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ABSTRACT 

Abstract 

"The Effect of Ethanol-Gasoline Blends on SI Engine Energy 
Balance and Heat Transfer Characteristics" 

Taleb Alrayyes 

Ethanol is one of a group of hydrocarbon fuels produced from bio-mass which 

is attracting interest as an alternative fuel for spark ignition engines. Major 

producers of ethanol include Brazil, from sugar cane, and the USA, from com. 

Reasons for the growing interest in ethanol include economic development, 

security of fuel supply and the reduction of net emissions of carbon dioxide 

relative to levels associated with the use of fossil fuels. Unlike gasoline, which 

is a mixture of hydrocarbon compounds suited to meet a range of start and 

operating requirements, ethanol is a single component fuel with characteristics 

which make engine cold starting difficult, for example. Hence, ethanol is 

generally used in a blend with gasoline, accounting for <5% in EU pump-grade 

gasoline to 85% by volume for so called flex-fuel vehicles. 

Although ethanol is already available in the marketplace, there are aspects of 

its effects on engine behaviour that are unresolved, including its effects on 

engine thermal behaviour and heat transfer. These have been investigated in 

the experimental study presented in this thesis. The aims of this work included 

determining the effect of ethanol content in blends on combustion 

characteristics, energy balance, gas-side heat transfer rate and cylinder 

instantaneous heat transfer. 

This study covers a range of loads, speeds, spark timings, equivalence ratios 

and EGR levels representative of every day vehicle use, and has been restricted 

to fully warm operating conditions. The investigations have been carried out 

on a modern design of direct injection, spark ignition engine. The performance 

of different ethanol-gasoline blends has been compared at conditions of 

matched brake power output. 

The emissions data for NO, HC, CO and C02, which was used to calculate 

combustion efficiency, show a decrease in their levels proportional to the 
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ABSTRACT 

increase in ethanol content in the fuel blend. This is owing to an increase in 

combustion efficiency and change in chemical structure and physiochemical 

properties. 

Compared to gasoline, running on 85% ethanol produces slightly faster rates of 

burning in rapid burn stages of combustion. Typically, the reductions in rapid 

burn angle are 4%. Results show that the effects do not vary in proportion to 

the ethanol content in the fuel blend. This is attributable to the fact that, at low 

and medium ethanol content, the enhancement in combustion gained by 

oxygen availability is offset by its higher enthalpy of vaporisation and lower 

heat content. 

Energy balance data show an improvement in thermal efficiency proportional 

to the increase in ethanol ratio. This is due to improvement in combustion 

efficiency and a reduction in coolant and exhaust losses. 

Results for gas-side heat rejection show that a correlation developed for 

engines run on gasoline can be used without any modification. The heat 

rejection rate has been inferred from measurements of heat rejection to coolant 

adjusted to allow for the contribution of engine rubbing friction. The apparent 

insensitivity to ethanol content is attributed to a combination of factors. These 

include the increase in fuel flow rate for a given energy supply being offset in 

its effect on charge flowrate by a reduction in stoichiometric air/fuel ratio. 

Gas-side heat transfer results from both the exhaust port and the cylinder show 

a clear decrease when running on 85% ethanol compare to gasoline. This 

reduction was also observed in the total measured heat loss to coolant. 

The magnitude and phasing of instantaneous heat loss is not sensitive to the 

use of ethanol during combustion. However, as the combustion starts to 

terminate, lower heat loss for medium and high ethanol content was observed 

due to the reduction in the combustion product temperature. The results from 

the C 1 C2 correlation and instantaneous heat transfer are comparable. 
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Nomenclature 

Nomenclature 

1. Symbols 

A Area m2 

CA Crank angle 0 

cp Specific heat at constant pressure J/kgK 

Cv Specific heat at constant volume J/kgK 

d diameter m 

he Heat transfer coefficient W/m2 K 

~fK enthalpy of vaporisation J/kg 
Aho 

f molar enthalpy of formation kJlkmol 

k Thermal conductivity W/mK 

L Piston stroke m 

m Mass kg 

m Mass flow rate kg/s 

N Engine speed rpm 
P Pressure N/m2 

Ph brake Power W 

Qch Heat released due to combustion J 

QLHV Fuel lower heating value MJ/kg 

Qloss heat loss J/CA 

Q Heat transfer rate kW 
." q Heat flux W/rn2 

t Time s 

T Temperature K 

Tf{,a Effective gas temperature K 

Tadd Adiabatic flame temperature K 
V Cylinder volume m3 

Vd Swept Volume m3 

Vp Mean piston speed mls 

Xb Burned mass fraction % 
-XI Wet mole fraction of substance i %,ppm -. 
XI Dry mole fraction of substance i %,ppm 

y(Gamma) Ratio of specific heat 

1'/c Combustion efficiency % 

1'/( Thermal efficiency % 
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e Crank angle 0 

I' Dynamic Viscosity kg/ms 
p Density kg/m3 
rp Air-Fuel Equivalence ratio 

2. Subscripts 

ambo Ambient 
b Burned charge 
comp Compression 
cyl Cylinder 
eff. Effective 
exh Exhaust 
exh.man. Exhaust manifold 
f Friction 
f Fuel 
fc fresh charge 
g Gas 
pt Port 
stoich Stoichiometric 
tot Total 
u Un-burned charge 
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Abbreviations 

Abbreviations 

AFR 
ATDC 
BMEP 
BSFC 
BTDC 
CA 
co 
C0 2 

COV 
CR 
DI 
DISI 
DOHC 
ECU 
EGR 
EOC 
EVC 
EVO 

EX¥ 

FDA 
FlD 
FMEP 
FTP-75 
GHG 
HC 
110 
IMEP 

IVC 
IVO 
KLSA 
MAP 

MBT 
MFB 
MON 
NO 

N02 

NOx 
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Air-Fuel Ratio 
After Top Dead Centre 
Brake Mean Effective Pressure 
Brake Specific Fuel Consumption 
Before Top Dead Centre 
Crank Angle 
Carbon Monoxide 

Carbon Dioxide 
Coefficient of Variability 
Compression ratio 
Direct Injection 
Direct Injection Spark Ignition 

Double Over Head Cam 
Engine Control Unit 
External Gas Recirculation 
End of Combustion 
Exhaust Valve Closing 
Exhaust Valve Opening 
Ethanol ratio, where X¥ represents the volumetric 
fraction of ethanol in the gasoline-ethanol blend 
Flame Development Angle (0-10% MFB) 
Flame Ionisation Detector 
Friction Mean Effective Pressure 
Federal Test Procedure 75 
Green House Gases 
Unburned Hydrocarbon 
Input/Output 

Indicated Mean effective Pressure 
Input Valve Closing 
Inlet Valve Opening 
Knock Limit Spark Advance 

Manifold Absolute Pressure 

Maximum Brake Torque 
Mass Fraction Burned 
Motor Octane Number 
Nitric Oxide 

Nitrogen Monoxide 
Nitrogen Oxides 
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Abbreviations 

02 
PFI 
PM 
PROMETS 
RBA 

RON 

rpm 
RVP 

SAE 
SGDI 
SI 
ST 
TDe 
UEGO 
ULG 
VVT 

WOT 
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Oxygen 
Port Fuel Injection 
Particulate Matter 
PROgram for Modelling Engine Thermal Systems 
Rapid Burning Angle (10-90% MFB) 
Research Octane Number 

revolution per minute 
Reid Vapor Pressure 

Society of Automotive Engineering 
Spray Guided Direct Injection 
Spark Ignition 
Spark Timing 
Top Dead Centre 
Universal Exhaust Gas Oxygen (Sensor) 
UnLeaded Gasoline 
Variable Valve Timing 
Wide Open Throttle 
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CHAPTER 1, Introduction 

CHAPTER 1 Introduction 

1.1 Overview 

The topics investigated in this thesis relate to the use of ethanol mixed with 

gasoline at different proportions in SI engines. The use of ethanol in SI engines 

can be traced back to the end of the Nineteenth Century, when Henry Ford 

designed a car that used ethanol as fuel. Gasoline later gained prominence as 

fuel refined for SI engines due to the availability and cheap supply of crude oil 

[1]. In the last few years, however, ethanol has again attracted attention as an 

automotive fuel. This renewed interest in ethanol and alternative fuels in 

general is driven by several factors. 

First, there is an increased awareness that fossil fuel reserves are finite. The 

International Energy Agency now estimates that world production will peak in 

2010-2020 and then start to decrease sharply as illustrated in Figure 1.1 [2]. As 

a result, finding alternatives to fossil fuel is becoming a commercial priority. 

Second, the demand for fuel in the developing world is rising, driven by 

emerging economic powers such as China, India, and Brazil. For instance 

China's demand grew at a phenomenal 7.2% annual logarithmic rate between 

1991 and 2006 [3]. If that trend were to continue, by 2020 China would be 

consuming 20 million barrels per day (about as much as the u.s. is currently 

consuming), and by 2030 that amount would have doubled again to 40 million 

barrels per day [3]. 

Third, there are concerns over nsmg levels of greenhouse gases in the 

atmosphere and the potential for this to cause climate change with serious 

consequences on society have also focused attention on ethanol once again. 

Ethanol has a great potential to limit CO2 emissions if the whole "well-to­

wheel" cycle is considered, as illustrated in Figure 1.2. The CO2 emitted when 

ethanol is burned in an engine can be re-captured from the atmosphere by 

growing crops that are then used to produce the ethanol, thus completing a 

cycle. It is clear that at least part of the C02 emissions can be avoided by using 
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CHAPTER 1, Introduction 

such a renewable cycle, although the emissions associated with each stage, as 

well as the net reduction compared to alternative energy source must be 

examined with care. 

Finally, increase in ethanol use has also been stimulated by concerns about oil 

supply disruptions due to the unstable political situation in regions that export 

crude oil. This came sharply into attention particularly after the 1973174 fuel 

crisis [IJ. 

Biofuels are today the only direct substitute for fossil fuels in transport that are 

available on a significant scale, and the most commonly produced biofuel is 

ethanol [IJ. Ethanol can be used today in ordinary vehicle engines without 

major modification (unmodified for low blends or with cheap modifications to 

accept high blends) [4]. Whilst other fuels, or energy carrier, such as hydrogen, 

have not achieved large-scale viability and will require major changes to 

vehicle fleets and the fuel distribution system. 

Ethanol production has more than doubled between 1993 and 2006 [2J. As 

shown in Figure 1.3, USA and Brazil are the biggest producers of ethanol. 

accounting for 70% of total worldwide production [2]. Both countries took 

serious steps towards increasing the usage of ethanol as fuel. For instance, the 

Brazilian government made mandatory the blending of ethanol with gasoline, 

at proportions fluctuating between 10% and 25%. The bulk of ethanol 

produced in the USA is mixed with gasoline at low proportions, 10% or EIO, 

as oxygenate and, to a lesser extent, as fuel for E85 flex-fuel vehicles. 

In the EU, the production and the use of ethanol, and biofuels in general, are 

still very limited compared to those of the USA and Brazil [1]. The ED is 

responsible for just around 7% of the global production of ethanol [2]. Most of 

the fuel produced in the EU is biodiesel, in which EU is the market leader [1]. 

At the moment, Sweden is the leading European user of ethanol [2]. Sweden 

has the largest E85 flexible-fuel vehicle fleet in Europe, with a sharp growth 

from 717 vehicles in 2001 to around 200,000 in 2010 [2]. However, most of 

the ethanol consumed in the country is imported [2], 
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1.1.1 European biofuels policy 

Although Europe currently makes a modest contribution to the total production 

and use of biofuels, the EU has strategies and action plans in place to raise the 

production and promote the use ofbiofue1s as alternative to fossil fuel [5, 6]: 

• In 2003, the EU adopted Directive 2003/30/EC2 on the promotion of 

the use of biofuels for transport. This "biofuels directive" urged 

Member- States to set indicative targets for a minimum proportion of 

biofuels to be put in place in the market. These targets were set at 2% 

in 2005 then growing by 0.75 annually, to reach 5.75% in 2010. These 

percentages were calculated on the basis of the energy content of the 

fuel. 

• Directive 2003/96/EC3, in 2003, which was the EU's framework for 

the taxation of energy products and electricity, was amended to allow 

Member States to grant tax reductions and/or exemptions in favour of 

renewable fuels under certain conditions. 

• In February 2006, the EU Commission published a new 

Communication entitled "An EU Strategy for Biofuels", preparing the 

ground for a review of the Biofuels Directive by the end of 2006 that 

might include mandatory targets instead of the indicative ones set in 

2003. The aim of the strategy was to further promote biofuels in the EU, 

to prepare for their large-scale use, and to explore opportunities for 

developing countries to build plants producing biofuels. 

Although the Biofuels Progress Report [7] showed that the 5.75% target set by 

the EU was not reached, those measures and action plans did increase biofuels 

usage tenfold between 2003 and 2010, as shown in Figure 1.4. Between 2008 

and 2009, ethanol consumption increased by 31.9%, representing a share of 

19.3% of the total biofuels consumption as shown in Figure 1.5. 

Although ethanol has been used as fuel for spark ignition engines since the 

earliest days of the automotive industry, its recent increasing use in the EU in 

blends with gasoline raises question about its effects on engine performance 

and emissions. Modem engines for the EU market are required to meet most of 

the stringent emissions regulations in the world. EU customers demands high 

level of refinement, performance and reliability of their vehicles. Meeting 
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CHAPTER 1, Introduction 

regulations and customer expectations leaves little room for unknown effects 

of fuel quality and it is this area which the author work has focused on. 

1.2 Objective 

The objective of this thesis is to establish the effect of different gasoline­

ethanol blends, containing up to 85% ethanol, on engine performance, 

combustion speed, energy balance and heat transfer characteristics of a SODI 

engine. In order to achieve these objectives, a number of specific tasks were 

undertaken, which include: 

• The design and commission of a test rig used to carry out all the 

experimental tests included in this thesis. 

• Several tests were carried out on a wide range of engine running 

conditions to evaluate the effects of increasing ethanol content in a 

gasoline-ethanol blend on: 

T Alrayyes 

o the physicochemical and combustion properties of the fuel, 

including stoichiometric AFR, calorific value, MBT, and 

adiabatic flame temperature. Also, the subsequent effect of 

these properties on power output and fuel consumption. 

o the main regulated emissions and combustion efficiency 

o combustion duration, combustion stability and EaR tolerance. 

o exhaust temperature and heat capacity. 

o energy balance inside the engine, including the thermal 

efficiency, heat loss to coolant, heat loss to ambient and heat 

loss to exhaust. 

o gas-to-wall heat transfer, and any required modifications to the 

C 1 C2 correlation to allow for changes in the fuel heating value 

and other fuel properties. 

o other sources contributing to the heat rejection to coolant 

including: exhaust port, heat conducted back from exhaust 

manifold, and friction. 

o instantaneous heat loss to coolant and in-cylinder temperature 

and properties. 
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1.3 Thesis layout 

Chapter 2 describes a review of the published literature relevant to the study 

presented in this thesis, with a focus on ethanol production, main properties, 

and effects on engine performance and emissions. 

Chapter 3 covers details of the test engine and the experimental facilities 

developed to meet the objective of the thesis. 

The main body of the thesis is concerned with heat transfer characteristics and 

the combustion behaviour of the engine. The physiochemical and combustion 

properties of the fuel blends, which are important to understand these 

characteristics, are examined in Chapter 4. Calorific values, AFRstoich, adiabatic 

flame temperatures as well as MBT (and its effect on engine power, output and 

fuel consumption) were calculated. Also, emission levels for different fuel 

blends were measured at different running conditions, and used to calculate 

combustion efficiency. 

In Chapter 5, the Rassweiler and Withrow method was used to calculate and 

compare bum durations for different fuel blends. Several methods to calculate 

appropriate polytropic index values were assessed. Gasoline and ethanol 

laminar flame speeds were calculated and compared. The effects of changing 

an engine's running conditions such as speed, load and spark timing (or charge 

composition by changing EGR or equivalence ratio) were evaluated for the 

different fuel blends. Finally, the effect of increasing ethanol ratios on 

combustion stability and tolerance to EGR was studied. 

The manner in which the total energy released by the fuel is distributed 

between brake output, coolant energy, and exhaust loss for different fuel 

blends is described in Chapter 6. The chapter also establishes the effect of 

increasing ethanol content on key characteristics that will affect engine 

performance and power output, including thermal efficiency, exhaust 

temperature and coolant heat rejection rate. 

In Chapter 7, the validity of using the C 1 C2 correlation to predict gas-side heat 

rejection to coolant when the engine runs on ethanol-gasoline blends is 

assessed. Different sources that contribute to the total heat transfer to coolant 

were also indentified which include: exhaust port, friction, and heat conducted 
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back to the engine block. The contributions of each of these sources, as well as 

the effects of adding ethanol, were evaluated. 

Heat rejection to the coolant is examined further in Chapter 8, which includes 

predictions of the instantaneous heat loss value and phasing for different 

gasoline-ethanol blends using an empirical correlation (the Hohenburg 

correlation). This chapter also investigates the in-cylinder charge preparation 

(the temperature between Ive and ST) that is expected to be affected by 

differences in ethanol physiochemical properties. 

A discussion of the findings of these investigations, as well as 

recommendations for further work that could enhance these findings, are 

included in Chapter 9. A series of conclusions drawn from the work are also 

presented. 
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CHAPTER 2, Literature review 

CHAPTER 2 Literature review 

2.1 Introduction 

This chapter contains a detailed overvIew of the current knowledge 

surrounding the subject of production, properties and consequences of ethanol 

use in SI engines. 

An important factor when consider the relative merits and drawbacks of any 

fuel product is its sustainability, both in terms of the dependability of its supply 

and the robustness of its production process. For that reason, the first section of 

this literature review will cover the production and net energy balance of the 

complete ethanol cycle. The properties of ethanol, which must be well 

understood in order to ful1y comprehend their effects, will be examined in the 

second section of this review. 

The chapter will then proceed to review the effect of using ethanol on the 

engine characteristics, including its emissions and combustion behaviour. This 

will be approached with a specific focus on the use of ethanol in Direct 

Injection SI engines. Finally, the last section will look into the use of other 

alcohol-based blends as alternative fuels. 

Despite the extensive research literature that has been produced over the past 

few years, no material was found that directly investigates the effects of 

ethanol on energy balance, or on heat transfer characteristics. This highlights a 

notable gap in the current body of knowledge on the topic, which this study 

endeavours to address. 

2.2 Ethanol Production 

The main barrier to the commercialisation of ethanol is its high cost of 

production compared to that of gasoline. This cost is largely determined by 

that of biomass feedstock, which can account for up to 40% of the final price 

of ethanol [8]. However, recent increases in the price of crude oil in the last 

few years have helped close the gap between gasoline and ethanol prices [9]. 
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Various types of feedstock are used to produce ethanol; the majority are either 

sugar crops, such as sugar cane and sweet sorpham, or starchy crops such as 

corn and cassava. Sugar cane is the preferred raw material for ethanol 

production in Brazil, India, and South Africa, whereas corn is used in the USA 

and sugar beet in France [10]. Current research efforts in the field of ethanol 

production are focused on using lignocellulosic materials as feedstock, 

otherwise known as "second-generation" production techniques. This includes 

agricultural residuals (e.g wheat straw, corn stalks, soybean residues, and sugar 

cane bagasse), forest residues, industrial waste (from the pulp and paper 

industry) and municipal solid waste [10]. The main reason for promoting a 

shift to ethanol production from lignocellulosic biomass is the latter's 

availability and its low prices compared to food crops. Furthermore, it has a 

higher net energy balance, which makes it more attractive from an 

environmental point of view. However, the complex structure of 

lignocellulosic biomass is a barrier to its utilization, as it makes it resistant to 

degradation (thus more difficult to convert into sugar) [1]. 

2.2.1 The production process 

Ethanol production methods depend on the feedstock used, as shown in Figure 

2.1. Ethanol production from sugar crops is relatively simple: micro-organisms 

use the sucrose present in sugar crops directly without any external hydrolysis 

[9]. Starchy crops such as corn, however, contain larger and more complex 

carbohydrates that need to be broken down by hydrolysis into simpler sugar 

prior to fermentation [1, 10]. For the lignocellulose transformation, the degree 

of complexity is higher. The three major components of any cellulosic material 

are cellulose (40% to 60% of the dry weight), hemicellulose (20% to 40%), 

and lignin (10 to 25%). Only Cellulose and Hemicellulose can be converted 

into sugar, whereas Lignin cannot because of its resistance to biological 

degradation. However, it can be used to produce electricity and/or heat [10]. 

For both crops and lignocellulosic biomass, the fermentation and distillation 

steps are basically identical. If the ethanol is to be used in automotive engines, 

its water content must be close to zero in order to reduce the corrosive effect of 

the fuel. An extra step in ethanol fuel production is therefore needed to 

dehydrate the alcohol [1]. 
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2.3 Net energy and Green house gases 

The net energy of ethanol and the green house gases, GHG, produced during 

its whole production cycle (Figure 1.2) has been the subject of extensive 

scholarly debate [11]. The main question has always been "how much energy 

from non-renewable sources does ethanol production consume compared to the 

energy generated by the ethanol fuel produced?" [12]. Results addressing this 

question have varied significantly between different researchers. Indeed, 

whereas some researchers found that a negative net GHG, others found a 

positive net energy, ranging from small to significant improvement in both net 

energy and GHG [11]. The difference in net energy results is mainly attributed 

to the different types of feedstock used to produce ethanol and/or the 

assumptions about the system boundaries and key parameters during the net 

energy calculations [13, 14]. 

Farrel et al. [II] and Kim [15] found that including the input energy of co­

products, which are inevitably generated when ethanol is produced, would 

significantly and positively affect the net energy as well as reduce the 

calculated GHGs. Co-products that are generated include C02 (during 

fermentation), distillers grains, com gluten feed. and com oil. These co­

products have a positive economic value. For example, C02 can be marketed 

for use in the food processing industry, including the production of carbonated 

beverages and flash·freezing applications. Distillers' grains and com gluten 

feed can also be used for animal feed, thereby saving the energy required to 

produce ethanol, and positively affecting the energy shift [11]. 

Feedstock also has a significant effect on both GHG and net energy. Farrell 

[11] compared the net energy and GHG of ethanol that is produced from 

different feedstock, across data obtained from different researchers. These data 

showed clearly that ethanol produced from cellulosic material has a much 

higher net energy and lower GHG than the one produced from com corps. 

Although using cellulosic material showed a significant improvement in net 

energy, the amount of petroleum that is required to produce ethanol is higher 

than when using other feedstock where other non-renewable source such as 

coal and natural gases are also used. This could be disadvantageous since one 

of the objectives of using ethanol is to reduce dependence on foreign oil [11]. 
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2.4 Comparison of ethanol and gasoline properties 

While gasoline is complex and contains variable mixtures of hydrocarbon and 

additives [16], ethanol is a single alcohol. The lower molecular weight, change 

in Hie ratio, and the presence of oxygen will cause a significant difference in 

the properties of ethanol compared to gasoline. Table 2.1 shows a comparison 

between the respective properties of ethanol and gasoline [17]. Table 2.1 

shows that ethanol has a lower RVP, heat content and AFRstoich, but a higher 

enthalpy of vaporisation, RON, and MON compared to conventional gasoline. 

Two characteristics that differ between ethanol and gasoline, and would have a 

significant effect on engine performance, are volatility and octane number. 

Volatility 

The volatility of the fuel is of extreme importance since the combustion inside 

the engine occurs when the fuel is at vapour state. Fuel with low volatility is 

often associated with liquid fuel being inducted into the cylinder especially at 

cold start or at low ambient temperature [17). The liquid fuel inducted into the 

cylinder can be responsible for an increase in He and CO emissions and thus 

poor efficiency. Volatility also influences cold-start fuel economy. This is 

because spark-ignition engines start on very rich mixtures and continue to run 

on rich mixtures until they reach their normal operating conditions, this is to 

ensure adequate vaporisation of fuel. Consequently, increasing the volatility of 

the fuel will decrease the fuel consumption at cold start, and thus He 
emissions [16]. 

The volatility of the fuel is expressed in terms of either a distillation curve or 

Reid vapour pressure (RVP). Adding ethanol to gasoline will have a profound 

effect on both these measures. 

Wallner et al. [18] compared the distillation curve of ethanol and gasoline. The 

results showed that gasoline, as a mixture of hydrocarbons, exhibited typical 

evaporation behaviour, with an initial boiling point of around 25°C and a final 

boiling point of 215°C. In contrast, ethanol, being a single alcohol, has a 

defined boiling point temperature of 78°C. As a result, adding ethanol to 

gasoline will alter the fuel distillation curve. Topgu et al. [19] measured the 

effect of increasing ethanol content up to 60% on the distillation curve using 

the standard test method for distillation, ASTM D-86. 
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The results showed that the initial boiling point at 10%, 90%, and final 

distillation are almost independent of ethanol content levels, while the other 

distillation temperature decreased as ethanol content rose. The same results 

were also obtained by He et al. [20], D'Ornellas [21] and Hsieh et al. [22], 

who studied the effect of increasing ethanol content up to 30%. 

Reid vapour pressure (RVP) is the most common measure of the volatility of 

gasoline, the higher the RVP of the fuel, the more volatile it is. Although 

ethanol has a lower molecular weight than gasoline, it has a lower RVP 

because of the hydrogen bonding in the hydroxyl group [23]. 

In a study carried out by Kar et al. [24], the ATSM standard test method was 

adapted to measure the RVP for different ethanol-gasoline blends. The results 

illustrated that RVP does not correlate linearly with ethanol content levels in 

the blend. As shown in Figure 2.2, initially as the ethanol proportion increased 

in the blend, RVP also rose. This was the case for all ethanol ratios up to 10%-

20%, but then RVP falls eventually as the blend nears pure ethanol value. 

Ethanol in general does not mix well with hydrocarbon due to its polar 

intermolecular force. When ethanol is added to gasoline in low proportions, the 

non-polar species of gasoline disperse the polar alcohol molecules, thus 

disturbing the stabilizing hydrogen bonding network, and causing the alcohol 

to behave as if its RVP was much higher [23]. Such an effect is at its strongest 

for blends with a 10-20% ethanol concentration [24]. 

As ethanol ratios increase further, a positive azeotrope is fonned between 

ethanol and some of the hydrocarbons in the gasoline, for instance, benzene, 

cyclohexane and n-heptane, which results in a lower RVP [24]. The results 

also illustrate that the maximum value of RVP is affected by temperature. 

Thus, as temperature increases, the Reid vapour pressure value also increases 

for all different fuel blends The same trend was also obtained by Pumphrey et 

al. [25], Silva et al. [26] and Hsieh [22]. However, the maximum value ofRVP 

was found to lie at between 5 and 10% of ethanol content. The values of RVP 

were found to be slightly higher in these studies than the aforementioned one, 

as measured by Kar et al. [24], especially at low ethanol content levels. This is 

presumably due to the different gasoline types used by the various research 

teams. Gasoline has different Reid vapour pressure values depending on 

weather conditions. In hot weather, those gasoline components with a higher 
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molecular weight (and thus lower volatility) are used in order to avoid vapour 

lock in the fuel lines and pre-ignition behaviour. In contrast, in cold weather, 

gasoline will have a higher Reid vapour pressure so as to avoid problems 

related to cold start [16]. 

Volatility characteristics can also be affected by the enthalpy of vaporisation, 

hjg, of the fuel. As shown in Table 2.1, ethanol has a much higher hjg than 

typical gasoline (three times higher). Surprisingly, little research has been 

published on the effect of adding ethanol to gasoline. Balbin et al. [27] found 

that increasing ethanol content level up to 20% of the total blend will linearly 

increase the enthalpy of vaporisation. The enthalpies of vaporisation for 

different fuel blends were derived from vapour pressure data using the 

Clausius-Clapeyron equation. Kar et al. [24] used the same methodology to 

calculate the effect of increasing ethanol content until the fuel blend is pure 

ethanol as shown in Figure 2.3. From zero and up to a 20% ethanol content 

level, the results of their study correspond to the findings of Balbin et al. [27]. 

However, at higher levels the value first decreases then appears to flatten out 

between 30% and 60% ethanol content levels. Beyond the 60% ethanol content 

mark, the value begins to increase again. 

Resistance to knock 

Abnormal combustion can take several forms, principally pre-ignition and self­

ignition. Pre-ignition occurs at hot surfaces such as the exhaust valve. Self­

ignition, which can be characterised as knocking. occurs when the remaining 

unburned gas mixture ignites spontaneously as a result of an increase in 

pressure and temperature due to the advancing flame front. Pre-ignition can 

lead to self-ignition and vice versa [16]. Abnormal combustion, if severe, can 

cause major damage, and even when not severe, it can cause undesirable noise, 

which can be perceived as a 'knocking' sound by the vehicle operator [17]. 

Furthermore, energy released by a knock is not converted into useful work. 

Instead, it is dissipated through pressure waves and increased radiant heat. 

Knock will also affect the power output by limiting the compression ratio. CR, 

and spark timing. Increasing the CR should improve the engine's performance 

and power output. Increasing CR is limited by engine knock characteristics. A 

knock will also affect spark timing by retarding it from its Minimum advance 
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for Best Torque ignition timing, MBT. Retarding ignition timing to avoid a 

knock is referred to as knock limit spark advance (KLSA) [16]. 

The Research Octane Number (RON) and Motor Octane Number (MON) are 

the most common measures of a fuel resistance to knock [17]. The higher their 

values are, the better anti-knock characteristics of the fuel. As shown in Table 

2.t, RON and MON for gasoline are typically in the range 92-98 and 80-90 

respectively. RON and MaN values for pure ethanol are 107 and 89 

respectively. The effect of adding ethanol at low ratios was studied by several 

research teams. Hsieh et al. [22] showed that increasing ethanol content will 

linearly increase the octane number of the fuel. The tests were carried on 

gasoline-ethanol blends containing up to 30% ethanol (low ethanol content), 

increasing ethanol content to 30% increased RON by 7.5%. The same results 

were also obtained by Silva et al. [26], Palmer [28], Wu et al. [29] and Abdel 

et al. [30]. Szybist [31] measured MaN and RON for EtO, E50 and E85, and 

compared the results to those of regular unleaded gasoline. The results 

illustrated that the blending response of RON and MON as a function of 

ethanol content is highly nonlinear at high ethanol content levels. There was a 

substantial octane improvement between gasoline and E 1 0, and between E 10 

and ESO. However, between E50 and E85 there was very little difference in 

either RON or MON; surprisingly, until the writing of this work, no literature 

was found of RON and MaN measurements for high ethanol content that 

could either support or refute these results. 

Some of the previous research investigated the effect ethanol has on some 

engine variables and parameters relating to knock engine characteristics, 

including the CR limit and the knock limit spark advance (KLSA). Nakata et 

al. [32] investigated the effect of adding ethanol on KLSA in engines running 

at low speed, with WOT and a CR of 13.5 [32]. The results illustrated that 

increasing ethanol content allowed a more advanced KLSA. E I 0 advanced 

KLSA by 4°. At E50 and E85, there was no need to advance ignition from 

MBT. The same results were also found by Yucesu et al. [33]. In their study, 

KLSA was allocated for different gasoline-ethanol blends containing ethanol 

ratios of up to 60% at various CRs ranging between 8 and 13. For all eRs, 

KLSA advanced as ethanol content increased. At E40 and E60 ethanol content, 

spark timing reached MBT without spotting any knocks. 
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Caton et al. [34] studied the performance and knock characteristics of EID and 

E85 in comparison to regular gasoline. The results showed that for E85, MBT 

can be maintained up to a CR of about 13.5, whereas MBT could not be 

maintained for gasoline and 10% ethanol blend past a CR of 9.0. The same 

results were also found by Szybist et al. [31], who investigated knock-limited 

CR of ethanol-gasoline blends to identify the potential for improved operating 

efficiency. CRs ranged between 9.2 and 12.87, with the engine running at 

different loads and speeds. The test results illustrated that while high ethanol 

blends, E85 and E50, were not knock-limited under any running conditions, 

gasoline and EI0 became knock-limited as the compression ratio increased. 

Under knock-limited conditions, retarding ST will reduce power output. Stein 

at al [35], evaluated a dual-fuel system, where gasoline as primary engine fuel, 

was delivered through PFI injectors, whereas E85, as the secondary engine 

fuel, was delivered as needed to prevent knock. It was found that under 

turbocharged conditions with a 12.0 compression ratio configuration. The 

maximum amount of E85 required to prevent knocking at peak load was about 

60% of the total fuel delivered, which is effectively about E50. 

2.5 Emissions 

Current European legislation sets limits on the amount of regulated emissions 

that can be produced by motor vehicles. Those legislations were driven by 

their toxicity and concerns over human health, in addition to the emissions' 

detrimental impact on the environment and their potential global warming 

effect. These limits have been getting tighter over the last 20 years, as shown 

in Table 2.2 [36]. As illustrated in Table 2.2, the main regulated emissions are 

CO, NOx, and He emissions. 

The environmental and health concerns, as well as issues regarding the engine 

emissions have led to increasingly tighter emission regulations in Europe as 

stated above. In Euro 4 and earlier regulations, the manufacturers of flexible­

fuelled vehicles were allowed to use only the conventional (gasoline) fuel in 

the certification testing. From Euro 5, which took effect in September 2009, 

both fuels (gasoline with 5 and 85 % ethanol mixtures) must be used at the 

certification testing. Testing at low ambient conditions will also be demanded 
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for both fuels from 2011 [36]. All of these regulations required a clear 

understanding of the effect of ethanol on emissions produced. 

Many studies concentrated on the effect of using ethanol as oxygenate to 

enhance combustion on regulated emissions [20, 22,28, 29, 37] with gasoline 

ethanol blends containing up to 30% ethanol. Ethanol was perceived as a 

viable substitute for MTBE, which was widely used as oxygenate during the 

90s but was later proven to cause contamination of drinking water aquifers 

[38]. Several studies have also been carried out to examine the emissions 

characteristics of engines running on higher ethanol ratios, in the range from 

50% to pure ethanol [18,32,39-45]. 

The effect of ethanol content on the level of CO produced was very evident in 

the literature reviewed [20, 22, 37, 42, 44, 45]. Indeed, when ethanol was used, 

CO production was reduced dramatically compared to when using gasoline. 

The decrease was significant even for low ethanol content (5 and 10%). He et 

al. [20], in a study carried out on a port-injection gasoline engine, illustrated 

that adding 10% ethanol in a gasoline ethanol mixture would decrease the level 

of CO by 4.8% to 7%, depending on the speed and equivalence ratio. The 

study also shows the effect of ethanol to be more significant at rich fuel 

charges. The same trend was also obtained by Palmer et al. [28]. Some studies 

[22, 45] showed that CO levels will be reduced even more significantly, by up 

to 30% with 10% ethanol content, when an open loop fuel system was 

employed, as a result of the leaning effect of ethanol. Increasing ethanol 

percentage in gasoline-ethanol blends will affect CO further. The literature 

reviewed [42, 44] illustrated a linear relation between an increasing ethanol 

ratio in ethanol-gasoline blends and the decrease in the level of CO emissions, 

until the blend is entirely made up of pure ethanol. 

NOx and He results, on the other hand, showed a clear variation among the 

different research studies [18,20,22,29,41,42,44,45]. 

In a study carried out by Wallner et al. [18], NOx emissions were found to be 

decreasing as ethanol percentages increased. The decrease was observed even 

at low ethanol percentages. The scale of the NOx emission reduction was 

dependent on engine load; at high load, there was up to a 45 % decrease in 

NOx emissions between gasoline and E85. The same result was reached by 
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other researchers who studied the effect of using ethanol at low [20] and high 

[42,44] content on NOx emissions produced. 

The same results were also obtained by Varde et 01. [43] at high ethanol 

percentage. However, with mixtures containing low ethanol content (EIO and 

E22), the produced NOx emissions were comparable to those produced from 

gasoline 

Some studies [22, 37, 45] showed a completely different trend between 

increasing ethanol content and NOx emission levels under particular running 

conditions. In other cases, increasing ethanol content led to an increase in NOx 

values. 

The main reason for the variation in NOx results is that some of these studies 

were carried out for engines operating on specific cycles [22,45]. This means 

that relative air-to-fuel ratios were not controlled directly to ensure it was kept 

constant for different fuel blends (open loop system). As a result, introducing 

ethanol will cause a leaning effect on the engine, which will in turn affect NOx 

emissions. NOx level in the exhaust is greatly influenced by the relative air-to­

fuel ratio inside the cylinder, its maximum value thus occurs when the charge 

is slightly lean, but decreases as the charge becomes richer or leaner [17]. 

The different fuelling systems inside the engines under investigation could be 

another reason for the variation in NOx results. For instance, the one equipped 

with a carburetion system will have a wider range relative air-to-fuel ratio than 

those with port-injection or direct injection systems. In addition, using a 

carburetion system is going to limit the cooling effect of ethanol compared to 

engines equipped with a port-injection system, and to an even larger extent 

compared to those equipped with a direct-injection system. The cooling effect 

of ethanol as a result of its higher heat of vaporisation is considered to be the 

primary reason for the decrease in NOx emissions (lower in-cylinder 

temperature) [20, 22, 41,42,44]. 

He also showed a variation in the results amongst different researchers; while 

some studies [18, 20, 22, 42, 43, 45] showed a decrease in He as a result of 

increasing ethanol content in the fuel blends, other studies [39-41] showed a 

different trend. 

The reasons for the variation in the NOx emission results mentioned above are 

also applicable to variations in He results. The increase in RVP [24] as ethanol 
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content also increases (especially at higher ethanol ratio) will have a more 

significant effect on those engines equipped with a carburetion fuel system 

than on those equipped with a port-injection or a direct-injection system. Less 

fuel is evaporated in a carburetion system at high ethanol ratios, and some fuel 

drops might even reach the combustion stroke without being vaporized. As a 

result, HC increases due to insufficient combustion at high ethanol ratios. The 

above can thus explain the results obtained by Huang et al. [40]. Their study 

was carried out on a single-cylinder SI engine equipped with a carburetted fuel 

system. The fuel blends investigated included gasoline, E15, E30 and E50. The 

results illustrated an initial decrease in HC levels at low ethanol concentrations 

(E15 and E30) which was then followed by an increase in HC levels at E50. 

Another reason for the variation in results is injection timing. Advance 

injection timing in a direct injection engine, aimed at increasing the amount of 

fuel injected to compensate for the lower heat content of ethanol, will also lead 

to an increase in He as a result of piston wetting, as shown in Price et al. [41]. 

FID is used to measure HC. The FID response is proportional to C atoms in 

each molecule. In alcohol, the C is bonded to an 0 in an R-O-H group, where 

R is an Alkyl radical, and gives a response of about 50 to 85% of a C 

atom[41]. The same is true for the FID response to aldehydes. Failure to 

recognize this and to determine relative response factors properly, contributed 

to the variation in results among researchers [23]. 

As shown in Table 2.2, gasoline engines are exempted from particulate matter 

(PM) standards through to the Euro 4 stage, but direct-injection engines will be 

subjected to regulations for Euro 5 and Euro 6. Price et al. [41] explored the 

effect of adding ethanol and methanol to gasoline on emissions of ultra-fine 

PM. Particulate number concentration and size distribution were measured 

using a combustion DMS500. The data were presented for different AFR, 

loads, ignition timings and injection timings. The results illustrated that the 

accumulation mode number PM concentration was significantly lower for an 

85% alcohol blend than for the 30% one or gasoline, particularly for rich fuel 

mixtures. In addition, the PM response to relative AFR was found to be less 

pronounced for the 85% alcohol blends than the rest ofthe blends. 

So far, aldehydes were not designated as regulated pollutant emissions, 

presumably because aldehyde levels in SI engine emissions running on pure 
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gasoline are relatively small [23]. Although aldehyde emissions are not 

regulated, aldehydes are one of the products of the photochemical reaction 

between hydrocarbons and nitrogen oxides that causes the smog phenomenon. 

For that reason, understanding the effect of ethanol on aldehyde emissions is of 

extreme importance. The aldehydes are formed from the partial oxidation of 

fuel that had remained after flame extinction at low temperatures. Aldehyde 

composition is dependent on the fuel that has been used. While the oxidation 

of ethanol at low temperatures (270°C-300°C) will mainly produce 

acetaldehyde as an initial product, the oxidation of methanol will produce 

formaldehyde [23]. 

Several studies have shown a clear increase in aldehyde emissions when 

alcohol fuels are used [43, 46-50]. For example, Yarde et aT. [43] investigated 

the effect of using ethanol as fuel on acetaldehyde, which is the main aldehyde 

produced by ethanol. The result showed that E85 showed a significant increase 

in acetaldehyde compared to pure gasoline and lower ethanol blends, 

particularly at low loads. 

2.6 Engine Combustion behaviour 

The use of ethanol in SI engines is expected to affect the engine performance 

and combustion behaviour. This is due to ethanol's physical and chemical 

properties, which differ from those of gasoline, as stated above. 

Several researchers studied the effect of ethanol on engine combustion 

behaviour. Malcolm et al. [51] examined the combustion behaviour of blends 

of gasoline, isooctane and a variety of alcohols under part-load engine 

operation at 1500 rpm, with port fuel injection. The tested fuels were gasoline, 

E85 and isooctane, with ethanol content levels at 25% and 85%, as well as a 

blend with 25% butanol content. The tests were carried out in an optical SI 

engine and the combustion duration was tested using high-speed crank-angle 

resolved natural light imaging in conjunction with in-cylinder pressure analysis 

over batches of 100 cycles. It was found that E85 shows a faster mass fraction 

burned traces and faster flame radius growth than the rest of the fuel for most 

test cases, irrespective of the change in spark timing. The same results were 

also obtained by Yeliana et al.[52], who studied the effects on combustion 

duration of blending ethanol with gasoline at different proportions (up to 85% 
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ethanol content, in 20% gradual increments). One-dimensional single zone and 

two zone analyses have been conducted to calculate the mass fraction burned 

using the cylinder pressure and volume data. In both analyses, E85 showed a 

decrease in the combustion duration compared to that for all other fuel blends. 

The decrease was clear at both FDA and RBA. For the other fuel mixtures, 

with low and medium ethanol content FDA showed a linear decrease as 

ethanol ratio increased. RBA on the other hand, show very little difference 

between the various fuel blends. 

The same FDA results were also obtained by Cairns et al. [53]. However, RBA 

showed comparable results between different fuel blends, including E85. 

Other researchers (Varde et al. [43], Yoon et al. [42J and Wallner et al. [18]) 

found different results where ethanol, whether at high or low content levels, 

exhibited no effects on either FDA or RBA. 

2.7 The use of ethanol in direct injection spark ignition 
engines (DISI engines) 

Until recently, the vast majority of flexi-fuel engines were equipped with port-

fuel injection systems (PFI) [53]. Currently, however, there is significant and 

growing interest in the use of DISI engines. The DISI engine has the potential 

to improve engine performance through changing volumetric efficiency and 

increasing the compression ratio. This is achieved through better use of the 

enthalpy of vaporisation and of the anti-knock characteristics, as compared to a 

conventional PFI engine [54]. Since ethanol has a higher octane number and a 

higher enthalpy of vaporisation compared to gasoline, the use of ethanol is 

expected to enhance the thermodynamics benefits ofDI engines [44]. 

Brewster [55] studied the potential benefits of using ethanol in a turbocharged 

DI research engine powered by a centrally mounted air assistant injector. It 

was suggested that the injector used could offer improved low-temperature 

starting characteristics for ethanol. In addition, the system will allow a 

disconnection between fuel metering and fuel delivery, allowing for the 

increase in the fuel consumption required for ethanol direct injection at a high 

specific output. Based on the current production turbocharged SI engine torque 

levels, ethanol results indicated a lower boost pressure, a lower exhaust 

temperature, more optimized ignition timing, and a higher thermal efficiency. 
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Furthermore, using ethanol demonstrated a significant reduction in excess 

fuelling at higher speeds and loads. 

In another recent study, carried out by the same researcher, Brewster et al. [56] 

evaluated the performance of a spray-guided direct injection, SODI, when 

anhydrous ethanol (EI00) and hydrated ethanol (E93h, E87h, E80h) are used 

as fuels. The SODI engine had a compression ratio of 10.4:1, the experiments 

were carried out at high loads. The results illustrated that the key differences 

arising from fuel water content were reduced burn rate requiring an advance in 

ignition timing. Another effect of increasing ethanol water content was an 

increased fuel mass flow rate and a decrease in engine emissions of NOx, as 

well as an increase in HC. The results also illustrate that higher ethanol content 

blends would have a higher potential for running at increased compression 

ratio. 

The cold start problem associated with using ethanol was also another driving 

factor behind the increased interest in the gasoline 01 engine as a way to 

improve cold start performance. Kapus et al. [57] performed a comparison 

between E85 and EIOO in an optical single cylinder powered by a direct 

injection system at a crank speed of 200 rpm and with fluids controlled at 

20°C. The results illustrated that by using multiple pulse fuel injections during 

the induction and compression strokes will improve the start on ethanol. 

Cairns et al. [53] carried out a study to evaluate the performance of a potential 

future biofuel during advanced spark SI engine. This was conducted on a 

multi-cylinder 01 research engine. Three gasoline/ethanol blends and three 

gasoJine/butanol blends were considered in this study. Some of the conclusions 

drawn up from the study include: firstly, alcohol blends generally perform 

better at slightly later injection timings and marginally lower fuel pressures. 

Secondly, while increasing ethanol content will increase EOR tolerance at low 

and high loads, due to the decrease in combustion duration. it will not have any 

effect on excess air tolerance. Finally, there was a strong synergy between SI 

engine downsizing and fuel containing low to moderate amounts of alcohol. 

Such a combination allowed a significant improvement in fuel economy to be 

made over the engine's driving cycle. 

Cairns et al. [53] also studied the effect of ethanol on deposit formation in the 

injector, which is an important factor in a 01 engine. The results illustrate that 
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EIO produces a relatively thicker layer of deposit on the injector face 

compared to gasoline. E85 tests, on the other hand, showed relatively 

immaculate fuel injectors. The same results were also obtained by Taniguchi et 

al. [44]. Their study showed that ElOO suppressed injector deposit fonnation. 

The reduction in injector deposit fonnation starts to manifest itself when the 

engine is running on E50. The reduction in injector deposit when ethanol is 

used is presumably caused by the reductions in both injector nozzle 

temperature and the amount of aromatics and sulphur contents in the fuel. 

2.8 Other alcohol considered as alternative fuel 

Early interest in biofuels concentrated on methanol usage [53, 58]. However, 

problems such as corrosive behaviour, vapour lock and lower energy density 

compared to both gasoline and ethanol (50% and 24% less than gasoline and 

ethanol respectively) turned the attention more towards ethanol [53, 59]. There 

is an increased interest in higher alcohol such as propanol (C3), butanol (C4) 

and pentanol (C5) [47]. Higher alcohol fuels generally have a higher energy 

density (and hence better fuel economy), better water tolerance, volatility 

control, and lower RVP compared to ethanol. However, some benefits 

associated with ethanol, such as enthalpy of vaporisation and anti-knock 

behaviour will typically reduce [46, 53] 

Some research studies were carried out to look into the effect of higher alcohol 

blends on engine perfonnance. Yacoub et al. [47] compared a wide range of 

CI-C5 alcohol fuel blends' effects on anti-knock behaviour. The engine 

operating conditions were optimized for each (CI-C5) blend with two 

different values of matched oxygen mass content (2.5 and 5.0 per cent). It was 

concluded that, whilst adding lower alcohols (CI, C2, and C3) to UTG96 

improved knock resistance, blends with higher alcohols (C4, CS) showed 

degraded knock resistance when compared to neat gasoline. The same results 

were also obtained by Gautam et al. [60]. The study also concluded that 

increasing oxygen content by adding any alcohol will increase the flame speed. 

Bata et al. [61] studied the effect of various butanol/gasoline blends on the 

perfonnance of a 2.21 naturally-aspirated research engine. The results showed a 

6.4 % increase in specific fuel consumption when using 20% butanol, but 

under limited test conditions. The fuel blends illustrated a higher thennal 
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efficiency and lower specific fuel consumption compared to both methanol and 

ethanol. 

In another recent study [51] carried out in an optical SI engine to examine the 

effect of alcohol blends on combustion behaviour. The addition of 25% 

butanol to iso-octane did not affect appreciably the combustion characteristics 

of iso-octane for fixed-ignition timings. However, for lean conditions. the 

combustion process slowed down marginally with butanol addition. When 

ignition timing is optimized, the addition of 25% butanol to iso-octane was 

shown to make it burn faster than pure iso-octane. 

2.9 Concluding comments 

The literature review covers a wide range of subjects related to ethanol. These 

subjects are related, either directly or indirectly, to the study presented in this 

thesis and intended to set the study in context. 

There has been extensive research on the effect of using ethanol blended with 

gasoline at different proportions on engine characteristics such as emissions 

and combustion behaviour. These two characteristics were also covered in this 

thesis. The variation in previous literature meant that a more thorough and 

robust understanding of the effect of ethanol is required. In addition most of 

these research studies were carried out on engines equipped with either port­

fuel injection system or carburettors. Limited number of studies were carried 

on a direct-injection engine, particularly a spray-guided direct-injection engine 

such as the one that was used in this study. 

Despite extensive research by the author, no literature was found investigating 

the effect of using ethanol-gasoline blends on energy balance and heat transfer 

characteristics. This indicates a gap in the knowledge relating to this subject 

that this thesis is trying to tackle. 
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CHAPTER 3 Experimental test facilities 

3.1 Introduction 

The experimental data presented in the thesis were recorded on an engine test 

facility developed by the author. This chapter deals with the development of 

the test facility, data acquisition and test rig control systems based on 

dSP ACE, Simulink and AIl softwares. 

The analysis of combustion behaviour, energy balance and heat transfer 

characteristics are the main focus of this work. The main experimental 

considerations were the accurate measurement of coolant and fuel flow rate, 

in-cylinder pressure and coolant, exhaust and inlet air temperature under fully 

warm conditions. For that reason a standard reference point was chosen for 

regular repeatability tests to ensure that the accuracy of the data was 

maintained across the course of the experimental tests. In addition, several 

techniques were used to eliminate any noise which could affect the readings 

The engine was also instrumented to measure brake output, speed, manifold 

pressure and emissions. 

3.2 Engine description and Test Cell Facilities 

The experimental studies was carried out on a prototype, four cylinders inline, 

1.6L Spray Guided Direct Injection, SODI, gasoline engine manufactured by 

Ford motor company as shown in Figure 3.1 the engine specification can be 

found in detail in Table 3.1. 

SODI engines are currently being proposed as the next generation of Direct 

Injection Spark Ignition, DISI, engine because of their expected fuel economy 

advantages and lower emissions over their corresponding waH-guided 01 

engine and PFI engines [54]. The spray guided combustion process is 

characterised by the way the fuel is injected to the combustion chamber. As 

illustrated in Figure 3.2, the fuel injected forms a hollow cone at the injection 

nozzle [62]. DISI engines in general have a fuel economy advantage over 
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corresponding PFI engines; this is largely due to lower pumping loss resulting 

from higher MAP, better mixture properties due to lean/dilute operation, lower 

heat losses due to charge cooling effects and the higher compression ratio 

enabled by charge cooling effects. Potential disadvantages of the DISI engine 

include higher friction losses, which increase due to higher peak pressure, 

lower combustion efficiency and higher combustion phasing losses [54]. In the 

case of SODI engines combustion efficiency is higher and combustion phasing 

losses is lower, which result in a significant improvement in the fuel economy 

for SODI engine over that of wall- guided system [63]. 

A Froude Consine eddy current dynamometer was coupled to the engine via a 

'straight through' gearbox supplied by Ford (running in top gear) and prop­

shaft. The dynamometer offered two modes of operation: constant speed and 

constant load. 

The standard starter motor in the engine was retained for cranking but the 

alternator was disconnected to allow it to run without external electrical errors. 

The waste heat generated by both the engine and the dynamometer were 

dissipated via an external cooling system. The external cooling system 

consisted of a Carter Ml3 series external forced convection cooling tower, 

water pump and a Bowman heat exchanger that replaces the standard vehicle 

radiator as shown in Figure 3.3. 

The basic engine coolant circuit consists of a thermostat and a bypass system. 

During the warm up period, coolant is circulated round the engine by means of 

a water pump and fed back to the inlet through a bypass line in the thermostat 

housing. The thermostat opens at a coolant temperature of approximately 

90°C, and at that point a portion of the coolant flow is diverted to the external 

cooling system. The two coolant paths are shown in Figure 3.3. The engine 

coolant is a 50:50 mixture of water and ethylene glycol. 

Exhaust gases were vented to the atmosphere via the laboratory extraction 

system using a standard exhaust pipe with minimum re-routing to suit the 

layout of the test bed. A dummy closed coupled catalyst body was used purely 

to provide the connection between the exhaust manifold and exhaust pipe. 

Two 12V 70Ah batteries were used on the test facilities. One was used solely 

to crank the engine and the other was used to power the ECU and other engine 

ancillaries. 
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3.2.1 Fuel delivery circuit 

As shown in Figure 3.4, the fuel system in the engine under investigation 

consists of low and high pressure circuits. The low pressure system is used to 

provide an initial pressure in order to prevent vapour bubble formation during 

hot start and high pressure operation. The system consists of the electrical fuel 

pump with an integrated pressure limiting valve and low pressure regulator. A 

pressure gauge was used to adjust the pressure regulator to a pressure between 

5 to 6 bar. The high pressure system includes a cam driven high pressure pump 

which able to generate an injection pressure ranging between 40-120 bar, a fuel 

rail which acts as a pressure accumulator for the injected fuel, a high pressure 

regulator which limits the pressure in the fuel rail and finally a fuel rail 

pressure sensor which measures the actual pressure inside the fuel rail. 

The pressure inside the rail was fixed to 70 bar pressure and the change in 

amount of fuel supplied occurred only through change the injectors pulse 

width. 

The engine employs a gasoline direct injection strategy, with injection fixed to 

an early value of. 60° A TDC. The early injection results in a fairly 

homogeneous fuel air mixture at ignition in order to avoid retaining any 

unburned fuel in the exhaust. 

Ethanol is a strong aggressive solvent which has the potential to cause failure 

to fuel system rubber components. In addition, in higher concentrations it can 

cause corrosion to fuel system components made from brass, steel and 

aluminium. These problems are exacerbated when the ethanol is left inside the 

engine for a long period of time, if the engine was not modified for the use of 

ethanol. For that reason and as the engine under investigation was not modified 

to operate as a flex i-fuel engine, two fuel tanks were used; one for pure 

gasoline and the other for an ethanol-gasoline mixture. After each test the 

engine was flushed with gasoline to make sure that no ethanol was retained. 

3.3 Engine Data Acquisition and Sensor Calibration 

3.3.1 Engine Pressure and Temperature 

In-cylinder pressure was measured in two out of the four cylinders using 

Kistler 6123A piezoelectric pressure transducer (250 bar range). Each 
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transducer was connected to a Kistler 5011 charge amplifier. The transducer 

was flush mounted in the cylinder head to prevent any 'ringing' effect induced 

by a narrow passage between combustion chamber and sensing element. The 

transducers and amplifiers were calibrated in pairs to 150 bar on a Budenberg 

dead weight tester as shown in Figure 3.5. 

All other engine pressures were measured using cost effective KuHte PT 2054 

pressure transducers employing a silicon diaphragm and a strain gauge bridge. 

Pressure measurements were taken in the intake and exhaust manifold. These 

low power transducers had an accuracy of 0.01% and a resolution of 0.001%. 

The Kulite pressure sensors were calibrated on the dead weight tester. 

All temperatures, for oil, coolant, fuel and exhaust gas were measured using 

Nickel-Chromium (K type) thermocouples probes, these were used owing to 

their vast junction measuring range and the relatively large emf sensitivity per 

1°C change [64]. For most temperature measurements, a 3 mrn diameter 

insulated hot junction which has 5 seconds response time was used. 0.5 mrn 

diameter wires, which have a response time of 1 second, were used to measure 

the exhaust port surface. The thinner thermocouples were used purely for 

installation purposes. The response times for both thermocouples types are 

acceptable for steady state tests. The signals from the thermocouples were 

passed through AD595 thermocouple amplifiers which also act as cold 

junction compensation. 

The thermocouples were calibrated in a thermostatic oil bath, the reading from 

the thermocouples was monitored using the data acquisition system and 

compared to a platinum resistance thermocouple (PRT) reading also placed 

within the oil bath. Figure 3.6 shows an example of the thermocouple'S 

calibration. 

3.3.2 Engine Encoder and TDC allocation 

To monitor and record the crank shaft position, a Hohner W4D91R (W series) 

incremental optical encoder was connected to the crank shaft. The encoder has 

two outputs; the first creating one pulse every half a degree of a crankshaft 

rotation to trigger the data acquisition system, and one creating a single pulse 

every complete revolution (i.e. every 3600 rotation). The encoder one pulse 

every revolution marker was set to match TDC in the cylinder. TOe represents 
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a datum which all angular measurement refers to. Any error in its location will 

obviously be passed through as a constant offset for such a measurement. The 

exact location ofTDC is of extreme importance for in-cylinder pressure related 

measurement. 

The TDC was calibrated for cylinder I. Initially, TDC was set manually via the 

dial guage indicator and extension bar resting on the piston crOM}. Then, an 

A VL 428 tool was used to obtain a more accurate impression of the position of 

TDe. The A VL sensor was installed in place of the spark plug in cylinder 1. 

The sensor evaluates the distance between the sensor tip and the piston crown 

by measuring the varying capacitance between the two. The sensor then 

generates a voltage that represents the relative distances. The location of TDC 

can be then interpolated from the data. The TDC location obtained from the 

sensor was aligned with the TDC location given by shaft encoder. Figure 3.7 

shows the difference between TDC according to the A VL tool and the signal 

from the encoder. 

The correction of the TDC location obtained from the encoder was made 

through an offset in the data acquisition software. 

In order to distinguish between TDC at intake stroke and at exhaust stroke, a 

comparison between the pressures at both points were carried out as part of the 

Simulink model. The TDC point with higher pressure is the combustion stroke 

TDC. 

3.3.3 Fuel Flow Measurement 

An accurate fuel flow measurement is essential as the heat transfer 

measurement and the overall energy balance determination and quantification 

within the engine depend largely upon the fuel delivered to the engine. An 

Elite CMF025 Coriolis type flow meter was used to measure the fuel flow rate. 

The flow meter is connected to an Elite RFT9739 transmitter which has an 

output current proportional to the mass flow rate of fuel in kg/hour in ranges of 

4-20mA. These currents were converted to a voltage by connecting four 100 n 
resistors in parallel across the current outputs to give a voltage output of 0.1 V 

at zero flow rate (4mA). 

The flow meter uses the Coriolis effect to measure the mass flow of a fluid. 

The fluid travels through dual curved tubes. A vibration is applied to the tubes 
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at their natural frequency using a drive coil and a feedback circuit. As the 

liquid flows through the tube, it is forced to take on the vertical movement of 

the tube as shown in Figure 3.8. When the tube is moving upward during half 

of its cycle, the liquid flowing into the meter pushes down on the tube. Having 

been forced upward, the liquid flowing out of the meter resists having its 

vertical motion decreased by pushing up on the tube. This action causes the 

tube to twist, as shown in Figure 3.8. The biggest advantage of the Coriolis 

design is that it measures mass flow instead of volumetric flow. Since mass is 

unaffected by changes in pressure, temperature, viscosity and density, 

reasonable fluctuations of these parameters in the fluid line have no affect on 

the accuracy of the meter, which can approach 0.05% of mass flow. It is of 

particular importance in this study to be able to measure the mass flow rate of 

different fuel mixtures. 

In order to calibrate the Coriolis flow meter, the gasoline from a header tank 

passed through the Coriolis flow meter and was collected in a container placed 

on a weighing scale, while the filling process was timed. The corresponding 

voltage was recorded using the data acquisition system. This process was 

repeated at different flow rates. The flow rate was changed using a needle 

valve placed at the entrance of the Coriolis flow meter. The mass flow rate was 

calculated and plotted as the function of the recorded voltage output and a 

linear relation between the voltage output and mass flow rate was drawn from 

the graph. 

3.3.4 Coolant and air flow rate Measurement: 

The coolant flow rate was measured using an Endress and Hauser 

electromagnetic type flow meter. In the electromagnetic flow meter, voltage is 

induced when coolant flow crosses the lines of a magnetic field, which 

provides a direct indication of the volumetric flow rate, as shown in Figure 3.9. 

The main advantage of these flow meters is that they do not create any 

resistance to the coolant flow, since they do not use any moving part within the 

coolant passage. 

The electromagnetic flow meter was calibrated using the same technique used 

to calibrate Coriolis flow meter (see section 3.3.4). However, a Peristaltic 

pump was used to pump the coolant into the electromagnetic flow meter owing 

T Alrayyes 28 University of Nottingham 



CHAPTER 3 Experimental test facilities 

to the high flow rate of the coolant inside the engine which cannot be matched 

by a header tank. 

A standard mass air flow (MAF) sensor was used to measure the mass air flow 

at the air intake manifold. This is a hotwire anemometer monitored by the 

ECU [62]. 

3.3.5 APR sensor 

AFR is monitored primarily usmg a MEXA-700 Lambda portable AIF 

analyzer which measures air-to-fuel ratio (AlF), excess air ratio (Lambda) and 

oxygen concentration with a wide range DEGO sensor. The sensor was 

mounted in the exhaust system in the pre-cat exhaust. The system can be 

calibrated to be used with different fuels by adjusting the fuel coefficient, Le. 

WC and OIC ratio. This will prove beneficial in acquiring data for different 

gasoline-ethanol blends. 

3.3.6 Exhaust gas analysis 

Engine exhaust gas composition was analysed using a Horiba MEXA-7000 

engine emissions analysis system which comprised of a number of individual 

analysers. The exhaust sample was drawn through heated lines using a heated 

pump. These lines are kept at a constant temperature of 190°C to ensure that 

the exhaust samples arrive to the emissions analysis system in a fully vaporised 

state. 

A flame ionisation detector (FID) was used to detect the concentration of the 

unburned HCs in the exhaust gas. NOx Level was measured using a heated 

vacuum chemiluminescence analyzer. CO and C02 concentration were 

measured using the well-established infrared gas tilter type analyser, and 

finally exhaust gas oxygen (02) was measured using a paramagnetic oxygen 

analyzer. Because of the nature of the CO2, CO and O2 analysers, water vapour 

in the exhaust must be kept to a minimum before entering the analyzers. For 

this reason, the exhaust sample passes through a cooler drier unit to cool the 

gases and condense the majority of the water content in the exhaust gas. The 

gas that passes through the cooler drier is cooled to SoC and a portion of the 

exhaust gas's mass in the form of water is lost before being analysed by the 

CO, CO2 and O2 analysers (dry analysis). To obtain true values for the 
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concentration in the raw 'dry' exhaust system, a correlation is applied in the 

post processing of the raw data. The correlation is a function of lambda value 

and the ethanol ratio inside the fuel as following, 

"'* x x = i 
I (0.0733£ + 0.1287).1(3£-1.1678) (3.3.1) 

Where X; is the dry mole fraction, X; is the true value (wet mole fraction) and 

E is the ethanol ratio. For more detail about the methods used to develop the 

correlation, see Appendix 1. 

All gas analyzers must be calibrated regularly. The analyzers require zero 

calibration and span calibration. The zero calibration is performed with a gas 

that contains none of the analyte gas to which the analyzer responds. For 

example, pure nitrogen is perfect for zeroing either oxygen or carbon dioxide 

analyzers, because it contains neither oxygen nor carbon dioxide. Calibration 

grade span gases, with a precisely defined concentration of the analyte gas to 

which the analyzer responds, were used to calibrate each individual analyser. 

Table 3.2 shows the different span gases used to calibrate each analyser. 

3.4 Engine management system A TI 

An Electronic system in a car consists of an Electronic Control Unit (ECU), 

sensors, setpoint generators and actuators. The sensors are used to detect the 

parameters of the electronic system, such as mass air flow rate, coolant 

temperature and engine temperature. The setpoints register the settings which 

the driver has specified with his or her operating control, such as pedal 

position; the sensors and set points produce the input signals to the ECU which 

then analyses and processes them. Actuators (e.g. ignition coil and fuel 

injectors) receive the electrical signals produced by the ECU and convert it 

into physical variables [62]. The command centre of the engine's ECU is a 

small microprocessor (function processor) with a program memory (EPROM), 

which stores all algorithms for control processes. 

The A TI system, used in the test rig, is an integrated calibration measurement 

solution which allows access to the ECU for calibration, logging measurement 
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data and managing calibration data changes [65]. A specially constructed ECU 

is used for the test rig; the lab ECU differs from the production ECU version in 

the fact that the flash EPROM was replaced by an IC socket. The M5 emulator 

module is plugged into this socket with the aid of a custom Tool Adapter 

Board (TAB) which has been tailored to the ECU's micro processor to 

simulate the EPROM by means of a RAM. This will provide direct access to 

ECU calibration parameters and make it possible to modify the different 

parameters both directly and online. A PC, connected to the M5 emulator via 

high speed USB port (12MB/s at full speed), was used to perform the control 

operation through an ATI software package known as ATl's VISIONTM as 

shown Figure 3.10. ATl's VISIONTM is a graphical interface software which 

allows its operator to calibrate, monitor and control the different Engine 

variables in the strategy file [65]. Among the engine operating variables which 

were most frequently changed were throttle position, ignition timing, required 

lambda value and EGR. In order to change any of these variables, some of the 

management structures related to this particular variable must be disabled first, 

in order to enable alteration of the variable without any external effect. For 

example, all new engines are torque based system structures which means that 

all performance demands placed on the engine are converted into torque 

requirements. The torque coordinator prioritizes the torque demands from 

internal and external power consumers. The resulting required torque is 

proportional to fuel, air and ignition timing. The torque is adjusted by 

calculating the required cylinder charge and subsequently the required throttle 

valve angle. Therefore, in order to allow for straight control of the throttle 

position, the torque structure which is related to so many variables has to be 

disabled first. 

3.5 dSP ACE control and data acquisition system 

dSPACE is a hardware and software package [66]. The basic concept of the 

dSP ACE system is task sharing. While the software package provides 

experimental environment and serves for the user interface, the dSP ACE 

hardware takes over the real time calculation. 

MATLAB/Simulink was used for modelling, analysis and offline simulation. It 

provides an interactive graphical environment and a customizable set of block 
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libraries. Within Simulink, Real-Time Workshop, RTW, was used to generate 

and execute stand-alone C code for the SimuJink model. Real time 

interference, RTI, blocks are the link between dSPACE's real-time hardware 

and the MATLAB/Simulink development software. It extends the C code 

generator RTW so that the Simulink model can be easily implemented on 

dSPACE real-time hardware. The interaction between dSP ACE software, 

hardware and Simulink is shown in Figure 3.11. 

Communication with the test rig occurred though the appropriate 110 cards, 

described in the following section. Signals produced by the engine sensor were 

received by 110 cards and displayed for the user via a network communication 

link between the dSPACE system and a PC, using a dSPASCE software 

package known as ControlDesk. ControlDesk provides the interface which 

allows the user to interact with the system. Using a variety of virtual 

instrumentation, data was captured at user-specified lengths and intervals. An 

example of a ControlDesk page is shown in Figure 3.12 

Here is the list of the boards which were used as part of the dSpace hardware 

system. 

DS 1005 PPC Processor 

The board featured a Motorola PowerPC 750 processor running at 480 MHz. 

The DS 1 005 board provides the computing power for the real-time system and 

also function as an interface to the 110 boards and the host PC. It 

communicates to the 110 boards via 32 bit peripheral high speed (PHS) bus 

that has a transfer rate up to 20 Mbyte/s. 

Slow AID converter (DS2003) 

The system comprises of two DS2003 multi channel < AID converters; they 

include two independent AID converters with 32 AID input channels (single­

ended). The AID converter resolution is programmable over a range of 4-16 

bit. Each channel is software programmable for a range of ±5V or ± 1 OV. The 

sampling time is dependent on the number of channel used; while sampling 

two channels will give a sample time of 5.7 \-Is, sampling 32 channels will 

increase the sample rare to 72.5 \-Is (16 bit). 

The two boards were used for time-based sampling. On the first board, the 

temperature thermocouple signals were sampled. On the other board, pressure 

transducers, dynamometer load and speed and fuel flow rate were sampled. 
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Fast AID converter (DS 2004) 

The DS2004 board has 16 parallel independent AID converter channels, with a 

resolution of 16 bits. The sampling rate is 800 ns per channel. The 

measurement modes plus four external trigger inputs enable the conversion of 

both single measurement values and whole sample bursts. The board was used 

for the in-cylinder pressure transducers. The data acquisition system was 

triggered every half-degree of crank shaft rotation by the optical shaft encoder. 

The hardware trigger block from RTI was used to trigger the crank resolved 

sampling, by half degree encoder signal to sample the in-cylinder pressure. 

Ds4002 timing and Digital 1/0 

DS4002 timing was primarily used to calculate engine speed using the 0.5 

degree square wave output from the encoder. The frequency-to-digital RTI 

block was used to time sample each rising and falling edge, and then output a 

digital signal proportional to the frequency of the pulses. The data is then 

processed to obtain a value for engine rotational speed. 

The arrangement of the individual boards, together with an explanation of how 

they are integrated in the system is shown in Figure 3.13. 

3.6 Main Measurement and calculations 

3.6.1 In-cylinder pressure data and mean effective pressure (MEP) 

In-cylinder pressure was measured over 100 cycles by the piezoelectric 

sensors. The piezoelectric sensors are differential sensors and need to be 

referenced to a known pressure at a given point in order to obtain an absolute 

pressure. Therefore, in-cylinder pressure at BDC during the intake stroke was 

sensibly assumed to be equal to the pressure in the intake manifold. 

In order to reduce sensitivity to noise, single cycle smoothing of the pressure 

data was carried out using a simple 3-point rectangular (un-weighted) 

Algorithm. The algorithm replaces each data point with an average of adjacent 

points: 

D ( h) p;+I(raw) + p;(raw) + P;-I (raw) 
L smoot = ~;"':---'----------':'-"----

I 3 
(3.6.1) 
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For i=2 to m-I, the reduction in random noise is approximatelyJ;,., where m= 

smooth width. Figure 3.14 illustrates an example of a log pressure vs. log 

volume graph, for both raw pressure and smooth averaged data. 

While torque is an important technique for measuring the ability of an engine 

to perform work, the difference in engine size makes it hard for the researcher 

or reader to understand the significance of a particular torque compared to the 

maximum torque inside the cylinder. For example, while 100 Nm torque is 

almost the maximum torque for a 1.4L 81 engine; it is a medium torque for a 

2.0L 81 engine. For that reason, mean effective pressure, MEP, is considered to 

be a more useful way to express work output. MEP is a relative performance 

measurement which scales the engine/gas work output to the engine 

displacement. Details of the calculation of brake, indicated, gross and pump 

mean effective pressure are described below, 

BMEP is defined the engine work out per cylinder to the engine displacement 

as following, 

p. _ 2:rNT 
b - 60 

2P. 4:rT 
BMEP= b =-

VdN /60 

(3.6.2) 

(3.6.3) 

where Pb is brake power output, T is the torque (Nm), N is the engine speed 

(rpm) and Vd is the swept volume. IMEP is defined as the work transfer from 

gas to piston per cylinder per unit swept volume. In-cylinder pressure is used 

to calculate the work transferred from the gas to the piston. IMEP is calculated 

using the following equation, 

X2 

JPdV 
IMEP = J¥.,,1 = ...... xl __ 

VJ VJ 
(3.6.4) 

where ~,I is delivered per cycle, P is the instantaneous cylinder pressure 

measured and dV is the change in the cylinder volume from the previous 
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sample. The values of XI and X2 vary depending on whether gross or net IMEP 

is measured. 

IMEPnel includes all four strokes with x/=O° and Xl =720°. IMEPgross includes 

only the compression and expansion stroke with x,=180° and x2=540°. 

The difference between IMEPnel and IMEPgross represents the pumping loss 

during inlet and exhaust stroke, 

P MEP = IMEP net - IMEP gross (3.6.5) 

The accuracy of IMEP calculations is mainly dependent on pressure/volume 

phasing. Figure 3.15 demonstrates that an error of lOin TDe location can 

cause an error as high as 6% on the IMEP n at low load and 4.5% at high load. 

This highlights the importance of accurately locating TDe, as detailed in 

section 3.3.2. 

Other sources of error which could affect pressure readings and IMEP 

calculation include error in pressure pegging, clearance volume estimation and 

transducer temperature variation (which can change the transducer calibration 

factors) [17]. 

3.6.2 Burned mass/raction (EGR & Residual mass/raction) 

Residual mass fraction, Xr, is defined as fraction of the exhaust gas that is left 

in the cylinders from previous cycle, 

(3.6.6) 

where m, is residual mass and mlat is the total intake charge, 

(3.6.7) 

The main factors which affect the residual fraction magnitude are inlet and 

exhaust pressure, valve timing, compression ratio, exhaust system dynamics 

and engine speed [17]. Its magnitude will have a significant effect on the 

T Alrayyes 35 University of Nottingham 



CHAPTER 3 Experimental test facilities 

engine volumetric efficiency, performance and emissions produced by the 

change in the thermodynamics properties of the in-cylinder charge. For that 

reason, accurate knowledge of the Xr is required. 

Although the engine has variable valve timing, VVT, technical problems in the 

signal coming from the VVT sensors forced the author to fix the IVO and EVC 

at OOBTDC which means zero overlap between exhaust and inlet valves. 

The most common way to quantify cylinder residual fraction is by extracting 

an in-cylinder charge sample during compression, however, this would require 

complex instrumentation, and it was beyond the scope of this work to perform 

such an experiment. Instead, Xr was determined through the ideal gas law. 

Since both IVO and EVC are fixed at OOBTDC Xr will be trapped at the 

clearance volume with temperature equal to the exhaust temperature before the 

exhaust port Texh, the pressure, P, was assumed to be equal to in-cylinder 

pressure just before IVO. Hence, mr can be calculated from the following 

equation, 

m = p v:.'earenct' 

r R7;xh 
(3.6.8) 

In order to verify equation 3.9, it was compared with correlations developed by 

Heywood [17] and Winborn [67]. and measured values obtained from 

Bonatesta [68] at 0 overlapping between EVe and IVO. 

Heywood [17] use the following equation to calculate Xr as part of engine cycle 

simulation, 

x = ] + Texh 'c Pm _ Pm 
( [ ( ) ( )

(r-l)/Y l) 
r T m P,xh Pexh (3.6.9) 

Where Texlb T Tn> P"" Pexh and rc are exhaust temperature, manifold temperature. 

manifold pressure, exhaust pressure and compression respectively 

Winborn [67] developed the following correlation, 
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1 
x =------

I' (1 + 2(~ -1)1]vC 

Where '1v is the volumetric efficiency, 

. AFR+I-EGR 
C IS constant = -----­

AFR-AFR.EG R 

(3.6.10) 

(3.6.11) 

Figure 3.16 shows a comparison between equation 3.9, Heywood [17] and 

Winborn [67] equations, and measured values. The data illustrates that there is 

a small difference between the results from the different equations, especially 

between Winborn and equation 3.9; the measured value showed a 2% higher 

value on average than that calculated by equation 3.9. The difference can be 

attributed to a difference in the compression ratio between the two engines, 

11.5:1 compared to 9:1 for the engine used by Bonatesta [68]. Equation 3.9 

was assumed to be accurate to calculate x,. inside the engine during this study. 

All data demonstrated a decrease in x,. as the load increase. This was due to the 

increase in inlet to exhaust pressure ratio. 

EGR can be defined as the ratio of the mass flow rate of the recycled gas and 

the total induced mixture, expressed as percentage. 

EGR(%)=(. mEGR. )xlOO 
mEGR+mu;r 

(3.6.12) 

The EGR percentage was calculated using Horiba emission equipment. A 

sample of the intake gas was drawn using a vacuum pump, filtered and sent to 

the cooler dryer travelling going through a carbon oxide analyser to measure 

the concentration of C02 present. The EGR level can be obtained by 

comparing the C02 concentration in the manifold subtracted by atmospheric 

CO2 (-0.03%) with that of the exhaust (minus atmospheric): 
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(3.6.13) 

where x;: is the dry percentage of C02 in the inlet manifold, Xamb is the C02 in 

the ambient air (-0.03%) and x: is the dry amount in the exhaust. See 

Appendix 2 for more detail about the method used to develop equation 3.14. 

The burned gas mass in the fresh charge before combustion is the sum of the 

circulated and residual gas masses 

(3.6.14) 

Hence, the burned mass fraction, Xb can be expressed as following, 

mil 
XII = ----"---

ma + mfoel + mil 
(3.6.15) 

3.7 Errors and repeatability 

The test rig which is used in this study was constructed and instrumented by 

the author. Most of these instrumentations has been used for the first time or 

has not been used for a period before its use in the current rig. Reliability of 

the results is the most important part of any experiment, and several potential 

sources of error could be present in the data acquisition system. Some of these 

errors can be quantified and sorted, such as noise. The reliability of the test, 

nevertheless, can be influenced by external factors which will affect the 

measurement. Ambient temperature, pressure and engine aging are the most 

obvious factors which can have an effect on the accuracy of the measurement. 

In this study, a standard reference point at BMEP of 4.7 bar, 2000 rpm speed, 

MBT spark timing (14 °BTDC) and AFRstoich was chosen to perform a 

repeatability test. A total of 20 repeatability tests were carried out during the 

course of the 18 months of experimental tests. The main aim of the 

repeatability test is to quantify the effect of any external influence and to make 
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sure that all instrumentations are working in a satisfactory manner before 

commencing any test. 

Figure 3.17 shows an example of the data measured during the repeatability 

tests. Table 3.3 details the parameters measured and calculated during 18 

months of experiments. Air temperature was found to vary a lot during the 

course of the experiment with COV=10%, temperature varying between 20-

30°C depending on the time of the year, weather conditions and the number of 

engines running inside the lab. 

Engine speed, load output, fuel rail pressure and lambda all displayed less than 

1 % COY which indicates that engine operating conditions are well controlled 

and repeatable. 

The greatest variation was found to concern HC and NOx emissions 

measurement, with COY = 7 and 4.3 % respectively. This variation can be 

attributed to the low values being measured and the sensitivity of both 

emissions to change in inlet air temperature. 

The overall results illustrate a reasonable repeatability with COY < 3%, 

especially regarding heat transfer to coolant and fuel mass flow rate, which 

have a significant influence on the heat transfer characteristics comparisons. In 

real world applications, an even greater variation will naturally occur. 

Random error related to noise could have significant effect on the data derived 

from the experiment. For that reason, eliminating or at least reducing noise 

effect is vital. During the course of this study, several techniques, such as low 

pass filter for some transducers, were used to eliminate and reduce noise. Both 

crank and time domain trigger systems data were acquired over long periods. 

Pressure data was acquired from 100 consecutive cycles. The data was 

averaged and the moving average technique was used, as explained in detail in 

section 3.6.1, to eliminate the effect of noise on pressure data related 

calculations. 

The rest of the readings were acquired over 75 seconds with time samples of 

O.1s, which means that there were 750 samples for each test point. Before 

averaging the samples, the noise spike was removed from the data sets to avoid 

any shift in the data. This was achieved by removing any data point outside the 

domain (x ± fSo), where x is the samples mean, So is the standard deviation of 
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the mean, and the degree of freedom "f' is determined as 2 for 95% confidence 

level. 

Estimate of the uncertainties in some of the measurements and calculations are 

shown in Appendix A.S. 

3.8 Summary & Conclusion 

The chapter has described the engine test facilities developed to calculate 

combustion behaviour, heat transfer and energy balance with different ethanol 

ratio inside the engine. The repeatability test showed a reasonable degree of 

accuracy with COV<3%. The test rig performed in a satisfactory manner 

during the data acquisition phase. The data has been processed analysed and 

presented in the following sections. 
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CHAPTER 4 Basic comparison between 
gasoline-ethanol mixtures 

4.1 Introduction 

The most obvious difference between gasoline and ethanol is that the latter is a 

single species that might be viewed as partially oxidized hydrocarbon [69], the 

former is complex and composed of variable mixtures of hydrocarbons [23]. 

The presence of oxygen in ethanol, coupled with its lower molecular weight 

and HlC ratio, will cause substantial differences physiochemical and 

combustion properties for ethanol compared to gasoline. In this study, the 

effect of adding ethanol on gasoline to form different fuel blend on 

fundamental parameters including AFRstoich, adiabatic flame temperature and 

heating value will be investigated. 

In addition, this section is concerned with the evaluation of the engine 

performance including power output, BSFC, MBT, emissions and combustion 

efficiency while operating at various gasoline-ethanol blends. 

The above characteristics will have a significant effect on the engine's 

combustion behaviour, energy balance and heat transfer characteristics that are 

the main concern of this thesis. 

4.2 Experimental fuels 

Experiments were carried out on different gasoline-ethanol blends. Ethanol and 

gasoline were mixed on a volume basis. The blends were mixed just before 

carrying out the test in order to avoid any absorption of moisture from 

atmosphere, which can cause phase separation. Phase separation can occur 

because ethanol is miscible with water while gasoline is not [69]. Phase 

separation between ethanol and gasoline occurs when the amount of water 

absorbed exceeds a tolerance level, which will depend on the ethanol ratio of 

the fuel blend [70]. Water contamination of fuel has a destructive effect on 

lubricants. It attacks additives, induces base oil oxidation and interferes with 

oil film production. It also results in corrosion of mechanical components. 
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Four blends were tested including 10% (EI0), 20% (E20), 50% (E50) and 8S 

% (E85) ethanol ratio. The volume fractions were chosen for several reasons. 

E 1 0 was of interest as it is already of use in US markets and is being 

considered for the EU market [1]. E20 and E50 were selected to provide fuels 

with moderate content which are already used by countries such as Brazil [1]. 

Finally, E85 has already emerged in some markets, such as USA and Sweden 

[1], and was required to provide information about the effect fuel with high 

ethanol content on the engine performance. In addition, a wide range of 

ethanol ratios were used to aid characterisation of the physical and the 

chemical properties that might not be linear. 

The key properties of the different fuel mixtures are summarized in Table 4.1. 

The gasoline used in this study is a premium unleaded gasoline which was 

referred to as ULG in all the figures. For simplicity and for the purpose of the 

calculation, gasoline was assumed to have a chemical structure of C8.26HlS.S 

[71]. 

4.3 Selection of experimental comparison parameters 

Several potential bases for comparison were considered before starting the 

experimental work, including constant mass charge, fixed throttle position and 

constant brake power output. Constant brake power output was selected. 

Speed, load, spark timing and equivalence ratio were kept constant. This is to 

insure a direct comparison between the different fuel blends, with change in 

ethanol content in the fuel as the only variable. Running the engine on different 

fuel blends with either throttle position or in-cylinder charge mass fixed would 

. affect the power output, as discussed in more detail in the following sections. 

This means that, in addition to increasing ethanol content in the gasoline­

ethanol mixtures, there will be other factors that would affect the engine 

performance. 

4.4 AFRstoich, calorific value and adiabatic flame temperature 

AFRstoich, adiabatic flame temperature and calorific value of the fuel are 

fundamental parameters that have an effect on the engine combustion and 

performance. This section is concerned with calculating the effect of adding 

ethanol at different ratios on all these parameters. 
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Stoichiometric air! fuel ratio, AFRstoich 

AFRstoich, is defined as the ratio of air (oxidizer) to fuel by mass needed to 

completely burn a quantity of fuel [71]. Mixing of gasolinelethanol at various 

ratios will have an effect on fuel composition and thus AFRstoich. The AFRstoich 

of the different fuel mixture was determined by considering simple atomic 

balance for the overall chemical equation for complete combustion as follows, 

where n, 1102, 1lc02, nH20 and nN2 are number of moles of ethanol, air, C02, H20 

and N2, respectively. More detail of the calculation are shown in Appendix 3. 

Figure 4.1 shows the calculated effect of increasing ethanol ratio on AFRslOich, 

HlC ratio and OIC ratio. The data illustrate that AFRslOich will decrease as the 

ethanol percentage increase in the fuel mixture. The decrease in AFRstoich is 

mainly due to the increase in 02 content and change in HlC ratio in the fuel 

mixture. Comparing the gradients of OIC ratio and HlC ratio curves in Figure 

4.1 illustrates that OIC ratio has far greater effect on AFRstoich than H/C ratio. 

Calorific value 

Calorific value or heating value, QHV. of a fuel is defined as the magnitude of 

the heat of reaction at constant pressure or constant volume at standard 

temperature (usually 25°C) for a complete combustion of a unit mass of the 

fuel. The heating value at constant pressure is more commonly used, the 

different between the heating values is small [17]. 

The heating value is divided into upper or higher heating value, QHHV, and 

lower heating value, QLHV. QHHvis the heat of combustion calculated assuming 

that all of the water vapour formed in the products has condensed into water. 

On the other hand, QLHV is calculated assuming that there is no water 

condensed in the products. QLHV is more commonly used to express the energy 

content of the fuel. The heating value of the different fuel mixture was 

determined from the heat of enthalpy of reaction, thus [71], 

QLHv=-(enthalpy o/reaction)=-(Hprod- Hreac) (4.4.2) 
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Detailed calculation of the QLHV for different fuel blends is found in Appendix 

3. Calculated data are plotted in Figure 4.2. The data illustrate a linear relation 

between ethanol content and QLHV of the fuel. Increasing ethanol content in the 

fuel blend will decrease QLHV. QLHV has decreased from 42 to 29 MJ/kg from 

gasoline to Ethanol. The value of QLHV can be related to ethanol volume 

percentage in the mixture, E, by 

QLHV= -16.474E+ 42.863 (MJ / kg) (4.4.3) 

Adiabatic flame temperature,Tadd 

The definition of Tadd is dependent on how the combustion process is 

completed, constant volume or constant pressure process. The constant volume 

adiabatic flame temperature, Todd,vol, is a result of a complete combustion inside 

the engine without any work transferred into the piston, and with no heat 

transfer or changes in kinetic or potential energy (constant internal energy). 

The constant pressure adiabatic flame temperature, Toddpress. is the temperature 

that results from a complete combustion process that takes place with no heat 

transfer or changes in kinetic or potential energy (constant enthalpy process). 

Todd. vol is higher than Todd.press because some of the energy in Todd,press is used to 

change the volume of the system (i.e. generate work). 

Internal combustion engines cover several degrees of crank shaft rotation 

during the combustion process, so there will be a change in volume. For that 

reason, the constant pressure definition was used to calculate Todd for the 

different fuel blends. For the constant pressure definition, the absolute enthalpy 

of the reactants at the initial state equals the absolute enthalpy of the products 

at the final state as follows: 

H reac (7;, P) = ~rod rFadd,' P) (4.4.4) 

The enthalpy is calculated by, 
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H = L nJhi.; + cp,,(T; - 298 )] (4.4.5) 
'0'0/ 

The enthalpies of the reactants were calculated assuming an initial temperature 

TI of 298 K. The enthalpy of formation of air is equal to zero, hi" = 0, at Tinit = 

298 K. h ;,1 for fuel, for both gasoline and ethanol, is calculated from a 

polynomial function from Turns [71] for a reference state of zero enthalpy at 

298 K and 1 atm, 

( 
02 03 0 4 0-' ) h ,°=4184 a,0+a2 -+a3 -+a4 --a, -+a6 2 3 4 5 

(4.4.6) 

where the coefficients for gasoline and ethanol are shown in Table 4.3, The 

enthalpy of the combustion products, which is based on temperature, was taken 

from Rogers and Mayhew [72]. 

The calculated data were plotted in Figure 4.2. The data illustrates a small 

decrease in adiabatic temperature between gasoline and ethanol (::::: 3%). 

4.5 Power output and fuel consumption 

The energy output of the engine is largely a function of the amount of heat 

released in the combustion chamber; heat release is dependent on the 

properties of the fuel burned and the amount of air available. QLHV of ethanol 

(27.74 MJlkg) is approximately 63% that of gasoline (43.66 MJlkg). while 

AFRstoich of ethanol and gasoline is 9 and 14.52, respectively. The amount of 

energy that can be released per unit mass of air is proportional to the QLlW 

divided by AFRstoich. Consequently in this case, despite the lower heat content 

of ethanol compared to gasoline, its lower AFRstoich enables an equivalent or 

even greater amount of energy to be released for a given amount of air, as 

illustrated in the equations below; 
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Gasoline: 
(4.5.1) 

CS26HISS +12.135(0 2 +3.78N2 ) = 8.26C02 + 7.75H20+ 45.63N2 +4.86MJ 

Figure 4.3 shows an example of the effect of increasing ethanol ratio in the fuel 

blend on the engine brake output at WOT, constant speed and fix ST. WOT 

and constant speed creates a constant mass flow of air for the different fuel 

blend tests, assuming constant temperature conditions. The results illustrate 

that as ethanol ratio increases, BMEP output also increases. The data shows a 

4.8% improvement in BMEP between gasoline and E85. The improvement in 

BMEP is also obvious for small ethanol percentages, such as E 1 0 and E20, that 

are currently commonly used as oxygenates and octane boosters. The 

improvement in brake output can also be attributed to cooling effect of ethanol 

as a result of its higher enthalpy of vaporisation. The cooling effect will 

increase the air density and hence increase the mass of air introduced. 

The combined effect of AFRstoich and QLHV illustrate also that less air is 

required for ethanol to get the same power output as gasoline. This will afiect 

internal dilution especially at low load, as shown in Figure 4.4, due in the 

decrease in MAP. 

This increase in brake output will be at the expense of BSFC due to the lower 

QLHV of ethanol as shown in Figure 4.5. The results show a clear increase in 

BSFC as ethanol ratio increases. 

4.6 Spark timing (ST) and MDT determination 

Spark timing, ST, has significant effects on combustion behaviour, energy 

balance and emissions. If combustion starts too late, peak pressure and 

temperature will reduce and work transfer from gas to piston during the 

expansion stroke decreases, consequently reducing brake work output. On the 

other hand, if combustion starts early in the cycle, a large amount of work will 

transfer from the piston to the gases at the end of the compression stroke, thus 

reducing work output. The ST that gives maximum engine torque and 

minimum brake specific consumption at fixed speed is referred to as maximum 

brake torque timing, MBT [17]. MBT is mainly dependent on speed and load. 

T Alrayyes 46 University of Nottingham 



CHAPTER 4, Basic comparison between gasoline-ethanol mixtures 

As the speed increases, MBT will advance from TDC since combustion 

duration, in crank angle degrees, will increase. Increasing load will retard 

MBT due to the reduction in the combustion duration [17]. 

MBT was determined at fixed load by changing the mixture flow (increasing 

or decreasing throttle position) to maintain constant speed for different ST. 

Figure 4.6 shows the effect of changes in ST location on BSFC and manifold 

air pressure, MAP. As shown in Figure 4.6 , minimum MAP is quit flat and it 

is hard to allocate exactly where MBT is. In general, the engine is calibrated so 

that ST is slightly retarded (at the beginning of the flat line). 

An alternative approach to determine MBT was used to verify the previous 

method. A ST sweep was carried out at constant MAP (minimum MAP 

obtained from previous method was chosen) and constant speed. The test 

started from significantly retarded ST until a drop in torque or the knock limit 

was encountered. A comparison between the two methods is shown in Figure 

4.7. The data show a torque increase as ST is advanced until the curve is flat at 

maximum load. Both methods yield the same result. 

In order to investigate the effect of adding ethanol on MBT, ST sweeps were 

conducted for different fuel blends at constant speed and torque as shown in 

Figure 4.8. The data illustrate that there was very little change in ST as ethanol 

ratio increase. Table 4.2 shows the MBT location for different fuel mixtures at 

part and high load. MBT location in the table was obtained from fitting a 

quadratic polynomial to the ST sweeps with R2>O.9. The data illustrate again 

that there is no significant difference between MBT for different fuel blends. 

E85 had a very slightly retarded MBT compared to gasoline. 

The introduction of EGR has an effect on MBT location due to the change in 

combustion duration of the in-cylinder charge. As EGR increased in the 

mixture, ST has to advance in order to maintain MBT timing and thermal 

efficiency. The relation between MBT with no EGR, 80, and MBT when EGR 

is introduced, 8, for both E85 and gasoline is plotted in Figure 4.9. From the 

plotted data, 80 and 8 are related by, 
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For gasoline: fhGR = Boe3.23EGR (4.6.1) 

For E85: BEGR = O.99BaeJ.(JHUR (4.6.2) 

4.7 Emissions 

The SI engine is a major source of emissions; the regulated emissions that are 

produced by SI engine are CO, He and NOx emissions. In addition there are 

aldehyde emissions that are not yet regulated and particulate matter, PM, that 

are regulated for DIS I engines. Increasingly tighter regulations mean that 

greater understanding of the effect using ethanol on those emissions is 

required. Although the effect of using ethanol has been extensively studied by 

several researchers, there was variation in the results as discussed in detail at 

the literature review in Chapter 2. Furthermore, the majority of these tests were 

carried out on PFI engine, and the rest were carried out in a wall guided DIS I 

engine. The only exception is Price et al. [41 ]who looked at the effect of 

ethanol in an SGDI engine. The study investigated PM without looking at any 

of the other emissions. For that reason, it was essential to understand the effect 

of using ethanol in SGDI engines. In addition, the exhaust composition was 

used to calculate the combustion efficiency for different fuel blends. 

The work here focused on comparing the emissions produced when the engine 

is running on different fuel blends. The tests we carried out at different running 

conditions, varying f/J, EGR and ST. 

The introduction of ethanol was expected to have an effect on the emissions 

produced due to the change in the chemical composition of the different fuel 

blends including the higher HlC ratio and the availability of oxygen in the fuel. 

Regulated emissions were sampled using a Horiba exhaust gas analyzer, see 

section 3.3.6 for more details. 

4.7.1 CO and CO2 emissions 

While C02 is formed as a result of complete combustion of fuel, CO is formed 

at high temperature when there is insufficient oxygen to form C02. That is why 

CO mainly forms during the combustion stroke where rich fuel/air mixtures 

and high temperature products are available, and then freezes in the expansion 

stroke as temperature reduces. 
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It is well established that fuel/air equivalence ratio, fIJ, is the main parameter 

that affects CO and C02 emissions in an SI engine [17]. Figure 4.10 shows CO 

and C02 emissions as function of fIJ for different fuel blends. The results 

demonstrate that on the lean side, C02 level rise as fIJ decreases due to the 

reduction in fuel quantity. At the rich side, CO2 mass fraction drops as rp 

increases due to the reduction in the oxygen available for complete 

combustion. CO emissions, on the other hand, are very small at the lean charge 

but not zero due to the high temperature inside the combustion chamber. 

However, as fIJ increases over 1, CO mass fraction increases steadily due to 

insufficient O2 for combustion. This result indicates that high concentration of 

CO can be avoided by running lean or even at stoichiometric. However, SI 

engine has to run rich at starting up to avoid stalling especially at low 

temperatures (which appears to be particularly a problem when running with 

ethanol) and at WOT to increase maximum power. 

Adding ethanol to the fuel had a significant effect on both CO and C02 as 

illustrated in Figure 4.10. Increasing ethanol percentage in the mixture 

decreases C02 mass fraction for lean mixtures until fIJ reaches 1.1, then C02 

does not change between the different fuel blends. The reduction in C02 is 

attributed to the change in HlC and OIC ratios. The effect of HIC ratio change 

on CO2 emissions was calculated from the atomic balance in chemical equation 

4.1, assuming complete combustion. The calculated data were plotted in Figure 

4.11. The data illustrate a decrease in C02 as ethanol ratio rises (HiC ratio 

increase). As shown later in this chapter, when rp > 1, increasing ethanol ratio 

improves the combustion efficiency as shown in Figure 4.19, therefore 

increasing C02 fraction. The combined effect of H/C ratio and combustion 

efficiency can explain the unchanged C02 at rich fuel/air ratio. 

The reduction in CO at rich fuel/air ratio as ethanol content increase is a direct 

result of the increase in combustion efficiency. 

4.7.2 NOx emissions 

Oxides of Nitrogen (NOx) are harmful emissions that contribute to the 

formation of acid rain and photochemical smog [17]. NOx refer to both NO 

and N02 emissions. In SI engines, NO dominates NOx composition with 

contributions between 70-90% of the total [17]. The most widely approved 
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mechanism for the thermal formation of NO emissions is that of Zeldovich 

[17]. The mechanism comprise of three different steps, 

O+N2 ~NO+N 

N+02~NO+O 

N+OH~NO+H 

(4.7.1) 

(4.7.2) 

(4.7.3) 

High combustion temperature causes the oxygen molecules to dissociate to 

atomic oxygen which initiates nitric oxide formation; subsequently in-cylinder 

temperature and availability of oxygen are the main parameters that affect NO 

formation. In other words, higher burned gas temperature results in higher rate 

of NOx formation. The rate of the reaction in equation 4.11 to 4.13 is slower 

than the combustion rate and for that reason the majority of NO is formed 

behind the flame [17]. N02 is generated through the conventional mechanism 

as follows, 

(4.7.4) 

NOx emissions are mainly influenced by EGR, ignition timing and 

equivalence ratio; all of which have a direct impact on in-cylinder temperature 

and oxygen availability. 

Figure 4.12 shows NOx emissions as a function of equivalence ratio for 

different fuel blends. For all fuel mixtures, the maximum formed NOx is found 

near qJ= 0.9. Reducing peak temperature can significantly reduce NOx 

emissions. This can be achieved by re-circulating some of the exhaust back to 

the combustion chamber using EGR. The effect of EGR is to increase the heat 

capacity of the charge, thus, reducing the peak: combustion temperature. The 

reduction in temperature will cause a reduction in NOx emissions, as shown in 

Figure 4.13. However, EGR also decreases the combustion rate, making stable 

combustion more difficult to achieve. This results in increased He emissions, 

as shown in Figure 4.15 [73]. 
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Another method to reduce NOx emissions is by retarding ignition timing. 

Retarding ignition timing moves the peak pressure away from TDC, thus, 

reducing peak pressure and temperature due to the increase in volume. The 

effect of ignition timing is shown in Figure 4.14. 

Data in Figure 4.12, Figure 4.13 and Figure 4.14 illustrate clearly that NOx is 

decreasing as ethanol ratio increases. The decrease is small between gasoline 

and E50 followed by a large decrease between E50 and E85. The decrease in 

NOx emissions is mainly attributed to the decrease in local flame temperature. 

While it was beyond the scope of this study to measure the combustion 

temperature directly, adiabatic flame temperature was calculated using the 

emission constituent. See appendix 3 and section 4.4 for more details. Figure 

4.2 shows a clear reduction of adiabatic flame temperature as ethanol ratio 

increase. Previous research showed a clear correlation between adiabatic flame 

temperature and NOx emissions [74]. Furthermore, increasing ethanol content 

will decrease hfg as shown in Figure 2.3. This will create a cooling effect 

before combustion and subsequently decrease in in-cylinder temperature. 

Another minor factor to consider is that, for the same load and speed, internal 

dilution will increase slightly as ethanol ratio increases, as shown in Figure 

4.4. 

4.7.3 He emissions 

HC emissions are formed as a result of incomplete combustion of the 

hydrocarbon fuel. As mentioned in Chapter 2 and Chapter 3, a FID is used to 

measure HC. FID response is proportional to C atoms in each molecule. In 

alcohol, the C is bonded to 0 in R-O-H group where R is an Alkyl radical 

gives a response of about 50 to 85% of a C atom [41]. A correction factor 

based on the average of FID response to alcohol, 65%, was used. A linear 

relation between ethanol content and FID response was assumed. 

Figure 4.15 & Figure 4.16 illustrate that increasing ethanol ratio will cause a 

significant decrease in HC emissions for aU equivalence ratios conditions. 

There was up to a 30% decrease in HC emissions between gasoline and E85. 

There are several mechanisms that could cause the formation of He emissions 

for SI engines [17] such as flame quenching, filling of the crevice with 

unburned mixture, oil layer absorbing the fuel vapour during intake and 
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compression then releasing these vapours during expansion and exhaust and 

finally incomplete combustion or total misfire that could occurs as a result of 

poor combustion quality. 

Flame quenching and crevice volume do not change significantly between 

different blends. The polar nature of ethanol molecules means that they cannot 

be absorbed easily by lubricating oil that has a non-polar nature. However, this 

is not expected to be significant enough to explain the obvious trend for the 

decrease in HC emissions. Although ethanol is an oxygenate fuel, the oxygen 

availability for the different blends was the same since the comparison was 

based on fixed equivalence ratio, f{J. However, the fact that oxygen is contained 

within the fuel might have enhanced the HC oxidation due to higher surface 

connection and better mixing between fuel and oxygen. The fuel chemical 

components of ethanol and gasoline are quite different. The increase of ethanol 

ratio in fuel blend will lead to the reduction of aromatics and oletins and other 

hazardous high-octane additives commonly used to replace TEL lead in 

gasoline. Studies indicated that fuel with higher aromatic and olefins will 

produce higher concentrations of reactive hydrocarbons [17] and subsequently 

increasing ethanol ratio will decrease HC. 

4.7.4 H20 level and equivalence ratio 

H20 is produced from the combustion process. Although there are no health 

risks or environmental concerns associated with the production of H20, the 

level of H20 in the exhaust will affect exhaust temperature and subsequently 

some of the engine operations; this will be discussed in more detail in the 

following chapters. 

H20 was not measured directly; instead, it was calculated from the measured 

exhaust constituents (HC, CO, O2, C02 and NOx). Based on combustion 

balance, the overall reaction can be written as follows [17], 

np',26HI5,' +n2C2H,DH+ n; (02 +3.76Nl)-+np(Xc.,H,CaHh +x('()CO+x('(~cq +XO..ol + (4.7.5) 

xN,N1 +xN(~Nq +xNoNO+xH,oHP+XH,1f1 ) 
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where n. and n2 are the number of moles for gasoline and ethanol respectively, 

'X;* is the dry mole fraction and is related to the wet mole fraction ~ by 

X; = (1-XHP)X;*, From the combustion balance H20 can be calculated using 

the following equation, 

(4.7.6) 

Where A & B is the number of H and C moles respectively in the products and 

equal to: 

B = 8.26n. - 2n2 

A = 15.5n) - 6n2 

2 

A comparison of H20 emissions for different gasoline-ethanol blends is plotted 

in Figure 4.17. H20 increased as ethanol ratio increased in the fuel. This is due 

to changing chemical composition, namely increase in Hie and ole ratio. 

Figure 4.11 shows the effect of Hie and ole ratio change on H20 mass 

fraction calculated from the atomic balance in chemical equation 4.1, assuming 

complete combustion. 

The engine is fitted with a UEGO sensor that is linked to the EeU and is used 

to measure directly the equivalence ratio. However the accuracy of the sensor 

varies across different operating conditions; for this reason a calculation of 

equivalence ratio based on combustion balance, equation 4.15, is performed. 

The fuel! air equivalence ration is given by: 

(4.7.7) 

Where, 

24.27 - 18 .27 X 
noz = 2 
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B 

Figure 4.18 shows a comparison between calculated and measured value, the 

results show good agreement with less than 5% variation. 

4.8 Combustion efficiency 

Engine combustion efficiency is an important parameter showing the quality of 

combustion inside the cylinder; it defines the fraction of chemical energy that 

has been released inside the combustion chamber: 

17 e = . Q 
m f UlV 

(4.8.1) 

The combustion inefficiency, and subsequently the efficiency, was calculated 

using combustible emissions i.e. CO, H2 and HC. The chemical energy of these 

combustible emissions represents the combustion inefficiency [17], 

(4.8.2) 

where the lower heat value of CO and H2 are 10.1 MJlkg and 120 MJlkg 

respectively. The composition of unburned HC is not known. However, in this 

study Hie ratio was assumed to be the same as the fuel blend used to run the 

engine and the heating value can be assumed to between (29-43MJlkg) 

depending on the fuel blend. 

Figure 4.19 shows the combustion efficiency of the different fuel blend as 

function of equivalence ratio, qJ. Increasing ethanol content in the fuel blends 

gives an increase in the combustion efficiency. This increase in efficiency 

becomes more significant as qJ increase and the charge becomes richer. There 

was a 10% increase in combustion efficiency between gasoline and E85 at qJ = 

1.2. The data also illustrate that there is a non-linear relationship between 
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increasing ethanol content and combustion efficiency. While there was not any 

significant change in efficiency between gasoline and ElO or E50 and E85, 

there was an obvious improvement in efficiency for E 1 0 and E20, then E20 

and E50. 

The improvement in combustion efficiency is due to the oxygen availability in 

ethanol. Increasing ethanol ratio in the mixture increases oxygen availability in 

the fuel, thus, oxygen mass fraction in the fuel will increase as shown in Figure 

4.20. Figure 4.20 illustrates that the increase in oxygen mass fraction as 

ethanol ratio increases is even higher as rp increases. This can explain the 

bigger improvement in combustion efficiency at higher rp. 

Also, the data clearly show that for all fuel blends, combustion efficiency is 

substantially affected by equivalence ratio rp. On the rich side, there was rapid 

decrease in combustion efficiency due to lack of the oxygen available for 

complete combustion. 

4.9 Summary and discussion 

The aim of this chapter was to perform a basic comparison between the 

different fuel blends that were used through the course of this study. This 

included the effect of ethanol on AFRstoich, QLHV, Tadd, MBT, BSFC, power 

output, emissions and combustion efficiency. All these characteristics will 

have a significant effect on the engine's combustion behaviour, energy balance 

and heat transfer which are going to be discussed in more detail in the 

following chapters. 

The change in the chemical composition of the fuel mixture as ethanol content 

increase, particularly the increase in HlC ratio and Oxygen content, was 

expected to affect the above properties. 

An increase in ethanol ratio leads to decrease in AFRstoich, QLHI', and to lesser 

extent Tadd, The reduction in QLHV value was illustrated in the increase in 

BSFC as ethanol ratio rise. The lower ethanol QLHV did not affect the engine 

power output. On the contrary, engine power output, for a fixed throttle 

position, increased slightly as ethanol ratio increased. This is attributed to the 

decrease of AFRstoich. 

MBT location, which is important for future calibration of flexi-fuel engine, 

did not change among the different fuel blends. 
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The change in chemical composition was expected to affect the emissions 

produced by the engine. Increasing ethanol ratio shows a decrease in CO, C02, 

HC and NOx emissions for most running conditions. H20, on the other hand, 

showed a clear rise in its level. 

Change in CO2 and H20 levels is a direct result to the increase in HlC ratio. 

CO and HC mass fraction reduce due to the improvement in combustion 

efficiency as ethanol ratio increases. HC mass fraction also decreases as a 

result of other factors including the polar nature of ethanol that will reduce the 

amount of fuel absorbed by the lubricating oil and the reduction in high octane 

booster additives such as aromatics and olefins that contribute to He 

emissions. NOx formation is mainly influenced by the local peak. temperature 

that was affected by both lower adiabatic flame temperature and the higher 

enthalpy of vaporisation for ethanol. 

The decrease in emissions level, particularly with higher ethanol ratio, 

indicates that using ethanol has the potential to contribute to the effort to 

comply with increasingly tight emissions regulations. 

As mentioned previously, increasing ethanol will increase combustion 

efficiency as particularly at rich mixtures. This is attributed to the oxygen 

content of ethanol that enhances combustion. 
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CHAPTERS 

5.1 Introduction 

The effect of ethanol on 
engine combustion 
behaviour 

The main objective of the work presented in this chapter is to understand the 

effect of ethanol on combustion behaviour. Although the effect of ethanol on 

combustion behaviour was studied by several researchers, the variation in the 

results among those researches (see section 2.6) illustrated a need for a better 

understanding of ethanol effects. This is particularly important in this thesis 

since combustion behaviour has a significant effect on the energy balance and 

heat transfer characteristics that are studied in more detail in later chapters. 

This will happen through the effect of combustion duration on in-cylinder gas 

and exhaust temperature. 

Burning rate and burn duration in CA have a significant effect on the 

combustion behaviour. There is a clear agreement among researchers that 

faster burn duration is a favourable characteristic [17]. Shorter bum duration 

produce more robust and repeatable combustion pattern since it allows a higher 

level of EGR and leaner mixture within the normal constraints of engine 

smoothness and response. Higher EGR and lean mixture will allow more 

emission control by reducing NOx emissions without increasing He level. In 

addition, at part load, fuel consumption will reduce due to the reduction in 

pumping work and decrease in gas temperature and hence heat transfer [17]. 

In this chapter, the effect of changing unburned gas composition by increasing 

ethanol percentage in the fuel blend will be evaluated. Experimental data was 

obtained for different running conditions including different speeds, loads, ST, 

equivalence ratio and EGR as shown in Table 5.1. The Rassweiler and 

Withrow [75] method was used to estimate the burn duration in the engine. 
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Furthermore, the effect of increasing ethanol concentration on combustion 

stability and EGR tolerance was evaluated 

5.2 Combustion Process characterization 

A Mass fraction burned (MFB) profile as a function of crank angle provides a 

convenient basis for defining various stages of combustion processes by their 

crank angle duration. MFB can be defined as the percentage of the cylinder 

charge that has been burned at a certain instant after spark discharge. 

At the initial part of the curve, immediately after the spark discharge, the air 

fuel mixture burns at a low rate. The charge burn rate starts to increase until it 

reaches its maximum about half way through the burning process, and then 

decreases to zero as the burning process ends. The previous stages of 

combustion process and energy release can be characterized in three main 

definitions [17]: 

Flame development angle, FDA is the crank angle duration that starts 

immediately after spark discharge until a small but significant fraction of the 

cylinder charge has been burned or fuel energy has been released. This fraction 

is usually 10% [17]. However, some researchers used 2% or 5 % MFB [17]. In 

this study a 10% MFB limit is used to avoid errors associated with small fuel 

heat release at early stages of MFB. 

Rapid burn angle, RBA is the crank angle interval where the bulk of the 

cylinder charge is burned. It starts after the FDA stage and continues until the 

end of the flame propagation process. Heywood [17] defines the RBA as crank 

angle interval that covers 10% to 90% of the MFB. The Heywood definition is 

adopted in this thesis. 90% MFB limit was chosen to avoid errors associated 

with locating the end of combustion since the final stage of combustion is hard 

to identify[68]. In addition, the fuel energy released by the fuel as the 

combustion terminates is comparable to other heat process that occur at the 

same time and the MFB only increases slightly over a large number of CA 

degrees. 

Overall burning angle is defined as the sum of the two previous burn angles. 
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5.3 Rassweiler and Withrow Method 

In this study, the method developed by Rassweiler and Withrow [75] was used 

to calculate the MFB from experimental pressure and volume variation data. 

This approach is based on two main observations from a constant volume 

bomb experiment; firstly, it was noticed that the mass fraction burned is 

approximately equal to the fraction pressure rise. 

(5.3.1) 

Secondly, they observed that for a given amount of energy release, combustion 

pressure rise is inversely proportional to the volume Pc: ex: ~ • In order to apply 

this equation to SI engine conditions, the change in total pressure, PIOI across a 

discrete crank angle interval is considered to be the sum of pressure changes 

due to volume, Pv, and combustion, Pc. 

(5.3.2) 

The pressure rise from change in volume can be calculated at small crank angle 

intervals assuming polytropic process. 

(5.3.3) 

In order to compensate for the change in the volume of the combustion 

chamber compared to a constant volume of the bomb used by Rassweiler and 

Withrow, the combustion pressure has to be related to reference volume. 
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V T(f was assumed to be equal the combustion chamber volume at TDC. The 

MFB at a particular crank angle 0 is therefore, 

(5.3.5) 

The estimated uncertainty in Rassweiller and Withrow approach in Appendix 

CHAPTER 9A.5 concluded that Rassweiller and Withrow is a robust method 

to calculate combustion duration and it is not very sensitive to pressure or to 

pressure-volume phasing errors. The maximum errors in FDA and RBA are 

0.60 and 0.40 respectively. 

5.4 Calculating polytropic index 

The major difficulty with using the Rassweiler and Withrow method is 

selecting appropriate polytropic index values to calculate Pv. The sensitivity of 

pressure to the polytropic index increases with increasing in-cylinder pressure. 

For this reason the sensitivity of the MFB profile to the compression index, 

l1comp,is relatively low. The expansion index, Ilexp, is more important since the 

pressure reaches its maximum after TDC. MFB profile sensitivity to the 

change in Ilexp is shown in Figure 5.1. 

Prior to spark ignition, during the compreSSIon stroke, the process was 

assumed to be polytropic that starts from Ive. The polytropic index was 

calculated from slope of (log P, log V) diagram over 30 degrees before ST as 

shown in Figure 5.2. However, during the expansion stroke, the value of Ilexp 

varied due to heat transfer, work exchange and turbulent intensity. The use of 

the correct nexp will keep the burn rate at 100% once the combustion is over 

until EVO. This will satisfy the zero combustion pressure conditions [76]. 

Several techniques have been developed to calculate Ilexp. The iterative method 

is the most common. This starts from a value of Ilexp = 1.3, changing the value 

of Ilexp and EOC location accordingly until a reasonable MFB S-shape profile 

is reached, as show in Figure 5.1. EOC, at which Ilexp was chosen, was 

determined from the calculated combustion pressure, Pc. Several methods were 
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proposed to determine EOe including 'first negative index', 'sum negative 

index' and 'negligible Pc fraction index'. 'First negative index' assumes that 

EOe is located when the first negative Pc occurs. 'Sum negative index' 

assumes that Eoe occurred when three consecutive negative Pc take place. 

The second method is seen as more robust since it reduces the influence of 

noise. Finally, with 'negligible Pc fraction index', Eoe is defined when Pc 

becomes a negligible fraction of the total pressure ( Pc ::; 0.02p,'J/)' Any of the 

previous methods can be used as part of the iterative method. 

Another method to calculate Ilexp is pyl.IS index [77] which is a simple 

alternative technique to iterative method. pyl.lS index simply uses the point 

where py1.l5 reaches its maximum then adds IOoeA to allocate Eoe and 

subsequently determine a value of l1exp that satisfies the S-shape profile. 

Wiseman et al. [76] also proposed a method where Ilexp is calculated without 

the need to determine EOe. Wiseman calculated the value of nc:xp over small 

interval just before EYO that satisfies Pc equal to zero after combustion 

terminates. 

Figure 5.3 shows a comparison between the different techniques proposed to 

calculate Ilexp for different running conditions. With the exception of Wiseman 

method, there was not a significant change among the different methods. The 

Wiseman index appears to be overestimating the combustion duration 

especially for medium and high loads. 

In this study, the iterative method was used to determine Ilexp t with EOe was 

allocated using 'negligible Pc fraction index'. EOe was determined when Pc 

becomes a negligible fraction of the total pressure ( Pc ::; 0.02 Ph.' ) at three 

consecutive steps. This method was seen to be more robust since it reduced the 

influence of noise and it was easier to use to define EOe. 

5.5 Comparison between laminar flame speed of ethanol and 

gasoline 

Burning rate is often expressed in terms of a turbulent burning velocity. 

Turbulent flames can be treated as an array of laminar flamelets with no 

turbulence structure residing within them [17]. Therefore, understanding of 

laminar combustion is important to understand flame turbulent combustion. 
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Laminar flame speed can be defined as the rate of propagation of a flame 

through a gaseous fuel-and-oxidizer mixture relative to a fixed reference point 

[17]. 

Laminar burning velocity of gasoline and ethanol has been measured using a 

spherical combustion bomb by various researchers. The gas motion of the 

spherical bomb can illustrate the features of the induced motion in an engine. 

Data at higher pressure and temperature have been fitted to a simple empirical 

correlation of the form [17]. 

(5.5.1) 

where 1'0= 298 K and Po =1 atm are the reference temperature and pressure, and 

S L,O ,a and p are constant for given fuel, equivalence ratio and burned gas 

diluents fraction. For gasoline these constants can be represented by [78]: 

a = 2.4 - 0.271¢3.SI 

f3 = -0.357 + 0.1~2.77 

Sl,O = Bm +B~(¢-¢mi 

where tPm = 1.21 is the equivalence ratio at which SL,O is a maximum with 

value of Bm. For gasoline Bm =30.5 cmls and B; =-54.9. 

For ethanol these constants can be represented by [79, 80]: 

a = 1.783 - 0.375(rp -1) 

{
- O.l7/¢ rp ~ 1 p-

- - 0.17/ -# rp ~ 1 

8L,o =Z.W.rp'7 exp[-c(¢-1.075)2] 

where Z=1, W=0.465, 11 = 0.25 and c = 6.34 
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Equation 5.6 was used to calculate laminar flame speed for ethanol and 

gasoline, with appropriate constants used for each fuel. Figure 5.4 shows a 

comparison between the laminar flame speed of gasoline and ethanol as a 

function of rp at a different initial pressured and temperatures. For all pressure 

conditions, the data illustrate clearly that ethanol has higher laminar flame 

speed than gasoline for most rp values. The maximum difference in laminar 

flame speed between ethanol and gasoline occurs at stoichiometric conditions. 

Ethanol seems to be more sensitive to the change in rp. Subsequently, the 

difference in laminar flame speed starts to decrease as rp moves away from 

stoichiometric, particularly as it becomes richer. As the charge becomes richer 

the difference in laminar flame speed between the two fuels decreases 

significantly up to point where gasoline will have a higher laminar speed than 

ethanol, at rp=I.2-1.3 depending on the pressure. 

Laminar burning speed is influenced by several factors including molecular 

structure of the fuel, Tadd, pressure, upstream temperature and EOR [17]. 

Although Taddhas a strong influence on laminar burning velocity, and ethanol 

has a lower Tadd due its lower QLHV(see section 4.4), the molecular structure of 

ethanol includes an oxygen molecule that will significantly increase laminar 

flame speed. 

5.6 Effect of ethanol blends on burning duration 

Several tests were carried out at wide range of running conditions in order to 

examine the repeatability and the sensitivity of the effect of ethanol on burn 

duration across those conditions. In addition, the effect of those running 

conditions on burn duration in an SODI engine was investigated. The different 

running conditions are summarized in Table 5.1. 

5.6.1 Different speeds, loads and spark timing 

In order to evaluate the effect of ethanol on combustion characterises, several 

tests were carried out with engine running at different loads, speeds and spark 

timing. 

Figure 5.5, Figure 5.6 and Figure 5.7 show the effect of ethanol on the FDA 

and the RBA for various loads, speeds and spark timing, respectively. 
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For all engine running conditions, the results illustrate very little difference in 

FDA among different fuel blends. RBA results illustrate that there is not a 

linear relation between increasing ethanol ratio and RBA. Initially EIO showed 

a slight decrease in the RBA. Then, there was a very small difference or no 

trend in RBA between EI0, E20 and E50. E85, on the other hand, clearly 

showed a clear faster combustion speed, shorter RBA, compared to all fuel 

blends and particularly gasoline. 

The decrease in RBA for E85 compared to gasoline ranged between 2% at low 

load to 6 % at high load. The lower decrease in RBA at low load compared to 

high load is attributed to different internal dilution among fuel mixtures. At 

low BMEP, for fix cam timing and power output, internal dilution increases as 

ethanol ratio increases as shown in Figure 4.4. 

The observed similarities in FDA value for the different gasoline-ethanol 

blends were not expected, because of the higher laminar flame speed of 

ethanol. This however, can probably be explained by the design of the engine 

under investigation. It is a high compression ratio engine (11.5: 1), and 

consequently properties associated with high compression work, charge 

density and in-cylinder turbulence dominated the early stages of combustion. 

The non-linear relation between increasing ethanol and the RBA is explained 

by the ethanol properties that influence the combustion. Ethanol has different 

properties, some of which may be beneficial to combustion while others have 

the opposite effect. The high laminar burning velocity and oxygen availability 

will improve combustion and reduce its duration. However, ethanol higher 

enthalpy of vaporisation and lower QLHV will decrease gas temperature during 

compression resulting in slower combustion duration. The combined influence 

of the two factors will affect the burn duration inside the cylinder. 

Consequently, the improvement in the laminar speed as a result of adding 

ethanol to the fuel blend will not have any apparent effect on RBA until high 

ethanol content. 

Changing the running conditions also influences the combustion speed in the 

same manner for all fuel blends. Increasing load or advance ST decreases the 

combustion speed. This is due to the increase in pressure and temperature at 

the time of combustion. Furthermore, increasing load will decrease the internal 

dilution due to the reduction in the difference between MAP and exhaust 
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manifold pressure. Increasing speed, on the other hand, will decrease slightly 

the combustion speed. The increase in piston speed will cause an increase in 

combustion duration in CA domain. However, increasing the speed will 

increase in-cylinder gas velocity and introduce swirl which will increase the 

turbulent intensity and subsequently increase combustion duration [17]. For 

that reason burn duration will only increase slowly with increasing engine 

speed. 

5.6.2 Sensitivity to change charge composition (Xb & rp) 

Changing the charge composition, through factors such as Xb and (jJ will affect 

burn duration. The sensitivity of different gasoline-ethanol blends to these 

changes is evaluated in this section. 

The burned mass fraction, Xb, is defined as the sum of EGR and internal 

dilution, x, (See section 3.6.2 for more detail). Xb was chosen instead of EGR 

because x, changes for different gasoline-ethanol blends at fixed cam positions 

as shown in Figure 4.4. 

Figure 5.8 shows the effect of Xb on RBA and FDA. For all fuel blends, both 

RBA and FDA increase Xb increases. Once again, FDA shows no trend 

between the different fuel mixtures for all Xb conditions. RBA, on the other 

hand, appears to be more sensitive to the change in Xb as ethanol ratio 

increases. At low Xb, there was an obvious reduction in RBA as ethanol ratio 

increases. However, the difference in RBA between the fuels blends starts to 

decrease as Xb increases. At high Xb level, the fuel blends show a comparable 

RBA. 

The increase in FDA and RBA as Xb values increases is attributed to the 

reduction in temperature and pressure during combustion, and thus the laminar 

flame speed. The effect of Xb on laminar flame speed was studied by Rhodes et 

al. [81], a correlation to calculate the effect of Xh on laminar flame speed was 

developed as follows, 

(5.6.1) 

Equation 5.7 was used to calculate the effect of Xh on laminar flame speed for 

both ethanol and gasoline as shown in Figure 5.9. The plotted data demonstrate 
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that the laminar flame speed of ethanol is more sensitive to changes in Xb than 

it is for gasoline. Subsequently, the difference in laminar flame speed starts to 

decrease as Xb value increases. This corresponds well with the data showed in 

Figure 5.8 and can explain the reduction in the difference in RBA value 

between the fuel mixtures as Xb increases. 

Equivalence ratio, <p, will also have an effect on burn duration as shown in 

Figure 5.10. For all fuel blends, FDA and RBA increases as the in-cylinder 

charge becomes leaner. The increase becomes more significant after <p=I. 

Comparing between the different fuel mixtures, at rp = 1 the burn duration is 

clearly decreasing as ethanol ratio increases. However, when the mixture 

becomes leaner or richer, the RBA duration difference between the different 

fuel mixtures slightly decreases. This corresponds well with the laminar flame 

speed results shown at Figure 5.4. The difference between gasoline and ethanol 

laminar flame speed starts to reduce as the charge moves away from 

stoichiometric. Other factors such as lower heat content and lower adiabatic 

flame temperature for ethanol begin to become more dominant especially when 

the charge is rich. 

5.7 Combustion stability and tolerance to Xb 

In order to evaluate Xh tolerance of the different fuel blends, Xb sweeps were 

carried out at both low and medium load and constant speed. The ST was set to 

MBT for each running condition (see section 4.5). 

Increasing Xb will decrease combustion speed, which makes stable combustion 

harder to achieve. The level of Xb that the engine can tolerate will depend on 

the level of the resulting decrease in combustion speed. The increase in 

combustion speed associated with high ethanol content in the fuel, as shown 

the previous sections, illustrates a potential to increase the Xb tolerance. The 

combustion stability is expressed as the coefficient of variation of IMEP, 

COVIMEP. Figure 5.11 and Figure 5.12 show COVIMEP as a function ofxb for 

the different fuel blends. Both figures illustrate that for low and medium load, 

running at Xb less than 17% and 14% , for E85 and gasoline respectively, 

COVIMEP remains unchanged and at a reasonable value «5%) among the 

different fuel blends, which indicates excellent cyclic variability. However, as 

Xb level increases COY IMEP starts to increase significantly and wider 
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distribution of COVIMEP between the different fuel blends starts to appear. 

While there is no clear trend between E 1 0 to ESO, there is a reduction in 

COVIMEP between gasoline and E85 for high Xb levels. The plotted data was 

used to obtain the maximum Xb that the engine can tolerate for each fuel 

mixture, assuming that drivability issues occur at COY> 10%, i.e combustion 

stability limits. Table 5.2 shows Xb tolerance for each fuel blend. E85 tolerance 

to Xb has improved. 

5.8 Summary and discussion 

The main aim of the work presented in this chapter was to investigate the 

effect of adding ethanol at different proportions on the combustion behaviour 

of the engine. Combustion behaviour of the different fuel blends will have a 

significant effect on the in-cylinder and exhaust temperatures, and 

consequently, on the energy balance and heat transfer characteristics that are 

going to be investigated in more detail in later chapters. 

Despite the lower Tadd for ethanol due to its lower heat content, calculated 

laminar flame speed for ethanol demonstrated a higher value compared to 

gasoline for most conditions. The increase in laminar burn speed of ethanol is 

attributed to the availability of oxygen in the ethanol chemical structure. 

Laminar flame speed for ethanol and gasoline were calculated at a different qJ. 

pressures and temperatures. The peak difference in laminar flame speed 

between ethanol and gasoline occurs at stoichiometric. Ethanol is more 

sensitive to the change in qJ than gasoline. Subsequently the difference in 

laminar flame speed decreases as the charge starts to move away from 

stoichiometric. 

The increase in the laminar flame speed was not demonstrated in the FDA 

results obtained from the engine running at various running conditions. FDA 

data show comparable results between all ethanol/gasoline blends. This might 

be explained by the design of the engine under investigation. The engine is 

high compression engine (11.51: 1). The effect of compression work and 

therefore charge density and temperature at the time of ignition becomes the 

dominant factor over laminar flame speed. 

The RBA results show a non linear relation between increasing ethanol content 

and combustion speed. The fuel blend with highest ethanol content (E85) 
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illustrates an increase in combustion speed compared to other fuel blends, 

which correspond well with the increase in laminar flame speed for ethanol. 

Fuel blends with low and medium ethanol content (EIO, E20 and E50) showed 

a slight rise compared to gasoline. However, no significant difference or trend 

was found in RBA among those fuel blends. The difference in RBA between 

E85 and gasoline is between 1°C to 2.5°C which is higher than the estimated 

experimental error (OAOC); see Appendix 5 for more details. This indicates 

that the decrease in RBA is due to addition of ethanol rather than any 

experimental error. 

Increasing ethanol content was expected to increase laminar flame speed and 

hence enhance combustion and reduce duration. On the other hand, increasing 

ethanol content will also increase hfg and decrease QLHV which will have a 

negative effect on combustion. The combination of those effects will determine 

the combustion speed of the mixture. For that reason, the advantage of having 

higher laminar flame speed will not appear until high ethanol content, or E85. 

Those results were consistent over various engine speeds and loads. 

The same effect of increasing ethanol content was also observed with changing 

in-cylinder composition (through Xb and f{J). Once again, E85 RBA results 

follow similar pattern to laminar flame speed results. Increasing Xb will 

decrease the difference in burn speed between gasoline and E85. Laminar 

speed difference between ethanol and gasoline decrease as Xb increase. 

Due to the change in combustion duration, increasing ethanol ratio was 

expected to have an effect on the engine tolerance to Xh. This tolerance is 

mainly influenced by combustion stability. Fuel with high ethanol ratio, E85, 

increased tolerance to Xb as a result of the decrease in combustion duration and 

subsequent increase in combustion stability. 
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CHAPTER 6 

6.1 Introduction 

Overview of the 
energy balance 

• engine 

The main objective of this chapter is to evaluate the impact of using different 

ethanol-gasoline blends on the energy balance inside the engine. 

Knowledge of the way energy released from the fuel is distributed between 

brake power output, coolant energy, exhaust energy and unmeasured heat 

losses are crucial to understanding the total thermal behaviour of the engine. 

Although coolant, exhaust and unmeasured heat losses are unavoidable, more 

understanding of the energy balance can aid in reducing those losses to a 

minimum through improving and/or optimizing engine-running conditions. 

Any decrease in those losses will be translated into an improvement of thermal 

efficiency. The thermal efficiency is improved by increasing the proportion of 

energy that is transferred into useful brake power. 

The increase in the ethanol content of the fuel mixture is expected to affect the 

energy balance inside the engine due to the incurred change in its chemical 

properties and combustion behaviour, as discussed in more detail in previous 

chapters. In the present work, total heat-rejection rate to coolant was measured 

and comparisons between the different fuel blends were undertaken. The 

evaluation of exhaust heat-loss included determining the effect of an increase 

in ethanol ratio on both exhaust temperature and heat capacity. Exhaust 

temperature itself has an impact on HC level, CO level, exhaust after treatment 

system and the amount of power obtained from the exhaust recovery devices 

such as turbochargers [17]. 

A considerable part of the energy released by fuel is also turned into 

unmeasured heat losses including ambient heat loss, crevice loss and unburned 

fuel. The effect of ethanol on heat transfer to ambient was investigated. The 

unburned fuel effect was examined in Chapter 4 by calculating combustion 

efficiency. 
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Finally, energy balance comparison between the different fuel blends was 

carried out. Furthermore, the effect of different running conditions on energy 

balance was studied. 

6.2 Energy balance for the engine 

The distribution of the energy released by the fuel combustion is given by the 

energy balance. For a control volume which surrounds the engine, the steady 

flow energy conservation equation is [17], 

(6.2.1) 

where mjQLHv is the rate of the fuel energy input, Ph is the brake power, 

Qoolanl is the heat transferred to the coolant, Qamh. is the ambient heat loss, 

H exh,ic represents the exhaust enthalpy loss due to incomplete combustion and 

Hexh • .f is the sensible exhaust energy flux relative to a datum of zero at a 

reference temperature, Tref. A datum state of 298 K and 1 atm pressure was 

chosen. The estimated error in energy balance calculation is shown in 

Appendix A.S. 

Under constant engine running conditions, the rate of fuel energy input is 

dependent on the fuel mixture used by the engine. QLHV and the mass flow rate 

of the fuel vary between the different mixtures, as shown in chapter 4. Ph was 

calculated from the dynamometer torque output using equation 3.3. Hrxh./c was 

determined from the combustion efficiency calculated in section 4.8. The 

methods that have been used to calculate Q'""lanl' Hexh ..• and Qllrnh. are explained 

in detail in the following sections. 

6.3 Exhaust gas energy 

The exhaust gas energy flux is calculated from the following equation: 

(6.3.1) 
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where Texh is the exhaust temperature at the exhaust port exit and en is the 
,-,x!t 

mean specific heat capacity of the exhaust gas. The method that was used to 

measure and calculate the different variables and the effect of increasing 

ethanol ratio are presented in the following sections. 

Exhaust heat capacity, cp •exh 

The heat capacity of the exhaust gases, Cp • .:xh' has an effect on the thermal 

condition inside the engine by affecting the exhaust gas temperature. 

Subsequently, Cp,.:xh affect exhaust energy and the amount of heat lost to the 

exhaust port. Cp . .:xh can be determined from the exhaust gas composition, as 

follows: 

c = ~ xc p,exh ~j j PI 
(6.3.2) 

Where Xi and C PI are mass fraction and heat capacity of the exhaust constituent, 

respectively. The values of c
PI 

for the exhaust constituent was obtained from 

Roger and Mayhew [72]. Figure 6.1 shows the effect of increasing ethanol 

ratio on cp,exh as a function of Texh. The data illustrate clearly that there is an 

increase in Cp,.:xh as the ethanol ratio increases. This increase is attributed to the 

change in exhaust composition and particularly to the increase in water 

composition inside the exhaust, as explained in detail in Chapter 4 and 

illustrated in Figure 4.17. 

The increase in water content is due to the change in the HIC ratio of fuel and 

the increase in oxygen content when the ethanol ratio increases. 

The data also illustrates that the rise in Texh will increase CNxh for all fuel 

blends. 

The estimated error in Cp,exh calculation is around 1.9 % as show in Appendix 

A.5.6. On Average, Cp,.:xh increases by 4% between ULG and E85 which is 

higher than any experimental error. 
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6.3.1 Exhaust gas temperature measurement and correction 

Texh has a significant effect on the engine's performance and heat transfer 

characteristics. Texh will influence the amount of heat rejected to the coolant, 

either through the exhaust port, or conducted back into the cylinder. In 

addition, it gives an indication of the in-cylinder gas temperature especially 

after combustion. 

Texh can also affect other parts of the engine, such as the turbocharger's 

perfonnance (if used) and, further down the stream, on the after-treatment 

system. Texh has an effect on the time needed for the catalytic converter to 

reach operating temperature; this is particularly significant in the case of a cold 

start. Koehlen et al. [82] suggested that 80% of the HC emissions measured 

over the entire FTP-75 drive cycle are emitted within the first 20 seconds after 

the engine is started. 

Texh was measured using a thermocouple located at the exhaust port exit in two 

cylinders as described in Chapter 3. 

Correction of exhaust temperature measurements 

The thennocouple tips were inserted into the centre of the gas flow. The 

equilibrium temperature of the thermocouple is reached when the heat transfers 

by radiation to the exhaust walls, and the conduction along the supporting 

wires is balanced by convective heat-transfer from the gas. Since the exhaust 

wall and the thermocouple mount are generally cooler than the gas, the heat 

transfer by conduction and radiation will be from the thermocouple to the 

connecting leads and to the exhaust port wall respectively. As a result, this 

equilibrium temperature will be lower than true time-averaged temperature. 

This is referred to as radiation and conduction error. 

Rogers and Mayhew [72] suggested that errors in thermocouple readings can 

be compensated for by using the energy balance between convection gain and 

radiation loss using the following formula: 

(6.3.3) 

Rearranging the equation, we find: 
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T:Xh_tru:= ~r o;xh_meas - T:xh_Wall) + T:xh_meas 
e 

(6.3.4) 

where Texh_'rue is the true exhaust temperature, Texh_meu .. is the actual measured 

value, Texh_wuU is the exhaust port wall temperature, and both hr and he are, 

respectively, effective radiative and convective heat transfer coefficients for 

the thermocouple tips. 

For a turbulent flow perpendicular to a wire, the convective coefficient is 

determined to be [72]: 

(6.3.5) 

where the characteristic dimension is the thermocouple' s diameter and the gas 

properties are evaluated according to the measured exhaust temperature. 

For a special case of a grey body radiation within a black or large enclosure 

(which represents the thermocouple within the exhaust port), the radiative heat 

transfer is given as [72]: 

(6.3.6) 

where (J is the Stefan-Boltzman constant, E is the emissivity of the 

thermocouple surface. The value of e is in the 0.2 to 0.8 range. An e value of 

0.5 was used for the purpose of this study. Figure 6.2 shows a comparison 

between the measured Texh value and the true Texh value for different fuel 

mixtures. The results illustrate that the real value is typically 8.5-10% higher 

than the measured equivalent. These results correspond perfectly to the 

findings of Yuen [83] and Caton [84], where it has been established that the 

average temperature is typically 10% higher than the measured value. For that 

reason, the average temperature used in this thesis is going to be estimated by 

multiplying the measured Texh by a factor of 1.1. 

Figure 6.3 shows the effect of an increasing ethanol ratio on Texh. The result 

illustrates clearly that increasing an ethanol ratio will decrease Ttxh. This can be 
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attributed to the increase in the water content in the exhaust, as shown in 

Figure 4.17 and, subsequently, Cp,exh' as shown in section O. 

The results also illustrate that the change in the engine's operating condition 

has a significant effect on rexh. Increasing the speed or retarding ST decreases 

Texh, due to the decrease in the time available for the burned products to cool 

during the expansion and exhaust strokes. Increasing EGR levels will also 

decrease Texh due to the increase in exhaust heat capacity. Texh is also 

influenced by changes rp. Texh peaks at AFRstoich and decreases as the charge 

becomes leaner or richer. 

6.4 Heat transfer to the coolant 

The heat transfer to coolant Qcoolanl was calculated by fixing a thermocouple 

before and after the bowman heat exchanger. The heat removed by the heat 

exchanger was assumed to be equal to the heat rejected to the coolant, as 

described by the following equation: 

Q.,)()/anl = m c",,/anl C p~,)()/anl _ h<jim: - T.:,m/unI _ a}lff ) (6.4.1) 

where mcoolant is the coolant flow-rate, cp is the coolant heat capacity at 

average coolant temperature, as shown in Table 6.1, and T.:'H,/un/_h<iorc and 

T.:"olunt _ufler are coolant temperature values before and after heat exchanger 

respectively. 

An amount of heat is lost through the copper pipes of the cooling circuit into 

the ambient air by forced convection. Calculations have shown that this amount 

is negligible compared to the heat dissipated by the exchanger, and thus 

contributes between 0.8-1.5 percent of the total heat rejected to the coolant. 

Figure 6.4 shows the effect of an increasing ethanol ratio on the amount of heat 

lost to the coolant. The data illustrate that, for most conditions, at low ethanol 

levels, there is very little difference in Qcoolanl compared to gasoline. At a 

. 
higher ethanol ratio, Qcoolanl decreases considerably. E85 show a clear decrease 

in Qcoo/ant compared to gasoline, between 3 to 7%, when the engine is running 
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under exactly the same conditions in terms of speed, load, ST and EGR. This 

decrease might be attributed to that in in-cylinder temperature, itself a result of 

a higher hjg value for ethanol. It is also caused by the decrease in the 

combustion product temperature during the expansion stroke and the exhaust 

stroke, as demonstrated from the Texh results shown in section 6.3. Different 

sources contributing to total heat rejection to coolant and the effect of ethanol 

are explained in more detail in Chapter 7. 

6.4.1 Effect of heat rejection to coolant on engine warm-up 

A change in the amount of heat rejected to coolant is expected to affect the 

warming up characteristics of the engine. A reduction in the amount of heat 

transferred to coolant means that more time is required to fully reach the 

warmed-up condition. A major proportion of driving consists of short trips 

during which the engine is still in its warming up period [85]. 

The performance of the engine during warm-up is very important. Indeed, the 

warm-up period affects the engine's performance by determining its power 

output, emission levels and friction [85]. In addition, it can influence the 

passengers' comfort levels since passenger heating cannot operate until the 

engine coolant has sufficiently warmed up. 

It was not possible to investigate the effect of using ethanol on the warm-up 

characteristics of the engine under investigation. The management system does 

not allow for a change in the amount of fuel supplied during start-up. This 

made it hard to start using fuel with a high ethanol content. To overcome this 

problem, the engine was initially started on gasoline then switched to different 

gasoline-ethanol blends after being warmed up. 

In order to demonstrate the effect that ethanol might have on the time required 

to reach fully warmed-up conditions, data collected by another researcher [86] 

were used. The data were collected from a tAL PFI engine. Direct access to 

the engine management system allowed for a change in the amount of fuel 

injected at the engine's start up. The amount of gasoline injected during the 

. warm-up tests was based on information from the engine strategy files. During 

E75 and E50 tests, the amount of fuel injected, during start-up, was scaled up 

proportionally to the decrease in QLHV compared to gasoline. Figure 6.S shows 
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the temperatures of the oil, the coolant inside the engine and the coolant at the 

engine's exit (Te, exi,) during warm-up for various fuel blends. 

After engine starts, Te, exit remains constant until the thermostat is open. When 

that happens, the coolant starts to circulate inside the engine and through the 

heat exchanger as shown in Figure 3.3. As a result, Te, exit does not start to 

increase until the engine reaches its operating temperature. 

The time that takes place between the start-up of the engine and for Te, exit to 

start increasing was assumed to be equal to the time needed for the thermostat 

to open, tthennostat. The results show that tthennostat increases slightly as ethanol 

content rises. There is a 6-seconds difference between gasoline and E75 inside 

the engine. The time periods required to reach a particular Toil is summarized 

in Table 6.3. The results demonstrate, as before, that increasing ethanol content 

increases the time required to reach a specific Toil. TOil is of particular 

importance since the higher viscosity of cold oil will increase friction. 

Subsequently, the longer the time needed for oil to reach its fully warmed-up 

operation, the higher the warm-up friction. 

6.5 Heat loss to ambient, Qamb. 

The heat loss to the ambient, Qamh., occurs as a result of the free convection 

heat transfer from the engine's surface to its surroundings. In order to 

investigate the engine's external surface heat loss to ambient, the engine was 

split into blocks to simplify the calculations, as shown in Figure 6.6. These 

blocks covered the vast majority of the engine area. The engine's skin 

temperature, Tw, was measured at different locations of the engine block using 

a PRT probe (Platinum Resistance Temperature sensor). 

Natural turbulent convection heat transfers from vertical and horizontal planes 

of the engine's different blocks were calculated using the following correlation 

[87]: 

(6.5.1) 

where Gr and Pr are Grashof and Prandtl numbers respectively. The Prandtl 

numbers is constant based on Tfand Grashofnumber is defined as 
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(6.5.2) 

where g is gravity, L is dimension length, v is kinematic viscosity and P = _1 
Tf 

The subscript f indicates that the properties in the dimensionless groups are 

evaluated at film temperature. 

T:mb +Twall 
2 

(6.5.3) 

The product of Grashof and Prandtl numbers is called the Rayleigh number: 

Ra=GrPr (6.5.4) 

The C and m constants were determined by several researchers [87]. These 

constants are dependent on several factors such as the Rayleigh number and 

the position of the planes, as shown in Table 6.2. 

Figure 6.7 shows Qumh. as a function ofBMEP for gasoline and E85. The data 

illustrate that the Qumh. is small with value ranges between 400 and 600 Watt 

this represents approximately 1 to 2 % of the total heat released by the fuel. 

The data also illustrate that there was very little difference in Qum", between 

the two fuels. The tests, on the two fuels, were carried out in the same day to 

make sure that the ambient temperature is approximately constant. The 

ambient temperature was checked regularly to evaluate any external effect 

such as other engines start to run in the lab. 

6.6 Energy balance results 

The effect of increasing the ethanol ratio on the energy balance inside the 

engine is plotted in Figure 6.8 and Figure 6.9. For all engine running 

conditions, the ratio of brake work output to total heat released by the fuel rises 

as ethanol content in the fuel blend increases, i.e. as thermal efficiency, T\h 
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improves. The increase in 11t ranges between 0.5% to 3%. The increase in 111 

suggests that the penalty in BSFC associated with the increase in the QLHvof 

ethanol has the potential to decrease. Figure 6.10 shows a comparison between 

the reduction in QLHV and the increase in BSFC compared to gasoline as 

ethanol content increases. The results illustrate that the reduction in BSFC is 

less than that expected by the reduction in QLHV, While E85 has 40% lower 

heat content, it shows 28% to 32% lower BSFC. This can be explained by 

improvements in thermal efficiency. 

Exhaust and coolant energy levels showed comparable results between the 

different fuel blends. The improvement in combustion efficiency, 11c. 

demonstrated in section 4.8 is the main reason for the increase in 111. In order to 

evaluate the effects of combustion efficiency on thermal efficiency, the former 

was taken into consideration in the energy balance ((mJ*QLHv*1'/c)) as shown in 

Figure 6.11 and Figure 6.12. In addition, 1'/c was taken into account when 

comparing the distribution of heat released as a result of combustion, rather 

than the expected total heat released by the fuel. 

These results clearly show that the combustion efficiency contributed to the 

majority of the improvements in thermal efficiency, especially at low and 

medium ethanol ratios. Nevertheless, there was still an improvement in thermal 

efficiency particularly when comparing between E85 and gasoline. Thermal 

efficiency values still increased from 0.5% to 1.5% between E85 and gasoline. 

This is explained by the decrease in the coolant and exhaust energy losses as 

shown in Figure 6.11 and Figure 6.12. The decrease in these energy losses is 

ultimately transferred into useful brake work and subsequently into an 

improvement in thermal efficiency. The variation in the levels of decrease in 

exhaust and coolant energy losses and, in some cases, the absence of this 

decrease, is attributed to experimental error. The level of decrease in the 

engine losses between E85 and gasoline is small (ranging between 0.5 % and 2 

%.) Subsequently, any small errors in the measurements could influence the 

results. 

The results show a small difference between the various fuel blends. These 

differences could be due to experimental errors instead of the effect of fuel 

content. The experimental error was estimated in Appendix A5.8. The results 

show that the inaccuracy is around ± 1 %, ± 1.25% and ±0.7% for thermal 
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efficiency, coolant energy percentage and exhaust energy percentage 

respectively. 

Although the difference in energy balance between the fuel blends was, in 

some cases, lower than the experimental error, there was consistency in the 

results over the different engine running conditions. The tests at those running 

conditions were taken at different days. In addition, the improvement in 

thermal efficiency was obvious in BSFC results. 

The results in Figure 6.11 and Figure 6.12 also illustrate that changes in the 

engine's running conditions influence the in-cylinder energy balance for all 

fuel blends. By increasing speed, coolant-loss percentage decreases, whereas 

the exhaust energy percentage increases. This is due to the reduction in the 

time available for the charge to cool and the increase in the exhaust 

temperature. Increasing the load leads to a significant rise in the percentage of 

brake load, a decrease in coolant energy losses and an increase in the 

percentage of energy lost to the exhaust. This is attributed to an increase in 

combustion efficiency, peak in-cylinder temperature and exhaust temperature. 

6.7 Summary and discussion 

The main objective of this chapter was to investigate the effect of ethanol on 

the energy balance inside the engine. The energy released by the fuel is 

distributed between brake output, coolant energy, exhaust energy and 

unmeasured heat loss. The unmeasured heat loss includes the un-combusted 

fuel, crevice losses and heat losses to ambient. 

Section 4.7 show that increasing ethanol content influences the exhaust's 

different constituent levels. The change meant that the exhaust's heat capacity, 

Cp,cxh , changes accordingly. The Cp,cxh results, calculated in this chapter, 

illustrate a marked rise as ethanol content increases as a result of increasing 

water level in the exhaust. 

The increase in Cp,cxh is also demonstrated in the measured exhaust 

temperature values, Texh. Increasing ethanol content illustrates a clear decrease 

in Texh at various engine running conditions. Texh is also affected by the 

engine's running conditions. Retarding ST or increasing speed increases Texh 

due to the reduction in the time available for the in-cylinder charge to cool 
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down. Increasing BMEP or EGR level, on the other hand, decreases exhaust 

temperatures due to a rise in the Cp,cxh values. 

A reduction in Texh could have a considerable effect on emission levels, 

particularly at warming-up. The reduction in exhaust temperature levels would 

increase the time needed for the catalyst to reach its operating temperature. 

This would increase the level of the engine's tail pipe emissions, especially at 

cold start. The reduction in Texh also affects HC and CO after flame 

combustion. Texh can additionally have an effect on the amount of heat loss to 

the coolant. Texh affects the levels of exhaust-port heat loss and heat conducted 

back into the engine through the exhaust manifold. 

The decrease in Texh and the higher hjg of ethanol suggest that heat transfer to 

coolant will decrease as ethanol content increases. The results confirmed this 

expectation. However, the effect of ethanol appears only at medium and high 

ethanol content (E50 & E85). Low ethanol content fuel blends show 

comparable results to gasoline ones. At low ethanol content, the oxygen 

availability dominates the combustion more than the increase in hjg, which 

would eliminate the cooling effect of ethanol. The decrease in heat rejection to 

coolant will affect the warm-up characteristics of the engine. By increasing 

ethanol content, more time is required to reach normal operation temperature. 

This would be reflected as an increase in fuel consumption, friction and 

emissions. 

Heat lost to ambient shows comparable results between E85 and gasoline. This 

was expected, since the coolant inside the engine will keep the engine's skin 

temperature at approximately constant levels. The change in coolant 

temperature and flow rate, when running on E85, was not big enough to affect 

the engine's skin temperature. 

Energy balance is affected by the changes in exhaust temperature and heat 

transfer to coolant. The energy balance data illustrate a considerable 

improvement in the thermal efficiency as ethanol content increases. This 

improvement in thermal efficiency was consistent over various engine running 

conditions. This is attributed mainly to the increase in combustion efficiency, 

as was demonstrated in section 4.8. The decrease in exhaust energy and 

coolant energy percentages also contribute to an improvement in thermal 
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efficiency, particularly at E85. The increase in thermal efficiency decreases the 

penalty in BSFC as a result of the lower QLHV of ethanol. 
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CHAPTER 7 

7.1 Introduction 

Time average engine heat 
transfer during fully warm 
up operation 

A detailed understanding of the heat transfer to coolant is essential, The 

amount of heat transfer to cylinder wall will have an impact on the work 

transferred to the piston and, subsequently, on specific power and efficiency 

levels. Engine knock behaviour will also be influenced by both heat transfer to 

the cylinder wall during the compression stroke, and by heat transfer from the 

hot exhaust valve and piston. The emission formation will be affected as a 

result of the change in gas temperature, due to heat transfer both within the 

engine cycle and in the exhaust system, where after burning of CO and HC 

occurs. Friction will also contribute to heat rejection to coolant and get affected 

by it. Friction will be influenced by both changes to oil temperature, and thus 

to its viscosity, and by piston and liner thermal distortion [17J. 

As shown in Chapter 6, running the engine on ethanol-gasoline blends 

containing medium and high ethanol levels affected the heat rejection rate to 

coolant, Qcoolant. 

Qcoolanris the sum of various instances of heat transfer from the combustion 

chamber, the exhaust port and other engine components, each of which has a 

different heat transfer mechanism. In the present work, the effect of ethanol 
. 

levels on the different heat sources that contribute to Qcoolanl was evaluated. 

The gas-side heat rejection rate to coolant was predicted using C 1 C2 

correlation, and then compared to the measured values. The C 1 C2 correlation 

is a time-averaged heat transfer correlation that was developed by The 

University of Nottingham for thermal modelling, using the PROMETs 

software [88, 89]. The main advantage of using time-averaged heat transfer 

correlation is its simplicity compared to instantaneous spatially-averaged heat 
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release and instantaneous local heat release correlations, where specific engine 

calibration and unavailable supporting data are required. One of the main 

objectives of this chapter is to evaluate the validity of using the C 1 C2 

correlation in the prediction of heat transfer to coolant for an SOOI engine 

running on different gasoline-ethanol blends, and whether any modification in 

C 1 C2 correlation is required. 

The experimental work was carried out on a variety of running conditions 

including different speeds, loads, f{J and EGR, as shown in Table 5.1. 

7.2 Background 

Taylor and Toong [901 developed an empirical correlation based on heat 

transfer data from 19 different engines, both gasoline and diesel-based. Their 

correlation was expressed in the form of a Nusselt-Reynolds number 

relationship. This can be expressed to give the heat transfer rate Qr from the 

gas-side, per cylinder, as: 

(7.2.1) 

The effective gas-side Reynolds number can be detennined by: 

Re = _4m.....,:· 1_(_1 +_A_F_'R_) (7.2.2) 

where Tg,Q is the effective gas temperature, determined by Taylor and Toong 

[90] as a function of the equivalence ratio, as shown in Figure 7.1. Tg,Q was 

evaluated by measuring the heat transfer to the coolant, Q"oolanl' and the mean 

gas-side surface temperature, Ts,g, under conditions where hg and Tg.a were 

either known or believed to be constant. Qcoolanl and T"g were measured at the 

cylinder head to avoid the complication caused by the change of cylinder 

surface area due to piston motion. The variations in T"g occurred through the 

variation in coolant flow rate and temperature. Tg,a was obtained by solving the 

heat convection relationship, where Tg,Q and hg were assumed to be the intercept 
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and slope, respectively [90]. kg and ).lg are conductivity and viscosity values, 

respectively. Tc is the coolant temperature, which is taken as the arithmetic 

mean of the inlet and outlet coolant temperature. Finally, mj is the fuel mass 

flow rate per cylinder. 

The Taylor and Toong equation has been successfully applied, and gave a 

reasonably good prediction of the total gas-side heat transfer from both spark 

ignition and diesel engines[83, 91]. However, there were obvious weaknesses 

to the above derivation. Shayler et al. [88] identified these weaknesses and 

suggested some improvements. Taylor and Toong estimated the gas-side heat 

transfer, G, from the heat rejected to the coolant, Qcoolanl and friction looses 

Q f as follows: 

(7.2.3) 

A modified correlation was developed as a result of a more detailed energy 

balance. Shayler et al. [88] identified the main sources for the heat loss to the 

engine coolant, Qcoolanl' to include in-cylinder gas-side heat transfer, Q,y, , heat 

transfer from the exhaust port, ~hPt' heat generated from engine friction, Q!, 

and heat conduction from the exhaust manifold back into the engine structure, 

{{xman' as expressed in the following equation: 

(7.2.4) 

The equation above shows that gas-side heat transfer is the sum of the heat 

transfers from the gas-side to the structure surrounding the cylinder and from 

the exhaust gas flow to the exhaust port's surface. This can be expressed as 

follows: QCIC2 = QCYI + Qexh,pt 

(7.2.S) 
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Equation 7.5 can be separated into two components, one for the heat transfer 

rates in the cylinder and another for the exhaust port: 

. k 
QCY/ = CIAcyl.eff ; (Tg,a - TJRe~·7 (7.2.6) 

And 

(7.2.7) 

The port surface area, Aexh.pt, is multiplied by a factor C2 to account for the 

difference between heat-flux values in the cylinder and in the exhaust port. If 

the characteristic heat flux is: 

." Qevl q = . 
A,yl.e.U· 

Then the corresponding heat flux in the exhaust port is C2 q" . The factors C 1 

and C2 are constants that minimise error in the experimental results. For an SI 

engine at MBT spark timing, C 1 and C2 were determined to be 1.8 and 1.5 

respectively. 

7.2.1 Engine running on gasoline 

Equation 7.5 was initially evaluated for the engine under investigation running 

on pure gasoline without any ethanol addition. Running conditions ranged 

from BMEP 1.61 to 7.9 Bar, the speeds going from 1500 to 4000 rpm, and 

different ST advanced and retarded from MBT as shown in Table 5.1. 

The energy balance equation 7.4 was re-arranged as foHows: 

~OOlant = ~1 + f!eXhPt + 0, + Oexhman - Q,mb. (7.2.8) 
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Qcoolanl represents the total heat transfer to coolant, both directly and through 

the oil. Gas-side heat transfer from both QCYI and QXIfJI was determined using 

equation 7.5. The effective gas cylinder area, Acylejf, used in the equation is 

defined in [92]. Acyl.eff is smaller than the combustion chamber area at the point 

when the piston is at its lowest position, because the liner is not always 

exposed to the cylinder gas. The Acyl.eff is defined as: 

(7.2.9) 

Where A pc and ~eaa are the piston-crown area and the cylinder-head 

combustion chamber area respectively. f(x/L) is a polynomial function that 

relates the local heat flux at any point down the liner to the same value as 

calculated at the top of the liner (which is always exposed to the cylinder gas), 

where x is the distance of a given point down the line from TDC, and L is the 

cylinder stroke. 

May et 01. [92] solved the polynomial function and found it be: 

(7.2.10) 

To evaluate the heat generated due to friction, Q/, mechanical friction losses 

have to be predicted. Mechanical friction losses can be obtained from IMEP 

and BMEP calculations where: 

FMEP = IMEP"uI - RMEP (7.2.11) 

IMEPnel was obtained from the in-cylinder pressure data (see section 3.6.1). 

BMEP was obtained from measuring the torque absorbed by the dyno. 

Therefore Q/ is calculated as: 
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Qr = FMEPx JT.t x N /60 (7.1.12) 

Qexh.man is the rate of heat conduction to the head from the exhaust manifold 

flange. In a study carried out by Imabeppu et af. [93J on a 2.0L DOHC SI 

engine operating at fully warm-up conditions, it was found that Q~xhman is 

related to the exhaust port's heat flux 4:xhp/, through the following expression: 

Q. ." 
exh.man = aqex.pt (7.1.13) 

Where a is constant and equal to 0.0042 m2 for a cast-iron exhaust manifold. 

The result from Imabeppu et 01. [93] suggested that Q,xhman accounts for 8-

12% of the total heat transferred to the engine structure. However, the value of 

the constant 0 and the percentage of heat conducted back will depend on the 

exhaust manifold and gasket material. For example, Hayden [94] found that 

using a fibre gasket can reduce the heat transfer to as little as Y4 of the rate 

measured when a metal gasket is used. The engine used in this study has a steel 

exhaust manifold and a metal gasket that conform well with the predictions of 

Imabeppu et af. [93]. 

Finally, heat transfer to the ambient, ~mb' generally has a small effect on 

overall energy balance, accounting typically for 400 to 600W under natural 

convection conditions, as shown in section 6.5. 

The rate of heat rejection to the coolant, Qcoolunf' is a value measured as shown 

in section 6.4. 

Figure 7.2 illustrates a comparison between the actual measured heat transfer 

to coolant and the predicted equivalent from equation 7.8 for pure gasoline. 

The results show a good agreement between the predicted and the measured 

values within a 10% accuracy limit. 

7.2.2 Gasoline-ethanol blends 

The main aim of this section is to establish the validity of using the C 1 C2 
. 

correlation to predict the gas-side heat loss rate to the coolant, Q'IC2' and to 
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determine whether any modification is required when ethanol at different 

blends is used. Q:;lC2 was predicted using equation 7.2 in exactly the same 

manner explained in the preceding section 7.2.1, as such, Cl and C2 remain 

constant. The Tg,Q value used was the same as the one developed by Taylor and 

Toong [90], as shown in Figure 7.1. 

When the engine was running on pure gasoline, the values used for kg and Ilg, 

which are both highly dependent on temperature, were assumed to be the same 

as those of air at Tg,Q. When running on ethanol mixtures, however, the 

AFRstoich is going to decrease as the ethanol ratio increases in the fuel. 

Consequently, this would affect the chemical properties of the in-cylinder 

charge and the validity of this assumption has to be examined. 

A comparison between the conductivity and viscosity of air and ethanol-air 

mixtures for different AFR equivalence ratios is plotted in Figure 7.3. The 

results illustrate that there is no significant difference in conductivity between 

the air and ethanol-air mixtures. The viscosity of air, on the other hand, 

appears to be slightly higher than that of an air-ethanol mixture at rich fuel 

mixtures. Air viscosity is around 4.5% higher at equivalence ratio 1.5 and 

around 2.5% higher at AFRstoich. The difference is. nonetheless. still relatively 

small. In addition, the majority of the engine cycle is dominated by the 

properties of the exhaust that are closer to air properties. For this reason, the 

assumption that Ilg is equal to that of air at different ethanol ratios is still valid. 

Comparisons between the predicted values of Q'oolom, obtained using equation 

7.2, and the measured values for different ethanol-gasoline blends, are plotted 

in Figure 7.4. The results illustrate a good agreement between predicted and 

measured values. 

The previous results show clearly that the CIC2 correlation is able to predict 

heat transfer to coolant values without any need to modify Cl, C2 or Tg,Q. The 

reason for this is discussed in more detail in section 7.6. 

7.3 Effect of External EGR 

Introducing EGR will have a significant effect on the heat loss rate to the 

coolant. To investigate the effect of EGR on heat rejection rate, several tests 

were undertaken at both MBT, where ST needed to be advanced, and different 
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ST. The tests were performed with the BMEP ranging from 1.61 to 4.75 Bar 

and the EGR ranging from 5 to 30 % depending on the load. 

The introduction of EGR to the SI engine will affect the heat rejection rate 

through the increase in the overall charge mass, the increase in the inlet gas 

temperature and, finally, the increase in the thermal capacity per unit mass of 

charge. 

Increasing the intake charge temperature will increase the gas-side heat 

rejection rate. Lundin et al. [95] and Povolny el al. [96] studied the effect of 

variation in inlet charge temperatures on Qcoolant. They found that the effective 

in-cylinder gas temperature needed to be corrected to a reference inlet 

manifold temperature according to the relation: 

T g,a= ~,a,298 +0.35(7; - 298) (7.3.1) 

where T, is the gas temperature at the intake manifold and T g,a,298 is the 

average effective gas temperature for an inlet gas temperature of 298K. The 

variation of T g,a,298 is shown in Figure 7.1. 

The increase in charge mass as a result of EGR is taken into account through 

the redefining of the Reynolds number as follows: 

Re = _4m-,' ,:...-{_1 +_A_F_'R_)_/{_I-_E_G_R_) 
1rBpg 

(7.3.2) 

The increase in inlet charge temperature and mass will increase the heat 

transfer to the coolant as accounted for in equations 7.14 and 7.15. However, 

the use of EGR will also increase the thermal capacity of the cylinder charge 

and, hence, reduce the heat rejected to coolant. The effect of an increase in 

thermal capacity can therefore be accounted for by applying a correction factor 

FeaR to the prediction [89], as follows: 
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. . 
Q::IC2_EGR = F'eGR(kIC2 (7.3.3) 

where FECR = 1-EG R. The method that has been used to develop FeGR is 

explained in detail in Appendix 4. 

A comparison between measured and predicted Qcoolant values at different 

EGR percentages for an engine running on gasoline is plotted in Figure 7.5. 

The results clearly shows an improvement in the prediction when the 

correction factor, FeCR' was used. 

Several tests were carried out in order to evaluate the validity of using the FeGR 

to predict Qcoolant values for different gasoline-ethanol fuel blends, as sho'Ml in 

Figure 7.6 and Figure 7.7. 

The engine was running on E50 and E85, with the BMEP ranging from 1.61 to 

4.75 Bar and the EGR ranging from 5 to 30 %, depending on the load. The 

data illustrate clearly that the prediction values correspond well to measured 

values within the 10% limit. 

7.4 Evaluation of the heat transfer to the exhaust port, ilahPt 

The heat transfer to coolant through the exhaust port, Qexhpl' represents a 

considerable percentage of the total heat transfer to coolant due to the high 

exhaust speed and temperature. Taylor [97] suggested that around 20% of the 

total heat transferred to the coolant is through the exhaust port, Imabeppu [93] 

suggested that it is more typically between 24-27%. With the stricter emissions 

regulations, understanding Qexh'PI is becoming increasingly essential. The 

energy loss through the exhaust affects the ability to get the after-treatment 

system to the required temperature, especially at cold temperatures i.e. losing 

energy will cause the system to take longer to reach its maximum effectiveness 

and will result in higher tail-pipe emissions. 

This section is concerned with the effect of ethanol on the heat loss to the 

exhaust port. The heat transfer to the exhaust port has a pulsating nature. When 

the exhaust valves are open the heat transfer is treated as a forced convection, 

while it is treated as a natural convection when the exhaust valves are closed. 
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Heat transfer by natural convection can be ignored since it is small compared 

to the forced convection equivalent. 

7.4.1 Measured heat transfer to the exhaust port 

In order to evaluate the heat loss to the cylinder wall, two thermocouples were 

fitted at the start and the exit of the exhaust port of cylinder 1 and cylinder 3 as 

shown in Figure 7.8. Qexh.pt was calculated from the ~emperature difference 

between the start and the exit of the exhaust port. The drop in temperature was 

assumed to be due to the Qexh,pt. This is assuming that kinetic energy loss and 

the heat generated by flow resistance in the piping is insignificant compared to 

Qexh,Pf' Hence, QeXh.pt was calculated using the following: 

(7.4.1) 

r;xh_OU,'e,& r;xh_lnlet are measurable values, the exhaust mass flow rate, !hex" 

was calculated from knowing the fuel flow rate, AFR and Xb levels. Cp,e:'(h was 

calculated from the exhaust constituents and exhaust temperature (both 

measurable values) as shown in section 6.4.3. Tests were carried out with the 

engine running at different speeds, loads, ignition timings, equivalence ratios 

and EGR levels as shown in Table 5.1. Those ranges were chosen to 

investigate not only the effect of the different fuel blends over a wide range of 

running condition but also the consistency and the repeatability of the results. 

Figure 7.9 shows the QexhPI for different fuel blends as a function of load, 

speed, EGR and ffJ. Data for all running conditions illustrate a decrease in 

QeXh.pt as ethanol ratios increase; this decrease is more obvious at higher 

ethanol ratios, i.e. E50 and E85, where there is approximately a 5% decrease in 

Qexh,pt between gasoline and E85. 

The main factors that are affecting Qexh,PI are the exhaust mass flow rate, the 

surface temperature and the exhaust temperature, Texh. Figure 7.10 illustrates 

that the exhaust surface temperature does not change with increasing ethanol 
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levels due to coolant circulation, which keeps the engine's surface temperature 

constant. Exhaust surface temperature was taken at three different locations of 

the exhaust port and on two different cylinders. Mass flow rate decreased 

slightly for higher ethanol contents as shown in Figure 7.11. Finally, with 

increasing ethanol content, Texh decreased considerably due to the increase in 

Cp,exh of the exhaust (i.e. an increase in the water content of the exhaust) as 

shown in Figure 6.3. The decrease Texh is the main reason for the reduction in 

Qexhpt. The small decrease in exhaust mass flow rate also contributed to this 

decrease. 

The change in engine running conditions also affects Qexh,pt. For all fuel 

mixtures, increasing load and speed shows an increase in the Qexh,pt due to the 

increase in exhaust mass flow rate and temperature. Equivalence ratio up to 

AFRstoich does not show any change in (lxh,pt. However, as the charge becomes 

rich, Qexh.pt start to decrease. This is mainly due to the decrease in Texh and in 

the exhaust mass flow rate. Increasing EGR level does not show any effect on 

Qexh.pt. The combined effect of decreasing Texh and increasing mass flow rate 

as EGR levels increase explains the unchanged heat loss between different 

EGR percentages. 

The contribution of the measured Qexh,pt to the total heat released to the coolant 

is shown in Figure 7.12, the results illustrate that the contribution level 

remained between 15 to 20 % of the total heat rejected to the coolant. These 

results are lower than would have been suggested by previous studies (Taylor 

[90] suggested around 20% and Imabeppu [93] suggested between 24-27%). 

The lower value of the measured exhaust port heat loss can be explained by the 

thermocouple readings at the exhaust port inlet. Due to the complex geometry 

of the exhaust port, it was hard to place the thermocouple accurately at the 

exhaust port inlet; instead it was placed as close as possible. This meant that 

the exhaust gas might have already cooled slightly before reading the 

thermocouples. In addition, it is hard to place the thermocouples accurately in 

the middle of the exhaust port, the closer the thermocouple to the surface the 
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more the readings are affected by the cooling of the surface. Furthermore, the 

exhaust port has a pulsating nature while the thermocouples have a time-based 

one. This might cause an error in the thermocouples' reading. 

The underestimated measurements of the heat lost to the exhaust port are 

acceptable for the purpose of this study since a comparison between the 

different fuel blends is the main objective. 

7.4.2 Exhaust port heat correlations 

Several correlations have been developed over the years to predict the heat 

transfer to the exhaust port. These correlations were developed assuming a 

quasi-steady forced convection heat transfer to the exhaust port. The heat 

transfer coefficient can be defined from the Nusselt Reynolds relation as 

follows: 

And: 

k h=a exh Reb 
dexh.PI 

4mf {l + AFR) 
Re pI = --"----­

Pexhmiexh,PI 

(7.4.2) 

(7.4.3) 

where kexh is thermal conductivity and Jlexh is dynamic viscosity. Both values 

are dependent on exhaust temperature, the properties of air were used for 

simplicity. The coefficients a and b are dependent on the correlation used. The 

variation in correlation coefficients can be attributed to the difference in the 

geometry of each engine that the correlation was developed on [98]. The 

variation in geometry will alter the flow pattern inside each engine and, 

subsequently, affect f2eXh.Pt. In addition, the pulsating nature based on valve 

events, as well as the pipe length, can significantly change the flow pattern and 

heat transfer relationship [98]. 
. 

In order to determine the best correlation for predicting Q&!.fhpl' the heat 

transfer calculated from the different correlations in Table 7.1 was compared to 
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the total heat transfer to the coolant as shown in Figure 7.13, for gasoline and 

E85. The data show that correlations from Meisner and Sorenson [99] and 

Shayler and Chick [88] are the most suitable correlations to predict Qexh,pI 

since they are more consistent with Taylor [90] and Imabeppu's [93] results 

(20% to 27% of the total heat transfer to the coolant). 

Qexh.pt for different gasoline-ethanol blends as functions of speed and load 

were calculated using Meisner and Sorenson [99] and Shayler and Chick [88] 

correlations as shown in Figure 7.14 and Figure 7.15. The results illustrate a 

decrease in Qexh.pt as ethanol ratio increased in the fuel blends. 

The results correspond well with the measured data obtained in section 7.4.1. 

A comparison between measured and predicted Qexh,pt using different 

correlations is shown in Figure 7.16. The data demonstrates a linear relation 

between' predicted and measured values for the ditferent correlations. 

However, while the measured values fit well with the Shayler and Chick 

correlation, they are lower than the predicted values using C 1 C2 as well as 

those predicted by the Meisner and Sorenson correlation. The underestimated 

measurements of the exhaust port heat loss (see section 7.4.1) can explain the 

difference between measured and predicted values. In addition these 

correlations were developed on a different engine and this could affect the 

values they predicted. 

The measured heat loss was used to plot a relation between Re and Nu as 

shown in Figure 7.17. Nu was calculated assuming forced convection heat 

transfer process such as: 

A7 Qtxh,P' d, .. rh.,., 
JVU = ---......:----'---

k exh (T exh - T exh. pI _ .tllrjilt'C ) 

(7.4.4) 

A trend line was fitted to the data and a relation between Nu and Re was found 

to be: 

Nu a O.25Reo.654 
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7.5 Heat conducted back to the cylinder head, C!.xhman 

As mentioned previously, part of the exhaust energy is conducted across the 

cylinder head/exhaust manifold flange face. The magnitude of Qxhman will be 

dependent on the type of gasket used. Imabeppu et al. [93] found that Q.xhman 

is a function of the exhaust port heat flux, ilxhp" as shown in equation 7.13. 

As a result, the decrease in Qexh,pt for medium and high ethanol content fuels 

will reduce the amount of heat conducted back to the engine as shown in 

Figure 7.18. The data in figure 7.18 was calculated using equation 7.13. 

To confinn these findings, ~xhman was also calculated using the coolant 

energy balance shown in equation 7.4. A comparison between the different fuel 

mixtures for various running conditions is shown in Figure 7.19. The results 

illustrate that up to E50 there is no clear trend between increasing ethanol 

ratios and heat conducted back to the cylinder. E85, on the other hand, shows a 

slight decrease in C!exhman for different engine running conditions. The results 

correspond well to the data obtained from equation 7.13. 

Figure 7.20 shows Q.xhman, as calculated from the coolant energy balance, as a 

function of iJ:xhpt. The results illustrate that there was an approximate linear 

relationship between ~xhman and iJ:XhPt. These results agree with the findings 

of Imabeppu et a1. [93]. The value of a, however. varied between 0.0048 m
2 

and 0.0053 m2
, depending on the fuel blends. The change in the value of a can 

be attributed to the change in Texh among the different fuel blends which will 

change the relation between iJ:xhpt and C!exhman' In addition, the experimental 

. 
error associated with the C 1 C2 correlation, FMEP, and Qc:o()lllnt calculations 

can contribute to the variations in the value of a. 

7.6 Results and discussion 

The main aim of the work presented in this chapter was to investigate the 

effect of gasoline-ethanol blends at different proportions on the gas-side heat 

transfer to coolant, both from the cylinder and exhaust port. Furthermore. it 
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was desired to establish whether the C 1 C2 correlation reqUires any 

modification to allow for changes in fuel heating values and other fuel 

properties. 

Results obtained in section 6.4 demonstrate a clear decrease in the total heat 

rejection to coolant, ~oolant' for high and medium ethanol content fuel blends 

(E50 & E85). The reasons for this decrease were investigated in this chapter by 
. 

examining the different heat sources that contribute to Q.oolantaS shown in 

Figure 7.21. Different sources include the in-cylinder gas-side heat transfer ( 

QCYI ), exhaust port heat loss (Qexh.POrl)' heat generated from engine friction ( Qf 

) and heat conduction from the exhaust manifold ( Qah.man ). 

Both the predicted and measured results showed that Qe.'hI'Orl and Q,,'h.mtln 

decrease for fuel blends with medium and high ethanol contents as a result of 

the decrease in Texh• This decrease will contribute to the total decrease in the 

measured ~oolant. 

The in cylinder gas side heat transfer, QCYI, is expected to change as ethanol 

content increases in the fuel blends due to the physical properties of ethanol. 

Indeed, ethanol has a higher enthalpy of vaporisation. As a result, increasing 

ethanol will have a cooling effect on the in-cylinder charge leading to a 

decrease in in-cylinder peak temperature. However, using ethanol will also 

increase combustion speed, as illustrated in chapter 5, resulting in higher peak 

pressure and temperatures. The combined effect of these two factors will 

determine the in-cylinder temperature and hence Qcyl. 

The NOx emission results in section 4.6.3 show a reduction in NOx levels 

when ethanol ratios increase in the fuel blend. This reduction indicates a 

decrease in the local in-cylinder peak temperatures. Furthermore, the decrease 

in Texh illustrates a decrease in the product of combustion or the in-cylinder gas 

temperatures later on in the combustion stroke, which has a considerable effect 

Qcyl' Both the NOx emissions and Texh data illustrate a decrease in in-cylinder 

temperature at high ethanol content and, subsequently, in QCJ'" This decrease 
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is expected to contribute to the total decrease in ({'oolant. The Qeyl for different 

fuel blends were predicted using equation 7.6 as part of C I C2 correlation as 

shown in Figure 7.22. The CIC2 correlation was found to agree well with the 

measured values within the 10% limit range without any need for modification 

for CI or C2 values. The data in Figure 7.22 illustrate that, in most cases, E85 

showed a lower Qcyl than the rest of the fuel mixtures. Using E85 reduces heat 

rejection rates to between 0.5 and 3% compared to gasoline. These results 

correspond well with the author's prediction of the effect of ethanol as 

mentioned above. 

The decrease in Qeyl is accounted for through the change in Re without the 

need to change C 1 or Tg.a• The Re number decreases when the engine is 

running on E85 compared to the rest of the fuel blends as shown in Figure 

7.23. Although E85 showed a decrease in Qcyl' the results do not illustrate any 

clear trend between increasing ethanol ratios and Q,:vl. This might be explained 

by the confidence limit and experimental discrepancy associated with C 1 C2 

correlation where change in Qcyl can be too small to be resolved by the C I C2 

correlation. QCIC2 can be predicted within an accuracy of a 10% limit. In 

addition, the increase in combustion efficiency for low ethanol ratios can have 

a more dominant effect on increasing in-cylinder temperatures than the cooling 

effect of ethanol or the decrease in Texh. 

Qexh.P()rt was also predicted using the CIC2 correlation in equation 7.7. C2 in 

equation 7.7 represents the ratio of exhaust port heat flux and cylinder heat 

flux. C2 will remain constant since the ratio is constant for all fuel blends as 

shown in Figure 7.24. The measured Q.:xh'l'tJrt value was used to calculate C2. 

In summary, it is believed that the CIC2 correlation can be used to predict gas­

side heat transfer without any modification. The change that is expected in 

Q'YI is accounted for through a decrease in Re without the need to change C 1 

or Tg.a• C2 remains constant since the ratio of exhaust port heat flux and 

cylinder heat flux show very little difference between the various gasoline­

ethanol blends. 
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Finally, Qf shows comparable results between the different fuel blends and 

will not affect the change in QccHllanl 

EGR affects the gas-side heat transfer through increasing the heat capacity of 

the charge, the inlet charge temperature and the mass flow rate of the charge. 

The effect of EGR was accounted for by using correlations to account for the 

increase in heat capacity and inlet temperatures. A modified Reynolds 

definition was also used to account for the increase in mass fraction. This kept 

the accuracy of the prediction within the 10% limit. This modification for EGR 

also appeared also to correspond well to the predictions of heat transfer to the 

coolant when gasoline-ethanol blends at different percentages were used. 
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CHAPTER 8 In-cylinder gas properties 
and instantaneous heat loss 
to the cylinder wall. 

8.1 Introduction 

Heat transfer to the coolant from different engine components was discussed in 

detail in Chapter 7. However, these investigations have all been based on 

cycle-averaged heat transfer. In this chapter, the effect of ethanol on the 

instantaneous spatially-averaged heat loss is investigated. The temporal change 

in heat loss across the cycle is important in explaining the effect that the 

ethanol has on some of the engine's characteristics, such as power output. 

engine efficiency and thermal NOx formation. The effect of higher ethanol 

content on some of the in-cylinder charge properties and charge preparation 

was also studied. 

The . heat loss was predicted from the pressure data using a correlation 

developed by Hohenberg [100]. The Hohenberg correlation has been used 

extensively to predict heat loss for both gasoline and diesel engines. The use of 

this correlation to predict heat loss for different gasoline-ethanol blends has 

never been examined until this work was undertaken. In this chapter. the 

validity of the Hohenberg correlation for different gasoline-ethanol mixtures is 

going to be evaluated. 

8.2 Calculating in-cylinder gas properties 

8.2.1 In-cylinder temperature 

The cyclic variation of average the in-cylinder gas temperature, T
" 

is required 

to calculate the heat loss to the cylinder wall. The measurement of Tg is 

extremely difficult as it requires access to the cylinder. In addition, the gas 

temperature also varies according to location, with the biggest difference in 

temperature between burned and un-burned areas. It was beyond the scope of 

this work to measure Tg directly. Instead, the average temperature was 
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estimated. In order to estimate Tg, the engine cycle was divided into three 

separate parts as shown in Figure 8.1. Firstly, the induction cycle until Ive. 

Secondly, the close part of the cycle between IVC to EVO and, finally, the 

exhaust stroke, starting from EVO until the end of the cycle. 

In the induction stroke, the Tg is small and will be close to the cylinder's 

surface temperature. Heat loss to the cylinder wall during induction is small 

compared to the compression, combustion or exhaust part of the cycle. Tg 

during the induction stroke is assumed to be constant and equal to the Tg at 

Ive. 

The ideal gas law was used to calculate the gas temperature during the close 

part of the cycle, i.e. between IVC and EVO, thus 

(8.2.1) 

In-cylinder pressure, p. is a measurable value as shown in section 3.6.1. 

Instantaneous cylinder volume. V, is calculated from our knowledge of the 

engine's geometry. The mass of the in-cylinder charge. m"harlle, includes the 

inducted air and fuel as well as any external EGR and any internal dilution. 

During the exhaust stroke, when the exhaust valve is open, the in-cylinder 

pressure drops considerably until they reach exhaust manifold pressure. The 

charge temperature during the exhaust stroke was determined by assuming the 

process during blowdown to be isentropic. thus: 

(8.2.2) 

The pressure variation is known and T EVO can be calculated from ideal gas law 

as described above. Although the exhaust stroke is not isentropic. it is believed 

to be a good approximation of the real value. The temperature trend obtained 

in this study was similar to that obtained by previous studies such as May e/ al. 

[92] and Caton and Heywood [84]. 
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A comparison between the different fuel blends is shown in Figure 8.2 and 

Figure 8.3. The results illustrate that, in both cylinders, there is not a clear 

trend between increasing ethanol content and the calculated in-cylinder 

temperature. In cylinder 1, however, there was a small increase in Tg for E85 

when compared with gasoline. 

The results of the calculated bulk in-cylinder gas temperature, Tg, do not 

correspond to the expectation of the author. Indeed, the increase in ethanol 

content in the fuel blend was expected to decrease Tg• This expectation was 

based on the reduction in the total measured heat transfer to the coolant, 

(Lm/ant , decreases in NOx level, decreases in Texh and increases in hlg as 

ethanol content rises, as discussed in detail in section 7.6. 

The calculated Tg is a function of the measured pressure and the mass of the 

charge, mcharge. The pressure reading does not show any significant variation 

either in the measured 100 consecutive cycle pressure data or at the standard 

reference point, as shown in section 3.7. mc:harge was calculated from the 

measurement of the total fuel flow rate to the engine and the measured Lambda 

value. The fuel flow rate was assumed to be equally divided between the four 

cylinders. The Lambda value was measured at the exhaust manifold and 

assumed to be equal in the four cylinders. However, the assumption that m"harge 

is equal in the different cylinders is not necessarily accurate. There might be 

differences in the mcharge and AFR values among the different cylinders. This is 

due to the variation in the amount of fuel injected into each cylinder (which 

might be caused by the injectors' manufacturing tolerances) or the amount of 

air drawn by each cylinder. For that reason, in this section, m"hllrge is going to 

be calculated using ideal gas law instead, which would be as follows: 

(8.2.3) 

where TEVO was assumed to be equal to the measured temperature before the 

exhaust port. Since the temperature at EVO is higher than the one measured 

before the exhaust port, the calculated mass charge, m"harge.calc will be higher 
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than the actual value. However, this study is a comparative study and the main 

purpose is to compare the different fuel mixtures. 

mcharge,ca/c was used to calculate the in-cylinder bulk temperature, Tg,cab using 

equation 8.1. The results illustrate that, during combustion, there is no 

correlation between ethanol content and temperature magnitude and phasing as 

shown in Figure 8.4. However, by the end of combustion, the combustion 

products' temperature slightly decreases at high and medium ethanol ratios 

(E50 and E85), this corresponds well to the measured decrease in Texh. 

Peak calculated temperature; however, does not appear to be in line with the 

NOx emissions as there was no clear decrease in peak Tg with higher ethanol 

levels. This can be attributed to the fact that NOx is affected by the local 

temperature rather than the bulk average temperature. The decrease in 

adiabatic flame temperature as ethanol content increase, as shown in Figure 

4.2, could explain the reduction in NOx level. 

8.2.2 Calculating in-cylinder r for different fuel mixtures 

As shown in Chapter 4, higher ethanol content in the gasoline/ethanol blend 

will affect the fuel's physiochemical properties and the exhaust composition. 

These changes might have an effect on the in-cylinder charge heat capacity 

and, subsequently, on the in-cylinder charge heat capacity ratio. f, used in net 

heat release calculations. This section is concerned with the method used to 

calculate f and the potential effect of increasing ethanol levels on the f value. 

The calculation of f was based on dividing the cylinder into two zones: a 

fresh charge zone and a burned zone. The fresh charge consists of the fuel-air 

mixture and the unburned region consists of the products of the combustion. 

Heat capacity, Cpt calculated for the fresh charge and the products of 

combustion was based on polynomial correlations as detailed in Appendix 3. 

Although ethanol has a higher cp than gasoline and subsequently a different ')', 

as shown in Figure 8.5; nonetheless, Figure 8.6 illustrates that this ditference 

in cp between gasoline-air and ethanol-air mixtures is very small. This is 

explained by the change in AFRstoich between gasoline and E85. As a result, the 

y difference between the two mixtures is very small as shown in Figure 8.7. On 

average, E85-air mixtures had around a 0.3% increase in y value over that of an 

gasoline-air mixture. A correlation that relates y to temperature was developed, 
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by the author, based on the y average between the E85-air mixture and the 

gasoline-air mixture, calculated as follows: 

r Ie == 6 xl 0-8 T2 - 0.0002T + 1.4063 (8.2.4) 

where T is the temperature in Kelvin (K). The burned gas heat capacity, Cp.b, 

was calculated from the emissions composition measured at different running 

conditions. Figure 8.8 shows Cp.h as a function of temperature for the engine 

running on different loads, at gasoline, E50 and E85. The results illustrate 

clearly that Cp.b is sensitive to changes in temperature and fuel composition. 

Increasing ethanol content produces a clear increase in the Cp.b of the emissions 

for a given temperature. The results also show that Cp.b is not sensitive to a 

change in load. A correlation was developed based on the average emission 

produced at different loads, as follows: 

If 275<T(K)<1 000 

If T(K» 1 000 

Where, 

At= 0.0003 

A2=0.0222E+0.955 

Bl=0.0205E+0.2063 

B2=0.1159E+0.1776 

(8.2.S) 

(8.2.6) 

where E is the ethanol ratio and T is the temperature in K. The methods that 

were used to develop these correlations are described in detail in Appendix 3. 

Subsequently, the heat capacity ratio for the burned charge, rho can be 

calculated using the following equation: 

Cp " r,,= . 
Cp•h -R" 

(8.2.7) 
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At each CA degree, the mass average heat capacity ratio of the fresh charge 

and the burned charge, r, is calculated through the following equation: 

(8.2.8) 

where Xb is the burned gas fraction in fresh charged, which includes internal 

dilution and EGR. MFB is the mass fraction burned. 

The temperature of the diluted unburned gas, T", is calculated by assuming a 

polytropic compression after IVC. The temperature of the burned gas, Tb. was 

calculated assuming that when an element burns it instantaneously mixes with 

the already-burnt gas, hence the average mean temperature for the burned gas 

is [17]: 

(8.2.9) 

Figure 8.9 shows an example of y during the engine cycle for different fuel 

mixtures when the engine is running at constant BMEP 4.75 bar and 2000 rpm. 

8.3 Charge temperature and mixture preparation 

In the DIS I engine, there is a limited amount of time for fuel to evaporate and 

mix with the air to form a combustible charge. The evaporation of the fuel 

happens in two stages [41]: 

When the liquid fuel is injected directly into the cylinder during the 

induction stroke, part of it evaporates by absorbing heat from the 

surrounding air and the combustion chamber's surfaces which will 

decrease in-cylinder temperature as a result. 

During the compression stroke, the rest of the liquid fuel evaporates as 

a result of the increase in temperature and pressure. 

The two temperature parameters (the drop in temperature after injection and its 

rise during compression) were considered by several studies [24, 41] in an 

attempt to evaluate the mixture preparation characteristics. Price el al. [41] and 

Dodge [101] found that in a DISI engine running at homogenous operation, the 
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majority of the fuel is vaporised during the compression stroke. For this 

reason, an increase in temperature during the compression stroke can be 

considered as an indication of the amount of heat required to evaporate the 

fuel. In this section, the effect of higher levels of ethanol content on the fuel 

vaporisation process and its potential cooling effect are assessed by calculating 

Tcomp, the temperature increase between IVe and ST, as shown in Figure 8.10 

and Figure 8.11. The results illustrate that, for all running conditions. whilst 

E 10 and E20 show comparable Tcomp values to that of gasoline. the results for 

ESO and E8S show a clear decrease in Tcomp with E8S showing the lowest Tcomp. 

The non-linear relation between Tcomp and an increase in ethanol content can be 

explained by the fact that Tcomp is proportional to several relations that are 

themselves inter-related. During the compression stroke. the piston work 

exerted on the charge is divided into three components: latent heat used to 

vaporise the liquid fuel, a change in internal energy and the heat transferred to 

the coolant through cylinder walls. Heat transferred to the wall can be ignored 

due to the small difference between the wall temperature and the charge 

temperature during compression, thus: 

(8.3.1) 

(8.3.2) 

From equations 8.10 and 8.11, and from assuming constant work. J U and 

subsequently Tcomp is a function of the mass of the charge, m"harge. the constant 

volume-specific heat capacity, Cv• and the enthalpy of vaporisation. hfg. The 

increase in hlg as ethanol content increases. as shown in Figure 2.3, means that 

a higher percentage of the piston work is going into vaporizing the fuel than 

turned into a gain in internal energy and, hence, Tcomp will decrease. However. 

the increase of Cv as ethanol content increases will have an opposite effect, as 

shown in Figure 8.12. The combined effect of these two factors means that the 

cooling effect of increasing ethanol content will not manifest itself until 

medium ethanol contents, as is indicated by the decrease in the compression 

stroke temperature, Tcomp. 
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8.4 Instantaneous spatially-averaged heat loss to the cylinder 

walls 

The idea of the instantaneous spatially-averaged heat loss, Q/n",' to the cylinder 

wall is based on the asswnption that the in-cylinder heat transfer is a quasi­

steady process, i.e. a uniform instantaneous in-cylinder gas temperature and, 

thus, the heat transfer to the cylinder is proportional to the difference between 

the working fluid and metal surface temperatures, Twall. The heat lost through 

the cylinder wall can be calculated as follows: 

~/oss _ hcA(~ - Twall ) ---
88 6N 

(8.4.1) 

where he is the heat transfer coefficient (averaged over the chamber surface 

area), A is the instantaneous cylinder area, and N is the engine speed (rpm). 

Equation 8.12 was divided by.6N to transfer the change of heat transfer from 

time-based into crank-based. he can be estimated from the engine heat transfer 

correlations. The two most common correlations are the Woschni [102] and 

Hohenberg [100] correlations. The main disadvantage of using Woschni is the 

need to evaluate the motored pressure during the combustion and the 

expansion strokes. The motored pressure is not available since the dyno used 

in this study can only be used for power absorption and not to motor the 

engine. The Hohenberg correlation, however, is a simplified expression based 

on experimental observations from four different direct-injection diesel 

engines, and was obtained after a detailed examination of Woschni's original 

formula. 

h = A V-o·06 pO.8r-o·4 (V + A )0.8 
e 1 g P 2 (8.4.2) 

where P is the indicated pressure, V is the in-cylinder instantaneous volume 

and Vp, the piston mean velocity, represents the gas velocity inside the engine 

where: 
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Vp =4LN160 (8.4.3) 

The mean value of the constants Al and A2 were found to be 130 and 1.4 

respectively. A2 represents the effect of combustion-produced turbulence and 

heat loss due to radiation. 

8.S In-cylinder gas-side surface temperature 

The gas-side surface temperature, Twall. is maintained below a certain 

temperature though coolant circulation in order to avoid thermal stress that 

could lead to fatigue cracking and the deterioration of the oil film [17]. Twall 

varies with the location, cycle variation and engine running condition. The 

swing in surface temperature during the engine cycle is very small, it being 

around 7 K [17]. Spatially-averaged in-cylinder gas-side surface temperatures 

typical range between 370 K and 450 K depending on the running condition 

[17]. Tg between ST to EVO during the engine cycle lies between 750 K and 

2500 K. Thus, the temperature difference between gas and wall is large and 

changes in wall temperature will have only a small influence on the predicted 

gas-to-wall heat transfer. For that reason. it is safe to assume the surface 

temperature to be constant and averaged between 370 K and 450 K. 

8.6 Calibration of the Hohenberg correlation 

As mentioned above, the Hohenberg correlation was originally developed for 

diesel engines. Consequently, AI and A2 need to be recalculated in order to 

calibrate the correlation for the engine under investigation. 

Assuming a constant A2, AI was determined by directly relating the amount of 

fuel chemical energy released to heat transfer into: work, sensible energy and 

heat loss to the chamber wall, assuming negligible crevice losses such as: 

(8.6.1) 

where Qgross, ~et and {Joss are gross heat release, net heat release and heat 

loss respectively. ~et is defined as the energy that is transformed into sensible 
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energy and real work within the combustion chamber. Assuming that the 

chamber's contents are a semi-perfect gas, ~et can be calculated from (171: 

OQne/ = _Y_p6V +_I_V6p 
y-l y-l 

(8.6.2) 

As shown in Figure 8.13, AI was found to have an average of 68.2 to satisfy 

equation 8.15 for different running conditions and different fuel blends. 

8.7 Evaluation of the Hohenberg correlation, 

The Hohenburg correaltion was initially developed for diesel engine and has 

been widely used to predict Qloss in SI engines running on gasoline. The 

validity of using Hohenberg to predict heat loss for an SI engine running on 

different ethanol ratios has never been properly examined. The main aim of 

this section is to evaluate the robustness of the Hohenberg correlation in 

predicting Qloss at different ethanol ratios. This was carried out through three 

different techniques. 

Firstly, the proportion of the total gross heat release energy to the total energy 

released by the fuel (mf x QLHV) for different fuel mixtures was calculated as 

shown in Figure 8.14. The total gross heat profile is obtained through the 

integration of Qgross in equation 8.15 from ST to EVa. 

For all fuel blends, the percentage of gross heat release ranged from 92% to 

78% as the charge become richer, rp > 1. E85 appears to have higher percentage 

of gross heat release compared to the rest of the fuel mixtures. particularly at 

rich charge. The results correspond we]] with combustion etliciency results. as 

shown in Figure 4.19. The difference between the combustion efficiency 

values and the percentage of gross heat release values is probably due to 

crevice losses. 

Secondly. the Qloss value. as predicted using the Hohenberg correlation. was 

compared to the measured heat loss rate to the coolant. The heat transfer to 

coolant as a result of friction. exhaust port and heat conducted back into the 
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cylinder head were all subtracted from QC(}(}/anl to leave only the contribution of 

the cylinder wall (see section 7.2 for more detail) as follows: 

(8.7.1) 

Qloss was transferred from the instantaneous CA domain heat loss (J/oCA) to 

the time-domain-averaged heat loss (J/s), QCYI' using the following equation: 

_ f720 Q /" .. «(J)x N 

II 60x2 (8.7.2) 

Figure 8.15 shows a comparison between measured and predicted heat loss. 

The results show a good agreement between the two values, within the 10% 

limit. All fuel mixtures showed approximately the same trend during the 

various running conditions. 

Finally, the heat predicted from the Hohenberg correlation was compared to 

the one predicted using the C 1 C2 correlation (equation 7.6 in section 7.2) as 

shown in Figure 8.16. The results show a good agreement between the two 

correlations in most predicted heat loss values. At high heat loss, however, the 

Hohenberg prediction appears to be around 10% higher than the equivalent 

C 1 C2 correlation prediction. All fuel blend results show approximately the 

same relation between the two correlations. 

The three techniques illustrate clearly that the Hohenberg correlation can be 

used to predict instantaneous heat loss to the cylinder wall for all 

gasoline/ethanol blends. 

8.8 Effect of gasoline-ethanol blends at different ratios on the 

instantaneous heat loss 

Several tests were carried out with the engine running at a wide range of 

speeds and loads (with speeds ranging from 1500 to 4000 rpm and loads 

ranging from 1.26 to 8 bar BMEP,) in order to evaluate the effect of ethanol on 

heat loss magnitude and phasing. 
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These ranges of speeds and loads were chosen to investigate the sensitivity and 

consistency of the effect of the different fuel blends across a wide range of 

running conditions. For all fuel blends, the engine was running at constant ST 

(gasoline MBT) and AFRstoieh. This allowed for a direct comparison between 

the different fuel blends by eliminating any other factors. 

The instantaneous heat loss to the cylinder wall, Qloss, was predicted using the 

Hohenberg correlation as mentioned earlier, mcharge is calculated from AFR and 

m.r measurements. 

Figure 8.17 and Figure 8.18 show the predicted Qloss for different speeds and 

loads in two different cylinders (cylinders 1 and 3). Neither cylinder showed 

any trend between an increase in ethanol ratio and Qloss. The Qloss results 

contradicted the author's expectations and the results of the measured heat 

rejected to coolant (see section 6.4). A reduction in Qloss was expected to 

accompany increases in ethanol content, as discussed in detail in section 7.6. 

The heat loss to the cylinder walls is dependent on Tg, Twall and heat transfer 

coefficient, he, which is itself dependent on Tg and on in-cylinder pressure. 

Twall was assumed to remain constant, as explained in section 8.5. Therefore. 

the main factor that affects heat loss to cylinder wall is Tg• As explained in 

section 8.2.1, the assumption that mcharge is equal among the cylinders is not 

necessarily accurate. This will affect Tg and subsequently Qloss. Furthermore. it 

must be assumed to be the reason for the variation in Qloss results between the 

two different cylinders, where cylinder 3 appears to be less sensitive to the 

increase in ethanol content. 

For the comparative purposes of this study. Qloss was recalculated based on the 

calculated in-cylinder mass charge. mcharge.calc, and Tg.calc (see section 8.2.1). 

The recalculated Qloss for the different fuel mixtures is shown in Figure 8.19. 

The results show that, during combustion, there was no change in heat loss 

peak value or phasing as ethanol ratios increases. However, as the combustion 

starts to terminate, the heat loss appears to decrease slightly at higher ethanol 

ratios (ESO &E8S). This is attributed to the reduction in of the products of 

combustion temperature. 
. 

Qloss data was used to calculate the time-averaged heat transfer, Qcyl' using 

equation 8.18. As shown in Figure 8.20, in both cylinder and for all running 
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conditions, there is a clear decrease in Qcyl for ESO and E85 compared with 

gasoline. Qcyl for E85 is 5 to 7% lower than that for gasoline. These results 

agree with the measured decrease in Qcoolant and the author's own expectation. 

8.9 Further parameters variation 

So far, it was found that increasing ethanol content does not show any 

significant effect on the instantaneous heat loss, Qloss, magnitude or phasing 

during combustion. Altering Xb, 'P, or ST might change this. The main aim of 

this section is to evaluate whether altering any of these variables can affect the 

behaviour of the Q,oss when ethanol ratios increase. In addition, the effect on 

Qloss of changing these variables was investigated. For all calculations in this 

section, mcharge was calculated from equation 8.3 (see section 8.2.1). 

8.9.1 Effect o/burned mass/raction, Xb 

Tests were performed on an engine running on low and medium loads and at a 

constant speed at 2000 rpm. The change in Xh levels took place through 

changing EGR percentage between 5 and 15%. ST was set to MBT for each Xh 

level as shown in section 4.3. 

Altering Xb levels affects Qloss as shown in Figure 8.21. Increasing Xb 

percentage reduces the magnitude and the peak value of Qloss for all fuel 

mixtures. The decrease in Qloss is attributed to the increase in in-cylinder 

charge heat capacity and a decrease in combustion speed as Xb percentage 

increases. The Xb phasing did not change despite the ST being advanced to 

MBT as Xh percentage increased. This can be explained by the decrease in the 

burn speed (see section 5.6.2). The effect of Xh is consistent over all the fuel 

blends. 

A comparison of Qloss between the different gasoline-ethanol blends for 

different Xb levels, at low and medium loads, is plotted in Figure 8.22 and 

Figure 8.23. The results illustrate that, for all running conditions, there is no 

clear trend between the increase in ethanol content and the Qloss magnitude or 

phasing during combustion. E85, in most cases, shows a lower Qloss than the 

rest of the mixtures where it shows a lower peak Q/oss and a lower Qloss at a 

later stage of the combustion stroke. An apparent difference between the 

T Alrayyes 111 University of Nottingham 



CHAPTER 8, In-cylinder gas properties and instantaneous heat loss 

different fuel blends is observed when Q,o... was transferred into time domain 

using equation 8.18, QCYI (J/s), as shown in Figure 8.24. The results show 

clearly that fuel containing medium and high ethanol content has a lower Q''YI 

compared to the rest of the fuel blends. E85 results show a significant decrease 

in Qerl compared to all other fuel blends (including E50). The decrease in (Jeri 

for E85 compared to that for gasoline ranged between 4% and 8.5%. 

8.9.2 Effect 0/ equivalence ratio, tp 

Several tests were carried out with ({J ranging between 0.833 to 1.25. The 

engine was running at a constant speed of 2000 rpm, a medium BMEP of 4.75 

bar, and a constant ST (MBT). For all fuel blends, peak Qloss decreased as the 

in-cylinder charge became leaner, as shown in Figure 8.25. This can be 

explained by the increase in the heat capacity (an increase in the charge mass) 

and the decrease in combustion speed (section 5.6.2) as the charge becomes 

leaner. A direct comparison between the different fuel blends at different ({J is 

plotted in Figure 8.26. The data illustrate that, during combustion, Qloss values 

do not show any trend between the different fuel blends. By the end of 

combustion, Qloss decreases for E50 and E85 compared to other fuel blends. 

Once again, calculated Qerl from equation 8.18 shows a more apparent effect 

of ethanol than Qloss. E85 shows a lower Q"YI than the rest of the fuel blends 

for all ({J conditions. There is approximately a 5% decrease in Q,yl for E85 

compared to gasoline. Q'YI results also illustrate that, despite the decrease in 

peak Qloss as the charge becomes leaner, peak Qq/ occurs at the slightly lean 

side of AFRstoich. This is due to the higher Qloss at the early stage of 

combustion. The increase in Qloss is attributed to the enhancement in 

combustion as result of oxygen availability. 

8.9.3 Effect olspark timing, ST 

Figure 8.28 shows the effect of spark timing on the instantaneous heat loss to 

the cylinder walls for different fuel blends, averaged over two cylinders. The 

Qloss has a higher magnitude and earlier phase as the spark timing advances. 

During the late stage of the compressIOn stroke and early stage of the 
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combustion stroke, the advanced ST has a higher Qloss but then falls rapidly 

and has a lower magnitude in the late combustion stroke. This is due to the 

increase in pressure and temperature, as the combustion occurs closer to TDC. 

As the ST is retarded, the combustion occurs when the cylinder volume is 

larger. This trend is consistent among the different gasoline-ethanol blends. 

The peak Qloss increases by around 8-9% as ST advances from 8 °BTDC to 18 

°BTDC. This earlier phasing as spark timing is advanced can be explained by 

the early start of combustion and the faster combustion speed (see section 

5.6.1). The heat transfer rate to the cylinder wall, QCYI is shown in Figure 8.29. 

The results, once again, show a decrease in Qey} at high and medium ethanol 

ratios (E50 and E85). Advancing ST will increase {ley/ to the cylinder as 

illustrated earlier in the Qloss results. 

8.10 Summary and discussion 

The main aim of the present work is to study the effect of adding ethanol at 

different proportions on the spatially-averaged instantaneous heat loss to the 

cylinder wall. Furthermore, it is to investigate its effect on some of the in­

cylinder gas properties and charge preparation before combustion. 

Despite the fact that ethanol has a lower cp than gasoline. the ethanol-air 

mixture cp at AFRstoich demonstrates a comparable value to that of the gasoline­

air mixture due to the change in AFRstoich . The cp for the product of 

combustion, on the other hand, will be lowered as ethanol content increases 

due to the change in its composition, particularly an increase in .hO content. 

This will affect the total heat capacity ratio, /'101 and, subsequently t the net heat 

release calculations. 

The in-cylinder bulk gas temperature, Tg , was calculated using the ideal gas 

law. The results show that increasing ethanol content does not have any effect 

on either the phasing or the magnitude of Tg during combustion. However, Tg 

at a late stage of the combustion stroke and the exhaust stroke, shows a clear 

decrease for high and medium ethanol ratios particularly when compared to 

gasoline. This agrees with the Texh measured data where E85 and E50 data 

shows a clear decrease in Texh due to the increase in the exhaust heat capacity. 
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The higher enthalpy of vaporisation, hfg , for ethanol is expected to increase the 

cooling effect inside the cylinder before combustion. In DISI engines. the 

majority of fuel is expected to vaporise during the compression stroke. The 

heat required to vaporise the fuel will affect the increase in temperatures 

during the compression stroke, Tcomp. For that reason, Tcomp was used as an 

indication of the amount of heat required to vaporise the fuel. Tcomp was 

calculated from the temperature difference between IVC and ST. High and 

medium ethanol contents show a clear decrease in Tcomp. E85, in particular, 

showed a significant decrease in Tcomp compared to the rest of the fuels, 

including E50. This is explained by the increase in hfg and in the fuel flow rate 

(higher BSFC). 

The Hohenberg correlation was used to predict instantaneous heat loss to 

cylinder. The correlation, which was originally developed for diesel engines, 

was calibrated by comparing gross heat released, as calculated from the first 

law of thermodynamics, to the heat released from the combusted fuel. Several 

techniques were used to validate the use of the Hohenberg correlation to 

predict the heat loss for different gasoline-ethanol mixtures. That included 

comparing the gross heat release to the heat release by the fuel, and comparing 

the predicted heat transfer rate to the measured one as well as to that predicted 

using the C 1 C2 correlation. The results illustrate that the Hohenberg 

correlation can be used to predict the instantaneous heat loss for the ditTerent 

gasoline-ethanol mixtures. 

The results also illustrate that there is very little difference in the heat loss 

magnitude, peak value, and phasing between the different fuel blends during 

combustion. E85 shows, in some cases, a slight decrease in peak heat loss. The 

heat loss magnitude at both the later stages of the combustion stroke and then 

at the exhaust stroke, shows a decrease for medium and high ethanol contents. 

These results were consistent over different running conditions, including 

different speeds, BMEPs, Xb and f/J. 

The heat transfer in the time domain (J/s) shows a clearer effect of ethanol than 

the heat loss in the crank angle domain. Both E85 and E50 show a clear 

decrease in heat transfer rate. However, E85 shows a more significant 

reduction in heat transfer rate than E50. This reduction is attributed to the 

reduced product of combustion temperature. 
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The more pronounced effect of E85 compared to E50 might explain the C 1 C2 

correlations results in Chapter 7. While the C 1 C2 correlation shows a clear 

decrease in the predicted heat transfer for E85. E50 predictions show 

comparable results to the rest of the fuel blends. The decrease in heat transfer 

rate for E50 might be too small to be observed within the confidence limit of 

C 1 C2 correlation. 
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CHAPTER 9 Discussion 

Summary and discussion 

This thesis describes the effects of using ethanol/gasoline blends at ditferent 

proportions on the engine's combustion behaviour, energy balance and heat 

transfer characteristics. 

The contribution of the presented work to knowledge could be divided into two 

categories: firstly the effect of ethanol on 

• energy balance inside the engine. 

• cycle average heat transfer characteristics including the effect different 

sources. 

• the validity of using C 1 C2 correlation and whether any modification is 

required to compensate for the change in heating value and other fuel 

properties. 

• crank angle resolved heat transfer and charge preparation. 

Despite the extensive research literature that has been produced over the past 

few years, no material was found that directly investigates the effects of 

ethanol on the abovementioned subjects. This highlights a notable gap in the 

current body of knowledge on the topic, which this study endeavours to 

address. 

Secondly, the effect of ethanol on: 

• in-cylinder combustion behaviour. 

• exhaust composition, heat capacity and temperature. 

As shown in Chapter 2, several researchers studied the effect of ethanol on the 

aforementioned characteristics. However, there was variation in the results 

among researchers. This variation might be attributed to the use of different 

engines particularly different fuelling systems and compression ratios. The 

majority of these studies were carried out on a port fuel injection engine. Some 

were carried out on a wall guided direct injection engine. This study was 

carried on a spray guided direct injection engine with high compression ratio 

(11.5: 1) that has never been examined before. 
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For the purpose of this study, an engme test rig was designed and 

commissioned. Accurate measurements of the engine's power-out (load and 

speed), fuel consumption, coolant flow rate, temperatures and in-cylinder 

pressure were prerequisites of the design. Since the objective of this study was 

to evaluate the effect of different ethanol/gasoline blends on various engine 

characteristics, the engine was operated at a steady state, with all running 

conditions and engine variables kept constant. This permitted a direct 

comparison between the different fuel blends, with change in ethanol content 

in the fuel as the only variable. Direct access to the ECU, in order to modify, 

adjust and fix different engine variables was possible through A TI software 

and hardware. Among variables that were most commonly modified were 

EGR, spark timing, and equivalence ratio. 

The addition of ethanol to gasoline changes the chemical composition of the 

fuel blends; particularly, it increases the H/C ratio and O2 content of the fuel. 

This change was expected to affect the physiochemical and combustion 

properties of the fuel. The work presented in this thesis starts by assessing the 

effects of increasing ethanol content in gasoline/ethanol blends on the 

combustion properties, including AFRstoich, QLHV and Tadd. The results indicate 

a decrease in all three properties. The reduction in QLHV is also illustrated by a 

measured BSFC rise that accompanies increases in ethanol content. However. 

the decrease in QLHV did not affect the power output of the engine. On the 

contrary, for high ethanol content, the effect of the combined reduction in 

AFRstoich and QLHV was to produce a slightly higher engine power output for 

the same throttle position. Hence, higher total power output can be achieved 

using ethanol compared to standard gasoline at the expense of BSFC. 

The effect of increasing ethanol content on emission and H20 levels was 

evaluated at different engine running conditions. Increasing the ethanol ratio 

shows a decrease in CO, CO2, HC and NOx emissions for most running 

conditions. H20 level, on the other hand, clearly rises for higher ethanol 

content. CO2 and H20 levels change as a direct result of differing chemical 

structure between gasoline and ethanol; in particular increase in H/C ratio and 

02 content. The reduction in NOx levels is attributed to the lower Tadd and the 

higher hfg of ethanol. The levels of CO and HC emissions decrease due to the 

improvement in combustion efficiency that is observed as ethanol content 
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increases. Plotting the combustion efficiency of the different fuel blends as a 

function of ffJ shows a clear increase in combustion efficiency as ethanol 

content increases, particularly for rich mixtures. This is attributed to the 

oxygen content of the fuel. Oxygen mass fraction in the fuel increases from 

approximately 0% for gasoline to 35% for E85. 

Decreased emissions level, particularly at higher ethanol ratios, indicate that 

using ethanol can contribute to the wider efforts of ensuring compliance with 

increasingly tight emission regulations. 

The combustion characteristics and, subsequently, the engine's heat transfer 

characteristics were also expected to be affected by changes in the 

physiochemical properties associated with the increase in ethanol content. 

Despite lower Tadd of ethanol due to its lower QlHV, the calculated laminar 

flame speed for ethanol is found to be higher than that of gasoline, with the 

peak difference occurring at AFRstoich. This increase is attributed to the 

presence of oxygen in ethanol chemical's structure. The effect of using ethanol 

on both FDA and RBA was investigated at various engine running conditions. 

The combustion duration was determined using the Rasweiler and Withrow 

methods based on the in-cylinder pressure data. The data illustrate that, despite 

the higher laminar flame speed of ethanol, FDA values were comparable for all 

fuel blends. This can be explained by the high compression ratio engine under 

investigation (11.5: 1). 

Indeed, as a result of this high compression ratio, the effects of compression 

work and, therefore, charge density and temperature dominated flame 

initiation. RBA data, on the other hand, show a clear increase in combustion 

speed, decrease in RBA, for E85 compared to gasoline and other fuel blends. 

which corresponds well with the rise in laminar flame speed of ethanol. The 

RBA results, nevertheless, do not show a linear relation between increasing 

ethanol content and RBA. Fuel blends with low and medium ethanol content 

(E 10, E20 and E50) show a slight reduction in RBA compared to gasoline. 

However, there is no significant difference, nor trend, in RBA amongst those 

fuel blends. 

The non-linear relation between RBA and ethanol content can be explained by 

the differences in ethanol's properties. Indeed, whilst ethanol with a higher 

laminar flame speed and oxygen content will decrease RBA, lower Qwv and 
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higher hfg levels in ethanol will have the opposite effect. For that reason, the 

effect of increasing ethanol will only appear for blends with high ethanol 

content. 

Changing the in-cylinder charge composition, either by changing ffJ or Xb, 

shows a significant effect on laminar flame speed for both ethanol and 

gasoline. Ethanol laminar flame speed appears to be more sensitive to variation 

in any of these two variables. As a result, the peak difference in laminar flame 

speed between the two fuels occurs at AFRstoich and low Xb level. This 

difference starts to decrease as the charge moves away from AFRstoich or Xh 

level increases. The RBA results correspond well to the laminar flame speed 

trend where, once again, E85 has a lower RBA than gasoline at AFRs10ich and 

low Xb level. As Xb levels rise or the charge moves away from AFRsioich. the 

difference in RBA between the two fuels decreases. 

The tolerance for Xb when using different fuel blends. which is mainly affected 

by combustion duration, was studied using COY of IMEP. The results showed 

a slight increase in Xb tolerance for E85 compared to other fuel blends. This 

indicates that, in addition to the reduction in NOx levels for E85, further 

decreases in NOx can occur due to the increase in tolerable Xh ratio. 

The study of the heat transfer characteristics inside the engine started with an 

engine energy balance evaluation for different fuel mixtures. There was an 

investigation of how the energy released by the fuel was distributed between 

brake output, coolant energy, exhaust energy and heat loss to ambient. As 

ethanol content increases, exhaust heat capacity, Cp,exh, also increases due to 

exhaust composition, particularly the increase in H20 content. For all running 

conditions, lower cp•exh was also manifested in a marked decrease in the 

exhaust temperature, Texh, as ethanol content increased. Lower Texh can have 

significant effects on various engine characteristics. A reduction in Ttxh could 

considerably effect emission levels, particularly during warm-up. The decrease 

in Texh would increase the time needed for the catalyst to reach its operating 

temperature. This would increase tail-pipe emissions, especially at low 

temperature start. Reduced Texh will also atfect HC and CO after flame 

combustion. Nevertheless, the increase in ethanol content shows a decrease in 

HC and CO levels regardless of Texh .• Decreasing Texh can also affect the 
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exhaust energy-powered devices such as the turbocharger (if used). Finally Texh 

has an effect on total heat rejected to coolant by affecting the amount of heat 

transferred though the exhaust port, conducted back to the engine head and 

heat transferred to the cylinder wall after end of combustion, during the 

expansion and the compression strokes. The decrease in Texh and the higher hjg 

of ethanol, which will have a cooling effect on the charge before combustion, 

indicate a potential decrease in the heat rejection to coolant. The measured heat 

rejection to coolant, QcooJant' confirms this expectation. However, the effect of 

ethanol on heat rejection to coolant appeared only at medium and high ethanol 

content (E50 & E85). E85 particularly showed a marked decrease in Q"HlJant 

compared to all other fuel blends. Low ethanol content fuel blends exhibited 

comparable results to gasoline. At low ethanol content, oxygen availability, 

which enhances combustion, dominates the combustion more than the increase 

in hjg• This eliminates the cooling effect of ethanol. 

Although lower total heat rejection to coolant was not significant enough to 

require a radical change in the design of the cooling system, it was expected to 

change the warm up characteristics. Data obtained from the PFI engine show a 

clear increase in the time required by the thermostat to open as well as the time 

required to reach a particular oil temperature, i.e. an increase in the time 

required to reach the engine's operating temperature. This would be reflected 

in an increase in friction, fuel consumption and emissions. This effect could be 

more extensively quantified in future work. Measurements of heat lost to 

ambient produced comparably similar results for both E85 and gasoline. This 

was expected since the coolant inside the engine maintains the engine's skin 

temperature at an approximately constant level. 

Energy balance results showed a clear increase in thermal etliciency as ethanol 

content increased for all running conditions. This is noticeable even for low 

ethanol content. The results also illustrate that the improvement in combustion 

efficiency is the primary reason for the increased thermal efficiency. In 

addition, the slight decrease in heat Joss to exhaust and coolant, at high ethanol 

content, was translated into an improvement in thermal etliciency as more 

work was transferred to the piston. 
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The improvement in thermal efficiency is reflected in the BSFC. The results 

show that the increase in the BSFC associated with a decrease in the QLHvof 

ethanol was less than expected. In addition, the reviewed literature shows that 

using ethanol has the potential of increasing the compression ratio due to its 

high anti-knock resistance relative to gasoline. This will increase thermal 

efficiency even further. Indeed, the thermal efficiency of an SI engine running 

on ethanol has the potential to be comparable to that of a diesel engine. 

The C 1 C2 correlation was used to predict gas-side heat transfer to coolant, 

QCY/ and Qexh.por/' C 1 C2 is a time-averaged correlation that was developed at 

The University of Nottingham and proved to be reliable in predicting Q ... tHI/<JnI 

for both diesel and SI engines. The correlation has been used extensively for 

engine thermal modelling as part of the PROMETs software package. One of 

the objectives of this thesis was to evaluate the validity of the CIC2 correlation 

in predicting heat transfer for different gasoline-ethanol blends, as well as 

establishing whether any modifications in the CI, C2 or Tg,effconstants were 

required. This would be useful in future work when modelling engine thermal 

conditions when running on different ethanol-gasoline blends. Comparisons of 

the measured and predicted values of QCIH,'anl show that the C 1 C2 correlation 

can be used to predict gas-side heat transfer without any need to modify the 

correlation. This was unexpected since Q,y/ was anticipated to decrease as 

ethanol content increased and, subsequently, produce a change in CI and Tg.eff. 

The expected reduction in QCY/ was based on the following reasons: 

firstly, the increase in hfg as ethanol content increases, results in a cooling 

effect inside the cylinder. Secondly, reduced NOx emission levels observed 

with increasing ethanol content indicates lower peak in-cylinder temperature. 

Finally, the decrease in Texh illustrates a corresponding decrease in the 

temperature of the products of combustion, which has a considerable etTect on 

total heat loss. Using the C 1 C2 correlation to predict Qql for different 

gasoline-ethanol blends showed that the Q,YI for E85 was lower than for other 

fuel mixtures, which corresponds well with the author's expectations. The 

decrease in Q'YI is accounted for by a lower Re number without the need to 
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modify either CI or Tg,a. Although E85 showed a decrease in Q.y" the results 

do not illustrate any clear correlation between a higher ethanol ratio and the 

Qey/ value. This might be explained by the confidence limit associated with the 

CIC2 correlation where change in Q~YI can be too small to be resolved by this 

correlation. In addition, the increase in combustion efficiency for low ethanol 

content can have more a dominant effect on increasing in-cylinder temperature 

than the cooling effect of ethanol, or the decrease in Texh. 

The 'C2' constant in the CIC2 correlation represents the ratio of exhaust port 

heat flux to cylinder heat flux. C2 will thus remain constant since the ratio is 

found to be constant for all fuel blends. As mentioned previously, the results 

illustrate a clear decrease in Qeotl/ant for medium and high ethanol contents. The 

decrease in Qey/ contributes to the total decrease in Qe'H,ltlnl' Other sources that 

contribute to QCIHI/anl are heat transfer from the exhaust port, Qexhpor" heat 

generated from engine friction, Q friction, and heat conducted from the exhaust 

manifold back into the engine structure, Qex.man. A significant proportion of 

total heat transfer to coolant is from the exhaust port. The exhaust port heat 

transfer was both measured and predicted using empirical correlations. The 

effect of increasing ethanol content was evaluated. Both predicted and 

measured results showed a clear decrease in QUhl'or, as ethanol content 

increased. This is attributed mainly to the decrease in Texh. The slight decrease 

in the Re number for medium to high ethanol content is another reason for the 

decrease in Qexhport. The calculated exman value also decreased as ethanol 

content increased. Q friction' on the other hand, showed similar results for 

different fuel blends. The decrease in both QuhPort and Q.xmc," contributed to 

the total decrease in Q'~H)lanl • 

Further investigation of the heat transfer to the cylinder wall was carried out. 

Pressure data was used to predict instantaneous heat loss to the cylinder walls 

(J/CA), Qloss using the Hohenburg empirical correlation. Qlo.u gives an insight 

into the temporal heat flux variation during the engine cycle, which includes 
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heat loss magnitude and phasing. The validity of using the Hohenburg 

correlation, which had been calibrated for the engine under investigation, to 

calculate the instantaneous heat transfer coefficients for the different ethanol­

gasoline blends had to be examined. Several techniques were used, including 

comparing the predicted heat loss using the Honhenburg correlation to both the 

actual measured value, and to the one predicted by the C 1 C2 correlation. 

Furthermore, gross heat release was compared to the expected heat released by 

the fuel. The results from the different techniques confirmed the validity of 

using the Hohenburg correlation. 

During combustion, heat loss magnitude and phasing showed comparable 

values for the different fuel blends. E85, in some cases, showed a lower peak 

heat loss than the rest of the ethanol-gasoline blends. After combustion, during 

the later stage of the combustion stroke and the exhaust stroke, E85 and E50 

heat loss decreased slightly relative to other fuel blends. The increase in heat 

loss is attributed to the lower temperature of the product of combustion. This 

was indicated by the decrease in measured exhaust temperature and an increase 

in the calculated heat capacity. Reduced heat loss later on in the combustion 

stroke is reflected in decreased heat rejection rate in the time domain (J/s) 

where the effect of ethanol was more obvious. Both E85 and E50 showed a 

clear decrease in heat transfer rate. However, E85 exhibited a more significant 

decrease in the heat transfer rate than that seen with E50. 

The more pronounced effect of E85 on heat transfer rate compared to E50 

would explain the C 1 C2 correlation results. While the C 1 C2 correlation 

showed a clear decrease in the predicted heat transfer for E85, its E50 

prediction indicated results that were comparable to the other fuel blends. The 

decrease in the heat transfer rate for E50 is probably too small to be observed 

within the confidence limit of the C 1 C2 correlation. 

In a DISI engine, most of the injected fuel is vaporised during the compression 

stroke, causing a cooling effect on the charge. The use of ethanol is expected to 

increase this cooling effect due to its higher enthalpy of vaporisation and rise 

in the amount of fuel injected. The effect of ethanol was assessed by 

calculating the temperature increase, T comp, between IVe and ST. E50 and E85 

show a reduction in Tcomp compared to the rest of the fuel blends. This 
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reduction illustrates that bigger portion of the piston work during the 

compression stroke is going to vaporise E85 than gasoline. 

Future work 

The work presented in the thesis concentrates on the effect of gasoline-ethanol 

mixtures on the combustion behaviour and heat transfer characteristics during 

fully warmed-up conditions only. Further work investigating the effect of 

ethanol on heat transfer characteristics during warming-up conditions is of 

extreme importance. Indeed, the presence of ethanol is expected to affect the 

time and the amount of fuel required for the engine to reach its fully warmed­

up conditions. Moreover, changing the engine's warm up characteristics will 

have a significant effect on emissions, friction levels, power output and fuel 

consumption. A clear understanding of the effect of ethanol on those 

characteristics would greatly assist in developing strategies for a more rapid 

flexi-fuel engine warm-up. 

A more detailed understanding of the effect of ethanol on in-cylinder heat 

transfer characteristics can also be achieved through measurement of 

instantaneous wall temperature. Wall temperature should be measured at 

different locations inside the combustion chamber using fast-response 

thermocouples. The different locations can include the cylinder liner. piston 

and cylinder head. Temperature measurements can be used to provide the heat 

flux profile. This will allow for an assessment of the impact of increasing 

ethanol content on instantaneous spatial variation of heat transfer flux. The 

results would provide a qualitative insight into differences between ditl'erent 

fuel mixtures, and would also illustrate the quantitative differences in heat 

transfer rates. It also could validate the use of classical heat transfer 

correlations when applied to different fuel mixtures. 

Further work investigating the heat transfer characteristics and combustion 

behaviour for different fuel blends should be carried out for other engine 

designs, with a particular focus on alternative fuelling systems, namely port­

fuel injection or wall-guided DISI engines. In addition, engines with different 

compression ratios, either turbocharged or naturally aspirated, could be used. 

The sensitivity of ethanol to all these changes should be properly investigated. 
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CHAPTER 10 Conclusion 

The principle conclusion of this thesis includes: 

• Increasing ethanol ratio showed a clear improvement in the engine 

performance including decreasing in the main regulated emissions, 

improvement in combustion efficiency and increase in maximum 

BMEP. This improvement was obvious even at low ethanol ratio. 

• While FDA is comparable for all fuel blends, increasing ethanol 

decrease RBA compare to pure gasoline. However, this decrease is not 

linear. A small decrease is observed at EI0, but no further decrease 

occurs until E85. E85 exhibits a lower RBA compared to all other fuel 

blends particularly gasoline. 

• Increasing ethanol content improves thermal efficiency, mainly due to 

the increase in combustion efficiency. Also, due to the decrease in 

exhaust and coolant losses. 

• The decrease in the heat transfer rate to the coolant, as ethanol ratio 

increase, is due to the decrease in cylinder heat loss, exhaust heat loss 

and heat conducted back to the engine block. 

• The C 1 C2 correlation can be used to predict heat loss without need for 

any modification. 

• Instantaneous heat loss during combustion does not change among 

different fuel mixtures, however it decrease later on in the combustion 

stroke. 

The following details the conclusion of each chapter in the thesis: 

Chapter 4 

• Increasing ethanol ratio in the gasoline-ethanol blend causes an 

obvious decrease in AFRstoich, the calorific value and, to a lesser extent, 

the adiabatic flame temperature. 
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• Although ethanol has a lower a calorific value, increasing ethanol 

content increases the power output for a constant throttle position due 

to the decrease in AFRstoich. This will be at the expense of BSFC. 

• Increasing ethanol ratio has a significant influence on exhaust 

composition. Increasing ethanol ratio decreases CO, CO2, HC and NOx 

emission levels for most running conditions. H20 levels, on the other 

hand, increase. 

• Significant improvements in combustion efficiency are obtained as 

ethanol ratios increase, particularly using rich mixtures. 

Chapter 5 

• Despite the higher laminar flame speed of ethanol, different gasoline­

ethanol blends have comparable FDA values under different running 

conditions. The compression work. turbulent flow and charge density 

dominate flame initiation in the high compression ratio engine under 

investigation (11.5: 1). 

• There is no linear trend between increasing ethanol content and RBA. 

A small decrease is observed at E 1 O. but no further decreases occur 

until E85. E85 exhibits a lower RBA compared to all other fuel blends. 

particularly gasoline. 

• Ethanol's laminar flame speed is more sensitive to changes in charge 

composition, such as qJ and Xb. than gasoline. As a result. the difference 

in laminar flame speeds start to be reduced as Xb increases or the charge 

moves away from AFRstoich. The RBA data show the same trend where 

the E85 data indicate a reduction in RBA compared to gasoline at 

AFRstoich. The difference between the two fuels starts to decrease as rp 

or Xb changes. 

• High ethanol ratios will slightly increase Xb tolerance as a result of 

shorter combustion duration. 

Chapter 6 

• Increasing ethanol ratios increases exhaust heat capacity as a result of 

changes in exhaust composition. in particular, higher water content. 

This is responsible for reduction in exhaust temperature. 
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• The heat rejection rate to coolant decreases at medium and high ethanol 

ratios. 

• The decreases in heat rejection to coolant, and in the exhaust 

temperature, affect the engine's warm up characteristics. Running on 

fuel containing medium and high ethanol content increases the time 

required for the engine to reach operating temperature. 

• Increasing ethanol content improves the engine's thermal efficiency 

considerably compared to gasoline. This is attributed mainly to the 

increase in combustion efficiency. The decrease in heat losses to the 

exhaust and coolant also contribute to the improvement in thermal 

efficiency. 

Chapter 7 

• The C 1 C2 correlation can be used to predict gas-side heat transfer to 

coolant for different gasoline-ethanol blends without need for 

modification. 

• In the C 1 C2 correlation, the decrease in Re for E85 compensated for 

the expected decrease in the cylinder heat loss to coolant without the 

need to modify either C 1 or T g,a' The expected decrease in cylinder heat 

loss is attributed to the decrease in the total heat rejection to coolant, 

NOx emission levels, and exhaust temperature. 

• The ratio of the heat flux-to-exhaust to the heat-flux-to-cylinder 

remains constant. Subsequently, C2, which represents this ratio in the 

C 1 C2 correlation, is unchanged. 

• Other coolant heat sources also contribute to the total decrease in heat 

rejection to coolant for medium and high ethanol content fuel mixtures. 

Both measured and predicted exhaust heat loss and heat conducted 

back into the engine decrease for medium and high ethanol content as a 

result of reduced exhaust temperature. 

Chapter 8 

• There is little difference in instantaneous heat loss magnitude and 

phasing among the fuel blends during combustion. As the combustion 
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terminates and into the exhaust stroke, heat loss becomes lower for 

medium and high ethanol content. 

• The predicted heat loss in the time domain (J/s) shows a more apparent 

effect of ethanol compared to the heat loss in the CA domain (J/CA). 

Both £50 and £85 show a clear decrease in the heat loss with £85 

exhibiting a more pronounced decrease. 

• Due to ethanol's higher enthalpy of vaporisation and the increase in the 

amount of fuel injected, E50 and E85 blends show a higher cooling 

effect in the compression stroke than the other fuel blends. 

In summary, the use of ethanol in SI engines has the advantage of reducing 

most regulated emissions, as well as improving combustion and thermal 

efficiency. This effect is noticeable even at low ethanol contents. However, 

contrary to assumptions, there is no linear trend between increasing ethanol 

content and any change in combustion and heat transfer characteristics. The 

effect of ethanol on these characteristics manifests itself only at medium to 

high ethanol levels. E85 has the most pronounced effect on increasing 

combustion speed and decreasing heat losses to coolant and exhaust. Finally, 

the C 1 C2 correlation can be used, without any modification, to predict gas-side 

heat loss for different gasoline-ethanol mixtures. This is particularly important 

for future modelling of engine running on different gasoline-ethanol blends. 

Apart from Sweden, the use of ethanol in the EU is still limited to low 

proportion ethanol-gasoline blends (ranging from 5% to 10%). According to 

the finding of this thesis, the current level of ethanol use does not affect the 

combustion and heat transfer characteristics. However, plans towards reducing 

dependence on fossil fuels push towards the use of alternative fuels such as 

ethanol. The changes in engine combustion and heat transfer characteristics, 

when running on high percentage ethanol blends, should be taken into account 

in future flexi-fuel engine design. 
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Tables 

Tables 

CHAPTER 2 

Fuel properties I- Gasoline Ethanol 
Chemical formula CRh 15 (typical) C2HsOH 
Molecular weight (kg/kmol) 111.21 46 .07 
Oxygen contents (wt %) 0.00 34.73 
RON 92-98 107 
MON 80-90 89 
Reid vapour Pressure [kPa] 61.4 19.3 
Enthalpy of vaporisation rkJ/kg 1 305 840 
Calorific valuerMJ/kgl 31.2 26.9 
Stoichiometric air/fuel ratio [kg 

14 .5 1 9.0 
air/kg fuell 
Boiling temperature [0C] 34-207 78 .3 

Table 2.t. A comp~lrison between the physiochcmicnl p."operties of gllsoline and 
ethanol[17[. 

" Limit values for passenger cars (Category M) and light 
commercial vehicles (Category Nl-I) 

CO THC NMHC N01 PM 
g/km g/km gtkm Wkm Wkm 

Euro 4 Jan 2005 1.00 0.1 0.08 
Euro 5 Sept 2009 1.00 0.1 0.068 0.060 0.005'" 
Euro 6 Sept 20 14 1.00 0.1 0.068 0.060 0.005 '" 

·Applles on ly to vehicles with direc t IIlJcctl on t! l1glllCS 

Tnble 2.2. European emissions limits for gasoline fucllcd pnsscngcl' CIlI'S IUld liJ.!ht 
commercinl vehicles[361. 

T Alrayyes 138 University of Nottingham 



Tables 

CHAPTER 3 

Specification r, t 1" 
,"" ,~ 

Displacement 1.6 L 
Cylinder configuration Inline 4-cyl 

Iniection type Direct 
Number of valves 16 

Valve train configuration DOHC 
Block material Aluminium 

Compression ratio I 1.51: I 
Bore 79mm 

Piston Stroke 81.4mm 
Con-rod length 133mm 

Firing order 1-3-4-2 
Iniection timing 300 °BTDC (homogeneous charge) 

TVO 0° BTDC 
EVC 0° BTDC 

Table 3.1. Test Engine Specification. 

Emission Analyzer ! Span eas used 
Measured :.; 

HCs Flame Ionisation Detector (FID) Propane or Melhane equi va lence. 
NOx Heated vacuum chemiluminescence SOOOppm NO 

CO, CO2 Infrared gas filter type analyser 10% CO? or 1% CO 
O2 paramagnetic oxygen analyzer Zero grade air (20.9% Ol b 

volume) 

Table 3.2. Span gas used for differcnt anlllyzcrs. 
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Parameter 
.. , Standard COY Mean 

Deviation (%) .~ 

Load (Nm) 60.6 0.5 8 1.0 
Speed (rpm) 2008 .5 7.78 0.4 
BM EP (bar) 4.8 0.04 0.9 
Rail Pressure (bar) 70.1 0.004 0. 1 
MAP (bar) 0.61 0.02 2.6 
Fuel mass flow rate (mg/s) 1.02 0.04 3.9 
Coo lant Heat transfer (kWatt) 13.97 0.39 2.8 
Lambda 1.00 0.0 1 0.8 
IM EPn (bar) 5.18 0. 15 2.8 
IM EPg (bar) 5.64 0.14 2.6 

Peak Pressure (bar) 29.03 1.1 4 3.9 
Exhaust port temp. (0C) 632 .1 14.04 2.2 
Intake a ir union temp. (0C) 26.3 2.57 9.8 
Oil temp. (0C) 101.8 3.83 3.8 
NOx (ppm) 2067 .5 89.5 1 4.3 
HC (ppm C I) 2439.9 17 1.00 7.0 
CO (%) 1.26 0.03 2.3 
O2 (%) 1.28 0.04 3.3 
CO2 (%) 13.3 1 0.39 2.9 

Table 3.3. Standard reference point data variation over 20 tests. 
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CHAPTER 4 

Fuel properties Gasoline EI0 E10 E50 E85 EI00 

Molecular we ight (kg/kmol) 111.2 1 107.76 100.90 80 .3 1 56.29 46 .07 

AFR stoich [kg air/kg fuel] 14.54 \3 .95 13.08 11 .66 9.75 9.00 

Oxygen contents (wt %) 0.00 3.2% 9.9% 24. 1% 34 .7% 34.7% 

H/C ratio 1.88 1.95 2.03 2.3 1 2.76 3.00 

Calorific value[MJ/kg] 43 .66 42.98 42 .2 1 39. 10 32.60 27.74 

Boiling temperature [0C] 34-207 - - - - 78 .3 

Density [kg/I] 0.742 0.747 0.752 0.766 0.783 0.785 

Table 4.1. Properties of tested fu el blends. 

BMEP 4.72 barllOOOrpm BMEP 7.87bar/lOOOrpm 
°BTDC °BTDe 

Gasoline 14.3 12.25 

EtO 14.5 12.7 

E20 13.5 12.5 

E50 13.75 12. 8 

E85 13.9 I I. 7 

Table 4.2. MBT spark timings at different loads a nd consta nt speed. 

Gasoline Ethanol 
it C8.26HI S.5 C2HsOH 

al -24.078 6.99 

a2 256.63 39.74 1 

a3 -20 1.68 - 11.926 

a~ 64.75 0 

a~ 0.5808 0 

a6 -27.562 -60.2 14 

Table 4.3. Coefficients for calculation of enth:llp), of formntion h ;.1 from 

polynomial equation 4.6 for gasoline lUld ethanol 1711. 
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CHAPTERS 

,.' 
Variable Range 

Speed 1500-4000 rpm 

BMEP 1.57-8 bar 

Equivalence ratio, <p 0.8-1 .25 

EGR 0-20% 

Table 5.1. Engine running conditions. 

, Lowload Medi,am load 

Gasoline 19.60% 20.01 % 

EIO 2 1.02% 21.5% 

E20 2 1.2% 20.5% 

E50 2 1.2% 18.99% 

E85 2 1.8% 2 1. 8% 

Table 5.2. Maximum EGR allowed for a stable combustion assuming OVIW~ l'n 
limit ofl 0%. 

CHAPTER 6 

Coolant Temp. Specific Heat, cp 

(OC) (lw/kg 0c) 
40 3.385 
50 3.432 
60 3.474 
70 3.5 15 
80 3.556 
90 3.598 
100 3.63 7 
110 3.677 
120 3.703 
130 3. 730 
140 3.753 
150 3.776 

Table 6.1. Heat capacity cp for engine coolant (50% water ~1I1d 50% Ethylene 
Glycol by volume). 
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Geometry e. " ·-;"L-·! ~t" Gr,Pr, C "', m 

Vertical planes 
104_IO~ 0.59 1/4 
10~_IO' o 0.021 2/5 

Horizontal upper surface of heat plates 
2* I 04_8 * 100 0.54 1/4 
8* I 0°_1 0" 0.15 1/3 

Horizontal lower surface of heated plate 105 -lO" 0.27 1/4 

Table 6.2. Constants for use in equation 6.6 developed by several researchers and 
obtained from Holman 1871. 

Fuel Time to oil 40 oc, s Time to oil 60C, s Time to oil SOC. s 
EIOO 287.5 454.5 751 

E75 280 450 745 

E50 277.5 445.5 749 

Gasoline 269.5 433 725 .5 

Table 6.3. Time in seconds needed for each fuel to reach a particular oil 
temperature. 

CHAPTER 7 

Author(s) N usselt-Reynolds '';, Notes " .. 
Relation 

Hires and Pochmara [103] Nu = 0.258 Re o.s SI Engine exhatlst port 

Caton and Heywood [104] Nu = 0.358 Reoo SI Engine exhallst port 

Meisner and Sorenson [99] Nu = 0.0774 Reo.769 SI Engine exhaust port 

Shayler et al. [88] Nu ~ 0.18 Re o.7 Both diesc l and SI cngine 

Table 7.1. Summary of the main exhaust (lort correilltions. 
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Figure 1.1. Historical world oil production and projection of trend [2]. 
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Figure 1.2. Schematic diagram showing the complete well-to-wheel cycle of 
ethanol [2]. 
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Figure 1.4. The increase trend in biofuels consumption in comparison to the 
objectives of the biofuels directive (2003/301EC) [4]. 
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Figure 1.5. Breakdown of total EU 2009 biofuels consumption for transport by 
type of biofuel and energy content.[4]. 
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obtained from Kar et al [24]. 
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Figure 3.1. SGDI Engine Research Facility. 
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Figure 3.2. Spray-guided gasoline direct injection system, SGDI, a hollow cone of 
fuel forms at the injection nozzle. This cloud of fuel and air remains stable up 

until the precise moment when it is required to ignite [45]. 
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Figure 3.3. Schematic diagram of the coolant circuit of 1.6L SGDI engine test facilities. 
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Figure 3.4. Schematic diagram for the fuel supply system. 
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Figure 3.8. Schematic diagram illustrating the operation of a Coriolis type flow 
meter. 
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Figure 3.9. Schematic diagram illustrating the operation of an electromagnetic 
volume flow meter. 
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Figure 3.10. Schematic diagram for ATI engine management system. 
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Figure 3.11. Schematic diagram showing how software and hardware 
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Figure 3.12. An example of ControlDesk layout utilised to monitor engine 
variables and output parameters. 
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Figure 6.6. The engine parts used to calculate heat loss to ambient. 
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Figure 8.25. Instantaneous heat loss for different fuel blends at medium load, 
4.75 bar and constant speed 2000 rpm with ffJ varied between 0.833 to 1.25. 

T Alrayyes 223 University of Nottingham 



Figures 

0.70 

0.60 

0.50 
-<t: 
U 
;::; 0.40 

'" '" .!2 
..... 0.30 
~ ... 
:c 

0.20 

0.10 

0.00 

0.60 

0.50 

25 0.40 
;:; 

'" .2 0.30 
..... 
~ ... 
:c 0.20 

0.10 

0.00 

--ULG 
. .. . . . ... E IO 

----- E20 

tp =1.25 
EOC 

- - - E50 
- - E85 

ST 

-60 -20 20 60 100 140 

CA IOATOq 

tp =0.91 EOC 
--ULG 
. .. . . .... E IO 

----- E20 
- - - E50 

J, 
- - E85 

ST 

-60 -20 20 60 100 140 

CA IOATOq 

0.70 

0.60 

0.50 
-<t: 
U 
;:;; 0.40 

'" '" .!2 
..... 0.30 
~ ... 
:c 

0.20 

0. 10 

0.00 

0.60 

0.50 

25 0.40 
;:; 

'" ~ 0.30 
..... 
~ ... 
:c 0.20 

0.10 

0.00 

tp =1.1 
EOC 

--ULG 
. .. .. .. .. E IO 

----- E20 
- - - E50 
- - E85 

-60 -20 20 60 100 140 

CA IOATOq 

tp =0.83 EOC 
--ULG 
.. .. . .. . . E IO 

J, ----- E20 
- - - E50 
- - E85 

-60 -20 20 60 100 140 

CA IOATOq 

Figure 8.26. Instantaneous heat loss for different fuel blends at medium load, 
4.75 bar and constant speed 2000 rpm, with equivalence ratio varied between 

0.83 to 1.25. 

T Alrayyes 224 University of Nottingham 



Figures 

--; 1.2 
~ 
I.. 
cu 1.15 "Q 

= .-
~ 1.1 (,j , 0= /~ -- , .......... 

~--4 cu (,j 1.05 ..... ---~~ ~ 
I..,.:t: 
I..~ ~ULG 
~ •• • •• EIO 
'" = - .. - E20 ~ 0.95 I.. - x- E50 ..... ..... --* - E85 ~ 
cu 0.9 

== 0.6 0.8 1.2 1.4 

Equivalence ratio, <p 

Figure 8.27. Cylinder heat transfer rate, Q CY/ ,as a function of lfJ for different fuel 

blends. Engine running at a constant speed 2000 rpm and a constant BMEP 4.75 
bar. 
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Figure 8.28. Effect of spark timing on heat loss for different fuel blends. Engine 
running at constant speed, 2000 rpm and constant load 4.75 bar. 
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Appendices 

A.1 Conversion from dry to wet analysis 

In order to improve the accuracy of the analysers (used to measure CO2, CO 

and 02) a drier/cooler system was used to keep the water vapour in the exhaust 

to a minimum. A cooler drier unit cools the gas down to SOC and condense out 

the majority of the water vapour. The removal of water has small but 

significant effect on the measured molar concentration of the components. The 

analyser doesn't account for that and provide what is regarded as dry analysis. 

This appendix details the method used to develop a correlation that convert dry 

analysis ~. , to wet analysis ~ . Dry fraction can be defined from the 

following equation: 

~.. nj 
Xi = -----=--- (A.1.1) 

n exhaust - n H20 Lost 

where is Xi· the dry mole fraction, a wet analysis yields a wet mole fraction, 

given by: 

(A. 1.2) 
nexhaust 

To correct the dry analyses, knowledge of the amount of water lost in the drier 
is required 

(A 1.3) 

The amount of water removed by the dryer can be found from the 

psychometric charts at ambient pressure, it can be seen that at SoC, the relative 

humidity by mass can be reduced to 0.6% as shown in Figure A 1.1, which 
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means that 0.6% of total mass of exhaust gas that reach the analyser after 

leaving the drier is H20. 

mH 0 = 0.006mc' ::::; 0.006m h . 
2 after drier .JUS after drier ex aWit 

(A 1.4) 

The mass of H20 removed by cooler/drier system can be defined as, 

mCH 0) = (XH 0 - O.OO6)mexhaust 
2 Lost 2 

(~ 1.5) 

Using equation A1.1 and A1.2 relation between x/ & XI is found to be 

(A 1.6) 

A total amount of water entering the drier before combustion and the total 

molecular weight of the exhaust gas for the different fuel mixtures can be 

determined considering simple and atomic balance for the overall chemical 

equation for complete combustion as follows, 

Equation A 1.6 was used to plot the percentage difference between wet and dry 

-. 
fraction, Xi :: Xi xl 00, as function of lambda as show in Figure A 1.2. The 

Xi 

data illustrate that percentage difference is increasing as ethanol ratio increase 

in the mixture. A polynomial functions that relates percentage difference and 

lambda, A, were extracted from data for different fuel ratio and used to develop 

a correlation to convert dry fraction into wet fraction as a function of A. and 

ethanol ratio in the fuel mixture as follows, 

-. 
-- Xi 
Xi = (O.0733E + 0.1287)A(3E-J.1678) 

(A 1.8) 
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Figure ALl. Psychometric chart used to calculate fraction of water remaining in 
exhaust sample after the chiller unit. 
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Figure A 1.2. Best fit curves to convert between dry readings to wet readings. 
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A.2 EGR derivation 

The following derivation details how the definition of EGR rate obtained from 

conservation of mass is calculated from engine exhaust and inlet C02 data 

EGR(%) = ~EGR .100 
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A.3 Properties of the different fuel blends 

This appendix details the methods that was used to calculate the different fuel 

blends properties such as AFR, adiabatic flame temperature, calorific value 

and heat capacity. 

Stoichiometric Air fuel Ratio (AFRstoich): 

The stoichiometric quantity of an oxidizer (air) is just that amount needed to 

completely burn a quantity of fuel. In this case the stoichiometric Air-fuel ratio 

of a different mixture of Ethanol (C2HsOH) Gasoline blend Cg.26HlS.S is 

determined by writing simple atomic balance. 

where Nt, N2,n02, Ilc02, nH20 and nN2 are number of moles of gasoline, ethanol, 

air, CO2, H20 and N2, respectively. The volume fraction of ethanol was 

transferred into number of moles because when the fuel evaporates, the ethanol 

ratio change in the fuel blend. 

n
C01 

= 8.26· NI- 2N2 (A 3.2) 

15 .5NI- 6N2 
n H:O = 2 (A 3.3) 

(A 3.4) 

n N: = 3.76 no: (A 3.5) 
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The composition of air is assumed to be 21 % O2 and 79% N2 (by volume) for 

simplicity, i.e. for each mole of O2 there is 3.76 moles ofN2 

The stoichiometric air-fuel ratio can be found as: 

A FRs 
32 * n o, + 3.76 * 28 . 16 * n o, 

N 2 ( 46 ) + NIl 14 .8 

Adiabatic Flame Temperature 

(A 3.6) 

Assuming that the fuel air mixture bums adiabatically at constant pressure, the 

absolute enthalpy of the reactants at initial state (say T=298 K, P= 1 atm) 

equals the of the products at final state (T= Tadd, P). 

~." 

'-

C2HsOH 

C826H lS.5 

0 2 

CO2, 

H2O, 

N2 

H reac( = L N;h; = H prod = L N;h; (A 3.7) 
react prod 

Enthalpy of Formation @l98K Specific heat @1200K 
-0 

c~,; = (kJ / kmol-K) hf,i = (k.!lkmol) 
,.:' 

-234600 

-112370 

0 
-

-393546 56.2 1 

-241845 43 .87 

0 33.71 
Table A 3.1 

reacl 

Hreuc, = N2(-234600)+ Nl(-112370)+ a(O) + 3.76a(0) 

H prod = I nJh;'J + CpJ (TUd - 298)] 
prod 

H prod = n('() , [-393 ,546 + 56.2I(T"d - 298)] 

+ n" ,o [-241 ,845 + 43 .87 (Tad - 298)] 

+ n N , [0 + 33 .71 (Tad - 298)] . 

Enthalpy of combustion and Lower heating value 

The lower heating value Q LHV is equal to the enthalpy of reaction, 

~ H c = H rca,. - H prod . (A 3.8) 
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H react = L N/i; and H prod = 'IN}i; . 
react prod 

Specific Heat at constant pressure (cp) and Gamma J' for the fresh and 
burned gas mixture inside the engine cylinder, 
The unburned gas mixture consists of the fuel and fresh air. In this study, the 

fuel is a mix of gasoline and ethanol at different ratios. Ethanol and gasoline. 

have two different properties of cp , Cv 

Here is the correlations that has been used to calculate cp for ethanol and 

gasoline [71], 

Cp,ULG= 4.184 (-24.078+256.63A - 201.68A2 + 64.75A3 + 0.5808A-2 
) (A 3.9) 

mr,ULG 

4.184 2 
Cp,Ethanol= 46.07(6.99+39.74IA -11.926A ) 

mr,Ethanol 

(A 3.10) 

where A=T(K)/lOOO, mr is the molecular and equal 114.7 and 46.07 for 

gasoline and ethanol, respectively. cp for fresh air was obtained from the 

following correlation based on data from [7 1], 

(A 3.11) 

For each species (i) of the products of combustion in its standard state at 

temperature T(K), the specific heat capacity, C p,;' is approximated by[17], 

Cp,; (ail+a;2 T+ai3 T 2+a;4 T 3+a;5 T4) 

R m,,; 
(A 3.12) 

The constant for the different species can be found from Table A 3.2 below, 
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Species 
T range 

0/1 au al3 al4 al5 
;' 

(K) 

CO2 
300-1000 2.40E+00 8.74E-03 -6.6 IE-06 2.00E-09 6.33E-16 

1000-5000 4.4608 0.0030982 -1.24E-06 2.27E-IO -1.55E-14 

300-1000 4.07E+00 -1.11 E-03 4.15E-06 -2.96E-09 8.07E-13 
H2O 

1000-5000 2.7168 0.0029451 -8.02E-07 1.02E-IO 4.85E-15 

300-1000 3.7101 -0.0016191 3.692E-06 -2E-09 2.4E-13 
CO 

1000-5000 2.9841 0.0014891 -5 .79E-07 1.04E-IO -6.94E-15 

300-1000 3.6256 -0.0018782 7.056E-06 -6.8E-09 2.16E-12 
02 

1000-5000 3.622 0.00073618 -1.97E-07 3.62E-II -2.89E-15 

300-1000 3.67E+00 -1.21 E-03 2.32E-06 -6.32E-IO -2.26E-13 
N2 

1000-5000 2.8963 0.0015155 -5.72E-07 9.98E-II -6.52E-15 

Table A 3.2 [17]. 

The mixture for the burned and unburned value can be found from 

IXiPiCp,i 
C p,mixture = '"'X kllkg K 

~ iPi 

(A 3.13) 

Where X; is the volume fraction and Pi is the density. Combustion emissions 

products for engine running at E85 and gasoline were used to calculate cp using 

equation A 3.12 and equation A 3.13 for different emissions species. For the 

different the fuel blend a correlation was developed to relate cp to temperature 

as shown in Figure A 3.1, 

If 275<T(K)<1 000 

cp,b=A 1 T+A2 (A 3.14) 

If T(K» 1 000 
cp,b=BllnT-B2 (A 3.15) 

Where AI, A2, Bland B2 are constants that are dependent on the fuel mixture 

Al I A2 BI B2 

Gasoline 0.0003 0.9563 0.2248 0.28290 

EIO 0.0003 0.9577 0.2147 0.2259 

E20 0.0003 0.9585 0.209 0.195 

E50 0.0003 0.9635 0.2087 0.1918 

E85 0.0003 0.9755 0.2073 0.1838 

Table A 3.3. 

The values of the different constants as function of ethanol ratio were plotted 

in Figure A 3.2. These values were used to develop correlations to relate those 

constants to ethanol ratio, 
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Figure A 3.1, cp for burned gas as function when the engine is running at 
different fuel blends based on emissions averaged from different loads. 
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Figure A 3.2, constants used in equation A3.15 and 3.16 as function on ethanol 
ratio. 
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A.4 Derivation of the EGR correction factor [89] 

This Appendix details the derivation and the assumption made In the 

correction to gas-side heat rejection due to the introduction ofEGR. 

Assuming that, for a given Engine speed and Load, the effect on fuel flow rate 

and residual gas fraction due to changes in throttling losses is small. The Gas­

side heat transfer can be corrected for charge heat capacity C according to 

proportionality 

(A 4.1) 

Where 0 and EGR denote properties with and without EGR respectively. 

Expressed per unit mass of the fuel, the thermal capacity of the charge can be 

defined as: 

C' = ..5:.... = m fC p,f+mac p,a + mexhc p,exh + mrc pr 
(A 4.2) 

mf mf 

Where m is the mass per cycle and cp the specific heat capacity, while the 

subscript f, a, exh and r denote fuel, air, exhaust and residual, respectively. 

Assuming that the heat capacity of the exhaust and the residual gases IS 

approximately equal to that of air. 

C'=CPf+(AFJl+ EGR )+ mrJcpa .1\ l-EGR mf 

The residual gas fraction, x r , can be defined as : 

mr 
xr = -----'---

ma +mf +m~x 

mr{l-EGR) 
=--~----

mf {1-EGR+AFR) 

Substituting for mr in equation A 4.3 
mf 

(A 4.3) 

(A 4.4) 
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C' =c +(AFll+ Xr (1-EGR+AFR»))C 
pi .1\ l-EGR pa 

(A 4.5) 

C' 
And h . EGR· • b t e ratIo -,- IS gIven y: 

Co 

C~(1R = C pf (1- EGR) + (AFR + X rEUR (1- EGR + AFR»c pa 

C~ (1-EGR)(cpf + (AFR + xro(l + AFR»cpa ) 
(A. 4.6) 

Since AFR »1, and EGR <1 equation A 4.6 can be approximated to: 

C~GR ,.., cpf(I-EGR)+(AFR(I+xrElJR»cpa 
--,.., 

C~ (l-EGR)(cpf + (AFR(xrO +1)cpa ) 
(A 4.7) 

For spark ignition engine, the residual fraction varies typically from 7% at full 

load to 20% at light load. For otherwise similar operating conditions the 

residual fraction x r for the case with EGR will be lower than the equivalent 

case without EGR because of throttling differences required maintaining the 

correct AirlFuel ratio. However, since EGR is not used at full load we can 

assume x, ~ 10% and equation A 4.7 can be simplified further: 

C~C;R cpf(l- EGR) + 1.IAFRcpa -- ~ --...:.;'--------....:......-

C~ (1- EGR)(c pf + 1.1AFRc pa) 

1 
~---

(l-EGR) 
(A 4.8) 
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A.5 Measurements and calculation uncertainties 

Because of the comparative nature of this study, any experimental error could 

have an effect on the data and subsequently the drawn conclusion. The 

difference between various fuel mixtures can be due to experimental error 

rather than the fuel content. For that reason, it was very important to estimate 

the error in the experiment. 

There are mainly two types of errors associated with experimental results: the 

"precision" and the "accuracy". Precision is related to the random errors inside 

the experiment including noise. Accuracy is related to the existence of 

systematic error associated with the instruments used. An instrument can be 

assessed for systematic errors only by calibration against an appropriate 

standard. The systematic errors of the instruments are usually provided by the 

manufacturers. The random error is assessed by repeated measurements made 

under identical conditions[105]. As mentioned in section 3.7, at each running 

condition, the data were averaged over 750 samples. The standard error of the 

mean, Estand, was used to express the precision of the mean value of repeated 

tests such as[105] 

E _ S 

.<land - ..In-I (A 5.1) 

where s is the standard deviation and n is the number of readings. 

A.5.l Estimation of the error in temperature,fuel massflow rate, 

coolant flow rate and AFR. 

As mentioned in section 3.7, all temperature measurements were taken using K 

type thermocouple. The inaccuracy of the thermocouples according to the 

manufacturer, associated with the systematic error, is ±1.5°C or ±O.4% [64]. 

Figure A1.1 shows standard error of the mean, Estand.Temp, calculated from 

equation A 5.1, for exhaust and coolant temperatures. The data were taken 

from engine running at different speeds, BMEPs and fuel mixtures. The results 

illustrate clearly that Estand,Temp is lower than 0.2 °C for the vast majority of the 

tests. For that reason, systematic error is assumed to the major source of the 

temperature measurement error. Hence, thermocouples uncertainty, E Temp is 

assumed to be ±1.5°C or ±0.4%. 
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According to the manufacturers, the accuracy of the fuel and coolant flow 

meters are 0.05% and 0.5% respectively [106, 107]. The standard errors of the 

mean, Estand, of both measurements are shown in Figure A 5.2 and Figure A 5.4 

for different running conditions. The percentage of Estand compare to the mean 

value of the sample is shown in Figure A 5.3 and Figure A 5.5. Percentage of 

EStand for both fuel and coolant flow rate are lower than 0.1 %. The uncertainties' 

in the measurement for fuel and coolant flow rate, E. & E. ,are 
m fuel m,"oolanl 

assumed to be ±0.1 % and ±0.5% respectively. 

According to the manufacturer, the accuracy in the measurement of CO, C02, 

HC, NOx, and 02 are +1%, +1%, +1%, 1.5% and 1.5% respectively [108]. 

The standard error of the mean and its percentage compare to the mean value 

are plotted in Figure A 5.6. The data illustrate that error percentage is lower 

than 0.2%, 0.3%, 0.4% and 0.04% for NOx, HC, CO and CO2 emissions. Once 

again those random errors are much smaller than that of the manufacturer 

accuracy. Consequently, the error in the experiment was assumed to be equal 

to the manufacturer accuracy. 

A.S.2 Errors in pressure measurements 

There are several sources of error that can affect in-cylinder pressure readings. 

These errors have been widely discussed and analysed by several 

researches[ 1 09, 11 0]. The main sources of errors are: 

• Inaccurate pressure referencing (pegging). 

• Thermal shock or short term drift or intra-cycle drift. 

• Incorrect crank angle phasing with pressure data. 

• Inaccurate transducer calibration and sensor non linearity. 

• Long term drift or inter-cycle. 

• Noise. 

Several measures were taken to eliminate some of the error sources mentioned 

in the list above in order to insure accurate pressure readings. For example, to 

eliminate noise, pressure data was averaged over 100 consecutive cycles. 

Regarding transducer calibration and no linearity as a source of error, extra 

care was taken when calibrating both in cylinder transducer and manifold 

pressure sensor. In addition, modem pressure transducers are affected by small 

T Alrayyes 241 University of Nottingham 



Appendices 

or negligible uncertainties due to non-linearity or repeatability. Pegging, or in­

cylinder pressure referencing, was performed at each cycle to eliminate inter­

cycle drift as recommended. The in-cylinder pressure was referenced to the 

inlet manifold pressure at BDC as detailed in section 3.6.1. There are a number 

of pressure reference techniques that are available, both Randloph[109] and 

Brunt et at [110] carried out two separate study to evaluate different pressure' 

referencing techniques. The two studies concluded that the main source of 

inaccuracy is associated with errors in the measured cylinder pressure data 

rather than the technique used for pegging. In this study, any error at pressure 

data at BDC will affect the pressure referencing since the error in the reference 

will propagate to the whole cycle. 

The main source of error in pressure data is indeed related to thermal shock or 

intra-cycle variation. Thermal shock is caused by in-cylinder pressure 

transducer sensitivity to temperature. The Transducer drift, linked to 

combustion, increases the cyclic variability by amplifying the effect of the 

actual cyclic variation. This might continue until pressure pegging occurs, 

which offsets all of the referenced measurements. For that reason, it would be 

preferable to perform pressure pegging at point where change temperature is at 

its minimum i.e. at inlet BDC. Intra-cycle variation occurs between the 

beginning and the end of a single cycle. In this study, intra-cycle variation is 

assumed to be the most relevant source of in-cylinder pressure inaccuracy. The 

inaccuracy was estimated by calculating the difference between the pressure 

values of two consecutive cycles at inlet BDC as shown in Figure A 5.7. The 

actual pressure at inlet BDC should be constant and consequently the pressure 

difference in Figure A 5.7should be zero. 

Figure A 5.7 shows that the intra cycle variation for different loads, speeds and 

fuel content has variability of ± 0.05 bar around the mean value and a standard 

deviation, Sp, equals to 0.049 bar. ±0.098 bar can reasonably assume as the 

inaccuracy in the in-cylinder pressure where 95% of the values lies within the 

range (statistics based on normal distribution). 

A.5.3 Estimated error in MFB 

MFB was obtained from Rassweiller and Withrow methods (see section 5.3). 

The main sources of error are pressure error, pressure volume phasing, and 
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polytropic index. Polytropic indexes for compression and expansion are linked 

to pressure data and pressure volume phasing, so any error with compression 

index is associated with those two factors. Sensitivity analysis for both 

pressure error and pressure-volume phasing error was carried out. The 

inaccuracy in pressure reading was assumed to be ±0.098 bar (see section 

A.5.2). Figure A 5.8 shows the effect of ±0.098 bar pressure error on the· 

calculated MFB for different speeds, loads and fuel blends. MFB' s error is at 

its maximum at FDA, and then reduces to negligible values at RBA. The 

results also illustrate that MFB is more sensitive to pressure error at low load 

than at high load. Finally MFB does not appear to be sensitive to change in 

Fuel blends. Figure A 5.9 shows the error in burn rate duration as result of 

changing pressure, the maximum difference at FDA is around ±0.35°, while 

for RBA the maximum difference was around ±0.25°. 

An accurate allocation of TDC is hard. In this study, extreme care was taken in 

allocating TDC for volume pressure phasing (see section 3.3.2). However there 

ought to be some error in TDC allocation, an error of ±0.25° was found to be a 

reasonable assumption. The effect of changing volume-pressure phasing on 

MFB can be shown from Figure A 5.10. The error was not affected by load, 

speed or fuel content. It is also illustrated that FDA is more sensitive to any 

change in pressure-volume phasing than RBA. Figure A 5.11 illustrates that 

the maximum error for FDA is ±0.25°, and for RBA is around ±0.15°. 

In conclusion, Rassweiller and Withrow appears to be a robust method to 

calculate combustion duration and it is not very sensitive to pressure error ( 

due to thermal shock or pressure referencing error) or to pressure-volume 

phasing. In the worst case scenario the error occurs simultaneously, then the 

total error can be evaluated by adding the two source of error. Hence, the 

maximum error is 0.6° for FDA and 0.4° for RBA. 
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A.5.4 Estimated error in heat transfer to the coolant calculations, 

Qcoolant: 

The main source of uncertainty in Qcoolanl calculation comes from coolant flow 

rate and temperatures errors as illustrated in equation 6.4.1. The combined 

error in Q'oolant' En ,is calculated as following, 
c r4:0010nl 

E- = 
(k.oolanl 

Ef200lanl E2. + Ef2oolantEi: + Ef200lant Ei: (A 5 2) ( . J2 (.)2 (. J2 
Cincoolanl m"oolant OI;oolan!..b~fore emp OI;oolan!..after emp • 

where EmeGOIUnl and ETemp equal to 0.5% and 0.4 % respectively. Figure A 5.12 

shows the error for QCOOlant for different speeds, loads, and different fuel 

mixtures. The results demonstrate that E Qcoo/anl is between 1.2% at low speed 

to 1.5% at high speed. 

A.5.5 Estimated error in the exhaust mass charge, "'exhaust: 

The exhaust mass charge, are calculated from the following equation, 

mexhaust = m foel (1 + AFR) (A 5.3) 

Subsequently the error is calculated as following, 

E. = (Omexhaust J2 E2 + (OmeXhoust )2 E2 
m._" am foel foel oAFR AFR 

(A 5.4) 

where EAFR, according to the manufacturer, is equal to 1.2% and E foel is equal 

to 0.5% (see section A.5.1). Figure A 5.13 shows the error in mexhaust at 

different engine running conditions (different BMEPs and speeds). The results 

illustrate that Em"
hmul 

is around 1.2% for all running conditions and fuel 

mixtures. 
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A.5.6 Estimated error in exhaust heat capacity calculation, Cp,exh 

Exhaust heat capacity, Cp,exh' is calculated from the exhaust composition. 

Subsequently, the major source of inaccuracy is coming from errors in 

emission measurements. The estimated error in Cp,exh' Ecp,exIr' is calculated as 

follows, 

Figure A 5.14 illustrates that Ec is around 1.95 to 2%. 
. p,txh 

A.5.7 Estimated error in exhaust gas energy calculations, if exh s : 

Exhaust energy was calculated from equation 6.2. Estimated error in exhaust 

energy, if exh,s' is calculated from: 

E, = (aiIexh,s J2 E: + (aiIexh,s J2 E2 + (aiIexh,s J2 E2 H aJo • a . maJo a- ifp aJo aT Temp , mexh C p,exh . exh 
(A 5.6) 

Figure A 5.15 demonstrates that Efr is around 2%. 
em.s 

A.5.S Estimated error in energy balance (thermal efficiency, coolant 

loss and exhaust energy percentages): 

The error in energy balance estimation is associated with errors in load 

reading, calculated coolant energy, calculated exhaust energy and fuel flow 

rate reading. In the energy balance, thermal efficiency error (E
l1
,), coolant 

energy percentage error (EQcookm' %), exhaust energy percentage (E if w.,. %) are 

calculated from the following: 

( a'l, )2 E~ + (a'll )2 E2 (A 5.7) 
a . m foel aT T m foel 
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E. 0 = (8QCOOlant % J2 E~ + (8Q~O(}lant % J2 E~ 
QcooiunJ Yo 8riz foei 8Q Qcoo/an/ 

foel coolant 

(A 5.8) 

E . = ( 8 if exh ," % J 2 E 1: + ( 8 if :xh ," % J 2 E ~ 
H exh ,3 % a rh m fuel a H H ah .1 

foel exh , .• 

(A 5.9) 

Figure A 5.16 illustrates that ET/' is ranging between 0.5% at low load to 1.5% 

at high load. Changing speed does not appear to be affecting the error value. 

Figure A 5.17 shows that the estimated error in coolant energy percentage of 

the total fuel energy is between 1 to 1.5%. Finally, Figure A 5.18 demonstrates 

that the estimated error in the exhaust energy percentage of the total fuel 

energy is between 0.6% at low speed to 0.9% at high speed. 
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Figure A 5.1. Standard error of the mean of the temperature at different 
locations. The engine running at speed ranging between 1500-4000 rpm, BMEP 

between 1.57 to 8 bar, and different fuel mixtures. 
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Figure A 5.2. Standard error of the mean of coolant flow rate. The engine 
running at speed ranging between 1500-4000 rpm, BMEP between 1.57 to 8 bar 

and different fuel mixtures. 
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Figure A 5.3. Standard error of mean of the coolant flow rate as a percentage of 
the mean value. 
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Figure A 5.4. Standard error of the mean of the fuel flow rate. The engine 
running at speed ranging between 1500-4000 rpm, BMEP between 1.57 to 8 bar 

and different fuel mixtures. 
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Figure A 5.5. Standard error of mean of the fuel flow rate as a percentage of the 
mean value. 
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Figure A 5.6. Standard error of the mean of the emissions constituent and its 
percentage of the mean value. The engine running at speed ranging between 

1500-4000 rpm, BMEP between 1.57 to 8 bar and different fuel mixtures. 
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Figure AS. 7. Intra-cycle change in transducer output at inlet BDC over 100 
consecutive cycles for different loads, speeds and fuel content. 
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Figure A 5.8. Effect of changing pressure value by ±O.098 bar on the calculated 
MFB error for different speeds, loads and fuel blends. 
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Figure A 5.9. Percentage difference in RBA and FDA as a result of pressure 
value by ±O.098 bar. 
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Figure A 5.10. Effect of changing of volume pressure phasing by ±0.25° on the 
calculated MFB error for different speeds, loads and fuel blends. 
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Figure A 5.11. Percentage difference in RBA and FDA as a result of changing of 
volume pressure phasing by ±O.2So. 
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Figure A 5.12. Percentage of the estimated error in the coolant heat loss 
calculation. 
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Figure A 5.13. Percentage of the estimated error in the exhaust mass flow rate 
calculation. 

2.2 

~ 
2.2 

" 2. 1 ... 
0 2 .1 ... ... 
"" 2.0 
.f' 2.0 .. 
Co 

'" 1.9 u 
';; 1.9 
OJ 

:: 1.8 

0 

+ ULG 
- E IO 
AE20 
x E50 
x E85 

2 4 6 8 10 

8M EP Ibarl 

3.0 

~ 2.8 + ULG 
" _ E IO ... 2.6 AE20 0 ... 2.4 x E50 ... 
"" 2.2 x E85 
C . ; 2.0 • • • • •• Co 

1.8 .. 
u 

1.6 ';; 
.!: 1.4 

1.2 
1.0 

1000 2000 3000 4000 

peed Irpllli 

Figure A 5.14. The estimated error in the heat capacity calculation. 
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Figure A 5.15. Estimated error in exhaust energy calculation. 
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Figure A 5.16. Estimated error in the thermal efficiency calculation. 
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Figure A 5.17. Estimated error in coolant energy percentage of the total energy 
calculation. 
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Figure A 5.18. Estimated error in exhaust energy percentage of the total energy 
calculation. 

T Alrayyes 258 University of Nottingham 


