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Abstract

This thesis is concerned with the development of a general method to compute

renormalised local observables for quantum matter fields, in a given quantum state,

on a rotating black hole spacetime. The rotating black hole may be surrounded by a

Dirichlet mirror, if necessary, such that a regular, isometry-invariant vacuum state

can be defined. We focus on the case of a massive scalar field on a (2+1)-dimensional

rotating black hole, but the method can be extended to other types of matter fields

and higher-dimensional rotating black holes.

The Feynman propagator of the matter field in the regular, isometry-invariant

state is written as a sum over mode solutions on the complex Riemannian section

of the black hole. A Hadamard renormalisation procedure is implemented at the

level of the Feynman propagator by expressing its singular part as a sum over mode

solutions on the complex Riemannian section of rotating Minkowski spacetime. This

allows us to explicitly renormalise local observables such as the vacuum polarisation

of the quantum field.

The method is applied to the vacuum polarisation of a real massive scalar field

on a (2+1)-dimensional warped AdS3 black hole surrounded by a mirror. Selected

numerical results are presented, demonstrating the numerical efficacy of the method.

The existence of classical superradiance and the classical linear mode stability of the

warped AdS3 black hole to massive scalar field perturbations are also analysed.
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Notation

In this thesis, we use metric signature (−,+, · · · ,+). For the majority of the thesis,

we use units such that ~ = c = G = kB = 1.

We will use abstract index notation, as presented in Section 2.4 of [4]. Greek

indices µ, ν, etc. refer to tensor components with respect to some coordinate basis,

whereas abstract indices are Latin indices a, b, etc. and are used to denote tensor

equations which are valid in any basis.

The Riemann tensor, in a coordinate basis, is given by

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓµνρ + ΓλνσΓµλρ − ΓλνρΓ

µ
λσ ,

and the Ricci tensor is defined by Rab = Rc
acb.

The complex conjugate of a complex number z is denoted by z. The adjoint of

an operator T acting on a Hilbert space is denoted by T †. If A and B are sets, then

A ⊂ B means that A is a subset of, or is included in, B.

Other notation and mathematical conventions are introduced in Chapter 1.
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Introduction

It would be an understatement to claim that the main principles of fundamental

physics were completely overturned during the last century. At the time of writing

up this thesis, the formulation of general relativity by Albert Einstein, which revo-

lutionised the notions of time and space and replaced Newton’s laws of gravitation,

is celebrating its 100th anniversary. Moreover, starting during the 1930s, quantum

field theory provided a new theoretical framework to understand the elementary

constituents of matter and their interactions, which has culminated with the stan-

dard model of elementary particles in the 1970s. These theories have enjoyed a

remarkable degree of experimental success and have allowed us to describe almost

every single observation made to this day.

In spite of these major achievements, there remains a very important theoretical

gap in our understanding of fundamental physics: in their current versions, general

relativity and quantum field theory are not compatible and, as such, there is not

currently a quantum theory of gravity. It has been proven prohibitively difficult to

describe the gravitational field in the framework of quantum field theory, a strategy

which was successful with the electromagnetic, weak and strong nuclear interactions.

During the last few decades, there have been several proposals for a theory of

quantum gravity, most notably string gravity and loop quantum gravity. String

theory claims to provide a unified description of the elementary particles and in-

teractions, including the graviton and the gravitational interaction, having as the

most basic physical constituent a one-dimensional object called a “string” [5]. Loop

quantum gravity attempts to describe the structure of spacetime as consisting of

1
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networks of finite loops, the so-called “spin networks” [6]. Other approaches include

asymptotic safety [7] and causal dynamical triangulations [8].

One common feature of all these proposals is that they reduce to descriptions

of quantised fields on classical curved backgrounds for energy levels way below the

Planck scale,

EP =

√
~c5

G
≈ 1.22× 1016 TeV ,

where ~ is the reduced Planck’s constant, c is the speed of light in vacuum and G is

Newton’s gravitational constant. The relevant regime for a full theory of quantum

gravity is the one with energies of the order of the Planck energy or above and it

concerns extreme situations such as neighbourhoods of black hole singularities and

the Big Bang itself. On the other hand, the current limit of high energy experiments,

such as the ones carried out in the Large Hadron Collider in CERN, is of the order of

10 TeV, about 15 orders of magnitude below the Planck scale. Therefore, for energy

scales much smaller than the Planck scale it is natural to expect that the quantum

effects of the gravitational field are negligible and that a description in which only

the matter fields are quantised and the spacetime itself remains classical and fixed

should provide a very good approximation to physical reality.

We can then think of quantum field theory on curved spacetimes [9–11] as a first

step in the direction of formulating a theory of quantum gravity and an immediate

generalisation of standard quantum field theory on flat spacetimes. The effects of the

matter fields on the background geometry are ignored and, as such, the spacetime

is fixed. We may improve the theory by including the backreaction effects of the

matter fields on the background, which is the realm of semiclassical gravity. Now,

the spacetime is not fixed and its dynamics is given by the semiclassical Einstein

equations,

Gab =
8πG

c4
〈Tab〉 ,

where Gab is the Einstein tensor and 〈Tab〉 is the expectation value of the stress-

energy tensor of a matter field in some quantum state, which acts as the source
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term. The computation of this local observable is then paramount in this frame-

work. However, the stress-energy tensor is quadratic in the field operators, which are

mathematically operator-valued distributions in the spacetime, hence, a renormali-

sation procedure is necessary to remove their short-distance singularity behaviour.

We will return to this important point below.

Similarly to quantum field theory on curved spacetimes, semiclassical gravity

breaks down at the Planck scale. But it also breaks down when the fluctuations of

the stress-energy tensor become large, in which case the expectation value 〈Tab〉 is

no longer a good fit for the source term of the semiclassical Einstein equations. One

expects that a new term encoding the stress-energy fluctuations should be added

to the source term. A self-consistent approach to extend semiclassical theory to

account for these quantum fluctuations is stochastic semiclassical gravity [12]. This

theory can be considered yet another step in the direction of quantum gravity.

In this thesis, we will focus on the framework of quantum field theory on curved

spacetimes, with the intent of applying it to rotating black hole spacetimes. Histor-

ically, the study of quantum field theory on black hole backgrounds has mostly been

restricted to asymptotically flat spacetimes, due to their relevance for astrophysics.

Perhaps the most famous result is the celebrated Hawking effect [13], by which a

black hole formed by stellar collapse emits thermal radiation. Recently, some atten-

tion has also been devoted to asymptotically anti-de Sitter (AdS) spacetimes, due to

the AdS/CFT correspondence [14], but usually only in the classical regime, as this

is sufficient in the context of the AdS/CFT correspondence, and hence few attempts

have been made to study quantum field theory on these backgrounds.

Besides the characteristics of the asymptotics of these black holes, a major part

of the research has addressed static, spherical symmetrical geometries, where the

isometries can be used to simplify computations. It was also in this setting that

the first explicit calculations of renormalised local observables for a matter field on

a black hole were performed, such as the vacuum polarisation and the expectation

value of the stress-energy tensor [15–20].
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Static, spherical symmetric black holes have two key properties that can be

utilised in the computation of local quantum observables. First, as we shall describe

in detail in this thesis, for static spacetimes one can make use of the so-called

“Euclidean methods” to simplify the computation of certain quantities such as the

Feynman propagator for a given matter field. For instance, if one considers a scalar

field Φ, its Feynman propagator associated with a vacuum state |0〉 is defined as

GF(x, x′) := i 〈0|T (Φ(x)Φ(x′)) |0〉 ,

where T is the time-ordering operator. The Feynman propagator takes a crucial role

in the renormalisation of the vacuum polarisation, 〈Φ2(x)〉, and of the expectation

value of the stress-energy tensor, 〈Tab(x)〉. The Euclidean method allows us to

consider the Riemannian (or “Euclidean”) section of the static spacetime (by means

of a Wick rotation) on which the Green’s distribution associated with the matter field

equation is directly related to the Feynman propagator evaluated for a well defined

state which is invariant under the isometries of the spacetime. In the specific case of

a Schwarzschild black hole, this state is known as the Hartle-Hawking state [21]. The

Green’s distribution is unique, due to the ellipticity of the matter field operator in the

Riemannian manifold, and its computation may be done using standard techniques

of the theory of Green’s functions.

Second, and directly related to the previous point, a state like the Hartle-

Hawking state in a Schwarzschild black hole is well known to exist for static black

hole spacetimes [22]. Therefore, the method described above leads to the Feynman

propagator evaluated for such a state, after which the renormalisation procedure can

be applied to obtain the desired local observable. If we want the local observable to

be evaluated with respect to another quantum state, it suffices to use the regular,

isometry-invariant state as a reference and calculate the difference, which is finite

without any further renormalisation.

Having said this, there have been attempts at considering stationary, but non-

static, black hole spacetimes, with the main focus on Kerr [23–29]. In particular, the
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computation of the renormalised expectation value of the stress-energy tensor has

proven to be very challenging and, so far, almost all calculations have only addressed

the differences between expectation values for different quantum states [28, 29] and

the large field mass limit [30]. A notable exception is [31], where the stress-energy

tensor for the rotating BTZ black hole in 2+1 dimensions [32,33] was renormalised

with respect to AdS3, by using the fact that the black hole corresponds to AdS3 with

discrete identifications, but this method cannot be used for more general classes of

rotating black holes.

In comparison with the static, spherical symmetric case, we may summarise

the main difficulties to compute renormalised local observables for matter fields on

rotating black hole spacetimes in three points:

(i) the non-existence of generalisations of the Hartle-Hawking state, i.e. a regular,

isometry-invariant vacuum state;

(ii) the unavailability of Euclidean methods to simplify the computation of quan-

tities such as the Feynman propagator;

(iii) the technical complexity of the computation to the lack of spherical symmetry.

In this thesis we address each of the above points and provide a method to

explicitly compute certain classes of local observables for quantised matter fields on

a wide variety of rotating black hole spacetimes.

Concerning point (i), it has been shown that the Hartle-Hawking state for a

scalar field in the Schwarszchild spacetime does not have a generalisation to the

Kerr spacetime [22]. As reviewed in [27], this is linked to the existence of a speed

of light surface, outside of which no observer can co-rotate with the Kerr horizon,

which does not exist in the Schwarszchild spacetime. An heuristic way to understand

this point is to note that an observer on Schwarzschild co-rotating with the horizon

would perform measurements with respect to the Hartle-Hawking state, which is, by

definition, regular at the horizon. However, on Kerr, such observers cannot rotate
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with the same angular velocity as the Kerr horizon at and beyond the speed of light

surface, as their worldlines would become null or spacelike. Given that the notion

of a quantum state is a global notion, there cannot be a state which is regular at

the horizon and defined everywhere in the exterior region of the black hole.

One way around this problem is to restrict the spacetime on which the matter

field propagates so that it does not include the region from the speed of light surface

to infinity. This can be done explicitly by inserting an appropriate timelike boundary

which respects the isometries of the spacetime. The simplest example is a bound-

ary on constant radial coordinate at which the matter field vanishes, i.e. Dirichlet

boundary conditions are imposed. We shall often call this boundary a “mirror”. If

the boundary is located between the horizon and the speed of light surface, then a

vacuum state which is regular at the horizon and invariant under the isometries of

the spacetime may be defined [28].

Regarding point (ii), the Euclidean methods used for static spacetimes to com-

pute quantities such as the Feynman propagator, by performing the calculations on

the Riemannian section of the spacetime, cannot be easily generalised to rotating

spacetimes, since, in general, such a Riemannian section does not exist. This is the

case for the Kerr black hole [34]. Note further that, even if such section with a posi-

tive definite metric existed, the Green’s distribution associated with the matter field

equation could not be related with the Feynman propagator evaluated for a regular,

isometry-invariant vacuum state on the original spacetime, since such a state does

not generally exist, cf. point (i).

Nevertheless, even though Kerr and other rotating black holes do not admit a

real Riemannian section, the portions of their exterior regions between the horizon

and the mirror we introduced previously do admit a complex Riemannian section,

which is obtained by means of a Wick rotation, but with no further analytical

continuation of metric parameters [35–37] (a precise definition will be given in this

thesis). The metric of the complex Riemannian section of the rotating black hole

is complex-valued and the matter field operator is no longer elliptic as in the static
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case. However, analogously to the static case, the Green’s distribution associated

with the matter field equation which is regular at the horizon and satisfies the

Dirichlet boundary condition at the mirror is unique and can be related to the

Feynman propagator evaluated for the regular, isometry-invariant state.

Both in the static and stationary cases, the Green’s distributions on the Rie-

mannian sections are obtained as discrete sums over mode solutions of the defining

differential equations. These sums are not convergent and a renormalisation proce-

dure is required in order to subtract their short-distance (or high-frequency) diver-

gences. An important property of these Green’s distributions, and which is the basis

of the so-called Hadamard renormalisation [38–40], is the fact they can be decom-

posed into a purely geometric part, which is singular in the coincidence limit, and a

state-dependent part, which is regular in the coincidence limit. The idea is then to

subtract the singular, purely geometric part, after which the renormalised local ob-

servables of interest, which involve the coincidence limit of the Green’s distributions,

can be obtained.

Yet, this is easier said than done. The singular part of the Green’s distribu-

tion is known in closed form for spacetimes of any dimension [40], whereas the full

Green’s distribution on a stationary spacetime is known only as a sum over mode

solutions. It is, however, a highly non-trivial task to express the singular part of

the Green’s distribution as a mode sum, such that the short-distance divergences

can be subtracted term by term. The strategy implemented in this thesis is to

express the singular part of the Green’s distribution as a sum over mode solutions

on a spacetime for which the Green’s distribution is known both in closed form (in

terms of known functions) and as a mode sum, such as the Minkowski spacetime.

This technical point will be fully explored in this thesis and we will argue that only

the asymptotic approximations for the mode solutions for large values of the sum

indices are needed in order to perform the subtraction. This is especially impor-

tant for Kerr and higher-dimensional black holes for which the mode solutions have

to be constructed fully numerically. In this way, one can remove the divergences
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of the Green’s distribution for the rotating black hole spacetime and compute the

renormalised local observables.

It remains to address point (iii) on the technical complexity of the computa-

tion. This is clearly manifest, for instance, on the fact that the partial differential

equations describing matter fields propagating on Kerr can be separated into two

ordinary differential equations, a radial and an angular part [41], whereas only the

radial part is necessary for fields propagating on Schwarzschild. In order to de-

scribe the method to compute local observables on rotating black holes discussed

in this thesis without superfluous technical details, we will focus on rotating black

hole spacetimes in 2+1 dimensions which are solutions of Einstein gravity or other

modified theories of gravity.

(2+1)-dimensional gravity provides a convenient area to explore several aspects

of black hole physics and quantum gravity [42]. Research on this field greatly in-

creased after Einstein gravity in 2+1 dimensions was shown to be equivalent to a

Chern-Simons gauge theory [43,44]. The main advantage of focusing on this lower-

dimensional setting is its technical simplicity and, in particular, the fact that many

of quantities of interest can be obtained in closed form, such as the mode solutions

of matter field equations. Even though Einstein gravity in 2+1 dimensions is a

topological theory with no propagating degrees of freedom, it was possible to find

a black hole solution, the Bañados-Teitelboim-Zanelli (BTZ) black hole, when the

cosmological constant is negative [32,33,45]. This spacetime is asymptotically AdS,

and a vast amount of research has been done on it, partly inspired by the AdS/CFT

correspondence after the late 1990s.

If one insists on having at least one propagating degree of freedom, one may con-

sider a deformation of Einstein gravity called topologically massive gravity (TMG),

which is obtained by adding a gravitational Chern-Simons term to the Einstein-

Hilbert action with a negative cosmological constant [46, 47]. The resulting theory

contains a massive propagating degree of freedom, although at the expense of being

a third-order derivative theory. A very important property of this theory is that so-
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lutions of Einstein gravity, such as AdS3 and the BTZ black hole, are also solutions

of TMG. Nevertheless, there are also new solutions and we focus on the warped

AdS3 vacuum solutions and the warped AdS3 black hole solutions [48–52]. Math-

ematically, warped AdS3 spacetimes are Hopf fibrations of AdS3 over AdS2 where

the fibre is the real line and the length of the fibre is “warped” [53,54]. These solu-

tions are thought to be perturbatively stable vacua of TMG in a wide region of the

parameter space of the theory, in contrast to the AdS3 solution [55]. Analogously

to the BTZ black hole, the warped AdS3 black hole solutions are identifications of

warped AdS3 vacuum solutions. In the limit in which the warping of spacetime

vanishes, one recovers the BTZ black hole as a solution of TMG.

There are several reasons why the study of matter fields in warped AdS3 black

hole spacetimes is interesting on its own right. These black holes are rotating (in

fact, they do not have a static limit) and their causal structure resembles asymptot-

ically flat spacetimes in the general case and AdS in the limit of no warping (which

corresponds to the BTZ black hole) [56]. We then have at our disposal an example

of a (2+1)-dimensional black hole whose asymptotic structure is very similar to Kerr

and on which we can investigate the implementation of the method described in this

thesis in a simpler setting. Note, however, that these black holes are not, strictly

speaking, asymptotically flat, as they are asymptotic to the warped AdS3 vacuum

solutions. Another particularly novel point is that these rotating black holes do not

possess a stationary limit surface, but they nonetheless have a speed of light surface.

Henceforth, for the reasons given above, as an example on which to apply the

general method to compute the renormalised local observables on rotating black

holes, we will use the warped AdS3 black hole and consider a real massive scalar field

propagating on this background. We will see that the use of this (2+1)-dimensional

spacetime allows us to perform the calculations without having to deal with all

the technical difficulties arising in its higher-dimensional analogues, namely most

of the numerical computations — the only numerics we will need is for the mode

sums which give the Green’s distributions associated with the scalar field equation.
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However, we emphasise that the implementation of our method does not require the

knowledge of the mode solutions of the field equation in closed form, but only their

asymptotic approximations for large values of the quantum numbers.

In closing, we should also note that this method is suitable to compute a wide

class of local observables such as the vacuum polarisation of a scalar field, 〈Φ2(x)〉,

but it turns out not to be suitable for local observables such as the expectation

value of the stress-energy tensor, 〈Tab(x)〉. The main reason for this limitation is the

impossibility of expressing the singular part of covariant derivatives of the Green’s

distributions for a rotating black hole as a sum over mode solutions, or derivatives

of mode solutions, on Minkowski spacetime, for which the Green’s distribution and

its derivatives are known in closed form. As we will see in detail in the thesis, this

comes essentially from the fact that the shift function of the metric of Minkowski

written in some rotating coordinate system is a constant in spacetime, whereas

the shift function of the metric of a rotating black hole is a function of the radial

coordinate in some coordinate system. This makes the task of expressing the short-

distance singular behaviour of covariant derivatives of the Green’s distribution for

the rotating black hole in terms of the short-distance singular behaviour of covariant

derivatives of the Green’s distribution for Minkowski impossible. We shall return to

this point in the Conclusions.

Outline

The outline of the thesis is as follows. It is divided in two main parts. Part I deals

with the basics of quantum field theory on curved spacetimes, with particular focus

on rotating black hole spacetimes, and the method to compute renormalised local

observables for quantised matter fields propagating on rotating black holes. Part II

introduces the (2+1)-dimensional warped AdS3 black hole solution and uses it as

the background for an explicit computation of the vacuum polarisation for a massive

scalar field on the Hartle-Hawking state.
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Part I starts with Chapter 1, which gives an overview of the mathematical tools

used throughout the thesis, with the intent of establishing notation and stating the

necessary essential results on the causal structure of spacetimes, stationary space-

times, bi-tensors, symplectic and Hilbert spaces, distribution theory and hyperbolic

and Green operators.

In Chapter 2, we present a detailed overview on quantum field theory on curved

spacetimes. In particular, we explore the classical and quantum theories of a real

scalar field on a globally hyperbolic spacetime in Section 2.1, before focusing on sta-

tionary spacetimes in Section 2.2 and on spacetimes with boundaries in Section 2.3.

We finish this chapter with a description of the Hadamard renormalisation procedure

in Section 2.4.

Chapter 3 deals with the method to compute renormalised local observables in

rotating black hole spacetimes and constitutes the most important new results in this

thesis. In Section 3.1 we consider a massive scalar field on a (2+1)-dimensional rotat-

ing black hole surrounded with timelike boundaries (the “mirrors”) and construct

the regular, isometry-invariant vacuum state, which we call the Hartle-Hawking

state. In order to obtain the Feynman propagator evaluated for this quantum state,

in Section 3.2 we introduce the “quasi-Euclidean method” which allows us to obtain

the complex Riemannian section of the exterior region of the rotating black hole, on

which we get the Green’s distribution associated with the scalar field equation, ex-

pressed as a sum over mode solutions. In Section 3.3, we implement the Hadamard

renormalisation procedure to subtract the short-distance divergences of the Green’s

distribution. This is done by expressing the singular part of the Green’s distribu-

tion on the rotating black hole as a sum over mode solutions on Minkowski. This

culminates on Theorem 3.3.1, where it is shown that the resulting mode sum is con-

vergent in the coincidence limit. All this procedure allows us to obtain the vacuum

polarisation for a scalar field on the (2+1)-dimensional rotating black hole, but we

argue that this method can be straightforwardly extended to higher-dimensional ro-

tating black hole spacetimes. We finish this chapter by explaining why this method
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is not suitable to renormalise the expectation value of the stress-energy tensor in

Section 3.4.

Having developed the main method in the preceding chapters, in Part II the

method is applied to explicitly compute the renormalised vacuum polarisation of a

scalar field on a warped AdS3 black hole.

We introduce the black hole solutions in Chapter 4, after a brief discussion of

Einstein gravity and topologically massive gravity in 2+1 dimensions.

Before moving to the quantum theory, we first have a detailed look at some

aspects of the classical theory of a scalar field on a warped AdS3 black hole in

Chapter 5, in particular the existence of classical superradiance and the classical

stability of the black hole to scalar field mode perturbations. We conclude that

classical superradiance is indeed present, but that it does not lead to superradiant

instabilities, even when the black hole is surrounded by a mirror, which is the case

we are interested in the quantum theory. These stability results are new.

Finally, in Chapter 6 we use the method of Chapter 3 to compute the renor-

malised vacuum polarisation of a scalar field in the Hartle-Hawking state on a

warped AdS3 black hole surrounded by a mirror. Selected numerical results are

presented, demonstrating the numerical efficacy of the method.

The thesis is concluded with some final remarks about the research described

above in the Conclusions. This is followed by four appendices, which deal with

the complex Riemannian section of the Minkowski spacetime, WKB expansions,

hypergeometric functions and classical black hole superradiance.
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Chapter 1

Mathematical preliminaries

The aim of this chapter is to present the mathematical tools which will be used

throughout the thesis. It is assumed that the reader is familiar with the basic

mathematics used in general relativity and quantum field theory. The intent here

is to establish notation and present the necessary definitions and theorems, without

many details and often without proofs. Relevant references to all the topics are

provided.

1.1 Spacetime and causal structure

In this section, the basic ideas on the causal structure of spacetimes are presented,

leading to the definition of a globally hyperbolic spacetime, the usual starting point

for Quantum Field Theory. Standard references for this topic are chapter 8 of [4]

and chapter 6 of [57].

First, we start by recalling the basic definition of spacetime.

Definition 1.1.1. A spacetime (M, g, o, t) is a d-dimensional (d ≥ 2) connected,

orientable, time-orientable, smooth manifold M equipped with a smooth Lorentzian

metric g of signature (−,+, ...,+), a choice of orientation o and a choice of time

orientation t.

15
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Remark 1.1.2. For convenience, a spacetime (M, g, o, t) will often be denoted either

by (M, g) or more simply by M .

The Lorentzian character of g provides a causal structure to the spacetime M .

For each point p ∈M , denote the tangent space by TpM . The following definitions

concerning properties of tangent vectors and vector fields are standard.

Definition 1.1.3. A non-zero tangent vector vp ∈ TpM is timelike if g(vp, vp) < 0,

null if g(vp, vp) = 0 and spacelike if g(vp, vp) > 0. A tangent vector is causal if it is

either timelike or null.

Remark 1.1.4. Definition 1.1.3 can be extended to vector fields if these satisfy the

aforementioned properties for all p ∈M .

Definition 1.1.5. A Lorentzian manifold M is said to be time-orientable if there

exists a smooth global timelike vector field on M .

Definition 1.1.6. LetM be a time-orientable Lorentzian manifold. A time-orientation

t is an equivalence class [v] of timelike vector fields v where v ∼ w if g(vp, wp) < 0

for all p ∈M .

Definition 1.1.7. Let M be a time-orientable manifold and let t = [v] be a time-

orientation. A causal vector up at p ∈ M is future-directed (resp. past-directed) if

g(up, vp) < 0 (resp. g(up, vp) > 0), for any v ∈ t.

Definition 1.1.8. A smooth curve is called spacelike (resp., timelike, null, causal,

future-directed, past-directed) if its tangent vector is everywhere spacelike (resp.,

timelike, null, causal, future-directed, past-directed).

Remark 1.1.9. A timelike curve is sometimes referred to as a worldline or a observer.

Definition 1.1.10. A point p ∈ M is said to be the future (resp., past) endpoint

of a future- (resp., past-) directed curve γ if for every neighbourhood N of p there

exists a t0 such that γ(t) ∈ N for all t > t0. The curve is said to be future (resp.,

past) inextendible if it has no future (resp., past) endpoint.
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J+(U)

J−(U)

U

Figure 1.1: A set U ⊂M and its causal future J+(U) and causal past J−(U).

Definition 1.1.11. The chronological future I+(U) (resp., chronological past I−(U))

of a subset U ⊂M is the set of all points which can be reached from U by a future-

directed (resp., past-directed) timelike curves.

Definition 1.1.12. The causal future J+(U) (resp., causal past J−(U)) of a subset

U ⊂ M is the set of all points which can be reached from U by a future-directed

(resp., past-directed) causal curves (see Fig. 1.1). Their union J(U) := J+(U) ∪

J−(U) is called the causal shadow of U .

Remark 1.1.13. Let İ±(U) and J̇±(U) denote the boundaries of I±(U) and J±(U),

respectively. It follows that I±(U) = J±(U) and İ±(U) = J̇±(U).

Definition 1.1.14. Two subsets U and V of M are said to be causally separated if

U ∩ J(V ) = ∅.

Definition 1.1.15. A subset U ⊂M is said to be achronal if U ∩ I+(U) = ∅, i.e. if

each timelike curve in M intersects U at most once.

Definition 1.1.16. For any subset U ⊂ M , the future (resp., past) Cauchy de-

velopment or domain of dependence D+(U) (resp., D−(U)) of U is the set of all

points p ∈M such that every past (resp., future) inextendible causal curve through

p intersects U . Their union D(U) := D+(U)∪D−(U) is called Cauchy development

or domain of dependence of U .
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Definition 1.1.17. A closed achronal subset Σ ⊂M such that D(Σ) = M is called

a Cauchy surface.

Definition 1.1.18. A spacetime is globally hyperbolic if it has a Cauchy surface.

As it will be seen in Section 1.7, well posed initial value problems for classical

fields can be formulated when those fields propagate on globally hyperbolic space-

times. Before stating a key theorem regarding the structure of globally hyperbolic

spacetimes, the notion of a “time function” is introduced, which is also important

for the definition of a stationary spacetime in Section 1.2.

Definition 1.1.19. A time function is a continuous function t : M → R such that

−∇at is a future-directed, timelike vector field.

Theorem 1.1.20. Let M be globally hyperbolic. Then, M is isometric to R × Σ

endowed with the metric ds2 = −N2 dt2+ht, where t : R×Σ→ R is a time function,

N is a smooth and strictly positive function on R×Σ, t 7→ ht yields a one-parameter

family of smooth Riemannian metrics and each {t}×Σ is a spacelike smooth Cauchy

surface of M .

Proof. See [58,59].

Remark 1.1.21. This theorem allows us to perform the ADM decomposition of glob-

ally hyperbolic spacetimes,

ds2 = −N2 dt2 + hij
(
dxi +N i dt

) (
dxj +N j dt

)
, (1.1)

where the Latin indices i, j = 1, . . . , d− 1 are spatial indices. N is called the lapse

function and N i is the shift vector. If we denote ξa = (∂t)
a, we have that

ξa = Nna +Na , (1.2)

where na is the future-directed unit normal vector to the Cauchy surfaces andN0 = 0

(see Fig. 1.2). For more details, see e.g. chapter 10 of [4].
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ξa

Na

Nna

Σt

Σt+∆t

Figure 1.2: A surface of constant t and a surface of constant t+ ∆t, with the vectors ξa,

Nna and Na in (1.2).

In this thesis, we will also be interested in the problem of constructing quantum

field theories for certain non globally hyperbolic spacetimes, namely spacetimes with

boundaries. Therefore, we relax the causality conditions on the spacetime, but still

impose that the spacetime is stably causal.

Definition 1.1.22. A spacetime (M, g) is stably causal if g has a neighbourhood

(see [57] for a precise definition) so that any spacetime (M, g̃), where g̃ belongs to

such neighbourhood, does not contain any closed timelike curves.

In other words, we require that arbitrarily small perturbations of the metric of

a stably causal spacetime does not lead to spacetimes with closed timelike curves.

Furthermore, the following can be shown.

Proposition 1.1.23. A spacetime (M, g) is stably causal if and only if there is a

time function t on M .

Proof. See Proposition 6.4.9 of [57].

We finish this section by introducing nomenclature for different types of “com-

pact” regions of a globally hyperbolic spacetime and spaces of functions with support

on these regions (see Fig. 1.3).
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U

(a) Timelike compact set U .

U

(b) Spacelike compact set U .

Figure 1.3: Timelike and spacelike compact sets.

Definition 1.1.24. Let M be a globally hyperbolic spacetime. A subset U ⊂M is

(i) timelike compact if U ∩ J(K) is compact for each compact K ⊂M ;

(ii) spacelike compact if it is closed and ∃ compact K ⊂M such that U ⊂ J(K).

Definition 1.1.25. Let M be a globally hyperbolic spacetime. We denote by

(i) C∞0 (M) the space of smooth functions with compact support;

(ii) C∞tc (M) the space of smooth functions with timelike compact support;

(iii) C∞sc (M) the space of smooth functions with spacelike compact support.

1.2 Stationary spacetimes

1.2.1 Globally and locally stationary spacetimes

It is important to clarify the definition of “stationary” spacetime used in this thesis.

The strictest definition commonly found in the literature is the following.

Definition 1.2.1. A spacetime M is called globally stationary if there exists a

Killing vector field ξ which is timelike everywhere in M .
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It then follows that, if t is a time function (cf. Definition 1.1.19) and ξ = ∂t is

a Killing vector field, the metric of a stationary spacetime can be written as (1.1),

with N , N i and hij being independent of t.

An important particular case of a stationary spacetime is a static spacetime.

Definition 1.2.2. A spacetime is static if it is stationary and if there is a spacelike

surface which is orthogonal to the orbits of the timelike Killing vector field.

It follows then that the metric of a static spacetime can be written as (1.1) with

vanishing N i and with N and hij being independent of t.

However, Definition 1.2.1 for a globally stationary spacetime needs to be relaxed

if spacetimes such as the Kerr black hole is to be considered stationary, since it

does not possess an everywhere timelike Killing vector field. It is common to relax

the above definition for spacetimes which are asymptotically flat at null infinity by

requiring that ξ is timelike at least in a neighbourhood of null infinity. In this sense,

the Kerr black hole is a stationary spacetime, although not globally.

A more general definition, that replaces the global assumption with a local as-

sumption, is:

Definition 1.2.3. A spacetime M is called locally stationary if, for any p ∈ M ,

there exists a neighbourhood U ⊂ M centred in p and a vector field ξ which is

Killing and timelike in U .

In this thesis, we will be mostly interested in this more general class of stationary

spacetimes.

1.2.2 Riemannian sections of stationary spacetimes

In many practical situations, given a Lorentzian manifold with a coordinate system

which covers the whole manifold, it is convenient to perform analytical continua-

tions in the coordinates such that one can consider a new manifold with a different

signature, e.g. a Riemannian manifold, where calculations are easier to carry out.
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If the analytical continuation exists and is well defined, one can then analytically

continue the results back to the original manifold.

The basic idea is the following. One starts with a spacetime, i.e. a real Lorentzian

manifold, and performs an analytical continuation in one or more of the coordinates

by allowing them to become complex-valued and by holomorphically extending the

metric components into the complex domain. The resulting manifold is called the

complexified spacetime. One can then single out a subspace of interest which is a

manifold on its own right. This subspace is called a section of the complexified

manifold.

Given a static spacetime, there is a natural section of its complexified manifold

which is a real manifold and has Riemannian signature.

Definition 1.2.4. Let M be a static spacetime with analytic metric given by

ds2 = gtt dt2 + hij dxidxj , (1.3)

where t is a global time function (and, hence, gtt < 0). The real Riemannian section

is the manifold MR with (real-valued) metric

ds2
R = gττ dτ 2 + hij dxidxj , (1.4)

where τ := it ∈ R and, hence, gττ = −gtt > 0. The analytical continuation t→ −iτ

is commonly known as Wick rotation.

Remark 1.2.5. In the literature, the real Riemannian section is also known as the

Euclidean section.

The Wick rotation can be easily generalised to the case of stationary, but not

static, spacetimes. However, the resulting section is not a real manifold anymore.

Definition 1.2.6. Let M be a stationary, but not static, spacetime with analytic

metric given by

ds2 = gtt dt2 + hij
(
dxi +N i dt

) (
dxj +N j dt

)
, (1.5)
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where t is a global time function (and, hence, gtt < 0). The complex Riemannian

section is the manifold MC with (complex-valued) metric

ds2
C = gττ dτ 2 + hij

(
dxi − iN i dτ

) (
dxj − iN j dτ

)
, (1.6)

where τ := it ∈ R and, hence, gττ = −gtt > 0.

In this thesis, we will see that the complex Riemannian section allows us to vastly

simplify calculations on stationary spacetimes, in a similar way to simplifications

provided by the real Riemannian section of a static spacetime, as manifested by the

numerous “Euclidean methods” found in the literature of quantum field theory of

static spacetimes [60].

1.3 Bi-tensors

In this section, we discuss bi-tensors, which are objects that transform like tensors

at x and x′. A good reference for this topic is Chapter 2 of [61].

We assume that x and x′ belong to a geodesically convex neighbourhood.

Definition 1.3.1. A geodesically convex neighbourhood of p ∈M is a neighbourhood

N of p such that, for all q, q′ ∈ N , there exists a unique geodesic connecting q and

q′ which lies entirely within N .

To the point x we assign abstract indices a, b, etc, and to the point x′ we assign

abstract indices a′, b′, etc. For instance, Tab′
c′(x, x′) is a bi-tensor which transforms

like a (0,1)-tensor at x and like a (1,1)-tensor at x′. The same applies when taking

covariant derivatives of bi-tensors. For example, if T···(x, x
′) is a sufficiently regular

bi-tensor, in ∇a∇b′T···(x, x
′), ∇a corresponds to a covariant derivative with respect

to x, while ∇b′ corresponds to a covariant derivative with respect to x′. Derivatives

with respect to x and x′ commute, i.e. ∇a∇b′T···(x, x
′) = ∇b′∇aT···(x, x

′).

We will be especially interested in the limit x′ → x of a bi-tensor.
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Definition 1.3.2. The coincidence limit of a bi-tensor T···(x, x
′), denoted by

[T···](x) := lim
x′→x

T···(x, x
′) , (1.7)

is a tensor at x, when such a limit exists, and is independent of the path x′ → x.

(In (1.7), the Synge’s bracket notation is employed.)

We consider two important bi-tensors.

1.3.1 Synge’s world function

Let γX : [0, 1] → M be the geodesic segment starting at a point x ∈ M , with

X ∈ TxM being the tangent vector to the geodesic at x. Let V ⊂ TxM be the set

of tangent vectors X such that γX(t) is well defined for t ∈ [0, 1].

Definition 1.3.3. The exponential map is the map expx : V →M , X 7→ γX(1).

Hence, with γX(0) = x and γX(1) = x′, one has expx(X) = x′.

Definition 1.3.4. The Synge’s world function σ(x, x′) is a bi-scalar given by

σ(x, x′) :=
1

2
g(x)

(
exp−1

x (x′), exp−1
x (x′)

)
. (1.8)

The Synge’s world function gives the half squared geodesic distance between

the points x and x′. To see this, consider the geodesic segment γ : [0, 1] → M

connecting x = γ(0) and x′ = γ(1), which is unique, since x and x′ are assumed to

be in a geodesically convex neighbourhood. The geodesic distance between x and x′

is given by

d(x, x′) :=

∫ 1

0

dt
√
g(γ(t)) (γ̇(t), γ̇(t)) =

√
g(x) (γ̇(0), γ̇(0)) =

√
gabγ̇aγ̇b , (1.9)

since the integrand is constant along the geodesic. One has that expx (γ̇(0)) = x′,

thus, it follows that

σ(x, x′) =
1

2
d(x, x′)2 =

1

2
gabγ̇

aγ̇b =
1

2
ga′b′ γ̇

a′ γ̇b
′
. (1.10)
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Given this, the coincidence limit of the Synge’s world function is

[σ] = 0 . (1.11)

Concerning the covariant derivatives of the Synge’s world function, one has

∇aσ(x, x′) = gabγ̇
b , ∇a′σ(x, x′) = ga′b′ γ̇

b′ , (1.12)

and, consequently,

[∇aσ] = [∇a′σ] = 0 . (1.13)

By similar calculations, we also get

[∇a∇bσ] = [∇a′∇b′σ] = gab , [∇a∇b′σ] = [∇a′∇bσ] = −gab . (1.14)

It also follows from (1.12) that

∇aσ∇aσ = ∇a′σ∇a′σ = 2σ . (1.15)

Hence, ∇aσ and ∇a′σ are tangent vectors to the geodesic γ at x and x′, respectively,

with length equal to the geodesic distance between x and x′.

Remark 1.3.5. In the literature, it is common to find any of the following notations

for ∇aσ: ∇aσ = σ;a = σa, the last of which omits the semi-colon for the covariant

derivative. In the rest of thesis, the notation σ;a is used, in order to avoid confusion.

1.3.2 Parallel propagator

If V ∈ Tx′M is a tangent vector at x′, it can be parallel transported to x along the

unique geodesic that links x and x′. The parallel transported vector at x is given by

V a(x) =: gab′(x, x
′)V b′(x′) . (1.16)

This relation defines the parallel propagator gab′(x, x
′). Similarly,

V a′(x′) = ga
′

b(x, x
′)V b(x) . (1.17)

The coincidence limit of the parallel propagator is given by

[gab′ ] (x) = gab(x) = δab . (1.18)
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1.3.3 Covariant and non-covariant Taylor expansion

Not only we will be interested in the coincidence limit of bi-tensors, but we will

also be interested in expanding a bi-tensor near the coincidence limit as a power

series. There are two possible Taylor expansions: the covariant Taylor expansion, in

which the expansion is performed in a covariant way, and the non-covariant Taylor

expansion, which is expressed in terms of the coordinate separation of the points.

In curved spacetimes, instead of using the flat spacetime quantity (x − x′)a,

the expansion near the coincidence limit can be done in powers of σ;a, whose length

coincides with the geodesic distance between x and x′. One then defines the covariant

Taylor expansion as follows.

Definition 1.3.6. The covariant Taylor expansion of a bi-tensor T···(x, x
′) is

T···(x, x
′) =

∞∑
k=0

(−1)k

k!
t···a1···ak(x)σ;a1(x, x′) · · ·σ;ak(x, x′) , (1.19)

where the coefficients t···a1···ak(x) are tensors at x.

Proposition 1.3.7. The first expansion coefficients in (1.19) are given by

t··· = [T···] , (1.20)

t···a1 = − [T··· ;a1 ] + t··· ;a1 , (1.21)

t···a1a2 = [T··· ;a1a2 ]− t··· ;a1a2 + t···a1;a2 + t···a2;a1 . (1.22)

Proof. The coefficients are obtained by repeated covariant differentiation of (1.19)

and taking the coincidence limit.

Remark 1.3.8. As with conventional Taylor expansions, it is not true in general that

the sum in the RHS of (1.19) converges and that, when it does, it is equal to the

LHS. In this thesis, we will only need the first few terms of the expansion and, hence,

will treat it as an asymptotic expansion. In this way, we will not go into the details

of the convergence of the covariant Taylor series which we will deal with.
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Sometimes, however, it is not practical, or even possible, to compute σ;a for a

given curved spacetime, which makes it impossible to obtain the covariant Taylor

expansion of a bi-tensor. Another possibility is to explicitly use a coordinate system

in a chart that includes both x and x′ and perform the expansion in the coordinate

separation of the points.

Definition 1.3.9. The non-covariant Taylor expansion of a bi-tensor T···(x, x
′) is

T···(x, x
′) =

∞∑
k=0

(−1)k

k!
t̂···µ1···µk(x) ∆xµ1 · · ·∆xµk , (1.23)

where t̂···µ1···µk(x) are the components of tensors at x and ∆xµ := xµ − xµ′ .

As an example, one can express the bi-scalar σ(x, x′) in terms of a non-covariant

Taylor expansion.

Proposition 1.3.10. The non-covariant Taylor expansion of σ(x, x′) is

σ = σ̃αβ ∆xα∆xβ + σ̃αβγ ∆xα∆xβ∆xγ + σ̃αβγδ ∆xα∆xβ∆xγ∆xδ

+ σ̃αβγδε ∆xα∆xβ∆xγ∆xδ∆xε + . . . (1.24)

where σ̃µ1···µk := (−1)k

k!
σ̂µ1···µk are given by

σ̃αβ =
1

2
gαβ , (1.25a)

σ̃αβγ = −1

4
g(αβ,γ) , (1.25b)

σ̃αβγδ = −1

3

[
σ̃(αβγ,δ) + gµν

(
1

8
g(αβ,|µ|gγδ),ν +

3

2
g(αβ,|µ|σ̃|ν|γδ) +

9

2
σ̃µ(αβσ̃|ν|γδ)

)]
,

(1.25c)

σ̃αβγδε = −1

4

[
σ̃(αβγδ,ε) + gµν

(
12σ̃µ(αβσ̃|ν|γδε) + 3σ̃α(αβσ̃γδε),β + 2g(αβ,|µ|σ̃|ν|γδε)

+
1

2
σ̃(αβγ,|µ|gδε),ν

)]
. (1.25d)

Proof. One has that

σ;µ = 2σ̃µα∆xα + (σ̃αβ,µ + 3σ̃µαβ) ∆xα∆xβ + (σ̃αβγ,µ + 4σ̃µαβγ)∆x
α∆xβ∆xγ

+ (σ̃αβγδ,µ + 5σ̃µαβγδ)∆x
α∆xβ∆xγ∆xδ + . . . . (1.26)
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Substituting expansions (1.24) and (1.26) into (1.15) and equating powers of ∆xα,

we get expressions for each coefficient in terms of the lower order coefficients.

Proposition 1.3.10 allows us to relate the coefficients of the covariant Taylor

expansion (1.19) and the coefficients of the non-covariant Taylor expansion (1.23).

Proposition 1.3.11. The first coefficients t̂···µ1···µk of the non-covariant Taylor ex-

pansion (1.23) can be expressed in terms of the coefficients t···µ1···µk of the covariant

Taylor expansion (1.19) as

t̂ = t , (1.27a)

t̂α = tα , (1.27b)

t̂αβ = tαβ + tµΓµαβ , (1.27c)

t̂αβγ = tαβγ + 3t(α|µ|Γ
µ
βγ) + 6tµ

(
σ̃(αβγ)

,µ + 4σ̃µαβγ
)
. (1.27d)

Proof. The relations are obtained by substituting (1.24) into (1.19) and equating

the resulting expansion with (1.23).

1.3.4 The case of complex Riemannian manifolds

In this thesis, we will need to consider bi-tensors in complex Riemannian manifolds,

which are obtained from real Lorentzian manifolds, as described in Section 1.2.2.

Here, we verify that the local geodesic structure of the Lorentzian manifold is pre-

served when going to the complex Riemannian section and, therefore, it is possible

to generalise the concepts above. See [37] for a detailed discussion.

Consider a complex Riemannian manifold MC with metric gC, which was ob-

tained from a real Lorentzian manifold M with real analytic metric g, such that

the metric component g00 < 0 and the inverse g00 < 0 in a coordinate system. The

geodesic equations admit locally a unique solution with parameter t ∈ C satisfy-

ing given initial conditions. If we restrict t to the real domain, t ∈ R, we obtain

a real-parameter geodesic segment (the corresponding complex-parameter geodesic

segment is obtained by analytical continuation).
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We want to define an analogous notion of a geodesically convex neighbourhood

introduced in Definition 1.3.1 which is valid for the the complex Riemannian mani-

fold. For that, we need a series of intermediate definitions. Let γX(t), t ∈ [0, 1], be

the real-parameter geodesic segment starting at a point p ∈MC, with X ∈ Tp(MC)

being the tangent vector to the geodesic at p. Let V ⊂ Tp(M
C) be the set of vectors

X such that γX(t) is well defined for t ∈ [0, 1]. The exponential map is defined as

in Definition 1.3.3 as the map expp : V →MC, X 7→ γX(1).

Definition 1.3.12. An open star-shaped neighbourhood about 0 of a vector space is

such that, if X belongs to the neighbourhood, then λX, with λ ∈ [0, 1], also belongs

to the neighbourhood.

Definition 1.3.13. A normal neighbourhood of p ∈ MC is an open neighbourhood

of p with the form Np = expp(S), with S ⊂ V ⊂ Tp(M
C) an open star-shaped

neighbourhood of 0 ∈ Tp(MC).

Definition 1.3.14. A totally normal neighbourhood of p ∈MC is a neighbourhood

of p, Op ⊂MC, such that, if q ∈ Op, there is a normal neighbourhood of q, Nq, with

Op ⊂ Nq.

We can now define the desired class of neighbourhoods.

Definition 1.3.15. A geodesically linearly convex neighbourhood of p ∈ MC is a

totally normal neighbourhood of p, Np ⊂ MC, such that, for any q, q′ ∈ Np, there

is only one real-parameter geodesic segment which links q and q′ and which lies

completely in Np.

Proposition 1.3.16. Given a complex Riemannian manifold with the properties

described above, for any given point, there is always a geodesically linearly convex

neighbourhood.

Proof. See Theorem 23 of [37].
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Therefore, we can extend the Synge’s world function bi-scalar to a complex

Riemannian manifold.

Definition 1.3.17. Given a geodesically linearly convex neighbourhood N ⊂ MC,

the complex Synge’s world function σ(x, x′) is given by

σ(x, x′) :=
1

2
g(x)

(
exp−1

x (x′), exp−1
x (x′)

)
. (1.28)

This reduces to the usual definition for real Riemannian and Lorentzian mani-

folds. In particular, suppose we choose x and x′ in a way such that some of their

coordinates in a given coordinate system are the same and the induced metric on

the submanifold defined by this condition is either real Riemannian or Lorentzian.

Then, we can use the usual definition as half of the square of the geodesic distance

between x and x′.

1.4 Symplectic and Hilbert spaces

A classical field theory on a globally hyperbolic spacetime is completely specified in

terms of functions with values on an appropriate vector space, together with

(i) a non-degenerate bilinear or sesquilinear form, which specifies the kinematics;

(ii) a partial differential operator, which specifies the dynamics.

In this section, we will briefly describe the basics of point (i), leaving point (ii) to

Section 1.7.

The main concern of this thesis will be with a scalar field on a curved spacetime.

Classically, the phase spaces of neutral bosons (resp., charged bosons) are symplectic

spaces (resp., charged symplectic spaces). We characterise these spaces below. We

also give a brief characterisation of Hilbert spaces, which are crucial to the quantum

field theory.

Much of this section follows closely [62]. More details on Hilbert spaces can also

be found in [63].
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1.4.1 Symplectic spaces

Let V be a vector space over the field K (R or C).

Definition 1.4.1. A bilinear form on V is a bilinear map ν : V × V → K,

(v1, v2) 7→ ν(v1, v2) . (1.29)

Definition 1.4.2. A bilinear form ν is non-degenerate if Ker ν = {0}.

Definition 1.4.3. A bilinear form ν is symmetric if

ν(v1, v2) = ν(v2, v1) , v1, v2 ∈ V , (1.30)

whereas it is anti-symmetric if

ν(v1, v2) = −ν(v2, v1) , v1, v2 ∈ V . (1.31)

Definition 1.4.4. A symmetric form ν on a real vector space is positive definite if

ν(v, v) > 0 for v 6= 0.

Remark 1.4.5. A positive definite symmetric form is always non-degenerate.

Definition 1.4.6. A non-degenerate anti-symmetric bilinear form is called a sym-

plectic form.

Definition 1.4.7. The pair (V, ν), where V is a vector space over K and ν is a

symplectic form, is called a symplectic space.

1.4.2 Charged symplectic spaces

Let V be a vector space over C.

Definition 1.4.8. A sesquilinear form on V is a map β : V × V → C,

(v1, v2) 7→ β(v1, v2) (1.32)

which is anti-linear in the first argument and linear in the second argument.
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Remark 1.4.9. In the definition above, the so-called “physicist’s convention” was

adopted. In the “mathematician’s convention”, the first argument would be linear,

while the second argument would be anti-linear.

Definition 1.4.10. A sesquilinear form β is non-degenerate if Ker β = {0}.

Definition 1.4.11. A sesquilinear form β is Hermitian if

β(v1, v2) = β(v2, v1) , v1, v2 ∈ V , (1.33)

whereas it is anti-Hermitian if

β(v1, v2) = −β(v2, v1) , v1, v2 ∈ V . (1.34)

Remark 1.4.12. If β is Hermitian, then iβ is anti-Hermitian.

Definition 1.4.13. A Hermitian form β is positive definite if β(v, v) > 0 for v 6= 0.

In this case, it is also known as a scalar product or an inner product and denoted

by 〈·|·〉.

Remark 1.4.14. A positive definite Hermitian form is always non-degenerate.

Definition 1.4.15. A non-degenerate anti-Hermitian form is called a charged sym-

plectic form.

Definition 1.4.16. The pair (V, β), where V is a vector space over C and β is a

charged symplectic form, is called a charged symplectic space.

1.4.3 Hilbert spaces

The notion of a charged symplectic space (V, β) is very closely related to the space

(V, iβ), cf. Remark 1.4.12, where iβ is an Hermitian form. If this form is positive

definite, the space is an inner product space.

Definition 1.4.17. The pair (V, β), where V is a vector space over C and β is a

non-degenerate Hermitian form, is called a pseudo-unitary space. If β is positive

definite, then (V, β) is called a unitary space or an inner product space.
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Definition 1.4.18. An inner product space (H , β) is called a Hilbert space if H

is complete in the norm induced by the inner product β.

Remark 1.4.19. All finite-dimensional inner product spaces are Hilbert spaces. If

an infinite-dimensional inner product V space fails to be complete, there exists a

unique Hilbert space H such that V is isomorphic to a dense subspace of H . The

Hilbert space H is called the Hilbert space completion of V .

Remark 1.4.20. From now on, we denote a Hilbert space (H , β) simply by H and

write the endowed scalar product β(·, ·) = 〈·|·〉.

Next, we describe the direct sum and the tensor product of Hilbert spaces.

Definition 1.4.21. The direct sum of the Hilbert spaces H1 and H2 is the Hilbert

space H1⊕H2 consisting of pairs (u, v) with u ∈H1 and v ∈H2 and scalar product

〈(u1, v1)|(u2, v2)〉 := 〈u1|u2〉H1 + 〈v1|v2〉H2 . (1.35)

To construct countable direct sums, let {Hn}∞n=1 be a sequence of Hilbert spaces

and let H denote the set of sequences {un}∞n=1, with un ∈Hn, which satisfy

∞∑
n=1

〈un|un〉Hn <∞ . (1.36)

Then, H is a Hilbert space with the scalar product which is the natural generali-

sation of (1.35). H is denoted by

H =
∞⊕
n=1

Hn . (1.37)

To define the tensor product of two Hilbert spaces H1 and H2, first consider,

for each u1 ∈H1 and u2 ∈H2, the bi-antilinear form u1 ⊗ u2 : H1 ×H2 → C,

(u1 ⊗ u2)(v1, v2) := 〈v1|u1〉〈v2|u2〉 . (1.38)

Let S denote the set of finite linear combinations of these bi-antilinear forms. Define

a scalar product

〈u1 ⊗ u2|v1 ⊗ v2〉 := 〈u1|v1〉〈u2|v2〉 , (1.39)

and extend it by linearity to S . S is now an inner product space.
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Definition 1.4.22. The tensor product H1⊗H2 of the Hilbert spaces H1 and H2

is defined as the completion of S under the scalar product defined in (1.39). By

induction, the above construction can be extended to define the tensor product

m⊗
n=1

Hn

of finitely many Hilbert spaces H1, ..., Hm.

An important application of the concepts of direct sum and tensor product is

the definition of the Fock space.

Definition 1.4.23. The Fock space F (H ) associated with a Hilbert space H is

the Hilbert space

F (H ) :=
∞⊕
n=0

(
n⊗

H

)
, (1.40)

where
⊗0 H := C. The symmetric Fock space Fs(H ) associated with a Hilbert

space H is the subspace of F (H ) defined by

Fs(H ) :=
∞⊕
n=0

(
n⊗

s
H

)
, (1.41)

whereas the anti-symmetric Fock space Fa(H ) associated with a Hilbert space H

is the subspace of F (H ) defined by

Fa(H ) :=
∞⊕
n=0

(
n⊗

a
H

)
. (1.42)

Here,
⊗

s and
⊗

a stand for the symmetrised and anti-symmetrised tensor product,

respectively.

Finally, we introduce the notion of orthonormal decomposition of a Hilbert space.

Definition 1.4.24. Let H be a Hilbert space. If U ⊂ H , then U ⊥ denotes the

orthogonal complement of U ,

U ⊥ := {v ∈H : 〈u|v〉 = 0, for allu ∈ U } . (1.43)
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Theorem 1.4.25. Let H be a Hilbert space. If U is a closed vector subspace of H ,

then (U ⊥)⊥ = U and, for any v ∈ H , there exists a unique u ∈ U and u′ ∈ U ⊥

such that v = u+ u′.

Proof. See e.g. Theorem II.3 of [63].

Remark 1.4.26. Theorem 1.4.25 is usually known as the projection theorem. This

provides a natural isomorphism between U ⊕U ⊥ and H given by (u, u′) 7→ u+u′.

For simplicity, one writes H = U ⊕U ⊥, the orthonormal decomposition of H .

1.4.4 Operators on Hilbert spaces

Definition 1.4.27. Let H1 and H2 be Hilbert spaces. An operator T : H1 → H2

is a linear map from a linear subspace D(T ) ⊂ H1 to H2. The subspace D(T ) is

called the domain of the operator T and we assume that it is dense in H1.

Definition 1.4.28. Let T : H1 →H2 be a densely defined operator. Let

D(T †) := {v ∈H2 : ∀u ∈ D(T ) ∃w ∈H1 〈v|Tu〉H2 = 〈w|u〉H1} . (1.44)

For each such v ∈ D(T †), one can define the adjoint operator T † by T †v := w, i.e.

〈v|Tu〉H2 = 〈T †v|u〉H1 (1.45)

for all u ∈ D(T ).

Definition 1.4.29. An operator T : H →H is called symmetric or Hermitian if

T ⊂ T †, i.e. if D(T ) ⊂ D(T †) and Tu = T †u, for all u ∈ D(T ), or equivalently if

〈Tu|v〉 = 〈u|Tv〉 , for all u, v ∈ D(T ). (1.46)

Definition 1.4.30. An operator T : H →H is called self-adjoint if T = T †, i.e. if

D(T ) = D(T †) and T is Hermitian.
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Definition 1.4.31. The spectrum of an operator T : D(T ) ⊂H →H is the set

σ(T ) := {λ ∈ C : T − λI is not a bijection with bounded inverse} . (1.47)

The spectrum can be decomposed into three disjoint sets.

(i) The point spectrum is the set

σp(T ) := {λ ∈ σ(T ) : T − λI is not injective} . (1.48)

Equivalently, λ ∈ σp(T ) if there exists non-zero u ∈ D(T ) such that Tu = λu.

λ is called an eigenvalue and u is called an eigenvector.

(ii) The continuous spectrum is the set

σc(T ) := {λ ∈ σ(T ) : T − λI is not surjective and

(T − λI)D(T ) is dense on D(T )} . (1.49)

(iii) The residual spectrum is the set

σr(T ) := {λ ∈ σ(T ) : T − λI is not surjective and

(T − λI)D(T ) is not dense on D(T )} . (1.50)

Remark 1.4.32. If T is an operator acting on a finite-dimensional space, then the

continuous and the residual spectrum of the operator are empty and its spectrum

consists only of eigenvalues.

If the spectrum for an operator is known, then the spectrum for its adjoint can

be easily obtained.

Proposition 1.4.33. If T : D(T ) ⊂H →H has spectrum σ(T ), then

σ(T †) = {λ : λ ∈ σ(T )} . (1.51)

In the cases in which the operators are Hermitian or self-adjoint, one can say

more about their spectrum.
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Proposition 1.4.34. If T : D(T ) ⊂H →H is Hermitian, then

(i) all eigenvalues of T are real;

(ii) eigenvectors of T corresponding to distinct eigenvalues are orthogonal;

(iii) the continuous spectrum of T is real.

If furthermore T is self-adjoint, then

(iv) the residual spectrum is empty.

Remark 1.4.35. Note that if T is anti-Hermitian, i.e. Tu = −T †u for all u ∈ D(T ),

then it follows from Proposition 1.4.33 that all eigenvalues of T are purely imagi-

nary. It is also true that eigenvectors of T corresponding to distinct eigenvalues are

orthogonal.

As seen above, not even all self-adjoint operators have a spectrum composed of

only eigenvalues, as in finite-dimensional Hilbert spaces. However, there is a class

of operators which enjoys this property.

Definition 1.4.36. An operator T : H1 →H2 is called compact if it takes bounded

subsets of H1 into subsets of H2 whose closure is compact.

Proposition 1.4.37. If T : H → H is a compact operator, then, except for the

possible value 0, the spectrum of T is entirely point spectrum.

Finally, we generalise the notion of trace of a matrix to the trace of an operator.

Definition 1.4.38. Let H be a separable Hilbert space (i.e. H contains a countable

dense subset) and {ui}i∈I be an orthonormal basis, where I is an index set. The

trace of a positive operator T : H →H is defined as

TrT :=
∑
i∈I

〈ui|Tui〉 . (1.52)

The trace is independent of the orthonormal basis chosen. The operator T is of trace

class if Tr
√
T †T <∞.
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The trace of a compact operator of trace class always exists.

Proposition 1.4.39. Let T : H →H be a compact operator of trace class. Then,

the sum on the RHS of (1.52) converges absolutely.

In the case of a compact positive operator, the trace is just the sum of all

eigenvalues.

Proposition 1.4.40. Let T : H →H be a compact positive operator with non-zero

eigenvalues λi, i ∈ N. Then, its trace is given by

TrT =
∑
i∈N

λi . (1.53)

1.5 Complexification of real vector spaces

The procedure of quantising a classical field theory characterised by a real vector

space with some additional structure (such as a symplectic structure) involves the

complexification of the real vector space. Here, we present a very brief description

of this procedure, which can be found e.g. in [64].

Let V be a complex vector space, i.e. a vector space over C. If one restricts the

scalars to be real, the resulting vector space VR is a real vector space and is called

the real form of V .

Conversely, to each real vector space V , i.e. a vector space over R, one can

associate a complex vector space V C.

Definition 1.5.1. Let V be a real vector space. The complexification of V is the

complex vector space V C := V ⊕ V of ordered pairs, with

(i) addition

(v1, v2) + (w1, w2) = (v1 + w1, v2 + w2) , (1.54)

(ii) scalar multiplication over C defined by

(x+ iy)(v1, v2) = (xv1 − yv2, xv2 + yv1) , (1.55)
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where x, y ∈ R and v1, v2, w1, w2 ∈ V .

It is convenient to introduce the notation v + iw for (v, w) ∈ V C, such that one

can regard the complexification of V as

V C = V ⊕ iV = {v + iw : v, w ∈ V } . (1.56)

Addition now resembles addition of complex numbers,

(v1 + iv2) + (w1 + iw2) = (v1 + w1) + i(v2 + w2) , (1.57)

and the scalar multiplication resembles multiplication of complex numbers,

(x+ iy)(v1 + iv2) = (xv1 − yv2) + i(xv2 + yv1) . (1.58)

Now consider a real vector space V endowed with a bilinear form ν, cf. Defini-

tion 1.4.1. The complexified space V C can be endowed with a natural sesquilinear

form νC.

Definition 1.5.2. Given a real vector space V endowed with a bilinear form ν :

V × V → R, the canonical sesquilinear extension of ν to the complexified vector

space V C is the sesquilinear form νC : V C × V C → C defined by

νC(v1 + iv2, w1 + iw2) := ν(v1, w1) + ν(v2, w2) + i [ν(v1, w2)− ν(w1, v2)] . (1.59)

This extension maps (anti-)symmetric bilinear forms on V to (anti-)Hermitian

sesquilinear forms on V C.

1.6 Distributions

In this section, we present a brief overview of theory of distributions (or generalised

functions). A more complete discussion can be found e.g. in [65]. All the mathe-

matical objects are assumed to be defined in an open set U ⊂ Rd, which can be

thought as a chart on the manifold M .
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Definition 1.6.1. A distribution is a continuous linear functional on C∞0 (U), i.e. a

mapping of the form f 7→ Φ(f), with f ∈ C∞0 (U), such that, for every compact set

K ⊂ U there exists constants C and k such that

|Φ(f)| ≤ C
∑
|α|≤k

sup |∂αf | . (1.60)

Here, α = (α1, ..., αd) ∈ Nd
0 is a multi-index, |α| :=

∑d
µ=1 αµ, ∂α :=

∏d
µ=1 ∂

αµ
µ and

∂µ is the partial derivative with respect to xµ. The space of all distributions on U

is denoted by C∞0 (U)∗, the dual of C∞0 (U).

Remark 1.6.2. Any locally integrable function Φ ∈ L1
loc(U) can be identified with a

distribution by

f 7→ Φ(f) =

∫
U

ddx f(x)Φ(x) , f ∈ C∞0 (U) , (1.61)

A distribution of this form is called a regular distribution. However, not all distribu-

tions can be represented in this way. The most famous example is the Dirac delta

distributions, f 7→ δ(f), defined by

δ(f) = f(0) , f ∈ C∞0 (U) . (1.62)

This is an example of a singular distribution. However, it is useful to continue to

represent distributions as in (1.61), so we pretend that there exists an “object” δ(x)

such that

f 7→ δ(f) =

∫
U

ddx f(x)δ(x) , f ∈ C∞0 (U) . (1.63)

The “object” δ(x) is not a function and cannot be evaluated pointwise! It should

only be thought as convenient notation, which allows us to use the language of

ordinary functions when referring to distributions.

Remark 1.6.3. Another convenient notation for a distribution Φ ∈ C∞0 (U)∗ is

f 7→ Φ(f) = (Φ, f) , f ∈ C∞0 (U) . (1.64)

This pairing of the distribution Φ with the compactly supported function f takes

the same form as the scalar product in the Lebesgue space L2(U).
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Definition 1.6.4. If Φ ∈ C∞0 (U)∗, then the support of Φ, denoted supp Φ, is the

smallest closed subset V ⊂ U such that Φ|U\V = 0.

Remark 1.6.5. If Φ ∈ L1
loc(U), the expression

Φ(f) =

∫
U

ddx f(x)Φ(x) , f ∈ C∞0 (U) . (1.65)

is well defined for any f ∈ C∞(U) if supp Φ ∩ supp f has compact closure and is

contained in U . It can furthermore be shown that the space of distributions in U

with compact support is the dual space of C∞(U).

Definition 1.6.6. The space of distributions in U with compact support is denoted

by C∞(U)∗, the dual of C∞(U).

Remark 1.6.7. One has the following inclusions

C∞0 (U) ⊂ C∞(U)∗ ⊂ C∞0 (U)∗ , (1.66)

C∞(U) ⊂ C∞0 (U)∗ . (1.67)

It can further be shown that C∞0 (U) is dense in C∞(U)∗ and C∞0 (U)∗ (see [65] for

more details).

Finally, we want to define differentiation of distributions. If Φ is such that ∂xiΦ

is a regular distribution of the form (1.61), we have that∫
U

ddx f(x)∂xiΦ(x) = −
∫
U

ddx ∂xif(x)Φ(x) (1.68)

by integration by parts, since f has compact support. For an arbitrary distribution,

we have the following.

Definition 1.6.8. The partial derivative ∂xiΦ of Φ ∈ C∞0 (U)∗ is defined by

(∂xiΦ) (f) := −Φ (∂xif) , f ∈ C∞0 (U) . (1.69)
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1.7 Hyperbolic differential operators and Green

operators

A classical field on a fixed spacetime will obey a wave-like partial differential equa-

tion, subject to initial or boundary conditions, which specifies the dynamics of the

field theory. In this section, a brief description of a subclass of hyperbolic partial

differential equations is given, of which the Klein-Gordon equation is an important

example. There is a vast amount of literature on this topic, of which [66,67] are just

two examples which have been used here.

Remark 1.7.1. Formally, a classical field can be thought as a section of a vector

bundle E over the spacetime manifold M with fibre V . In this section, we will

only consider the case in which M is globally hyperbolic and the vector bundle is

trivial E = M × V , such that the space of sections is isomorphic to C∞(M ;V ). For

example, for a real untwisted scalar field on a globally hyperbolic spacetime M , the

relevant vector bundle is the line bundle E = M × R and the scalar field is then a

real-valued function on M . Therefore, we will not consider the most general case of

non-trivial vector bundles, which is treated in detail in [66,67].

1.7.1 Normally hyperbolic operators

Let M be a d-dimensional globally hyperbolic spacetime and let V be a vector space

over R (the generalisation to C is straightforward).

Definition 1.7.2. A smooth V -valued function on M , Φ ∈ C∞(M ;V ), will be

called a classical field.

The dynamics of a linear classical field will be given by a linear partial differential

equation, whose building block is a linear partial differential operator.

Definition 1.7.3. A linear partial differential operator of order at most k ∈ N0 is

a linear map L : C∞(M ;V ) → C∞(M ;V ) such that, for all p ∈ M , there exists
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a coordinate chart (U, φ) centred at p and a collection of smooth maps Aα : U →

End(V ) for which, given any f ∈ C∞(M ;V ), one has

Lf =
∑
|α|≤k

Aα ∂
αf on U . (1.70)

Here, α = (α0, ..., αd−1) ∈ Nd
0 is a multi-index, |α| :=

∑d−1
µ=0 αµ, ∂α :=

∏d−1
µ=0 ∂

αµ
µ and

∂µ is the partial derivative with respect to the coordinate xµ from the chart (U, φ).

Remark 1.7.4. A more general definition of a linear partial differential operator

would be of a a linear map L : C∞(M ;V )→ C∞(M ;V ′), where V ′ is another vector

space, but for our purposes, having V ′ = V is enough.

An important notion is the one of the formal adjoint of an operator. To define

that, one adds an additional structure to the space C∞(M ;V ).

Definition 1.7.5. A non-degenerate pairing (·, ·) : C∞0 (M ;V )×C∞(M ;V )→ R is

(f, g) :=

∫
M

dvolM f · g , (1.71)

where · : C∞0 (M ;V )×C∞(M ;V )→ R is a non-degenerate bilinear form and dvolM

is the metric-induced volume form on M .

Remark 1.7.6. The pairing in (1.71) can also be defined for f, g ∈ C∞(M ;V ) for

which supp f ∩ supp g is compact, so that the integral is well-defined.

An example of such a pairing is 〈·|·〉 : C∞0 (M ;R)× C∞(M ;R) given by

〈f |g〉 =

∫
M

dvolM(x) f(x) g(x) . (1.72)

This takes the same form as the scalar product in the Lebesgue space L2(M, dvolM).

Definition 1.7.7. Given a linear partial differential operator L : C∞(M ;V ) →

C∞(M ;V ), the formal adjoint of L is the linear partial differential operator L∗ :

C∞(M ;V )→ C∞(M ;V ) such that

(L∗f, g) = (f, Lg) (1.73)

for all f, g ∈ C∞(M ;V ) for which supp f ∩ supp g is non-empty and compact. If

L = L∗, we call L formally self-adjoint.
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In the context of field theory, the focus is on linear partial differential operators

which can be associated with an initial value problem. The class of operators of

interest is the class of normally hyperbolic operators. To define these, one needs the

concept of the principal symbol of a differential operator.

Definition 1.7.8. Let L : C∞(M ;V ) → C∞(M ;V ) be a linear partial differential

operator of order k. Given p ∈ M and a coordinate chart (U, φ) centred at p, the

principal symbol SL : T ∗pM → End(V ) is defined locally as

SL(ζ) :=
∑
|α|=k

Aα(p) ζα . (1.74)

Here, ζ ∈ T ∗pM , ζα :=
∏d−1

µ=0 ζ
αµ
µ and ζµ are the components of ζ with respect to the

chart (U, φ).

Definition 1.7.9. Given a Lorentzian manifold (M, g), a second order linear dif-

ferential operator P : C∞(M ;V ) → C∞(M ;V ) is called normally hyperbolic if

SL(ζ) = g−1(ζ, ζ) IV for all ζ ∈ T ∗pM .

Remark 1.7.10. In a given coordinate chart (U, φ), a normally hyperbolic operator

P is such that, for any f ∈ C∞(M ;V ),

Pf = gµνIV ∂µ∂νf + Aµ∂µf + Af on U , (1.75)

where A, Aµ ∈ End(V ), µ = 0, ..., d− 1.

Remark 1.7.11. The d’Alembert operator ∇2 = gµν∇µ∇ν and the Klein-Gordon

operator ∇2 −m2IV , m ∈ R, are examples of normally hyperbolic operators.

1.7.2 Cauchy problem

The importance of normally hyperbolic operators in field theory is that, if a classical

field is defined on a globally hyperbolic spacetime and if the partial differential

operator associated to its field equation is normally hyperbolic, then one has a well-

posed Cauchy problem, as described in the next theorem.
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Theorem 1.7.12. Let M be a globally hyperbolic spacetime and let Σ be a space-

like Cauchy surface whose future-directed unit normal vector field is denoted by n.

Furthermore, let V be a vector space and P : C∞(M ;V ) → C∞(M ;V ) a normally

hyperbolic operator. Then, for any j, Φ0, Φ1 ∈ C∞0 (M ;V ), the following Cauchy

problem, 
PΦ = j ,

Φ
∣∣
Σ

= Φ0 ,

∇nΦ
∣∣
Σ

= Φ1 ,

(1.76)

admits a unique solution Φ ∈ C∞(M ;V ), such that

supp Φ ⊂ J (supp Φ0 ∪ supp Φ1 ∪ supp j) . (1.77)

Proof. See e.g. Theorems 3.2.11 and 3.2.12 of [66].

Remark 1.7.13. Even though the Cauchy problem given in (1.76) has a non-vanishing

source term, in this thesis only the j = 0 case will be considered.

1.7.3 Green operators

One important consequence of Theorem 1.7.12 is the existence and uniqueness of

the so-called Green operators associated with a normally hyperbolic operator on a

globally hyperbolic spacetime.

Definition 1.7.14. Let L : C∞(M ;V )→ C∞(M ;V ) be a linear partial differential

operator. The linear maps Gret, Gadv : C∞tc (M ;V ) → C∞(M ;V ) are the retarded

and advanced Green operators for L, respectively, if, for any f ∈ C∞tc (M ;V ),

(i) LGretf = LGadvf = f ;

(ii) GretLf = GadvLf = f ;

(iii) supp (Gretf) ⊂ J+ (supp f) and supp (Gadvf) ⊂ J− (supp f).

Not all linear partial differential operators have Green operators.
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J+(supp f)

J−(supp f)

supp f

Figure 1.4: The causal future and causal past of supp f for f ∈ C∞0 (M).

Definition 1.7.15. A linear partial differential operator L : C∞(M ;V )→ C∞(M ;V )

is called Green hyperbolic if it admits advanced and retarded Green operators.

Remark 1.7.16. A linear partial differential operator L has unique Green operators if

L and its formal adjoint L∗ are Green hyperbolic. In particular, the Green operators

are unique if L is formally self-adjoint and Green hyperbolic. It can be shown that

G∗ret = Gadv and G∗adv = Gret.

Another convenient Green operator is the causal propagator.

Definition 1.7.17. The operator G := Gadv −Gret is called the causal propagator.

Proposition 1.7.18. The causal propagator G : C∞tc (M ;V )→ C∞(M ;V ) satisfies,

for any given f ∈ C∞tc (M ;V ):

(i) LGf = 0;

(ii) GLf = 0;

(iii) supp (Gf) ⊂ J (supp f).

Proof. It follows directly from the properties (i)-(iii) in Definition 1.7.14 satisfied by

the advanced and retarded Green operators.
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Remark 1.7.19. Note that property (iii) in Proposition 1.7.18 implies that the causal

propagator G maps functions with compact support to functions with spacelike

compact support (cf. Definition 1.1.25, see also Fig. 1.4).

Remark 1.7.20. It follows from Remark 1.7.16 that G∗ = −G.

Remark 1.7.21. The causal propagator can be regarded as a bi-distribution, G ∈

C∞tc (M ×M ;V )∗, so that, for f1, f2 ∈ C∞tc (M ;V ),

G(f1, f2) =

∫
M

dvolM(x)f1(x)(Gf2)(x) , (1.78)

where

(Gf)(x) :=

∫
M

dvolM(x′)G(x, x′)f(x′) , (1.79)

and G(x, x′) is to be understood in the sense of distributions.

It is an important fact that a normally hyperbolic operator is automatically a

Green hyperbolic operator.

Proposition 1.7.22. Let M be a globally hyperbolic spacetime. If P : C∞(M ;V )→

C∞(M ;V ) is normal hyperbolic, then it is also Green hyperbolic.

Proof. See Corollary 3.4.3 of [66].

Remark 1.7.23. The converse is not true in general. An important example is

the Dirac operator, which is Green hyperbolic, but not normally hyperbolic (see

e.g. [67]).

The importance of the Green operators comes from the fact that a solution Φ of

a partial differential equation PΦ = 0, where P is Green hyperbolic, can be written

as Φ = Gf , i.e.,

Φ(x) = (Gf)(x) =

∫
M

dvolM(x′)G(x, x′)f(x′) , (1.80)

where G is the causal propagator associated with P and f is a function on the

manifold. More precisely:
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Theorem 1.7.24. Let M be a globally hyperbolic spacetime, V be a vector space and

P : C∞(M ;V ) → C∞(M ;V ) be a Green hyperbolic operator with Green hyperbolic

formal adjoint P ∗, such that the associated causal propagator G : C∞tc (M ;V ) →

C∞(M ;V ) is unique (cf. Remark 1.7.16). One has that

KerP = ImG = G [Ctc(M ;V )] . (1.81)

Proof. See Theorem 3.4.7 of [66].

In other words, the space of smooth solutions of PΦ = 0 is given by the image

of the causal propagator G.

Definition 1.7.25. The space of smooth solutions of PΦ = 0 will be denoted by

S , i.e.

S := {Φ ∈ C∞(M ;V ) : PΦ = 0} . (1.82)

When trying to endow the space of solutions with additional structure, such as

a symplectric structure, it will be important to consider a vector subspace of S on

which such structure can be well defined. According to Remark 1.7.19, if one acts G

on C∞0 (M ;V ), instead of C∞tc (M ;V ), one obtains functions with spacelike compact

support, i.e. G [C∞0 (M ;V )] ⊂ C∞sc (M ;V ). Therefore, the space of smooth solutions

with spacelike compact of PΦ = 0 can be defined.

Definition 1.7.26. The space of smooth solutions of PΦ = 0 with spacelike com-

pact support will be denoted by Ssc, i.e.

Ssc := {Φ ∈ C∞sc (M ;V ) : PΦ = 0} ⊂ S . (1.83)

A solution Φ ∈ Ssc can then be written as Φ = Gf , with f ∈ C∞0 (M ;V ),

whereas a solution Φ ∈ S can be written as Φ = Gf ′, with f ′ ∈ C∞tc (M ;V ).

The subspace of solutions with spacelike compact support Ssc can be endowed

with additional structure, which in the case of a scalar field is a symplectic structure,

as described in section 1.4.



Chapter 2

Quantum field theory on curved

spacetimes

In this chapter, the classical and quantum theories of a real scalar field are described.

Here, we will take a more mathematical and formal approach to the topic in com-

parison to the standard treatment given in physics textbooks such as [9], and closer

in spirit to [10,11,62,67]. In particular, we describe the classical theory in terms of

the symplectic space of real solutions of the Klein-Gordon equation and its closely

related phase space. We can then introduce the space of classical observables of

the theory, which can be endowed with an algebraic structure, the Poisson bracket,

and show how the Poisson bracket of two fields is given in terms of the symplectic

structure of the space of solutions. The quantisation procedure then consists of find-

ing an appropriate Hilbert space, the Fock space, and field operators which acts on

elements of this space (the “states”) and which obey a commutation relation which

is analogue to the Poisson bracket of the classical theory.

As is well known, the choice of Hilbert space for the quantum theory is not

unique and, worse than that, different choices are, in general, unitarily inequivalent.

In Minkowski spacetime this is remedied by requiring that the “vacuum states” of

the Hilbert space are invariant under the time translation invariance of the theory

49
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and something analogous can be done in the case of stationary spacetimes. In a

general curved spacetime, however, no such natural choice is available. This is what

is often meant by the lack of a natural definition of “particles” in quantum field

theory on curved spacetimes.

One way to solve this theoretical problem is to modify our quantisation proce-

dure by basically inverting the order of the steps described above. We could have

started by constructing observables, such as the quantum fields, as elements of an

abstract algebra, instead of operators acting on a Hilbert space. We then could

have defined states as objects which associate with each observable a real number.

This approach would have allowed us to treat all states on equal footing, even those

arising from unitarily inequivalent choices of Hilbert spaces in the original approach.

This approach to quantum field theory is known as algebraic quantum field theory

(for recent reviews see [67,68]).

In this thesis, the spacetimes will be interested in are stationary spacetimes, for

which there are natural choices of Hilbert spaces, selected by the time translation

symmetry of these spacetimes. Because of this, we will not take the more theoreti-

cally satisfying algebraic approach to the construction of the quantum field theory

and instead use the more traditional Hilbert space approach.

2.1 Real scalar field

In this section, we restrict our attention to the classical and quantum theories of

a real scalar field on a generic globally hyperbolic spacetime, in which case the

theories are very well understood and rigorous proofs are available. The case of a

spacetime with boundaries, which is not as well understood and ultimately is the

one of relevance for this thesis, will be treated in Section 2.3.
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2.1.1 Classical field theory

Let Φ be a real scalar field on a globally hyperbolic spacetime (M, g). The classical

action is given by

S =

∫
M

dvolM

(
−1

2
∇aΦ∇aΦ− 1

2

(
m2 + ξR

)
Φ2

)
, (2.1)

where m is the mass of the field, R is the Ricci scalar, ξ ∈ R is the curvature

coupling parameter and dvolM(x) =
√
−g ddx. The field equation is the Klein-

Gordon equation,

PΦ :=
(
∇2 −m2 − ξR

)
Φ = 0 , (2.2)

where we have defined the differential operator P := ∇2 −m2 − ξR. A solution of

(2.2) is fully determined by its Cauchy data at a Cauchy surface Σ. We then have

the Cauchy problem 
PΦ = 0 ,

Φ
∣∣
Σ

= Φ0 ,

∇nΦ
∣∣
Σ

= Φ1 ,

(2.3)

where Φ0, Φ1 ∈ C∞0 (Σ) and n is the future-directed unit normal vector on Σ.

Space of solutions

As seen in Theorem 1.7.12, the support of the solutions of the Klein-Gordon equation

is contained in J (supp Φ0 ∪ supp Φ1). It follows that a natural space of solutions to

consider is the space Ssc of smooth (real-valued) functions with spacelike compact

support, as introduced in Definition 1.7.26. We can endow Ssc with a symplectic

structure, σ : Ssc ×Ssc → R,

σ(Φ1,Φ2) :=

∫
Σ

dvolΣ naJ
a (Φ1,Φ2) , (2.4)

with

Ja (Φ1,Φ2) := Φ1∇aΦ2 − Φ2∇aΦ1 , (2.5)

where Σ is a spacelike Cauchy surface and n is the future-directed unit normal vector

on Σ. The pair (Ssc, σ) is a symplectic space, cf. Definition 1.4.7.
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Remark 2.1.1. One has that

∇aJa = Φ1∇2Φ2 − Φ2∇2Φ1 =
(
m2 + ξR

)
(Φ1Φ2 − Φ2Φ1) = 0 , (2.6)

where the field equation (2.2) was used. Therefore, by the divergence theorem,

the symplectic form σ does not depend on the choice of Cauchy surface Σ. The

vector-valued form Ja is sometimes called a conserved current.

Remark 2.1.2. The restriction to the space Ssc guarantees that the symplectic form

as defined in (2.4) is well defined.

It is possible to relate the symplectic structure of the space of solutions to the

causal propagator G, regarded as a bi-distribution (see Remark 1.7.21), as follows.

Lemma 2.1.3. Let Φ = Gf and Φ′ = Gf ′ be two solutions of the Klein-Gordon

equation, PΦ = 0, with f, f ′ ∈ C∞0 (M). Then

G(f, f ′) = σ(Φ,Φ′) . (2.7)

Proof. By exploiting the support properties of the advanced and retarded Green

operators and by integrating by parts twice, one obtains

G(f, f ′) =

∫
M

dvolM f Gf ′

=

∫
J+(Σ)

dvolM f Φ′ +

∫
J−(Σ)

dvolM f Φ′

=

∫
J+(Σ)

dvolM (PGadvf) Φ′ +

∫
J−(Σ)

dvolM (PGretf) Φ′

= −
∫

Σ

dvolΣ∇n (Gadvf) Φ′ +

∫
Σ

dvolΣGadvf ∇nΦ′

+

∫
Σ

dvolΣ∇n (Gretf) Φ′ −
∫

Σ

dvolΣGretf ∇nΦ′

=

∫
Σ

dvolΣ (Φ∇nΦ′ − Φ′∇nΦ)

= σ(Φ,Φ′) . (2.8)
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Lemma 2.1.3 can alternatively be written as∫
M

dvolM f Gf ′ =

∫
Σ

dvolΣ
(
Gf∇n(Gf ′)−Gf ′∇n(Gf)

)
(2.9)

for f, f ′ ∈ C∞0 (M) and it will prove to very useful in the following to easily pass

from “integrals over M” to “integrals over Σ” and vice-versa.

Solution in terms of initial data

It is possible to express the solution Φ of the Cauchy problem (2.3) in terms of the

Cauchy data. Given a Cauchy surface Σ, one can define the operators

ρ0 : C∞(M)→ C∞(Σ) , ρ0(Φ) := Φ|Σ , (2.10)

ρ1 : C∞(M)→ C∞(Σ) , ρ1(Φ) := ∇nΦ|Σ . (2.11)

Given a solution Φ of the Cauchy problem, these maps give the initial data Φ0 =

ρ0(Φ) and Φ1 = ρ1(Φ). These operators have adjoints, ρ∗0, ρ
∗
1 : C∞(Σ)∗ → C∞(M)∗,

such that

(Ψ, ρiΦ)Σ = (ρ∗iΨ,Φ)M , Ψ ∈ C∞(Σ), Φ ∈ C∞(M) , (i = 0, 1) , (2.12)

where (·, ·)Σ and (·, ·)M are the pairings introduced in Remark 1.6.3 which define

distributions on Σ and M , respectively; and C∞(Σ)∗ and C∞(M)∗ are the spaces of

compactly supported distributions on Σ and M , respectively, cf. Definition 1.6.6.

The “smeared field” Φ(f) = (Φ, f)M , thought as a distribution, is

(Φ, f)M =

∫
M

dvolM fΦ

=

∫
Σ

dvolΣ [Gf∇nΦ− Φ∇n(Gf)]

=

∫
Σ

dvolΣ [ρ0(Gf)Φ1 − Φ0ρ1(Gf)]

= (Φ1, ρ0(Gf))Σ − (Φ0, ρ1(Gf))Σ , (2.13)

where Lemma 2.1.3 was used. Note that, in the last line, Φ0, Φ1 ∈ C∞0 (Σ) and

also ρ0(Gf), ρ1(Gf) ∈ C∞0 (Σ), since f ∈ C∞0 (M) implies that Gf ∈ C∞sc (M). Now,



54 CHAPTER 2. QUANTUM FIELD THEORY ON CURVED SPACETIMES

using the adjoint operators ρ∗0, ρ
∗
1 and (2.12),

(Φ, f)M = − (ρ∗1Φ0, Gf)M + (ρ∗0Φ1, Gf)M . (2.14)

Remark 1.7.20 tells us that the formal adjoint of G with respect to some pairing

(1.71) is equal to G∗ = −G. If we choose the pairing (1.71) to be the one introduced

in Remark 1.6.3 in the context of distributions, then the formal adjoint coincide

with the one in (2.12) if we extend G∗ so that G∗ : C∞(M)∗ → C∞0 (M)∗. Then, we

can write

(Φ, f)M = (Gρ∗1Φ0, f)M − (Gρ∗0Φ1, f)M . (2.15)

Hence, the solution Φ can be expressed in terms of its initial data as

Φ = Gρ∗1Φ0 −Gρ∗0Φ1 , (2.16)

in the sense of distributions. Note, however, since Φ is smooth by Theorem 1.7.12,

(2.16) also holds in the sense of smooth functions.

Remark 2.1.4. This result can also be obtained in the more familiar “unsmeared”

form. Starting with (2.13) and using (1.79),

Φ(f) =

∫
Σ

dvolΣ(x) [−Φ(x)∇n(Gf)(x) + (Gf)(x)∇nΦ(x)]

=

∫
Σ

dvolΣ(x)

∫
M

dvolM(y) [−Φ(x)∇nG(x, y)f(y)−G(x, y)f(y)∇nΦ(x)] ,

(2.17)

from which

Φ(x) =

∫
Σ

dvolΣ(x′)na
′
[−∇a′G(x, x′)Φ(x′) +G(x, x′)∇a′Φ(x′)] . (2.18)

Phase space and classical observables

Having given a brief description of the space of solutions of the classical theory, we

now discuss the phase space of the classical theory.
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Since the spacetimeM under consideration is globally hyperbolic, Theorem 1.1.20

guarantees that there exists a foliation of M such that its metric can be given by

ds2 = −N2 dt2 + hij
(
dxi +N i dt

) (
dxj +N j dt

)
. (2.19)

One can take the Cauchy surface Σ to be a surface of constant t, with future-directed

unit normal vector field n, and such that the metric on it is given by h. One has

that n = −Ndt, dvolΣ =
√
h dd−1x and

√
−g = N

√
h.

Definition 2.1.5. The canonical conjugate momentum to Φ is the density

Π(x) :=
δS

δ(∂tΦ(x))
, (2.20)

evaluated at the Cauchy surface Σ.

It follows that, at Σ,

Π = −
√
−g gtµ∂µΦ = −N

√
h (dt)νg

νµ∂µΦ =
√
h∇nΦ . (2.21)

The phase space is then the space described by the variables (Φ,Π).

Definition 2.1.6. The phase space is the space P := C∞0 (Σ)×
√
hC∞0 (Σ), where

√
hC∞0 (Σ) denotes the space of smooth densities of compact support on Σ of the

form
√
h f , with f ∈ C∞0 (Σ), such that a point in phase space corresponds to a

specification of Φ(x) and Π(x) on Σ.

A classical observable can be thought as a functional on the phase space P.

Definition 2.1.7. A classical observable is a functional F̃f : P → R, labelled by a

function f ∈ C∞0 (M). For our purposes, we consider a class of classical observables

of the form

F̃f (Φ,Π) =

∫
Σ

dd−1x
(

ΠGf − Φ
√
h∇n(Gf)

)
, (2.22)

where G is the causal propagator.
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By the well-posedness of the Cauchy problem (2.3), every point (Φ,Π) ∈ P

of the phase space uniquely determines a solution Φ ∈ Ssc. Therefore, a classical

observable can be equivalently thought as a functional on the space of solutions Ssc.

Using Lemma 2.1.3, one can write classical observables of the form (2.22), regarded

as functionals on Ssc, as

Ff (Φ) =

∫
M

dvolM(x)f(x)Φ(x) . (2.23)

An important example of a classical observable of this class is the so-called

“smeared field” Of : Ssc → R, Φ 7→ Φ(f) := Ff (Φ). The “smeared field” Φ(f)

has the interpretation of being the spacetime average of Φ(x), weighted by f . From

another point of view, one may treat

f 7→ Φ(f) =

∫
M

dvolM(x)f(x)Φ(x) (2.24)

as a distribution, Φ ∈ C∞(M)∗, in which case Φ(x) is called the “unsmeared field”.

The space of all classical observables can be endowed with an algebraic structure,

the Poisson bracket, which is induced by the symplectic structure of Ssc.

Definition 2.1.8. The Poisson bracket of two classical observables F̃f , F̃f ′ : P → R

is given by {
F̃f , F̃f ′

}
:=

∫
Σ

dd−1x

(
δF̃f
δΦ

δF̃f ′

δΠ
− δF̃f

δΠ

δF̃f ′

δΦ

)
. (2.25)

Lemma 2.1.9. One has{
F̃f , F̃f ′

}
= σ(Gf,Gf ′) = G(f, f ′) . (2.26)

Proof. Use (2.22) and Lemma 2.1.3.

It then follows that the Poisson bracket of two smeared fields Φ(f) and Φ(f ′) is

{Φ(f),Φ(f ′)} = G(f, f ′) . (2.27)

In terms of the “unsmeared fields”,

{Φ(x),Φ(x′)} = G(x, x′) . (2.28)

The aim of the quantisation procedure will be to find an analogous relation which

is satisfied by the quantised scalar field.
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2.1.2 Quantum field theory

We now seek to find the quantum Klein-Gordon field theory. To do that, we apply

Dirac’s quantisation prescription, which consists of finding operators which act on

a suitable Hilbert space.

In more detail, the aim of this prescription is to find operator-valued distributions

Φ(f), with f ∈ C∞0 (M)C ∼= C∞0 (M ;C), such that

(i) f 7→ Φ(f) is linear;

(ii) Φ(Pf) = 0 for all f ∈ C∞0 (M ;C);

(iii) Φ(f)† = Φ(f) for all f ∈ C∞0 (M ;C);

(iv) [Φ(f),Φ(f ′)] = iG(f, f ′)I for all f, f ′ ∈ C∞0 (M ;C).

Remark 2.1.10. Recall that

C∞0 (M)C := C∞0 (M)⊕ iC∞0 (M) ∼= C∞0 (M ;C) (2.29)

is the complexification of the real vector space C∞0 (M) (see Definition 1.5.1).

Remark 2.1.11. The operator-valued distributions Φ(f) can be interpreted as the

quantisation of the “smeared fields” Φ(f), which are real-valued distributions. Point

(iv) above is then the result of the standard “curly-bracket-to-square-bracket” pre-

scription from the Poisson bracket (2.27). In terms of the quantised “unsmeared

fields”, one can rewrite the last three properties above as

(ii) PΦ(x) = 0;

(iii) Φ(x)† = Φ(x);

(iv) [Φ(x),Φ(x′)] = iG(x, x′)I.

As noted in Remark 1.6.2, the “unsmeared fields” Φ(x) should always be understood

in the distribution sense.
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Construction of the one-particle Hilbert space and Fock space

The main problem to solve at this point is to identify the appropriate Hilbert space

on which the operator-valued distributions Φ(f) act. In order to do that, we start

with the symplectic space (Ssc, σ) of the classical theory, in which the classical

solutions live.

The first step in our construction is the complexification of Ssc,

S C
sc := Ssc ⊕ iSsc . (2.30)

This is isomorphic to the space of smooth complex-valued solutions with spacelike

compact support of the Klein-Gordon equation. Then, one canonically extends the

symplectic form σ : Ssc × Ssc → R defined in (2.4) to σC : S C
sc × S C

sc → C,

cf. Definition 1.5.2. The canonical extension σC is anti-Hermitian.

It is convenient to define the Hermitian form σ̃C : S C
sc ×S C

sc → C,

σ̃C(Φ1,Φ2) := iσC(Φ1,Φ2) . (2.31)

By using (2.4), one can show that

σ̃C(Φ1,Φ2) = iσ
(
Φ1,Φ2

)
= i

∫
Σ

dvolΣ naJ
a
(
Φ1,Φ2

)
, (2.32)

where σ has been extended to S C
sc by linearity in each variable.

The Hermitian form σ̃C is not a scalar product (cf. Definition 1.4.13) as it

generally fails to be positive definite on S C
sc . Instead, consider a closed subspace

S C+
sc ⊂ S C

sc such that

(i) σ̃C is positive definite on S C+
sc ;

(ii) S C
sc is the span of S C+

sc and S C+
sc ;

(iii) given any Φ+ ∈ S C+
sc and Φ− ∈ S C+

sc , then σ̃C(Φ+,Φ−) = 0.

From (i), σ̃C is a scalar product on S C+
sc , and we denote σ̃C(·, ·) =: 〈·|·〉. Given

(iii), it is not difficult to check that the orthogonal complement (S C+
sc )⊥ = S C+

sc ,



2.1. REAL SCALAR FIELD 59

the complex conjugate space. According to Theorem 1.4.25, S C
sc = S C+

sc ⊕ S C+
sc

and hence, if Φ ∈ S C
sc , then it can be decomposed as Φ = Φ+ +Φ−, with Φ+ ∈ S C+

sc

and Φ− ∈ S C+
sc .

The subspace S C+
sc with scalar product 〈·|·〉 is not necessarily complete in the

norm induced by the scalar product.

Definition 2.1.12. Define H to be the completion of S C+
sc in the norm induced by

the scalar product 〈·|·〉. Then, H is a Hilbert space and is called the one-particle

Hilbert space.

Remark 2.1.13. For a spacetime with time-translation symmetry, a natural choice

of H is the space of complex positive frequency solutions, as detailed in the next

section. For now, it is assumed that H is the completion of any space S C+
sc satisfying

the properties (i)-(iii) above.

Given the one-particle Hilbert space H , one constructs the (symmetric) Fock

space, Fs(H ), as in Definition 1.4.23,

Fs(H ) =
∞⊕
n=0

(
n⊗

s
H

)
, (2.33)

where
⊗0

s H := C. Elements of this Hilbert space are called states.

Definition 2.1.14. An element Ψ ∈ Fs(H ) of the Fock space,

Ψ = (ψ0, ψ1, ψ2, ...) , (2.34)

with ψn ∈
⊗n

s H , is called a state. A very common notation for an element of the

Fock space Ψ is |Ψ〉, such that an element Ψ′ of the dual space Fs(H )∗ is written

as 〈Ψ′|. The state

|0〉 = (1, 0, 0, ...) (2.35)

is called a vacuum state.
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Quantum field operators

The Fock space Fs(H ) is the desired Hilbert space on which the operator-valued

distributions Φ(f) act. To see this, we first define the annihilation and creation

operators.

Definition 2.1.15. Given any ϕ ∈H , the annihilation operator a(ϕ) : Fs(H )→

Fs(H ) is defined by

a(ϕ)|Ψ〉 :=
(
〈ϕ|ψ1〉,

√
2 〈ϕ|ψ2〉, . . . ,

√
n+ 1 〈ϕ|ψn+1〉, . . .

)
, (2.36)

whereas the creation operator a†(ϕ) : Fs(H )→ Fs(H ) is defined by

a†(ϕ)|Ψ〉 :=
(
0, ϕ ψ0, . . . ,

√
nϕ⊗s ψn−1, . . .

)
. (2.37)

Remark 2.1.16. The creation operator a†(ϕ) is the adjoint of the annihilation oper-

ator a(ϕ). The vacuum state |0〉 is such that a(ϕ)|0〉 = (0, 0, . . .) ≡ 0.

Remark 2.1.17. These operators are unbounded operators, but their action on a

state |Ψ〉 ∈ Fs(H ) gives another state in the Fock space if |Ψ〉 is a terminating

sequence, in which case the resulting state is also a terminating sequence.

These operators satisfy commutation relations.

Proposition 2.1.18. The annihilation and commutation operators obey the follow-

ing commutation relations

[a(ϕ), a(ϕ′)] =
[
a†(ϕ), a†(ϕ′)

]
= 0 ,

[
a(ϕ), a†(ϕ′)

]
= 〈ϕ, ϕ′〉 I , (2.38)

with ϕ, ϕ′ ∈H .

Proof. One has

a†(ϕ′)a(ϕ)|Ψ〉 = a†(ϕ′)
(
. . . ,
√
n+ 1 〈ϕ|ψn+1〉, . . .

)
=
(
. . . ,
√
nϕ′ ⊗s

√
n 〈ϕ|ψn〉, . . .

)
, (2.39)



2.1. REAL SCALAR FIELD 61

and

a(ϕ)a†(ϕ′)|Ψ〉 = a(ϕ)
(
. . . ,
√
nϕ′ ⊗s ψn−1, . . .

)
=
(
. . . ,
√
n+ 1〈ϕ|

√
n+ 1ϕ′ ⊗s ψn〉, . . .

)
= (. . . , (n+ 1)〈ϕ|ϕ′ ⊗s ψn〉, . . .)

= (. . . , n ϕ′ ⊗s 〈ϕ|ψn〉+ 〈ϕ|ϕ′〉ψn, . . .) . (2.40)

Hence, [
a(ϕ), a†(ϕ′)

]
|Ψ〉 = 〈ϕ|ϕ′〉 |Ψ〉 . (2.41)

The other identities follow similarly.

Let {Φi}i∈I , where I is some index set, be a orthonormal basis of H . Together

with their complex conjugates, they form a basis for the Hilbert space completion

of S C
sc , such that

〈Φi|Φj〉 = δij , 〈Φi|Φj〉 = −δij , 〈Φi|Φj〉 = 0 , (2.42)

for any i, j ∈ I . If one sets

ai := a(Φi) , a†i := a†(Φi) , (2.43)

one can rewrite the commutation relations (2.38) as

[ai, aj] =
[
a†i , a

†
j

]
= 0 ,

[
ai, a

†
j

]
= δij I . (2.44)

We now have all we need to define the quantum field operator Φ(x).

Definition 2.1.19. The quantum scalar field Φ(x) is an operator-valued distribution

defined by

Φ(x) :=
∑
i∈I

[
ai Φi(x) + a†i Φi(x)

]
, (2.45)

where {Φi}i∈I is an orthonormal basis of H .
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If follows from Definition 2.1.19 that

ai = 〈Φi|Φ〉 , a†i = −〈Φi|Φ〉 . (2.46)

More generally, given a complex classical solution ϕ ∈ S C
sc , we could have defined

a(ϕ) = 〈ϕ|Φ〉 , a†(ϕ) = −〈ϕ|Φ〉 . (2.47)

Using the canonical commutation relations (2.38), one can derive the commu-

tation relations for the field and its canonical conjugate momentum on a Cauchy

surface Σ.

Proposition 2.1.20. On a Cauchy surface Σ of constant time coordinate t, the

quantum field Φ and its canonical conjugate momentum Π satisfy the canonical

commutation relations

[Φ(t, x),Φ(t, x′)] = [Π(t, x),Π(t, x′)] = 0 , [Φ(t, x),Π(t, x′)] = iδ(x, x′)I , (2.48)

with x, x′ representing coordinates on Σ and the Dirac delta distribution δ(x, x′) is

a density in the second argument.

Proof. Dropping the dependence on t for notational simplicity, for ϕ, ψ ∈H ,

[a(ϕ), a(ψ)] = 〈ϕ|Φ〉〈ψ|Φ〉 − 〈ψ|Φ〉〈ϕ|Φ〉

= −
∫

Σ

dvolΣ(x)
[
ϕ(x)∇nΦ(x)− Φ(x)∇nϕ(x)

]
×
∫

Σ

dvolΣ(x′)
[
ψ(x′)∇nΦ(x′)− Φ(x′)∇nψ(x′)

]
− (ϕ↔ ψ)

= −
∫

Σ

dd−1x
[
ϕ(x)Π(x)− Φ(x)∇nϕ(x)

]
×
∫

Σ

dd−1x′
[
ψ(x′)Π(x′)− Φ(x′)∇nψ(x′)

]
− (ϕ↔ ψ)

= −
∫

Σ

dd−1x

∫
Σ

dd−1x′
{
ϕ(x)ψ(x′) [Π(x),Π(x′)]

+∇nϕ(x)∇nψ(x′) [Φ(x),Φ(x′)]− ϕ(x)∇nψ(x′) [Π(x),Φ(x′)]

−∇nϕ(x)ψ(x′) [Φ(x),Π(x′)]
}

= 0 . (2.49)
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Similarly,

[
a†(ϕ), a†(ψ)

]
= 〈ϕ|Φ〉〈ψ|Φ〉 − 〈ψ|Φ〉〈ϕ|Φ〉

= −
∫

Σ

dd−1x

∫
Σ

dd−1x′ {ϕ(x)ψ(x′) [Π(x),Π(x′)]

+∇nϕ(x)∇nψ(x′) [Φ(x),Φ(x′)]− ϕ(x)∇nψ(x′) [Π(x),Φ(x′)]

−∇nϕ(x)ψ(x′) [Φ(x),Π(x′)]}

= 0 , (2.50)

and

[
a(ϕ), a†(ψ)

]
= −〈ϕ|Φ〉〈ψ|Φ〉+ 〈ψ|Φ〉〈ϕ|Φ〉

=

∫
Σ

dd−1x

∫
Σ

dd−1x′
{
ϕ(x)ψ(x′) [Π(x),Π(x′)]

+∇nϕ(x)∇nψ(x′) [Φ(x),Φ(x′)]− ϕ(x)∇nψ(x′) [Π(x),Φ(x′)]

−∇nϕ(x)ψ(x′) [Φ(x),Π(x′)]
}

= 〈ϕ|ψ〉 . (2.51)

The commutation relations follow.

Remark 2.1.21. Note that the “smeared” form of these commutation relations is

[Φ(f),Φ(g)] = [Π(f),Π(g)] = 0 , [Φ(f),Π(g)] = i(f, g)ΣI , (2.52)

where f, g ∈ C∞0 (Σ) and

(f, g)Σ =

∫
Σ

dvolΣ fg . (2.53)

Finally, we can show that the quantum field obeys the desired commutation

relation.

Proposition 2.1.22. The quantum scalar field obeys the canonical commutation

relation, for f, g ∈ C∞0 (M),

[Φ(f),Φ(g)] = iG(f, g)I . (2.54)
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Proof. By using (2.16), the commutation relations (2.52) and Lemma 2.1.3,

[Φ(f),Φ(g)] = [(Gρ∗1Φ0, f)M − (Gρ∗0Φ1, f)M , (Gρ∗1Φ0, f)M − (Gρ∗0Φ1, f)M ]

= [−(Φ0, ρ1Gf)Σ + (Φ1, ρ0Gf)Σ, −(Φ0, ρ1Gg)Σ + (Φ1, ρ0Gg)Σ]

= [−Φ(ρ1Gf) + Π(ρ0Gf), −Φ(ρ1Gg) + Π(ρ0Gg)]

= −i(ρ1Gf, ρ0Gg)Σ I + i(ρ0Gf, ρ1Gg)Σ I

= −i
∫

Σ

dvolΣ (Gg∇n(Gf)−Gf∇n(Gg)) I

= iG(f, g)I . (2.55)

Remark 2.1.23. The “unsmeared field” Φ(x) satisfies the commutation relation

[Φ(x),Φ(x′)] = iG(x, x′)I . (2.56)

When given an orthonormal basis {Φi}i∈I of H , this is equivalent to

[Φ(x),Φ(x′)] =
∑
i,j∈I

{
[ai, aj] Φi(x) Φj(x

′) +
[
a†i , a

†
j

]
Φi(x) Φj(x′)

+
[
ai, a

†
j

]
Φi(x) Φj(x′) +

[
a†i , aj

]
Φi(x) Φj(x

′)
}

=
∑
i∈I

{
Φi(x) Φi(x′)− Φi(x) Φi(x

′)
}
I

= iG(x, x′)I . (2.57)

We have then finished the Dirac’s prescription to construct the quantum scalar

field theory. We have constructed the Fock space Fs(H ) in (2.33) and defined the

quantum field as an operator-valued distribution Φ(f), whose “unsmeared” form

is given by (2.45). The quantum field satisfies the properties (i)-(iv) given in the

beginning of this section.

2.2 The case of stationary spacetimes

In this section, we restrict our attention to stationary spacetimes, as defined in

section 1.2. The basic idea to construct the quantum field theory is to choose the
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one-particle Hilbert space to be the subspace of complex solutions which are posi-

tive frequency with respect to the timelike Killing vector field, in a straightforward

generalisation of quantum field theory on Minkowski spacetime. There are, however,

some subtle technical points which need to be carefully considered and which are

explored in detail in [69, 70]. Here, we give an heuristic discussion of the construc-

tion and then a brief overview of the Green’s distributions associated with the field

equation which will be needed.

2.2.1 Positive frequency solutions

In the last section it was described how to construct the one-particle Hilbert space

H as the completion of a subspace S C+
sc of the space S C

sc of complex classical

solutions such that the Hermitian form σ̃C defined in (2.31) is positive definite (and,

hence, a scalar product 〈·|·〉), S C+
sc and its complex conjugate span the space of

complex solutions and 〈Φ+|Φ−〉 = 0 for Φ+ ∈ S C+
sc and Φ− ∈ S C+

sc . However, there

are many choices of such Hilbert spaces H and, therefore, the quantum field theory

ultimately depends on our choice of H .

In quantum field theory, which deals with infinite-dimensional vector spaces of

solutions, different choices of H yield, in general, unitarily inequivalent theories.

For a detailed discussion of this fact we refer e.g. to section 4.4 of [11]. A simple way

to visualise this point is to consider two such choices of one-particle Hilbert spaces,

H1 and H2. Then, any solution ϕ ∈ H2 can be decomposed as ϕ = ψ + ξ, with

ψ, ξ ∈ H1. The annihilation operator a(ϕ), which acts on the Fock space Fs(H2),

can then be written as

a(ϕ) = 〈ϕ|Φ〉 = 〈ψ + ξ|Φ〉 = a(ψ)− a†(ξ) , (2.58)

where (2.47) was used. Let |0〉 ∈ Fs(H1) be the vacuum state of the Fock space

defined by H1, such that a(ψ)|0〉 = 0. It is clear that a(ϕ)|0〉 6= 0, i.e. the vacuum

state defined using H1 is not equivalent to the vacuum state defined using H2.
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We conclude that the definition of a vacuum state depends on the choice of the

one-particle Hilbert space H .

This choice-dependence is also true for Minkowski spacetime. However, in this

case, there is a natural choice of H , consisting of the subspace of positive frequency

solutions (to be defined below), which arises from the time translation invariance

(and, ultimately, from the Poincaré invariance) of the classical theory. In a general

curved spacetime, there is no natural criterion, such as symmetries of the theory,

for a unique choice of H .

However, for a globally stationary spacetime, as defined in Definition 1.2.1,

there exists a time translation symmetry that can be used in an analogous way

to Minkowski spacetime to select a natural choice of H .

Let M be a globally stationary spacetime and let ξ be the future-directed timelike

Killing vector field. Given the time translation symmetry, the Lie derivative with

respect to ξ, Lξ, commutes with the Klein-Gordon operator P and, therefore, it

maps the space of complex smooth solutions S C to itself. Furthermore, it can be

shown that:

Proposition 2.2.1. Lξ is anti-Hermitian with respect to the Hermitian form σ̃C.

Proof. One wants to show that L†ξ = −Lξ, i.e.

σ̃C(Φ,LξΨ) = −σ̃C(LξΦ,Ψ) , (2.59)

for Φ, Ψ ∈ S C
sc . On the Cauchy surface Σ on which the Hermitian form is evaluated,

one has that ξa = Nna +Na, according to (1.2), hence

LξΦ = N ∇nΦ +∇NΦ . (2.60)

Applying (2.31),

σ̃C(Φ,LξΨ) = i

∫
Σ

dvolΣ
(
Φ∇nLξΨ− LξΨ∇nΦ

)
= i

∫
Σ

dvolΣ
[
Φ (N∇n∇nΨ +∇n∇NΨ)− (N ∇nΨ +∇NΨ)∇nΦ

]
.

(2.61)
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By using integration by parts and the torsion-free property of the connection,

σ̃C(Φ,LξΨ) = i

∫
Σ

dvolΣ
[
(N∇n∇nΦ +∇n∇NΦ) Ψ− (N ∇nΦ +∇NΦ)∇nΨ

]
= i

∫
Σ

dvolΣ
(
∇nLξΦ Ψ− LξΦ∇nΨ

)
= −σ̃C(LξΦ,Ψ) . (2.62)

Hence, Lξ is anti-Hermitian.

An immediate and important consequence is:

Proposition 2.2.2. Lξ has purely imaginary eigenvalues and eigenvectors for dis-

tinct eigenvalues are orthogonal.

Proof. It follows directly from Remark 1.4.35.

A positive frequency solution is then defined to be an eigenfunction of Lξ whose

eigenvalue is purely negative imaginary.

Definition 2.2.3. A mode solution Φ ∈ S C is of positive frequency if it is an

eigenfunction of Lξ such that

LξΦ = −iωΦ , ω > 0 . (2.63)

A general solution is of positive frequency if it can be expressed as a linear combi-

nation of mode solutions of positive frequency.

Let S C+ denote the subspace of positive frequency solutions. Solutions in S C+

are called negative frequency solutions.

Remark 2.2.4. Note that, even though positive frequency solutions cannot have

spacelike compact support [11], the space S C
sc is dense in S C = S C+ ⊕S C+.

Proposition 2.2.5. One has that

(i) the Hermitian form σ̃C is positive definite on S C+ (and hence defines a scalar

product 〈·|·〉);
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(ii) S C is the span of S C+ and S C+;

(iii) given any Φ+ ∈ S C+ and Φ− ∈ S C+, then σ̃C(Φ+,Φ−) = 0.

Proof. Item (iii) follows from Proposition 2.2.2. This shows that S C can be orthog-

onally decomposed as S C = S C+ ⊕S C+ and, hence, (ii).

It remains to prove (i). We want to show that, for positive frequency Φ,

σ̃C(Φ,Φ) = i

∫
Σ

dvolΣ
(
Φ∇nΦ− Φ∇nΦ

)
≥ 0 . (2.64)

The metric of the stationary spacetime can be written as (1.1),

ds2 = −N2 dt2 + hij
(
dxi +N i dt

) (
dxj +N j dt

)
. (2.65)

with ξ = ∂t and N , N i and hij being independent of t. Note that the unit normal

vector field is given by

n =
1

N

(
ξ −N i∂i

)
, (2.66)

and thus (2.64) is equivalent to

σ̃C(Φ,Φ) = i

∫
Σ

dd−1x

√
h

N

(
Φ∂tΦ− Φ∂tΦ− ΦN i∂iΦ + ΦN i∂iΦ

)
≥ 0 . (2.67)

In the static case (N i = 0), point (i) follows easily from ∂tΦ = −iωΦ with ω > 0,

σ̃C(Φ,Φ) = 2ω

∫
Σ

dd−1x

√
h

N
|Φ|2 ≥ 0 . (2.68)

In the non-static case, a bit more work is needed. Here, we just sketch the proof,

by considering the special case for which the spacelike surfaces Σ are compact.

Then, the spectrum is discrete and, by orthogonality, it suffices to consider positive

frequency modes with fixed ω. (If Σ is not compact, we need to consider wave-

packets of positive frequency, which are localised in spacetime, as the ones described

in Section 3.1.2, instead of mode solutions of sharp frequency.)

Start with

0 ≡
∫

Σ

dd−1xN
√
h
(
ΦPΦ

)
, (2.69)
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where P = ∇2−m2−ξR is the Klein-Gordon operator and Φ is a positive frequency

solution, ∂tΦ = −iωΦ with ω > 0. For a stationary spacetime with metric (2.65)

the Klein-Gordon operator is

P =
1√
−g

∂µ
(
gµν
√
−g ∂ν

)
−m2 − ξR

= − 1

N2
∂2
t +

N i

N2
∂t∂i +

1

N
√
h
∂i

(
N i
√
h

N
∂t

)

+
1

N
√
h
∂i

[
N
√
h

(
hij − N iN j

N2

)
∂j

]
−m2 − ξR . (2.70)

Substituting in (2.69) gives

0 =

∫
Σ

dd−1xN
√
h

[
ω2

N2
|Φ|2 − iω N

i

N2
Φ∂iΦ + iω

N i

N2
Φ∂iΦ

−
(
hij − N iN j

N2

)
∂iΦ∂jΦ−

(
m2 + ξR

)
|Φ|2

]
, (2.71)

where integration by parts was used in the third and fourth terms and the boundary

terms vanish, given the compactness of Σ.

At this point, we use the fact that ∂t is timelike, which translates into

−N2 + hijN
iN j < 0 . (2.72)

At each point of Σ, choose Riemann normal coordinates such that hij = δij and

N i = (N1, 0, ..., 0). Then, (2.72) shows that |N1| < N at that point, from which we

can conclude that the quadratic form given by

hij − N iN j

N2
, i, j = 1, . . . , d− 1, (2.73)

is positive. On physical grounds, we also assume that m2 + ξR ≥ 0, such that there

are no tachyonic instabilities. Then it follows that∫
Σ

dd−1xN
√
h

[(
hij − N iN j

N2

)
∂iΦ∂jΦ +

(
m2 + ξR

)
|Φ|2

]
≥ 0 . (2.74)

Given (2.71) and recalling that ω > 0, we can conclude that∫
Σ

dd−1x

√
h

N

[
ω |Φ|2 − iΦN i∂iΦ + iΦN i∂iΦ

]
≥ 0 . (2.75)
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Therefore,

σ̃C(Φ,Φ) =

∫
Σ

dd−1x

√
h

N

[
2ω |Φ|2 − iΦN i∂iΦ + iΦN i∂iΦ

]
≥
∫

Σ

dd−1x

√
h

N

[
ω |Φ|2 − iΦN i∂iΦ + iΦN i∂iΦ

]
≥ 0 , (2.76)

which proves (i).

It follows that a natural choice for the one-particle Hilbert space H for a globally

stationary spacetime is the subspace of positive frequency solutions.

Let {Φi}i∈I denote an orthonormal basis of H and let t be a time function such

that ξ = ∂t and x = (t,x). One can write a positive frequency mode solution as

Φi(x) = e−iωit φi(x) , ωi > 0 . (2.77)

These expressions are written with a notation appropriate for the case in which the

index set I is discrete, for notational simplicity, but they should be thought to also

include the continuous case.

2.2.2 Green’s distributions

In this section, we present a brief description of the Green’s distributions (and other

closely related distributions) associated to the Klein-Gordon equation and their

relation to the expectation values of products of the fields. We start by considering

the case of systems with zero temperature before introducing the thermal Green’s

distributions. This brief overview follows parts of [9, 10, 71].

Zero temperature Green’s distributions

To start with two examples, the bi-distributions Gret and Gadv introduced in Defi-

nition 1.7.14 satisfy

PxGret(x, x
′) = PxGadv(x, x′) =

δ(x, x′)√
−g(x)

, (2.78)
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in the sense of distributions, where Px is the Klein-Gordon operator at the point x

and the Dirac delta distribution δ(x, x′) is a density in the first argument. Hence,

Gret and Gadv are Green’s distributions associated with the Klein-Gordon equation,

PΦ = 0. As is normal with hyperbolic differential operators, there are several

different Green’s distributions associated with a hyperbolic equation.

The bi-distribution G introduced in Definition 1.7.17, on the other hand, satisfies

the homogeneous equation

PxG(x, x′) = 0 , (2.79)

and is not, strictly speaking, a Green’s distribution. It is common practice, how-

ever, to designate this and other related distributions as “Green’s distributions” or

(misleadingly) “Green’s functions”.

Above, it was shown that G(x, x′) was related to products of two field operator-

valued distributions Φ(x) and Φ(x′) by the relation (2.57),

iG(x, x′)I = [Φ(x),Φ(x′)] . (2.80)

Given the support properties of Gret and Gadv, one has

iGret(x, x
′)I = −Θ(t− t′) [Φ(x),Φ(x′)] , (2.81)

iGadv(x, x′)I = Θ(t′ − t) [Φ(x),Φ(x′)] , (2.82)

where t is a time function on the spacetime and Θ is the Heaviside function. These

Green’s distributions are characterised by their support properties in spacetime and

can be defined for any globally hyperbolic spacetime. Furthermore, they give the

expectation value of different products of the quantum field, e.g.

〈Ψ|[Φ(x),Φ(x′)]|Ψ〉 = iG(x, x′) , (2.83)

where |Ψ〉 is a normalised quantum state.

Another Green’s distribution which will be important is the following.

Definition 2.2.6. The Feynman propagator GF associated with a vacuum state |0〉

is defined as the expectation value of the time-ordered product of fields,

GF(x, x′) := i〈0|T (Φ(x)Φ(x′)) |0〉 , (2.84)
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where T is the time-ordering operator,

T (Φ(x)Φ(x′)) := Θ(t− t′)Φ(x)Φ(x′) + Θ(t′ − t)Φ(x′)Φ(x) . (2.85)

The Feynman propagator satisfies

PxG
F(x, x′) = − δ(x, x′)√

−g(x)
, (2.86)

and, by definition, depends on the quantum state being considered.

Definition 2.2.7. The Wightman two-point functions G± associated with a vacuum

state |0〉 are defined as,

G+(x, x′) := 〈0|Φ(x)Φ(x′)|0〉 , G−(x, x′) := 〈0|Φ(x′)Φ(x)|0〉 . (2.87)

They satisfy the homogeneous equation

PxG
±(x, x′) = 0 . (2.88)

On a stationary spacetime with time function t, the Wightman two-point functions

can be expressed in terms of mode solutions of the form (2.77) as

G±(x, x′) =
∑
i∈I

e∓iωi(t−t
′) φi(x)φi(x′) . (2.89)

If ∆t := t−t′, one verifies that, as a function of ∆t, G± is analytic when Im[∆t] ∈ R∓.

Moreover, if |∆t| < |∆x| 6= 0, i.e. if the points are spacelike separated, G+(x, x′) =

G−(x, x′) on the real axis. Therefore, there exists an holomorphic function G of ∆t

on the cut complex plane C \ ((−∞,−|∆x|) ∪ (|∆x|,∞)) such that

G (x, x′) =

G
+(x, x′) , Im[∆t] < 0 ,

G−(x, x′) , Im[∆t] > 0 ,

(2.90)

and both equalities hold when Im[∆t] = 0 and |Re[∆t]| < |∆x| (see Fig. 2.1). In

other words, the Wightman two-point distribution G± is the boundary value of G

as ∆t approaches the real axis from below/above:

G±(∆t; x,x′) = lim
ε→0+

G (∆t∓ iε; x,x′) . (2.91)
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|∆x|−|∆x| Re[∆t]

Im[∆t]

G−G−

G+ G+

GE

Figure 2.1: Cut complex plane for the holomorphic function G .

On the imaginary axis, ∆t = i∆τ ∈ iR, one has

G (x, x′) =
∑
i∈I

e−ωi|∆τ | φi(x)φi(x′) . (2.92)

Even though each mode term is not holomorphic in ∆τ , the series has an holomor-

phic limit. Let’s assume for a moment that the spacetime is static. Then,

GE(τ,x; τ ′,x′) := G (iτ,x; iτ ′,x′) , (2.93)

where τ − τ ′ = ∆τ , can be shown to be the Green’s distribution satisfying(
�x −m2

)
GE(x, x′) = − δ(x, x

′)√
gE(x)

, (2.94)

where �x is the d’Alembertian on a Riemannian manifold with metric gE. In the

static case, the operator �x−m2 is elliptic and, hence, has a unique Green’s distri-

bution, GE, which is called the Euclidean Green’s distribution. If the spacetime is

stationary, but not static, the operator is no longer elliptic in general and, therefore,

uniqueness of the Green’s distribution does not necessarily follow.

Note that the Feynman propagator GF can be obtained from GE by a rigid

rotation of the domain from the imaginary axis to the real axis in a counter-clockwise

direction,

GF(∆t; x,x′) = i lim
θ→π/2−

G (−i∆teiθ; x,x′) =

i G
+(∆t; x,x′) , ∆t > 0 ,

i G−(∆t; x,x′) , ∆t < 0 ,

(2.95)
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which agrees with (2.84). Eq.(2.95) is usually written as

GF(t,x; t′,x′) = i GE(t,x; t′,x′) . (2.96)

This relation is a crucial part for the “Euclidean methods” used to obtain the Feyn-

man propagator on static spacetimes.

Non-zero temperature Green’s distributions

The Green’s distributions discussed so far have been computed for pure quantum

states such as the vacuum state, and hence are appropriate for systems at zero

temperature. We now turn to thermal equilibrium states. The expectation value of

an operator A for a thermal equilibrium state at temperature T = 1/β corresponding

to a time-independent Hamiltonian H is given by the Gibbs formula

〈A〉β :=
Tr
(
e−βHA

)
Tr (e−βH)

. (2.97)

Here, we assume that the density operator ρ := e−βH is of trace class (see Defini-

tion 1.4.38). This implies that H must be an operator with purely point spectrum

{Ei}i∈I and that

Z := Tr
(
e−βH

)
=
∑
i∈I

e−βEi <∞ . (2.98)

Remark 2.2.8. For a massive scalar field on a stationary spacetime with metric given

by (2.19), the Hamiltonian H is given by:

H =
1

2

∫
Σ

dd−1xN
√
h

[(
1− NiN

i

N2
Π̃2

)
+ hij

(
∂iΦ +

N i

N
Π̃

)(
∂jΦ +

N j

N
Π̃

)
+(m2 + ξR)Φ2

]
, (2.99)

where Π =:
√
h Π̃. If Σ is compact, it can be shown that H is a positive, compact

operator and its trace is just the sum of its eigenvalues, cf. Proposition 1.4.40. More

details can be found in [71].

Given this, one can define the thermal Wightman two-point functions as

G+
β (x, x′) := 〈Φ(x)Φ(x′)〉β , G−β (x, x′) := 〈Φ(x′)Φ(x)〉β . (2.100)
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|∆x|−|∆x| Re[∆t]

Im[∆t]

G−β
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β
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β

G−β

G−β

G+
β
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β

G−β

GE
β

β

−β

...
...

...
...

Figure 2.2: Cut complex plane for the holomorphic function Gβ.

In terms of mode solutions, it can be shown that they are given by

G±β (x, x′) =
∑
i∈I

φi(x)φi(x′)

1− e−βωi
(
e∓iωi∆t + e−βωie±iωi∆t

)
. (2.101)

Similarly to the zero temperature case, as functions of ∆t, G+
β and G−β are analytic

when −β < Im[∆t] < 0 and 0 < Im[∆t] < β, respectively. Moreover, if |∆t| <

|∆x| 6= 0, i.e. if the points are spacelike separated, G+
β (x, x′) = G−β (x, x′) on the

real axis. Therefore, there exists an holomorphic function Gβ of ∆t on the region

{z ∈ C : |Im[z]| < β} \ ((−∞,−|∆x|) ∪ (|∆x|,∞)) such that

Gβ(x, x′) =

G
+
β (x, x′) , −β < Im[∆t] < 0 ,

G−β (x, x′) , 0 < Im[∆t] < β ,

(2.102)

and both equalities hold when Im[∆t] = 0 and |Re[∆t]| < |∆x| (see Fig. 2.2).

From (2.101), one can derive the important property of thermal Green’s distri-

butions,

G+
β (∆t− iβ; x,x′) = G−β (∆t; x,x′) , (2.103)

which is usually known as the KMS condition. This allows us to analytically continue
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Gβ to C \ {z ∈ C : Im[z] = Nβ, N ∈ Z, and |Re[z]| > |∆x|}, by

Gβ(∆t; x,x′) = Gβ(∆t+ iNβ; x,x′) , N ∈ Z . (2.104)

On the imaginary axis, one has

Gβ(x, x′) =
∑
i∈I

φi(x)φi(x′)

1− e−βωi
(
e−ωi∆τ + e−βωieωi∆τ

)
, (2.105)

for 0 < ∆τ < β (in the rest of the axis the expression can be obtained by using

(2.104)). Then, assuming that the spacetime is static,

GE
β (τ,x; τ ′,x′) := Gβ(iτ,x; iτ ′,x′) , (2.106)

where τ − τ ′ = ∆τ , can be shown to be the Green’s distribution satisfying(
�x −m2

)
GE
β (x, x′) = − δ(x, x

′)√
gE(x)

, (2.107)

such that GE
β (∆τ + β; x,x′) = GE

β (∆τ ; x,x′). That is, it is the Euclidean Green’s

distribution for the elliptic operator �x−m2 acting on the cylinder S1×Σ of radius

β. As in the non-thermal case, if the spacetime is stationary, but not static, this

operator is no longer elliptic and there might not be a unique Green’s distribution.

As before, the thermal Feynman propagator can be obtained by

GF
β(∆t; x,x′) = i lim

θ→π/2−
Gβ(−i∆teiθ; x,x′) (2.108)

which we will write simply as

GF
β(t,x; t′,x′) = i GE

β (t,x; t′,x′) . (2.109)

Finally, we note that the thermal and non-thermal Green’s distributions can be

related in the following way. It can be shown (see e.g. [9]) that

Gβ(∆t; x,x′) =
∞∑

N=−∞

G (∆t+ iNβ; x,x′) , (2.110)

i.e. the thermal Green’s distributions can be obtained as an imaginary-time image

sum of the zero temperature Green’s distributions. We will make use of this relation

in Appendix A to write the thermal Green’s distribution on the Minkowski spacetime

in terms of its zero-temperature Green’s distribution.
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2.2.3 Rotating black hole spacetimes

In this section, we focus on stationary black hole spacetimes, by which we mean

black hole spacetimes which are locally stationary. The Kerr black hole in four

dimensions is the most notable example. In contrast with the Schwarzschild black

hole, the exterior region of the Kerr black hole does not have a global timelike

Killing vector field and, therefore, is not a globally stationary manifold in its own

right. In the usual Boyer-Lindquist coordinates (t, r, θ, φ), the Killing vector ∂t is

timelike for r > rS , where r = rS is the radial location of the stationary limit surface,

and spacelike in the region given by r+ < r < rS (the ergoregion), where r = r+

is the radial location of the event horizon. If we instead consider the generator

χ = ∂t + ΩH ∂φ of the horizon (where ΩH is the angular velocity of the horizon),

then χ is a Killing vector field and is timelike in the region r+ < r < rC, where

r = rC is the radial location of the speed of light surface, and is spacelike in the

region given by r > rC. (More details about these statements for the Kerr spacetime

can be found e.g. in [28].)

The quantisation procedure described above for globally stationary spacetimes,

which chooses for the one-particle Hilbert space the subspace of positive frequency

solutions of the field equation, is therefore not applicable to the exterior region of

Kerr. The non-existence of an everywhere timelike Killing vector field in the exterior

region of the spacetime is directly related to the non-existence of a well defined

quantum vacuum state which is regular at the horizon and is invariant under the

isometries of the spacetime. For the Kerr spacetime, this was noted by Frolov and

Thorne [26] and was proven in a seminal paper by Kay and Wald [22].

It is then expected that a state with these properties can be defined if we restrict

the spacetime such that the scalar field does not have access to the region from the

speed of light surface to infinity. This can be done by inserting a mirror-like, timelike

boundary which respects the isometries of the spacetime. The simplest example

is a boundary M at constant radius r = rM, on which the scalar field satisfies
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r = r+

r = r−

I

II

III

IV MM′

Figure 2.3: Carter-Penrose diagram of manifold M described in the text.

Dirichlet boundary conditions. If we choose the radius such that rM ∈ (r+, rC),

then the horizon generator χ is a timelike Killing vector field up to the boundary,

and a vacuum state with the above properties is expected to be well defined. The

introduction of timelike boundaries was suggested in [26] and explored in [28]. As

far as we know, no rigorous proof of the existence of such a state is available.

However, the heuristic arguments given above strongly suggest that such a conjecture

is expected to be true and we shall take it as an assumption from this point onwards.

For definiteness, we define the spacetime with timelike boundaries, M , to be the

one constructed in the following way. Consider the non-extremal Kerr spacetime,

0 < |a| < M , and let:

• region I be the exterior region;

• region II be the black hole region;

• region III be the white hole region;

• region IV be the other asymptotically flat region.

The maximal analytical extension of Kerr comprises more regions, which we will not

consider (see [4] for more details). In region I we insert a boundary M at constant

radius r = rM, with rM ∈ (r+, rC), on which Dirichlet boundary conditions are
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imposed. We denote by Ĩ the portion of the region I from the horizon up to the

mirror. In region IV, a similar boundary M′ is inserted, which can be obtained by

the action of a discrete isometry J which takes points in region I to points in region

IV by a reflection about the bifurcation surface. In a similar way, a region ĨV is

defined. We take as the new manifold M of interest the union of regions Ĩ, II, III

and ĨV (see Fig. 2.3).

The resulting manifold M is not globally hyperbolic and, hence, the quantisation

procedure described above for globally hyperbolic spacetimes is not applicable. In

section 2.3 it is described how to construct a quantum field theory on a spacetime

with timelike boundaries. The upshot is that one expects that a isometry-invariant

vacuum state which is regular at the horizons can be defined on the manifold M .

The explicit construction of such a state is deferred to section 3.1.

Remark 2.2.9. Note that if only the timelike boundary M had been introduced in

region I, but no corresponding timelike boundaryM′ in region IV, it is conjectured

that there is no isometry-invariant vacuum state which is regular at the horizons [72].

2.3 The case of spacetimes with boundaries

So far, we have dealt with globally hyperbolic spacetimes, on which the Cauchy

problem describing the dynamics of a scalar field is well posed. However, there are

examples of non globally hyperbolic spacetimes on which we might be interested in

constructing a quantum field theory, such as spacetimes with boundaries. In the last

section, we argued that an isometry-invariant quantum state which is regular at the

horizon of a rotating black hole spacetime can be defined if we restrict the spacetime

by inserting appropriate timelike boundaries which respect the isometries of the

spacetime. Another important example of spacetime with timelike boundaries is

the anti-de Sitter (AdS) spacetime, whose spatial infinity provides a natural timelike

boundary. A quantisation scheme for a scalar field on AdS was introduced by Avis,

Isham and Storey [73] and the main idea is that appropriate boundary conditions
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need to be introduced so that there is a unique classical solution to the field equation.

Since then, there have been several similar attempts (e.g. [74, 75]) to construct

consistent quantum field theories for non globally hyperbolic stationary spacetimes.

Therefore, instead of imposing global hyperbolicity, consider a stably causal,

stationary spacetime. Recall from Proposition 1.1.23 that a stably causal spacetime

has a time function. If, furthermore, it is stationary the following can be shown.

Proposition 2.3.1. If M is a stably causal, stationary spacetime, then there exists

a spacelike surface Σ which intersects each orbit of the timelike Killing vector field

exactly once.

Proof. See Proposition 3.1 of [75].

Even though a stably causal, stationary spacetime which is not globally hyper-

bolic does not possess a Cauchy surface on which initial data can be prescribed, it

has spacelike surfaces which intersect the orbits of the timelike Killing vector field

only once. However, initial data on such a surface is not enough to have a well posed

initial value problem.

For concreteness, consider the spacetime M constructed in the previous section,

consisting of the portions of regions I, II, III and IV of the extended Kerr black

hole between two timelike boundaries M and M′. This spacetime is not globally

hyperbolic, but it is stably causal and each region Ĩ and ĨV is a stably causal, sta-

tionary spacetime in its own right. On each region there is a spacelike surface which

intersects the orbits of the timelike Killing vector field of each region exactly once.

Assume that two such surfaces on regions Ĩ and ĨV meet each other at the bifurcation

surface and let Σ denote the whole spacelike surface on M , including the points at

the timelike boundaries. We shall call this surface an “initial-value surface”. It can

be thought as the restriction of a Cauchy surface in the original globally hyperbolic

spacetime without boundaries which passes through the bifurcation surface to the

regions Ĩ and ĨV, together with the bifurcation surface and the timelike boundaries

(see Fig. 2.4). By construction, this “initial-value surface” is compact.
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r = r+

r = r−

I

II

III
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Σ

Figure 2.4: Carter-Penrose diagram of manifold M described in the text with an “initial-

value surface” Σ.

One now considers the following mixed Dirichlet-Cauchy problem:

PΦ = 0 ,

Φ
∣∣
Σ

= Φ0 ,

∇nΦ
∣∣
Σ

= Φ1 ,

Φ
∣∣
M = Φ

∣∣
M′ = 0 ,

(2.111)

where Φ0, Φ1 ∈ C∞0 (Σ). Given that Σ is compact and the boundaries are timelike,

standard results on mixed Dirichlet-Cauchy problems guarantee the well posedness

of (2.111) (see e.g. chapter 24 of [76]).

Hence, even though the spacetime under consideration is not globally hyperbolic,

upon imposing Dirichlet boundary conditions on the timelike boundaries the mixed

Dirichlet-Cauchy problem is well posed. We then expect (and will assume) that our

previous results derived for a globally hyperbolic spacetime to be carried over for

the manifold M . Namely, we expect that the space of spacelike compact solutions

to (2.111) to be a symplectic space with symplectic form given by (2.4), where

the integral is evaluated on an “initial-value surface” Σ. Moreover, we expect that

the construction of the quantum field theory from this symplectic space to remain

valid and, therefore, we can obtain a Fock space whose vacuum state is regular
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and isometry-invariant, as discussed in the previous discussion. We also expect

this vacuum state to be “physically acceptable” in the sense of having the defining

features of a “Hadamard state”, as defined for a globally hyperbolic spacetime. To

conclude the discussion of the quantum scalar field theory, it remains to define this

notion of “physically acceptable” state and discuss the issue of renormalisation of

local observables, which is done in the last section of this chapter.

2.4 Hadamard renormalisation

The objective of this thesis is to compute the expectation value of local observ-

ables for a given quantum field theory on a rotating black hole spacetime. Since

observables in quantum field theory are self-adjoint operator-valued distributions,

problems are bound to arise if we want to consider observables which are non-linear

in the fields, such as Φ2(x) and the stress-energy tensor Tab(x), which is given by

Tab = (1− 2ξ)∇aΦ∇bΦ +

(
2ξ − 1

2

)
gab∇cΦ∇cΦ− 2ξΦ∇b∇aΦ

+ 2ξgabΦ∇c∇cΦ + ξ

(
Rab −

1

2
gabR

)
Φ2 − 1

2
gabm

2Φ2 . (2.112)

Since Φ is a distribution on spacetime, these observables involve taking the product

of two distributions at the same spacetime point, which is not a well defined opera-

tion. Therefore, some kind of renormalisation procedure is necessary. In this section,

we will describe the Hadamard renormalisation, which is an extension of the stan-

dard “point-splitting method” which uses the so-called Hadamard representation of

the Green’s distributions. References for this part are [11,40].

2.4.1 The case of globally hyperbolic spacetimes

First, note that both expectation values 〈Φ2(x)〉 and 〈Tab(x)〉, with respect to a given

quantum state |Ψ〉, can be given as spacetime limits of the Feynman propagator GF
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associated with |Ψ〉. One has

〈Φ2(x)〉 = −i lim
x′→x

GF(x, x′) , (2.113)

and

〈Tab(x)〉 = lim
x′→x
Tab′(x, x′)

[
−i GF(x, x′)

]
, (2.114)

where Tab′(x, x′) is an operator-valued bi-tensor constructed by point splitting,

Tab′ = (1− 2ξ) gb
b′∇a∇b′ +

(
2ξ − 1

2

)
gabg

cd′∇c∇d′ − 2ξ ga
a′gb

b′∇a′∇b′

+ 2ξ gab∇ρ∇ρ + ξ

(
Rab −

1

2
gabR

)
− 1

2
gabm

2 , (2.115)

where gab′ is the parallel propagator, as introduced in (1.16). These expectation

values have been regularised by point splitting and now we are dealing with well-

defined bi-distributions.

For simplicity, the prescription is described in detail for 〈Φ2(x)〉 and, at the end,

the results are also presented for 〈Tab(x)〉. The basic idea of the prescription is to

“subtract” the short-distance singular behaviour of the bi-distribution, in this case

the Feynman propagator GF. For that, one expands the Feynman propagator for

small geodesic distance between x and x′.

Assume that x and x′ are in a geodesically convex neighbourhood, cf. Defini-

tion 1.3.1. Then, with respect to a class of quantum states to be defined below, the

Feynman propagator has a Hadamard expansion which depends on the spacetime

dimension d.

1. For even d ≥ 4, the Hadamard expansion of GF is given by

GF(x, x′) = iαd

[
U(x, x′)

(σ(x, x′) + iε)d/2−1
+ V (x, x′) log [σ(x, x′) + iε] +W (x, x′)

]
.

(2.116)

2. For odd d ≥ 3, the Hadamard expansion of GF is given by

GF(x, x′) = iαd

[
U(x, x′)

(σ(x, x′) + iε)d/2−1
+W (x, x′)

]
. (2.117)
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In both cases, one has that

αd =
Γ(d/2− 1)

2(2π)d/2
, (2.118)

U(x, x′), V (x, x′) and W (x, x′) are smooth symmetric bi-scalars which are regular

when x′ → x, σ(x, x′) is the Synge’s world function (1.10), and iε with ε → 0+

is introduced to give GF a singularity structure consistent with its definition as a

time-ordered product.

These expansions of the Feynman propagator are only valid when evaluated for

a special class of quantum states.

Definition 2.4.1. A quantum state for which the short-distance singularity of the

Feynman propagator is given by either (2.116) or (2.117) is called a Hadamard state.

Remark 2.4.2. The heuristic idea behind this definition is that the short-distance

singularity structure of the Feynman propagator (equivalently, of the two-point func-

tion 〈Φ(x)Φ(x′)〉) on a curved spacetime should be as close as possible to that on

Minkowski spacetime. As seen below, the singular terms in the expansion of the

Feynman propagator only depend on the local geometry (and not on the quantum

state being considered) and, hence, it seems reasonable to require that a physically

acceptable state has a two-point function 〈Φ(x)Φ(x′)〉 with the same short-distance

singularity structure as on Minkowski spacetime.

Remark 2.4.3. There is a more modern definition of Hadamard states introduced

by Radzikowski [77] which uses microlocal analysis techniques and looks into the

singularity structure of the two-point function. It is equivalent to Definition 2.4.1

and the latter is sufficient for the purposes of this thesis.

Remark 2.4.4. Results from [78] and [79] show that every globally hyperbolic space-

time admit a wide class of Hadamard states. Analogous results are not available for

spacetimes with boundaries, in which the definition of a Hadamard state needs to

be modified (see Section 2.4.2).
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The key point of these expansions of the Feynman propagator evaluated for

Hadamard states is that it can be shown that the bi-scalars U(x, x′) and V (x, x′)

only depend on the geometry along the geodesic joining x and x′, whereas the bi-

scalar W (x, x′) contains the quantum state dependence of the Feynman propagator

(see e.g. [40]). Hence, the Hadamard expansion of the Feynman propagator contains

a purely geometrical part which is singular when x′ → x,

GHad(x, x′) := iαd

[
U(x, x′)

(σ(x, x′) + iε)d/2−1
+ V (x, x′) log [σ(x, x′) + iε]

]
, (2.119)

for even d ≥ 4, and

GHad(x, x′) := iαd

[
U(x, x′)

(σ(x, x′) + iε)d/2−1

]
, (2.120)

for odd d ≥ 3, and a state dependent part, which is regular when x′ → x,

GF
reg(x, x′) = iαdW (x, x′) . (2.121)

The singular part (2.119) or (2.120) is called the Hadamard singular part of the

Feynman propagator.

Given the Hadamard expansion of the Feynman propagator and its singular,

non-state dependent Hadamard part, the final step of the Hadamard renormalisation

procedure is to subtract this part from the Feynman propagator and use the regular

part to define the renormalised local observables.

Definition 2.4.5. The renormalised vacuum polarisation 〈Φ2(x)〉ren with respect to

a Hadamard state is defined as

〈Φ2(x)〉ren := −i lim
x′→x

GF
reg(x, x′) . (2.122)

The renormalised expectation value of the stress-energy tensor 〈Tab(x)〉ren with re-

spect to a Hadamard state is defined as

〈Tab(x)〉ren := lim
x′→x
Tab′(x, x′)

[
−i GF

reg(x, x′)
]

+ Θ̃ab(x) , (2.123)

where Θ̃ab(x) is a state independent tensor which only depends on the local geometry

and the parameters m2 and ξ of the scalar field and which guarantees that 〈Tab(x)〉ren

is conserved, i.e. ∇a〈Tab(x)〉ren = 0.
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Remark 2.4.6. The term Θ̃ab(x) in (2.123) is necessary as the renormalisation pro-

cedure fails to provide a conserved tensor. Additionally, an extra conserved tensor

(denoted by Θab(x) in [40]), which also only depends on the local geometry and the

parameters m2 and ξ of the scalar field, can be added to (2.123), since the renor-

malised stress-energy tensor is defined only up to a local, conserved tensor [11,38,80].

This leaves an intrinsic ambiguity in the definition of the renormalised expectation

value of the stress-energy tensor, which cannot be corrected without a full theory of

quantum gravity or an experiment.

As noted above, the Hadamard singular part of the Feynman propagator is purely

geometrical and, hence, does not depend on which quantum state the Feynman

propagator is being evaluated. It is possible to explicitly compute the Hadamard

singular part (up to the required order in σ) in terms of the local geometry and the

parameters m2 and ξ of the scalar field. The results for 2 ≤ d ≤ 6 can be found

in [40], here we present the results for d = 3 which are needed for this thesis.

Proposition 2.4.7. For d = 3, the covariant expansion of the Hadamard singular

part (2.120) of the Feynman propagator is obtained using

U = U0 + U1σ +O(σ2) , (2.124)

with

U0 = u0 − u0a σ
;a +

1

2!
u0ab σ

;aσ;b − 1

3!
u0abc σ

;aσ;bσ;c +O(σ2) , (2.125)

U1 = u1 − u1a σ
;a +O(σ) , (2.126)

and where the coefficients are given by

u0 = 1 , u0a = 0 , u0ab =
1

6
Rab , u0abc =

1

4
R(ab;c) , (2.127)

and

u1 = m2 +

(
ξ − 1

6

)
R , u1a =

1

2

(
ξ − 1

6

)
R;a . (2.128)

Here, R is the Ricci scalar and Rab is the Ricci tensor of the spacetime.
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Remark 2.4.8. Note that the expansion of the Hadamard singular part is only re-

quired up to σ2 for the computation of the expectation value of the stress-energy

tensor (2.123) since only two covariant derivatives are taken before taking the co-

incidence limit. This also allows us to bypass the discussion of the convergence of

this expansion.

2.4.2 The case of spacetimes with timelike boundaries

The above discussion of the Hadamard renormalisation and Hadamard states was

formulated for globally hyperbolic spacetimes. Even though the focus was to analyse

and ultimately subtract the short-distance singularity structure of the Feynman

propagator, the concept of a quantum state is global, as evidenced by the non-

existence of a natural vacuum state in a general curved spacetime.

Here, we present a modification of the definition of a Hadamard state for the

case of a spacetime with boundaries which was first proposed by [72]. For that, first

we recall the notion of a causally convex set.

Definition 2.4.9. A subset U of a spacetime M is a causally convex set if, whenever

two points x and x′ of U can be connected by a causal curve in U , the portion of

the causal curve between x and x′ lies entirely in U .

We note that this definition differs from the Definition 1.3.1 of a geodesically

convex set. We then define an Hadamard state in a spacetime with boundaries in

the following way. Let IntM := M \ ∂M denote the interior of the spacetime.

Definition 2.4.10. If, for any causally convex subset U of IntM which is a globally

hyperbolic spacetime on its own right, a quantum state is Hadamard in the usual

sense in U , then we say that the quantum state is Hadamard in M .

Given this definition, the Hadamard renormalisation procedure described above

is performed in exactly the same way. In Chapter 3, an explicit implementation of

the Hadamard renormalisation of local observables such as 〈Φ2(x)〉 for a scalar field

on a rotating black hole spacetime is presented.
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Chapter 3

Renormalised local observables in

rotating black hole spacetimes

In this chapter, we present a method to renormalise a class of local observables for a

scalar field on a rotating black hole. We will focus on (2+1)-dimensional spacetimes

for simplicity, but we argue that this method should be easily generalised to a wide

range of rotating black hole spacetimes in four and more spacetime dimensions.

Additionally, the details of the computation will focus on the renormalised vacuum

polarisation 〈Φ2(x)〉. In Chapter 6, this computation will be made explicit for the

case of a warped AdS3 black hole. Finally, at the end of this chapter, it is explained

why this method fails to renormalise local observables such as the expectation values

of the stress-energy tensor for a rotating black hole spacetime.

The contents of this chapter were published on [2,3].

3.1 Scalar field on a rotating black hole

In this first section, the outline of the calculation of the renormalised vacuum po-

larisation for a scalar field on a (2+1)-dimensional rotating black hole is displayed.

Namely, we identify the quantum state of interest and apply the renormalisation

procedure explained in Section 2.4.

89
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3.1.1 (2+1)-dimensional rotating black hole

For concreteness, in the following we consider a generic (2+1)-dimensional stationary

black hole spacetime, whose metric is of the form given below. This is the case of

the warped AdS3 black hole described in Chapter 4. However, it will be argued that

the method should be applicable to a wide range of rotating black hole spacetimes

in three and more spacetime dimensions.

We choose spherical coordinates (t, r, θ), where t ∈ (−∞,∞), r ∈ (0,∞) and

(t, r, θ) ∼ (t, r, θ + 2π). In these coordinates, the metric of a (2+1)-dimensional

stationary black hole, according to (1.1), can be written as

ds2 = −N(r)2 dt2 + grr(r) dr2 + gθθ(r)
(
dθ +N θ(r) dt

)2
, (3.1)

where N(r) is the lapse function and N θ(r) is the shift function. We make the

following remarks about the black hole:

1. It is assumed that there is r+ > 0 where grr(r+) = 0, N(r+) = 0 and√
grr(r+)N(r+) is finite, such that r = r+ is the location of the event horizon.

The region of the spacetime in which r > r+ is called the exterior region.

2. In this coordinate system, ∂t and ∂θ are Killing vector fields. Even though

it might seem natural to assume that ∂t is timelike in some region r > r′,

with r′ > r+, we do not make such a requirement. Instead, it is only required

that the spacetime be locally stationary, cf. Definition 1.2.3, i.e. any point of

the spacetime must have a neighbourhood in which there is a timelike Killing

vector field. In particular, there exists a Killing vector field of the form

χ = ∂t + ΩH ∂θ (3.2)

which is timelike in the region (r+, rC), with rC > r+ and which generates the

event horizon. This vector field is then null at the horizon and at the surface

located at r = rC, which is called the speed of light surface. The constant ΩH

is then interpreted as the angular velocity of the horizon with respect to the

coordinate system.
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As seen in Section 2.2.3, for most cases of physical interest, such as the Kerr

spacetime in four dimensions, there is not any Killing vector field which is timelike

everywhere in the exterior region r > r+. As a consequence, in the context of quan-

tum field theory, there is not a well defined quantum vacuum state which is regular

at the horizon and is invariant under the isometries of the spacetime. However, we

argued that a vacuum state with these properties can be defined if we restrict the

spacetime by inserting a mirror-like boundary which respects the isometries of the

spacetime. The simplest example is a boundaryM at constant radius r = rM, with

r+ < rM < rC, on which the field satisfies Dirichlet boundary conditions, as in this

region χ is a timelike Killing vector field.

Given this remark, we add the following comments:

3. We assume that there exists a Dirichlet boundaryM at r = rM and focus only

on the portion of the exterior region from the horizon up to the boundary, the

region Ĩ defined in Section 2.2.3, which from now is what is meant by exterior

region of the black hole.

4. In region Ĩ of the black hole spacetime, it is convenient to consider “co-rotating

coordinates” (t̃ = t, r, θ̃ = θ − ΩHt), such that the Killing vector field χ is

given by χ = ∂t̃ and the metric is given by

ds2 = −N(r)2 dt̃2 + grr(r) dr2 + gθθ(r)
(

dθ̃ +
(
N θ(r) + ΩH

)
dt̃
)2

. (3.3)

The coordinate t̃ is, by definition, a time function in this region.

3.1.2 Scalar field and Hartle-Hawking state

We now turn to the theory of a real massive scalar field Φ on the exterior region of

the rotating black hole. It obeys the Klein-Gordon equation (2.2),

PΦ =
(
∇2 −m2 − ξR

)
Φ = 0 . (3.4)
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A thorough study of the classical theory for a general curved spacetime was

done in Section 2.1.1, followed by a discussion of the quantisation procedure in Sec-

tion 2.1.2. The aim now is to identify the one-particle Hilbert space H on which

an isometry-invariant, regular state can be defined (as the vacuum state of the cor-

responding Fock space Fs(H )) and to construct the quantised scalar field as an

operator-valued distribution which acts on the Fock space as in Definition 2.1.19.

Given that the spacetime under consideration is (locally) stationary, the natural

choice for the one-particle Hilbert space H is the space of positive frequency solu-

tions of the Klein-Gordon equation with respect to a timelike Killing vector field,

cf. Section 2.2.1.

First, note that, using the co-rotating coordinates (t̃, r, θ̃), ∂t̃ and ∂θ̃ are Killing

vector fields. Hence, there are mode solutions of (3.4) of the form

Φω̃k(t̃, r, θ̃) = e−iω̃t̃+ikθ̃ φω̃k(r) , (3.5)

where ω̃ ∈ R and k ∈ Z, such that a general (complex) solution can be written as

Φ(t̃, r, θ̃) =

∫
R

dω̃
∑
k∈Z

Nω̃k Φω̃k(t̃, r, θ̃) , (3.6)

where Nω̃k is a normalisation constant.

Remark 3.1.1. The mode solutions (3.5) with ω̃ > 0 form a basis for the space of

positive frequency solutions of (3.4) with respect to Killing vector χ = ∂t̃. This is

not the space used to define the desired vacuum state.

We want to find a vacuum state which is regular at the horizons of the extended

spacetime and invariant under the spacetime isometries. The one-particle Hilbert

space consisting of positive frequency solutions with respect to the affine parameters

of the horizon satisfies these conditions.

The affine parameters of the horizon are given by the usual Kruskal coordinates,

similarly to the Kerr spacetime in four dimensions. Given the coordinate system

(t̃, r, θ̃), define the tortoise coordinate r∗ by

dr∗
dr

=

√
grr(r)

N(r)2
, (3.7)
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such that r ∈ (r+,∞) is mapped to r∗ ∈ (−∞,∞), and define the two null coordi-

nates

v := t̃+ r∗ , u := t̃− r∗ . (3.8)

Define a new angular coordinate ψ by

dψ = dθ̃ +
(
N θ(r) + ΩH

)
dt̃ . (3.9)

The metric written in coordinates (v, r, ψ) is given by

ds2 = −N(r)2dv2 + 2
√
grr(r)N(r)dvdr + gθθ(r)dψ . (3.10)

The Killing vector field χ in these coordinates is given by χ = ∂v. Since it is

null at the horizon, the latter is a Killing horizon. To find its surface gravity κ+, we

compute, at r = r+,

χµ∇µχν = −χµ∇νχµ = −1

2
∇ν

(
χ2
)

= −1

2
∂νN

2 = N∂rN δνr , (3.11)

and use the relation valid at r = r+,

χµ∇µχν = κ+χν , (3.12)

to conclude that

κ+ =
∂rN√
grr

∣∣∣∣
r=r+

. (3.13)

The coordinate v is a non-affine parameter along (part of) the horizon. To find

an affine parameter, let χ̃ denote an affinely parametrised generator of the horizon,

i.e. χ̃a∇aχ̃
b = 0 on the horizon. It is easy to check that χ̃ = eκ+vχ is such a

generator. Hence, if we denote by V the affine parameter, such that χ̃ = ∂V , then

V ∝ eκ+v. Analogously, we have that U ∝ e−κ+u is an affine parameter along (part

of) the horizon.

This suggests that we define the Kruskal-like coordinates as

V := eκ+v , U := −e−κ+u . (3.14)
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These new coordinates allow us to analytically extend the spacetime in the standard

way. In the extended spacetime, the horizon is now given by either V = 0 or U = 0

and the original exterior region is given by V > 0 and U < 0. Denote the surface

V = 0 by H− (the past horizon) and the surface U = 0 by H+ (the future horizon).

Their intersection is the bifurcation surface. Denote the original exterior region by

region I. As in Section 2.2.3, we assume that there is a Dirichlet boundary M at

r = rM in the original exterior region and denote by Ĩ the portion of the region I

from the horizon up to the boundary. We also assume that there is another Dirichlet

boundary M′ in the region given by V < 0 and U > 0 (region IV), which can be

obtained by the action of a discrete isometry J : (U, V, θ̃) 7→ (−U,−V, θ̃), taking

points from region I to region IV by a reflection about the bifurcation surface.

Denote by ĨV the portion of region IV up to the boundary M′.

From the results above, one can conclude that V is an affine parameter along

H+, whereas U is an affine parameter along H−. In other words, the vector field ∂V

is tangent to affinely parametrised null geodesics along H+, whereas ∂U is tangent

to affinely parametrised null geodesics along H−. Therefore, denote by H the one-

particle Hilbert space of solutions such that

(i) when restricted to H+ are positive frequency with respect to ∂V ;

(ii) when restricted to H− are positive frequency with respect to ∂U ;

(iii) the Dirichlet boundary condition at M and M′ is satisfied.

Let Fs(H ) denote the Fock space associated with H , cf. Definition 1.4.23. We

then define:

Definition 3.1.2. The Hartle-Hawking state |H〉 is the vacuum state of Fs(H ).

Remark 3.1.3. We call this state the Hartle-Hawking state as this state satisfies the

same defining properties as the state defined on a Schwarzschild black hole [21],

namely the regularity at the horizons and the isometry invariance. Hence, this state

can be thought as the natural generalisation to the rotating case with mirrors.
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Having defined the Fock space of interest, one can define the quantum field in

the way detailed in Section 2.1.2. For that, one picks an orthonormal basis of H .

In the following, such a basis is constructed.

1. Let
{

ΦĨ
ω̃k

}
ω̃>0,k∈Z be the orthonormal basis of mode solutions of the form (3.5)

on region Ĩ which satisfy the Dirichlet boundary condition at M.

2. Define mode solutions on region ĨV, ΦĨV
ω̃k, by the action of the isometry J ,

ΦĨV
ω̃k(x) := ΦĨ

ω̃k (J−1(x)) , x ∈ ĨV . (3.15)

It is understood that the modes ΦĨ
ω̃k only have support on region Ĩ and that

the modes ΦĨV
ω̃k only have support on region ĨV.

3. In the union Ĩ ∪ ĨV, define the new mode solutions ΦL
ω̃k and ΦR

ω̃k by

ΦL
ω̃k(x) :=

1√
1− e−2πω̃/κ+

(
ΦĨV
ω̃k(x) + e−πω̃/κ+ΦĨ

ω̃k(x)
)
, x ∈ Ĩ ∪ ĨV, (3.16a)

ΦR
ω̃k(x) :=

1√
1− e−2πω̃/κ+

(
ΦĨ
ω̃k(x) + e−πω̃/κ+ΦĨV

ω̃k(x)
)
, x ∈ Ĩ ∪ ĨV. (3.16b)

These L and R modes can be analytically extended across the horizons.

Proposition 3.1.4. The L and R mode solutions are of positive frequency with

respect to the affine parameters of H+ and H−.

Proof. We only show that ΦR
ω̃k is of positive frequency with respect to the affine

parameter U of H−. For that, we want to decompose ΦR
ω̃k into its positive and

negative frequency parts with respect to U and show that the latter vanishes. The

Fourier transform of ΦR
ω̃k with respect to U is

Φ̃R
ω̃k(σ, r, θ̃) =

∫ ∞
−∞

dU eiσU ΦR
ω̃k(U, r, θ̃) , (3.17)

where

ΦR
ω̃k(U, r, θ̃) =

1

2π

∫ ∞
−∞

dσ e−iσU Φ̃R
ω̃k(σ, r, θ̃)

=
1

2π

∫ ∞
0

dσ e−iσU Φ̃R
ω̃k(σ, r, θ̃) +

1

2π

∫ ∞
0

dσ eiσU Φ̃R
ω̃k(−σ, r, θ̃) .
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We decomposed ΦR
ω̃k in its positive and negative frequency parts with respect to U .

If Φ̃R
ω̃k(−σ, r, θ̃) = 0 for σ > 0, then ΦR

ω̃k is of positive frequency with respect to U .

Suppose that ΦR
ω̃k(U, r, θ̃) is analytic in the lower half of the complex U -plane

and, furthermore, that

lim
R→∞

max
θ∈(−π,0)

∣∣∣ΦR
ω̃k(Re

iθ, r, θ̃)
∣∣∣ = 0 . (3.18)

Then, we can apply Jordan’s lemma to (3.17) when σ < 0 and close the integration

contour in the lower half plane to conclude that Φ̃R
ω̃k(σ, r, θ̃) = 0 when σ < 0.

To show this, first note that, on the past horizon H−, ΦĨ
ω̃k is of the form

ΦĨ
ω̃k(U, r+, θ̃) ∼ e

i ω̃
κ+

log(−U)+ikθ̃
Θ(−U) , (3.19)

where Θ(U) is the Heaviside function, whereas

ΦĨV
ω̃k(U, r+, θ̃) ∼ e

−i ω̃
κ+

log(U)−ikθ̃
Θ(U) . (3.20)

Thus, on H−,

ΦR
ω̃k(U, r+, θ̃) ∼

[
e
i ω̃
κ+

log(−U)
Θ(−U) + e

− πω̃
κ+ e

i ω̃
κ+

log(U)
Θ(U)

]
eikθ̃ . (3.21)

To check that ΦR
ω̃k(U, r+, θ̃) is analytic in the lower half of the complex U -plane, we

extend the logarithm in the complex plane by taking the branch cut to lie in the

upper half plane. Then,

e
i ω̃
κ+

log(U)
= e

i ω̃
κ+

[log(−U)−iπ]
= e

πω̃
κ+ e

i ω̃
κ+

log(−U)
, (3.22)

and we can write

ΦR
ω̃k(U, r+, θ̃) ∼ e

i ω̃
κ+

log(−U)
eikθ̃ , (3.23)

for all U . This is analytic in the lower half of the complex U -plane.

However, it does not satisfy (3.18). This is due to the fact that we are dealing

with non-normalisable mode solutions with sharp frequencies, which leads that in

Φ̃R
ω̃k(σ, r+, θ̃) ∼

∫ ∞
0

dU e
iσU+i ω̃

κ+
log(−U)

eikθ̃ (3.24)
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the integral does not converge absolutely.

Instead, we should consider wave-packets constructed as superpositions of posi-

tive frequency modes, such as the ones in [13,81]

Φjn =
1√
ε

∫ (j+1)ε

jε

dω e−i
2πn
ε Φω , (3.25)

where j ∈ N, n ∈ Z, ε > 0 and Φω is a mode solution generated by data of the form

eiωu/
√
ω at future null infinity. These wave-packets are made of frequencies within

ε of jε and are peaked around retarded time u = 2πn
ε

with spread ∼ 1/ε. Then, the

additional integration over the frequencies required to construct the wave-packets

make the above integrals over U convergent.

Hence, we take the one-particle Hilbert space H to consist of the L and R mode

solutions. The quantum scalar field Φ(x) is then defined to be

Φ(x) =
∞∑

k=−∞

∫ ∞
0

dω̃
[
aL
ω̃kΦ

L
ω̃k(x) + aR

ω̃kΦ
R
ω̃k(x) + h.c.

]
, (3.26)

where h.c. stands for “hermitian conjugate”. The Hartle-Hawking state |H〉 is such

that aL
ω̃k|H〉 = aR

ω̃k|H〉 = 0. Moreover, one can define the Feynman propagator GF

evaluated for this quantum state by (2.84).

Remark 3.1.5. Note that the Hartle-Hawking state is the vacuum state of the Fock

space Fs(H ) associated with the one-particle Hilbert space H consisting of the

L and R modes. As shown by [21, 82], it is however a thermal state with respect

to the horizon generator Killing vector field χ, introduced in (3.2). Therefore, the

Feynman propagator GF evaluated for the Hartle-Hawking state, when written using

the coordinates (t̃, r, θ̃) (which only cover region Ĩ), is a thermal Green’s distribution,

as defined in Section 2.2.2.

3.1.3 Hadamard renormalisation

In Section 2.4 the Hadamard renormalisation of the vacuum polarisation 〈Φ2(x)〉

was described. We concluded that the renormalized vacuum polarization 〈Φ2(x)〉 in
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any Hadamard state is given by

〈Φ2(x)〉ren := −i lim
x′→x

[
GF(x, x′)−GHad(x, x′)

]
, (3.27)

where GHad is the Hadamard singular part of the Feynman propagator GF, evaluated

for the Hadamard state. In the current three-dimensional setting, it is given by

GHad(x, x′) =
i

4
√

2π

U(x, x′)√
σ(x, x′) + iε

, (3.28)

with the bi-scalar U given by (2.124). This bi-scalar can be expressed as a covariant

Taylor expansion (see section 1.3.3) as

U(x, x′) =
∞∑
k=0

Uk(x, x
′)σ;k(x, x′) . (3.29)

For the computation of the vacuum polarization, it is sufficient to know the zeroth

term, U0(x, x′) = 1 +O(σ), thus,

GHad(x, x′) =
i

4
√

2π

1√
σ(x, x′) + iε

+O(σ1/2) . (3.30)

At this stage, we are faced with two important technical difficulties. To perform

the subtraction in (3.27), we need to compute the Feynman propagator GF evaluated

for the Hartle-Hawking state and the state-independent Hadamard singular part

GHad. The former is usually obtained as a sum over mode solutions of the differential

equation (2.86) satisfied by GF, whereas the latter is given in closed form by (3.28).

This implies that, unless we are able to express the mode sum in closed form, which

is generally not possible, we need to express GHad as a sum over mode solutions,

such that the short-distance divergence can be subtracted term by term. This will

be done in Section 3.3.

First, however, we need to compute the Feynman propagator GF and write it

as sum over mode solutions of (2.86). If the background spacetime were static, the

standard technique to obtain the Feynman propagator would be to consider the

real Riemannian section of the static spacetime, cf. Definition 1.2.4, and obtain the

Euclidean Green’s distribution GE which satisfies the differential equation (2.106).
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The Euclidean Green’s distribution is unique, due to the ellipticity of the Klein-

Gordon operator in the real Riemannian section, and it can be easily computed using

standard Green’s functions techniques. The Feynman propagator for the original

static spacetime can then be obtained by using (2.109).

Since our spacetime is stationary, but non static, this technique is no longer

valid. If we instead consider the complex Riemannian section of the spacetime,

cf. Definition 1.2.6, there is no guarantee that, in general, there is a unique Green’s

distribution that solves the differential equation, as the Klein-Gordon operator is

not elliptic in the complex Riemannian section. In the next section, we describe

how the complex Riemannian section can still be used to compute the Feynman

propagator in this case.

3.2 Quasi-Euclidean method

In this section, we present the “quasi-Euclidean method” to compute the Feynman

propagator for a scalar field in the Hartle-Hawking state on a rotating black hole

spacetime. This is a generalisation of the “Euclidean method” used for static space-

times and involves the complex Riemannian section of the exterior region of the

rotating black hole spacetime with a timelike boundary. Ideas similar to the ones

presented in Section 2.3 allows us to conclude that there exists a unique Green’s

distribution associated with the Klein-Gordon equation in the complex Rieman-

nian section which can obtained as a mode sum using standard Green’s functions

techniques.

The complex Riemannian section of certain rotating spacetimes has been briefly

discussed in [23,35,36] in the context of the Kerr-Newman black hole. In [37], a more

general concept of “local Wick rotation” is discussed for any Lorentzian manifold,

even without a timelike Killing vector field, as long as its metric is a locally analytic

function of the coordinates.
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3.2.1 Complex Riemannian section

In Section 1.2.2 the real Riemannian section of a static spacetime was defined.

In short, a static spacetime can be thought of as a real Lorentzian section of a

complex manifold, for which it is always possible to find a real Riemannian section

by performing an appropriate analytical continuation. For a (2+1)-dimensional

static spacetime whose metric in coordinates (t, r, θ) is

ds2 = −N(r)2 dt2 + grr(r) dr2 + gθθ(r) dθ2 , (3.31)

where t is a global time function, one can obtain the real Riemannian section by

performing a Wick rotation t→ −iτ ∈ iR,

ds2
R = N(r)2 dτ 2 + grr(r) dr2 + gθθ(r) dθ2 . (3.32)

The analytic continuation procedure does unfortunately not have an immediate

generalization to spacetimes that are stationary but not static which generates a

real Riemannian section. For the exterior of a rotating black hole, one issue is that

the exterior need not have a globally timelike Killing vector even when each point

in the exterior has a neighbourhood with such a Killing vector, i.e. it is locally

stationary, as we saw in Section 2.2.3. A second issue is that there may exist no

analytic continuation in the coordinates that results in a real Riemannian section.

Both of these issues are present in Kerr (for which the absence of a real section with

a positive definite metric was shown in [34]) and in the (2 + 1)-dimensional warped

AdS3 black holes considered in Chapter 4. It is possible to obtain a positive definite

metric by analytically continuing not just the coordinates but also the parameters

(e.g. the angular momentum parameter in Kerr [83]), but the physical relevance of

continuing parameters seems debatable [36].

If we only consider region Ĩ of the (2+1)-dimensional rotating black hole space-

time, there exists an everywhere timelike Killing vector field, χ = ∂t̃. If we perform

a Wick rotation t̃ = −iτ ∈ iR, the metric (3.3) becomes

ds2
C = N(r)2 dτ 2 + grr(r) dr2 + gθθ

(
dθ̃ − i

(
N θ(r) + ΩH

)
dτ
)2

. (3.33)
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This is the complex-valued metric gC of the complex Riemannian section IC of a

complex manifold, in which region Ĩ is a real Lorentzian section, cf. Definition 1.2.6.

This metric is regular at r = r+ if τ is periodic with period 2π/κ+, where κ+ is

the surface gravity of the black hole obtained in (3.13). Otherwise, there would be

a conical singularity at r = r+. The resulting manifold has two periodic directions

and a third direction that is also compact due to the boundary at r = rM.

3.2.2 Green’s distribution in the Riemannian section

In the real Lorentzian section of the rotating black hole, we defined the Feynman

propagator GF evaluated for the Hartle-Hawking state in the usual way as a bi-

distribution on M . In the complex Riemannian section IC, we find the Green’s

distribution G associated with the Klein-Gordon equation (which should not be

confused with the causal propagator G introduced in Definition 1.7.17). Given the

construction of IC, the results obtained in this section will only be relevant for region

Ĩ of the original spacetime.

In the complex Riemannian section IC, the Green’s distribution G associated

with the Klein-Gordon equation satisfies the distributional equation

(
∇2 −m2 − ξR

)
G(x, x′) = −δ

3(x, x′)√
g(x)

= −δ(τ − τ
′)δ(r − r′)δ(θ̃ − θ̃′)√

g(x)
, (3.34)

where g(x) := det(gCµν) and ∇2 := (gC)µν∇µ∇ν .

In contrast to the real Lorentzian section, there is a unique solution to this

equation in the complex Riemannian section which satisfies the following boundary

conditions:

(i) G(x, x′) is regular at r = r+;

(ii) G(x, x′) satisfies the Dirichlet boundary conditions at r = rM.

This follows from the uniqueness results for boundary value problems in compact

manifolds. Note that two of the directions of the complex spacetime are periodic,
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while the third direction is compact due to the existence of the timelike bound-

ary. In contrast, on static spacetimes without boundaries (and suitable asymptotic

properties at infinity), the real Riemannian section has a unique Euclidean Green’s

distribution, due to the ellipticity of the Klein-Gordon operator, as previously re-

marked.

Given the periodicity conditions of τ and θ̃, one has

δ(τ − τ ′) =
κ+

2π

∞∑
n=−∞

eiκ+n(τ−τ ′) , (3.35)

δ(θ̃ − θ̃′) =
1

2π

∞∑
k=−∞

eik(θ̃−θ̃′) , (3.36)

understood as distributional identities. We can write the Green’s distributionG(x, x′)

as a sum over modes Gnk(r, r
′)

G(x, x′) =
κ+

4π2

∞∑
n=−∞

eiκ+n(τ−τ ′)
∞∑

k=−∞

eik(θ̃−θ̃′) Gnk(r, r
′) . (3.37)

By using (3.35), (3.36) and (3.37) in the field equation (3.34), we obtain an ordinary

differential equation for Gnk,[
1
√
g

d

dr

(
√
g grr

d

dr

)
−
(
κ+n+ ik

(
N θ + ΩH

))2

N2
− k2

gθ̃θ̃
−m2 − ξR

]
Gnk = −δ(r − r

′)
√
g

.

(3.38)

The solutions of this equation can be given in terms of solutions of the corresponding

homogeneous equation. Let pnk be the solution of the homogeneous equation which

is regular at the horizon and let qnk be the solution of the homogeneous equation

which satisfies the Dirichlet boundary condition at the timelike boundary. Then, by

the standard theory of Green’s functions (e.g. Chapter 10 of [84]), the radial part of

the Green’s distributions is given by

Gnk(r, r
′) = Cnk pnk(r<) qnk(r>) , (3.39)

where r< := min{r, r′}, r> := max{r, r′} and Cnk is the normalization constant

determined by the Wronskian relation

Cnk

(
pnk

dqnk
dr
− qnk

dpnk
dr

)
=

1
√
g grr

. (3.40)
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Hence, we have found the unique solution of Eq. (3.34) which satisfies the bound-

ary conditions of regularity at the horizon and Dirichlet condition at the timelike

boundary. The Green’s distribution is expressed as a sum over mode solutions of

the differential equation (3.38). For convenience, we rewrite (3.37) as

G(x, x′) =:
∞∑

n=−∞

eiκ+n(τ−τ ′)
∞∑

k=−∞

eik(θ̃−θ̃′) GBH
nk (r, r′) . (3.41)

In the current (2+1)-dimensional case, it is generally possible to find the mode

solutions (3.39) in closed form in terms of known functions, whereas we need to

resort to numerical methods for four or more dimensions. In Chapter 6, we will

explicitly find the mode solutions for a scalar field on a warped AdS3 black hole.

3.3 Renormalisation procedure

In the last section, we described how to compute the Green’s distribution associated

with the Klein-Gordon equation in the complex Riemannian section of the exterior

region of the rotating black hole. As noted at the end of Section 3.1, we also need to

express the Hadamard singular part GHad of the Feynman propagator as a sum over

mode solutions, such that the short-distance divergences can be subtracted term

by term. Before that, we need to make sense of GHad in the complex Riemannian

section.

In Section 1.3.4 we verified that the local geodesic structure of a real Lorentzian

manifold is preserved when going to the complex Riemannian section and, in par-

ticular, we can define a notion of a geodesically linearly convex neighbourhood as

in Definition 1.3.15 and generalise the definition of the Synge’s world function, as

in Definition 1.3.17.

Henceforth, we can write the Hadamard singular part of the Green’s distribution

G in the complex Riemannian section as

GHad(x, x′) =
1

4
√

2π

1√
σ(x, x′)

+O(σ1/2) . (3.42)
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In an analogous way to the real Lorentzian case, we now subtract the Hadamard

singular part from the Green’s function G and then take the coincidence limit to

obtain the vacuum polarization at x ∈ Ĩ,

〈Φ2(x)〉 = lim
x′→x

[G(x, x′)−GHad(x, x′)] . (3.43)

(In a slight abuse of notation, on the RHS of the equation x, x′ ∈ IC, such that

x ∈ IC is the result of a Wick rotation of x ∈ Ĩ.)

By construction, the Green’s distribution G is regular at r = r+, satisfies the

Dirichlet boundary conditions at r = rM and is invariant under the spacetime

isometries. Therefore, together with (2.109), after analytically continuing back to

the Lorentz section, 〈Φ2(x)〉 as given by (3.43) is the vacuum polarisation for a scalar

field in the Hartle-Hawking state.

3.3.1 Subtraction of the Hadamard singular part

It remains to perform the subtraction in (3.43) before the coincidence limit can

be taken. As G is known only as the mode sum (3.37), the evaluation of 〈Φ2(x)〉

requires GHad to be rewritten as a mode sum that can be combined with (3.37) so

that the divergences in the coincidence limit get subtracted under the sum term by

term. For a general spacetime, it is not known how to express GHad as a mode sum.

We accomplish this in the following way. The Hadamard singular part incor-

porates the short-distance singular behaviour of the Green’s distribution for (the

complex Riemannian section of) a rotating black hole, which should be of the same

form as the singular behaviour of the Green’s distribution for the (complex Rieman-

nian section of) Minkowski spacetime, given that we are dealing with Hadamard

states. A good thing about Minkowski spacetime is that the zero temperature

Green’s distribution for a scalar field is known in closed form

GM
0 (x, x′) =

1

4π

e−m
√

2σ(x,x′)√
2σ(x, x′)

. (3.44)
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This means that the thermal Green’s distribution GM can be expressed both as

an imaginary-time image sum of the zero temperature Green’s distribution using

(2.110) and also as a sum over mode solutions, say,

GM(x, x′) =
∞∑

n=−∞

eiκ+n(τ−τ ′)
∞∑

k=−∞

eik(θ̃−θ̃′) GM
nk(x, x

′) , (3.45)

as described in Appendix A. And, of course, we know how to write its Hadamard

singular part GM
Had(x, x′) in closed form, as in (3.42). This allow us to write the

Hadamard singular part as in (A.17),

GM
Had(x, x′) =

∞∑
n=−∞

eiκ+n(τ−τ ′)
∞∑

k=−∞

eik(θ̃−θ̃′) GM
nk(x, x

′)−GM
reg(x, x′) , (3.46)

where GM
reg(x, x′) is a finite term when the coincidence limit is taken, which is ob-

tained in Appendix A. Eq. (3.46) expresses the Hadamard singular part of the

Green’s distribution for the Minkowski spacetime as a sum over mode solutions,

plus a regular term which can be easily computed since we know the Minkowski

Green’s distribution in closed form (3.44).

In general, it is not possible to obtain the Green’s distribution for the rotating

black hole spacetime in closed form and, therefore, it is not possible to write its

Hadamard singular part as in (3.46). However, as we argued above, the Hadamard

singular parts of the Green’s distributions for the rotating black hole and Minkowski

spacetime are essentially of the same form, just given in different coordinate systems.

As we show below, it should be possible to express GHad(x, x′) of the black hole in

terms of GM
Had(x, x′) which, in turn, we know how to write in terms of a mode sum,

as in (3.46)! Therefore, we are able to subtract the short-distance divergences of the

black hole Green’s distribution by using a sum over mode solutions of the Minkowski

Green’s distributions differential equation.

To explain this procedure in detail, it is convenient at this stage to consider a

particular choice of point separation. Assume that the black hole metric is given in

coordinates (τ, r, θ̃), whereas the Minkowski metric is given in coordinates (τ, ρ, θ̃).

Now, consider the case of angular separation in each spacetime, such that for the
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black hole case x = (τ, r, 0) and x′ = (τ, r, θ̃), with θ̃ > 0, and similarly for the

Minkowski case.

The expansion of the Hadamard singular parts for small θ̃ are

GHad(x, x′) =
1

4π

1√
gθ̃θ̃(r)

1

θ̃
+O(θ̃) , (3.47)

GM
Had(x, x′) =

1

4π

1√
gM
θ̃θ̃

(ρ)

1

θ̃
+O(θ̃) , (3.48)

where gM
θ̃θ̃

(ρ) = ρ2 is the θ̃θ̃-component of the metric for the rotating Minkowski

spacetime (see (A.2)). We are free to make the identification

gM
θ̃θ̃

(ρ) ≡ γ(r)−2 gθ̃θ̃(r) , (3.49)

where γ(r) > 0 is a function to be specified. This identification provides a matching

between the two radial coordinates, ρ = ρ(r) = γ(r)−1
√
gθ̃θ̃(r), and allows us to ex-

press GHad(x, x′) of the black hole in terms of GM
Had(x, x′), as argued in the beginning

of this section.

Given this identification, we can now write

G(x, x′)−GHad(x, x′) =
∞∑

k=−∞

eikθ̃
∞∑

n=−∞

[
GBH
nk (x, x′)− γ(r)−1GM

nk(x, x
′)
]

+ γ(r)−1GM
reg(x, x′) +O(θ̃) . (3.50)

We have succeeded in writing G(x, x′)−GHad(x, x′) as a sum over the difference of

mode solutions, plus a regular term which is finite in the coincidence limit.

At this point, note that the Minkowski Green’s distribution has several free

parameters: TM (temperature of the scalar field), ΩM (angular velocity of the coor-

dinate system) and m2
M (squared mass of the scalar field), besides the unspecified

factor γ we introduced above (for more details on these parameters, see Appendix A).

However, the combination

∞∑
k=−∞

eikθ̃
∞∑

n=−∞

γ(r)−1GM
nk(x, x

′)− γ(r)−1GM
reg(x, x′) = γ(r)−1GM

Had(x, x′) (3.51)
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(see (3.46)) is unchanged if any of these parameters are modified, since GM
Had(x, x′)

is independent of them. Therefore, these parameters can be chosen such that the

double sum in (3.50) is convergent when θ̃ → 0. To check the convergence of the

double sum, we need to analyse the asymptotic behaviour of the summand for large

values of n and k.

3.3.2 Large quantum number behaviour

In order to check the convergence of the double sum (3.50) in the coincidence limit,

we need to obtain the asymptotic behaviour of the summand for large values of the

quantum numbers n and k.

For a black hole spacetime with metric (3.33) in the complex Riemannian section,

the Klein-Gordon equation

(
∇2 −m2 − ξR

)
Φ(τ, r, θ̃) = 0 , (3.52)

together with the ansatz Φnk(τ, r, θ̃) = eiκ+nτ+ikθ̃ φnk(r), leads to[
1
√
g

d

dr

(
√
g grr

d

dr

)
−
(
κ+n+ ik

(
N θ + ΩH

))2

N2
− k2

gθ̃θ̃
−m2 − ξR

]
φnk = 0 .

(3.53)

Let φ1
nk and φ2

nk be two independent solutions of the radial equation (3.53).

Define a new radial coordinate ξ such that the equation can be written in the form

d2φnk(ξ)

dξ2
−
(
χ2
nk(ξ) + η2(ξ)

)
φnk(ξ) = 0 , (3.54)

and the Wronskian relation is given by

φ1
nk(ξ)

dφ2
nk(ξ)

dξ
− φ2

nk(ξ)
dφ1

nk(ξ)

dξ
=

1

Cnk
, (3.55)

where Cnk is a constant and χ2
nk(ξ) contains all the n and k dependence and is large

whenever n2 + k2 is large. From (3.53) we obtain

d

dξ
=
√
g grr

d

dr
(3.56)
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and

χ2
nk = gθ̃θ̃

(
κ+n+ ik

(
N θ + ΩH

))2
+N2k2 , η2 = gθ̃θ̃N

2
(
m2 + ξR

)
. (3.57)

We are interested in obtaining the large χnk expansion of the quantity

Gnk(ξ) := Cnk φ
1
nk(ξ)φ

2
nk(ξ) . (3.58)

This asymptotic expansion can be obtained using a WKB method and this is de-

scribed in Appendix B. From Proposition B.0.2, the asymptotic expansion of Gnk(ξ)

for large values of χnk is

Gnk(ξ) =
1

2χnk
− η2

4χ3
nk

− (χ2
nk)
′′

16χ5
nk

+
5[(χ2

nk)
′]2

64χ7
nk

+O(χ−5
nk ) , (3.59)

where the prime represents derivative with respect to ξ.

For our case of interest, Gnk plays the role of the radial part of the Green’s

distributions, given by (3.39), whereas φ1
nk and φ2

nk correspond to pnk and qnk for

both the black hole and Minkowski spacetimes.

3.3.3 Fixing of the Minkowski free parameters

We now have all we need to determine the choice of parameters of the Minkowski

Green’s distribution which makes the mode sum in (3.50) convergent in the coinci-

dence limit. This unique choice is the following.

Theorem 3.3.1. If the parameters γ, TM and ΩM are chosen as

γ(r) = N(r) , TM =
κ+

2π
, ΩM = N θ(r) + ΩH , (3.60)

then the double sum in (3.50) is finite in the coincidence limit.

Proof. First, we obtain the leading terms in the asymptotic expansions of the sum-

mands in (3.50), using (3.59). The summand GBH
nk (x, x) of the Green’s distribution

G(x, x′) in (3.41) has the following asymptotic expansion for large χnk

GBH
nk (x, x′) =

κ+

4π2

1

2χnk
+O

(
χ−3
nk

)
. (3.61)
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Analogously, for the Minkowski Green’s distribution, the summand GM
nk(x, x

′) in

(3.46) has the asymptotic expansion

GM
nk(x, x

′) =
TM
2π

1

2χM
nk

+O
(
(χM

nk)
−3
)
, (3.62)

where

χM
nk(ρ)2 = ρ2 (2πTMn+ ikΩM)2 + k2 . (3.63)

The double sum in (3.50) will be finite in the coincidence limit if the leading

term in the asymptotic expansion of the summand vanishes, that is, if the term of

order χ−1
nk of the expansion of GBH

nk (x, x) cancels with the term of order
(
χM
nk

)−1
of

the expansion of γ(r)−1GM
nk(x, x). This only occurs if the free parameters γ, TM and

ΩM are chosen as

γ(r) = N(r) , TM =
κ+

2π
, ΩM = N θ(r) + ΩH . (3.64)

To show that the double sum is indeed finite in the coincidence limit, we need

to check that the double sum of the remaining terms in the asymptotic expansion

of the summand, which are O
(
χ−3
nk

)
, is finite.

It is enough to consider

∆G(r) :=
∑′

k,n

[
GBH
nk (r, r)− γ(r)−1GM

nk(ρ(r), ρ(r))
]
, (3.65)

where
∑′

n,k stands for the double sum over k and n excluding the k = n = 0 term.

The first terms in the WKB-like expansion cancel each other, thus

∆G(r) =
∑′

k,n

{
G

BH(2)
nk (r) +O(χ−5

nk )− γ(r)−1
[
G

M(2)
nk (ρ) +O((χM

nk)
−5)
]}

, (3.66)

where G
BH(2)
nk and G

M(2)
nk are the terms of the expansion of order χ−3

nk and (χM
nk)
−3,

respectively. With the choice (3.60), one has

χM
nk(r)

2 =
χnk(r)

2

N(r)2
. (3.67)

Therefore

∆G(r) =
∑′

k,n

[
W(r)

χnk(r)3
+O(χ−5

nk )

]
, (3.68)

where W(r) does not depend on n and k.
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Note that:

∑′

k,n

∣∣∣∣ W(r)

χnk(r)3

∣∣∣∣ ∝ ∑′

k,n

∣∣∣gθ̃θ̃(r) (κ+n+ ik(N θ(r) + ΩH)
)2

+N(r)2k2
∣∣∣−3/2

=
∑′

k,n

{ [
gθ̃θ̃(r)κ

2
+n

2 +
(
N(r)2 − gθ̃θ̃(N

θ(r) + ΩH)2
)
k2
]2

+ 4gθ̃θ̃(r)
2(N θ(r) + ΩH)2κ2

+n
2k2
}−3/4

≤
∑′

k,n

[
gθ̃θ̃(r)κ

2
+n

2 +
(
N(r)2 − gθ̃θ̃(r)(N

θ(r) + ΩH)2
)
k2
]−3/2

.

(3.69)

Lemma 3.3.2 below shows that the latter series is convergent. This proves the

absolute convergence of ∑′

k,n

W(r)

χnk(r)3
. (3.70)

Finally, since

lim
|χBH|→∞

∣∣∣ W(r)
χnk)(r)3 +O(χ−5

nk )
∣∣∣∣∣∣ W(r)

χnk(r)3

∣∣∣ = 1 , (3.71)

the limit comparison test implies the absolute convergence of

∑′

k,n

[
W(r)

χnk(r)3
+O(χ−5

nk )

]
. (3.72)

Therefore, we conclude that the ∆G(r) is finite.

Lemma 3.3.2. Let A, B > 0. Then,

S :=
∑′

k,n

1

(An2 +Bk2)3/2
<∞ (3.73)

where
∑′

n,k stands for the double sum over k, n ∈ Z excluding the k = n = 0 term.

Proof. We write

S =
∑
k∈Z

Sk , (3.74)
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where

Sk :=


∑
n∈Z

1

(An2 +Bk2)3/2
, k 6= 0 ,

∑
n∈Z\{0}

1

A3/2 n3
, k = 0 .

(3.75)

Each Sk is clearly finite, and S−k = Sk. For k > 0 we have

k2 Sk =
∞∑

n=−∞

1[
B + A(n

k
)2
]3/2 1

k

k→∞−−−−→ 2

B
√
A
, (3.76)

since the series in (3.76) becomes the Riemann sum for the integral∫ ∞
−∞

dt
1

(B + At2)3/2
=

2

B
√
A
. (3.77)

Thus,

Sk ∼
2

B
√
A

1

k2
, |k| → ∞ . (3.78)

so that S is finite.

Remark 3.3.3. The choice (3.60) for the parameters of the Minkowski Green’s distri-

bution corresponds to have the temperature TM of the scalar field in Minkowski to

match the Hawking temperature of the black hole and to have the angular velocity

ΩM to be equal to the one measured by a locally non-rotating observer at radius r

in the black hole spacetime.

The key aspect of the proof is that, in order to remove the divergences, we

only need to know the asymptotic behaviour of the Green’s distribution summands

GBH
nk (r, r) and GM

nk(ρ, ρ) for large values of n and k, and not the full solutions.

This implies that, apart from technical difficulties, this method can be applied to

black holes in four or more dimensions, for which although we can only obtain the

Green’s distributions numerically, the asymptotic expansions of the summands for

large quantum numbers can be explicitly computed using the above procedure.

Setting the parameters as in (3.60), it is now possible to take the coincidence

limit θ̃ → 0 of (3.50) and compute the renormalized vacuum polarization (3.43). In

Part II of the thesis, as an example, we present the results for the particular case of

the warped AdS3 black hole.
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3.4 Expectation value of the stress-energy tensor

In the previous section, we successfully implemented a method to compute the

renormalised vacuum polarisation of a scalar field on a rotating black hole by sub-

tracting the short-distance divergence of the Feynman propagator using a sum over

Minkowski modes with the same singularity structure. The next physically inter-

esting local observable is the renormalised expectation value of the stress-energy

tensor, 〈Tab(x)〉. In this section, we demonstrate why the method described in this

chapter cannot be used to renormalise the stress-energy tensor.

First, recall that we defined the renormalised expectation value of the stress-

energy tensor in Definition 2.4.5 as

〈Tab(x)〉 = lim
x′→x
Tab′(x, x′)

[
−i
(
GF(x, x′)−GHad(x, x′)

)]
+ Θab(x) , (3.79)

where Θab(x) is a state independent tensor which ensures that 〈Tab(x)〉 is covariantly

conserved and

Tab′ = (1− 2ξ) gb
b′∇a∇b′ +

(
2ξ − 1

2

)
gabg

cd′∇c∇d′ − 2ξ ga
a′gb

b′∇a′∇b′

+ 2ξ gab∇ρ∇ρ + ξ

(
Rab −

1

2
gabR

)
− 1

2
gabm

2 . (3.80)

Besides having to carefully perform the coincidence limit ofGF(x, x′)−GHad(x, x′)

as in the vacuum polarisation computation, for the stress-energy tensor we also need

to consider terms of the form ∇a∇b

[
GF(x, x′)−GHad(x, x′)

]
. Here, we show that

the implementation of our renormalisation method, in particular the formulation

of GHad(x, x′) as a sum over Minkowski modes, fails to subtract the short-distance

divergences of ∇θ̃∇θ̃G
F(x, x′) and, hence, the whole unrenormalised stress-energy

tensor.

Remark 3.4.1. A heuristic argument that suggests the method indeed fails to renor-

malise the stress-energy tensor is that to match the short-distance divergences of

∇a∇bGHad(x, x′) on the rotating black hole spacetime to the the short-distance di-

vergences of ∇a∇bG
M
Had(x, x′) on Minkowski spacetime (in rotating coordinates) it
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will be necessary not only to identify components of the metric tensors (as in (3.49))

but also derivatives of those components. However, the shift function N θ (present

in the tθ̃-component of the metric) is a function of the radial coordinate r for the

rotating black hole, whereas it is a constant (−ΩM) for the Minkowski spacetime

(in rotating coordinates). We then expect that the matching between derivatives of

the metric components with respect to the radial coordinates might not be possible.

This is indeed the case, as we show explicitly in the following.

3.4.1 Derivatives of the Hadamard singular part

Here, we work again in the complex Riemannian sections of both the black hole and

Minkowski spacetimes. First, we compute the double covariant derivatives of the

Hadamard singular part, ∇µ∇νGHad(x, x′). Recall that the Hadamard singular part

in three dimensions is given by

GHad(x, x′) =
1

4
√

2π

U(x, x′)√
σ(x, x′)

, (3.81)

where the bi-scalar U is given in (2.124), thus,

U

σ1/2
=

U0

σ1/2
+ U1σ

1/2 +O(σ3/2) , (3.82)

and U0 and U1 given in Proposition 2.4.7. To simplify the expressions in the follow-

ing, we only consider spacetimes with a constant Ricci scalar. In three dimensions,

this is not a major restriction, as all solutions of Einstein gravity satisfy this prop-

erty (this is not necessarily true of modified theories of gravity). The examples in

Part II of this thesis have constant Ricci scalars.

The first covariant derivative of U σ−1/2 up to O(σ) is(
U

σ1/2

)
;µ

=
U0;µ

σ1/2
− 1

2

U0

σ3/2
σ;µ +

1

2

U1

σ1/2
σ;µ +O(σ) . (3.83)

Note that the term U1;µ σ
1/2 = O(σ).
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The double covariant derivative of U σ−1/2 up to O(σ1/2) is(
U

σ1/2

)
;µν

=
U0;µν

σ1/2
− 1

2

U0;ν

σ3/2
σ;µ −

1

2

U0;µ

σ3/2
σ;ν +

3

4

U0

σ5/2
σ;µσ;ν −

1

2

U0

σ3/2
σ;µν

− 1

4

U1

σ3/2
σ;µσ;ν +

1

2

U1

σ1/2
σ;µν +O(σ1/2) . (3.84)

Concerning the derivatives of U0 and U1 up to the required order:

U0;µ = u0abσ
;aσ;b

µ +
1

2

(
u0ab;µσ

;aσ;b − u0abcσ
;aσ;bσ;c

µ

)
+O(σ3/2) ; (3.85)

U0;µν = u0ab

(
σ;a

νσ
;b
µ + σ;aσ;b

µν

)
+ u0ab;µσ

;aσ;b
ν + u0ab;νσ

;aσ;b
µ

− u0abcσ
;aσ;b

νσ
;c
µ +O(σ) ; (3.86)

U1;µ = O(σ1/2) ; (3.87)

U1;µν = O(σ0) . (3.88)

3.4.2 Attempt to renormalise ∇θ̃∇θ̃G

At this stage, it is convenient to consider again angular separation of the points in

spacetime, such that x = (τ, r, 0) and x′ = (τ, r, θ̃), with θ̃ > 0, for the black hole

case and similarly for the Minkowski case.

Hence, we can expand the Synge’s world function and its derivatives in θ̃, using

Proposition 1.3.10,

σ =
1

2
gθ̃θ̃ θ̃

2 + σ̃θ̃θ̃θ̃θ̃ θ̃
4 +O(θ̃6) , (3.89)

σ;µ = gµθ̃ θ̃ +

(
1

2
gθ̃θ̃,µ + 3σ̃θ̃θ̃µ

)
θ̃2 +

(
σ̃θ̃θ̃θ̃,µ + 4σ̃θ̃θ̃θ̃µ

)
θ̃3

+
(
σ̃θ̃θ̃θ̃θ̃,µ + 5σ̃θ̃θ̃θ̃θ̃µ

)
θ̃4 +O(θ̃5) , (3.90)

σ;µν = gµν +
(

2gθ̃(µ,ν) − Γλµνgθ̃λ + 6σ̃θ̃µν

)
θ̃

+

(
1

2
gθ̃θ̃,µν −

1

2
Γλµνgθ̃θ̃,λ + 6σ̃θ̃θ̃(µ,ν) − 3Γλµν σ̃θ̃θ̃λ + 12σ̃θ̃θ̃µν

)
+
(
σ̃θ̃θ̃θ̃,µν − Γλµν σ̃θ̃θ̃θ̃,λ + 8σ̃θ̃θ̃θ̃(µ,ν) − 4Γλµν σ̃θ̃θ̃θ̃λ + 20σ̃θ̃θ̃θ̃θ̃µν

)
θ̃3

+O(θ̃4) . (3.91)
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Using the above expressions, one obtains that, for angular separation,

∇θ̃∇θ̃GHad(x, x′) =
1

2π

1
√
gθ̃θ̃

1

θ̃3
− 1

32π

grr (∂rgθ̃θ̃)
2

g
3/2

θ̃θ̃

1

θ̃
+O(θ̃0) . (3.92)

Some remarks:

1. As expected, ∇θ̃∇θ̃GHad is more divergent at the coincidence limit, having a

leading divergent term which goes as θ̃−3, than GHad, which only has a term

that goes as θ̃−1, cf. (3.47).

2. Note, however, that the term that goes as θ̃−3 is essentially of the same form as

the term of GHad that goes as θ̃−1 and, hence, the identification (3.49) made to

renormalise the vacuum polarisation is sufficient to subtract the leading term

divergence of ∇θ̃∇θ̃G.

3. It is easy to verify, however, that with the identification (3.49) in place, the

term in θ̃−1 cannot be subtracted by the corresponding Minkowski term, i.e.

∇θ̃∇θ̃G(x, x′)− γ−1∇θ̃∇θ̃G
M
Had(x, x′)

still retains a term of order θ̃−1 when expanded in θ̃. One possible workaround

is to perform the following subtraction instead,

∆θ̃θ̃G(x, x′) := ∇θ̃∇θ̃G(x, x′)− γ−1∇θ̃∇θ̃G
M
Had(x, x′)− aGM

Had(x, x′) , (3.93)

where a is a function of r to be specified such that the term of order θ̃−1 is

cancelled.

At this stage it remains to find a choice of the parameters of the Minkowski’s

Green’s distribution such that the mode sums in (3.93) are convergent, if such a

choice exists. If G(x, x′) is written as in (3.41), then

∇θ̃∇θ̃G(x, x′) = ∂2
θ̃
G(x, x′)− Γλ

θ̃θ̃
∂λG(x, x′)

=
∞∑

k=−∞

eikθ̃
∞∑

n=−∞

[
−k2GBH

nk (r, r)− Γr
θ̃θ̃
∂rG

BH
nk (r, r′)

∣∣
r′=r

]
, (3.94)
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and similarly for the Minkowski Green’s distribution. Hence,

∆θ̃θ̃G(x, x′) =
∞∑

k=−∞

eikθ̃
∞∑

n=−∞

{
−k2

[
GBH
nk (r, r)− γ−1GM

nk(ρ, ρ)
]

− Γr
θ̃θ̃
∂rG

BH
nk (r, r′)

∣∣
r′=r

+ γ−1 Γρ
θ̃θ̃
∂ρG

M
nk(ρ, ρ

′)
∣∣
ρ′=ρ

− aGM
nk(ρ, ρ)

}∣∣∣
ρ=ρ(r)

. (3.95)

Some extra remarks:

4. Note that the first line of (3.95) can be made convergent in the coincidence

limit if we fix the parameters of the Minkowski’s Green’s distribution as in

(3.60), by Theorem 3.3.1. Hence, the fixing made to renormalise the vacuum

polarisation also applies to the first line of (3.95).

5. To check the convergence of the remaining terms, we need the asymptotic

expansion of ∂rG
BH
nk (r, r′)|r′=r and ∂ρG

M
nk(ρ, ρ

′)|ρ′=ρ for large values of n and k.

In Appendix B, Proposition B.0.4 shows that

G ′nk(ξ) := Cnk
dφ1

nk(ξ)

dξ
φ2
nk(ξ) (3.96)

has the asymptotic expansion for large values of χnk

G ′nk(ξ) =
1

2
− (χ2

nk)
′

8χ3
nk

+O(χ−3
nk ) . (3.97)

For our case of interest, G ′nk plays the role of the radial partial derivative of

the radial part of the Green’s distributions, given by

∂rGnk(r, r
′)|r′=r = Cnk

dpnk(r)

dr
qnk(r) , (3.98)

whereas φ1
nk and φ2

nk correspond to pnk and qnk for both the black hole and

Minkowski spacetimes.

Let’s focus for a moment on the (χ2
nk(ξ))

′
/(8χ3

nk(ξ)) term of the asymptotic

expansion for the rotating black hole case. Using (3.56),

∂ξ (χ2
nk(ξ))

8χ3
nk(ξ)

=
√
g grr

∂r (χ2
nk(r))

8χ3
nk(r)

. (3.99)
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Recall that χnk is defined by (3.57),

χ2
nk = gθ̃θ̃

(
κ+n+ ik

(
N θ + ΩH

))2
+N2k2 , (3.100)

and hence we can write

∂r
(
χ2
nk

)
= ∂rgθ̃θ̃

(
χ2
nk −N2k2

gθ̃θ̃

)
+ 2igθ̃θ̃∂rN

θk

√
χ2
nk −N2k2

gθ̃θ̃
+ ∂r(N

2)k2

=
∂rgθ̃θ̃
gθ̃θ̃

χ2
nk +

(
∂r(N

2)−N2∂rgθ̃θ̃
gθ̃θ̃

)
k2 + 2i

√
gθ̃θ̃∂rN

θk
√
χ2
nk −N2k2

(3.101)

and

∂r (χ2
nk)

χ3
nk

=
∂rgθ̃θ̃
gθ̃θ̃

1

χnk
+

(
∂r(N

2)−N2∂rgθ̃θ̃
gθ̃θ̃

)
k2

χ3
nk

+ 2i
√
gθ̃θ̃∂rN

θ

√
χ2
nk −N2k2

χ3
nk

.

(3.102)

Similarly, for the Minkowski case, using (3.63),

∂ρ
(
(χM

nk)
2
)

(χM
nk)

3
=

2

ρ

1

χM
nk

− 2

ρ

k2

(χM
nk)

3
. (3.103)

The double sum in (3.95) will be convergent in the coincidence limit if we are

able to match all the terms in (3.102) and the constant term in (3.97) to similar

terms coming from the Minkowski summand. However, by comparing (3.102) and

(3.103), it is clear that there is no term on the Minkowski side that can cancel the

third term in the RHS of (3.102), i.e. there is no term in the asymptotic expansions

of the Minkowski terms for large χM
nk which goes as√

(χM
nk)

2 − k2

(χM
nk)

3
.

This comes down to the existence of ∂rN
θ in the third term in the RHS of (3.102),

as we alluded in Remark 3.4.1.

In conclusion, our method to renormalise local observables by subtracting the

short-distance divergences of the rotating black hole Green’s distribution and its

derivatives using the Minkowski spacetime Green’s distribution does not work if
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the computation of these local observables involves radial derivatives of the metric

components, in particular if it involves terms containing ∂rN
θ, given that the shift

function for the Minkowski metric components in rotating coordinates does not de-

pend on the radial coordinate. Therefore, this method is suitable to renormalise

local observables such as 〈Φ2(x)〉, which do not involve derivatives of the metric

components. In the particular case of static spacetimes, in which there is a coordi-

nate system such that the shift function vanishes, this method is still applicable for

the renormalisation of the stress-energy tensor.
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Application
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Chapter 4

Warped AdS3 black holes

In this chapter it is our aim to introduce the warped AdS3 black hole solutions which

are used as the background spacetimes on which to apply the method described in

Part I of this thesis. This is one of several possible choices of rotating black hole

solutions and no particular physical significance is attached to this choice, apart from

providing a simpler technical arena on which to renormalise the vacuum polarisation

of a scalar field. Given this mindset, this chapter only exposes the basic ideas of

(2+1)-dimensional gravity and the warped AdS3 solutions which are necessary to

complete the computation, and does not attempt to give an exhaustive review of the

research carried out in these topics in the last decades. For the latter, appropriate

references are given in each section.

4.1 2+1 gravity and topologically massive gravity

In this section, we present a brief overview of (2+1)-dimensional classical gravity.

In particular, we describe Einstein gravity in 2+1 dimensions and emphasise the

main differences to the theory in 3+1 dimensions, namely the fact that there are no

propagating degrees of freedom in 2+1 dimensions. We then introduce an extension

of Einstein gravity, called topologically massive gravity, which has a propagating

degree of freedom and new interesting solutions, such as the warped AdS3 solutions.

121



122 CHAPTER 4. WARPED ADS3 BLACK HOLES

A standard reference for both the classical and quantum aspects of (2+1)-

dimensional gravity is [42], whereas for topologically massive gravity a few significant

references are [46, 47,85–88].

4.1.1 2+1 gravity

Here, we give a brief description of the main features of general relativity in 2+1

dimensions. This theory is described by the Einstein-Hilbert action

SE-H =
1

16πG

∫
d3x
√
−g (R− 2Λ) , (4.1)

where G is Newton’s gravitational constant, g is the determinant of the metric, R

is the Ricci scalar and Λ is the cosmological constant.

A significant difference between 2+1 and 3+1 dimensions is the fact that in 2+1

dimensions the Riemann tensor Rabcd is fully determined by the Ricci tensor Rab,

Rabcd = gacRbd + gbdRac − gbcRad − gadRbc −
1

2
(gacgbd − gadgcd)R . (4.2)

This implies that any vacuum solution has constant curvature,

Rab = 2Λ gab . (4.3)

Therefore, in 2+1 gravity, there are no local degrees of freedom, only possibly global

degrees of freedom, if the topology of the spacetime is non-trivial (e.g. by performing

identifications) [42].

Additionally, if the cosmological constant is zero, there is no length scale in 2+1

dimensions. To see this, note that GM is dimensionless in 2+1 dimensions. An

important consequence of this fact is that there cannot be asymptotically flat black

hole solutions of Einstein gravity, as the Schwarszchild radius would be a multiple

of GM . If the cosmological constant is not zero, then there is a natural length scale,

the cosmological length `, given by

Λ = ± 1

`2
. (4.4)
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Then, in principle, it should be possible to find asymptotically AdS3 and dS3 black

hole solutions by making identifications in AdS3 and dS3. This is indeed the case

with AdS3, on which specific identifications yield the BTZ black hole solution [32,33].

There are no known asymptotically dS3 black hole solutions.

If we want to use 2+1 gravity as a simpler arena to explore black hole physics,

we might have gone too far in the simplification. However, there exist extensions

of (2+1)-dimensional Einstein gravity which restore local degrees of freedom and

whose dynamics are closer to the physically interesting case of 3+1 dimensions.

In the following section, we consider one of such extensions, topologically massive

gravity.

4.1.2 Topologically massive gravity

We now consider a deformation of (2+1)-dimensional Einstein gravity called topo-

logically massive gravity (hereby denoted TMG), which is obtained by adding a

gravitational Chern-Simons term to the Einstein-Hilbert action with a negative cos-

mological constant [46, 47, 86–88]. The Chern-Simons term creates a propagating,

massive, spin 2 degree of freedom. In this sense, it is closer in spirit to general rela-

tivity in (3+1)-dimensions and can provide useful insight to some of the challenging

problems of the higher dimensional theory.

The action of TMG in 2+1 spacetime dimensions is then

S = SE-H + SC-S , (4.5)

with

SE-H =
1

16πG

∫
d3x
√
−g (R− 2Λ) , (4.6)

SC-S =
1

32πGµ

∫
d3x
√
−g εµνρ Γδµλ

(
∂νΓ

λ
δρ +

2

3
ΓλνγΓ

γ
ρδ

)
. (4.7)

Here, µ is the Chern-Simons coupling, g is the determinant of the metric, Γδµλ are

the Christoffel symbols, and εµνρ is the Levi-Civita tensor in three dimensions.
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By linearising the action, it can be shown that TMG has a single massive prop-

agating degree of freedom of squared mass µ2 [46]. This theory has third time

derivative dependence, however it is ghost-free and unitary [46].

A key feature of TMG is that it retains all of Einstein gravity solutions, including

AdS3 and the BTZ black hole in the case of negative cosmological constant. Nev-

ertheless, there also exist new solutions, such as the warped AdS3 vacuum solutions

and warped AdS3 black hole solutions [48–54], which are introduced in the next

section. Similarly to the BTZ solution, the latter are obtained from the former by

global identifications.

4.2 Warped AdS3 solutions

As noted above, there are non-Einstein solutions to TMG, and the simplest ones

are the warped AdS3 solutions. These solutions are thought to be perturbatively

stable vacua of TMG in a wide region of the parameter space of the theory, in

contrast to the AdS3 solution [55]. Mathematically, warped AdS3 spacetimes are

Hopf fibrations of AdS3 over AdS2 where the fibre is the real line and the length of

the fibre is “warped” [53, 54, 56]. This is the Lorentzian version of the warping of

S3 in the Riemannian setting, in which S3 is warped along the Hopf fibres, which

form a congruence of linked geodesic circles in S3. In the Lorentzian case, there are

actually two analogues, since AdS3 can be warped along Hopf fibres which may be

spacelike or timelike (we will only focus on the spacelike case). And, in each case,

the Hopf fibres can be either “squashed” or “stretched”.

In the following, we introduce the warped AdS3 solutions in Section 4.2.1 and

the black hole solutions in Section 4.2.2.

4.2.1 Warped AdS3 solutions

Before introducing the warped AdS3 solutions, we describe AdS3 in an unusual

coordinate system.
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AdS3 in fibred coordinates

Definition 4.2.1. Three-dimensional anti-de Sitter AdS3 is defined as the surface

− U2 − V 2 +X2 + Y 2 = −`2 , (4.8)

embedded in the four-dimensional flat space M2,2 with metric

ds2 = −dU2 − dV 2 + dX2 + dY 2 . (4.9)

Remark 4.2.2. The topology of AdS3 is R2 × S1, with S1 corresponding to timelike

circles U2 +V 2 = constant. The universal covering space is obtained by unwrapping

S1, which removes the closed timelike circles.

To analyse the isometry group of AdS3, first note that the independent Killing

vector fields of M2,2 are given by

Jµν = xν∂µ − xµ∂ν , Pµ = ∂µ , (4.10)

with xµ = (U, V,X, Y ). A general Killing vector field ξ can then be written as

ξ =
1

2
ωµνJµν + ωµPµ = ωµνxν∂µ + ωµ∂µ , (4.11)

with ωµν = −ωνµ. In detail, we can identify the spacelike and timelike rotations,

JUV = V ∂U − U∂V , JXY = Y ∂X −X∂Y , (4.12)

the four linearly independent boosts,

BUX = U∂X +X∂U , BUY = U∂Y + Y ∂U , etc. , (4.13)

and the four translations,

PU = ∂U , PV = ∂V , PX = ∂X , PY = ∂Y . (4.14)

These Killing vectors are the generators of ISO(2, 2), the isometry group of M2,2.
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The isometry group of AdS3 is the subgroup of the isometry of M2,2 which leaves

the AdS3 surface (4.8) invariant. Of the isometries above, only the translations (4.14)

do not leave (4.8) invariant, therefore, the isometry group of AdS3 is SO(2, 2), which

is generated by the two rotations (4.12) and the four boosts (4.14).

The connected component of SO(2, 2), SO0(2, 2), is the direct product

SO0(2, 2) = SL(2,R)L ⊗ SL(2,R)R/Z2 . (4.15)

To see this, it is useful to describe AdS3 as the group manifold of SL(2,R),

SL(2,R) =

A =
1

`

U +X Y − V

Y + V U −X

 : det(A) = 1.

 (4.16)

The condition det(A) = 1 is invariant under the transformation

A 7→ A′ = BAC−1 , B ∈ SL(2,R)L , C ∈ SL(2,R)R . (4.17)

Hence, any element G ∈ SO0(2, 2) may be identified with an equivalence class of

two elements in the direct product SL(2,R)L ⊗ SL(2,R)R,

G ∼ (B,C) ∼ (−B,−C) . (4.18)

It is then convenient to group the set of Killing vector fields of AdS3 into two

mutually commuting sets. Define the right- and left-invariant Killing vector fields,

ξL
i and ξR

i respectively,

ξL
0 = −1

2
(JUV + JXY ) , ξR

0 = −1

2
(BUV −BXY ) , (4.19)

ξL
1 = −1

2
(BUY −BV X) , ξR

1 = −1

2
(BUX +BV Y ) , (4.20)

ξL
2 = −1

2
(BUX +BV Y ) , ξR

2 = −1

2
(BUY +BV X) . (4.21)

They satisfy

[
ξL
i , ξ

L
j

]
= εij

k ξL
k ,

[
ξR
i , ξ

R
j

]
= εij

k ξR
k ,

[
ξL
i , ξ

R
j

]
= 0 , (4.22)



4.2. WARPED ADS3 SOLUTIONS 127

where i, j, k = 0, 1, 2 and ε012 = 1. These vectors fields form bases {ξL
i }2

i=0 and

{ξR
i }2

i=0 for (the sections of) T SL(2,R)L and T SL(2,R)R, respectively, constituting

the Maurer-Cartan frames (see Chapter 5 of [89] for more details).

We can also define the dual one-forms θiL and θiR, such that θiL(ξL
j ) = δij and

θiR(ξR
j ) = δij. These form the Maurer-Cartan co-frames. These one-forms satisfy the

Maurer-Cartan structure equations,

dθiL = −1

2
εjk

i θjL ∧ θ
k
L , (4.23)

and similarly for θiR. From these equations, it follows that the Lie derivatives of

these one-forms with respect to the Killing vector fields are given by

LξL
i
θjL = εi

j
k θ

k
L , LξR

i
θjR = εi

j
k θ

k
R , LξL

i
θjR = LξR

i
θjL = 0 . (4.24)

For instance,

LξL
i
θjL = ιξL

i
dθjL + d

(
ιξL
i
θjL

)
= −1

2
εkl

j ιξL
i

(
θkL ∧ θlL

)
= εi

j
k θ

k
L , (4.25)

where ιξL
i
θjL = θjL(ξL

i ) = δji is the interior product of θjL with respect to ξL
i . Therefore,

the dual one-forms θiL and θiR are left- and right- invariant, respectively.

The dual one-forms allows us to write an invariant metric for the group manifold,

the Killing metric, given by

ds2 =
`2

4
ηij θ

i
L ⊗ θ

j
L . (4.26)

At this stage, we introduce the parametrisation

U = cosh
(σ

2

)
cosh

(u
2

)
cos
(τ

2

)
+ sinh

(σ
2

)
sinh

(u
2

)
sin
(τ

2

)
, (4.27)

V = cosh
(σ

2

)
cosh

(u
2

)
sin
(τ

2

)
− sinh

(σ
2

)
sinh

(u
2

)
cos
(τ

2

)
, (4.28)

X = cosh
(σ

2

)
sinh

(u
2

)
cos
(τ

2

)
+ sinh

(σ
2

)
cosh

(u
2

)
sin
(τ

2

)
, (4.29)

Y = cosh
(σ

2

)
sinh

(u
2

)
sin
(τ

2

)
− sinh

(σ
2

)
cosh

(u
2

)
cos
(τ

2

)
, (4.30)
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with u, σ ∈ R and τ ∼ τ + 4π. The right-invariant vector fields are

ξL
0 = − sinh(u)∂σ − cosh(u) sech(σ)∂τ + cosh(u) tanh(σ)∂u , (4.31)

ξL
1 = − cosh(u)∂σ − sinh(u) sech(σ)∂τ + sinh(u) tanh(σ)∂u , (4.32)

ξL
2 = ∂u , (4.33)

the left-invariant fields are

ξR
0 = ∂τ , (4.34)

ξR
1 = sin(τ)∂σ − cos(τ) tanh(σ)∂τ + cos(τ) sech(σ)∂u , (4.35)

ξR
2 = − cos(τ)∂σ + sin(τ) tanh(σ)∂τ + sin(τ) sech(σ)∂u , (4.36)

and the left-invariant one-forms are

θ0
L = − cosh(u) cosh(σ)dτ + sinh(u)dσ , (4.37)

θ1
L = sinh(u) cosh(σ)dτ − cosh(u)dσ , (4.38)

θ2
L = du+ sinh(σ)dτ . (4.39)

The Killing metric is then given by

ds2 =
`2

4

[
− cosh(σ)2 dτ 2 + dσ2 + (du+ sinh(σ) dτ)2

]
. (4.40)

Unwrapping τ ∈ R gives the covering space of AdS3. This is the AdS3 metric given

in fibred coordinates, as it is expressed as a Hopf fibration of the real line over AdS2.

Remark 4.2.3. The metric of AdS3 in the standard global coordinates (t, ρ, φ) is

ds2 =
`2

4

(
− cosh(ρ)2 dt2 + dρ2 + sinh2(ρ) dφ2

)
, (4.41)

with t, ρ ∈ R and φ ∼ φ+ 2π.

Remark 4.2.4. The coordinate system (τ, σ, u) is only one example of a fibred coor-

dinate system, which we use in the following. For other possibilities, see e.g. [52].
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Spacelike warped AdS3

In order to obtain a warped AdS3 spacetime, we multiply the fibre in the direction

of ξL
2 = ∂u by a warp factor. The warping can take either the shape of “stretching”

if the warp factor is positive or “squashing” if the warp factor is negative. Since the

warping is made in the direction of the spacelike ∂u, we call the resulting spacetime

spacelike warped AdS3.

Definition 4.2.5. The spacelike warped AdS3 spacetime has metric

ds2 =
`2

ν2 + 3

(
−θ0

R ⊗ θ0
R + θ1

R ⊗ θ1
R +

4ν2

ν2 + 3
θ2

R ⊗ θ2
R

)
, (4.42)

where ν = µ`/3. For ν2 > 1 we have spacelike stretched AdS3, for ν2 < 1 we have

spacelike squashed AdS3.

In fibred coordinates (τ, σ, u), the metric is

ds2 =
`2

ν2 + 3

[
− cosh(σ)2 dτ 2 + dσ2 +

4ν2

ν2 + 3
(du+ sinh(σ) dτ)2

]
. (4.43)

The isometry group of AdS3, which locally is SL(2,R)L ⊗ SL(2,R)R, is broken

by the warping and is only generated by ξL
2 and ξR

i , i = 0, 1, 2. Hence, the isometry

group of spacelike warped AdS3 is U(1)L ⊗ SL(2,R)R.

Remark 4.2.6. Both AdS3 and spacelike warped AdS3 are solutions of TMG, but

the latter is not a vacuum solution of Einstein gravity in 2+1 dimensions.

Remark 4.2.7. Besides the spacelike warped AdS3 spacetime, there exist also timelike

and null warped AdS3 spacetimes. For more details, see e.g. [52].

4.2.2 Warped AdS3 black hole solutions

Black hole solutions which are asymptotically warped AdS3 and do not have CTCs

have only been found in the spacelike stretched case. The spacelike stretched black

hole metric in coordinates (t, r, θ) is [52]

ds2 = dt2 +
`2dr2

4R(r)2N(r)2
+ 2R(r)2N θ(r)dtdθ +R(r)2dθ2 , (4.44)
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with r ∈ (0,∞), t ∈ (−∞,∞), (t, r, θ) ∼ (t, r, θ + 2π) and

R(r)2 =
r

4

[
3(ν2 − 1)r + (ν2 + 3)(r+ + r−)− 4ν

√
r+r−(ν2 + 3)

]
, (4.45)

N(r)2 =
(ν2 + 3)(r − r+)(r − r−)

4R(r)2
, (4.46)

N θ(r) =
2νr −

√
r+r−(ν2 + 3)

2R(r)2
. (4.47)

We can also write the metric in ADM form as

ds2 = −N(r)2 dt2 +
`2dr2

4R(r)2N(r)2
+R(r)2

(
dθ +N θ(r) dt

)2
. (4.48)

In the rest of this section, some of the more important features of these black

holes that will be needed in later chapters are briefly described. More details can

be found in [1, 52].

1. There are outer and inner horizons at r = r+ and r = r−, respectively, and a

singularity in the causal structure located at r = r̄0 := max{0, r0}, with

r0 =
4ν
√
r+r−(ν2 + 3)− (ν2 + 3)(r+ + r−)

3(ν2 − 1)
, (4.49)

such that 0 ≤ r̄0 ≤ r− ≤ r+. The dimensionless constant ν = µ`/3 is greater

than unity for the spacelike stretched black hole and in this context is usually

known as the warp factor. In the limit ν → 1 the metric reduces to the metric

of the BTZ black hole in a rotating frame.

2. In this coordinate system, the vector fields ∂t and ∂θ are Killing vector fields,

however, ∂t is spacelike everywhere in the spacetime. Consequently, this black

hole does not have a stationary limit surface and its ergoregion extends to

infinity. Therefore, no observers follow orbits of ∂t in the exterior region.

3. Notwithstanding the previous point, one can still consider observers following

orbits of the (non Killing) vector field ξ(r) = ∂t + Ω(r) ∂θ at a given radius r,

which is timelike as long as

Ω−(r) < Ω(r) < Ω+(r) , (4.50)
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with

Ω±(r) = − 2

2νr −
√
r+r−(ν2 + 3)±

√
(r − r+)(r − r−)(ν2 + 3)

. (4.51)

Ω(r) is negative for all r > r+, approaches zero as r → +∞, and tends to

ΩH = − 2

2νr+ −
√
r+r−(ν2 + 3)

(4.52)

as r → r+. In view of this, we can take ΩH as the angular velocity of the horizon

with respect to stationary observers in the limit they approach infinity.

One example of such a timelike vector field in the exterior region is

ξ(r) = ∂t −N θ(r) ∂θ . (4.53)

Observers following orbits of ξ(r) are known as locally non-rotating observers

(LNRO) or zero angular momentum observers (ZAMO), since the θ-component

of the one-form ξa is

ξθ = gθµξ
µ = R(r)2N θ(r) +R(r)2

(
−N θ(r)

)
= 0 . (4.54)

We will further consider these observers in Section 5.1.4. The vector field ξ(r)

is a representative of the time-orientation of the exterior region of the spacelike

stretched black hole, cf. Definition 1.1.6.

4. Note that, even though the Killing vector field ∂t is spacelike in the exterior

region, t is a time function, in the sense of Definition 1.1.19. To see this, let

ηa := −∇at. One has that ηa is timelike,

η2 = gµνηµην = gtt = − 1

N(r)2
< 0 , (4.55)

and is future-directed,

gµνη
µξν = gµν

(
−gµt

)
ξν = −1 < 0 , (4.56)

where ξ(r) in (4.53) was used as a representative of the time-orientation of the

exterior region. Therefore, in this region, t is increasing along worldlines of

timelike curves and, furthermore, constant-t surfaces are spacelike.
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5. Similarly to the Kerr spacetime, there is a speed of light surface, beyond which

an observer cannot co-rotate with the event horizon. It is located at the surface

where the Killing vector field which generates the horizon,

χ = ∂t + ΩH ∂θ , (4.57)

is null,

r = rC =
4ν2r+ − (ν2 + 3)r−

3(ν2 − 1)
. (4.58)

6. The spacelike stretched black hole can be obtained as the quotient of spacelike

stretched AdS3 under a discrete subgroup of the isometry group, the same way

the BTZ black hole is a quotient of AdS3 [32,33]. The discrete subgroup is the

one generated by the Killing vector ∂θ, which in terms of the original fibred

coordinates (τ, σ, u) is given by

∂θ =
(ν2 + 3)(r+ − r−)

4
ξR

2 +
ν2 + 3

4

(
r+ + r− −

√
r+r−(ν2 + 3)

ν

)
ξL

2 , (4.59)

such that the identification of points x of the spacelike stretched AdS3 is

x ∼ exp(2πλ ∂θ)x , λ ∈ Z . (4.60)

Across the spacelike stretched AdS3 spacetime, ∂θ can be spacelike, null or

timelike. The spacelike stretched black hole is then the region where ∂θ is

spacelike, which is geodesically incomplete. The boundaries are the surfaces

where ∂θ is null and they correspond to the singularity r = r̄0 in the causal

structure. The region where ∂θ is timelike would have closed timelike curves

upon the identification (4.60).

Therefore, the spacelike stretched black hole is locally equivalent to spacelike

stretched AdS3. Another explicit way to see this is by a local coordinate

transformation from the spacelike stretched AdS3 metric (4.43) to the spacelike
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stretched black hole metric (4.44),

τ = arctan

[
2
√

(r − r+)(r − r−)

2r − r+ − r−
sinh

(
ν2 + 3

4
(r+ − r−)θ

)]
, (4.61a)

u =
ν2 + 3

4ν

[
2t+

(
ν(r+ − r−)−

√
r+r−(ν2 + 3)

)
θ
]

− arctan

[
r+ + r− − 2r

r+ − r−
coth

(
ν2 + 3

4
(r+ − r−)θ

)]
, (4.61b)

σ = asinh

[
2
√

(r − r+)(r − r−)

2r − r+ − r−
cosh

(
ν2 + 3

4
(r+ − r−)θ

)]
, (4.61c)

valid for ν > 1 and for the non-extremal case r+ > r− (more details on this

and the extremal case can be found in Ref. [52]).

7. Using the standard procedure, the Carter-Penrose diagrams for these black

hole spacetimes were obtained in Ref. [56] and are shown in Fig. 4.1. We

see that the causal structure is very similar to that of asymptotically flat

spacetimes in 3+1 dimensions. Indeed, the diagrams for the cases r0 < r− < r+

and r0 < r− = r+ are exactly the same as those for the standard and extreme

Reissner-Nordström black holes, while the one for the case r0 = r− < r+ is

identical to that for the Kruskal spacetime. For this reason, one may expect

the behaviour of matter fields on these spacetimes to be qualitatively similar

to that on the asymptotically flat ones.

In the next chapter, we will focus on the case of a spacelike stretched black

hole for which r0 < r− < r+.
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IIV

II

III

r = r+

r = r−

r = r0

(a) r0 < r− < r+

IIV

II

III

r = r+

r = r0

r = r0

(b) r0 = r− < r+

r = r0

r = r+

(c) r0 < r− = r+

Figure 4.1: Carter-Penrose diagrams of the spacelike stretched black hole spacetime for

different values of r0, r−, and r+.



Chapter 5

Classical linear mode stability of

the WAdS3 black holes

In this chapter, it is demonstrated that the warped AdS3 black hole solutions in-

troduced in the previous chapter are classically stable against massive scalar field

mode perturbations, even when the black hole is enclosed by a stationary timelike

boundary with Dirichlet boundary conditions. Namely, it is shown that even though

classical superradiance is present it does not give rise to superradiant instabilities.

This is a surprising result given the similarity between the causal structure of the

warped AdS3 black hole and the Kerr black hole in 3+1 dimensions. Having clarified

the existence of the classical superradiance and the classical linear mode stability of

the black hole, we then consider the quantised scalar field in the next chapter.

5.1 Classical superradiance

In this section, we start by obtaining the solutions for the Klein-Gordon equation for

a real massive scalar field on the spacelike stretched black hole, in both closed form

and in the form of asymptotic approximations near the horizon and infinity. The

latter allows us to construct bases for the space of solutions in the exterior region.

Finally, we use these constructions to discuss the existence of classical superradiance.

135
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5.1.1 Klein-Gordon field equation

A real massive scalar field Φ on the background of a spacelike stretched black hole,

whose metric is (4.44), satisfies the Klein-Gordon equation (2.2),(
∇2 −m2

0 − ξR
)

Φ = 0 , (5.1)

where m0 is the mass of the field, R is the Ricci scalar and ξ is the curvature

coupling parameter. For the spacelike stretched black hole, the Ricci scalar is a

constant, R = −(ν2 + 3) + (ν2 − 3)/`2, so (5.1) can be rewritten as(
∇2 −m2

)
Φ = 0 , (5.2)

where m2 := m2
0 + ξR is the “effective squared mass” of the scalar field.

Since ∂t and ∂θ are Killing vector fields of the spacetime, one considers mode

solutions of (5.2) of the form

Φωk(t, r, θ) = e−iωt+ikθ φωk(r) , (5.3)

where ω ∈ R and k ∈ Z.

Remark 5.1.1. Since the Killing vector field ∂t is not timelike anywhere in the exterior

region of black hole, the parameter ω cannot be strictly regarded as a “frequency” in

the usual sense. We will come back to this detail in section 5.1.4, but for simplicity

we sometimes refer to ω as the “frequency”.

Using (5.3) and (4.44), the radial equation can be easily obtained,

4

`2
R2N2 d

dr

(
R2N2 dφωk

dr

)
+
[
R2(ω + kN θ)2 −N2(k2 +m2R2)

]
φωk = 0 . (5.4)

By performing the rescalings r → r`, t → t`, m → m/`, and ω → ω/`, one can set

` = 1, as is assumed from now on.

In this (2+1)-dimensional setting, it is possible to write the general solution to

the radial equation in closed form. Introducing a new radial coordinate

z =
r − r+

r − r−
(5.5)
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the general real solution can be written as

φωk(z) = Aωk z
α(1− z)βF (a, b; c; z) +Bωk zα(1− z)βF (a, b; c; z) , (5.6)

where Aωk and Bωk are constants, F (a, b; c; z) := 2F1(a, b; c; z) is the Gaussian hy-

pergeometric function (see Appendix C) and its parameters are given by

a = α + β + γ , b = α + β − γ , c = 2α + 1 , (5.7)

where

α = −iω̃+

2νr+ −
√
r+r−(ν2 + 3)

(ν2 + 3)(r+ − r−)
, (5.8a)

β =
1

2
− $̂

√
3(ν2 − 1)

ν2 + 3
, (5.8b)

γ = −iω̃−
2νr− −

√
r+r−(ν2 + 3)

(ν2 + 3)(r+ − r−)
, (5.8c)

and

ω̃± := ω + kN θ(r±) , $̂ :=

√
(ν2 + 3)2

12(ν2 − 1)

(
1 +

4m2

ν2 + 3

)
− ω2 . (5.9)

This exact solution will be useful for the stability analysis below. To discuss

the existence of classical superradiance, it will be sufficient to consider asymptotic

approximations near the horizon and infinity, as is done in the next subsection.

5.1.2 Asymptotic mode solutions

In order to construct convenient bases of mode solutions, the asymptotic approxima-

tions near the horizon and infinity are obtained by rewriting the radial field equation

as a Schrödinger-like equation. To do that, the first step is to derive the effective

potential seen by the scalar field. Define the tortoise coordinate r∗ by

dr∗
dr

=
1

2RN2
, (5.10)

which maps (r+,∞) to (−∞,∞) for ν > 1 and to (−∞, r̂∗), where r̂∗ is a finite

value, for ν = 1. Introduce the new radial function ϕωk,

φωk(r) =: R(r)−1/2 ϕωk(r) . (5.11)
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Figure 5.1: Effective potential Vωk(r) for selected values of m2 with r+ = 5, r− = 2.5,

ν = 1.2, ω = 5 and k = −1. For smaller values of m2 (or larger values of ω) the potential

has a local maximum near the horizon, around which a potential barrier stands. As one

considers fields with larger m2 (or smaller ω), the potential barrier eventually disappears.

The radial field equation (5.4) can then be written in a Schrödinger-like form(
d2

dr2
∗

+ (ω2 − Vωk(r))
)
ϕωk(r) = 0 , (5.12)

with:

Vωk := ω2 − (ω + kN θ)2 + 2N3

(
RN

d2R

dr2
+

1

2
N

(
dR

dr

)2

+ 2R
dR

dr

dN

dr

)

+N2

(
m2 +

k2

R2

)
. (5.13)

The function Vωk(r) can hence be regarded as the effective potential experienced by

the scalar field of effective squared mass m2, frequency ω, and angular momentum

number k. Figure 5.1 shows the form of Vωk(r) for selected values of m2.

Remark 5.1.2. Similarly to what happens in the Kerr spacetime [90], Vωk(r) depends

on the frequency ω of the scalar field (when k 6= 0). Also, Vωk(r)→ +∞ as r → +∞

and ν → 1, as expected for the BTZ black hole.
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One can now find the asymptotic solutions of (5.12) near the horizon and near

infinity by analysing the behaviour of the effective potential in those regions.

1. In the near-horizon limit,

Vωk(r)− ω2 → −ω̃2 , r → r+ , (5.14)

where

ω̃ := ω + kN θ(r+) = ω − kΩH . (5.15)

Thus, the solution near the horizon is of the form

ϕωk(r∗) = Aωk e
iω̃r∗ +Bωk e

−iω̃r∗ . (5.16)

Modes of the form eiω̃r∗ are outgoing from the past event horizon, while modes

of the form e−iω̃r∗ are ingoing to the future event horizon.

2. At infinity,

Vωk(r)→ ω2
m , r →∞ , (5.17)

where

ωm :=
1

2

ν2 + 3√
3(ν2 − 1)

√
1 +

4m2

ν2 + 3
. (5.18)

Two cases need now to be distinguished.

(a) In the case |ω| > ωm, the asymptotic solution is of the form

ϕωk(r∗) = Cωk e
iω̂r∗ +Dωk e

−iω̂r∗ , (5.19)

where

ω̂ :=


√
ω2 − ω2

m , ω > ωm ≥ 0 ,

−
√
ω2 − ω2

m , ω < −ωm ≤ 0 .

(5.20)

When ω̂ > 0, modes of the form eiω̂r∗ correspond to outgoing flux at

infinity, while the modes of the form e−iω̂r∗ correspond to incoming flux

at infinity, and vice versa when ω̂ < 0.
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(b) In the case |ω| < ωm, the asymptotic solutions are

ϕωk(r∗) = Eωk e
$̂r∗ + Fωk e

−$̂r∗ , (5.21)

where

$̂ ≡


√
ω2
m − ω2 , 0 < ω < ωm ,

−
√
ω2
m − ω2 , −ωm < ω < 0 .

(5.22)

To exclude the solution that diverges exponentially at infinity, impose

that Eωk = 0 when 0 < ω < ωm and Fωk = 0 when −ωm < ω < 0.

Remark 5.1.3. The behaviour of the effective potential at infinity given by (5.17)

contrasts with that in asymptotically flat spacetimes such as Kerr, where the effective

potential tends to m2 at infinity [90], and with asymptotically AdS spacetimes such

as the BTZ or Kerr-AdS, where the effective potential grows without bound at

infinity [91]. It is assumed that the asymptotic value of Vωk at infinity, ω2
m, is non-

negative and, by (5.18), this implies that m2 may be negative provided it satisfies

m2 ≥ −ν2+3
4

. As a consistency check, in the BTZ limit ν → 1 this inequality reduces

to the Breitenlohner-Freedman bound for AdS3 spacetimes m2 ≥ −1 [92].

Remark 5.1.4. The interpretation of the modes in (5.19) corresponding to incoming

and outgoing flux at infinity can be explained by calculating the radial flux jr of the

field mode φωk at infinity,

jr = −i grr
(
φωk

dφωk
dr
− φωk

dφωk
dr

)
. (5.23)

The result turns out to be

jr = 4ω̂
(
|Cωk|2 − |Dωk|2

)
, r → +∞ . (5.24)

Since a positive (negative) radial flux at infinity corresponds to outgoing (incoming)

flux, the interpretation above follows.

Remark 5.1.5. Note that so far no choice of “positive frequency” has been made,

for instance, by taking ω > 0. We will return to this point when discussing the

existence of superradiance in Section 5.1.4.
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5.1.3 Basis of mode solutions

Using the asymptotic mode solutions described above, one can construct a basis of

mode solutions. Two particular basis modes will be of particular importance in the

following, the “in” and “up” modes, which are specified by the boundary conditions

they obey at the event horizon and at infinity. These modes are defined in analogy

with the Kerr spacetime [26, 93]. We will also define the so-called “bound state”

modes for the case |ω| < ωm.

Definition 5.1.6. For |ω| > ωm, the in modes are mode solutions of (5.12) of the

form (5.3) which satisfy the boundary conditions

ϕin
ωk(r∗) =

B
in
ωk e

−iω̃r∗ , r∗ → −∞ ,

e−iω̂r∗ + C in
ωk e

iω̂r∗ , r∗ → +∞ ,

(5.25)

whereas the up modes are the ones which satisfy

ϕup
ωk(r∗) =

e
iω̃r∗ +Bup

ωk e
−iω̃r∗ , r∗ → −∞ ,

Cup
ωk e

iω̂r∗ , r∗ → +∞ .

(5.26)

In the case in which |ω| < ωm, the bound state modes are the mode solutions which

satisfy the boundary conditions

ϕbs
ωk(r∗) =

A
bs
ωk e

iω̃r∗ +Bbs
ωk e

−iω̃r∗ , r∗ → −∞ ,

e−$̂r∗ , r∗ → +∞ .

(5.27)

Remark 5.1.7. The in modes correspond to flux coming from infinity which is par-

tially reflected back to infinity and partially absorbed by the black hole. The up

modes correspond to flux coming from the black hole which is partially reflected

back to the black hole and partially sent to infinity. This is represented in Fig. 5.2.

The bound state modes are localised near the event horizon and exponentially decay

as infinity is approached.

An immediate but important property relating the A, B and C coefficients in

(5.25), (5.26) and (5.27) is given in the following lemma.
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Figure 5.2: In and up modes in the exterior region of the spacetime.

Lemma 5.1.8. The coefficients in (5.25), (5.26) and (5.27) satisfy

ω̃ |Bin
ωk|2 = ω̂

(
1− |C in

ωk|2
)
, ω̃

(
1− |Bup

ωk|
2
)

= ω̂ |Cup
ωk|

2 , |Abs
ωk| = |Bbs

ωk| . (5.28)

Proof. The expressions relating the coefficients for each type of mode solution follow

straightforwardly from the observation that, given any two linearly independent

solutions ϕ1(r∗) and ϕ2(r∗) of (5.12), their Wronskian is independent of r∗, i.e.,

W (ϕ1, ϕ2) := ϕ1
dϕ2

dr∗
− dϕ1

dr∗
ϕ2 = constant. (5.29)

By comparing the Wronskians at the horizon and at infinity, the relations follow.

5.1.4 Existence of classical superradiance

In Appendix D, a brief overview of the classical superradiance phenomenon on black

holes is given. In short, a given mode solution coming from either infinity or the

horizon is called superradiant if, after it gets reflected in the neighbourhood of the

event horizon, its amplitude is increased. The superradiant nature of a given mode

depends on its type and on its frequency, as formulated in the next proposition.

Proposition 5.1.9. In and up modes of a given frequency ω are superradiant if and

only if ω̃ω̂ < 0. Bound state modes are never superradiant.
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Proof. An in mode is superradiant if it is reflected back to infinity with a greater

amplitude than the original one, i.e. if |C in
ωk| > 1. Using Lemma 5.1.8, this occurs

when ω̃ω̂ < 0.

Similarly, an up mode is superradiant if it is reflected back to the horizon with a

greater amplitude than the original one, i.e. if |Bup
ωk| > 1. Using Lemma 5.1.8, this

also occurs when ω̃ω̂ < 0.

Finally, for a bound state mode, |Abs
ωk| = |Bbs

ωk| implies that all flux coming from

the horizon is reflected back. Consequently, the mode is not superradiant.

Proposition 5.1.9 gives the condition that a given mode solution of frequency ω

needs to satisfy in order to be superradiant. It remains to verify if that condition

can actually be fulfilled.

At this point, one needs to discuss the notion of positive frequency, as described

in detail in Section 2.2.1. The question of positive frequency becomes subtle for

spacetimes which do not have a globally timelike Killing vector field, as we have

seen, and in practice one needs to decide the location of a locally non-rotating

observer with respect to whom only positive frequency modes are observed.

First, we define these locally non-rotating observers, who we have briefly men-

tioned in point 3 of Section 4.2.2.

Definition 5.1.10. An observer in the exterior region of the black hole is a locally

non-rotating observer (LNRO) if its radial coordinate r is fixed and it has zero

angular momentum, i.e. uµ(∂θ)
µ = uθ = 0, where ua is the future-directed unit

vector tangent to the observer worldline.

Remark 5.1.11. Locally non-rotating observers are also known as zero angular mo-

mentum observers (ZAMO) in the literature.

Proposition 5.1.12. A LNRO in the exterior region of the spacelike stretched black

hole follows orbits of the vector field ξ(r) := ∂t −N θ(r) ∂θ, which is timelike every-

where in the exterior region and is perpendicular to constant-t surfaces.
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Proof. Given that the coordinate r is fixed, ur = 0. The other components are

ut = gtt ut , uθ = gθt ut . (5.30)

Hence, a vector field proportional to ua is

∂t +
gθt

gtt
∂θ = ∂t −N θ ∂θ =: ξ . (5.31)

Therefore, a LNRO follows orbits of ξ. This vector field is timelike as Ω(r) = −N θ(r)

satisfies (4.50) for all r > r+. Furthermore, we have that ξr = 0 and

ξt = gtµξ
µ = gtt + gtθ(−N θ) = −N2 , (5.32)

ξθ = gθµξ
µ = gθt + gθθ(−N θ) = gθθN

θ + gθθ(−N θ) = 0 , (5.33)

thus, ξa ∝ (dt)a, which shows that ξa is perpendicular to constant-t surfaces.

Remark 5.1.13. Note that Ω(r) = −N θ(r) is such that Ω(r+) = ΩH and Ω(r) → 0

as r →∞, as we have seen in point 3 of Section 4.2.2.

Given these remarks, one now considers two new coordinate charts and conve-

nient timelike Killing vector fields in each of them, near the event horizon and near

spatial infinity, respectively.

1. Consider the open set NH := {r+ < r < r′}, for some r′ < rC (the location of

the speed-of-light surface, cf. point 5 of Section 4.2.2). The Killing vector field

ξH := χ = ∂t + ΩH ∂θ (5.34)

(the horizon generator) is clearly timelike in NH. In this set, consider the

coordinate system (t̃, r, θ̃) such that ∂t̃ = ξH. It follows that t̃ = t and θ̃ =

θ − ΩHt. Furthermore, for a mode solution Φωk of frequency ω,

∂

∂t̃
Φωk(t̃, r, θ̃) = −iω̃Φωk(t̃, r, θ̃) , (5.35)

where ω̃ = ω−kΩH (cf. (5.15)). This is just the co-rotating coordinate system

introduced in Section 3.1.1.
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2. Fix r = r∗, which can be taken to be very large, so that r∗ � r+. Define the

Killing vector field

ξ∗ := ∂t + Ω∗ ∂θ , (5.36)

with Ω∗ := −N θ(r∗). There exists a small enough neighbourhood N∗ of r = r∗

such that ξ∗ is timelike in N∗, since the spacetime is locally stationary. In this

neighbourhood, consider a new coordinate system (t∗, r, θ∗), such that ∂t∗ = ξ∗.

It follows that t∗ = t and θ∗ = θ−Ω∗t. Furthermore, for a mode solution Φωk

of frequency ω,
∂

∂t∗
Φωk(t∗, r, θ∗) = −iω∗Φωk(t∗, r, θ∗) , (5.37)

where

ω∗ := ω − kΩ∗ . (5.38)

Remark 5.1.14. The idea behind the definition of the Killing vector field ξ∗ is the fact

that one cannot use the everywhere spacelike Killing vector field ∂t to define positive

frequency modes in a neighbourhood of spatial infinity. For the purpose of checking

the existence of superradiant modes, it is enough to consider a neighbourhood of

r = r∗, which can be taken to be as far from the black hole as desired.

We now have all the necessary ingredients to pick appropriate notions of positive

frequency near the event horizon and near spatial infinity. We adopt the terminology

of Ref. [26] concerning “near-horizon” and “distant” observers.

1. For the up modes, one chooses to have positive frequency as measured by a

LNRO close to the horizon (the ‘near-horizon observer’ viewpoint), i.e. positive

frequency is defined with respect to t̃, which requires ω̃ > 0.

2. For the in modes, one chooses to have positive frequency as measured by

a LNRO near spatial infinity (the ‘distant observer’ viewpoint), i.e. positive

frequency is defined with respect to t∗, which requires ω∗ > 0. If ωm > 0, one

must additionally have ω > ωm for the in mode to exist, so that the positive

frequency condition altogether is ω∗ > ωm.
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The main conclusion of this section, expressed in the following theorem, is that

classical superradiance is present in the spacelike stretched black hole.

Theorem 5.1.15. Superradiant mode solutions exist for a massive scalar field on

the background of a spacelike stretched black hole.

Proof. Proposition 5.1.9 states that up and in modes of frequency ω are superradiant

if ω̃ω̂ < 0. We check that this condition is indeed possible for each mode.

1. An up mode has ω̃ > 0, as measured by a LNRO near the horizon. Therefore,

the mode is superradiant if and only if ω̂ < 0. This occurs when ω < −ωm.

2. An in mode has ω∗ > ωm, as measured by a LNRO near spatial infinity, which

is equivalent to ω > ωm + kΩ∗. This condition does not fix the sign of ω, so

there are two cases to consider.

(i) In the case ω > ωm, the condition ω̃ω̂ < 0 is equivalent to

ωm + kΩ∗ < ω < kΩH , (5.39)

with k < 0.

(ii) In the case ω < −ωm, the condition ω̃ω̂ < 0 cannot be satisfied unless

k > 2ωm/|Ω∗|, in which case it is equivalent to

kΩH < ω < −ωm . (5.40)

When either (5.39) or (5.40) is satisfied, the in mode is superradiant.

Hence, with the above choice of viewpoints, there can be superradiant mode

solutions for a massive scalar field on a spacelike stretched black hole. (Note that

with the above choice the modes have positive Klein-Gordon norm.) Since the in

and up modes constitute a basis with which any solution of the scalar field equation

can be expressed at any point in the exterior region of the spacetime, it can be

concluded that classical superradiance is present in this spacetime.
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Remark 5.1.16. Note that the parameter Ω∗ can be made arbitrarily small by fixing

the location of the LNRO near spatial infinity to have arbitrarily large radial coor-

dinate. If there was a Killing vector field which was timelike in a neighbourhood

of spatial infinity (i.e. for r > r′′ for some r′′ > r+), then the limit r∗ → ∞ could

be taken (sending the LNRO to infinity) and the familiar superradiance condition

ωm < ω < kΩH would be recovered [94].

Remark 5.1.17. As stated in Proposition 5.1.9, the bound state modes cannot be

superradiant. Therefore, in the frequency range |ω| < ωm there are no superradiant

modes. This is similar to the situation with the BTZ black hole when reflective

boundary conditions are imposed [95].

This result is in agreement with the expectation that the behaviour of the field

modes should be similar to the Kerr spacetime case, given the similar causal struc-

ture and boundary conditions that we imposed. It is also interesting to note that

the situation is significantly different for the Kerr-AdS spacetime, where classical

superradiance is not inevitable [91].

5.2 Quasinormal and bound state modes and clas-

sical linear mode stability

In this section, we find the quasinormal and bound state scalar field modes and use

the results to discuss the classical linear mode stability of the black hole solutions.

5.2.1 Quasinormal and bound state modes

Suppose that a spacelike stretched black hole is perturbed by a massive scalar field

propagating in the spacetime. Once the black hole is perturbed it responds by

releasing gravitational and scalar waves in the form of characteristic quasinormal

modes of discrete complex frequencies (for recent reviews on quasinormal modes see

[96,97]). For a stable black hole the quasinormal modes are exponentially decaying
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in time; conversely, if any of the modes are increasing in time, the black hole is

unstable. Moreover, as seen in the previous section, there can be superradiant

modes in this spacetime. If any of these superradiant modes are localised near the

event horizon in the form of bound state modes (possibly due to a potential well in

the effective potential felt by the scalar field), the repeated amplitude increases due

to reflections on the walls of the potential well lead to the so-called superradiant

instabilities [98–104].

The quasinormal and bound state modes are defined by appropriate boundary

conditions at the horizon and at infinity. Since the system under consideration

is classical, there must be no flux from the horizon, and thus one imposes that

only ingoing modes are present. Furthermore, no perturbations coming in from

infinity should be allowed, and hence it is required that the quasinormal modes

obey outgoing boundary conditions at infinity. As for the bound state modes, since

they are localized in the vicinity of the black hole, one imposes that they decrease

exponentially at infinity.

These ideas can be formalised in the following two definitions.

Definition 5.2.1. A quasinormal mode is a mode solution of the field equation

(5.12) of the form (5.3) with the following boundary conditions:

1. only ingoing modes at the horizon, cf. (5.16),

ϕωk(r∗) ∼ e−iω̃r∗ , r∗ → −∞ ; (5.41)

2. outgoing modes at spatial infinity, cf. (5.19),

ϕωk(r∗) ∼ eiω̂r∗ , r∗ →∞ . (5.42)

Definition 5.2.2. A bound state mode is a mode solution of the field equation

(5.12) of the form (5.3) with the following boundary conditions:

1. only ingoing modes at the horizon, cf. (5.16),

ϕωk(r∗) ∼ e−iω̃r∗ , r∗ → −∞ ; (5.43)
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2. exponentially decreasing modes at spatial infinity, cf. (5.21),

ϕωk(r∗) ∼ e−$̂r∗ , r∗ →∞ . (5.44)

These boundary conditions on field modes with an e−iωt time dependence restrict

the allowed frequencies ω to a discrete set of complex values. The real part of ω

represents the physical frequency of the oscillation, whereas the imaginary part gives

the decay (or growth) in time of the mode. This occurs because the field can escape

to the black hole or to infinity. One is then faced with an eigenvalue problem in

which the quasinormal or the bound state modes are the eigenmodes. By obtaining

the eigenfrequencies the stability of a given mode can be inferred by the sign of the

imaginary part: if the imaginary part is negative then the mode decays in time and

does not create an instability.

Contrary to higher dimensional black hole spacetimes, one does not have to

resort to numerical methods, since an analytical expression for the field modes (5.6)

is available, to which the above boundary conditions can be applied.

Proposition 5.2.3. The eigenfrequencies for the quasinormal and bound state modes

are given as follows. The “right frequencies” (ω±)
(R)
n are given by

(ω±)(R)
n =

ν2 + 3

d2δ2 − 3(ν2 − 1)

{
−dδ

(
4kd

ν2 + 3
+ i

(
n+

1

2

))
± i(e− i sgn(k)f)

}
,

(5.45)

where

d =
1

r+ − r−
, δ = 2ν(r+ + r−)− 2

√
(ν2 + 3)r+r− , (5.46)

e =

√√
E2 + F 2 + E

2
, f =

√√
E2 + F 2 − E

2
, (5.47)

E =
1

4

(
1 +

4m2

ν2 + 3

)
d2δ2 − 3(ν2 − 1)

[
1

4

(
1 +

4m2

ν2 + 3

)
+

(
4kd

ν2 + 3

)2

−
(
n+

1

2

)2
]
,

(5.48)

F = −3(ν2 − 1)

(
n+

1

2

)
8kd

ν2 + 3
. (5.49)
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The “left frequencies” (ω±)
(L)
n are given by

(ω±)(L)
n = −i

(2n+ 1)ν ∓

√
3(ν2 − 1)

(
n+

1

2

)2

+
ν2 + 3

4

(
1 +

4m2

ν2 + 3

) .

(5.50)

In the expressions above, the “+ solutions” correspond to the quasinormal eigenfre-

quencies, whereas the “− solutions” correspond to the bound state eigenfrequencies.

Each of the modes has two types of eigenfrequencies, which are denoted by “right”

and “left” frequencies, respectively.

Remark 5.2.4. This follows the AdS/CFT-inspired terminology [105] and the nota-

tion here follows closely the notation of Ref. [106].

Proof. We start by imposing the boundary conditions which define each of these

types of mode solutions. By imposing the ingoing boundary condition (5.41) and

(5.43) at the horizon, one is left with

φωk(z) = Aωk z
α(1− z)βF (a, b, c; z) . (5.51)

In order to impose the boundary condition at infinity, one uses the transformation

formula (C.7) of Appendix C, resulting in

φωk(z) = Aωk Γ(c) zα

[
(1− z)β

Γ(c− a− b)
Γ(c− a)Γ(c− b)

F (a, b; a+ b− c+ 1; 1− z)

+ (1− z)β
Γ(a+ b− c)

Γ(a)Γ(b)
F (c− a, c− b; c− a− b+ 1; 1− z)

]
.

(5.52)

Note that at infinity,

(1− z)β ∼ r−1/2eiω̂r∗ = r−1/2e$̂r∗ , (1− z)β ∼ r−1/2e−iω̂r∗ = r−1/2e−$̂r∗ , (5.53)

cf. (5.20) and (5.22). The frequency ω is complex and can be written as ω = ωR+iωI.

One can use the (t, θ)→ (−t,−θ) symmetry to only consider solutions with ωR ≥ 0

and thus Re[ω̂] ≥ 0, Re[$̂] ≥ 0.
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For a quasinormal mode, condition (5.42) at infinity implies that the (1 − z)β

term in (5.52) must vanish. This happens when

a = −n or b = −n , (5.54)

where n ∈ N0 is the overtone number.

On the other hand, for a bound state mode, condition (5.44) implies that the

(1− z)β term in (5.52) must vanish. This happens when

c− a = −n or c− b = −n . (5.55)

Since a, b, and c are functions of ω [from (5.7)], these relations imply that there

is a discrete set of frequencies {ωn} for which the boundary conditions are satisfied.

These frequencies are given by (5.45) and (5.50), each corresponding to the two

possible relations in (5.54) and (5.55).

Remark 5.2.5. The “left” frequencies (5.50) have no real part, therefore $̂ in (5.53)

is real and there are no “left” quasinormal modes (in the sense that they do not

have the expected outgoing wavelike behavior at infinity). Only the bound state

solutions are relevant for the “left” modes.

Remark 5.2.6. Note that, although there is a region of the parameter space for which

the imaginary part of the “right” quasinormal frequencies (5.45) is positive, it is easy

to check that in this case either the mode is not outgoing at infinity or it decreases

exponentially at infinity and hence is not a quasinormal mode. Otherwise, both the

quasinormal and bound state frequencies have a negative imaginary part.

Remark 5.2.7. It should also be noted that the bound state modes presented here

are called quasinormal modes in some of the literature [106–108]. This is due to

the adoption of different boundary conditions at infinity, motivated by AdS/CFT

purposes [96,97]. In fact, in the BTZ limit ν → 1, the bound state frequencies reduce

to the quasinormal frequencies of the BTZ black hole in a rotating frame [105,109].

This is expected since the BTZ black hole quasinormal modes must vanish at infinity.
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5.2.2 Classical linear mode stability

Before concluding about the stability of the spacelike stretched black hole, we de-

scribe the usual notions of “stability” present in the literature.

Linear mode, linear and non-linear stability

At this point, it is useful to clarify what is meant by the “linear mode stability” of

a black hole. We emphasise that the notion of stability discussed in this section is

classical in nature, i.e. no quantum effects are taken into account. A good summary

of these concepts can be found in [110].

We distinguish between three notions of classical stability:

1. Linear mode stability. In this case, we study individual mode solutions of a

linear field equation (or the linearisation of a non-linear field equation) and

not general solutions. For a scalar field on a spacelike stretched black hole, we

consider mode solutions of the form of (5.3) and say that a mode with finite

energy is unstable if Imω > 0.

This analysis is possible if the spacetimes involved have enough symmetries

generated by Killing vectors. In the case of scalar field mode perturbations,

the mode stability of Schwarszchild was shown in [111] and of Kerr in [112].

2. Linear stability. Stability of individual modes does not necessarily imply sta-

bility of the superposition of infinitely many modes. In particular, stability of

individual modes is not incompatible with general linear perturbations with

finite initial energy growing without bound in time. Therefore, to prove lin-

ear stability, we need to find bounds for quantities involving the fields (the

so-called “energy-type quantities”, such as the energy of the field).

For the case of a scalar field perturbation on Schwarszchild, it was shown

in [113, 114] that such a bound can be found for general solutions. A similar

result for Kerr was only obtained very recently [115].
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3. Non-linear stability. In the context of black hole solutions to general relativity

(or other gravity theory), non-linear stability usually refers to the dynam-

ical stability of those solutions to the Cauchy problem associated with the

Einstein’s equations. The only currently existent proof is the non-linear sta-

bility of Minkowski spacetime [116]. In the non-linear case, finding bounds

for energy-type quantities is not enough to prove stability and we also need

to find decay bounds, showing that those quantities are bounded by a fixed

decaying function. This is the only known mechanism for non-linear stability.

In the following, we are only concerned with linear mode stability of the space-

like stretched black hole to massive scalar field mode perturbations and we do not

attempt to prove its full linear stability.

Mode stability of the spacelike stretched black hole

Having clarified what is meant by “linear mode stability”, we now verify if the

spacelike stretched black hole is stable in this sense. By analysing (5.45) and (5.50)

for the quasinormal and bound state frequencies and taking into account the remarks

above, one sees that both frequencies have a negative imaginary real part, and

therefore these modes are classically stable. We have then proved the following

theorem:

Theorem 5.2.8. The spacelike stretched black hole is classically stable to massive

scalar field mode perturbations.

In particular, there are no superradiant instabilities, even though superradiant

modes can exist in this spacetime, as it was shown in Theorem 5.1.15. This is related

to the fact that the effective potential Vωk(r) does not have a potential well where

these superradiant modes could be localized, as illustrated in the plots of Fig. 5.1.

The absence of superradiant instabilities is the main conceptual difference in classical

scalar field theory between the spacelike stretched black hole and Kerr [99–104].
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Figure 5.3: Eigenfrequencies in the complex plane for a spacelike stretched black hole

with r+ = 5, r− = 0.5, and ν = 1.2 and a scalar field with k = −1 and varying m2. The

different solid lines represent the eigenfrequencies for different overtone numbers n, and

the dotted lines are lines of constant m2.
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In Fig. 5.3, we plot the quasinormal and bound state frequencies in the complex

plane for varying squared mass m2. For a scalar field with a given m2, there is a

discrete set of complex eigenfrequencies for both the quasinormal and bound state

modes at the intersection of the dotted and solid curves. It is clear the discrete

nature of the allowed frequencies and the fact that their imaginary part is always

negative. For the quasinormal modes the real part of the frequency increases as we

consider scalar fields of larger m2, while the imaginary part decreases. The bound

m2 ≥ −ν2+3
4

is a consequence of the constraint on the effective potential at infinity, as

noted in Remark 5.1.3. For each overtone number n there is a maximum value of m2

beyond which the corresponding quasinormal mode ceases to exist. This behaviour is

similar to that of a massive scalar field in Schwarzschild and Kerr spacetimes [90], as

expected. Finally, the real and imaginary parts of the bound state mode frequencies

are generally larger in absolute value than those of the quasinormal modes, but no

growing modes are present.

5.3 Case with a mirror-like boundary

As seen above, massive scalar fields propagating in spacelike stretched black holes do

not give rise to classical instabilities. In particular, there are no superradiant bound

state modes, as the effective potential never develops a potential well. We now

investigate whether these properties persist when a mirror-like, timelike boundary

is introduced outside the event horizon, as discussed in Section 2.3. One reason to

consider this situation is that a “mirror wall” in the effective potential might give

rise to a superradiant “black hole bomb” instability [98], as is shown to happen for a

massless scalar field in Kerr [99], even though there are no superradiant instabilities

when no mirror is present. Another reason is that to treat the quantised scalar

field, the existence of a speed of light surface implies that there is no well defined

Hartle-Hawking state and one way to solve this problem is precisely to add a mirror

between the horizon and the speed of light surface, as discussed in Section 2.3.
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Suppose then that a timelike boundary M is introduced at the radius r = rM,

such that r+ < rM <∞. We impose Dirichlet boundary conditions at the boundary:

Φ(t, zM, θ) = Aωk e
−iωt+ikθ zαM(1− zM)βF (a, b, c; zM) = 0 , (5.56)

where zM = (rM − r+)/(rM − r−), cf. (5.5). The bound state modes now have

eigenfrequencies ωM determined by

z
α(ωM)
M (1− zM)β(ωM)F (a(ωM), b(ωM), c(ωM); zM) = 0 . (5.57)

Unfortunately, this equation cannot be analytically solved for ωM, so these eigenfre-

quencies are found numerically, by truncating the hypergeometric series (see Ap-

pendix C) to the desired accuracy and using Mathematica’s root finding al-

gorithm. A check on the numerics is done by considering the limit zM → 1

(rM → +∞), in which ωM approaches the previously derived bound state frequency

ω− without the boundary. Then continuity can be used to obtain the eigenfrequen-

cies for any value of zM ∈ (0, 1).

Even though no explicit expression for the frequencies is available, it is possible

to obtain a useful piece of information by using the following heuristic argument. On

the one hand, one can only expect superradiant instabilities if the frequencies of the

bound state modes are such that ωR . ΩH, cf. Eq. (5.39), or, in other words, if their

wavelengths are λ & Ω−1
H . On the other hand, a mirror at r = rM can only “see”

these modes if rM & λ & Ω−1
H . Therefore, superradiant instabilities, if they exist,

can only occur if the mirror is placed beyond a critical radius which depends on the

parameters of the spacetime. If one is not able to find any instabilities beyond this

critical radius then one can assert with confidence that there are no superradiant

instabilities wherever the timelike boundary is placed.

In Figs. 5.4–5.8 we present the results for the real and imaginary parts of the

“right” eigenfrequencies ωM as functions of the mirror’s position for selected values

of the parameters. Note that only negative values of k are considered in these

examples, since, by (5.45), (ω−)
(R)
n (k) = (ω−)

(R)
n (−k), and thus it suffices to consider

modes with ωR ≥ 0.
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Figure 5.4: “Right” frequencies as functions of the mirror’s location for selected values of

r+ and r−, with fixed ν = 1.2, n = 0, k = −1, and m = 0. The real part of the frequency

is such that ωR → Re
[
(ω−)

(R)
0

]
in (5.45) as zM → 1 and ωR → kΩH as zM → 0. kΩH

equals 0.2307, 0.1648, and 0.1154 in the cases r+ = 5, r+ = 7, and r+ = 10, respectively.

The imaginary part of the frequency is such that ωI → Im
[
(ω−)

(R)
0

]
in (5.45) as zM → 1.
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Figure 5.5: “Right” frequencies as functions of the mirror’s location for selected values

of m, with fixed r+ = 5, r− = 0.5, ν = 1.2, n = 0, and k = −1. The real part of the

frequency is such that ωR → Re
[
(ω−)

(R)
0

]
in (5.45) as zM → 1 and ωR → kΩH = 0.2307

as zM → 0. The imaginary part of the frequency is such that ωI → Im
[
(ω−)

(R)
0

]
in (5.45)

as zM → 1.
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Figure 5.6: “Right” frequencies as functions of the mirror’s location for selected values of

ν, with fixed r+ = 5, r− = 0.5, n = 0, k = −1, and m = 0. The real part of the frequency

is such that ωR → Re
[
(ω−)

(R)
0

]
in (5.45) as zM → 1 and ωR → kΩH as zM → 0. kΩH

equals 0.2357, 0.2307, and 0.2260 in the cases ν = 1.18, ν = 1.2, and ν = 1.22, respectively.

The imaginary part of the frequency is such that ωI → Im
[
(ω−)

(R)
0

]
in (5.45) as zM → 1.
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Figure 5.7: “Right” frequencies as functions of the mirror’s location for selected values of

k, with fixed r+ = 5, r− = 0.5, ν = 1.2, n = 0, and m = 0. The real part of the frequency

is such that ωR → Re
[
(ω−)

(R)
0

]
in (5.45) as zM → 1 and ωR → kΩH as zM → 0. kΩH

equals 0.2307 and 0.4615 in the cases k = −1 and k = −2, respectively. The imaginary

part of the frequency is such that ωI → Im
[
(ω−)

(R)
0

]
in (5.45) as zM → 1.
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Figure 5.8: “Right” frequencies as functions of the mirror’s location for selected values

of n, with fixed r+ = 5, r− = 0.5, ν = 1.2, k = −1, and m = 0. The real part of the

frequency is such that ωR → Re
[
(ω−)

(R)
n

]
in (5.45) as zM → 1 and ωR → kΩH = 0.2307

as zM → 0. The imaginary part of the frequency is such that ωI → Im
[
(ω−)

(R)
n

]
in (5.45)

as zM → 1.
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First, note that the imaginary part of the eigenfrequencies is negative in all the

presented cases, and therefore no superradiant instabilities are present. This again

contrasts with the Kerr spacetime surrounded by a mirror, where even a massless

scalar field has superradiant instabilities [99].

In regard to the size of the black hole, from Fig. 5.4 one observes that the real

part of the frequency generally decreases as the horizon grows, while the imaginary

part of the frequency increases in absolute value. The dependence on the scalar field

mass as shown in Fig. 5.5 is more complicated, but it is clear that the imaginary

part of the frequency also increases in absolute value as the field mass increases. A

similar conclusion can be drawn from Figs. 5.6–5.8 concerning the warp factor ν,

the angular momentum number k (in absolute value), and the overtone number n.

In order to understand these results, it is useful to keep in mind the effective

potential picture described in section 5.1.2. Note that in the current situation the

frequencies take imaginary values, and hence this picture is not entirely accurate.

Recall that the “right” bound state frequencies (5.45) have a real part that always

exceeds kΩH and, therefore, there are no superradiant bound state modes when the

mirror is placed far from the event horizon. As seen previously, this can be explained

by the fact that the effective potential does not develop a potential well near the

horizon where the field mode could be trapped. However, as we move the mirror

closer to the horizon, it is possible that a potential well can be artificially created,

since the mirror works as an infinite potential wall. If we place the mirror close to the

horizon, the real part of the frequency is approximately kΩH, due to the dragging of

the inertial frames. In the general case in which the mirror is somewhere in between

the horizon and infinity, we expect the real part of the frequency to be greater than

kΩH but smaller than the asymptotic value, with possibly an increasing profile as

the mirror is moved towards infinity. This expectation is in good agreement with

the numerical results. We thus conclude that the real part of the “right” frequency

does not satisfy the superradiant condition irrespective of the mirror’s position in

the exterior region.
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One may ask why the mirror does not create an artificial potential well. The well

might have been expected to arise in cases where the effective potential has a local

maximum near the horizon and the mirror is placed close to the horizon. We find,

however, that when the mirror approaches the maximum of the effective potential

from the right, the real part of the frequency does not decrease quickly enough to

create superradiant bound state modes. When the mirror is moved even closer to

the horizon, the real part of the frequency has no other choice but to approach kΩH.

The dependence of the imaginary part of the frequency (and consequently the

decay rate) on the several parameters of the system can be interpreted in the same

way. If one increases the absolute values of m2, ν, k, and n, the effective potential

is changed in such a way that the local maximum tends to disappear (as in Fig. 5.1)

and, as a result, the field is more stable. On the other hand, the effective potential

itself depends on the frequency of the field, and in this case the previous behaviour

roughly occurs if we decrease the real part of the frequency.

The analysis for the “left” frequencies (5.50) has some similarities but also some

significant differences. The dependence of the frequencies on the parameters of the

system is largely identical, but not on the mirror’s position. As seen in section 5.2.1,

without the mirror the real part of the frequency is zero for the “left” bound state

frequencies, and so there is no superradiance. As seen in Fig. 5.9, when the mirror

is brought in from infinity, this situation persists until a critical radius (call it r1)

beyond which the real part of the frequency sharply increases up to a value which

is slightly greater than kΩH (denote by r2 the radius at which ωR = kΩH, such that

r+ < r2 < r1). When the mirror is placed at rM ∈ (r2, r1) the bound state mode is

indeed superradiant, but the imaginary part of the eigenfrequency is still negative.

Again, this can be understood by analyzing the effective potential, which we recall

depends on the frequency. The somewhat narrow interval of the mirror’s position in

which the real part of the frequency satisfies the superradiant condition is already

past the local maximum of the effective potential, when it exists. Therefore, no

potential well is created and thus no instabilities are present.
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Figure 5.9: “Left” frequencies as functions of the mirror’s location for r+ = 5, r− = 0.5,

ν = 1.2, n = 0, k = −1 and m = 0. The real part of the frequency is such that

ωR → Re
[
(ω−)

(L)
0

]
= 0 as zM → 1 and ωR → kΩH = 0.2307 as zM → 0. The imaginary

part of the frequency is such that ωI → Im
[
(ω−)

(L)
0

]
in (5.45) as zM → 1.

5.4 Conclusions on the classical stability

In this chapter, we have investigated the classical linear mode stability of a mas-

sive scalar field on the background of a warped AdS3 black hole. The first main

result, Theorem 5.1.15, is that classical superradiance is present when physically

motivated boundary conditions are imposed at infinity; the second main result,
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cf. Theorem 5.2.8 and numerical results of section 5.3, is that the black hole is nev-

ertheless classically stable against the scalar mode perturbations, both with and

without a stationary mirror in the exterior region.

Taken together, these results are surprising at a first glance, as one might have

expected the superradiant modes to create instabilities as in the (3+1)-dimensional

Kerr spacetime. It was shown, however, that instabilities are not present, because

the effective potential never develops a potential well near the horizon where the su-

perradiant modes could be trapped. This stability might be a general characteristic

of (2+1)-dimensional spacetimes, and it is a particularly interesting result as al-

most all of the research to date on the classical stability of black holes has addressed

spacetimes in four or more dimensions. Compare, for instance, with the results from

Ref. [100], in which it was shown that black branes of the type Kerrd × Rp (where

p ∈ N and Kerrd is the Kerr black hole if d = 4 or the Myers-Perry black hole [117]

if d > 4) have superradiant instabilities if d = 4 but not if d > 4.

Additionally, the analysis in section 5.1 helps to clarify the role of boundary

conditions in classical superradiance. The in and up modes described in section 5.1.3

can be superradiant, whatever the choice of positive frequency, similarly to what

happens in the Kerr spacetime. This differs from the situation in the BTZ and Kerr-

AdS spacetimes, where superradiance is not present if reflective boundary conditions

are chosen at infinity, which are motivated by their asymptotic structure.

Having addressed the mode stability and the existence of classical superradiance

for the spacelike stretched black hole, in the following chapter, we return to the quan-

tum theory and address the computation of the renormalised vacuum polarisation,

as explained in general in Chapter 3.
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Chapter 6

Computation of 〈Φ2(x)〉 on a

WAdS3 black hole

In this chapter, we apply the method described in Chapter 3 to compute the renor-

malised vacuum polarisation of a massive scalar field in the Hartle-Hawking state

on a spacelike stretched black hole surrounded by a Dirichlet mirror. We present

numerical results which demonstrate the numerical efficacy of the method.

This chapter is mostly based on [2].

6.1 Vacuum polarisation on a WAdS3 black hole

As described in Section 2.2.3, in order to have a well defined, regular, isometry-

invariant vacuum state (the Hartle-Hawking state) on a spacelike stretched black

hole, we introduce a boundary M at a fixed radial coordinate r = rM in region I

and a similar boundary M′ in region IV on which we impose Dirichlet boundary

conditions (see Fig. 6.1). We require that rM ∈ (r+, rC), where r = rC is the radial

location of the speed of light surface, given by (4.58). As before, we denote by Ĩ the

portion of region I from the horizon up to the boundary and by the region ĨV the

portion of region IV from the horizon up to the boundary.

The Hartle-Hawking state is defined in the union of regions Ĩ, II, III and ĨV,

167
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Figure 6.1: Carter-Penrose diagram of a non-extremal spacelike stretched black hole

surround by mirrors.

which we take to be the manifold M of interest. Nevertheless, we are interested

in computing the renormalised vacuum polarisation in region Ĩ, as described in

Chapter 3. In this region, there is a timelike Killing vector field and we introduce

the co-rotating coordinate system (t̃ = t, r, θ̃ = θ − ΩHt), with ΩH given by (4.52),

such that the timelike Killing vector field is χ = ∂t̃ and the metric is given by

ds2 = −N(r)2 dt̃2 +
dr2

4R(r)2N(r)2
+R(r)2

(
dθ̃ +

(
N θ(r) + ΩH

)
dt̃
)2

. (6.1)

In the following, we go through the steps of the method described in Chapter 3

to renormalise the vacuum polarisation for a massive scalar field.

6.1.1 Scalar field and the Hartle-Hawking state

We consider again a real massive scalar field Φ on a spacelike stretched black hole

which satisfies the Klein-Gordon equation (5.2)(
∇2 −m2

)
Φ = 0 , (6.2)

and mode solutions of the form

Φω̃k(t̃, r, θ̃) = e−iω̃t̃+ikθ̃φω̃k(r) , (6.3)

where ω̃ ∈ R and k ∈ Z, cf. Eq (3.5).
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We now repeat the construction of the L and R modes as in Section 3.1.2,

which are modes defined everywhere in M and, from Proposition 3.1.4, of positive

frequency with respect to the affine parameters of the horizons. We take the one-

particle Hilbert space H to consist of the L and R mode solutions and define the

Hartle-Hawking state |H〉 as the vacuum state of Fs(H ), the Fock space associated

with H . The Feynman propagator GF evaluated for the Hartle-Hawking state is

then defined as in (2.84).

6.1.2 Complex Riemannian section

At this stage, as in Chapter 3, we are faced with the challenge of explicitly computing

the Feynman propagator as a sum over mode solutions of (2.86). For that, we

consider the complex Riemannian section of region Ĩ of the black hole.

The complex Riemannian section of a stationary spacetime was defined in Defi-

nition 1.2.6 and its metric for a (2+1)-dimensional rotating black hole was given by

(3.33). For the spacelike stretched black hole, the metric is

ds2 = N(r)2dτ 2 +
dr2

4R(r)2N(r)2
+R(r)2

(
dθ̃ − i

(
N θ(r) + ΩH

)
dτ
)2

. (6.4)

where we performed a Wick rotation t̃ = −iτ , with τ ∈ R. We denote the complex

Riemannian section of region I of the black hole by IC. This metric is regular at the

horizon if τ is periodic with period 2π/κ+, where κ+ is the surface gravity,

κ+ =
(ν2 + 3)(r+ − r−)

2
(

2νr+ −
√

(ν2 + 3)r+r−

) =
|ΩH|

4
(ν2 + 3)(r+ − r−) . (6.5)

6.1.3 Green’s distribution

Next, we find the Green’s distribution G associated with the Klein-Gordon equation

in the complex Riemannian section, which satisfies the distributional equation (3.34),

(
∇2 −m2

)
G(x, x′) = −δ

3(x, x′)√
g(x)

= −2δ(τ − τ ′)δ(r − r′)δ(θ̃ − θ̃′) . (6.6)
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As noted before, in the complex Riemannian section there is a unique solution to this

equation which is regular at the horizon and which satisfies the Dirichlet boundary

conditions at the boundary.

Given the periodicity conditions of τ and θ̃, one has

δ(τ − τ ′) =
κ+

2π

∞∑
n=−∞

eiκ+n(τ−τ ′) , (6.7)

δ(θ̃ − θ̃′) =
1

2π

∞∑
k=−∞

eik(θ̃−θ̃′) , (6.8)

and, if we expand G(x, x′) as

G(x, x′) =
κ+

4π2

∞∑
n=−∞

eiκ+n(τ−τ ′)
∞∑

k=−∞

eik(θ̃−θ̃′) Gnk(r, r
′) (6.9)

and use (6.7) and (6.8), one obtains a differential equation for Gnk,

d

dr

(
4R(r)2N(r)2dGnk(r)

dr

)
− 1

R(r)2N(r)2

[
R(r)2

(
ω̃ + ik(N θ(r) + ΩH)

)2

+N(r)2
(
k2 +m2R(r)2

) ]
Gnk(r) = −2δ(r − r′) , (6.10)

cf. (3.38). The solutions of this equation may be given as a product of solutions of

the corresponding homogeneous equation. Using Appendix C, a pair of independent

solutions of the homogeneous equation is

φ1
nk(z) = zα(1− z)βF (a, b; c; z) , (6.11)

φ2
nk(z) = zα(1− z)βF (a, b; a+ b+ 1− c; 1− z) , (6.12)

where we introduce the radial coordinate

z =
r − r+

r − r−
, (6.13)

and where the parameters of the hypergeometric functions are given by

a = α + β + γ , b = α + β − γ , c = 2α + 1 , (6.14)
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with

α =
|n|
2
, (6.15a)

β =
1

2
+

√
3(ν2 − 1)

ν2 + 3

√
(ν2 + 3)2

12(ν2 − 1)

(
1 +

4m2

ν2 + 3

)
+ (κ+n+ ikΩH)2 , (6.15b)

γ =
2νr− −

√
r+r−(ν2 + 3)

(ν2 + 3)(r+ − r−)

√
[κ+n+ ik (N θ(r−) + ΩH)]2 . (6.15c)

Our convention for the the branch of the square roots in (6.15) is the one with

non-negative real part.

Taking into account the boundary conditions, the regular solution at event hori-

zon, z = 0, is

pnk(z) = φ1
nk(z) , (6.16)

whereas the Dirichlet solution near the mirror, z = zM , is given by

qnk(z) = φ2
nk(z)− φ2

nk(zM)

φ1
nk(zM)

φ1
nk(z) . (6.17)

The radial part of the Green’s function, as in (3.39), is then

Gnk(z, z
′) = Cnk pnk(z<) qnk(z>) , (6.18)

where z< := min{z, z′}, z> := max{z, z′} and Cnk is the normalization constant

determined by (3.40). For convenience, we rewrite (6.9) as

G(x, x′) =
|ΩH|
8π2

∞∑
n=−∞

eiκ+n(τ−τ ′)
∞∑

k=−∞

eik(θ̃−θ̃′) Gnk(r, r
′) . (6.19)

Then, Cnk is given by

Cnk =
Γ(a)Γ(b)

|n|! Γ(a+ b− |n|)
. (6.20)

6.1.4 Hadamard renormalisation

Having computed the Green’s distribution G, it now remains to follow the Hadamard

renormalisation procedure described in Section 3.3 to subtract its short-distance

divergences and obtain the renormalised vacuum polarisation,

〈Φ2(x)〉 = lim
x′→x

[G(x, x′)−GHad(x, x′)] . (6.21)
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where GHad is the Hadamard singular part,

GHad(x, x′) =
1

4
√

2π

1√
σ(x, x′)

+O(σ1/2) . (6.22)

To do that, we rewrite GHad(x, x′) as a sum over mode solutions for the complex

Riemannian section of the Minkowski spacetime, plus a term which is finite when

the coincidence limit is taken, as given by (3.46) and explained in detail in the text

after Eq. (3.46) and in Appendix A.

For concreteness, assume that the points x and x′ are angularly separated,

i.e. assume that the black hole metric is given in coordinates (τ, r, θ̃), whereas

the Minkowski metric is given in coordinates (τ, ρ, θ̃), and let x = (τ, r, 0) and

x′ = (τ, r, θ̃), with θ̃ > 0, for the black hole case, and similarly for the Minkowski

case.

The Synge’s world function for the black hole is

σ(x, x′) =
1

2
R(r)2θ̃2 +O(θ̃3) . (6.23)

and, hence, the Hadamard singular part of the Green’s distribution is

GHad(x, x′) =
1

4π

1

R(r)θ̃
+O(θ̃) . (6.24)

For the Minkowski case, the Hadamard singular part is given by

GM
Had(x, x′) =

1

4π

1

ρθ̃
+O(θ̃) , (6.25)

which, using the notation and definitions of Appendix A, can also be expressed as

the mode sum,

GM
Had(x, x′) =

TM
2π

∞∑
k=−∞

(
eikθ̃

∞∑
n=−∞

ĜM
nk(ρ, ρ

′)

)
− ĜM

reg(x, x′) +O(θ̃) , (6.26)

At this stage, we set the leading terms of Hadamard singular parts (6.24) and

(6.25) to be equal up to a function γ(r) > 0 by identifying the two radial coordinates

as in (3.49), i.e.

ρ(r) = γ(r)−1R(r) . (6.27)
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Given this identification, we can now write

G(x, x′)−GHad(x, x′) =
∞∑

k=−∞

eikθ̃
∞∑

n=−∞

[
|ΩH|
8π2

Gnk(r, r)−
TM

2πγ(r)
ĜM
nk(ρ(r), ρ(r))

]
+ γ(r)−1 ĜM

reg(x, x′) +O(θ̃) . (6.28)

We can now use Theorem 3.3.1 to guarantee that the double sum in the RHS

of (6.28) is convergent in the coincidence limit θ̃ → 0 if the parameters of the

Minkowski’s Green’s distribution are chosen to be

γ(z) = N(z) , TM =
κ+

2π
, ΩM = N θ(z) + ΩH . (6.29)

We have all the necessary ingredients to compute the renormalised vacuum po-

larisation (6.21). The modes sums need to be computed numerically, as done in the

next section.

6.2 Numerical results

In this section, we present the numerical results for the computation of the renor-

malised vacuum polarisation of the scalar field in the Hartle-Hawking state in region

Ĩ of the spacelike stretched black hole.

The numerical computation uses expressions (6.28) and (6.21) with the Minkowski

parameters chosen as in (6.29):

〈Φ2(x)〉 =
∞∑

k=−∞

∞∑
n=−∞

[
|ΩH|
8π2

Gnk(z, z)− κ+

4π2N(z)
ĜM
nk

(
R(z)
N(z)

, R(z)
N(z)

) ∣∣∣
ΩM=Nθ(z)+ΩH

]

+
1

4πN(z)

−mM +
∑
N 6=0

e
−mM

√(
N
TM

)2
−4

R2(z)
N2(z)

sinh2
(

ΩMN
2TM

)
+iε sgn(ΩMN)√(

N
TM

)2

− 4R
2(z)

N2(z)
sinh2

(
ΩMN
2TM

)
+ iε sgn(ΩMN)

 ,

(6.30)

with ε → 0+ indicating the choice of branch of the square root (see details in

Appendix A).
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Figure 6.2: Vacuum polarization for the scalar field as a function of z/zM for ν = 1.2,

r+ = 15, r− = 1, rM = 62 and m = 1.

As described previously, the sums in (6.30) are convergent. For the numerical

evaluation of the sums, cutoffs are imposed appropriately. Note that the parameter

m2
M is not fixed and it is chosen in such a way to improve the numerical convergence

of the double sum over k and n.

The numerical results for selected values of the parameters are presented in

Fig. 6.2. In the plot, 〈Φ2(x)〉 is shown as a function of the normalized radial co-

ordinate z/zM, where z = (r − r+)/(r − r−). The plot is very similar to the one

obtained in Ref. [118] for a scalar field in the (3+1)-dimensional Minkowski space-

time surrounded by a mirror with Dirichlet boundary conditions (note that “rotating

Minkowski spacetime” is related to “static Minkowski spacetime” by a coordinate

transformation, hence the results for 〈Φ2(x)〉 are the same for both cases).

Furthermore, note that 〈Φ2(x)〉 gets arbitrarily large and negative as the mirror

is approached. This is to be expected, as we imposed that the Green’s function

G(x, x′) must vanish when x is at the boundary, even when x′ → x, whereas the
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subtraction term still diverges when x′ → x (see Section 4.3 of [9] for more details).

We reemphasize that the result shown in Fig. 6.2 is the full renormalized vacuum

polarization in the Hartle-Hawking state. To find the renormalized vacuum polar-

ization in other Hadamard states of interest, such as the Boulware vacuum state, it

would suffice to use the Hartle-Hawking state as a reference and just to calculate the

difference, which is finite without further renormalization. For comparison, we note

that in Kerr with a mirror the difference of the vacuum polarization in the Boul-

ware and Hartle-Hawking states was found in [28], while the renormalized vacuum

polarization in the individual states is still unknown.
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Conclusions

In this thesis we have developed a method to compute a class of renormalised local

observables which includes the vacuum polarisation for a quantised matter field, in

a given quantum state, on a rotating black hole spacetime. The rotating black hole

is surrounded by a Dirichlet mirror, if necessary, such that the resulting exterior

region possesses a timelike Killing vector field and on which a regular, isometry-

invariant state for the matter field can be defined as a result. For simplicity, we

have focused on the case of a massive scalar field on a (2+1)-dimensional rotating

black hole, but the method can be straightforwardly extended to other types of fields

and higher-dimensional rotating black holes.

The main results of this thesis were presented in Chapter 3. Here, we have

described the steps involved to explicitly renormalise and compute a local observ-

able which is non-linear in the field operators, but which does not involve covariant

derivatives of the field operators. We implement the renormalisation at the level of

the Feynman propagator evaluated for the regular, isometry-invariant state, from

which we subtract the singular, purely geometric part and after which the coinci-

dence limit can be taken. For instance, for a scalar field Φ, we have seen how the

renormalised vacuum polarisation can be obtained by a careful use of the formula

〈Φ2(x)〉 = −i lim
x′→x

[
GF(x, x′)−GHad(x, x′)

]
,

where GF is the Feynman propagator evaluated for that quantum state and GHad is

its Hadamard singular part. This formula summarises the three main steps necessary

to perform the computation:
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(i) Expressing GF(x, x′) as a sum over mode solutions of the differential equation

satisfied by GF. It is advantageous to consider the complex Riemannian sec-

tion of the exterior region of the rotating black hole, on which the Green’s

distribution associated with the field equation is unique and can be obtained

using standard techniques of the theory of Green’s functions. We then ana-

lytically continue the result back to the original spacetime, where GF(x, x′)

is written as a discrete sum over mode solutions. This step was described in

Section 3.2.

(ii) Expressing GHad(x, x′), which is known in closed form for any spacetime di-

mension, as a sum over mode solutions, so that the short-distance divergences

of GF(x, x′) may be subtracted term by term. As we have seen in Section 3.3,

we have done this by writing GHad(x, x′) as sum over mode solutions on the

complex Riemannian section of Minkowski, for which the Green’s distribution

is known both in closed form and as a mode sum. We have then succeeded

in expressing [GF(x, x′) − GHad(x, x′)] as a mode sum (plus a regular term),

which was made convergent in the coincidence limit by a natural choice of the

parameters of the Minkowski Green’s distribution.

(iii) Having guaranteed the convergence of the mode sum in [GF(x, x′)−GHad(x, x′)]

when x′ → x, we can safely take the coincidence limit and obtain the renor-

malised vacuum polarisation.

A few remarks are in order. First, as we have emphasised in this thesis, in step

(ii) above, the procedure involved in guaranteeing the convergence of the mode sum

in [GF(x, x′)−GHad(x, x′)] in the coincidence limit, where GHad(x, x′) is expressed as

a sum over mode solutions on the complex Riemannian section of Minkowski, does

not require the knowledge of the mode solutions of the field equation in closed form,

but only the first terms of the asymptotic expansion for large values of the quantum

numbers. These were obtained in Section 3.3 and Appendix B. This allows the

method to be extended to the Kerr black hole and other higher-dimensional rotating
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black holes for which the mode solutions have to be constructed fully numerically.

Hence, the implementation of our method for Kerr would seem feasible in principle,

and it should prove interesting to attempt the implementation in practice.

Second, as seen in Section 3.4, this method is not suitable to renormalise local

observables which involve covariant derivatives of the field operators, such as the

expectation value of the stress-energy tensor, 〈Tab(x)〉. For observables of this type,

we were not able to subtract the short-distance divergences by expressing the sin-

gular terms as sums over mode solutions, or derivatives of mode solutions, on the

complex Riemannian section of Minkowski. This is due to the fact that the shift

function of the metric of Minkowski written in some rotating coordinate system is

a constant in spacetime, whereas the shift function of the metric of a rotating black

hole is a function of the radial coordinate in some coordinate system.

For the specific case of the (2+1)-dimensional warped AdS3 black hole considered

in Part II of the thesis, one possibility is to consider the rotating BTZ black hole

as a reference background, instead of Minkowski, since it is possible to explicitly

compute the renormalised expectation value of the stress-energy tensor by using the

fact that the rotating BTZ corresponds to AdS3 with discrete identifications. The

calculation of the renormalised expectation value of the stress-energy tensor for the

rotating BTZ was done in [31]. We hope to look into this case in the future.

For other rotating black holes, a more general method is required. Our method

requires the knowledge of the Feynman propagator in both closed form and as a

mode sum for a reference spacetime and the only available examples are Minkowski,

AdS and dS. These are sufficient for the renormalisation of local observables on static

black hole spacetimes, for which there are coordinate systems such that the shift

function vanishes, but not for stationary, but non-static, black hole spacetimes.

This remains as an open question, one among several important open questions

concerning classical and quantum aspects of rotating black holes, especially Kerr,

such as its non-linear stability as a solution of the Einstein equations.
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Appendix A

Complex Riemannian section of

the Minkowski spacetime

Consider (2+1)-dimensional rotating Minkowski spacetime. Choosing rotating, spher-

ical coordinates (t̃, ρ, θ̃), its metric is

ds2 = −dt̃2 + dρ2 + ρ2
(
dθ̃ + ΩM dt̃

)2
, (A.1)

with (t̃, ρ, θ̃) ∼ (t̃, ρ, θ̃ + 2π) and ΩM ∈ R. In the complex Riemannian section, the

metric is given by

ds2 = dτ 2 + dρ2 + ρ2
(
dθ̃ − iΩM dτ

)2
, (A.2)

with t = −iτ .

Note that in the real Lorentzian section, for ΩM 6= 0, the Killing vector field

χ = ∂t̃ becomes spacelike when ρ > |ΩM|−1. We restrict our attention to the part

of the spacetime where ρ < ρM, such that at ρ = ρM < |ΩM|−1 there is a timelike

boundary at which Dirichlet boundary conditions are imposed.

Moreover, we will require that

(τ, ρ, θ̃) ∼ (τ + T−1
M , ρ, θ̃) , (A.3)

where TM > 0 is to be interpreted as the temperature.

183



184 APPENDIX A. COMPLEX RIEMANNIAN SECTION OF MINKOWSKI

Consider the Klein-Gordon equation for a real scalar field of mass mM,(
∇2 −m2

M
)

Φ(τ, ρ, θ̃) = 0 , (A.4)

which in this coordinate system is given by[
∂2

∂τ 2
+

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1− ρ2Ω2
M

ρ2

∂2

∂θ̃2
+ 2iΩM∂τ∂θ̃ −m

2
M

]
Φ(τ, ρ, θ̃) = 0 . (A.5)

Using the ansatz Φ(τ, ρ, θ) = eiω̃τ+ikθ̃φ(ρ) one gets

d2

dρ2
φ(ρ) +

1

ρ

d

dρ
φ(ρ)−

(
(ω̃ + ikΩM)2 +m2

M +
k2

ρ2

)
φ(ρ) = 0 . (A.6)

Two independent solutions are

φ1
ω̃k(ρ) = Ik

(√
(ω̃+ ikΩM)2 +m2

Mρ

)
, φ2

ω̃k(ρ) = Kk

(√
(ω̃+ ikΩM)2 +m2

M ρ

)
. (A.7)

where Ik and Kk are the modified Bessel functions and the principal branch of the

square root is understood.

The Green’s distribution GM(x, x′) associated with (A.4) satisfies the equation(
∇2 −m2

)
GM(x, x′) = −δ

3(x, x′)√
g(x)

= −1

ρ
δ(τ − τ ′)δ(ρ− ρ′)δ(θ̃ − θ̃′) . (A.8)

Given the periodicities of τ and θ̃, ω̃ = 2πTMn, with n ∈ Z, and k ∈ Z. Thus,

δ(θ̃ − θ̃′) =
1

2π

∞∑
k=−∞

eik(θ̃−θ̃′) , (A.9)

δ(τ − τ ′) = TM

∞∑
n=−∞

ein2πTM(τ−τ ′) . (A.10)

If one now expands the Green’s distribution GM(x, x′) as

GM(x, x′) =
TM
2π

∞∑
n=−∞

ei2πTMn(τ−τ ′)
∞∑

k=−∞

eik(θ̃−θ̃′) GM
nk(ρ, ρ

′) , (A.11)

then GM
nk(ρ, ρ

′) satisfies

d2

dρ2
GM
nk(ρ, ρ

′) +
1

ρ

d

dρ
GM
nk(ρ, ρ

′)−
(

(2πTMn+ ikΩM)2 +m2
M +

k2

ρ2

)
GM
nk(ρ, ρ

′)

= −δ(ρ− ρ
′)

ρ
. (A.12)
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Consider the homogeneous equation associated with (A.12) and let pMnk(ρ) be the

regular solution near ρ = 0 and qMnk(ρ) be the Dirichlet solution near ρ = ρM. Then,

the unique solution to the inhomogeneous equation is

GM
nk(ρ, ρ

′) = CM
nk p

M
nk(ρ<) qMnk(ρ>) , (A.13)

where ρ< := min{ρ, ρ′}, ρ> := max{ρ, ρ′} and CM
nk is a normalization constant which

is determined from the Wronskian relation

CM
nk

(
pMnk

dqMnk
dρ
− qMnk

dpMnk
dρ

)
= −1

ρ
. (A.14)

Comparing (A.6) and (A.12) one concludes that the solutions to the homogeneous

equation corresponding to (A.12) are

pMnk(ρ) = φ1
nk(ρ) , qMnk(ρ) = φ2

nk(ρ)− φ2
nk(ρM)

φ1
nk(ρM)

φ1
nk(ρ) , (A.15)

where φink(ρ) := φiω̃k(ρ)|ω̃=2πTMn. Moreover, Eq. (A.14) leads to CM
nk = 1, thus,

GM
nk(ρ, ρ

′) = φ1
nk(ρ<)

[
φ2
nk(ρ>)− φ2

nk(ρM)

φ1
nk(ρM)

φ1
nk(ρ>)

]
. (A.16)

The Hadamard singular part GM
Had of the Green’s distribution is given in closed

form by (3.42). We also want to express the Hadamard singular part of this Green’s

distribution as a mode sum.

We can write the Green’s distribution GM(x, x′) (A.11) as

GM(x, x′) = GM
Had(x, x′) +GM

reg(x, x′) , (A.17)

where GM
reg(x, x′) is finite when x′ → x. As GM

Had has no mirror dependence, it is

convenient to express it as

GM
Had(x, x′) =

TM
2π

(
∞∑

k=−∞

eik(θ̃−θ̃′)
∞∑

n=−∞

ein(τ−τ ′) Ĝnk(ρ, ρ
′)

)
− ĜM

reg(x, x′) , (A.18)

with

ĜM
nk(ρ, ρ

′) := φ1
nk(ρ)φ2

nk(ρ
′) , (A.19)
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and ĜM
reg(x, x′) finite when x′ → x. In this form, neither of the terms on the RHS

of (A.18) has any mirror dependence. We have written GM
Had as a mode sum (plus

a regular term), which can be used to subtract the divergences in the black hole

Green’s distribution, as detailed in Sec. 3.3. It remains to compute ĜM
reg(x, x′).

Since this term is finite in the coincidence limit, we only need to determine the limit

of this term when x′ → x.

First, it will be useful to determine GM
Had in closed form. Suppose that x and x′

are angularly separated, i.e. τ = τ ′ and ρ = ρ′. Then, the complex Synge’s world

function is given by

σ(x, x′) =
1

2
ρ2(θ̃′ − θ̃)2 +O(θ̃′ − θ̃)3 . (A.20)

The Hadamard singular part of the Green’s distribution is then

GM
Had(x, x′) =

1

4π

1

ρ|θ̃′ − θ̃|
+O(θ̃′ − θ̃) . (A.21)

Without loss of generality, let x = (τ, ρ, 0) and x′ = (τ, ρ, θ̃), with θ̃ > 0, such

that

GM
Had(x, x′) =

1

4π

1

ρθ̃
+O(θ̃) . (A.22)

Note that we can relate the thermal Green’s distribution GM(x, x′) at tempera-

ture TM to the Green’s distribution GM
0 (x, x′) of a scalar field at zero temperature

using the image sum formula (2.110),

GM(τ, ρ, θ̃; τ ′, ρ′, θ̃′) =
∞∑

N=−∞

GM
0 (τ + N

TM
, ρ, θ̃; τ ′, ρ′, θ̃′) . (A.23)

The zero-temperature Green’s distribution can be written as

GM
0 (x, x′) =

1

4π

e−mM∆s

∆s
+GM0 (x, x′) , (A.24)

where GM0 (x, x′) is the contribution which contains the mirror dependence and is

finite when x′ → x. For Minkowski spacetime in the complex Riemannian section,

∆s is given by

∆s2 = (τ ′ − τ)2 + (ρ− ρ′)2 + 4ρρ′ sin2

[
1

2

(
θ̃′ − θ̃ − iΩM(τ ′ − τ)

)]
. (A.25)
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In the case of angular separation, the Green’s function becomes

GM(τ, ρ, 0; τ, ρ, θ̃)

=
1

4π

∞∑
N=−∞

 e
−mM

√(
N
TM

)2
+4ρ2 sin2

(
θ̃
2

+i
ΩMN
2TM

)
√(

N
TM

)2

+ 4ρ2 sin2
(
θ̃
2

+ iΩMN
2TM

) +GM0 (τ + N
TM
, ρ, 0; τ, ρ, θ̃)



=
1

4π


∑
N 6=0

 e
−mM

√(
N
TM

)2
+4ρ2 sin2

(
θ̃
2

+i
ΩMN
2TM

)
√(

N
TM

)2

+ 4ρ2 sin2
(
θ̃
2

+ iΩMN
2TM

) +GM0 (τ + N
TM
, ρ, 0; τ, ρ, θ̃)



+
e−2mMρ sin(θ̃/2)

2ρ sin(θ̃/2)
+GM0 (τ, ρ, 0; τ, ρ, θ̃)


= GM

Had(x, x′) + ĜM
reg(x, x′) +GM(x, x′) , (A.26)

with

ĜM
reg(x, x′) :=

1

4π

e−2mMρ sin(θ̃/2)

2ρ sin(θ̃/2)
− 1

ρθ̃
+
∑
N 6=0

e
−mM

√(
N
TM

)2
+4ρ2 sin2

(
θ̃
2

+i
ΩMN
2TM

)
√(

N
TM

)2

+ 4ρ2 sin2
(
θ̃
2

+ iΩMN
2TM

)
 ,

(A.27)

GM(x, x′) :=
1

4π

∞∑
N=−∞

GM0 (τ + N
TM
, ρ, 0; τ, ρ, θ̃) . (A.28)

ĜM
reg(x, x′) has a finite limit when θ̃ → 0, except for isolated values of the pa-

rameters at which the the square root in (A.27) vanishes. To see this, consider the

expansion of the argument of the square root for small positive values of θ̃:

(
N

TM

)2

+ 4ρ2 sin2

(
θ̃

2
+ i

ΩMN

2TM

)

=

(
N

TM

)2

− 4ρ2

[
sinh2

(
ΩMN

2TM

)
− iθ̃ sinh

(
ΩMN

2TM

)
cosh

(
ΩMN

2TM

)]
+O(θ̃)2 .

(A.29)
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When
(
N
TM

)2

− 4ρ2 sinh2
(

ΩMN
2TM

)
> 0, the positive branch of the square root is to be

used when θ̃ → 0. Otherwise, when
(
N
TM

)2

− 4ρ2 sinh2
(

ΩMN
2TM

)
< 0, the square root

when θ̃ → 0 is given by

i sgn(ΩMN)

√
4ρ2 sinh2

(
ΩMN

2TM

)
−
(
N

TM

)2

= i sgn(ΩM)
N

TM

√
4ρ2T 2

M
N2

sinh2

(
ΩMN

2TM

)
− 1 . (A.30)

Hence, one can take the limit θ̃ → 0 in ĜM
reg(x, x′) to obtain

lim
x′→x

ĜM
reg(x, x′) =

1

4π

−mM +
∑
N 6=0

e
−mM

√(
N
TM

)2
−4ρ2 sinh2

(
ΩN
2TM

)
+iε sgn(ΩMN)√(

N
TM

)2

− 4ρ2 sinh2
(

ΩMN
2TM

)
+ iε sgn(ΩMN)

 ,

(A.31)

with ε→ 0+, if
(
N
TM

)2

− 4ρ2 sinh2
(

ΩMN
2TM

)
6= 0.



Appendix B

WKB expansions

In this appendix we describe the WKB method used to obtain asymptotic expansions

for solutions of differential equations which can be written in a Schrödinger-like form.

A standard reference is [119].

Let φ1
nk and φ2

nk be two independent solutions of the radial equation of a field

equation for which there is a radial coordinate ξ such that the equation can be

written in a Schrödinger-like form

d2φnk(ξ)

dξ2
−Qnk(ξ)φnk(ξ) = 0 , (B.1)

and the Wronskian relation is given by

φ1
nk(ξ)

dφ2
nk(ξ)

dξ
− φ2

nk(ξ)
dφ1

nk(ξ)

dξ
=

1

Cnk
, (B.2)

where Cnk is a constant, Qnk(ξ) := χ2
nk(ξ) + η2(ξ) and χ2

nk(ξ) contains all the n and

k dependence and is large whenever λ2 := n2 + k2 is large.

We assume that f(ξ;λ) := −Qnk(ξ) has an asymptotic expansion of the form

f(ξ;λ) ∼ λ2

∞∑
j=0

fj(ξ)aj(λ) , λ→ +∞ , (B.3)

where {aj(λ)}∞j=0 is an asymptotic sequence such that a0(λ) = 1. In this case,

standard WKB theory guarantees that there is an asymptotic expansion for the

solutions φi(ξ), i = 1, 2, when λ→ +∞, given by the so-called WKB method.
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Lemma B.0.1. Rewrite the differential equation (B.1) as

ε2
d2φnk(ξ)

dξ2
−Qnk(ξ)φnk(ξ) = 0 , (B.4)

where ε > 0 is an expansion parameter (which may be set to 1 at the end). The

WKB expansions of φ1(ξ) and φ2(ξ) are the asymptotic expansions in ε,

φ1(ξ) =
1√

2CnkQ
1/2
nk

exp

{
1

ε

∫ ξ

dt

[
Q1/2 + ε2

(
Q′′nk

8Q
3/2
nk

− 5(Q′nk)
2

32Q
5/2
nk

)]

+ ε2
(
− Q′′nk

16Q2
nk

+
5(Q′nk)

2

64Q3
nk

)
+O(ε3)

}
, (B.5)

φ2(ξ) =
1√

2CnkQ
1/2
nk

exp

{
−1

ε

∫ ξ

dt

[
Q1/2 + ε2

(
Q′′nk

8Q
3/2
nk

− 5(Q′nk)
2

32Q
5/2
nk

)]

+ ε2
(
− Q′′nk

16Q2
nk

+
5(Q′nk)

2

64Q3
nk

)
+O(ε3)

}
. (B.6)

Proof. See e.g. Chapter 10 of [119].

The WKB expansions give us the asymptotic behaviour of the solutions φ1(ξ)

and φ2(ξ) for large values of Qnk(ξ).

We are interested in obtaining the large χnk expansion of

Gnk(ξ) := Cnk φ
1
nk(ξ)φ

2
nk(ξ) . (B.7)

Proposition B.0.2. The asymptotic expansion of Gnk(ξ) for large values of χnk is

Gnk(ξ) =
1

2χnk
− η2

4χ3
nk

− (χ2
nk)
′′

16χ5
nk

+
5[(χ2

nk)
′]2

64χ7
nk

+O(χ−5
nk ) . (B.8)

Remark B.0.3. Note that all of the second, third and fourth terms on the RHS of

(B.8) are of order χ−3
nk .

Proof. Lemma B.0.1 allows us to write

Gnk(ξ) =
1

2Q
1/2
nk

exp

[
2ε2
(
− Q′′nk

16Q2
nk

+
5(Q′nk)

2

64Q3
nk

)
+O(ε3)

]

=
1

2Q
1/2
nk

+ ε2

(
− Q′′nk

16Q
5/2
nk

+
5(Q′nk)

2

64Q
7/2
nk

)
+O(ε3) . (B.9)
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Expanding Qnk for large values of χnk,

1

2Q
1/2
nk

=
1

(χ2
nk + η2)

1/2
=

1

2χnk

(
1− η2

2χ2
nk

+O(χ−4
nk )

)
, (B.10)

and setting the expansion parameter ε = 1 gives the result.

We will also be interested in the large χnk expansion of

G ′nk(ξ) := Cnk
dφ1

nk(ξ)

dξ
φ2
nk(ξ) . (B.11)

Proposition B.0.4. The asymptotic expansion of G ′nk(ξ) for large values of χnk is

G ′nk(ξ) =
1

2
− (χ2

nk)
′

8χ3
nk

+O(χ−3
nk ) . (B.12)

Proof. From (B.5),

dφ1(ξ)

dξ
=

[
Q

1/2
nk −

Q′nk
4Qnk

+
Q′′nk

8Q
3/2
nk

− 5(Q′nk)
2

32Q
5/2
nk

+O(Q−1
nk )

]
φ1 . (B.13)

Hence, using (B.9),

G ′nk(ξ) = Cφ1φ2

[
Q

1/2
nk −

Q′nk
4Qnk

+
Q′′nk

8Q
3/2
nk

− 5(Q′nk)
2

32Q
5/2
nk

+O(Q−1
nk )

]

=

[
1

2Q
1/2
nk

+

(
− Q′′nk

16Q
5/2
nk

+
5(Q′nk)

2

64Q
7/2
nk

)
+O(Q

−3/2
nk )

]

×

[
Q

1/2
nk −

Q′nk
4Qnk

+
Q′′nk

8Q
3/2
nk

− 5(Q′nk)
2

32Q
5/2
nk

+O(Q−1
nk )

]

=
1

2
− Q′nk

8Q
3/2
nk

+O(Q
−3/2
nk ) . (B.14)

Expanding for large χnk gives the result.
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Appendix C

Hypergeometric functions

In this appendix, we give a very brief overview of the hypergeometric differential

equation, the hypergeometric function and a few of its properties. For a more

complete overview, see e.g. [120–122].

Consider the 2nd-order ordinary differential equation,

d2u

dz2
+ P (z)

du

dz
+Q(z)u = 0 . (C.1)

Recall that

(i) if P (z) and Q(z) remain finite at z = z0, then z0 is called an ordinary point ;

(ii) if either P (z) or Q(z) diverges as z → z0, then z0 is called a singular point ;

(iii) if either P (z) or Q(z) diverges as z → z0, but (z − z0)P (z) and (z − z0)2Q(z)

remain finite at z = z0, then z0 is called a regular singular point.

If (C.1) has at most three singular points we may assume that these are 0, 1, ∞.

If these singular points are also regular, then (C.1) can be reduced to the form

z(1− z)
d2u

dz2
+ [c− (a+ b+ 1)z]

du

dz
− abu = 0 , (C.2)

where a, b, c ∈ C are independent of z. This is the hypergeometric differential

equation.
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If c 6∈ Z−0 , then one solution which is regular at z = 0 is the hypergeometric

function.

Definition C.0.1. The hypergeometric function F (a, b; c; z) := 2F1(a, b; c; z) is

given by the series

F (a, b; c; z) :=
Γ(c)

Γ(a)Γ(b)

∞∑
k=0

Γ(a+ k)Γ(b+ k)

Γ(c+ k)

zk

k!
, (C.3)

when |z| < 1 and elsewhere by analytical continuation.

The hypergeometric function F (a, b; c; z) is not defined for c ∈ Z−0 and the prin-

cipal branch is the branch |arg(1− z)| ≤ π.

We now list the linearly independent solutions of the hypergeometric differential

equation (C.2) when none of the numbers a, b, c − a, c − b is an integer (for other

cases, see the references listed above).

(i) If c 6∈ Z, then two independent solutions are

u1(z) = F (a, b; c; z) , (C.4a)

u2(z) = z1−c F (a+ 1− c, b+ 1− c; 2− c; z) . (C.4b)

(ii) If c ∈ Z, then two independent solutions are

u1(z) =

F (a, b; c; z) , c > 0 ,

z1−c F (a+ 1− c, b+ 1− c; 2− c; z) , c ≤ 0 ,

(C.5a)

u2(z) =

F (a, b; a+ b+ 1− c; 1− z) , a+ b+ 1− c 6∈ Z−0 ,

(1− z)c−a−b F (c− a, c− b; 1 + c− a− b; 1− z) , a+ b+ 1− c ∈ Z−0 .

(C.5b)

A few important properties of the hypergeometric function F (a, b; c; z) which are

necessary in the text are the following.
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1. At z = 1,

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, Re[c− a− b] > 0 . (C.6)

2. One of the transformation formulas is

F (a, b; c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

F (a, b; a+ b+ 1− c; 1− z) + (1− z)c−a−b

× Γ(c)Γ(a+ b− c)
Γ(a)Γ(b)

F (c− a, c− b; 1 + c− a− b; 1− z) . (C.7)
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Appendix D

Classical black hole superradiance

In this appendix, we give a very brief overview of the classical superradiance phe-

nomenon on stationary black hole spacetimes. For more details, see e.g. Ref. [94].

We assume that the background black hole spacetime is asymptotically flat and,

moreover, stationary and axisymmetric. Consider a classical matter field perturba-

tion which may be expressed in terms of a single master variable Ψ which obeys a

Schrödinger-type equation of the form

d2Ψ

dr2
∗

+ VΨ = 0 , (D.1)

where V is the effective potential and the tortoise coordinate r∗ maps a radial

coordinate r ∈ (r+,∞) to (−∞,∞), where r+ is the horizon radius. Given the

symmetries of the spacetime, we consider a mode solution with frequency ω and

angular momentum number k of the form e−iωt+ikθ. If we assume that the effective

potential V is constant at the horizon and at infinity, then the mode solution has

the following asymptotic behaviour

Ψ ∼

Ae
iωHr∗ +B e−iωHr∗ , r → r+ ,

C eiω∞r∗ +D e−iω∞r∗ , r →∞ .

(D.2)

where ω2
H := V (r+) and ω2

∞ := limr→∞ V (r).

These boundary conditions correspond to an incident wave of amplitude D from

infinity, a reflected wave of amplitude C, a transmitted wave of amplitude B at the
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horizon and an outgoing wave of amplitude A from the horizon. Even though we

do not expect outgoing flux from the horizon at a classical level, a term of this form

can be useful to define bases of mode solutions, as in Section 5.1.3.

If we now assume that the effective potential V is real-valued, then (D.1) is

invariant under the transformations t → −t and ω → −ω and, hence, Ψ is also a

solution of (D.1) and is linearly independent of Ψ. Therefore, the Wronskian

W (Ψ,Ψ) := Ψ
dΨ

dr∗
−Ψ

dΨ

dr∗
(D.3)

is independent of r∗. It thus follows that the Wronskian evaluated at the horizon,

W (Ψ,Ψ) = 2iωH (|A|2 − |B|2), must equal the one evaluated at infinity, W (Ψ,Ψ) =

2iω∞(|C|2 − |D|2), so that

|C|2 − |D|2 =
ωH
ω∞

(
|A|2 − |B|2

)
. (D.4)

If there is no flux coming from the horizon, A = 0, then |C|2 < |D|2 when

ωH/ω∞ > 0, i.e. the amplitude of the reflected wave is smaller than of the incident

wave. However, for ωH/ω∞ < 0, the wave is amplified, |C|2 > |D|2. This is the

phenomenon of superradiance. If A 6= 0 but B = 0, then superradiance occurs if

|D|2 > |C|2, i.e. for ωH/ω∞ < 0.
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