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B ER
P

‘he «.uite element methou has been used to calculgte the stresses and
creep deformations of flangéd turbine casing models subjected to internal
pressure and bolting forces. The finite element recults have been compared
with results from photoelastic and lead model turbine casings.

An axisymmetric thin shell of revolution ring finite element has
been developed to anélyse casings subjected to pressure, thermal and
creep loads. The thin shell of fevolution ring finite element is shown
to be extremely powerful and has been used to investigate the shell
portions ‘'of the turbine casing away from the flange. The.three~dimcnsional
isoparametric finite elements have been used fof more accurate idealisations
of fhe turbine casing. A thiék shell isoparametric finite element has also
been developed which can be used with the more common hexahedral isopara-
metric finite elements. .

A solution algorithm based 6n é frontal technique has been developed
to solve the large number of linear equations given by the finite element
equations. This algorithm, which is fully automatic and uses fast access
backing store, has a resolution facility which is used to recaiculate
subsequent creep solutions assuming that the stiffness of the structure
remaihs constant. The creep algorithms are based on time marching
techniqugs where the creep solutions are found for small time inc?ements,
the final solution being the sum of all the incremental solutions. During
each time increment the stresses are assumed to remain constant and the
.change in stress between time increments is kept within a preset ratio.
The creep algorithms have been used to predict the creep deformaticn of
simple structures to coﬁpare with published results. The agreeﬁent between
the finite element and lead model creep results is limited.

.The finite elemént prograns have been written to be compatible with

the PAFEC suite of finite eleme:t programs.



Chapter

Chapter

Chapter

1

2

2.1
2.2.1
2.2.2
2.2.3
2.3.1.1
2+301.2
2.3.2.1
2.362.2
2.3.2.3

2.3.2.4

2430301

2.343.2

2¢343.3

2.3.4,.1

2.3.4.2

3.1

Contents.

Introduction

Thin Shell of Revolution Finite Element
Notation

Introduction

Analysis

Computation of Element Matrices
Slution Procedures

Static Loading

Numerical Examples (Static Loading)
Pressure Loading

Numerical Examples (Pressure Loading)
Torispherical Drumhead

3-Diameter Pressure Vessel

Thermal Loading

Numerical Examples (Thermal Loading)
Standard Solutions for Cylindrical and
Spherical Shells

Semi-Infinite Cylinder subjected to a
Varying Internal Wall Temperature
Creep Deformation

Numerical Examples (Creep Deformation)
Simply Supported Cylinder subjected to
Internal Pressure

The Parametric Family of Finite Elements
Notation

Introduction

Page

11
12
16
17
18
18
19

21
21
23

25

26

32
32



Chapter

3.2.1
36242
3.2.3
3.2.4
3.2.5
3.3.1
3e3.2
3.4.1
3.4,2
3.5.1

3562

3.6

3e641
3.642
3:603

3.6.4

4.1
4,2
4,3
4,3.1
4,342
4.3.3
4.3.4

4.3.5

- i -

Isoparametric Finite Elements
Generation of Element Matrices
Numerical Integration

Generation of Thermal Loads

Pressure Loading

Thick Shell Parametric Finite Elements
Generation of Element Matrices
Transition Parametric Finite Element
Generation of Element Matrices
Programming Techniques

Programming Techniques (Thick Shell
Parametric Element)

Numerical Examples

Isoparametric Finite Element

Thick Shell Parametric Finite Element
Transition Parametric Finite Element
Iso, Transition and Shell Parametric
Finite Element Combination

Frontal Solution

Notation

Introduction

Numerical Analysis

Housekeeping

CPDDC Array

Merge Algorithm

Reduction Algorithm

Back Substitution Algorithm

Re-Solution Algorithm

37
39
42
43
45

47

51
52

53

59

62

62

63
64
64
65
67
71
71
73
76
78

79



Chapter

Chapter

4.3.6
4.4
4.5

4.6

o

5.1
5.2
5e241
5.2.2
5.2.3
53
5.4

5.4.1

Sede2

5e4.3

S5.4.4

6.1

6.2

6.3

6.4

- iii -

Peripheral Handling

Data Generation

Error Diagnostics

Example Problem

Creep Analysis

Notation

Introduction

Creep Analysis

Sblutio; Techniques

Multiaxial Stress-Strain Relationships
Uniaxial Stress~Strain-Time Relationships
Programming Techniques

Numerical Examples

Beam Subjected to a Constant Bending
Noment

Effect of Initial Starting Time on lLong
Term Creep Analysis

Thick Ring Subjected to Internal Fressure
Thick Cylinder Subjected to Internal
Pressure

Stress Analysis of Turbine Casings
Introduction

2-Dimensional Analysis of the Cylindrical
Portion of Split Turbine Casings
3-Dimensional Plane Strain Analysis of
the Cylindrical Portion of Split Turbine
Casings

Determination of Equivalent Bolt Loads

81
82
82
83
85
85

87

92
94

97

103

103

105

106

107

109

109

110

113

114



Chapter

Chapter

6.5

6.6

6.641

64642

6.7

7.1
7.2

7.3

7e3e1

Te3e2

745

8.1
Be2e1

- iv =

Stress Analysis of an Inner Turbine

Casing subjected to an Axial Variation

of Pressure

Finite Element Analysis of $lit Turbine
Casing

Turbine Casing subjected to Internal Pressure
Loading

Turbine Casing subjected to Internal

Pressure and Bolt Loading

Approximate Analysis of the Shell Portion

of the Split Turbine Casing using the Thin

Shell of Revolution Ring Finite Element
Creep Deformation of a Turbine Casing
Model

Introduction

Empirical Creep Law

Creep Deformation of 3-Dimensional Finite
Element Idealisation of Lead Turbine Casing
Deformation of Lead Turbine Casing Model
Variation of Strain and Stress in the

Model Turbine Casing due to Creep Deformation
Axisymmetric Approximation of the Creep
Deformation of a Turbine Casing

Computation of Creep Deformation of a
Turbine Casing

Digcussion

Introduction

Elastic Analysis

118

121

123

127

128

130

130
130

131

132

133

138

139

141

141
141



Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Be2e2
B.2.3

8.3

1

Creep Analysis

Economics of Solutions

Future Work

Acknowledgements

'A' Matrix for Thin Shell of Kevolution
Finite Element

Stiffness Terms for Thin Shell of
Revolution Finite Element

Equivalent Nodal Force Terms for
Axisymmetric Thin Shell of Revolution
subjected to Thermal Strains

Thermal Stresses in Cylinders subjected

to Axisymmetric Temperature Distributions

Equivalent Nodal Force Terms for
Axisymmetric Thin Shell of Revolution
subjected to Creep Deformation
Transition Parametric Finite Element
Constraints
Decomposition of D matrices into

U T U form
Von Mises and Prandtl-Reuss Flow Rules
Newton's Method for Solving Non-Linear
Equations
Creep Analysis applied to a Beam Finite
Element
Computation of Turbine Casing Finite

Element Idealisations

Tables

144

146

147

149

151

152

155

156

159

160

162

164

168

169

17

175



- vi -

Figures 181

References 323



Chapter 1 Introduction

The basic prime mover used to generate the large quantities of
power required by the Electricity Supply Industry and sometimes
in large ocean going vessels is the high speed steam turbine.
Modern steam turbines consist of a number of rotors spinning
within cylindrical pressure vessels driving elther an electrical
alternator or propulsion device. Steam turbines are required to
deliver anything from 15,000 to 900,000 shaft brake horse power
with steam entry conditions varying from nearly saturated steam,
delivered by water-cooled reactors, to superheated steam at
supercritical pressure from the largest fossil fired boilers,
(refse 1)e To obtain the highest efficiencies from the turbine
plant it is necessary to extract all the useful energy in the
steam between its entry condition and its exit at maximum vacuum
conditions. The efficlency is further improved by introducing
reheat cycles within the expansion cycle, usually restricted to
one only by physical considerations, between the high pressure
turbine exhaust and intermediate pressure turbine inlet belt. The
reheat temperature is commonly identical to the initial steam entry
temperature, and consequently the turbine casings of the first two
rotors have to withstand the largest thermal gradients and also
contain the highest pressures. Modern designs reduce the thermal
and pressure stresses to which the casings are subjected by a
multi-shell construction of inner and outer concentric casings.

The high temperature rotors are generally machined forgings to
which blades have been attached, usually by a fir tree root fixing,
supported by shrouds at the outer diameter, Each rotor contains a

number of turbine stages and, unlike a gas turbine where each disc



can be removed from the rotor shaft, it is difficult to design
annular continuous diaphragm stages. To facilitate erection and
maintainance of the rotors and diaphragms the turbine casings

are split horizontally into two halves along the shaft centre

line., To maintain a pressure tight seal the two halves are mated
together, metal to metal contact, and held by high tensile bolts
through flanges running along the split. This greatly reduces the
strength of the casing and consequently thicker shell structures

are necessary. With increased steam entry conditions very thick
flanges are necessary to maintain a pressure tight seal. Heavy
bolted flanges give rise to large thermal stresses and some

latter designs of high pressure cylinders incorporate an inner
barrel casing to reduce these, (ref. 2). The majority of high
pressure steam turbine casings comprise a flanged shell supporting

a similar casing internally, labyrinth sealing gland housings, and
numerous pipe and nozzle entries. Steam turbines used for electrical
power generation are designed to operate at a set speed, 3000 rev/
min. or 3,600 rev/min. governed by the electricity supply frequency,
and set steam entry conditions. These have stabilised at 125-2%0 atm.,
5400C-565°C with single boiler reheat to similar temperatures, (ref. 1).
The very large amounts of power being generated by each machine, at
present 500 MV, demand that the turbine be operated very close to
the design condition to effect the greatest economy. The low nightly
demand for electrical power, to be supplied by nuclear plants by
1975, means that a large number of steam turbines have to be shut
down at night and run up again the next morning, being fully loaded
within an hour of start up, (ref, 3). The planned life of the plant

is 25-30 years, during which creep deformation or thermal fatigue



problems can become prominent and lead to premature damage (ref. 4).
To transmit the large torques the shafts are rigidly coupled
together resulting in a differential expansion between turbine
casing and rotor of at least 4" at start up or load changing,

(refe. 5)e To maintain maximum interstage efficiency multiple

radial seals are necessary and damage to these seals caused by
rubbing or other uneven deformation can severely damage the turbine
or, at best, impair the thermal efficiency. Costs caused by
unplanned maintainance outages can be as high as £25,000 per day
for a S00MW unit, (ref. 6) and more long term plant fallure can

be nationally disastrous.

The steam turbine designer is faced with larger power requirements
while steam entry conditions, especially steam temperature, are
limited by the metallurgical constraints imposed by the steels.
Present 500 MN steam turbines comprise a high pressure, high
temperature turbine, a double flow high temperature intermediate
pressure turbine and usually three double flow low pressure
turbines. These accomodate the large exhaust volume of steam at
28"-29" Hg vacuum, whilst keeping the final stage blading within
acceptable physical dimensions. The designer cannot indefinitely
upgrade existing well tried designs and increase thickness to
maintain safety factors as the civil engineering demands made by
the turbine-alternator complex become too great. To obtain the
minimum cost requirements for a specified life a sound knowledge
of the deformation and stresses of the turbine is necessary,
together with the subsequent creep deformation and thermal fatigue
cycles, at all times during the life of the turbine.

This thesis is based on one half of a joint research project into



the stresses and creep of split turbine casings, and concerns

the theoretical computer model based on the Finite Element

method of structural analysis. A need has long been felt by the
CEGB and turbine manufacturers alike for a complete 3-dimensional
analysis of a turbine casing to supplement the in-plane analysis
of the cylindrical portion of the casing and flanges, interest
being shown particularly in the toroidal and spherical end
closures. The experimental part of this work involves photoelastic
frozen stress model techniques for the stress analysis and constant
temperature lead models for the creep deformation measurements.,
This work is reported elsewhere, (ref. 7).

The Finite Element method of structural analysis was chosen
because of its flexibility in modelling and solving complex
structures, and also because a large number of basic programs
were already available. A very large number of programs were
developed for this analysis, and these have been included in
the PAFEC 70 (Program for Automatic Finite Element Calculation)
(ref, 8) suite of structural analysis programs developed in the
Department of Mechanical Engineering at Nottingham University,

Previously most methods of stress analysis of turblne casings
have involved splitting the cylindrical part of the casing into
two discrete parts, the designer using his experience to couple
them together. Away from the flange area shell theory has been
assumed, and the shell portion treated as an axisymmetric shell
of revolution. The flanges have been analysed approximately,
either by treating the flange as an eccentrically loaded column
(ref, 9) or using a beam on elastic foundation analogy, (ref. 10).

In both methods the flange is subjected to a compressive force



equivalent to the bolt loads and a tensile opening force due to
the shell loads. A pressure tight seal is assumed to have been
obtained when the inside compressive flange face stresses exceed
the pressure within the casing.

With the more highly stressed modern steam turbines it is
important to analyse the casings, as well as the rotors, more
accurately, to design for the optimum efficiency and maximum
power from the plant. The advent of the high speed digital computer
has made more accurate analysis possible and manufacturers have
made use of both in-plane finite difference and finite element
programs to analyse turbine casing sections (ref. 11). These
methods, although only approximate, do give a good indication
of the stresses in the cylindrical portion of the casing, well
away from the end closures. To achieve a more accurate solution,
taking account of the end closures, a 3-dimensional analysis is
{mperative, particularly when determining creep deformations.
The very complex shape of the steam turbine casing subjected
to pressure and thermal loadings make exact computer modelling
economically impossible.

The Finite Element method has been used to analyse the split
turbine casing in two ways. First the shell portions of the
casing were treated as an axisymmetric thin shell of revolution.
It can be shown that this approximation is valid away from the
flanges, provided that the thickness to radius ratio of the
casing is within the limitations of the thin shell theory. An
axisymmetric thin shell of revolution finite element of constant
thickness and optional displacement order has been developed and

proved very powerful. The stress analysis and creep deformation



of complex shells can be accurately predicted, with the number

of equations to be solved small enough to enable very fast in-core
solution algorithms to be used. The formulation assumes that the
stresses normal to the shell surface, i.e. radial stresses, are
negligible compared to the circumferential and meridional stresses.
This element has been shown to be extremely efficient by a number
of published results for shell elements, and has been used to
analyse a number of pressure vessels subjected to static, pressure
and thermal loadings. The creep deformation of a simply supported

shell subjected to internal pressure has been obtained and compared
with a published analytical solution.

To analyse a turbine casing and model it exactly, taking account
of individual bolts, is beyond the scope of the present geheration
of computers. To assess the creep deformation of a turbine casing
the flanges and shell portion of the casing are modelled, together
with the end closures and sealing glands and subjected to approximate
values of bolt loading. The isoparametric family of finite elements
have been found to be the most efficient available for this purpose.
Geometrically complex structures can be modelled using hexahedral
blocks whose boundaries, edges, are defined in curvilinear
co-ordinates, together with the displacements at these boundaries.

To model any structure sufficiently accurately requires a fine
idealisation and, consequently, a very large number of linear
equations have to be solved. Various methods of solution are
available which either destroy part of the solution, or demand
rigorous effort to keep the relationship between consecutive
equations within a very narrow band. Non-linear problems, such

as creep deformation, usually assume that the stiffness terms



remain constant with time and the equations have to be solved
many times, If the problem is too large to retain the inverted
stiffness matrix in the computer core then a solution algorithm
has to be used which retains the initial stiffness terms. A
frontal solution technique, using fast access backing store,
usually in the form of temporary disc store to supplement the
computer core store, has been used for the solution of these
equations. The amount of core store required at any one time is
determined by the number of active equations and consequently by
careful element ordering very large idealisations can be solved.

The initial equations are retained, and by modifying the loading

terms the creep solution can be obtained.

The creep analysis used is based on a time-stepping process
with constant stress states prevailing over each small time
increment. Both time-hardening and strain-hardening solutions
are obtainable and the empirical creep law contains both primary
and secondary terms. The change in stress after each time increment
is found before the next time increment is computed. The change in
the stress over the time increment is checked and the increments
are adjusted to give the most efficient solution within the limits
set.

The stress analyses and creep deformations of turbine casing
models have been found using these finite element programs. These
models include a flanged inner turbine casing subjected to pressure
loading only, a flanged closed turbine casing subjected to internal
pressure and bolt loadings, and an axisymmetric approximation to the
closed turbine casing. The results of these analyses are presented

in the second part of this thesis,



Chapter 2, Thin shell of Revolution Finite Element.

Notation.
E Young's modulus
ipu no., of terms in tangential displacement function
ipv no, of terms in meridional displacement function
ipw no. of terms in normal displacement function
1 meridional length of element
n Fourler harmonic
p pressure
r radius from axis of symmetry
T radius of curvature
s distance along meridian
t thickness
T temperature at any point
To temperature at mid-surface
T mean temperature
ATy temperature difference across shell thickness
u tangential component of mid-surface displacement
v meridional component of mid-surface displacement
w normal component of mid-surface displacement

,¥,%,#% derivatives of mid-surface displacements with respect to

meridional length

V] Potential Energy

v Strain Energy

W.D. Work Done

z distance from mid-surface

X coefficient of thermal expansion

€ strain



o stress
A
o
Suffices
C creep
E elastic
T total

Therm thermal

e equivalent
Matrices and Vectors
[]

[17
(4]

(2]

[>]
oo}

{Dcreq%

i#}
1°}

Poisson's ratio
angle between normal and axis of symmetry

circumferential co-ordinate

g global axes

i element

1 local axes

¢ meridional direction

e circumferential direction

column vector

matrix

transpose of matrix

matrix linking nodal displacements to coefficients
of generalised displacement functions

matrix linking generalised displacements to
displacement function coefficlients
stress/strain matrix

strain energy matrix in terms of generalised
displacements

strain energy vector for thermal strains
straln energy vector for creep strains

force vector

stiffress matrix

pressure loading vector
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{S} list of nodal displacements
{3}={u,v,w,ﬁ,§,w,ﬁ}r generalised displacements (including

derivatives)
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Introduction
A shell of revolution may be idealised by a number of ring shell

finite elements, each of which represents a portion of the total
meridional length of the shell. Early researchers, Grafton and

Strome (ref. 12), Pian et al (ref. 13) and Popov et al (ref. 14),

used truncated conical frustra finite elements to model shells of
revolution. Large numbers of these elements are required to give

an accurate idealisation of the geometry of shells with meridional
curvature. Jones and Strome (ref. 15) used doubly curved ring shell
finite elements with co-ordinates and slope at the element ends
matching those of the actual shell. The idealisation of these elements
forms a smooth surface with continuity of curvature across element
boundaries. The shell surface between the element ends is described

by a polynomial function and the surface modelled by these elements
may depart from the true shell surface. Navaratna (ref. 16) used

ring finite elements which satisfied displacement and slope continuity
at the common nodal circles for the analysis of deep spherical shells.
In this type of idealisation it has been usual to represent the
meridional variation of the normal mid-surface displacement within
each element by a cubic function, and the variation of the meridional
and tangential displacements by linear functions of the meridional
co-ordinate. To converge to the exact sloution of many problems large
numbers of these elements are necessary. Webster (ref. 17) has used
ring elements with higher order polynomial displacement functions for
the solution of dynamic problems for shells of revolution. These
results together with those given later by Webster (ref. 18), indicate
that accurate solutions are obtained more efficiently with a few

higher order displacement function ring elements than by many more
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simpler displacement function ring elements.

A general thin shell of revolution ring finite element of constant
meridional curvature and constant thickness using the higher order
displacement functions in the meridional co-ordinate has been
developed. Results are given for the analysis of shells subjected to
static, pressure and thermal loadings as well as creep deformations
and are compared with published results. The approximate axisymmetric
analysis of the shell portions of turbine casings away from the

flange is given in Chapter 6.

2:2.1 Analysis
Fige 2.1 shows a thin shell of revolution ring finite element with
constant meridional radius of curvature and shell thickness. The
displacement functions used to represent the tangential, meridional
and radial components of the mid-surface displacement are given in
terms of the meridional co-ordinate.

ipu
us= Z Um(s/l)m'1 (1 or sin n&) 2.1(a)

m=1

ipv
vs z Vm(s/l)""1 (1 or cos n®) 2,1(b)

m=1

ipw
= Z W_(s/1)™1(1 or cos n®) 2.1(c)

m=1
The meridional arc length s is measured in the direction of
increasing angle¢.The terms (1 or sin n®) and (1 or cos n®)
allow either an axisymmetric load or the nth Fourier harmonic

component of a non-symmetric load to be considered. For non-torsional
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axisymmetric loadings only the meridional and normal displacements
need be considered.

The nodes, defined on the shell mid-surface at the element ends,
take the form of nodal circles. The displacements at the nodes of
any element may be expressed in terms of the displacement function
coefficients Up, Vp, Wpe The generalised displacements of an element
are the nodal displacements and sufficient of the displacement
coefficients to complete the definition of the element displacement
function. These generalised displacements at the nodes §§;§ can be

expressed in terms of the displacement function coefficients

{Um' Vi wm} " by

it = 18] {ums v Hpf T 2.2

The [Aj} matrix, see Appendix 1, includes the transform of the
meridional and normal mid-surface shell displacements at the nodes
into the global x and y co-ordinates.

The displacements at any node are

Ug = u 2.3(a)

vg = v sing -w cos¢ 2.3(b)

wg =V cosd 4w sing 2.3(¢)

6, = ;g_.s., - _;_,_ 2,3(d)
]

The generalised displacements and derivatives of these displacements
with respect to the meridional co-ordinate at any point are related

to the coefficients of the displacement function by the matrix {P:]

G315 T 13T
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where {S}T = {u, vy wy 8, ¥, &, “}T 2.4(b)

and % = du etc.
s

The strain displacement relationships are given by Fldgge (ref. 19)
and neglecting the terms associated with change in meridional

curvature, give, when referred to Fig. 2.1

€. .8 . W zry 9 2.5(a)
$=3s trorz “(rgtz) s

1% v cosz(r +z) w_sind 1 2
T 38 ™+z s (r’-i sing) (r-l-: sin¢) (r 3 cos¢ w) 2.5(b)

ind)(x 1
Sgo = r+:n(r 3s'r§cos¢u (_ézsn) raa‘é

ow
((ri-z r+z sing) ¥ r(7 +z)>(bs_a§ - &gi¢ae 2.5(c)

The strain enerqgy for a thin shell of revolution is given by

Vet {GEE T{c-} dvol 2.6

Vol

where the elastic strain vector is given by

{G% = eﬁﬁ 2.7(a)
3Ede

and the stress vector is given by

{a’} a‘e 2.7(b)

The usual thin shell theory assumptions are that the normal direct
and transverse shear stresses are negligible and their contribution

to the strain energy is neglected.
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The stress/strain relationship for thin shells is given by

K V) 0 ]
o}« an : AN e} e
2

Hence the strain energy for a thin shell of revolution (Fig. 1)

is given by
1 C2R( t/2

v ’21%02) (€42 + €2 +2,>¢.¢e9+(1_.9)g¢92) (retz) (r+z.sing)dsdOdz
0Jo J-t/2 2 Ts

2.9
The strain energy is found by substituting for the strains in

equation 2.9 from Flfigge's relationships, equations 2,5. This
gives the strain energy in terms of generalised displacements

and derivatives g.Si o The strain energy expression is integrated
in the normal and tangential directioﬁs algebraically. The Fltigge
thin shell equations are given for small shell thickness to radius
ratios. Terms of order (t/r)3 are neglected in the algebraic
integration. The partially integrated strain energy matrix ‘:D']
after the algebraic integration is given in Appendix 2.

The strain energy for each element is then given by

V= tj:{f;%“ [9'1{3} ds 2,10

which gives on substitution for the generalised displacements and

derivatives

V=3 {%ET 7 :{B]T[D'] [B]ds[ﬁ] {3% 2.11
f.e. Ve ti‘;i} ki) {Ji.g
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in terms of the generalised nodal displacements.

The total strain energy of the structure is found by summing the
individual contributions of each element. The solution of the
structure subjected to an applied loading is found by the variational
principle of the minimisation of the potential energy of the structure.
The potential energy is given in terms of the strain energy and work
done expressions.

U= V - W.D. 2,12

where the work done expression for a static loading case is given

by
Ww.D. -{g}T{ FZ 2.12(a)
where E'F}- is a list of forces associated with the generalised

displacements {53 at all nodes.

The potential energy expression is minimised with respect to the
nodal displacements to give the usual finite element equations
(ref. 20).

0= [K]{§}- {F} 2.13
where [ Kj], the stiffness matrix of the complete shell, is found

by summing the stiffness matrices for each element.

[ K] - [#1]T :[ 8|7 [ o] [ B]ds[A'1] 2.13(a)

Compu on of Elemen tri

The flow diagram for the algorithm to generate the Thin Shell of
Revolution Finite Element stiffness and loading matrices is shown
in Fig. 2.2. Gaussian quadrature (ref. 21) has been used for the

numerical integration along the meridian of the shell to give
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accurate strain energy terms. The integration points always yield
a positive value of r, thus overcoming the singularity at the pole
when r=0, Webster's second element (ref. 17) for generation of
strain energy terms at the pole is not needed.

The terms associated with the displacement coefficients in
excess of those sufficient to satisfy the generalised nodal
displacements are termed "extra degrees of freedom". The extra
degrees of freedom are associated individually with one element
and the strain energy terms associated with them are placed in
the lower portion of the element stiffness matrix. This position
is dictated by the way in which the | A| matrix is formed,
Appendix 1.

The extra degrees of freedom are allocated positions in the
combined strain energy matrix. By careful ofdering of these positions
the stiffness terms can be concentrated about the leading diagonal.
Arbitrary ordering, see Fig. 2.3, places the stiffness terms

associated with the extra degrees of freedom remote from the leading

diagonal.

2:2,3 Solution Procedures

The total number of degrees of freedom needed to accurately model
complex axisymmetric shells of revolution using the higher order
ring finite elements is reasonably small. The full or banded
stiffness matrix can then be retained in the core store of a medium
sized computer.

Standard matrix inversion procedures or Cholesky algorithms for
the symmetric decomposition of positive definite full and band

matrices, see Wilkinson (refs., 22 & 23), are used for all examples
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given. The Cholesky algorithms have been used for creep problems
where the equivalent inverted stiffness matrices are used in

subsequent re-solution stages.

o] Static Loadin
The static loads contribute to the work done in the potential

energy expression as

W.D. = {g}r {F}
When the potential energy is minimised with respect to the nodal

displacements the list of loads .{F}- associated with each nodal

displacement is left in the finite element equation 2.13.

1.2 Numerical Exam Static Loadin
Cylinder Clamped at One End and Loaded Radiglly at the Free End.

Pian (ref. 13) investigated the effect of using elements with

different displacement functions by comparing solutions for a

cylinder clamped at one end and loaded radially at the other. Pian's

solutions, together with those for two idealisations using various
orders of the higher order displacement function element, for the
displacement under the load are shown in Fig. 2.4. The numbers of
terms in the displacement functions and the degrees of freedom of
the different idealisations are given in Fig. 2.4. These solutions
are compared to solutions using 1 and 3 element idealisations of

the higher order thin shell of revolution finite element,

The single element solution to this problem converges rapidly with

increasing numbers of terms in the displacement functions, but even

with 10 terms in the normal and meridional displacement functions
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the solution is still 9% low. Numerical difficulties are likely to
occur if more than about 10 terms are used in the displacement
functions of a single element due to ill-conditioning of the equations.
The 3 element solution with equal numbers of terms in the normal and
meridional displacement functions converges well.

Comparison of the 3 element solution, with equal numbers of terms
in each displacement function, with Pian's 3 element solution, with
fewer terms in the meridional displacement function, illustrates
the necessity of adequately representing both components of
displacement, eQen though the meridional component is much smaller

than the normal component.

03021 ssure Logdin
The loading vector for pressure loads is determined by integrating
the product of pressure and normal displacement over the area of the
shell. This integration process is identical to that used in
generating the stiffness terms. The integration in tﬁe tangential
direction is algebraic and Gaussian quadrature is used in the

meridional direction. The work done is given by

W.D. = ‘J‘ pw dArea 2.14
Area

where p, the applied surface pressure, is defined as p(1 or cos n®)
for axisymmetric or ntP harmonic Fourier loading and w is the
generalised normal displacement.

1(2%
W.D, = {8} } (r +t/2) ds (rtt/2.sind)de  2.14(a)
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The terms (féi;_t_/?.) and (rﬁ%.sint)‘) depend on the shell surface
s

to which the pressure is applied.

W.D. = {8& at] TJ’: [ 2] {p'} (rt/2.sin®)ds  2.14(b)

where {:p'} is the algebraic integrand in the tangential direction.
The minimisation of the potential energy gives the loading vector

21‘-‘} for the pressure loading as

{F} =2[A'1_] o [ B]T{p'z (rtt/2.sin )ds 2.15
0

The ring finite element of revolution is programmed to accept a

linear variation of pressure in the meridional direction.

2+3,2,2 Numerical Examples, (Pressure Loading)

Pressurised Spherical Cap.

Pian (ref. 13) investigated the problem of a spherical cap
subjected to external pressure, whose exact solution is given by
Timoshenko and Woinowsky-Krieger (ref. 24). Pian's idealisation
used 35 of the simplest conical frustra elements to approach the
exact solution. A number of different idealisations were made
with simple spherical elements as well as the higher order ones.
The plots of Meridional Bending Moment and Circumferential Stress
Resultant for single element idealisations with meridional and
normal displacement functions of order 4, 6 and 8 are shown in
Fig. 2.5(a). Results for 5 and 10 element idealisations of the
shell, using elements with the simplest displacement functions,
are shown in Figs. 2.5(b) and 2.5(c). The Meridional Bending

Moments and Circumferential Stress Resultants when using 5 or 10
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of the simplest elements give exact answers near the pole where
the variation in the displacements is changing less rapidly. These
results illustrate that large numbers of elements with the simplest
displacement function are required to give accurate values for the
stresses, whereas the solution for the single element idealisation
with 8 terms in each displacement function is indistinguishable

from the exact solution.

2.3.2.3 Torispherical Drumhead

The torispherical drumhead, Fige 2.6(a), analysed experimentally
by Findley, Moffat and Stanley (ref. 25) has been idealised using
6 axisymmetric thin shell of revolution finite elements. The
prototype pressure vessel is No. 31 in (ref. 25).

The finite element analysis for the elastic stresses is shown in
Fige 2.6(b) compared with the experimental results. The
discontinuities of the stresses between adjacent elements are so
small that they are not apparent in Fige. 2.6(b) and a check on the
discontinuities in the meridional bending moment and circumferential
stress resultants confirmed this. The agreement between the two
sets of results is excellent and shows the great power of the
higher order element in idealising thin shells of revolution with

complex stress functions.

2:3:2+4 3-Digmeter Pressure Vessel
A stepped cylindrical pressure vessel was analysed originally as
a grossly simplified vessel, Fig. 2.7(a), and as a more realistic
idealisation, Fige 2.7(b), to compare with the results of Bellamy

and Fessler (ref. 26). A classical solution of the simple idealisation
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of the 3-diameter pressure vessel given by Bellamy and Fessler was
compared with a finite element solution. In the original analysis

each half of the vessel was treated as two semi-infinite cylinders
connected by a flexible annular diaphragm, whereas in the finite
element solution the vessel was treated as a complete body. The
agreement between the two solutions, Fig 2.7(a), is very satisfactory.

The second and more exact idealisation was limited by the constant
thickness property of the elements which necessitated the omission
of part of the knuckles from the internal corners as shown in Fig.
2.7(b)s Further the analysis for the element is based on thin shell
theory, and thus it was not expected that the element would be
adequate to model the sections of the shell with large thickness
to radius ratios.

Two finite element solutions for the inside and outside surface
meridional stresses are compared with photoelastic results for the
3-diameter vessel in Fig. 2.7(c) and 2.7(d). In view of the
assumptions associated with these finite element solutions, (i.e.
thin shell theory and constant thickness elements) the agreement
between the experimental and finite element solutions is very good.
The large discontinuities in the stresses at the element junctions
are due to thin shell approximation. The meridional bending moment
and direct stress resultant gave only small discontinuities in
these quantities at the element junctions. The difference in the
photoelastic and finite element solutions for the meridional
stresses at the inside surface between points B-C and G-H is due

to the omission of the knuckles in the finite element solution.
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2+3.3.1 _ Thermal Loading

Thermal loading is treated as an initial strain problem in
developing the strain energy terms for the potential energy
expression. The total strain is the sum of elastic and thermal
strains and the strain energy is found by substituting for

elastic strains in terms of total and thermal strains.
V=3, fer -€mhermd LDT fE1 - € mhermm Y dlol (520 re}. T! D

Va4 {GT}T[D]{GT}dVol - {37 [p] {E*rhem:g dVol
Vol

Vol

+ 4 ge'rherm% T[o} {e'l'herm.i dvol 2,16

Vol
The substitution of these terms in the potential energy equation
together with those relating nodal displacements to total strains,
equations 2.4, gives the potential energy in terms of the total
nodal displacements. When the potential energy is minimised with
respect to the nodal displacements the third term of equation
2,16 disappears, the first term giving the stiffness expression
and the second term the equivalent nodal forces due to the thermal

loadings.

gFe} = [A‘1]T [B]T[DD]T[D]{GThemg dVol 2417

Vol

where {GT} = [op) {SE 2.17(a)

The strain energy terms for the thermal deformation are found in

the same way as the stiffness terms are generated. Algebraic

integration in the radial and c¢ircumferential directions, terms

of order greater than 3 being neglected, and Gaussian numerical

integration in the meridional direction is used.
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The strain energy expression to be integrated is given by

o [t/2 {1

vt= - (1%2)(6¢T(e¢lherm+ ’oe°rherm)+69'r(e°l'herm+°e¢rhem))
0 J-t/2])o0

(_rg_*z-) ds(r+z.sind )de dz 2,18
S

The Fltigge shell theory used assumes that all strains are based
on the midsurface displacements. A more realistic value for the
elastic strain at any point in the shell is found by modifying
the radial displacement relative to its position to the mid-surface

in the strain equations.

The temperature T at any point distance z away from the mid-

surface is given by

Y4
T=T, + 4T, 2.19(a)

The mean temperature T between this point and the mid-surface

is given by

= z
T=Ty+ 5 4Tg 2.19(b)
The radial displacement w' at a point distance z from the mid-
surface is given by

w'=w+ zuT 2.20

The elastic meridional strain is given by

€ - % ‘(Fi‘s:i) g‘:g* g‘("ifﬁ? - T 2.21(a)
e¢E = 6¢T -N(T -(;5%2) T) 2,91 (b)

and the equivalent thermal straln is therefore given by

e¢‘l‘herm = (T - (}_:E) T) 2.21(c)
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Similarly the elastic circumferential strain is given by

€g __‘l_é_\_:_+vcs¢(r+z) z 1w, cosq%w
E= T3 (2. sing) ~ (r¥z .sind\r S0t
ity N a2
€o_ -Co. - ( _ zsingT
Ok = “1 =T ~(¥; sing) 2.22(b)
and the equivalent thermal strain is therefore
e - ( _z singT
®Therm **\T - (7 5s1ngd) 2.22(c)

The equations 2.21(c) and 2.22(c) are substituted into equation
2.18 in terms of Ty and ATy which are functions of meridional
length. The terms resulting after the algebraic integration in
the radial and circumferential directions are given in Appendix 3
as a vector ‘{DD'z o The equivalent nodal forces for each element

are then given by

{Fe}= [a1]T :[ B]T{DD'} ds 2423

2:3.3.2 Numerical Examples, (Thermgl Logding)
Standard Solutions for Cylindricgl and Spherical Shells

The thermal stresses for a cylindrical shell and a spherical
shell when subjected to an overall temperature rise and a through
thickness temperature gradient have been found.

When the shells are subjected to a uniform temperature rise
significant stresses are given without equation 2.20 being used.
By adjusting the thermal strains by equations 2,21 and 2.22 the
stresses given for a uniform temperature rise are negligible.

The results for a mean temperature rise and through thickness



- 2% -

temperature gradient are given in Table 2.1 and are compared to

the well known solutions given by Roark (ref. 27). The slight
deviation is caused by the Roark solutions making no allowance

for variation of the radial displacement through the shell thickness.
This glves a difference of approximately 1% maximum for a shell

with r/t of 10:1.

2+3,3.3 Semi-Infinite Cylinder Subjected to g Varying Interngl Wall
Temperature
A semi-infinite cylinder subjected to an exponentially decreasing

temperature on the lnside surface and a constant outside surface
temperature was considered. The temperature variation is given by

_ I (1 - 22) eX/T
2 h

T

The following two sets of boundary conditions at the end of the
cylinder were considered,

(i) No constraints

(11) Unrestrained radial displacement but with zero

slope.

The finite element idealisation of the cylinder and the inside
wall temperature distribution are shown in Fig. 2.8(a). The finite
element solutions for the radial displacement and the hoop stress
distributions, shown in Fig. 2.8(b),agree well with the exact
thin cylinder solutions given by Yang and Lee (ref. 28) and

developed in Appendix 4.

2:3:4,1 Creep Deformation
The method of finite element analysis applied to creep deformation
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is outlined fully in Chapter 5, The general method however is
briefly explained here with its application to the thin shell
of revolution finite element.

To generate the equivalemt nodal forces the creep strains are
treated as initial strains in the same manner as the thermal
strains described previously. The creep deformation occurring
during a small time increment is assumed to take place under a
state of constant stress. The equivalent nodal forces due to

these creep strain increments are found from

fred = (4117 [8]17[o0]7[0] {€creept dVol 2,24

Vol
The changes in elastic strains are found from the change in total
strains caused by this loading and the change in creep strain
from which this loading has been calculated
TCME {AGTE - {AGC)S 2.5

The change in stress over the time increment is calculated from
these strains and provided this change is within set limits the
calculation proceeds.

The equivalent nodal forces to the creep strains after algebraic
integration in the radial and circumferential directions are given

as

{AFe} = [a-1]7 : (81T {Dcr“p} ds 2.2
0

where the vector {Dcreep} is given in Appendix 5.
The flow diagram for the algorithm to calculate creep deformations

for the thin shell finite element is given in Fig. 2.9. The
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philosophy behind this algorithm is different from the creep
analyses described in Chapter 5. After the initial solution all
creep deformations are calculated from creep and total strain
information held in the matrix AKREAP at each Gaussian integration
point. For each strain component, meridional, circumferential and
shear, six terms are retained to enable the creep calculations to
proceed. These are

1. last correct stress

2. change in stress

3. total creep strain

4. change in creep strain

5. total strain

6. change in total strain.
These eighteen items together with the last correct equivalent
strain and change in equivalent strain at each integration point
are held in AKREAP,

For the initial pass through the algorithm the total strains and
stresses at time =0 are found from the nodal displacements. The
equivalent uniaxial stress is found so that the multiaxial creep
strains over a small time increment At can be calculated from the
uniaxial creep law. From these creep strains a set of equivalent
nodal forces are calculated, which on solution give a set of nodal
displacements equivalent to these creep strains,.

A checking pass is made through the algorithm where the change
in elastic stress over the time increment is found from equations
2,25 and 2.8, This stress change is compared to the initial equivalent
uniaxial stress at the integration point and if greater than

the ratio specified a new set of creep strains are computed
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with a reduced time increment. Subsequent creep strain calculations
are made using the information stored in AKREAP, one pass generating
the creep strain increments, the next checking the previous creep

strain increments.

2+3.4 Numeri Ex e Creep Deformation)

Simply Supported Cylinder Subje¢ted to Internal Pressure,
A simply supported thin shell of revolution subjected to internal

pressure has been analysed by Murakami and Iwatsuki (ref. 29) and
compared to the analytical solution of a long thin cylinder without
end supports subjected to internal pressure. A thin shell of
revolution finite element idealisation has been used to analyse
both the above loading conditions. The exact analytical solution
for a long thin cylindrical shell without end supports subjected

to internal pressure assumes no variation of meridional or
circumferential stress through the shell thickness. In this case
there is no stress relaxation as the creep deformation proceeds,
and the non-dimensional radial displacement is given as a function

of the elapsed time.

1 1
(1=-0) . (3 2 o m
Ehw 1=8 3 pa
where the empirical creep law is
e.= A t" 2,28

C
Finite element solutions and solutions given by equation 2.27

for the non-dimensional radial deformation of the cylindrical
shell at various times are given in Table 2.2. Values obtained

from equation 2.27 are given for both zero starting time and



for a starting time of 10"5 hrs. Finite element solutions and the
percentage differences between these and the values given by
equation 2,27 are given only for the latter case.

The derivation of equation 2427 is based on the assumption that
the pressure load is applied on the mid-surface and that the
meridional and circumferential stresses do not vary through the
shell thickness. In the finite element analysis the pressure is
applied on the inside surface and the circumferential strain
varies inversely with the radius. Thus, in the finite element
analysis there is a slight redistribution of stress as the creep
proceeds and,for a given pressure load, the average equivalent
uniaxial stress is about 24¥% lower than in the analysis for equation
2+27. This reduction of stress would reduce the radial displacement
by about 9% and, if the stresses were constant, the reduction
would be independent of time. It may be seen from Table 2.2 that
the differences between the finite element results and those from
equation 2.27 are somewhat greater than 9%. The percentage difference
is tending to approximately 9% with increasing time and it would
appear that the discrepancy is due to the slight stress redistribution
which occurs in the finite element solution.

For the simply supported cylinder (Fige 2.10(a)) a single thin
shell of revolution finite element was used for the idealisation
with the radial and meridional displacements represented by 8 term
displacement functionse. The finite element solutions for the non-
dimensional radial displacement, for both time hardening and strain
hardening creep laws, are compared with results given by Murakami

and Iwatsuki (ref. 29) in Fig. 2.10(b), The latter results were

obtained by numerical integration with respect to time, of the



- 31 -

finite dif ference forms of the cylindrical shell differential
equations. Again the finite element solutions for the non-dimensional
radial displacement are smaller than Murakami and Iwatsuki's results,
(refo 29)+ The differences are again due to the pressure load being
applied at the inside surface for the finite element analysis rather
than at the mid-surface in the published results. This has been
confirmed by applying an internal pressure to the finite element
model with a mean hoop stress identical to that found from simple
thin shell theory with the original internal pressure applied at

the shell mid-surface. The radial creep deformation of the simply

supported cylinder under this new internal pressure agrees closely

with the results of Murakami and Iwatsuki.
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Chapter 3 The Parametric Family of Finite Elements

Notation

a Gaussian integration point

n Gaussian integration order

p pressure

UyVyw displacements in cartesian co-ordinates

X9Ys2Z cartesian co-ordinates

X'yy'y2' local cartesian co-ordinates

E Young's modulus

H Gausslan weighting factor

K shear strain factor

P polynomial function

T temperature

v strain energy

W.D. work done

~ coefficient of thermal expansion

R) displacement normal to shell surface

= direct strain

X shear strain

3) Poisson's ratio

Subscripts

e element axes

1 nodal quantities

Jrk,1 Gauss integration points

m,N,p Gauss order

E elastic strains
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L local axes
0 thermal strains
T total strains

Matrices and Vectors

{ } column vector
[ ] matrix
[ ]T transpose of matrix
YZ] matrix relating nodal values to coefficients of functions
Ta] partition of A matrix
{AA] matrix relating nodal pressures to pressure function
coefficients
[B] matrix relating strains to displacement function
coefficlents
[D] stress/strain matrix
o] stress/strain matrix for thick shell
{P} force vector
[J] Jacobian matrix
{P(EI,'Z,L’,)E polynomial function for displacements and geometry
%Pp(ﬁv?)} polynomial function for pressure loads
[U] upper triangular matrix

[otu.qtv,dw] displacement function coefficients
[a(xf(y,dz] geometric functlon coefficients

{c‘} stress vector

{675 strain vector

{e'g strain vector for thick shell
{3 g displacement vector

[e] direction cosine array
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A A A
V,E, ’V'Z ,Vr1 vectors in¥€,9,g directions

A A .
Vx""y"?’z' normalised vectors in shell axes x',y',z"
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3s1 Introduction

Large numbers of elements with simple geometric shapes e.g.
triangles, parallelograms, tetrahedra, parallelepipeds etc.
are required to give an accurate idealisation of the geometry
of complex structures. The advantage of using sophisticated
elements with large numbers of degrees of freedom may not be
fully realised if large numbers of elements are required to
idealise the geometry of the structure. These difficulties are
overcome when curvilinear elements with curved boundaries are
mapped into simple geometric shapes by suitable co-ordinate
transformations. For each element functions which define the
geometry of the element and functions which define the
displacement variation over the element are required. Ergatoudis,
Irons and Zienkiewicz (ref. 3O)Ideveloped a set of "lsoparametric"
elements in which the functions used to define the geometry and
the variation of displacements are identical. Structures can be
accurately modelled with a few of these elements compared with the
large numbers of the simple type of elements required to give
equivalent accuracy. These elements have been used to analyse a
number of complex structures, Zienkiewicz (ref. 31), Ergatomdis
et al (ref., 32), Hellen (ref. 33), and offer the best general
family of finite elements for the analysis of large in-plane
and 3-dimensional structures.

Application of standard 3-dimensional isoparametric elements to
thick shell problems lead to some difficulties because of the
large stiffness coefficients associated with the relative
displacements normal to the shell. Further, large numbers of

degrees of freedom are associated with the displacements through



the shell thickness and by using the usual shell assumptions,
that the normals to the middle surface remain straight after
deformation, a large economy on the total number of degrees of
freedom can be made. A development of the parametric family of
elements was made by Ahmad (ref, 34) who proposed a thick shell
"super-parametric" finite element. The term "super-parametric”
means that the function defining the geometry of the element is
more general than the displacement function (ref. 31). The Ahmad
element has been modified to be more useful when using an
jdealisation which contains other parametric elements. The
original Ahmad element was defined entirely by a series of nodes
at the mid-surfaces of the element. The degrees of freedom at
each node are 3 translations and 2 rotations of the shell normal.
However it 1s difficult to join these elements to the isoparametric
elements which have 3 translations at each of the nodes.

A thick shell isoparametric element, based on the proposals
of Ahmad, which has nodes on the surface edges of the element
rather than the mid-surface has been developed. Each single node
of the Ahmad element is replaced by a pair of nodes in the new
element. The number of degrees of freedom of each element is
identical as each palr of nodes in the modified element is
constrained such that straining of the mid-surface normal is
neglected.

This element can be used to model the shell portion of a turbine
casing together with the standard isoparametric element which
models the flange section. The elements are connected by a
transition parametric element based on the isoparametric element

which has modified stiffness terms associated with the displacements
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of the face joined to the thick shell element. These elements are
shown in Fig. 3.1.

Standard tests have been performed for pressure loadings and the
convergence to the exact solutions with each type of element is

shown,

1 Iso metric Finite Elements

The basic concept of the isoparametric finite element is that
the polynomial functions used to describe the geometric shape of
the element are identical to those used to describe the variation
of the displacements over the element. To describe the element
geometry in cartesian space a set of curvilinear co-ordinates
(57,2,9) are used. These co-ordinates map a cube into a distorted
form, as shown in Fig. 3.2, The curvilinear co-ordinates vary
within the bounds -1€$€ +1 etc.

The co-ordinate transformations and variation of displacements

are defined by polynomial functions in the curvilinear co-ordinates.
LX’Y92] = ip(gy?"})} T[“xf(y#z] 3.1(a)
[u9V’W] = %p(EI’?'S)} T[“uﬂvo"‘w] 3.2

where gP(EI,?,r,)} T is a vector of functions of the curvilinear
co-ordinates ©,",7 and their coefficients are o, ,x,, etc. The
coefficlents olyyo4,y etce can be defined in terms of the nodal
co-ordinates xi,yYj,z4 and the nodal displacements Ujyviswy by
substituting the nodal curvilinear co-ordinates in equations 3.1
and 3.2

{x% = I_A] {“x} etc. 3.3(a)
and {Uig = ‘_A.\ {“u‘i etc. 3.4(a)
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Consequently ‘{x,& = [A ]"1 {xii etc. 3.3(b)

and {“u.g = [A]'1 iui} etce 3.4(b)

The displacements and geometry of the element are given in

terms of the nodal values as

x = {P(g,-z.t;)} T [A]"‘{xi} etc. 3.1(b)
X x= Pt §xd
where {“i“‘a"z"ﬂ? - iv(g.q,s)g Ty

is termed the shape function.

Zienkiewicz (ref. 31) discourages use of this method of defining
the shape functions as there is a possibility that the inverse of
[A.]mmy not exist. This method however is much simpler and more
economical than defining shape functions. The [Aj] matrix is non-
singular for all the types of parametric element used.

The order of the polynomtal function is dependent on the number
of mid-side nodes. The total number of terms in the function is
identical to the number of nodes in the element, as the nodal
values determine uniquely the variation of the function. The
choice of the polynomial function is made by retaining the lowest
possible terms compatible with the order of the displacement
functions required. The polynomial function used for the 20 node
{soparametric element of Fig. 3.1, which has 1 mid-side node on

all edges, has a parabolic variation in {I,Q and ¢ and is given by

(P& Y T = {15555 BTG P s o5 a5 205155
AR S A AT 3.5

The element is conforming because the displacements on any surface
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are uniquely defined by the nodal displacements of that surface.
The polynomial function also satisfies the usual convergence
criteria of rigid body modes and constant first derivative,

Zienkiewicz (ref. 31).

Generation o 1 £ £

The finite element equations are obtained from the minimisation
of the total potential energy of a structure, given in terms of
the strain energy and the work done, with respect to the variation

of the nodal displacements of the structure,

- 3] )
for all nodal displacements.

The strain energy can be calculated individually for each
element and the terms summed for the complete structure. The

strain energy for each element is
2
Vol
The stress is related to the strain by the | D | matrix

i o]{<t

i_x ix
. i °'Z . ez
where ic’g =Y Cxy( and i&} = ¥Yxy
Cyz Byz
Cax Bax
o .
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The strains are defined in terms of the displacement function

coefficients as

h - 3
[ o E ([
3; ox ? 0, ©
dv 9P
3y Osgzy» O Xy
ow oF
) 37 0 0
. o2 - ” ) P
{&% "3 2’\;+ v [ |ap 2p 4 v ? 3.9
3? ox a_y ’* 3x ? 0
gV, o 0,20 X x
Y 2 'z ' ¥y w
ow , Qu p 2P
x| oz oz ! ' 3%
UL I

se.  {el- [8]{«} 3.9(a)

The displacement coefficients are defined in terms of the

nodal displacements from equation 3.4(b)
io(}- [X]q {5;& 3.10

) [A'_\'1 0 0

where [7\ ]“ - [“]q 0 3.10(a)

sym (A} -1
.
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This gives the strain energy, equation 3.7 as

V-1 {3& T[K]T [s] T[D][B]dVol[K]-1 ié‘% 3.7(a)

Vol
The derivatives of the polynomial function P(g,?,s) with respect

to the cartesian co-ordinates x,y,z in the [B] matrix are

given by
h - 9
r_Q_P ra_x Y oz rap oP
o€ o¢’ g’ o ox EE
P . | ox oz oP , °
{52 r S %l?, > Ja_y [J]J-D—Y? 3.1
OP x 3y 2z P OP
% 5 % x| | o
(') L 4 L)

The value of the Jacobian matrix {:J'] can be found as the functions
XYz are explicitly defined in terms of the curvilinear co-ordinates
47 from equation 3.1 Further the left hand vector can be
evaluated directly as the polynomial expression is defined in terms
of the curvilinear co-ordinates. The Jacobian matrix is inverted

to give the derivatives of the polynomial function with respect to

the cartesian co-ordinates.

r 1 )
op 2P
3% ag
JpP -1 JoP
45‘,. } -[5]) Jia‘rz? 3.12
oP ap
> 3
. J - J

These values are substituted in the strain/polynomial coefficient
matrix of equation 3.9. The matrices in equation 3.7(a) are now
defined in terms of curvilinear co-ordinates and the limits of

the integration must be similarly modified. The transformation
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of the variables is made using the determinant of the Jacobian
matrix (ref. 35)

dx dy dz = det[J}dg dy de 3.13

11 n
The limits of integration are over a cube, not the distorted

shape of the element, and are within the limits -1 to +1 for

each co-ordinate direction,

We now have

T +1 [+1(+1 I T
z [x] . [ [p][B]aet [J]dgd-zdc’ ] {31:%

-1 J-1
"{Fk = 0 3.14

It is impossible to perform this integration explicitly and
numerical integration has been used. The process employed is
that of Gaussian quadrature (ref. 21) where the integral of a
function f(x) is given by the sumation

+1

n

f(x) dx -Z Hy f(ay) - 3.15
-1 j=1
where n is the number of summation points and Hj the weighting
factor for the function when X=aje Table 3.1 gives values of H
and a for Gauss values up to n=6, For n sampling points a
polynomial of degree 2n-1 can be integrated exactly.

To evaluate the triple integral of equation 3,14

+1 ]+ 1+

[A"] T £(59) dg dp dyg [:A-1] 3.14(a)
- 1

1)-1)-
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it is necessary to do the triple summation

1(1(1 m n p
£(§s)dg dn dg = Z Z Z HHkH) £(53,0051) 316
-1J-1 )1 3=1 k=1 1=1

The term f(%;,7cs57)) can be directly found for all elements
and the stiffness expression in the general equation can be
calculated. It should be noted that the Gauss order, although
usually the same in each curvilinear direction, may differ to

suit the order of the polynomial functions in those directions.

3:204 Generation of Thermal Loads

The strain energy is given by the stresses and elastic strains
which are a function of the total strains less any initial strains
due to thermal expansion. In equation 3.6 the strain expressions
are identical to the elastic strains. These have to be modified

by

{e& - §e& -i%’g 3,17

where iéog are the thermal strains. For each element the strain

energy term in the potential energy expression is (Mj“ll>

: . T
v-1] el Ticr% dvol =3} §€ - €} 1P]§€r €53 avor
Vol Vol

which reduces to

v-% g:er%T[o] {e& dVol - | {e T%T[D]{GOEdVol

Vol Vol

-3 {GO% o) %GO)SdVol 3.18

Vol
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Defining the total strains séif% in terms of the nodal displacements

gives the strain energy as

i
vl s TIATTT | (8] TIo] [elave [A]7" {54

J Vol 3.19

AL \ (817 (o) et aver 5| fek TLpI§ek avor

J Vol Vol

When these terms are summed for all the elements and the potential
energy is minimised with respect to the nodal displacements the

finite element equations for each element are given as

217 {17 [p]{e)aver {2 ] gJ{g- 1a1°* | (817 p] fepk dvol
Vol

Vol
— - - — - - =~ ~ O~ - =
Stiffness Terms Equivalent Nodal Forces 3.20

The equivalent nodal forces to the thermal strains are given

by

) «3-T| TV
{p;g -[x] LB] LD]g(eo?S dVol 3.21
Vol
To determine the forces due to the thermal strains the numerical

integration is performed identically to equation 3,16, The values

of the thermal strains are given by the coefficient of linear

expansion o and the temperature T at the Gaussian integration

int.
po f

T
xT

T
{eog = Yo 3e22
0
0

.
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3.2,5_ Pressure Loading

The Work Done by the pressure p over the facs of an element

is given by

W.D. = p o dArea 3,23
Area

Here O is defined as the displacement normal to the surface of
the elements. The normal displacement is expressed in terms of
the cartesian displacements u,v and w as follows.

The vectors 05' and Q’l are tangent to the surfaces whenﬁa-—1

or$=+1 and are given by

V. = X ¥ty
Ve, °’$T+ agj + > 3.24(a)
v o= X o 2, 02¢
v,l aQI + asz + 572k 3.24(b)

where X,Y,z are defined by equation 3.1.
A A
The vector V normal to the surface is normal to both V!, and

\71 and is given by their cross product

"} - 05 X Goz 3.%(.)
which gives
vaflyoz_oyoz )2 +(2x2z _ox az (a_".al x Y \k  3.25(b)
bf’ a'z ai‘l 3?, a'l ag a:, arz aﬁ, 3? asl a¢7

This vector when normalised gives the direction cosines of the

normal to the g- -1 or +1 surfaces relative to the element axes

1
V=014+8,] +O5k = Stef g 3.25(c)

Hence the Work Dome by the pressure load on each element is given

by

W.D. = p {u.v,wz T §9§ dArea 3.26
Area



Defining the cartesian displacements in terms of the nodal

displacements gives the Work Done as

, B, P(%:%9
W.D. = {5& Tx]! ®, P(5,%5) | p direa 3.27(a)
Are 93 P(&,7:)

A set of equivalent nodal forces is evaluated when the total
work done expression is differentiated with respect to the nodal
displacements in the minimisation of the total potential energy
expression. This gives the equivalent nodal forces for each

element as

‘ i 8, P(5,9,9)
{p% -[3] ®, P(5,%5) L p dires 3.27(b)
Area | ©, P(95"0Y)

The face being subjected to the pressure forces is described in
a set of curvilinear co-ordinates and it is convenient to use the ;
same numerical integration process used in the generation of the

element stiffness matrices. Only two of the summations are needed

when the value of the third co-ordinate l.‘,'-is «1 or +1, These two
values allow internal and external pressure forces to be applied
although when external pressure forces are applied q =+1 the
integral has to be multiplied by -1 as the normal defined by the
tangents is outwards from the element. The scaling factor for
integration in the curvilinear co-ordinates is introduced by not
normalising the normal vector \7 as the magnitude of this vector
is equal to the ratlios of the areas of the transformation. The

equivalent nodal forces for pressure loading are given by

{F% [T Z Hij iF(% Nk f')g 3.28(a)

a1 k=i
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where L”n =1 or +1 and

: Tr .
| 9y 9z dydz |

P63, %9 a%w%k a:fi'a‘%

: dx 9z _3x oz

iﬁ(gj,'zk,‘, )} = < P(§5,%9) J}qfa% ’a’e,‘;' on Ik

ox dy Ox Oy

P(%3 2 09) 5oy ang

“~

where the pressure p varies across the element surface.

3,3,1  Thick Shell Parametric Finite Elements
The element formulation for the thick shell finite element is

based on the usual shell assumption of negligible through thickness
direct stresses. These stresses are assumed to contribute nothing
to the strain energy. The element is different to that proposed

by Ahmad (ref. 34) in that the quadratic element is defined by

16 nodes each with 3 translations, compared with 8 nodes each with
3 translations and 2 rotations., Each node on the mid-surface of
the "Ahmad" element is replaced by a palr of nodes on the outside
surfaces of the shell. The différence in the total number of
degrees of freedom is eliminated by constraining the shell
thickness to remain constant, The degrees of freedom normal to

the shell surface at each pair of nodes are made identical.

The co-ordinate transformations and displacements are again
defined by polynomial functlons, the coefficients of which are
defined by the nodal values. The polynomial function for the 16
node thick shell parametric element with mid-side nodes on the top

and bottom faces 1is

PG T = {1 RS T 05 s
S5 § 2



This element is also conforming because it is an isoparametric

element.

3.3.2 Generation of Element Matrices

In order to eliminate the normal direct stress term from the
strain energy expression it is convenient to set up local
cartesian axes which include the normal to the shell, The
orthogonal axes which define the local strain components are
found from the variation of the functions defining the element
geometry. The vectors in the € direction Gg and ? direction 0?
for any G = constant surface give the vector 6;' normal to this

surface as their cross product

a A L]

v,' = Vg x Vg 3.30(a)

A A
where V%x V,Z are given in equations 3.24 and

A y oz _ oy, oz ex Oz ox 3z x ay ox By \
V' = e — j 3.30(b,
3, 97 an d¢ aqas,a 3y 3 5y 57 %)

It is possible to define an infinite number of orthogonal axes

one axis of which is defined by the vector Gz'. However a unique
set of axes 1s defined by noting that both the vectors Gg and
GQ used to form the vector Gz' are normal to 6;'. Hence by
defining the x' direction to be identical to the g direction
then a unique set of axes is formed by the cross product of the
vectors ;z' and 6;' where 6;' is identical to ; .

A A

A
VY' = V,' x Vx' 3,31

These vectors are normalised to give the direction cosines of

a set of local orthogonal axes in terms of the element axes

(o] =[ % % %] 3.32
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The derivatives of u, v and w in the element axes are transformed

into the local orthogonal axes to give the strain components as

—au' ov' Qw'— Bu ov 8w—
a;o ’ a'x" ! ax! ox ? ox !? af'
du' OJv' Ow' _ T|ou °ov Oow
oy ? Sy * 5y = [e] 3y ' oy’ 3y [9] 3633
Ou' oJv' oJow' Ju v Ow
_&TE' ' 53¢ 9a’2|J o9z 'z '3z
where
Bu ov ay_—‘ r?)g
ox * Ox ® Ox Ox
o o o oP
R I
du dv Ow oP
oz ?* 3z °? a?_j 9z
L - y

The strain energy 1s evaluated in terms of the strains and stresses
defined in a set of axes normal to the shell surface at each

numerical integration point,

1 "T '
V= {e } {0’} dvol 3.35(a)
Vol
where ﬁfx' A . nix' )
c-" ' 6 L ]
IR SR GRS
\C to 8 t e
\cylzt Kyizl
zZ X { zZ X J
\ . o e

This gives the usual finite element stiffness expression as

[xe) = [a1 T | [&]7[o' )| 5] aver | 5]~ 3.35(b)

Vol

where ‘LD;], the stress/strain matrix, is based on zero normal
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direct stress.

— —
1 »® 0 0 ©
1 0 0 0
D'| = _E _
1-0 0
i ¢
1=hd
sym X
L ~

The [B'] matrix relates the local components of strain to

the displacement function coefficlents as

- B

here
e réx' ) r-au'/gx' )
eyl aV'ﬁY'

3.36

-~y

{eo} =J Kxoyt %,J 3u0ﬁyl +3v'/6x'
‘/'z' 3\!'/(32' +avayc

BX'Z' au'/()z' +aw|@x|
J ~ 4

L

and [B'} relates the strains in a set of axes normal to the
shell surface to the coefficlents of the displacement functions.
The factor K is introduced into the (_D'l matrix to account
more accurately for the shear strain energy. The usual value
for K is 1.2.

The normal direct strain is constrained to be zero by defining
the degrees of freedom for each node pair in a set of local axes
whose x axis is normal to the shell surface. The degrees of freedom

in the x direction at each node pair are constrained to be identical

but the other degrees of freedom are independent to allew for shear
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deformation (see Fige 3.3).

The displacements are found by the summation over the total
structure of equation 3.35 and solving for SS & o The equivalent
nodal forces are found in the same way as those for the
isoparametric elements, sections 3.2.,3 and 3.2.,4. The stresses
are found in a set of local axes normal to the shell surface.

In the formulation of the stiffness matrices it has been assumed
that the normal direct stresses are zero, but when the stresses
are evaluated for a shell subjected to pressure loading it is

assumed that the normal stress varies linearly through the thickness.

3,4.1 Transition Pargmetric Finite Element

The idealisation of turbine casings is made using a combination
of thick shell parametric finite elements to model the shell
portion and isoparametric finite elements to model the flange
and fillet portions of the casing. One method of joining these
elements, see Fig. 3.4, constrains the displacements at the
outside nodes of each element to be identical but imposes no
coupling between the elements for the mid-side node(s). The
result is that after deformation the normals to the shell surface
remain straight, whereas the mating face of the isoparametric
element becomes distorted leaving a gap or penetration between
element faces. A possible method of combining such elements is
to use a parametric transition element which is explicitly written
to overcome these difficulties.

The transition parametric finite element is basically an
isoparametric finite element with degrees of freedom on an end

face constrained such that the normal to the surfaces before



deformation remains straight after deformation.

Generation of Elemen trices

The stiffness and loading matrices for the transition parametric
finite element are generated in an identical manner to those for
the equivalent isoparametric finite element. The mid-surface nodes
on the face adjoining a shell element are constrained such that
the normals remain straight after deformation. The displacements
are transformed into the local set of axes whose x axis 1is normal

to the shell surface from the element cartesian axes,

S.SI?S = Y.DCAL]T[DCA;] {Se?g 3.37

The element illustrated in Fig. 3.5 is to be joined to a shell
element on the surface 1-10-3-15-7-18-5-13-1, Node 13 is constrained
to remain on the line joining nodes 1 and 5 and node 15 on the line
joining nodes 3 and 7. The displacements in the local y and z
directions at the mid-side nodes must be a linear function of the
displacements at the corner nodes.

Viig i(v11 + VL5) 3.38(a)
Wiz = Hwy + owig) 3.38(b)

The u displacement is allowed to move, dependent on the coupling
terms associated with these implicitly imposed constraints, and
those assoclated with the other element degrees of freedom, By
substituting equations 3.38 for the through thickness mid-side

nodes on the junction face in the strain energy equations the

the stiffness and loading matrices are modified, Appendix 6. The
terms directly associated with the displacements constrained so

that the nodes remain on a straight line are removed from the
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stiffness and loading matrices. There are no longer any degrees
of freedom associated with these terms in the structurae.

The stiffness and loading terms are transformed back from the
local or global axes to the element axes ready for summation
with the other terms for the structure. This is necessary as the
merge algorithm, being of the most general nature, has to have
the element terms presented to it defined relative to a set of
axes dependent on element topology.

To determine the stresses the values of the constrained
displacements must be calculated from equations 3.38 before the

coefficients of the displacement polynomials can be found,

1 Pr mmin hniques (Iso metric Finite Elemen

The programs to generate element stiffness and loading matrices
for the parametric family of elements are very similar, the
isoparametric and transition parametric element algorithms being
combined, The basic modification for the shell element is the
firiclusion of the transformation steps to modify the element
stiffness terms into axes normal to the element surfaces.

The flow diagram for the 20 node isoparametric element is
shown in Fig. 3.6(a). The element nodes are defined in terms
of the curvilinear co-ordinates to enable the ‘;Z-] matrix to
be calculated from the polynomial function {P(‘E,,Q,t,)z « The
[K.] matrix is partitioned into three portions to gnable economy
of store and central processor time to be achieved. These partitions

are identical by definition of the parametric formulation. Taking

equations 3.3(a) and 3.4(a) and by partitioning the ‘:313 matrix
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This partition reduces the size of the [;Z-] matrix from the
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square of the number of degrees of freedom for the element to

the square of the number of nodes of the element [:Ajl. For the

20 node isoparametric element this reduces from 60 x 60 to 20 x 20,

a reduction to 11% of the original store requirements. Similarly

computation time is saved as a very much smaller matrix is now

inverted.
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and typically
Soud = Tad™ {ui} 3.39(d)
i"‘x% - [a17 S‘L"ig 3.40(d)

The PAFEC suite of finite element programs has provision for
the use of more than one element type in any structure. The
number of elements of any one type for wh;ch the stiffness and
loading terms are generated is read within the element algorithm.
The algorithm loops through this number of elements to generate
and merge the stiffness and loading terms.

Within each loop the element topology is defined by ordering
the nodal points in the same way as the nodal points were defined
when calculating the [A] matrix, Fige 3.7. The value of the
density of the element is used as a control which saves recomputing
the [:D-] matrix or equivalent, This also saves data preparation
in redefining the material properties should they be the same as
the previous element. The nodal co-ordinates are listed to enable
the element geometry to be calculated in terms of the co-ordinates
of node 1, Fige 3¢7. The stiffness and loading terms are evaluated
in terms of the element axes which are defined as the x, direction
being along the line joining nodes 1 and 2, the xgye plane
containing the nodes 1, 2 and 3 and the z4, direction being normal
to this plane. This enables large economies of computing to be
achieved when elements have identical properties and geometry
but are displaced and orientated relative to each other. Once the
stiffness and loading terms have peen calculated for the first

element they can be used within the merge algorithm using the new



direction cosine array of the element axes and relevant nodal
ordering information. The control for this step is that the
material density has a value of =1.0 and the element is identical
in every respect, including pressure and thermal loading if used,
except position.

For elements which are not identical the stiffness and loading
terms are found by numerical integration in curvilinear
co-ordinates. The coefficients of the polynomial functions defining
the element geometry in element axes are found from equations 3.40(d).
Gaussian quadrature, Table 3.1, of order 3 is used for the numerical
integration in all three co-ordinate directions. At each Gauss
integration point, defined by the curvilinear co-ordinates %, Q
andg. the polynomial functions and derivatives with respect to

the curvilinear co-ordinates are found.

{p(g,q,q>}ﬂ§9ﬂ§.€?ﬁ)§ ?P(; %) {BP(E,Q.'-',)} 34

The Jacobian matrix [J '_} is found from the coefficients of
the functions defining the element geometry, g«'x‘i ,{O(y—i ’ %( z%

and the derivatives of the polynomial functions, equation 3,41,

—

4y ‘“""% ?"% MR
o e R |
{BP T%"‘x‘i % § i golz

The polynomial functions differentiated with respect to the

? 3
element co-ordinates, 3: gf; a: are found by dividing the

—

polynomial functions differentiated with respect to the

curvilinear co-ordinates by the Jacobian matrix [J ],
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equation 3,12, A by-product of this division process is the
determinant of the Jacobian needed to scale the integration
from curvilinear co-ordinates to element co-ordinates, equation
3.130

The product CB]T [D][ B] can be found directly by matrix
multiplication, [ B] and [ D] being defined by equations 3.8
and 3.10. This is a very large multiplication because [B ]
is declared 6xIDE, where IDE is the total number of degrees of
freedom associated with the element, and [D ] is 6x6. A more
economic method of finding the product (_ B']T[D][BJ proposed
by Irons (ref. 36) has been found to reduce the element generation
time to at most 40% of the time required when using the direct
multiplication method. The {D| matrix being symmetric is easily
converted to a lower and an upper matrix where the lower matrix

is the transpose of the upper matrix.

(1= Lul"[v] | 3.43

The value of the upper matrix is given in Appendix 7.

The product [B—_'\T[U]T[U][B] can be found more economically
by forming | UJ{ B ] directly and noting that CB:\T[U]T is
the transpose of Y_U-_“:B‘_‘. It is then only necessary to form
the terms in the lower triangle of the stiffness matrix as the
' product |B ]TY_U]T[_U][B] is symetric.

Similarly for initial strain problems such as thermal loadings
the product |B ]T[D] ieo% can be modified to | B j‘[U]T [u]{ﬁok
to make use of the previously calculated [B](UT. These
products are summed together with the weighting factors for each

Gauss point, equation 3,16 and Table 3.1.
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For pressure loadings the numerical integration has only to

be applied in the % and R curvilinear directions. A linear pressure

variation is defined by the pressure at the corner nodes of the

g=t1 face. For internal pressure*t‘,=-1 and the pressure is positive

and for external pressure t,=+1 and the pressure is negative.

The pressure variation is defined by

where

p= {Pp(f,.q)} T{o(,,}
{“p% = [a]” im}

are the coefficients of the polynomial function

Poen "= {15gat”

The vectors Gg and 3.2 at the surface integration points are found

3.44

3445

3.46

from the differentials of polynomial functions with respect to

the curvilinear axes and the coefficients of the functions defining

the goemetry. The equivalent nodal forces can then be found

directly from equation 3.28.

After the numerical integration the product 2‘:BT3[D][B]

has to be pre and post multiplied by the inverse of the ‘_K]

matrix to give the matrices in terms of the nodal displacements.

This is achieved economically by the partitioned [K ]matrix as

(41"
0
0

IDE x IDE

0

{17

0

0

o

oul

(1 (o1 (2]

IDE x IDE
F_[A] T o 0
o @17 o

| o o (4] '1_1

3.43



These matrices are then summed into the total structure stiffness
and loading matrices using the direction cosine array to transform

the element terms to global axes.

oqr ng Techniques (Thick Shell Paragmetric Element)
The thick shell finite element is programmed in an identical

manner to the isoparametric finite element taking account of the
different number of nodes and change in polynomial functions but
has an extra section in the numerical integration section. This
calculates the stiffness terms in a set of orthogonal axes normal
to the shell surface at each integration point. The point where
the insertion of the extra program is made is shown in Fig. 3.6(a)
and is given in Fig. 3.6(b). The set of orthogonal axes is found
from the terms used to generate the Jacobian matrix, equations
3.32 and 3.33. The [ B | matrix is transformed by individually
transforming the derivatives of the polynomial functions for

each position in the [B] matrix. The [_D] matrix given in
equation 3,30 can be similarly operated on to give the upper

and lower matrix type of formulation for ecomony of computation,

Appendix 7.

3__Pro ng Technigu Transition Param E n

The generation of the element stiffness and loading terms is
identical to the isoparametric element, Fig. 3.6(a), except for
a portion immediately preceding the merge algorithm, Fig. 3.6(c).

The terms associated with the nodes constrained to remain in a
straight line, Fig. 3.5, are transformed from element axes to

local axes through global axes. The terms are then adjusted by
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substituting equations 338 in the strain energy equation. A
simple example of this modification is given in Appendix §.

The stiffness and loading terms which have been eliminated are
nulled before the terms are transformed back into element axes.
The PAFEC merge algorithm will sum the stiffness and loading
terms for this constraint correctly provided that no degree of
freedom has been assigned to the v and w directions in the local

axes at the nodes concerned.

.6 Numerical Example

The parametric family of finite elements has been shown to
give good results for a number of problems for which exact
solutions are known as well as more complex engineering structures
(refs. 31, 32 and 33). A number of solutions using the parametric
elements to idealise a cylinder subjected to internal pressure
are compared with the exact Lame solutions. These solutions give
an indication of the usefulness of each element and provide
information on the maximum arc length which the elements can

idealise,

3.6e1 Isopargmetric Finite Flement

The results of 3 different isoparametric finite elements used
to idealise a thick cylinder subjected to internal pressure are
given in Table 3.2. The elements all have quadratic displacement
and co-ordinate transformation functions in g and ?'but have
linear (R37130), quadratic (R37110) and cubic (R37160) functions
in the ; direction normal to the shell surface.

The exact solution is known to have a quadratic radial strain
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function through the thickness of the shell. This can only be
represented exactly by the cubic g(iiSplacement function of the
element R37160. The simpler quadratic element has a linear radial
strain distribution and the linear element a constant radial

strain through the thickness. The radial and hoop stresses for
each of these solutions are compared with the Lame solutions in
Fige 3¢8(a)e It can be seen on examination of the strain components
which produce these stresses, Table 3.2, that the difference in
the stresses is due to inaccuracies in the radial strain component.
Because of the Poisson effect the stresses in all three directions
are affected. The isoparametric element with only a linear
polynomial function in the radial g direction is unacceptable

even though the hoop stresses are approximated reasonably well.

The cubic element gives exact answers at the cost of increased
numbers of nodes, whereas the quadratic 20 node isoparametric
element gives reasonable results for the radial stresses and

good results for the hoop stresses. The variation of the stresses
with angular position for the thick cylinder idealised by

quadratic isoparametric finite elements across 30° arcs is given

in Fige 3.9(a)e The small variation from the exact solutions

shows that quite large arcs can be idealised by these elements
without poor stresses resulting. The parabolic "looping"” of the
stress variation for each element is due to the inability of the
parabolic co-ordinate transformation functions to define the

shape of the cylinder exactly. When bending begins to be significant

only small arcs can be modelled as the "looping" becomes large.
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3.6.2 Thick Shel]l Parametric Finite Element
The thick shell parametric element overcomes the difficulties

caused by inaccurate representation of the radial displacement
of the linear and quadratic isoparametric elements. By neglecting
the radial stress in the evaluation of the strain energy the
meridional and hoop stresses are found in terms of the meridional
and hoop stralns.

The idealisation used in section 3.6.1 has been used to test
the 16 node thick shell parametric element, with quadratic
polynomial functions in g and:z, when subjected to internal
pressure. The results for this element are compared with the
exact Lame solution and the results for the 20 node isopargmetric
element, Table 3,3. The radial stresses for the thick shell element
are calculated from the value of the internal pressure. It can be
seen from Fig. 3.8(b) that the stresses for the thick shell element
are as good as those given by the equivalent isoparametric element.
However only 40 degrees of freedom are necessary to describe the
displacements of the thick shell element compared with the 60
needed by the isoparametric element.

Similarly large arcs can be idealised by single elements when
the thick shell element is used to idealise pressure vessels. The
"looping” due to the inaccuracies in the function defining the
cartesian co-ordinates is only just apparent in the hoop stresses.
The radial stresses show no such "looping" as their values are

directly set by the value of the internal pressure.

3:6s3 Transition Parametric Finite Element

The transition element which joins the thick shell element to
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the isoparametric element is based on the latter element. When
this element is used to model a thick cylinder subjected to
internal pressure the results are identical to those given by

the isoparametric element.

3.6.4 Iso, Transition and Shell Parametric Finite Element Combingtion

The three types of parametric element have been combined to
model the thick cylinder subjected to internal pressure, see
Fige 3410, This element combination is used when the "Thick
Shell" parametric element is to be used to model the shell
portions of turbine casings. It can be seen that the "Transition"
parametric element joins the shell and isoparametric elements
with good continuity of stresses. The shell element however
shows a large "looping" effect in the stresses due probably to
the constraints applied by the transition element. However the
mean stresses are close to the exact solution and it would appear
that the shell and transition elements on either side of the

junction face should have as small an arc length as possible.



Chapter 4. Frontal Solution.
Notation

i position of "redundant" degree of freedom

id maximum instantaneous size

idf degree of freedom label

ilo number of loading cases

x unknown variable

F loading term

F'® modified loading term

K stiffness term

K' modified stiffness term
Suffices

e element axes

g global axes

1,3,k positions in matrices

1 local axes

- 64 -

Matrices and Vectors
[ pac ]
L oca]

i F} loading vector

direction cosine array, local to global axes

direction cosine array, element to global axes

[K] stiffness matrix
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Introduction

The variational principle of minimum potential energy of a structure
from which the finite element equations are formulated gives a set of
linear simultaneous equations for the nodal displacements. The solution
of these usually large sets of ecuations can be simply obtained if the
matrix containing the coefficients of the equation can be held within
the computer core store. The majority of computer software systems
have an efficient matrix handling pack and the solution of the finite
element equations is found by a matrix inversion algorithm operating
on a vector or vectors of constant right hand side terms. Efficient
methods of inverting and storing this matrix are available and when
the inverse is required for subseguent solutions the Cholesky
decomposition algorithm given by Wilkinson (ref. 22) has been used.

When the size of the coefficient matrix to be stored exceeds the
limits of the computer store economies can be made by reclaiming the
areas of the matrix of zero coefficients. These are usually abundant
in finite element analyses where many elements are used in an
idealisation as coupling of stiffness terms only span adjacent
elements. By suitable ordering of the degrees of freedom the non-zero
coefficients are concentrated in a narrow band about the leading
diagonal terms. The coefficient matrix is then declared in rectangular
form, being only as wide as the bandwidth, thus enabling much larger
idealisations to be used and still retain the coefficient matrix in
core storee. A banded Cholesky decomposition algorithm, again given by
Wilkinson (ref. 23) has been found to be extremely efficient for this
type of problem. Creat care has to be exercised in the ordering of

the nodes as this can significantly increase the semi-bandwidth of

the coefficient matrix.
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Wlhen the structure becomes so large that it is impossible to retain
all the non~zero terms of the coefficient matrix in the computer core,
methods which either destroy part of the coefficient matrix or transfer
the coefficients to backing store have to be used. The methods are
usually direct or iterative, the direct methods usually being based
on Gaussian elimination and limited by the instantaneous semi-bandwidth
of the structural equations. By only retaining the coefficient terms
of equations giving the degrees of freedom of interest, the equations
associated with the other degrees of freedom can be eliminated from
the coefficient matrix when all the terms associated with them have
been calculated. This is the standard "reduction” algorithm for
analysing small areas of very large idealisations.

For very large idealisations it is better to use a few high order
displacement function finite elements in place of very many simple
elements. This reduces the total number of coefficients necessary
for a solution, but is usually outside the bounds of the computer
store. Irons (ref.37) has proposed a "Frontal Solution" to be used
with these high order displacement function finite elements which
retains all the terms eliminated from the coefficient matrix in fast
access backing store and enables the displacements for the total
structure to be calculated. Further the algorithm reduces the size
of the "active" coefficient matrix by using empty rows and columns
as they become available, thus eliminating a large amount of
unnecessary store recuirements. The algorithm also has a re-solution
facility by making use of the terms, in backing store, of the
eliminated equations.

A block elimination algorithm based on Gaussian elimination which

uses fast access backing store to retain the square submatrices of
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the coefficients has been proposed by Cantin (ref.38). This method
which is similar to Irons "Frontal Solution" can solve very much
larger problems but is very heavy on peripheral traffic.

Iterative methods have been used extensively for the solution of
linear equations, many methods of solution being given by Westlake
(ref.39 )o Of these the Gauss-Seidal method, which always converges
for positive definite matrices, if slowly, has been extensively used.
For iterative solutions all the terms of the coefficient matrix have
to be retained, even if backing store has to be used. An alternating
component block iterative solution for very large finite element
idealisations of simple tetrahedron elements has been proposed by
Rashid (ref. 40),

A comparison of direct and iterative solution methods for finite
element equations has been made by Irons and Kan (ref.4! Y« They
conclude that iterative methods are more inefficient than "frontal®
methods when very large idealisations are to be solved, and that the
Rashid approach is the only iterative method worthy of consideration.

The most attractive solution technique for finite element
idealisations which cannot be contained in the computer core, either
directly or in banded form, is the "Frontal Solution" of Irons. This
not only offers complete solution but has the added advantage of ease
of re-solution of subsequent right hand sides of the linear equations.
The "Frontal Solution" algorithm written for these programs is
compatible with the PAFEC suite of finite element programs and the

housekeeping techniques used are completely new.

4,2 Numerical Anglysis

The "Frontal Solution" method of solving a large set of linear
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equations for the displacements of a finite element idealisation
depends on a limited number of those equations becoming "redundant®
as the formulation proceeds. A displacement or degree of freedom
becomes and remains "active" when the stiffness and loading terms

of the first element containing the degree of freedom are being
generated, and while other stiffness and loading terms associated
with elements having common boundary with this degree of freedom

are still to be generated. The degree of freedom becomes "redundant"
when the last stiffness and loading terms associated with it have
been generated and summed with other terms in the overall stiffness
matrix. Vhen a degree of freedom has become "redundant" the stiffnes.
and loading terms directly associated with it can be eliminated by
Gaussian Keduction to reduce the storace requirements of "active"
stiffness and loading matrices.

The maximum amount of core storage required is determined by the
maximum number of degrees of freedom "active" over the duration of the
prooram, termed the "maximum instantaneous size". The maximum
instantaneous size of the "active" degrees of freedom is independent
of nodal or degree of freedom ordering and is solely determined by
careful choice of element ordering. The degree of freedom numbers
are merely labels and are no longer used to determine the relative
positions of terms in the stiffness and loading matrices. By making
use of empty rows and columns in the "active" matrices the bandwidth
is greatly reduced.

When a degree of freedom becomes "redundant" it is eliminated from
the stiffness and loading matrices by reducing out all the terms
associated with it. The set of linear equations for the total

structure is given by
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idt
Kij xj = Fi i=1, idt 4.1
3=1
where idt is the total number of decrees of freedom in the structure.

This gives the "redundant" degrees of freedom as

1-1 idt
x3 = Ei => " Kij xj - Kij xj 4.2
Ky 25: Kii Kiy °
3=1 J=iH1

For large structures the majority of the Kij terms are zero and the
equation can be reduced to give the "redundant" degree of freedom in
terms of the "active" degrees of freedom. Similarly because the
stiffness matrix is symmetric an equal number of Kji stiffness terms
are zero. When this "redundant" degree of freedom is substituted into
the equations with zero Kjj terms the equations remain unchanged and
consequently the reduction equations can be written in terms of the
maximum instantaneous size id.
1d
= ]IZL 'ﬁii X3 - E;i X4 4,3
j=i+1
Substituting equation 4.3 for the "redundant" degree of freedom in

all the "active" equations

id
3=
gives a modified set of "active" linear eguations as
id
j * iZ K'kj Xj = F'k k=1’ 1-1’ i+1, id 4.5
5=1

where the modified stiffness terms are given by

K'%j = Kkj = Kky Kij 4.6
Ky
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and the modified loading terms are given by

F'g = Fx - Kki Fi 447
Kig ‘

The "redundant" ecuation, equation 4.3, is stored in fast access

. terms have been determined.

backing store for solution when the X3

The rows and columns made available after the "redundant" degrees

of freedom have been reduced out are filled with newly "active"
equations as the formulation proceeds. After the stiffness and
loading terms have been generated and summed for the last element

in the structure all remaining degrees of freedom become "redundant",
except for eigenvalue problems, mentioned later, and can all be
reduced out. This leaves the last degree of freedom to be reduced

out as

xy = F3 4.8
Kiji

The solution for this degree of freedom can be found directly and
by a process of back-substitution, calling down each reduction
eouation in reverse order to which the equations were sent to
backing store, the solution of all the degrees of freedom can be
found.

Re-solution of subsequent right hand sides of the finite element
equations is available by using the reduction equations written to
fast access backing store. This means that the stiffness terms
remain unaltered and non-linear problems using re-solution have to
be based on constant stiffness criteria. The loading terms are
summed in the same manner as the stiffness terms were generated
during the element formulation and are modified by equation 4.7

during the reduction process. The coefficients of equation 4.3,

obtained from backing store, are identical to the terms required
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by ecuation 4.,7. The loading term in equation 4.3 is modified to
the loading term given by the "redundant" degree of freedom. The
coefficients and modified loading terms of equation 4.3 are then
rewritten to backing store. The re-solution by back substitution
is obtained after the loading terms of all the reduction eguations

have been modified.

4.3 Housekeeping

The PAFEC suite of finite element programs comprise many types
of element families, all of which can have up to three displacements
and three rotations in orthogonal axes at each node. Information on
the global position and allocated degrees of freedom at each node is
held by the CPDDC array (Coefficients of Position, Displacements
and Direction Cosines). Each degree of freedom is allocated a
number within the limits 1-idt, where idt ics the total number of
degrees of freedom. For simple matrix inversion or banded solutions
these numbers allocated to each degree of freedom determine the
relative position of terms in the stiffness and loading matrices. In
the frontal solution these numbers act merely as labels for storing
loadings and displacements when calculated, as the position taken
in the stiffness matrix is dependent on the empty rows and columns
when the degree of freedom becomes '"active".

A simple example with data prepared for the "frontal solution" is

given in section 4.6 to describe the housekeeping algorithms,

4. 3.1 Cpo Array

The CPDDC array used by all types of finite element is the most

convenient item for containing the reduction information for each
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degree of freedom. The degrees of freedom associated with each node
are stored in one row of the CPDDC array, together with the nodal
co-ordinate data, and consequently the degrees of freedom although
intecer numbers are held as real variables. The reduction
information associated with each degree of freedom is held in the
decimal vortion of this real variable in the form of a tac.

The tag which controls the reduction and elimination process has
to accomodate solutions which may require master degrees of freedom,
found in large eigenvalue problems, repeated degrees of freedom,
where two or more degrees of freedom are rigidly coupled to move
together, as well as the more normal solutions. An example of rigid
coupling is in constraining a face to remain plane to calculate
generalised plane strain solutions.

The displacements at a particular node cannot be eliminated until
the matrices for all elements which contain the node have been
merged into the system matrices. A count on the number of elements
associated with each node has to be made as each element is merged.
The tag 0.01 is added to the degrees of freedom at each node for
each element which that node is common to. Hence a node common tc 4
finite elements has degrees of freedom with tags of C.04 associated
with it., As the element stiffness and loading generation proceeds
the tags on the degrees of freedom at each node associated with the
element are reduced by C.01 for each element appearance. When the
tag finally disappears the degree of freedom has become "redundant"
and the stiffness and loading terms associated with it can be reduced
out,

Master degrees of freedom always have an extra 0.01 added to the

tag, so that the tag never finally disappears and the terms are not
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reduced out. Repeated degrees of freedom are treat2d in a similar
manner by adding 0.01 to all the tags on the degree of freedom
except for the node in the last element to be summed. This ensures
that the degree of freedom remains "active" until all terms

associated with it have been summed.

4,3.2 Merge Algorithm

The stiffness and loading matrices associated with each finite
element are summed into the total structure stiffness and loading
matrices element by element. A flow diagram for the Merge Algorithm
is given in Fig. 4.1. The element stiffness terms are generated in
a set of orthogonal axes whose direction cosines relative to the
global orthogonal axes are dependent on the element geometry and
are given in a direction cosine array ‘:DCA} « To sum the element
stiffness and loading matrices into the total structure matrices

the terms are transformed from element to global axes.

[xg] = [oca] ™ [k,) [ ocal 4.9(a)
{rat = [pcal T {r.} 4.9(b)

It may be required to constrain the degrees of freedom at any

node in a set of orthogonal axes local to the node and different

from the global axes. The local axes can vary from node to node and
the direction cosines of the local axes relative to the global axes
are held in the CPDDC arraye. When the terms associated with the
degrees of freedom defined in the local axes are summed the direction
cosines of the local axes are formed in the direction cosine array

‘:DACi}. The stiffness and loading terms are transformed from global

to local axes by
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[K1] [pac] (k] [DAC}T 4.10(a)
{FI} [oac] {Fgg 4.10(b)

The stiffness and loading terms after transformation can now be

summed in the "active" matrices.

The frontal solution uses the vacant rows and columns left by
"redundant" degrees of freedom to add in the stiffness and
loading terms associated with degrees of freedom which have just
become "active". A simple record has to be retained to allow easy
determination of empty rows and columns of the matrices as well as
the "active" degrees of freedom associated with them. The record of
these positions is made in an extra row added to the stiffness
matrix, which contains the number of the degree of freedom
associated with that column and, as the stiffness matrix is symmetric,
the equivalent row. When the row and column is empty the column of
the extra row is empty. To determine the address of each stiffness
term as it is summed into the stiffness matrix the extra row
containing the positions of each "active" degree of freedom is
searched. If the degree of freedom has only just become "active"
the first vacant row and column is taken and the degree of freedom
is placed in the relevant column of the extra row.

Other methods of allocating the position that each degree of
freedom takes in the stiffness matrix have been used. A second tag
is added to the degrees of freedom in the CPDDC array in the decimal
part of the real variable after the tag which controls the
elimination and reduction algorithms. This tag contains a pointer
to the row and column with which this degree of freedom is associated.

This reduces the number of searches of the extra row for the degree
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of freedom position in the stiffness and loading matrices from
ide2+ide to ide for each element, where ide is the total number

of degrees of freedom for the elemente. This can only be used with
computers with at least a 48 bit word length as the sixth decimal
place has to be determined accurately. A second and more economical
method at run time is to use a destination vector for the positions
of the degrees of freedom in the matrices. The destination vector
holds pointers for each degree of freedom giving the position that
the stiffness and loading terms are to take in the matrices. This
vector is generated as a by-product of the data generation pre-program
(see section 4.4) and changes the search process for the positions

of the degrees of freedom in the matrices to one of direct addressing
from the destination vector.

Ae the stiffness and loading matrices for each element are summed
into the "active" matrices some of the degrees of freedom may have
only just become "active". The back-substitution algorithm requires
the knowledge of when degrees of freedom become "active" so a record
of new activity has to be compiled. The transfer vector ATRANS (see
section 4.3.3) is filled with the degrees of freedom newly “active"
in a row one greater than the position taken in the matrices. This
leaves the first row of the vector empty and serves as identification
to differentiate this activity information from reduction information
commonly held in ATRANS. This information is written to fast access
backing store before the elimination process for the "redundant"
degrees of freedom for the element is carried out.

The tags associated with all the degrees of freedom for the element
whose terms have been summed into the "active" matrices are modified

by reducing them by 0.01. The "redundant" degrees of freedom in the



- 76 -

"active" matrices will be indicated by the tags having become zero
in the CPDDC array. The Gaussian reduction and elimination algorithm

is called from the merge algorithm.

4.,3.3 Reduction Algorithm

The reduction and elimination algorithm searches through the CPDDC
array to find which degrees of freedom are now "redundant". These
are only associated with the element whose stiffness and loading
matrices have just been summed into the "active" matrices. For each
"redundant" degree of freedom the stiffness and loading terms of
equation 4.3 are eliminated from the matrices by modifying the
remaining terms by equations 4.6 and 4.7. The coefficients of
equation 4.3 are stored in the transfer vector ATRANS and written
to backing store after each reduction.

Before the coefficients of the "redundant" ecuation are transferred
to backing store the vector ATRANS is used as a workspace to modify
the stiffness and loading terms remaining in the "active"” matrices.
Before the terms in the "active" matrices are modified a search is
made for empty rows and columns to reduce the number of computations
required. A check is made to ensure that the leading diagonal
stiffness term of the reduction equation remains positive. The vector
ATRANS is used for the modification of the stiffness terms in a
slightly corrupt form as it is more convenient to use the terms
Ki3/~Kiis Kix/~Kig, and Fi/wKj; etc. when computing the reduction
equations 4,6 and 4.7. It is more efficient to obtain the modified

terms 4.6 and 4.7 as

K'kj = Kkj - Kki « Ky 4.11
NKii 'JKig
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and f'k = Fk - ﬁki . Fi 4,12
ii ii

Because the stiffness matrix is symmetric the terms Kyj/Kj; are
stored in the vector ATRANS as Kjx/Kjj and all terms required for
the modification of the stiffness and loading terms are obtained
as a direct product of two terms teﬁporarily held in the transfer
vector ATRANS.

After the modification the terms in ATRAMNS are changed back into
the correct form for the back substitution algorithm, i.e. Kij/Kjy,
Kik/kii etc. and Ki/kii‘

The transfer vector ATRANS is then filled with the following
information

1st element, i= position of "redundant" degree of freedom in the

"active" matrices.

Next (i-1) elements, the first i-1 coefficients of the reduction

equations, K;js/Kii j=1, (i-1).

(i+1) b

element, the degree of freedom which has become "redundant".
Next (id-i) elements, the remaining coefficients of the reduction
equations Kij/kii 5=(i+1), id.
Next ilo elements, the F;j/K;; terms for each loading condition.
Final (id+ilo+2)“d element, the leading diagonal stiffness term Kii.
This information is sufficient for the back substitution algorithm
together with the Kji term which is needed for re-solution problems.
The vector ATRANS is written to fast access backing store and the
rows and columns associated with the degree of freedom that has been
eliminated are set to zero. This is repeated for all the "redundant"

degrees of freedom in each element except for the last reduction

equation. To give the re-solution algorithm information on the number
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of reductions in each element a tag is added to the last reduction
equation written to backing store. This decimal tag is added to the
integer valﬁe in the first element of the vector as identification
of the last reduction in each element.

A flow diagram for the reduction algorithm is shown in Fige. 4.2.
The algorithm does not shuffle the "active" equations into one
corner of the "active" rmatrices as this adds complications to this
algorithm and the back substitution. The reduction algorithm Bas
been written for two cases, the first a very fast and economical
version for static displacement problems by storing the lower half
of the stiffness matrix in vector form. The second case stores the

mass matrix in the top half of the stiffness matrix for the solution

of dynamic problems by retaining master degrees of freedom.

443.4 Back-lubstitution Aloorithm

When the last "redundant" degree of freedom for the complete
structure has been eliminated the stiffness matrix is empty or
contains terms associated with master degrees of freedom for dynamic
problems, The back substitution proceeds in the same way for either
solution after the eigenvalues have been found for the dynamic case.
The last reduction equation for normal displacement calculations,
where the stiffness matrix is empty, contains a solution as &ll the
Kij terms of equation 4.3 are zero, and is given directly by ecuation
4.8, The solutions of the other degrees of freedom are found by
proceeding back through the elimination equations but in reverse
order to that in which they were formed. By keeping a record of every
displacement associated with each degree of freedom and by keeping a

running record of "active" degrees of freedom as they are calculated,
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in the identical position which they were summed in the stiffness
natrix, it is possible to calculate subsequent degrees of freedom.
The vector ATRANS is again used as work space as a direct vector
multiplication of the terms brought down from backing store by the
"active" displacements give the "redundant" displacement by equation
4,3, This new displacement is added to the "active" displacement
vector as well as being retained in the total record. The "redundant"
degrees of freedom are found for each element and the transfer
vector containing the information on degree of freedom activity
is brought down. Degrees of freedom which became "active" at the
equivalent point in the reduction process are removed from the
"active" displacement vector using the information in this transfer
vector. The solution proceeds until all displacements have been
found and a final check is made on the number of solutions to ensure
that the alcorithm does not remain in a closed loop.

The flow diagram for this alcorithm is shown in Fig. 4.3, The

displacement vectors are printed at the end of this algorithm.

4.3,5 Re-Solution Algorithm

The Ee-solution algorithm is very similar to the merge and
reduction algorithms and is therefore included within them. Because
of the constant stiffness criteria it is only necessary to modify
the loading matrices and the appropriate loading terms in the
transfer vector ATRANS. For non-linear problems where a set of
equivalent nodal forces are calculated from the previous solutions
it is imperative that they are generated in an identical order to
the finite element stiffness equations.

The loading terms are summed in a manner identical to that used to
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sum the stiffness terms in the merge algorithm, but very much

faster as only one of the loops through the element nodes is needed.
When these new loading terms have been summed the “redundant' decrees
of freedom have to be reduced out. The reduction information is no
longer held in the CPDDC array as this was destroyed in the original
reduction algorithm. This information is obtained from the transfer
vectors written to backing store and read back to find the first
solution.

As the new loading terms are summed in an identical order to which |
the previous stiffness and loading terms were summed, the correct
terms are in the “active" loading vector when each transfer vector
ATRANS is found from backing store. This vector is read sequentially
forward in the same way as the backing store was set up and is used
to modify the loading terms by equation 4.7. The term Fi/Ki; is
changed in the transfer vector ATRANS by the new loading term using
the leading diagonal stiffness term stored in ATRANS. The transfer
vector ATRANS is then rewritten to its olc position in the backing
store and the loading terms associated with the next "redundant"
degree of freedom are modified. ‘'hen the last degree of freedom to
be eliminated in each element has been found, indicated by the tag
in the first row of the transfer vector ATRANS, the equivalent
nodal forces for the next element are summed.

The back-substitution algorithm is identical to that for the
initial solution and gives a set of displacements equivalent to the
new loading vector.

The re-solution algorithms are within the merge and reduction
algorithms, the flow diagrams of which are given in Figs. 4.1 and

442
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4,36 Peripheral Handling

The transfer of the vector ATRANS to and from fast access backing
store is the only part of the Frontal Solution algorithm which is
machine dependent. A very general algorithm based on sequential
addressing has been found successful for initial solutions but
cannot be used for the re-solution algorithm.

Direct transfer of the vector ATRANS to and from the backing store
is inefficient and a transfer buffer is used to improve the time in
peripheral transfers. Cirect access devices are used to block address
the buffer when reading or writing to backing store.

A flow diagram for the peripheral handling algorithm is given in
Fige 4.4.

Three processes have to be performed by this algorithm
1) Writing the vector ATRANS to the buffer and if necessary emptying

the buffer into fast access backing store by a forward stepping
process.

2) Reading the vector ATRANS from the buffer in a backward stepping
process and refilling the buffer by a backward stepping process
when it has been fully accessed.

3) keading the vector ATRANS from the buffer in a forward stepping
process for re-solution and refilling the buffer from the backing
store in a forward direction when the buffer has been completely
read.

These processes are governed by a control integer associated with

a read/write control and can be at random. For problems requiring

re-solution the buffer has to be emptied into backing store before

the back-substitution begins as the last buffer is normally lost.
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4,4 Data Generation

To enable the "Frontal Slution" to be completely automatic a
pre-program is used to prepare the extra data necessary for the
algorithms. The element ordering and topology to be used in the
solution is defined in this pre-program together with the nodal
co-ordinates. The element topology is scanned and a tag, 0.Cl,is
added to each degree of freedom allocated to each node defined by
the topology. Extra tags are added for master degrees of freedom
and repeated displacements by simple control integers. A pack of
data cards for the modified CFDDC array with the addition of the
tags is punched by the program.

The "maximum instantaneous size" of the "active" stiffness matrix
is determined using processes identical to those used in the merge
and reduction algorithms. The destination vector of positions taken
by each degree of freedom is formed to check the tags attached to
the CPDDC array and to ensure that all the deorees of freedom are

reduced out.

4.5 Error Diagnostics

Failure in the "Frontal $lution" usually occurs when the stiffness
matrix becomes badly conditioned. The positive values of the leading
diagonal terms in the stiffness matrix are reduced by each reduction
equation with coupling terms associated with the leading diagonal
term. When these terms become extremely small in comparison with
the initial stiffness terms the equations are extremely ill-conditioned
and the solutions to the equations become suspect.,

Irons (ref.42) uses methods which diagnose ill-conditioning as a

measure of the reduced stiffness term to the original stiffness terme.
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Bond (ref.43 ) has shown that the linear eguations can easily
become ill-conditioned when a finite element with mid-side nodes,
whose co-ordinates define a node displaced from the mid-side
position, is used.

When the ecuations become drastically ill-conditioned the leading
diagonal terms become negative as the reduction proceeds. The
present algorithm stops when a negative leading diagonal term is
found, usually indicating an error in input data of wrong element
topology or nodal co-ordinates. These errors however can usually be
found using data checking schemes based on graphical plotter output.

Other checks are made in the reduction algorithm to ensure that
the correct terms are in the appropriate rows and columns for the
re-solution, as the reduction terms retrieved from backing store
require the new loading terms in the appropriate positions. Failure
usually occurs when the store becomes accidently overwritten or

errors in peripheral transfer have occurred.

Example Problem

A simple example of a curved cantilever idealised by 6 in-plane
4 noded isoparametric elements is given in Fig. 4.5. The cantilever
is built in at one end and the free end constrained to move in a
horizontal direction and assumed infinitely rigid so that the
displacements at nodes 10, 11, and 12 are identical. The normal
solution when core store is available is to form the total stiffness
and loading matrices and solve for the displacements by inverting
the stiffness matrix, Fige. 4.5(a). The data necessary for automatic
solution by the "Frontal Solution" is given in Fig. 4.5(b) for the

same example. The tags added to the degrees of freedom in the CPDDC
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array 1s the only extra data required. The tags attached to the
degrees of freedom for nodes 1-9 are identical to the number of
elements each node appears in, but the tags added to the degree of
freedom 13 are increased at nodes 10 and 11 so that degree of
freedom 13 does not become "redundant" until the stiffness and
loading terms associated with element 6 are summed.

The activity of the degrees of freedom is given by Fig. 4.5(c)
tocether with a listing of the degrees of freedom as they become
"redundant". The "maximum instantaneous size" is reached after the
terms for the third element are summed. The terms stored in the
transfer vector ATRANS are given in Fige 4.5(c) for the newly
"active" degrees of freedom as each element is summed and for the
reduction equation coefficients and housekeeping information as
vredundant" degrees of freedom are eliminated.

It is interesting to note that the "maximum instantaneous size"
for this simple problem is reduced from 10 to 9 if the element
ordering is varied in generating the stiffness and loading matrices
as shown in Fige. 4.5(d).

Degrees of freedom are reduced out as soon as they have become
"redundant" and after the last element terms have been summed the

remaining degrees of freedom are "redundant' and can be reduced out.
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Chapter 5 Creep Analysis

Notation
t time
H Gaussian weighting factor
SeEs Strain Energy
T temperature
U Potential Energy
€ strain
o stress
a change diuring a time increment
Subscripts
e equivalent uniaxial/effective
3ok, Gaussian integration points
XyYs2 co-ordinate axes
1,2,3 principal axes
c creep
E elastic
o) initial
T total
Therm thermal

Matrices and Vectors
f} column vector
[ ] matrix
T
[1] transpose of matrix
[A] matrix relating displacement function coefficients to nodal

displacements
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matrix relating strains to displacement function coefficients
stress/strain matrix

Jacobian matrix

vector of nodal displacements

strain vector

stress vector
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5.1 _Introduction

The efficiency of thermodynamic cycles increases as the maximum
cycle temperature increases and thus there is a continuing pressure
to develop plant capable of operating at higher temperatures. This
has led to the development of materials capable of sustaining
reasonable stress levels at high temperatures. In order to obtain
the most economic use of these expensive materials the designer
must design components which will withstand a specified life at
the temperatures and stress levels at which creep occurs. The
amount of creep désign information available is very small and
usually only in the form of uniaxlial test data for each material.
A number of methods for determining the creep deformation of
structures are available. A full size prototype of the design
which can be loaded in the same way as the structure will be
loaded operationally can be used. However as the designer must
work within reasonable safety margins it will probably be many
years before any noticeable creep occurs. This method is both
very expensive and time consuming and new designs are usually
required before results are available from the prototype. A
second method of determining the creep behaviour is to produce
models made of materials which creep at a much faster rate than
the high temperature materials. The model is then loaded in an
equivalent way to the actual operational loadings and the accelerated
creep deformations are found. There is then a large amount of
extrapolation necessary from model to full size design, allowances
being made for material differences, loadings etc. This method is
still very expensive in model manufacture and extrapolation time.

With the advent of larger digital computers a third method of
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numerical analysis is hecoming available for the creep analysis
of complex structures. The numerical techniques involved require
the generation of a computer model of the structure and the analysis
of its creep deformation from experimental material test data. This
method is still very expensive but is likely to increase in
popularity as larger and faster digital computers become available.

The analysis of split turbine casings has been made using a
computer model of the casing, basing the creep deformation on the
uniaxial creep test data. This creep data has been used to produce
an empirical uniaxial creep law for the casing material. The
variation of the uniaxial creep strain with time comprises three
distinct stages; a primary region with decreasing creep strain rate
with time; a secondary steady-state of constant creep strain rates
a tertiary stage of increasing creep strain rate with time to
failure. Approximate creep analyses have been based on steady-state
solutions for simple structures where no stress redistribution takes
place with time. Odqvist (ref. 44) in describing metallic creep uses
steady-state solutions for a beam and a membrane, whilst Finnie
(refse 45 and 46) uses similar solutions for tubes and cylinders.
Other analyses by Smnith (ref. 47) and Fairburn and Mackie (ref. 48)
have used steady-state creep analyses of pressure vessels and
spinning discs.

Penny (ref. 49) has stated that neglecting the primary creep
strain is unimportant for structures subjected to steady loading
for long periods, but should be included where load changes in
times shorter than the time to reach the stationary creep rates
are experienced. Mendelson, Hirschberg and Manson (ref. 50) have

shown that the transient conditions prior to the establishment of



- 89 -

a steady-state distribution have an appreciable effect on the
total creep strains. Zienkiewicz et al (ref. 51 ) and Penny
(refs. 52 and 53) have used similar methods to find the creep
deformations with time by calculating creep strain rates over
small time intervals. In the earlier papers the stress was
assumed constant over very short time intervals, whereas in the
more recent paper Penny uses stress rates to calculate the stress
redistributions over each time increment. The solutions to the
equations for each time increment are of an iterative nature to
calculate the average creep strain dependent on the average stress
over the interval.

The prediction of creep deformation for structures subjected
to a complex stress system is dependent on experimental creep
test datas, This usually takes the form of uniaxial tensile creep
tests but is sometimes given by biaxial stress fields. The creep
flow rules adopted to predict creep deformations are in general
those used to analyse plastic deformations. These include the
Von Mises equivalent stress and Prandtl-Keuss flow rules. Johnson
(ref. 54) has shown the validity of using the Von Mises equivalent
stress rules from tension and torsion tests. Under a changing
stress system and assuming constant stress during each time
interval a cumulative law must be usede This can be of a number
of forms, the time-hardening and strain-~hardening laws being the
most common. Johnson and Kahn (ref. 55) showed that for copper
the time-hardening law predicted the stress levels most accurately,
whereas Odqvist (ref. 56) has shown that the strain-hardening law
predicts creep for stable materials at high stress levels most

accurately. Snith (ref. 57) has used a life-hardening law based on
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a locus of rupture to predict creep rates in changing uniaxial
stress systems.

Very little work has been published on the creep analysis of
geometrically complex structures. The finite element method is
well suited to the analysis of complex structures due to the
computer modelling of the structures with large numbers of distorted
finite elements. This method of creep analysis has been used by
Greenbaum and Rubinstein (ref. 58) to analyse general axisymmetric
pressure vessels. Schultz and Van Fossen (ref. 59) have extended
this to incorporate plastic and creep analysis of 2-dimensional
bodies subjected to thermal loadings.

The creep analysis of 1, 2 and 3-dimensional structures is given
using the initial strain technique in the finite element method.

The multiaxial stresses are reduced to an equivalent uniaxial

stress using the Von Mises equivalent stress rules and the multiaxial
creep strains given by Prandtl-Reuss plastic flow rules. The programs
are written for both time-hardening and strain-hardening laws, the
creep strain increments being found from the empirical creep laws.
Checks are incorporated to ensure that the stress remains reasonably
constant during each time intexrval.

The creep analysis of a simply supported beam subjected to a
constant bendirig moment, a thin shell subjected to internal pressure
and a thick ring subjected to internal pressure are given. The
analysis of turbine casings subjected to creep deformation is given

in Chapter 7.

5,2 Creep Analysis

The analysis of structures having non-linear material properties
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by the finite element method can be treated in a number of ways,
Zienkiewicz (ref. 31). Creep deformation is a particular case of a
material property with a stress-strain-time relationship., A solution
for the stresses in a structure at a particular time can be obtained
from an elastic analysis if the cumulative creep strain distribution
throughout the structure at the time is known. The cumulative creep
strains €, are a function of the previous stress-strain history.

The stress-strain relationship is given by

o} - 000 (- ek

where Y_D] is the stress/strain matrix, ieTTS are the total
strains and ieo’ﬁ are the initial creep, plastic and thermal
strains.

The empirical creep law, usually formulated from uniaxial
constant stress creep test data, gives the creep strain as a

function of stress, time and temperature.
€. = flo3t,T) 5¢2

It is most convenlent to use the "initial strain" method of
finite element analysis with the creep data presented in this
form. The "initial strain"” method obtains a solution to the
finite element equations by adjustment of ieoi in equation 5.1
to yield the same stress and straln values in equations 5.1 and
5.2+ A major advantage of the initial strain method is that the
[Dj] matrix remains unaltered and it ig unpecessyry to recalculate
the stiffness expression for the structure.

The computation for non-linear creep deformation with time

proceeds in an incremental manner considering small time steps.
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During each time interval the stress levels in the structure

are assumed to remain constant. The increments of creep strain
during each time increment are calculated from the stress levels,
the previous strain history if using a strain-hardening law, and
the time increment in the empirical creep law. These creep strain
increments, when treated as "initial strains” in the strain energy
expressions, give a set of equivalent nodal forces which together
with the inverted stiffness matrix give the changes in the nodal
displacements equivalent to the creep strain increments. From
these displacements and the creep strain increments the change

in the stress levels during the time increment are calculated.
Provided that these changes in the stress levels are small enough
not to invalldate the constant stress criteria the solution is
valid, The analysis assumes that creep deformation is a small
strain process and that the strain-displacement relationships

remain linear.

5.,2.1 Solution Technigue

The solution of creep problems in finite element analysis is
based on the "initlal strain" method. Considering the strains
in terms of the strain increments during any time interval the

total strain increment is given as

‘iAeT} - {Ae% +§;Aec7§ 5.3

The change in stress during a time interval is given by

gAc—-i = ['D]{Aéﬁg
iAo'g = Y_D](iﬁe-& -SLA&;&} 5.4
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Defining the change in the strain energy during each time interval

in terms of the stress and elastic strain increments as

AS.E. = % élie E} T%:Ao-} dVol 5.5
0

and substituting for equations 5.3 and 5.4 gives

AsE. =3 iAeT -Ae‘g {p] SLAeT -Ae } dVol 5.6
Vol

Defining the total strain increments in terms of the nodal
displacement increments, equation 3.9, in equation 5.6 gives,

as the elasticity matrix {:D'] is symmetrie,

w3887 | O ol Y 3

Vol

SLA‘Si [a717) [e17(pXae § dvol

Vol

+1 A D dVo 5.7
ngl e } C ]@e% 1

The potential energy expression is minimised with respect to
the nodal displacement increments when the individual potential
ensrgy expressions for each element have been summed into the

complete structure. This gives for each element

e 0- 117 TTICINMDN{BSY o

Vol

1437 (s] T[D]{AG } dVol

Vol

for all gbaig « The third term in equation 5.7 disappears and



- 04 -

the first expression in equation 5.8 is identical to the stiffness

term of equation 3.7(a). This gives a solution of the form

YK]%A&,_% = {A Fe} 5.8(a)

where {K] is the structure stiffness matrix and %AF% are
the nodal forces equivalent to the creep strains and are given
by equation 5.9,

For each element

gAFe} = (177 [B]T[Dlgﬁec% dVol 5.9
Vol

The load vector increment is calculated from the creep strain
increments during each time interval. The total strain increments
are found by equation 5.9 from the solution of equation 5.8 for
the displacement increments. The elastic stress increments are
found from equation 5.4 and these are compared with the stress

levels during the time interval.

592:2 Multiaxial Stress-Strain Relationships
The usual stress-strain-time relationships for creep deformation
are found and given as uniaxial test data for each material. To
generate a set of equivalent nodal forces due to the creep during
each time interval a knowledge of the creep strains in a multiaxial
stress system is necessary. These multiaxial creep strains have to
be determined from the uniaxial creep data. .
The creep flow in a multiaxial stress gystem is found from the
uniaxial creep test data using an equivalent uniaxial stress. This

is identical to the concept used to determine the onset of yielding

in plasticity problems. For any given material there is a function
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of the three principal stresses which always has the same value
regardless of the stress field, Lubahn and Felgar (ref. 60). The
Von Mises equivalent stress equations are based on this concept
and have been used for the creep analysis. They are developed in
Appendix 8.

The Von Mises equivalent uniaxial stress to a multiaxial stress

field is given by

- 112_ SO+ Horr)? + 6 + 6y, + 60, 50

or in temms of the principal stresses is given as

oo =\[—12; \/(q-oz)2 + (o) + (o3-a)? 5.10(b)

The equivalent incremental creep strahlAeec is a function of
the equivalent uniaxial stress oy, the total equivalent strain
€ec? the temperature T if applicable and the time t

Aeec = f(%,@ec, T, t) 5.11

The law is assumed to hold for both tensile and compressive stress
fields.

The multiaxial strain increments are calculated from the equivalent
uniaxial strain increments by assuming the Von Mises equations and
Prandtl-Reuss flow rules, Hill (ref., 61). These show that the
principal strain increments coincide with the axes of prihcipal
stress and are proportional to the principal stress deviations,
Appendix 8. These equations include the constant volume condition
for creep deformation and give the multiaxial creep strain increments
as

e
Aexc 2._2;§ (2’3’( "o_y -o-z) ote 5.12(3)



Aex - 3Ae c
Yo 2 TS xy
¢ ce etc. 5.12(b)

5.203 Uniaxial Stresg-Strgin-Time Relationships

To solve a problem in which there are stress redistributions

it is necessary to determine the creep strain trajectory taking
into account the stress variation with time. This is necessary
when the solution technique used comprises small time increments
during which the creep processes are assumed to take place under
constant stress conditions.

The two most general methods of accumulating creep strain are
the strain-hardening and time~hardening laws. The strain-hardening
law assumes that the instantaneous creep rate is dependent on the
stress, temperature and accumulated creep strain, and is independent
of the loading time. The time~hardening law assumes that the creep
rate is dependent on the stress, temperature and total loading
time. Both these laws are shown in Fige. 5.1 together with the
life-fracture law, Snith (ref. 57). The life-fracture law is
obtained by scaling the rupture locus.

For ease of computation the time-hardening law is the simplest
to use as the strain is given directly by the stress level and
total elapse time in the empirical creep law. The strain-hardening
law requires the calculation of an equivalent time corresponding to
the stress level and total creep strain in the empirical creep law.
This equivalent time has been found using Newton's method for the
solution of general non-linear equations, see Appendix 9.

Although numerical results are given for both time-hardening

and strain-hardening laws the latter has been used in general.
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5.3 Prooram:ing Technigues

The flow diagram for the creep analysis of a beam, where the
stresses are considered in one direction only, is given in Fig.
5.2. The initial elastic solution is found in the usual way by
inverting the stiffness matrix and finding the nodal displacements
from the applied loading. The stressing and creep algorithm takes
the place of the usual stressing algorithm.

The initial pass through the algorithm (ICOW = 0) is essentially
jdentical to the stressing algorithm where the nodal displacements
give the elastic strains directly. The c(tresces are found at every
Gaussian integration point in every element of the structure. At
each stressing point the creep strain increments for the first
time increment are found and these are used to generate the
equivalent nodal forces to the creep strain increments for each
element, These forces are merged to form a loading vector for the
complete striicture. The changes in the nodal displacements due to
these equivalent nodal forces are given by the inverse of the
stiffness matrix of the structure and the new loading vector.

The changes in the elastic stresses over the time increment are
found using the new displacement increments together with the
creep strain increments, This checking pass (ICON = 1) uses a
large number of parts of the alcorithm previously used to find the
elastic strains to find the total strain increments. The changes
in the stresses are found at each Gaussian integration point and
these are compared with the stress level at the beginning of the time
increment. A check is made on the change of the equivalent unizxial
stress at all the mesh points in all the elements. "hen complete

the changes in the stresses, the nodal displacements and the creep
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strains for the previous time increment are assumed to be correct
and all these items are updated. The creep strain increments over
the next time increment are then calculated based on the stresses
at the end of the last correct time increment. This pass through
the algorithm (ICON = 2) generated an equivalent set of nodal
forces for the creep strain increments found at each Gaussian
integration point. When these have been summed for the whole
structure a new set of nodal displacement increments is found., The
checking pass (ICON = 1) is then made through the algorithm for
each time increment.

Provided that the limits set on the variation of the stresses
over each time increment are not exceeded the calculations proceed
in this manner with one pass generating the creep strain increments
followed by a pass checking these increments. The time increments
increase as the calculations proceed. Should the limits set for
the variation of the stresses be exceeded the calculations stop,
the time increment is reduced and the algorithm is restarted (ICON
= 2) using the last correct set of stresses, creep strains and
nodal displacements. The calculations stop when the creep time
exceeds a limit previously set.

The flow diagram for the creep analysis of thin shells of
revolution, described in section 2.3.4.1 is given in Fig. 2.9.

A more general flow diagram is given in Fige 5.3 for the creep
analysis of structures using the parametric family of finite
elements in 3-dimensional space.

The algorithm used for the parametric element creep analysis
is more efficient than that used for the beam and shell creep

analyses as these have separate passes for the equivalent nodal
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force generation and stress deviation check. The parametric
element creep analysis algorithm, Fige. 5.3, incorporates both
checking and force generation processes in a single pass.

The initial solution is found in the same way as described in
section 3. This gives the entry to either the stressing or creep
algorithms and it is usual to write this initial solution to
backing store, usually magnetic tape, before the next stage is
started. This enables a check on the idealisation to be made, by
calculating the stress discontinuities at element boundaries,
before the lengthy creep analysis beginse.

The creep algorithm follows immediately the initial solution
has been obtained. In this algorithm the stresses are found at
the Gaussian integration points. This enables the equivalent
nodal forces to be calculated by numerical integration from the
creep strains equivalent to the multiaxial stresses over each
time interval. These stresses are found from the latest nodal
displacements, the thermal strains and the multiaxial creep
strains. The multiaxial creep strains have to be retained in
store for every Gaussian integration point and to reduce storage

number of
requirements only the minimum_ creep strain terms are retained in
store. For each direct and shear stress component, and for the
equivalent uniaxial stress, it is necessary to store
1) €¢ the total creep strain
2)Ae<;1 the last creep strain increment (now beincj
checked)
3)Aec2 the new creep straln increment (now being
found)

The last correct equivalent uniaxial stress and change in
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equivalent stress during the last time interval also need to
be retained as the algorithm proceeds.

The earlier programs for the creep analysis of beams and thin
shells of revolution retained similar information on the total
strains as the analysis proceeded. However it has been found to
be more efficient to calculate the total strain from the last set
of nodal displacements. These are continuously updated after each
complete pass of the algorithm.

To reduce the storage requirements to a minimum the creep strains
are calculated on the smallest lattice possible. Zienkiewicés (Ref. 63)
has shown that good results can be obtained using a 2 x 2 x 2
Gaussian integration mesh.

The nodal displacements at the end of the last time increment
are given by the total correct nodal displacements together with
the last displacement increment. These are not necessarily correct
as they are still being checked whilst the next set of creep
strain increments are belng calculated.

The elastic strains are then given as

geE} = {er} . gec} '%Aec} - {€Them} 5.13
which incorporates equation 5.3 and where ie TE’ the total strain,
is found from the nodal displacements, {6 C} ’ §Ae c'?s y the creep
strain and creep strain increment are retained in store and the
thermal strain {emem} is found from the nodal temperatures,
This gives a new set of stresses from which the new equivalent
uniaxial stress can be found from equation 5.10(a). The new
equivalent uniaxial stress is compared with i{: yalue at the last

pass through the algorithm to ensure that the change in stress
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is within the required limits. The change in the equivalent stress,
provided that it is within the pre-set limits, is retained so that
the equivalent uniaxial stress can be updated to its latest value
when the checking part of the pass is complete.

The creep strain increments for the present time interval are
calculated by either the strain-hardening or time-hardening laws.
These increments are found by substituting the values of t and
t + At in the empirical creep law and noting the difference
between each value of creep strain. The value of t is given
directly by the elapse time for time-hardening solutions but is
given as an equivalent time dependent on the strain-history for
strain-hardening solutions. It is more accurate to calculate
the creep strain increments directly than to take the creep rate
at the beginning or mid-way through the time interval.

The creep strain increments are given for a multiaxial stress
system by equations 5,12 and are used to find the equivalent

nodal force terms as

2 2 2
j 1Rz} T[D‘_\{Aec"g dvol =Z Z Z HijHI{f(sj’?ksﬁl)}
Vol =1 k=1 1=1

where gf(fj’?(’ﬁl)‘i ={B]T[93§Aec§ det L7} T TN

At the end of each Gauss integration mesh the equivalent nodzl
forces for each element are found from equation 5.9 and are summed
for the whole structure.

When the check on the variation of the stresses for all elements
in the structure for the last time increment has been completed the
creep strain increments and displacement increments are assumed
correcte The total creep strain is then updated by AGC1 and the

last creep strain 1ncrement.A6c1 becomes the new creep strain

5.14(a)



- 102 -

incremethﬁb2. The equivalent uniaxial stress is also updated
together with the vector holding the last correct nodal displacements
as these are now identical to the latest set of nodal displacements.
Retaining these items allows a restart should the constant stress
limits be exceeded.

The solution for the new set of displacement increments is found
from the equivalent nodal forces and the inverted stiffness matrix
stored from the initial elastic solution. For large problems where
it is impossible to retain the inverted stiffness matrix in core,
the re-solution facility of the frontal solution, section 4, has
been used. It is imperative when using the frontal solution
technique that the equivalent nodal forces due to the creep strain
jncrements are formed in an identical order to that used when the
stiffness matrices were generated in the initial part of the
programe

The new set of displacements used for the next pass through the
algorithm are given by the latest nodal displacements together
with those displacement increments given by the equivalent nodal
forces. The time increment is increased by an amount dependent on
the empirical creep law. It is important that the time increment
is as large as possible within the constraints imposed by the
limits on the stress variation during the time interval, but does
not exceed these limits as the time interval is increased.

When the limits imposed on the stress variation during a time
increment are exceeded the algorithm has to be stopped and the
calculations restarted from the last correct set of nodal
displacements, The time interval is reduced and the last creep

strain increment Aec1 is nulled in the creep data store. The
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calculation then restarts using the same equations as used previcusly,
but omitting the checking process during the first passe. The algorithm
is most efficient when it is operating as a continuous cycle and not
havirg to restart because the stress deviation limits have keen
exceeded.

A flow diagram for a general algorithm which enables different
finite element types to be used in a structure subjected to creep
deformation is given in Fig. .4, The algorithm is in effect
jdentical to that described above except that it cycles through
different element types in an identical order to that used when

the stiffness terms of the structure were generated.

Numerical Examples

The creep analysis of a number of structures has been made using
the algorithm given in Figs. 5.2, 5.3 and 5.4 as well as Fig. 2.9
These include a beam subjected to a constant bending moment, a
thin pressurised cylinder and a thick ring and thick cylinder
subjected to internal pressure. These analyses represent 1, 2 and
3-dimensional stress fields, and have shown that the algorithms
accurately predict creep deformations. The solutions have been
compared with approximate, finite difference, experimental and
other finite element solutions.

The effect of neglecting some of the initial creep by varying

the starting time of the creep calculations has been investigated.

5.4,1 Beam Subjected to a_Constant Bending Moment

The creep deformation of a simply supported beam subjected to

a constant bending moment has been analysed mathematically by
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Popov (ref, 64). A finite element creep analysis using a beam
finite element has been developed to observe and understand the
processes involved during each time interval. The results have
been compared with those of Popov.

The creep analysis_is given in Appendix 10 for a beam finite
element subjected to direct and bending forces. The results are
given for a 10" simply supported beam, 2" wide and 6" deep,
subjected to a constant bending moment of 162,000 in lbf. The
elastic modulus of the material, oxygen free copper, is 1.41 x 106
1bf/in2 and the empirical creep law from tension test creep
curves at 165°C is given as

€c = 2.68 x 1075(e T/7500 ;1404372

The variation in the stress across the tensile section of the
beam is given in Fige 5.5(a) for various times after the application
of the load. These include both time-hardening and strain-~hardening
results. The compressive section is a mirror image of the stresses
for the tenslle half of the beam due to the loading being a constant
bending moment with no tensile forces and the assumption that the
creep laws are valld for both tensile and compressive stresses. The
mid-span deflection with time is given in Figs 5.5(b)« The
differences between the finite element solutions for the stresses
and those given by Popov are very small and cannot be shown on
these graphs. It can be seen that the redistribution of the stresses
with time tends towards the steady state solution. The steady state
solution occurs when the stress distribution across the beam is
such that the variation of the creep rate is linear across the beam,
i.e. no stress distribution occurs. The deflection rate for the

beam tends towards the steady state solution as the time becomes
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large as can be seen from the two lines in Fige 5.5(b). This
figure also shows that the creep deformation for extremely long

times can be predicted approximately from the steady state solutions.

54,2 Effect of Initigl Starting Time on Long Term Creep Anglysis

It is desirable to reduce the number of incremental calculations
required to obtain accurate creep solutions. The length of the
time increment in the creep programs is adjusted as the solution
proceeds. vhen the equivalent uniaxial stresses are being calculated
the fractional changes in these stresses are evaluated. If the
maximum change at any integration point is greater than a pre-set
value the length of the time increment is reduced and conversely,
if the change is smaller than the pre-set value, the length of the
next time increment is increased.

In the initial stages of the solution of creep problems very
short time increments are necessary as the stresses change very
rapidly. It is doubtful if solutions for the early stages of creep
of real structures are of much relevance as the effect of the
initial condition of the material is uncertain. If accurate
solutions are only required in the later stages then the number
of incremental calculations may be reduced by neglecting some
initial period of the material creep curves, l.e. the creep
calculations are started from some finite time on the creep curves.
The solutions so obtained converge towards the exact solutions as
time increases.

An assessment of the above method of reducing the number of
incremental calculations and its effect on the accuracy of the

solutions may be made from some further results obtained for the
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simply supported beam described in Section 5.4.1. The initial
starting times for the creep solutions have been varied from

O+.C hr. to 1.0 hr. The errors in the stresses at various distances
from the neutral axis after 10 hrs. are compared with the zero
starting time solution. The number of incremental calculations

for each solution are given in Table 5.1, It is seen that, for
this problem, neglecting the initial period of the creep curves
significantly reduces the number of incremental calculations

with only a small loss in solution accuracy.

5.4.,3 Thick Ring subjected to_Internal Pressure

The creep deformation of a thick lead ring subjected to an
internal pressure has been analysed experimentally by Fessler,
Gill and Stanley (ref, 65). The elastic and creep deformation
of this ring has been found using the 20 node isoparametric
solid element. The idealisation comprises a coarse mesh of 3
of these elements in the radial direction, the ring axial
thickness being modelled by a single element. A quadrant of the
ring has been idealised by these 3 elements which each have an
arc of 0%,

The effective creep strain is given by the empirical creep law

€c = 3402 x 10-195°46 (1039 + 0.106t)
which includes both primary and secondary creep terms. The strain-
hardening rule has been used for the accumulation of the creep
strains in the finite element calculations.

The outside diameter hoop strains are calculated from the radial
displacements and are compared with the experimental results and

a computed finite difference solution in Fig. 5.6. Two sets of
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experimental results are given in Fig. 5.6 and it is seen that
there is gond agreement between the finite element results and
the experimental results at times greater than 10 hours. At smaller
times the finite element results underestimate the creep strains,
this discrepancy being caused by not starting the creep
calculations at zero time. The difference between the present
finite element solutions and the published finite difference
solutions is very small for the creep deformation after small
times have elapsed but increases as the creep strains become
significant. The finite element solutions predict the creep
deformations more accurately than the published computer results
even with a very coarse idealisation.

Two finite element solutions are shown to compare the predicted
creep deformations for different starting times of the creep
calculations. The initial differences in the creep deformations
become extremely small as the creep elapse time increases. This
again shows that unless interest lies in the initial and short
term creep effects the starting times for the creep calculations

can be increased accordingly.

5.,4.4 Thick Cylinder subjected to Internal Pressure

The creep deformation of a thick cylinder subjected to an
internal pressure has to be analysed using in-plane constant
strain triangular finite elements proposed by Greenbaum and
Rubinstein (ref. 58). This problem has been analysed using a
very coaree idealisation of 3 20-node isoparametric finite
elements, Fige 5.7(a) and the constraints impose zero axial

straining but allow radial and hoop deformation.
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The empirical creep law is given as
€. = 6.4 x 107185444
which contains only the secondary creep terms. The strain-hardening
rule has been used for the accumulation of the creep strains.

The radial deformation of the inside and outside surfaces is
given in Fig. 5.7(a) and agrees well with the solutions given by
Greenbaum and Rubinstein., The stress distributions as a function
of the radius are given in Fig. 5.7(b) for the elastic and steady
state (10 hrs.) solutions, The agreement with the published results
is extremely good considering the very coarse ideallsation used.
This also shows that a small Gaissian integration mesh, 2 x 2 x 2,
is sufficient for the calculation of the creep strain components
of the quadratic isoparametric finite elements.

The change in the value of Poisson's ratio from 0.499 for the
published results to 0.450 for the finite element results, to
overcome the ill~-conditioning which occurs as Poisson's ratio

approaches 0.5, has not affected the stress distributions.
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Chapter 6 Stress Anglysis of Turbine Casings

6.1 Introduction

The stress analysis of split turbine casings subjected to
internal pressure and bolt loadings is carried out using the
parametric family of finite elements described in Chapter 3
together with the frontal solution algorithm described in Chapter
4, It is desirable to obtain a satisfactory representation of
the turbine casing using the least number of elements possible
and the present solutions were planned for running on the S.R.C.
Atlas computers Slutions using many more elements are now possible
using the 2M byte IBM 360/195 computer but it is still preferable
to have as few elements as possible in any idealisation as the
computing times are a power function of the number of degrees of
freedom.

To determine satisfactory ideallisations of turbine casings, plane
strain solutions for turbine casing sections have been obtained
using 8-noded in-plane isoparametric finite elements. These
elements are the 2-dimensional equivalent of the 20-node isoparametric
3-dimensional elements and the test programs have required miich less
computing time and core store than would have been required with
the 3~-dimensional elements. 3-dimensional generalised plane strain
solutions for some of these idealisations have been found for the
cylindrical portion of the turbine casing for comparison with the
2-dimensional plane strain solutions. These gave an indication of
the best mesh size for the shell portion of the turbine casing
where the thick shell and transition parametric elements are used.

An exact geometric representation of the split turbine casing
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would have required a prohibitive number of elements if the

bolts and bolt holes were to be idealised exactly. An approximation
to the bolt loading has been made by idealising the turbine casing
without bolt holes and applying a set of forces equivalent to the
bolt loads over the flange. The forces equivalent to the bolt

loads give normal stresses on the flange face similar to those
obtained from a generalised plane strain analysis of the casing

for half a bolt pitch, where the bolt hole and loading are accurately
modelled.

Results for stresses in a split turbine casing subjected to
pressure loading and combined pressure and bolt loading are given,
These stresses are compared with those given by Bellamy (ref. 7)
for a photoelastic analysis of the same turbine casing. An
approximate analysis using the thin shell of revolution finite
element, described in Chapter 2, is given for the casing remote
from the flange.

Results for the stresses in an inner turbine casing subjected
to an axially varying pressure loading are given and are compared

with those found in a photoelastic analysis by Kuzelka, (ref. 66).

6.2 2-Dimensional Analysis of the Cylindrical Portion of Split Turbine

Casings
Finite element idealisations of the cylindrical section of the

turbine casing of Kuzelka were used to determine optimum finite
element meshes. This casing has a thicker flange than the final
models tested by Bellamy, (ref. 7 ), but the distributions of
hoop and radial stresses in the cylindrical sections are very

similar. No direct photoelastic results are available for comparison
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with the finite element results foxr a plane strain section subjected
to constant pressure. The results given by Kuzelka are for an inner
casing subjected to an axial variation of pressure and the stress
distributions in each section can only be taken as a guide to the
likely distributions when the section is subjected to constant
pressure. An accurate finite element solution with which to compare
solutions from coarser meshes was obtained from an idealisation
using 72 8-node isoparametric elements with 4 elements through the
shell section, Fig. 6.1(a). The 4 elements through the thickness
were used to predict accurately the stress distribution in the region
of the fillet radius. The hoop stresses at the outer and inner
surfaces are shown in Fig. 6.1(b) and these agree in form with those
of Kuzelka (ref. 66). The discontinuities at the element boundaries
are very small. The largest discontinuities are around the fillet
radius and to improve these a very fine mesh is required. As the
discontinuities are very small the stress variation for the 72
element ideallisation was taken to be very close tn the exact
solution.

In order to obtaln solutions for a turbine casing using the Atlas
computer it was necessary to use an idealisation with a relatively
coarse mesh of elements. It was estimated that the maximum
instantaneous front size possible was 200 when using the 20 node
i soparametric elements. This corresponded to a mesh of 13 elements
in the front with an idealisation of 12 sections.

To reduce the fine mesh of 72 elements to a coarse mesh the 4
elements used through the thickness are replaced by a single element.
The analysis for single quadrilateral elements through the shell

thickness in Chapter 3 shows that the stress variations through
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the shell thickness can be accurately predicted with quite large
arc lengths. It is satisfactiry to represent the shell portion
with few elements as the hoop stresses remain sensibly constant
over this portion. A certain loss in accuracy occurs around the
fillet radius when only z single element is used through the
thickness. It might be preferable to sub-divide elements through
the thickness at the fillet radius but this presents difficulties
in the ideallsation and also increases the number of elements in
the front.

A 15 element idealisation of the section with a single element
through the shell portion and 2 elements through the flange portion
is given in Fig. 6.2(a). The hoop stress distribution for the inside
and outside surfaces is given in Fig. 6.2(b). The stresses are
very close to those given by the fine idealisation but the
discontinuities are now more apparent, particularly around the
fillet radius. This 15 element idealisation is acceptable but
has too large an instantaneous size to be useful for the turbine
casing analysis.

A coarse mesh of 9 8-node elements Fig. 6.3(a) was found to
predict stress distributions similar to those predicted by the 15
element idealisation but with slightly larger discontinuities.

The shell is idealised by 2 elements with 30° arc lengths and the
number of elements around the fillet radius is reduced, The hoop
stress distributions around the inside and outside faces of the
turbine casing section are given in Fig. 6.3(b). The "looping"

effect of the stresses in elements 1 and 2 is caused by the inaBility
of the quadratic geometric functions to represent the co-ordinates

of circular functions exactly.
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The 9 element idealisation of the turbine casing section has
been used in the 3-dimensional idealisation of the turbine casings.
The instantaneous front size of the stiffness matrix using the 20

node isoparametric element is always less than 200.

3-Dimensional Plane Strain Analysis of the Cylindrical Portion of

Split Turbine Casings

Generalised plane strain analyses of the turbine casing cylindrical

section were carried out to ensure that the idealisations used for
the 2~-dimensional analysis gave comparable results for the full
3-dimensional analysis. These were for the same thicker flanged
Kuzelka casing section and included an analysis using solely the
20-node isoparametric element and one using the "Ahmad" thick
shell parametric element to model the shell portion of the casing.
The analysis using the thick shell element was impossible with
the equivalent 2-dimensional idealisation as no shell element
exists in 2 dimensions.

The idealisation shown in Fig. 6.2(a) was used to compare the
2 and 3-dimensional analyses where 15 elements modelled the turbine
casing section with a single element through the shell thickness.
The 3-dimensional idealisation is shown in Fige 6.4(a). The end
faces are constrained to remain plane. The hoop stresses on the
inside and outside surfaces for the idealisation using only the
20 node isoparametric elements are shown in Fig. 6.4(b). The
stresses are independent of axial position and are plotted on a
2-dimensional plot. It can be seen that the distribution of the
stresses for the 2-dimensional plane strain analysis of Fige 6.2(b)

is very similar to the 3-dimensional "generalised" plane strain
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analysis of Fig. 6.4(b),

In the second 3-dimensional generalised plane strain analysis
elements 1 and 2 of Fig., 6.4(a) were replaced by the thick shell
parametric =lements and element 3 by the transition parametric
element. The remaining elements used to model the fillet radius
and the flange are the original 20 node isoparametric elements.,
The hoop stresses for the inside and outside surfaces are shown
in Fig. 6.4(c) and it may be seen that these are very similar to
those obtained with the 20 node element idealisation Fig. 6.4(b).
This shows that the thick shell elements with fewer degrees of
freedom can accurately predict the stress distribution in the

shell portion of the turbine casing.

6.4 Determination of Equivalent Bolt Loads

An accurate idealisation of the bolt holes in a turbine casing
is impossible due to the very large numbers of elements required.
A set of forces is required, equivalent to the bolt loading, which
give stresses similar to the true stresses using the coarse 9
element mesh over the turbine casing section,

The stress distribution due to the actual bolt loads was found
from a plane strain analysis of the cylindrical portion of the
turbine casing over half a bolt pitch. The casing section is shown
in Fige 645 and the finite element ideallsation is shown in Figs.
6.6(a) and 6.6(b). The shell portion of the casing was idealised
with a coarse mesh as the stresses are sensibly constant over this
region. The flange was idealised with 3 elements through the
thickness and 11 elements over the flange area. The spot facing

which included a large cut-out in the fillet radius was accurately
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modelled. 57 20-node isoparametric elements were used with 1097
degrees of freedom and a maximum instantaneous size of 196, A
number of analyses were carried out with different loading
conditions to model the bolt loading.

The turbine casing section analysed is part of the lead turbine
casing used by Bellamy (ref. 7.) to predict the creep strains when
the casing is subjected to a bolt and pressure loading. This has
a very thin flange section and the contact stress distribution is
different from the linear variation predicted by the normal simple
eccentrically loaded column theories.

The bolt loading was initlally applied in two ways, firstly as
a uniform pressure over the spot facing and secondly as an infinitely
stiff bolt with a constant vertical displacement over the spot
facinge.

The stresses normal to the flange face are given in Fig. 6.7(a)
where the bolt load is applied as a uniform pressure over the
spot facing. The bolt face is tending to rock about the outside
edge and the majority of the compressive loading on the flange
face is carried well away from the inside face. The sealing
criterion of equal compressive stress to internal pressure is
maintained with an internal pressure of 25 1bf/in2 and a bolt
load of 258 lbf. The stress contour for the flange face plot of
Fig. 6.7(a) is an averaée plot of the stress distribution of Fig.
6.7(b) which shows the discontinuities in the normal stresses at
element boundaries. These discontinuities are quite small and it

is to be assumed that the idealisation is adequate. Concern was

felt at the appearance of the stress peaks at diametrically opposite

positions across the bolt hole. Comparison with the photoelastic
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results of McKenzie (ref. 11) shows that these are to be expected,
although with a thinner flange section they are more significant.
These appear on subsequent plots and are not due to the constant
pressure bolt loading. The displaced shape of the spot facing,

Fig. 6.7(c) shows that the uniform pressure loading is not compatible
with the deformed shape of the bolt head.

The second analysis of the bolt loading on the turbine casing
constrained the displacements normal to the spot facing to be
constant and the stresses normal to the flange face were determined.
The stress contour plot for this loading is given in Fig. 6.8(a)
and the discontinuities in the stresses over the flange face are
given in Fig. 6.8(b). The stress distribution across the surface
is smoother than in the previous case, Fig., 6.7(a), and the contact
stresses at the inside of the casing are four times as high as those
for the uniform pressure loading. Because the bolt is infinitely
stiff in bending the normal stress distribution is symmetric about
the bolt centre line. The stress peaks on either side of the bolt
hole are still apparent but are reduced by the constant displacement
condition of the bolt loading. The trough 90° round from the peaks
which is apparent in all the plots should also be noted,

The true loading condition can only be found by modelling the
bolt together with the turbine casing section. A bolt head has been
positioned in a spot facing with no shank as the bolt bending
stiffness is negligible compared with that of the surrounding flange.
The bolting force has been applied as a point load on the top of the
bolt head which allows the bolt head to rock, Fig. 6.9.

The bolt loads for the turbine casing model are applied through

rubber pads to spigots which sit in the spot facing. There is no
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bending resistance to be considered in the bolts and the bolt loads
used for the finite element idealisation are identical to those
used by Bellamy (ref. 7 )« The bolt loads are applied through steel
spigots to the lead turbine casing. The distribution of the stresses
normal to the flange face is given in a contour plot in Fig. 6.10(a).
The internal pressure of 35 lbf/in2 with the bolt load of 258 1bf.
was calculated to be the opening pressure from a 2-dimensional
analysis and this is verified on the contour plot. The discontinuities
at the element boundaries are small and are shown in Fig. 6.10(b).
The peaks on either side of the hole are quite large and are more
prominent on the side nearest to the inside face. The contact pressure
under the bolt head is shown in Fig. 6.10(c) and shows a fairly
uniform radial distribution. The displacements under the bolt head
are given in Fige 6.10(d) and show a shearing effect of the bolt
head due to the increased stiffness of the flange away from the bolt
centre line. The displaced shape of the turbine casing section at
the mid-bolt position is given in Fige. 6.10(e) and shows the greater
stiffness of the flange compared with the shell portion of the casing.
The distribution of the stresses normal to the flange face for
the lead turbine casing without bolt holes and individual bolt loads
has been assumed to be that given in Fig. 6.10(a) between the bolt
centres. To find the equivalent bolt loads which produce these
stresses a 2-dimensional plane strain solution has been used. This
comprises ¢ 8-node isoparametric elements idealising the thin flanged
turbine casing section. The idealisation is given in Fige. 6.11(a)
with the bolt hole and spot facing shown in Fig. 6.11(b). The
loading which gave the best approximation to the stresses normal to

the flange face comprised a load equivalent to 5/16 of the bolt load
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applied at node A and 11/16 of the bolt load applied at node B.
This loading also gives good continuity of the hoop stresses
round the inside and outside faces of the casing section. This
stress distribution is shown in Fig. 6.12 together with the
normal stresses from the more accurate analysis.

This loading condition has been applied over a generalised
plane strain section of the turbine casing to ensure that the
normal stress distribution along the length of the element is
constant. The loading distribution required to give constant
stresses along the length of the element is identical to the
ratios of the nodal forces equivalent to an equally distributed

load over one face of the element.

6.5 Stress Analysis of an Inner Turbine Casing subjected to an Axial
Variation of Pregsure.

A model of an inner turbine casing has been analysed photoelastically

by Kuzelka and Fessler (ref. 66). A finite element idealisation
has been made of this inner turbine casing using 70 of the 20 node
isoparametric finite elements. This provided an initial comparison
of finite element and photoelastic results for split turbine casing
models.

The inner turbine casing model is shown in Fig. 6.13 and comprises
a relatively thick flange with a toroidal end closure and gland
housing. The photoelastic model comprises two halves bonded together
with no bolts or bolt holes through the flanges. The finite element
idealisation, Fig. 6.14, comprises sections along the casing axis
each with the 9 element mesh and has a total of 560 nodes with 1508

degrees of freedom and a maximum instantaneous front size of 173.
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The photoelastic model was loaded by sealing the gland housing
and standing the casing with the axis vertical on the gland
housing end face. The axial pressure variation was applied by
filling the open-ended turbine casing with mercury. The finite
element model was loaded with a similar pressure variation along
the axis of symmetry. A quadrant of the casing was analysed
assuming the flanges remained closed by carrying tensile loads.
Symmetry conditions were imposed by constraining the flange and
mid~shell faces to deform in radial and axial directions. The
deformation of the gland housing face has been predicted accurately
by iterating from the previous solutions. When the end face is
constrained to remain plane the initial elastic solution gives
some axial tensile stresses over a small area of the gland housing
face. Subsequent solutions were calculated allowing the area under
tension in the previous solution to move axially. This process was
repeated until the only area under compression was that which was
constrained to remain plane.

The finite element results are for a steel casing with a Young's
modulus of 3 x 107 1bf/in? and a Poisson's ratio of 0.3. The
photoelastic model has a Young's modulus of approximately 1 x 103
1bf/'in2 and a Poisson's ratio of 0.5. Swannell (ref. 67) has shown
that the variation of Poisson's ratio appears to have very little
effect on the resulting stresses for 3-dimensional analyses although
numerical ill-conditioning increases as the value approaches 0.5.
Therefore the stresses from the finite element solution can be
compared directly with those from the photoelastic analysis.

The displacements of the cylindrical portion of the casing at

the mid-shell section,®=0°, and at the flange,9==90°, for the



finite element idealisation are given in Fig. 6.15 and are scaled
to the displacements of the photoelastic model. The displaced shape
of the cylindrical portion of the casing is very similar for both
analyses although the mean displacement at the toroid/cylinder
joint is somewhat larger in the finite element analysis.

The hoop stress distributions at the mid-~shell section are given
in Fig. 6.16(a) and are compared with the photoelastic results of
Kuzelka, (ref. ©6). The stress index is defined as the hoop stress
in a cylindrical shell with the same internal and external diameters
subjected to an internal pressure identical to that at the toréid/
cylinder joint of the open-ended turbine casing. The stresses given
by the finite element model are similar to the photoelastic results,
although they diverge around the toroidal end closure. Greater
bending stresses are predicted by the photoelastic analysis in the
open end of the cylinder than by the finite element analysis. The
finite element results for the hoop stresses on the inside surface
at the flange face,©=90°, are compared with those from the
photoelastic analysis in Fig. 6.16(b). There is good agreement
for the cylin&rical portion of the casing but there are large
differences at the gland housing end of the toroidal end closure
and the increase in the hoop stresses near the boss is much greater
in the finite element analysis. The majority of the axial load is
carried by the outside edge of the flange end face and the compressive
stresses in this region are extremely large. The finite element
analysis is based on linear elastic theory and takes no account of
the plasticity which probably occurs in the gland housing region of
the flange face. This possibly accounts for the differences between

the two analyses around the gland housing.
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The meridional stress distributions on the mid-shell section,
8=0°, are given in Fige 6417 and are compared with the photoelastic
results of Kuzelka (ref. 66). The meridional stresses are negligible
in the cylindrical section but increase around the toroidal end
closure. These agree in form with the photoelastic results where the
largest meridional bending occurs in the toroid. The finite element
results show that this bending changes in sign close to the gland
housing. The photoelastic analysis does not show this reversal in
bending because the stress distributions are not given beyond this
point. It would appear from the stress distributions that the scales
for the toroidal positions might be different as the plots over the
first part of the toroid are very similar. The differences could be
caused by the linear elastic analysis and the end constraints on
the gland housing face.

A number of circumferential hoop distributions are given for the
positions shown in Fig. 6.18. The stress distributions given in
Fige. 6.19 are compared with some stress distributions from the
photoelastic analysis. These agree in form with those of Kuzelka
but have smaller hoop bending stresses. These differences are again
probably due to the end constraints on the gland housing and the
elastic analysis not taking account of non-linear effects as

mentioned previously.

6.6 Finite Element Analysis of €plit Turbine Casing

A finite element analysis of a scale model of a flanged steam
turbine casing has been made using the parametric family of
finite elements. The casing, also analysed photoelastically by

Bellamy (ref. 7 ), is shown in Fig. 6.20 and incorporates scaled
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down features of a number of turbine manufacturers designs. The
casing comprises a central cylindrical section with toroidal

and spherical end closures to the gland housings. The flange at
the half joint stretches around the casing between the gland
housings and has 22 bolt holes uniformly spaced along the flange
centre line. The gland housings are bored out to accept a rotor
and all outside surfaces intersecting the casing shell contain
fillet radii.

The finite element idealisation of a quadrant of the turbine
casing is given in Fig. 6.21(a) and shows the toroidal end closure
in detail. This idealisation comprises 123 of the 20 node
isoparametric finite elements with a total of 946 nodes, 2602
degrees of freedom and a maximum instantaneous front size of 181,
The shell and flange sections have been idealised using the 9
element mesh through the turbine casing section described previously
in section 6.2 and has been slightly modified for the spherical
and toroidal end closures. A fine mesh has been used around the
fillet radii where the shell intersects the gland housings to
ensure that the elements do not become badly distorted in this
region. The idealisation given in Fig. 6.21(b) shows the spherical
end in more detail and also includes the node positions. The
algorithms to produce computer plots of finite element idealisations
for the PAFEC suite of programs are described in detail by Safavi
(ref. 68).

The accurate idealisation of the bolt holes and loads requires
a prohibitive number of elements and the equivalent bolt loading
described in section 6.4 has been applied. The equivalent belt

loading comprises a band along the length of the flange, the
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magnitude of which is directly proportional to the number of

bolts for each element section. The loads are statically equivalent
to the values found from the 2-dimensional analysis of section 6.4.
Internal pressure has been applied on the inside surface of the
casing together with a linearly decreasing pressure along the

gland housing bores. The mid-shell plane,&=0°, and the flange
face,6=90°, of the quadrant section of the turbine casing have
been constrained to move axially and radially. It is assumed that

a pressure tight seal is maintained over the flange face and that
no opening occurs. The effect of the self-weight of the casing

has been neglected.

The turbine casing has been analysed for two loading conditions.
Initially an internal pressure was applied to compare the finite
element results with the photoelastic results obtained by Bellamy
(ref. 7') for the same casing. The two halves of the photoelastic
model were glued together over the flange faces to maintain a
pressure tight seal and the pressure loads were applied by creating
a vacuwum in the casing. The second loading condition was a combined
internal pressure and flange bolt loading and is the initial
solution for the creep analysis of the turbine casing. The creep

results for this loading condition are given in Chapter 7.

6.6,1 Turbine Casing subjected to Internal Pressure lLoading

The meridional variation in the hoop stresses in the shell section
of the turbine casing, ©=0°, the mid-shell position between the
flanges, is given in Fige. 6.23. The meridional positions are shown
in Fig. 6.22, These results show that the largest hoop bending

occurs in the fillet radius and end closure at the toroidal end of
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the casing. The hoop bending is very small in the cylindrical part
of the casing and is very similar to that found in the 2-dimensional
plane strain analysis of the turbine casing section given in section
6.1, The hoop bending in the spherical end of the casing is small
compared with that at the toroidal end. The stresses are found at
the element boundaries and at the mid-side positions. The stresses
at element boundaries are the average of the values given by every
element with a common boundary to give a continuous stress
distribution. The largest discontinuities occur where the stresses
are changing most rapidly. The double peak in the hoop stress
distribution around the fillet radius between the gland housing
and toroidal end closure can be partly accounted for by the
discontinuities between adjacent elements at this point. However
a similar double peak occurs in the fillet radius at the spherical
end closure and this cannot be attributed to discontinuities in
the stresses at the element junctions. In a previous photoelastic
analysis of a 3-diameter pressure vessel, section 2.3.2.4, the
results showed a double trough in the meridional stress variation
round a knuckle on the opposite side to the fillet radius due to
an increase in material thickness in this area. Similarly the
double peak in the stress distributions can probably be attributed
to the large material increase below the end closure fillet radii
where the gland housing bore joins the inside surface of the end
closures.

The variation of the meridional stresses for 3 radial positions
round the shell and at the flange face, (@ =0°, 0°, 60°, 90°) are

\

compared with the photoelastic results of Bellamy (ref, 7 | and

are shown in Figs. 6.24. The meridional bending is larger around
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the fillet radius between the gland housing and toroidal end
closure and the double peak in the meridional stress distributions
around the fillet radii at both end closures is again apparent.
Bellamy (ref. 7 ) has investigated the stress distributions around
the toroidal end of the turbine casing. The finite element results
agree well with the photoelastic results for the meridional stress
distribution in the casing although greater bending is apparent

in the cylindrical section of the photoelastic model. At the
mid-shell section,€=0° Fig. 6.24(a), the mean meridional stress
in the cylindrical part of the casing agrees well for both sets

of results. However the mean meridional stress in the cylinder

for the other shell sections,©=30° and©®=60°, is less in the
photoelastic analysis than that given by the finite element
analysis. The stress distributions around the toroidal end closure
and fillet radius are in good agreement for all the shell sections,
6-0°, 30°, 60°, although the photoelastic results do not show the
double peak around the fillet radius. The meridional stress
distributions over the flange face, ©=90° Fig. 6.24(d), show
reasonable agreement for both analyses. The finite element results
indicate that the meridional bending in the flange at the cylindrical
section of the casing is larger than any meridional bending in the
shell section at the same position but smaller than that given by
the photoelastic analysis. The flange in the photoelastic model

is less stiff than that in the finite element idealisation due

to the bolt holes not being idealised, The differences between the
photoelastic and finite element results for the meridional stresses
in the casing may be due to the photoelastic analysis being based

on small deformation theory. The radial deformation along the
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cylindrical portion of the shell is large due to the higher
flexibility of the model at the beginning of the stress freezing
cycle but it is doubtful whether this accounts for all the
discrepancies.

The circumferential hoop stress distributions at the toroidal
end of the turbine casing are given for the meridional positions
shown in Fige. 6.26 and are compared with some photoelastic results
given by Bellamy (ref.7 ). The hoop stress distributions, Figs.
6.26, show very little hoop bending in the cylindrical portion
of the turbine casing. The hoop bending increases round the
toroidal end closure to a maximum at the toroid/fillet radius
junction,¢=90°. The hoop stress distributions in the cylindrical
portion of the turbine casing are very similar to the 2-dimensional
finite element plane strain results described in section 6.2 and
shown in Fige 6.3(b). Therefore the cylindrical part of the turbine
casing away from the end closures can be accurately analysed as a
plane strain 2-dimensional model.

The hoop stress distributions from the photoelastic analysis,
Figs. 6.26, agree in form with the finite element results,
particﬁlarly around the toroidal end closure, but show increased
bending in the shell section at all meridional positions. The
bending is most acute in the cylindrical part of the turbine
casing and shows a large reversel in hoop bending at the mid-cylinder
position. It would appear that the hoop strain distribution in the
photoelastic model around the cylindrical part of the casing is
very large and is causing the differences in the meridional and
hoop stress results from both analyses. This would imply, noting

the large change in hoop bending stress, that the casing has slightly
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buckled due to the vacuum applied to load the casing.

6.6.2 Turbine Cagsing subjected to Internal Pressure and Bolt Loading

The meridional variation of the hoop stresses at the mid-shell
section of the split turbine casing subjected to an internal
pressure and a bolt loading just sufficient to maintain a pressure
tight seal is given in Fig. 6.27. The hoop stresc distribution is
very similar to that given for internal pressure loading only,

Fig. 6423, although the hoop bending has increased in the cylindrical
section of the casing. The double peak in the stress distribution
around the fillet radii at each end closure is still apparent and

a double trough has now appeared on the inside surface below the
fillet radius at the toroidal end.

The variation of the meridional stresses in the turbine casing
is given for 3 meridional shell sections,® =0°, 30°, 60°, and
for the flange face,©&=90%, in Figs. 6.28. The meridional stress
distributions are very similar to those for the internal pressure
loading only, Figse. 6.24, but the meridional bending in the
cylindrical shell sections is slightly greater. The mean meridional
stresses in the flange face Fig. 6.28(d) are much lower than for
the internal pressure loading case, Fig. 6.24(d) and the bending
stresses are similarly reduced. The reduction in the meridional
stresses in the flange is due to the Poisson effect of the compressive
bolting stresses normal to the flange face.

The hoop stress distributions for the meridional positions shown
in Fig. 6.25 are given in Figs. 6.29. The hoop stress distributions
for the cylindrical part of the casing show the increased bending

caused by the bolt loading and its effect on the inside surface
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stresses close to the flange face. The hoop stresses around the
fillet radius give an indication of the approximate stresses

between the bolt holes as the spot facings in the lead model

cut into the fillet radius. The largest hoop bending stresses
occur in the toroidal end closure, the greatest being at the toroid/
fillet radius junction,¢$=90°. The hoop stress distributions in

the cylindrical part of the casing can be compared with the
o-dimensional plane strain results shown in Fige 6.12. These results

agree in form at the mid-cylinder section.

Aporoximate Analysis of the Shell Portion of the Split Turbine Casing

using the Thin Shell of Revolution Ring Finite Element

In the shell section of a split turbine casing the stress
distribution can be approximated by assuming the casing to be
an axisymmetric structure. A meridional section of the split
turbine casing at the mid-shell position,©=0%, has been
idealised using the axisymmetric thin shell of revolution ring
finite element described in Chapter 2. This idealisation is shown
in Fige 6430 and comprises 15 of the higher order displacement
function elements with 16 nodes and 107 degrees of freedom. The
gland housings and knuckles have been approximated by shell elements
of the same thickness as the turbine casing shell and are therefore
much thinner than.the actual bosses. The axisymmetric casing was
loaded with an internal pressure applled at the inside surface of
the shell.

The meridional variation of the hoop stresses in the axisymmetric
shell is given in Fig. 6.31, and agrees very closely with the

results obtained for the mid-shell hoop stresses, Fig. 6.23, using
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a 3-dimensional idealisation of the casing. These results show
very little hoop bending in the cylindrical part of the casing
and corroborate the 2-dimensional and full 3-dimensional
idealisations which showed very little hoop bending in the
cylindrical shell. The stress distributions for the axisymmetric
thin shell idealisation show the stress discontinuities at the
element boundaries and give an indication of the accuracy of the
solution.

The meridional stress distribution in the axisymmetric shell
is given in Fig. 6.32 and is compared with the photoelastic
results obtained by Bellamy (ref. 7 ). These stress distributions
agree well around the toroid but the axisymmetric model indicates
that there is very little bending in the cylindrical part of the
casing. The agreement with the 3-dimensional model, Fig. 6.24(a)
is extremely good particularly away from the gland housings. The
differences are caused by the shell aporoximation to the bosses
and knuckles at the end closures and are directly comparable
with those for the complete 3-dimensional analysis. The meridional
stresses in the fillet radius, toroidal end closure and cylindrical
shell for the axisymmetric approximation to the turbine casing
compare extremely well with the results from the more accurate
idealisation at the mid-shell section,e*oo:’::he photoelastic
analysis. This shows that the stress distributions for the split
turbine casing away from the flanges can be adequately predicted

by an approximate axisymmetric finite element idealisation.



Chapter 7 Creep Deformation of g Turbine Casing i.odel

7.1

Introduction

1.2

The creep deformation of a flanged model turbine casing, Fig. 6.20,
has been investigated experimentally by Bellamy (ref. 7.). The creep
deformation of this model turbine casing has been calculated using
the finite element programs described previously. These creep analyses
include those of both a 3-dimensional model of the turbine casing,
Fig. 6.21, and a simplified axisymmetric approximation of the model

turbine casing, Fig. 6430.

__Empirical Creep Law

Bellamy (ref. 7) has produced an empirical uniaxial creep law
from tests on lead dumb-bell specimens cut from a number of lead
model turbine casingse. The creep law was formulated from constant
stress tests in the range 1000-1600 1bf/in° and found to be

€ = 1.291 x 10—21(r§°417t0'513 which contains only primary creep

c
terms. Initlal finite element solutions were found using this creep
law for both the 3-dimensional and axisymmetric idealisations. The
creep strains predicted from both finite element models were found
to be of the order of 100 times less than those measured from strain
gauges on the actual lead model. Comparison of the initial strains
showed these to be in good agreement with those in the model and
it was felt that the stress levels predicted from the initial stress
analysis were reasonably accurate.

The calculated maximum equivalent stresses in the shell, remote

from the flanges, were less than 400 lbf/lng. The creep strain

predicted by the above creep law for such stress is about 1/ustrain
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(microstrain) in 500 hours and this agrees with the creep strains
in the finite element solutions. However Bellamy measured increases
in total strain after 500 hours in excess of 100a/strain. Subsequent
creep tests were made on the uniaxial dumb-bell specimens at lower
stress levels, i.e. 4C0 lbf/ing, and no major divergence from the
empirical creep law was apparent.

No explanation could be found for the discrepancy between the
finite element and experimental results, and it was decided to
obtain creep solutions for the casing using a creep law selected
to give significant creep in a reasonable time.

The original empirical law given by Bellamy (ref. 7) could have
been used if the creep calculations had been continued to 107 hours
instead of the usual 103 hours but this would have been extremely
expensive in computing time. The uniaxial éregp.law used to predict
the creep deformation of the turbine casings in the following
section is a modified version of the empirical creep law found by

Bellamy. This modified law, € = 1,291 x 10~ o417 0+513

s gives

creep strains 100 times greater than those predicted by the empirical
creep law given by Bellamy and is close to that used by Fessler, Gill
and Stanley (ref. 65) to predict the creep deformation of thick lead

rings.

7.3 Creep Deformgtion of 3-Dimensiongl Finite Element Idealisgtion of

Lead Turbine Casing.
The finite element idealisation used to predict the creep

deformation is the same as that used for the stress analysis in
Chapter 6. The casing is shown in Fige 6420 and the idealisation,

which comprises 123 20-node ispparametric elements is shown in
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Figs. 6.21(a) and (b). The initial stress analysis is the first
set of calculations in the creep.process and is checked for
discontinuities to ensure that the idealisation is satisfactory
before the creep calculations proceed.

The values of strain and stress are plotted at the inner and
outer Gauss integration points. The Gauss integration mesh used
for the 3-dimensional creep analysis was a 2 x 2 x 2 mesh for
each element and the creep history was stored only at the Gauss
points. For the shell parts of the casing only one element is
used through the thickness and it is not justifiable to extrapolate
from the Gauss points to obtain the surface stresses and strains

as these do not vary linearly through the thickness.

7.3.1 Deformation of Lead Turbine Casing Nodel

The axial and radial deformation of the flange and shell of the
turbine casing model at 4 axlal positions is given in Figs. 7.1.
The deformations are plotted for a number of times between the
creep calculation starting time of 1073 hours and the final creep
time of 103 hours. Comparison of the axial displacements in the
mid-shell and flange at the toroid-cylinder and cylinder-sphere
joints shows a circumferential variation in the axial displacements.
The axial deformations over the boss end faces and the mid-cylinder
section are identical for each section and therefore these sections
remain plane. The circumferential variation of the axial displacements
in the model turbine casing remain reasonably constant but increase
steadily with time as creep deformation takes place, Fig. 7.1(a).

The radial displacements are given at the mid-shell and flange

faces for the 3 axial positions in the cylindrical portion of the
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turbine casing. Figs. 7.71(c) and 7.1(d) show the creep deformation
of radial and axial sections of the turbine casing. The radial
displacements at the flange face initially increase due to creep
deformation but as the stresses redistribute the radial displacements
decrease quite rapidly. A strange inflection occurs in the radial
displacement in the shell at the mid-cylinder position which tends
to arch the shell. At the same time the radius at the mid-cylinder
flange face decreases rapidly whilst the shell radius at O= 45°
increases rapidly. This gives an extremely distorted casing section
Fige 7.1(c). The axial deformation of the casing increases gradually
with time, the flange length increasing more rapidly than the

shell,

7.3.2 Variation of Strain and Stress in the Model Turbine Casing due to

Creep Deformation

The variation of strains and stresses at 0, 10, 1000 hours due
to creep deformation of the model turbine casing, Fig. 6.21, is
olven in Figse 7.3 and Figs. 7.5-7.7. The meridional distribution
of the strains and stresses is given at the mid-shell position
remote from the flanges. The key to the meridional positions cof
Fige 7.3 is given in Fig. 7.2 together with the convention used
to describe the distributions at the inside and outside Gaussian
integration points at different times. This convention is used
for all the figures showing variations of strain and stress with
time. The distributions are given at the starting time, O hours,
part way into the creep deformation, 10 hours, and at the end of
the creep calculations, 1000 hours. The circumferential distributions

of the strains and stresses are given in Fig. 7.4. The key to the
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circumferential positione is shown in Fig. 7.4 and the convention
for the distributions at various times is identical to that given
in Fige 7.2+ The circumferemtial distributions of meridional and
circumferential strain, meridional, cicumferential, and equivalent
vniaxial (effective) stress 4ot the variation of the effective
stress distributions over the flange cection at 3 axial rnositions
are oiven. These give a clear indication of the exact way in which
the stresses in the flange redistribute,

The increase in the circumferential strains in the shell of the
turbine casing is most significant in the cylindrical section, Fic.
7.3(a)e The circumferential strains at the inside have more than
doubled and the circumferential bending has increased by a factor
of 4 over the cylinder and by an even greater amount at the toroid/
cylinder joint. Similarly the circumferential strains and bending
in the toroid close to the boss fillet radius have increased. There
is very little increase in circumferential strain in the spherical
end closure. The meridional bending in the shell section of the
turbine casing remains relatively unchanged in the cylinder, Fig.
7.3(b). However the meridional bending increases in both end
closures and in the region of the boss fillet radius at the toroidal
end closure. The greatest increases in the meridional strains occur
where the meridional stresses are most significant, Fig. 7.3(d),
although this is not true for the spherical end closure where the
meridional stresses are similar to those in the cylinder. The increase
in the meridional strains in the spherical end closure boss is
negligible. The finite element creep analysis predicts the largest
meridional creep strains to be in the same position as those found

by Bellamy (ref. 7), i.e. on the inside surface of the toroidal end
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closure, and the strain distributions round the toroid follow
similar patterns.

The meridional distributions of circumferential and meridional
stress, Figs. 7.3(c) and (d), show little change in the mean
values but increases in the bending stresses. These increases in
bending stress are greatest close to the toroidal end closure
fillet radius, In general the circumferential bending stresses
reduce, particularly in the cylinder, but the meridional bending
stresses increase in both end closures close to the cylinder/end
closure joints. The meridional variation of the effective stress
distribution shows that the greatest changes occur in the fillet
radius between the boss and the toroidal end closure, in the
toroid close to the toroid/cylinder joint and in the cylinder. In
ceneral the effective stresses tend to even out and variations of
effective stress through the thickness are reduced. However the
highest stresses do not relax as would be expected if the casing
was an axisymmetric body. The reason for the increase in the
values of the largest effective stresses can be seen from the
éircumferential distribution of the strains and stresses.

The circumferential distribution of the meridional and circumferential
strains and stresses, and the effective stresses are given at 3
axial positions. These are the mid-toroid vosition where the
meridional stresses were found to be greatest in the elastic analysis,
the toroid/cylinder joint and the mid-cylinder position. The strain
and stress distributions in the spherical end closure are smaller
than those in the toroidal end closure and are therefore less
significant. The creep deformation of the casing can be envisaged

most easily by considering the strain and stress distributions at
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the midg-cylinder position, Figs. 7.5. The changes in circumferential
strain are large paticularly close to the flange/shell fillet radius.
The circumferential strains in the fillet radius become extremely
large due to the high initial stresses in the fillet radius caused

by the bolt loadinge. In the fillet radius and flange the
circumferential stresses at the outside surface are parallel to the
surface. The circumferential bending of thé shell close to the flange,
caused initially by the flange having a stiffening effect in the
radial direction, increases as creep deformation proceeds. The
membrane stresses remain reasonably constant but the bending stresses
increase by a factor of 4 in 1000 hours. The increase in bending
caused by the stiffening effect of the flange causes circumferential
bending to spread further into the shell. A circumferential bending
moment, gradually increasing with time, spreads into the shell and
attempts to force the flange to move radially outwards.

At the same time the large compressive stresses in the flange caused
by the bolt loading are redistributed over the complete flange section
and into the base of the shell. In practice as the flange deforms
under the bolt loads the bolt loading relaxes and the stresses in the
flange due to bolting up forces reduce. The finite element model uses
a constant bolt force for all the creep calculations so that it is
jdentical with the lead turbine casing model where the bolt loads
were applied through a spring system,

In general the effective stresses in the casing increase as creep
deformation proceeds but decrease in the flange beneath the bolts.
This is clearly seen in Fig. 7.5(d), where the initial effective
stresses due to the bolt loads are in excess of 1000 lbf/in2 and

these redistribute rapidly as creep takes place. The stresses in
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the flange are dominated by large compressive stresses normal to
the flange face in a narrow band beneath the equivalent bolt
loadings. These result in large negative creep strains which help
to spread the bolt load gradually across all the flange. To
compensate for negative creep strains normal to the flange face,
positive axial and radial creep strains are formed by the constant
volume criterion. Consequently the axial deformation of the flange
increases and there is a slight increase in the meridional membrane
and bending stresses in the shell.

At the other 2 axial positions, mid-toroid and toroid/cylinder
joint, similar effects are noticed although the meridional stiffening
effect of the end closure is more significant and the circumferential
bending is greatly reduced, The circumferential bending in the shell
close to the flange at the toroid/cylinder joint remains reasonably
constant although the creep strains increase rapidly. However the
circumferential moment increases rapidly in this region due to the
stress redistribution in the flange. Large increases in the
meridional strain in the shell close to the flange at the toroid/
cylinder joint and the mid-toroid position are caused by the increase
in meridional creep strain in the flange due to the bolt loads. This
meridional deformation of the flange causes increased bending in
the shells forming the end closures.

The effect of the flanges on the creep deformation and stress
redistribution is a dominating one. The creep deformations are
constrained by the flanges in 2 ways,

a) the effect of the flanges around the end closure
b) the closing effect of the flanges due to bolt loading.

The boss and flanges form a large part of the end closures. To
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carry the circumferential strain caused by the pressure load the
flange at the cylinder/end closure joints deforms radially inwards
relative to the mid-shell. The cylinder, not constrained by the

heavy bosses on the end closure and with no radial restraint similar
to that carried by a toroid or sphere deforms more freely but is
still restricted by the flange. The radial deformation of the flange,
Fig. 7.1 (¢), is less than that of the shell, The deformed shape of
the casing would normally attempt to open the inside of the flange

by rocking on the outside of the flange face but this is impossible
due to the bolt loads maintaining a pressure tight seal. Consequently
bending stresses caused by keeping the flange closed appear at the
shell/flange junction. Combining the end closures and the cylinder
causes meridional bending at the junctions due to the mismatching of
radial deformations. The end closures attempt to restrict the radial
deformation of the flange face thus causing even greater circumferential
bending in the cylindrical shell.

As creep deformation takes place the bending stresses in the shell
increase due to the stress redistribution of compressive stresses in
the flange and the stiffening effects of the flange. The radial
deformation of the flanges initially increases due to the circumferential
bending but decreases as axial deformation becomes significant and

causes the casing to deform into an elliptic cross section.

Axisymnetric Approximation of the Creep Deformation of g Turbine Casing

The creep deformation of the lead turbine casing has been found
using the axisymmetric thin shell of revolution finite element
described in Chapter 2. The idealisation and key to the meridional

positions are shown in Fige 7.8. The variation of the circumferential
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strains with time is given in Fig. 7.9(a) and shows the increase in the
circumferential strains in the cylindrical portion of the casing and
around the fillet radii at the bosses. The circumferential strain
distribution due to creep given by the axisymmetric approximation

of the turbine casing underestimates that given by the full 3=~
dimensional analysis. The meridional strain distribution with time
is again underestimated by the axisymmetric approximation. Although
the initial stresses in the casing are in agreement the stresses in
the axisymmetric analysis redistribute and the creep strains are
consequently not as large as those predicted by the 3-dimensional
analysis where the shell stresses increase due to the stress
redistribution in the flange. The axisymmetric analysis gives an
indication of the creep strains in the turbine casing although

these are underestimated.,

7.5 Computation of Creep Deformation of g Turbine Casing

The 3-dimensional finite element idealisation, shown in Fig. 6.21,
has 123 20-node isoparametric finite elements, with 946 nodes and
2602 decrees of freedom with a maximum instantaneous size of 181.
The initial solution has used the frontal solution described in
Chapter 4, while the creep analysis has used the resloution technique
described in Chapter 4 and the creep algorithm described in Chapter
5. The 3-dimensional analysis has been found using the IBM 360/195
computer at the SRC Rutherford High Energy Laboratory. The program
uses 3(6,000 8 bit Bytes and the initial solution took 223 seconds,
whereas the creep analysls has taken 2 hours with 116 time
increments for the creep analysis starting at 10-3hours and

finishing at 103 hourse. The axisymmetric approximation to the turbine
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casing comprised 15 thin shell of revolution finite elements,
with 16 nodes and 107 degrees of freedom. The inverted stiffness
matrix can be held in store and the analysis was carried out on
the Nottingham University KDF-9 computer. This analysis recquired
19,000 48 bit words of store and the creep analysis from 1073
hours to 103 hours was achieved in 16 minutes. The variations

in the stresses were limited to 10% through each time increment

for both analyses although the Gauss meshes were 2 x 2 x 2 for

the 3-dimensional analysis and 4 x 3 for the axisymmetric analysis.

The IBM 360/195 computer is estimated to be 100 times faster than

the KDF-9 computer.
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Chapter 8 TCiscussion

8.1

Introduction

8.2

2,1 _Elastic Anglysis

The finite element method has been used to determine the stresses
in turbine casings subjected to internal pressure and bolt loadings.
The analyses use both solid 3-dimensional isoparametric finite
elements and axisymmetric thin shell of revolution finite elements.
The computed stress distributions have been compared with results
from photoelastic model tests. The creep deformation of a model
turbine casing has been found using both axisymmetric thin shell

and 3-dimensional isoparametric finite elements.

The elastic stress distributions in two model flanged turbine
casings, subjected to internal pressure, have been calculated
using the finite element method and the results have been compared
with photoelastic analyses obtained by Bellamy(ref. 7) and Kuzelka
(ref. 66). The closed turbine casing has been idealised using two
types of finite element.

The simpler analysis comprised 15 thin shell of revolution
finite elements which were used to determine the stresses in the
shell portion of the turbine casing. The casing was idealised as
an axisymmetric body and the results obtained describe the
meridicnal variation in the stress distribution away from the
flange. A more complete 3-dimensional idealisation modelled a
cuadrant of the turbine casing using 123 20-node isoparametric
elements. The results from the axisymmetric analysis agreed well

with those obtained from the more exact idealisation indicating



- 142 -

that for this casing the flanges had little effect on the stresses
in the casing remote from the flanges.

The finite element solutions for the stresses in the toroidal
end closure of the closed turbine casing show good agreement with
the photoelastic results obtained by Bellamy (ref. 7). The finite
element solutions did not predict the large bending stresses found
in the cylinder of the photoelastic model. The photoelastic model
was loaded during the stress freezing cycle by applying an internal
vacuum which gave significant deformations but did not cause the
casing to buckle. The finite element analyses are based on small
deformations and as no account has been taken of the large radial
deformations in the cylinder a small error in predicting the
stresses is to be expected. The finite element analyses also take
no account of stresses caused by the effects of critical loads,
i.es buckling, and it is known that the photoelastic model was
close to this condition at the start of the stress freezing cycle.
Fur ther, comparison of the initial elastic meridional strains in
the lead turbine casing model with those found from the finite
element solutions gave good agreement. The 3-dimensional finite
element solution gave reasonable continuity of strains and stresses
across element boundaries, despite the coarse idealisation, and
showed good agreement with the axisymmetric finite element analysis
for the shell portion of the turbine casing.

The stress distribution in the flange of the 3-dimensional finite
element model can only be a good approximation of the stresses
between bolt holes as the true stress distributién beneath the bolt
heads is extremely complex. To determine the true stress distribution

in a turbine casing requires a very fine idealisation to model the
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bolts and bolt holes individuallyf A finite element idealisation

of this type is too large for the majority of modern computers

and consequently a coarser idealisation with approximate bolt
loadings must be used. The coarse mesh of the turbine casing model
givec a good indication of the strength of the casing, in particular
the restraining effect of a bulky flange on a relatively thin shell,
The data generation required for a complicated mesh used to idealise
a complex engineering structure such as a turbine casing can take
months to prepare, even though a relatively coarse idealisation

has been chosen. The idealisation used to model the closed turbine
casing was chosen so that the solution of the elastic stresses

could be found on the S.R.C. Atlas Computer in under 2 hours. The
availability of much larger and faster computers has since made it
vossible to refine the idealisation and obtain elastic solutions in
a fraction of the time.

An inner turbine casing has been analysed both photoelastically
and using the finite element method. The 3-dimensional finite
element solution using a coarse idealisation comprising 70 20-node
{soparametric finite elements gave results comparable with those
found from the photoelastic analysis by Kuzelka (ref. 66). The
difference between the two solutions is principally in toroidal
end closure, particularly in the region of the boss. Altering the
end constraints of the boss in the finite element analysis had a
significant effect on the stresses in the toroidal end closure.

The stresses normal to the boss face were extremely large and
parts of the boss may possibly have become plastic during the early
stages of the stress freezing cycle used in the photoelastic

analysis. The »ffects of plasticity on the stresses in the gland
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housihg boss of the inner turbine casing have not been investigated
but are expected to be significant.

The shell of revolution finite element idealisation gives results
for the stress distributions in the shell of the closed turbine
casing model which are comparable with the full 3-dimensional finite
element analysis. For this idealisation the turbine casing model
1c treated as an axisymmetric body. This approximation can only be
used to predict the stresses away from the flange in turbine casings
where the flange thickness is small compared with the shell radius.
The axisymmetric approximation of the inner turbine casing gave
poor results for the stresses in the shell, as the flange thickness

was a significant proportion of the shell radius.

8.2.2 Creep Analysis

The creep deformations of a closed lead turbine casing model have
peen found using both of the finite element idealisations used for
the elastic analysis. The 3-dimensional idealisation comprised 123
20-node isoparametric finite elements and the axisymmetric
approximation comprised only 15 thin shell of revelution finite
elements. The two creep analyses, finite element and lead model,
were expected to show reasonable agreement but the initial finite
element results were found to predict creep deformations of
approximately 1% of those found in the lead turbine casing model
by Bellamy (ref. 7). The differences are due to the empirical
uniaxial creep law predicting ;maller creep strains than were found
in the lead turbine casing model at equivalent stresses. The
mathematical creep calculations depend solely on the empirical

uniaxial creep law and as this law contains very high power functions
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of stress, small errors can be easily magnified. To determine the
stress redistribution in a model turbine casing an empirical creep
law was used which was known to give noticeable creep strains in a
relatively short time, i.e. 103 hours.,

The creep algorithms have to be extremely efficient as creep
solutions demand large amounts of computing time usually with
large core store requirements. Many techniques are used to improve
the method of solution of creep problems to reduce computing time.
The simplest method is to reduce the number of elements in an
idealisation and the order of the Gaussian integration mesh used
to store and determine creep information. These changes not only
reduce the core store requirements but drastically reduce the
computing time. The computing time can also be reduced by starting
the creep calculations at a small positive time, say 1072 or 1072
hours, when calculating the creep deformations after 103 hours and
using the largest time increments possible. It has been shown in
Chapter 5 that neglecting the initial creep deformation has very
little effect on the creep strains at some distant time. It is
questionable whether physical creep strains for times less than

3 hours can be accurately measured and whether the resulting

10
empirical creep laws can be used to predict the creep deformations
at very small times.

By optimising all the parameters involved in the creep analysis
an efficient sclution may be obtalned. However careful checks must
be made within the algorithm to ensure that the solution does not
become divergent or oscillatory. This can occur when there is too

large a variation in stress during each time increment, caused by

the time increments being a large proportion of the creep elapse
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time. When the empirical creep law contains only primary and
secondary terms the solution has become unstable when the time
increments begin to decrease as the solution proceeds.

To find the creep strains and stresses on the outside surfaces
of a structure it is necessary to extrapolate their values from
those at the Gaussian integration points. A fine Gauss integration
mesh is required through the element thickness to predict the
creep strains and stresses at the outside surfaces as their
variation through the thickness is a complicated power function.

The thin shell of revolution finite element has been shown to
be extremely powerful and economical for predicting the stresces
and creep in the shell sections of the flanged turbine casing. The
idealisation usually requires very few elements and very little

data.

8.7.3 Economics of Solutions

The computing times used to analyse the flanged model turbine
casing for the full 3-dimensional and axisymmetric approximations
are compared in Appendix 11. An idea of the relative times required
to generate the data can be obtained by considering the total number
of decrees of freedom, number of nodes and elements.

(learly the axisymmetric thin shell of revolution is extremely
efficient and is to be recommended if interest lies in the elastic
stresses in the shell of the casing. For all other areas of the
casing, and to a certain extent in the shell in the creep analysis,
the flange has a dominating effect which cannot be neglected. As
the flange thickness to shell radius ratio increases, the ratio

for the present model is 17%, the flange dominates the deformation
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and an axisymmetric approximation cannot be used.

Future Work

The present turbine casing model was based on a number of turbine
manufacturers designs and is a very much simplified version of
any practical turbine casing. The flange design is unrealistic
for a high pressure turbine casing and consequently the pressure
applied to the shell is very much lower than that which this shell
would be expected to carry. The stress levels in the shell are
quite small compared with the flange stresses and consequently
any creep deformation occurs in the flange of the turbine casing.
The use of the finite element method in predicting the stresses
and creep deformations of a model turbine casing has been shown.

A more realistic model turbine casing with very much thicker

flanges and perhaps steam inlet and outlet pipes should be analysed.
For a thicker flanged model a very much higher internal pressure

can be applied with the same bolt loads before leakage occors. The
stresses in the shell will be much higher whilst those in the flange
will be reduced, and greater creep deformation of the shell will
occur. Also with stress levels within the range used to determine
the empirical creep law for the lead, a better agreement between

the finite element and lead model results can be expected.

The present finite element analysis has not taken into account
the variation of temperature over the turbine casing. A realistic
loading of a turbine casing includes hot and cold starts, rapid
load changes and "two-shifting" where the turbine is shut down
overnicht. The temperature transients during these load changes

are known to cause thermal fatigue damage, whereas the majority of



- 148 -

creep occurs at base load when the turbine is at its hottest.
Future work should include the effect of temperature on the creep
deformation of the turbine casing and the analyses should include
both steady-stata and transient temperature calculations.

The creep algorithms can be improved by using time marching
techniques to reduce the computing time. Such a method, e.g.
kunga-Kutta, predicts the creep deformations at some distant
tim~» by determining the creep deformations at a few initial
times. This greatly reduces the total number of solutions required
by the creep algorithm.

The structure cgn be broken down into a number of "substructures"
each of which could be treated as a 'super"-element. Substructuring
not only reduces the amount of computer core store required to run
a creep program but also the amount of data required to describe
the structure.

The work reported here has shown the power of the finite element
method for predicting the stresses and creep deformation of a
complex structure such as a flanged turbine casing. The solutions
demand the use of large fast computers and the cost of such
calculations can be exorbitant, The creep deformation and stress
redistribution of prototype or production turbine casings can be
calculated in this way before any initial damage due to bad
design or opgration can take place. The finite element analysis
provides more information about a prototype structure than
experimental modelling techniques can provide in a much shorter

time.
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A simple 2 noded element has a radius of curvature r¢ and included

angles ¢1 and ¢2 at either end and meridional length 1.

Let ipu = 2, ipv = 3, ipw= 5 in equations 2.1.

Then as {s};p ]\{“}
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Appendix 2. Stiffness Terms for Thin Shell of Revolution Finite [lement,

Strain Energy V = f{S}T [A-QTJ:[B]T [pr] [B)as [A—g {8}
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+n2 (n2 + 2(1-0) cost’»
T3

-wadun
T

a-n ( 3§,i_n¢-1_>
as

T Te

+ 2w§_v(12(z)sin¢+_r_ +n2
ds \ t2 Tg TTg

- 2w Ow cos (sinqs(l - mé) 22 (3-2:»}

os T Tg T

-zw@gvév(l(sin¢-£‘)+ﬂgp>

Tg Irg T

+(c)u)2 (1-0) (1_2:-2 +I - 3sind + 3_531_249

t Tg Tg T

+3u dwn (1-0) [ 3 sing - 1
35 Bs [2etnd ';s\
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+ (§_§v2v>2r >ds

For axisymmetric case n=0 and V = 2 xV
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Appendix 3. Equivalent lodal Force Terms for Axisymmetric Thin

thell

of keyolution subjected to Thermal strains.

Strain Energy V = -2an< {6 [A-1] J [B] 1-{DD ds

(1-07)

where {DD'} is given by

12 12

cosg (T((1+9)¢t +1:_3 (]_ 5" 2sind + 51n2¢>)+ ATE? <1 (2+30 )
2

ITg r2

r2 IT

t ((1+o)(£ +sin¢)+1£g (%53 -&%¢+§__¢ gm_qs)) + OTE2

Ts

| +dsingd - r - sin?d
: re 2rg2 2r

Ttr(1+9) + ATt (3 (1_ +u)+ sin¢(1+9_
12 \rg\2 2

TS COS¢((1:‘£) -0+ m»)- ATE2 cos (1+2)
: 12 Tg Ts r 12

-Tt3 [sing - r \ - ATt2r (1+D)
12 re 12

sing

2r

~

—
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Appendix 4. Thermal Stresses in Cylinders subjected to Axisymmetric

Temperature Listributions

W
i 1 2¢ —
The strain/displacement IJ ?zx
\ - I
relationships for an My Qx
axisymmetric shell are R
given by i
€x = Qv - z¥w - =T Addt (2)
Ax dx2
€o= W - =T A4s1 (b)
T
‘qs c .
The Equilibrium Equations are Mx + dMx dx

N ax
e
dx = - 1 Ng  A4.2 (a) ™ N
ox R
and Qx = OMx A4.2(b)
ox

which gives

1 Ng+ 02 = 0 Ad.3
R “3x2

" Nx + éﬂg dx

dx

Defining the stress resultants Nx and N in terms of the stresses

given by equations Ad4.1 give

Nx = _E 2c< dv +D_vy_ - (1+:5)u(NT>

(1-0°) ¥x R
(¢
where N7 = 1 T dz
2c } -c

Pefining the cylinder as having no axial constraint, i.e. Nx

e ocE/ ’
then Ne-zcE\%_-an>

Adsa (a)

A4.4 (b)

=0

Ad.4 (c)
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The bending moment Mx is given by

Mx = E  2¢3( 3%+ (14D) x N A4.5 (a)
(1-02) 3 | &2
C
where Mr= _3 J’ Tz dz A4.5 (b)
2¢3 J ¢

cubstituting for Ng and Mx in equaticn A4.,3 gives the usual shell

equation
Qw + 4nr%W = 4834 RN - (14D 32M Ad.€
g /3 w /3mo<"r (14 )x_g;;‘g 4.6 (2)
4 _ Y-
where 4/3 3 (1_R_2%?) Ad4,6 (b)

cubstitution of the temperature profile equation

T(xyz) = 1 T* (1-2) e~*/B A4,7
2 c

gives the displacement function as

w = e pX (C1 cosAx + Co sinﬁx) + Ae~X/R Ad.8 (a)
c 1 '
where A = T*R«( 1 + 3R(1-0) A4.8 (b)
211+ _1

For case (1) No end constraints where (x = 0 and Mx = O at x= ©

Ci = [ Tt (140) - _A 1- 1
1 < dcpe 2/52§2>( ﬁR) A9 (2)
and Co = _A - g1+02 T*
2 2B7R? = 4% A4.9 (b)



- 158 =

For cace (2) with zero slope at x = 0 i.e. Qx

- TP (140)
8/3 cR

")

and C2=_A___<1+__J__- - Tt (144)
2p3R2 8 33cR

A4.10 (a)

Ad.10 (b)
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Appendix 5. Eguivalent Nodal Forces Terms for Axisymmetric Thin thell

subjected to Creep Deformation.

1
Strain Energy V= - %%3) {S}T [A-1_] TJO [B]T { DCREEP;l ds

where {DCREEP} is given by

N

(.. (1-9) cosqS(_ILZéS—i&)Qz{ct ec
k > r

cos¢(1 + :_)2(U€¢c +€ec>
s

(r+z.sing)(Egc +9€,.) + sing(i+ z ) (‘)€¢>c +€5c)

Ts r '
.{ (r + z.;iﬂ¢)2 ('L'2'_D)X¢ec >—

(r+ z.sin@)(1 + 2 )(€,  +De, )
Ts

-z cos¢ (1 + _g_)(‘)e¢c +€,.)
Ts

-z (r + z.s1n@) (€4 +R€ )



- 160 -

sition Paramet Fini lement Constraints

Constraints are made to the displacements on the mid-surface
nodes of one face of a quadratic isoparametric finite element
to. forece the normals to remain straight after deformation, see
Fig. 3.5. Deformation is allowed by constraining the mid-surface
node to lie on a line connecting the corner nodes without
inhibiting the strain energy terms due to through thickness
straining.

The constraints imposed are given by equations 3.38. The
processes involved in modlfying the stiffness and loading matrices
can be described by conslidering merely one displacement.

813=ﬂ§1+§5) Ab,1

Substituting for these displacements in the strain energy equations

i3

gives
3,
seal 51,..55,..513,..}T[K] fsi:’ -{81,-.55,.-513,--}T{Fe'g A6.2 |

substituting forO13 in terms of S1 and 3, gives the modified

stiffness terms as

—
Ky1#Ky3,1H513,13 K1248K13,20 oKy 448K 3, 40K 548K 1 3tBK 5 50K gHEK 3 g

K21+§K2’1 3 » K22 ’ ’ 1(24 ’K25+'B<2,1 3 ’ K26
’ K33y ’ ’
Ka1+8K4,13 »  Kap s s Kag  KestiKg q3 »  Kgg

K51+§K1 3’1""5'(5’ 13 ’K52'|"§K1 3,2? ’KSMT 3, 4’K55+K1 3, S&K‘] 3,1 3’K56+-bK1 35

K61+§K6 ,13 ’ Keo s » Kea sKes+iKg ,13 y  Keg
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o E o1 * ey

e2

4

: % { Feg + é—Fem ?
4
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Appendix 7 Decomposition of [D7T matrices into{uAT [u] form
The stress/strain relationship for 3-dimensional analysis is
given by
o8- [ol e}
where B
1-R o 0 0 0 0
1=0 0 0 0]
‘.D-] = (1+0) (T-20) =200 o
2
1=20 0
2
symmetric 17'—22

The [D] matrix can be decomposed in lower and upper triangular

form
(p]= (][ v]
RAERCHE

The upper triangular matrix [U7] is given by

where

(-9 125 o 0 0
1-20 N1-2»
° JT8 Jr=o O 0 0
J——E__ 0 0 Wi-2pafi-9 o 0 0
[U]’ (1+n) (1-20) o 0 o J]-2p o 0
2
0 0 0 o 52 o
0 0 0 0 o /522
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Similarly for the thick shell analysis the stress/strain

relationship is given by

{o"z = [o'] ié'}

where — =]
1 (™ 0 0 0
1 0 0 0
T=r
[:D] = (1__%) Il 0 0
1=
x ©
symmetric 1%i2
This is decomposed to
[o']= [u]'[u]
where [U'] is given by
r 1 N 0 0
0 Al1-02 0 0
/ E ﬁ-
[Uj = T:—DQ 0] 0 '31-) 0
0 0 0 JT-_TS
2K
0 0] 0] o]
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Appendix 8 Von Mises and Prandtl-Reuss Flow Rules

Creep deformation and plastic flow are very similar processes
and the flow rules used to describe plastic flow are identical
to those used to determine the creep deformations. For any given
material there is a function of the three principal stresses
which always has the same value regardless of the stress state.
This function is used to equate the stress states in uniaxial,
biaxial and multiaxial stress fields. This enables the creep
strains in a multiaxial stress field to be determined from the

empirical creep laws.

Stress_Invariants

The principal stresses for a 3-dimensional stress field are
given by Timoshenko and Goodier (ref.69) as the solution to

equations A8.1.

1©=0) + mTyy + n'Cy, = O A8.1(a)
1Cxy + mloy, =0) + n'Ty, = 0 A8-1(b)
1Ty, + BTy, + 0o, -0) = 0 A8.1(c)

where 1, m and n are direction cosines of the stress field.
These equations are a set of 3 homogeneous linear equations

which have a non-zero solution if

% o) Ty Txz
Cxy 6y -o) Cyz =0 A8.2
Cxz “Cyz (67 =)
If A8.2 is expanded then the equatlion may be written as
63 - 1162 - I,0- 1= 0 A8.3(a)
where Iy =0 +o, +07 A8.3(b)
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I, = (O30, + o6, + ogy) +T %y, +T2,, +T2 A8.3(c)

Yy Y y?
I3 = 0,030 + 2C,0, Tyy Cyy = 03 T, = 0% T2, = 0, X2y AB.3(d)
3 Xy xy “xz “Yyz X Yz y Xz z Xy i
The stresses,cr*,cr9,cré;C:xy,Y:xz,&:yz depend on the choice of
the initial x, y, z axes, but the roots of equation A8.3(a), the
principal stresses, are independent of this choice. I, I, and
I, must therefore remain unchanged and are termed "invariant".
Hence because I{ is invariant by a change of axes
Oy +6,+06, =07 +0, +0 AB.4

Y

Creep Flow Rules

It is assumed that hydrostatic pressure does not cause any
appreciable plastic deformation. Johnson (ref. 54) has shown
that a change in hydrostatic pressure has no effect on creep
rates. In developing a flow rule for creep deformation it is
usual to subtract the hydrostatic stress from the direct stress
to give the "stress deviation". It is assumed that the creep
flow is dependent on the stress deviations.

The ™mean normal stress" is defined as

S AB.5

_ (o +C;§ +07,) _ (09 +§f'2 +07)

The most important condition for creep flow is that the creep
process is invariant to the axes. As the mean normal stress does
not affect the creep flow process the flow rule must depend on
the invariants of the stress deviations.

The invariants of the stress Iy, I, I3 have been found and the
invariants of the stress deviation J1, J2, J3 are found in a
similar manner

Jp= sy + syt s, AB.6(a)

Jp = ~(sxsy + sy8z + 8,5¢) + 5%y + 5%, + 52, AB.6(b)
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where s, = Oy-s etc. and syy = Uyy A8.7

J4 vanishes as (sx+sy+sz) = 0 and using this in J, gives

= %ﬁsx2+sy2+522) + 52x + 82, + §2 A8.8(a)

J Y Yz zZX

2
= %((O;-q,)Q + (oy-05)2 + (o;-o;)2)+‘t2xy+ ‘c2y2+ 2, 48.8(b)
which when referred to principal axes gives the second invariant

as

1
Jp= 582+ 552 + 542) AB.9(a)
1
6

((01-0'2)2 + (0‘2-03,,)2 + (0'3-01)2> A8.9(b)
The simplest relationship of £(Jq, Joy J3) = O, is that J2
should be constant as Jq is always zero and J3 leads to a very
complex set of equations.
In the case of a uniaxial stress field this relationship gives
Jo as
J,=6,2 /3
This value of &y can be considered to be an equivalent stress

6; to the multiaxial stress field

o = J-_;- J (Ox-cy) 20y~ ) 2 (05-6) 46 T 16T 2 46 C2,, A8.10

f.e. g =0, for uniaxial stress fields.

For plastic flow this relationship between the multiaxial stress
field and an equivalent uniaxial stress has been shown by Hencky
(HL11 ref, 61 and Jaeger ref.62 ) to imply that yielding occurs
when the elastic strain energy of distortion reaches a critical
value. Nadal (ref. 70) states that plastic flow occurs when the
shear stress acting over an octahedral plane reaches a certain
value which is proportional to the second invariant of stress

deviation. The creep flow rules are based on an equivalent uniaxial
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stress to a multiaxial stress field to determine the equivalent
uniaxial creep strains.

The multiaxial creep strains are calculated from the equivalent
uniaxial creep strains using the Levy-Von Mises and Prandtl-Reuss
flow rules, Hill (ref. 61). The Levy-Von Mises flow rules are
based on Salnt-Venants principle that the principal axes of strain
increment coincide with the axes of principal stress, This was
extended by Prandtl-Reuss for elasto-plastic and creep equations.
As the creep strain increments are proportional to the stress
deviations the multiaxial creep strain increments can be found
from the equivalent uniaxial creep strain increments.

For a uniaxial stress field the stress deviation is given by

= 20’8 A8011(a)
3

Se
In multiaxial analysis the stress deviations are given by

sy = 13 (26~ o3~ ©3) A8.11(b)
etc.

Sxy = Uxy | A8.11(c)

This gives the multiaxial creep strain increments as

Ae,, = Ae, (205- 0y-o7) A8.12(a)
26"’9 etc.
AE = éﬁéﬁc 31:
XYe 2 Lxy etc. A8.12(b)

e

The constant volume condition for creep flow is included in

equations AB.12(a), 1.e. ex"'ey"'ez = 0.
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Appendix_9 Newton's Method for Solving Non-Linear Equations

A non-linear equation of the form
x = f(t)
can be solved by a method of successive approximations. The curve
of the function is shown in Fig. A.9 and it is required to find
the value of t when x=xg.
An arbitrary time t is chosen and the equivalent value of x is
evaluated
x = f(t)
This value is inh error by x-xg and a second approximation can be
made using the slope of the curve at x, t.
This slope is given as f'(t).

The next approximation of t is given as
e
Successive approximations are made until the differences between
X and xg are small enough that no significant variation of t is
made by the next approximations.
Care must be taken if f'(t) ever approaches zero as the equations

£(e)

become ill=-conditioned.

;E3 RA.q
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Appendix 10 Creep Analysis applied to a Beam Finite Element

A beam finite element with 12 degrees of freedom, 3 translations
and 3 rotations at each node, has been adapted for creep analysis,
The displacement functions, translations normal to the principal
axes and torsional rotations, are defined as polynomial functions
of the beam length.

Uy = a1 + agX + a3x2 + a4x3

= by + box + bax? + byx3

<
N
!

A10.1

O
)
n

c] + coXx
Uy = dq + dox
The z axis is the major axis, the y axis the minor axis and the x
axis the polar axis of the beam.
The equivalent nodal force expraession, given by equation 5.9
for the creep strain increments, can be further simplified by
using the constant volume condition.

gAé‘,’ST 5“9? = %G voierzrgl\ec?sdvu A10,2

Considering the loading on a beam element, this usually comprises
a bending moment about the major axis or a tensile or compressive
force along the beam length or any combination of these. GYAGYC
and € ,A€,; are negligible compared with eerxC and are neglected.

This gives the equivalent nodal force expression

gAs;%T %AFeS = 2Gj V°16x A€y dVol A10.3

The total strain in the x direction about the major axis considering

tension and bending is given by
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du,  Puy
x= 3x = Ye3xe A10.4(a)
where 2§2u 1
~——Y = — the radius of curvature by the Engineer's Theory
2x2 R
of Bending.
Hence €y = do = 2a3y = bagxy A10.4(b)

from equations A10.7 the displacement functions,
The vector of displacement function coefficients is given by

defining the displacements at the nodes by the [?A:] matrix

a1

a2

: = [a7 1 {Ag‘} A10.5

da
The strains are then given by

€x= gAcSRST[Aq] g P(x,y)} A10.6

where I

gp(x,y)gT=§o O =2y =6xy 0 0 0 0 0 O 0 1}

Differentiating with respect to the change in nodal displacements

gives the equivalent nodal forces as

{([;Fe'g = [A-13Tj 5{ P(x,y)} A€y dVol A10.7(a)
Vol
1 ¢ d/2
gAFez - [aT - {P(x,y)}{AéxC dydx  A10.7(b)

This is found by Gatissian quadrature numerical integration for

each time interval.
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Appendix 11 Computation of Turbine Casing Finite Element Idealisations

o-Dimensional Plane Strain Analysis of Turbine Casing Section
Idealisation :- Fige 6.1(a)
72 x 8 node Isoparametric Finite Elements
No. of Nodes :- 261
No. of Degrees of Freedom :- 504

Maximum Instantaneous Size :~ 40

Computer :- S.R.C. Atlas
Store 3= 24,000 48 bit words

CPU Time :~ 376 secs.

3-Dimensional Plane Strain Analysis of Turbine Casing Section
Idealisation 1= Fig. 6.4(a)
15 x 20 node Isoparametric Finite Elements
No. of Nodes :- 175
No. of Degrees of Freedom :- 134

Maximum Instantaneous Size := 23

Computer :- Nottingham University KDF-$
Store 3~ 23,000 48 bit words

CPU.Time :~ 1661 secs.
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3-Dimensional Plane Strain Analysis of Turbine Casing with Bolts
Idealisation :~ Fige 6.6
57 x 20 node Isoparametric Finite Elements
No. of Nodes :- 457
No. of Degrees of Freedom :- 1097

Maximum Instantaneous Size :- 196

Computer :- S.R.C. IBM 360/195
Store :- 262,000 8 bit Bytes (i.e. 85,000 32 blt words)

CPU Time :- 86 secs.

Stress Analysis of Inner Turbine Casing
Idealisation s- Fig. 6.14
70 x 20 node Isoparametric Finite Elements
No. of Nodes s~ 560
No. of Degrees of Freedom :- 1508

Maximum Instantaneous Size 3~ 173

Computer :- S.R.C. IBM 360/195

Store 1= 252,000 8 bit Bytes (i.e. 63,000 32 bit words)
CPU Time :~ 117 secs.

Also

Computer S.R.C. Atlas

Store :- 54,000 48 bit words

CPU Time 3615 secs.
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“tress Analysis of 9lit Turbine Casing
a) 3-Dimensional Analysis
Idealisation s- Fig. 6.21
123 x 20 node Isoparametric Finite Elements
No. of Nodes i~ 946
No. of Degrees of Freedom :- 2602

Maximum Instantaneous Size :- 181

Computer :- S.R.C. IBl 360/195
Store 3- 374,000 8 bit Bytes (i.e. 93,000 32 bit words)

CPU Time :- 223 secse.

b) Axisymmetric Approximation
Idealisation :~ Fig. 6.30C
15 x 2 node Shell of Revolution Finite Elements
No. of Nodes :- 16

Noe. of Degrees of Freedom :- 107

Computer :- Nottingham University KDF-9
Store :- 9,000 48 bit words

CPU Time :- 337 secs.
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Creep Analysis of 95plit Turbine Casing
a) 3-Dimensional Analysis
Idealisation := Fige. 6.21
123 x 20 node Isoparametric Finite Elements
No. of Nodes :~ 946
No. of Degrees of Freedom :- 2602

Maximum Instantaneous Size :- 181

Computer :- S.K.C. IBM 360/195

Store :- 374,000 8 bit Bytes (i.e. 93,000 32 bit words)
CPU Time :~ 7030 secs.

No. of Time Increments s- 116

Gaussian Integration Mesh := 2x2x2

b) Axisymmetric Approximation
Idealisation :~ Fig. 6.30
1% x 2 node Isoparametric Finite Elements
No. of Nodes 3~ 16

No. of Degrees of Freedom :- 107

Computer :- Nottingham University KDF-9
Store :- 24,000 48 bit words

CPU Time :~- 959 secse.

No. of Time Increments 3= 32

Gaussian Integration Mesh 3= 4 x 3
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Igble 241 Axisymmetric Thin Shells of Revolution Subjected to_ Thermal
Strains
Radius/Thickness ratio 10:1

o¢ = 1,1 x 10-5 in/in°C
E = 3.0 x 107 1bf/in2
O = 043

To = mid-surface temperature = 500C

ATgp = temperature difference across the shell thickness = -100°C

Meridional Stress Circumferential Stress

Inside Outside Inside Outside
) Cylinder ‘ .
Standard (Roark) -23,600 23,600 -23,600 23,600
Finite Element -24,050 23,090 -23,880 23,270
Saﬁere
Standard (Roark) =23,600 23,600 -23,600 23,600

Finite Element =24,520 22,610 -24,090 22,790
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TABLE 2,2 Comparison of Thin Shell Theory to Finite Element Analysis

for a Long Cylinder Subjected to Creep

Radial displacement w mm

Radius a

Thickness h

Internal Pressure p
Poisson's ratio P

Young's Modulus E

Creep Constant A

with Stress constant n
and Time constant m

Empirical Creep Law

1

i

Thin Shell Creep Ecuation

100 mm

5 mm
0.75 kg/mn”
0.3
1.8 x 10" kg/ma>
.36 x 10—9 (kg/mmz)-4;66 0218
k.66
0.218

P

(n+1)/2 n-1
B -9 (BA)(E2) " ¢m
pa
Time Total Disp| Total Disp| Creep Disp | Creep Disp Creep Disp | Error
Hrs Theory F.E. Theory less 10~2 hrs - F.E. %
Theory
0 ' 0085 | 00832 - - - -
0.1 1.27 1.208 0.4205 0.4198 0.376 10.43
1.0 |  1.54 1.453 0.6345 0.6938 - 0.621 10.49
10.0 2.0 1.866 1,148 1.1473 1.034 9.88
100.0 2.75 2.548 1.897 1.8963 1.716 9.51

All displacexments are given in the dimensionless form

Value.of Equivalent Stress for Thin Shell Theory

12.99 kg/mm2

Average value of Equivalent Stress for Finite Element Analysis = 12.67 kg/mm2

Error in Equivalent Stress =

2. 464%,
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Table 3,1 ussian drature Integration Constant

f(x) dx is given by the summation
-1

The integral

1 n

f(x) dx = Hy f(ayq)

where H; and ay are the weighting factor and variable respectively.

These values are given (ref. 21) below for n values up to n=6

n ai Hi
2 ¥0.577350269 1000
3 0. 7745966692 045555555556
04000 0.8888888889
4 10.8611363116 0.3478548451
10.3399810435 0.6521451549
5 *0.9061798459 042369268851
t0.5384693101 04786286705
04000 0.5688888889
6 t0.9324695142 0.1713244924
¥ 0.66120023865 0.3607615730
t0.2386191861 0.4679139346
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Table 3.2 Comparison of Isoparametric Finite Elements with the Lame
Dlution for a Thick Cylinder subjected to Internal Pressure

E = 3.0 x 107 1bf/in2

Internal Radius = 3"
External Radius = 4"

Sector Idealised = 224°

Internal Pressure = 1000 lbf/in2

R Lame
Solution
€. x 104 =0.69
€ x 104 1.29
€, x 104 ~0429
¥ 6. x 1073 -1,0
@ x 10-3 34572
o, x 10~3 0
e, x 104 -0.43
€y x 10% 1.03
3.5" €, x 104 -0.29
O, x 10=3  -0.394
Tptx 103 24962
oy x 1073 0
V e, x 104 -0.%
€g x 104 0.86
€, x 104 ~0429
4 . x 1073 0
Og x 10~3 24572
o, x 103 0

D= 0.3
R37130 R37110 R37160
480F linear 60CF quadratic 720F cubic
in g in ¢ in g
-0,43 =065 -0.69 -
1.3 1.3 1.3
~0e26 -0e26 =026
0,03 ~0.85 -0.,98
3.9 3.6 3.6
0.42 0.064 0.0081
-0.43 -0.44 -0.43
1.0 1.0 10
-0.26 “0426 -0426
~-0.39 -0.45 -0¢39
3.0 2.9 3.0
~0,0004 -0,027 =0,0007
=0e43 =023 ~0¢26
0.84 0.86 0.86
~0e26 -0¢26 ~0e26
=07 0.097 =0,01
2.2 246 2.6
=031 0.041 =0,0061
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Table 3.3 Comparison of Thick Shell Parametric Elements with Isoparametric
Elements and Lame ution for a Thick Cylinder subjected to

Internal Pressur
Internal Radius = 3" E= 3.0 x 107 1bf/in2

External Radius = 4" = 0,3
Sector Idealised = 223°
Internal Pressure = 1000 1bf/in2

R | Stress Lame | 60°F 40°F
x 10~3 Solution Isoparametric Superparametric
Element Element
R37110 R37131
o7 =140 -0.85 =10
3" Os 34572 3.6 3.52
o3 0.0 04064 0.163
o: ~04394 ~0445 045
3.5" Cp 2,962 2.9 2,97
o, 0.0 -0.027 0.0
Cr 0.0 0.097 0.0
4" e 2572 2.6 2.56
o3 0.0 0.041 -0.123
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Table 5.1 Effect of Neglecting Initigl Periods of Material Creep Laws

Rectangular cross section beam subjected to constant bending moment.

Bending moment

=1.62 x 10° 1bf/in

Cross section depth =

Cross section width =

Young's modulus
Poisson's ratio

Creep Law

=1.41 x 10° 1bf/1n2

€. = 2.68 x 107° (e

6 in

2 in

0.3

o~ /7500 -1)¢0372

Change of equivalent stress during time increment < 0.1%

I—V Distance Starting Times hrs.

j ]
from 0.0 0.001 0.01 Ce1 1.0
N.A. Stress Percentage ;;ror aftegw;; hrs:m;;“>“ﬂ

1bf /in2 stress compared with the zero
starting time solution
04550 2.729 x 10° | =0.146 | ~0.51 1,355 | -3.55 |
1,576 7.432 x 10° | -0.054 | -C.23 0461 -1.63
2,389 1.067 x 104 | 0 0 +0.,094 | 40,28
2.880 14236 x 104 | +0.081 | +0.16 +0.64 | +1.69
3.0 14250 x 104 | +0.1 +0.2 +0.85 +242
No. of Time
176 175 168 152 113
Increments ]
Change in Time Increment
If previous increment within limit +t'= 3 x ¢
If previous increment outside limit t'= t/3 and

unsatisfactory step repeated.
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FLOW DIAGRAM FOR THIN SHELL OF REVOLUTION RING
EINITE ELEMENT ALGORITHM

START

Read: Number of elementsIL
Number of nodes/element INE
Number of terms in u polynomial 1PU
Number of terms in v polynomial 1PV
Number ot terms in w polynomial 1PW

Declarations in Dynamic Arrays

Read element data

1L .|

Determine length and element curvature properties

|
.
Cakulate [ﬂ "

Determine Thermal Coefficients

| =9I Gaussian integration along meridional co-ordinate

Calculate ¢,r

Cakulate [D] matrix (Appendix 2)

Determine Polynomial function at Gauss Point and form
[B] matrix

Cdculate [BU [D] [B]
T .
2 22 1 | Fig.22
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FLOW DIAGRAM FOR THIN SHELL OF REVOLUTION RING

FINITE ELEMENT ALGORITHM (Continued),

22 1
IMx7

Cakulate Pressure Loading Term ,-Bﬂ {r}
*

IM$8 |

Calculate Thermal Loading Term |B1] {0D)

Sum Stittness & Loading Terms |

cacume IR

L IMg7
Calculate iA'TJ Z[BI {r} )
— IM$8

Calculate [ A7 Z[Blz {o0}

r

Sum stitfness and loading terms into total matrices

|

Solve
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stiffpess Matrices for Thin Shell Rinc Finite Element,

23,24 _ e 25,26 ) e iu

~7 g
Sparse matrix due to - 4%4.&\4 /X%\gé

" "o S5 R <
ertra degrees of freedem ??<?3}Q§ %5
- > /\1\<\::<" N X
N ' /("'5\})(" N %
20 25
15 | , |
| 7% T\ =0 2223 ”) -2y
1o ) paadt” 21 S
l ,/4’,/3 A
oY C}
" .
‘5 7%
N
&
23
7

Banded matrix by careful
ordering of "extra degrees

of freedom"




PIAN'S CYLINDER TEST

37
' Exact Solution .
— - - - +___._‘==-—lv}- T
3 2inch elements —_—
I . \/ x— "
Picn's solutions + >/o——--"“' o———0 /
- .
A
0 /X ‘
RS /
* 6inch element
7))
= + /
"g . /o /
C ]
|
5 >
5 10" ?
5 \ Radial Load _ -
® 7] 10 tbf/in t A
c 7
R i
E 6
©
(o] / . '
7777777777777
O i : 1 ] ! 1 1 i 1 1
No of v terms (Pian 4 (2 5(2 6(2 7(3 8 9 10 1 12
o of v terms (Pien) 42 3(2) g2 73 8 3 10 11 12
Total No of degrees 3elements(Pian)i5 (9) 21(12) 27(18)  33(21) 39 45 51
of freedom 1element 5 7 9 1 13 15 17 Fig. 2.4
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PRESSURISED SPHERICAL CAP

Fig. 25(a)
40- Structure idealised by 1 element.
¢y p=1 Ibf]in?
304 INY
‘ t:3 "
= nu=0-167
5 204
=
m
10+
<]
5
o
g o

POSITION ¢ DEGREES

i

0 - 3v
: 1 Exact Solution (Ref24)
i 2.No of v terms = 4; No of w terms = 4-;—-;—(
B & 3__-'" v 5 -—6' .“ " " -—6 . :
———-10- b ! o 4. ¢ ) " _8 A BV VR =8 o
E R
kS
2
& 20
0
]
o
?5_30~
=]
&
& ~40-
E
pn
o
(8] G
=50+ ———&—06—
] { Y T T T .
35 30 25 20 15 10 5 0

POSITION ¢ DEGREES



lbf.in/in

B. M.

Meridional

lin.

Resultant 1bf

Stress

Circumferentiat
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Fig.25(b)
PRESSURISED SPHERICAL CAP
./-/"—‘ .....
/'/./
i
/'/
T T ] 1 |
35 30 25 20 15 10 5 0
POSITION ¢ degrees
0 -
N Exact Sol”
_10- —-—FE Sol.
5  elements
No of v terms =
No of w terms=4 ,
-20+ !
-304
4,0
~£Q -
T 1 H ] T ] . k
35 30 25 20 15 10 5 0

POSITION ¢ degrees



Ibf. inlin.

B M.

Meridional

Ibflin. -

Stress Resuitant

Circumferential
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Fig. 25)
PRESSURISED _ SPHERICAL _ CAP
407\\
30 \
20
10- \
O' S _
/'/. -
\.\ _/./'/ '
T e ——
-’0 ¥ ) 1§ H T T T 1
35 30 25 20 - 15. 10 5 0
- POSITION ¢ degrees
0-
Exact Sol"
—— FEE. Sol"
10 elements

Noof v terms =2
No of w terms=4

-20+ ’
"‘30—‘
~404
-50-
LB T 1 ' 1 kil 1
35 30 25 20 15 10 5 0

POSITION ¢ degrees
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Torisoherical Drumhesad Idealisstion

Thickness - 04555"

AN NN

RO i, SUS—

Knuckle Radius
. 3.404"

%
y
/
—

~-... Crown Radius
T 57402

Internal Diameter
Di = 37.0"

VAV av4

ﬂ/]/

No. of elements 6
No. of v terms 6
No, of w terms 6

Total No, of Degrees of Freedom 53

Stress index = g%i = 233,323 1bf/in2

Fig. 2.6(a)
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ELASTIC STRESSES IN TORISPHERICAL DRUMHEADS

Meridional Stress Indices

\ //Outside Surface

~ Crown _ Knuckle!_

o |

Cylindrical Drum

N o

Crcumferential Stress Indices

Inside
0 Surface

DT o4

| Crown _Kruckle! Cylindricat Drum

——— Finite Element Andlysis

»: :”} Experimental Analysis (ref, 25)



MERIDIONAL STRESS

201

3 DIAMEZTER

DEGENERATED FRESSURE VESSEL
/ \
/A A\
Qutside Surface \

10— N\
+ \
-
N/
A
3 7/
\
Om. \'d
P : VARN
C Y
// A -’ Pecsiticn aleng
f; \ ! ', mid-surface
¥ \ |
/ W ] \
N
'><J ' \ +.
i =107 1 \W.
z r/ ; N\
/ |
s \+//
\J
v Fig.27(a)
c D 5 elements
~20 4 terms in v function s Sellamy a Fessier ol ®
' 6 . e w —_— - my a Fessler col®
[USIY WSR——
A 8 E WE 48 degrees of freedom Finite Element sol L

of structure.




D E -
| |
I l
i |
| |
BC - 1 b T ____F
/ - 1—G
|
B // \ NL

+--

| \
Finite Element Idealizatiod# « ,
Photo Elastic Modal B

FINITE ELEMENT IDEALIZATION OF 3-DIA VESSEL.

Fig.27(b)
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INDEX.

MERIDIONAL STRESS

THREE DIAMETER  CYLINDER RESULTS

- €6] -

30 S
'8 elements
8 terms in v function
6 " " w “
72 degrees of freedom
of structure
20
_—~Qutside Surface
10 — .
P .
B \V/
| . /3K
O - % { T '1 ! \ \‘ 1
A \ B . H / \_I
\ f \] . 7 f\ Position along
W\, / / . S mid - surface
Finite Element Solution . , u‘
— - —Pictoelastic  Solution ;
. ' -/ Fig.27(c)



MERIDIONAL  STRESS INDEX

»

THREE DIAMETER _ CYLINDER RESULTS

30

12 elements
6 terms in v function
8 " TERVY) "
130 degrees cf freecom
of structure

"1761. -

Pesition along
rnid surface
. N\
Finite Element Soluticn
— -—Photoelastic Soluticn Fi 9.2.7@

10+



SEMIINFINITE CYLINDER

CINITE

ALISATION

e
-
[

ELEMENT ID

195 =

O . .
O 0 C
Q o 7] w o~ ©

Jo 2MYuiadwial NBpp  |Eusiu)

——

wn
llllllllllll JAE/.W - N
1
H
I~ >
| .
. (@]
o2 .8
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.G n
- RSN S)
wi ¢ ~ o .
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. = N 2w
Ellllllllll I.I.I...ILS L 2!‘.7 o L WD
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N
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.
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* a
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!
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-
, J
1 I § e I 10
) -
=
&
-] . LN
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<
v KT
R 419 10
v Yy
D -
]
- e - = e O )
rﬁll‘(‘“l[‘l —— (.15 |5
e . . " )

Fig. 28(a)

X ins.
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¢ SEMI-INFINITE CYLINDER SUBJECTED 10
A VARYING INTERNAL Wall TEMPERATURE
2:07 Radial Displacermnent
) . Exact solution
c Zero Slope at Free End { X F E slution
(o]
& ) ( .
> Zero B.M.al Free End 1"‘"‘*‘" Exact solution
o ©  EE.solution
S
L%1'0-
KL
o
2
o .
R
& \
. —
0 ) + . t L + : b : —~
00 10-0 200 30-0 400 500
X ins.
Hoop Siresses
\ . .
\ Zero Slope |3+ Hoop stresses Outside Face
2:04 ————- [j0op stresses Inside Face |Exact
\“A Zero BM. {-*-—X-— Hoop stresses Outside Face [Sol
e ~ 4 -+~ Hoop stresses Inside Face
8 S -o-—o6— Zero Slope ,
“'o‘ 1-0- k- 7ero B.M.} F.E. Solution
2 |
V)
§ 0 } + 1 t —
no | 10:0 200 300 400 50-0
a X ins.
8 7
T
1-0-
-2:0-

Fig.28(b)
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FLOW DIAGRAM FOR CREEP ANALYSIS OF THIN SHELL OF

REVOLUTION FINITE ELEMENT

START

[ CONT=¢

+

9

LOOP THROUGH ELEMENTS

DETERMINE [A‘ﬂ

I CONT

DETERMINE _NODAL DISPLACEMENTS

!

Determine element constants Rs,dy,$9 etc.

ICONT=2
Gaussian integration loops through s&z Reduce

a7

Determine r & ¢

ICONT

Calculate polynomial coefficients io( u ,V.W}

¢

ICONT

1

\/

Store in AKREAP

Calculate € ¢, EeT, Xdor

21123
22 24

Calculate A€¢T,Aém,A‘&¢w
Store in AKREAP
Calculate A€pe.Aese, A ¥por

|

12 . 31
Frg.2-9

32
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FLOW DIAGRAM FOR CREEP ANALYSIS OF THIN SHELL OF

REVOLUTION FINITE ELEMENT(Continued)

2-1222321. H 1_|2
Calcutate stresses Calculate change in stresses
o9, Ce, Toer A6, Aoe, AThe
Store in AKREAP Store in AKREAP
[Check &% ¢ Ratio -0
1
1
IC%
Calculate equivalent uniaxial stress o,
Calculate uniaxial creep strain A€, in time 4T
Convert to muttiaxial creep strains A€g,, A€e,,A¥po.
Store in AKREAP
Generate equivalent nodal force terms
and sum for element
Continue
ICONT >>—1
Merge Element Forces
Continue
Oorz AconT -
Slve Update information in AKREAP
fps) s {07
| Increase AT
2 4 42




/
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FLOW DIAGRAM FOR CREEP ANALYSIS OF THIN SHELL OF

REVOLUTION FINITE ELEMENT (Continued)

21 l.|-1 l.l-2
ICONT =1 JCONT=?2
. l Check Time
Time <Timmax -

Tlme > Timmax
Print|
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SUPPORTED SHELL

SIMPLY

TR L ]
o)
@D
w
3 .
3
o

& !

il

P

Creep law
€zAsh tMm

whare .
A=4-36x 10‘9(%%\ 2> 66 soe 20
n= 466

m=z=0-218

T E=18x 104 Kg/mm?2
=03

- = 00¢ -

pa = 15Kg/mm2
h

(i-v

4

11}
P

N

[N ]
g
N

_— e——————

- ————— e -

Fig. 210(@)



----- T o=~ CREEP DEFORMATION OF SIMPLY SUPRORTEL CYLINDER
-30% o Free cylinder
- — - —— Murakami & lwatsuki Soln. Ref.23
Strain Hardening
) ——x——Time Hardening £Z < 00!
+—Strain Hardening _1:\._63' £0-01
Ehw
paz :
- 2'Oj No. of v terms 8
No. of wterms 8
1 '
@
_]O —
g
0 , , - , : ‘ Fig.210(b)

02 04 2%/ 06 08 10



Parameitric Finite Elements

20 node _quadrilateral Isoparametric Finite Element

16 node Thick shell parametric Finite Element

Fig. 31
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Mapping of Parametric Finite tlemenis

Wy

Cube defined in Curvilinear
Coordinates €,n,5 mapped

into Cartesian Coordinates
X.Y,Z

Fig 32
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Thick Shell _and Ahmad’ Parametric Finite Elemznt

Nodal Displccements

Thick Shell Finite Element

j /\\/0 G/:", 4
\ )
L v

kY

A
\ | /v_;/
/—/
VP
PN
/ {\/04'?i;J U‘.J - “K
[
1%
ZL\ h
v yd
\ ! e "jL
Ve
\ 74

"Ahmad Shell Finite Elemnent
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Thick Shell and lso-parametric Finite Element

Junction Constraints

Coupling _Qutside Nedes

Thick Shell
Deforms to

AN

Fig.34
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Transition Parametric Finite Element  Toroloay

and Displacement Constraints

Fig.35
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20 NODE ISO-PARAMETRIC STIFFNESS AND LOADING

MATRICES FLOW DIAGRAM

START
Declarations

Define Nedal Geomeiry in Curvilinear Coos'dim'tasﬁl

Determine [‘_Aﬂ

READ number of elements IL

K S0

1

Store Element kentification, IL and  A™ in Common
Storage

24

Read Elment Topology and material constant o

¢ <00
>0-0

Read material constants £ N

Define D matrix or equivalent

|

O
1

~ Stoie Element Topology and material constants

B Determine Nor._i-al Coordi;;atzs in Global axes J

H Fig.36(c)
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20 NODE ISO PARAMETRIC STIFFNESS AND LOACING
MATRICES FLOW DIAGRAM (Continued)

2 1

I IM+ 8

8
| Determine Nodal Temmperatures and Calculate

o<y (a1 {7}

-

Determing Element Axes Direction Cosine Array
DCA and define Nodal Ccoordinates in Elernent
Axes

Q

Caleulate oy = |47 )
- LA-F 1

<y = (A1)

- A 1ED

Gauss Integration <z = [A | fz)

Points.

Detine Curvilinear Coordinates §,7.% in terms of
Gauss integration points

Al Determine the Jacobezan matrix J] and calculate
%%g aPlax, aPhy,»Phz, and | [J] |
10‘;_\1
Y] o — - - - — - - - —— -INSERT SHELL
- MODIFICATTION
Determine [B]:] [D] [B] or -Equivalent FIG. ge(b)
33|35 27
|
31 34 32

Fig.36(a) cont.
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20 NODE IS0 PARAMETRIC STIFFNESS AND LOADING

T (J_J
>
L S

MATRICES FLOW DIAGRAM (Continued)

22

32

| +8

8

Determine [le [D] (Eo} fbr initial  Thermal Strains

L

sun [81][o] ] are 87 [0 ) Trrs

7

Determine surface on which pressure is applied g =+1
and value of pressure at Gauss point p

Calculate Vector V' normal to wveclors Vp, and Vq
Vz' = Vg X VYZ

Sum P(%.9.5) Vz'p

Calculate [A"‘] TZ [Bﬂ [D] [B] [ A—T]

! % S

1

cacste [ TE BB [camuate [T Pano v
{ ]

— 0,

N

MERGE Algorithm sums stiffness and loading matrices
into total structure matrices

|

Fig.36(a) cont.
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THICK SHELL PARAMETRIC_FINITE ELEMENT
Extra Portion of Flow Diagram to be added to Fig.36(a)

Construct a Unique Set of Orthogonal Axes
Vx':Vg, Vz'= Ve x Vg , Vy':\72' X Vx'

(0] = [B %y ¥z ]

Transform [B] Matrix into Orthogenal Axes

(5] = [671[E][]

i Fig 36(b)

TRANSITION PARAMETRIC FINITE ELEMENT
Extra Portion of Flow Diagram to be added to Fig. 36(a)

Transform "Stiftness and Loading Terms

associated with nodes 13 and 15 into Global
then Llocal Axes if applicable

Modity Stiffness and Loading Terms
Null appropriate Rows and Columns

Transform  Stiffress and Loading Terms
back to Element Axes

Fig. 35(c)
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Element Topology for Quadratic Paramztric

Finite Elements

lsoparametric _aind Transition Parametric

Finite Elemeris
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Pressurised Thick Cylinder

: PR
ID=6" 0D=8", Pressure=1000 lbf/‘m?, Seclor=271;

Hoop Siresses

b e e

4000
- c .

Stress
Ibf/in2

3000+

2000 — .
3 : 35 JA
Radius '

Radial Stresses

« Radius

o% 35 /i

Stress
Ibf/inZ

E

*

-1000

Key

x—xX Lame solution
a—a Linear icoparanetric EE. solution

+—+ Quadratic oo

Fic1 3.8(a)
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Pressurised Thick Cylinder

" " ~ ey ) . .-*1,.0
ID=6" OD=8", Pressue=1060 hi/in?, Secior=7"

4.

Hoop Stresses

40001
i
Stress
3000+ |
X |
2000 ” ¥ " "'
| . - 3.5 |
Radius
Radial Stresses
3 35" Radius 4
0
Stress

| —100033/

x—X Lame solution

Key

O0—n Quadiatic Thick Shell Parametric FE.solution

+— " Isoparametric F E. solution

a2 k)
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Pressurised Thick Cylinder ideglized,

by 3 Isoparametric_Finite Elernents

Hoop Stresses

4000+ Exact
Soiution
3000-:'r - x —t x x x e
- _5"
lbf,inz T T e e R4.0
2000+
S Radial Stresses
04030, 60— 00
R=4.0
F______v——\.‘_____—w-__\x__,___u-\* ‘
- 1 ..... o R "
000 K=3-0

Fig.39()
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Pressurised Thick Cylinder Ideciised

by 3" Thick Shell Parametric

Finite Elements

3000+

U

Hoop Stresses

Exact
Solution

- e

“R=3(

lbf/inz  A—

2000+

Radial Stresses

3¢

60°

-1000

Fig39(b)

R=3.0
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Thick Cylinder ldedised by lsopararmnetric,

Transition and Thick Stdl Parametric

Finite Elements

1 Isoparamatric
2 Transition
3 Thick Shell

Hoop Stresses

4000+ Exact

Solution

> ”/-n ot i -\:’-—“-
‘/ \‘ '\, R0
3

30004 —— ——.

S —

Ibf. 24 .
in ¢ - + ’

+Thick Shell-=Transition —-lsoparametric

2000+
< Radial Stresses
B SN - o
- R=4.0
/ TR
u-\:/___,,\'
~1000-+——+ / e e,
< R=3.0

Fig.310
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TOW DIACTALD FOR N RGE LA
e o S
T i
N
porm e e e ot e e e e

lC\uu ; b
Cowsmms jor Roeay /\C":\'f’ Gaurees ol frzecdem
Iomee el 1o \ I, P P
Record in AR ‘T\J e \mmr* to boclinm o
U e e m P e . A o ot No b S & 4 e —— —n PR,

o T z

Peripherzl /"' R hm (ver .LM KIRANE FORVAR iy

| [ - PRV - R -

e "("" _E\;‘ “";N - - jr‘) e e i e v e e+
Norbs, - L-l 3¢ ULl i 1 JL\E O | ;

Tr,.x,. G gti'i‘fn‘,:;.» torns inte Glonal /Lol 1
|
'L Axes |

B

Determnine Fositions of Stiffress Terns l

L [Sum St~ e mJ
. - ' R - ..-:_;:._,,_‘_Nl et e o S |

r:n-,;ozm Eauivalent  Nodal Forces into
G.uLM loc )L Axes

e e e e e o [ —

Sum Forces and Emcrml Loads ]

if Rezolution Jurmmp |—-——m
‘r.

lodles
Nogles e

_.._]I" P:L'ZZ—%@ i CPDDC

Reduction A\qurithm

a—

Fig. 4-
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FLOW TIACEAM O REDLIC N ALE0

YA TYT
{:).'.ﬁ'\ i i

!:,‘ H: ,“R‘(‘;‘E':V-\"' '

HON

Jus

%

; "‘"}_A__ﬂ_.__;.\-» -1

ic\[

G O'i"

( Determine "Redundnnt™ Deoraos

e — ey
[F:H /mf’ﬂ with terms ¢ic. J

Kij

{ Modity SLufnwg & Loaf:iir"“g terms

r\'orlggt _[ﬁr\;\*l“\u to K!j/ Ku L’-'\; cw‘

Chy .d.mt’ cha

Frnpty Rows & Columns of
Frecdom

P

YD

ghe | }

i !

— b

!

e 0l

] .

luxr* eral Nqonthm WRITE ATRANS FORWARD

Peripheral Algorithm READ ATRANS BACKV/AR

.

cdiminated for this element

Modify ATRANS to show last degree of freedom

|
J

[vhnpmrwl Algorithm WRITE ,ATRHNS F’ORWA

Y

L

Return

Y]

Pasin
[
~
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FSPA Y AL A
oA GRAM
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- el st 1 LTSN
FL.,-‘F)\ | i \g P o N

i _-‘ I } PR \l i v (L(

r(_‘*" H']‘\‘ : CZ)’\:

—l

eriphzral - Algorithm REZAD FCAWARD

it s - T Ao |

Modify Loading Terms using /\,r\,\“\]

Modlify Lloading Terms in ATRANT J

Peripheral Alcwrlthm WRITE ATRANS
in old pozition

-

Check for last degree of fiecedormn eliminated
in each clement

Rcf:turn—_]

S

Fxg L7(k

=)

)
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FLOW DIAGRAM FOR BACK-SUBSTITUTION ALGORITHM

START

Peripheral Algorithm READ ATRANS BACKWARD

Check information in ATRANS to discover if any
degrees of freedom are just active

Calculate the Displacement

Check Number of READs from Backing Store
If too large EXIT

Check Number of Displacements found

Print

Return

Fig. 43



FLOW DIAGRAM FOR PERIPHERAL HANDLING ALGORITHM

Read

[sTART
. 1
Write Check Mode
WRITE ATRANS
o Buffer
Is Buffer Ful Do

WRITE Butfer to
Back Store stepping
Forward

FO“@ Check Mode

BRackward

Has Butfer been
Fully accessed

No

Refill Buffer from

Backing Store
stepping Forward

READ ATRANS from

Buffer

|Has Buffer been

No

Fully accessed

Refill Buffer from

Backing Store
steppng Backward

—

READ ATRANS from
Buffer

Retum

Fig &4

- 122 -
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Simple Examnle without Reduction Data

OO Y

CPDDC ARRAY

Node Global Co-ordinates Degreos of Freedom
X - Y Z u v
1 0,000 2,000 0,000 o o}
2 0,000 3.000 0,000 0 )
3 0,000 4,000 0,000 0 o
4 1,000 1.732 0,000 1 2
5 1,500 2.598 0.000 3 g
6 2,000 3.4064 0,000 5
7 1.732 1,000 0,000 7 8
-8 2.598 1,500 0,000 9 10
9  3.404 2,000 0,000 11 12
10 2,000 0,000 0,000 13 0
11 3.000 0,000 0.000 13 o}
12 4.000C 0,000 0.000 . 13 0

Stiffness matrix bofore solution by matrix inversion

1 Y 9 12
(I L I

XX <KL
RIS

BRI

XK XK
N\ 0
KR KK &
ke
0‘0“0 IS
: ” . AN
13 Vavaw v :

Fig.4.5(a)
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Simple Example with Data for Frontal Solution

.
.

MOV N

CPDDC ARRAY

Node Global Co-ordinates . Degrees of Fresdom
X Y z u v
1 0,000 2,000 0,000 0,000 . 0,000
2 0.000 3.000 0,000 0,000 0.000
3 0,000 4.000 0,000 0,000 0,000
4 1,000 1.732 0,000 1,020 2,020
5 1,500 2,598 0.000 3.040 44040
6 2,000 3.464 0,000 5.020 . 020
7 1.732 1.000 0,000 7,020 8.020
8 2.598 1.500 0,000 0.040 10,040
9 3.464 2,000 0,000 11,020 12,020
10 2,000 0,000 0,000 13,020 0,000
11 3.000 . 0,000 0,000 - 13,030 0,000
12 4,000 0,000 0,000 13.010 0.000

ELEMENT TOPOLOGY

1 4 2 5
2 5 “3 6
4 7 3 8
7 10 8 11
8 11 9 12

- Fig.4.5(b)
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Activity and Reduction of equations for Frontal Slution

applied to the Simple Fxample of Fiac, 4.5 (b).

Positions of Degrees of Freedom in Stiffness Matrices

vl

A —t—
1 2 3 4 Activity Vector for Element 1
No degrees of freedom reduced out
1 2 3 45 6 Activity Vector for Element 2

No decrees of freedom reduced out
1 2 3 4 5 6 7 8 910 Activity Vector for Element 3
1 2 Redundant degrees of freedom reduced out

1112 3 4 5 6 7 8 910 Activity Vector for Element 4

3 4 5 6 Redundant degrees of freedom reduced out
1112 13 7 8 910 Activity Vector for Element 5
7 8 Redundant degrees of freedom reduced out
11 1213 9 10 Activity Vector for Element
111213 9 10 Redundant degrees of frecdom reduced out

~z--Maxins instantaneous size = 10

Transfer vector ATRANS

\

At point A ATRANS contains
o

T e R S S
3[4lo]io(o¥o[oio;0105
N S S e J’ 1S S I S R
indicating newly active degrees of freedom.

2

1

Yhen a degree of freedom is being reduced out ATRANS contains

N T IS T2 B LI I £S S o B

i Eéﬂ Kégl-— Ki(i-1)I_idf Ki<i+1)£"'"'iKiidi Fii“‘iFiilo Kii}
ey e S | e | e

| Kit) Xag | K Kit | | Kiii Kii | Kig |

[ VSRS SR S S U SURRRU S RSSO SRS .

vihere 1 cives the position of the degree of freedom being reduced out,
idf the degree of freedom, id the maximum instantaneous size,
ilo the number of loading conditions,
Kij gives the stiffness term in row i, column j,

and ¥Fjj gives the loading term in row i, column j. .
Flg. 445 (C)



- 205 -

Activity and Reduction of eauations for Frontal Solutien

applied to the Sirple Example of Fig. 4.5 (b).

Nodified Element Ordering.

The Elements are called in the new order
1-3-5=-2-4-56
by modifying the element topology.

ELENENT TCOPOLOGY

1. 4 2 5

4. 7 5 8

7 10 8 11
2 5 3 6
5 8 6 9
8 11 9 12

Positions of Degrees of Freedom in Stiffness iMatrices

1T 2 3 4 Activity Vector for Element 1

No degrees of freedom reduced out

1 2 3 4 7 8 910 Activity Vector for Element 3
1 2 Redundant degrecs of freedom reduced out

13 3 47 8 910 Activity Vector for Element 5
7 8 Redundant degrees of freedom reduced out

13 5 3 4 6 910 Activity Vector for Element 2
No degrees of ireedom reduced out

13 5 3 4 611 91012 Activity Vector for Element 4

5 3 4 6 - Redundant degrees of freedom reduced out
13 11 910 12 Activily Vector for Element 6
13 11 91012 Redundant degrees of frecdon reduced out

~—-Maximum instanitanenus size = 9

Figs 445 (d)
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Accumulation of Creep Strain

Time Hardening Law

Strain

T ro,> 0, ¥O, >0
Time

Strain Hardening Law

1 4

Strain

1 4

Time

Life- Fracture Law

Strain




CREEP___ LOGIC
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FLOW

DIAGRAM.

F.E. ANALYSIS

SOLUTION

ICON = 0

STRESSING

&
>

ICCN = 2

CREEP

STORE TOTAL DISPLACEMENTS

L

ICON= 2

RECUCE aT

1con

2

LATEST CORREC

T TOTAL DISP.

T

CALCULATE DISP _ CONSTANTS

FORM STRESSING MESH

ICON=1

ICON= 0

CALCULATE STRAIN

ICON = 1

ICON =

0

' " |CALCULATE aco

CALCULATE o

ICON = 2

CHECK

Ao /o

s

ELEMENTS ™ |

SET

TiM

SET TiM

UPDATE DISP

INCREASE AT

ICON =
ICON = 1
ICON =

CHECK TIME

PRINT

0 : Initial Sol®
Incremental
2 : Incremental

Check
Sol &

CALC & STORE ae*

_MESH

GENERATE FE

MERGE

eLeMENTS)

posrm =

SOLVE

ICOM = 1

' Fig52



CREER LOGIC FLOW _DIAGRAM

FINITE ELEMENT ANALYS!IS COF o
INTTIAL "),M\D“ 15 CONDITION

STRESSING ROUTINE

|
]

SET K=z0 s
LAST CORRECT TOTAL DISPLACBMENTS
CALCULATE DISPLACEMENT COEFFS.]
_____ L 4
STRESS MESH
[
CALCULATE STRESSES
K=
KD~
K=1
N0
CHECK a7g INCORRECT ror i~
Y l
SET TIME POSITION ON CREEP CURVE
STRAIN HARDENING OR
TIME HARDENING
|
o CALCULA!’::.% AC, B
L GENERATE E@uz\m_};-:m NODAL. FORCES

UPDATE  ATIM
& DISPLACEMENTS
PRINT

!
SOLWVE FOR EQUIVALENT NODAL
fORi,E.)
FORM N[V\ »SE f‘j DISPLACEMENTS

|

ZTIMMAX @
, Vit

\] STIMMAY

FRINT Fig.53
l .
STOP
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CREEP LOGIC FLOW DIACRAM

FINITE ELEMENT ANALYSIS CF
INITIAL  LOADING  CONDITION

GENERAL CREEP AND STRESSING ROUTINE
SET K=0

1 -
RESET DISPLACEMENTS FRUM
LAST CORRECT TOTAL DISFLACEMENTS

al

-3

STEP THROUGH ELEMENT TYPES IN THE

T SAME ORDER AS THEY ARE GINERAIED

ELEMENT TYPES \/

-1

I | !

| ELEMENT STRESSING AND CREEP ROUTINES :
| K l
| 1 .
| CALCULATE DSPLACEMENT COEFFCIENTS ;
| |
: — !
! STRESS MESH ;

| t
; CALCULATE STRESSES | .
| ﬁ;q_~® I
| 1 : 1
| y h |
; CHECK Aga o] SET k2|
.' . '
! SET TIME POSITON ON CREEP CURVE ;
! STRAIN HARDENING OR TIME HARUENING :
! !
! ]
: CAILCULATE "A€, !
{ |
; GENERATE FEQUIVALENT NODAL FORCES ;
L ... |

K=2 _
> REDUCE i ]
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CREEP LOGIC FLOW DIAGRAM(CONTINUED)

1

SET K=t
INCREASE ATM
UPDATE LAST CORRECT DISPLACEMENTS

FIND DISPLACEMENT INCREMENTS FOR
EQUIVALENT NODAL FORCES

FORM NEW SET OF DISPLACEMENTS
FROM DISPLACEMENT INCREMENTS
AND [AST CORRECT DISPLACEMENTS

CTIVD

N/STIMMAK

PRINT

S10P

Fig.54(cont)
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Stress Distribution in ¢ Beam Subjected o ¢ Constunt

Bending Moment

Stresses above Neutral Axis

37 Beamn span 10" vy,
Section 6"x 2" :./.', .
E =1.41x10% 1bf/in2 /,/
Creep law y ///,
¢ = 2.68(c717°004)0372 i
10°
A0 0.
| 00
Fibre
position
.
NA. , ‘ 5

0 5000 10000 1500¢
Siress on fibre lb\‘/in2

—— 0 hrs. solution

~—-—10 hrs. Time Hardening solution
+—100hrs. = " "
500G hiir s, " v

———X- ~-1000hrs Strain "

— Steady State solution Fig 55(a)



Detlection Inches
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Creep Deflection of a Simply Supported  Beam

Subjected te o Constart Bending Mornent

012
—
010 Finite Element
010 SOluti/
008+ . /—
- /
Steady State _—" " |Creep
, _ Equation_ - Deflectio
006 T n
- /
.004_.( _____________ I IR
_ Elastic
-002- Deflection
-004"
O : T ] i 1 i
0 1000 2000

Time in Hours

Fig. 55(b)




Outside Diameier Hoop Strains

in_Thick Rings : /
0-37 ID.=1125 0D.=3.875" p=1000tbtin? % A
c 02  E=305x0%Ib#in?  D=0.430 - X///;Q/
S =3.025546(:032,01061) e
N €c=3.025>*O(tY>-.0106 ) /}///
13 g
((Q'j)‘ 01 B ?0 . = / l:)
T . A
Q - = 1
% 006 ;M:’;‘//+ ~
B — Finitz Element Solutions
S 0-04 - -
S® . Starting time 10 ;HFS.AO'!OEO-m
== — . “ 10 Hrs, e
0-021 - - Cormputer Resulis{Ref.€5)
T ~ { Experimental  » "
C-01 , . ,
0.1 1.0 10 100

Time Ars.
Figs6
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Thick Pressurised  Cylinder

Idealisation
axis of
cylinder
i

3T 1

P

T
< om."

o021 .

025 -

2 x 20noded solid lsoparametric elements over S0%arc

5

Internal Pressure p = 365Ibf/j~2
Young's Moduius 2x107 Ibfji®

Poisson's Ratio 0450

€c=6.4x10"0 ¢

Radial Deformation

Inside Radius

215+
)
£
*njé 10- Outside Radius
e
a L — FE.Solution(Ref £8)
5054 : x x Present FE Solution
g
3
T 0 u 1

0 i 2

Time Hrs.

Fig5.7(a)
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Stress Distribution for_a Thick Cyiinder

Elastic and Steady Sicie

Solutions

1000+

800+ Circumferential

& —"" 70

e @
bty 2

4,00-

200- @~

01 0l8" 01" 3//,@;%3*/"& 075"

-200-

- 400+

Exact Elastic Lame Solution

— — -Steady State Solution{ref 58)
Finite Element Sclution

. « « <Circumferentia Stress (Elastic)
0000 " v (Time=10Hrs)
* x x «Rodial Stress (Elastic)
©000 « . (Time=10Hrs)
+ + + +Axidl Stress(Elastic)
©G o0 - v (Time=10Hrs)
Fig 57(b)



T TWO-DIMENSIONAL IDEALISATION OF TURBINE CAZING
72x8 NODE ISOPARAMETRIC QUABRILATERAL ELEMENTS

internal Pressure p Lbf/ in?
E=3x 107 1bf/in?
v=03

- 9E¢ -

(3 ?
Iy T
s\ /_T.L 157 | E |

| /15 /50 1501591

} 1",5 _/frg 553 1 60 - "

) 69 | 67 164 | 61 0-850
70 | £8 621 62

Fa.6.i(a)



HOOP_STRESSES FOR 72 ELEMENT IDEALISATION

‘LEE:‘

Fig.6.X(b)

10+ Quisidz Face \
\____j et E— /
__Jﬁi‘;_
5
3 L 1 8 2[:6 r‘7
O { I +— + 1 t + +— l_ e “
DY = n Y =g 57 '28 56
Element Number /
1001 Inside Face p——
g_&
P9
0 { 4 t f ; 4 S e e B B A B L S o e
e 2 a 3 13 L 2 2393037 4 B8R 2

tlerment Number



TWO DIMENSIONAL IDEALISATION OF TURBINE CASING
15x 8 NODE ISOPARAMETRIC QUADRILATERAL ELEMENTS

Internal  Pressure = p 1bf/ in?
E = 3x 107 lbf/in.2
v=03

1=0-375"

- 8eC -

0-950”

e —




HOOP_STRESS FOR 15 ELEMENT [DEALISATION

Qutside Face

10 4 \
[od-4
P
0 + : 1 : + } — g
) 1 - 2 3 45678\—_ 1
Element Number
Inside Face.
, . -
\ / — I S
oo
Flement Number l
0 — < } + : e s o = S - .
® 1 o Ty T T B AER no §

e

o
5:\)
\l:,:
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TWO DIMENSIONAL [DEALISATION OF TURBINE CASING
9x8 NODE ISOFARAMETRIC CQUADRILATERAL ELEMENT

Internal Pressure = p 1b¥/ in?

E=3x10 bYin?

vz 03

30° e

1=0-375"

\

O
I - o e e e e 0]
O
D
N
(o)

|

H
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Hoop Stresses for 3 Dimensiondl ldedlisation Using Thick Shell,

Transition _cond Isopardmeiric Elements

10 - .
Quiside Face \\
o \
P
5-a
Element Number \ : '
- 1 | — 2 — 3 4378 T W %
9 12 '
- , Thick Shell , ~lransticn=  Isoparametric -
10.\ inside Face /\_,_____\
/—"
\ / . -
o
p
54
Element Number Firg 8.4(c)
O~ 1 = ; R A0 A A AR B
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Detail of Half a Bolt Pitch of thz Turbine Casing

Flange showing the Bolt Holz ard thz

Spot_Facing

\\087 \
037%°
/

Inside Diarmneter 625"
Qutside Diarneter 7.0

Fig 6.5



Finite Elerﬁent ldealisation of a Jurbing Casing Section

Half a Bolt Pitch

Fig. 66()
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Section

Finite_Elzrnent_Idealisation of a Turbinz _Casing

Half a Bolt Pitch

o}
-
i
ol
D
L|od
ksjien
=
&%
PO
>
.8
&l
C
Ll

Fig 66()
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Application of Bolt Lead to Turbine

‘Casing _Flange._

N ~

k!
o

L
N ‘ 0‘25“
0875 o

///
,/// '

~
™.

Inside Diameter 625"
Outside Diameter 70"

Bolt Load\gpplizd through

Bolt Centre Line

Belt Head

N ' -

Fig 6.9

- 05625
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Contact Pressure between Rolt Head

and Fianae Spot Facing

\

500 75 I"’" 1000 1500
1250

Compressive Stresses bf/in®

Fig 6.10(c)

" Displaced Shape of the Bolt Head/ Spot
Facing Contact Arec

BoltiCentre

0
Displacement :
x0%ins . _—
B 2 : - 025‘ -

05

Fig 610d)
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9 Element Idectisation of Turbine Casing Section

( Thinner Flange)
1
- T=0375"
2
R=3125"
1
3 ~1”
4 r=025
6 9
7 8
’ 4.0" -
Flange thickness
05625"
Fig6.1@

Position of Equivalent Bolt Loads
in the Solid Flange Relative
to the Bolt Holes

|
|
|
)
I
|
1

o

—F-=—==3

Fig 6.11(1L)



Hoop Stress Distribution for Turbine Casing Section Subjected to Internal Pressure

and Equivalent Bolt loads

20 -
O'e/p inside Surface
/
10 -\ e L
Flange Face
0 — T A
L —— 2 3485 T 8 _
Element Number D !
~104 Mean Flange ‘
Stresses from \\
20- Fig 610(@) —\3
Qutside Surface T~—-
a;
e
Ip \ Internal Pressure
10- \ p = 351bf);2
. AN
C R 7 RECVAGHE Fig.612
Flement Number

e
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Radial Deformation of the Cylindrical Part

of an Inner Turbine Casing

~ .10/
Ested—:},JO lbf/"nz

15103
Earcldite™ X071l 2
oHg=736
b
/l
/

31
-:6): - * - " /
o e g
6 21 PPt —
g = ©=0" Plane
%
5 1
o
£
o o=
20
g
L
&

!
—t
1

—Finite Element Andlysis
-*---»-Photoelastic Andlysis(Ref.66)

Fig6.15



Circumferential Stress Index Distributions at the ©=0° Plane

-
- —

o —*Qutside(Photoelastic)

Cutside(F.E)

06 08 1.0
/ >/p; ™ \\'.\“_
g N Inside (FE)
Lo.4 u\\
Stress Index "~ Inside(Photoelastic)
=08
142

Fig 6.16(a)



Circumferential Stress Index Distributions at the ©=90° Plane

-1.2

End Cleaure

C‘j\ iwele ¢

0.4
Stress Index

~0.8

-12
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Meridiond Stress Variation in_Inner Turbine Casing

Mid-Shell Section 5=0°

Endd Clesita - 12
Meridionai
G OI a Cj\;wder
o~ Stress -
3 G L
/ x( \ 08 Index
i \ o}
?f\, \ K ¢/0‘m
\
! x L0.4
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l" X \' \X\ /‘(\Y>:_ ¥ e ]
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Voo Meridional Positicn 3/D.i
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N - -0-4 ———r—— Insidz Surface
—+ —+—+- Cutiside Surface
--08 mmmee-e- Photoelastic Andiysis
| 17 . ]
- Fig.6.i
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Meridional _Positions of Hoop_Stress Plots

for Inner Turbine Ccsing

Circumferential Positions for Hoop Stresses

Fig 618
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Hoop Stress Distribution Due to Axially

Varying_Pressure Lodding

- 204 Toroid s=-0195D;
Hoop + + Quiside Surface
Stress - X x Inside Surface
Index — - - - Photoelastic Results
1'0':.——_—_.“"-_\-"" + L
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Vor o N e
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Fig.619
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Hoop Stress Distribution Due to Axially

20- Cylinder s=0.42D;
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S e
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Turbine Casing Model

Toroidal End Gylinder

1

1]

1625

Closure

Spherical End
Closure

— e e e e o

3500"

/
i
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-
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L 22507 8500"

—l\ 1(‘- -y s
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Fig.6.20
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Meridiondl Positions in Shell Sections -8=0°30.60°
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1

Meridional Variation in _the Hoop Stresses in the Shell

Portion_of a Turbine Casing

Interndl Pressure Loading

O
08=0 Internal Pressure p bf}i,2

ide Surface

—e——-Qutside Surface

T ——

Meridional Position
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NMeridional Positions of Hoop Stress Plots
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Meridioral Positions of Hoop Stress Plots
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Stress Distribution with: Time due to Creep Deformation

of Lead Turbine Casing
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Effective Stress Distribution with Time due to Creep

Deformgtion of Lead Turbine Casing
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Effective Stress Redistribution due to Creep

Detormation of Lead Turbine Casing
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