
FINITE ELEMENT ANALYSIS OF STRESSES 

AND CREEP IN TURBINE CASINGS 

-by-

D.A.C. PARKES, B.Sc. 

Thesis submitted to the University of Nottingham for the 

degree of Doctor of Philosophy, May 1973. 



IMAGING SERVICES NORTH 
Boston Spa, Wetherby 

West Yorkshire, LS23 7BQ 

www.bl,uk 

BEST COpy AVAILABLE. 

VARIABLE PRINT QUALITY 



IMAGING SERVICES NORTH 
Boston Spa, Wetherby 

West Yorkshire, LS23 7BQ 

www.bl.uk 

BEST COpy AVAILABLE. 

TEXT IN ORIGINAL IS 

CLOSE TO THE EDGE OF 

THE PAGE 



IMAGING SERVICES NORTH 
Boston Spa, Wetherby 

West Yorkshire, LS23 7BQ 

www.bl.uk 

PAGE NUMBERS CLOSE TO 

THE EDGE OF THE PAGE. 

SOM E ARE CUT OFF 



lit. . ~." ..... ---- .... 

~~c ~_iCte element methoa has been used to calculate the stresses and 

creep deformations of flanged turbine casing models subjected to internal 

pressure and bolting forces. The finite element reeults have been compared 

with results from photoelastic and lead model turbine casings. 

An axisymmetric thin shell of revolution ring finite element has 

been developed to analyse casings subjected to pressure, thermal and 

creep loads. The thin shell of revolution ring finite element is shown 

to be extremely powerful and has been used to investigate the shell 

~ portions "of the turbine casing away from the flange. The three-dimensional 

isoparametric finite elements have been used for more accurate idealisations 

of the turbine casing. A thiCk shell isoparametric finite element has also 

been.developed which can be used with the more common hexahedral isopara-

metric finite elements. 

A solution algorithm based on a frontal technique has been developed 

to solve the large number of linear equations given by the finite element 

equations. This algorithm, which is fully automatic and uses fast access 

backing store, has a~esolution facility which is used to recalculate 

subsequent creep solutions assuming that the stiffness of the structure 

remains constant. The creep algorithms are based on time marching 

techniques where the creep solutions are found for small time inc~ements, 

the final solution being the sum of all the increm~nta1 solutions. During 

each time increment the stress~s are assumed to remain constant and the 

change in stress between time increments is kept within a preset ratio. 

The creep algorithms have been used to predict the creep defo~mation of 

simple structures to compare with published results. The agreement between 

the finite element and lead model creep results is limited. 

The finite clement programs have been written to be compatible with 

thg ::>AFEC suite of fi:rl. te elellle~:t prog:-ams. 
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Chapter 1 Introduction 

The basic prime mover used to generate the large quantities of 

power required by the Electricity SUpply Industry and sometimes 

in large ocean going vessels is the high speed steam turbine. 

Modern steam turbines consist of a number of rotors spinning 

within cylindrical pressure vessels driving either an electrical 

alternator or propulsion device. steam turbines are required to 

deliver anything from 15,000 to 900,000 shaft brake horse power 

with steam entry conditions varying from nearly saturated steam, 

delivered by water-cooled reactors, to superheated steam at 

suparcritical pressure from the largest fossil fired boilers, 

(ref. 1). To obtain the highest efficiencies from the turbine 

plant it is necessary to extract all the useful energy in the 

steam between its entry condition and its exit at maximum vacuum 

conditions. The efficiency is further improved by introducing 

reheat cycles within the expansion cycle, usually restricted to 

one only by physical considerations, between the high pressure 

turbine exhaust and intermediate pressure turbine inlet belt. The 

reheat temperature is commonly identical to the initial steam entry 

temperature, and consequently the turbine casings of the first two 

rotors have to withstand the largest thermal gradients and also 

contain the highest pressures. Modern designs reduce the thermal 

and pressure stresses to which the casings are subjected by a 

multi-shell construction of inner and outer concentric casings. 

The high temperature rotors are generally machined forgings to 

which blades have been attached, usually by a fir tree root fixing, 

supported by shrouds at the outer diameter, Each rotor contains a 

number of turbine stages and, unlike a gas turbine where each disc 
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can be removed from the rotor shaft, it is difficult to design 

annular continuous diaphragm stages. To facilitate erection and 

maintainance of the rotors and diaphragms the turbine casings 

are split horizontally into two halves along the shaft centre 

line. To maintain a pressure tight seal the two halves are mated 

together, metal to metal contact, and held by high tensile bolts 

through flanges running along the split. This greatly reduces the 

strength of the casing and consequently thicker shell structures 

are necessary. With increased steam entry conditions very thick 

flanges are necessary to maintain a pressure tight seal. Heavy 

bolted flange. give rise to large thermal str .. ses and some 

latter designs of high pressure cylinders incorporate In inner 

barrel casing to reduce these, (ref. 2). The majority of high 

pressure steam turbine casings comprise a flanged shell supporting 

a similar casing internally, labyrinth sealing gllnd housings, and 

numerous pipe and nozzle entries. steam turbines used for electrical 

power generation are designed to operate at a set speed, 3000 rev/_ 

min. or 3,600 rev/min. governed by the electricity supply frequency, 

and set steam entry conditions. These have stabilised at 125-250 atm., 

540oC-565oC with single boiler reheat to siadlar temperatures, (ref. 1). 

The very large amounts of power being generated by each machine, at 

present 500 MW, demand that the turbine be operated very close to 

the design condition to effect the greatest economy. The low nightly 

demand for electrical power, to be supplied by nuclear plants by 

1975, means that a large number of steam turbines have to be shut 

down at night and run up again the next morning, being fully loaded 

within an hour of start up, (ref, 3). The planned life of the plant 

is 25-30 years, during which creep deformation or thermal fatigue 
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problems can become prominent and lead to premature damage (ref. 4). 

To transmit the large torques the shafts are rigidly coupled 

together resulting in a differential expansion between turbine 

casing and rotor of at least til at start up or load changing, 

(ref. 5). To maintain maximum interstage efficiency multiple 

radial seals are necessary and damage to these seals caused by 

rubbing or other uneven deformation can severely damage the turbine 

or, at best, impair the thermal efficiency. Costs caused by 

unplanned maintainance outages can be as high as £25,000 per day 

for a 500MW unit, (ref. 6) and more long term plant failure can 

be nationally disastrous. 

The steam turbine designer is faced with larger power requirements 

while steam entry conditions, especially steam temperature, are 

limited by the metallurgical constraints imposed by the steels. 

Present 500 MN steam turbines comprise a high pressure, high 

temperature turbine, a double flow high temperature intermediate 

pressure turbine and usually three double flow low pressure 

turbines. These accomodate the large exhaust volume of steam at 

28"-29" Hg vaCuum, whilst keeping the final stage blading within 

acceptable physical dimensions. The designer cannot indefinitely 

upgrade existing well tried designs and increase thickness to 

maintain safety factors as the civil engineering demands made by 

the turbine-alternator complex become too great. To obtain the 

minimum cost requirements for a specified life a sound knowledge 

of the deformation and stresses of the turbine is necessary, 

together with the subsequent creep deformation and thermal fatigue 

cycles, at all times during the life of the turbine. 

This thesis is based on one half of a joint research project into 
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the stresses and creep of split turbine casings, and concerns 

the theoretical computer model based on the Finite Element 

method of structural analysis. A need has long been felt by the 

CEGB and turbine manufacturers alike for a complete 3-dimensional 

analysis of a turbine casing to supplement the in-plane analysis 

of the cylindrical portion of the casing and flanges, interest 

being shown particularly in the toroidal and spherical end 

closures. The experimental part of this work involves photoelastic 

frozen stress model techniques for the stress analysis and constant 

temperature lead models for the creep deformation measurements. 

This work is reported elsewhere, (ref. 7). 

The Finite Element method of structural analysis was chosen 

because of its flexibility in modelling and solving complex 

structures, and also because a large number of basic programs 

were already available. A very large number of programs were 

developed for this analysis, and these have been included in 

the PAFEC 70 (Program for Automatic Finite Element Calculation) 

(ref, 8) suite of structural analysis programs developed in the 

Department of Mechanical Engineering at Nottingham University. 

Previously most methods of stress analysis of turbine casings 

have involved splitting the cylindrical part of the casing into 

two discrete parts, the deSigner using his experience to couple 

them together. Away from the flange area shell theory has been 

assumed, and the shell portion treated as an axisymmetric shell 

of revolution. The flanges have been analysed approximately, 

either by treating the flange as an eccentrically loaded column 

(ref, 9) or using a beam on elastic foundation analogy, (ref. 10). 

In both methods the flange is subjected to a compressive force 
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equivalent to the bolt loads and a tensile opening force due to 

the shell loads. A pressure tight seal is assumed to have been 

obtained when the inside compressive flange face stresses exceed 

the pressure within the casing. 

With the more highly stressed modern steam turbines it is 

important to analyse the casings, as well as the rotors, more 

accurately, to design for the optimum efficiency and maximum 

power from the plant. The advent of the high speed digital colIl>uter 

has made more accurate analysis possible and manufacturers have 

made use of both in-plane finite difference and finite element 

programs to analyse turbine casing sections (ref. 11). These 

methods, although only approximate, do give a good indication 

of the stresses in the cylindrical portion of the casing, well 

away from the end closures. To achieve a more accurate solution, 

taking account of the end closures, a 3-dimensional analysis is 

imperative, particularly when determining creep deformations. 

The very complex shape of the steam turbine casing subjected 

to pressure and thermal loadings make exact computer modelling 

economically impossible. 

The Finite Element method has been used to analyse the split 

turbine casing in two ways. First the shell portions of the 

casing were treated as an axisymmetric thin shell of revolution. 

It can be shown that this approximation is valid away from the 

flanges, provided that the thickness to radius ratio of the 

casing is within the limitations of the thin shell theory. An 

axisymmetric thin shell of revolution finite element of constant 

thickness and optional displacement order has been developed and 

proved very powerful. The stress analysis and creep deformation 
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of complex shells can be accurately predicted, with the number 

of equations to be solved small enough to enable very fast in-core 

solution algorithms to be used. The formulation assumes that the 

stresses normal to the shell surface, i.e. radial stresses, are 

negligible compared to the circumferential and meridional stresses. 

This element has been shown to be extremely efficient by a number 

of published results for shell elements, and has been used to 

analyse a number of pressure vessels subjected to static, pressure 

and thermal loadings. The creep deformation of a simply supported 

shell subjected to internal pressure has been obtained and compared 

with a published analytical solution. 

To analyse a turbine casing and model it exactly, taking account 

of individual bolts, is beyond the scope of the present geheration 

of computers. To assess the creep deformation of a turbine casing 

the flanges and shell portion of the casing are modelled, together 

with the end closures and sealing glands and subjected to approximate 

values of bolt loading. The isoparametric family of finite elements 

have been found to be the most efficient available for this purpose. 

Geometrically complex structures can be modelled using hexahedral 

blocks whose boundaries, edges, are defined in curvilinear 

co-ordinates, together with the displacements at these boundaries. 

To model any structure sufficiently accurately requires a fine 

idealisation and, consequently, a very large number of linear 

equations have to be solved. Various methods of solution are 

available which either destroy part of the solution, or demand 

rigorous effort to keep the relationship between consecutive 

equations within a very narrow band. Non-linear problems, such 

as creep deformation, usually assume that the stiffness terms 
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remain constant with time and the equations have to be solved 

many times. If the problem is too large to retain the inverted 

stiffness matrix in the computer core then a solution algorithm 

has to be used which retains the initial stiffness terms. A 

frontal solution technique, using fast access backing store, 

usually in the form of temporary disc store to supplement the 

computer core store, has been used for the solution of these 

equations. The amount of core store required at anyone time is 

determined by the number of active equations and consequently by 

careful element ordering very large idealisations can be solved. 

The initial equations are retained, and by modifying the loading 

terms the creep solution can be obtained. 

The creep analysis used is based on a time-stepping process 

with constant stress states prevailing over each small time 

increment. Both time-hardening and strain-hardening solutions 

are obtainable and the empirical creep law contains both primary 

and secondary terms. The change in stress after each time increment 

is found before the next time increment is computed. The change in 

the stress over the time increment is checked and the increments 

are adjusted to give the most efficient solution within the limits 

set. 

The stress analyses and creep deformations of turbine casing 

models have been found using these finite element programs. These 

models include a flanged inner turbine casing subjected to pressure 

loading only, a flanged closed turbine casing subjected to internal 

pressure and bolt loadings, and an axisymmetric approximation to the 

closed turbine casing. The results of these analyses are presented 

in the second part of this thesis. 
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Chapter 2. Thin {hell of-Revolution Fini!i-E~pment. 
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Notation. 

Young's modulus 

no. of terms in tangential displacement function 

no. of terms in meridional displacement function 

no. of terms in normal displacement function 

meridional length of element 

Fourier harmonic 

pressure 

radius from axis of symmetry 

radius of curvature 

distance along meridian 

thickness 

temperature at any point 

temperature at mid-surface 

mean temperature 

temperature difference across shell thickness 

tangential component of add-surface displacement 

meridional component of mid-surface displacement 

normal component of add-surface displacement 

derivatives of mid-surface displacements with respect to 

meridional length 

Potential Energy 

Strain Energy 

Work Done 

distance from mid-surface 

coefficient of thermal expansion 

strain 
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cr stress 

JJ Poisson' s ratio 

¢ angle between normal and axis of symmetry 

e circumferential co-ordinate 

SUff.!.£u 

C creep 

E elastic 

T total 

Therm thermal 

e equivalent 

Matrices and Vectol! 

[BJ 

[D) 
[D'] 

fDD1 
fDcreepl 

!F} 
[KJ 
f p'} 

g global axes 

i element 

I local axes 

¢ meridional direction 

9 circumferential direction 

column vector 

matrix 

transpose of matrix 

matrix linking nodal displacements to coefficients 

of generalised displacement functions 

matrix linking generalised displacements to 

displacement function coefficients 

stress/strain matrix 

strain energy matrix in terms of generalised 

displacements 

strain energy vector for thermal strains 

strain energy vector for creep strains 

force vector 

stiffaess matrix 

pressure loading vector 
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list of nodal displacements 

i~}={U'V'W,6,t",*}T generalised displacements (including 

derivatives) 
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2~_Introduction 

A shell of revolution may be idealised by a number of ring shell 

finite elements, each of which represents a portion of the total 

meridional length of the shell. Early researchers, Grafton and 

strome (ref. 12), Pian et al (ref. 13) and Popov et al (ref. 14), 

used truncated conical frustra finite elements to model shells of 

revolution. Large numbers of these elements are required to give 

an accurate idealisation of the geometry of shells with meridional 

curvature. Jones and strome (ref. 15) used doubly curved ring shell 

finite elements with co-ordinates and slope at the element ends 

matching those of the actual shell. The idealisation of these elements 

forms a smooth surface with continuity of curvature across element 

boundaries. The shell surface between the element ends is described 

by a polynomial function and the surface modelled by these elements 

may depart from the true shell surface. Navaratna (ref. 16) used 

ring finite elements which satisfied displacement and slope continuity 

at the common nodal circles for the analysis of deep spherical shells. 

In this type of idealisation it has been usual to represent the 

meridional variation of the normal mid-surface displacement within 

each element by a cubic function, and the variation of the meridional 

and tangential displacements by linear functions of the meridional 

co-ordinate. To converge to the exact sloution of many problems large 

numbers of these elements are necessary. Webster (ref. 17) has used 

ring elements with higher order polynomial displacement functions for 

the solution of dynamic problems for shells of revolution. These 

results together with those given later by Webster (ref. 18), indicate 

that accurate 6olutions are obtained more efficiently with a few 

higher order displacement function ring elements than by many more 
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simpler displacement function ring elements. 

A general thin shell of revolution ring finite element of constant 

meridional curvature and constant thickness using the higher order 

displacement functions in the meridional co-ordinate has been 

developed. Results are given for the analysis of shells subjected to 

static, pressure and thermal loadings as well as creep deformations 

and are compared with published results. The approximate axisymmetric 

analysis of the shell portions of turbine casings away from the 

flange is given in Chapter 6. 

It.l£1 Analys1s 

Fig. 2.1 shows a thin shell of revolution ring finite element with 

constant meridional radius of curvature and shell thickness. The 

displacement functions used to represent the tangential, meridional 

and radial components of the mid-surface displacement are given in 

terms of the meridional co-ordinate. 

ipu 

u· L: tIm(s/l)m-1 (1 or sin ne) 
up1 

ipv 

V· L Vm(s/l)m-1 (1 or cos nS) 
up1 

ipw 

w· L Wm(s/l)m-1 (1 or cos ne) 

lIP 1 

The meridional arc length s is measured in the direction of 

increasing angle';.The terms (1 or sin n &) and (1 or cos ne) 

allow either an axisymmetric load or the nth Fourier harmonic 

2.1 (a) 

2.1{b) 

2.1 (c) 

component of a non-symmetric load to be considered. For non-torsional 
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axisymmetric loadings only the meridional and normal displacements 

need be considered. 

The nodes, defined on the shell mid-surface at the element ends, 

take the form of nodal circles. The displacements at the nodes of 

any element may be expressed in terms of the displacement function 

coefficients Um, Vmt Wm• The generalised displacements of an element 

are the nodal displacements and sufficient of the displacement 

coefficients to complete the definition of the element displacement 

function. These generalised displacements at the nodes t()i1 can be 

expressed in terms of the displacement function coefficients 

tUm' Vm, Wm} T by 

The [A] matrix, see Appendix 1, includes the transform of the 

meridional and normal mid-surface shell displacements at the nodes 

into the global x and yeo-ordinates. 

The displacements at any node are 

Ug • u 2.3(a) 

Vg -= v sin, -w cos, 2.3(b) 

w • g v cos~ tw sin + 2.3(c) 

8g • ;)w - :!... 2.3(d) 
as rs 

The generalised displacements and derivatives of these displacements 

with respect to the meridional co-ordinate at any pOint are related 

to the coefficients of the displacement function by the matrix [B] 
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where i ~JT • { u, v, w, 6, t, II, .. } T 

and '6 = C>U etc. 
as 

The strain displacement relationships are given by FI~gge (ref. 19) 

and neglecting the terms associated with change in meridional 

curvature, give, when referred to Fig. 2.1 

~"c = (1'+-z. s1n~)(.!' s au .. 1:& cost/> u) + ~+z) .1 t!Jv 
'fr7 (rs+z) r ~s rZ \I+z:sin). rs de 

- (r!z s1n~) + r(r:~z0(~ .. c~s~~) 2.5(c) 

The strain energy for a thin shell of revolution is given by 

2.6 

where the elastic strain vectof is given by 

2.7(a) 

and the stress vector is given by 

2.7(b) 

The usual thin shell theory assumptions are that the normal direct 

and transverse shear stresses are negligible and their contribution 

to the strain energy is neglected. 
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The stress/strain relationship for thin shells is given by 

1 0 0 

[0-1 • E iJ 1 0 [~1 (1-/:J2) 

0 0 
(1-i)) 

2 

Hence the strain energy for a thin shell of revolution (Fig. 1) 

is given by 

The strain energy is found by substituting for the strains in 

equation 2.9 from FIOggets relationships, equations 2.5. This 

gives the strain energy in terms of generalised displacements 

2.8 

and derivatives f~1. The strain energy expression is integrated 

in the normal and tangential directions algebraically. The FlOgge 

thin shell equations are given for small shell thickness to radius 

ratios. Terms of order {t/r)3 are neglected in the algebraic 

integration. The partially integrated strain energy matrix (Dt ] 

after the algebraic integration is given in Appendix 2. 

The strain energy for each element is then given by 

2.10 

which gives on substltution for the generalised displacements and 

derivatives 

Vat fi11T [A-l] T JIB) T[D'l t B }ds[ A-11 £;;11 

i.e. v. tfci i1 T l Ki1 t di1 

2.9 
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in terms of the generalised nodal displacements. 

The total strain energy of the structure is found by summing the 

individual contributions of each element. The solution of the 

structure subjected to an applied loading is found by the variational 

principle of the minimisation of the potential energy of the structure. 

The potential energy is given in terms of the strain energy and work 

done expression~. 

u. V - W.D. 2.12 

where the work done expression for a static loading case is given 

by 

w.o. ·fd}TfF~ 2.12(a) 

where t F 1 is a list of forces associated with the generalised 

displacements f~~ at all nodes. 

The potential energy expression is minimised with respect to the 

nodal displacements to give the usual finite element equations 

(ref. 20). 

2.13 

where [ K 1, the stiffness matrix of the complete shell, is found 

by summing the stiffness matrices for each element. 

2.13(a) 

~.2.2 Computation of Element Matrices 

The flow diagram for the algorithm to generate the Thin Shell of 

Revolution Finite Element stiffness and loading matrices is shown 

in Fig. 2.2. Gaussian quadrature (ref. 21) has been used for the 

numerical integration along the meridian of the shell to give 
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accurate strain energy terms. The integration points always yield 

a positive value of r, thus overcoming the singularity at the pole 

when r-O. Webster's second element (ref. 17) for generation of 

strain energy terms at the pole is not needed. 

The terms associated with the displacement coefficients in 

excess of those sufficient to satisfy the generalised nodal 

displacements are termed "extra degrees of freedom". The extra 

degrees of freedom are associated individually with one element 

and the strain energy terms associated with them are placed in 

the lower portion of the element stiffness matrix. This position 

is dictated by the way in which the [ A 1 matrix is formed, 

Appendix 1. 

The extra degrees of freedom are allocated positions in the 

combined strain energy matrix. By careful ordering of these positions 

the stiffness terms can be concentrated about the leading diagonal. 

Arbitrary ordering, see Fig. 2.3, places the stiffness terms 

associated with the extra degrees of freedom remote from the leading 

diagonal. 

2&2&3 Solution Procedures 

The total number of degrees of freedom needed to accurately model 

complex axisymmetric shells of revolution using the higher order 

ring finite elements is reasonably small. The full or banded 

sti ffaess matrix can then be retained in the core store of a medium 

sized co~uter. 

Standard matrix inversion procedures or Cholesky algorithms for 

the symmetric deco~osition of positive definite full and band 

matrices, see Wilkinson (refs. 22 & 23), are used for all examples 
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given. The Cholesky algorithms have been used for creep problems 

where the equivalent inverted stiffness·matrices are used in 

subsequent re-solution stages. 

2.3.1.1 static Loading 

The static loads contribute to the work done in the potential 

energy expression as 

When the potential energy is minimised ~th respect to the nodal 

displacements the list of loads {F 1 associated with each nodal 

displacement is left in the finite element equation 2.13. 

2.3.1.2 Numerical Examples, (static Loading) 

Cylinder Clamped at One End and Loaded RadiAllY at the Free End. 

Pian (ref. 13) investigated the effect of using elements with 

different displacement functions by comparing solutions for a 

cylinder clamped at one end and loaded radially at the other. Pian's 

solutions, together ~th those for two idealisations using various 

orderl of the higher order displacement function element, for the 

displacement under the load are shown in Fig. 2.4. The numbers of 

terms in the displacement functions and the degrees of freedom of 

the different idealisations are given in Fig. 2.4. These solutions 

are compared to solutions using 1 and 3 element idealisations of 

the higher order thin shell of revolution finite element. 

The single element solution to this problem converges rapidly with 

increasing numbers of terms in the displacement functions, but even 

with 10 terms in the normal and meridional displacement functions 
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the solution is still 9% low. Numerical difficulties are likely to 

occur if more than about 10 terms are used in the displacement 

functions of a single element due to ill-conditioning of the equations. 

The 3 element solution with equal numbers of terms in the normal and 

meridional displacement functions converges well. 

Comparison of the 3 element solution, with equal numbers of terms 

in each displacement function, with Pian's 3 element solution, with 

fewer terms in the meridional displacement function, illustrates 

the necessity of adequately representing both components of 

displacement, even though the meridional component is much smaller 

than the normal component. 

2.3.2.1 Pressure Loading 

The loading vector for pressure loads is determined by integrating 

the product of pressure and normal displacement over the area of the 

shell. This integration process is identical to that used in 

generating the stiffness terms. The integration in the tangential 

direction is algebraic and Gaussian quadrature is used in the 

meridional direction. The work done is given by 

W.D. = J pw dAre. 
Area 

2.14 

where p, the applied surface pressure, is defined as p(1 or cos ne) 

for axisymmetric or nth harmonic Fourier loading and w is the 

generalised normal displacement. 

2.14(a) 
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and (r:!:! ,sinr:?) depend on the shell surface 
2 

to which the pressure is applied. 

2.14(b) 

where {p' 1 is the algebraic integrand in the tangential direction. 

The minimisation of the potential energy gives the loading vector 

l F 1 for the pressure loading as 

The ring finite element of revolution is programmed to accept a 

linear variation of pressure in the meridional direction. 

2.3.2.2 Numerical Examples. (Pressure Loadingl 

Pressurised S?herical Cap. 

Pian (ref. 13) investigated the problem of a spherical cap 

2.15 

subjected to external pressure, whose exact solution is given by 

Timoshenko and Woinowsky-Krieger (ref. 24). Pian's idealisation 

used 35 of the simplest conical frustra elements to approach the 

exact solution. A number of different idealisations were made 

with simple spherical elements as well as the higher order ones. 

The plots of Meridional Bending Moment and Circumferential stress 

Resultant for single element idealisations with meridional and 

normal displacement functions of order 4, 6 and 8 are shown in 

Fig. 2.5(a). Results for 5 and 10 element idealisations of the 

shell, using elements with the simplest displacement functions, 

are shown in Figs. 2.5(b) and 2.5(c). The Meridional Bending 

Moments and Circumferential stress Resultants when using 5 or 10 
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of the simplest elements give exact answers near the pole where 

the variation in the displacements is changing less rapidly. These 

results illustrate that large numbers of elements with the simplest 

displacement function are required to give accurate values for the 

stresses, whereas the solution for the single element idealisation 

with 8 terms in each displacement function is indistinguishable 

from the exact solution. 

2.~.2.3 Torispherical Drumhead 

The torispherical drumhead, Fig. 2.6(a), analysed experimentally 

by Findley, Moffat and Stanley (ref. 25) has been idealised using 

6 axisymmetric thin shell of revolution finite elements. The 

prototype pressure vessel is No. 31 in (ref. 25). 

The finite element analysis for the elastic stresses is shown in 

Fig. 2.6(b) compared with the experimental results. The 

discontinuities of the stresses between adjacent elements are so 

small that they are not apparent in Fig. 2.6(b) and a check on the 

discontinuities in the meridional bending moment and circumferential 

stress resultants confirmed this. The agreement between the two 

sets of results is excellent and shows the great power of the 

higher order element in idealising thin shells of revolution with 

complex stress functions. 

2.3.2.4 3-Diameter Pressure Vessel 

A stepped cylindrical pressure vessel was analysed originally as 

a grossly simplified vessel, Fig. 2.7(a), and as a more realistic 

idealisation, Fig. 2.7(b), to compare with the results of Bellamy 

and Fessler (ref. 26). A classical solution of the simple idealisation 
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of the 3-diameter pressure vessel given by Bellamy and Fessler was 

compared with a finite element solution. In the original analysis 

each half of the vessel was treated as two semi-infinite cylinders 

connected by a flexible annular diaphragm, whereas in the finite 

element solution the vessel was treated as a complete body. The 

agreement between the two solutions, Fig 2.7(a), is very satisfactory. 

The second and more exact idealisation was limited by the constant 

thickness property of the elements which necessitated the omission 

of part of the knuckles from the internal corners as shown in Fig. 

2.7(b). Further the analysis for the element is based on thin shell 

theory, and thus it was not expected that the element would be 

adequate to model the sections of the shell with large thickness 

to radius ratios. 

Two finite element solutions for the inside and outside surface 

meridional stresses are compared with photoelastic results for the 

3-diameter vessel in Fig. 2.7(c) and 2.7(d). In view of the 

assumptions associated with these finite element solutions, (i.e. 

thin shell theory and constant thickness elements) the agreement 

between the experimental and finite element solutions is very good. 

The large discontinuities in the stresses at the element junctions 

are due to thin shell approximation. The meridional bending moment 

and direct stress resultant gave only small discontinuities in 

these quantities at the element junctions. The difference in the 

photoelastic and finite element solutions for the meridional 

stresses at the inside surface between points B-C and G-H is due 

to the OMission of the knuckles in the finite element solution. 
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2.3.3.1 The~l Loading 

Thermal loading is treated as an initial strain problem in 

developing the strain energy terms for the potential energy 

expression. The total strain is the sum of elastic and thermal 

strains and the strain energy is found by substituting for 

+ tJ ~eTherm1 TrO] 1Erherm1 dVol 2.16 
Vol 

The substitution of these terms in the potential energy equation 

together with those relating nodal displacements to total strains, 

equations 2.4, gives the potential energy in terms of the total 

nodal displacements. When the potential energy is minimised with 

respect to the nodal displacements the third term of equation 

2.16 disappears, the first term giving the stiffness expression 

and the second term the equivalent nodal forces due to the thermal 

loadings. 

LA- 1] TJ [B]T[oolT[oJ l~Therm1 dVol 
Vol 

2.17 

2.17(a) 

The strain energy terms for the thermal deformation are found in 

the same way as the stiffness terms are generated. Algebraic 

integration in the radial and circumferential directions, terms 

of order greater than t 3 being neglected, and Gaussian numerical 

integration in the meridional direction is used. 
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The strain energy expression to be integrated is given by 

V t = - J21r Jt/2 J 1 
(1 :1>2) ( C;'r{ £; Iherm + A) ""rherm)+€&r (£"rherm+.:>Efrherm») 

o -t/2 0 

2.18 

The Fl~gge shell theory used assumes that all strains are based 

on the midSurface displacements. A more realistic value for the 

elastic strain at any point in the shell is found by modifying 

the radial displacement relative to its position to the mid-surface 

in the strain equations. 

The temperature T at any point distance z away from the mid­

surface is given by 

The mean temperature T between this point and the mid-surface 

is given by 

The radial displacement w' at a point distance z from the mid-

surface is given by 

w' = W+ zolT 

The elastic meridional strain is given by 

till. dV ~ ~2w + (to(ZP T 
'f'E • c>s -(rs+z) dS2 rs+z-O( 

and the equivalent thermal strain is therefore given by 

G "'Th = 0( (T - (...!.-) T) r erm rs+z 

2.19(a) 

2.19(b) 

2.20 

2.21 (a) 

2.21 (b) 

2.21 (c) 
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Similarly the elastic circumferential strain is given by 

e. BE = 1 ~u + v cos ~ (rs+z) z (1 ~2w+ cos 4~w) 
r 09' --r;- -(r+z. sin~) - (r+z .51n(;6) r ~e'1 oS 

+ sin; (w+-ZIX i) _ o(T 
(r+z .sin?) 2.22{a) 

G & ... Ea _ oI.(T _ z sintP T ) 
E T (z+z. sin¢» 2.22(b) 

and the equivalent thermal strain is therefore 

t (z sinqSf\ 
e Therm ... (){ T - (r+z . sin¢) ) 2.22{c) 

The equations 2.21 (c) and 2.22{c) are substituted into equation 

2.18 in terms of TO and ~To which are functions of meridional 

length. The terms resulting after the algebraic integration in 

the radial and circumferential directions are given in Appendix 3 

as a vector {OD'1 • The equivalent nOdal forces for each element 

are then given by 

2.23 

2.3.3.2 [~erical Examples, (Thermal Loading) 

Standard Solutions for CylindricAl and Spherical Shells 

The thermal stresses for a cylindrical shell and a spherical 

shell when subjected to an overall temperature rise and a through 

thickness temperature gradient have been found. 

When the shells are subjected to a uniform temperature rise 

significant stresses are given without equation 2.20 being used. 

By adjusting the thermal strains by equations 2.21 and 2.22 the 

stresses given for a uniform temperature rise are negligible. 

The results for a mean temperature rise and through thickness 
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temperature gradient are given in Table 2.1 and are compared to 

the well known solutions given by Roark (ref. 27). The slight 

deviation is caused by the Roark solutions making no allowance 

for variation of the radial di·splacement through the shell thickness. 

This gives a difference of approximately 1% maximum for a shell 

wi th r/t of 10.1. 

2.3.3.3 §emi-Infinite Cylinder Subjected to a Varying Internal Wall 

Temperature 

A semi-infinite cylinder subjected to an exponentially decreasing 

temperature on the inside surface and a constant outside surface 

temperature was considered. The temperature variation is given by 

T = T* (1 - 2z) e-x/ r 
2 h 

The following two sets of boundary conditions at the end of the 

cylinder were considered, 

(i) No constraints 

(ii) Unrestrained radial displacement but with zero 

slope. 

The finite element idealisation of the cylinder and the inside 

wall temperature distribution are shown in Fig. 2.8{a). The finite 

element solutions for the radial displacement and the hoop stress 

distributions, shown in Fig. 2.8(b) ,agree well with the exact 

thin cylinder solutions given by Yang and Lee (ref. 28) and 

developed in Appendix 4. 

~4.1 Creep Deformation 

The method of finite element analysis applied to creep deformation 
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is outlined fully in Chapter 5. The general method however is 

briefly explained here with its application to the thin shell 

of revolution finite element. 

To generate the equivalemt nodal forces the creep strains are 

treated ~s initial strains in the same manner as the thermal 

strains described previously. The creep deformation occurring 

during a small time increment is assumed to take place under a 

state of constant stress. The equivalent nOdal forces due to 

these creep strain increments are found from 

The changes in elastic strains are found from the change in total 

strains caused by this loading and the change in creep strain 

from which this loading has been calculated 

The change in stress over the time increment is calculated from 

these strains and provided this change is within set limits the 

calculation proceeds. 

The equivalent nodal forces to the creep strains after algebraic 

integration in the radial and circumferential directions are given 

as 

2.26 

where the vector {Dcreep} is given in Appendix 5. 

The flow diagram for the algorithm to calculate creep deformations 

for the thin shell finite ele.tnt is given in Fig. 2.9. The 
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philosophy behind this algorithm is different from the creep 

analyses described in Chapter 5. After the initial solution all 

creep deformations are calculated from creep and total strain 

information held in the matrix AKREAP at each Gaussian integration 

point. For each strain component, meridional, circumferential and 

shear, six terms are retained to enable the creep calculations to 

proceed. These are 

1. last correct stress 

2. change in stress 

3. total creep strain 

4. change in creep strain 

5. total strain 

6. change in total strain. 

These eighteen items together with the last correct equivalent 

strain and change in equivalent strain at each integration point 

are held in AKREAP. 

For the initial pass through the algorithm the total strains and 

stresses at time tao are found from the nodal displacements. The 

equivalent uniaxial stress is found so that the multiaxial creep 

strains over a small time increment 6t can be calculated from the 

uniaxial creep law. From these creep strains a set of equivalent 

nodal forces are calculated, which on solution give a set of nodal 

displacements equivalent to these creep strains. 

A checking pass is made through the algorithm where the change 

in elastic stress over the time increment is found from equations 

2.25 and 2.8. This stress change is compared to the initial equivalent 

uniaxial stress at the integration point and if greater than 

the ratio specified a new set of creep strains are computed 
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with a reduced time increment. SUbsequent creep strain calculations 

are made using the information stored in AKREAP, one pass generating 

the creep strain increments, the next checking the previous creep 

strain increments. 

~4.2 Numerical Examples. (Creep Deformation) 

Simply SUpported Cylinder SUbjected to Internal Pressure. 

A simply supported thin shell of revolution subjected to internal 

pressure has been analysed by Murakami and Iwatsuki (ref. 29) and 

compared to the analytical solution of a long thin cylinder without 

end supports subjected to internal pressure. A thin shell of 

revolution finite element idealisation has been used to analyse 

both the above loading conditions. The exact analytical solution 

for a long thin cylindrical shell without end supports subjected 

to internal pressure assumes no variation of meridional or 

circumferential stress through the shell thickness. In this case 

there is no stress relaxation as the creep deformation proceeds, 

and the non-dimensional radial displacement is given as a function 

of the elapsed time. 

n+1 

~ ~ (1;") +~; f2 
where the empirical creep law is 

e. C = A c!J t m 

Finite element solutions and solutions given by equation 2.27 

for the non-dimensional radial deformation of the cylindrical 

shell at various times are given in Table 2.2. Values obtained 

from equation 2.27 are given for both zero starting time and 

2.27 

2.28 
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-5 for a starting time of 10 hrs. Finite element solutions and the 

percentage differences between these and the values given by 

equation 2.27 are given only for the latter case. 

The derivation of equation 2,27 is based on the assumption that 

the pressure load is applied on the mid-surface and that the 

meridional and circumferential stresses do not vary through the 

shell thickness. In the finite element analysis the pressure is 

applied on the inside surface and the circumferential strain 

varies inversely with the radius. Thus, in the finite element 

analysis there is a slight redistribution of stress as the creep 

proceeds and,for a given pressure load, the average equivalent 

uniaxial stress 1s about ~% lower than 1n the analysis for equation 

2.27. This reduction of stress would reduce the radial displacement 

by about 9% and, if the stresses were constant, the reduction 

would be independent of time. It may be seen from Table 2.2 that 

the differences between the finite element results and those from 

equation 2.27 are somewhat greater than 9%. The percentage difference 

is tending to approximately 9% with increasing time and it would 

appear that the discrepancy is due to the slight stress redistribution 

which occurs in the finite element solution. 

For the simply supported cylinder (Fig. 2.10(a» a single thin 

shell of revolution finite element was used for the idealisation 

with the radial and meridional displacements represented by 8 term 

displacement functions. The finite element solutions for the non­

dimensional radial displacement, for both time hardening and strain 

hardening creep laws, are compared with results given by Murakami 

and lwatsuki (ref. 29) in Fig. 2.10(b). The latter results were 

obtained by numerical integration with respect to time, of the 
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finite difFerence forms of the cylindrical shell differential 

equations. Again the finite element solutions for the non-dimensional 

radial displacement are smaller than Murakami and Iwatsuki's results, 

(ref. 29). The differences are again due to the pressure load being 

applied at the inside surface for the finite element analysis rather 

than at the mid-surface in the published results. This has been 

confirmed by applying an internal pressure tofue finite element 

model with a mean hoop stress identical to that found from simple 

thin shell theory with the original internal pressure applied at 

the shell mid-surface. The radial creep deformation of the simply 

supported cylinder under this new internal pressure agrees closely 

with the results of Murakami and lwatsuki. 
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The Parametric Family of Finite Elements 

Notation 

~aussian integration point 

Gaussian integration order 

pressure 

displacements in cartesian co-ordinates 

cartesian co-ordinates 

local cartesian co-ordinates 

Young's modulus 

Gaus.lan weighting factor 

shear strain factor 

polynomial function 

teDlperature 

stra in energy 

work done 

coefficient of thermal expansion 

displacement normal to shell surface 

direct strain 

shear strain 

Poisson's ratio 

element axes 

nodal quantities 

Gauss integration points 

Gauss order 

elastic strains 
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L local axes 

o thermal strains 

T total strains 

Matrices and Vectors 

f} 
[ ] 
[ ]T 

lA] 
[A J 
(AA] 

[B1 

(D] 

tD'] 

iF 1 
[J] 

~ P(7·'l·c;>1 
\pp{~,?> 1 

[u1 
[cXu.cXy,1Ilw ] 

[ oix lI<y,~ ] 

{c-l 
te~ 
te'~ 

tci! 
La] 

column vector 

matrix 

transpose of matrix 

matrix relating nodal values to coefficients of functions 

partition of A matrix 

matrix relating nodal pressures to pressure function 

coefficients 

matrix relating straint-' to displacement function 

coefficients 

stress/strain matrix 

stress/strain matrix for thick shell 

force vector 

Jacobian matrix 

polynomial function for displacements and geometry 

polynomial function for pressure loads 

upper triangular matrix 

displacement function coefficients 

geometric function coefficients 

stress vector 

strain vector 

strain vector for thick shell 

displacement vector 

direction cosine array 
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vectors in ~ ,?, 7 directions 

normalised vectors in shell axes x',y',z' 
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3.1 Introduction 

Large numbers of elements with simple geometric shapes e.g. 

triangles, parallelograms, tetrahedra, parallelepipeds etc. 

are required to give an accurate idealisation of the geometry 

of complex structures. The advantage of using sophisticated 

elements with large numbers of degrees of freedom may not be 

fully realised if large numbers of elements are required to 

idealise the geometry of the structure. These difficulties are 

overcome when curvilinear elements with curved boundaries are 

mapped into simple geometric shapes by suitable co-ordinate 

transformations. For each element functions which define the 

geometry of the element and functions which define the 

displacement varlation over the element are required. Ergatoudi., 

Irons and Zienkiewicz (ref. 30) developed a set of "isoparametric" 

elements in which the functions used to define the geometry and 

the variation of displacements are identical. structures can be 

accurately modelled with a few of these elements compared with the 

large numbers of the simple type of elements required to give 

equivalent accuracy. These elements have been used to analyse a 

number of complex structures, Zienkiewicz (ref. 31), ErgatOadis 

et al (ref. 32), Hellen (ref. 33), and offer the best general 

family of finite elements for the analysis of large in-plane 

and 3-dimensional structure'e 

Application of standard 3-dimensional isoparametric elements to 

thick shell problems lead to some difficulties because of the 

large stiffn ••• coefficients associated with the relative 

displacements normal to the shell. Further, large numbers of 

degrees of freedom are associated with the displacements through 
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the shell thickness and by using the usual shell assumptions, 

that the normals to the middle surface remain straight after 

deformation, a large economy on the total number of degrees of 

freedom can be made. A development of the parametric family of 

elements was made by Ahmad (ref. 34) who proposed a thick shell 

"super-parametric" finite element. The term "super-parametric" 

means that the function defining the geometry of the element is 

more general than the displacement function (ref. 31). The Ahmad 

element has been modified to be more useful when using an 

idealisation which contains other parametric elements. The 

original Ahmad element was defined entirely by a series of nodes 

at the mid-surfaces of the element. The degrees of freedom at 

each node are 3 translations and 2 rotations of the shell normal. 

However it is difficult to join these elements to the isoparametric 

elements which have 3 translations at each of the nodes. 

A thick shell isoparametric element, based on the proposals 

of Ahmad, which has nodes on the surface edges of the element 

rather than the mid-surface has been developed. Each single node 

of the Ahmad element is replaced by a pair of nodes in the new 

element. The number of degrees of freedom of each element is 

identical .6 each pair of nodes in the modified element is 

constrained such that straining of the add-surface normal is 

neglected. 

This element can be used to model the shell portion of a turbine 

casing together with the standard isoparametric element which 

models the flange section. The elements are connected by a 

transition parametric element based on the isoparametric element 

which has modified stiffness terms associated with the displacements 
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of the face joined to the thick shell element. These elements are 

shown 1n Fig. 3.1. 

Standard tests have been performed for pressure loadings and the 

convergence to the exact solutions with each type of element is 

shown. 

3.2.1 Isoparametric Finite Elements 

The basic concept of the isoparametric finite element is that 

the polynomial functions used to describe the geometric shape of 

the element are identical to those used to describe the variation 

of the displacements over the element. To describe the element 

geometry in cartesian space a set of curvilinear co-ordinates 

(~,~,~) are used. These co-ordinates map a cube into a distorted 

form, as shown in Fig. 3.2. The curvilinear co-ordinates vary 

wi thin the bounds -1' 7" +1 etc. 

The co-ordinate transformations and variation of displacements 

are defined by polynomial functions in the curvilinear co-ordinates. 

[x,y,z] :a tP(~,?,~)! T [o(x'<'y~z] 

[u,v,w J .. f P(~'1'~) 1 T[o(uf<v~ 1 
r T where {P(~'?'1)1 1s a vector of functions of the curvilinear 

3.2 

co-ordinates ~,~,.c, and their coefficients are o(x'D<u, etc. The 

coefficients ~x'~' etc. can be defined in terms of the nodal 

co-ordinates xi'Yi,zi and the nodal displacements Ul,vi,wi by 

substituting the nodal curvilinear co-ordinates in equations 3.1 

and 3.2 

and 

fxi! • [A] to(x1 etc. 

tUi ~ ·l A 1 ~D(u1·tc. 
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Consequently '[cXxl = [A ]-1 tXi! etc. 

and {o(u~·[A]-1tui1etc. 

The displacements and geometry of the element are given in 

terms of the nodal values as 

x = ~P(~'7''1) 1 T [A] -1 {XiS etc. 
T 

i.e. x = fNi(~''2''7)1 iXi~ 

where tNi(~'7,-c,)ST ·lP(£,'~'7)1 TCA 1-1 

is termed the shape function. 

3.4(b) 

3.1 (b) 

Zienklewicz (ref. 31) discourages use of this method of defining 

the shape functions as there is a possibility that the inverse of 

[A ] may not exist. This method however is mUch simpler and more 

economical than defining shape functions. The LA] matrix is non­

singular for all the types of parametric element used. 

The order of the polynomial function is dependent on the number 

of mid-side nodes. The total number of terms in the function il 

identical to the number of nodes in the element, as the nodal 

values determine uniquely the variation of the function. The 

choice of the polynomial function is made by retaining the lowest 

possible terms compatible with the order of the displacement 

functions required. The polynomial function used for the 20 node 

isoparametrie element of Fig. 3.1, which has 1 mid-side node on 

all edges, has. parabolic variation in ~,?and 1 and is given by 

~ P(~'~'1) 1 T • ~1 '~'7'~"?''l~''7'~ ?'1t;2,f ,~2 ,~2/2t~~,~~2, 

~~"f ,'[92 ,~~~,~f1'~'l~2J T 3.5 
The element is conforming because the displacements on any surface 
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are uniquely defined by the nodal displacements of that surface. 

The polynomial function also satisfies the usual convergence 

criteria of rigid body modes and constant first derivative, 

Zienkiewicz (ref. 31). 

3.2.2 Generation of Element Matrices 

The finite element equations are obtained from the minimisation 

of the total potential energy of a structure, given in terms of 

the strain energy and the work done, with respect to the variation 

of the nodal displacements of the structure, 

for all nodal displacements. 

The strain energy can be calculated individually for each 

element and the terms SUDllled for the coq>lete structure. The 

strain energy for each element is 

U.1J· t£1T io-1 
2 Vol ~ 

dVol 

The stress is related to the strain by the l D 1 matrix 

CS"x 
{Sy 
o-z 
'Cxy 
'C yz 
'C zx 

and 

3.6 

3.7 



- 40 -

1-,.) IJ ~ 0 0 0 

1-0 AJ 0 0 0 

1-0 0 0 0 

and [0] -
~ 

1-21.> 0 0 
-y-

(1+A,» (1- 2J.) 1-2':> 0 
-2-

aym 1-210 
"'2" 

The strains are defined in tenDS of the displacement function 

coefficients as 

~ ()p o , 0 
C1x -die , 
3v 0 

~p 
0 

3y ,~ , O('u 

~w 0 0 
dP 

{E1- 3z 
, ,~ 

()u + ~v = 3P dP 0<. V 

try t>i cry 'di 
, 0 

C>v + e 0 
~P ~ 

tXw 
~z ~ ,~ , oY 
d. + au dP 

0 
~p 

~x ~ az , ''Tx 

J 
i.e. 

The displacement coefficients are defined 1n terms of the 

nod.l displacements from equation 3.4(b) 

o o 

where L~ 1-' • [A 1-1 o 

sym ~A 1-1 

3.8 

3.9 

3.9(8) 

3.10 

3.10(8) 
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This gives the strain energy, equation 3.7 as 

v-; ld11 T[Ar J [B] T[D][B]dVOl[lit \S11 
Vol 

3.7(a) 

The derivatives of the polynomial function P(~'~'1) with respect 

to the cartesian co-ordinates x,y,z in the L B] matrix are 

given by 

• 3.11 

The value of the Jaccbian matrix [J J can be found as the functions 

x,y,% are explicitly defined in terms of the curvilinear co-ordinates 

~,?,~from equation 3.1. Further the left hand vector can be 

evaluated directly a. the polynomial expres.ion is defined in terms 

of the curvilinear cc-ordlnates. The Jacobian matrix is inverted 

to give the derivative. of the polynomial function with respect to 

the clrta.ian co-ordin.t ... 

.)x 

oP 
ay 
aP 
~z 

3.12 

These values ara substituted in the strain/polynomial coefficient 

matrix of equation 3.9. The .. trices in equation 3.7(a) are now 

defined in tarms of curvilinear co-ordinates and the limits of 

the Inteorat1on must be similarly modified. The transformation 
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of the variables is made using the determinant of the Jacobian 

matrix (ref. 35) 

dx dy dz • det [J} d~ d~ d1 

3.2.3 Numerical Int'gration 

The limits of integration are over a cube, not the distorted 

shape of the element, and are within the limits -1 to +1 for 

each co-ordinate direction. 

We now have 

It is impossible to perform this integration explicitly and 

numerical integration has been used. The process employed is 

that of Gaussian quadrature (ref. 21) where the integral of a 

function f(x) is given by the summation 

J
+1 

-1 

n 

f(x) dx • L Hj f(aj) 
j-1 

where n 11 the number of sWlllation points and Hj the weighting 

factor for the function when x-aj' Table 3.1 gives values of H 

and a for GaUl. value. up to n-6. For n sampling points a 

polynomial of degree 2n-1 can be integrated exactly. 

To evaluate the triple integral of equation 3.14 

3.15 
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it is necesury to do the triple BUDlnation 

m n p 

f(~'7'1)d~ d( d9- L [ L HjHkHl f('j,"lk')l) 
j-1 k-1 1-1 

The term f(~j'~k'7l) can be directly found for all elements 

and the stiffness expression in the general equation can be 

calculated. It should be noted that the Gauss order, although 

usually the S •• e in each curvilinear direction, may differ to 

suit the order of the polynomial functions in those directions. 

3.2.4 Generation of Thermal loads 

3.16 

The strain energy 1s given by the str .. ses and elastic strains 

which are a function of the total strains less any initial strains 

due to thermal .xpan.lon. In equation 3.6 the strain expression. 

are identical to the ela.tic strain •• The.e have to be modified 

by 

3.17 

where t € 0 ~ are the thermal strains. For each element the strain 

energy term in the potential energy expression is (kj . ., I ") 

which reduce. to 

dVol - JO tEo r1 TI. D W=o ~ dVol 
Vol 

-~Jo tGorLD1l{;o\ dVol 
Vol 

3.18 
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Defining the total strains }€r\ in terms of the nodal displacements 

gives the strain energy al 

V.; ll.\\ r[A]-T J [BJT[o1 [B]dVOl[A]-1 ~di~ 
Vol 

-\c\\ T lX 1-T 
\" LB1 Tlo) tE.o~ dVol -~J tE

O\ T[O JlE:o\ dVol 
J Vol Vol 

When these terms are summed for all the elements and the potential 

energy 11 ~nladled with respect to the nodal displacements the 

finite el ... nt equationl for each element are given as 

[Al-rJ [BJT[o1lB1dVOI LA 1-1 ~Si~-t.A1-Tr [BJr[O]~~\ dVol 
Vol JVOI 

'----~--------'~ ---y- -_---.J 

stiffnell Ter_ Equivalent Nodal Forces 3.20 

The equivalent nod.l forcel to the thermal strains are given 

by 

f F.1 · [X] -T I [ By [0 11 E o~ <!Vol 

JVcl 

3.21 

To deteradne the forc .. due to the thermal strains the numerical 

integration il perfor.ed identically to equation 3.16. The values 

of the thermal Itrains are given by the coefficient of linear 

expanl10n 0( and the t~er.ture T at the Gaussian integration 

point. 

o(T 
O(T 
o<T 

o 
o 
o 
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3.2.5 Pressure Loading 

The Work Doae by the pressure p over the face of an element 

is given by 

W .0. = J' P ~ dAre. 
Area 

Here 0 is defined as the displacement normal to the surfaee of 

the elements. The normal displaeement is expressed in terms of 

the eartesian displacements u,v and w as follows. 
It. A 

The vee tors V" and V'l. are tangent to the surfaces when 7--1 
or '7=+1 and are given by 

A. OX t CJY" ()z A 
V~ =- - + - j + -k 

.., C>~ ~~ ali, 

V III ax t + t:>Y 1 + oZ k 
~ d'( ~'2 ~ 

where x,y,z are defined by equation 3.1. 
~ A 

The veetor V normal to the surface is normal to both V, and 
1\ 

V1 and is given by their cross product 
,. 1\ " 

V • V~ x V? 

which gives 

3.23 

3.24(a) 

3.24(b) 

V • (dY.~ _ t>Y.dZ)t +(c>x.az _ d.!.aZ)1 +(ax.<1Y _ c>x.ar\k 3.25(b' 
?l'T 0'( 0'1~' 0'1 ~ a, C>rz ~ a~ Ott ()~) 

This vector when normalised gives the direction cosines of the 

normal to the '7" -1 or +1 surfaces r.lative to the element axes 

; · e,i + e~ +1!I3k • telH1 3.25(c) 

Hence the Work Doa. by the preasur. load on each element is given 

by 
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Defining the cartesian displacements in terms of the nodal 

displacements gives the Work Done al 

~
e1 P(1'~'7)} 
9 2 P(~,'("c7) p dArea 

Are e3 p(1,rbt:;) 

A set of equivalent nodal forces is evaluated when the total 

work done expression is differentiated with respect to the nodal 

displacements in the minimisation of the total potential energy 

expression. This gives the equivalent nodal forces for each 

element as 

<e 1 P(~, ~,C,) 

@2 P(lj,V(,,) 

Area e 3 p~,~,1j) 

p dArea 

The face being lubj ected to the pres sure forces is described in 

3.27(b) 

a set of curvilinear co-ordinates and it is convenient to use the 

same numerical integration process used in the generation of the 

element stiffness matrices. Only two of the summations are needed 

when the value of the third co-ordinate '9 is -1 or +1. These two 

value. allow internal and external pressure forces to be applied 

although when external pressure fore •• are applied ~ =+1 the 

integral has to be multiplied by -1 as the normal defined by the 

tangents is outwards from the element. The scaling factor for 

integration in the curvilinear co-ordinates is introduced by not 

"" normalising the normal vector V as the magnitude of this vector 

is equal to the ratios of the area. of the transformation. The 

equivalent nodal force. for pressure loading are given by 

3.28(a) 



where ljD -1 or +1 and 
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p ( ~j /1I" <;) 

P(~j ,'&''1) 

P(,j ,'(k ,'If) 

where the pressure p varies across the element surface. 

3.3.1 T¥£L~.~I.l.larametr1c Finite Elemgnts 

Pjk 

The element formulation for the thick shell finite element is 

based on the usual shell assumption of negligible through thickness 

direct stresses. These stresses are assumed to contribute nothing 

to the strain energy. The element is different to that proposed 

by Ahmad (ref. 34) in that the quadratic element is defined by 

16 nodes each with 3 translations, compared with 8 nodes each with 

3 translations and 2 rotations. Each node on the mid-surface of 

the "Ahmad" element is replaced by a pair of nodes on the outside 

surfaces of the shell. The difference 1n the total number of 

degrees of freedom 1s eliminated by constraining the shell 

thickness to remain constant. The degrees of freedom normal to 

the shell surface at each pair of nodes are made identical. 

The co-ordinate transformations and displacements are again 

defined by polynondal functions, the coefficients of which are 

defined by the nodal values. The polynomial function for the 16 

node thick shell parametric element with mid-side nodes on the top 

and bottom faces is 

P(~,~"(j} T. {1 '7t7'1'~~7"~~'~~f,~2,i,~2?'~1,~~;e,f, 
'i,

2
'l.1'1fc; S 3.29 
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This element is also conforming because it is an isoparametric 

element. 

~.2 Generation of Element Matrices 

In order to eliminate the normal direct stress term from the 

strain energy expression it is convenient to set up local 

cartesian axes which include the normal to the shell. The 

orthogonal axes which define the local strain components are 

found from the variation of the functions defining the element 
A A 

geometry. The vectors in the ~ direction V, and ~ direction V~ 
"-

for any ~ = constant surface give the vector Vz' normal to this 

surface as their cross product 

" A where V~x V7 are given in equations 3.24 and 

one axis of which is defined by the vector Vz'. However a unique 
A 

set of axes is defined by noting that both the vectors V~ and 
" A A. 

V~ used to form the vector Vz' are normal to Vz'. Hence by 

defining the x' direction to be identical to the ~ direction 

then a unique set of axes is formed by the cros s product of the 
A A. A A 

vectors Vz' and Vx ' where Vx' is identical to V,. 
" A A 
V'·V'xV' Y z x 

Thesa vectors are normalised to give the direction cosines of 

• let of local orthogonal ax.s 1n terms of the .lement axes 
~ ,,-, , J vy , vz 

3.31 

3.32 
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The derivatives of u, v and w in the element axes are transformed 

into the local orthogonal axes to give the strain co~onents as 

due ave dW' 
dX' , ax' , ax' 

du' av' C>w' 
vy' , CYy' , 'dy' 

ou' ev' awl 
Ji' , Ji' , Oz' 

where 

~u ov Ow 
'Ox ' ~x ,~x 

au c>v aw 
'dy , ?Jy , (jy 

= [e]T 

• 

~u ov ~w dP 
Ji'M'Tz Tz 

C>u CJv ow 
ax ' ax ' ax 
du dV ow [e] 3.33 dY ' 'dy , ~ 

ou ""' ow .:JV 
oz ' C)z , dz 

3.34 

The strain energy is evaluated in terms of the strains and stresses 

defined in a set of axes normal to the shell surface at each 

numerical integration point. 

v • ~ r to; 'F ~O"'l dVol J Vol 
3.35(.) 

where (S" E.' x x 

t~1 
0-:' 

lG'1 • c' 
= 't. y, , and ?5 y, , 

'ex,y, '6x,y, 
y,z, ?SY,z, 

'Cz x z x 

This gives the usual finite element stiffness expression as 

3.35(b) 

where lo'1, the stress/strain matrix, is based on zero normal 
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direct stress;. 

1 10 0 0 0 

1 0 0 0 

[D'J = E 1-0 0 (1 .. 0 2) 0 
"2 

1-0 0 
2K 

1 .. ;0 

sym T 

The t B'] matrix relates the local co~onents of strain to 

the displacement function coefficients as 

where e t 
X 

E' y 

tE 'l = 
~t t + dV' fox' y 
~'z' + 'Ow' /C!>y' 

2Sx ' z t + c>w' /c)x' 

3.36 

and l B' 1 relates the strains in a set of axes normal to the 

shell surface to the coefficients of the displacement functions. 

The factor K is introduced into the lD'1 matrix to account 

more accurately for the shear strain energy. The usual value 

for K is 1.2. 

The normal direct strain is constrained to be zero by defining 

the degree. of freedom for each node pair in a set of local axes 

whose x axis is normal to the shell surface. The degrees of freedom 

in the x direction at each node pair are constrained to be identical 

but the other degrees of freedom are independent to allow for shear 
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deformation (see Fig. 3.3). 

The displacements are found by the summation over the total 

structure of equation 3.35 and solving for ~&i\' The equivalent 

nodal forces are found in the same way as those for the 

isoparametric elements, sections 3.2.3 and 3.2.4. The stresses 

are found in a set of local axes normal to the shell surface. 

In the formulation of the stiffness matrices it has been assumed 

that the normal direct stresses are zero, but when the stresses 

are evaluated for a shell subjected to pressure loading it is 

assumed that the normal stres& varies linearly through the thickness. 

~.4,1 Transition Parametric F!n1tt-Element 

The idealisation of turbine casings 1s made using a combination 

of thick shell parametric finite elements to model the shell 

portion and isoparametric finite elements to model the flange 

and fillet portions of the casing. One method of joining these 

elements, see Fig. 3.4, constrains the displacements at the 

outside nodes of each element to be identical but imposes no 

coupling between the elements for the mid-side node(s). The 

result is that atter deformation the normals to the shell surface 

remain straight, whereas the mating face of the isoparametric 

element becomes distorted leaving a gap or penetration between 

element faces. A possible method of combining such elements is 

to use a parametric transition element which is explicitly written 

to overcome these difficulties. 

The transition parametriC finite element is basically an 

isoparametric finite element with degrees of freedom on an end 

face constrained such that the normal to the surfaces before 
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deformation remains straight after deformation. 

J.4.2 Generation of Element Matrices 

The stiffness and loading matrices for the transition parametric 

finite element are generated in an identical manner to those for 

the equivalent isoparametric finite element. The mid-surface nodes 

on the face adjoining a shell element are constrained such that 

the normals r.main straight aft.r deformation. The displacements 

are transformed into the local set of axes whose x axis is normal 

to the sh.ll surface from the element cartesian axes. 

3.37 

The element illustrated in Fig. 3.5 is to be joined to a shell 

element on the surface 1-10-3-15-7-18-5-13-1. Node 13 is constrained 

to remain on the lin. joining nodes 1 and 5 and node 15 on the line 

joining nodes 3 and 7. Tbe displacements in the local y and z 

directions at the mid-sid. nod.s must b. a linear function of the 

displacements at the corner nodes. 

vL13 • t(VL1 + vL5) 

Wr.13 • t(WL1 + w~) 

3.38(a) 

3.38(b) 

The u displacement is allowed to move, depend.nt on the coupling 

terms associated with these implicitly imposed constraints, and 

those associated with the other element degrees of freedom. By 

substituting equations 3.38 for the through thickness mid-side 

nod.s on the junction fac. in the strain energy equations the 

the ,tiffne •• and loading matrices are modified, Appendix 6. The 

terms dir.ctly associated with the displacements constrained so 

that the nod.s remain on a straight line are removed from the 
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stiffness and loading matrices. There are no longer any degrees 

of freedom associated with these terms in the structto·e. 

The stiffness and loading terms are transformed back from the 

local or global axes to the element axes ready for summation 

with the other terms for the structure. This is necessary as the 

merge algorithm, being of the most general nature, has to have 

the element terms presented to it defined relative to a set of 

axes dependent on element topology. 

To determine the stresses the values of the constrained 

displacements must be calculated from equations 3.38 before the 

coefficients of the displacement polynomials can be found. 

~.5,1 Programming T.chniques (Isoparametric Finite Element) 

The programs to generate element stiffness and loading matrices 

for the parametric family of elements are very similar, the 

isoparametric and transition parametric element algorithms being 

combined, The baaic modification for the shell element is the 

inclusion of the transformation steps to modify the element 

stiffness terms into axes normal to the element surfaces. 

The flow diagram for the 20 node isoparametric element is 

shown in Fig, 3.6(a). The element nodes are defined in terms 

of the curvi linear co-ordinates to enable the l A 1 matrix to 

be calculated from the polynomial function l P(~,rz.,'Cj)1' The 

LAl matrix is partitioned into three portions to @nabl. economy 

of store and central processor time to b. achieved. These partitions 

are identical by definition of the parametric formulation. Ta~ing 

equations 3.3(a) and 3.4(a) and by partitioning the LX J matrix 
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ui [A J 0 0 

~fl1· vi • 0 [A] 0 

wi 0 0 LA1 

and 
[A1 xi 0 0 O{x 

tX11· Yi • 0 LA1 0 

zi 0 0 LA} 

and typical! y 

~ui1 • [A]toluS 

fX
i1 • LA J to£x1 

This partition reduces the size of the L 11 matrix from the 

square of the number of degrees of freedom for the element to 

the square of the number of nodes of the element [A]. For the 

3.39(a) 

3.40(a) 

3.39(c) 

3.40(c) 

20 node hoparametric element this reduces from 60 x 60 to 20 x 20, 

a reduction to 11%of the original store requirements. SiDdlarly 

coq:.utation time is saved a& a very much smaller matrix is now 

inverted. 

[AJ-1 
0 0 

• 0 [A 1-1 0 

oI.w 0 0 [A1-1 

and [A J-1 
O(X 0 0 

Dl..y • 0 LA 1-1 0 

O<z 0 0 lA 1-1 



and typically 

l<xu1 .. LA J-1 t ul1 
to(x1:1 [Al-1 lXil 
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3.39(d) 

3.40(d) 

The PAFEC suite of finite element programs has provision for 

the use of more than one element type in any structure. The 

number of elements of anyone type for which the stiffness and 

loading terms are generated is read within the element algorithm. 

The algorithm loops through this number of elements to generate 

and merge the stiffness and loading terms. 

Within each loop the element topology is defined by ordering 

the nodal points in the same way as the nodal points were defined 

when calculating the LA 1 matrix, Fig. 3.7. The value of the 

density of the element is us.ed as a control which saves recoq:,uting 

the [D 1 matrix or equivalent. This also saves data preparation 

in redefining the material properties should they be the same as 

the previous element. The nodal co-ordinates are listed to enable 

the element geometry to be calCUlated in terms of the co-ordinates 

of node 1, Fig. 3.7. The stiffness and loading terms are evaluated 

in terms of the element axes which are defined as the xe direction 

being along the line joining nodes 1 and 2, the xeYe plane 

containing the nodes 1, 2 and 3 and the ze direction being normal 

to this plane. This enables large economies of computing to be 

achieved when elements have identical properties and geometry 

but are displaced and orientated relative to each other. Once the 

stiffness and loading terms have been calculated for the first 

element they can be used within the merge algorithm using the new 
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direction cosine array of the element axes and relevant nodal 

ordering information. The control for this step is that the 

material density has a value of -1.0 and the element is identical 

in every respect, including pressure and thermal loading if used, 

except position. 

For elements which are not identical the stiffness and loading 

terms are found by numerical integration in curvilinear 

co-ordinates. The coefficients of the polynomial functions defining 

the element geometry in element axes are found from equations 3.40(d). 

Gaussian quadrature, Table 3.1, of order 3 is used for the numerical 

integration in all three co-ordinate directions. At each Gauss 

integration point, defined by the curvilinear co-ordinates~, ~ 

and ~, the polynomial functions and derivatives with respect to 

the curvilinear co-ordinates are found. 

{P( ~ ''l''i) 1 T, t~P(~2'2) ~ T, t(~~'<;)} T, [dP(~~''1)} T 

The Jacobian matrix t J 1 is found from the coefficients of 

the functions defining the element geometry, ~~ x 1 ' ~Q(y 1 ' ~D( z ~ 
and the derivatives of the polynomial functions, equation 3.41. 

3x3 

t~~ Tiolx 1, t~~1 T \oly l' t~~ r~olz\ 

t~~r ~olxl' t~~r~O{Y1' t~r\O{z1 
n~1 T~olx1 't~{ T~o(Yl' t~! Tlolz \ 

The polynomial functions differentiated with respect to the 
}p dP ~p 

element co-ordinates, ~x' tJy' ~z are found by dividing the 

polynomial fUnctions differentiated with respect to the 

curvilinear co-ordinates by the Jacobian matrix [J], 

3.42 
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equation 3.12. A by-product of this division process is the 

determinant of the Jacobian needed to scale the integration 

from curvilinear co-ordinates to element co-ordinates, equation 

3.13. 
T 

The product LB] (D][ BJ can be found directly by matrix 

multiplication, [B] and [D 1 being defined by equations 3.8 

and 3.10. This is a very large multiplication because [B ] 

is declared 6xIDE, where IDE is the total number of degrees of 

freedom associated with the element, and [D] is 6x6. A more 

economic method of finding the product [ B ]"[DJ[BJ proposed 

by Irons (ref. 36) has been found to reduce the element generation 

time to at most 40% of the time required when using the direct 

multiplication method. The [DJ matrix being symnetric is easily 

converted to a lower and an upper matrix where the lower matrix 

is the transpose of the upper matrix. 

The value of the upper matrix is given in Appendix 7. 
T T 

The product LB] [U] [UJ[B] can be found more economically ,. 
by forming L u] l B] directly and noting that [B 1 [u] T is 

the transpose of [UJ[Bj. It is then only necessary to form 

the terms in the lower triangle of the stiffness matrix as the 
T 

product [BJ[U]T[UJt.BJ is syumetric. 

Similarly for initial strain problems such a6 thermal loadings 

the product LB JT[D1 t~1 can be modified to LB 1(u1 T [U]tEos 

to make use of the previously calculated [B ]T[U] T. These 

products are summed together with the weighting factors for each 

Gauss point, equation 3.16 and Table 3.1. 
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For pressure loadings the numerical integration has only to 

be applied in the ~ and ~ curvilinear directions. A linear pressure 

variation is defined by the pressure at the corner nodes of the 

+ ~=-1 face. For internal pressure'7=-1 and the pressure is positive 

and for external pressure '7=+1 and the pressure is negative. 

The pressure variation is defined by 

3.44 

where 

are the coefficients of the polynomial function 

3.46 

1\ " The vectors v~ and v~ at the surface integration points are found 

from the differentials of polynomial functions with respect to 

the curvilinear axes and the coefficients of the functions defining 

the goemetry. The equivalent nodal forces can then be found 

directly from equation 3.28. 

After the numerical integration the product 2. [aT) [D] (B1 

has to be pre and post DIlltlplied by the inverse of the [A J 
matrix to give the matrices in terms of the nodal displacements. 

This is achieved econoudcally by the partitioned [ A ] matrix as 

IDE X IDE IDE x IDE 

[A1-1 
0 0 

r [Al-1 0 0 

0 t.A] -1 0 (B] T[D] [B1 0 [A] -1 0 

0 0 [A] -1 0 0 LA] -1 

3.43 
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These matrices are then summed into the total structure stiffness 

and loading matrices using the direction cosine array to transform 

the element terms to global axes. 

3.5.2 Programming Techniques (Thick Shell Parametric Element) 

The thick shell finite element 1s programmed in an identical 

manner to the isoparametric finite element taking account of the 

different number of nodes and change in polynomial functions but 

has an extra section in the numerical integration section. This 

calculates the stiffness terms in a set of orthogonal axes normal 

to the shell surface at each integration point. The point where 

the insertion of the extra program is made is shown in Fig. 3.6(8) 

and is given in Fig. 3.6(b). the set of orthogonal axes is found 

from the terms used to generate the Jacobian matrix, equations 

3.32 and 3.33. The [B 1 matrix is transformed by individually 

transforming the derivatives of the polynomial functions for 

each position in the L B "1 matrix. The [0 J matrix given in 

equation 3.30 can be similarly operated on to give the upper 

and lower matrix type of formulation for ecomony of computation, 

Appendix 7. 

3.5.3 Programmina Techniques (Transition Parametric Elemen$) 

The generation of the element stiffness and loading terms is 

identical to the isoparametric element, Fig. 3.6(a), except for 

a portion immediately preceding the merge algorithm, Fig. 3.6(c). 

The terms associated with the nodes constrained to remain in a 

straight line, Fig. 3.5, are transformed from element axes to 

local axes through global axes. The terms are then adjusted by 
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substituting equations 3.38 in the strain energy equation. A 

simple example of this modification is given in Appendix 6. 

The stiffness and loading terms which have been eliminated are 

nulled before the terms are transformed back into element axes. 

The PAFEC merge algorithm will sum the stiffness and loading 

terms for this constraint correctly provided that no degree of 

freedom has been assigned to the v and w directions in the local 

axes at the nodes concerned. 

3.6 Numerical Examples 

The parametric family of finite elements has been shown to 

give good results for a number of problems for which exact 

solutions are known as well as more complex engineering structures 

(refs. 31, 32 and 33). A number of solutions using the parametric 

elements to idealise a cylinder subjected to internal pressure 

are compared with the eXact Lame solutions. These solutions give 

an indication of the usefulness of each element and provide 

information on the maximum arc length which the elements can 

idealise. 

3.6.1 Isoparametric Finite Element 

The results of 3 different isoparametric finite elements used 

to idea lise a thick cylinder subjected to internal pressure are 

given in Table 3.2. The elements all have quadratic displacement 

and co-ordinate transformation functions in ~ and Z but have 

linear (R37130), quadratic (R37110) and cubic (R37160) functions 

in the 7 direction normal to the shell surface. 

The exact solution is known to have a quadratic radial strain 
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function thrcagh the thickness of the shell. This can only be 

represented exactly by the cubic ~displacement function of the 

element R37160. The simpler quadratic element has a linear radial 

strain distribution and the linear element a constant radial 

strain through the thickness. The radial and hoop stresses for 

each of these solutions are compared with the Lame solutions in 

Fig. 3.8(a). It can be seen on examination of the strain components 

which produce these stresses, Tab.le 3.2, that the difference in 

the stresses is due to inaccuracies in the radial strain component. 

Because of the Poisson effect the stresses in all three directions 

are affected. The isoparametric element with only a linear 

polynomial function in the radial 7 direction is unacceptable 

even though the hoop stresses are approximated reasonably well. 

The cubic element gives exact answers at the cost of increased 

numbers of nodes, whereas the quadratic 20 node isoparametric 

element gives reasonable results for the radial stresses and 

good results for the hoop stresses. The variation of the stresses 

with angular position for the thick cylinder idealised by 

quadratic isoparametric finite elements across 300 arcs is given 

in Fig. 3.9(a). The small Variation from the exact solutions 

shows that quite large arcs can be idealised by these elements 

without poor stresses resulting. The parabolic Itlooping" of the 

stress variation for each element is due to the inability of the 

parabolic co-ordinate transformation functions to define the 

shape of the cylinder exactly. When bending begins to be significant 

only small arcs can be modelled as the "looping" becomes large. 
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~t2 Thick ~§ll Parametric Finite Element 

The thick shell parametric element overcomes the difficulties 

caused by inaccurate representation of the radial displacement 

of the linear and quadratic isoparamettic elements. By neglecting 

the radial stress in the evaluation of the strain energy the 

meridional and hoop stresses are found in terms of the meridional 

and hoop strains. 

The idealisation used in section 3.6.1 has been used to test 

the 16 node thick shell parametric element, with quadratic 

polynomial functions in ~ and 7' when subjected to internal 

pressure. The results for this element are compared with the 

exact Lame solution and the results for the 20 node lsopar8metrlc 

element, Table 3.3. The radial stresses for the thick shell element 

are calculated from the value of the internal pressure. It can be 

seen from Fig, 3.8(b) that the stresses for the thick shell element 

are as good as those given by the equivalent isoparametric element. 

However only 40 degrees of freedom are necessary to describe the 

displacements of the thick shell element compared with the 60 

needed by the isoparametric element. 

Similarly large arcs can be idealised by single elements when 

the thick shell element is used to idealise pressure vessels. The 

"looping" due to the inaccuracies in the function defining the 

cartesian co-ordinates is only just apparent in the hoop stresses. 

The radial stres ses show no such "looping" as their values are 

directly set by the value of the internal pressure. 

3,6.3 Transition Parametric Finite Element 

The transition element which joins the thick shell element to 
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the isoparametric element is based on the latter element. When 

this element is used to model a thick cylinder subjected to 

internal pressure the results are identical to those given by 

the isoparametric element. 

3.6.4 Iso. Transition and Shell Parametric Finite Element Combination 

The three types of parametric element have been combined to 

model the thick cylinder subjected to internal pressure, see 

Fig. 3.10. This element combination is used when the '~hick 

Shell" parametric element is to be used to model the shell 

portions of turbine ca sings. It can be seen tha t the "Transition" 

parametric element joins the shell and isoparametric elements 

with good continuity of stresses. The shell element however 

shows a large "looping" effect in the stresses due probably to 

the constraints applied by the transition element. However the 

mean stresses are close to the exact solution and it would appear 

that the shell and transition elements on either side of the 

junction face should have as small an arc length as possible. 
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Chapter 4. Frontal Solution. 

Notation 

i position of "redundant" degree of freedom 

id maximum instantaneous size 

idf degree of freedom label 

ilo number of loading cases 

x unknown variable 

F loading term 

F' modified loading term 

K stiffness term 

K' modified stiffness term 

SUffices 

e element axes 

g global axes 

i,j,k positions in matrices 

1 local axes 

~ices and Vector~ 

direction cosine array, local to global axes 

direction cosine array, element to global axes 

loading vector 

stiffness matrix 
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4.1--1n t roduction 

The variational principle of minimum potential energy of a structure 

from which the finite element equations are formulated gives a set of 

linear simultaneous equations for the nodal displacements. The solution 

of these usually large sets of equations can be simply obtained if the 

matrix containing the coefficients of the equation can be held within 

the computer core store. The majority of computer software systems 

have an efficient matrix handling pack and the solution of the finite 

element equations is found by a matrix inversion algorithm operating 

on a vector or vectors of constant right hand side terms. Efficient 

methods of inverting and storing this matrix are available and when 

the inverse is required for subsequent solutions the Cholesky 

decomposition algorithm given by Wilkinson (ref. 22) has been used. 

When the size of the coefficient matrix to be stored exceeds the 

limi ts of the computer store economies can be made by reclaiming the 

areas of the matrix of zero coefficients. These are usually abundant 

in finite element analyses where many elements are used in an 

idealisation as coupling of stiffness terms only span adjacent 

elements. By suitable ordering of the degrees of freedom the non-zero 

coefficients are concentrated in a narrow band about the leading 

diagonal terms. The coefficient matrix is then declared in rectangular 

form, being only as wide as the bandwidth, thus enabling much larger 

idealisations to be used and still retain the coefficient matrix in 

core store. A banded Cholesky decomposition algorithm, again given by 

Wilkinson (ref. 23) has been found to be extremely efficient for this 

type of problem. Great care has to be e~ercised in the ordering of 

the nodes as this can significantly increase the semi-bandwidth of 

the coefficient matrix. 
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When the structure becomes so large that it is impossible to retain 

all the non-zero terms of the coefficient matrix in the computer core, 

methods which either destroy part of the coefficient matrix or transfer 

the coefficients to backing store have to be used. The methods are 

usually direct or iterative, the direct methods usually being based 

on Gaussian elimination and limited by the instantaneous semi-bandwidth 

of the structural equations. By only retaining the coefficient terms 

of equations giving the degrees of freedom of interest, the equations 

associated with the other degrees of freedom Can be eliminated from 

the coefficient matrix when all the terms associated with them have 

been calculated. This is the standard "reduction" algorithm for 

analysing small areas of very large idealisations. 

For very large idealisations it is better to use a few high order 

displacement function finite elements in place of very many simple 

elements. This reduces the total number of coefficients necessary 

for a solution, but is usually outside the bounds of the computer 

store. Irons (ref. 37) has proposed a "Frontal ~lution" to be used 

with these high order displacement function finite elements which 

retains all the terms eliminated from the coefficient matrix in fast 

access backing store and enables the displacements for the total 

structure to be calculated. Further the algorithm reduces the size 

of the "active" coefficient matrix by using empty rows and columns 

as they become available, thus eliminating a large amount of 

unnecessary store requirements. The algorithm also has are-solution 

facility by making use of the terms, in backing store, of the 

eliminated equations. 

A block elimination algorithm based on Gaussian elimination which 

uses fast access backing store to retain the square submatrices of 
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the coefficients has been proposed by Cantin (ref.38). This method 

which is similar to Irons "Frontal Solution" can solve very much 

larger problems but is very heavy on peripheral traffic. 

Iterative methods have been used extensively for the solution of 

linear equa tions, many methods of solu tion being given by Westlake 

(ref. 39 ). Of these the Gauss-Seidal method, which always converges 

for positive definite matrices, if slowly, has been extensively used. 

For iterative solutions all the terms of the coefficient matrix have 

to be retained, even if backing store has to be used. An alternatina 
J 

component block iterative solution for very large finite element 

idealisations of simple tetrahedron elements has been proposed by 

Rashid (ref. 40). 

A comparison of direct and iterative solution methods for finite 

element equations has been made by Irons and Kan (ref. 41 ). They 

conclude that iterative methods are more inefficient than "frontal" 

methods when very large idealisations are to be solved, and that the 

Rashid approach is the only iterative method worthy of consideration. 

The most attractive solution technique for finite element 

idealisations which cannot be contained in the computer core, either 

directly or in banded form, is the "Frontal Solution" of Irons. This 

not only offers complete solution but has the added advantage of ease 

of re-solution of subsequent right hand sides of the linear equations. 

The "Frontal Solution" algorithm written for these programs is 

compatible with the PAFEC suite of finite element programs and the 

housekeeping techniques used are completely new. 

4.2 Numerical Analysis 

The "Frontal Solution" method of solving a large set of linear 
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equations for the displacements of a finite element idealisation 

depend s on a limited number of those equatiQns becoming "redundant" 

as the formulation proceeds. A displacement or degree of freedom 

becomes and remains "active" when the stiffness and loading terms 

of the first element containing the degree of freedom are being 

generated, and while other stiffness and loading terms associated 

with elements having common boundary with this degree of freedom 

are still to be genera ted. The degree of freedom become s "redundant" 

when the last stiffness and loading terms associated with it have 

been generated and summed with other terms in the overall stiffness 

matrix. ii/hen a degree of freedom has become "redundant" the stiffnes::, 

and loading terms directly associated with it can be eliminated by 

Gaussian Reduction to reduce the storage requirements of "active" 

stiffnes~ and loading matrices. 

The maximum amount of core storage required is determined by the 

maximum number of degrees of freedom "active" over the cluration of the 

program, termed the "maximum instantaneous size". The maximum 

instantaneous size of the "active" degrees of freedom is independent 

of nodal or degree of freedom ordering and is solely determined by 

careful choice of element ordering. The degree of freedom numbers 

are merely labels and are no longer used to determine the relative 

positions of terms in the stiffness and loading matrices. By making 

use of empty rows and columns in the "active" matrices the bandwidth 

is greatly reduced. 

When a degree of freedom becomes "redundant" it is eliminated from 

the stiffness and loading matrices by reducing out all the terms 

associated with it. The set of linear equations for the total 

structure is given by 
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i=1, idt 4.1 

where idt is the total number of degrees of freedom in the structure. 

This gives the "redundant" degrees of freedom as 

i-1 
xi = ii -}' .!5.ij Xj 

KU L KU 
j=1 

idt 

-[ 
j=i+1 

4.2 

For large structures the majority of the Kij terms are zero and the 

equation can be reduced to give the "redundant" degree of freedom in 

terms of the "active" degrees of freedom. Similarly because the 

stiffness matrix is symmetric an equal number of Kji stiffness terms 

are zero. When this "redundant" degree of freedom is substituted into 

the equations with zero Kij terms the equations remain unchanged and 

consequently the reduction equations can be written in terms of the 

maximum instantaneous size ide 

i-1 id 
- )' !ij Xj 

L Kii 
j=1 

-l .!ij Xj 
KU 

j=i+1 

4.3 

Substituting equation 4.3 for the "redundant" degree of freedom in 

all the "active" equations 

id 

j :I i L Kkj Xj = Fk 

j=1 

k:<=1, i-1, i+1, id 

gives a modified set of "active" linear equations as 

id 

j f iL 
j=1 

K'k· x· J J k= 1, i-1, i+ 1, id 

where the modified stiffness terms are given by 

K'kj = Kkj - !ki~ij 
Kii 

4.6 
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and the modified loading terms are given by 

4.7 

The "redundant" equation, equation 4.3, is stored in fast access 

backing store for solution when the Xj terms have been determined. 

The rows and columns made available after the "redundant" degrees 

of freedom have been reduced out are filled with newly "active" 

equations as the formulation proceeds. After the stiffness and 

loading terms have been generated and summed for the last element 

in the structure all remaining degrees of freedom become "redundant It, 

except for eigenvalue problems, mentioned later, and can all be 

reduced out. This leaves the last degree of freedom to be reduced 

out as 

4.8 

The solution for this degree of freedom can be found directly and 

by a process of back-substitution, calling down each reduction 

equation in reverse order to which the equations were sent to 

backing store, the solution of all the degrees of freedom can be 

found. 

Re-solution of subsequent right hand sides of the finite element 

equations is available by using the reduction equations written to 

fast acceSf, backing store. This means that the stiffness terms 

remain unaltered and non-linear problems using re-solution have to 

be based on constant stiffness criteria. The loading terms are 

summed in the same manner as the stiffness terms were generated 

during the element formulation and are modified by equation 4.7 

during the reduction process. The coefficients of equation 4.3, 

obtained from backing store, are identical to the terms required 
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by ec,uation 4.7. The loading term in equation 4.3 is modified to 

the loading term given by the "redundant" degree of freedom. The 

coefficients and modified loading terms of equation 4.3 are then 

rewritten to backing store. The re-solution by back substitution 

is obtained after the loading terms of all the reduction equations 

have been modified. 

4.3 Housekeeping 

The PAFEC suite of finite element programs comprise many types 

of element families, all of which can have up to three displacements 

and three rotations in orthogonal axes at each node. Information on 

the global position and allocated degrees of freedom at each node is 

held by the CPDDe array (goefficients of fosition, ~isplacements 

and Direction Cosines). Each degree of freedom is allocated a - -
number within the limits 1-idt, where idt is the total number of 

degrees of freedom. For simple matrix inversion or banded solutions 

these numbers allocated to each degree of freedom determine the 

relative position of terms in the stiffness and loading matrices. In 

the frontal solution these numbers act merely as labels for storing 

loadings and displacements when calculated, as the position taken 

in the stiffness matrix is dependent on the empty rows and columns 

when the degree of freedom becomes "active". 

A simple example with data prepared for the "frontal solution" is 

given in section 4.6 to describe the housekeeping algorithms. 

4.3.1 CPDDe Array 

The CPDOC array used by all types of finite element is the most 

convenient item for containinQ the reduction information for each 
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,1egree of freedom. The degrees of freedom associated wi th each node 

,He stored in one row of the CPDOC array, together wi th the nodal 

co-ordinate data, and consequently the degrees of freedom although 

integer numbers are held as real variables. The reduction 

information associated with each degree of freedom is held in the 

decimal ~ortion of this real variable in the form of a tag. 

The tag \'Jhich controls the reduction and elimination process ha 5 

to accomodate solutions which may require master degrees of freedom, 

found in large eigenvalue problems, repeated degrees of freedom, 

where two or more degrees of freedom are rigidly coupled to move 

together, as well as the more normal solutions. An example of rigid 

coupling is in constraining a face to remain plane to calculate 

generalised plane strain solutions. 

The displacements at a particular node cannot be eliminated until 

the matrices for all elements which contain the node have been 

merged into the system matrices. A count on the number of elements 

associated with each node has to be made as each element is merged. 

The tag 0.01 is added to the degrees of freedom at each node for 

each element which that node is common to. Hence a node common to 4 

finite elements has degrees of freedom with tags of 0.04 associated 

wi th it. As the element stiffness and loading generation proceeds 

the tags on the degrees of freedom at each node associated with the 

element are reduced by 0.01 for each element appearance. When the 

tag finally disappears the degree of freedom ha s become "redundant" 

and the stiffness and loading terms associated with it can be reduced 

out. 

Master degrees of freedom always have an extra 0.01 added to the 

tag, so that the tag never finally disappears and the terms are not 
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reduced out. Repeated degrees of freedom are treat~d in a similar 

manner by adding 0.01 to all the tags on the degree of freedom 

except for the node in the la st element to be summed. Thi s ensures 

that the degree of freedom remains "active" until all terms 

associated with it have been summed. 

4.3.2 Merge Algorithm 

The stiffness and loading matrices associated with each finite 

element are summed into the total structure stiffness and loading 

matrices element by element. A flow diagram for the Merge Algorithm 

is given in Fig. 4.1. The element stiffness terms are generated in 

a set of orthogonal axes whose direction cosines relative to the 

global orthogonal axes are dependent on the element geometry and 

are given in a direction cosine array [ DCA] • To sum the element 

stiffness and loading matrices into the total structure matrices 

the terms are transformed from element to global axes. 

[Kg 1 = [DCA] T [KJ [DCA 1 4.9(a) 

{ FgS = lDCA] T t Fe1 4.9(b) 

It may be required to constrain the degrees of freedom at any 

node in a set of orthogonal axes local to the node and different 

from the global axes. The local axes can vary from node to node and 

the direction cosines of the local axes relative to the global axes 

are held in the ePDne array. When the terms associated wi th the 

degrees of freedom defined in the local axes are summed the direction 

cosines of the local axes are formed in the direction cosine array 

[DAe]. The stiffness and loading terms are transformed from global 

to local axes by 
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[ K 11 = LDAC] (Kg 1 [ DAC 1 T 

t F11 = l DAC 1 t Fg 1 
4.10(a) 

4.10(b) 

The stiffness and loading terms after transformation can now be 

summed in the "active" matrices. 

The frontal solution uses the vacant rows and columns left by 

"redundant" degrees of freedom to add in the stiffness and 

loading terms associated with degrees of freedom which have just 

become "active". A simple record has to be retained to allow easy 

determination of empty rows and columns of the matrices as well as 

the "active" degrees of freedom associated with them. The record of 

these positions is made in an extra row added to the stiffness 

matrix, which contains the number of the degree of freedom 

associated with that column and, as the stiffness matrix is symmetric, 

the equivalent row. When the row and column is empty the column of 

the extra row is empty. To determine the address of each stiffness 

term as it is summed into the stiffness matrix the extra row 

containing the positions of each "active" degree of freedom is 

searched. If the degree of freedom has only just become "active" 

the first vacant row and column is taken and the degree of freedom 

is placed in the relevant column of the extra row. 

Other methods of allocating the position that each degree of 

freedom takes in the stiffness matrix have been used. A second tag 

is added to the degrees of freedom in the CPDCC array in the decimal 

part of the real variable after the tag which controls the 

elimination and reduction algorithms. This tag contains a pointer 

to the row and column with which this degree of freedom is associated. 

This reduces the number of searches of the extra row for the degree 
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of freedom position in the stiffness and loading matrices from 

ide2tide to ide for each element, where ide is the total number 

of degrees of freedom for the element. This can only be used with 

computers with at least a 48 bit word length as the sixth decimal 

place has to be determined accurately. A second and more economical 

method at run time is to use a destination vector for the positions 

of the degrees of freedom in the matrices. The destination vector 

holds pointers for each degree of freedom giving the position that 

the stiffness and loading terms are to take in the matrices. This 

vector is generated as a by-product of the data generation pre-program 

(see section 4.4) and changes the search process for the positions 

of the degrees of freedom in the matrices to one of direct addressing 

from the destination vector. 

As the stiffness and loading matrices for each element are summed 

into the "active" matrices some of the degrees of freedom may have 

only just become "active". The back-substitution algorithm requires 

the knowledge of when degrees of freedom become "active" so a record 

of new activity has to be compiled. The transfer vector ATRANS (see 

section 4.3.3) is filled with the degrees of freedom newly "active" 

in a row one greater than the position taken in the matrice~;. This 

leaves the first row of the vector empty and serves as identification 

to differentiate this activity information from reduction information 

commonly held in ATRANS. This information is written to fast access 

backing store before the elimination proces s for the "redundant" 

degrees of freedom for the element is carried out. 

The tags associated with all the degrees of freedom for the element 

whose terms have been summed into the "active" matrices are modified 

by reducing them by 0.01. The "redundant" degrees of freedom in the 
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"active" matrices will be indicated by the tags having become zero 

in the ePDOC array. The Gaussian reduction and elimination algorithm 

is called from the merge algorithm. 

4.3.3 Reduction Algorithm 

The reduction and elimination algorithm searches through the ePDOC 

array to find which degrees of freedom are now "redundantll. These 

are only associated with the element whose stiffness and loading 

matrices have just been summed into the "active II matrices. For each 

"redundant II degree of freedom the sti ffnes s and load ing terms of 

equation 4.3 are eliminated from the matrices by modifying the 

remaining terms by equations 4.6 and 4.7. The coefficients of 

equation 4.3 are stored in the transfer vector ATHANS and written 

to backing store after each reduction. 

Before the coefficients of the "redundant" equation are transferred 

to backing store the vector ATHANS is used as a workspace to modify 

the stiffnes s and loading terms remaining in the lIactive" matrices. 

Before the terms in the "active" matrices are mOdified a search is 

made for empty rows and columns to reduce the number of computations 

required. A check is made to ensure that the leading diagonal 

stiffness term of the reduction equation remains positive. The vector 

ATHANS is used for the modification of the stiffness terms in a 

slightl y corrupt form as it is more convenient to use the terms 

equations 4.6 and 4.7. It 1s more efficient to obtain the modified 

terms 4.6 and 4.7 as 

K 'kj = Kkj - &i . .!ij 
.JKii ,Jl(ii 

4.11 
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and F'k = Fk - Kki • Fi 4.12 
,JKU JKu 

Because the stiffness matrix is symmetric the terms Kki/kii are 

stored in the vector ATRANS as Kik/kii and all terms required for 

the modification of the stiffness an~ loading terms are obtained 

as a direct product of two terms temporarily held in the transfer 

vector ATRANS. 

After the modification the terms in ATRN'lS ~re changed back into 

the correct form for the back substitution algorithm, i.e. Kij/kii' 

Kik/kii etc. and Ki/k ii • 

The transfer vector ATRAKS is then filled with the following 

informa tion 

1 st element, i= posi tion of "redundant" degree of freedom in the 

"active" matrices. 

Next (i-1) elements, the first i-1 coefficients of the reduction 

equations, Kij;Kii j=1, (i-1). 

(i+1)th element, the degree of freedom which has become "redundant". 

Next (id-i) elements, the remaining coefficients of the reduction 

equations Kij!kii j=(i+1), ide 

Next ilo elements, the Fi!kii terms for each loading condition. 

Final (id+ilo+2)nd element, the leading diagonal stiffness term Kii. 

This information is sufficient for the back substitution algorithm 

together with the Kii term which is needed for re-solution problems. 

The vector ATRANS is written to fast access backinu store and the 

rows and columns associated with the degree of freedom that has been 

eliminated are set to zero. This is repeated for all the "redundant" 

degrees of freedom in each element except for the last reduction 

equation. To give the re-solution algorithm information on the number 
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of reductions in each element a tag is added to the last reduction 

equation wri tten to backing store. Thi s decimal tag is adc"'ed to the 

integer value in the first element of the vector as identification 

of the last reduction in each element. 

A flow diagram for the reduction algori thm is shown in Fig. 4.2. 

The algorithm does not shuffle the "active" equations into one 

corner of the "active" r,.atrices as this adds complications to this 

algorithm and the back substitution. The reduction algorithm has 

been written for two cases, the first a very fast and economical 

version for static displacement problems by storing the lower half 

of the stiffness matrix in vector form. The second case stores the 

mass matrix in the top h31f of the stiffness matrix for the solution 

of dynamic problems by retaining master degrees of freedom. 

~ 03:,:,0 .;:.4---=B:.;;!ack- ~_ubs ti tu tio1lJU.oori thIn 

\Jhen the la st "redundant" degree of freedom for the complete 

structure has been eliminated the stiffness matrix is empty or 

contains terms assocbted with master degrees of freedom for dynamic 

problems, The back substitution proceeds in the same way for either 

solution after the eigenvalues have been found for the dynamic case. 

The last reduction equation for normal displacement calculations, 

where the stiffness matrix is empty, contains a solution as all the 

Kij terms of equation 4.3 are zero, and is given directly by equation 

4.8. The solutions of the other degrees of freedom are found by 

proceeding back through the elimination equations but in reverse 

order to that in which they were formed. By keeping a record of every 

displacement associated with each degree of freedom and by keeping a 

running record of "active" degrees of freedom as they are calculated, 
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in the identical position which they were summed in the stiffness 

Matrix, it is possible to calculate subsequent degrees of freedom. 

The vector ATRAN~ is again used as work space as a direct vector 

multiplication of the terms brought down from backing store by the 

"active" displacements give the "redundant" displacement by equation 

4.3. This new displacement is added to the "active" displacement 

vector as well as being retained in the total record. The "redundant" 

degrees of freedom are found for each element and the transfer 

vector containing the information on degree of freedom activity 

is brought down. Degrees of freedom which became "active" at the 

equivalent point in the reduction process are removed from the 

"active" displacement vector using the information in this transfer 

vector. The solution proceeds until all displacements have been 

found and a final check is made on the number of solutions to ensure 

that the al~orithm does not remain in a closed loop. 

The flow diagram for thi s a lc'orithm if. shown in Fig. 4.3. The 

displacement vectors are printed at the end of this algorithm. 

4.3.5 Re-SOl~ Algorith~ 

The f.e-solution algori thm is very similar to the merge and 

reduction algorithms and is therefore included within them. Because 

of the constant stiffness criteria it is only necessary to modify 

the loading matrices and the appropriate loading terms in the 

transfer vector ATRAN's. For non-linear problems where a set of 

equivalent nodal forces are calcUlated from the previous solutions 

it is imperative that they are generated in an identical order to 

the finite element stiffness equations. 

The loading terms are summed in a manner identical to that used to 
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sum the stiffness terms in the merge algorithm, but very much 

faster as only one of the loops through the element nodes is needed. 

When these new loading terms have been surrmed the "redundant" degrees 

of freedom have to be reduced out. The redUction information is no 

longer held in the CPDDC array as this was destroyed in the original 

reduction algorithm. This information is obtained from the transfer 

vectors written to backing store and read back to find the first 

solution. 

As the new loading terms are summed in an identical order to which 

the previous stiffness and loading terms were surrmed, the correct 

terms are in the "active" loading vector when each transfer vector 

ATRANS is found from backing store. This vector is read sequentially 

forward in the same way as the backing store was set up and is used 

to modify the loading terms by equation 4.7. The term FiJkii is 

changed in the transfer vector ATRANS by the new loading term using 

the leading diagonal stiffness term stored in ATRANS. The transfer 

vector ATHANS is then rewritten to its old position in the backing 

store and the loading terms associated with the next '~edundant" 

degree of freedom are modified. ';'Jhen the last degree of freedom to 

be eliminated in each element has been found, indicated by the tag 

in the first row of the transfer vector ATRANS, the equivalent 

nodal forces for the next element are summed. 

The back-substitution algorithm is identical to that for the 

initial solution and gives a set of displacements equivalent to the 

new loading vector. 

The re-solution algorithms are within the merge and reduction 

algorithms, the flow diagrams of which are given in Figs. 4.1 and 

4.2. 
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4.3.6 PeriQheral Handling 

The transfer of the vector ATRANS to and from fast access backing 

store is the only part of the Frontal Solution algorithm which is 

machine dependent. A very general algorithm based on sequential 

addressing has been found successful for initial solutions but 

cannot be used for the re-solution algorithm. 

Direct transfer of the vector ATHANS to and from the backing store 

is inefficient and a transfer buffer is used to improve the time in 

peripheral transfers. Direct access devices are used to block address 

the buffer when reading or writing to backing store. 

A flow diagram for the peripheral handling algorithm is given in 

Fig. 4.4. 

Three processes have to be performed by this algorithm 

1) Vlriting the vector AJRANS to the buffer and if necessary emptying 

the buffer into fast access backing store by a forward stepping 

process. 

2) heading the vector ATHANS from the buffer in a backward stepping 

process and refilling the buffer by a backward stepping process 

when it has been fully accessed. 

3) Reading the vector ATRANS from the buffer in a forward stepping 

process for re-solution and refilling the buffer from the backing 

store in a forward direction when the buffer has been completely 

read. 

These processes are governed by a control integer associated with 

a read/write control and can be at random. For problems requiring 

re-solution the buffer has to be emptied into backing store before 

the back-substitution begins as the last buffer is normally lost. 
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4.4 Data Generation 

To enable the "Frontal ~lution" to be completely automatic a 

pre-program is used to prepare the extra data necessary for the 

algorithms. The element ordering and topology to be used in the 

solution is defined in this pre-program together with the nodal 

co-ordinates. The element topology 1s scanned and a tag, O.C1,is 

added to each degree of freedom allocated to each node defined by 

the topology. Extra tags are added for master degrees of freedom 

and repeated displacements by simple control integers. A pack of 

data cards for the modified CPDDC array with the addition of the 

tags is punched by the program. 

The "maximum instantaneous size" of the "active" stiffness matrix 

is determined using processes identical to those used in the merge 

and reduction algorithms. The destination vector of positions taken 

by each degree of freedom is formed to check the tags attached to 

the CPDOC array and to ensure that all the degrees of freedom are 

reduced out. 

4.5 Error Diagnostics 

Failure in the "Frontal Solution" usually occurs when the stiffness 

matrix becomes badly conditioned. The positive values of the leading 

diagonal terms in the stiffness matrix are reduced by each reduction 

equation with coupling terms associated with the leading diagonal 

term. When these terms become extremely small in comparison with 

the initial stiffness terms the equations are extremely ill-conditioned 

and the solutions to the equations become suspect. 

Irons (ref.42) uses methods which diagnose ill-conditioning as a 

measure of the reduced stiffness term to the original stiffness term. 
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Bond (ref. 43) has shown that the linear equations can easily 

become ill-conditioned when a finite element with mid-side nodes, 

whose co-ordinates define a node displaced from the mid-side 

position, is used. 

When the equations become drastically ill-conditioned the leading 

diagonal terms become negative as the reduction proceeds. The 

present algorithm stops when a negative leading diagonal term is 

found, usually indicating an error in input data of wrong element 

topology or nodal co-ordinates. These errors however Can usually be 

found using data checking schemes based on graphical plotter output. 

Other checks are made in the reduction algorithm to ensure that 

the correct terms are in the appropriate rows and columns for the 

re-solution, as the reduction terms retrieved from backing store 

require the new loading terms in the appropriate positions. Failure 

usually occurs when the store becomes accidently overwritten or 

errors in peripheral transfer have occurred. 

4.6 Example Problem 

A simple example of a curved cantilever idealised by 6 in-plane 

4 noded isoparametric elements is given in Fig. 4.5. The cantilever 

is built in at one end and the free end constrained to move in a 

horizontal direction and assumed infinitely rigid so that the 

displacements at nodes 10, 11, and 12 are identical. The normal 

solution when core store is available is to form the total stiffness 

and loading matrices and solve for the displacements by inverting 

the stiffness matrix, Fig. 4.5(a). The data necessary for automatic 

solution by the "Frontal SOlution" is given in Fig. 4.5(b) for the 

same example. The tags added to the degrees of freedom in the CPDDC 
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array is the only extra data required. The tags attached to the 

degrees of freedom for nodes 1-9 are identical to the number of 

elements each node appears in, but the tags added to the degree of 

freedom 13 are increased at nodes 10 and 11 so that degree of 

freedom 13 does not become "redundant" until the stiffness and 

loading terms associated with element 6 are summed. 

The activity of the degrees of freedonl is given by Fig. 4.5(c) 

together with a listing of the degrees of freedom as they become 

"redundant". The "maximum instantaneous size" is reached after the 

terms for the third element are summed. The terms stored in the 

transfer vector ATRAN5 are given in Fig. 4.5(c) for the newly 

"active" degrees of freedom as each element is summed and for the 

reduction equation coefficients and housekeeping information as 

"redundant" degrees of freedom are eliminated. 

It is interesting to note that the "maximum instantaneous size" 

for this simple problem is reduced from 10 to 9 if the element 

ordering is varied in generating the stiffness and loading matrices 

as shown in Fig. 4.5(d). 

Degrees of freedom are reduced out as soon as they have become 

"redundant" and after the last element terms have been sUlIDled the 

remaining degrees of freedom are "redundant" and can be reduced out. 
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ChaRter 5 Creep Analysis 

Notation 

t time 

H Gaussian weighting factor 

S.E. Strain Energy 

T temperature 

U Pbtential Energy 

e strain 

c- stress 

a change during a time increment 

Subscripts 

e equivalent uniaxial/effective 

j,k,l Gaussian integration points 

x,y,z co-ordinate axes 

1,2,3 principal axes 

c creep 

E elastic 

ini tial 

T total 

Therm thermal 

Matrices and Vectors 

column vector 

matrix 

transpose of matrix 

matrix relating displacement function coefficients to nodal 

di splacements 



[s] 

[D1 
[J] 

teli 1 
tE.1 
to-1 
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matrix relating strains to displacement function coefficients 

stress/strain matrix 

J acobien matrix 

vector of nodal displac.ements 

strain vector 

stress vector 
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2L1- Introduction 

The efficiency of thermodynamic cycles increases as the maximum 

cycle temperature increases and thus there is a continuing pressure 

to develop plant capable of operating at higher temperatures. This 

has led to the development of materials capable of sustaining 

reasonable stress levels at high temperatures. In order to obtain 

the most economic use of these expensive materials the designer 

must design components which will withstand a specified life at 

the temperatures and stress levels at which creep occurs. The 

amount of creep design information available is very small and 

usually only in the form of uniaxial test data for each material. 

A number of methods for determining the creep deformation of 

structures are available. A full size prototype of the design 

which can be loaded in the same way as the structure will be 

loaded operationally can be used. However as the designer must 

work within reasonable safety margins it will probably be many 

years before any noticeable creep occurs. This method is both 

very expensive and time consuming and new designs are usually 

required before results are available from the prototype. A 

second method of determining the creep behaviour is to produce 

models made of materials which creep at a much faster rate than 

the high temperature materials. The model is then loaded in an 

equivalent way to the actual operational loadings and the accelerated 

creep deformations are found. There 1s then a large amount of 

extrapolation necessary from model to full size design, allowances 

being made for material differences, loadings etc. This method is 

still very expensive in model manufacture and extrapolation time. 

With the advent of larger digital computers a third method of 
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numerical analysis i~ becoming available for the creep analysis 

of complex structures. The numerical techniques involved require 

the generation of a computer model of the structure and the analysis 

of its creep deformation from experimental material test data. This 

method is still very expensive but is likely to increase in 

popularity as larger and faster digital computers become available. 

The analysis of split turbine casings has been made using a 

computer model of the casing, basing the creep deformation on the 

uniaxial creep test data. This creep data has been used to produce 

an empirical uniaxial creep law for the casing material. The 

variation of the uniaxial creep strain with time comprises three 

distinct stages; a primary region with decreasing creep strain rate 

with time; a secondary steady-state of constant creep strain rate; 

a tertiary stage of increasing creep strain rate with time to 

failure. Approximate creep analyses have been based on steady-state 

solutions for simple structures where no stress redistribution takes 

place with time. Odqvist (ref. 44) in describing metallic creep uses 

steady-state solutions for a beam and a membrane, whilst Finnie 

(refs. 45 and 46) uses similar solutions for tubes and cylinders. 

Other analyses by smith (ref. 47) and Fairburn and Mackie (ref. 48) 

have used steady-state creep analyses of pressure vessels and 

spinning discs. 

Penny (ref. 49) has stated that neglecting the primary creep 

strain is unimportant for structures subjected to steady loading 

for long pBriods, but should be included where load changes in 

times shorter than the time to reach the stationary creep rates 

are experienced. Mendelson, Hirschberg and W~nson (ref. 50) have 

shown that the transient conditions prior to the establishment of 
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a steady-state distribution have an appreciable effect on the 

total creep strains. Zienkiewicz et al (ref. 51 ) and Penny 

(refs. 52 and 53) have used similar methods to find the creep 

deformations with time by calculating creep strain rates over 

small time intervals. In the earliE'r papers the stress was 

assumed constant over very short time intervals, whereas in the 

more recent paper Penny uses stress rates to calculate the stress 

redistributions over each time increment. The solutions to the 

equations for each time increment are of an iterative nature to 

calculate the average creep strain dependent on the average stress 

over the interval. 

The prediction of creep deformation for structures subjected 

to a complex stress system is dependent on experimental creep 

test data. This usually takes the form of uniaxial tensile creep 

tests but is sometimes given by biaxial stress fields. The creep 

flow rules adopted to predict creep deformations are in general 

those used to analyse plastic deformations. These include the 

Von Mises equivalent stress and Prandtl-R~uss flow rules. Johnson 

(ref. 54) has shown the validity of using the Von Mises equivalent 

stress rules from tension and torsion tests. Under a changing 

stress system and assuming cons~nt stress during each time 

interval a cumulative law must be used. This can be of a number 

of forms, the time-hardening and strain-hardening laws being the 

most common. Johnson and Kahn (ref. 55) showed that for copper 

the time-hardening law predicted the stress levels most accurately, 

whereas Odqvist (ref. 56) has shown that the strain-hardening law 

predicts creep for stable materials at high stress levels most 

accurately. ~ith (ref. 57) has used a life-hardening law based on 
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a locus of rupture to predict creep rates in changing uniaxial 

stress systems. 

Very little work has been published on the creep analysis of 

geometrically complex structures. The finite element method is 

well suited to the analysis of complex structures due to the 

computer modelling of the structures with large numbers of distorted 

finite elements. This method of creep analysis has been used by 

Greenbaum and Rubinstein (ref. 58) to analyse general axisymmetric 

pressure vessels. Schultz and Van Fossen (ref. 59) have extended 

this to incorporate plastic and creep analysis of 2-dimensional 

bodies subjected to thermal loadings. 

The creep analysis of 1, 2 and 3-dimensional structures is given 

using the initial strain technique in the finite element method. 

The multiaxial stresses are reduced to an equivalent uniaxial 

stress using the Von M!ses equivalent stress rules and the multiaxial 

creep strains given by Prandtl-Reuss plastic flow rules. The programs 

are written for both time-hardening and strain-hardening laws, the 

creep strain increments being found from the empirical creep laws. 

Checks are incorporated to ensure that the stress remains reasonably 

constant during each time interval. 

The creep analysis of a simply supported beam subjected to a 

constant bending ,moment, a thin shell subjected to internal pressure 

and a thick ring subjected to internal pressure are given. The 

analysis of turbine casings subjected to creep deformation is given 

in Chapter 7. 

5.2 Creep Analysis 

The analysis of structures having non-linear material properties 
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by the finite element method can be treated in a number of ways, 

Zienkiewicz (ref. 31). Creep deformation is a particular case of a 

material property with a stress-strain-time relationship. A solution 

for the stresses in a structure at a particular time can be obtained 

from an elastic analysis if the cumulative creep strain distribution 

throughout the structure at the time is known. The cumulative creep 

strains Sc are a function of the previous stress-strain history. 

The stress-strain relationship is given by 

where LD 1 is the stress/strain matrix, tEr\ are the total 

strains and ~€o1 are the initial creep, plastic and thermal 

strains. 

The empirical creep law, usually formulated from uniaxial 

constant stress creep test data, gives the creep strain as a 

function of stress, time and temperature. 

It is most convenient to use the "initial strain" method of 

finite element analysis with the creep data presented in this 

5.1 

form. The "initial strain" method obtains a solution to the 

finite element equations by adjustment of tE o1 in equation 5.1 

to yield the same stress and strain values in equations 5.1 and 

5.2. A major advantage of the initial strain method is that the 

(DJ matrix remains unaltered and it i§ unneeessJry to recalculate 

the stiffness expression for the structure. 

The computation for non-linear creep deformation with time 

proceeds in an incremental manner considering small time steps. 
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During each time interval the stress levels in the structure 

are assumed to remain constant. The increments of creep strain 

during each time increment are calculated from the stress levels, 

the previous strain history if using a strain-hardening law, and 

the time increment in the empirical creep law. These creep strain 

increments, when treated as "initial strains" in the strain energy 

expressions, give a set of equivalent nodal forces which together 

with the inverted stiffness matrix give the changes in the nodal 

displacements equivalent to the creep strain increments. From 

these displacements and the creep strain increments the change 

in the stress levels during the time increment are calculated. 

Provided that these changes in the stress levels are small enough 

not to invalidate the constant stress criteria the solution is 

valid, The analysis assumes that creep deformation is a small 

strain process and that the strain-displacement relationships 

remain linear. 

5.2.1 SOlution Techniques 

The solution of creep problems in finite element analysis is 

based on the "initial strain" method. Considering the strains 

in terms of the strain increments during any time interval the 

total strain increment is given as 

The change in stress during a time interval is given by 

lAo-1 = [D]tl1EE 1 

l60-1 • l D J (t ~ E T 1 -~~E c 1 ) 

5.3 

5.4 
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Defining the change in the strain energy during each time interval 

in terms of the stress and elastic strain increments as 

5.5 

and substituting for equations 5.3 and 5.4 gives 

t,S.E. = ~ r t A~T -A1q T[ D] t A6T - 6.~c 1 dVol 5.6 

JVOI 
Defining the total strain increments in terms of the nodal 

displacement increments, equation 3.9, in equation 5.6 gives, 

a s the elasticity matrix [D 1 is synmetric, 

!)o H ASf[A-l] T r [B]TLD 1 LB]dVol [A-1 ] t lId;J 
J Vol 

- lAdi~T[A-1] Tj [B]T[ D1i6E c1 dVol 
Vol 

Tbe potential energy expression is minimised with respect to 

the nodal displacement increments when the individual potential 

energy expressions for each element have been summed into the 

complete structure. This gives for each element 

~~). 0:1 LA-1) T r [B]T[D] (B]dVOl[A-1Jl6di1 
J Vol 

5.7 

5.8 

for all t tsd i 1 . The third term in equation 5.7 disappears and 
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the first expression in equation 5.8 is identical to the stiffness 

term of equation 3.7(a). This gives a solution of the form 

where [K ] is the structure stiffness matrix and t ~ F e1 are 

the nodal forces equivalent to the creep strains and are given 

by equation 5.9. 

For each element 

5.8(a) 

~AFe1 = [A-
1
]TJ [B]T[n1tAE.c1 dVol 5.9 

Vol 

The load vector increment is calculated from the creep strain 

increments during each time interval. The total strain increments 

are found by equation 5.9 from the solution of equation 5.8 for 

the displacement increments. The elastic stress increments are 

found from equation 5.4 and these are compared with the stress 

levels during the time interval. 

5.2.2 Multiaxial Stress-Strain Relationships 

The usual stress-strain-time relationships for creep deformation 

are found and given as uniaxial test data for each material. To 

generate a set of equivalent nodal forces due to the creep during 

each time interval a knowledge of the creep strains in a multiaxial 

stress system is necessary. Theso 'llultiaxial creep strains have to 

be determfned from the uniaxial creep data. 

The creep flow in a multiaxial stress .ystem is found from the 

uniaxial creep test data using an equivalent uniaxial stress. This 

is identical to the concept used to determine the onset of yielding 

in plasticity problems. For any given material there is a function 
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of the three principal stresses which always has the same value 

regardless of the stress field, Lubahn and Felgar (ref. 60). The 

Von Ydses equivalent stress equations are based on this concept 

and have been used for the creep analysis. They are developed in 

Appendix 8. 

The Von Mises equivalent uniaxial stress to a multiaxial stress 

field is given by 

or in teDmS of the principal stresses is given as 

The equivalent incremental creep strain~ee is a function of c 

5.10(b) 

the equivalent uniaxial stres S "EI, the total equivalent strain 

~ec' the temperature T if applicable and the time t 

5.11 

The law is assumed to hold for both tensile and compressive stress 

fields. 

The multiaxial strain increments are calculated from the equivalent 

uniaxial strain increments by assuming the Von Mises equations and 

Prandtl-Reuss flow rules, Hill (ref. 61). These show that the 

principal strain increments coincide with the axes of principal 

stress and are proportional to the principal stress deviations, 

Appendix 8. These equations include the constant volume condition 

for creep deformation and give the multiaxial creep strain increments 

as 

5.12(a) 
etc. 

5.10(a) 
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xy 
etc. 5.12(b) 

5.2.~ Uniaxial stress-str~~n-Time Re~ationshiR§ 

To solve a problem in which there are stress redistributions 

it is necessary to determine the creep strain trajectory taking 

into account the stress variation with time. This is necessary 

when the solution technique used comprises small time increments 

during which the creep processes are assumed to take place under 

constant stress conditions. 

The two most general methods of accumulating creep strain are 

the strain-hardening and time-hardening laws. The strain-hardening 

law assumes that the instantaneous creep rate is dependent on the 

stress, temperature and accumulated creep strain, and is independent 

of the loading time. The time-hardening law assumes that the creep 

rate is dependent on the stress, temperature and total loading 

time. Both these laws are shown in Fig. 5.1 together with the 

life-fracture law, Snith (ref. $7'). The life-fracture law is 

obtained by scaling the rupture locus. 

For ease of computation the time-hardening law is the simplest 

to use as the strain is given directly by the stress level and 

total elapse time in the empirical creep law. The strain-hardening 

law requires the calculation of an equivalent time corresponding to 

the stress level and total creep strain in the empirical creep law. 

This equivalent time has been found using Newton's method for the 

solution of general non-linear equations, see Appendix 9. 

Although numerical results are given for both time-hardening 

and strain-hardening laws the latter has been used in general. 
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5. 3--ErQ.91:arrr"i!l9..., Technim!~ 

The flow diagram for the creep analysis of a beam, where the 

stresses are considered in one direction only, is given in Fig. 

5.2. The initial elastic solution is found in the usual way by 

inverting the stiffness matrix and finding the nodal displacements 

from the applied loading. The stressing and creep algorithm takes 

the place of the usual stressing algorithm. 

The initial pass through the algorithm (ICo;~ = 0) is essentially 

identical to the stressing algorithm where the nodal displacements 

give the elastic strains directly. 111(' ~ tres~es are found at every 

Gaussian integration point 1n every element of the structure. At 

each stressing point the creep strain increments for the first 

ti~e increment are found and these are used to generate the 

equivalent nodal forces to the creep strain increments for each 

element. These forces are merged to form a loading vector for the 

complete structure. The changes in the nodal displacements due to 

these equivalent nodal forces are given by the inverse of the 

stiffness matrix of the structure and the new loading vector. 

The changes in the elastic stresses over the time increment are 

found using the new displacement increments together with the 

creep strain increments, This checking pass (ICON = 1) uses a 

large number of parts of the alsorithm previously used to find the 

elastic strains to find the total strain increments. The changes 

in the stresses are found at each Gaussian integration point and 

these are compared with the stress level at the beginning of the time 

increment. A check is made on the change of the equivalent uniaxial 

stress at all the mesh points in all the element~. '.'!hen complete 

the changes in the stresses, the nodal displacements and the creep 
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strains for the previous time increment are assumed to be correct 

and all these items are updated. The creep strain increments over 

the next time increment are then calculated based on the stresses 

at the end of the last correct time increment. This pass through 

the algorithm (ICON = 2) generates an equivalent set of nodal 

forces for the creep strain increments found at each Gaussian 

integration point. When these have been summed for the whole 

structure a new set of nodal displacement increments is found. The 

checking pass (ICON = 1) is then made through the algorithm for 

each time increment. 

Provided that the limits set on the variation of the stresses 

over each time increment are not exceeded the calculations proceed 

in this manner with one pass generating the creep strain increments 

followed by a pass checking these increments. The time increments 

increase as the calculations proceed. Should the limits set for 

the variation of the stresses be exceeded the calculations stop, 

the time increment is reduced and the algorithm is restarted (ICON 

= 2) using the last correct set of stresses, creep strains and 

nodal displacements. The calculations stop when the creep time 

exceeds a limit previously set. 

The flow diagram for the creep analysis of thin shells of 

revolution, described in section 2.3.4.1 is given in Fig. 2.9. 

A more general flow diagram is given 1n Fig. 5.3 for the creep 

analysis of structures using the parametric family of finite 

elements in 3-dimensional space. 

The algorithm used for the parametric element creep analysis 

is more efficient than that used for the beam and shell creep 

analyses as these have separate passes for the equivalent nodal 
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force generation and stress deviation check. The parametric 

element creep analysis algorithm, Fig. 5.3, incorporates both 

checking and force generation processes in a single pass. 

The initial solution is found in the same way as described in 

section 3. This gives the entry to either the stressing or creep 

algorithms and it is usual to write this initial solution to 

backing store, usually magnetic tape, before the next stage is 

started. This enables a check on the idealisation to be made, by 

calculating the stress discontinuities at element boundaries, 

before the lengthy creep analysis begins. 

The creep algorithm follows immediately the initial solution 

has been obtained. In this algorithm the stresses are found at 

the Gaussian integration points. This enables the equivalent 

nodal forces to be calculated by numerical integration from the 

creep strains equivalent to the multi axial stresses over each 

time interval. These stresses are found from the latest nodal 

displacements, the thermal strains and the multiaxial creep 

strains. The multiaxial creep strains have to be retained in 

store for every Gaussian integration point and to reduce storage 
I\\A .... ~Q r I>t 

requirements only the minimum~creep strain terms are retained in 

store. For each direct and shear stress component, and for the 

equivalent uniaxial stress, it is necessary to store 

1} Ec the total creep strain 

2)~e.C1 the last creep strain increment (now being 

checked) 

3) ~E: c2 the new creep strain increment (now being 

found) 

The last correct equivalent uniaxial stress and change in 
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equivalent stress during the last time interval also need to 

be retained as the algorithm proceeds. 

The earlier programs for the creep analysis of beams and thin 

shells of revolution retained similar information on the total 

strains a 5 the analysis proceeded. However it has been found to 

be more efficient to calculate the total strain from the last set 

of nodal displacements. These are continuously updated after each 

complete pass of the algorithm. 

To reduce the storage requirements to a mdnimum the creep strains 

are (;alculated on the smallest lattice possible. 21enkiewlc3 (Ref. 63) 

has shown that good results can be obtained using a 2 x 2 x 2 

Gaussian integration mesh. 

The nodal displacements at the end of the last time increment 

are given by the total correct nodal displacements together with 

the last displacement increment. These are not necessarily correct 

as they are still being checked whilst the next set of creep 

strain increments are being calculated. 

The elastic strains are then given as 

whtl:cb incorporates equation 5.3 and where lET 1, the total strain, 

is found from the nodal displacements, fees ' ~6E:c1 ' the creep 

strain and creep strain increment are retained in store and the 

thermal strain ~E.Therm1 is found from the nodal temperatures. 

This gives a new set of stresses from which the new equivalent 

uniaxial stress can be found from equation 5.10(a). The new 

equivalent uniaxial stress is compared with its value at the last 

pass through the algorithm to ensure that the change in stress 
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is within the required limits. The change in the equivalent stress, 

provided that it is within the pre-set limits, is retained so that 

the equivalent uniaxial stress can be updated to its latest value 

when the checking part of the pass is complete. 

The creep strain increments for the present time interval are 

calculated by either the strain-hardening or time-hardening laws. 

These increments are found by substituting the values of t and 

t + 6t in the empirical creep law and noting the difference 

between each value of creep strain. The value of t is given 

directly by the elapse time for time-hardening solutions but is 

given as an equivalent time dependent on the strain-history for 

strain-hardening solutions. It is more accurate to calculate 

the creep strain increments directly than to take the creep rate 

at the beginning or mid-way through the time interval. 

The creep strain increments are given for a multiaxial stress 

system by equations 5.12 and are used to find the equivalent 

nodal force t~rms as 

222 

J [B1 T[D1~d~c1 dVol ... L [L HjHkHl tf(~j'?k'11)1 
Vol j=1 k=1 1=1 

where If(~j'~''Cfl)1 =t.B]T[D]\(\E. c\ det [J] T~j'~=fk'T=~1 
At the end of each Gauss integration mesh the equivalent nodal 

forces for each element are found from equation 5.9 and are summed 

for the whole structure. 

When the check on the variation of the stresses for all elements 

in the structure for the last time increment has been completed the 

creep strain increments and displacement increments are assumed 

correct. The total creep strain is then updated byA~c1 and the 

18 st creep strain increment Af: c1 becomes the new creep 5 train 

5.14{a) 
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incrementAE C2• The equivalent uni~xial stress is also updated 

together with the vector holding the last correct nodal displacements 

as these are now identical to the latest set of nodal displacements. 

Retaining these items allows a restart should the constant stress 

limits be exceeded. 

The solution for the new set of displacement increments is found 

from the equivalent nodal forces and the inverted stiffness matrix 

stored from the initial elastic solution. For large problems where 

it is impossible to retain the inverted stiffness matrix in core, 

the re-solution facility of the frontal solution, section 4, has 

been used. It is imperative when using the frontal solution 

technique that the equivalent nodal forces due to the creep strain 

increments are formed in an identical order to that used when the 

stiffness matrices were generated in the initial part of the 

program. 

The new set of displacements used for the next pass through the 

algorithm are given by the latest nodal displacements together 

with those displacement increments given by the equivalent nodal 

forces. The time increment is increased by an amount dependent on 

the empirical creep law. It is important that the time increment 

is as large as possible within the constraints imposed by the 

limits on the stress variation during the time interval, but does 

not exceed these limits as the time interval is increased. 

When the limits imposed on the stress variation during a time 

increment are exceeded the algorithm has to be stopped and the 

calculations restarted from the last correct set of nodal 

displacements. The time interval is reduced and the last creep 

strain increment~ec1 is nulled in the creep data store. The 
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calculation then restarts usin~ the same equations as used previously, 

but omitting the checking process during the first pass. The algorithm 

is most efficient when it is operating as a continuous cycle and not 

havi~g to restart because the stress deviation limits have been 

exceeded. 

A fJow diagram for a general algorithm which enables different 

finite element types to be used in a structure subjected to creep 

deformation is given in Fig. 5.4. The algoriths is in effect 

identical to that described above except that it cycles through 

different element types in an identical order to that used when 

the stiffness terms of the structure were generated. 

5.4 Numerical Examples 

The creep analysis of a number of structures has been made using 

the algorithm given in Figs. 5.2, 5.3 and 5.4 as well as Fig. 2.1 

The se include a beam subjected to a constant bending moment, a 

thin pressurised cylinder and a thick ring and thick cylinder 

subjected to internal pressure. These analyses represent 1,2 and 

3-dimensional stress fields, and have shown that the algorithms 

accurately predict creep deformations. The solutions have been 

compared with approximate, finite difference, experimental and 

other finite element solutions. 

The effect of neglecting some of the initial creep by varying 

the starting time of the creep calculations has been investigated. 

5.4.1 Beam Subjected to a Constant Bending ~·:oment 

The creep deformation of a simply supported beam subjected to 

a constant bending moment has been analysed mathematically by 
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Popov (ref, 64). A finite element creep analysis using a beam 

finite element has been developed to observe and understand the 

processes involved during each time interval. The results have 

been compared with those of Popov. 

The creep analysis is given in Appendix 10 for a beam finite 

element subjected to direct and bending forces. The results are 

given for a 10" s1~ly supported beam, 2" wide and 6" deep, 

subjected to a constant bending moment of 162,000 in lbf. The 

elastic modulus of the material, oxygen free copper, is 1.41 x 106 

lbf/in2 and the empirical creep law from tension test creep 

curves at 1650 C is given as 

tC" 2.68 x 10-5 (e tr(7500 _1)tO. 372 

The variation in the stress across the tensile section of the 

beam is given in Fig. 5.5(a) for various times after the application 

of the load. These include both time-hardening and strain-hardening 

results. The compressive section is a mirror image of the stresses 

for the tensile half of the beam due to the loading being a constant 

bending moment with no tensile forces and the assumption that the 

creep laws are valid for both tensile and compressive stresses. The 

mid-span deflection with time is given in Fig. 5.5(b). The 

differences between the finite element solutions for the stresses 

and those given by Popov are very small and cannot be shown on 

these graphs. It can be seen that the redistribution of the stresses 

with time tends towards the steady state solution. The steady state 

solution occurs when the stress distribution across the beam is 

such that the variation of the creep rate is linear across the beam, 

i.e. no stress distribution occurs. The deflection rate for the 

beam tends towards the steady state solution as the time becomes 
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large as can be seen from the two lines in Fig. 5.5(b). This 

figure also shows that the creep deformation for extremely long 

times can be predicted approximately from the steady state solutions. 

5.4.2 Effect of Initial Starting Time on Long Term Gleep Analysis 

It is desirable to reduce the number of incremental calculations 

required to obtain accurate creep solutions. The length of the 

time increment in the creep programs is adjusted as the solution 

proceeds. ~~en the equi~alent uniaxial stresses are being calculated 

the fractional changes in these stresses are evaluated. If the 

maximum change at any integration point is greater than a pre-set 

value the length of the time increment is reduced and conversely, 

if the change is smaller than the pre-set value, the length of the 

next time increment is increased. 

In the initial stages of the solution of creep problems very 

short time increments are necessary as the stresses change very 

rapidly. It is doubtful if solutions for the early stages of creep 

of real structures are of much relevance as the effect of the 

initial condition of the material is uncertain. If accurate 

solutions are only required in the later stages then the number 

of incremental calculations may be reduced by neglecting some 

initial period of the material creep curves, i.e. the creep 

calculations are started from some finite time on the creep curves. 

The solutions so -obtained converge towards the exact solutions as 

time increases. 

An assessment of the above method of reducing the number of 

incremental calculations and its effect on the accuracy of the 

solutions may be made from some further results obtained for the 
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simply supported beam described in Section 5.4.1. The initial 

starting times for the creep solutions have been varied from 

0.0 hr. to 1.0 hr. The errors in the stresses at various distances 

from the neutral axis after 10 hrs. are compared with the zero 

starting time solution. The number of incremental calculations 

for each solution are given in Table 5.1. It is seen that, for 

this problem, neglecting the initial period of the creep curves 

significantly reduces the number of incremental calculations 

with only a small loss in solution accuracy. 

5.4.3 Thick Ring subjected to Internal Pressure 

The creep deformation of a thick lead ring subjected to an 

internal pressure has been analysed experimentally by Fessler, 

Gill and Stanley (ref, 65). The elastic and creep deformation 

of this ring has been found using the 20 node isoparametric 

solid element. The idealisation comprises a coarse mesh of 3 

of these elements in the radial direction, the ring axial 

thickness being modelled by a single element. A quadrant of the 

ring has been idealised by these 3 elements which each have an 

arc of 900
• 

The effective creep strain is given by the empirical creep law 

E.c = 3.02 x 10-19~·46 (to. 39 + 0.106t) 

which includes both primary and secondary creep terms. The strain­

hardening rule has been used for the accumulation of the creep 

strains in the finite element calculations. 

The outside diameter hoop strains are calculated from the radial 

displacements and are compared with the experimental results and 

a computed finite difference solution in Fig. 5.6. Two sets of 
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experimental results are given in Fig. 5.6 and it is seen that 

there is go~d agreement between the finite element results and 

the experimental results at times greater than 10 hours. At smaller 

times the finite element results underestimate the creep strains, 

this discrepancy being caused by not starting the creep 

calculations at zero time. The difference between the present 

finite element solutions and the published finite difference 

solutions is very small for the creep deformation after small 

times have elapsed but increases as the creep strains become 

significant. The finite element solutions predict the creep 

deformations more accurately than the published computer results 

even with a very coarse idealisation. 

Two finite element solutions are shown to compare the predicted 

creep deformations for different starting times of the creep 

calculations. The initial differences in the creep deformations 

become extremely small as the creep elapse time increases. This 

again shows that unless interest lies in the initial and short 

term creep effects the starting times for the creep calculations 

can be increased accordingly. 

5.4.4 Thick Cylinder subjected to I~rnal Press~ 

The creep deformation of a thick cylinder subjected to an 

internal pressure has to be analysed using in-plane constant 

strain triangular finite elements proposed by Greenbaum and 

Rubinstein (ref. 58). This problem has been analysed using a 

very coaree idealisation of 3 2O-node isoparametric finite 

elements, Fig. 5.7(a) and the constraints impose zero axial 

straining but allow radial and hoop deformation. 
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The empirical creep law is given as 

~ = 6.4 x 10-18cr4.4t c 

which contains only the secondary creep terms. The strain-hardening 

rule has been used for the accumulation of the creep strains. 

The radial deformation of the inside and outside surfaces is 

given in Fig. 5.7(a) and agrees well with the solutions given by 

Greenbaum and Rubinstein. The stress distributions as a function 

of the radius are given in Fig. 5.7(b) for the elastic and steady 

state (10 hrs.) solutions. The agreement with the published results 

is extremely good considering the very coarse idealisation used. 

This also shows that a small Gaussian integration mesh, 2 x 2 x 2, 

is sufficient for the calculation of the creep strain components 

of the quadratic isoparametric finite elements. 

The change in the value of Poisson's ratio from 0.499 for the 

published results to 0.450 for the finite element results, to 

overcome the ill-conditioning which occurs as Poisson's ratio 

approaches 0.5, has not affected the stress distributions. 
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Chapter 6 stress Analysis of Turbine Casings 

~1 Introduction 

The stress analysis of split turbine casings subjected to 

internal pressure and bolt loadings is carried out using the 

parametric family of finite elements described in Chapter 3 

together with the frontal solution algorithm described in Chapter 

4. It is desirable to obtain a satisfactory representation of 

the turbine casing using the least number of elements possible 

and the present solutions were planned for running on the S.R.C. 

Atlas computer. SOlutions using many more elements are now possible 

using the 2M byte IBM 360/195 computer but it is still preferable 

te have 85 few elements as possible in any idealisation as the 

computing times are a power function of the number of degrees of 

freedom. 

To determine satisfactory idealisations of turbine casings, plane 

strain solutions for turbine casing sections have been obtained 

using 8-noded in-plane isoparametric finite elements. These 

elements are the 2-dimensional equivalent of the 2O-node isoparametric 

3-dimensional elements and the test programs have required m~ch less 

computing time and core store than would have been required with 

the 3-dimensional elements. 3-dimensional generalised plane strain 

solutions for some of these idealisations have been found for the 

cylindrical portion of the turbine casing for comparison with the 

2-dimensional plane strain solutions. These gave an indication of 

the best mesh size for the shell portion of the turbine casing 

where the thick shell and transition parametric elements are used. 

An exact geometric representation of the split turbine casing 
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would have required 8 prohibitive number of elements if the 

bolts and bolt holes were to be idealised exactly. An approximation 

to the bolt loading has been made by ideal ising the turbine casing 

without bolt holes and applying a set of forces equivalent to the 

bolt loads over the flange. The forces equivalent to the bolt 

loads give normal stresses on the flange face similar to those 

obtained from a generalised plane strain analysis of the casing 

for half a bolt pitch, where the bolt hole and loading are accurately 

IOOd ell ed. 

Results for stresses in a split turbine casing subjected to 

pressure loading and coabined pressure and bolt loading are given. 

These stresses are compared with those given by Bellamy (ref. 7) 

for a photoelastic analysis of the same turbine casing. An 

approximate analysis using the thin shell of revolution finite 

element, described in Chapter 2, is given for the casing remote 

from the flange. 

Results for the stresses in an inner turbine casing subjected 

to an axially varying pressure loading are given and are compared 

with those found in a photoelastic analysis by Kuzelka, (ref. 66). 

6.2 2-Dimensional Analysis of the Cylindrical Portion of SPlit Turbine 

Ca sings 

Finite element idealisations of the cylindrical section of the 

turbine casing of Kuzelka were used to determine optimum finite 

element meshes. This easing has a thicker flange than the final 

models tested by Bellamy, (ref. 7 ), but the distributions of 

hoop and radial stresses 1n the cylindrical sections are very 

similar. No direct photoelastic results are available for comparison 



- 111 -

with the finite element results for a plane strain section subjected 

to constant pressure. The results given by Kuzelka are for an inner 

casing subjected to an axial variation of pressure and the stress 

distributions in each section can only be taken as a guide to the 

likely distributions when the section is subjected to constant 

pressure. An accurate finite element solution with which to compare 

solutions from coarser meshes was obtained from an idealisation 

using 72 8-node isoparametric elements with 4 elements through the 

shell section, Fig. 6.1 (a). The <1 ~]_ements through the thickness 

were used to predict accurately the stress distribution in the region 

of the fillet radius. The hoop stresses at the outer and inner 

surfaces are shown in Fig. 6.1(b) and these agree in form with those 

of Kuzelka (ref. 66). The discontinuities at the element boundaries 

are very small. The largest discontinuities are around the fillet 

radius and to improve these a very fine mesh is required. As the 

discontinuities are very small the stress variation for the 72 

element idealisation was taken to be very close t~ the exact 

solution. 

In order to obtain solutions for a turbine casing using the Atlas 

computer it was necessary to use an idealisation with a relatively 

coarse mesh of elements. It was estimated that the maximum 

instantaneous front size possible was 200 when using the 20 node 

isoparametric elements. This corresponded to a mesh of 13 elements 

in the front with an idealisation of 12 sections. 

To reduce the fine mesh of 72 elements to a coarse mesh the 4 

elements used through the thickness are replaced by a single element. 

The analysis for single quadrilateral elements through the shell 

thickness in Chapter 3 shows that the stress variations through 
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the shell thickness can be accurately predicted with quite large 

arc lengths. It is satisfactiry to represent the shell portion 

with few elements as the hoop stresses remain sensibly constant 

over this portion. A certain loss in accuracy occurs around the 

fillet radius when only a single element is used through the 

thickness. It might be preferable to sub-divide elements through 

the thickness at the fillet radius but this presents difficulties 

in the idealisation and also increases the number of elements in 

the front. 

A 15 element idealisation of the section with a single element 

through the shell portion and 2 elements through the flange portion 

is given in Fig. 6.2(8). The hoop stress distribution for the inside 

and outside surfaces is given in Fig. 6.2(b). The stresses are 

very close to those given by the fine idealisation but the 

discontinuities are now more apparent, particularly around the 

fillet radius. This 15 element idealisation is acceptable but 

has too large an instantaneous size to be useful for the turbine 

casing analysis. 

A coarse mesh of 9 a-node elements Fig. 6.3(a) was found to 

predict stress distributions similar to those predicted by the 15 

element idealisation but with slightly larger discontinuities. 

The shell is idealised by 2 elements with 300 arc lengths and the 

number of elements around the fillet radius is reduced. The hoop 

stress distributions around the inside and outside faces of the 

turbine casing section are given in Fig. 6.3(b). The "looping" 

effect of the stresses in elements 1 and 2 is caused by the inability 

of the quadratic geometric functions to represent the co-ordinates 

of circular functions exactly. 
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The 9 element idealisation of the turbine casing section has 

been used in the 3-dimensional idealisation of the turbine casings. 

The instantaneous front size of the stiffness matrix using the 20 

node isoparametric element is always less than 200. 

6.3 3-Dimensional Plane Strain Analysis of the Cylindrical Portion of 

Split Turbine Casings 

Generalised plane strain analyses of the turbine casing cylindrical 

section were carried out to ensure that the idealisations used for 

the 2-dimensional analysis gave comparable results for the full 

3-dimensional analysis. These were for the same thicker flanged 

Kuzelka casing section and included an analysis using solely the 

2O-node isoparametric element and one using the "Ahmad" thick 

shell parametric element to model the shell portion of the casing. 

The analysis using the thick shell element was impossible with 

the equivalent 2-dimensional idealisation as no shell element 

exists in 2 dimensions. 

The idealisation shown in Fig. 6.2(a) was used to compare the 

2 and 3-dimensional analyses where 15 elements modelled the turbine 

casing section with a single element through the shell thickness. 

The 3-dimensional idealisation is shown in Fig. 6.4(a). The end 

faces are constrained to remain plane. The hoop stresses on the 

inside and outside surfaces for the idealisation using only the 

20 node isoparametric elem.nt,~ are shown in Fig. 6.4(b). The 

stresses are independent of axial position and are plotted on a 

2-dimensional plot. It can be seen that the distribution of the 

stresses for the 2-dimensional plane strain analysis of Fig. 6.2(b) 

is very similar to the 3-dimensional "generalised" plane strain 
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analysis of Fig. 6.4(b). 

In the second 3-dimensional generalised plane strain analysis 

elements 1 and 2 of Fig. 6.4(a) were replaced by the thick shell 

parametric ~lp.ments and element 3 by the transition parametric 

element. The remaining elements used to model the fillet radius 

and the flange are the original 20 node isoparametric elements. 

The hoop stresses for the inside and outside surfaces are shown 

in Fig. 6.4(c) and it may be seen that these are very similar to 

those obtained with the 20 node element idealisation Fig. 6.4(b). 

This shows that the thick shell elements with fewer degrees of 

freedom can accurately predict the stress distribution in the 

shell portioo of the turbine casing. 

6.4 Determination of Equivalent Bolt Loads 

An accurate idealisation of the bolt holes in a turbine casing 

is impossible due to the very large numbers of elements required. 

A set of forces is required, equivalent to the bolt loading, which 

give stresses similar to the true stresses using the coarse 9 

element mesh over the turbine casing section. 

The stress distribution due to the actual bolt loads was found 

from a plane strain analysis of the cylindrical portion of the 

turbine casing over half a bolt pitch. The casing section is shown 

in Fig. 6.5 and the finite element idealisation is shown in Figi. 

6.6(a) and 6.6(b). The shell portion of the casing was idealised 

with a coarse mesh as the stresses are sensibly constant over this 

region. The flange was idealised with 3 elements through the 

thickness and 11 elements over the flange area. The spot facing 

which included a large cut-out in the fillet radius was accurately 
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modelled. 57 2O-node isoparametric elements were used with 1097 

degrees of freedom and a maximum instantaneous size of 196. A 

number of analyses were carried out with different loading 

conditions to model the bolt loading. 

The turbine casing section analysed is part of the lead turbine 

casing used by Bellamy (ref. 7.) to predict the creep strains when 

the casing is subjected to a bolt and pressure loading. This has 

a very thin flange section and the contact stress distribution is 

different from the linear variation predicted by the normal simple 

eccentrically loaded column theories. 

The bolt loading was initially applied in two ways, firstly as 

a uniform pressure over the spot facing and secondly as an infinitely 

stiff bolt with a constant vertical displacement over the spot 

facing. 

The stresses normal to the flange face are given in Fig. 6.7(a) 

where the bolt load is applied as a uniform pressure over the 

spot facing. The bolt face is tending to rock about the outside 

edge and the majority of the compressive loading on the flange 

face is carried well away from the inside face. The sealing 

criterion of equal compressive stress to internal pressure is 

maintained with an internal pressure of 25 lbf/in2 and a bolt 

load of 258 lbf. The stress contour for the flange face plot of 

Fig. 6.7(a) is an average plot of the stress distribution of Fig. 

6.7(b) which shows the discontinuities in the normal stresses at 

element boundaries. These discontinuities are quite small and it 

is to be assumed that the idealisation is adequate. Concern was 

felt at the appearance of the stress peaks at diametrically opposite 

positions across the bolt hole. Comparison with the photoelastic 



- 116 -

results of McKenzie (ref. 11) shows that these are to be expected, 

although with a thinner flange section they are more significant. 

These appear on subsequent plots and are not due to the constant 

pressure bolt loading. The displaced shape of the spot facing, 

Fig. 6.7(c) shows that the uniform pressure loading is not compatible 

with the deformed shape of the bolt head. 

The second analysis of the bolt loading on the turbine casing 

constrained the displacements normal to the spot facing to be 

constant and the stresses normal to the flange face were determined. 

The stress contour plot for this loading is given in Fig. 6.8(a) 

and the discontinuities in the stresses over the flange face are 

given in Fig. 6.8(b). The stress distribution across the surface 

is smoother than in the previous case, Fig. 6.7(a), and the contact 

stresses at the inside of the casing are four times as high as those 

for the uniform pressure loading. Because the bolt is infinitely 

stiff in bending the normal stress distribution is symmetric about 

the bolt centre line. The stress peaks on either side of the bolt 

hole are still apparent but are reduced by the constant displacemPnt 

condition of the bolt loading. The trough 900 round from the peaks 

which is apparent in all the plots shOUld also be noted. 

The true loading condition can only be found by modelling the 

bolt together with the turbine casing section. A bolt head has been 

positioned in a spot facing with no shank as the bolt bending 

stiffness is negligible compared with that of the surrounding flange. 

The bolting force has been applied as a point load on the top of the 

bolt head which allows the bolt head to rock, Fig. 6.9. 

The bolt loads for the turbine casing model are applied through 

rubber pads to spigots which sit in the spot facing. There is no 



- 117 -

bending resistance to be considered in the bolts and the bolt loads 

used for the finite element idealisation are identical to those 

used by Bellamy (ref. 7 ). The bolt loads are applied through steel 

spigots to the lead turbine casing. The distribution of the stresses 

normal to the flange face is given in a contour plot in Fig. 6.10(a). 

The internal pressure of 35 lbf/in2 with the bolt load of 258 lbf. 

was calculated to be the opening pressure from a 2-dimensional 

analysis and this is verified on the contour plot. The discontinuities 

at the element boundaries are small and are shown in Fig. 6.10(b). 

The peaks on either side of the hole are quite large and are more 

prominent on the side nearest to the inside face. The contact pressure 

under the bolt head is shown in Fig. 6.10(c) and shows a fairly 

uniform radial distribution. The displacements under the bolt head 

are given in Fig. 6.10(d) and show a shearing effect of the bolt 

head due to the increased stiffness of the flange away from the bolt 

centre line. The displaced shape of the turbine casing section at 

the mid-bolt position is given in Fig. 6.10(e) and shows the greater 

stiffness of the flange compared with the shell portion of the casing. 

The distribution of the stresses normal to the flange face for 

the lead turbine casing without bolt holes and individual bolt lo'ads 

has been assumed to be that given in Fig. 6.10 (a) between thE' bolt 

centres. To find the equivalent bolt loads which produce these 

stresses a 2-dimensional plane strain solution has been used. This 

comprises 9 8-node isoparametric elements idealising the thin flanged 

turbine casing section. The idealisatiQn is given in Fig. 6.11(a) 

with the bolt hole and spot facing shown in Fig. 6.11(b). The 

loading which gave the best approximation to the stresses normal to 

" the flange face comprised a load equivalent to 5/16 of the bolt load 
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applied at node A and 11/16 of the bolt load applied at node B. 

This loading also gives good continuity of the hoop stresses 

round the inside and outside faces of the casing section. This 

stress distribution is shown in Fig. 6.12 together with the 

normal stresses from the more accurate analysis. 

This loading condition has been applied over a generalised 

plane strain section of the turbine casing to ensure that the 

normal stress distribution along the length of the element is 

constant. The loading distribution required to give constant 

stresses along the length of the element is identical to the 

ratios of the nodal forces equivalent to an equally distributed 

load over one face of the element. 

6.5 stress Analysis of an_lnner Turbine Casing subjected to §n Axial 

Variation of Pressure. 

A model of an inner turbine casing ~as been analysed photoelastically 

by Kuzelka and Fessler (ref. 66). A finite element idealisation 

has been made of this inner turbine casing using 70 of the 20 node 

isoparametric finite elements. This provided an initial comparison 

of finite element and photoelastic results for split turbine casing 

models. 

The inner turbine casing model is shown in Fig. 6.13 and comprises 

a relatively thick flange with a toroidal end closure and gland 

housing. The photoelastic model comprises two halves bonded together 

with no bolts or bolt holes through the flanges. The finite element 

idealisation, Fig. 6.14, comprises sections along the casing axis 

each with the 9 element mesh and has a total of 560 nodes with 1508 

degrees of freedom and a maximum instantaneous front size of 173. 
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The photoelastic model was loaded by sealing the gland housing 

and standing the casing with the axis vertical on the gland 

housing end face. The axial pressure variation was applied by 

filling the open-ended turbine casing with mercury. The finite 

element model was loaded with a similar pressure variation along 

the axis of symmetry. A quadrant of the casing was analysed 

assuming the flanges remained closed by carrying tensile loads. 

Symmetry conditions were imposed by constraining the flange and 

mid-shell faces to deform in radial and axial directions. The 

deformation of the gland housing face has been predicted accurately 

by iterating from the previous solutions. When the end face is 

constrained to remain plane the initial elastic solution gives 

some axial tensile stresses over a small area of the gland housing 

face. Subsequent solutions were calculated allowing the area under 

tension in the previous solution to move axially. This process was 

repeated until the only area under compression was that which was 

constrained to remain plane. 

The finite element results are for a steel casing with a Young's 

modulus of 3 x 107 Ibf/in2 and a Poisson's ratio of 0.3. The 

photoelastic model has a Young's modulus of approximately 1 x 103 

Ibf/in2 and a Poisson's ratio of 0.5. SWannell (ref. 67) has shown 

that the variation of Poisson's ratio appears to have very little 

effect on the resulting stresses for 3-dimensional analyses although 

numerical ill-conditioning increases as the value approaches 0.5. 

Therefore the stresses from the finite element solution can be 

compared directly with those from the photoelastic analysis. 

The displacements of the cylindrical portion of the casing at 

the mid-shell section, e =00
, and at the flange, e =900

, for the 
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finite element idealisation are given in Fig. 6.15 and are scaled 

to the displacements of the photoelastic model. The displaced shape 

of the cylindrical portion of the casing is very similar for both 

analyses although the mean displacement at the toroid/cylinder 

joint is somewhat larger in the finite element analysis. 

The hoop stress distributions at the mid-shell section are given 

in Fig. 6.16(a) and are compared with the photoelastic results of 

Kuzelka, (ref. 66). The stress index is defined as the hoop stress 

in 8 cylindrical shell with the Same internal and external diameters 

subjected to an internal pressure identical to that at the toroid/ 

cylinder joint of the open-ended turbine casing. The stresses given 

by the finite element model are similar to the photoelastic results, 

although they diverge around the toroidal end closure. Greater 

bending stresses are predicted by the photoelastic analysis in the 

open end of the cylinder than by the finite element analysis. The 

finite element results for the hoop stresses on the inside surface 

at the flange face, 6=900
, are cOlJl>ared wi th those from the 

photoelastic analysis in Fig. 6.16(b). There is good agreement 

for the cylindrical portion of the casing but there are large 

differences at the gland housing end of the toroidal end closure 

and the increase in the hoop stresses near the boss is much greater 

in the finite element analysis. The majority of the axial load is 

carried by the outside edge of the flange end face and the compressive 

stresses in this region are extremely large. The finite element 

analysis is based on linear elastic theory and takes no account of 

the plasticity which probably occurs in the gland housing region of 

the flange face. This possibly"accounts for the differences between 

the two analyses around the gland housing. 
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The meridional stress distributions on the mid-shell section, 

8=00 , are given in Fig. 6.17 and are compared with the photoelastic 

results of Kuzelka (ref. 66). The meridional stresses are negligible 

in the cylindrical section but increase around the toroidal end 

closure. These agree in form with the photoelastic results where the 

largest meridional bending occurs in the toroid. The finite element 

results show that this bending changes in sign close to the gland 

housing. The photoelastic analysis does not show this reversal in 

bending because the stress distributions are not given beyond this 

point. It would appear from the stress distributions that the scales 

for the toroidal positions might be different as the plots over the 

first part of the toroid are very similar. The differences could be 

caused by the linear elastic analysis and the end constraints on 

the gland housing face. 

A number of circumferential hoop distributions are given for the 

positions shown in Fig. 6.18. The stress distributions given in 

Fig. 6.19 are compared with some stress distributions from the 

photoelastic analysis. These agree in form with those of Kuzelka 

but have smaller hoop bending stresses. These differences are again 

probably due to the end constraints on the gland housing and the 

elastic analysis not taking account of non-linear effects as 

mentioned previously. 

2.6 Finite Element Analysis of fplit Turbine Casing 

A finite elemen~ analysis of a scale model of a flanged steam 

turbine casing has been made using the parametric family of 

finite elements. The casing, also analysed photoelastically by 

Bellamy (ref. 7 ), is shown in Fig. 6.20 and incorporates scaled 
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down features of a number of turbine manufacturers designs. The 

casing comprises a central cylindrical section with toroidal 

and spherical end closures to the gland housings. The flange at 

the half joint stretches around the casing between the gland 

housings and has 22 bolt holes uniformly spaced along the flange 

centre line. The gland housings are bored out to accept a rotor 

and all outside surfaces intersecting the casing shell contain 

fi Het radii. 

The finite element idealisation of a quadrant of the turbine 

casing is given in Fig. 6.21 (a) and shows the toroidal end closure 

in detail. This idealisation comprises 123 of the 20 node 

isoparametric finite elements with a total of 946 nodes, 2602 

degrees of freedom and a maximum instantaneous front size of 181. 

The shell and flange sections have been idealised using the 9 

element mesh through the turbine casing section described previously 

in section 6.2 and has been slightly modified for the spherical 

and toroidal end closures. A fine mesh has been used around the 

fillet radii where the shell intersects the gland housings to 

ensure that the elements do not become badly distorted in this 

region. The idealisation given in Fig. 6.21(b) shows the spherical 

end in more detail and also includes the node positions. The 

algorithms to produce computer plots of finite element idealisations 

for the PAFEC suite of programs are described in detail by Safavi 

(ref. '8). 

The accurate idealisation of the bolt holes and loads requires 

a prohibitive number of elements and the eqUivalent bolt loading 

described in section 6.4 has been applied. The equivalent bolt 

loading comprises a band along the l~ngth of the flange, the 
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magnitude of which is directly proportional to the number of 

bolts for each element section. The loads are statically equivalent 

to the values found from the 2-dimensional analysis of section 6.4. 

Internal pressure has been applied on the inside surface of the 

casing together with a linearly decreasing pressure along the 

gland housing bores. The mid-shell plane, e=Oo, and the flange 

o face, e=90 , of the quadrant section of the turbine ca sing have 

been constrained to move aXially and radially. It is assumed that 

a pressure tight seal is maintained over the flange face and that 

no opening occurs. The effect of the self-weight of the casing 

has been neglected. 

The turbine casing has been analysed for two loading conditions. 

Initially an internal pressure was applied to compare the finite 

element results with the photoelastic results obtained by Bellamy 

(ref. 7'.) for the same casing. The two halves of the photoelastic 

model were glued together over the flange faces to maintain a 

pressure tight seal and the pressure loads were applied by creating 

a vacuum in the casing. The second loading condition was a combined 

internal pressure and flange bolt loading and is the initial 

solution for the creep analysis of the turbine casing. The creep 

results for this loading condition are given in Chapter 7. 

6.6.1 Turbine Casing subjected to Internal Pressure Loading 

The meridional variation in the hoop stresses in the shell section 

of the turbine casing, 9=00
, the mid-shell position between the 

flanges, is given in Fig. 6.23. The meridional positions are shown 

in Fig. 6.22. These results show that the largest hoop bending 

occurs in the fillet radius and end closure at the toroidal end of 
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the casing. The hoop bending is very small in the cylindrical part 

of the casing and is very similar to that found in the 2-dimensional 

plane strain analysis of the turbine casing section given in section 

6.1. The hoop bending in the spherical end of the casing is small 

compared with that at the toroidal end. The stresses are found at 

the element boundaries and at the mid-side positions. The stresses 

at element boundaries are the average of the values given by every 

element with a common boundary to give a continuous stress 

distribution. The largest discontinuities occur where the stresses 

are changing most rapidly. The double peak in the hoop stress 

distribution around the fillet radius between the gland housing 

and toroidal end closure can be partly accounted for by the 

discontinuities between adjacent elements at this point. However 

a similar double peak occurs in the fillet radius at the spherical 

end closure and this cannot be attributed to discontinuities in 

the stresses at the elsment junctions. In a previous photoelastic 

analysis of a 3-diameter pressure vessel, section 2.3.2.4, the 

results showed a double trough in the meridional stress variation 

round a knuckle on the opposite side to the fillet radius due to 

an increase in material thickness in this area. Similarly the 

double peak in the stress distributions can probably be attributed 

to the large material increase below the end closure fillet radii 

where the gland housing bore joins the inside surface of the end 

closures. 

The variation of the meridional stresses for 3 radial positions 

(~ 0 0 0 0) round the shell and at the flange face, ~ =0 , 30 , 60 ,90 are 

compared with the photoelastic results of Bellamy (ref. 7 ; and 

are shown in Figs. 6.24. The meridional bending is larger around 
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the fillet radius between the gland housing and toroidal end 

closure and the double peak in the meridional stress distributions 

around the fillet radii at both end closures is again apparent. 

Bellamy (ref. 7 ~ has investigated the stress distributions around 

the toroidal end of the turbine casing. The finite element results 

agree well with the photoelastic results for the meridional stress 

distribution in the casing although greater bending is apparent 

in the cylindrical section of the photoelastic model. At the 

mid-shell section,$=Oo Fig. 6.24(a), the mean meridional stress 

in the cylindrical part of the casing agrees well for both sets 

of results. However the mean meridional stress in the cylinder 

for the other shell sectic-ns,e=30o and9=60o, is less in the 

photoela sUc ana lysi s than tha t given by the fini te elellent 

analysis. The stress distributions around the toroidal end closure 

and fillet radius are in good agreement for all the shell sections, 

L:J 0 0 0 
~=O , 30 , 60 , although the photoelastic results do not show the 

double peak around the fillet radius. The meridional stress 

distributions over the f lange face,9=90 0 Fig. 6.24(d), show 

reasonable agreement for both analyses. The finite element results 

indicate that the meridional bending in the flange at the cylindrical 

section of the ca sing is larger than any meridiona I bending in the 

shell section at the same position but smaller than that given by 

the photoelastic analysis. The flange in the photoelastic model 

is less stiff than that in the finite element idealisation due 

to the bolt holes not being idealised. The differences between the 

photoelastic and finite element results for the meridional stresses 

in the casing may be due to the photoelastic analysis being based 

on small deformation theory. The radial deformation along the 
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cylindrical portion of the shell is large due to the higher 

flexibility of the model at the beginning of the stress freezing 

cycle but it is doubtful whether this accounts for all the 

di screpancies. 

The circumferential hoop stress distributions at the toroidal 

end of the turbine casing are given for the meridional positions 

shown in Fig. 6.26 and are compared with some photoelastic results 

given by Bellamy (ref. 7 ). The hoop stress distributions, Figs. 

6.26, show very little hoop bending in the cylindrical portion 

of the turbine casing. The hoop bending increases round the 

toroidal end closure to a maximum at the toroid/fillet radius 

junction, ¢ =90 0
• The hoop stress di stributions in the cylindrical 

portion of the turbine casing are very similar to the 2-dimensional 

finite element plane strain results described in section 6.2 and 

shown in Fig, 6.3(b). Therefore the cylindrical part of the turbine 

casing away from the end closures can be accurately analysed as a 

plane strain 2-dimensional model. 

The hoop stress distributions from the photoelastic analysis, 

Figs. 6.26, agree in form with the finite element results, 

particularly around the toroidal end closure, but show increased 

bending in the shell section at all meridional positions. The 

bending is most acute in the cylindrical part of the turbine 

casing and shows a large reversel in hoop bending at the mid-cylinder 

position. It would appear that the hoop strain distribution in the 

photoelastic model around the cylindrical part of the casing is 

very large and is causing the differences in the meridional and 

hoop stress results from both analyses. This would imply, noting 

the large change in hoop bending stress, that the casing has slightly 
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buckled due to the vacuum applied to load the casing. 

6.6.2 Turbine Casing subjected to Internal Pressure and Bolt Loading 

The meridional variation of the hoop stresses at the mid-shell 

section of the split turbine casing subjected to an internal 

pressure and a bolt loading just sufficient to maintain a pressure 

tight seal is given in Fig. 6.27. The hoop stress distribution is 

very similar to that given for internal pressure loading only, 

Fig. 6.23, although the hoop bending has increased in the cylindrical 

section of the casing. The double peak in the stress distribution 

around the fillet radii at each end closure is still apparent and 

a double trough has now appeared on the inside surface below the 

fillet radius at the toroida lend. 

The variation of the meridional stresses in the turbine casing 

is given for 3 meridiona 1 shell sections,e =00
, 300

, 600
, and 

for the flange face,9=90o , in Figs. 6.28. The meridional stress 

distributions are very similar to those for the internal pressure 

loading only, Figs. 6.24, but the meridional bending in the 

cylindrical shell sections is slightly greater. The mean meridional 

stresses in the flange face Fig. 6.28(d) are much lower than for 

the internal pressure loading case, Fig. 6.24(d) and the bending 

stresses are similarly reduced. The reduction in the meridional 

stresses in the flange is due to the Poisson effect of the compressive 

bolting stresses normal to the flange face. 

The hoop stress distributions for the meridional positions shown 

in Fig. 6.25 are given in Figs. 6.29. The hoop stress distributions 

for the cylindrical part of the casing show the increased bending 

caused by the bolt loading and its effect on the inside surface 
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stresses close to the flange face. The hoop stresses around the 

fillet radius give an indication of the approximate stresses 

between the bolt holes as the spot facings in the lead model 

cut into the fillet radius. The largest hoop bending stresses 

occur in the toroidal end closure, the greatest being at the toroid/ 

fillet radius junction,¢=90o• The hoop stress distributions in 

the cylindrical part of the casing can be compared with the 

2-dimensional plane strain results shown in Fig. 6.12. These results 

agree in form at the mid-cylinder section. 

6~7 Aporoximate Analysis of the Shell Portion of the Split TUrbine Casing 

using the Thin Shell of Revolution Ring Finite Element 

In the shell section of a split turbine casing the stress 

distribution can be approximated by assuming the casing to be 

an axisymmetric structure. A meridional section of the split 

turbine casing at the mid-shell position,9=Oo, has been 

idealised using the axisymmetric thin shell of revolution ring 

finite element described in Chapter 2. This idealisation is shown 

in Fig. 6.30 and comprises 15 of the higher order displacement 

function elements with 16 nodes and 107 degrees or freedom. The 

gland housings and knuckles have been approximated by shell elements 

of the same thickness as the turbine casing shell and are therefore 

much thinner than the actual bosses. The axisymmetric casing was 

loaded with an internal pressure applied at the inside surface of 

the shell. 

The meridional variation of the hoop stresses in the axisymmetric 

shell is given in Fig. 6.31, and agrees very closely with the 

results obtained for the mid-shell hoop stresses, Fig. 6.23, using 
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a 3-dimensional idealisation of the casing. These results show 

very little hoop bending in the cylindrical part of the casing 

and corroborate the 2-dimensional and full 3-dimensional 

idealisations which showed very little hoop bending in the 

cylindrical shell. The stress distributions for the axisymmetric 

thin shell idealisation show the stress discontinuities at the 

element boundaries and give an indication of the accuracy of the 

solution. 

The meridional stress distribution in the axisymmetric shell 

is given in Fig. 6.32 and is compared with the photoelastic 

results obtained by Bellamy (ref. 7). These stress distributions 

agree well around the toroid but the axisymmetric model indicates 

that there is very little bending in the cylindrical part of the 

casing. The agreement with the 3-dimensional model, Fig. 6.24(a) 

is extremely good particularly away from the gland housings. The 

differences are caused by the shell approxima tion to the bo sses 

and knuckles at the end closures and are directly comparable 

with those for the complete 3-dimensional analysis. The meridional 

stresses in the fillet radius, toroidal end closure and cylindrical 

shell for the axisymmetric approximation to the turbine casing 

compare extremely well with the results from the more accurate 
QnDl 

ide.lisation at the mid-shell section,OsOo, the photoelastic 
1\ 

analysis. This shows that the stress distributions for the split 

turbine casing away from the flanges can be adequately predicted 

by an approximate axisymmetric finite element idealisation. 
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Chapter 7 Creep Deformation of a Turbine Ca sing ii.odel 

7.1 Introduction 

The creep deformation of a flanged model turbine casing, Fig. 6.20, 

has been investigated experimentally by Bellamy (ref. 7.). The creep 

deformation of this model turbine casing has been calculated using 

the finite element programs described previously. These creep analyses 

include those of both a 3-dimensional model of the turbine casing, 

Fig. 6.21, and a simplified axisymmetric approximation of the model 

turbine casing, Fig. 6.30. 

1L2~IDRirical Creep Law 

Bellamy (ref. 7) has produced an empirical uniaxial creep law 

from tests on lead dumb-bell specimens cut from a number of lead 

model turbine casings. The creep law was formulated from constant 

stress tests in the range 1000-1600 lbf/in2 and found to be 

1 1 - 21 5 • 41 7 0.51 3. . Ec= 1.29 x 0 (J t WhlCh contalns only primary creep 

terms. Initial finite element solutions were found using this creep 

law for both the 3-dimensional and axisymmetric idealisations. The 

creep strains predicted from both finite element models were found 

to be of the order of 100 times less than those measured from strain 

gauges on the actual lead model. Comparison of the initial strains 

showed these to be in good agreement with those in the model and 

it was felt that the stress levels predicted from the initial stress 

analysis were reasonably accurate. 

The calculated maximum equivalent stresses in the shell, remote 

from the flanges, were less than 400 lbf/in2• The creep strain 

predicted by the above creep law for such stress is about 1jVstrain 
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(microstrain) in 500 hours and this agrees with the creep strains 

in the finite element solutions. However Bellamy measured increases 

in total strain after 500 hours in excess of 100jVstrain. Subsequent 

creep tests were made on the uniaxial dumb-bell specimens at lower 

stress levels, i.e. 400 Ibf/in2, and no major divergence from the 

empirical creep law was apparent. 

No explanation could be found for the discrepancy between the 

finite element and experimental results, and it was decided to 

obtain creep solutions for the casing using a creep law selected 

to give significant creep in a reasonable time. 

The original empirical law given by Bellamy (ref. 7) could have 

been used if the creep calculations had been continued to 107 hours 

instead of the usual 103 hours but this would have been extremely 

expensive in computing time. The uniaxial creep.law used to predict 
\ 

the creep deformation of the turbine casings in the following 

section is a modified version of the empirical creep law found by 

Th if ' 1 1 -19 5.417 0.513 Bellamy. is mod led aw, e... = .291 x 10 cr t , gives c 

creep strains 100 times greater than those predicted by the empirical 

creep law given by Bellamy and is close to that used by Fessler, Gill 

and Stanley (ref. 65) to predict the creep deformation of thick lead 

rings. 

7.~Creep DefQImation of 3-Dimensional Finite Element Idealisation of 

~d Turbine CaJ!ng. 

The finite element idealisation used to predict the creep 

deformation is the same as that used for the stress analysis in 

Chapter 6. The casing is shown in Fig. 6.20 and the idealisation, 

which comprises 123 2O-node isQparametric elements is shown in 
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Figs. 6.21{a) and (b). The initial stress analysis is the first 

set of calculations in the creep process and is checked for 

discontinuities to ensure th2t the idealisation is satisfactory 

before the creep calculations proceed. 

The values of strain and stress are plotted at the inner and 

outer Gauss integration points. The Gauss integration mesh used 

for the 3-dimensional creep analysis was a 2 x 2 x 2 mesh for 

each element and the creep history was stored only at the Gauss 

points. For the shell parts of the casing only one element is 

used through the thickness and it is not justifiable to extrapolate 

from the Gauss points to obtain the surface stresses and strains 

as these do not vary linearly through the thickness. 

7.3.1 Deformation of Lead Turbine Casing ~~del 

The axial and radial deformation of the flange and shell of the 

turbine casing model at 4 axial positions is given in Figs. 7.1. 

The deformations are plotted for a number of times between the 

creep calculation starting time of 10-3 hours and the final creep 

time of 103 hours. Comparison of the axial displacements in the 

mid-shell and flange at the toroid-cylinder and cylinder-sphere 

joints shows a circumferential variation in the axial displacements. 

The axial deformations over the boss end faces and the mid-cylinder 

section are identical for each section and therefore these sections 

remain plane. The circumferential variation of the axial displacements 

in the model turbine casing remain reasonably constant but increase 

steadily with time as creep deformation takes place, Fig. 7.1(a). 

The radial displacements are given at the mid-shell and flange 

faces for the 3 axial positions in the cylindrical portion of the 
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turbine casing. Figs. 7.1 (c) and 7.1(d) show the creep deformation 

of radial and axial sections of the turbine casing. The radial 

displacements at the flange face initially increase due to creep 

deformation but as the stresses redistribute the radial displacements 

decrease quite rapidly. A strange inflection occurs in the radial 

displacement in the shell at the mid-cylinder position which tends 

to arch the shell. At the same time the radius at the mid-cylinder 

flange face decreases rapidly whilst the shell radius at e = 450 

increases rapidly. This gives an extremely distorted casing section 

Fig. 7.1(c). The axial deformation of the casing increases gradually 

with time, the flange length incl'ea sin':) more rapidly than the 

shell. 

7.3.2 Variation of Strain and stress in the Wodel Turbine Casing due to 

Creep Deforma~ 

The variation of strains and stresses at 0, 10, 1000 hours due 

to creep deformation of the model turbine casing, Fig. 6.21, is 

given in Figs. 7.3 and Figs. 7.5-7.7. The meridional distribution 

of the strains and stresses is given at the mid-shell position 

remote from the flanges. The key to the meridional positions of 

Fig. 7.3 is given in Fig. 7.2 together with the convention used 

to describe the distributions at the inside and outside Gaussian 

integration points at different times. This convention is used 

for all the figures showing variations of strain and stress with 

time. The distributions are given at the starting time, 0 hours, 

part way into the creep deformation, 10 hours, and at the end of 

the creep calculations, 1000 hours. The circumferential distributions 

of the strains and stresses are given in Fig. 7.4. The key to the 
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circumferential position~ is shown in Fig. 7.4 and the convention 

for the distributions at various times is identical to that given 

in Fig. 7.2. The circumferemtial di stributions of meridional and 

circumferential strain, meridional, cicumferential, and equivalent 

l;ni3xial (effective) ~t'~es·;l·-!d thr? variation of the effective 

stress distribution~ over the flange section at 3 axial positions 

are given. These give a clear indication of the exact way in which 

the stresS2s in the flange redistribute. 

The increase in the circumferential strains in the shell of the 

turbine casing is most significant in the cylindrical section, Fig. 

7.3(il). The circumferential strains at the inside have more than 

rloubled and the circumferential bending has increased by a factor 

of 4 nver the cylinder and by an even greater amount at the toroid/ 

cylinder joint. Similarly the circumferentia I strains and bending 

in the toroid close to the boss fillet radius have increased. There 

is very little increase in circumferential strain in the spherical 

end closure. The meridional bending in the shell section of the 

turbine casing remains relatively unchanged in the cylinder, Fig. 

7.3(b). However the meridional bending increases in both end 

closures and in the region of the boss fillet radius at the toroidal 

end closure. The greatest increases in the meridional strains occur 

where the meridional stresses are most significant, Fia. 7.3(d), 

although this is not true for the spherical end closure where the 

meridional stresses are similar to those in the cylinder. The increase 

in the meridional strains in the spherical end closure boss is 

negligible. The finite element creep analysis predicts the largest 

meridional creep strains to be in the same position as those found 

by Bellamy (ref. 7), i.e. on the inside surface of the toroidal end 
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closure, and the strain distributions round the toroid follow 

similar patterns. 

The meridional distributions of circumferential and meridional 

stress, Figs. 7.3(c) and (d), show little change in the mean 

values but increases in the bending stresses. These increases in 

bending stress are greatest close to the toroidal end closure 

fillet radius, In general the circumferential bending stresses 

reduce, particularly in the cylinder, but the meridional bending 

stresses increase in both end closures close to the cylinder/end 

closure joints. The meridional variation of the effective stress 

cistribution shows that the greatest changes occur in the fillet 

radius between the boss and the toroidal end closure, in the 

toroid close to the toroid/cylinder joint and in the cylinder. In 

general the effective stresses tend to even out and variations of 

effective stress through the thickness are reduced. However the 

highest stresses do not relax as would be expected if the casing 

was an axisymmetric body. The reason for the increase in the 

values of the largest effective stresses can be seen from the 

circumferential distribution of the strains and stresses. 

The circumferential distribution of the meridional and circumferential 

strains and stresses, and the effective stresses are given at 3 

axial positions. These are the mid-toroid position where the 

meridional stresses were found to be greatest in the elastic analysis, 

the toroid/cylinder joint and the mid-cylinder position. The strain 

and stress distributions 1n the spherical end closure are smaller 

than those in the toroidal end closure and are therefore less 

significant. The creep deformation of the casing can be envisaged 

most easily by considering the strain and stress distributions at 
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the mid-cylinder position, Figs. 7.5. The changes in circumferential 

strain are large paticularly close to the flange/shell fillet radius. 

The circumferential strains in the fillet radius become extremely 

large due to the high initial stresses in the fillet radius caused 

by the bolt loading. In the fillet radius and flange the 

circumferential stresses at the outside surface are parallel to the 

surface. The circumferential bending of the shell close to the flange, 

caused initially by the flange having a stiffening effect in the 

radial direction, increases as creep deformation proceeds. The 

membrane stresses remain reasonably constant but the bending stresses 

increase by a factor of 4 in 1000 hours. The increase in bending 

caused by the stiffening effect of the flange causes circumferential 

bending to spread further into the shell. A circumferential bending 

moment, gradually increasing with time, spreads into the shell and 

attempts to force the flange to move radially outwards. 

At the same time the large compressive stresses in the flange caused 

by the bolt loading are redistributed over the complete flange section 

and into the base of the sh&ll. In practice as the flange deforms 

under the bolt loads the bolt loading relaxes and the stresses in the 

flange due to bolting up forces reduce. The finite element model uses 

a constant bolt force for all the creep calculations so that it is 

identical with the lead turbine casing model where th~ bolt loads 

were applied through a spring system. 

In general the effective stresses in the casing increase as creep 

deformation proceeds but decrease in the flange beneath the bolts. 

This is clearly seen in Fig. 7.5(d), where the initial effective 

stresses due to the bolt loads are in excess of 1000 lbf/in2 and 

these redistribute rapidly as creep takes place. The stresses in 
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the flange are dominated by large compressive stresses normal to 

the flange face in a narrow band beneath the equivalent bolt 

loadings. These result in large negative creep strains which help 

to spread the bolt load gradually across all the flange. To 

compensate for negative creep strains normal to the flange face, 

positive axial and radial creep strains are formed by the constant 

volume criterion. Consequently the axial deformation of the flange 

increases and there is a slight increase in the meridional membrane 

and bending stresses in the shell. 

At the other 2 axial positions, mid-toroid and toroid/cylinder 

joint, similar effects are noticed although the meridional stiffening 

effect of the end closure is more significant and the circumferential 

bending is greatly reduced, The circumferential bending in the shell 

close to the flange at the toroid/cylinder joint remains reasonably 

constant although the creep strains increase rapidly. However the 

circumferential moment increases rapidly in this region due to the 

stress redistribution in the flange. Large increases in the 

meridional strain in the shell close to the flange at the toroid/ 

cylinder joint and the mid-toroid position are caused by the increase 

in meridional creep strain 1n the flange due to the bolt loads. This 

meridional deformation of the flange causes increased bending 1n 

the shells forming the end closures. 

The effect of the flanges on the creep deformation and stress 

redistribution is a dominating one. The creep deformations are 

constrained by the flanges in 2 ways, 

a) the effect of the flanges around the end closure 

b) the closing effect of the flanges due to bolt loading. 

The boss and flanges form a large part of the end closures. To 
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carry the circumferential strain caused by the pressure load the 

flange at the cylinder/end closure joints deforms radially inwards 

relative to the mid-shell. The cylinder, not constrained by the 

heavy bosses on the end closure and with no radial restraint similar 

to that carried by a toroid or sphere deforms more freely but is 

still restricted by the flange. The radial deformation of the flange, 

Fig. 7.1 (c), is less than that of the shell. The deformed shape of 

the casing would normally attempt to open the inside of the flange 

by rocking on the outside of the flange face but this is impossible 

due to the bolt loads maintaining a pressure tight seal. Consequently 

bending stresses caused by keeping the flange closed appear at the 

shell/flange junction. Combining the end closures and the cylinder 

causes meridional bending at the junctions due to the mismatching of 

radial deformations. The end closures attempt to restrict the radial 

deformation of the flange face thus causing even greater circumferential 

bending in the cylindrical shell. 

As creep deformation takes place the bending stresses in the shell 

increase due to the stress redistribution of compressive stresses in 

the flange and the stiffening effects of the flange. The radial 

deformation of the flanges initially increases due to the circumferential 

bending but decreases as axial deformation becomes significan~ and 

causes the casing to deform into an elliptic cross section. 

7.4 Axisymmetric Approximation of the Creep Deformation of a Turbine Casin~ 

The creep deformation of the lead turbine casing has been found 

using the axisymmetric thin shell of revolution finite element 

described in Chapter 2. The idealisation and key to the meridional 

positions are shown in Fig. 7.8. The variation of the circumferential 
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strains with time is given in Fig. 7.9(a) and shows the increase in the 

circumferential strains in the cylindrical portion of the casing and 

around the fillet radii at the bosses. The circumferential strain 

distribution due to creep given by the axisymmetric approximation 

of the turbine casing underestimates that given by the full 3-

dimensional analysis. The meridional strain distribution with time 

is again underestimated by the axisymmetric approximation. Although 

the initial stresses in the casing are in agreement the stresses in 

the axisymmetric analysis redistribute and the creep strains are 

consequently not as large as those predicted by the 3-dimensional 

analysis where the shell stresses increase due to the stress 

redistribution in the flange. The axisymmetric analysis gives an 

indication of the creep strains in the turbine casing although 

these are underestimated. 

7.5 Computation of C~ep Deformation of a Turbine Casing 

1he 3-dimensional finite element idealisation, shown in Fig. 6.~1, 

has 123 2O-node isoparametric finite elements, with 946 nodes and 

2602 deQrees of freedom with a maximum instantaneous size of 181. 

The initial solution has used the frontal solution described in 

Chapter 4, while the creep analysis has used the resloution technique 

described in Chapter 4 and the creep algorithm described in Chapter 

5. The 3-dimensional analysis has been found using the !Ell,; 360/195 

computer at the 91C Eutherford High Energy Laboratory. The program 

uses 3(6,000 8 bit Bytes and the initial solution took 223 seconds, 

whereas the creep analysis has taken 2 hours with 116 time 

increments for the creep analysis starting at 10-3hours and 

finishing at 103 hours. The axisymmetric approximation to the turbine 
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casing comprised 15 thin shell of revolution finite elements, 

with 16 nodes and 107 degrees of freedom. The inverted stiffness 

matrix can be held in store and the analysis was carried out on 

the Nottingham University KDF-9 computer. This anal ysi s rp.gllh'ed 

-3 19,000 48 bit words of store and the creep analysis from 10 

hours to 103 hours was achieved in 16 minutes. The variations 

in the stresses were limited to 10% through each time increment 

for both analyses although the Gauss meshes were 2 x 2 x 2 for 

the 3-dimensional analysis and 4 x 3 for the axisymmetric analysis. 

The IBM 360/195 computer is estimated to be 100 times faster than 

the KDF-9 computer. 
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~hapter 8 Ciscuss!2D 

8.1 In~roduction 

The finite element method has been used to determine the stresses 

in turbine casings subjected to internal pressure and bolt loadings. 

The analyses use both solid 3-dimensional isoparametric finite 

elements and axisymmetric thin shell of revolution finite elements. 

The computed stress distributions have been compared with results 

from photoelastic model tests. The creep deformation of a model 

turbine casing has been found using both axisymmetric thin shell 

and 3-dimensional isoparametric finite elements. 

8.~.1 Elastic Analysi! 

The elastic stress distributions in two model flanged turbine 

casings, subjected to internal pressure, have been calculated 

using the finite element method and the results have been compared 

with photoelastic analyses obtained by Bellamy(ref. 7) and Kuzelka 

(ref. 66). The closed turbine casing has been idealised using two 

types of finite element. 

The simpler analysis comprised 15 thin shell of revolution 

finite elements which were used to determine the stresses in the 

shell portion of the turbine casing. The casing was idealised as 

an axisymmetric body and the results obtained describe the 

meridional variation in the stress distribution away from the 

flange. A more complete 3-dimensional idealisation modelled a 

quadrant of the turbine casing using 123 2O-node isoparametric 

elements. The results from the axisymmetric analysis agreed well 

with those obtained from the more exact idealisation indicating 
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that for this casing the flanges had little effect on the stresses 

in the casing remote from the flanges. 

The finite element solutions for the stresses in the toroidal 

end closure of the closed turbine casing show good agreement with 

the photoelastic results obtained by Bellamy (ref. 7). The finite 

element solutions did not predict the large bending stresses found 

in the cylinder of the photoelastic model. The photoelastic model 

was loaded during the stress freezing cycle by applying an internal 

vacuum which gave significant deformations but did not cause the 

casing to buckle. The finite element analyses are based on small 

deformations and as no account has been taken of the large radial 

deformations in the cylinder a small error in predicting the 

stresses is to be expected. The finite element analyses also take 

no account of stresses caused by the effects of critical loads, 

i.e. buckling, and it is known that the photoelastic model was 

close to this condition at the start of the stress freezing cycle. 

Further, comparison of the initial elastic meridional strains in 

the lead turbine casing model with those found from the finite 

element solutions gave good agreement. The 3-dimensional finite 

element solution gave reasonable continuity of strains and stresses 

across element boundaries, despite the coarse idealisation, and 

showed good agreement with the axisymmetric finite element analysis 

for the shell portion of the turbine casing. 

The stress distribution in the flange of the 3-dimensional finite 

element model can only be a good approximation of the stresses 

between bolt holes as the true stress distribution beneath the bolt 

heads is extremely complex. To determine the true stress distribution 

in a turbine casing requires a very fine idealisation to model the 
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bolts and bolt holes individually. A finite element isealisation 

of this type is too large for the majority of modern computers 

and consequently a coarser idealisation with approximate bolt 

IDadings must be used. The coarse mesh of the turbine casing model 

givvc a good indication of the strength of the casing, in particular 

the restraining effect of a bulky flange on a relatively thin shell. 

The data generation required for a complicated mesh used to idealise 

a complex engineering structure such as a turbine casing can take 

months to prepare, even though a relatively coarse idealisation 

has been chosen. The idealisation used to model the closed turbine 

casing was chosen so that the solution of the elastic stresses 

could be found on the S.H.C. Atlas Computer in under 2 hours. The 

availability of much larger and faster computers has since made it 

possible to refine the idealisation and obtain elastic solutions in 

a fraction of the time. 

An inner turbine casing has been analysed both photoelastically 

and using the finite element method. The 3-dimensional finite 

element solution using a COarse idealisation comprising 70 2O-node 

isoparametric finite elements gave results comparable with those 

found from the photoelastic analysis by Kuzelka (ref. 66). The 

difference between the two solutions is principally in toroidal 

end closure, particularly in the region of the boss. Altering the 

end constraints of the boss in the finite element analysis had a 

significant effect on the stresses in the toroidal end closure. 

The stresses normal to the boss face were extremely large and 

parts of the boss may possibly have become plastic during the early 

stages of the stress freezing cycle used in the photoelastic 

analysis. The ~ffects of plasticity on the stresses in the gland 
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housihg boss of the inner turbine casing have not been investigated 

but are expected to be significant. 

The shell of revolution finite element idealisation gives results 

for the stress distributions in the shell of the closed turbine 

casing model which are comparable with the full 3-dimensional finite 

element analysis. For this idealisation the turbine casing model 

i~ treated as an axisymmetric body. This approximation can only be 

used to predict the stresses away from the flange in turbine casings 

where the flange thickness is small compared with the shell radius. 

The axisymmetric approximation of the inner turbine casing gave 

poor results for the stresses in the shell, as the flange thickness 

was a significant proportion of the shell radius. 

8.2.2 Creep Analysi~ 

The creep deformations of a closed lead turbine casing model have 

been found using both of the finite element idealisations used for 

the elastic analysis. The 3-dimensional idealisation comprised 123 

2O-node isoparametric finite elements and the axisymmetric 

approximation comprised only 15 thin shell of revolution finite 

elements. The two creep analyses, finite element and lead model, 

were expected to show reasonable agreement but the initial finite 

element results were found to predict creep deformations of 

approximately 1%of those found in the lead turbine casing model 

by Bellamy (ref. 7). The differences are due to the empirical 

uniaxial creep law predicting smaller creep strains than were found 

in the lead turbine casing model at equivalent stresses. The 

mathematical creep calcUlations depend solely on the empirical 

uniaxial creep law and as this law contains very high power functions 
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of stress, small errors can be easily magnified. To determine the 

stress redistribution in a model turbine casing an empirical creep 

law was used which was known to give noticeable creep strains in a 

3 relatively short time, i.e. 10 hours. 

The creep algorithms have to be extremely efficient as creep 

solutions demand large amounts of computing time usually with 

large core store requirements. ~iany techniques are used to improve 

the method of solution of creep problems to reduce computing time. 

The simplest method is to reduce the number of elements in an 

idealisation and the order of the Gaussian integration mesh used 

to store and determine creep information. These changes not only 

reduce the core store requirements but drastically reduce the 

computing time. The computing time can also be reduced by starting 

the creep calculations at a small positive time, say 10- 3 or 10-2 

hours, when calculating the creep deformations after 103 hours and 

using the largest time increments possible. It has been shown in 

Chapter 5 that neglecting the initial creep deformation has very 

little effect on the creep strains at some distant time. It is 

questionable whether physical creep strains for times less than 

158 hours can be accurately measured and whether the resulting 

empirical creep laws can be used to predict the creep deformations 

at very small times. 

By optimising all the parameters involved in the creep analysis 

an efficient sclution may be obtained. However careful checks must 

be made within the algorithm to ensure that the solution does not 

become divergent or oscillatory. This can occur when there is too 

large a variation in stress during each time increment, caused by 

the time increments being a large proportion of the creep elapse 
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time. ~I!hen the empirical creep law contains only primary and 

secondary terms the solution has become unstable when the time 

increments begin to decrease as the solution proceeds. 

To find the creep strains and stresses on the outside surfaces 

of a structure it is necessary to extrapolate their values from 

those at the Gaussian integration points. A fine Gauss integration 

mesh is required through the element thickness to predict the 

creep strains and stresses at the outside surfaces as their 

variation through the thickness is a complicated power function. 

The thin shell of revolution finite element has been shown to 

be extremely powerful and economical for predicting the stresses 

and creep in the shell sections of the flanged turbine casing. The 

idealisation usually requires very few elements and very little 

data. 

8.~.3 Economics of SOlutions 

The computing times used to analyse the flanged model turbine 

casing for the full 3-dimensional and axisymmetric aoproximations 

are compared in Appendix 11. An idea of the relative times required 

to aenerate the data can be obtained by considering the total number 
-' 

of degrees of freedom, number of nodes and elements. 

('learly the axisymmetric thin shell of revolution is extremely 

efficient and is to be recommended if interest lies in the elastic 

stresses in the shell of the casing. For all other areas of the 

casing, and to a certain extent in the shell in the creep analysis, 

the flange has a dominating effect which cannot be neglected. As 

the flange thickness to shell radius ratio increases, the ratio 

for the present model is 17%, the flange dominates the deformation 
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and an axisymmetric approximation cannot be used. 

8.3 Fut\dre ;!ork 

The present turbine casing model was based on a number ~i turbine 

manufacturers design s and is a very much simpli fled version of 

any practical turbine casing. The flange design is unrealistic 

for a high pressure turbine casing and consequently the pressure 

<lpplied to the shell is very much lower than that which this shell 

would be expected to carry. The stress levels in the shell are 

quite small compared with the flange stresses and consequently 

any creep deformation occurs in the flange of the turbine casing. 

The use of the finite element method in !)redicting the stresses 

and creep deformations of a model turbine casing has been shown. 

A rr~re realistic model turbine casing with very much thicker 

flanges and perhaps steam inlet and outlet pipes should be analysed. 

For a thicker flanged model a very much higher internal pressure 

can be applied with the same bolt loads before leakage occors. The 

stresses in the shell will be much higher whilst those in the flange 

will be reduced, and greater creep deformation of the shell will 

occur. ,\1 so with stress levels wi thin the range used to determine 

the empirical creep law for the lead, a better agreement between 

the finite element and lead model results can be expected. 

The oresent finite element analysis has not taken into account 

the variation of temperature over the turbine casing. A realistic 

10Jcin9 ~f a turbine casing includes hot and cold starts, rapid 

load changes and "two-shifting" where the tUFbine is shut down 

overni~ht. The temperature transients during these load changes 

are known to cause thermal fatigue damage, wherea 5 the majori ty of 
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creep occurs at base load when the turbine is at its hottest. 

Future work should include the effect of temperature on the creep 

deformation of the turbine casing and the analyses should include 

both steady-stata and transient tempera ture calculations. 

The creep algori thms can be improved by using time marching 

techniques to reduce the computing time. Such a method, e.g. 

hunga-Kutta, predicts the creep deformations at some distant 

timn by determining the creep deformations at a few initial 

times. This gredtly reduces the total number of solutions required 

by the creep algorithm. 

The structure c~n be broken down into a number of "substructures" 

each of which could be treated as a "super"-element. SUbstructuring 

not only reduces the amount of computer core store required to run 

a creep program but also the amount of data required to describe 

the structure. 

The work reported here has shown the power of the fini te element 

method for predicting the stresses and creep deformation of a 

complex structure such as a flanged turbine casing. The solutions 

demand the use of large fast computers and the cost of such 

calculations can be exorbitant. The creep deformation and stress 

redistribution of prototype or production turbine casings can be 

calculated in this way before any initial damage due to bad 

design or operation can take place. The finite element analysis 

provides more information about a prototype structure than 

experimental modelling techniques can provide in a much shorter 

time. 
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Appendix 1. 

A simple 2 noded element has a radius of curvature rs and included 

angles ¢1 and ¢2 at either end and meridional length 1. 
Let ipu = 2, ipv • 3, ipw = 5 in equations 2.1. 

1 

sin¢1 

cos~ 

-1/rs 

sin~ sint2 sln;2 

costh. cost/'2 cos~ 

-1/r s -1/r 5 -1/r s 

1 

-cosr;, 

sinfl 

-cos¢2 

sin~ 

1/1 

The "extra degrees of freedo. 1t are v3 and w3 

V2 

V3 

W1 

W2 

W3 

I W4 

l W5 J 

-cosch. 

sin¢2 

4/1 

1 
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.&2!2endix 2. Stiffness Terms for Thin Shell of Revolution Fini te Element. 

where V = Et3 e (u2 ( 12 (n2 +(1:"U) cos2¢)+ n?_sin¢ 
24(1-r>2))0 ~ r 2 r ;~ 

+ 2uv.n cos~(g (1 + (8)) + J. + (1-i» sin~_) 
r t 2 r 5

2 2 rr 5 . 

.. UdU cos¢ (1 .. D)(~+1(!...,., .. 3s1nqS + 3s1n~)\ 
~s t r rs~ rs r} 

+ 2u ~ nD( 12 + singS) 
os t2 rrs 

.. 2u aw n cost? (L + (1.::..,)) (3 sin", - .L \) 
as r rs 2 r rs ) 

_ 2u~2.w 
52 

+ 2vw C05r/J(12 (sln¢+~) + 51n;(5in2 - 2sin + 1-2\ 
t2 r r5 r ~ rrs r5~) 
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- v~u n(1-~) (12 + sinc$) 
os t2 rr 5 

- w du n (1-u) ( 3sin$ - 1-) 
OS r r rs 

+ 2W dV(12(JJsin<$+L\ +Jn2 \ 
OS t2 rs) rrs) 

- 2w dIN cosq, (Sine/> (.1 - lln~) 
as r rs r 

- 2w ~ (l ( sin¢ - ~ \ + n2 0) 
~s rs rs) r 
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+ (dV)2 ( 12r + sin t;) 
~ ---2-' s t rs 

+ (a2w \ 2 r 
'Os 2 ) 

For axisymmetric case n = 0 and V = '2 x V 
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Appendix 3. E~alent t:odal Force Terms for Axisyrrunetric Thin ::-:hell 

Qf ReYQlution subjected to Thermal strains. 

strain Energy V = -2~Eo< IS} T [ A-1 ] TS1[l:3 ] T{DD'l ds 
(1-02) 0 J 

where {DD'} is given by 

r 
i 
i , 

o 

+ D sint;6 - r - sin2~) 
rs 2rs2 ~ 

o 

-Tt3 cos¢(1+U) - 0 + Sin¢) - ~Tt2 cos~ (1+0) 
12 rs rs r 12 

-Tt3 (Sin 9S - .r..) -6Tt2r (1+U) 
12 rs 12 I 

I 

j 

I 

l 
( 
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Appendix 4. Ihermal ~trg~in ~inders subjected to Axi~~etr}£ 

Temperature Gistributions 

The strain/displacement ( I 
\ 

Mx Qx relationships for an 

axi~y:1lmetric shell are 

given by 

j l Z 
i l' x 

R 

Ex = ~v - Zd2W - <><T 
~x ~x2 

A4.1 (a) 

E = w - o<T a -
r 

A4.1 (b) 

The Equilibrium Equations are 

and Ox = dkix 
~x 

which gives 

A4.~ (a) 

A4.~(b) 

1 N + d2W~ = 0 A4.3 - e ~2 R ox 

Defining the stress 

giv~n by equations A4.1 give 

Nx = _L,., 2c ( dv + Ow - (1+')) co( NT) 
(1-J.Y) dX R 

rc 

where NT = J. J T dz 
2c -c 

,2c 

, w 

-v 

Mx +~.x dx 

~x 
-"-l 
/.~ 

~Nx + dNx dx 
dX 

in terms of the stresses 

A4.4 (a) 

A4.4 (b) 

Defining the cylinder as having no axial constraint, i.e. Nx = 0 

then A4.4 (c) 
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The bending moment ~~ is given by 

where MT = 3 S C Tz dz 
2c 3 -c 

A4.5 (a) 

A4.5 (b) 

;:ubsti tuting for Ne and Mx ir, equation A4.3 gives the usual shel1 

equation 

where 4A 4 = 3 (1-0 2) 
f'" R 2c2 

substitution of the temperature profile equation 

r(x,z) = 1 T* (1-z) e-:·:/R 

'2 c 

gives the di splacement function as 

where 

For ca se (1) No end constraints where Qx = 0 and Mx = 0 at x= 0 

C1 :: (Po<. (1+v) 
4Cfo2 

- A ) (1- 1) 
2 f32R2 f3R 

A4.6 (a) 

A4.6 (b) 

A4.7 

A4.8 (a) 

A4.8 (b) 

M.9 (a) 

A4.9 (b) 
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For case (2) with zero slope at x = 0 i.e. ox = 0 and dw = 0 at x = 0 
Tx 

C1 = }prlJ<l2 -1) - ~fi~~~) A4.10 (a) 

and C2 = ~ (1 + ----1-_) - Tl~~1+~J 
2f3R 2 f3~2 8 fi eR 

A4.10 (b) 
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APpendix 5. Equivalent Nodal Forces Terms for Axisyrrmetric Thin Shell 

subjected t~eep Deformation. 

Strain Energy V= - 2~EO(. (~}T [A-1]TJl [B]T{DCREEPL ds 
~) I~ 0 j 

l 

where lDCREEP} is given by 

(r +z.s~~¢)(E<I>c +J,)€t'c) + sin4(1+ ~) (i}€cpc +E.sc) 
rs rs 

{r + 2.sin¢)(1 + ~)(€<pc +il€ec) 
rs 

-z cos ¢ {1 + ~ )(,J€,~c + €ec) 
rs 

~ 
/ 
j 

) 
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Appendix 6 TJaps1tion Parametric Finite Element eonstra1n1! 

Constraints are made to the displacements on the mid-surface 

nodes of one face of a quadratic isoparametric finite element 

to forGe the normals to remain straight after deformation, see 

Fig. 3.5. Deformation is allowed by constraining the mid-surface 

node to lie on a line connecting the corner nodes without 

inhibiting the strain energy terms due to throcgh thickness 

straining. 

The constraints imposed are given by equations 3.38. The 

processes involved in modifying the stiffness and loading matrices 

can be described by considering merely one displacement. 

A6.1 

SUbstituting for these displacements in the strain energy equations 

gives 

8° 5 
$-

1 
Slbstl tutlng for S 13 in terms of cS 1 and d2 gives the modifi ed 

stiffness terms as 

K41+1K4,13 

Ks1+1K13, 1+~S, 13 

K61+iK6,13 

, 
, K42 ' 

,KsTiK13,2' 

, K62 , 

,K14+iK13,4,K15+iK1,13+!K15,S,K16+iK13,6 

, K24 ,K25+1t<2,13 ,K26 

, , 
, K44 ,K45+§K4,13 ,K46 

,KS~13,4,K55+K13,5+tK13,13,K56+1t<13,5 

, K64 ,K65+iK6,13 ,K66 



and 
Fe1 + tFe13 

Fe2 

Fe4 

Fe5 + t Fe13 
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Appendix 7 Decouposition of [" 0 J matrices into f u] T [uJ form 

The stress/strain relationship for 3-dimensional analysis is 

given by 

10-1= [01t~1 
where 

1-1J ~ u 0 0 0 

1-10 U 0 0 0 

~ol = E 1-1..> 0 0 0 

(1+1J) (1-21.l) 1-210.) 
0 0 -2-

1-2;.) 
0 2"" 

symmetric 1-2,.) 
--,:-

The [0 J matrix can be decomposed in lower and upper triangular 

form 

[DJ = [L 1[ u 1 
where [L J = [ u 1 T 

The upper triangular matrix [u~ is given by 

,.1(1-1;)) ~ o o o 
o J1-2J.> ~/1-2jo) 0 
~ 41-1.) o o 

o o ~.h-~ 0 0 0 

o 

o 0 JJ;2.,:) 0 0 

o 0 0 J1;2~ 0 

o 0 0 0 J1;2ioJ 

o 

o 
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Similarly for the thick shell analysis the stress/strain 

relationship is given by 

fer'1 a [o'lle'! 
where 

1 ~ 0 0 0 

1 0 0 0 

[0]. (~) 1-~ 
0 0 """2 

1-a.:> 
0 2K 

symmetric 1- J.) 

2K 

This is decomposed to 

(0'] == [UI]T [U~ 

where [U I] is given by 

1 f..) 0 0 0 

0 ~1-,.)2 0 0 0 

[u~ = ~1~02 0 0 J:; 0 0 

0 0 0 r 0 
2K 

~1;U 0 0 0 0 
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~dix 8 Von Mises and Prandtl-Reuss Fl~ Rules 

Creep deformation and plastic flow are very similar processes 

and the flow rules used to describe plastic flow are identical 

to those used to determine the creep deformations. For any given 

material there is a function of the three principal stresses 

which always has the Same value regardless of the stress state. 

This function is used to equate the stress states in uniaxial, 

biaxial and multi axial stress fields. This enables the creep 

strains in a mUltiaxial stress field to be determined from the 

empirical creep laws. 

stress Invarilnts 

The principal stresses for a 3-dimensional stress field are 

given by Timoshenko and Goodier (ref. 69) a s the solution to 

equations A8.1. 

Hex-a} + m'Cxy + n'C"xz = 0 

I 'Cxy + m{oy -c} + n 'C'yz = 0 

l'1:"xz + m 'Cyz + n{oz -0} = 0 

where 1, m and n are direction cosines of the stress field. 

These equations are a set of 3 homogeneous linear equa Hons 

which have a non-zero solution if 

(ox ~ "'Cxy "'t'xz 

'Cxy (cy -0} "Cyz = 0 

't xz "C'yZ (OZ ...cJ 

If A8.2 is expanded then the equation may be written as 

~ - 11~ - 12a-- 13 = 0 

where 11 = o-x + o-y + OZ 

A8.1(a) 

A8.1(b) 

A8.1(c) 

A8.2 

A8.3(a) 

A8.3{b) 
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A8.3(c) 

The stresses,o-x'o-y' O-z,'C xy,'Cxz,'CyZ depend on the choice of 

the initial x, y, z axes, but the roots of equation A8.3(a), the 

principal stresses, are independent of this choice. I1 , I2 and 

I3 must therefore remain unchanged and are termed "invariant". 

Hence because I1 is invariant by a change of axes 

A8.4 

Creep Flow Rules 

It is assumed that hydrostatic pressure does not cause any 

appreciable plastic deformation. Johnson (ref. 54) has shown 

that a change in hydrostatic pressure has no effect on creep 

rates. In developing a flow rule for creep deformation it is 

usual to subtract the hydrostatic stress from the direct stress 

to give the "stress deviation". It is assumed that the creep 

flow is dependent on the stress deviations. 

The "mean normal stress" is defined as 

A8.5 

The most important condition for creep flow is that the 'creep 

process is invariaht to the axes. As the mean normal stress does 

not affect the creep flow process the flow rule must depend on 

the invariants of the stress deviations. 

The invariants of the stress 11' I2, 13 have been found and the 

invariants of the stress deviation J1, J 2, J 3 are found in a 

similar manner 

J1 = Sx + Sy + Sz A8.6(a) 

J2 = -(sXSy + sysz + szsx) + S2xy + S2yZ + s2zx A8.6(b) 
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where Sx = OX-s etc. and Sxy = Lxy A8.7 

J1 vanishes as (sx+Sy+sz) = 0 and using this in J 2 gives 

1, 2 ". 2) 2 2 2 J 2 ... 2' sx "'Sy~Sz + s xy + s yz + s zx A8.8(a) 

= t (OX-oy) 2 + (o-y-OZ) 2 + (OZ-ox) 2) +'t'2 xy+ ,(;2yz+ 'C2 zx A8.8(b) 

which when referred to principal axes gives the second invariant 

as 

J2 = ~S12 + S22 + s32) 

= ! (cT.j -02) 2 + (0-2-03) 2 + (OJ-or) 2) 

The simplest relationship of f(J1' J 2, J3) = 0, is that J2 

should be constant as J1 is always zero and J3 leads to a very 

complex set of equations. 

A8.9(b) 

In the case of a uniaxial stress field this relationship gives 

Thi s value of OX can be considered to be an equivalent stress 

eo to the multiaxial stress field e 

i.e. ere = o-x for uniaxial stress fields. 

A8.10 

For plastic flow this relationship between the multiaxial stress 

field and an equivalent uniaxial stress has been shown by Hencky 

(Hill ref, 61 and Jaeger ref.62 ) to imply that yielding occurs 

when the elastic strain energy of distortion reaches a critical 

value. Nadai (ref. 70) states that plastic flow occurs when the 

shear stress acting over an octahedral plane reaches a certain 

value which is proportional to the second invariant of stress 

deviation. The creep flow rules are based on an equivalent uniaxial 



- 167 -

stress to a multiaxial stress field to determine the equivalent 

uniaxial creep strains. 

The multiaxial creep strains are calculated from the equivalent 

uniaxial creep strains using the Levy-Von Mises and Prandtl~Reuss 

flow rules, Hill (ref. 61). The Levy-Von Mises flow rules are 

based on Saint-Venants principle that the principal axes of strain 

increment coincide with the axes of principal stress. This was 

extehded by Prandtl-Reuss for elasto-plastic and creep equations. 

As the creep strain increments are proportional to the stress 

deviations the multiaxial creep strain increments can be found 

from the equivalent uniaxial creep strain increments. 

For a uniaxial stress field the stress deviation is given by 

In multiaxial analysis the stress deviations are given by 

etc. 

Sxy I: Lxy 

This gives the multiaxial creep strain increments as 

A~ AE..ec 3 
QC. xy I: 2"'Cxy 

c 0-. e 
etc. 

The constant volume condition for creep flow is included in 

equations AB.12(a), i.e. €:.x+Cy+ Gz = o. 

AB.11 (a) 

AB.11(b) 

AB.11 (c) 

A8.12(a) 

AB.12(b) 
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~endix 9 Newton's Method for Solving Non-Linear Equations 

A non-linear equation of the form 

x = f(t) 

can be solved by a method of successive approximations. The curve 

of the function is shown in Fig. A.9 and it is required to find 

the value of t when x=xO. 

An arbitrary time t is chosen and the equivalent value of x is 

evaluated 

x = f(t) 

This value is ih error by x-xo and a second approximation can be 

made using the slope of the curve at x, t. 

This slope is given as f'(t). 

The next approximation of t is given as 

t ' t (x - x~) = - ( ) f' 

SUccessive approximations are made until the differences between 

x and xa are small enough that no significant variation of t is 

made by the next approximations. 

Care must be taken if f'(t) ever approaches zero as the equations 

become ill-conditioned. 

x 

t 
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Appendix 10 Creep Analy§is applied to a Beam Finite Element 

A beam finite element with 12 degrees of freedom, 3 translations 

and 3 rotations at each node, has been adapted for creep analysis. 

The displacement functions, translations normal to the principal 

axes and torsional rotations, are defined as polynomial functions 

of the beam length. 

Uy = a1 + a2x + a3x2 + a4x3 

Uz = b1 + b2x + b3X2 + b4X3 
A10.1 

ex = c1 + c~ 

Ux = d1 + d2x 

The z axis is the major axis, the y axis the minor axis and the x 

axis the polar axis of the beam. 

The equivalent nodal forcf! exprHssion, given by equation 5.9 

for the creep strain increments, can be further simplified by 

using the constant volume condition. 

A10.2 

Considering the loading on a beam element, this usually comprises 

a bending moment about the major axis or a tensile or compressive 

force a long the beam length or any combina tion of the se. EyAE.yC 

and G zA£zc are negligible compared with ~xdeXC and are neglected. 

This gives the equivalent nodal force expression 

A10.3 

The total strain in the x direction about the major axis considering 

tension and bending is given by 
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dUx rfuy 
e x = ox- Y·ox1. A10.4(a) 

where a2u
y = ..!-. the 

ox2 R 
radius of curvature by the Engineer's Theory 

of Bending. 

A10.4(b) 

from equations A10.1 the displacement functions. 

The vector of displacement function coefficients is fJiven by 

defining the displacements at the nodes by the [A] matrix 

A10.5 
• 
• 

The strains are then given by 

A10.6 

where • T T 1 p(x, y) 1 = ~ 0 0 -2y -6xy 0 0 0 0 0 0 0 1"1 

Differentiating with respect to the change in nodal displacements 

gives the equivalent nOdal forces as 

11l Fe "2 = [A -1 ] T S 1 p (x, y) S A€xc dVo 1 
S Vol 

f AFe~ = [A-1] TbJ 1 J' d/2 l p(x,y) lftl€xc dydx 

o -d/2 

A10.7(a) 

A10.7(b) 

This is found by ~ussian quadrature numerical integration for 

each time interval. 

, I 
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Appendix 11 Computition of Turbine Casing Finite Element Idealisations 

2-Dimensional Plane Strain Analysis of Turbine Casing Section 

Idealisation :- Fig. 6.1(a) 

72 x 8 node Isoparametric Finite Elements 

No. of Nodes :- 261 

No. of Degrees of Freedom :- 504 

Maximum Instantaneous Size :- 40 

Computer :- S.R.C. Atlas 

store :- 24,000 48 bit words 

CPU Time 1- 376 secs. 

3-Dimensional Plane Strain Analysis of Turbine Casing ~ection 

Idealisation :- Fig. 6.4(a) 

15 x 20 node Isoparametrie Finite Elements 

No. 0 f Node s : - 175 

No. of Degrees of Freedom :- 134 

Maximum Instantaneous 51 ze 1- 23 

Computer :- Nottingham University KDF-9 

store a- 23,000 48 bit words 

CPU. Time :- 1661 sees. 
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3-Dimensional Plane Strain Analysis of Turbine Casing with Bolts 

Idealisation :- Fig. 6.6 

57 x 20 node Isoparametric Finite Elements 

No. of Nodes :- 457 

No. of Degrees of Freedom :- 1097 

~,aximum Instantaneous Size :- 196 

Computer :- S.R.C. IBM 360/195 

store :- 262,000 8 bit Bytes (i.e. 85,000 32 bit words) 

CPU Time :- B6 secs. 

stress Analysis of Inner Turbine Casing 

Idealisation c- Fig. 6.14 

70 x 20 node Isoparametric Finite Elements 

No. of Nodes 1- 560 

No. of Degrees of Freedom :- 1508 

Maximum Instantaneous Size :- 173 

Computer :- S.R .C. IBM 360/195 

store s- 252,000 8 bit Bytes (i.e. 

CPU Time :- 117 secs. 

Also 

Computer S.R.C. Atlas 

store :- 54,000 48 bit words 

CPU Time 3615 secs. 

63,000 32 bi t 'fIOrds) 
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~:tress Analysis of ~lit Turbine Casing 

a) 3-Dimensional Analysis 

Idealisation :- Fig. 6.21 

123 x 20 node Isoparametric Finite Elements 

No. of Nodes 1- 946 

No. of Degrees of Freedom :- 2602 

Maximurr. Instantaneous Size :- 181 

Computer :- S.R.C. IBk 360/195 

store 1- 374,000 8 bit Bytes (i.e. 93,000 32 bit words) 

CPU Time :- 223 secs. 

b) Axisymmetric Approximation 

Idealisation :- Fig. 6.30 

15 x 2 node Shell of Revolution Finite Elements 

No. of Nodes :- 16 

No. of Degrees of Freedom :- 107 

Computer :- Nottingham University KDF-9 

store :- 9,000 48 bit word s 

CPU Time :- 337 secs. 
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Creep Analysis of Split Turbine Casing 

a) 3-Dimensional Analysis 

Ide~lisation :- Fig. 6.21 

123 x 20 node Isoparametric Finite Elements 

No. of Nodes :- 946 

No. of Degrees of Freedom :- 2602 

Maximum Instantaneous Size :- 181 

Computer :- S.R.C. IBM 360/195 

store s- 374,000 8 blt Bytes (l.e. 93,000 32 bit words) 

CPU Time :- 7030 secs. 

No. of Time Increments s- 116 

Gaussian Integration Mesh :- ?x?x2 

b) Axisymmetric Approximation 

Idealisation :- Fig. 6.30 

15 x 2 node Isoparametric Finite El.~ents 

No. of Nodes 1- 16 

No. of Degrees of Freedom :- 107 

Computer :- Nottingham University KDF-9 

store s- 24,000 48 bit words 

CPU Time :- 959 secs. 

No. of Time Increments s- 32 

G~ussian Integration Mesh 1- 4 x 3 
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Table 2,1 Axisymmetric Thin Shells of Reyolution §Ybjected to Thermal 

strain!, 

Radius/Thickness ratio 10:1 

« = 1.1 x 10-5 in/inoC 

E = 3.0 x 107 Ibf/in2 

~ = 0.3 

TO = mid-surface temperature = 500 C 

~TO = temperature difference across the shell thickness = -100°C 

Meridional stress Circumferential stress 

Inside Outside Inside OUtside 
t--

Cylinder 

standard (Roark) -23,600 23,600 -23,600 23,600 

Finite Element -24,050 23,090 -23,880 23,270 

~bere 

standard (Roark) -23,600 23,600 -23,600 23,600 

Finite Element -24,520 22,610 -24,090 22,790 
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TABLE 2.2 C?~rison of Thin Shell Theory to Finite Element Analysis 

for a lonB Cylinder Subjected to Creep 

Radial displacement w mm 

Radius a = 100 mm 

Tl1ickness h = 5 mm 

2 
Internal Pressure p = 0.75 kg/mm 

Poisson's ratio ~ = 0.3 
4 ? 

Young's Modulus E = 1.8 x 10 kg/m:n~ 

Creep Constallt A = 4.36 x 10-9 (1. gI 2)-4~66 h -0.218 , .. nun r 

with Stress constant n = 4.66 

and Time constant m = 0.218 

Empirical Creep Law = A ","ntm 

Thin Shell Creep E~uation 

Ehw 
"'2 = 

pa 

Time Total Disp Total Disp Creep Disp Creep 7)isp 
Hrs Theory F.E. Theory less 10-5 hrs 

Theory 

0 0.85 .. 0.832 - -
0.1 1.27 1.208 0.4205 0.4198 

1.0 1.54 1.453 0.6945 0.6938 

10.0 2.0 1.866 . 1.148 1.1473 

100.0 2.75 2.548 1.897 1.8963 

All displace~ents are given in the dimensionless form Ehi 
pa 

, 

Creep Disp 
F.E. 

-
0.376 
0.621 
1.034 
1.716 

Error 
% 

-
10.43 
10.49 
9.88 
9.51 

Value. of Equivalent Stress for Thin Shell Theory = 12.99 kg/mm2 

Average value of Equivalent Stress for Finite Element Analysis = 12.67 kg/mm2 

Error in Equivalent Stress = 2.464%. 

I 
I 
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Iable 3.1 Gaulli,n Quadrature Integration Constants 

The integral f(x) J
"1 

dx is given by the summation 
-1 

where Hi and a1 are the weighting factor and variable respectively. 

These values are given (ref. 21) below for n values up to n=6 

n ai Hi 

2 -!0.577350269 1.000 

3 !0.7745966692 0.5555555556 

0.000 0.8888888889 

4 "to.8611363116 0.3478548451 

!0.339981 0436 0.6521451549 

5 !0.9061798459 0.2369268851 

!O. 53846931 01 0.4786286705 

0.000 0.5688888889 

6 !0.9324695142 0.1713244924 

!0.6612093865 0.3607615730 

!0.2386191861 0.4679139346 
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!able 3.2 Comparison of lsoearametri~ Finite Elements with the Lame 

S:>lu~iS!n fo, A Thick C~lind!r subiec~ed ~o Int!rnll Pr!ssYl:e 

Internal Radius = 3" E • 3.0 x 107 lbf/in2 

External Radius = 4" ;)= 0.3 

Sector Idealised = 2~0 

Internal Pressure"" 1000 lbf/in2 

R Lame R3713J R37110 R37160 
Solution 480F linear 60°F quadratic 7~F cubic 

in '7 in "if in Ii 
€r x 104 -0.69 -0.43 -0.65 -0.69 

ee x 104 1.29 1.3 1.3 1.3 

ez x 104 -0.29 -0.26 -0.26 -0.26 
3" e; x 10-3 -1.0 0.03 -0.85 -0.98 

ae x 10-3 3.572 3.9 3.6 3.6 

~ x 10-3 0 0.42 0.064 0.0081 

er x 104 -0.43 -0.43 -0.44 -0.43 

E::e x 104 1.03 1.0 1.0 1.0 

3.5" 
Cz x 104 -Q.29 -0.26 -0.26 -0.26 

o;x 10-3 -0.394 -0.39 -0.45 -0.39 

0;1 x 10-3 2.962 3.0 2.9 3.0 

OZx 10-3 0 -0.0004 -0.027 -0.0007 

~r x 104 -0.26 -0.43 -0.23 -0.26 

~x 104 0.86 0.84 0.86 0.86 

Cz x 104 -0.29 -0.26 -0.26 -0.26 
4" 

o;x 10-3 0 -0.7 0.097 -0.01 

0; x 10-3 2.572 2.2 2.6 2.6 

0-; x 10 .. 3 0 -0.31 0.041 -000061 
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Table 3.3 Comparison of Thick Shell Parametric Elements with Isopargmetric 

Elements and Lame Solution for a Thick Qylinder sub1ected to 

Internal Pressure 

Internal Radius • 3" 

External Radius • 4" 

Sector Idealised • 2~ 

E = 3.0 x 107 Ibf/in2 

i) = 0.3 

Internal Pressure • 1000 Ibf/in2 

R stress Lame 600 F 40°F 

x 10-3 9Jlution Isoparametric SUperparametric 

alement Element 

R37110 R37131 

"i- .. 1.0 -0.85 -1.0 

3" OS 3.572 3.6 3.52 

OZ 0.0 0.064 0.163 

or -0.394 "0.45 -0.5 

3.5" oe 2.962 2.9 2.97 

crz 0.0 -0.027 0.0 

"i- 0.0 0.097 0.0 

4" 0& 2.572 2.6 2.56 

CZ 0.0 0.041 -0.123 
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Table 5.1 Effect of Neglecting Initial Pe~§ of Materi§l Creep Laws 

Rectangular cross section beam subjected to constant bending moment. 

Bending moment =1.62 x 105 lbf/in 

Cross section depth =6 in 

Cross section width =2 in 

Young's modulus =1.41 x 106 lbf/in2 

Poisson's ratio =0.3 

Creep Law 

Change of equivalent stress during time increment < 0.1% 

,- --r-
, Distance Starting Times hrs. 
I 

! from i , 
I 
I N.A. 
I 

stress Percentage error after 10 hrs. in 

lbf/in2 stress compared with the zero 

starting time solution 
r-----

-0.1461-0.51 I 
------,--- ---

0.550 2.729 x 103 -1.355 
! 

I -3.55 

103 I 
1.576 7.432 x -0.054 I -0.23 -0.61 -1.63 , 

2.389 1.067 x 104 0 0 +0.094 +0.28 

2.880 1.236 x 104 +0.081 +0.16 I +0.64 +1.69 
i 

104 , 
3.0 1.250 x +0.1 +0.2 +0.85 +2.2 

4. ___ •• __ --------r---
No. of Time 

176 175 168 152 113 
I Increments : 

Change in Time Increment 

If previous increment within limit t'=3x t 

If previous increment outside limit t' = t/3 and 

unsatisfactory step repeated. 
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E.LOW DIAGRAM FOR THIN SHELL OF RE.VOLUTION RING 
FINITE ELEtvENT ALGORITHM 

I START 1 

Read: Number of elements IL 
Number of nodes I element INE 
Number ot terms in u polynanial IPU 
Number ot terms in v polynomial IPV 

- Number of terms in w pjynomial IPW 

r Declarations in Dynamic Arrays I 

Read element data J 

IL 

Determine length and elerne nt curvature properties 1 
" . 

Calculate A-~ 
IM*8 

r Determine Thermal coefficients I 
l 

-

r 
S-~ Gaussian integration along meridional co-ordinate 1 

I 
l Calculate ~t r t 

r 
r Calculate [DJ matrix (Appendix 2) 

I 
Determine Fblynomial function at Gauss Fbint and form 

[~ matrix 

I 
Cciculate [B~ [0] [8] 

"I . 
Fg.2·2 2·1 2~ 
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ELOW DIAGRAM FOR THIN SHELL OF REVOWTION· RING 
FINITE EL8v1ENT ALGORITHM (Continued). 

2-2 
IM*7 

Calculate Pressure· Loading Term r B~ {p 1 

calculate Thermal Loading Term [B~ {DO) 
I 
I 

: Sum Stiffne?S' Loa:1ing Terms 

Calculate k!XI[B~ [q [SJ) [A-~ 
IM;7 

Calculate [A-~ [[B~ {p} 
IM~8 --

Calculate [A-j L[B~ {DO} 

l Sum :~t iffne$s and loading terms into total matrices 

l Solve I 

IM*8 
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\' trices ~,tiff~~ __ . • te Element. 1 Rinc FLnl:_ 1'h' n She 1 __ ..:; __ _ for , ._!-_, __ , 

'x D"ndcd matrl 
,. f "extra Orcl01"ing 0 

hy carf!ful 

degrees 

of freedom II 
i : I I 

14-
.2 ~,2!> --:}1 --- i

lb 

25 

1 
::'l - 2.4 
-'~b 

Fig. 



PIAN1S CYliNDER TEST 

3 l 
Exact Solution 

3 2i~ch elements ~+ 
---- +-----+-----+ +------~=--=--~---

Pian's solutions ~_ 
-....~ 

0 

C"l 

21 ! I 
0 -
)( 

U) ,.. 
.!:: 

"0 a 
0 

....J 
X 

I-

/ 
(j) 
u 
c -.. 
-J 

1 
en c 

// 
0 -U 
\:.1 --Q1 

Q 

0 
----~-- --- --

No of v terms (Pian) ~± (2) 5 (2) 6 (2) 

" " w " " 5 6 
Total No of degrees 3elements(Pian)15 (9) 21 (12) 27 (15) 

of freedom 1 element 5 7 9 

____x o o/X 
x 

/ 
/ , 6 inch element 

x 

7 (3) 
7 

33(21) 
11 

Radial Load 
,·0 lbf lin 

I 

8 
8 

39 
13 

.. 10" 

N 

6 

9 10 
9 10 

45 51 
15 17 

c. 

11 12 
11 12 

Fig. 2.4 

-> 
00 
5J1 
1 
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PRESSURISED SPHERICAL CAP 
Fig. 2.5(0) 

40 Structure idealised by 1 element. 
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PRESSURISEO SPHERICAL CAP 
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Fig. 25(c) 

PRESSURISED SPHERIC/\L CAP 
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Torisoherical DruQh~.9 IdeaJl]~n 

Thickness·0.555" 
z 

I Knuckle Radius 
3.404" ... -

I 

_ Crown Radius 
. -- --- - 57.02" 

.Internal Diameter 
Di = 37.0" 

No. of elements 6 
No. of v terms 6 

No. of w terms 6 

Total No. of Degrees of Freedom 53 

stress index = pDi = 33 .. 3331bf/in2 
~ 

Fig. 2.~(a) 
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~L.ASTIC STRESSES IN TORISPH~RICAL DBUMtiEA.c~2 

Meridional Stress Indices 
5 

4 

3 fA 
\ 

+' 1/ \ Inside Surface 

2 

1 

5, 0 
Dj Oh 
-1 

-2 )( 

jOutside Surface 
-;3 

.... --.. - . - Crown _____ j\.:)uckl~ ______ S:ylindrical Drum -

Circumferential Stress Inqi.c;es 
2 

1 " 
Inside ~.~ 
Surface 

51- 0 10 . __ "---~_r--~~-----.-';.-';-----.---t-t-t"r---T---. 
I 04 02 
-1 

I 

0.4 

-2 

-~ 
Cylindrical Drum 

-- -Crown 

--- Finite Element Analysis 

~: -_-~:=~ J Experimental Analysis (ref. 25) 

Fig 2.G(b) 
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SI; M H N F LN IJ E_~~!.,J0!D ER_S UBJ (.r TJIL10 
A VARYING INTEr~NAL VI/ALL TEMPERj\TUr~E 
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FLOW DIAGRAM FOR CREEP ANALYSIS OF THIN SHELL Oc 
REVOLUTION FINITE ELEMENT 

/START / 

IlCO'H=~J 
.L 
I 

t LOOP THROUGH ELEMENTS I 

DETERMINE > ~-~ 

ICONT 2 

DETERMINE NODAL DISPLACEMENTS J 

Detennine element constants Rs) ~1' 4>2 etc. 

I 

ICONT=2 
: Gaussian integration loops through 5 &. Z J Reouceffi" 

~~termine r &. tP I 
I 

ICONT 2 I . 

Calculate polynomial c.oefficients l~ u~w } 

.c}. ~ 1 

Calculate t CPT, E. &,., '6 ~e,. C:llculate l\E~T)~E.&T ,~ "cP&T 
Store in AKREAP Store in AKREAP 

Calculate 6 E~e., L\E.ee) II 'if&1: 

2:], 7:4 101 1-2 . 1 
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FLOW DiAGRAM FOR CREEP ANALYSIS OF THIN SHELL OF 

REVOWTION FINITE ELEMENT(Ccntinued} 

2·1 23 
2 27:,L. 

l 
12 . 

r 
Calculate stresses Calculate chmge in stresses 

CY4>, 0"91 't ¢& 6 cr 4> J b:a (Sa-I ~ t: rp &-

St0re in AKREAP Store in AKREAP 
'-----

I 
I 

Check ~r: 'Ratio No 

I 

~ 
1 

I Calculate equivalent uniaxial stress C1e I ~ 

Calculate uniaxial creep strain 6Ee in time 6T 
. c; 

Convert to muttiaxial creep strains A€'ifJc) {j.Eec.16'tp~~ 
Store in AKREAP 

Generate equivalent ncx:ial ferce terms 
and sum for element 

~ Continue I 

• ICONT 1 

l Merge Beme nt Forces 

. 

lContinuel 

o or 2 ~ 

31 
J 2 

-

:i>lve 
{66~= _S-~ {llFe} 

l Update information in AKREAP I 

6TI I Increase 
I 

2·1 [.'1 4-2 
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FLOW DIAGRAM FOR CREEP ANALYSIS OF THIN SHELL OF 
REVOLUTON FINITE ELEMENT (Continued) 

4-' 4·2 

Time < limrTlaX 
,----J2ime.) limmax 

~j 
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SlMPLY SUPPORTED SHELL 

1 - {- -f '11111]11 - l 
p 

al 

V2 t/2 -
" 

~? ~ h ____ ~_~ ____ '9/ 

1=- t - I -- -=t 

a= 100mm. 
h= Smm. 
l = 109·3mm. 
p= 0·75 kg/mm2 

Cr<z~p Law 
E: = Acsn tm 

wh~rcz 
A=4'35x 1O-B(~ :rt.·66 --218 \rrm2j sec 
n= [',66 

m=O·218 

E = 1·8 x 104 Kg/m~2 
t> = 0·3 

p-a = 15 Kg/mm2 

h 

~? oC~:: J~) ~ :: ]\2 
L. ah 

Fig. 2.10(0) 

~ o 



.. 

-30t - -- CREEP DEFORMATION OF SIMPLY SUPFDR1 EO CYLlNDER ---..... 
" " ..... 

" o Frczcz cylinder 
..... 

x --- " 
"7 

- - - - - Murakami & Iwatsuki Sotn. R<Zf.29 
S t rat n H?Idczning 

-x-Tim~ Hard~ning ~: <.0.01 

}------- -+-st rain HardC11ing b..Cf..( O· 01 
(f -- c " -- ..... ........ Eh2w = " 

~ f ~~ 
- 2-0 

---
--------------==::::===-----+ ---x 

-- -
-+ -------------------------------- x _____ 

-1-0 -----------------------x ________ __ 

~ 

\. 
~ 

No. of v terms 8 
No. of w t~rms 8 

o I ' o I ~' 0·2 I .~~, 
0·4 2xil 0.'6 I ~~ 0·8 I 1-0 

Fia.2.10(b) 
oJ 

~ 
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Parametric Finite E!eme nt~ 

20 node ~uadrj[ateral lsop-arametr'ic Finite E!ement 

II • 

8 node Ahmad shell Finite Element 

16 node Thick shell parametric Finite Element 

Fig. 3.1 
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Mar?Riog of pc[ornetric FiDit~:..flen'~[rL~ 

t: -I , 

-I -I 

Cu be defined in Curvilinear 
Co-ordinates ~ 1 ~ ,e; mapped" 

into Cartesian Co ordinates 
x,y)z 

Fig 3.2 

.. 
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Thick Shell and 'Ahmad" Parametric Finite Elcm2~n~ 

N d l 0" ~ o a iSp,Clcemen5 

Thick She!! FiDite Et~'TlGnt 

i!-&r \ 

! 
r -I' . 

(\J,:J;'!'(;.. J ,.. - II 
VlJ - 'K 

'Ahmad "Shelt Finite Element 

J :r..; I. , 
j 

\ I_ 

\ f 
\ I ", 
'V 

I 

/ 

A 

u;:. Uj ~ i,.\K 

Vi = ieVj +- V 1:_ ) 

W · I'. . ., • 2 \,!JJ +~';i;) 

/3::Ji = (Wj - ~~ ~ 
t 

fir.; :: (~:<--=-~'j ') 
l: 

Fit .3.3 
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Thick Shell and lso-parametr ic Finite Etement 

Junction C;onstraints 

Couplicg Outside Nodes 

V' J 

Not Contio iJOUS - . / 

Thick Shell 

Fig. 3.4 

. " 
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Transition Parametric Finite E!ernent Topology 

and Displs}cernent COilstroJ.nts: .. 

/ 

" 

, 
'. , 

" 

... 4) 

/ 

V I .::..L (v' + V I ) l I:" ';c.. L) L. 1 

/ , 
I 

It ,:x.. l " ... / 
'\. --J. ..- ..- ...... ~ t.. 

•• 
~ 

\/ 
\/ •• 
2 

! 
/ 

I 
I 

Fig. 3.5 

/ 
I 

C /1-1 , . 
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20 NODE 150- PARAMETf~IC STIFFNESS A~ID lO!-l.D!NG ---
MATRICES FLOY; DIAGRAM 

START 
Oeclarat ions 

_____ -----'-1. ___ ~ 
[ De;fi~ Ncdell Geometry in Curvilinear Co-ordin::rt~J 

I 
Determine ~-~ 

READ number of elements IL I ______ ..-____ -_--1 

o 
-~ 

---------~---------., . 
Store Element 1.:I~~~~~:tion. IL and A -~ Common Jj 

.1L 

2·1 

Read Element Topology and material constant f I 
p ~OO 

>0·0 
I Read ~aterial constants E, N ] 

-------------~------~ 
or equivalent 

1 
I- Store Element Topology and material~~~~l 

[Dete;~-;;;-NZcI~-Co~L~a~i~ GloOOl axes ] 
I 

1·1 F" '"'6() g.J. 0, 
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20 NODE ISO PARp\MEniIC STIFFNESS AND LOADING ------- ,- ,------,----_ .. _-
MA TR Ie ES F~O'vV DI/\GtlArvL.CContinued) 

8 

Determine Nodal Teniperatures and Calculate ] 

~ =[A-~ {Tt} 

f -1·0 

Gauss Integration 
.----~.I"UH' ts \.-...-----r------J 

Define Curvilinear Coordin.ates e, J ~, 'T in terms of 
Gauss integration points 

Determine the Jacobean matrix [J] and calculate I 
oP/ox, "?JP/'flY/~P/~zJ and I [JJ I -.J 

F - - - - - .- - .. - - -I NsERT 
- I MotJlF Ie 'ION 

Determine [B~ [D) [B] or ·Equivalent _I FIG. 36(b) 

33 35 

3,' 3'4 

2·2 

3·2 

Fig.3,6(a) cont . 
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20 NOOE ISO PAR)\METRIC STIFFNESS AND lOADING 

MATRiCes FLOW DIAGRAM (Continued) 

3-1 
35 

2·2 

1 :t:8 
3'f4 . ,~ 

B , 

-- f 

Determine [B~ [OJ (£o} for initial Thermal Str~ 

Sum [B~ [D] [B] am [BT] [DJ (co} Ter:] 
I 

7 
--, 

Determine surface on which pressure is appt ied ~ =! 1 J and value of pressure at Gauss ~int p 

v~ am ~ Calculate Vector Vz' normal to vectors 

Vz' = V~ x V,? 

~ Sum P (~ I ~ I ~) yz' p I 
Calculate lA-~ T[[B~~J [SJ [A-~ 

7 4 s 

:8 
Calculate [A-~ T[[~T[q{E~ Calculate [A-]T~(~ '~'7) yz'p· 

I 
'I 

---------~ - ."'-- ... 
"-"" 

MERGE Algorithm sums stiffness and lead ing matrices 
, . into total structure matrices 

Fig.3.6(a) cant. 

3·2 
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THICI, SHELL PARAMETRIC FINITE ELE1v1E~lT --_.,.-._ .. ,. 

Extra Portion of Flow Diagram to be added to Fio.3.6(a) 
------------------~------------- --'--'-

Construct a Unique Set of Orthogon2! Axes 
A A " " A A " 

Vx' -= VI!" Vz' -= VF., x Vrz ' Vy'::: yz' X Yx' 

[ ~ ] -= [v-x" v-y" ~z'J 

Transform [s] Matrix into Orthogonal Axes 

[s'] -= [eT][s][eJ 

Fig. 3.6(b) 

TRANSITION PARAMETRIC FINITE ELEMENT 

Extra Fbrtion of Flow Diagram to be added to Fig. 3.6(0) 

I 
Transform -Stiffness and Load ing Terrns 
assoc iated with nodes 13 and 15 into Global 

then Local Axes if applicable 

tvbdify Stiffness and Loading Terms 

Null appropriate Rows and Columns 

Transform Stiffness and Loading Terms 
back to Element Axes 

Fig. 3,6(c) 
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8ern("J."t Top-olQ.9Y.J.9.I QuadrotJf r~g[Qrc~2Jri~ 

Finite 8_~fnents 

1 

Iso Rctrametrk: oil9 Trc.n_?Jtion Po.ra!"lJ.etric 

Finite Eiemer. is 

6 

2 

Thick Shell Paramztric Finit~ Elernen.i 

1 

Fig 31 
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rJrc'ccu' ri,-- nr~ "1"1-,;(\, (\t!'!;'l,-!""!" ~ .. ) ... :') , ~ _, '\... \...1 .! It •. \ . ~ .. .• '.....' \:..~ __ . ___ . ____ ~_.~ ______ ~_._. ___ • _____ • J • .•. ___ . ___ _ 

2 ~ I' 

10:::6" OD:::8" Pressure:::1000 lbUin--
1 
Scclor::~:>j'i , . ,~ 

Stress 

lbf Iin2 

3000-

2000-+,-,---------1--.. -.-.--------1 

3 3.5 II 41/ 

3' 

Radius 

Radial Stresses 

3.5" Radius I, 
~ o _!il~,---_____ . --'----------- .-::.:.~). 

?-' 

Stress 
lbf Iin2 

Key 

x-x Lame sotution 

G-G Linear !soparcrnetric F.E. solution 

+ - .,- Quadratic . , II .. 
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pressuri~, ~~ ~LJ-hi:l~ ~\~.l)ll_d s:r 
2 1 D 

ID=6", 00 :::8", Prcs:::ul'c =10CO IbUin I Seclo;·:.::~) /2 

400°1 

Stress 
lbf/in2 

3000 

. , 
x 

2000-3'~1/----'----')"T'~--,-, -------~4'r 
,).:) 

Radius 

Radial Stresses 

3' 3.5" Redus o :~~ _________ ---l-___ . ___ • ___ ..,..:: 

Stress 
lbflin2 

Key 

x-x Lame solution 

0--0 Quadratic Thick Shell Pararnetric F.E.solution 

+-+ " Iso parametric FE. solution 

Fin ~. R(b) 



4000 

- 214 -

Pressuriszd 1biclsJ;::ylind_~lqs~aU~g.Q. 

QY 3 IsoRo.rS-llnetric Finite .Elernents 

Hoop Stresses 

Exact 
SOlution __ --It--_w_---".---\o_ w-_oo: 

-_. -------------- --- - -- --------------- - - -------------- -
II 

R=3·0 

3000 4'---- - __ --W--lI:--Jlr----·c-e--- " 

lbfl- 2 In 

2000 

-1000 

R=3·5 

4'--1< "--It--""-:-----. _. __ ._-----. --_._ .. - -- X'---,!-

R=4·0" 

R::l.dial Stresses 

--- ------------------------------- ----------- -- - ---
III • a: - JIC __ • R=3.5-

I._-"-__ II __ --W--_-lC ___ -'W ___ -

------------ -------------- ---------------_._--
1'""_'" a" n-j· 

Fig.3.9(a) 
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Pressuris~d Thick Cylinder Idecli~.2d 

W 3 "Tbid< SheU"Poranletric 

Finite Elements 

t II 1/-1 /1 

10OOlbf'irC / ,~ 

4000 

3000 

lbfl 2 In 

2000 

'" -:~ 
I 

,. ......., 

Hoop Stresses 

Exact 
Solution 

... -
--.--.- oe __ • __ -.-_" R=3 0" 

• .. • .---.. .. _-
R=3.5

1i 

.. - -" ... 11 - --_. .. ". " II .- I. 

R=4·0 

Radial Stresses 
0° 30° 60° 90° 

O~--~----r----~---+------------i--- _ 
R=4·0 

---. · II--ar--, --.. R=J5" 

-1000 .... ---.--11--.. ----,--,.- I' 

~~=JO 

Rg3.9(b) 
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Thick CyD~?rJQea!ised ~ IS.9Rf -,1[(Jrnetric , 

Tran..~tion and Thick sr~-dt Parornetric ----------------"-
Finite Elements 

f ft' 1/ !" 
1000lbf/irf / ./ 

/ /'" 
/ -' 

/ -- 1 lsoparamztric 
2 Tr-uIl::-.ition 

¥ 

4000 

3000 

3 Th ick Shell 

Hoop Stresses 

Exo.ct 
Solution 

--R=3-0" 

-: ;;.;--_. ---..;..-: __ I --... ~--:3.5:.' 

lbf/in2 ~ __ ... --t ___ ... _~t 
-'I 
R::;4·0 

Thick Shell--Transition -lsoparametric 
2000 

Radial Stresses 

o (j 3()~ _" --2(t 90° 
_---!::~~~_~ __ .t:...: .. =~+-~----"':::";i ... ,,~- " 

• .......--- R::.4·0 

.----·R=3·S-

-1000 
__ . ___ /""--":-n .' 

w 

-II 

-- " ~lO 

Fig.3.10 
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C~i r)' ,'\: 1';.\ ('":' ~". /\'" I I •. ~, '_ \' . _, I .. - , ,. ~ , , ... ~ " 1 
-.~ .- .--- ..... _-_ ..... , .. ~ . . ---.-

r
----·-· .. _-"-, 

C.'" f':{T I 
0 .. '" ". I -... ~ ,.~ . '--.... ... ~. 

t------------ .. - '--. ----- .... ",' 

Fig, it'l 
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Fl·"'. I· ..... f ..... \ -0. ·1/ .. \·;./ 
-' 
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r I ,~. ,I r'l ~("''1 \' A F--"n ~, ' ',\- 1)1;- .,L~ i-\h/' -I)e" '._ J • . /. \. ,I ' •• 1\ 

f ' ,- r, r I" -, I' ! ( .. , ! • 

1.'·1 ;_'"~ 'h'tl ;-,'\/1 l,('i\;':-'-': 
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FLOW DIAGRAM FOR BACK-SUBSTITUTION ALGORITHM 

I START I 

Peripheral Algorithm READ ATRANS BACKWARD 

Check information in ATRANS to discover if any -degrees of freedom are just active 

Calculate the Displacement 

Check Number of READs from Backing Store 

If too large EXIT 

, 

Check Number of Displacements found 

I Print I 

r Return I 

Fig. 4·3 



" 

" 

FLOW O\AGRAM Fffi FtRlPHERAL HANI11NG ALGffiITHM 

I STARTl 
1 

. -. . _-- ~ Check Mode : .. 

1 1 
BacKward For;~ Check Mode ~ 

WRITE ATRANS 
to Sufier 

I Has Butfer been No Has Buffer been No 
Fully accessed 

Is Buffer Full 1 No Fully accessed 

I I Refitl Buffer from 
WRITE Buffer to Backing Store Refill Butfer from 
Back Store stepping stepping Forward Backing store 

Forward stepping Backward 

IV 
~ 

READ ATRANS fran READ ATRANS from 
Buffer Buffer 

. 
J Retum l 
1 I 

Fig. 4·4 

• 
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Simple Examnle without Reouction nata. 

CPDDC ARRAY 

. . 

Node Global Co-ordinates 
X y Z 

1 0.000 2.000 0.000 
2 0.000 3. 0 00 0.000 

3 0.000 4. 000 0.000 

4 1.000 1.732 0.000 
5 1.50 0 2.5g8 0.000 
6 2.000 3.464 0.000 

7 1.732 1.000 0.000 
8 2.598 1.500 0.000 

9 3 .. 464 2.000 0.000 
10 2.000 0.000 0.000 
11 3. 0 00 0.000 0.000 
12 4·00(' 0.000 0.000 

Stiffness matrix before solution 

S" 9 I~ , I 

13 --

Degroes of Freedom 
u v 
a 0 
a a 
a 0 
1 2 

3 6 5 
7 8 
9 10 

11 12 
1) 0 

13 0 

13 a 

by mntri.x invorsion 

I 

'. 
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Si~ple Example with Data for Frontal Solution 

CPDDC ARRAY 

"'6------0_ 5 

I~ 
10 -.-

Node Gfobal Co-ordinates 
X y Z 

1 0.000 2.000 0.000 
2 0.000 3. 000 0.000 

3 0.000 4. 000 0.000 

4 1.000 1.732 0.000 

5 1.500 2.598 0.000 
6 2.000 3.464 0.000 
7 1.732 1.000 0.000 
8 2.5g8 1.500 0.000 
9 3.464 2.000 0.000 

10 2.000 0.000 0.000 
11 3. 0 00 . 0.000 0.000 
12 .1. 000 0.000 0.000 

ELm,lENT TOFOIDGY ----- . 

1 4 2 5 
" 5 " 3 6 '" 
4 7 5 8 
5 8 6 9 

i. 

7 10 8 11 
8 11 9 12 

II 

I~ I~ 
II --

Degrees of Freedom 
u v 
0.000 0.000 
0.000 0.000 
0.000 0.000 
1.020 2.020 

3· 0/lo ~.040 
5. 020 .020 
7. ()20 8.020 

9. °4 0 10.040 
11.020 12.020 
13.020 0.000 

13. 03 0 0.000 

i3· 01O 0.000 

Fig·4·5(b) 
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~ctivity and Reduction of eouations for Frontal ~olution 

aoplied to the Si~e Exam~F Fin. 4.5 (~ 

Positions of Degrees of Freedom in Stiffness Matrices 
, , 
A~ 

1 2 3 4 Activity Vector for Element 1 

i~o degrees of freedom reduced out 

1 2 3 4 5 6 Activity Vector for Element 2 

No desrees of freedom reduced out 

1 2 3 4 5 6 7 8 9 10 Activity Vector for Element 3 

1 2 Redundant degrees 0 f freedom reduced out 

1"1 12 3 4 5 6 7 8 9 10 Activity Vector for Element 4 

3 4 5 6 Redundant degrees of freedom reduced out 

11 12 13 7 8 9 10 Activity Vector for Element 5 

7 8 Redundant degrees of freedom reduced out 

11 12 13 9 10 Activity Vector for Element 6 

11 12 13 9 10 Redundant degrees of freGdom re(luo?d out 

....... ··I;~Jxin"A .. , inst.lnt:1neOus size = 10 

Transfpr v~dor ,,\ Tr'li\f'~(L 

, , 
At point A ATRANS contains 

r---r- -r- I" -r---r--i 0 r r r~'T-~--[ 
L? ._1 _ 2 i_~ _. __ ~j~ __ L 0 _? .J _ .--~--I_~_~ __ L ___ J 
indicating nowly active degrees of freedom. 

~';hen a degree of freednm is tJdng reduced out ATRANS cont::lins 

vlhe:l.'e i. <.;i'les t~e posi ticn of tilt) dog:rec of freedom being reduced out, 

idE t.he degree of freedom, iel the In;:Jxi!i!l..:m i!1st::,nb->ne"lus size, 

ilo the number of lauding cClnditions, 

Kij gives the stiffness term in ro'll i, colun:rl j, 

and ~ij gives the lOJding torm in row i, column j. 
Fig. 4.5 (c) 
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Activity and Reduction of enudtions for Frontal Solution 

applied to the Sir.Qle EXqffiRle of F~ 4,5 (b)~ 

Y.odi fied El~)lJ}nnt Ordpring. 

The Elements are called in the new order 

1 - 3 - 5 - 2 - 4 - 6 

by modifying the element topology. 

.£lHJiIiT TOPOLOGY 

1 . 4 2 5 

4 7 5 8 

7 10 8 11 

2 5 3 6 

5 8 6 9 

8 11 9 12 

Positions of Degrees of Freedom in Stiffness Matrices 

1 2 3 4 Acti vi ty Vector for Element 1 

No degrees of freedom reduced out 

1 2 3 4 7 8 9 10 Activi ty Vector for Element 3 

1 2 RedundJnt degreos of freedom reduced 

13 3 4 7 8 9 10 Activi ty Vector for Element 5 

7 8 Redundant degreps of freedom reduced 

13 5 3 4 6 9 10 Activi ty Vector for E le~nen t 2 

No degrC?Gs of i:'eedom reduced out 

13 5 3 4 6 11 9 '10 12 Activity Vector for Element 4 

5 3 4 6 Rc .. dundi3nt degrees of freedom reduced 

13 11 9 10 12 Activity Vector fOl' Eleri1ent 6 

13 ·11 9 10 12 RedunG':lfl t cegreE's 0 f freedor,l reduced 

-_ .... r.~ax irnum in s t2r.t~ln eous size = 9 

out 

out 

out 

out 

Fig. 4.5 (d) 



- 226 -

AccumulaUon of C re.ep Strain. 

lin':e Hardzn:ng laN 

Strain 

lime 

Strain Hardening Law 

Strain 

lime 

Life- Fracture law 

Strain 

... 

"''''' ... ~ 
_ ._'t.~" ......... -~ '.., ------ ... 

~ LOOJS of 
Rupture 

lime Fig. 5,' 
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ICON = 2 
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CREEP LOGIC FLOW DIAGRAM. 

F. E. ANALYSIS 

SOLUTION 

ICON = 0 

STRESSING & CREEP 

STORE TOTAL DISPLACEMENTS 

LATEST CORRECT TOTAL DISP. 

," -CA-LC~LATE - D1SP CONSTANTS 

FORM STRESSING I" ICON = 1 ICON = 0 

I I II ~----'---1 
r-'-----~ 

REDUCE t:A T ...... ---I ~cr---r----<'-- ~~ ___ --II 

CALC & STOR~~ c ___ .... ~ 

ICON = 2 

ICON: 0 
tCON = 1 
ICON: 2 

Initial Sol n 
Incremental Check 
Incremental Sol D. 

• 
I 

ICON = , 

Fig.5·2 



L" ___ ---:--" L __ T_ltv_!~~\X __ .< IME 

) >TIMMA'< 

CpRii~-T--·~ 

[ ST£-~=:J 
Fig. 5.3 
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CREEP LCG1C FLOW Qi!{)~~}i 

RNITE -ELEMENT ANALYSiS a-J 
INn 1/,'--_ ~~JA~~(; _~JNDiTIO!\~ 

- ______ 1 ____ ._. ______ _ 
GENEliAL eREcT) AND SlHESS1NG KOUTII'J[ 

[SET K::6"}·-----

~ 
____ ---L-- ----J 
RESET DISPLAC8vlENTS FRCi;v1 

~ ____ ~:~ST CORREC~_~AL DISFtACEt\~~~~ 

~_--llfSTEP THROUGH ELEMEN-i- TYFES IN THE] 
SNviE ORDF.R AS T~-l[Y ARE GJ\jERA lED 

_______ '--_________ ~~ _ _1_ _ _ _ _ __ _ _ ___ -_~-!-~~-=~ _____ . 
ELEtviENT STRESSING AND CREEP riGUTINES I 

.. L ~_ ] 
~JLiI.TI: DI5PLA~EMEi'-lT COE:r'flCIENTS 

~~S_Mr:~H I 
CALCULAT[ --STRESSEs'-1 

1,=0 
K 

[CHE~t~~(,~~ ~AT:~ SET K=2] 

...-__ ,-L___ 1_ .. 

SET TIME POSITlON ON CF<EEP CURVE 
STRA1N H~DENIi",lG OR TIME H;\HUENING 

---r---
---L.----::-l I CALC~~LATE' 6£c 1 

I '-------_._---..., 
, L [GENERA_TE F~~Ui~'.L-~l-E-N-T -NOD.t>l FORCES 1 : 
: ---------1 ~ I 

: .. ---- ------ -- -- -- ---~;G2 ------r--- - -~~----LJ 
K - 1_~5-~~~l~i~_. ~~:r~:~ 

ELEMENT TYPES '--------_.- -'-~-l 

Fig.5/. 
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CRf.~P lOGle FLOW D1AGRAM(cql{llN~EDl 

I -- I 

SET K=l J 
INCREASE l1TIM 

UPOA TE LAST CORRECT D!SPLAC8v1ENr.~_ 

FIND DISPLACEMENT INCREMENTS-FORl
j EQUiVALENT NODAL FORCES 

~---- ---------

FORM NEVV SET OF D1SF)lACElviEN TS 
FROM DISPLACEMENT INCREMENTS 
AND LAST CORRECT D!SPLACEME NTS 

Fig. 54(cont) 
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Stress Di_stritutt,on....in a Beqm Subjecte.~tj9 (~. Con?.1(~,CJt 

Bending Mornent 

Stresses above Neutral Axis 

Bearn span 10 
II 

., ,. 
Section 6 x 2 
E = 1·41 x 106 lbfl in2 

Creep law . 
e;.:: ~.68(ecrI7500_1)tO.372 

105 

.AD" =0.01 
cr 

N.A. ~·~~--------------,r-----------.------------------4 
o 5000 10000 1500C 

Stress on fibre lbf/in2 

o hrs. solution 

,,-' -10 hrs. Time Hardening solution 

-+-100hrs. " 01 ., 

- -'': ~'-\or. '" '. S I ~~IV V/II .' 

- - - x - -1000hrs Strain 

" 

" 

_. -- . ·-5teady State solution 

,. 

" 

Fig 5.5(0) 
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Subj(zcted to a C:Jnstant Bending ~~oril~~nt -- .,~- --~------.-------- --~------

-{)12 ---
'010 Finite E[emen~ 

Solution 

'008 ~' 

(/) , 
~ Steady State ~ Creep .£ u 

.. t; ·006 Equatio!J- . Deflection 
c ~ 
0 ~ :+::'j 

~ 
:;::: ·004 --------------- - -- .- - - - -
~ 

0 

Elastic 
·002 Deflection 

·004" 

0 I --1 

a 1000 2000 

Time in Hours 

Fig.5.5(b) 



Outside Diameter HOOR Strains 

in Thick Ring~ / 

·0·3 
/x 

1.0.=1.125" OD.=3.875" p=10001bflin2 /' ..#'~ 
E=3.05x1061bflin2 u=0·430 // :..--~~/ c 0·2 

€c=3.0~()"5.46(tO.39<0.106t) £~ 
0.. 1 ()l . .i ~. ~ 
o 0.1 .... · ~~ 

'E ....., 
ll) 

o ______ x , ~ 
L x 
o ~ 

-0 t -=+ ~~,/ 
~ 0.04] ~/'---
- I o 

0·02 t--

0·01-, -----. 
0·1 i·e 

Tirr'r.? Hr'-' i > (" .::J. 

Finite Elzment Solutions 
-I=) 

Starting time 10 '""Hrs . .6<J!CJ=O·01 
10-3" " .. 1 rirs. C-I 

Computer Res~[ts (~ef. 65) 
---.. - fr' . . 1 '" n ..-, _ +.. ,f ~ ____ !{ \. ,..:J<i--'el !men~Q 

I 

10 100 

F· - c. 
19';)·0 

f\) 
w 
W 

I 
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Thick Pre;::sLiriseq~ylin(t~ 

axis of 
cylinder 

I 
p 

, 

t,: 
t

~~L 

.--

... 
0-18 '.'. - ~ 

0.21
11 

0.25
11 ... 

3 x 20 noded solid Isoparametiic elements over 90
0
arc 

Internal Pressuie p = 3651bf/inl. 
Young's Modulus 2x1071bflin2. 
Poisson's Retia 0-450 

0-lB 4·4 Ec=6·L• x1 cr t 

LO o 
r- 1-5 
X 
ell 

.f; 
-t--J 
C 
~ ,·0 
E 
~ 

15.. 
~0.5-
:g 
"8 
0: 0-+---

o 
I 
1 

Tin1e Hrs. 

Inside Radius 

Outside Radius 

---F.E.Solution(Ref 58) 
Present F.E.Solution 

I 
2 

Fig5.7(a) 
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