can greatly
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affect the tree structure of the cluster and therefore affect the overall outcome of the al-
gorithms. Common types of linkage are: single linkage, complete linkage and average
linkage. Single linkage is the distance between the closest items of two clusters. Complete
linkage is the distance between the furthest items between two clusters. Average linkage
is the average distance of all possible distances between items of two clusters. One of
the most popular hierarchical clustering algorithms is SLINK which was introduced by
Sibson (1973). SLINK is an ameliorative single linkage cluster algorithm. An example of
complete linkage can be found in Defays (1977) and an example of average linkage can
be found in Voorhees (1986). One of the properties of this particular type of approach is
that linkage based clustering naturally produces a cluster with a convex shape. The per-
formance of linkage based algorithms is affected if the data contains non-convex clusters.
This leads to the next class of hierarchical clustering where arbitrary shapes are taken
into account. Guha et al. (2001) presented clustering using a representative (CURE)
algorithm. Instead of using one point to represent a cluster, CURE uses a number of
points that are selected to represent a cluster. The similarity measurement between clus-
ters is calculated by combining the distance between representative points. CURE can
detect non-spherical shapes by choosing representatives at different locations across clus-
ters. After merging, representative points of the cluster are sunk to the centroid of the
cluster helping to avoid the situation where an outlier point is selected to represent the
cluster. Robust clustering using linkage ROCK algorithm was introduced by Guha et al.
(2000) which clusters the data set in a similar manner to CURE, however, it works with
categorical attributes of data. A different presentation of the cluster of CHAMELEON
algorithms was proposed by Karypis et al. (1999). For each point, a number of closest
or most similar points are stored in a graph and the others are removed. CHAMELEON
algorithms have two stages: the first stage generates a graph of each point with its near-
est neighbour point called k-nearest neighbour graph; the second stage merges clusters

together and forms a larger cluster in an agglomerative manner. The measurement of
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similarity between clusters is made using both inter-connectivity and relative closeness
(Berkhin 2006).
Partition Method

As described above, hierarchical clustering, data input or data points are merged with
other points to form clusters. Partition method algorithms start by assigning data points
to clusters and iteratively improve the clustering by relocating points between clusters.
This is very different to hierarchial clustering where there is no change to a cluster after
the cluster has been formed. In order to start partition clustering, it is important to have
a representation of a cluster. There are three main types of representations: centroid,
medoid and probabilistic models. Centroid algorithms use generated points to represent
the cluster centre. K-Mean is one of the most popular algorithms of partition methods
and it is a centroid clustering algorithm. This algorithm separates input points into a
predefined number of k clusters. It starts by randomly choosing &k centroid points. Then,
at each iteration, input points are allocated to the nearest centroid. After each alloca-
tion, the centroid points are re-calculated based on the current points in each cluster.
The process continues until there is no change in the points allocated to each centroid. A
corresponding algorithm to K-Mean is the K-Medoid algorithm introduced by Kaufman
& Rousseeuw (1987). Medoid algorithms use actual input data points to represent the
cluster centre. Similar to K-mean, K-Medoid selects k points from input points to be-
come medoid. Other points are then associated to the closest medoid. In each iteration,
each medoid is evaluated with all other non-medoid points and swaps between points to
improve the clustering. This process continues until there is no change in the medoid. K-
Mean and K-Medoid are suitable algorithms for large data sets and when a fast running
time is required. However, these methods are sensitive to noise and termination normally
results in a local optimal point. Performance of clustering algorithms depends on the
number of clusters selected. To overcome this issue, different values for the number of

clusters are normally tried for the given problem domain or, alternatively, heuristics can

39



2 Background and Related Work

be used to find the best solution. Probabilistic clustering methods use statistical distribu-
tion models to represent clusters. In probabilistic clustering, a point belongs to a cluster
when it has the highest possibility of belonging to a corresponding distribution model.
Most of the probabilistic models algorithms are based on the Expectation-Maximisation
(EM) algorithms described by McLachlan & Krishnan (2007). One of the most popular
models for EM clustering is the Gaussian Mixture Model. EM starts with a randomly
generated model with random parameters. The model is used to calculate the possibility
of a point belonging to a cluster and separates them by assigning them to the cluster with
the highest probability. Points belonging to the same cluster are then used to re-evaluate
the parameters of the model. This process continues until it reaches a stable model.
Density-Based Clustering

Density-based clustering algorithms classify the data input into clusters by using the
density of points in an area. An area with high density can be a non-convex or arbitrary
shape cluster and therefore density-based clustering can identify non-convex clusters.
This is an advantage over the partition method clustering algorithms such as K-Mean.
The most popular density-based clustering algorithm is DBSCAN as described by Ester
et al. (1996). DBSCAN algorithm is driven by two parameters: € - the maximum distance
between two neighbour points and MinPts - the minimum number of neighbour points

required. DBSCAN defines the following:

e Core object is a point which has more than MinPts point within a distance e.

e Point z is directly density reachable to point y when the distance from z to y is

less than € and «x is the core object.

e Point x is density reachable to point y when there is a directly density reachable

path from one point to the other point with starting point x and ending point .

e Point z is density connectivity to point y when there is another point z that is

density reachable to x or y.
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Based on the above definitions, a cluster is formed by core points and points with
density connectivity to a core point. Points belonging to a cluster that are not the core
point are border points. Other points which do not have any connection are considered
noise. The DBSCAN algorithm has limitations in searching for neighbours of a point
with high dimensional data. However, in the context of this thesis, two-diemensional data
is the main interest. A generalisation of DBSCAN, called GDBSCAN, was introduced
by Sander et al. (1998). DBSCAN is also sensitive to the selection of parameter values.
There is no simple method to identify the best value for € and MinPts given the data
points. To overcome this DBCLASD, introduced by Xu et al. (1998) can be used as it does
not need both parameters. In addition, DBSCAN has a fixed € which effectively restricts
the density of clusters, therefore, clusters with variable density are not recognisable by
DBSCAN. OPTICS clustering algorithms proposed by Ankerst et al. (1999) also address
the limitations of DBSCAN. OPTICS introduce two additional definitions: core-distance
and reachability-distance. The output cluster analysis of OPTIC algorithms is not the
clustering itself, but a cluster ordering structure which can then be used to extract the
cluster. OPTICS can find clusters which have density less than €.

Grid-Based Clustering

Grid-based clustering splits the area into smaller segments and applies clustering op-
erators to the segments. Each segment (e.g a cube in three-dimensions or a region in
two-dimensions) can contain items. A single item segment is called a unit. Segments that
contain many elements are dense segments and clusters are made by combining dense seg-
ments together. It is worth noting that while density-based clustering described above
works best with numerical attributes, grid-based clustering works best with different
types of attributes (Berkhin 2006). STING clustering algorithms proposed by Wang
et al. (1997) divide data input into tree structures of grid cells. For each cell, two types
of parameters are stored: attribute-dependent and attribute-independent. The attribute-

dependent parameters are: mean, standard deviation, minimum, maximum and distribu-
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tion type. The attribute independent parameter is the number of items in the cell. After
the tree structure is generated, similar cells are merged as in DBSCAN. CLIQUE is a clus-
tering algorithm for high dimensional data input. For each of the attribute dimensions,
the value distribution of each attribute is stored in the one-dimensional array. CLIQUE
combines a set of two attributes to create a two-diemensional distribution space. Dense
rectangles in two-dimensional distribution space are represented in a connected graph.

The cluster is formed in a bottom-up fashion by merging the vertices of the graph.

2.3.3 Vehicle Routing Problems With Time Windows

The vehicle routing problem (VRP) is a real-world optimisation problem which has re-
ceived much research interest over the last few decades. In simple terms, the vehicle
routing problem refers to finding routes for the delivery of shipments to customers using
a fleet of vehicles and subject to some constraints whilst aiming to maximise a specific
objective. For example, the objective could be to maximise vehicle utilisation while the
constraint could be to satisfy the time windows given for the deliveries (Balakrishnan
1993, Desrosiers et al. 1995, Tang et al. 2009). Other objectives that can be considered
are the minimisation of the number of vehicles required (Solomon 1987, Briysy 2003a)
or minimisation of the distance travelled and cost (Gendreau et al. 1996, Tas et al. 2013).
Several extensive surveys have been conducted for the VRP and its variants, for example
Laporte (1992), Solomon (1987), Laporte et al. (2000), Berbeglia et al. (2007) and Golden
et al. (2008). For the scope of this thesis, some VRP literature that is related to our
SMTP problem is reviewed. As described in Section 2.3, the SMTP problem has some of
the constraints that arise in VRP problems, such as time windows, vehicle capacity, etc.
Therefore, the focus of this thesis is on the Vehicle Routing Problem with Time Windows
(VRPTW). The VRPTW can be described as the problem of generating delivery routes

for a fleet of vehicles with the following constraints:

1. All deliveries have the same starting point, i.e. a single depot.
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2. The sum of the size of all shipments in a single route cannot exceed the given

vehicle capacity.
3. Each delivery destination has a time window with a given start time and end time.

4. Each delivery must be made within the given time window. If the vehicle arrives
at a delivery point before the start time of the time window, then the vehicle has

to wait until the time window starts.

5. After completing the last delivery, each vehicle comes back to the starting point or

depot.

6. Each destination is only visited once.

The VRPTW has received much attention from researchers. Surveys of solution tech-
niques are given by Cordeau et al. (2002) and Braysy & Gendreau (20015, 2005a,b).
Since VRP is an NP-hard problem, VRPTW is also NP-hard. Indeed, VRPTW with
a constant number of vehicles is described as an NP-hard problem by Solomon (1987).
Therefore, heuristic based approaches are the most common in the literature for tackling
this problem. In practice, in some scenarios the time windows can be relaxed (soft time
windows). Balakrishnan (1993) proposed three heuristics for the Vehicle Routing Prob-
lem With Soft Time Windows (VRPSTW). The following sections provide a literature

review of constructive heuristics and local search methods applied to this problem.

2.3.3.1 Route Building Heuristics

Solomon (1987) proposed four heuristics for constructing routes: Max Time Saving,
Nearest Neighbour, Insertion and Sweep Heuristic. The Max Time Saving heuristic is
based on the heuristic first introduced by Clarke & Wright (1964). This heuristic starts
by assigning each delivery point to one dedicated vehicle. Then all routes go through

a tour building procedure in which routes are merged so that cost saving is maximized.
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Solomon (1987) included time window constraints into the route orientation during route
merging. The Nearest Neighbour heuristic starts building routes by adding the “closest”
delivery point from the depot. The next delivery is the delivery point that is the “closest”
to the last current delivery in the route without any constraint violation (vehicle capacity
or time window). If no feasible route can be formed by adding the delivery, then a new
route with an empty vehicle is started. The Sweep Heuristic uses the heuristic given by
Gillett & Miller (March/April 1974). Firstly, the delivery point locations are divided into
geographical segments defined around a centre point. This is a representation of real-life
practice when planning vehicles coming out from depots in different segments, the human
planner will try to make sure the segments are disjointed. The shipments in each segment
are allocated to a route using the insertion heuristic. The Insertion Heuristic selects an
unplanned shipment based on two criteria ¢; and c¢o. The first criterion ¢; determines
the best position to insert a unplanned shipment. The second criterion selects which
unplanned shipment will be inserted. Solomon (1987) introduces three different formulae
for the two criteria which have different performance. In the most effective formula, c¢;
selects the insert position that minimises the change in the combination of distance and
time using a weighed sum formula and co chooses to insert the shipment that has the
lowest cost by directly combining distance to unplanned shipment and the first criterion.

Foisy & Potvin (1993) provide a parallel implementation of the insertion heuristic
in Solomon (1987) with significant improvement in computation time. Ioannou et al.
(2001) proposed an IMPACT algorithm as another insertion heuristic. Ioannou et al.
(2001) puts emphasis on the requirement of the plan building method: short distances
between deliveries, minimal number of vehicles required, minimal impact of planning
shipments. IMPACT starts by seeding routes with a number of routes and a route is
built using a tour building approach similar to that in Solomon (1987). The IMPACT

algorithm introduces three criteria:

e IS, - measures the impact of the arrival time on the candidate shipment w itself.
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e [U,- measures the impact of the candidate shipment time window on the unplanned

shipments.

e R, - measures the impact of the candidate shipment on the other shipments. It is
the weighted sum of ¢; and ¢ as in Solomon (1987) and c3 which utilises the time

windows of the candidate shipment.

The weighted sum of 1.S,, IU, and IR, forms the overall IMPACT criterion and
the shipment that minimises this weighted sum is selected. Dullaert & Braysy (2003)
identified that the insertion of a candidate shipment into the beginning of the route might
increase the waiting time of the next shipment. Therefore, the original co criterion can
be under-estimated. A Push Backward Maximum Push Forward (PBmaxPF) criterion
is proposed to avoid such under-estimation, hence the formula is modified to c12 as in

the following equation:

bj —tij) — (by — tiw)] + (bju —bj) =1
eraliv ) = [( ) —( )]+ ( ) 0 2.1)

(bju — bj) otherwise

PBmaxPF gives a significant increase in the cost saving if there is a small number of
deliveries on the route. However, as the number of shipments in the route increases,
the effect of PBmaxBF is reduced. This is due to the significant cost saving of the
first delivery being less than when there are many deliveries in a route. Braysy (2003a)
proposed two route construction heuristics: Hybrid Construction and Merge Heuristic.
The basic ideas behind these two heuristics are from Solomon (1987) and Clarke &
Wright (1964). Hybrid Construction extends the seeding selection of shipments at the
beginning of route construction. After choosing furthest from the source shipments, the
subsequent seeds are selected using different criteria. The cost for the insert function is a
weighted sum evaluation of saving distance and saving waiting time and direct distance

from source to the insert shipment. In Merge Heuristic, the cost of a route is a weighted
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sum of the total distance and the total waiting time in the route. The cost saving formula
is the saving of route cost. In addition, the merged route is re-sequenced to have better
cost saving after a certain number of shipments on the route. Details of the Hybrid
Construction and Merge Heuristics can be found in Bréaysy (2003b), Braysy & Gendreau
(20010).

2.3.3.2 Local Search Methods

A common approach for tackling the VRPTW is to start with an initial solution and
improve that solution iteratively using local search until no further improvement can be
made. At each local search iteration, one or more neighbourhood solutions are generated
from the current solution using some local move operators. Neighbour solutions are com-
pared to the current solution and based on some acceptance criteria, the neighbourhood
solution could be selected to become the new current solution for the next iteration.
This process continues until some termination criterion is met, such as no improvement
for some number of iterations or limited computation time. Popular candidate solution
acceptance criteria are first accept or best accept. In first accept, the first improving
neighbour solution encountered is selected to become the current solution. In best ac-
cept, all neighbour solutions for the current solution are generated and the best one is
selected. The selection of move operators is critical for a good performance of a local
search. A solution to the VRP can be represented as a graph where each vertex is a
shipment delivery point and each edge is the route between delivery points.

There is a wide range of move operators and local search approaches that have been
proposed in the literature for the VRP and its variants. Most of these procedures are
edge-exchange approaches (Braysy & Gendreau 2005a). There are two main types of
operators: intra-route and inter-route. Intra-route operators make a modification to a
single route, they conduct a type of re-allocation of deliveries within a route. Inter-route

operators make changes between routes, they act like a swapping of deliveries between
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routes. The most common inter-route operators make changes between two routes only.
Croes (1958) introduced the 2-opt operator for the Traveling Salesman Problem (TSP).
This operator selects part of a route, reverses its direction and then combines this with
the rest of the route. Lin (1965) implements a 3-opt operator as an extension of 2-opt,
where one more edge is included in the change. Or (1976) introduced the Or-opt operator
where a number of shipments in the route are selected and moved to another part of the
route while maintaining the direction of the route. Potvin & Rousseau (1995) proposed
2-opt™* operators which combine exchanging parts of two routes. The 2-opt™ operator
splits two original routes into two start-parts and two end-parts. Then, 2-opt* exchanges
the parts so that the start-part of one route is connected to the end-part of the other
route whilst maintaining the direction of each part.

Prosser & Shaw (1996) presented a maximise saving local search approach using four
operators: 2-opt, Cross, Reallocate and Exchange. The Cross operator is an inter-route
operator which makes changes to two selected routes. The Cross operator selects and
swaps single shipments between routes. It selects a shipment from one route and moves
it to a different route. The Exchange operator selects and swaps two shipments on two
routes. Prosser & Shaw (1996) also studied the effect of the operators on the overall
performance of the local search procedure and showed that the Reallocate operator had
the most positive effect and the Exchange operator had the least positive effect. Osman
(1993) introduced a A-interchange generation mechanism which performs a modification
between two routes. For each selected route, n and m number of shipments are selected
where n, m < A. The selected shipments are swapped between two routes. Typical
values for A are 1 or 2. A special case for A-interchange is CROSS exchange which was
proposed by Taillard et al. (1997). Instead of single shipments as in Prosser & Shaw
(1996), the CROSS exchange operator selects sequences of shipments which are then
swapped between two routes whilst maintaining the direction of the routes and swapped

sections. Glover (1996) employed a stem-and-cycle reference structure and ejection chain
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approach for TSP. The Sub-path Ejection Method is an intra-route operator which gen-
erates neighbour solutions of single routes. The idea of an ejection chain is to create a
sequence of remove and insert moves of shipments on a route (Lin & Kernighan (1973)).
Gendreau et al. (1992) applied two types of GENI operators where a shipment is inserted
into a route between delivery points that are not adjacent in the sequence. After the in-
sertion, the direction of part of the route might change. Two types of GENI-Unstringing
operators were also proposed, these are reversed versions of GENI operators. Most of
the inter-route operators modify a solution by applying changes between two routes.
Thompson & Psaraftis (1993) proposed a cyclic k-transfer operator where a k number
of shipments are swapped between multiple routes. Due to the increase in the size of
the search space when using cyclic transfers, a general methodology for cyclic transfer
neighborhood searches was used by Thompson & Orlin (1989).

Caseau & Laburthe (1999) suggested an incremental local optimisation approach. The
initial solution starts with a fixed & number of empty routes, then shipments are itera-
tively inserted into the route, k is the maximum number of routes allowed. Instead of
applying a solution improvement operator to a complete initial solution, improvement
operators are applied after a shipment is inserted into the route. Three operators have
been chosen: 2-edge exchange (2-opt operator), 3-edge exchange (or-opt operator) and
node transfer operator. The node transfer operator applies to the route that was not
affected by the shipment insertion. Shipments which are close to any shipment on the
selected route and have a cost saving are transferred on to the selected route. The node
transfer operator is applied if the other two operators found some improvement. All
operators use the first accept criterion. So, as soon as an improved solution is found, the
process goes to the next iteration. Since the maximum number of routes is fixed, it is
possible that an insertion cannot be made. In this case, three operators have been se-
lected to resolve the situation: 1) Swap, 2) Relocate and Flush and 3) Relocate. The idea

of these three operators is very similar to the ejection chain method where a sequence of
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modifications are made to create a feasible solution. The Swap and Relocate operators
are similar to the Or-opt and Relocate Operators introduced by Or (1976) and Prosser
& Shaw (1996). The Relocate and Flush operator removes all possible shipments that
can be moved to other routes so that new shipments can then be inserted.

Caseau & Laburthe (1999) showed that incremental local optimisation is not only
faster but also produces better results than applying improvement moves after the initial
solution is built. This is especially the case in problems of large size. Bréysy (2003a)
proposed a three-phrase approach. The first phase was to create an initial solution using
one of two heuristics: Hybrid Construction Heuristic or Merger Heuristic (described in
section 2.3.3.1). The second phase is a local search method based on an ejection chain
method with reordering of shipments during the local search. Each route is selected to
search for improvements. If no improvement can be made, then other shipments near to
the route are added to the current route as far as possible. This is to improve the chance
of improvement neighbourhood route. The third phase is to use an Or-opt operator to

minimise the total distance of routes.
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Heuristics for 3D-SPP

In this chapter, some modifications of the best-fit methodology for the three-dimensional
strip pack problem are developed. First, section 3.1 revisits the three-dimensional best-fit
(3BF) heuristic that was introduced by Allen et al. (2011). Modifications to the 3BF
heuristic with block generation and block reallocation are proposed in section 3.2. The
modified heuristic is denoted as 3BFBL. Later, in section 3.3, an overhead estimation
approach to work with 3BFBL, called OH-3BFBL, is presented. The performance of OH-
3BFBL is evaluated using data sets from the literature and compared to other approaches
published in the literature in section 3.4. Further modifications to block generation and
to identify candidate positions are introduced in section 3.5. Finally, section 3.6 presents

experimental results.

3.1 Three-Dimensional Best Fit (3BF) Algorithm

The 3BF heuristic developed by Allen et al. (2011) draws inspiration from the 2D-packing
algorithm from Burke et al. (2004) which utilises a best-fit methodology. The 3BF
heuristic packs each box in the lowest possible gap in order to fill as much gap as possible.
The packing process continues until all boxes are packed into the container. When a gap
is selected, boxes are allowed to rotate in order to find the best-fit orientation. There are

three different cases:
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e One or more boxes can totally fill the gap. If there is more than one box, a tie breaker
policy is used.

e One or more boxes can partially fill the gap. The box that fills the gap the most is
selected using a tie breaker policy if necessary.

e No box can fill the gap. The gap is discarded and the next available gap is selected.

Four tie breaker policies were proposed by Allen et al. (2011): deepest bottom left most,
maximum contact, smallest extrusion and neighbour score. Although not mentioned in
the paper, preliminary experimentation showed that the maximum contact policy has the
highest utilisation compared to other policies. The maximum contact policy chooses the
box with maximum volume and places it so that the contact area with other boxes and
the container is maximised. In Allen et al. (2011), the contact area of the box with other
boxes and with the container are weighted differently. Different weighting parameters
could affect the quality of the final solution. Details of the parameter values used in this
thesis will be described in section 3.2. The “Extreme point” method described by Crainic
et al. (Summer 2008) is used for the representation of gaps and boxes. At the beginning
of the packing, there is only one candidate point, given by the coordinates (0,0,0). After
placing a box, that position is removed from the candidate list and new points are added.
In the candidate list, points are sorted in the deepest bottom left order. The gap of one
layer is represented by a set of candidate points that have the same depth.

In the 3BF heuristic, only one box is placed per iteration. This can lead to different
selections of the next box to pack. For example, it is possible to have a single larger box
or a group of smaller boxes. 3BF will select the single biggest box to pack first. However,
it is possible to group smaller boxes together to form a block which is bigger than the
single big box. This can produce a sub-optimal plan as shown on the left of figure 3.1.
3BF will select the blue box to be packed first. However, this will provoke a situation
where the yellow boxes have no other option than being packed as shown on the left of

the figure. However, if the smaller yellow boxes are grouped together first, then 3BF
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3BF

Optimal solution

Figure 3.1: Solution obtained with 3BF heuristic and optimal solution with a large box
and a group of smaller boxes

will output the optimal solution as seen on the right of figure 3.1, i.e the grouped yellow
boxes will be packed first.

Another issue of the 3BF heuristic is the use of extreme point which positions the block
to the deepest bottom left-most valid position. This can result in an unusable space as
shown on the left of figure 3.2. Box B is packed adjacent to block A and this creates an
unusable empty space which cannot be filled by any remaining boxes. It will be more
effective to reallocate B to the furthest possible position along the X axis. This creates
a bigger gap to be used for packing subsequent boxes as shown on the right of the figure.

In order to improve the resulting packing, Allen et al. (2011) applied tabu search (TS)
and deepest bottom left fill heuristics at the end of the packing instead of using only
3BF. This helps to avoid a “tower building” effect with the last few boxes. However, this
can still be a problem when boxes in the second phase have limited rotation and a large
dimension in the Y axis. An example is shown on the left of figure 3.3, 3BF+T'S starts
the second phase with the yellow boxes which have only one possible rotation. There are
limited options with 3BF+TS to improve the overall solution. In weakly heterogeneous

cases, where the quantity of each box type is large, this can have a significant negative
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v

A A Improved Gap

Figure 3.2: Example showing how a bigger gap is created by appling block reallocation

impact on the final result produced by 3BF+TS.

3.2 Modification to 3BF+TS

In this section, we introduce three modifications to the 3BF+TS procedure in order
to address the issues discussed in the previous section. The first modification is that
instead of using a single box, boxes are grouped into blocks for packing, this is described
in detail in section 3.5.1. The second modification introduces a reallocation process and
is described in section 3.2.2. Then, the proposed three-dimensional best-fit heuristic with
blocks (3BFBL) is described in section 3.2.3. The third modification is the introduction
of an overhead estimation approach instead of tabu search to improve the result from

the heuristic (OH-3BFBL), details are given in section 3.3.

3.2.1 Block Generation

Instead of packing one single box per iteration, packing blocks of boxes can be considered.
Two types of blocks are defined in this thesis: Simple block and Group block. A Simple
block is a group of boxes of the same type. If boxes have more than one orientation,

different orientations can be considered. A Simple block can be defined as a box with
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3BF Optimal solution

N

Figure 3.3: 3BBF-+TS where the second phase starts with the yellow boxes compared with
the optimal solution

particular orientation, number of boxes across the X axis and number of boxes across the
Y axis. The number of boxes across the Z axis is always 1. Figure 3.4 shows an example
of a Simple block with 3 boxes across the X axis and 2 boxes across the Y axis, the total

number of boxes is 6. A Simple block is valid when:
e Width of block < width of container.
e Height of block < height of container.
e Boxes required to form the block is a subset of the input boxes.

A Group block is a group of two simple blocks: first block - fBl and second block -
sBl. There are 2 different types of arrangement for the two simple blocks: "Next" and
"Above" as shown in figure 3.5. When combining simple blocks together there might
not be a perfect match because of the different dimensions hence some space is lost. In
order to measure the quality of a Group block, the volume utilisation has to be greater
or equal to v. The value for this parameter v measures the block’s volume utilisation
and is chosen empirically. The value that seems to work well with the 3BFBL heuristic

is v = 98%.
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A\

Figure 3.4: Simple block example

Second Block
YA First block Y A e‘Biorl oc
Bl Second Block
sBl
First block
Bl
> e
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X X

"Above" arrangement

"Next" arrangement
Second block placed above to First Block

Second block placed next to First Block

Figure 3.5: Group block examples
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> SimpleBlockV olume
EnvelopeBoxV olume

The volume utilisation of the block v is calculated as: where the
envelope box volume is the volume of the smallest rectangular box that can contain the
simple blocks. Figure 3.6 shows an envelope box (the rectangular box denoted by dashed
lines) containing a block with 2 boxes.

In addition to the condition v > 98% for volume utilisation, other conditions for a

Group Block are as follows:

e Width of block < width of container.

Height of block < height of container.

e Boxes required to form a group block are a subset of the input boxes.

For an “Above” arrangement:
— fBl.length > sBl.length.
— fBl.height > sBl.height.

— sBl is placed in point (fBl.width, 0, 0) relative to the position of fBl.

For a “Next” arrangement:
— fBl.length > sBl.length.
— fBl.height > sBl.height.

— sBl is placed in point (0, 0, {Bl.height) relative to the position of fBl.

Blocks are generated with a block generation process before the packing process. Block
generation starts by generating simple blocks first. Subsequently, group blocks are gener-
ated using the simple blocks generated earlier. Then, in terms of procedures we have two
for block generation: SIMPLE which only generates simple blocks and GROUP which
generates simple blocks first followed by generated group blocks. The setting for these

block generation procedures is explained in section 3.4.1.
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Figure 3.6: Example of an envelope box - minimum size of rectangular box that can
contain all the boxes in a block

3.2.2 Block Reallocation

When block and position are selected, the block reallocation procedure is applied to
investigate if there is a better position for future packing. This idea of reallocation was
introduced by Gehring & Bortfeldt (1997). In this thesis we use a block reallocation
procedure as illustrated in figure 3.7. First, we have to measure Max Left Gap which is
the largest distance from the current block to other block or the container. As shown
in figure 3.7, if the Max Left Gap is smaller than the smallest width of available boxes,
then we shift the yellow block to be next to the red block. This is done by moving the
position of the yellow block by Min Shift across the x-axis. Min Shift is the smallest
distance from the current block to other block or to the container. In this example, by
shifting the yellow block we have an Improved Right Gap which is wider and therefore
can be used for future blocks. If the Max Left Gap is not smaller than the smallest width

of available boxes then no reallocation is performed.

3.2.3 Procedure 3BFBL

In this section, the 3SBFBL procedure is described including the modification mentioned
above. The coordinate system shown in figure 3.8 is used, where the y dimension is
the non-restricted dimension corresponding to the length of the container. The pseudo

code for 3BFBL is shown in Algorithm 3.1. The first difference when compared to the
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Max Left Gap Right Gap

Improve Right Gap

Figure 3.7: Block reallocation example

leftmost

(0,0,0)

bottom

deepest

Figure 3.8: Coordinate system used where y is the non-restricted dimension

3BF heuristic is that blocks are generated in advance as described in section 3.2.1. Once
the block generation is completed, packing is started and the finished when there is no
box left in B. The heuristic starts by finding the lowest gaps. Instead of finding one
box for the selected gap, 3BFBL finds the best-fit block p and the position to place it.
The procedure to select block p is best-fit with Maximum Contact tie breaker as in 3BF.
Before adding p to the current packing plan P, 3BBFBL applies the reallocation procedure
described in section 3.2.2 to p. If there is no block available then the current lowest gap

is marked as invalid for the next iteration so that the next lowest gap is tried instead.
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Algorithm 3.1 3BFBL Heuristic

Input: : container C, set of boxes to pack B, set of generated blocks BL
Output: : packing plan P, with all blocks and its position defined
1. P+ @
2: while |B| >0 do
G + GetLowestGap(C, P)
p < FindBestFitBlock(G, BL)
if p is found then
Reallocation(p)
Add p to P
Remove from B the boxes in p
else
10: Mark all gaps in G as invalid
11: end if
12: end while

3.3 Overhead Estimation

The 3BFBL procedure is a "greedy" heuristic which arrives at a local optimum when
building a solution (Pieterse & Black 2005). In particular, 3BBFBL always chooses the
block with the best-fit that fills most of the selected gap. However, a best-fit block is
not necessarily the best block to select for the overall packing plan. In order to improve
the overall planning result, an overhead estimation can be implemented. The 3BF+TS
procedure is used by Allen et al. (2011). The rationale for using tabu search is to improve
the result produced by 3BF towards the end of the packing process. Instead, here we
propose the overhead estimation to improve the result produced by 3BFBL at the start
of the packing process. The idea behind the overhead estimation is that instead of only
choosing the best-fit block, a selection of blocks and their positions are considered. For
each selection, a complete packing is produced using 3BFBL. The completed packing
plans are evaluated to provide an overhead estimation of the corresponding utilisation.
The block selection that achieves the highest utilisation for the completed packing plan
is selected. The pseudo code for OH-3BFBL, the algorithm incorporating the overhead

estimation procedure is shown in Algorithm 3.2.

99



3 Overhead Estimation and Constructive Heuristics for 3D-SPP

OH-3BFBL takes the container, C, box set, B and generated block, BL. OH-3BFBL
also has configuration parameters but for simplicity these have been omitted from the
pseudo code. There are three parameters: number of blocks to estimate - n, gap step -
g, time limit - t. The value of parameters will be specified in section 3.4.1. Similar to
3BFBL, OH-3BFBL starts by selecting the lowest gap (line 3). Different to SBFBL, OH-
3BFBL uses the Overhead Estimation procedure presented in Algorithm 3.3 to identify
what block is to be packed (line 4). During the packing process, it is noticed that
once one block is packed using Overhead Estimation then there is a limited choice for
the following blocks. Therefore, instead of performing an overhead utilisation at every
iteration, g number of blocks are packed just using 3BFBL (line 8). OH-3BFBL will stop
when there are no boxes left to pack or the time limit has been reached (line 2). This will
limit the run time of the algorithm so comparisons can be made with previous published

approaches.

Algorithm 3.2 3BFBL With Overhead Estimation(OH-3BFBL)

Input: : container, C set of boxes to pack B and set of generated block, BL.
Output: : packing plan, P with all blocks and its position

1: P+ 0

2: while |B| >0 and time < t do

3: G + GetLowestGap(C, P)

4: p < OverheadEstimation(G, BL, P)

5: if p is found then

6: AddptoP

7 Remove box in p from B

8: Pack g block using 3SBFBL

9: else

10: Mark all marks in G is invalid for future use
11: end if

12: end while

The overhead estimation procedure shown in Algorithm 3.3 will find all valid blocks and
select n block and position combinations (line 1). Each combination is then packed into
the container. The rest of the boxes are packed using 3BFBL (line 7). The combination

resulting in the highest utilisation completed packing plan - p is returned.
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Algorithm 3.3 Overhead Estimation procedure

Input: : A gap, G and set of block, validBL
Output: : a block and position, p
1: bestFitBL + GetBestFitBlock(G, BL)
2: bestS + 0
3: bestP < nil
4: for all p in bestFitBL do
P’ + Copy(P)
pack p in packing plan P’
score < Complete PackingU sing3BF BL(P')
if score > s then
bestS + score
10: bestP + p
11: end if
12: end forreturn bestP

3.4 Experiment

3.4.1 Experimental Setup

Algorithms are implemented in Java single thread code. Experiments are run on a PC
with processor AMD at 2.0 GHz and 1GB of memory. The CrateViewer application is
used to visualise the solution (Allen et al. 2011). Two experiments were carried out. The
first experiment compares the performance of OH-3BFBL to other published approaches
from the literature: TSACC-4P (Bortfeldt 1999), SPBBL-CC4 (Bortfeldt & Mack 2007)
and 3BF+MH (Allen et al. 2011) using the first 10 instances of each BR and BRXL
datasets which were described in chapter 2. The second experiment investigates the
performance of OH-3BFBL on all instances from the BR and BRXL data sets. The run
time limit was set at 160 seconds for comparison with previous published methods. It is
not possible to have exactly the same hardware however similar specifications to those
reported by Allen et al. (2011) were used.

For each experiment, there were two setups: Single and Mix. For Single setup, there
was only one run with SIMPLE block generation mode and the time limit is 160 seconds.

For Mix setup, there were two runs. The first run was with SIMPLE block generation
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and the second run was with GROUP block generation. The time limit for each run was
set at 80 seconds so that total time limit was 160 seconds. The reported result for the
second setup was the best result of the two runs. A summary of the experiment setup is

as follows:

e OH-3BFBL Single Setting - One Run

— Block generation mode (blMode) = SIMPLE

Maximum number of block are estimated (n) = 70
— Run time limit (t)= 160 seconds
— Gap Step (g) =5

e OH-3BFBL Mix Setting - Two Runs

— First Run Setting:
« Block generation mode (bIMode) = SIMPLE
* Maximum number of block are estimated (n) = 70
* Run time limit (t) = 80 seconds
x Gap Step (g) =5
— Second Run Setting:
* Block generation mode (blMode) = GROUP
% Maximum number of block are estimated (n) = 70
* Run time limit (t) = 80 seconds

x Gap Step (g) =5
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Test TSACC-4P SPBBL-CC4 3BF-+TS OH-3BFBL OH-3BFBL
Bortfeldt (1999) Bortfeldt & Mack (2007) Allen et al. (2011) Single Mix
BR1 92.3 87.3 90.0 91.2 91.7
BR2 93.5 88.6 89.6 91.7 92.7
BR3 92.3 89.4 89.0 91.3 92.2
BR4 90.8 90.1 88.8 91.2 91.6
BR5 89.9 89.3 88.5 90.9 91.6
BR6 89.2 89.7 88.6 90.8 91.3
BR7 87.1 89.2 88.7 90.8 91.1
BRS8 84.0 87.9 88.3 90.0 90.0
BR9 80.9 87.3 87.9 89.7 89.6
BR10 79.1 87.6 87.9 89.4 89.0
AVERAGE 87.9 88.6 88.7 90.7 91.08

Table 3.1: OH3BFBL results compared to TSACC-4P, SPBBL-CC4 and 3BF+TS with
first 10 instances of BR dataset.

3.4.2 Experimental Results
3.4.2.1 Result Evaluation BR and BRXL - 10 Instances

The experimental results of the BR data set are shown in table 3.1 and table 3.2 and
the BRXL data set result is shown in table 3.3. Table 3.2 shows a comparison between
the performance of OH-3BFBL and TSACC-4P, SPBBL-CC4 and 3BF+TS. The results
using OH-3BFBL are competitive compared to other published works within the same
run time limit. The OH-3BFBL Mix set up has the highest utilisation for BR4 - BRS.
OH-3BFBL with Single setting gives the best result for BR8 - BR10. Across BR1 -
BR10, OH-3BFBL Mix has the highest average utilisation compared to other approaches
including OH-3BFBL with Single setup. Allen et al. (2011) is the published approach
with the highest utilisation. A paired t-test was performed between 3BF+TS and OH-
3BFBL Mix setup. This shows that the result using OH-3BFBL is significantly different
to that using 3BF+TS at a 95% confidence interval.

Table 3.2 shows the utilisation, standard deviation (STDDEV) and actual run time
of Single and Mix setups for the BR data set. The Mix setup performs better for BR1
- BR8& which are weakly heterogeneous test cases. The Single setup performs better in
strongly heterogeneous cases. The reported run time for the Mix setup is the total run

time from the two runs. The actual run time of both setups is significantly less than
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Test Single Setup Single Setup Single Setup Mix Setup Mix Setup Mix Setup
‘ ‘ Utilisation (%) H STDDEV Run Time (s) Utilisation (%) STDDEV Run Time (s)

BR 1 91.2 3.1275 8 91.7 0.3601 22

BR 2 91.7 1.4371 12 92.7 0.1586 36

BR 3 91.3 1.4789 24 92.2 0.1130 50

BR 4 91.2 1.0354 24 91.6 0.5941 60

BR 5 90.9 1.3067 27 91.6 1.3603 71

BR 6 90.8 0.6229 31 91.3 0.7521 96

BR 7 90.8 0.7722 48 91.1 0.8927 114

BR 8 90.0 0.8789 76 90.0 0.5844 152

BR 9 89.7 0.5675 102 89.6 0.6536 156

BR 10 89.4 0.9575 131 89.0 1.0263 160
AVERAGE 90.7 1.21846 48.3 91.08 0.64952 91.7

Table 3.2: Utilisation, standard deviation and run time for OH-3BFBL using the first 10
instances of the BR data set

Test SPBBL-CC 3BF+TS OH-3BFBL Single OH-3BFBL Single OH-3BFBL Mix OH-3BFBL Mix
Bortfeldt & Mack Allen et al. (2011) STDDEV STDDEV
(2007)
BRXL1 86.9 92.4 96.4 0.8911 96.0 1.5263
BRXL 2 88.3 92.4 95.3 1.2048 95.4 1.3996
BRXL 3 89.8 91.9 93.7 2.7836 94.6 1.3779
BRXL 4 90.2 92.1 93.6 1.2779 94.9 0.6923
BRXL 5 89.9 92.5 92.6 0.9739 94.2 1.2594
BRXL 6 91.5 92.6 92.7 0.8820 94.5 0.9195
BRXL 7 91.0 92.6 92.9 1.1905 94.2 0.8082
BRXL 8 90.8 92.8 93.1 0.8624 94.4 0.6205
BRXL 9 90.9 92.3 93.6 0.8639 94.9 0.5757
BRXL 10 90.4 92.7 93.6 0.7822 94.8 0.7606
AVERAGE 90.0 92.4 93.63 1.1713 94.79 0.9940

Table 3.3: Results of OH-3BFBL compared to SPBBL-CC4 and 3BF+TS using the first
10 instances of the BRXL data set

the time limit of 160 seconds for most of cases except for the Mix setup in the stronger
heterogenous cases.

The result for the first 10 instances from the BRXL data set is shown in table 3.3.
For this data set, there is no published result for TSACC-4P. Both setups of OH-3BFBL
produced a significant improvement compared to SPBBL-CC4 and 3BF-TS. OH-3BFBL
Mix setup dominates here with the exception of BRXL1 where OH-3BFBL Single has
slightly higher utilisation. There is no run time reported in the BRXL data set as OH-

3BFBL always used the entire allocated time.

3.4.2.2 Result Evaluation BR and BRXL - 100 Instances

In this section, the performance of OH-3BFBL is presented using all instances from the

BR and BRXL data sets. Results for the BR data set are shown in table 3.4 and for the
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BRXL data set results are shown in table 3.5. For both data sets, OH-3BFBL with both
setups show consistent results with the larger number of test instances. The performance
using the BR data set shows a similar trend to previous experiments. OH-3BFBL Mix
setup produces better results in weakly heterogeneous cases. However, Single setup
performs better in stronger heterogeneous cases. In the BRXL data set, OH-3BFBL Mix
setup gives better results in all cases and the Single setup has the best result only in
BRXL1. One reason for the Mix setup performing better in weakly heterogeneous cases
is that these cases require a shorter run time to complete the packing at each iteration.
Single setup performs only one run well within the time limit and did not use any of the
remaining time. However, Mix setup has one additional run with different settings and
produces improved utilisation. However, in the weakly heterogeneous cases, if grouped
blocks are generated with large internal loss, it is better to use the simple block only. In
stronger heterogeneous cases, the Single setup utilises more of the allocated run time and
finds a better block at the end of the packing. On the other hand, overhead estimation
might have to stop in the middle of packing in the Mix setup. As shown in the above
experiments, OH-3BFBL Mix has a better average result in both the BR and BRXL data
sets. The performance of Mix setup was investigated in more detail. From figure 3.9,
BR1 has the widest range of results. This is due to BR1 has the least number of boxes in
the BR data set. Therefore, there are fewer number of different box dimensions available
and it might not be possible to fit the current packing plan. When the number of box
types is increased from BR1 to BR10, there are better chances to find a suitable box for
the selected gap. In addition, the average utilisation was also decreased because of the
increased complexity from BR1 - BR10. In contrast, OH-3BFBL has more consistent
results in the BRXL data set. The average result using the BRXL data sets are shown in
figure 3.10. The average result from BRXL1 to BRXL10 is not widely varied and there is
no decreasing trend from BRXL1 to BRXL10. Standard deviation is smaller compared
to the BR data set showing consistency of OH-3BFBL with the BRXL data set.
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Test ‘ Single Utilisation ‘ Single STDDEV ‘ Single Run Time | Mix Utilisation ‘ Mix STDDEV | Mix Run Time
BR 1 92.2 2.6345 14 92.5 2.6978 17
BR 2 91.8 1.8334 16 92.5 1.7962 21
BR 3 91.7 1.5378 18 92.2 1.3461 30
BR 4 91.3 1.4482 22 91.9 1.2431 32
BR 5 91.0 1.2365 26 91.6 1.1581 37
BR 6 90.9 1.0995 33 91.4 0.9576 47
BR 7 90.8 0.9806 48 91.0 0.9207 61
BR 8 90.0 0.9408 81 90.1 0.8489 71
BR 9 89.6 0.9543 108 89.4 0.8164 75
BR 10 89.3 0.8496 143 88.9 0.7918 80

AVERAGE 90.86 1.35152 50.9 91.15 1.2577 47.2

Table 3.4: Results of OH-3BFBL with all instances of BR dataset

Test | Single Utilisation | Single STDDEV | Mix Utilisation | Mix STDDEV |

BRXL1 95.6 1.358 95.6 1.460
BRXL 2 94.6 2.277 95.2 1.361
BRXL 3 94.1 1.889 94.7 1.515
BRXL 4 93.8 1.549 94.4 1.433
BRXL 5 93.2 1.480 94.4 1.193
BRXL 6 92.6 1.902 94.2 1.072
BRXL 7 92.5 1.420 94.1 1.006
BRXL 8 92.9 1.261 94.5 1.019
BRXL 9 93.4 0.872 94.7 0.598
BRXL 10 93.6 0.672 94.9 0.558
AVERAGE 93.63 1.4681 94.67 1.1214

Table 3.5: Results of OH-3BFBL with all instances of BRXL dataset
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Figure 3.9: Variation of the performance of OH-3BFBL Mix set up from BR1 to BR10
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3.5 Further Modification to OH-3BFBL

In this section, we highlight some observations from the previous experiments and modi-
fications to OH-3BFBL. The first observation is that Group block contains only two box
types. However, it is possible to group more than two box types to form a bigger block.
In Group block generation, a third block type is not included even if there is no internal
loss. The second observation is about an issue found in Extreme Point (Crainic et al.
Summer 2008) which is used to present the packing position in 3BF and 3BFBL. The
issue is that Extreme Point does not include all possible packing positions. As shown
in figure 3.11, the black dots represent the Extreme Point generated for a packed box.
However, it is also possible to pack a block in a position represented by a white dot. The
original Extreme Point approach identifies the intersection between the projection from
the packed block to either the container side or other blocks. Point generation using
Extreme Point encourages packing boxes towards the deepest bottom left corner of the
container. However, this can result in some wasted space which can be reduced by using
the reallocation procedure described in section 3.2.2. Figure 3.12 and figure 3.13 shows
other possible locations of the same block at the deepest layer in both 2D and 3D. In
figure 3.13 case B represents shifting across the x-axis and case C represents shifting up
and across z-axis. In order to address the above issues, we propose a Multi-type Block

generation in section 3.5.1 and Layer Point in section 3.5.2.

3.5.1 Multi-type Block

In this section, we propose a Multi-type block to generate blocks with more than just
two box types. Similar to the previous Group block generation, there are two types of
arrangements: ABOVE and NEXT. A sample of various Multi-type blocks is shown in
figure 3.14.

The main idea of a Multi-type block is the combination of two existing blocks together.

The combination can be between Simple or Group block to allow more than two box types
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Figure 3.11: A example of Extreme Point (black dots) and Layer Point (white dots)

Shifting X axis

Figure 3.12: Possible Non-Extreme Point position in two-dimensions
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Figure 3.13: Possible Non Extreme Point Position in three dimensions

A group of two box type Above of three box type Next of three box type

Figure 3.14: A sample of various Multi-type blocks which have more than two box types
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in a single combined block. The conditions for a valid combination between two blocks

are:

e Volume utilisation has to be greater or equal to a.

e Volume utilisation is calculated as:

B .
— 2 BoaVolumne  \ pere Box Volume is the sum of the volume of block
Envelope BoxV olume

A and block B. Envelope Box is the minimum rectangular box that contains

the Multi-type block.
e Boxes required to form blocks A and B are a subset of input boxes.

e For “Next” arrangement:

— blockA.length > blockB.length
— blockA .height > blockB.height

— blockB is placed in point (blockA.width, 0, 0) relative to the position of blockA

e For “Above” arrangement:

— blockA.length > blockB.length
— blockA.width > blockB.width

— blockB is placed in point (0, 0, blockA.height) relative to the position of
blockA

The pseudo code for block generation is shown in Algorithm 3.4. The grouping pro-
cess starts with the generation of Simple blocks from single box type. Multi-type block
generation continues until a number of individual blocks are generated or there are no
more blocks available. Process GenerateAboveBlock and GenerateNextBlock will find
valid combinations between two generated blocks in BL with ABOVE and NEXT ar-

rangement and return all valid blocks. During block generation it is possible to combine
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boxes in different arrangements however the blocks generated can potentially have the
same dimension. This is termed as ambiguous blocks. Ambiguous blocks are blocks with
the same dimensions, the same number of box types and the same quantity of each box
type inside the block. An example of ambiguous block is shown in figure 3.15. During

the block generation, only one of the ambiguous blocks is added to the output.

Algorithm 3.4 Multi Block Generation

Input: : set of boxes to pack, B and block number limit, n
Output: : set of block BL
: BL<+ 0
: BL < BL + GenerateSimpleBlock(B)
while BL.Count < n and nomoreblockcreated do
BL + BL + Generate Above Block(BL)
BL <+ BL + GenerateNextBlock(BL)
end whilereturn BL

S G e

3.5.2 Layer Point

Layer Point is proposed to determine points which are not available using Extreme Point.
The idea of Layer Point generation is to create horizontal and vertical projections from
the block at the layer being considered. The pseudo code for Layer point is shown in
Algorithm 3.5. At the beginning of packing, there is no packed box and no layer point.
When considering the deepest gap, all packed blocks intersecting with the layer are
selected. From the selected block, the horizontal and vertical lines are projected along
the y-axis and x-axis on layer Z. The intersection between vertical and horizontal lines
are layer points using the getIntersection process in Algorithm 3.5 line 12.

When a block is packed, the deepest surface of a block has 4 corners represented as
bottom left (BL), bottom right (BR), top right(TR) and top left (TL) points as shown
in figure 3.16. Normal Extreme Point method packs deepest bottom left most point of
block — BL point into the candidate position. In Layer Point generation, each of the

categories is in correspondence with each corner of the block. Informally, each category
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Figure 3.15: Example of blocks with the same dimensions but different arrangement -
Ambiguous block

Algorithm 3.5 Generate Layer Point Procedure

Input: : packing plan, P and current layer, Z
Output: : set of layer point, LP
LP <+
hLine < ()
vLine < ()
for all block bl and its position p in P do
if bl intersect Z then
vLine.add(project line from point (p.x, p.y, Z) across y axis
vLine.add(project line from point (p.x + bl.xSize(), p.y, Z) across y axis
hLine.add(project line from point (p.x, p.y, Z) across X axis
hLine.add(project line from point (p.x, p.y+bl. ySize, Z) across x axis
end if
: end for
: LP < GetIntersection(vLine, hLine)
return LP

—_ = =
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v TL TR

BL BR

v

Figure 3.16: An example of multiple layer point

is the bottom left most candidate point when rotating the coordinate around the y axis.
For example: top left candidate point is a bottom left candidate point if the container
is rotated 90 degrees anti-clockwise around the y axis. When considering a block, all
point categories are considered. The block’s bottom left corner will be packed in the
point from the bottom left most candidate point list. The block’s top right corner will be
packed in the point from the top right most point list and similar to the others. Instead
of generating only bottom left most layer point, there is generation of the layer point for
each category. Each candidate point can be generated using the similar method. At the
beginning, there is one point (0, 0, 0) in bottom left candidate point. When at least one
box is packed, bottom left candidate point contain the extreme point generated by the
“Extreme Point” method in Crainic et al. (Summer 2008). Bottom left candidate point

also contained in the layer points using generate method in section 3.5.2.

3.6 Further Modification Experiment

3.6.1 Experimental Setup

In order to have a fair comparison, the experiment setting is kept the same as in section

3.4.1, i.e. number of blocks to estimate and run time. However, there is an additional

74



3 Overhead Estimation and Constructive Heuristics for 3D-SPP

[ Test | OH-3BFBL Single Mode (%) | OH-3BFBL Mix mode (%) | OH-3BFBLEX (%) |

BR1 92.2 92.5 89.6
BR2 91.8 92.5 90.8
BR3 91.7 92.2 91.3
BR4 91.3 91.9 90.9
BR5 91.0 91.6 91.1
BR6 90.9 91.4 91.1
BR7 90.8 91.0 90.8
BRS 90.0 90.1 90.6
BR9Y 89.6 89.4 90.3
BR10 89.3 88.9 90.0

Table 3.6: Result of OH-3BFBL with Multi-type block generation and layer point

setting: Limit of block generation where n is 10,000. The hardware setting is identical

to the previous experiment.

3.6.2 Experimental Results

Table 3.6 shows that Multi-type block generation and Layer Point both performed better
in strong heterogeneous cases. However, in the other cases, the modification did not
perform well. The reasons are: firstly, in weakly heterogeneous cases, Multi-type block
generation creates bigger blocks using more boxes, which results in fewer available boxes
at the end of the packing to choose from. This also limits any positive benefits of overhead
estimation. A second reason is that overhead estimation has to consider more block and
position combinations. It is possible that there are many different positions and block
pairs which have no difference to the final estimated result. Figure 3.17 shows an example

where there is no difference between all four positions and block combinations.
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Figure 3.17: Example of different positions and point combinations where free space can-
not be re-used

3.7 Conclusion

In this chapter, the three-dimensional strip packing problem without stability constraints
was investigated. We introduced a modified packing heuristic 3SBFBL with two new
processes: Block generation and Overhead estimation used in combination with the best-
fit methodology. Block generation has two types of combinations, Simple block and
Group block, and is advantageous when combining small boxes into large blocks thereby
minimising internal loss inside the block. In order to improve the heuristic result, an
overhead estimation procedure was developed and used with 3BFBL. That overhead
estimation avoids large blocks which can create wasted space by packing the block which
has the best estimated outcome.

The proposed OH-3BFBL shows an improved performance in stronger heterogeneous
cases when compared to methods in the literature and can also obtain a better average

utilisation. Two setups were presented. The simple setup showed a slightly better per-
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formance on instances with a high number of box types and low quantity of each type.
However, in data sets with the same number of box types and increased quantity of each
type, as in the BRXL data set, the Mix setup shows a better performance than the Single
set up.

Further changes were introduced, including Multi-type block and Layer Position, both
of which improved the performance of OH-3BFBL in strong heterogeneous instances.
Multi-type block allowed the combination of more than two types of boxes together.
Layer Point modification allowed more possible packing positions. These changes lead
to slightly lower results in weak heterogeneous instances but improved performance in
strong heterogeneous cases. For weaker heterogeneous cases, Multi-type block generation
allowed more internal loss which was repeated during the packing process and lead to
low utilisation. On the other hand, Multi-type block generation was found to be more
suitable in strong heterogeneous instances where low box quantity does not allow to

repetition of internal loss.

7



4 Overhead Estimation and Constructive

Heuristics For The 3D-SPP with a

Stability Constraint

In this chapter, heuristics and overhead estimation for the 3D-SPP with the addition
of a stability constraint is investigated. Stability constraint has been mentioned in the
literature as one of the key issues in the container loading problem (Bischoff & Ratcliff
(1995)). An example of this can be seen in the previous chapter where boxes are allowed
to overhang in the air to allow maximum free space. This is obviously not applicable
in real life operations. During collaborative work with 3T Logistics Ltd, this constraint
has come up on numerous occasions as a compulsory requirement in transport planning.
This requirement ensures compact and stable packing suitable for transportation. It is
necessary to mention that this stability is not important in every packing case. However in
this context and for related work with a business, it is an important aspect in determining
the feasibility of an automated packing technique in a business operation. Previous
research has been carried out for the 3D-SPP including the stability constraint. From
the previous chapter, it is known that the best fit methodology performs well in the 3D-
SPP without a stability constraint. However, to the best of our knowledge, there is no
study about the best fit performance with a stability constraint. The 3D-SPP with the
addition of a stability constraint is defined in section 4.1. In section 4.2, the performance

of a range of heuristics for the 3D-SPP with a stability constraint is investigated. Based

78



4 Overhead Estimation and Constructive Heuristics For The 3D-SPP with a Stability Constraint

on the results of section 4.2, the performance of overhead estimation in the 3D-SPP with

a stability constraint was evaluated.

4.1 3D-SPP with Rotation and Stability Constraint

In this chapter, the 3D-SPP with a stability constraint is defined. There are different
definitions for a stability constraint. For example, the bottom area of all items or boxes
must be supported by either the container or other boxes, which are fully supported.
Another definition is a percentage of the bottom area of a box is supported (partially
supported). Yet another one is only the centre of gravity of a box is supported. In this
work, only the fully supported stability constraint case is investigated. That is, a box
is supported when the entire bottom surface is completely in contact with either other
boxes or the container. Then, the 3D-SPP with a stability constraint tackled here can

be defined as follows:

e Input:
— A set of rectangular boxes with given dimensions and rotation ability.
— A container with fixed width and height, but infinite length.

e Output:
— A packing plan showing the position of each box in the container.

e Objective:
— Minimise the length of the container required to pack all boxes.

e Constraints:

— All boxes need to be placed orthogonally (i.e. the edges of the boxes need to

be parallel with the container).

— All boxes must be packed.
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— Boxes cannot overlap.

— The bottom surface of each box is in full contact with either other boxes or

the container (stability constraint).

The evaluation function for the problem is the same as described in chapter 3.

4.2 Investigation into Best Fit, Best Support Heuristics

4.2.1 Block Generation for Stability Constraint

In the previous chapter, block generation with 3BF heuristics was introduced. In block
generation, multi-type blocks allow a small internal loss. However, if there is internal
loss then it is possible to violate the stability constraint. An example is shown in figure
4.1 where block C is not completely supported when placed on top of a group block
containing A and B which has a small internal loss. In this section, the rules for the block
generation process are modifed to allow a small inner loss and so the stability constraint
can be met. Similar to the grouped block, there are two types of arrangement which
can create a block: Above and Next arrangement. Block generation can be informally

described as the combining of block A and block B if the following conditions are met:

e Volume utilisation of the combined block is greater than or equal to 98%.

>~ BoxVolume

— The volume utilisation is calculated as
EnvelopeBoxV olume

*+ Box Volume is the sum of the volume of boxes of block A and block B.

* Envelope box is the minimum rectangular box that contain all the blocks.

e Boxes required to form block A and block B is a subset of input boxes.

e For “Next” arrangement:

— blockA.length > blockB.length
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— blockA .height > blockB.height

— block B is placed in point (blockA.width, 0, 0) relative to position of block A

e For “Above” arrangement:

— blockA.length > blockB.length

blockA.width > blockB.width

block B is placed in point (0, 0, blockA.height) relative to position of block A

— block B is fully supported by block A

e Block’s top surface utilisation is greater than or equal 98%

>~ TopSurface
lope BoxTopSur face

— The utilisation of the top surface of the block is calculated as

x TopSurface is the area of all boxes in which the top surface is as high as

the envelope box top surface.

x EnvelopeBoxTopSurface is the area of the top surface of envelope box.

The new condition of top surface utilisation ensures that the combined block can be
used as a base for other blocks. This avoids forming any horizontal tower cases during
the packing process. Where blocks have a small internal loss and small top surface,
subsequent blocks to be placed on top have to have a smaller bottom surface. The limit
for volume utilisation and top surface utilisation can be changed. However after rigorous
initial experiments, it was found that 98% utilisation is more likely to produce a better

result.
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Figure 4.1: Non-supported Block

4.2.2 Best Fit and Best Support Heuristics

In chapter 3, it was shown that the performance of overhead estimation depended on
the heuristic used in completing a partial packing plan. For the 3D-SPP, a number of
heuristics were evaluated and the 3SBFBL heuristic had the best performance. Therefore,
a range of heuristics is presented and their performance with an additional stability
constraint is evaluated. The best heuristic will be used with overhead estimation to
further improve performance. There are two types of heuristic which are considered:
Best Fit and Best Supported. The main idea of the best fit heuristic is to prefer blocks
which fill most of the gap. The best fit selection is comparable to SBFBL heuristics which
was introduced in chapter 3 when blocks with a larger XZ surfaces is preferred. If there is
more than one block that has a similar XZ surface area then secondary selection is applied
(i.e. contact area). The best-support heuristic prefers a block with the largest bottom
area. This encourages subsequent boxes to be packed on top and increase stability. Where

there is more than one block available to pack into the deepest gap, the block with the
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largest XY surface is preferred. If there is more than one block that has a similar XY
surface area then a secondary selection is applied. The pseudo code for both heuristics

shown in Algorithm 4.1.

Algorithm 4.1 Best Fit/ Support Heuristic-3BFS

Input: : container, C and set of boxes to pack B, set of generated block, BL
Output: : packing plan, P with all blocks and its position
1. P+
2: while |B| >0 do
G < GetLowestGap(C, P)
bestF'/S < select BestF'it /| SupportPair(G, BL)
p + select PairSecondaryCriteria(bestF/S)
if p is found then
Reallocation(p)
AddptoP
Remove box in p from B
10: else
11: Mark all marks in G is invalid for future use
12: end if
13: end while

For each iteration, both heuristics start by selecting the deepest gap in the container.

There are two possible cases:

o If there is a valid block to fit in the deepest gap, then all possible pairs of blocks
and their position are evaluated. A number of blocks and positions are selected
using best-fit or best-support criteria and stored in bestF /S (Algorithm 4.1 line 4).
A secondary criteria selection is used to select one block and position in bestF/S.

The selected pair will be packed into the container.

e If there is no valid block then the deepest gap will be discarded and the next deepest

gap is selected.

In the original 3BF, only the single best fit block was considered. In order to improve
the flexibility of best-fit and best-support heuristics, a best fit/support threshold k is

introduced. For example, with best fit selection instead of considering one or more valid
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blocks with the largest XZ area, N, any blocks with an XZ surface greater than or equal to
k*N are considered for secondary selection. A similar rule is applied for the best-support
heuristic. The value of k is specified in experimental set up.

The secondary policies used in best-fit and best-support heuristics are four tie breakers
from Allen et al. (2011) Maximum Contact, Maximum XZ Surround Score, Maximum

Y, Minimum Y and one new tie breaker Maximum XY Surround Score.

e Maximum Contact: The block with the largest area contacting either of the other

boxes or the container is selected.

e Maximum XZ Surround Score: The block has the largest number of boxes which
have Y co-ordinate equal or less is selected. This selection encourages option which

form a flat XZ surface. This creates a bigger gap for future blocks.

e Maximum Y: The block placed in deepest bottom left most position and the furthest

point in Y - axis

e Minimum Y: The block placed in deepest bottom left most position and the deepest

point in Y - axis

e Maximum XY Surround Score: Block has the largest number of boxes which have
deeper XY surface. This selection encourgages forming a flat XY surface. This

offers the opportunity for future boxes to be packed on top.

Second criteria selection are used in Algorithm 4.1 line 5.

4.2.3 Experiments with Heuristics

One experiment has been carried out to investigate the performance of the selected heuris-
tics. There are 10 combinations of best fit and best-support heuristics with secondary
criteria selection. The algorithms are implemented in Java single thread code. The ex-

periments were run on a PC with AMD 2.0 GHz and 1 G memory. There are two runs
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| Heuristic | Utilisation (%) |
Best Fit - Maximum Contact - 0.5 86.7
Best Support - Maximum Contact - 0.5 86.4
Best Fit - Maximum Contact - 0.8 85.2
Best Fit - Maximum X7 Surround Score - 0.5 85.2
Best Fit - Maximum XY Surround Score - 0.5 84.5
Best Fit - Maximum Y - 0.8 84.5
Best Fit - Maximum XZ Surround Score - 0.8 84.3
Best Fit - Maximum XY Surround Score - 0.8 84.2
Best Support - Maximum XZ Surround Score - 0.5 84.1
Best Support - Maximum Y - 0.5 83.8
Best Support - Maximum XY Surround Score - 0.5 83.7
Best Fit - Maximum Y - 0.5 83.2
Best Support - Maximum Contact - 0.8 82.4
Best Support - Maximum XZ Surround Score - 0.8 82.3
Best Suppor