hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshesTools Cangiani, Andrea, Georgoulis, Emmanuil H. and Houston, Paul (2014) hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshes. Mathematical Models and Methods in Applied Sciences, 24 (10). pp. 2009-2041. ISSN 0218-2025 Full text not available from this repository.AbstractAn hp-version interior penalty discontinuous Galerkin method (DGFEM) for the numerical solution of second-order elliptic partial differential equations on general computational meshes consisting of polygonal/polyhedral elements is presented and analysed. Utilizing a bounding box concept, the method employs elemental polynomial bases of total degree p (P_p-basis) defined on the physical space, without the need to map from a given reference or canonical frame. This, together with a new specific choice of the interior penalty parameter which allows for face-degeneration, ensures that optimal a priori bounds may be established, for general meshes including polygonal elements with degenerating edges in two dimensions and polyhedral elements with degenerating faces and/or edges in three dimensions. Numerical experiments highlighting the performance of the proposed method are presented. Moreover, the competitiveness of the p-version DGFEM employing a P_p-basis in comparison to the conforming p-version finite element method on tensor-product elements is studied numerically for a simple test problem.
Actions (Archive Staff Only)
|